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Rubayat
 ̵ϡά  ̶   ධෆ ਟ ສ  వଲ       ϟࡐࡪख़Δ ॥ Ϣ ϩ                   ଌ  ϞΫ߮ρ    ଡෙකণ   ϟ Ϋ ऴ      Δ ॥  

 γ߮Ώ γϪऒ ϡϪ  Ϣ  భ ঈ ૱࣓ുি ϩ  Χ߮β  ण               ϩീয   Ϧ ̮Ҥ  ϟ Χ  ࣓ঃϩ  ϟ  ϡ  ক Ϳ      Δ ॥  
  

 ϡฬͿ     ສ  πકध ࣜੁख़  ϩ     ΧͿ     Ψ৯Ψ॰                       భ  ψ॒ࢣ     ψ  ϛࢣॷ    ߮ થ       Ψ৯Ψ॰  
Χά   ̮ҤΫห Ύ  Ϣ έ  ϥΫධ ८ ଌΨ৯   ୀϡϩ                    ௰ ߮βण̵ ଡ    ϩ    భ   Ϫऒ     Ψ৯Ψ॰ 

  
  

  
  
  
  

Ces océans de vertu et de science,
Ces flambeaux illuminant l’assemblée des parfaits,
N’ont pourtant point trouvé d’issue hors de cette nuit ténébreuse.
Ils ont raconté une histoire, et puis se sont endormis.

Traduction R. Lescot, tiré de l’"Anthologie de la poésie persane", Z. Safâ.

Omar Khayam (1048-1122)
L’astronome et mathématicien perse qui ne croyait pas au ciel.
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Avant-propos

Le travail présenté dans ce mémoire représente 12 années de recherche. Il est important de
rappeler que celui-ci repose sur un travail d’équipe. J’en profite donc pour remercier l’ensemble
des collègues, étudiants et amis qui y ont apporté leurs pierres, petites ou grandes. Leur contri-
bution scientifique sera en partie mis en lumière (le plus fidèlement j’espère !) dans ce mémoire
notamment à travers les publications communes. Mais leur amitié, plus précieuse, ne peut se
quantifier ...

Comme vous l’imaginez, ces 12 années passées ne sont pas limitées au seul travail de re-
cherche. D’abord, du fait de mon statut spécifique (astronome-adjoint), j’ai investi une partie
importante de mon temps sur des projets spatiaux (CoRoT, PLATO) et le travail que cela a
représenté ne sera pas reproduit dans ce mémoire. J’ai assuré également des enseignements di-
vers (voir C.V., page 257). Ensuite, comme vous le savez de nos jours malheureusement, un
chercheur est amené à passer une part croissante de son temps à des activités administratives
(remplir la paperasserie, faire des demandes de fric ... etc), techniques (développer des scripts,
effectuer des sauvegardes, gérer les comptes, mettre à jour les OS.... etc), et logistiques (nettoyer
son bureau, réserver hôtel et transport ...etc).

A ces activités, s’en sont ajoutées d’autres à partir de 8 juillet 2009, moins intellectuelles,
souvent très terre-à-terre (biberons, couches, habillages, déshabillages ... ) mais tellement in-
tenses en émotions et sentiments ...
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Chapitre 1

Introduction

1.1 Contexte et thématique de recherche

Après le Soleil et la Lune, les étoiles sont les astres qu’un enfant âgé d’à peine trois ans
remarque et questionne en levant son regard vers les cieux. Les questions qu’il se pose et les
rêves qu’il construit sur ces objets sont peut-être similaires à ceux des premières consciences
humaines.

Pour nous ces étoiles constituent, de manière plus pragmatique, un formidable laboratoire
de physique sans équivalent sur Terre. Elles permettent, notamment, d’étudier des milieux hy-
drodynamiques dans des régimes extrêmement turbulents.

Mes activités de recherche ont pour cadre la physique stellaire et s’intéressent particulière-
ment aux propriétés de la convection turbulente que l’on rencontre dans diverses étoiles mais
qui sont mal modélisées dans les codes de structure et d’évolution stellaire. Elles s’appuient sur
la sismologie stellaire – cad l’étude des propriétés des oscillations – utilisée comme outil pour
sonder la structure des étoiles et les phénomènes physiques qui y prennent place.

La sismologie stellaire (et donc aussi l’héliosismologie) consiste – classiquement – à me-
surer et interpréter les fréquences des oscillations qui résonnent à travers la cavité que consti-
tue l’étoile. L’interprétation des fréquences des oscillations fait principalement appel à des ou-
tils théoriques en sismologie qui ont été développés ces 30 dernières années. Celle-ci fournit
principalement des informations précieuses sur la structure interne de l’étoile ; toutefois les
contraintes qu’elle apporte sur les processus dynamiques prenant place au sein de l’étoile sont
plus limitées. Une autre branche de la sismologie stellaire s’est développée plus récemment, au
développement de laquelle j’ai contribué : elle concerne la mesure précise et l’interprétation des
amplitudes et durées de vie des oscillations de type solaire, cad des oscillations de nature ana-
logue à celles que l’on détecte sur le Soleil. Et, comme je tacherai de le montrer, cette nouvelle
branche constitue potentiellement un formidable moyen pour sonder la convection turbulente
dans les étoiles, notamment s’agissant de ces aspects dynamiques.

1.2 Qu’observe-t-on et à quoi ça sert ... ?

Les modes solaires sont caractérisés par des durées de vie finie (quelques jours) et des am-
plitudes très faibles (quelques cm/s en vitesse et quelques partie par millions [ppm] en terme

7



Chapitre 1. Introduction

d’intensité). Leur durée de vie est la conséquence de diverses processus complexes d’amortis-
sement qui ne sont pas encore bien connus et modélisés. L’excitation de ces modes est attribuée
à la convection turbulente et prend place dans la partie supérieure de l’enveloppe convective.
Cette region est en effet le siège de mouvements convectifs vigoureux et – dans une certaine me-
sure – incohérents. Depuis les travaux pionniers de Lighthill [1952], nous savons qu’un milieu
turbulent génère des fluctuations de pressions acoustiques et incohérentes, phénomène que l’on
nomme également “bruit acoustique” 1 Une toute petite fraction de l’énergie cinétique contenue
dans ces mouvements turbulents est transmise – via un processus stochatisque (i.e. aléatoire)
– dans les modes stationnaires de la cavité solaire. Ce forçage peu efficace est responsable des
amplitudes faibles des modes acoustiques (modes p) observés à la surface du Soleil.

Comme nous allons le montrer, mesurer l’amplitude et la durée de vie des modes nous per-
met de quantifier l’énergie injectée par unité de seconde dans les modes (cette quantité sera par
la suite notée P ; elle s’exprime en Joule par seconde). La mesure de P fournit des contraintes
directes sur les processus d’excitation par la convection turbulente [Libbrecht, 1988]. Cepen-
dant, comme l’ont noté Baudin et al. [2005], même pour le Soleil, déterminer P à partir des
données sismiques est loin d’être une tache triviale et le problème est encore plus ardu s’agis-
sant des données stellaires [Samadi et al., 2008]. Nous discuterons donc dans le Chap. 2 les
problèmes liés à la détermination de contraintes sismiques fiables sur P.

Durant la décade passée, des oscillations analogues à celles du Soleil (que l’on nomme
“oscillations de type solaire”) ont été détectées depuis le sol dans quelques dizaines d’étoiles,
situées dans diverses stades évolutifs et représentatives de divers masses et abondances de sur-
face [voir la revue par Bedding and Kjeldsen, 2007]. Comme pour le Soleil, ces oscillations
ont de très faibles amplitudes et des durées de vie finie. L’excitation de ces oscillations de type
solaire sont également attribuées à la convection turbulente, et prend place dans les couches
externes des étoiles dotées d’enveloppe convective.

Jusqu’à un passé récent, seules les données sismiques solaires étaient de qualité suffisante
pour contraindre directement et indépendamment les processus d’excitation et d’amortissement.
Depuis le lancement de la mission CoRoT (CNES) en décembre 2006, des contraintes de même
nature et de très bonne qualité ont été – pour la première fois – disponibles pour d’autres étoiles
que le Soleil. Grâce aux missions spatiales CoRoT 2 et Kepler (NASA), les amplitudes des
oscillations de type solaires sont maintenant mesurées dans un échantillon conséquent d’étoiles.
Ces mesures mettent en évidence le fait que les amplitudes et durées de vie de ces modes
varient d’une étoile à l’autre suivant des lois d’échelles caractéristiques qui sont fonctions des
paramètres fondamentaux des étoiles (luminosité, temperature effective, gravité de surface ...
etc).

L’extension de ces deux missions vont permettre de consolider et d’enrichir encore le diag-
nostic sismique apporté par ce genre d’observations. Dans ce contexte très riche et en plein
essor, mes travaux de recherche visent à interpréter et à modéliser de manière réaliste les ampli-
tudes des oscillations de type solaire détectées dans diverses étoiles et – par ce biais – à établir
des diagnostics sur les modèles de convection turbulente adaptés aux étoiles.

1. Terme faisant référence à des ondes acoustiques dont la phase et l’amplitude varient de manière aléatoire.
2. On trouvera dans Michel and Baglin [2012] un état des lieux concernant les observations CoRoT ainsi que

les résultats associés.
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1.3. Bref historique sur le sujet

1.3 Bref historique sur le sujet

Les oscillations solaires ont été détectées pour la première fois par Leighton et al. [1962]. On
pensait que ces oscillations pouvaient contribuer au chauffage de la couronne solaire [cf. Stein
and Leibacher, 1974]. C’est dans le cadre de cette problématique que Unno and Kato [1962]
ont étudiés la génération de bruit acoustique par les fluctuations incohérentes de la densité à la
surface du soleil 3. Par la suite, Stein [1967] a généralisé l’approche de Lighthill [1952] à des
atmosphères stratifiées (situation évidemment adaptée au cas du Soleil et des étoiles en général).
Il a ainsi montré que, contrairement aux termes de type quadrupolaire 4, les termes de forçage
de type monopolaire contribuent de manière négligeable à la génération du bruit acoustique.
Parmi les termes quadrupolaires, le tenseur de Reynolds a été ainsi identifié comme étant le
terme dominant pour la génération d’onde acoustique.

Ce n’est qu’au début des années 1970 que les oscillations solaires ont été clairement iden-
tifiées comme étant les modes propres acoustiques associés à la cavité solaire [Ulrich, 1970;
Leibacher and Stein, 1971; Deubner, 1975]. Quelles années plus tard, Goldreich and Keeley
[1977b, GK par la suite] ont proposé la première modélisation théorique de l’excitation stochas-
tique de ces modes propres par la convection turbulente. Depuis ce travail pionnier, différentes
améliorations ont été proposées [Dolginov and Muslimov, 1984; Balmforth, 1992a; Goldreich
and Kumar, 1990; Goldreich et al., 1994; Samadi and Goupil, 2001; Samadi et al., 2003a; Cha-
plin et al., 2005; Belkacem et al., 2006b, 2008, 2010]. Elles se distinguent les unes des autres
par la nature des termes de forçage retenus ainsi que par la manière de modéliser la convection
turbulente. En particulier, à partir des années 90, deux débats ont stimulé des recherches sur le
sujet : L’un concerne l’importance ou non d’un forçage de nature thermique (liées aux fluctua-
tions turbulentes de l’entropie, voir Chap. 3), et l’autre la manière de décrire les corrélations
temporelles entre éléments turbulents (voir Chap. 4).

1.4 Mes travaux dans ce contexte

Dans le cadre des développements théoriques menés sur le sujet, mes travaux de thèse [Sa-
madi, 2000, soutenue le 8 décembre 2000] ont constitué une étape importante puisqu’ils ont
permis d’élaborer une formulation théorique qui prend en compte – de manière consistante
et en généralisant son rôle – la turbulence stellaire [Samadi and Goupil, 2001]. Depuis ces
travaux, mes efforts ont cherché à mieux préciser le lien entre observables et modèles théo-
riques (Chap. 2), à consolider la modélisation des amplitudes, à établir des diagnostics sur la
convection turbulente dans les étoiles (Chap. 4) ainsi que les modèles standards de structure
stellaire (Chap. 5) et enfin à interpréter et modéliser les lois d’échelles sismiques portant sur
les amplitudes des modes de type solaire (Chap. 6). Ce manuscrit expose les bases théoriques
de l’excitation stochastique par la convection turbulente (Chap. 3) et résume l’ensemble des
résultats obtenus dans ce contexte après ma thèse. Le Chap. 7 sera dédié à la discussion critique
sur les modèles actuels, sur les problématiques ouvertes, et enfin les perspectives qui s’ouvrent
dans ce contexte.

3. Cette forme de forçage est dit du type monopolaire car associé à des fluctuations de volume, donc de densité
4. Un terme de forçage est dit quadrupolaire lorsqu’il est associé à du cisaillement.
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Chapitre 2

Des observables à la modélisation
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Articles reproduits dans ce mémoire (voir Appendice A) et auxquels ce chapitre se rap-
porte :
• “Inferred acoustic rates of solar p modes from several helioseismic instruments”, Baudin

F., Samadi, R., Goupil M.-J., Appourchaux T., Barban C., Boumier P., Chaplin W. J.,
Gouttebroze P., 2004, A&A, 433, 349 [Page 117] ;
• “Modeling the excitation of acoustic modes in α Centauri A”, Samadi R., Belkacem K.,

Goupil M.-J., Dupret M.-A., Kupka F., 2008, A&A, 489, 291 [Page 177] ;
• “Intrinsic photometric characterisation of stellar oscillations and granulation. Solar re-

ference values and CoRoT response functions”, Michel E., Samadi R., Baudin F., Barban
C., Appourchaux T., Auvergne M., 2009, A&A, 495, 979 [Page 213].

2.1 Balance énergétique

Comme on va le mettre en évidence ici, l’amplitude d’un mode de type solaire résulte d’un
équilibre entre excitation et amortissement. L’énergie (cinétique plus potentielle) contenue dans
un mode est par définition la quantité 5 :

Eosc(t) =
∫

d3x ρ0~v
2
osc(~r, t) (2.1)

5. Notez que cette définition suppose une équipartition entre énergie cinétique et potentielle.
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où ~vosc correspond à la vitesse du mode à la position ~r et au temps t, et ρ0 est la densité à
l’équilibre.

L’amortissement du mode opère à des échelles de temps très lent devant les échelles de
temps associées au forçage par la convection turbulente. En effet, les modes solaires ont une
durée de vie de l’ordre du jour tandis, dans la région où le forçage est le plus vigoureux (i.e.

la partie supérieure de la zone convective), les élements convectifs ont une durée de vie de
l’ordre de la minute. Par conséquent, les processus d’amortissement et de forçage peuvent être
découplés dans le temps. Nous allons supposer que l’amortissement – qu’elle qu’en soit son
origine physique – est constant et linéaire, de sorte que :

d~vosc(t)
dt

= −η~vosc(t) (2.2)

où η est le taux (constant) d’amortissement et la dérivée temporelle dans Eq. (2.2) est appliquée
sur des échelles de temps très longues devant les temps associés au forçage.

Soit P l’énergie communiquée par unité de temps par une source d’excitation arbitraire
(mais agissant sur des échelles temps très court devant 1/η). En vertu des Eqs. (2.1) et (2.2), la
variation de Eosc avec le temps est donnée par l’équation :

dEosc

dt
(t) = P − 2 η Eosc(t) . (2.3)

Les amplitudes des oscillations de type solaires sont connues pour être stables sur des échelles
de temps très longs devant les temps caractéristiques liés aux processus d’excitation et d’amor-
tissement, à savoir dans le cas du Soleil, de quelques minutes pour l’excitation et quelques jours
pour l’amortissement. Dans ces conditions, la moyenne temporelle de l’ Eq. (2.3) vérifie donc :

dEosc

dt
(t) = 0 , (2.4)

où () correspond à une moyenne effectuée sur des temps très longs devant les temps caractéris-
tiques de l’amortissement et du forçage par la convection turbulente . A partir des Eqs. (2.3) et
(2.4), nous établissons immédiatement la relation :

Eosc =
P

2η
. (2.5)

La relation 2.5 met clairement en évidence que l’énergie d’un mode stable (et donc son
amplitude) est contrôlée par un équilibre en excitation (P) et amortissement (η). La difficulté
majeure étant d’identifier et de modéliser les processus physiques à l’origine de l’excitation et
de l’amortissement. Les processus liés à l’amortissement ne seront pas abordés dans ce mémoire
(voir à ce sujet la revue récente que l’on doit à Belkacem and Samadi [2013]). Les processus
d’excitation à l’oeuvre seront en revanche abordés en détail dans le présent document.

2.2 Contraintes sismiques en terme de vitesse

Nous établissons ici les liens (subtiles) entre les mesures sismiques des amplitudes et des
durée de vie des mode et la quantité P, laquelle, rappelons-le, permet de quantifier et donc
contraindre les processus d’excitation.
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2.2.1 Principe général

Le modèle théorique présenté dans le chapitre 3 nous conduit à écrire le déplacement d’un
mode, δ~rosc, en terme d’une fonction propre adiabatique ~ξ et d’une amplitude instantanée A(t)
comme suit :

δ~rosc ≡
1
2

(

A(t)~ξ(~r) e−iωosct + cc
)

(2.6)

où cc fait référence au complexe conjugué, ωosc est la fréquence (angulaire) du mode propre, et
A(t) l’amplitude instantanée résultant des effets combinés de l’excitation et de l’amortissement.
Notez que puisque la fonction propre normalisée est arbitraire, l’amplitude intrinsèque du mode
est au final fixée par le terme A, dont la valeur reste à déterminer (ceci sera l’objet du Chap. 3).
La vitesse d’un mode est donc donnée par l’expression suivante :

~vosc (~r, t) =
dδ~rosc

dt
=

1
2

(−iωosc A(t)~ξ(~r) e−iωosct + cc) . (2.7)

A l’aide des Eqs. (2.7) et (2.1), nous établissons l’expression pour l’énergie moyenne du
mode :

Eosc =

∫

d3x ρ0~v2
osc =

1
2
| A |2 I ωosc

2 , (2.8)

où

I ≡
∫ M

0
d3x ρ0 ~ξ

∗ . ~ξ (2.9)

est par définition l’inertie du mode. Par soucis de simplification, nous allons dans la suite consi-
dérer uniquement des modes radiaux 6. En vertu de l’Eq. (2.7), la vitesse quadratique moyenne
du mode à la surface s’exprime (pour un mode radial) par la relation :

~v2
s(rh) =

1
2
| A |2 ω2

osc | ξr(rh) |2 (2.10)

où ξr est la fonction propre de déplacement (radial) et rh le rayon correspondant à la couche de
surface où la vitesse du mode est mesurée. Comme on le verra dans la suite, il est pratique de
définir la “masse” du mode (mode mass en anglais) comme :

M(rh) ≡ I

| ξr(rh) |2
. (2.11)

On notera que le calcul de M (ainsi que de l’inertie I) repose, en vertu des Eqs. (2.9) et (2.11),
sur un modèle de structure interne et nécessite la résolutions des modes propres associés. En
vertu des Eqs. (2.8), (2.10), and (2.11), nous dérivons finalement la relation :

Eosc =M~v2
s . (2.12)

6. Nous avons traité en détail le cas des modes radiaux dans Belkacem et al. [2008]. Voir également la Sect. 3.3
du Chap. 3.
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Il est important de noter que, bien que M et vs dépendent du choix de la couche rh, Eosc est
par définition intrinsèque au mode (voir Eq. (2.1)) et par conséquent ne dépend pas du lieu où
celle-ci est mesurée. En revanche la quantité M, que l’on nomme “masse du mode” du fait de
sa dimension, n’est en aucun cas intrinsèque au mode car dépend du choix de la couche rh.
En vertu de l’Eq. (2.12), il s’agit simplement du coefficient de proportionnalité entre l’énergie
cinétique et le carré de la vitesse (rms) à l’endroit où celle-ci est mesurée.

En combinant l’Eq. (2.5) avec l’Eq. (2.12), on aboutit finalement à la relation

~v2
s(rh, ωosc) =

P

2 πM Γ
(2.13)

où Γ = η/π correspond à la largeur du mode. L’Eq. (2.13), témoigne à nouveau du fait que
l’amplitude d’un mode résulte de l’équilibre entre l’excitation (P) et l’amortissement (η = Γ π).
Cependant, cette équation montre aussi que l’amplitude en terme de vitesse dépend de la “mas-
se” du mode (ou de manière équivalente de l’inertie) : pour un forçage (P) et un amortissement
(η) donnés, plus la “masse” du mode est élevée, plus l’amplitude est faible.

Lorsque la résolution fréquencielle et le niveau signal-à-bruit sont suffisamment élevés, il
est possible de résoudre le profile d’un mode dans le domaine Fourier et mesurer ainsi à la fois
Γ et sa hauteur H dans le spectre de densité spectral (généralement exprimé en m2/Hz). Dans
ces conditions, vs est donné par la relation [voir e.g. Chaplin et al., 1998; Baudin et al., 2005] :

v2
s(rh, ωosc) = πCobs H Γ (2.14)

où le coefficient Cobs prend en compte les conditions d’observations, notamment les effets géo-
métriques [voir Baudin et al., 2005]. A partir des Eqs. (2.13) et (2.14), on établit alors la relation
qui relie P aux mesures sismiques :

P(ω) = 2πM Γ v2
s = 2π2 MCobs H Γ2 . (2.15)

A condition de pouvoir mesurer Γ et H, il est alors possible de contraindre P. Rappelons ce-
pendant que l’évaluation de P à partir des observations fait intervenir des modèles puisque il
est nécessaire d’évaluer M (l’évaluation de cette quantité nécessitant un modèle de structure
interne). Par ailleurs, il existe une forte anti-corrélation entre H et Γ qui engendre d’importants
biais dans la mesure de ces deux quantités [voir e.g. Chaplin et al., 1998; Chaplin and Basu,
2008].

2.2.2 Cas du Soleil

On traite ici de la qualité des mesures sismiques disponibles en héliosimologie pour la dé-
termination des taux d’excitation des modes, P.

A partir des données héliosismiques fournies par l’instrument GOLF à bord de SOHO ainsi
que des réseaux sols BiSON et GONG, Baudin et al. [2005, article inséré en page 117] ont
déterminé les taux d’excitation P associés aux modes p solaires. Comme l’ont noté Baudin
et al. [2005], la couche rh à laquelle la masse du mode M est évaluée doit être déterminé
précisément pour obtenir des contraintes correctes sur les taux d’excitation P (Eq. (2.15)), et à
travers eux sur les processus de forçage. Chaque instrument utilise une raie spectrale donnée, qui
se forme dans une région donnée de l’atmosphère. En fonction de la raie utilisée et de la (ou les)
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position(s) dans la raie, la mesure Doppler est sensible à une région précise dans l’atmosphère.
On considère en général que cette région correspond par défaut à la région de formation de la
raie. Par exemple, l’instrument BiSON utilise la raie I du potassium (KI) laquelle se forme à une
profondeur optique τ500nm ≈ 0.013. Les profondeurs optiques associées à chaque raie spectrale
utilisée par les différents instruments utilisés en héliosismologie sont renseignées dans Houdek
[2006].

Les taux d’excitation P calculés par Baudin et al. [2005] sont reproduits sur la Fig. 2.1 (pan-
neau supérieur). Pour ν . 3.2 mHz, PGONG et PBiSON sont mutuellement en accord, en revanche
PGOLF est systématiquement plus petit que PGONG et PBiSON ; les écarts demeurent toutefois à
l’intérieur de la barre d’incertitude à 1-σ. Les différences entre les jeux de données sont plus
importantes à haute fréquence. Ceci peut être partiellement attribué au choix de la couche rh à
laquelle est évalué M. En effet, la sensibilité de M avec rh est plus importante à haute fréquence,
car les modes de hautes fréquences sont plus confinés à la surface que ne le sont les modes de
basses fréquences. En revanche, à basse fréquence, le mode masse M est beaucoup moins sen-
sible au choix de la couche rh. Par conséquence, le désaccord observé à basse fréquence entre
GOLF et les deux autres jeux de données suggère que la calibration de l’instrument GOLF est
dans une certainement mesure incorrecte [voir Baudin et al., 2005]. On montre sur la Fig. 2.1
(panneau inférieur), PGOLF multiplié par un facteur deux, choisi de telle sorte que, à basse fré-
quence, PGOLF se raccorde à PGONG et PBiSON. Quelque soit la fréquence, PGONG et PGOLF sont en
accord tandis qu’à haute fréquence PGONG est systématiquement plus bas que PGOLF ou PBiSON.
Ce résidus à haute fréquence est peut-être du à une évaluation imprécise de la couche rh à la-
quelle les différents instruments sont sensibles, mais évaluer précisément la couche à laquelle un
instrument donné effectue effectivement la mesure sismique est loin d’être un problème trivial
[pour une discussion détaillée on se référera à Baudin et al., 2005]. En particulier, confondre la
région de formation d’une raie spectrale avec le lieux où cette raie est sensible aux oscillations
est une simplification qui se doit d’être regardée de plus près [c.f. Eibe et al., 2001]. Enfin, par
ailleurs le calcul de la “masse” du mode (M) s’effectue jusqu’à présent en supposant des modes
adiabatiques, hypothèse évidemment non réaliste du fait de l’existence d’importants échanges
énergétiques entre les modes et le milieu [cf. Belkacem and Samadi, 2013].

2.2.3 Cas des autres étoiles

Les mesures des oscillations de type solaire en terme de vitesse Doppler sont généralement
effectuées avec des spectromètres dédiés à la sismologie stellaire et la recherche de planètes
extra-solaires (comme par exemple UCLES, UVES, HARPS). Ces mesures Doppler utilisent un
très grand nombre de raies spectrales, et ce à fin d’optimiser le niveau signal à bruit. Chaque raie
spectrale se formant dans une région donnée de l’atmosphère, il est donc encore plus difficile
que dans le cas solaire d’estimer la couche effective rh à laquelle la mesure sismique s’effectue.
Comme cela est discuté dans Samadi et al. [2008, ci-joint page 177], le calcul des vitesses
des modes à la surface vs (Eq. (2.13)), dépend – à travers la masse du mode (Eq. (2.11)) –
significativement du choix de la couche rh. Ceci est illustré sur la Fig. 2.2 dans le cas de l’étoile
α Cen A.

Les mesures effectuées par Kjeldsen et al. [2008a] nous permettent cependant d’estimer la
couche effective à laquelle s’effectue en général les mesures dans le cas stellaire. En effet, ces
auteurs ont mesuré les modes solaires avec le spectromètre UCLES. Les amplitudes mesurées
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Figure 2.1 – Panneau supérieur : Taux d’excitation P des modes p solaires en fonction de
la fréquence. Les cercles pleins correspondent aux données sismiques issues de l’instrument
SOHO/GOLF, les diamants au réseau sol BiSON et les triangles au réseau sol GONG. Panneau
inférieur : Comme pour le panneau supérieur. Les taux d’excitation P déduits des données
GOLF ont ici été multipliés par un facteur deux, choisi de telle sorte que, à basse fréquence, ces
données se raccordent au mieux aux données issues des réseaux BiSON et GONG.
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Figure 2.2 – Masses des modes (M) calculées, dans le cas de l’étoile α Cen A, à différentes
hauteurs h au dessus de la photosphère. La courbe supérieure correspond à la photosphère (h =
0 km) tandis que la courbe inférieure à la partie supérieure de l’atmosphère (à h = 1000 km).
Le pas en h est de 200 km.

avec cet instrument sont légèrement plus faibles que celles mesurées avec le réseau BiSON.
L’instrument de ce réseau utilise la raie du potassium (K) dont la région de formation est située
à la profondeur optique τ500 nm ≃ 0.013 (dans le continu). Les mesures faites par Kjeldsen et al.

[2008a] suggèrent donc que les mesures sismiques effectuées dans le cas stellaire se situent lé-
gèrement en dessous de la région de formation du potassium, i.e. à une couche située légèrement
en dessous de l’épaisseur optique τ500 nm ≃ 0.013. Par conséquent, les amplitudes des modes
stellaires sont, par défaut, évaluées au niveau de cette couche. Cependant, une approche plus
rigoureuse prenant compte du fait que plusieurs raies spectrales sont utilisées et que la présence
ainsi que le poids de chaque raie est en fait fonction de l’étoile considérée. Par ailleurs, comme
dans le cas du Soleil (voir Sect. 2.2.2), il s’agit de distinguer le lieu de formation d’une raie
donnée des régions où celle-ci est sensible à l’oscillation. L’ensemble de ces problématiques
nécessite une étude spécifique.

2.3 Contraintes sismiques en terme d’intensité

Les missions spatiales CoRoT et Kepler détectent et mesurent des oscillations de type solaire
sur un très grand nombre d’étoiles. Toutes ces mesures sont basées sur des mesures photomé-
triques de très hautes précisions. Par conséquence, à fin de comparer les amplitudes théoriques
avec les observations, il est nécessaire de considérer non plus les vitesses des modes mais les
fluctuations d’intensité qu’elles induisent.

On note L la luminosité absolue de l’étoile. A chaque instant t donné, la fluctutation bolo-
métrique, δL, induite par un mode d’oscillation est reliée à la variation Lagrangienne du rayon
δR∗ et à la flucutation de la température effective δTeff de l’étoile en vertu de la relation [Dziem-
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blowski, 1977; Pesnell, 1990]

δL(t)
L
= 4
δTeff(t)

Teff
+ 2
δR∗(t)

R∗
. (2.16)

Compte-tenu des vitesses caractéristiques des modes de type solaire (voir chapitre 6), les varia-
tions relatives de rayon, δR∗(t)/R∗, s’avèrent être négligeables devant les fluctuations d’intensi-
tés mesurées. On peut donc négliger le second terme à droite de l’Eq. (2.16) devant le premier.
On préfère en général évaluer les amplitudes des modes en terme d’écart-type dans la mesure
où, comme on l’a évoqué dans la section 2.1, l’amplitude d’un mode de type solaire résulte d’un
forçage de nature stochastique (aléatoire) et qui, comme on le verra dans le Chap. 3, ne peut
être évalué que de manière statistique. L’écart-type associé à δL(t) s’exprime alors comme :

(

δL

L

)

rms
= 4

(

δTeff

Teff

)

rms

, (2.17)

où les quantités avec l’indice ’rms’ font références à des écart-types (en anglais : rms = root
mean-square).

Il est à ce stade important de noter que les intensités mesurées par les instruments CoRoT
et Kepler ne correspondent pas à des mesures bolométriques car elles sont limitées à une bande
spectrale donnée. Ces bandes, relativement assez larges, sont centrées dans le visible. Les fluc-
tuations d’intensité mesurées dans une bande spectrale donnée sont en fait fonction du spectre
de l’étoile ainsi que de la bande passante de l’instrument [Michel et al., 2009, ci-joint page
213].

Il est donc nécessaire de relier la fluctuation (relative) d’intensité mesurée par un instrument
donné à la fluctuation bolométrique correspondante. De plus, le cas des modes non-radiaux
doit être traité en tenant compte de la géométrie propre à ces modes. Nous avons établi dans
Michel et al. [2009, ci-joint page 213] la relation entre fluctuations d’intensité mesurées (ou
“apparentes”) avec les fluctuations de température effective induites par un mode d’oscillation
de degré ℓ donné, puis, à l’aide de l’Eq. (2.17) on relie ainsi fluctuations d’intensité “apparentes”
aux fluctuations bolométriques δLrms associées. Cette relation s’écrit pour un mode de degré ℓ
donné comme :

(

δI

I

)

rms
= Rℓ

(

δTeff

Teff

)

rms

=
Rℓ

4

(

δL

L

)

rms
, (2.18)

où le coefficient Rℓ, dont l’expression est donnée dans Michel et al. [2009], dépend de la bande
passante de l’instrument, du spectre de l’étoile (et à travers lui de sa température effective,
gravité de surface et composition chimique) et enfin du degré ℓ du mode. Le coefficient Rℓ, qui
constitue la “fonction réponse” de l’instrument, permet donc de convertir l’amplitude mesurée
par CoRoT ou Kepler [pour le cas de Kepler voir Ballot et al., 2011], en terme d’amplitude
bolométrique

(

δL
L

)

rms
, amplitude qui est par essence indépendante de l’instrument ainsi que de

la géométrie du mode. Les valeurs obtenues pour le coefficient Rℓ ont été au préalables validées
dans le cas du Soleil à l’aide d’un comparaison entre des mesures effectuées dans différentes
bandes passantes et des mesures bolométriques [voir Michel et al., 2009].
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Modélisation de l’excitation stochastique
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• “Stochastic excitation of non-radial modes. I. High-angular-degree p modes”, Belkacem

K., Samadi R., Goupil M.-J., Dupret M.-A., 2008, A&A, 478, 163 [Page 187] ;
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• "Stochastic excitation of nonradial modes. II. Are solar asymptotic gravity modes detec-

table ?", Belkacem K., Samadi R., Goupil M.-J., Dupret M.-A., Brun A. S., Baudin F.,
2009, A&A, 494, 191 [Page 199] ;
• “Stochastic excitation of gravity modes in massive main-sequence stars”, Samadi R.,

Belkacem K., Goupil M. J., Dupret M.-A., Brun A. S., Noels A., 2010, Ap&SS, 328, 253
[Page 239].

3.1 Fondements théoriques

3.1.1 L’équation d’onde inhomogène

La propagation d’une onde dans un milieux donné est régit par une équation dite de “propa-
gation” (ou simplement équation d’onde). Si on ajoute à cette équation d’onde des conditions
aux limites appropriées et que l’on résout le système, on peut alors déterminer les modes piégés
dans la cavité. Cette équation ne permet pas à elle seule de déterminer l’amplitude et la durée
de vie des modes. Résoudre les propriétés des modes (amplitude, durée de vie et fréquence)
de manière pleinement consistante et complète nécessiterait de résoudre simultanément (cad
de manière couplé) les trois équations fondamentales, à savoir : l’équation de continuité, de
mouvement et d’énergie.

Les mécanismes d’amortissement dominants (que l’équation d’énergie permet en principe
d’isoler) sont encore mals connus et sont modélisés de manière encore très simplifiée [voir à
ce sujet par exemple la revue du à Belkacem and Samadi, 2013]. Pour simplifier la résolu-
tion théorique du problème des amplitudes des modes de type solaire, on adopte en général
l’approche proposée par Goldreich and Keeley [1977b, GK par la suite]. Celle-ci consiste à ré-
soudre d’abord l’équation de “propagation” en supposant des modes adiabatiques et non forcés.
La résolution de cette équation en tenant compte de conditions aux limites appropriées, fournit
les modes propres adiabatiques. On ajoute alors à l’équation de “propagation” les termes de
forçage. Ceci forme ce que l’on nomme l’équation d’onde inhomogène. On résout alors cette
équation en s’appuyant sur les solutions de l’équation d’onde sans forçage.

On reproduit ci-après, dans ses grandes lignes, les étapes qui permettent d’établir et de
résoudre l’équation d’onde inhomogène. Le développement plus détaillé est publié dans ma
thèse de doctorat 7 [Samadi, 2000, SPhD par la suite ou de manière plus consise dans Samadi
and Goupil [2001]].

Chaque grandeur physique f (excepté la vitesse v) est décomposée comme suit sous la forme
d’une grandeur à l’équilibre ( f0) et d’une fluctuation eulérienne : f = f0 + f1. Nous retiendrons
par la suite uniquement les termes linéaire ou quadratiques en P1 et ρ1, où P désigne la pression
du gaz et ρ la densité. On néglige en revanche les fluctuations g1 de la gravité g. S’agissant de la
composante oscillante (i.e. celle associée au mode), il s’agit de l’approximation dite de Cowling
qui est vérifiée pour les modes d’ordres élevés [c.f. Cowling, 1941; Ledoux and Walraven,

7. On avisera le lecteur que deux corrections ont été apportées au manuscript de thèse. Le manuscrit origi-
nal ainsi que l’erratum associé sont téléchargeables à cette adresse : http://tel.archives-ouvertes.fr/
tel-00067734. L’une de ces erreurs concerne une erreur analytique commise lors de la dérivation du terme de
forçage associé au tenseur de Reynolds. Cette erreur a également été corrigée dans Samadi et al. [2005] et les
conséquences de celles-ci discutées dans Samadi et al. [2007].
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1958]. Cette approximation n’est toutefois pas indispensable, on l’adopte ici pour simplifier
l’équation régissant la propagation des ondes. S’agissant des termes de forçages induits par g1,
on montre qu’ils sont négligeables devant le terme de Reynolds. La perturbation de l’équation
de mouvement et de continuité donne alors :

∂ρ~v

∂t
+ ~∇ : (ρ~v~v) + ~∇P1 − ρ1~g0 = 0 (3.1)

∂ρ1

∂t
+ ~∇.(ρ~v) = 0 . (3.2)

L’équation d’état perturbée s’écrit à l’ordre deux comme

P1 = c2
sρ1 + αss1 + αρρρ

2
1 + αsss

2
1 + αρsρ1s1 , (3.3)

où s est l’entropie, αs = (∂P/∂s)ρ, cs = Γ1 P0/ρ0 désigne la vitesse moyenne du son, Γ1 = (∂ ln P/∂ ln ρ)s

est l’indice adiabatique, αρρ, αss et αρs sont les dérivées partielles secondes de P en fonction de
s et ρ. Il est important de noter que l’Eq. (3.3) suppose une composition chimique constante (ce
qui est le cas dans une région convective) mais aussi un taux d’ionisation également constant.

La vitesse du fluide ~v est décomposée sous la forme d’une composante δ~vosc due au mode et
de la composante ~u associée à la turbulence :

~v = ~vosc + ~u . (3.4)

On se place en absence de la turbulence (i.e. ~u = 0). En combinant l’Eq. (3.1) avec l’Eq. (3.2)
puis en différenciant par rapport au temps, on aboutit à l’équation d’onde homogène

(

∂2

∂t2
− ~L

)

~vosc = 0 , (3.5)

où L est l’opérateur linéaire régissant la propagation de l’onde [voir son expression dans SPhD,
page 65]. Une expression plus générale ne reposant pas sur l’approximation de Cowling est
en pratique utilisée. Si on ajoute à cette équation des conditions aux limites appropriées, cela
donne les fonctions propres usuelles [Unno et al., 1989]

~L(~ξ(~r, t)) = − ω2
osc
~ξ(~r, t) , (3.6)

où ωosc est la fréquence (angulaire) propre du mode et ~ξ(~r, t) ≡ e−iωosct ~ξ(~r) le déplacement
adiabatique propre.

On se replace maintenant en présence de la turbulence (~u , ~0). En combinant l’Eq. (3.1)
avec l’Eq. (3.2), en différenciant par rapport au temps, en négligeant les termes non-linéaires
en ~vosc et enfin en supposant une turbulence incompressible (~∇.~u = 0), on aboutit à l’équation
d’onde inhomogène

ρ0

(

∂2

∂t2
− ~L

)

[

~vosc
]

+ ~D
[

~vosc
]

=
∂

∂t
~S − ~C (3.7)

avec

~S ≡ ~SR + ~SS (3.8)
~SR = ~∇ :

(

ρ0 ~u~u
)

− ~∇ :
(〈

ρ0 ~u~u
〉)

(3.9)
~SS = −~∇ (ᾱs st) , (3.10)
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où st désigne les fluctuations eulériennes et turbulentes de l’entropie, et αs = (∂P/∂ρ)s. Les
termes SR (Eq. (3.9)) et SS (Eq. (3.10)) s’identifient comme deux termes de forçage, à savoir le
terme du tenseur de Reynolds et un terme de forçage impliquant les fluctuations d’entropie. Le
dernier terme C rassemble les termes impliquant ρ1 ainsi que les termes de second ordre issus de
l’Eq. (3.3). Le terme C contribue en principe au forçage. Cependant, on montre qu’il contribue
de manière négligeable devant les contributions des termes SR et SS [voir les détails dans SPhD
ou GK]. Enfin, l’opérateur ~D apparaissant à droite de l’Eq. (3.2) couple le champ de vitesse
turbulent (~u) à la vitesse du mode (~vosc). Ce terme contribue (parmi d’autres mécanismes) à
l’amortissement du mode. Il ne sera pas considéré sous sa forme, mais remplacé par la suite a

posteriori en supposant des taux d’amortissement connus par ailleurs.

3.1.2 Solution générale

On revient maintenant dans le cas où la turbulence est présente. En présence de turbu-
lence, on cherche les solutions générales (i.e. les solutions de l’équation d’onde inhomogène,
Eq. (3.7)). C’est un problème classique : les solutions générales δ~rosc(~r, t) (exprimées ici en
terme de déplacement) sont recherchées sous la forme du produit de la solution de l’équation
homogène (les fonctions propres adiabatiques, ~ξ(~r, t) ) et d’un terme A(t), à savoir :

δ~rosc ≡
1
2

(

A(t)~ξ(~r) , e−iωosct + cc
)

(3.11)

où cc fait référence au complexe conjugué, et A(t) représente l’amplitude instantanée résultant
des effets combinés de l’excitation et de l’amortissement.

En rappelant que ~vosc = dδ~rosc/dt, on a donc

~vosc (~r, t) =
1
2

(−iωosc A(t)~ξ(~r) e−iωosct + cc) , (3.12)

où l’on a négligé la dérivée temporelle de A. Ceci ce justifie par le fait que la période du mode
(2π/ωosc) est en général beaucoup plus courte que sa durée de vie τosc, laquelle est inversement
égale au taux d’amortissement (τosc = 1/η).

En substituant l’Eq. (3.12) dans l’Eq. (3.7), on établit une équation différentielle pour A(t)
[voir sont expression dans SPhD, page 67]. La résolution de cette équation différentielle donne
la solution générale pour A(t) :

A(t) =
ie−ηt

2ωoscI

∫ t

−∞
dt′

∫

V

d3x e(η+iωosc)t′ ~ξ∗(~x).~S(~x, t′) (3.13)

où I est l’inertie du mode (voir Eq. (2.9)), et où l’intégration spatiale porte sur l’ensemble du
volume stellaire, V. Dans la mesure où les termes de forçage sont de nature aléatoire, A ne
peut être évalué qu’en terme de moyenne quadratique, 〈|A|2〉. Cette moyenne statistique doit
se comprendre comme étant effectuée sur un grand nombre (en principe infini) de réalisations
indépendantes. A partir de Eq. (3.13) et avec l’aide de quelques simplifications détaillées dans
SPhD, on peut établir l’expression

〈

|A|2
〉

=
C2

8 η (ωosc I)2
, (3.14)
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avec

C2 ≡
∫

V

d3x0

∫ +∞

−∞
d3r dτ e−iωoscτ

〈

~ξ∗ . ~S1 ~ξ . ~S2

〉

, (3.15)

où η est le taux d’amortissement (que l’on peut, par exemple, déterminer à partir de mesures
sismiques), I l’inertie du mode (Eq. (2.9)), ~x0 la position dans l’étoile où l’excitation est éva-
luée, S les termes de forçage (Eqs. (3.8)-(3.10)), 〈.〉 désigne une moyenne statistique, ~r et τ
deux longueurs de corrélations respectivement spatiales et temporelles associées à la turbulence
locale, et enfin les indices 1 et 2 désignent deux positions spatiales et temporelles différentes, à
savoir respectivement : [~x0 − ~r2 ,−

τ
2 ] et [~x0 +

~r
2 ,
τ
2 ]. Nous avons introduit dans l’Eq. (3.15) deux

jeux de variables : (~x0, t0) et (~r, τ). Les variables du premier sont désignées sous le terme de
variables “lentes” tandis que celles du second sous le terme de variables “rapides”, au sens où
(~x0, t0) varient à des échelles spatiales et temporelles plus lentes que les variables (~r, τ) qui sont
associées aux propriétés locales la turbulence.

En vertu des Eqs. (2.5), (2.8) et (3.14), le taux d’excitation théorique est finalement donné
par l’expression :

P =
1

8 I

∫

V

d3x0

∫ +∞

−∞
d3r dτ e−iωoscτ

〈

~ξ∗ . ~S1 ~ξ . ~S2

〉

. (3.16)

3.1.3 Termes sources de forçage

Le tenseur de Reynolds (Eq. (3.9)) a très tôt été identifié par Lighthill [1952] comme une
source permettant la génération de “bruit acoutique”. Ce terme a ensuite été considéré par GK
comme la source d’excitation des modes acoustiques solaires (voir Sect. 1.3). Il représente un
terme de forçage de nature mécanique et est considéré par la majorité des formulations théo-
riques comme la source dominante du forçage des oscillations de type solaire [Goldreich and
Keeley, 1977b; Dolginov and Muslimov, 1984; Balmforth, 1992a; Stein and Nordlund, 2001;
Samadi et al., 2003a; Chaplin et al., 2005]. Cependant, comme cela a été pointé par Osaki
[1990], les premiers calculs théoriques effectués par GK conduisent en fait à sous-estimer de
manière importante (plusieurs ordres de grandeur) les amplitudes des modes solaires.

Afin d’expliquer ce désaccord, Goldreich et al. [1994, GMK par la suite] ont identifié les
fluctuations Lagrangienne d’entropie comme une source additionnelle. Le terme source SS

(Eq. (3.10)) fait apparaître, non pas la fluctuation Lagrangienne (δst par la suite), mais la fluc-
tuation Eulérienne (st). Pour faire apparaître la première, il est nécessaire d’écrire la relation
liant l’une à l’autre :

dδst

dt
=
∂st

∂t
+ ~u .∇(s0 + st) , (3.17)

où s0 est l’entropie à l’équilibre. On peut donc réécrire le terme source SS sous la forme :

∂~SS

∂t
= −~∇

(

d
dt

(ᾱs δst) − ᾱs ~u .~∇ st

)

, (3.18)

où l’où a mis de coté le terme ~u .~∇s0 dans la mesure où il ne contribue pas effectivement au for-
çage [voir GK ou SPhD]. L’intégration de l’Eq. (3.18) par rapport au temps donne alors le terme
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SS . D’après GMK, le terme impliquant δst à droite de l’Eq. (3.18) serait la source dominante du
forçage. Affirmation qui avait été initialement avancée par Stein and Nordlund [1991] à l’aide
d’une simulation hydrodynamique 3D représentative des couches superficielles du Soleil, mais
qui a été contredite plus tard par Stein and Nordlund [2001]. Cependant, l’approche théorique
proposée par GMK s’appuie sur l’hypothèse que la fluctuation d’entropie se comporte comme
un scalaire passif. Une quantité physique f se comporte comme un scalaire passif lorsqu’elle
obéit à une équation de diffusion [voir e.g. Lesieur, 1997] :

d f

dt
=
∂ f

∂t
+ ~u .~∇ f = χ∇2 f , (3.19)

où χ est un coefficient de diffusion. Comme cela a été montré dans SPhD, supposer que δst se
comporte comme un scalaire passif conduit à un forçage nul. En revanche, il est montré dans
SPhD que le terme ᾱs ~u .~∇ st dans le membre de droite de l’Eq. (3.18) contribue effectivement
au forçage, à condition, toujours, de supposer que st se comporte comme un scalaire passif.
Aussi, dans la formulation théorique de SPhD, le terme source lié à l’entropie se réduit à

∂

∂t
SS = ~∇

(

ᾱs ~u .~∇ st

)

. (3.20)

Notez que le terme ~u .~∇ st à droite de l’Eq. (3.20) est un terme de nature advectif. Dans la mesure
où il implique les fluctuations d’entropie, il peu être considéré comme un forçage thermique.

Ce terme source avait été initialement identifié par GK mais considéré par ces auteurs
comme étant négligeable devant le terme de Reynolds (SR, Eq. (3.9)). Notons que les formu-
lations théoriques proposées par Balmforth [1992a] et Chaplin et al. [2005] ne tiennent pas
compte de ce terme. D’après Samadi et al. [2003a], ce terme n’est pas négligeable dans le cas
du Soleil (environ ∼ 15 % de la puissance totale) mais demeure néanmoins petit devant SR (voir
aussi Sect. 3.4).

Pour finir, notons que les termes SR et SS introduisent des termes croisés à travers l’Eq. (3.13).
Cependant, en supposant comme GMK que st se comporte comme un scalaire passif ainsi
qu’une turbulence incompressible (i.e. ~∇. u = 0), on montre dans SPhD que ces termes croi-
sés sont nuls. Toutefois, comme on le verra en Sect. 3.4, ces termes ne sont pas rigoureusement
nuls et conduisent en fait à des compensations partielles entre SR et SS .

3.1.4 Séparation d’échelle

Comme on le voit dans l’intégrante à droite de l’Eq. (3.15), la fonction propre de déplace-
ment ~ξ(~r) est spatiallement couplée avec la fonction source, S. Pour établir une formulation qui
puisse être évaluée de manière analytique, il est nécessaire de découpler spatialement ~ξ(~r) de S.
C’est la raison pour laquelle toutes les formulations supposent implicitement ou explicitement
cette forme de séparation d’échelle. En pratique, cela revient à supposer que les tourbillons
turbulents qui contribuent effectivement au forçage ont des tailles beaucoup plus petite que la
longueur d’onde associée au mode ainsi que à l’échelle de densité [voir les détails dans SPhD,
section 4.7, page 76]. Cette approximation est pleinement justifiée lorsque le nombre de Mach
turbulent Mt (défini comme étant égal au rapport entre u et la vitesse du son cs) est petit. Ce-
pendant cela cesse d’être le cas dans la partie supérieure de la zone convective, à savoir dans la

24



3.1. Fondements théoriques

région dite super-adiabatique où, Mt atteint dans le cas du Soleil une valeur proche de 0.3 (en
moyenne sur les flots montants et descendants, Mt est même proche de un dans les panaches).
Par ailleurs, pour les étoiles G et F situées sur la séquence principale, on s’attend à ce que
Mt croît avec la température effective. D’après les modèles standards de structure stellaire, un
maximum de Mt serait atteint pour des masses stellaires proches de 1.6 M⊙ [c.f. Houdek et al.,
1999]. Par conséquent, l’hypothèse d’une séparation d’échelle est une approximation sujette à
caution en particulier pour les étoiles de type F (on se reportera à la discussion du Chap. 7).

3.1.5 Modèles de fermeture

La seconde intégrale à droite de l’Eq. (3.15) implique le terme 〈S1 S2〉, qui correspond à un
produit de corrélation à deux points (spatial et temporel) faisant intervenir les termes sources
(Eqs. (3.9)-(3.10)). Par conséquent le terme source associé au tenseur de Reynolds, SR, fait
intervenir des produits de corrélation à deux points de la forme 〈(~u~u)1 (~u~u)2〉. De la même
façon, le terme source associé à l’entropie, SS , fait intervenir des produits de corrélation de la
forme 〈(~u st)1 (~u st)2〉. Dans les deux cas, on a affaire à des produits d’ordre quatre impliquant
des quantitiés turbulentes (à savoir ~u et st).

Les moments d’ordre quatre sont solutions d’équations faisant intervenir des moments d’ordre
cinq. A son tour, les moments moments d’ordre cinq sont solutions d’équations faisant interve-
nir des moments d’ordre six .... etc. C’est le problème classique de la fermeture des moments,
autrement dit le problème de fermeture. Ce problème ne peut être résolu de manière analytique
qu’en adoptant des modèles, que l’on nomme donc modèles de fermeture. Un modèle de fer-
meture simple est l’Approximation quasi-Normale (AqN par la suite) qui permet – à moindre
frais – d’exprimer un moment d’ordre quatre en produits de moments d’ordre deux [c.f. e.g.
Lesieur, 1997] :

〈(ui u j)1 (uk ul)2〉(~r, τ) = 〈(ui u j)1〉 〈(uk ul)2〉 + 〈(ui)1 (ul)2〉 〈(u j)1 (uk)2〉
+ 〈(ui)1 (uk)2〉 〈(u j)1 (ul)2〉 . (3.21)

Ce modèle de fermeture nous permet ainsi de “casser” un moment d’ordre quatre en deux mo-
ments d’ordre deux. Le système d’équation est ainsi fermé puisque que l’on a maintenant af-
faire uniquement à des moments d’ordre deux et inférieurs. La décomposition de l’Eq. (3.21)
est strictement valide lorsque la vitesse est distribuée selon une loi Normale. On notera que le
premier terme à droite de l’Eq. (3.21) s’annule avec le terme

〈

~u~u
〉

apparaissant dans l’Eq. (3.9)
[voir Chaplin et al., 2005]. Une expression similaire à l’Eq. (3.21) est établie pour le produit
〈(~u st)1 (~u st)2〉 [voir SPhD, section 4.8.2, page 78].

3.1.6 Modèle de turbulence adopté

Les membres de droite de l’Eq. (3.21) correspondent à des produits de moments à deux
points d’ordre deux de la forme 〈(ui)1 (uk)2〉. Il s’agit donc maintenant d’adopter un modèle
à même de reproduire ces derniers. Il est généralement plus commode de se placer dans le
domaine Fourier en terme de fréquence, ω, et de nombre d’onde, k. Nous définissions ainsi φi, j

comme la transformée de Fourier temporelle et spatiale du produit de corrélation 〈(ui)1 (u j)2〉.
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Pour un milieux turbulent homogène, incompressible et isotrope, on établit une relation entre
φi, j(~k, ω) et le spectre d’énergie cinétique ; cette relation s’écrit [voir e.g. Batchelor, 1970] :

φi j(~k, ω) =
E(k, ω)

4πk2

(

δi j −
kik j

k2

)

, (3.22)

où δi, j désigne le symbole de Kronecker. En suivant Stein [1967], on décompose E(k, ω) comme

E(k, ω) = E(k) χk(ω) , (3.23)

où E(k) est la moyenne temporelle de l’énergie cinétique et χk(ω) correspond à la composante
en fréquence de E(k, ω). Comme on le verra dans la Sect. 4.1.2, χk(ω) est une mesure de la
corrélation temporelle entre tourbillons dans le domaine des fréquences et des nombres d’onde.
On verra aussi que ce terme contrôle de manière déterminante l’efficacité du forçage.

On notera qu’une décomposition similaire à l’Eq. (3.23) est adoptée s’agissant du spectre
associé aux fluctuations d’entropie (Es(k, ω)).

Les termes χk(ω) et E(k) satisfont par définition les conditions de normalisation suivante
[voir e.g. Tennekes and Lumley, 1982, Chap 8.1] :

∫ +∞

−∞
dωχk(ω) = 1 , (3.24)

∫ ∞

0
dk E(k) =

1
2
〈~u2〉 =

Φ

2
〈u2

z 〉 ≡
3
2

u2
0 , (3.25)

où uz est la composante verticale de la vitesse, u0 une vitesse caractéristique introduit par conve-
nance, et enfin Φ ≡ 〈u2〉/〈u2

z 〉 est le facteur d’anisotropie introduit par Gough [1977]. Des
conditions de normalisation similaires sont adoptées pour les spectres associés aux fluctuations
d’entropie.

3.1.7 Formulation finale

A partir de l’ensemble des approximations et hypothèses décrites plus haut, on établit l’ex-
pression finale donnant le taux d’excitation, P, d’un mode radial donné [voir détails dans
SPhD] :

P =
1

8 I

(

C2
R +C2

S

)

(3.26)

où C2
R et C2

S correspondent aux contributions du terme de Reynolds et d’entropie. Ces contribu-
tions s’expriment :

C2
R = 4 π3 G

∫ M

0
dm ρ0

∣

∣

∣

∣

∣

dξr
dr

∣

∣

∣

∣

∣

2

S R(m, ωosc) (3.27)

C2
S =

4 π3 H

ω2
osc

∫ M

0
dm
ᾱ2

s

ρ0
gr(ξr,m) S S (m, ωosc) , (3.28)
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avec S R et S S les termes source associés respectivement au tenseur de Reynolds et terme d’en-
tropie :

S R =

∫ ∞

0
dk

E2(k,m)
k2

∫ +∞

−∞
dωχk(ωosc + ω,m) χk(ω,m) (3.29)

S S =

∫ ∞

0
dk

Es(k,m)E(k,m)
k2

∫ +∞

−∞
dωχk(ωosc + ω,m)χk(ω,m) . (3.30)

Dans les Eqs. (3.27) et (3.28), ρ0 est la densité moyenne, G et H deux facteurs d’anisotropie
[voir leur expression dans SPhD, annexe C, pages 145-146], et enfin gr(ξr,m) est une fonction
qui implique la première et second dérivée spatiale de la fonction propre de déplacement, ξr [voir
son expression dans SPhD, section 4.8.2, page 78]. Il est plus utile de réécrire les Eqs. (3.27) et
(3.28) sous la forme :

C2
R = 4π3G

∫ M

0
dm
ρ0 u4

0

k3
0 ω0

∣

∣

∣

∣

∣

dξr
dr

∣

∣

∣

∣

∣

2

S̃ R(m, ωosc) , (3.31)

C2
S =

4π3H

ω2
osc

∫ M

0
dm

(ᾱs s̃ u0)2

ρ0 k3
0 ω0

gr(ξr,m) S̃ s(m, ωosc) , (3.32)

où nous avons introduit les fonctions sources adimensionnelles S̃ R ≡
(

k3
0 ω0 / u4

0

)

S R et S̃ s ≡
(

k3
0 ω0 / (u2

0 s̃2)
)

S R, où s̃ désigne l’écart-type de la fluctuations d’entropie. Ont également été
introduits la fréquence caractéristique ω0 ainsi que le nombre d’onde caractéristique k0 ; ces
derniers sont définis comme suit

ω0 ≡ k0 u0 (3.33)

k0 ≡
2π
Λ
, (3.34)

où Λ correspond à une échelle caractéristique (qui reste à définir et évaluer, voir Sect. 4.1.1) et
u0 est une vitesse caractéristique définie par l’Eq. (3.25). Pour un usage futur, il est également
utile de définir le temps caractéristique τ0 comme :

τ0 =
2π

k0 u0
=
Λ

u0
. (3.35)

On montre à partir de l’Eq. (3.31) que le forçage du au terme de Reynolds est localement
proportionnel au flux d’énergie cinétique. En effet, le flux d’énergie cinétique, Fkin, est par
définition égal à

Fkin ≡ w Ekin = w

(

1
2
ρ0 ~u

2

)

=
3
2

√

3
Φ
ρ0 u3

0 , (3.36)

où Ekin ≡ (1/2) ρ0 ~u
2 est l’énergie cinétique par unité de volume. La substitution de l’Eq. (3.36)

dans l’Eq. (3.31) permet d’écrire :

C2
R ∝

∫ M

0
dm FkinΛ

4
∣

∣

∣

∣

∣

dξr
dr

∣

∣

∣

∣

∣

2

S̃ R(m, ωosc) . (3.37)

S’agissant du terme de forçage thermique, SS , on montre que celui-ci est localement proportion-
nel à Fkin ainsi qu’au carré du rapport Fc/Fkin où Fs est le flux convectif [voir la démonstration
dans Samadi et al., 2006, article inséré en page 135].
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3.2 Approches alternatives

3.2.1 Méthode de l’“équipartition” d’énergie

Dans certaines conditions que l’on va dans la suite expliciter, il est existe ce que certains
nomment “équipartition” de l’énergie cinétique entre les tourbillons turbulents et les modes.
Utiliser le terme “équipartition” est historique mais en fait inadéquat comme on le verra par la
suite ; on devrait plutôt parler d’une “partition” constante ou universelle.

Pour établir cette “partition”, il faut supposer comme le proposait GK, que les modes acous-
tiques sont d’une part amortis exclusivement par la viscosité turbulente, et, d’autre part, excités
par le seul terme de Reynolds (SR, Eq. (3.9)). Nous reproduisons ici leur démonstration de ma-
nière simplifiée en supposant des modes de fréquences ωosc telles que ωosc τ0 . 1 où τ0 désigne
la durée de vie caractéristique des plus grosses cellules convective situées à l’extremité de la
région convective, là où celle-ci est la plus vigoureuse. De plus, nous négligerons comme le
font GK le forçage thermique (S S , Eq. (3.28)).

En vertu des Eqs. (3.26) et (3.37), nous avons de manière très approximative et pour les
modes acoustiques tels que ωosc τ0 . 1 :

P ∝ 1
I

∫

dm

∣

∣

∣

∣

∣

dξr

dr

∣

∣

∣

∣

∣

2

EeddyΛ u0 , (3.38)

où Λ est la taille caractéristique des plus gros tourbillons, u0 leur vitesse caractéristique, τ0 =

Λ/u0 leur durée de vie caractéristique (Eq. (3.35)), et enfin Eeddy = (3/2) ρ0 u2
0Λ

3 leur énergie
cinétique. On désigne par kosc le nombre d’onde radial associé au mode. Nous avons donc par
définition de kosc la relation dξr/dr = i kosc ξr. Par ailleurs, nous supposerons que – dans la région
d’excitation – les ondes acoustiques sont propagatives. Cette hypothèse implique :ωosc = kosc cs

où cs est la vitesse du son. On peut alors simplfier l’Eq. (3.38) comme :

P ∝
ω2

osc

I

∫

dm

(

ξr

cs

)2

EeddyΛ u0 . (3.39)

Dans la région de forçage, les termes Eeddy, u0, et cs varient rapidement. Toutefois, par soucis
de simplification, on supposera ces quantités constantes et on les évaluera au niveau de la couche
où le forçage est le plus efficace, à savoir au niveau du pic super-adiabatique. L’intégration de
l’Eq. (3.38) peut alors se simplifier comme

P ∝
1
I

(

ωosc

cs

)2

EeddyΛ u0

∫

dm ξ2
r . (3.40)

En utilisant la définition de l’inertie (Eq. (2.9)), on peut simplfier l’Eq. (3.40), ce qui donne :

P ∝
(

ωosc

cs

)2

EeddyΛ u0 . (3.41)

Lorsque la viscosité turbulente est la seule source d’amortissement, le taux d’amortissment
η d’un mode est donné par la relation [Ledoux and Walraven, 1958; Goldreich and Keeley,
1977a]

η ∝
1
3I

∫

dm νt

∣

∣

∣

∣

∣

r
d
dr

(

ξr

r

)

∣

∣

∣

∣

∣

2

, (3.42)
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où νt est la viscosité turbulente. La prescription la plus simple pour νt nous est fournie par le
concept d’“eddy-viscosity” qui donne νt = u0 λ = τ0 u2

0 dans laquelle [voir par exemple Le-
sieur, 1997, Chap. 1.1]. Le milieux turbulent est évidemment composé d’éléments de tailles
différentes et hiérarchisées. Cependant, seuls les éléments tels que ωosc τλ ≈ 1 contribuent effi-
cacement à l’amortissement (τλ correspondant à la durée de vie d’un élément de taille λ donné).
Dans la mesure où l’on s’intéresse aux modes tels que ωosc τλ . 1, seuls les plus gros tour-
billons (qui ont une taille Λ) contribuent. Par conséquent, on adopte νt = u0Λ. En utilisant
les mêmes simplifications et hypothèses que celles utilisées pour établir l’Eq. (3.41), on peut
simplifier l’Eq. (3.42) comme

η ∝
(

ωosc

cs

)2

Λ u0 . (3.43)

A partir des Eqs. (2.5), (3.41) et (3.43), on peut exprimer l’énergie cinétique d’un mode :

Eosc ∝ Eeddy . (3.44)

L’Eq. (3.44) met en évidence une forme de “partition” d’énergie cinétique entre un mode acous-
tique donné et un tourbillon en résonance avec celui-ci. C’est sur la base de cette forme de
‘partition’ que Christensen-Dalsgaard and Frandsen [1983] ont établi la première évaluation
quantitative des modes des oscillations de type solaires dans diverses étoiles.

L’Eq. (3.44) a été établie en supposant que les modes sont amortis par la viscosité turbulente.
Cependant, comme l’a pointé Osaki [1990], les largeurs des modes solaires Γ (on a Γ = η/π)
calculés par Goldreich and Keeley [1977a], i.e. en supposant un amortissement du à la viscosité
turbulente, sous-estiment de manière importante les observations solaires. En revanche, Xiong
et al. [2000] montrent que la viscosité turbulente est bien la source dominante de l’amortisse-
ment. Comme cela a été discuté par Belkacem and Samadi [2013], il y’a à l’heure actuelle de
grosses incertitudes concernant les mécanismes d’amortissement et les observations tendent à
montrer que l’amortissement des modes n’est pas dominé par la viscosité turbulente. Si l’amor-
tissment se révèle ne pas être dominé par la viscosité turbulente, alors dans ce cas il y’a aucune
raison que la partition évoquée ici, et traduite par l’Eq. (3.44), se maintienne en général.

3.2.2 Méthode ab initio

Le modèle théorique présenté en Sect. 3.1 repose sur un nombre important d’approxima-
tions et d’hypothèses, en particulier concernant le traitement de la turbulence et des termes de
forçage. Il existe pourtant une alternative plus fiable car reposant sur très peu d’hypothèses et
d’approximations. Celle méthode a été proposée par Nordlund and Stein [2001]. Dans cette
approche, l’énergie injectée par unité de seconde dans un mode acoustique est évalué directe-

ment à l’aide de simulations hydrodynamiques 3D représentatives des surfaces des étoiles en
calculant le travail (incohérent) effectué par la convection turbulente sur le mode acoustique. En
pratique, le calcul de P s’effectue numériquement à l’aide de l’ Eq. (74) établie par Nordlund
and Stein [2001] ; celle-ci s’exprime (en J s−1) comme :

P3D(ωosc) =
ω2

osc S

8 ∆ν Eωosc

∣

∣

∣

∣

∣

∫

r

dr ∆P̂nad(r, ωosc)
∂ξr

∂r

∣

∣

∣

∣

∣

2

, (3.45)
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où ∆P̂nad(r, ω) est la transformée de Fourier discrète de la composante non-adiabatique de la
pression totale (pression du gaz plus pression turbulente), ∆Pnad(r, t), laquelle est évaluée à la
fréquence du mode ωosc = 2πν0, ξr est la composante radiale de la fonction propre adiabatique,
S la surface correspondant à la boite de la simulation, ∆ν = 1/Ts la résolution en fréquence de
la simulation, Ts sa durée, et enfin Eωosc est l’énergie cinétique normalisée du mode propre par
unité de surface. Eωosc est définie comme suit [Eq. (63) dans Nordlund and Stein, 2001] :

Eωosc =
1
2
ω2

osc

∫

r

dr ξ2
r ρ

(

r

R

)2

. (3.46)

L’Eq. (3.45) correspond au calcul du travail, PdV , associé aux fluctuations non-adiabatique
du gaz et de la pression turbulente (termes diagonaux du tenseur de Reynolds). Contrairement
à une approche analytique (telle que celle présentée en Sect. 3.1), la dérivation de l’Eq. (3.45)
ne repose pas sur un modèle de la turbulence. Par exemple, la relation de l’Eq. (3.22) n’est plus
nécessaire. Par ailleurs, il n’est pas non plus nécessaire de supposer que l’entropie est un scalaire
passif. Cependant, comme pour le modèle théorique de la Sect. 3.1, ils supposent que ξr varie
à une échelle plus grande que celle des tourbillons qui contribuent effectivement au forçage (il
s’agit donc de la séparation d’échelle introduite dans la Sect. 3.1.4). Enfin, l’Eq. (3.45) suppose
implicitement l’Approximation quasi-Normale (Eq. (3.21)).

L’Eq. (3.45) a été appliquée dans le cas du Soleil par Stein and Nordlund [2001]. Les auteurs
ont abouti un relativement bon accord avec les mesures sismiques effectuées par Roca Cortés et

al. [1999] à l’aide de l’instrument SOHO/GOLF.
Stein et al. [2004] ont par la suite calculé P3D (Eq. 3.45) pour un jeux de simulations 3D

d’étoiles correspondant à des types K à F. Dans Samadi et al. [2007, article inséré en page
165] nous avons effectué la comparaison de leurs calculs avec ceux obtenus à partir du modèle
d’excitation stochastique (Eqs. (3.26)-(3.30)). Des écarts systématiques ont été constatés. Ces
derniers ont été attribués à la résolution insuffisante des simulations 3D calculées par Stein et

al. [2004].

3.3 Cas des modes non-radiaux

Le modèle théorique présenté dans la Sect. 3.1 a été établi pour des modes radiaux unique-
ment. Toutefois, tant que le degré ℓ d’un mode reste faible (ℓ ≪ 100), le formalisme précédent
reste applicable sous réserve de calculer et d’utiliser l’inertie I du mode en tenant compte de
son degré ℓ. En effet, les déplacements de ceux-ci sont principalement radiaux dans la région
où l’excitation est la plus vigoureuse (dans la partie supérieure de l’enveloppe convective). Le
modèle cesse en revanche d’être valable pour les hauts degrés (ℓ & 100). En effet, les modes
de hauts - degrés sont très confinés en surface et leur déplacement cesse d’être principalement
radial. Du fait de leur géométrie très différente des modes radiaux ou de très faible degré, il
est nécessaire d’en prendre compte de manière à quantifier correctement leur forçage par la
convection turbulente. Par ailleurs, du fait à nouveau de leur géométrie, ces modes sondent
non seulement les composantes radiales des termes de forçage, mais également leurs compo-
santes horizontales. Par conséquent, la comparaison entre observations et modélisation pourrait
à terme fournir des contraintes utiles sur l’anisotropie du milieu turbulent.
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La généralisation aux cas des modes non-radiaux du formalisme présenté plus haut à été
entrepise par Belkacem et al. [2008, article inséré en page 187]. Celle-ci nous a ensuite permis
d’aborder l’excitation des modes de gravité (car ce sont des modes par essence non-radiaux).
Nous avons d’abord considéré les modes solaires de gravité et montré que amplitudes attendues
étaient légèrement en dessous des seuils de détection actuels [Belkacem et al., 2009c, article
inséré en page 199]. Nous avons ensuite appliqué ce formalisme au cas des étoiles massives.
Nous avons montré que les étoiles massives de l’ordre de 10 M⊙ sont des candidats intéressants
pour la détection de modes de gravité excités stochastiquement par la convection turbulente
dans le coeur convectif ainsi que dans l’enveloppe convective associée à la région d’ionisation
du Fer [Samadi et al., 2009, article inséré en page 239]. De tels modes auraient été découverts
récemment par Neiner et al. [2012] dans une étoile B. Toutefois, les estimations établies par Sa-
madi et al. [2009] ne suffisent pas à expliquer les amplitudes mesurées. C’est pourquoi d’autres
formes de mécanismes sont évoquées par Neiner et al. [2012].

3.4 A propos de la contribution de l’entropie

Le terme de forçage SS (Eq. (3.10)) lié aux fluctuations d’entropie a été, à partir des années
90, l’objet d’un débat (voir Sect. 3.1.3). La modélisation de ce terme telle qu’elle a été présentée
dans la Sect. 3.1.3 repose sur des hypothèses qui sont sujettes à caution (voir la discussion dans
le Chap. 7). Un moyen fiable d’en évaluer la contribution repose sur l’application de la méthode
ab initio présentée en Sect. 3.2.2,

En appliquant cette méthode, Stein and Nordlund [2001] ont montré que la contribution du
terme associée aux fluctuations d’entropie, SS reste faible devant la contribution du terme de
Reynolds, SR. Ce résultat a été confirmé par Samadi et al. [2007, article inséré en page 165]
sur la base du modèle théorique présenté en Sect. 3.1. De plus, Samadi et al. [2007] ont mon-
tré que la contribution relative du terme SS à la puissance totale augmente rapidement avec la
température effective, Teff . Par exemple, s’agissant de l’étoile HD 49333 qui est significative-
ment plus chaude que le Soleil, la contribution relative du terme SS est d’environ 30 % [Samadi
et al., 2010b, article inséré en page 223] tandis qu’elle est de l’ordre de 15 % pour le Soleil
[Samadi et al., 2007] ou pour l’étoile α Cen A [Samadi et al., 2008]. Les calculs effectués par
Stein et al. [2004] sur la base de la méthode ab initio (Sect. 3.2.2) montrent une compensa-
tion partielle entre la pression turbulente (associée au terme de Reynolds) et les fluctuations
non-adiabatiques de la pression du gaz (associées aux fluctuations d’entropie). Cette compensa-
tion augmente lorsque Teff croît [voir Stein et al., 2004]. Dans le modèle théorique d’excitation
stochastique (Sect. 3.1), les termes croisés entre le terme de Reynolds et le terme d’entropie
se compensent rigoureusement en raison des hypothèses adoptées (voir Sect. 3.1.3). Comme
cela a été initialement suggéré par Houdek [2006] et discuté par Samadi et al. [2010a, article
inséré en page 231], l’existence d’une compensation partielle réduit l’amplitude des modes et
peut ainsi améliorer l’accord avec les mesures sismiques effectuées sur les étoiles de type F,
comme par exemple HD 49333. Cependant, il n’existe par encore de modélisation théorique de
ce phénomène de compensation (voir Sect. 7 ainsi que la discussion dans Samadi et al. [2010a]).

31



Chapitre 3. Modélisation de l’excitation stochastique

32



Chapitre 4

Contraintes sur la convection turbulente
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Articles reproduits dans ce mémoire (voir Appendice A) et auxquels ce chapitre se rap-
porte :
• “Numerical constraints on the model of stochastic excitation of solar-type oscillations”,

Samadi R., Nordlund A., Stein R. F., GoupilM.-J., Roxburgh I., 2003, A&A, 403, 303
[Page 97] ;
• "Numerical 3D constraints on convective eddy time-correlations : Consequences for sto-

chastic excitation of solar p modes", Samadi R., Nordlund A., Stein R. F., Goupil M.-J.,
Roxburgh I., 2003, A&A, 403, 1129 [Page 107] ;
• “A closure model with plumes. I. The solar convection”, Belkacem K., Samadi R., Goupil

M.-J., Kupka F., 2006, A&A, 460, 173 [Page 145] ;
• “A closure model with plumes. II. Application to the stochastic excitation of solar p mo-
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• “Turbulent eddy-time-correlation in the solar convective zone”, Belkacem K., Samadi R.,

Goupil M. J., Baudin F., Salabert D., Appourchaux T., 2010, A&A, 522L, 2 [Page 245].

4.1 Spectres de la turbulence

Comme on l’a vu dans le Chap. 3, Sect. 3.1.6, deux quantités importantes pour la modéli-
sation des amplitudes sont les produits de corrélation impliquant la vitesse et les fluctuations
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d’entropie. Par exemple, s’agissant du terme de Reynolds, celui-ci implique le produit de cor-

rélation Ci j(~x0,~t0,~r, ~τ) ≡ 〈(ui(~x0 −
~r

2
, t0 −

τ

2
) u j(~x0 +

~r

2
, t0 +

τ

2
)〉. On aborde dans cette section

le problème de la modélisation de ce terme 8. Au préalable, on met en évidence ici le lien entre
ce produit de corrélation et les composantes spatiales et fréquencielle du spectre d’énergie ci-
nétique.

On suppose par hypothèse une turbulence stationnaire et homogène, le produit de corrélation
Ci j est donc invariant par translation par rapport aux variables “lentes” 9 ~x0 et t0. On s’intéresse
au spectre de l’énergie cinétique, i.e. la réparition de l’énergie cinétique dans le domaine Fourier
en termes de nombre d’onde k et de fréquence ω. Ceci nous amène à définir φi j comme la
transformée de Fourier de Ci j par rapport à τ et ~r :

φi j(ω,~k) ≡
∫

dτ eiτω

∫

d3r ei~k·~r Ci j(~r, τ) . (4.1)

Inversement, Ci j est relié à φi j à travers la transformée de Fourier inverse :

Ci j =

(

1
2π

)4 ∫

dω e−iτω

∫

d3k e−i~k·~r φi j(~k, ω) . (4.2)

L’énergie cinétique moyenne est par définition égale à :

〈E〉 ≡ 1
2

3
∑

i=1

〈u2
ii〉 . (4.3)

Celle-ci est reliée au produit de corrélation Ci j par la relation :

〈E〉 =
1
2

3
∑

i=1

Cii(~r = ~0, τ = 0) . (4.4)

En vertu de l’Eq. (4.2), on peut ainsi écrire :

〈E〉 =
1
2

∫

dω
∫

d3k

3
∑

i=1

φii(~k, ω) . (4.5)

Dans le cas d’une turbulence isotrope, on a enfin :

〈E〉 =
∫

dω
∫

dk E(k, ω) . (4.6)

où l’on définit la quantité E(k, ω) ≡ 1
2 4πk2

(

∑3
i=1 φii(k, ω)

)

, qui correspond donc à la densité
spectrale d’énergie cinétique. On montre que pour une turbulence incompressible, les compo-
santes de φi j sont liées à E(k, ω) par la relation suivante [voir e.g. Batchelor, 1970] :

φi j(k, ω) =
E(k, ω)

4πk2

(

δi j −
kik j

k2

)

, (4.7)

8. Le cas des produits de corrélations impliquant les fluctuations d’entropie ne sera par abordé ici mais discuté
dans le Chap. 7.

9. Voir en Sect. 3.1.2 la signification de variables “lentes” dans ce contexte.
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où δi, j désigne le symbole de Kronecker. On peut formellement décomposer E(k, ω) comme
[Stein, 1967]

E(k, ω) = E(k) χk(ω) , (4.8)

où E(k) est la moyenne temporelle de l’énergie cinétique et χk(ω) correspond à la composante
en fréquence de E(k, ω), définie telle que :

∫ +∞

−∞
dωχk(ω) = 1 . (4.9)

Notons que la décomposition de l’Eq. (4.8) est générale dans la mesure où la dépendance en k

est reportée dans la composante fréquencielle χk(ω).
La composante spatiale E(k) correspond à la moyenne de l’énergie cinétique à l’échelle k.

En effet, lorsque l’on combine les Eqs. (4.1) et (4.6) - (4.9), on a la relation

〈E〉 =
∫

d3~k
1

4πk2
E(k) =

∫

dk E(k) (4.10)

Avec l’Eq. (4.10), le terme E(k) s’interprète donc bien comme la densité d’énergie cinétique
moyenne à l’échelle associée au nombre d’onde k.

Le terme χk(ω) introduit dans l’Eq. (4.8), est une mesure, dans le domaine Fourier, de la
corrélation temporelle entre tourbillons à l’échelle associée au nombre d’onde k. En effet notons
Ei j(k, τ) la transformée de Fourier spatiale de Ci j(r, τ). En vertu de la définition de φi j (Eq. (4.1))
et à l’aide des Eqs. (4.7)-(4.9), on établit donc :

Ei j(~k, τ) =
1

2π

∫

dω e−iωτ φi j(~k, ω) =
1

2π
E(k)
4πk2

(

δi j −
kik j

k2

) ∫

dω e−iωτ χk(ω) . (4.11)

On a donc :

χk(ω) ∝
∫

dτ eiωτ Ei j(~k, τ) (4.12)

D’après Eq. (4.12), la composante fréquentielle χk(ω) correspond – à un facteur de propor-
tionnalité près – à la transformée de Fourier temporelle du produit de corrélation temporelle à
l’échelle k. Ce terme fournit donc, dans le domaine Fourier, une mesure du produit de corréla-
tion temporelle entre d’élements de taille donnée.

Nous avons considéré différentes prescriptions concernant la composante spatiale E(k) (voir
Sect. 4.1.1) ainsi que la composante fréquencielle χk(ω) (voir Sect. 4.1.2). Ces différentes pres-
criptions ont été utilisées pour calculer les taux d’excitation P. Comme on va le voir dans la
suite, la comparaison entre ces calculs théoriques et les observations nous ont permis de discri-
miner entre certaines de ces prescriptions.

4.1.1 Composante spatiale, E(k)

Deux approches sont généralement adoptées pour décrire E(k). La plus classique est de
considérer des formes analytiques déduites soit de considérations théoriques soit de manière pu-
rement empirique. Le spectre analytique le plus connu est le spectre dit de Kolmogorov [1941].

35



Chapitre 4. Contraintes sur la convection turbulente

Originellement du à Oboukhov [1941], il a été établi en postulant que l’énergie se transmet des
grandes échelles aux plus petites échelles à taux constant. D’autres spectre théoriques ont été
également testé dans ce contexte (par exemple celui-proposé par Spiegel [1962]) ainsi que des
spectres purement empiriques [e.g. Musielak et al., 1994]. Ces spectres diffèrent les uns des
autres par la manière dont E varie avec k notamment aux grandes échelles proches de l’échelle
d’injection dans la cascade turbulente. Toutes ces approches nécessitent quoi qu’il en soit une
prescription concernant l’échelle caractéristique à laquelle l’énergie est injectée dans la cascade
turbulente. Cette échelle est associée à un nombre d’onde que l’on notera par la suite k0.

Une autre approche consiste à déterminer E(k) à l’aide de simulations hydrodynamiques 3D.
Cette quantité est directement calculée à partir du champ de vitesse extrait de la simulation 3D
[voir e.g. Nordlund et al., 1997; Samadi et al., 2003b]. Elle fournit non seulement la variation de
E avec k mais aussi et surtout le nombre d’onde caractéristique k0. Cette méthode est cependant
très dépendante de la qualité de la simulation hydrodynamique 3D, surtout de sa résolution
spatiale.

Ces deux approches ont été comparées dans Samadi et al. [2003b, article inséré en page 97].
Parmi les différentes formes analytiques testées, la plus proche d’une simulation 3D du Soleil est
le spectre proposé par Musielak et al. [1994] de manière purement empirique sous le nom “Ex-
tended Kolmogorov Spectrum”. Ce spectre croît aux grandes échelles comme k+1, puis décroît
dans le régime inertiel (i.e. la cascade turbulente) selon le spectre de Kolmogorov, i.e. comme
k−5/3. Cependant, étant donné la résolution spatiale limitée de cette simulation 3D solaire, le
spectre de Kolmogorov est validé uniquement sur un intervalle en nombre d’onde restreint.
Toutefois, l’essentiel de l’excitation des modes est due aux plus grandes échelles du spectre ;
les échelles non résolues par les simulations 3D contribuent très peu au forçage.

Plus que la forme du spectre, la connaissance de l’échelle d’injection k0 fixe de manière
déterminante le niveau du forçage. En effet, les intégrantes des Eqs. (3.31) et (3.32) sont toutes
deux proportionnelles à k−4

0 . Par conséquent, les taux d’excitation P sont extrêmement sen-
sibles au choix de cette échelle. Il n’existe pas de principe physique simple permettant de fixer
cette échelle caractéristique. Celle-ci peut en revanche être déterminée à partir de simulations
hydrodynamiques 3D. Cependant, par défaut, on évalue cette échelle en la supposant propor-
tionnelle à la longueur de mélange, elle-même supposée proportionnelle à l’échelle de pression.
On considère ainsi la relation :

k0 = kMLT
0 ≡

2π
βΛMLT

, (4.13)

où ΛMLT = αHp est l’échelle de la longueur de mélange, α le paramètre de la longueur de mé-
lange, Hp l’échelle de hauteur en pression, et enfin β un paramètre qui permet au final d’ajuster
k0. Ce dernier paramètre peut, par exemple, être contraint à l’aide de simulations hydrodyna-
miques 3D. La simulation solaire mise en oeuvre par Samadi et al. [2003b] indique que, dans
la partie supérieure de l’enveloppe convective solaire, k0 ≃ 3.6 Mm−1. Ce nombre d’onde cor-
respond à des échelles de l’ordre de 2 Mm, valeur compatible avec les mesures effectuées à la
surface du Soleil [voir e.g. Roudier and Muller, 1986; Muller, 1989]. Pour les autres étoiles, les
simulations hydrodynamiques 3D sont rarement disponibles. Dans ce cas, k0 est évalué sur la
base de l’Eq. (4.13) en prenant pour le paramètre β la valeur ajustée dans le cas du Soleil. Une
question sous-jacente est de savoir si cette prescription reste valable d’une étoile à une autre 10.

10. Les travaux menés par Freytag et al. [1997] et Samadi et al. [2008] tendent à montrer, qu’en première
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4.1. Spectres de la turbulence

4.1.2 Composante fréquencielle, χk(ω)

Les formulations théoriques adoptaient jusqu’à présent explicitement ou implicitement une
forme Gaussienne pour la composante χk(ω) [Goldreich and Keeley, 1977b; Dolginov and Mus-
limov, 1984; Goldreich et al., 1994; Balmforth, 1992a; Samadi et al., 2001; Chaplin et al.,
2005]. Cependant, les simulations hydrodynamiques 3D des couches superficielles du Soleil
montrent que χk est plus proche d’une forme Lorentzienne qu’une Gaussienne [Samadi et al.,
2003a, article inséré en page 107]. Ce résultat est illustré sur la Fig. 4.1. En fait, comme l’a
montré Sawford [1991], les produits de corrélation temporelle évalués dans un référentiel La-

grangien dépendent fortement du niveau de la turbulence, plus spécifiquement du nombre de
Reynolds. En effet, Sawford [1991] montre que plus le nombre de Reynolds élevé, plus les
produits de corrélation temporelle mettant en jeux la vitesse (Lagrangienne) tendent vers une
exponentielle, i.e. vers une forme Lorentzienne dans le domaine Fourier. Ce comportement est
également vérifiée par des simulations dans une description Eulerienne (l’approche adoptée
dans le cas présent). En effet, nous avons montré dans Samadi et al. [2007, article inséré en
page 165] qu’à l’échelle d’injection (i.e. k ∼ k0), χk dépend fortement de la résolution spa-
tiale des simulations hydrodynamiques 3D. Lorsque cette résolution est faible, χk tend vers une
forme Gaussienne ; elle tend au contraire vers une forme Lorentzienne lorsque la résolution est
élevée. Ce résultat est illustré par comparaison des Fig. 4.2 et Fig. 4.1. D’autres expériences
numériques vont dans le même sens. Ainsi, He et al. [2002] ont constaté que χk(ω) décroît plus
lentement avec ω dans les simulations du type Large Eddy Simulations (LES) que dans des
simulations du type Direct Numerical Simulations (DNS). En résumé, il existe un ensemble de
preuves tant théoriques que numériques qui montrent que, dans un milieu très turbulent (notre
cas) et à l’échelle d’injection, χk tend effectivement vers une forme Lorentzienne, et que par
voie de conséquence, l’utilisation d’une forme Gaussienne ne se justifie pas.

Comme l’ont montré Samadi et al. [2003a, article inséré en page 107], les taux d’excitation
calculés en supposant une forme Gaussienne conduisent à sous-estimer de manière importante
les observations sismiques solaires. En revanche, l’utilisation d’une forme Lorentzienne aboutit
à un plutôt bon accord avec les données solaires. Un résultat similaire est établi par Samadi et

al. [2008, article inséré en page 177] dans le cas de l’étoile α Cen A. Ces résultats sont illustrés
sur la Fig. 4.4 (cas du Soleil) et la Fig. 4.4 (cas de l’étoile α Cen A).

Les calculs menés par Chaplin et al. [2005] confirment le fait qu’une forme Gaussienne
conduit effectivement à sous-estimer de manière important les observations sismiques solaires.
En revanche, contrairement à Samadi et al. [2003a], leurs calculs basés sur une forme Lorent-
zienne pour χk conduisent à sur-estimer de manière importante l’énergie injectée dans les modes
de basse fréquence (ν . 2 mHz). Afin de reproduire leurs résultats et à titre d’illustration, nous
avons effectué des calculs similaires en considérant un modèle solaire proche de celui utilisé
par Chaplin et al. [2005] et en ne considérant, comme ces auteurs, uniquement le terme de Rey-
nolds. Ce modèle calculé avec un code 1D de structure stellaire [voir détails dans Houdek et al.,
1999], couvre l’ensemble de l’enveloppe convective solaire 11. Le résultat du calcul en terme
de taux d’excitation P est présenté sur la Fig. 4.5. Les calculs basés sur une forme Gaussienne

approximation, l’échelle caractéristique des granules varie d’une étoile à l’autre en fonction de l’échelle de pression
à la photosphère.

11. Contrairement aux simulations hydrodynamiques 3D évoquées plus haut qui se limitent aux couches les plus
superficielles, i.e. sur une profondeur de 3 Mm dans le cas du Soleil.
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Chapitre 4. Contraintes sur la convection turbulente

Figure 4.1 – χk en fonction de la fréquence ν = ω/(2π). χk est tracé pour la couche où la vitesse
convective est maximale et pour l’échelle k correspond au maximum de E(k). Les cercles pleins
représentent aux valeurs extraites à partir d’un simulation hydrodynamique 3D dotée d’une
résolution horizontale ≃ 25 km [Samadi et al., 2003a]. La courbe solide représente une fonction
Lorentzienne et la courbe en pointillée à une fonction Gaussienne.

sous-estiment d’un facteur∼ 20 les puissances mesurées. Lorsqu’une forme Lorentzienne est
utilisée, on constate que les puissances injectées dans les modes fréquence ν . 2 mHz sont
sévèrement sur-estimées. Il est important de noter que l’excitation des modes de fréquence
ν .2 mHz s’étend sur une profondeur supérieure à celle des simulations 3D utilisées par Sa-
madi et al. [2003a]. Il est donc normal que les calculs de ces derniers ne conduisent pas à une
telle sur-estimation.

Les résultats de Chaplin et al. [2005] ont donc posé le problème de la validité de la forme
Lorentzienne dans les couches profondes de l’enveloppe convective. Ce problème a récemment
été résolu par Belkacem et al. [2010, article inséré en page 245]. En effet, les modes de basse
fréquence sondent le domaine haute fréquence de la fonction χk. Dans ce régime la dynamique
des éléments turbulents est dominée par l’advection par les éléments les plus énergétiques (qui
ont une taille proche de l’échelle d’injection). C’est pourquoi on parle alors d’un phénomène de
balayage bien connu en hydrodynamique des milieux turbulents [Kraichnan, 1964; Tennekes,
1975; Kaneda, 1993]. Ce phénomène se traduit dans le domaine Fourier par l’existence d’une
fréquence de coupure au delà de laquelle χk tend rapidement vers zéro. Cette fréquence de
coupure est proportionnelle au rapport entre la taille des élements les plus énergétiques et leur
vitesse. En introduisant cette fréquence de coupure dans la modélisation des amplitudes, Belka-
cem et al. [2010] ont résolus le problème de la sur-estimation des amplitudes des modes solaires
de basse fréquence et ce faisant clos le débat en question.
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4.1. Spectres de la turbulence

Figure 4.2 – En haut : Comme sur la Fig. 4.1 pour une simulation solaire 3D dotée d’une
résolution horizontale de ≃ 50 km [Belkacem et al., 2006a]. En bas : Comme sur le panneau
supérieur pour une résolution horizontale de 120 km.
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Chapitre 4. Contraintes sur la convection turbulente

Figure 4.3 – Taux d’excitation (P) des modes p solaires en fonction de la fréquence ν. Les
cercles pleins (SOHO/GOLF) et les diamants (BiSON) correspondent aux données sismiques
présentées dans le Chap. 2, Sect. 2.2.2, Fig. 2.1. Les courbes correspondent aux calculs théo-
riques effectués en adoptant différentes prescriptions pour χk : une forme Lorentzienne (traint
plein) et une forme Gaussienne (trait pointillé).

Figure 4.4 – Comme sur la Fig. 4.3 pour le cas de l’étoile α Cen A.
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4.2. Modèles de fermeture et anisotropie

Figure 4.5 – Comme sur la Fig. 4.3. Les courbes correspondent ici aux calculs effectués dans
les mêmes conditions que ceux réalisés par Chaplin et al. [2005] (voir texte). Deux prescrip-
tions pour χk ont été considérées : une forme Lorentzienne (ligne en trait plein) et une forme
Gaussienne (ligne en tiret-point). On a ici, comme Chaplin et al. [2005], considéré uniquement
le forçage par le terme de Reynolds.

4.2 Modèles de fermeture et anisotropie

La décomposition de l’Eq. (3.21) suppose l’approximation quasi-normale (AQN). Cepen-
dant, l’écart à l’AQN est important dans un milieu fortement turbulent. Cette approximation est
strictement valide dans le cas de quantités distribuées selon une distribution normale. Toutefois,
la partie supérieure de l’enveloppe convective est un milieu turbulent composé de deux flots
asymétriques l’un par rapport à l’autre : le flot montant (qui constitue les granules visibles à la
surface) et le flot descendant (les plumes, qui se forment entre les granules). Par conséquent,
dans un tel milieux, les distributions des vitesses et fluctuations de température sont asymé-
triques, ce qui viole de fait l’hypothèse de distribution normale et met en question l’usage de
l’AQN dans ce contexte.

Comme l’ont vérifié Belkacem et al. [2006a, article inséré en page 145] et Kupka and Robin-
son [2007], l’écart à l’AQN est importante dans la partie supérieure de l’enveloppe convective
du Soleil. En effet, cette approximation conduit à sous-estimer de ≈ 50 % le moment d’ordre
quatre associé à la vitesse dans la région quasi-adiabatique de la simulation 3D solaire étudiée.
Cet écart important a donc motivé un travail en vu d’aller au delà de l’AQN.

Rappelons tout d’abord que le terme que l’on cherche à modéliser, i.e. celui situé à gauche
de l’Eq. (3.21), correspond à un produit de corrélation à deux points impliquant la vitesse, à
savoir le terme : 〈(ui u j)1 (uk ul)2〉(r, τ) où r et τ sont respectivement les longueurs de corrélation
spatiales et temporelles. Lorsque que r → 0 et τ → 0, ce terme se réduit à un produit de
corrélation à un point, autrement dit ici à un moment d’ordre quatre (MOQ par la suite). Comme
nous allons le voir, il est possible d’établir un modèle de fermeture pour ce MOQ qui ne repose
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Figure 4.6 – Taux d’excitation (P) des modes p solaires en fonction de la fréquence ν. Les
cercles pleins et les triangles correspondent aux données sismiques issus du réseau GONG.
Deux jeux de données sont présentés : des données basse fréquence (triangles) et des données
plus haute fréquence (cercles). La courbe en trait plein correspond à un calcul semi-analytique
utilisant des données extraites d’une simulation 3D solaire. Les autres courbes ont été obtenues
en utilisant un modèle solaire 1D couvrant l’ensemble de l’enveloppe convective (voir texte).
Les résultats de différentes prescriptions pour χk sont représentés : les courbes en trait plein et en
tiret-point correspondent à une forme Lorentzienne tenant compte du phénomène de balayage
(voir texte) et la courbe tiretée à une forme Lorentzienne pure.
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pas sur l’AQN. Toutefois, il est au préalable nécessaire d’adopter une prescription permettant
de relier un produit de corrélation à deux points à un produit (ou moment) à un point. Nous
nous intéressons à des modes de bas degré, qui dans la région d’excitation se déplacent de
manière principalement radiale. Nous avons donc besoin d’une prescription pour les produits
de corrélation 〈w2

1 w2
2〉(r, τ) et 〈(w st)1 (w st)2〉(r, τ) où w correspond à la composante verticale de

la vitesse.
Par défaut, Belkacem et al. [2006b] ont supposé que 〈w2

1 w2
2〉(r, τ) varie en fonction de r et τ

de la même façon que dans la AQN (Eq. (3.21)), à savoir comme suit :

〈w2
1 w2

2〉 =
Kw

3
〈w2

1 w2
2〉QNA , (4.14)

où Kw est une constante et 〈w2
1w2

2〉QNA est le produit de corrélation à deux points donné en
vertu de l’AQN. La prescription de l’Eq. (4.14) est brièvement discutée dans le Chap. 7. La
contribution du terme de Reynolds (C2

R, Eq. (3.27)) se réécrit donc alors comme :

C2
R = 4 π3 G

∫ M

0
dm ρ0

(

dξr
dr

)2
Kw

3
S R(m, ωosc) . (4.15)

Notons que la contribution due aux fluctuations d’entropie (C2
S , Eq. (3.28)) reste modélisée en

supposant l’AQN. Cette inconsistance a toutefois un faible impact car la contribution du terme
d’entropie est faible devant celle du au terme de Reynolds, du moins pour les étoiles pas trop
chaudes (voir Sect. 3.4).

La constante Kw dans l’Eq. (4.14) est déterminée dans la limite r → 0 et τ → 0. Dans ce
cas on a donc :

〈w4〉 =
Kw

3
〈w4〉QNA , (4.16)

où 〈w4〉 est par définition le MOQ associé à w, la composante verticale de la vitesse, tandis que
〈w4〉QNA est le MOQ donné par l’AQN (Eq. (3.21)). En vertu de l’Eq. (3.21) et dans la limite
r → 0 et τ→ 0, on a donc :

〈w4〉QNA = 3 〈w2〉2 . (4.17)

A l’aide des Eqs. (4.16) et (4.17), on détermine la constante Kw :

Kw = 3
〈w4〉
〈w4〉QNA

=
〈w4〉
〈w2〉2

, (4.18)

constante qui est par définition le Kurtosis. Cette quantité mesure l’aplatissement de la fonc-
tion de densité de probabilité. Pour une distribution normale (cas de l’AQN), on a Kw = 3. Le
Kurtosis mesure l’écart du MOQ à l’AQN. Les simulations numériques 3D des couches super-
ficielles du Soleil montrent que dans la région quasi-adiabatique, le Kurtosis est quasi constant
et proche de la valeur six [Belkacem et al., 2006a; Kupka and Robinson, 2007]. Il s’agit donc
de développer un modèle de fermeture permettant de reproduire l’écart à la valeur “canonique”
(i.e. Kw = 3).
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Des modèles de fermeture plus sophistiqués que la AQN ont été proposés. Parmi ceux-
ci, celui connu sous le nom de modèle à deux flots [“two-scale mass flux model” Gryanik
and Hartmann, 2002] est particulièrement adapté à notre contexte. Ce modèle tient en effet
compte de l’existence de deux flots asymétriques (dans notre cas les granules montantes, et
les plumes descendantes). Un tel modèle est toutefois limité à des flots quasi-laminaires ce qui
n’est clairement pas le cas dans notre cas. Avec le modèle à deux flots proposé par Gryanik and
Hartmann [2002], le Kurtosis Kw s’écrit :

Kw = (1 + S 2
w) , (4.19)

où le terme S w est défini comme :

S w ≡ 〈w3〉
〈w〉3/2

. (4.20)

Le terme S w s’appelle le “biais” (“skewness” en angalis) et mesure l’asymétrie d’une distribu-
tion. Dans le modèle Gryanik and Hartmann [2002], S w s’exprime comme :

S w ≡
〈w3〉
〈w〉3/2

=
1 − 2a
√

a(1 − a)
, (4.21)

où a est la surface moyenne et relative occupée par les flots montants. Dans la limite de l’AQN,
i.e. lorsque l’on a affaire à une distribution normale, nous avons nécessairement S w = 0 (la dis-
tribution normale étant symétrique). Par conséquent, dans la limite de l’AQN, le Kurtosis donné
par l’Eq. (4.19) ne tend pas vers la valeur canonique Kw = 3 attendue pour une distribution nor-
male. C’est la raison pour laquelle Gryanik and Hartmann [2002] ont proposé de modifier – “à
la main” – l’Eq. (4.19) comme suit :

Kw = 3 (1 +
1
3

S 2
w) . (4.22)

La Fig. 4.7 montre le MOQ obtenu à l’aide de l’Eq. (4.22) où S w est déterminé à l’aide de
l’Eq. (4.21). Comme on le voit, l’amélioration apportée par rapport à l’AQN est très modeste.
En revanche, lorsque S w est déterminé numériquement directement à partir de la simulation
hydrodynamique 3D du Soleil, l’Eq. (4.22) reproduit assez correctement le MOQ dans la région
quasi-adiabatique. Dans cette région, l’Eq. (4.22) constitue un modèle réaliste du Kurtosis Kw

sous réserve, toutefois, que le biais S w soit correctement évalué [voir détails dans Belkacem et

al., 2006a; Kupka and Robinson, 2007].
Dans Belkacem et al. [2006a, article inséré en page 145], nous avons généralisé l’approche

due à Gryanik and Hartmann [2002] en tenant en compte du biais introduit par la présence de
deux flots asymétriques et de la turbulence au sein de chaque flot. Nous avons ainsi établi une
expression plus précise pour S w (voir son expression dans Belkacem et al. [2006a]). L’impact
de ce modèle sur l’évaluation du Kurtosis Kw donné par l’Eq. (4.22) est illustré sur la Fig. 4.7.
Dans la région quasi-adiabatique, l’amélioration par rapport à l’AQN ou au modèle de Gryanik
and Hartmann [2002] est substantielle.

Dans Belkacem et al. [2006b, article inséré en page 157], nous avons calculé le taux d’exci-
tation, P, des modes solaire en utilisant pour la contribution du terme de Reynolds l’Eq. (4.15)
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Figure 4.7 – Rapport entre le moment d’ordre quatre (MOQ) modélisé et celui extrait numé-
riquement d’une simulation hydrodynamique 3D solaire. Le trait continu correspond au MOQ
obtenu sur la base du modèle de fermeture proposé par Belkacem et al. [2006a], la courbe ti-
retée au modèle de Gryanik and Hartmann [2002] (Eq. (4.22) et Eq. (4.21)), et la courbe en
pointillés au résultat obtenu avec l’AQN (Kw = 3 et Sw = 0).

dans laquelle le Kurtosis (Kw) est évalué avec les modèles de fermeture présentés plus haut. Le
résultat est illustré sur la Fig. 4.8. Le maximum de P est environ 30 % plus large lorsque l’on
utilise le modèle de fermeture de Belkacem et al. [2006a] plutôt que l’AQN. Cette différence
est plus grande que la contribution de l’entropie (environ 15 %, voir Sect. 3.4). Elle reste toute-
fois comparable aux différences entre les différents jeux de données sismiques (SOHO/GOLF,
GONG, BiSON, voir Chap. 2).
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Figure 4.8 – Comme sur la Fig. 4.3. Les courbes correspondent aux calculs théoriques de P

pour lesquels la contribution du terme de Reynolds est évaluée sur la base de l’Eq. (4.15). Dans
cette Eq. le Kurtosis (Kw) est évalué de différentes manières : la ligne continue correspond au
calcul utilisant le Kurtosis évalué numériquement directement à partir d’une simulation hydro-
dynamique 3D solaire, la ligne tiretée au calcul basé sur le modèle de fermeture proposé par
Belkacem et al. [2006a], et la ligne en tiret-point au calcul basé sur l’AQN (Kw = 3 et Sw = 0).
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Articles reproduits dans ce mémoire (voir Appendice A) et auxquels ce chapitre se rap-
porte :
• “Influence of local treatments of convection upon solar p mode excitation rates”, Samadi

R., Kupka F., Goupil M.-J., Lebreton Y., van’t Veer-Menneret C., 2006, A&A, 445, 233
[Page 135] ;
• “Modeling the excitation of acoustic modes in α Centauri A”, Samadi R., Belkacem K.,

Goupil M.-J., Dupret M.-A., Kupka F., 2008, A&A, 489, 291 [Page 177] ;
• “The CoRoT target HD 49933. I. Effect of the metal abundance on the mode excitation

rates”, Samadi R., Ludwig H.-G., Belkacem K., Goupil M. J., Dupret M.-A., 2010, A&A,
509A, 15 [Page 223] ;
• “The CoRoT target HD 49933. II. Comparison of theoretical mode amplitudes with obser-

vations”, Samadi R., Ludwig H.-G., Belkacem K., Goupil M. J., Benomar O., Mosser B.,
Dupret M.-A., Baudin F., Appourchaux T., Michel E., 2010, A&A, 509A, 16 [Page 231].

5.1 Contraintes sur les modèles locaux de convection

Les formulations théoriques de la convection utilisées dans les modèles standards de struc-
ture stellaires ont pour objectif essentiel de reproduire la structure des régions convectives dans
les étoiles. Dans la majeur partie de l’étoile le transport de l’énergie par la convection est
extrêmement efficace de sorte que le mouvement de la matière s’effectue de manière quasi-
adiabatique. Dans ces conditions, le gradient de température est très proche du gradient adiaba-
tique. Le transport par la radiation étant dans ces régions directement proportionnel au gradient
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de température (en vertu de l’équation de diffusion qui reste valable tant que le milieu est opti-
quement épais), le flux d’énergie et la stratification de ces régions sont complètement contraintes
par le gradient de température adiabatique, dont la valeur est connue à partir de l’équation d’état
et de la composition chimique. Il n’en est pas de même au voisinage de la surface visible. En
effet, au voisinage de cette région les flots montants se refroidissent rapidement, de sorte que le
transport convectif devient très inefficace et le gradient de température s’écarte significativement
du gradient adiabatique 12. Pour compenser la chute rapide de la densité tout en transportant de
manière convective l’énergie, les éléments montants doivent accroître leur vitesse de manière
substantielle, ce qui rend le milieu particulièrement turbulent. Enfin, par ailleurs, le transfert
radiatif ne plus être y traité dans l’approximation de diffusion. C’est principalement pour ces
deux dernières raisons que le transport convectif est particulière difficile à modéliser dans cette
région.

La théorie dite de “la longueur de mélange” [Biermann, 1932; Böhm-Vitense, 1958, MLT
par la suite] a été la première formulation analytique de la convection qui a été appliquée pour
modéliser les étoiles. Malgré tous ces nombreux défauts [voir à ce sujet la revue due à Zahn,
1991], elle est toujours utilisée dans de nombreux codes de structure et d’évolution stellaire,
principalement pour des raisons de commodité 13. Le modèle théorique proposé par Canuto,
Goldman, & Mazzitelli [1996, CGM par la suite] est une alternative plus réaliste que la MLT
puisqu’elle prend en compte la présence d’éléments turbulents de tailles différentes. Par ailleurs,
comme la MLT, il s’agit d’une formulation locale et 1D de la convection, elle peut donc être
très facilement intégrée dans les codes de structure stellaire.

Ces formulations locales de la convection dans les étoiles ont été testées et comparées en
utilisant les positions des étoiles dans le diagramme Hertzsprung-Russell ou bien en effectuant
l’analyse détaillée de raies spectrales. Toutefois, ces méthodes ne permettent pas de discriminer
sans ambiguïtés entre la MLT et la théorie de CGM [voir Kupka et al., 2009; Kupka, 2009]. En
revanche, les fréquences des modes solaires offrent un diagnostic clair dans le cas du Soleil. En
effet, fréquences des modes permettent de sonder la structure. En particulier les modes de haute
fréquence sont principalement confinés près de la surface. Ces modes sont donc indirectement
sensibles aux caractéristiques d’un modèle de convection. Basu and Antia [1995] ont ainsi mon-
tré que les fréquences des modes solaires calculées avec un modèle solaire basé sur le modèle
de CGM reproduisent mieux les fréquences observées que ne le fait la MLT.

Il existe toutefois un diagnostic plus direct et donc plus fort. C’est celui qui existe entre
amplitudes des modes et vitesse des éléments convectifs. En effet, ce lien est mis en lumière par
les Eqs. (3.31) et (3.32) ainsi que par le terme χk(ω) apparaissant dans les Eqs. (3.29) et (3.30).
On voit en effet que la vitesse caractéristique du flux convectif, u0, intervient directement dans
l’expression pour le taux d’excitation P. Par ailleurs, cette vitesse caractéristique contrôle le
temps caractéristique τ0 (Eq. (3.35)), qui contrôle le temps caractéristique de corrélation entre
éléments turbulents, donc au final la largeur caractéristique du terme χk(ω). Ce lien direct entre
amplitudes des oscillations de type solaire et vitesse des éléments convectifs offre donc des
diagnostics sur les modèles théoriques de convection. C’est pourquoi nous avons calculé dans
Samadi et al. [2006, article inséré en page 135] les taux d’excitation solaires en utilisant des
modèles solaires calculés avec différentes prescriptions pour le transport convectif, à savoir la

12. Dans cette région, le gradient de température est dit alors “super-adiabatique”.
13. En particulier, pour son approche unidimensionnelle et locale du phénomène de transport convective.
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MLT et la formulation due à CGM.

Toutefois, comme on l’a noté plus haut, la partie supérieure de la région convective (région
dite super-adiabatique) correspond à la région de transition entre l’enveloppe convective et la
partie supérieure de l’atmosphère radiative. Dans cette région qui devient progressivement op-
tiquement mince et le flux radiatif important, l’approximation de diffusion pour le flux radiatif
cesse d’être valide. Il est donc nécessaire de traiter de manière plus réaliste, non seulement le
flux convectif mais aussi le flux radiatif. C’est pourquoi nous avons donc comparé deux trai-
tements différents du flux radiatif : l’un basé sur l’approximation dite d’Eddington 14 et l’autre
sur un modèle d’atmosphère plus réaliste calculé avec le code ATLAS 9 [Kurucz, 1993].

Au final, quatre modèles solaires différents ont été comparés [pour plus de détails on se
reportera à Samadi et al., 2006, article inséré en page 135]. Ces modèles sont désignés et décrits
ci-dessous :

– EMLT : modèle calculé sur la base de la MLT et en traitant le flux radiatif dans l’approxi-
mation d’Eddington ;

– ECGM : modèle calculé sur la formulation de CGM pour la convection et en traitant le
flux radiatif dans l’approximation d’Eddington ;

– KMLT : modèle calculé sur la base de la MLT que l’on a raccordé avec un modèle d’at-
mosphère calculé avec le code ATLAS 9 (connu également sous le nom code Kurucz) en
utilisant la même prescription pour le transport convectif ;

– KCGM : modèle calculé sur la formulation de CGM que l’on a raccordé avec un modèle
d’atmosphère calculé avec le code ATLAS 9 en utilisant la même prescription pour le
transport convectif.

Pour les quatre modèles, on a ajusté la valeur du paramètre de la longueur de mélange (α)
utilisée dans l’intérieur du modèle de telle sorte à ce que chaque modèle reproduise le rayon
et la luminosité du Soleil. Pour les modèles KMLT et KCGM, la valeur de α utilisée dans le
modèle d’atmosphère a été ajustée de manière à ce que celui-ci reproduise les raies de Balmer
observées.

Comme le montre la Fig. 5.1, les variations des vitesses convectives obtenues avec ces quatre
modèles sont très différentes les uns des autres dans la région super-adiabatique [pour l’inter-
prétation de ces différences on se reportera à Samadi et al., 2006]. Pour chaque modèle, on a
ensuite calculé les taux d’excitation P des modes solaires. La comparaison de ces taux d’exci-
tation avec les contraintes sismiques est reproduite sur la Fig. 5.2. Comme le montre la figure,
les taux d’excitation obtenus avec le traitement de la convection dû à CGM sont plus proches
des observations que ne le sont ceux obtenus avec la MLT. Par ailleurs, cette figure montre que
la sensibilité au traitement de l’atmosphère est plus grande avec la MLT qu’elle ne l’est avec la
formulation de CGM.

Ce résultat montre que les amplitudes des modes permet de discriminer, dans le cas du
Soleil, entre différents traitement de la convection. L’écart résiduel entre les données sismiques
et les taux d’excitation obtenus avec la formulation de CGM reste important. Comme on l’a vu
dans le Chap 4, il se réduit notablement lorsque l’on calcule P en utilisant les données extraites
de simulations hydrodynamiques 3D des couches superficielles du Soleil.

14. Approximation qui permet de fermer simplement le système d’équation pour le transfert radiatif.
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Figure 5.1 – Vitesses convectives en fonction de la distance z = R⊙ − r, où R⊙ correspond au
rayon solaire et r à un rayon donné. Quatre modèles solaires sont comparés : EMLT, ECGM,
KMLT, et KCGM (voir texte).

5.2 Importance de la pression turbulente

A l’aide d’une simulation hydrodynamique 3D des couches superficielles du Soleil, Ro-
senthal et al. [1999] ont montré que la prise en compte de la pression turbulente dans la mo-
délisation des couches superficielles améliorait notablement l’accord entre fréquences obser-
vées et théoriques. Dans cet esprit, nous avons dans Samadi et al. [2008, article inséré en
page 177] cherché à mesurer l’effet de la prise en compte de la pression turbulente dans le
modèle d’équilibre sur les taux d’excitation. Pour cela, nous avons construit deux modèles de
structure représentatifs de l’étoile α Cen A. Un des modèles, que l’on désignera sous le terme
“raccordé” 15, a ses couches superficielles extraites d’une simulation hydrodynamique 3D tan-
dis que ces couches internes sont obtenues avec le code de structure stellaire CESAM [Morel
and Lebreton, 2008] en utilisant le traitement de la convection basée sur la MLT et en ignorant
la pression turbulente. Le second modèle (que l’on désignera sous le terme de “standard”) est
construit intégralement à l’aide du code CESAM.

Les couches superficielles du modèle “raccordé” tient compte de la pression turbulente ce
qui n’est pas le cas du modèle “standard”. Ces deux modèles permettent donc de mesurer l’effet
de la pression turbulente sur P. Le résultat obtenu par Samadi et al. [2008] est reproduit sur la
Fig. 5.3 où l’on a représenté, non pas P mais le rapport P/M. En effet, en vertu de l’Eq. (2.15),
déterminer P à partir des données simsique requiert de modéliser la masse du mode M. Cette
dernière quantité dépend du modèle d’équilibre (voir Eq. (2.11)). En revanche, la détermination
du rapport P/M à partir des données sismiques ne requiert pas d’hypothèse concernant le mo-

15. En anglais, de tels modèles ont été pour la première fois désignés par Trampedach [1997] sous le nom de
“patched”. Le procédé de fabrication de ce genre de modèles est détaillé dans Trampedach [1997] ainsi que dans
Samadi et al. [2008].
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Figure 5.2 – Taux d’excitation P des modes solaires en fonction de la fréquence ν. Les courbes
correspondent aux valeurs obtenues avec les modèles solaires EMLT, ECGM, KMLT, et KCGM
(voir texte ainsi que la Fig. 5.1). Les cercles pleins avec les barres d’erreurs verticales corres-
pondent aux données sismiques solaires obtenues par Chaplin et al. [1998].

dèle d’équilibre ce qui permet donc de comparer les observations à des modèles d’équilibres
qui prédiraient différentes valeurs pour M.

Comme le montre la Fig. 5.3, le modèle “raccordé” donne des valeurs P/M plus proches
des contraintes sismiques mesurées sur α Cen A que celles obtenues avec le modèle “standar-
d”. Cela est principalement du aux masses des modes M (Eq. (2.11)). En effet, les masses des
modes associées au modèle “raccordé” sont plus faibles que celles associées au modèle “stan-
dard”. Cela s’explique du fait que le modèle “raccordé” inclue la pression turbulente au niveau
des couches supérieures dans lesquelles sont confinés les modes que l’on regarde. Cette pres-
sion turbulente s’ajoute à la pression du gaz. Elle fournit un support additionnel au poids des
couches supérieures. Par conséquent, en présence de pression turbulente, le poids des couches
supérieures peut être soutenu avec une pression du gaz plus faible et donc une densité inférieure
à celle nécessaire pour le modèle “standard” [voir aussi Nordlund and Stein, 1999; Rosenthal
et al., 1999]. Des densités plus faibles impliquent nécessairement des M plus faibles, ce qui
explique donc le résultat reproduit sur la Fig. 5.3.

5.3 Rôle de l’abondance en métaux à la surface

Dans Samadi et al. [2010b, article inséré en page 223], nous avons évalué l’effet d’une
variation de l’abondance en métaux à la surface d’une étoile sur les taux d’excitation des oscil-
lations de type solaire. Pour cela, nous avons mis en oeuvre deux simulations hydrodynamiques
3D représentatives de l’étoile CoRoT HD 49933. Cette étoile déjà connue, avant CoRoT, pour
présenter des oscillations de type solaire [Mosser et al., 2005], a été considérée ici du fait de
sa faible abondance en fer ([Fe/H]=-0.37). L’une des deux simulations 3D (S0 par la suite) a
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Figure 5.3 – Rapport P/M en fonction de la fréquence ν pour l’étoile α Cen A. Les lignes poin-
tillées représentent le domaine correspondant aux mesures sismiques disponibles pour l’étoile
α Cen A [voir détails dans Samadi et al., 2008]. La courbe en trait plain correspond aux va-
leurs de P/M obtenues avec le modèle “raccordé” tandis que la courbe en pointillé aux valeurs
correspond au modèle “standard”.

son abondance en métaux égale à celle du Soleil tandis que l’autre (S1 par la suite) a une abon-
dance dix fois plus faible ([Fe/H]=-1). Pour chacune des simulations 3D nous avons construit
un modèle “raccordé” associée et calculé les taux d’excitation des modes associés.

Comme cela est illustré sur la Fig. 5.4, les taux d’excitation P obtenus avec le modèle S1
sont trois fois plus faibles que ceux obtenus avec le modèle S0. Cette différence s’explique du
fait qu’une faible abondance en métaux à la surface implique une faible opacité du milieu, et
par conséquent une plus forte densité à la surface de l’étoile [voir les détails dans Samadi et al.,
2010b]. Or pour transporter un flux convectif identique 16, des vitesses convectives plus faibles
sont suffisantes lorsque la densité est plus élevée. Enfin, des vitesses convectives plus faibles
impliquent un forçage plus faible ; ceci explique donc le résultat illustré sur la Fig. 5.4.

Nous avons ensuite cherché à tester notre modélisation dans le cas de l’étoile HD 49933
observée par CoRoT et pour lesquelles des mesures précises des amplitudes et largeurs sont
disponibles [Benomar et al., 2009]. Cette étoile ayant une abondance en métaux intermédiaire
entre celle de S0 et S1, nous avons au préalable établi une méthode permettant d’interpoler les
taux d’excitation obtenus pour chacune de ces deux modèles 3D [voir les détails dans Samadi
et al., 2010b]. Le résultat de cette interpolation est reproduit sur la Fig. 5.4.

Avec les largeurs mesurées (Γ) et les taux d’excitation théoriques P calculés pour HD 49933,
nous avons évalué les vitesses des modes à l’aide de l’Eq. (2.13). Ces amplitudes en termes de
vitesse ont ensuite été converties en termes de fluctuation d’intensité en adoptant l’approxi-
mation quasi-adiabatique (voir Chap. 6 Sect. 6.3). Les amplitudes en termes d’intensité ainsi
obtenues ont été comparées dans Samadi et al. [2010a, article inséré en page 231] aux mesures

16. Les deux simulations 3D ayant la même température effective.
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Figure 5.4 – Taux d’excitation P calculés en fonction de la fréquence ν pour des modèles ayant
une température effective et une gravité proche de celle de l’étoile CoRoT HD 49933. La courbe
en trait plein correspond au modèle S0, celle en trait pointillé au modèle S1, et enfin celle en
tiret-point au modèle doté de la même abondance en métaux que HD 49933 (voir texte).

sismiques effectuées par Benomar et al. [2009] à l’aide des données CoRoT. Le résultat de
cette comparaison est reproduit sur la Fig. 5.5. Excepté à haute fréquence (ν & 1.9 mHz) où
le désaccord important reste à expliquer (voir Chap. 7), les amplitudes théoriques sont en bon
accord avec les mesures sismiques. La Fig. 5.5 montre aussi qu’ignorer la faible abondance en
métaux de cette étoile conduit à surestimer de manière significative les amplitudes observées.
Ce résultat illustre l’importance du rôle de l’abondance en métaux et donc de la nécessité de sa
prise en compte.

L’effet de l’abondance en métaux sur les amplitudes semble avoir été observé de manière
qualitative par Stello and Gilliland [2009] en comparant les amplitudes des modes de type so-
laire dans des amas globulaires caractérisés par des abondances en métaux différentes. Toute-
fois, une comparaison plus quantitative reste à effectuer. Pour cela il sera nécessaire de mesurer
également les durées de vie des modes, car il s’agit de distinguer l’effet de l’abondance en
métaux sur le forçage avec celui sur l’amortissement des modes.
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Figure 5.5 – Amplitudes bolométriques en fonction de la fréquence ν. Les triangles pleins et
rouges correspondent aux mesures sismiques effectuées par Benomar et al. [2009] sur l’étoile
HD 49933. Les cercles pleins connectés par la courbe en trait épais correspondent au calcul
théorique établi en tenant compte de l’abondance en métaux de l’étoile HD 49933 ainsi que les
largeurs des modes mesurées. La courbe en trait pointillé correspond au calcul théorique obtenu
avec le modèle 3D S0, dont l’abondance en métaux est solaire.
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Lois d’échelles sur les amplitudes

Sommaire
6.1 Taux d’excitation, P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Amplitude en terme de vitesse, V . . . . . . . . . . . . . . . . . . . . . . . 58
6.3 Amplitude en terme d’intensité, δL/L . . . . . . . . . . . . . . . . . . . . 59

Articles reproduits dans ce mémoire (voir Appendice A) et auxquels ce chapitre se rap-
porte :
• Excitation of solar-like oscillations across the HR diagram, Samadi R., Georgobiani D.,

Trampedach R., Goupil M.-J., Stein R. F., Nordlund A., 2007, A&A, 463, 297 [Page 165] ;
• Amplitudes of solar-like oscillations in red-giant stars : Evidences for non-adiabatic ef-

fects using CoRoT observations, Samadi R., Belkacem K., Dupret M.-A., Ludwig H.-G.,
Baudin F., Caffau E., Goupil M. J., Barban C., 2012, A&A, 543, 120 [Page 257].

6.1 Taux d’excitation, P

A l’aide d’un jeux de modèles hydrodynamiques 3D représentatifs des surfaces d’étoiles si-
tuées sur la séquence principale, nous avons dans Samadi et al. [2007, article inséré en page 165]
calculé le maximum des taux d’excitation (Pmax par la suite). Différentes prescriptions pour la
composante en fréquence χk ont été testées (voir la définition de χk dans le Chap. 4, Sect. 4.1.2),
notamment une forme Lorentzienne et une forme Gaussienne. Les valeurs obtenues pour Pmax

sont reproduites sur la Fig. 6.1 en fonction du rapport L/M (L étant la luminosité et M la masse
de l’étoile). On constate clairement que Pmax varie selon une loi d’échelle de la forme (L/M)s

où la pente s dépend de la prescription adoptée pour χk : s = 3.1 pour une forme Gaussienne et
s = 2.6 pour une forme Lorentzienne. Le travail mené par Samadi et al. [2007] a été récemment
étendu par Samadi et al. [2012, article inséré en page 257] aux cas des étoiles sous-géantes et
géantes rouges. Ces derniers ont montré que la pente s se maintient à la valeur s = 2.60 ± 0.09
lorsqu’une forme Lorentzienne est adoptée pour χk. En revanche, pour ces étoiles la différence
entre une forme Lorentzienne et une Gaussienne est très tenue car on a s = 2.69 ± 0.06 pour
une forme Gaussienne.
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Figure 6.1 – Maximum des taux d’excitation, Pmax, en fonction du rapport L/M. La courbe en
trait plein correspond au calcul théorique basé sur une forme Lorentzienne pour χk tandis que
la courbe en pointillé à celui basé sur une forme Gaussienne.

L’accroissement de Pmax avec le rapport L/M n’est pas surprenant. En effet, notons d’abord
que bien que L/M soit le rapport entre deux grandeurs globales pour l’étoile, ce rapport est
également proportionnel à Teff/g, où Teff est la température effective de l’étoile et g sa gravité
de surface 17. Ensuite, comme on va le montrer maintenant, Pmax dépend étroitement de Teff et
de g. En effet, l’Eq. (3.41) peut se réécrire comme :

P ∝
(

ωosc

cs

)2

FkinΛ
4 , (6.1)

où

Fkin =
3
2
ρ0 u3

0 (6.2)

est par définition le flux d’énergie cinétique par unité de volume 18 et u0 est une vitesse caracté-
ristique donnée par l’Eq. (3.25).

En bonne approximation, l’échelle caractéristique Λ varie d’une étoile à une autre approxi-
mative selon l’échelle de pression Hp à la photosphère [voir Freytag et al., 1997; Samadi et al.,
2008]. L’équilibre hydrostatique permet d’écrire que P = ρ g Hp, où P correspond à la pres-
sion totale (pression du gaz + pression turbulente). En supposant un gaz parfait, on a donc que
Hp ∝ T/g. La vitesse du son est donnée par la relation : c2

s = Γ1 P/ρ. Par conséquent, en sup-
posant à nouveau un gaz parfait, on a c2

S ∝ T . A l’aide des relations précédentes, on peut alors

17. En effet, en vertu de la loi de Steffan, on a L = 4πσT 4
eff R2

∗ où σ est la constante de Steffan et R∗ le rayon de
l’étoile. De plus, la gravité à la surface est égale à g = GM/R2 où G est la constante universelle de la gravitation.
On a donc finalement L/M ∝ T 4

eff/g.
18. Par soucis de simplification, on a supposé un milieu isotrope ; par voie de conséquence le flux d’énergie

cinétique est égal dans les trois directions de l’espace.
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simplifier l’Eq. (6.1) comme suit :

P ∝ ω2
osc Fkin T 3 g−4 . (6.3)

Dans le cadre de la théorie de la longueur de mélange (MLT), on peut montrer que le flux
d’énergie cinétique Fkin est approximativement proportionnel au flux convectif Fc. En effet,
dans le cadre de cette théorie, un élément convectif est accéléré par la force d’Archimède sur
une longueur égale par définition à la longueur de mélange ΛMLT. Un choix par défaut est de
supposer que ΛMLT = αHp où α est ce qu’on appelle le paramètre de la longueur de mélange.
L’énergie cinétique des éléments s’exprime alors comme [voir les notes de cours de Bohm-
Vitense, 1989] :

Eeddy ≡
3
2
ρ u2

0Λ
3 = g (∆ρΛ3)Λ , (6.4)

où ∆ρ est la différence de densité entre l’élément en mouvement et le milieu ambiant. Dans
l’approximation de Boussinesq, la perturbation de l’équation d’état se simplifie comme :

∆ρ

ρ
∝
∆T

T
(6.5)

où ∆T correspond à la différence de température entre l’élément et le milieu ambiant.
Le flux convectif est par définition égal à

Fc ≡ u0

(

ρCp ∆T
)

, (6.6)

où Cp = (∂s/∂ ln T )p. Finalement, en vertu de l’Eq. (6.2) et le jeux d’Eqs. (6.4)-(6.6), on en
déduit que Fkin ∝ gΛ/T Fc et, puisque Λ ∝ T/g, on a finalement Fkin ∝ Fc.

Dans la région où le forçage est le plus efficiace, le flux total d’énergie, Ftot, n’est plus
transporté exclusivement par la convection. Cependant, de manière à établir une expression qui
dépende simplement des paramètres de surface (Teff et g), on suppose néanmoins que la totalité
du flux est transporté par la convection ; par voie de conséquence on a donc Fc ≈ Ftot = σT 4

eff ∝
g (L/M) où σ est la constante de Steffan. Finalement, en supposant que T = Teff , on peut alors
simplifier l’Eq. (6.3) comme suit :

P ∝ ω2
osc T 4

eff T 3 g−4 ≈ ω2
osc T 7

eff g−4 . (6.7)

Définissons maintenant νmax = (ωosc)max /2π. Cette fréquence caractéristique correspond par
définition à la position en fréquence du maximum de puissance (Pmax). Comme l’ont montré
Samadi et al. [2012, article inséré en page 257], le maximum de puissance et d’amplitude coïn-
cident. Par ailleurs, il a été établi tant du point de vu observationnel [Bedding and Kjeldsen,
2003; Stello et al., 2008, 2009; Kallinger et al., 2009] que théorique [Belkacem et al., 2011],
que νmax varie étroitement avec la fréquence de coupure νc, laquelle varie selon la loi d’échelle
g/T 1/2

eff . Si on injecte cette dernière loi d’échelle dans l’Eq. (6.7), on en déduit alors la relation :

Pmax ∝ T 6
eff g−2 . (6.8)

Au vue de l’Eq. (6.8), on voit que Pmax croît, comme on l’attendait, avec le flux total Ftot = σT 4
eff

tandis qu’il décroît lorsque g croît. Ceci explique donc qualitativement la loi d’échelle de la
forme Pmax ∝ (L/M)s ∝

(

T 4
eff/g

)s
établie par Samadi et al. [2007].
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6.2 Amplitude en terme de vitesse, V

Sur la base des calculs théoriques effectués par Christensen-Dalsgaard and Frandsen [1983],
Kjeldsen and Bedding [1995] ont établi la première loi d’échelle théorique pour les ampli-
tudes maximum des modes en termes de vitesse (Vmax par la suite). Cette loi d’échelle est de
la forme Vmax ∝ (L/M)s où la pente s ≃ 1. Les calculs théoriques effectués par Christensen-
Dalsgaard and Frandsen [1983] ont supposé qu’il existe une forme d’équipartition d’énergie
entre les modes et les élements convectifs (voir Chap 3., Sect. 3.2.1). Cependant, une condition
nécessaire (mais par nécessairement suffisante) pour que cette forme d’équipartion se main-
tienne est que l’amortissement des modes soit dominé par la viscosité turbulente. Toutefois,
comme cela avait été discuté dans le Chap.3 – Sect. 3.2.1, il est peu probable que cela soit le
cas.

Depuis la loi d’échelle proposée par Kjeldsen and Bedding [1995], d’autres lois d’échelle
théoriques ont été proposées et comparées aux données en vitesse Doppler. Nous présentons
ci-dessous celle établie par Samadi et al. [2007, article inséré en page 165] pour les étoiles de
la séquence principale et celle établie par Samadi et al. [2012, article inséré en page 257] pour
les stades plus évolués.

Nous rappelons que la moyenne quadratique de la vitesse d’un mode à la surface est donnée
par la relation (voir Eq. (2.13)) :

v2(νosc, r) =
τ(νosc)

2
P(νosc)
M(νosc,r)

(6.9)

où τ correspond à la durée de vie du mode (laquelle est inversement égale au taux d’amortis-
sement η), r le rayon au niveau de l’atmosphère où la mesure de vitesse s’effectue, et M la
masse du mode (Eq. (2.11)). Notons que la masse du mode doit être en principe évaluée au
niveau de la couche où s’effectue la mesure de vitesse Doppler. Cependant cette couche n’est
pas bien connue (voir Chap. 2, Sect. 2.2.3) ; aussi, à titre de simplification, on évaluera M à la
photosphère (i.e. en T = Teff).

Pour le Soleil, la fréquence νmax pour laquelle v atteint son maximum (Vmax) coïncide avec
la fréquence correspondant au plateau observé au niveau des durées de vie τ [voir Belkacem et

al., 2011]. Par ailleurs, il a été montré par Samadi et al. [2012] que P ainsi que le rapport (P/M)
atteignent leur maximum également à la fréquence νmax. Par conséquent, une loi d’échelle pour
Vmax repose donc simplement sur l’existence de lois d’échelles sur τmax, Pmax et Mmax où τmax,
Pmax, et Mmax correspondent respectivement aux valeurs prises par τ, P, et M à la fréquence
ν = νmax.

Une loi d’échelle théorique pour τmax ∝ T−10.8
eff g0.3 a été établie par Belkacem et al. [2012,

voir aussi la revue due à Belkacem and Samadi [2013]]. S’agissant de Pmax, on a présenté dans
la Sect. 6.1 des lois d’échelle qui différent selon le choix adopté pour χk. Nous nous tournons
donc maintenant sur Mmax. Nous avons établi dans Samadi et al. [2012] que pour les étoiles
sous-géantes et géantes rouges Mmax varie comme ∆ν−p avec p = 2.0 ± 0.1 et ∆ν désigne la
grande séparation que l’on a supposé varier comme

√

M/R3. Par conséquent, Mmax varie selon
l’inverse de la densité moyenne, i.e. 〈ρ〉 ∝ (M/R3). Pour les étoiles de la séquence principale,
les calculs effectués par Samadi et al. [2007] conduisent à une pente p = 1.3 ± 0.2. Ces deux
relations entre Mmax et 〈ρ〉 ne sont pas encore bien comprises. Toutefois, ces relations montrent
– comme on s’y attendait – que M dépend bien de la stratification de l’étoile. Enfin, comme

58



6.3. Amplitude en terme d’intensité, δL/L

l’amplitude d’un mode est inversement proportionnel à la racine carré de M, on voit comment
cette amplitude est liée à la stratification en densité de l’étoile.

Lorsque l’on combine la loi d’échelle τmax ∝ T−10.8
eff g0.3, la loi d’échelle Pmax ∝ (L/M)s et

enfin la loi d’échelle pour Mmax, on obtient en vertu de l’Eq. (6.9) la loi d’échelle suivante :

Vmax ∝ T−5.4
eff g0.15

(

L

M

)s/2 (

M

R3

)p/4

, (6.10)

où p = 1.3 pour les étoiles de la séquence principale et p = 2 pour les étoiles plus évoluées
(sous-géantes et géantes rouges), et s = 2.6 lorsqu’une forme Lorentzienne est adoptée. Dans la

mesure où la grande séparation ∆ν varie typiquement comme
(

M/R3
)1/2

[voir e.g. White et al.,

2011], que νmax varie comme g/T 1/2
eff et que (L/M) est proportionnel à T

7/2
eff /νmax [voir Baudin et

al., 2011a,b], Eq. 6.10 peut-être reformulée en utilisant les indices sismiques νmax et ∆ν ainsi
que Teff :

Vmax ∝ T
7/4 s−5.32
eff ν0.15−s/2

max ∆νp/2 . (6.11)

La loi d’échelle donnée par l’Eq. 6.11 est comparée sur la Fig. 6.2 avec les mesures Doppler
obtenues jusqu’à présent depuis le sol. Lorsqu’une forme Lorentzienne est adoptée pour χk (ce
qui implique s = 2.6), la loi d’échelle pour Vmax reproduit plutôt bien les mesures sismiques
effectuées sur les étoiles situées sur la séquence principale (i.e. celles pour lesquelles νmax &

200 µHz). Ce n’est en revanche pas le cas pour les étoiles plus évoluées pour lesquelles les
valeurs théoriques sont systématiquement situées en dessous des mesures. Des raisons possibles
expliquant cet écart sont avancées et discutées dans Samadi et al. [2012] ainsi que dans le
Chap. 7.

6.3 Amplitude en terme d’intensité, δL/L

Les mesures sismiques réalisées depuis l’espace (e.g. CoRoT et Kepler) resposent unique-
ment sur des mesures photométriques de haute précision. Pour comparer les amplitudes théo-
riques avec les mesures en intensité, il est donc nécessaire de convertir les vitesses des modes en
fluctuations d’intensité. On considère pour cela la relation de l’Eq. (2.17) qui lie variations bo-
lométriques, δL, aux variations de température effective δTeff . Il est donc maintenant nécessaire
de relier (δTeff/Teff)rms (ou de manière équivalente (δL/L)rms) à la vitesse quadratique moyenne
vrms. Pour cela, on introduit par convenance le coefficient adimensionnel ζ défini de telle sorte
que :

(δL/L)rms = 4
(

δTeff

Teff

)

rms

= ζ (δL/L)rms,⊙

(

vrms

vrms,⊙

)

(6.12)

où (δL/L)rms,⊙ = 2.53 ±0.11 ppm est le maximum des amplitudes bolométriques solaires [Mi-
chel et al., 2009, article inséré en page 213], Teff,⊙ = 5777 K la température effective du Soleil,
et vrms,⊙ = 18.5 ± 1.5 cm/s le maximum des vitesses des modes solaires [Samadi et al., 2010a,
article inséré en page 231].

Définissons maintenant (δL/L)max comme le maximum atteint par (δL/L)rms. On cherche ici
à établir une loi d’échelle pour (δL/L)max. Comme on le voit dans l’Eq. (6.12), nous avons besoin
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Figure 6.2 – Maximum des vitesses des modes Vmax en fonction de νmax. Les cercles pleins
correspondent aux mesures sismiques tandis que les carrés rouges aux valeurs obtenues avec
la loi d’échelle donnée par l’Eq. (6.11) en adoptant pour χk une forme Lorentzienne (ce qui
implique s = 2.6). On a pris p = 2.0 pour les étoiles sous-géantes et géantes (νmax . 200 µHz)
et p = 1.3 pour les étoiles de la séquence principale (νmax & 200 µHz).

d’établir une loi d’échelle pour ζ dans la mesure où celle pour Vrms est donnée par l’Eq. (6.10)
(ou de manière équivalente par l’Eq. (6.11)).

Un calcul consistent de la quantité ζ requierait de tenir compte de manière complète et
réaliste les pertes d’énergie des modes. Ceci peut être effectué à l’aide de code de pulsation non-
adiabatique prenant en compte le couplage entre oscillations, radiation et convection turbulente
[voir à ce sujet la revue due à Belkacem and Samadi, 2013]. Cependant, de tels calculs ne sont
pas triviaux et reposent encore sur de nombreuses simplifications. C’est la raison pour laquelle la
relation quasi-adiabatique proposée par Kjeldsen and Bedding [1995] est généralement adoptée.
En effet, si on suppose des modes adiabatiques ainsi qu’une atmosphère isotherme, on peut relier
de manière aisée la vitesse Vrms d’un mode à la fluctuation d’intensité correspondante, δL. Cette
approximation donne ainsi 19 [voir Kjeldsen and Bedding, 1995] :

ζK95 =

√

Teff,⊙

Teff
. (6.13)

Si on combine l’ Eq. (6.13) avec l’Eq. (6.12), on obtient pour (δL/L)max une loi d’échelle “quasi-
adiabatique” :

(δL/L)max ∝ T−0.5
eff Vmax , (6.14)

où la loi d’échelle pour Vmax est donnée par l’Eq. (6.11) (ou de manière équivalente par l’Eq. (6.10)).

19. La dérivation de l’Eq. (6.13) suppose que les modes sont propagatifs au niveau où ceux-ci sont mesurés.
Toutefois, ce n’est pas le cas car les modes sont (en général) évanescents dans la partie visible de l’atmosphère.
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Figure 6.3 – Maximum des amplitudes bolométriques (δL/L)max en fonction de νmax. Les cercles
pleins situés en dessous de νmax = 200 µHz correspondent aux mesures sismiques effectuées par
Baudin et al. [2011a,b] sur un nombre important de géantes rouges observées par CoRoT, tandis
que ceux situés au dessus νmax = 200 µHz à des étoiles de la séquence principale observées avec
CoRoT [voir Baudin et al., 2011a,b]. Les carrés rouges correspondent aux valeurs théoriques
obtenues avec la loi d’échelle adiabatique donnée par l’Eq. (6.14) tandis que les diamants bleus
à celles obtenues avec la loi d’échelle non-adiabatique donnée par l’Eq. (6.16).

Les amplitudes bolométriques calculées sur la base de l’Eq. (6.14) sont comparées dans la
Fig. 6.3 avec les mesures sismiques effectuées par Baudin et al. [2011a,b] avec le satellite Co-
RoT pour des étoiles géantes rouges. Comme on peut le voir, la loi d’échelle “quasi-adiabatique”
donnée de l’Eq. (6.14) sous-estime de manière imporante les mesures sismiques fournies par
l’instrument CoRoT.

Dans Samadi et al. [2012], nous avons calculé le coefficient ζ (Eq. (6.12)) en utilisant le
code MAD permettant de résoudre les équations des modes non-adiabatiques [voir Grigahcène
et al., 2005]. Ce calcul a permis d’établir que pour les étoiles évoluées (sous-géantes et géantes
rouge) ζ varie selon la loi d’échelle :

ζnad = ζ0

(

L

L⊙

M⊙

M

)0.25

, (6.15)

où ζ0 = 0.59. L’augmentation de ζ avec le rapport L/M n’est pas étonnant. En effet, les pertes
d’énergies varient dimensionnellement comme L/M. Les étoiles évoluées sont caractérisées par
des luminosités élevées. Par conséquente, on s’attend pour ces étoiles à un important écart à
l’approximation quasi-adiabatique, autrement dit à un différence importante entre ζnad et ζK95.

Nous rappelons que L/M est proportionnel à T
7/2
eff /νmax. Par conséquent, si on substitue

l’Eq. (6.15) dans l’Eq. (6.12), on peut réécrire la loi d’échelle non-adiabatique pour (δL/L)max
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comme 20

(δL/L)max ∝ T 1.75
eff ν

−0.25
max Vmax , (6.16)

où Vmax est donné par l’Eq. (6.11) avec p = 2 (cas des étoiles évoluées). Cette loi d’échelle est
comparée sur la Fig. 6.3 avec les mesures sismiques effectuées avec les observations CoRoT.
Comme on le voit sur la figure, les différences entre observations sont réduites par rapport au
cas de la loi d’échelle adiabatique (Eq. (6.14)). Cependant, les différences résiduelles demeurent
importantes. Des raisons possibles expliquant celles-ci sont discutées dans [Samadi et al., 2012,
voir aussi Chap. 7].

20. Cette loi d’échelle est valide uniquement pour les sous-géantes et géantes rouges, car on a utilisé l’Eq. (6.15)
qui est valable uniquement pour (L/M) & 10.
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Chapitre 7

Discussion et perspectives

Tout d’abord, si vous avez lu tout ce qui précède articles inclus, bravo ! ... hum, mais peut-
être êtes vous passé directement de l’introduction à ce chapitre ? Dans ce cas la discussion qui
suit va en partie vous échapper .... alors retournez fissa en arrière !

7.1 Modélisation du forçage par la convection turbulente

7.1.1 Bases théoriques du modèle d’excitation stochastique

La modélisation des amplitudes des oscillations de type solaires reste très simplifiée puisque
elle repose sur un certain nombre d’approximation et d’hypothèses, et, comme on va le rappeler
ci-dessous, certaines sont partiellement ou complètement mises en défaut.

La prise en compte du forçage thermique (associé aux fluctuations d’entropie) repose ac-
tuellement sur l’hypothèse que les fluctuations d’entropie se comportent comme un scalaire
passif (voir Chap. 3, Sect. 3.1.3). Par voie de conséquence, les termes croisés entre le terme de
Reynolds et le terme d’entropie s’annulent. Supposer que les fluctuations d’entropie se com-
portent comme un scalaire passif est une hypothèse forte qui est mis à défaut dans la région
super-adiabatique (là où le forçage thermique est maximal). En effet, rappelons d’abord qu’un
scalaire passif vérifie par définition une équation de diffusion (voir Eq. (3.19)). Cette équation
est rigoureusement valide lorsque le transfert d’énergie peut être traité dans l’approximation
de diffusion et lorsque l’approximation de Bousinesq est applicable (impliquant donc un mi-
lieu quasi incompressible). Or, la région super-adiabatique correspond à la région de transition
entre un milieu optiquement épais et un milieu optiquement mince, où, par conséquent, le flux
radiatif ne peut plus être traitée dans l’approximation de diffusion. Par ailleurs, dans cette ré-
gion, le fluide cesse d’être quasi-incompressible. Par conséquent, dans cette région l’hypothèse
d’un scalaire passif est clairement mis à défaut. S’affranchir de cette hypothèse, nécessiterait de
prendre en compte de manière complète les pertes d’énergies, ce qui en dernier ressort nécessi-
terait de résoudre l’équation d’énergie de manière couplée avec l’équation d’onde inhomogène
(voir Chap. 3, Eq. (3.1.1)). Dans ces conditions, la quantification du forçage ne devrait pas
avoir de solution analytique et devrait donc être effectuée de manière numérique, par exemple
en s’inspirant de l’approche suivie par Wachter and Kosovichev [2005] dans le cas de la propa-
gation des ondes acoustiques à la surface du Soleil.
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Une autre hypothèse importante concerne la séparation d’échelle. Celle-ci suppose que les
éléments convectifs qui contribuent effectivement au forçage ont des tailles significativement
plus petites que l’onde acoustique forcée par ceux-ci (voir Chap. 3, Sect. 3.1.4). Cette approxi-
mation est mise à défaut principalement pour les modes de haute fréquence et à nouveau dans
la région super-adiabatique où le nombre de Mach turbulent atteint des valeurs élevées. Elle ex-
pliquerait en partie le désaccord observé à haute fréquence dans le cas du Soleil (voir Chap. 4,
Sect.4.1.2) et surtout dans le cas de l’étoile CoRoT HD 49933 (voir Chap. 5, Sect. 5.3). Cette
séparation d’échelle peut cependant être évitée si le spectre d’énergie associé à la turbulence est
couplé de manière appropriée avec la dépendance spatiale des modes (travail toujours en cours
...).

Enfin, comme on l’a vu dans le Chap. 4 Sect. 4.2, le modèle d’excitation stochastique re-
pose encore sur une hypothèse concernant les produits de corrélation à deux points. En effet, on
suppose que ces produits varient en fonction des longueurs de corrélation temporelle et spatiale
comme les produits de corrélation donnés par l’approximation quasi-normale (voir Eq. (4.14)
pour le produit de corrélation associé au terme de Reynolds). Cette hypothèse a été sommaire-
ment testée dans Belkacem et al. [2006b, article inséré en page 157]. En effet, seule la dépen-
dance par rapport à la longueur de corrélation spatiale a été évaluée à l’aide d’une simulation
hydrodynamique 3D solaire. Si cette approximation est qualitativement satisfaisante aux petites
échelles, il n’en est pas du tout le cas pour les échelles comparables à celles des granules. Une
étude numérique plus approfondie est nécessaire ; celle-ci devra en particulier évaluer l’impact
de l’approximation actuelle sur les taux d’excitation. Enfin, la possibilité d’améliorer la modé-
lisation théorique des produits à deux points doit être explorée.

7.1.2 Amplitudes des modes dans les géantes rouges

Pour les étoiles géantes rouges, l’écart constaté entre calculs théoriques et observations n’est
pas encore bien compris (voir Chap. 6, Sect. 6.2 et 6.3). L’origine la plus probable viendrait de
l’écart à l’hypothèse adiabatique adoptée pour calculer les modes propres. En effet, le calcul du
forçage repose toujours sur l’hypothèse de modes adiabatiques. Or les simulations hydrodyna-
miques 3D montrent que le mode dominant piégé dans celles-ci s’écarte de manière importante,
dans la région super-adiabatique, des modes équivalents calculés dans l’hypothèse adiabatique
[Samadi et al., 2013]. Cet écart est comme on l’attend d’autant plus grand que l’étoile est évo-
luée (i.e. que le rapport L/M est élevé). Toutefois, la représentativité des modes piégés dans ces
simulations se pose dans la mesure où ceux-ci s’écartent du régime linéaire [c.f. Samadi et al.,
2013].

La résolution la plus complète et consistante possible consisterait à résoudre de manière
couplée l’équation d’énergie avec l’équation d’onde inhomogène (comme on l’avait déjà noté
plus haut s’agissant du terme de forçage thermique). La résolution de ces équations ne devrait
être possible que de manière numérique et à l’aide de modèles de fermeture adaptés. Une alter-
native consiste à résoudre de manière découplée l’équation d’onde inhomogène (en supposant à
ce niveau des modes adiabatiques) et l’équation d’onde homogène (sans terme de forçage mais
en supposant des modes non-adiabatiques). Tandis que la résolution de la première utilise, de-
puis Samadi et al. [2007], des modèles “raccordés (voir Chap. 5, Sect. 5.2), la seconde repose
actuellement sur les codes non-adiabatiques qui tiennes en compte le couplage entre convection
et pulsation, tels que le code MAD [Grigahcène et al., 2005] ou le code de Gough & Balmforth
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[Gough, 1976, 1977; Balmforth, 1992c,b,a] ou celui de Xiong et al. [2000].
Hormis celui de Xiong et al. [2000], ces codes non-adiabatiques se basent sur la théorie de

la longueur de mélange mais ne sont pas d’accord s’agissant des processus d’amortissement
dominants [voir Belkacem and Samadi, 2013]. Une tentative de contraindre cette approche avec
des simulations hydrodynamiques 3D a été proposée par Dupret et al. [2006a, voir aussi Dupret
et al. [2006b]]. Les modes propres non-adiabatiques calculés avec le code MAD montrent des
différences dans la partie supérieure de la région d’excitation. Cependant, contrairement aux
cas des modes piégés dans les simulations hydrodynamiques 3D, ces différences ont un impact
négligeable sur les taux d’excitation, ne permettant pas d’expliquer l’écart qui reste avec les
observations effectuées sur les géantes rouges [voir la discussion dans Samadi et al., 2013].

Toutefois, si le code MAD permet de reproduire correctement les lois d’échelles observées
pour la durée de vie des modes [Belkacem et al., 2012] et de réduire l’écart avec les ampli-
tudes observées sur les géantes rouges (voir Chap. 6), cela se fait au prix de l’ajustement d’un
paramètre libre 21. En effet, ce dernier est ajusté d’un modèle à l’autre de manière à ce que
pour une modèle donné, le plateau observé sur les durées de vie coïncide avec la fréquence du
maximum [c.f. Belkacem et al., 2012]. Cela enlève tout caractère prédictif à cette modélisation.
Il s’agit donc de manière générale de progresser sur cette modélisation, tant du point de vue
de la compréhension physique des processus dominant l’amortissement que de leur modélisa-
tion. Pour cela l’utilisation des simulations hydrodynamiques 3D adaptées est essentielle, d’une
part pour permettre d’identifier les processus vraiment à l’oeuvre, et d’autre part pour guider la
modélisation de ces processus en vue de leur introduction dans un code de pulsation.

Malgré ses relatifs succès pour les étoiles de la séquence principale, il n’est pas non plus
exclu que pour une raison ou une autre le modèle de convection turbulente adoptée jusqu’à pré-
sent pour calculer le forçage (voir Chap. 4) soit mis à défaut pour les stades évolués. Un moyen
de s’affranchir de ce modèle et donc tester cette hypothèse serait d’utiliser l’approche ab initio

proposée par Nordlund and Stein [2001, voir Chap. 3 Sect. 3.2.2]. Si celle-ci se base toutefois
sur des modes adiabatiques, elle permet avec un nombre limité d’hypothèses et d’approxima-
tions de calculer les taux d’excitation. Aussi, la mise en oeuvre de cette méthode fournirait un
diagnostic supplémentaire.

Les données CoRoT et Kepler permettent de détecter des oscillations de type solaire dans
un nombre important d’étoiles géantes rouges. Si la plus part de ces modes ont les amplitudes
attendues, il n’est est pas de même sur certaines géantes rouges. Celles-ci présentent des ampli-
tudes plus faibles [Mosser et al., 2012a]. Plus intriguant encore, nombreuses d’entre-elles ont
des modes ℓ = 1 avec des amplitudes relativement plus faibles que celles des modes radiaux
[Mosser et al., 2012a]. Ce fait observationnel n’est pas encore compris. La question est de sa-
voir si ce fait est lié à l’inertie des modes ou une particularité des processus d’excitation ou
d’amortissement.

Ces géantes rouges montrent également la présence de nombreux modes mixtes [Beck et

al., 2011; Bedding et al., 2011; Mosser et al., 2012b]. Ces modes, qui se propagent à la manière
des modes p à la surface, se comportent comme des modes g à l’intérieur. De ce fait, ils per-
mettent de sonder les coeurs de ces étoiles. Ils permettent notamment de distinguer les étoiles
du clump (qui brulent leur hélium dans le coeur), des étoiles géantes rouges qui brûlent en-

21. Ce paramètre est introduit dans l’équation pour les fluctuations lagrangienne de l’entropie pour éliminer les
oscillations non physiques des fonctions propres [voir Grigahcène et al., 2005].
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core l’hydrogène en couche ; ou encore de sonder la rotation dans les couches les plus internes
de l’étoile. Comme l’ont montré Mosser et al. [2012a], leur amplitudes ont une particularité
étonnante : pour un ordre radial donné, la somme quadratique de leurs amplitudes égale ap-
proximativement l’amplitude du mode radial associé. Autrement dit il semble qu’il y’ait une
forme d’équipartion d’énergie entre modes p pures et modes mixtes. Comme ces derniers se
comportent comme des modes p pures dans l’enveloppe convective, on peut donc penser qu’ils
sont excités et amortis de la même façon que leurs homologues p. Cela reste toutefois à vérifier.
Si cela est effectivement le cas, alors cela signifierait que les inerties (ou masses) de ces modes
assurent cette forme d’équipartion, pour une raison qui reste à expliquer.

7.1.3 Oscillations stochastiquement excitées dans les étoiles massives et
les δ Scuti

La généralisation du formalisme d’excitation aux cas des modes non-radiaux a permis de
traiter le cas de l’excitation des modes g dans le Soleil ainsi que dans d’autres étoiles (voir
Chap. 3 Sect. 3.3). Nous avons montré dans Samadi et al. [2009, article inséré en page 239]
que les étoiles massives de l’ordre de 10 M⊙ pouvait présenter des modes g avec des amplitudes
non négligeables. Neiner et al. [2012] ont annoncé la détection de tels modes dans une étoile
B. Toutefois, les amplitudes mesurées s’avèrent être plus grande d’un facteur un à deux par
rapport à nos estimations [Samadi et al., 2009]. Ces estimations théoriques sont encore très
incertaines car elles s’appuient sur la théorie de la longueur de mélange. Afin de consolider ces
calculs, il est donc nécessaire d’utiliser des résultats de simulations hydrodynamiques 3D à la
manière où cela avait été fait par Belkacem et al. [2009c, article inséré en page 199] dans le
cas des modes g solaires. Parallèlement, d’autres raisons permettant d’expliquer les amplitudes
observées doivent être explorées [c.f. Neiner et al., 2012].

La détection d’oscillations de type solaire a été annoncées par Belkacem et al. [2009d]
dans une étoile massive déjà connue comme étant un pulsateur classique (l’étoile V1448 Aql).
Cette détection trouve son support théorique chez Belkacem et al. [2009a] sans que toutefois le
niveau des amplitudes mesurées puisse être expliqué. Depuis, des oscillations analogues ont été
détectées dans d’autres étoiles massives [c.f. Degroote et al., 2009, 2010]. Des oscillations du
même type auraient également été détectées par Antoci et al. [2011] sur étoile du type δ Scuti
observées par Kepler. Si cette détection se confirme, elle confirmerait les prédictions théoriques
antérieures [Samadi et al., 2002, article inséré en page 87]

De manière générale, la découverte d’oscillations stochastiquement excitées (modes p ou
g) dans les pulsateurs classiques ou les étoiles massives ouvre la voie vers une amélioration de
notre connaissance de leur structure interne, notamment de leur zones convectives internes et
superficielles.

7.1.4 Liens entre observables et physique des modes

Le Chap. 2 a mis en lumière les liens qui existent entre observables et caractéristiques in-
trinsèques des modes. Comme on l’a vu ces liens sont complexes à plusieurs titres.

Tout d’abord, il est nécessaire de modéliser de manière précise l’inertie et la masse d’un
mode. Ceci nécessite des modèles d’équilibres réalistes, en particulier au niveau des couches
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superficielles (voir aussi Chap. 5 Sect. 5.2), mais aussi la prise en compte du caractère non-
adiabatique des modes, ce qui n’est pas le cas actuellement.

D’autre part, il est fondamental de préciser le lien entre la technique de mesure et les pro-
priétés des modes mesurés à la surface de l’étoile (notamment du Soleil). Ce lien est particuliè-
rement compliqué dans le cas des mesures Doppler effectuées sur les étoiles autres que le Soleil
car plusieurs raies spectrales contribuent à la mesure dans une proportion qui reste à déterminer.
Même si le cas du Soleil est plus simple du fait de l’utilisation d’une unique raie spectrale, il
reste, comme on l’a vu, encore des désaccords incompris lorsque l’on compare les amplitudes
déduites des mesures Doppler effectuées sur différents instruments dédiés à l’héliosismologie.

7.2 Améliorer les modèles de structure stellaire

Les modèles standards de structure et d’évolution stellaire sont encore très utilisés dans
divers domaines de l’astrophysique. Outre évidemment la physique stellaire, c’est en particulier
le cas aussi dans l’étude des populations stellaires et l’étude des planètes extrasolaires.

Un moyen unique pour sonder les intérieurs stellaires, et par là contraindre les modèles de
structure et d’évolution des étoiles, consiste à utiliser la sismologie. Le diagnostic fourni par
cette technique est cependant très sensible à la façon dont les couches de surfaces sont modéli-
sées. En effet, la comparaison des fréquences des modes solaires avec les fréquences théoriques
montre une différence qui croit avec la fréquence. Plus la fréquence d’un mode est élevée plus le
mode est confiné à la surface. La différence croissante entre fréquences observées et théoriques
reflète donc l’imperfection avec laquelle les modèles standards traitent les couches superficielles
(voir Chap. 5) mais aussi à la façon de traiter les pulsations [voir e.g. Houdek, 2010; Grigah-
cène et al., 2012]. Ce phénomène, que l’on désigne sous le nom d’ “effet de surface”, affecte
la précision des mesures obtenues par le biais des mesures sismiques, ce qui en dernier ressort
limite la portée du diagnostic sismique.

Comme on l’a vu dans le Chap. 5, les modèles d’évolution stellaire reposent sur des des-
criptions très approximatives des processus de transports, en particulier la convection dans les
couches superficielles. En particulier, la majorité des modèles stellaires utilisés négligent la pré-
sence de la pression turbulente, dont l’importance relative croît à la surface des étoiles. Cette
pression s’ajoute à la pression du gaz et modifie la structure de la surface. Comme l’ont montré
Rosenthal et al. [1999], l’ignorer contribue de manière notable aux effets de surface évoqués
plus haut.

Les simulations hydrodynamiques 3D des couches superficielles des étoiles sont actuelle-
ment les approches les plus réalistes qui soient. Toutefois, ces simulations lourdes sont difficiles
à mettre en oeuvre et par conséquent ne permettent pas d’envisager la modélisation de la glo-
balité de l’étoile, ni son évolution dans le temps. En revanche, couplées avec les modèles 1D
d’intérieur stellaire, elles permettent de résoudre le problème de la modélisation des couches
de surfaces tout en bénéficiant des intérêts des modèles 1D d’intérieur. Ce procédé consiste en
fait à remplacer les couches superficielles des modèles 1D de structure stellaire par la stratifica-
tion des couches de surface issues des simulations hydrodynamiques 3D. Il s’agit des modèles
“hybrides” que l’on a décrit dans le Chap. 5.

Cependant, les simulations hydrodynamiques 3D disponibles étant trop peu nombreuses, il
n’est pas possible de disposer d’une densité suffisante, ni pour un jeux suffisant de compositions
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chimiques.
Kjeldsen et al. [2008b] ont proposé une méthode empirique pour corriger les fréquences des

modes d’oscillation des effets de surface. Cependant cette méthode analytique bien que simple
fait appel à un jeux de paramètres libres étalonnés à l’aide des données sismiques solaires. Une
question que permettrait d’aborder les modèles “hybrides” est de savoir si cette forme analytique
ainsi que les valeurs des paramètres étalonnés ont un caractère universel ou non 22.

Une alternative, à portée plus générale, consisterait à construire des modèles “hybrides”
à partir d’une grille de simulations hydrodynamiques 3D pour des paramètre stellaires quel-
conques. Pour cela il s’agirait d’établir une procédure permettant d’effectuer une interpolation
appropriée entre les modèles 3D disponibles. Les modèles hybrides ainsi construits seront uti-
lisés pour calculer les taux d’excitation, d’amortissment et fréquence des oscillations de type
solaire. La comparaison de ces calculs théoriques avec les observations permettra en retour de
tester la qualité des modèles hybrides.

Une fois validée, la mise en oeuvre des modèles hybrides permettront de modéliser de ma-
nière réaliste les effets de surfaces et améliorer ainsi la détermination sismique des paramètres
des étoiles. De plus la possibilité de calculer à la demande des modèles hybrides rendra l’utili-
sation de ce genre de modèles accessible à une large communauté.

Notons que des alternatives aux modèles hybrides existent. L’une d’elle consiste à inclure
l’approche phénoménologique proposée par Spiegel [1963] et permettant de “mimer” la nature
non-locale de la convection turbulente. Dans cette approche, la solution locale est considérée
comme un terme source pour la solution non-locale obtenue en appliquant une loi de conser-
vation pour le flux convectif. Dans un régime stationnaire, la solution non-locale pour le flux
convectif s’écrit [voir Spiegel, 1963] :

d2Fc,nl

dξ2
= b2 (

Ft,nl − Ft,l

)

(7.1)

où Ft,l est la solution locale pour le flux convectif (celui donné dans le cadre de la MLT), Ft,nl

sa solution non-locale, dξ = dr/l, l la longueur de mélange et a est un paramètre libre. Une
équation différentielle similaire est adoptée pour la pression turbulente, cette dernière faisant
intervenir un paramètre libre b. Cette approche a pour l’instant été seulement implémentée par
Gough & Balmforth [Gough, 1976, 1977; Balmforth, 1992c,b,a] dans des modèles d’enveloppe.
De par sa nature non-locale, elle tient naturellement compte de la pénétration convective aux ex-
trémité des régions convectives. Cette approche ne permet toutefois pas de remédier aux autres
difficultés rencontrées dans la région super-adiabatique. Enfin, elle fait appel aux paramètres a

et b qui sont susceptibles de varier le long du diagramme HR.
Une seconde approche plus consistante mais aussi plus difficile consisterait à développer un

modèle de type “Reynolds stress”. Dans cette approche utilisée dans nombreuses applications en
hydrodynamique, on considère l’équation de Navier Stokes moyennée horizontalement. Com-
biné avec l’équation d’énergie, l’équation d’état et l’équation de conservation de la masse, on
forme alors un jeux d’équations 1D et temps dépendant [voir détails dans Kupka, 1999; Kupka
and Montgomery, 2002]. Toutefois, pour être à même de fermer le système il est nécessaire
d’adopter des modèles de fermeture adaptées aux cas des étoiles considérées, tels que ceux pro-
posés par Canuto and Dubovikov [1998]. Une fois fermées, ces équations sont résolues dans le

22. A ce sujet des résultats préliminaires ont été présentés dans Goupil et al. [2011].
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temps jusqu’à atteindre la solution d’équilibre qui fournit alors le modèle d’équilibre pour la ou
les régions convectives à un état donné de l’évolution stellaire (cet état étant fixé principalement
par le brûlage des éléments au coeur). Cette approche tient compte de manière consistante de
la nature non-locale de la convection. Elle a été appliquée avec succès par Kupka and Montgo-
mery [2002] aux cas des étoiles de type A. Cependant le modèle de fermeture adoptée s’avère
inapproprié pour les étoiles plus froides (type F ou plus froide), pour lesquelles la convection
est plus efficace [voir Kupka, 2007]. Il s’agit donc de développer des modèles de fermetures
adaptées, mais ça n’est pas une mince affaire.... Là encore les simulations hydrodynamiques
3D représentent un outil indispensable pour permettre à discriminer entre les différents modèles
proposés ou qui seront développés dans l’avenir.

7.3 Perspectives observationnelles

7.3.1 CoRoT et Kepler

La mission spatiale CoRoT (CNES), lancée le 27 décembre 2006, est suffisamment précise
pour détecter des oscillations de type solaire aussi faible que celles qui ont été détectees dans
le Soleil il y’a maintenant plus de quarante ans [Michel et al., 2008]. Par ailleurs, du fait des
observations longues (jusqu’à 150 jours) et continues qu’elle fournie, il a été possible pour la
première fois avec CoRoT de mesurer directement la largeur (ou durée de vie) des modes [voir
e.g. Appourchaux et al., 2008]. A la manière à ce qui a été fait par le passé avec le Soleil, il est
donc depuis possible de contraindre simultanément et (quasi) indépendamment les processus
d’excitation et d’amortissement des oscillations de type solaire, et par leur biais d’étudier la
convection turbulente dans les étoiles ainsi que la physique des modes.

La mission spatiale Kepler (NASA) a suivi les pas de CoRoT à la suite de son lancement le 7
mars 2009. Grâce à leur qualité photométrique exceptionnelle et à la continuité à long terme des
observations disponibles, ces deux missions permettent de détecter des modes de type solaire
et d’en mesurer fréquences, amplitudes et durées de vie, et ceci dans une variété d’étoiles avec
des caractéristiques diverses concernant leur statut évolutif, température effective, gravité de
surface, composition chimique, champ magnétique, rotation .... etc. Ces observations ont déjà
fourni des résultats majeurs [voir les revues dues à Christensen-Dalsgaard and Thompson, 2011;
Michel and Baglin, 2012]. Elles permettent d’envisager à terme des avancées prodigieuses sur
la connaissance des intérieurs stellaires, en particulier des processus dynamiques qui y prennent
place. Comme le disait je ne sais plus qui, on vit donc une époque formidaaable !

Si on en revient à l’étude les amplitudes des modes, la poursuite de ces deux missions va
nous permettre d’avancer encore sur l’étude de la convection turbulente et les phénomènes de
couplage entre convection et oscillation. Mais, ces missions devraient nous permettre d’aborder
les nouveaux sujets d’études avancés ci-dessous.

Certains pulsateurs de type solaire sont des étoiles jeunes présentant un haut niveau d’ac-
tivité (par exemple HD 49933, HD 181420, HD 175726, HD 181906, ...). L’effet du champ
magnétique sur les amplitudes des oscillations de type solaire a jusqu’à présent été ignoré. Un
champ magnétique fort peut partiellement inhiber le transport convectif [c.f e.g. Proctor and
Weiss, 1982; Vögler et al., 2005]. Par ailleurs, un champ fort peut changer significativement la
distribution spatiale d’énergie cinétique contenue dans la turbulence à petites échelles, rédui-
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sant ainsi l’efficacité du forçage par la convection turbulente, en particulier à haute fréquence
[c.f. Jacoutot et al., 2008]. A cet égard l’annonce par Garcia et al. [2010] de la découverte
d’un cycle d’activité sur l’étoile CoRoT HD 49933 est particulièrement intéressante puisqu’elle
montre qu’un cycle d’activité analogue à celui du Soleil existe et influence à la fois fréquences
et amplitudes des modes. Enfin, l’étude menée par Chaplin et al. [2011] avec les données Ke-

pler montre le lien entre niveau d’activité et amplitudes des modes. La mesure des durées de vie
des modes au cours du temps permettrait de savoir si les variations observées des amplitudes
ont un lien avec des variations du forçage ou de l’amortissement, ou sont simplement le fait de
l’évolution des propriétés de la cavité stellaire.

Les étoiles plus jeunes que le Soleil sont en général des rotateurs plus rapides. Belkacem et

al. [2009b] ont montré que la rotation ajoutait des termes additionnels de forçage. Cependant,
pour les rotateurs modérés comme HD 49933 ces termes sont négligeables devant le terme de
Reynolds ou même le terme de forçage thermique. En revanche, la présence de rotation modifie
les propriétés des fonctions propres. A très basse fréquence ceci induit des taux d’excitation
différents entre modes de nombre azimutal m différents [voir Belkacem et al., 2009b]. Pour un
rotateur modéré comme HD 49933 l’effet demeure toutefois in-détectable. La durée et la qualité
des données Kepler laissent cependant espérer la détection d’un tel effet, en particulier sur des
rotateurs plus rapides que HD 49933.

7.3.2 et après ?

L’après CoRoT et Kepler est encore incertain en terme programmatique. Le projet de mis-
sion spatiale PLATO (ESA), s’il est sélectionné, représentera une relève ambitieuse. En effet,
cette mission a pour objectif, double, de détecter – via la technique des transits – des planètes
extra-solaires notamment des planètes analogues à la Terre située dans la zone “habitable” et
de caractériser – via la sismologie stellaire – les propriétés (age, masse ... etc) des étoiles as-
sociées aux planètes détectées. Les deux techniques (transit planétaire et analyse sismique) qui
seront utilisées simultanément sur les mêmes objets, reposeront sur des mesures photométriques
de précision supérieure à celle atteinte par CoRoT et Kepler (à une magnitude donnée). Elles
permettront d’étudier les systèmes planètes-étoiles grâce à l’apport essentiel de la sismologie.

Grâce a son très grand champ, elle atteindra son objectif sur des étoiles beaucoup plus
brillantes que celles sur lesquelles CoRoT et Kepler sont capable de détecter des planètes. Ceci
permettra de confirmer au sol la présente de candidats planètes mais aussi d’effectuer des obser-
vations plus directes des systèmes planètes-étoiles. La mission PLATO couvrira près de 50 % de
la voûte céleste. Ceci permettra d’étudier un nombre gigantesque d’étoiles variées, notamment
des étoiles situées dans des amas. Par rapport aux missions antérieures, cela représentera un
saut quantitatif de plusieurs ordres de grandeur en terme de nombre de cibles.

Le saut quantitatif par rapport aux missions CoRoT et Kepler laisse naturellement espérer
un saut qualitatif pour l’étude des systèmes exo-planétaires ainsi que la physique stellaire et
l’étude des populations stellaires.

Après avoir passé différentes étapes de sélection, plus ou moins heureuses ... , PLATO reste
en compétition pour la sélection d’une mission M3 par l’ESA en novembre 2013 pour un lan-
cement prévu vers 2022.

En parallèle à ce projet, d’autres projets spatiaux analogues sont à l’étude. Comme les pro-
jets TESS (NASA), PLAVI (ESA), KEHOPS (ESA) .... Si le projet TESS (NASA) est d’ambi-
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tion analogue à PLATO, les autres restent plus modestes, mais tout aussi incertains en terme de
sélection.
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Abstract. Model computations of δ Scuti stars, located in the vicinity of the red edge of the classical instability strip, suggest

amplitudes of solar-like oscillations larger than in cooler models located outside the instability strip. Solar-like amplitudes in our

δ Scuti models are found to be large enough to be detectable with ground-based instruments provided they can be distinguished

from the opacity-driven large-amplitude pulsations. There would be advantages in observing simultaneously opacity-driven and

stochastically excited modes in the same star. We anticipate their possible detection in the context of the planned asteroseismic

space missions, such as the French mission COROT (COnvection ROtation and planetary Transits). We propose known δ Scuti

stars as potential candidates for the target selection of these upcoming space missions.

Key words. stars: interiors – stars: variables: δSct

1. Introduction

The δ Scuti stars are in general main sequence stars with

masses between 1.5 M⊙ and 2.5 M⊙. They are located inside the

classical instability strip (IS hereafter) where the κ-mechanism

drives low-order radial and nonradial modes of low degree to

measurable amplitudes (opacity-driven unstable modes). Only

a small number of opacity-driven modes are observed in δ Scuti

stars (for a review see e.g. Gautschy & Saio 1996), but their am-

plitudes, which are limited by nonlinear processes, are much

larger than stochastically driven intrinsically stable solar-like p

modes.

For main-sequence stars with surface convection zones, lo-

cated outside the IS, model computations suggest all modes

to be intrinsically stable but excited stochastically by turbulent

convection; for models located near the red edge of the IS the

predicted velocity amplitudes become as large as 15 times the

solar value (Houdek et al. 1999). Moreover, these computations

suggest that models located inside the IS can pulsate simulta-

neously with modes excited both by the κ-mechanism and by

the turbulent velocity field.

Provided that many modes can be detected, high-

frequency p modes are more easily identified than low fre-

quency p modes. Hence there are advantages of observing si-

multaneously both types of modes in the same star. As a first

step, high-frequency p modes can help to determine the fun-

damental stellar parameters (e.g., luminosity, effective temper-

ature) more accurately, whereas low-frequency modes, which

Send offprint requests to: R. Samadi,

e-mail: Reza.Samadi@obspm.fr

are strongly sensitive to the properties of the deep layers of the

star, can then be used as a diagnostic for the inner properties

of the model. Such developments are outside the scope of the

present paper and we only outline briefly the underlying idea.

The nearly regular frequency spacing of solar-like modes

of high order (i.e., the large frequency separation) depends pre-

dominantly on the structure of the surface layers and conse-

quently provides further constraints on the equilibrium mod-

els. Their degree l and azimuthal order m can be identified with

the help of the classical echelle diagram method; this method

was successfully tested by the simulation results of the COROT

Seismic Working Group (Appourchaux 2002, personal com-

munication); this severely constrains the fundamental stellar

parameters (mass, age, chemical composition) of models for

which the frequencies of computed oscillation modes are simi-

lar to the observed high-order modes (Berthomieu et al. 2002).

Moreover, solar-type modes also provide information on the

star’s mean rotation rate.

A nearly regular spacing in frequency is also observed

for opacity-driven low-frequency modes (Breger et al. 1999);

the large separation of these low-frequency modes has to be

similar between observations and theoretical models which sat-

isfy also the properties of the observed high-frequency solar-

type p modes. However, some of the opacity-driven modes de-

viate from the mean value of the large frequency separation;

these modes are so-called mixed modes which provide details

of the stellar core and of the precise evolutionary stage of the

observed star (Unno et al. 1989 and references therein). This

deviation from the mean value of the large frequency separa-

tion could suggest the presence of mixed modes. The problem
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is further complicated by the fact that the rotational splitting

frequency components are no longer equidistant for these fast

rotators, i.e. these frequencies could erroneously be identified

as frequencies of mixed modes. However, knowing the mean

rotation rate from the high-frequency splittings of solar-type p

modes, the frequency splittings of the low-frequency opacity-

driven modes can be computed in the manner of Dziembowski

& Goode (1992) (see also Soufi et al. 1998).

The understanding of the physics responsible for the return

to stability of opacity-driven modes at the red edge of the IS is

still in its infancy. As the star becomes cooler the extent of the

surface convection zone increases, thereby making the effect of

convection-pulsation coupling on mode stability progressively

more important. Several authors have tried to model the loca-

tion of the red edge, e.g., Baker & Gough (1979), Bono et al.

(1995) for RR Lyrae stars and e.g., Houdek (1996) and Xiong

& Deng (2001) for δ Scuti stars. Although the authors assumed

various models for the time-dependent treatment of convection,

they all concluded that convection dynamics crucially effect

the location of the red edge; however, different results were re-

ported as to whether the convective heat flux (e.g., Bono et al.

1995), the momentum flux (e.g., Houdek 1996) or turbulent

viscosity (Xiong & Deng 2001) is the crucial agent for sta-

bilizing the modes at the red edge. In all these investigations,

the predicted position of the red edge depends crucially on the

assumed convection parameters, such as the mixing-length pa-

rameter or whether acoustic emission is included or neglected

in the equilibrium model (Houdek 2000).

Although it is possible from Fig. 13 of Houdek et al. (1999)

to conclude that both types of modes can be excited simulta-

neously in the same star, amplitudes of stochastically excited

modes for stars located inside the instability strip were not ex-

plicitly carried out by Houdek et al. (1999) and their possible

detection were not addressed.

The aim of this paper is to demonstrate that models of

stars, located inside the IS and near the red edge, can exhibit

both opacity driven modes and solar-like oscillations with suf-

ficiently large amplitudes to be detectable with today’s ground-

based instruments. Consequently the planned asteroseismol-

ogy space missions, such as COROT (COnvection ROtation

and planetary Transits, Baglin & The Corot Team 1998) or

Eddington (Favata et al. 2000), will detect these oscillations

even more easily.

Section 2 describes the equilibrium models, and the linear

analysis results are discussed in Sect. 3, which are obtained

from solving the equations of linear nonadiabatic oscillations

in which convection is treated with the time-dependent, non-

local formalism by Gough (1976, 1977, hereafter G’MLT).

Furthermore, the effect of acoustic radiation in the equilibrium

model on the stability properties is taken into account in the

manner of Houdek (2000, and references therein). In this paper

we consider only radial p modes.

Amplitudes of solar-like oscillations result from the bal-

ance between damping and stochastic driving by turbulence.

The rate at which the turbulence injects energy into the p modes

is estimated in the manner of Samadi & Goupil (2001, Paper I

hereafter) and is discussed in Sect. 4.

Table 1. Stellar parameters for the envelope models A1, A2, B1, B2

and C; R is the stellar radius at the photosphere (T = Teff), and νc is

the acoustic cut-off frequency.

Model Teff (b − y)0 R νc acoustic

[K] [R⊙] [mHz] radiation

A1, A2 6839 0.235 2.40 1.4 included

B1, B2 6839 0.235 2.40 1.4 neglected

C 6650 0.262 2.54 1.3 neglected

Table 2. Acoustic emissivity coefficient Λ and Mach-number depen-

dence Γ assumed in the acoustic radiation model for the stellar mod-

els A1 and A2.

Model Λ Γ

A1 100 5

A2 2000 7.5

In Sect. 5 we address the possibilities and conditions for

detecting solar-type oscillations in δ Scuti stars with ground-

based instruments and propose possible candidates, some of

which are listed in the catalogue by Rodrı́guez et al. (2000).

Conclusions are given in Sect. 6.

2. The stellar models

Equilibrium envelope models are computed in the manner of

Houdek et al. (1999) using G’MLT formulation for convec-

tion. Integration starts at an optical depth of τ = 10−4 and ends

at a radius fraction 0.2. Radiation is treated in the Eddington

approximation and the atmosphere is assumed to be grey and

plane parallel. In G’MLT formulation two more parameters,

a and b, are introduced which control the spatial coherence

of the ensemble of eddies contributing to the total heat and

momentum fluxes (a), and the degree to which the turbulent

fluxes are coupled to the local stratification (b). In this paper

we choose a2 = 900 and b2 = 2000 in order to obtain stable

modes in the frequency range in which the damping rates ex-

hibit a local minimum (e.g., at about 1.1 mHz for model C; see

Sect. 3 and Fig. 2). The mixing-length parameter α has been

calibrated to a solar model to obtain the helioseismically in-

ferred depth of the convection zone of 0.287 of the solar radius

(Christensen-Dalsgaard et al. 1991).

All models assume solar chemical composition and have

mass M = 1.68 M⊙ and luminosity L = 11.3 L⊙, but differ in

effective temperature Teff , and whether or not acoustic radia-

tion is included in the equilibrium computations. Table 1 lists

the fundamental stellar parameters of these models. The mod-

els A1, A2 , B1 and B2 are hotter than model C and are located

inside the IS and close to the red edge. Models A1 and A2 differ

from models B1 and B2 by the inclusion of acoustic radiation

by turbulence in the envelope calculations. In this model for

acoustic radiation in the equilibrium model two more param-

eters are introduced (Houdek & Gough 1998): the emissivity

coefficient Λ and the parameter Γ which describes the power-

law dependence of the acoustic power emission on the turbulent

Mach number. A Mach-number dependence of Γ = 5 assumes

that acoustic emission is dominated by the energy-bearing
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eddies; if acoustic emission is predominantly emitted by

inertial-range eddies Γ has the value 7.5. Table 2 lists the val-

ues of Λ and Γ that are assumed in the models A1 and A2. The

values for Λ provide for a solar model a similar value for the

acoustic flux Fac as the estimates of Stein (1968) and Musielak

et al. (1994). For all the models, except for model B2, we as-

sume for the mixing-length parameter the calibrated solar value

α = 2.037; for model B2 the value α = 1.5 is assumed.

Figure 1 displays the locations of these models in

the colour-magnitude diagram. Evolutionary tracks (dashed

curves) are shown for models with various masses and are ob-

tained with the CESAM code by Morel (1997) as described

by Samadi et al. (2001a). The transformation from luminosity,

effective temperature and surface gravity to absolute magni-

tude Mv and dereddened colour indices (b − y)o are obtained

from the Basel Stellar Library (Lejeune et al. 1998). The blue

and red edges of the fundamental radial modes (solid curves)

are calculated in the manner of Houdek et al. (1999). The po-

sitions of the observed δ Scuti stars (filled circles) are taken

from Rodrı́guez et al. (2000): absolute magnitudes, derived

from Hipparcos distances and dereddened colour indices were

kindly supplied by E. Rodrı́guez (2001, personal communica-

tion; see Rodrı́guez & Breger 2001, for details).

3. Stability analysis

The stability computations are as described in Houdek

(2000, and references therein). In particular they include the

Lagrangian perturbations of the turbulent fluxes (heat and mo-

mentum) according to Gough’s (1977) time-dependent formu-

lation. Assuming a temporal dependence, exp(−iωt), for the

pulsations, the complex eigenfrequencies of the modes can be

written as ω = ωr + iωi, which defines the cyclic pulsation fre-

quency ν = ωr/2π and the damping/growth rate η = −ωi/2π.

The outer boundary conditions are applied at the temperature

minimum, the mechanical boundary condition being consistent

with a perfectly reflecting surface; at the base of the envelope,

conditions of adiabaticity and vanishing displacement are im-

posed.

For model C all the modes are found to be linearly stable

(i.e., η > 0) as is expected for models lying well outside the IS.

This is also found for the hotter model B1. For the model A1

(resp. A2) the first four (resp. three) radial modes, n = 1, ..., 4

(resp. n = 1, 2, 3), are found to be overstable. With the inclu-

sion of a model for the acoustic radiation in the equilibrium

structure the efficacy with which convection transports the tur-

bulent fluxes is decreased (see Houdek & Gough 1998). This

leads to a decrease in the turbulent Mach number and to a con-

sequent reduction of the stabilizing influence of the perturbed

momentum flux on the mode damping. The driving eventually

dominates over the damping leading to overstable modes.

Reducing α has a similar effect on mode stability than the

inclusion of acoustic radiation in the equilibrium model (see

Houdek & Gough 1998; Michel et al. 1998; Houdek 2000).

The model B2 was computed with the smaller mixing-length

parameter α = 1.5, leading to overstable modes with radial or-

ders n = 1, 2, 3.

Table 3. Frequency ν, damping/growth rate η and stability coefficient

ωi/ωr for all overstable radial p modes predicted for the models A1,

A2 and B2.

Model n ν η ωi/ωr

[µHz] [nHz] ×10−6

1 123 −0.03 0.25

A1 2 161 −0.31 1.92

3 202 −4.14 20.48

4 244 −3.90 15.97

1 124 −0.04 0.36

A2 2 162 −0.40 2.47

3 203 −1.27 6.25

1 124 −0.04 0.34

B2 2 161 −0.31 1.95

3 203 −0.83 4.09

Table 3 displays the frequency ν and damping/growth rate η

for all overstable radial modes (η < 0) found in the models A1,

A2 and B2.

Figure 2 displays the damping rates as function of fre-

quency for all stable modes and for all stellar models. The

coolest model C exhibits a sharp dip in η at about 1.1 mHz,

which we moderated by applying a median filter with a width

in frequency corresponding to nine radial modes; the result is

plotted by the long-dashed curve in Fig. 2. This pronounced

depression in η in model C is related to the structure of the

outer superadiabatic boundary layer: with decreasing surface

temperature the location of the superadiabatic boundary layer

is shifted progressively deeper into the star. This modifies

the thermodynamic properties of this boundary layer of finite

thickness, in particular, the thermal relaxation time (Balmforth

1992). The thermodynamic coupling between the pulsations

and the superadiabatic boundary layer becomes more efficient

in cooler models, thereby promoting the depression in the

damping rates by radiative processes (see Houdek et al. 1999).

4. Excitation rate and amplitude spectrum

The rms value of the mode surface velocity, vs, is related to the

damping rate, η, and to the rate at which energy is injected into

the mode (excitation rate), P, by

v2s = ξ
2
r (rs)

P

2 η I
, (1)

where ξr is the radial displacement eigenfunction, rs is the ra-

dius at which the surface velocities are measured and which we

assume to be 200 km above Teff , and the mode inertia I satisfies

I =

∫ M

0

ξ∗ · ξ dm . (2)

The rate of energy injected into a mode is computed according

to Paper I and is proportional to

P(ω) ∝
∫ M

0

ρw3 ℓ4
(

dξr

dr

)2

S(ω,m) dm , (3)

where ρ is the density, ℓ is the mixing length, and w is the

vertical component of the rms velocity of the convective ele-

ments. The function S(ω,m) describes approximately contribu-

tions from eddies with different sizes to the excitation rate P.
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Fig. 1. Colour-magnitude diagram: filled circles display the positions of observed δ Scuti stars from the Rodrı́guez et al. (2000) catalogue.

Squares indicate the positions of the models A1, A2, B1, B2 and C (see Table 1). Dashed curves show evolutionary tracks for models with

masses 1.5 M⊙, 1.7 M⊙ and 1.8 M⊙. Solid curves display theoretical locations of the blue and red edges for the fundamental radial modes

according to Houdek et al. (1999). Numbers associated with the symbols indicate apparent magnitudes V for selected observed δ Scuti stars.

Detailed expressions for S(ω,m) were given in Paper I. For

estimating S, assumptions for the turbulent kinetic energy spec-

trum E(k), and for the turbulent spectrum of the entropy fluc-

tuations Es(k) have to be made, where k is the eddy wavenum-

ber. In this paper we assume for E(k) the “Nesis Kolmogorov

Spectrum” (NKS hereafter) as discussed in Paper I. This turbu-

lent spectrum is obtained from observations of the solar gran-

ulation by Nesis et al. (1993), and leads to the best agreement

between a solar model using our stochastic excitation theory

and solar measurements (Samadi et al. 2001b).

Results for the estimated excitation rate P are depicted in

Fig. 3. For the models A1, A2 and B1 the excitation rate P is

about one magnitude larger than for model C. This is a result of

the larger convective velocities in the superadiabatic boundary

layers of the models A1, A2 and B1 (see Fig. 4), which are all

hotter than model C. The frequency dependence of P for the

models A1 and B1 are similar as it is also the case for the mod-

els A2 and B2; the latter two models, however, are quite differ-

ent from the first two models. This difference in the frequency

dependence of P is a consequence of the different profiles of

the convective velocities w (see Fig. 4); the profiles of w are

similar for A2 and B2 but differ substantially from A1 and B1.

For the models A2 and B2 the efficacy of convection has been

reduced severely by either including acoustic radiation in the

equilibrium model (A2) or by reducing the mixing-length pa-

rameter α to a value much smaller than the calibrated value

for a solar model (B2). This results in shallower superadiabatic

regions and in larger superadiabatic temperature gradients; pul-

sation modes in A2 and B2 are therefore predominantly excited

at the very top of the convection zone, whereas in the models

A1 and B1 the modes are excited over a larger driving region.

The two sets of values for Λ and Γ, listed in Table 2, provide

in a solar model approximately the same value for the acoustic

flux Fac (see Sect. 2). In model A2 (which assumes Λ = 2000

and Γ = 7.5), however, Fac is about three times larger than in

model A1 (which assumes Λ = 100 and Γ = 5), and the associ-

ated velocities, plotted in Fig. 4, are correspondingly greater.

It is interesting to note that in Fig. 4 the convective veloci-

ties in the superadiabatic boundary layers of models A1 and A2

are somewhat larger than the others. Although including acous-

tic radiation in the mean stellar structure leads to a reduction of

the maximum turbulent Mach number Mt ≡ w/c (by ∼1.5% for

model A1 and ∼5% for model A2 relative to B1), the whole

structure of the outer layers changes too, thereby increasing
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Fig. 2. Damping rates of stable radial p modes as function of frequency for all stellar models.

Fig. 3. Excitation rate P as function of frequency for all stellar models.

the locally defined adiabatic sound speed c. This leads to an

increase of the convective velocities w in the very outer layers

despite the decrease in Mt.

The less smooth frequency dependence (wiggles) of P for

ν >∼ 0.7 µHz for model B1 (and model C) is related to the loca-

tion and extent of the driving region: the radial eigenfunctions

ξr vary rapidly with depth and frequency (particularly for the

high-frequency modes). As discussed above, in the models A2

and B2 the modes are predominantly excited in a shallow re-

gion beneath the surface, where the expression (dξr/dr)2 (see

Eq. (3)) varies monotonically with frequency (Goldreich et al.

1994; Samadi et al. 2002), leading to the smooth frequency de-

pendence of P for ν >∼ 0.7 µHz, as depicted in Fig. 3. The larger

driving regions in the models B1 and C extend to layers where

the expression (dξr/dr)2 no longer varies monotonically with

frequency leading to the frequency-dependence of P as shown

by the dot-dashed and long-dashed curves in Fig. 3.

In the top panel of Fig. 5 the surface velocity amplitudes vs
are depicted for all stellar models, computed according to

Eq. (1). In the models A1, A2, B1 and B2 the amplitudes of
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Fig. 4. Depth dependence of the vertical component of the convective velocity, with R being the radius at the photosphere (T = Teff).

stochastically excited p modes are larger (∼5−9 ms−1) than in

model C (∼2 ms−1).

For estimating the luminosity amplitudes the full nonadi-

abatic luminosity eigenfunctions have to be used. The relative

luminosity amplitudes, δL/L, are linearly related to the velocity

amplitudes, i.e. they are proportional to the ratio of the lumi-

nosity eigenfunction over the displacement eigenfunction. This

ratio is determined by the solution of the nonadiabatic pulsation

equations and is independent of a stochastic excitation model

(see Houdek et al. 1999). In the middle panel of Fig. 5 the am-

plitude ratios, ∆L/∆vs, are plotted as a function of frequency

for all stellar models. The shape of the amplitude ratios are in

general similar between all the models with the smallest ra-

tios predicted for the models A2 and A1. Only at the highest

frequencies the amplitude ratios are considerably larger in A2

and B2; at high frequencies nonadiabatic effects due to radia-

tive dissipation in the radiative zone, below the shallow surface

convection zones in A2 and B2, lead to an increase in the am-

plitude of the luminosity eigenfunctions and consequently in

the luminosity amplitudes. The velocity amplitudes in Fig. 5

are obtained 200 km above the photosphere (T = Teff) and do

increase by a factor of about two at the outermost meshpoint of

the model, i.e. at an optical depth τ = 10−4.

We predict a maximum value of the luminosity amplitude

δL/L ∼ 97 ppm for model A1, δL/L ∼ 150 ppm for model A2,

δL/L ∼ 101 ppm for model B1 , δL/L ∼ 98 ppm for model B2

and δL/L ∼ 84 ppm for model C. These results are summarized

in Table 4.

The dotted horizontal line in the middle panel of Fig. 5 rep-

resents an order-of-magnitude estimate of the amplitude ratio

according to Kjeldsen & Bedding (1995):

δL/L ∝ vs T
−1/2

eff
. (4)

Kjeldsen & Bedding derived this expression for a purely ra-

diative model assuming simplified proportional relations in the

adiabatic approximation. This simplified scaling law suggests

smaller values for the amplitude ratios and consequently leads

to smaller luminosity amplitudes δL/L, particularly at high fre-

quencies, where nonadiabatic effects are important. At a fre-

quency ν ≃ 1 mHz, for example, the scaling law (4) predicts

for model A1 a luminosity amplitude which is about three times

smaller than that obtained from the nonadiabatic computation.

There is evidence that energy equipartition holds for the

Sun (apparently fortuitously); an estimate of the total energy

in the modes is, however, only possible for the Sun for which

accurate data are available; using GONG data the total en-

ergy for modes with degrees l = 0, ..., 300 and with radial or-

der n up to 10 is found to be approximately 2 × 106 E0, where

E0 ∼ 2 × 1028 erg is the maximum value of the kinetic energy

in a particular ridge (i.e. for a particular value of n) and which

is independent of l (see Fig. 5 of Komm et al. 2000). The value

2 × 106 is also roughly equal to the number of granules on the

solar surface, a result which supports the energy equipartition

principle. In other stars, however, energy equipartition does not

necessarily hold, because we have a nonequilibrium dynami-

cal (yet statistically steady) system in which the damping and

excitation is balanced in a nonlinear way by the energy input

and output, i.e. it is not determined by equilibrium. In such a

nonequilibrium situation there is no general physical principle

limiting the ratio of the energy in the oscillation mode to the en-

ergy in the convection. Another facet of such a dynamical pro-

cess is provided by the reaction of convection to the acoustical

radiation; although the latter contributes towards augmenting

the damping of an eddy, the resultant change of the background

stratification is such as to augment the driving by even more,

causing the convective velocities to increase.
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Table 4. Maximum values of the estimated velocity, vs, and luminos-

ity, δL/L, amplitudes.

Model vs δL/L

[ ms−1] [ppm]

A2 8.6 150

A1 7.9 97

B1 4.9 101

B2 5.5 98

C 2.0 84

It is perhaps interesting to mention that the acoustic en-

ergy flux generated by the fluctuating Reynolds stress of the

turbulent velocity field is relatively small compared to the to-

tal energy flux carried by the convection; the ratio between the

acoustic energy flux emitted by the energy-bearing eddies and

the convective energy flux is proportional to MΓt with Γ = 5 for

homogeneous, isotropic turbulence (see Lighthill 1952). The

turbulent Mach number in δ Scuti stars is in general much

smaller than unity and consequently this ratio is small. For the

Sun this ratio is of the order of ∼10−3 (see e.g., Stein 1968).

The acoustic flux emitted predominantly by inertial-range ed-

dies is proportional to MΓt with Γ = 15/2 (see Goldreich &

Kumar 1990), i.e. it scales with an even higher power of the

Mach number (see also Sect. 2). Consequently the total amount

of acoustic energy injected into the p modes is small compared

to the energy carried by the convection. In a fully convective

envelope the total energy flux (luminosity) is carried solely by

the turbulent velocity field, i.e. in that case the luminosity is a

measure of the total energy in the convection. Therefore the ra-

tio between the energy supply rate for a particular mode and the

luminosity, P/L, is proportional to the ratio between the energy

in that mode and the total energy in the convection. In the Sun

this ratio is of the order of ∼10−11 for the mode with the largest

amplitude. In model A2 this ratio is ∼10−8, which is still small.

5. Observational constraints for detecting

solar-type oscillations

There have been recent reports on the possible detection of

solar-type oscillations in α Cen (HD 128620) by Bouchy &

Carrier (2001), in β Hydri (HD 2151) by Bedding et al. (2001)

and in Procyon A (HD 61421) by Martic et al. (1999; see also

Barban et al. 1999), who obtained spectroscopic surface veloc-

ity measurements of these bright stars (the apparent magnitude

V = 2.80 for β Hydri, V = 0.34 for Procyon and V = −0.1

for α Cen) from the ground. The maximum values of the ob-

served peak-velocity amplitudes are of the order ∼35 cm s−1

for α Cen, ∼50 cm s−1 for β Hydri and ∼50 cm s−1 for Procyon.

Current ground-based instruments are able to detect oscilla-

tions with velocity amplitudes of the order predicted for our

models A1, A2 and B1, B2, but only for stars with an apparent

magnitude V of less than ∼3−4 (Bouchy, personal communica-

tion). The HARPS (High-Accuracy Radial-velocity Planetary

Search) project (Bouchy & Carrier 2001), for example, will be

able to detect oscillations with our predicted velocity ampli-

tudes for stars with an apparent magnitude smaller than ∼4−5.

This detection threshold is still too small for detecting solar-

type oscillations in δ Scuti stars located near the red edge of

the IS, particularly in view of the fact that most of the currently

known δ Scuti stars are even fainter. For example, the apparent

magnitudes of known δ Scuti stars located nearest to the red

edge (see Fig. 1) are between V = 5.7 and V = 9.3.

Future space missions with instruments dedicated to astero-

seismology, however, will be able to detect solar-like oscilla-

tions in δ Scuti stars: the forthcoming space project COROT

(Baglin & The Corot Team 1998), for example, will reach a

noise level of 0.7 ppm (Auvergne & the COROT Team 2000)

for a star with an apparent magnitude of V = 6, using photo-

metric measurements. Therefore, in stars with similar magni-

tudes, COROT will be able to detect oscillation amplitudes as

small as ∼3 ppm, a value which is similar to that measured in

the Sun. The instrument on COROT will be limited by the pho-

ton noise only for stars with magnitudes larger than V ≃ 9: i.e.,

for a star with magnitude V ≃ 8 the detection threshold will be

∼5 ppm. This threshold is small enough to detect and measure

many solar-like oscillations in δ Scuti stars which are similar

to the δ Scuti models considered in this paper.

6. Conclusion

We studied oscillation properties in δ Scuti stars located near

the observed red edge of the classical instability strip. Such

stars can pulsate with both opacity-driven modes and intrinsi-

cally stable stochastically driven (solar-like) modes. The esti-

mated velocity amplitudes of the stochastically driven modes

in our δ Scuti models are found to be larger than in cooler

and pulsationally stable models lying outside the IS. This re-

sult supports the idea that solar-like oscillations in δ Scuti stars

may be detected.

Including a model for the acoustic radiation in the equi-

librium model results in a cooler red edge and does effect the

properties of the excitation rate of p modes (see also Houdek

& Gough 1998; Houdek 2000); in particular the pulsation am-

plitudes do become larger and are predicted to be largest for

a model with the largest acoustic flux Fac (i.e., model A2).

Moreover, for the δ Scuti models considered in this paper, over-

stable modes were predicted only if either acoustic emission in

the mean stratification was included or if the mixing-length pa-

rameter was reduced to a value smaller than suggested by a

calibrated solar model.

A potential target star should neither be too cool (i.e., no

opacity-driven modes) nor too hot (i.e., stochastically excited

modes with amplitudes too small to be detectable). We quantify

this with the illustrative case of our δ Scuti models with a mass

M = 1.68 M⊙ and we identify the following δ Scuti stars from

the Rodrı́guez et al. (2000) catalogue, located near the red edge,

as potential candidates for the target selection of upcoming

observing campaigns: HD57167, HD14147, HD208999 and

HD105513.

Although the amplitudes of the solar-type oscillations, pre-

dicted in our δ Scuti models, are large enough to be detected

from ground, today’s ground-based instruments will detect

such oscillations only in brighter δ Scuti stars with an ap-

parent magnitude of up to V ∼ 3−4 (Bouchy 2001, personal
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Fig. 5. Linear oscillation amplitudes of stable radial modes as a func-

tion of frequency. The top panel displays the surface velocity am-

plitudes and the middle panel the amplitude ratios, luminosity over

velocity amplitudes, computed 200 km above the photosphere (T =

Teff). The dotted horizontal line represents the results for Kjeldsen &

Bedding’s (1995) scaling expression (4), assuming Teff = 6839 K. In

the bottom panel the luminosity amplitudes are depicted. In the mid-

dle and bottom panel the luminosity amplitudes are computed at the

outermost meshpoint of the models.

communication). However, new ground-based observing cam-

paigns, such as the HARPS project (Bouchy & Carrier 2001)

will be able to detect stochastically excited oscillations in

δ Scuti stars with an apparent magnitude of up to V ∼ 4−5.

Unfortunately, there are no such bright stars in the Rodrı́guez

et al. (2000) catalogue which are located near the red edge,

although some bright stars near the red edge may have opacity-

driven modes with amplitudes too small to be detectable with

today’s ground-based instruments and are therefore not classi-

fied as δ Scuti stars.

The forthcoming space missions for asteroseismology, such

as COROT (Baglin & The Corot Team 1998) and Eddington

(Favata et al. 2000) will be able to detect solar-like oscillations

in faint δ Scuti stars. The large instrument on the Eddington

spacecraft will measure stellar oscillations with amplitudes

as small as 1.5 ppm in stars with an apparent magnitude of

V ≃ 11 assuming an observing period of 30 days. Moreover,

Eddington’s large field of view will allow it to monitor a large

number of stars simultaneously. This will be helpful for de-

tecting and classifying new δ Scuti stars and for measuring the

location of the red edge of the IS with greater precision than it

was possible before.
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Abstract. Analyses of a 3D simulation of the upper layers of a solar convective envelope provide constraints on the physical
quantities which enter the theoretical formulation of a stochastic excitation model of solarp modes, for instance the convective
velocities and the turbulent kinetic energy spectrum. These constraints are then used to compute the acoustic excitation rate
for solar p modes,P. The resulting values are found∼5 times larger than the values resulting from a computation in which
convective velocities and entropy fluctuations are obtained with a 1D solar envelope model built with the time-dependent,
nonlocal Gough (1977) extension of the mixing length formulation for convection (GMLT).
This difference is mainly due to the assumed mean anisotropy properties of the velocity field in the excitation region. The 3D
simulation suggests much larger horizontal velocities compared to vertical ones than in the 1D GMLT solar model. The values
of P obtained with the 3D simulation constraints however are still too small compared with the values inferred from solar
observations.
Improvements in the description of the turbulent kinetic energy spectrum and its depth dependence yield further increased
theoretical values ofP which bring them closer to the observations. It is also found that the source of excitation arising from
the advection of the turbulent fluctuations of entropy by the turbulent movements contributes∼65−75% to the excitation and
therefore remains dominant over the Reynolds stress contribution. The derived theoretical values ofP obtained with the 3D
simulation constraints remain smaller by a factor∼3 compared with the solar observations. This shows that the stochastic
excitation model still needs to be improved.

Key words. convection – turbulence – stars: oscillations – Sun: oscillations

1. Introduction

Solar-type oscillations are believed to be stochastically excited
by turbulent convection in the near-surface layers of the star.
The excitation is caused by turbulent convective motions which
generate acoustic energy which in turn is injected into the
p modes (e.g. Goldreich & Keeley 1977). Measurements of the
acoustic energy injected into solar-like oscillations are among
the goals of future space seismic missions such as the COROT
(Baglin & The Corot Team 1998) and Eddington (Favata et al.
2000) missions. These seismic data will make it possible to
constrain the theory of the oscillation excitation and damping,
to provide valuable information about the properties of stellar
convection, and hence to severely constrain stellar models.

Models for stochastic excitation of stellarp modes have
been proposed by several authors, (e.g. Goldreich & Keeley
1977; Osaki 1990; Balmforth 1992a; Goldreich et al. 1994;
Samadi & Goupil 2001). These theoretical approaches yield

Send offprint requests to: R. Samadi,
e-mail:Reza.Samadi@obspm.fr

the acoustic energy injected into solar-like oscillations. This
offers the advantage of testing separately several properties en-
tering the excitation mechanism which are not well understood
or modeled.

Such approaches require simplifying assumptions which
need to be validated before they can be used with confidence.
They require an accurate knowledge of the properties of turbu-
lent convection and, unfortunately, current observations of the
solar granulation cannot provide a determination of the turbu-
lent spectrum precise enough in the present context (Rieutord
et al. 2000; Nordlund et al. 1997). On the theoretical side, the-
oretical models of turbulent convection, such as the mixing-
length approaches or multiple size eddies approaches (e.g.
Canuto & Mazzitelli 1991; Canuto et al. 1996), provide a too
limited description of the characteristic scale length of the solar
turbulent spectrum.

These theoretical formulations of stochastic excitation also
involve scaling parameters which are determined to by the re-
quirement that the computed values of the oscillation ampli-
tudes give the best fit to the solar seismic measurements (e.g.

Article published by EDP Sciences and available at http://www.aanda.org or http://dx.doi.org/10.1051/0004-6361:20030356 97
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Houdek et al. 1999; Samadi et al. 2001, Paper II hereafter).
When the scaling parameters are so adjusted, constraints and
validation on the turbulent stellar medium can only come from
seismic observations of other stars. Such accurate data on the
excitation rates for other stars than the Sun are not yet available.

An alternative way is then to consider results from 3D nu-
merical simulations. They indeed enable one to compute di-
rectly the rate at whichp modes are excited (e.g. this was un-
dertaken for the Sun by Stein & Nordlund 2001). Such methods
are time consuming and do not easily allow massive computa-
tions of the excitation rate for stars with different temperatures
and luminosities. They can provide quantities which can be im-
plemented in a formulation for the excitation rateP. In any case
we cannot avoid to use a 1D model for computing accurate
eigenfrequencies for the whole observed frequency range.

The purpose of the present paper is to provide a better in-
sight into the excitation model with a semianalytical approach
but using a model of turbulence and values of the scaling pa-
rameters derived from a 3D simulation of the solar outer layers.
We consider in this work the theoretical formulation of stochas-
tic excitation by Samadi & Goupil (2001, hereafter Paper I, see
also Samadi 2001 for a detailed summary) which includes a
detailed treatment of turbulent convection. This formulation in-
volves two scaling parameters which are related to the spatial
and temporal characteristics of the turbulence model. Our final
goal is to test the excitation model without adjusting these pa-
rameters and without the use of the mixing-length approach for
estimating convective velocities and entropy fluctuations.

The paper is organized as follows: in Sect. 2 we briefly re-
call the adopted formulation for estimating the rate at which
turbulent convection supplies energy to thep modes (excita-
tion rateP(ν)). We emphasize some assumptions and approxi-
mations entering this formulation.

In Sect. 3, a 3D numerical simulation of the upper part of
the solar convection zone is used in order to determine the time
averaged properties of turbulent convection: this provides con-
straints on the ingredients involved in the theoretical expres-
sion of the excitation rate, such as scaling parameters, velocity
anisotropy factor, the values of convective velocities and en-
tropy fluctuations and thek (wavenumber) dependence of the
kinetic turbulent spectrum.

These constraints are then used in Sect. 4 to compute the
excitation rateP(ν), for radial solarp modes. The results are
compared with solar seismic observations as given in Chaplin
et al. (1998) and with a 1D mixing-length model built accord-
ing to Gough (1977)’s non-local formulation of the mixing-
length theory (GMLT hereafter). In Sect. 5 we summarize our
results and discuss some possible origins of the remaining dis-
crepancies with solar seismic observations and results by Stein
& Nordlund (2001).

2. Stochastic excitation

2.1. The excitation model

The rate at which turbulent motions of the convective ele-
ments supply energy to acoustic oscillation modes is com-
puted as in Paper I. For a given mode with eigenfrequencyω 0,

the excitation rate can be written as (Eqs. (58) and (59) of
Paper I):

P(ω0) = PR + PS (1)

where

PR,S =
π3

2I

∫ M

0
dm ρ0

Φ

3
w4 FR,S (2)

whereρ0 is the mean averaged density,w is the rms value of
the vertical component of the velocity,

I ≡
∫ M

0
dm ξ2r (3)

is the mode inertia,ξr is the radial component of the fluid dis-
placement adiabatic eigenfunctionξ, andΦ is an anisotropy
factor. Following Gough (1977), we define

Φ(z) ≡ < u2 > − < u >2

w2
(4)

whereu is the velocity field,< . > denotes horizontal average
and() denotes time average. The mean vertical velocity,w, is
defined as:

w2 ≡ < u2
z > − < uz >2. (5)

PR, PS respectively account for the excitation by the Reynolds
stress and for the excitation resulting from the advection of
the entropy fluctuations by the turbulent velocity field (the so-
called entropy source term). Here the entropy term (F S) is
an advective term which mixes turbulent pressure and entropy
fluctuations. Expressions forFR, FS are:

FR = fR(ξ) S R(ω0) FS = fS(ξ) S S(ω0) (6)

with

fR(ξ) = G Φ
3

(

dξr
dr

)2

(7)

fS(ξ) = H
(

αs s̃
ρ0w

)2
gr(ξr,m)

ω2
0

(8)

whereαs = (∂p/∂s)ρ, p denotes the pressure ands the entropy,
s̃ is the rms value of the entropy fluctuations, andG andH are
anisotropy factors. We assume that injection of acoustic energy
into the modes is isotropic. This assumption impliesG = 16/15
andH = 4/3 in Eqs. (7) and (8) above. Effects of the space
averaged anisotropy in the driving process is investigated in
Sect. 4.1.2.

The functiongr(ξr,m) is defined as:

gr(ξr,m) =

(

1
αs

dαs

dr
dξr
dr
− d2ξr

dr2

)2

· (9)

One can show that the Reynolds contribution –PR – scales
asΦ2w4 while the source term involving the entropy fluctu-
ations –PS – scales asΦw2 s̃2. P(ω) is thus very dependent of
the estimated values ofw2, s̃2 andΦ. The MLT provides esti-
mates forw butΦ is a free parameter. For isotropic turbulence
Φ = 3, and in Böhm-Vitense (1958, BV-MLT hereafter) formu-
lationΦ = 2. In the present paper, unless otherwise stated,Φ is

Annexe A. Articles reproduits

98



R. Samadi et al.: Numerical constraints on the model of stochastic excitation of solar-type oscillations 305

given by a simulation of the upper part of the solar convective
zone in Sect. 3.4 below.

For the driving sources in Eq. (6):

S R =

∫ ∞

0

dk
k2

E(k, r)

u2
0

E(k, r)

u2
0

χk(ω0) (10)

S S =

∫ ∞

0

dk
k2

E(k, r)

u2
0

Es(k, r)
s̃2

×
∫ +∞

−∞
dωχk(ω0 + ω)χk(ω) . (11)

E(k) represents the kinetic energy spectrum associated with the
turbulent velocity field andEs(k) models the spectrum of the
turbulent entropy fluctuations, withk the eddy wavenumber.
The time-dependent part of the turbulent spectrum is described
by the functionχk(ω) which models the correlation time-scale
of an eddy with wavenumberk. The quantityu 0 ≡

√
Φ/3w is

introduced for convenience (see Eq. (17)),
The above expression forP is mainly based on the as-

sumption that the medium is incompressible. In other words,
we adopt the Boussinesq approximation i.e. assume a homoge-
neous model for the turbulence and the excitation mechanism.
We therefore neglect effects of the stratification in the excita-
tion process.

2.2. The turbulence model

Let k0(r) be the wavenumber at which energy is injected into
the turbulent cascade and the energyE(k) is maximum.k 0(r) is
related to the mixing-lengthΛ ≡ αHp by (Paper I):

kMLT
0 (r) ≡ 2π

βΛ(r)
=

2π
β αHp(r)

, (12)

whereβ is a parameter of order unity,α is the mixing-length
parameter andHp is the pressure scale-height. This is a natural
way to estimatek0 asΛ is the characteristic length of the largest
convective elements.

The Gaussian function is usually assumed for modeling
χk(ω) (e.g. Stein 1967; Goldreich & Keeley 1977) as a con-
sequence of the turbulent nature of the medium where the
stochastic excitation occurs. The Gaussian function takes the
form

χk(ω) =
1

ωk
√
π

e−(ω/ωk)2
, (13)

whereωk is its linewidth.
Let τk be the characteristic time correlation length of an

eddy of wavenumberk. Equation (13) corresponds in the time
domain to a Gaussian function with linewidth equal to 2/ω k.
Thenωk = 2/τk for a Gaussian time spectrum.

The energy supply rateP crucially depends on the correla-
tion time-scaleτk (see Paper II). Following Balmforth (1992a)
we define it as:

τk = λ (k uk)−1, (14)

whereuk is the velocity of an eddy with wavenumberk. The
velocity uk is obtained from the kinetic energy spectrumE(k)
(Stein 1967)

u2
k =

∫ 2k

k
dk E(k). (15)

E(k) is normalised such that:
∫ ∞

0
dk E(k) =

1
2
< u2 > − < u >2 ≡ 3

2
u2

0(z) (16)

whereu0 is introduced for convenience. According to Eqs. (4)
and (16),u0 andw are then related to each other by

3
2

u2
0 =

1
2
Φ(z)w2(z). (17)

The parameterλ in Eq. (14) accounts for our lack of precise
knowledge of the time correlationτk in stellar conditions. In
the present paper, we assumeλ = 1 whileβ (Eq. (12)) andΦ(z)
(Eq. (4)) are given by a simulation of the upper part of the solar
convective zone in Sect. 3.4 below.

2.3. Computations of the excitation rate P(ω)

In practice, we compute the excitation rateP(ω) according
to Eq. (1). The calculation requires the knowledge of sev-
eral quantities which can be obtained either from a 1D model
(Paper II) or at least partly from a 3D simulation. Comparison
of the results using both options yields insights in the excitation
mechanism and its modelling. Hence in the following:
• The velocity, entropy fluctuations, anisotropy and turbu-

lent spectraE’s are obtained from a 3D simulation as described
in the next section.
• The mean density,ρ0, the thermodynamic quantityαs, the

oscillation properties – eigenfrequencies and eigenfunctions –
are calculated from a solar envelope equilibrium model and
Balmforth (1992b)’s pulsation code. The envelope model is
built with a treatment of convection as prescribed by the GMLT
formulation and is computed in the manner of Balmforth
(1992b) and Houdek et al. (1999). This solar envelope model
(hereafter GMLT solar model) is identical to the one consid-
ered in Samadi et al. (2002, hereafter Paper III). In particu-
lar, it incorporates turbulent pressure (momentum flux) in the
equilibrium model envelope. The entire envelope is integrated
using the equations appropriate to the nonlocal mixing-length
formulation by Gough (1976) and to the Eddington approxima-
tion to radiative transfer (Unno & Spiegel 1966). The equation
of state included a detailed treatment of the ionization of C,
N, and O, and a treatment of the ionization of the next seven
most abundant elements (Christensen-Dalsgaard 1982), as well
as “pressure ionization” by the method of Eggleton, Faulkner
& Flannery (Eggleton et al. 1973). In this generalization of the
mixing-length approach, two additional parameters, namelya
andb, are introduced which control the spatial coherence of
the ensemble of eddies contributing to the total heat and mo-
mentum fluxes (a), and the degree to which the turbulent fluxes
are coupled to the local stratification (b). These convection pa-
rameters are calibrated to a solar model to obtain the helioseis-
mically inferred depth of the solar convection zone of 0.287
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of the solar radius (Christensen-Dalsgaard et al. 1991). The
adopted value for the shape factorΦ = 1.3745, a value which
provides the best fit between computed solar damping rates
and measurements by Chaplin et al. (1998) (see Houdek et al.
2001). The detailed equations describing the equilibrium and
pulsation models were discussed by Balmforth (1992b) and by
Houdek (1996).

For implementation in Eqs. (1)–(11), the quantities from
the 3D simulation are interpolated at the GMLT model mesh
points. The grid of mesh points of the simulated domain is
matched with the GMLT one such thatw in the 3D simulation
has its maximum at the same layer as in the GMLT model. In
the simulation,w peaks∼40 km above the layer at which the
mean optical depth< τ > is unity while in the GMLT model,
w peaks∼130 km below the photosphere (< τ > = 2/3).

3. Constraints from the 3D simulation

We consider a 3D simulation of the upper part of the solar
convective zone obtained with the 3D numerical code devel-
oped at the Niels Bohr Institute for Astronomy, Physics and
Geophysics (Copenhagen, Denmark).

The simulated domain is 3.2 Mm deep and its surface is 6×
6 Mm2. The grid of mesh points is 256× 256× 163, the total
duration 27 min and the sampling time 30 s. Physical assump-
tions are described in Stein & Nordlund (1998).

Output of the simulation considered here are the velocity
field u(x, y, z, t) and the entropys(x, y, z, t). They are used to
determine the quantities ˜s2, Φ(z), w(z), Es(k, z), E(k, z) which
enter the excitation rate through Eqs. (2), (7), (8), (10), (11).

3.1. Fourier transforms and averaging

We compute the 2D Fourier transform, along horizontal planes,
of the velocity fieldu and the entropys, at each layerz. This
provides û(k, z, t) and ŝ(k, z, t) where k is the wavenumber
along the horizontal plane. Next we integrateû2(k, z, t) and
ŝ2(k, z, t) over circles with radiusk at each given layerz. Finally
take a time average of the various quantities over the time
series. This yieldŝu(k, z) and ŝ(k, z) where k = ‖k‖ is the
wavenumber norm.

We define the time averaged kinetic energy spectrum
E(k, z) as:

E(k, z) =

{ 1
2 û2(k, z) for k > 0
0 for k = 0

(18)

and the time averaged spectrum of the entropyE s(k, z) as:

Es(k, z) =

{ 1
2 ŝ2(k, z) for k > 0
0 for k = 0.

(19)

From Parseval-Plancherel’s relation,E(k, z) and E s(k, z)
satisfy:
∫ +∞

0
dk E(k, z) =

1
2
< u2 > − < u >2 ≡ 3

2
u2

0(z)

∫ +∞

0
dk Es(k, z) =

1
2
< s2 > − < s >2 ≡ 1

2
s̃2(z)

(20)

Fig. 1. The root mean square of the vertical component of the veloc-
ity (w =

√

< u2
z > − < uz >2) in the upper layers of a solar model

is plotted versus depth for the 3D simulation (solid line) and for the
1D GMLT model (dashed line). The abscissa is the depthz = r − R⊙
whereR⊙ is the radius at the photosphere. Thew maximum corre-
sponds to the top of the superadiabatic region and is reached at the
depthz ≃ −130 km in the GMLT model. The grid of mesh points
of the simulated domain is adjusted so that thew maxima of the 3D
simulation and the GMLT coincide at the same layer.

Fig. 2. Same as Fig. 1 for the mean square of the entropy fluctua-
tions (s̃2). The peak is narrower than for the velocityw because ˜s2

scales approximatively asw4.

Hence the definitions of the energy spectra here involve zero
mean velocity and entropy fluctuations.

3.2. Convective velocities and entropy fluctuations

Figures 1 and 2 presentw(z), s̃2(z) versus depth for the 3D sim-
ulation. For comparison purpose, the plots also showw and s̃ 2

obtained with the GMLT solar model.
The vertical velocity GMLTw is larger at the top of su-

peradiabatic region but smaller just beneath compared to values
from the simulation. The GMLT ˜s2 is larger than in the simula-
tion (∼20%). This explains that the relative contribution of the
entropy source term to the excitation is overestimated with the
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Fig. 3. Same as Fig. 1 for the anisotropy factorΦ versusz.

GMLT model (see Sect. 4.1.1). Differences between the GMLT
and the simulation are likely to be related to differences in the
convective efficiency: GMLT is less efficient than the 3D sim-
ulation. Indeed as pointed out by Houdek & Gough (2002), a
single eddy approach such as the GMLT results in a larger peak
for the superadiabatic gradient.

3.3. Velocity anisotropy at large scale

As it will be shown in Sect. 4.1.2, the value ofΦ plays a cru-
cial role in controlling the depth of the excitation region and
therefore the total amount of acoustic energy injected into the
oscillation modes.

Figure 3 displays the anisotropy factorΦ versus depthz for
the 3D simulation.Φ(z) sharply decreases from the valueΦ = 3
at the top of the CZ down toΦ = 2 and then slowly decreases
to reach the valueΦ ≃ 1.3 at the bottom of the simulation. The
decrease ofΦ(z) with depth is explained first by the onset of
the convection and the formation of convective plumes atz ∼ 0
and then by therelative increase in number of the plumes in-
ward in the simulation. Indeed, plumes are highly anisotropic
structures whereas turbulent cells are quite isotropic. The tur-
bulent Mach number increases withz and reaches its maximum
value at the top of the CZ. Therefore the fluid is more turbulent
outward in the atmosphere. Consequently the number of tur-
bulent isotropic cells increases withz up to the top of the CZ
whereas the number of plumes remains roughly constant. The
medium is thus more isotropic outward than inward.

In most of the excitation region, the value ofΦ = 2 con-
sistent with the BV-MLT is in better agreement with the val-
ues ofΦ(z) inferred from the simulation compared to the value
Φ = 1.3745 which must be imposed for the GMLT solar model
in order to match the observed solar damping rates.

3.4. Turbulent kinetic energy spectrum E (k)

Variations ofE andEs with k at different depthsz are depicted
in Fig. 4. The spectra clearly show two regimes: at large scale
(small values ofk), the spectra increase approximately ask+1

which can roughly be explained using dimensional analysis.

Fig. 4. Turbulent kinetic energy spectraE (top) andEs (bottom) from
the simulation are plotted versusk and for different depthsz in the
simulation. The straight solid lines delimitate the slopesk1 andk−5/3 of
the EKS spectrum (Eq. (21)). Intersection of the slopes determineskE

0 ,
the scale of maximum energy at each depthz.

At small scale (large values ofk), the spectra decrease very
rapidly with k. The Kolmogorov law (k−5/3) is observed only
over a smallk-range. Departures of the computed spectra from
a Kolmogorov law at high values ofk can be explained by the
finite resolution of the simulation spatial grid.

The main characteristics of the kinetic spectrumE(k, z) –
k dependency – derived from the 3D simulation are approx-
imatively reproduced by an analytical expression which was
considered by Musielak et al. (1994), namely the “Extended
Kolmogorov Spectrum” (EKS hereafter) defined in Musielak
et al. (1994) as:

E(k, z) = a
u2

0

kE
0
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kE
0













+1

for k < kE
0 (z)













k

kE
0













−5/3

for k > kE
0 (z)

(21)

wherea is a normalisation factor which satisfies Eq. (20) andu 0

is defined according to Eq. (20).k E
0 is the scale of maximum

energy in the energy spectrum.
At each layer,kE

0 is determined by imposing that the EKS,
as defined above, matches the turbulent spectrumE(k, z) cal-
culated from the simulation as well as possible. This then
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Fig. 5.The wavenumberskE
0 (solid line) andkEs

0 (dashed line) are plot-
ted versusz (kE

0 andkEs
0 are obtained by fitting, at each layer, the EKS

(Eq. 21) to the computed spectraE and Es of Fig. 4 resp., see text
for details). The dotted line corresponds tokMLT

0 (z) obtained accord-
ing to Eq. (12). In computingkMLT

0 (z), we assumeβ = 3.48 in order
for kMLT

0 to match the value reached bykE
0 (solid line) at the layer

z ≃ −130 km wherew reaches its maximum (kE
0 = 3.62 Mm−1 at that

layer).

fixes thez dependency ofkE
0 . A similar procedure is applied

for Es(k, z) for which we introducekEs
0 . All spectra satisfy their

respective normalisation condition as given in Eq. (20).
For comparison, in Fig. 7, the “Nesis Kolmogorov

Spectrum” (NKS hereafter) determined from solar observa-
tions of Nesis et al. (1993) is also shown. The NKS scales
as k−5 in the energy injection region for k < kE

0 and down
to kmin = 0.7kE

0 . This spectrum does not agree with turbulent
spectrumE(k, z) calculated from the simulation. In particular,
the NKS underestimates the velocity of the small size turbulent
elements in the cascade (k > k0) and overestimates the velocity
of the turbulent with wavenumberk ∼ k E

0 . As we will show in
Sect. 4.2, differences between the EKS and the NKS have an
important impact onP(ω).

If we assume thatkE
0 = kEs

0 , one can show thatP(ω) scales
ask−4

0 . P(ω) is therefore very dependent on the values reached
by k0(z) in the excitation region. Variation ofk0(z) with depth
is thus shown in Fig. 5 forE andEs: kEs

0 andkE
0 vary slowly

within the excitation region.
For comparison, in Fig. 5 we have also plottedkMLT

0 (z), the
MLT value fork0(z) according to Eq. (12). The scaling param-
eterβ in the definition ofkMLT

0 is determined such thatkMLT
0

andkE
0 take the same value at the layerz ≃ −130 km wherew

reaches its maximum (and consequently the layer where the
excitation is maximum). The derived value isβ = 3.48.

kMLT
0 varies slowly with depth below the top of the supera-

diabatic region (z ≃ −130 km) but increases very rapidly above.
Such a behavior is explained by the rapid decrease withz of the
pressure scale heightHp (which enters in the definition ofkMLT

0 ,
Eq. (12)) in the atmosphere.

Comparison betweenkMLT
0 (z) and kE

0 (z) shows that the
mixing-length approach does not model satisfactorily the be-
havior of kE

0 (z) in particular just above the layer at whichw

reaches its maximum value. Consequences in terms of mode
excitation are investigated in Sect. 4.3.

4. Consequences in term of p modes excitation

The acoustic energy supply rateP injected into the solar oscil-
lations is related to the rms valuevs of surface velocity as:

P(ω0) = 2η
I
ξ2r (rs)

v2s(ω0) (22)

whereη is the mode damping rate andrs is the radius at which
oscillations are measured.

We derive the “observed”P from Chaplin et al. (1998)’s
seismic data according to Eq. (22) where the mode damping
rate,η, and the mode surface velocity,vs, are obtained from
Chaplin et al. (1998)’s data. The mode massI/ξ2

r (rs) is given
by the GMLT model and we adoptrs = R⊙ +200 km consistent
with the observations.

Theoretical values ofP are computed according to Eq. (1).
In Eqs. (10) and (11) the integrations overk are performed
from k = kmin (where kmin depends on the adopted turbu-
lent spectraE andEs) to k = 20k0. We checked numerically
that contributions to the excitation rate from turbulent elements
with k >∼ 20k0 are negligible.

A Gaussian function is assumed forχk(ω) in Eq. (10)
and Eq. (11).

For the other quantities (w, s̃2, φ, k0, E(k/k0) andEs(k/k0))
involved in the expression forP we investigate several possible
assumptions.

4.1. Convective velocities and large scale anisotropy

In this section, the excitation rateP (Eq. (1)) is computed with
the following assumptions:
- the k-dependencyE and Es is given by the analytical form
of Eq. (21), also called the EKS.
- kE

0 = kEs

0 = kMLT
0 wherekMLT

0 (z) is given in Eq. (12) with
β = 3.48 so thatkMLT

0 takes the value reached bykE
0 (z) (solid

line, Fig. 5) at the layerz ≃ −130 km wherew reaches its
maximum.

For the quantitiesΦ, w and s̃2 we investigate the effects
of using either the values derived from the 3D simulation (see
Sects. 3.2 and 3.3) or calculated with the GMLT solar model.

4.1.1. Convective velocities and entropy fluctuations

The values ofw, s̃2 andΦ(z) are fixed by the 3D simulation
inside the simulation domain and by the 1D equilibrium model
outside this domain. Either, if we impose zero values or if we
assume quantities from the 1D MLT model, no sensitivity on
the calculation ofP is found.

Results are shown in Fig. 6 forP and for the relative con-
tribution of the Reynolds stress to the total energy supply rate
P. When the excitation rateP(ν) is computed with quantities
derived from the 3D simulation as described in Sect. 2.3, the
resulting excitation rate at maximum is found too small by a
factor∼4 compared with the observations.
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Fig. 6. Top: RateP at which acoustic energy is injected into the solar
radial modes. The filled dots representP computed from Chaplin et al.
(1998)’s solar seismic data according to Eq. (22). The curves represent
theoretical values ofP computed according Eq. (1) and for different
computations ofw, s̃2 andΦ(z): Solid line: values ofw, s̃2 andΦ(z) are
fixed by the 3D simulation inside the simulated domain and by the 1D
equilibrium model outside this domain. Dashed line (− − −): same as
solid line but fixingΦ to BV’s valueΦ = 2. Dot dashed line (− · − ·−):
values ofw, s̃2 andΦ (=1.37) are fixed by the 1D equilibrium model
(GMLT). Three dots dashed line (− · · ·− · · · −): same as the dot dashed
line but fixingΦ to BV’s valueΦ = 2. Bottom: Same as top panel
for the relative contribution of the Reynolds stress,PR, to the total
acoustic energyP.

Provided the appropriate value forΦ is given in the
GMLT estimations (see Sect. 4.1.2 below), no significant dif-
ference is found in the excitation rate when computed with
the values ofw and s̃2 from the simulation or their respective
GMLT estimations.

The main effect is illustrated in the bottom panel of Fig. 6:
the 3D simulation generates a larger relative contribution of the
Reynolds stress toP than the GMLT model. This is explained
as follows: within most part of the excitation region – except
at the top of superadiabatic region – the values reached byw

are larger whereas values reached by ˜s2 are smaller than their
corresponding GMLT estimations.

4.1.2. Velocity anisotropy at large scales

The main consequence (in term ofp modes excitation) of the
differences between the time averaged properties of the con-
vective region inferred from the 3D simulation and from the
GMLT solar model (Fig. 6) is due to differences in their re-
spective anisotropy factorΦ values (Fig. 3).

Within most of the excitation region,Φ(z) is found close
to ∼2 and thus larger than the valueΦ = 1.37 assumed for
the 1D equilibrium model (see Sect. 3.3 and Fig. 3). Smaller
values ofΦ decrease the rms total convective velocity which
results in larger values ofτk (see Eqs. (14), (15)) and therefore
in a smaller depth of excitation for a given mode frequency (see
Paper III for more details). Smaller values of the rms total con-
vective velocity also induce smaller values ofE in the integrand
of Eq. (1). Consequently, as it is illustrated in Fig. 6, the total
amount of acoustic energy injected into the modes is∼5 times
smaller for the constant valueΦ = 1.37 compared to the con-
stant valueΦ = 2 (the relative contribution of the Reynolds
stress toP is found∼2 times larger in the simulation).

The effect of the depth dependency ofΦ on the mode ex-
citation is small except at high frequency. This is illustrated
in the bottom panel of Fig. 6 (compare the solid line with the
dashed line). Just above the top of the superadiabatic region
(z >∼ −130 km),Φ(z) increases rapidly withz until the value
≃3 (Fig. 3). Most of the injection of acoustic energy into the
high frequency modes occurs at the top of superadiabatic re-
gion. The high frequency modes are therefore more sensitive to
this rapid increase ofΦ(z). As a consequence, the relative con-
tribution of the Reynolds stress is larger for the high frequency
modes than it is when assuming the constant valueΦ = 2.

4.2. Turbulent spectra

In this section we compare the excitation rate obtained assum-
ing, for the turbulent spectra (E andE s) either – the EKS spec-
trum (Eq. (21)) with slopes given by the 3D simulation as in the
previous section – or assuming the NKS spectrum from solar
observations of Nesis et al. (1993) (see also Paper I).

As in Sect. 4.1 we computeP usingw, s̃2 andΦ derived
from the 3D simulation and assuming thatk E

0 = kEs

0 = kMLT
0 .

The results are plotted in Fig. 8.
The NKS overestimates the maximum inP by a factor∼1.5

while the EKS underestimates it by a factor∼4. This is because
most of the kinetic energy in the NKS is concentrated atk ∼ k E

0
whereas in the EKS a large part of the energy is concentrated
both at large scales (k < kE

0 ) and at small scales (k > kE
0 ).

4.3. Effects due to the stratification of the turbulent
spectrum at large scale

In Sect. 3.4 we showed that the variations ofk E
0 andkEs

0 with z
deduced from the 3D simulation differ from the MLT estima-
tion as given by Eq. (12) (see Fig. 5). Figure 9 presents the
consequences of thez variations ofkE

0 on the oscillation am-
plitudes (as the variations ofkE

0 andkEs

0 with depth are quite
similar we assume for the sake of simplicity thatkEs

0 (z) is equal
to kE

0 (z)).
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Fig. 7.The NKS and the EKS turbulent kinetic energy spectra are plot-
ted versus the normalized wavenumberk/k0.

Fig. 8. Acoustic energy supply rateP computed according to Eq. (1)
and assuming forE(k) the EKS and the NKS plotted in Fig. 7. Dots
represent the energy supply rate injected into the oscillations derived
from the solar observations with the help of Eq. (22).

The z dependency ofkE
0 causes the maximum ofP to be

larger than when assumingkE
0 = kMLT

0 (∼50% larger). This is
due to the fact that in most part of the excitation regionk MLT

0 is
smaller thankE

0 andkEs
0 except above the top of the superadia-

batic region (see Fig. 5). A largerkE
0 results in a larger linewidth

ωk ≡ (kuk)/λ for χk(ω) hence in a larger amount of acoustic en-
ergy injected to the mode (see Eq. (13)).

Furthermore, at high frequency,P decreases withν more
rapidly than when assumingkE

0 = kEs

0 = kMLT
0 . Taking into

account the actual variationkE
0 with z instead of assuming

kE
0 = kMLT

0 makes then theν-dependency ofP at high fre-
quency closer to that of the observed excitation spectrum. This
is because, above the top of the superadiabatic region,k E

0 de-
creases withz whereaskMLT

0 increases withz. Indeed, the ex-
citation of the high frequency modes occurs predominantly in
the upper most part of the top of the superadiabatic region. As
mentionned above the line width ofχk(ω) decreases with de-
creasingk0. Therefore the contribution of the termχ k(ω) to the
excitation of high frequency mode is smaller when assuming

Fig. 9.Same as Fig. 6. Solid line: the variation ofkE
0 andkEs

0 with z are
obtained from the simulation (see Fig. 5 and Sect. 3.4). The dashed
line is identical to the solid line of Fig. 6 wherekE

0 = kEs
0 = kMLT

0 (z).

the actual variation ofkE
0 with z than when assuming thatkE

0
varies askMLT

0 .

5. Summary and discussion

An analysis of a 3D simulation of the upper part of the solar
convective zone provides time averaged constraints upon sev-
eral physical parameters which enter the theoretical expression
for the supply rate of energy,P, injected into the solarp modes.
These constraints are:

1) the depth dependency: ofu2, the mean square velocity –
of w2, the mean square vertical component of the velocity –
of s̃2, the mean square values of entropy fluctuations.

2) the wavenumber (k) dependency ofE andE s the turbu-
lent kinetic energy spectrum and the turbulent entropy spec-
trum respectively.

3) the depth dependency of the wavenumbersk E
0 andkEs

0 ,
the wavenumbers at which convective energy is maximum and
is injected into the turbulent inertial ranges of the turbulent ki-
netic energy spectraE, Es respectively.

4) the depth dependency ofΦ = u2/w2, the mean values of
the anisotropy.

Differences betweenw2 – and ˜s2 – and their respective
GMLT estimations have only small consequences on the profile
of the excitation rateP(ω). However the values reached byw 2

and s̃2 with the 3D simulation are responsible for an increase
of the relative contribution of the Reynolds stress toP(ω) by
a factor∼1.5 at low frequencyν � 3 mHz compared to the
one obtained with the GMLT solar model. This is because the
GMLT model overestimates ˜s2 by∼20% at the top of excitation
region and underestimatesw2 within most part of the excitation
region by up to∼15%.

The energy distributionsE and Es over eddies with
wavenumberk obtained in the simulation scale approximately
ask+1 in the domaink � kE

0 . They therefore have approximately
the same behavior as the “Extended Kolmogorov Spectrum”
(EKS) defined in Musielak et al. (1994). In contrast, their
k-dependencies significantly differ from those assumed in the
Nesis Kolmogorov Spectrum (NKS) which scales ask−5 be-
low kE

0 . The NKS predicts much larger maximum values forP
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than does the EKS. This is because the NKS concentrates ki-
netic energy in the vicinity ofkE

0 .

The 3D simulation indicates thatkE
0 ≃ 3.6 Mm−1 at the

top of excitation region. This corresponds to the horizontal size
of the granulation (∼2 Mm). It is worth noting that taking the
depth dependency ofk0(z) into account results in a increase of
the maximum ofP by as much as∼50% and brings these values
even closer to the observations. On the other hand, only minor
differences are seen on the frequency dependence of the excita-
tion ratesP when using the depth dependency ofk 0(z) from the
simulation or assuming the formkMLT

0 = 2π/βΛ with Λ = αHp

provided thatβ is adjusted in order forkMLT
0 to match the value

reached bykE
0 at the layer wherew reaches its maximum.

The excitation rateP(ω) is very sensitive to the value ofΦ.
In the GMLT formulation, the quantityΦ is a parameter which
is adjusted in order to obtain the best fit between computed
solar damping rates and the solar measurements: the adopted
value isΦ = 1.37 (see Houdek et al. 2001). On the other hand,
the 3D simulation suggests a higher value within the excita-
tion region (Φ ≃ 2). Larger values ofΦ result in an increase
of the mode driving by the turbulent motions. We find that us-
ing the valueΦ = 1.37 underestimatesP(ω) by a factor∼5
relatively toP(ω) computed withΦ(z) in the excitation region
from the 3D simulation. On the other hand, using the GMLT
formulation for the convective velocity with a valueΦ ∼ 2, as
suggested by the 3D simulation, yields a powerP(ω) close to
the one obtained by the 3D simulation. To fix ideas, the max-
imum amplitude is∼4 cm/s,∼8 cm/s,∼10 cm/s when calcu-
lated with GMLT andΦ = 1.37, with GMLT andΦ = 2 and
when using velocities andΦ(z) derived from the 3 D simulation
respectively. These figures must be compared to the observed
maximum amplitude∼23 cm/s.

This shows that the values ofΦ found for the solar GMLT
model when adjusted to the damping rates is not compatible
with the actual properties of the turbulent medium in the exci-
tation region. An improvement could come from a consistent
calculation which would assume a depth dependentΦ(z), as
suggested by the simulations, in both damping rate and exci-
tation rate computations. Damping rates are indeed expected
to be sensitive to depths deeper than the excitation rate where
smaller values ofΦ are encountered and the simulation shows
that the velocity anisotropy factorΦ decreases from 2 down
to 1.3 from top of the superadiabatic region to bottom of the
simulated solar region.

Without any adjustment of scaling parameters but using
all the constraints inferred from the 3D simulation considered
here, we find a maximum ofP much larger (∼5 times larger)
than theP maximum obtained using a 1D GMLT solar model
whenΦ is fixed by the observed damping rates. It is also found
that the so-called entropy source term, which arises from the
advection of the turbulent fluctuations of entropy by the tur-
bulent motions, is still the dominant source of the excitation.
However its contribution to the excitation is now∼65−75% in-
stead of∼95% as found in Paper II.

Our computation still underestimates by a factor∼3 the
maximum value ofP compared with the one derived from the
solar seismic observations by Chaplin et al. (1998). Moreover

the decrease ofP with ν at high frequency (ν >∼ 3.5 mHz) is
found to be significantly smaller than the one inferred from
the solar seismic observations, indicating a deficiency in the
present modelling at high frequency.

As a final point, we discuss the model for the turbulent ki-
netic energy spectrum:

In Paper II the parameterλ andkE
0 were adjusted – given

a turbulent spectrumE(k) – so as to obtain the best possible
agreement between computed and measured values of the max-
imum solar oscillation amplitude and its frequency position, as
well as the frequency-dependenceof the oscillation amplitudes.
Adjustments of these scaling parameters led to a better agree-
ment between computed values ofP and the seismic observa-
tions when using the NKS than the EKS. However, the present
results from a 3D simulation strongly suggest that the EKS is a
better model for the solar turbulent kinetic energy spectrum.

The better agreement obtained with NKS than EKS when
adjusting the free parameters is due to the fact that the NKS
concentrates most of the kinetic energy in the vicinity ofk E

0 .
Indeed, the NKS predominantly excites the modes whose pe-
riod are close to the characteristic lifetime of the eddies of
wavenumberkE

0 , i.e. the modes with frequency close to the fre-
quency at whichP peaks (ν ∼ 3 mHz). As a consequence, the
amount of energy going into the high frequency modes is rel-
atively smaller with the NKS than it is with the EKS. This ex-
plains why the NKS reproduces better the steep decrease withν

of P at high frequency and results in a value fork E
0 identi-

cal to that inferred from the simulation (k E
0 ≃ 3.6 Mm−1). In

contrast, whatever the adjustment, the EKS reproduces neither
the frequency dependence ofP at high frequency nor the value
kE

0 ≃ 3.6 Mm−1. Hence assuming that the 3D simulation yields
the proper behavior of the solar kinetic energy spectrum, well
modelled by the EKS, one is led to conclude that the excitation
as given by the present stochastic excitation model is not effi-
cient enough at large scales (k ∼ k0) and too efficient at small
scales (k > k0).

Discrepancies between our calculations and the observed
excication rates or the results by Stein & Nordlund (2001) are
likely due to dynamic properties of turbulence which are not
properly taken into account in the excitation model. Indeed,
the dynamic properties of turbulence are modeled by the func-
tion χk. All current theoretical calculations of the excitation
rates assume a Gaussian function forχk (e.g. Goldreich &
Keeley 1977; Balmforth 1992a). The Gaussian model is likely
to be at the origin of the current under-estimate of the rates
at which solarp-modes are excited (see forthcoming paper
Samadi et al. 2003). This may also explain the fact that we
find that the entropy source term is dominant over the Reynolds
stress contribution whereas Stein & Nordlund (2001) in their
direct computations found the reverse. In a recent study based
on a frequency analysis of the present simulation we investigate
what model can correctly reproduce modelχ k in the frequency
range where the acoustic energy injected into the solarp-modes
is important (see forthcoming paper Samadi et al. 2003).

In the manner of Rosenthal et al. (1999) constraints from
3D simulation can be imposed to the 1D model. According
to the authors, such constraints result in a better agreement
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between the observed frequencies of the solarp-modes and
the eigenfrequencies of the computed adiabatic oscillations.
An improvement in the calculation of the excitation rates at
solar-type oscillations could then also come from a more con-
sistent calculation of the eigenmodes which would use such
constrained 1D model.
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Abstract. A 3D simulation of the upper part of the solar convective zone is used to obtain information on the frequency
component,χk, of the correlation product of the turbulent velocity field. This component plays an importantrole in the stochastic
excitation of acoustic oscillations. A time analysis of the solar simulation shows that a Gaussian function does not correctly
reproduce theν-dependency ofχk inferred from the 3D simuation in the frequency range where the acoustic energy injected
into the solarp modes is important (ν ≃ 2−4 mHz). Theν-dependency ofχk is fitted with different analytical functions which
can then conveniently be used to compute the acoustic energy supply rateP injected into the solar radial oscillations. With
constraints from a 3D simulation, adjustment of free parameters to solar data is no longer necessary and is notperformed here.
The result is compared with solar seismic data. Computed values ofP obtained with the analytical function which fits bestχk are
found∼2.7 times larger than those obtained with the Gaussian model and reproduce better the solar seismic observations. This
non-Gaussian description also leads to a Reynolds stress contribution of the same order as the one arising from the advection
of the turbulent fluctuations of entropy by the turbulent motions. Some discrepancy between observedand computedP values
still exist at high frequency and possible causes for this discrepancy are discussed.

Key words. convection – turbulence – stars: oscillations – Sun: oscillations

1. Introduction

Solar oscillations are believed to be stochastically excited by
turbulent convection in the outer part of the Sun. The excita-
tion is caused by turbulent convective motions which generate
acoustic energy which in turn is injected into thep modes.

Models of stochastic excitation of stellarp modes have
been proposed by several authors (e.g. Goldreich & Keeley
1977; Osaki 1990; Balmforth 1992; Goldreich et al. 1994).
These models use simplified models to describe the dy-
namics of the turbulent medium. For instance these ap-
proaches (Goldreich & Keeley 1977; Balmforth 1992) assume
a Gaussian function for representingχk, the frequency compo-
nent of the correlation product of the turbulent velocity field.
As pointed out by Samadi (2001), the way the componentχk

is modeled plays a crucial role in controlling the extent of the
excitation region of a given mode and hence the total amount of
acoustic energy injected into the mode. In the following,χk will
also be referred to asthe dymamic model of turbulence anddy-
namic will refer to time-dependence or frequency-dependence.

Send offprint requests to: R. Samadi,
e-mail:reza.samadi@obspm.fr

Direct computations of the rate at which the solarp modes
are excited have been performed by Stein & Nordlund (2001)
using 3D simulations of the upper part of the solar convective
zone. They found good agreement between their numerical re-
sults and the solar seismic observations. This direct but time
consuming approach did not address the role of the dynamic
properties of the turbulent medium on the excitation mecha-
nism.

In contrast semi-analytical formulations forP(ν) offer the
advantage of testingseparately several properties entering the
excitation mechanism. Here we consider the formulation by
Samadi & Goupil (2001, hereafter Paper I, see also Samadi
2001 for a summary) which includes a detailed treatment of
thetime averaged anddynamic properties of the turbulent con-
vective medium.

The impact of the averaged properties have been investi-
gated by Samadi et al. (2003). The authors used a 3D simula-
tion of the upper part of the solar convective zone to constrain
the averaged properties of the turbulent convective medium.
The computed ratesP at which the solarp modes are excited
were found to be larger than those computed with a 1D mixing-
length solar model but stillunderestimate the solar seismic data

Article published by EDP Sciences and available at http://www.aanda.org or http://dx.doi.org/10.1051/0004-6361:20030504 107
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by a factor∼2.5. It was also found that the Reynolds tensor con-
tributes about 20% of the total acoustic energy injected into the
solarp modes, in contrast with direct 3D estimations (Stein &
Nordlund 2001). These discrepancies were attributed to the as-
sumed Gaussian function for the dynamic model of turbulence.

In the present paper we therefore derive an empirical dy-
namic model of turbulence obtained from a 3D simulation of
the upper part of the solar convective zone and then study the
consequences of using this model on the computed excitation
ratesP. We compare our computation with solar seismic data
and finally obtain on an improved model of stochastic excita-
tion.

The paper is organised as follows: The basic theoretical
background and notations are recalled in Sect. 2. In Sect. 3,
a 3D simulation of the upper part of the solar convective zone
is used to characteriseχk in the domain where stochastic ex-
citation takes place. The inferredν-dependency ofχk is com-
pared with the Gaussian function and fitted with different non-
Gaussian functions. These functions are then used in Sect. 4
to compute the excitation rateP for radial p modes. The re-
sults are compared with solar seismic observations as provided
by Chaplin et al. (1998) and with computations in which the
Gaussian function is assumed. Section 5 is dedicated to discus-
sions and conclusions.

2. Stochastic excitation

2.1. The model of stochastic excitation

We consider the model of stochastic excitation as described in
Paper I and assume here – as in Samadi et al. (2003) – that
injection of acoustic energy into the modes is isotropic and
consider only radialp modes. Accordingly, the rate at which
a given mode with frequencyω0 is excited can be written as:

P(ω0) =
π3

2I

∫ M

0
dm
Φ

3
ρ0w

4















16
15
Φ

3

(

dξr
dr

)2

S R

+
4
3

(

αs s̃
ρ0w

)2
gr

ω2
0

S S















· (1)

In Eq. (1),ρ0 is the mean density,ξr is the radial component of
the fluid displacement adiabatic eigenfunctionξ, I is the mode
inertia (Eq. (19)),αs = (∂p/∂s)ρ wherep denotes the pressure
ands the entropy, ˜s is the rms value of the entropy fluctuations
which are assumed to arise solely from turbulence,gr(ξr, r) is a
function involving the first and the second derivatives ofξr with
respect tor, Φ is a mean anisotropy factor defined by Gough
(1977) as

Φ(r) ≡ < u2 > − < u >2

w2(r)
(2)

whereu is the velocity field,< . > denotes horizontal average,
() denotes time average, andw(r) is the mean vertical velocity
(w2 ≡ < u2

z > − < uz >2). Expressions forgr(ξr, r) are given in
Samadi et al. (2003).

The driving sourcesS R(r, ω0) andS S (r, ω0) arise from the
Reynolds stress and the entropy fluctuations respectively:

S R(r, ω0) =
∫ ∞

0

dk
k2

E(k, r)

u2
0

E(k, r)

u2
0

χk(ω0, r) (3)

S S (r, ω0) =
∫ ∞

0

dk
k2

E(k, r)

u2
0

Es(k, r)
s̃2

×
∫ +∞

−∞
dωχk(ω0 + ω, r)χk(ω, r) (4)

whereu0(r) ≡
√
Φ/3w is introduced for convenience,E(k, r)

is the time averaged turbulent kinetic energy spectrum,Es(k, r)
is the time averaged turbulent spectrum associated with the en-
tropy fluctuations andχk(ω, r) is the frequency-dependent part
of the correlation product of the turbulent velocity field (see
Sect. 2.2). In order to simplify the notation, we drop the ex-
plicit r dependence of the quantities in Eqs. (1–4).

2.2. The dynamic model of turbulence

The dynamic model of turbulence is represented byχk(ω).
In order to give a precise meaning toχk(ω), we recall first
some theoretical relations. Excitation by Reynolds stresses in-
volvesφi, j(k, ω), the Fourier transform of the second-order ve-
locity correlations; here the indicesi and j refer to any of
the 3 directions of the velocity field. For incompressible, ho-
mogeneous and isotropic turbulence,φi j(k, ω) has the form
(Batchelor 1970):

φi j(k, ω) =
E(k, ω)
4πk2

(

δi j −
kik j

k2

)

(5)

where E(k, ω) is the turbulent kinetic energy spectrum as a
function ofk andω andδi j is the Kronecker tensor. Following
Stein (1967),E(k, ω) is decomposed as

E(k, ω) = E(k) χk(ω) (6)

whereχk(ω) satisfies the normalisation condition (Tennekes &
Lumley 1982, Chap. 8.1):
∫ +∞

−∞
dωχk(ω) = 1. (7)

According to the decomposition of Eq. (6),χk(ω) is – at fixed
k – the frequency component ofE(k, ω).

According to Eqs. (5) and (6),χk(ω) then represents the
frequency dependence ofφi, j(k, ω). In other words,χk(ω) mea-
sures – in the frequency andk wavenumber domains – the evo-
lution of the velocity correlation between two distant points of
the turbulent medium.

The same decomposition of Eq. (7) is assumed forEs(k, ω).
This leads to introducingχs

k, the frequency-dependent part of
the correlation product of the entropy fluctuation. For simplify-
ing the computation ofP, as in Paper I, we assumeχs

k = χk. We
have checked thatχs

k andχk have almost the same behaviour
in the region where excitation by entropy fluctuations is signif-
icant.

In the present work, we consider only the excitation of ra-
dial p modes. LetEz(k, ω) be the vertical component of the
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kinetic energy spectrum. We consider thatEz(k, ω) can be de-
composed asE(k, ω) (Eq. (7)). For isotropic turbulence we then
haveE(k, ω) = 3 Ez(k, ω), E(k) = 3 Ez(k) andχz

k = χk, which is
equivalent to stating that the averaged and dynamic properties
of the velocity field are the same in all 3 directions.

The anisotropy factorΦ – introduced in the expression
for P, Eq. (1) – partially takes into account the spatial and tem-
poral anisotropy of the turbulence (Φ = 3 corresponds to a
isotropic turbulence). It has been found in Samadi et al. (2003)
thatΦ ≃ 2 within the region where most of the excitation oc-
curs. This shows that the time and space averaged properties
of the medium are indeed anisotropic. One can therefore ex-
pect that the dynamic properties of turbulence differ between
the horizontal and vertical directions. As the excitation of ra-
dial p modes is predominantly governed by turbulent elements
moving in the vertical direction, an open question is whether
one should considerχz

k rather thanχk in Eqs. (3) and (4) when
taking into account the dynamic properties of the turbulence. In
the present work, we therefore characterise bothχz

k andχk from
a 3D simulation and assess the consequences of using eitherχz

k
or χk in the calculation ofP.

2.3. A Gaussian function for χk

Stein (1967) and Musielak et al. (1994) suggested several ana-
lytical forms forχk(ω). The Gaussian Function (GF hereafter)
is the simplest choice and is defined as

χk(ω) =
1

ωk
√
π

e−(ω/ωk)2
(8)

whereωk is its linewidth.
In the time domain, the Gaussian function, Eq. (8), is the

Fourier transform of a Gaussian function whose linewidth is
equal to 2τk, whereτk is a characteristic time correlation length.
Henceωk andτk are related to each other as

ωk =
2
τk
· (9)

The characteristic timeτk is usually associated with the charac-
teristic correlation time-scale of an eddy with wavenumberk.
As in Balmforth (1992), we define it as

τk ≡
λ

kuk
(10)

where the velocityuk of the eddy with wave numberk is related
to the kinetic energy spectrumE(k) by (Stein 1967)

u2
k =

∫ 2k

k
dk E(k). (11)

The parameterλ in Eq. (10) accounts for our lack of precise
knowledge of the time correlationτk under stellar conditions.

In the calculation ofP, a GF is usually assumed forχk (e.g.
Goldreich & Keeley 1997, Balmforth 1992). This assumption is
equivalent to supposing that two distant points in the turbulent
medium are uncorrelated.

In Sect. 3, we use a 3D simulation of the upper part of
the solar convective zone to derive theν-dependencies ofχz

k
andχk. Inferredν-dependencies ofχz

k andχk are compared to
that of the GF. We next determine several analytical forms for
χz

k andχk that can better represent theirν-dependencies.

3. Constraints from the 3D simulation

The analysis of a 3D simulation of the upper part of the solar
convective zone provides constraints for several physical pa-
rameters that enter the theoretical expression for the energy
supply rateP injected into the solarp modes (Eq. (1)). The
constraints may be considered to be of two types:

• Static constraints (static refers to spatial and time averages)
determine the actual wavenumber dependency ofE(k, z),
the kinetic turbulent spectrum, andEs(k, z), the turbulent
spectrum associated with the entropy. Thestatic constraints
also determine the depth profile of the wavenumberkE

0 at
which convective energy is injected into the turbulent in-
ertial range ofE (as in Samadi et al. 2003 we assume that
the wavenumberkEs

0 , at which convective energy is injected
into the turbulent inertial range ofEs, is equal tokE

0 ). They
also provide the depth dependence ofu2, the mean square
velocity,w2, the mean square vertical component of the ve-
locity, s̃2, the mean square values of entropy fluctuations
andΦ = u2/w2, the mean values of the anisotropy studied
in Samadi et al. (2003).
• The dynamic constraints, on the other hand, concern the

frequency componentχk andχz
k (see Sect. 2.2).

The static constraints have been established in Samadi et al.
(2003). Here we investigate the dynamic constraints.

3.1. The 3D simulation

We study a 3D simulation of the upper part of the solar convec-
tion zone obtained with the 3D numerical code developed by
Stein & Nordlund (1998).

The simulated domain is 3.2 Mm deep and its surface is
6 × 6 Mm2. The grid of mesh points is 256× 256× 163 (i.e.
∼23 km× 23 km× 37 km), the total duration 27 mn and the
sampling time 30s.

Outputs of the simulation considered in Samadi et al.
(2003) are the velocity fieldu(x, y, z, t) and the entropy
s(x, y, z, t) where – as in Samadi et al. (2003) –z = r − R⊙
andR⊙ is the radius at the photosphere (i.e. whereT = Teff).
The quantitiesu(x, y, z, t) and s(x, y, z, t) were used to deter-
mine the quantitiesE(k, z), Es(k, z), w and s̃2 involved in the
theoretical expression for the excitation rateP. In the present
work we use the velocity fieldu(x, y, z, t) to characteriseχk

andχz
k.

3.2. Fourier transform

At five different layers of the simulated domain, we compute
the 3D Fourier transform, with respect to time and in the hori-
zontal plane, of the velocity fieldu. These layers cover a region
where modes with frequencyν >∼ 2 mHz are predominantly ex-
cited.

This providesû(k, z, ν) wherek is the wavenumber in the
horizontal plane. Next we integrateû2(k, z, ν) over circles with
radiusk = ‖k‖ at each given layerz. This yieldsû(k, z, ν) and
thereforeE(k, ν, z) ≡ û2(k, ν, z). The quantityχk(ν, z) is the
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frequency component ofE(k, ν, z), at fixedk. Hence, accord-
ing to Eqs. (6) and (7),χk(ν, z) is obtained fromE(k, ν, z) as:

χk(ν, z) =
E(k, ν, z)

∫

dν E(k, ν, z)
(12)

where the integration overν is performed over the frequency
range [−νmax, νmax] corresponding to the window of the Fourier
analysis with respect to time (νmax ≃ 16 mHz).

We proceed in the same manner for the vertical component
of u. This then providesEz(k, ν, z) ≡ û2

z (k, ν, z) andχz
k(ν, z).

3.3. Inferred properties of χk and χz
k

Figure 1 presentsχk(ν) as it is obtained from the simulation for
the wavenumberk at whichE(k, z) peaks (k = k0).

At the top of the superadiabatic region (for instancez =
−0.4 Mm in Fig. 1, this is the layer where the excitation
is the largest), the GF does not correctly modelχk(ν) (see
Fig. 1). However the discrepancies between the GF and the
simulation data occur mostly above the solar cut-off frequency
(ν ∼ 5.5 mHz). Discrepancies between the GF and the 3D sim-
ulation data have then minor consequences for thep modes
excitation in this region. This is not the case deeper in the sim-
ulation where the largest discrepancies between the GF and the
simulation data occur in the frequency range where the dom-
inant amount of acoustic energy is injected into thep modes
(ν ∼ 2−4 mHz).

To reproduce the shape ofχk(ν) obtained with the 3D simu-
lation, one needs a function which at high frequency decreases
more slowly than the GF. For modeling theν-dependency
of χk(ν), we thus propose three analytical functions: the
Lorentzian function (LF hereafter)

χk(ω) =
1

πωk/2
1

1+ (2ω/ωk)2
, (13)

the Gaussian plus an Exponential Function (GEF hereafter)

χk(ω) =
1
2

(

1

ωk
√
π

e−(ω/ωk)2
+

1
2ωk

e−|ω/ωk |
)

, (14)

and the Gaussian plus a Lorentzian function (GLF hereafter)

χk(ω) =
1
2

(

1

ωk
√
π

e−(ω/ωk)2
+

1
πωk

1

1+ (ω/ωk)2

)

· (15)

All these functions satisfy the condition of normalisation
of Eq. (7).

We first assume a constantλ = 1. As shown in Fig. 1, all
these non-Gaussian functions reproduce theν-variation ofχk

better than that obtained using a GF.
In the middle of the excitation region (−0.5 Mm <∼ z <∼

0.0 Mm) the overall best agreement is obtained with the LF.
Belowz ∼ −0.5 Mm, the LF does not reproduceχk well enough
but still reproduces itsν-variation better than the other models.

However we have so far assumed thatλ (or equivalently the
eddy time correlation) is depth independent, which is a strong
assumption. Whenλ is allowed to vary withz, we find that
decreasing the value ofλ below z <∼ −0.5 Mm, the LF best

modelsχk belowz ∼ −0.5 Mm (e.g.λ = 1.6 atz = −0.64 Mm
andλ ≃ 1.30 atz = −0.99 Mm, see Fig. 2). This shows that
the variation with depth of the characteristic timeτk (or equiv-
alently the characteristic frequencyωk) is not correctly repre-
sented by the relations of Eqs. (10) and (11) when computed
assuming a constantλ belowz ∼ −0.5 Mm; τk increases faster
with depth than expected from the relations (10) and (11). It is
however found in Sect. 4 that this feature has negligible effect
on P.

The functionχz
k also decreases with the frequency more

slowly than the GF (see Fig. 1). Moreover, decreasing values
of λ for z <∼ −0.5 Mm provide a better fit ofχz

k. But in con-
trast withχk, χ

z
k is overall better modeled with the GEF for

z >∼ −0.5 Mm and with the GLF forz <∼ −0.5 Mm rather than
with the LF (not shown).

We conclude from the frequency analysis of the 3D simu-
lation that the simple Gaussian function cannot correctly rep-
resent the actual dynamic properties of the turbulent medium.
One may expect that the GF causes an underestimation of the
acoustic energy injected into the solarp modes. Instead the fre-
quency analysis favours a non-Gaussian function forχz

k andχk

that decreases more slowly withν than the GF.

4. Consequences in terms of p modes excitation

4.1. Computations of the excitation rate P

Computation of the excitation rateP is performed as in
Samadi et al. (2003) except that here two analytical func-
tions other than the GF are assumed forχk, as discussed in
Sect. 3. The computation process is summarised as follows:
The eigenfunctions (ξr) and their frequencies (ν) are computed
with Balmforth’s (1992) non-adiabatic code for a solar 1D
mixing-length model based on Gough’s (1977) non-local time-
dependent formulation of convection.

The quantitiesΦ, w2 and s2 are obtained from the
3D simulation. Thek-dependency ofE(k, z) is the Extended
Kolmogorov Spectrum (EKS hereafter) defined as:

E(k) ∝ (k/k0)+1 for k0 > k > kmin

E(k) ∝ (k/k0)−5/3 for k > k0.
(16)

In Eq. (16), the wavenumberk0 is the wavenumber at
whichE(k) peaks andkmin is the minimal wavenumber reached
by the 3D simulation (kmin = 1.05 Mm−1). The variation
with depth ofk0 is also given by the 3D simulation. Thek-
dependency of the EKS reproduces the global features ofE
arising from the 3D simulation. The same model is considered
for Es(k, z). E(k, z) andEs(k, z) satisfy the normalisation con-
ditions:
∫ +∞

kmin

dk E(k, z) = 1/2Φw2

∫ +∞

kmin

dk Es(k, z) = 1/2 s̃2.

(17)

The total energy contained inE(k, z) and Es(k, z), and their
depth dependencies, are then obtained from the 3D simulation
according to Eq. (17). These theoretical estimates forP are then
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Fig. 1.The filled dots representχk(ν) obtained from the simulation for the wavenumberk0 at whichE(k, z) peaks. The solid curves represent the
Lorentzian function (LF, Eq. (13)), the dots-dashed curves the Gaussian Lorentzian function (GLF, Eq. (15)), the dashed curves the Gaussian
Exponential function (GEF, Eq. (14)) and the long dashed curves the Gaussian function (GF, Eq. (8)). In these four analytical functions,λ = 1
is assumed for the calculation ofωk (Eqs. (10) and (11)). Four different layers are considered:z = −0.04 Mm (the top of the superadiabatic
region),z = −0.49 Mm, z = −0.99 Mm andz = −1.40 Mm.

compared with the “observed”P from Chaplin et al. (1998)’s
seismic data, calculated according to the relation:

P(ω0) = 2η
I
ξ2r (rs)

v2s(ω0) (18)

wherers is the radius at which oscillations are measured,

I ≡
∫ M

0
dm ξ2r (19)

is the mode inertia and where the mode damping rate (η) and
the mode surface velocity (vs) are obtained from Chaplin et al.
(1998). In Eq. (18), the mode massI/ξ2r (rs) is given by the
GMLT model and we adoptrs = R⊙ + 200 km consistently
with Chaplin et al. (1998)’s observations.

4.2. Comparisons with observations

We investigate the effect of using different analytical functions
for χk (Sect. 3) in the computation ofP . We first assume a con-
stant valueλ = 1. Results are shown in Fig. 3. Computations
performed with the GF underestimate the observedP values
by a factor∼2.7. On the other hand, the LF, GEF and GLF
choices result in larger values for the computedP than the GF
one (∼2 times larger). This brings them closer to the observa-
tions, compared with the GF choice forχk. The reason is that

all the non-Gaussian functions (the LF, the GEF and the GLF)
– which indeed better modelχz

k andχk from the 3D simulation
than does the GF – decrease more slowly withν than the GF
in the frequency range where the mode amplitudes are large
(ν ≃ 2− 4 mHz). Consequently a larger amount of acoustic en-
ergy is injected into the modes with the non-Gaussian functions
than with the GF.

In Sect. 3.3, the overall best models forχk were ob-
tained with the LF and with decreasing values ofλ below
z ∼ −0.5 Mm. We use a simple model for the depth variation
of λ:

λ = 1 for z > −0.5 Mm
λ = 0.9+ 0.71(0.64Mm+ z) for −0.5 ≥ z ≥ −1 Mm
λ = 0.35 for z < −1 Mm.

(20)

We have computedP according to the simple model of Eq. (20)
and assuming the LF. We find no significant changes forP com-
pared to the calculations in which a constant valueλ = 1 is
assumed (not shown).

In Sect. 3 we found thatχz
k is better modelled with the

GEF for z >∼ −0.5 Mm and with the GLF forz <∼ −0.5 Mm
rather than with the LF. However, as the stochastic excitation
is the largest in the range−0.5 Mm <∼ z <∼ 0 Mm, we can
assume the GEF in all the domain. The LF results in a value
for Pmax slightly larger than the one resulting from the GEF
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Fig. 2. As in Fig. 1, the filled dots representχk(ν, z) obtained from the simulation at two different layers:z = −0.64 Mm (left panel) and
z = −0.99 Mm (right panel). The other curves represent the LF (Eq. (15)) with different assumptions forλ: The dashed curved correspond to
λ = 1 and the solid curves correspond toλ = 0.80 atz = −0.64 Mm (left panel) andλ = 0.65 atz = −0.99 Mm (right panel).

(only ∼1.2 larger). A better agreement is then obtained with
the analytical functions which fits bestχk (i.e. the LF) than the
one which fits bestχz

k (i.e. the GEF) in contrast with the in-
tuitive idea mentioned in Sect. 2.2 that the excitation of radial
p modes depends rather on the properties ofχz

k than on those
of χk.

In the frequency range where observational constraints are
available, differences between results obtained with the differ-
ent adopted non-Gaussian functions are of the same order as
the actual error bars associated with the observedP values.

Below the frequency range of the observations – i.e. be-
low ν <∼ 1.8 mHz – the differences between the different non-
Gaussian functions are very large compared to the error bars
(see bottom panel of Fig. 3). Those differences are related
to differences in theν-variation of the non-Gaussian models.
Observational constraints at low frequency could therefore con-
firm that the LF is indeed the best representation forχk(ν).

Important discrepancies still remain at high frequency (ν >∼
3.5 mHz). The excitation rate derived from the observations de-
creases as∼ν−6.2 aboveν ≃ 3.5 mHz) whereas the computedP
decreases as∼ν−1 (see bottom panel of Fig. 3). Possible origins
of this discrepancy are discussed in Sect. 5.5.

Another consequence of a non-Gaussian dependence
of χk (or χz

k) with the frequency is a larger relative contribu-
tion of the Reynolds stressPR to the mode excitation rateP.
This is shown in Fig. 4. The GF generates a relative contribu-
tion of the Reynolds stress to the excitation (PR/P) which is
smaller than that obtained assuming a non-Gaussian function
(e.g. for the LF, the relative contribution ofPR to the excita-
tion is at least∼2 times larger than with the GF). Excitation by
the entropy fluctuations takes place predominantly at the top
of the excitation region over a thin layer (<∼0.2 Mm) while that
due to the Reynolds stress extends deeper below (∼0.5−2 Mm).
At the top of the excitation region, the discrepancy between
the GF andχk inferred from the 3D simulation mainly occurs
aboveν ≃ 5 mHz and thus has a small impact on mode excita-
tion. This is not the case deeper in the excitation region where
the GF under-estimatesχk in a frequency range increasing in-
ward.

5. Conclusion and discussion

5.1. A Non-Gaussian eddy time correlation

In the present work we characterizeempirically χk and ofχz
k,

the frequency components of the correlation product of the tur-
bulent velocity field and of its vertical component respectively.
A frequency analysis of a solar 3D simulation shows that at
large scales (k ∼ k0) the Gaussian function significantly un-
derestimatesχk andχz

k in the frequency range (ν ≃ 2−4 mHz)
where acoustic energy injected into the solarp modes is the
largest.

As a result, the maximum value ofP is found∼2.7 smaller
than the solar seismic constraints.

This partly explains theunderestimate of the values of so-
lar p mode excitation rates obtained by Houdek et al. (1999)
whose computations are based on the theoretical expression by
Balmforth (1992) and the underestimate obtained by Samadi
et al. (2003).

In order to reproduce the main properties ofχk (or χz
k),

one has to consider a model which must decrease more slowly
with ν than the GF. We then assume forχk andχz

k three different
simple analytical forms: the Lorentzian Function (LF), the so-
called “Gaussian Exponential Function” (GEF, which is com-
posed by the GF plus an exponential function) and the so-called
“Gaussian Lorentzian Function” (GLF, which is composed by
the GF plus a Lorentzian function).

From the top of the excitation region (which corresponds to
the top of the superadiabatic region) down to the middle of the
excitation region (z ∼ −0.5 Mm wherez is the distance to the
radius at the photosphere), the best agreement betweenχk and
the analytical approximations is obtained with the LF and with
λ = 1. Deeper within the excitation region (z <∼ −0.5 Mm), the
agreement is better forλ < 1 andλ decreasing with depth.

The frequency dependencies ofχz
k andχk are found to be

very similar. Howeverχz
k is best modeled by the GEF. As forχk,

the agreement is better belowz ∼ −0.5 Mm with decreasing
values of the parameterλ than withλ = 1.

Assuming a non-Gaussian function – either the LF, the GEF
or the GLF – results in values forPmax, the maximum of excita-
tion power, which are∼2 times larger than when assuming the

Annexe A. Articles reproduits

112



R. Samadi et al.: Numerical 3D constraints on convective eddies time-correlations 1135

Fig. 3. Top: The curves correspond to computed values ofP(ν) ob-
tained with different analytical functions forχk(ν): the GF (long
dashed curve), the GEF (dashed curve), the GLF (dots-dashed curve)
and the LF (solid curve). In all calculations, we assumeλ = 1. The
dots representP(ν) derived from the amplitudes and line widths of
theℓ = 0 p modes measured by Chaplin et al. (1998).Bottom: same
as the top panel butP is plotted in a log-log representation as it is
usually represented in the literature. The vertical and horizontal scales
have been chosen for an easy comparison with equivalent plots found
in Stein & Nordlund (2001). The lines with dots show two different
power lawsνp: one withp = −6.2 and the other withp = −1.

GF and bringsPmax much closer to the maximum ofP derived
from the solar seismic data of Chaplin et al. (1998).

We also find that taking into account the variation ofλ with
depth forz below−0.5 Mm does not significantly change the
values ofP. A constant value can then be assumed in the calcu-
lation of the solarp mode excitation rates. The constant value
of λ on the other hand plays an important role and we find
λ = 1.

We have investigated the sensitivity to the adopted rep-
resentation forχk: Although the LF fits best theν-variation
of χk inferred from the 3D simulation, the GLF results in value
for Pmax closer to the seismic constraints. However, the dif-
ferences obtained with the different non-Gaussian approxima-
tions forχk are globally smaller than the actual error bars as-
sociated with the observations of Chaplin et al. (1998). On
the other hand, below the frequency range where observational
constraints onP are available (i.e. belowν <∼ 1.8 mHz), the dif-
ferences betweenP obtained with different non-Gaussian func-
tions are very large compared to the current error bars. Those

Fig. 4. Top: Same as Fig. 3 for the relative contribution of the
Reynolds stress,PR to the total acoustic energyP.

differences are directly related to the diffences in theν-variation
of the non-Gaussian forms investigated in this work. This sug-
gests that accurate enough data below this frequency range,
could provide confirmation that the LF is indeed the best model
for χk.

5.2. Relative contribution of the entropy fluctuations
to the excitation

The non-Gaussian character ofχk causes the excitation region
to extend deeper (∼500 km for modes of ordern = 20) than
with the GF (∼200 km resp.). The largest entropy fluctuations
mainly occur at the outermost part of the convective zone (CZ)
over a very thin region (∼100 km) while excitation by the
Reynolds stress contribution occurs on a more extended region.
Consequently the non-Gaussian property ofχk leads to a rela-
tively larger contribution of the Reynolds stress to the excita-
tion than in the case of a GF. As a result, the Reynolds stress
contribution is of the same order as the contribution arising
from the advection of the turbulent fluctuations of entropy by
the turbulent movements (the so-called entropy source term).
This is in contrast with previous results (Samadi et al. 2001)
based on the GF which concluded that the entropy source term
dominates the Reynolds stress by about∼20. It also differs with
results by Goldreich et al. (1994) who found that the excita-
tion arising directly from the entropy fluctuations dominates
by about∼10.

On the other hand, in Stein & Nordlund (2001), the excita-
tion by turbulent pressure (Reynolds stress) is found dominant
(∼4 times larger) whereas here we find that the contribution
of the entropy source term cannot be neglected. Whether this is
the signature of some deficiency in the present excitation model
is an open question.

5.3. Summary

We show that the usually adoptedGaussian function for χk is
neither consistent with the properties ofχk inferred from the 3D
simulation nor does it reproduce the observed maximum of the
solarp-modes excitation rates.
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Following an empirical approach we improve the model
of the convective eddy time-correlationχk which enters the
current model of stochastic excitation. We then show that to re-
produceboth theν-variation ofχk as inferred from the 3D sim-
ulation and the observed maximum of the solarp-modes ex-
citation rates one has to consider a non-Gaussian form which
decreases at high frequency slower than the GF, as do the dif-
ferent non-Gaussian functions investigated here.

The use of non-Gaussian functions, for instance the LF, re-
produces reasonably well the maximum value of the rate at
which solarp-modes are excitedwithout any adjustments of
free parameters or without introducing a scaling factor, in con-
trast with previous approaches (e.g. Balmforth 1992; Goldreich
et al. 1994; Samadi et al. 2001). We then solve the problem
of the underestimation by the previous theoretical approaches.
Furthermore the use of such a non-Gaussian form forχk makes
the contribution of the turbulent pressure to the excitation much
larger than in previous works making our results more consis-
tent with that by Stein & Nordlund (2001).

Our investigation clearly emphasizes thenon-Gaussian
character of the solar p modes excitation as a result of thenon-
Gaussian property of the convective eddies time-correlations.
It also shows that the dynamic properties of the solar turbulent
convection inferred from the 3D simulation are consistent with
the helioseismic data.

We stress that only simple non-Gaussian forms forχk have
been investigated here. More sophisticated forms are likely to
improve the agreement with theν-dependency ofχk (or χz

k).
This would not affect the main conclusions presented in the
present paper.

5.4. Possible origin of the non-Gaussian property of χk

We recall thatχk measures the temporal evolution of the cor-
relation between two points of the turbulent medium separated
by a distance of∼2π/k. A Gaussian time-correlation means that
the fluid motions in the medium are random in time. Departure
from a Gaussian time-correlation at large scales (k ∼ k0) sug-
gests that a strong correlation exists at that scale.

Downward plumes are likely to be responsible for the non-
Gaussian behaviour ofχk. Downward and upward convec-
tive motions are indeed highly asymmetric (Stein & Nordlund
1998): downward flows are associated with patterns (plumes)
which are more coherent than the upward moving structures
(Rieutord & Zahn 1995). The upward flows are associated
with less coherent and more random structures (granules) char-
acterised by a broad variety of sizes and lifetimes (Rieutord
& Zahn 1995). The non-Gaussian behavior ofχk can most
probably be attributed to plumes. This however remains to be
checked (work in progress).

5.5. Possible origin of the remaining discrepancy

Despite a clear improvement in the agreement between ob-
served and theoretical excitation rates, important discrepancies
between the computedP and the solar measurements still re-
main at high frequencyν >∼ 3.5 mHz (see Sect. 4.2 and Fig. 3).

On the “observational side”, at high frequency, larger un-
certainties for the damping ratesη induce larger uncertainties
on the derived supply energy rates.

On the theoretical side, part of the discrepancy might well
be attributed to a poor description of the eigenfunctions at high
frequency. Indeed, the discrepancies between the calculated
eigenfrequencies and the observed ones are largest at high fre-
quency (ν >∼ 3 mHz). This indicates that the description of the
eigenfunctions are less accurate at high frequency. As the ex-
pression for calculatingP involves the first and second deriva-
tives of the mode eigenfunction, the lack of accuracy in the
calculation of the eigenfunctions has a larger impact onP at
high frequencies than at small frequencies.

Other possible causes can perhaps be related to our sim-
plified excitation model which assumes isotropic turbulence.
Indeed the current theory assumes that the stochastic excita-
tion is the same in all three directions, particularly between the
ascending and descending flows. However the kinetic energy
and entropy fluctuations are larger in the downward flows than
in the upward flows (Stein & Nordlund 1998). Therefore the
driving arising from the advection of the turbulent fluctuations
of entropy by the turbulent movements differs significantly be-
tween the elements moving downwards and those moving up-
wards. As the entropy fluctuations are largest in the outermost
part of the convective zone, the above mentioned asymmetry
will predominantly affect the high frequency modes.

Moreover, it is also assumed that the total kinetic energy,
E, is isotropically injected in all 3 directions. Excitation of the
radial p modes results from the vertical component of the ve-
locity. However at the top of the convective zone, the distribu-
tion of kinetic energy inE(k, z) and inEz(k, z) are very different
from each other. These differences may affect more strongly the
high frequency modes. Consequences of these departures from
the isotropic assumption need to be further investigated.

5.6. Perspectives

The non-Gaussian property ofχk and its consequences for
the stochastic excitation has been investigated so far only for
the Sun. However such a non-Gaussian feature of the turbu-
lence will most likely also be of importance for solar-like os-
cillating stars more massive than the Sun, provided our analysis
is also valid for these stars. This can substantially change the
excitation spectrumP for such stars compared to that which is
currently predicted.

Therefore investigations ofp mode excitation in hotter and
more massive stars must be undertaken, which should proceed
in two steps: first, the validity of the present results obtained
in the solar case must be investigated for other stars with, for
instance, the help of dedicated 3D simulations. The conclusions
which will drawn from this first step must be used in a second
step to study the frequency dependence and the magnitude ofP
for different solar-like oscillating stars (see preliminary results
in Samadi et al. 2002).

Future space missions such as COROT (Baglin & The
Corot Team 1998), MOST (Matthews 1998) and Eddington
(Favata et al. 2000) will provide high-quality data on seismic
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observations. COROT will be the first mission that will provide
high precision mode amplitudes and linewidths in other stars.
This high-quality data will allow us to derive the excitation
rateP and will provide improved observational constraints on
the theory of stochastic excitation which is, at present, poorly
constrained by observation.
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Abstract. Acoustic rates of excitation of solar p modes can be estimated from observations in order to place constraints on the
modelling of the excitation process and the layers where it occurs in the star. For several reasons (including a poor signal to
noise ratio and mode overlap), this estimation is difficult. In this work, we use three completely independent datasets to obtain
robust estimates in the solar case for ℓ = 1 modes. We also show that the height in the solar atmosphere where the modes
are observed must be taken into account. Our three sets of results are shown to be consistent, particularly in the lower part of
the p-mode spectrum (from 1.8 mHz to 2.8 mHz). At higher frequencies, the agreement is not as good, because of a larger
dispersion of the measurements and also because of some systematic differences which might be due to observation height
estimation or to a systematic influence of the noise.

Key words. Sun: oscillation – Sun: helioseismology

1. Introduction

Solar seismology has been used for many years to “sound
out” the interior of the Sun through information provided by
the acoustic resonances (the so-called p modes). More pre-
cisely, the frequencies of these resonances – which are usu-
ally extracted by the analysis of power frequency spectra –
are governed by the physical conditions inside the Sun, and
these can be “inverted” to infer these conditions (e.g., sound
speed, density, rotation). In the last ten years, new ways of
analysing the solar oscillations or extracting information from
them have been developed, mainly in the field of local seismol-
ogy (analysing local propagation of acoustic waves). However,
globally coherent, or “classical” seismology, is also develop-
ing and giving rise to new results: for example Houdek et al.
(2001) have used the width of the resonances to infer convec-
tion properties. Nevertheless, the outer layers of the Sun remain
poorly described, as well as the convection in these layers.

Seismology can place constraints on the modelling of
these layers, and on the convection which excites the acous-
tic resonances. Among others, Samadi & Goupil (2001) have

⋆ Present address: Instituut voor Sterrenkunde, Katholieke
Universiteit Leuven, Celestijnenlaan 200 B, 3001 Leuven, Belgium.

proposed such a model and compared the acoustic rates thereby
predicted (see Sect. 2) with observations (Samadi et al. 2003).
They found a good overall agreement when the input data of
the theoretical model of stochastic excitation were constrained
with a 3-D simulation of the Sun. However, even if the agree-
ment is good for the lower part of the p-mode spectrum, some
clear discrepancies remain at higher frequencies, which is un-
fortunately where the properties are most difficult to measure.

The excitation rate of low-frequency p modes is mainly
dominated by inertia. In contrast, the excitation of high-
frequency p modes is more sensitive to the nature of the source
of excitation (either dynamical via Reynolds stresses or thermal
via turbulent entropy fluctuations, see Goldreich et al. 1994;
Samadi et al. 2001). The excitation rate at high frequencies
also depends on the temporal properties of the turbulence in
the outer layers of the star (Samadi et al. 2003). Observational
constraints are needed for the modelling of such properties.

The estimation of the power and width of the acoustic res-
onances is subject to several sources of error. First, there is
a large uncertainty in the measurement as the power spec-
trum of a resonance (or mode) has a large variance because of
the stochastic nature of the excitation (see Sect. 6). Moreover,
the absolute calibration in amplitude of a Doppler time
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series is a complex problem (see Sect. 4). Another problem is
to know exactly at which height in the solar atmosphere the
modes are observed. Oscillations of the photosphere are mea-
sured in two ways: photometry in a given wavelength range,
or Doppler measurements on a line formed in the photosphere
(like the data used in this work). As the density drops rapidly
with height in the solar atmosphere, the observed amplitude in-
creases rapidly. Thus, a measurement of power is meaningful
only if the altitude to which it corresponds is known. With a
proper calibration, comparisons of the absolute power levels of
models of mode excitation by convection are possible (whose
results are strongly dependent on height; see Sect. 5).

Our aim in this paper is to obtain reliable measurements
of the excitation rate of globally coherent, low-angular de-
gree (or low-ℓ) modes. To have confidence in the results we
have used three independent datasets (see Sect. 3) covering the
same observation period, and then analysed these with the same
method and software. We have been particularly careful in our
extraction of the parameters at high frequencies (see Sect. 6).
Furthermore, we have also taken into account in our analy-
sis the observation heights in the solar atmosphere at which
the three datasets were “taken”. As such, we have attempted
to make available to modellers an internally consistent set of
results.

2. Assessing excitation rates from seismic

measurements

2.1. Relations between the mode excitation rate,

line-width and surface velocity

The rate at which a p mode of frequency ν0 is excited is ex-
pressed as in Goldreich et al. (1994):

P = 2π Γ E (1)

where Γ = 2η/2π is the linewidth of the mode and η is
the damping rate. The averaged mode energy, E, is given by
Samadi et al. (2001)

E =M(rs) v2(ν0) , (2)

where v2(ν0) is the mean-square surface velocity of a radial

mode. The mode mass is obtained from

M(rs) =
I

ξ2r (rs)
with I ≡

∫ M⊙

0
dm ξ∗.ξ (3)

where I is the mode inertia, ξ is the eigenfunction for the fluid
displacement, ξr its radial component and rs is the radius at
which oscillations are measured.

According to Eqs. (1) and (2), the excitation rate P can then
be related to the seismic data by:

P(ν0) = 2π Γ M v2(ν0), (4)

where the quantities Γ and v2 are indeed obtained from the ob-
servations.

A pulsation code is used to compute the eigenfunctions,
ξ, and the mode mass M for a calibrated solar model (see
Sect. 2.3). It is important to stress that the radius rs, at which
M must be evaluated depends on the spectral line of the corre-
sponding seismic measurement (see Sect. 5) and therefore on
the observation set and instrument.

2.2. Determination of the mode surface velocity

and line-width from the seismic measurements

To a first approximation, the mode profile in the observed
power velocity spectrum, PL, can reasonably be assumed to
be Lorentzian with a maximum power spectral density, or
height, H, and a linewidth at half maximum given by Γ. The
mode profile is then written as:

PL(x) = H
1

1 + x2
where x ≡ 2(ν − ν0)/Γ. (5)

The square of the mode velocity, v2 – which will be used in
evaluating Eq. (4) – results from the integration of the mode
profile over the frequency ν:

v2L =

∫ +∞

−∞

dνPL(ν). (6)

The integration is performed over ]− ∞,+∞[ to take into ac-
count both the negative and the positive side of the spectrum.
In practice, the real velocity profile is modified by several ef-
fects such as the observational technique and geometrical ef-
fects. This is taken into account through a multiplicative fac-
tor Cobs, so that finally one has:

vL
2 = πH ΓCobs. (7)

In the actual observed velocity spectrum the solar p modes ex-
hibit asymmetric profiles. This asymmetry is interpreted as due
to the interaction between the resonant cavity mode and local
emission from discrete sources (Duvall et al. 1993; Abrams &
Kumar 1996). Nigam et al. (1998) developed a more sophis-
ticated model by adding a correlation between the mode os-
cillation and the solar noise. After dropping an additional pa-
rameter, whose influence applies only far in the wings of the
peak and which cannot be observed in the solar case because
of the presence of noise and neighbour modes, and after some
simplifying approximations, they modelled the power velocity
spectrum as (hereafter Nigam’s profile):

PN(x) = H
(1 + Bx)2 + B2

1 + x2
, (8)

where B is a parameter which controls the asymmetry and con-
tains the effects of correlated noise and of the source. The
corresponding mean square velocity of the Nigam profile is
the integral of Eq. (8) over x = ]− ∞,+∞[. However, since
the approximation performed by Nigam et al. (1998) in deriv-
ing Eq. (8) is valid only for |B x| ≪ 1, the formalism cannot
be used when |x| ≫ 1. In what follows, we obtain estimates of
the H and Γ by fitting the Nigam profile (Eq. (8)) to the data.
However, we do so by restricting the fitting interval, which runs
from −x0 to x0, to x0 ≤ 10.
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Once the quantities H and Γ are determined, one needs to
compute the velocity. The mean square velocity of the mode,
v2N, is then:

v2N = πH ΓCobs (1 + δ(B)) = v2L (1 + δ(B)), (9)

with

δ(B) = −1 +
1
π

∫ +x0

−x0

dx
(1 + Bx)2 + B2

1 + x2
· (10)

The quantity δ depends on B, which in turn depends on ν0, and
is found to be negligible for all the modes investigated here. For
instance, at ν0 ≃ 3.3 mHz and with x0 ≡ 10 (i.e., |ν − ν0| = 5Γ)
we have B ∼ −10−2 and δ ∼ 0.05%. This last value must be
compared with the relative errors associated with v2 which are
>∼20%. Therefore by estimating v2 from Eq. (9) but neglecting
the δ(B) we introduce a negligible error in the determination.

2.3. Mode mass calculation

The solar model we consider is calculated with the CESAM
code (Morel 1997) and appropriate input physics, as described
in detail in Lebreton et al. (1999). In particular, convection
is modelled according to the classical mixing-length theory
(Böhm-Vitense 1958, hereafter MLT) with a mixing-length
l = αcHp, where Hp is the pressure scale height and αc is
the mixing-length parameter. In contrast with Lebreton et al.
(1999), the atmosphere is calculated assuming the Eddington
classical gray atmosphere, and microscopic diffusion is in-
cluded according to the simplified formalism of Michaud &
Proffitt (1993). The calibration of the solar model in luminosity
and radius for an age of 4.65 Gyr fixes the initial helium content
Y = 0.2751, the metallicity Z = 0.0196 and the MLT parameter
αc = 1.76.

The oscillation eigenfunctions, and hence the mode
masses, M, in Eq. (4) are next obtained with the adiabatic pul-
sation code of Tran Minh & Leon (1995) from the solar model.

In order to measure the influence of the treatment of con-
vection and of the atmosphere, we have considered two ad-
ditional solar models. One solar model assumes Canuto et al.
(1996)’s local treatment of convection. The second has its at-
mosphere calculated assuming Kurucz’s model, computed such
as to provide a good agreement between synthetic and observed
Balmer line profiles.

At fixed rs, we find that the mode masses depend on the
treatment of convection and on the treatment of the atmosphere
but the associated changes in M(ν) are found to be of the same
order as the observational error bars associated with the excita-
tion rates. As we are, here, mainly interested in the comparison
between observations from different instruments, the effect of
the adopted physics on M does not influence the results.

3. The different data sets used

Three datasets were used in this work, each covering the
805-d period from 1996 April to 1998 June. This epoch co-
incides with a period of low activity on the Sun. The use of
several sets allows a direct comparison, and an assessment of

the influence on the results of each observation method. The
three time series come from the instrument GOLF (Global
Oscillation at Low Frequencies, Gabriel et al. 1997) on-
board the satellite SoHO, and from the ground-based networks
BiSON (Birmingham Solar Oscillation Network, Chaplin et al.
1996) and GONG (Global Oscillation Network Group, Harvey
et al. 1996). Each are velocity measurements integrated over
the whole solar disc1 sensitive to low-degree modes (mainly
ℓ = 0, 1 and 2). The analysis has been performed in the same
way for the three sets (i.e., the same fitting algorithm).

An obvious difference between the datasets is the “duty cy-
cle”, or fraction of effective time for which observations are
available. Interruptions can result from instrumental failures,
and also from bad weather for the ground-based networks.
Power levels in the Fourier (frequency) spectrum can be cor-
rected to take account of these interruptions through a simple
multiplication by the inverse of the duty cycle. However, as
shown by Chaplin et al. (2003), this simple correction does
not completely remove the bias in the fitted width and height
parameters that is caused by the window. In this work, acoustic
rates computed from BiSON and GONG spectra were therefore
additionally corrected by a constant value of 9% for each 10%
change in duty cycle, as indicated by Chaplin et al. (2003).

In addition to this, two aspects play an important role in
the comparison of the three datasets. First, the absolute cali-
bration of a Doppler time series is a delicate task. Among the
seismic observables, frequencies are very accurately estimated
(to some ppm), whereas amplitudes are not. One of the reasons
for this is the difficulty in properly deriving the photospheric
displacement from the spectro-photometric measurements per-
formed by the instruments. The case of GOLF can be cited
as a good example as, because of technical problems, Doppler
shifts are estimated from only one wing of the selected atomic
lines. However, the task is not much easier for the other two
instruments (Hill, Leibacher, private communication). This is
detailed in Sect. 4.

The second aspect of the problem of acoustic rate estima-
tion is the height in the solar photosphere to which the obser-
vations correspond, as the amplitude of the modes varies with
height. This is the old and complex problem of line formation
in the solar atmosphere, illustrated by an abundant literature,
and detailed in Sect. 5.

3.1. GOLF data

GOLF is based on a non-imaging spectrophotometer using the
Na  D1 (at 589.6 nm) and D2 lines (at 589.0 nm) to measure
the velocity of the photosphere. Because of technical problems
(Gabriel et al. 1997), the velocity is derived from intensity mea-
surements in only one wing of the lines (the blue wing for
the period used here). The average position of the measure-
ment points in the wing is 108 mÅ from the centre for the
D1 line, and 81 and 135 mÅ for the D2 lines. To this must
be added the value of the gravitational redshift for the sodium
lines: 12.5 mÅ.

1 GONG also provides imaged observations, but here we have used
the whole disc data.
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As GOLF is space-borne, the interruptions in the observa-
tions are very few, and the duty cycle reaches almost 100% over
the total duration of the period of observation chosen here.

3.2. BiSON data

The BiSON instruments are also non-imaging spectrophotome-
ters, but they work in the K  line at 769.9 nm. The intensity is
measured in both wings, at typically ±63 mÅ from the centre
of the line (which presents a gravitational redshift of 16 mÅ ).

Despite the use of six active sites spread widely in longi-
tude, the network experiences some interruptions yielding a
duty cycle of ≈74% for the period used here.

3.3. GONG data

The GONG instrument is an imaging Fourier tachometer using
Ni  at 676.8 nm, which measures velocity from the whole line,
as described by Jones (1989). The time series used here is the
ℓ = 0 dataset (integration over 95% of the solar disc). Again,
there are some gaps in network coverage giving a duty cycle
for the period covered of about ≈82%.

4. Data calibration

The sensitivity of each instrument is not exactly the same:
first, the geometrical visibility of the modes must be taken
into account to compare those of different degree ℓ. The
limb-darkening influences this parameter for the GOLF and
BiSON spectrophotometers (see Appendix in Appourchaux
et al. 2000; Christensen-Dalsgaard & Gough 1982), making it
different for each instrument despite the fact that the geometry
is intrinsic to the modes. In addition, GOLF and BiSON have
their sensitivity influenced by the relative velocity of the instru-
ment (due to the SoHO orbit for GOLF and to Earth orbit and
rotation for BiSON, and to the gravitational redshift for both)
and also by the solar rotation, as described by Christensen-
Dalsgaard (1989). The impact of these effects on visibility
gives rise to the so-called “Doppler imaging”. This yields a
Cobs parameter (see Eq. (7)) for each spectrophotometer, and
for each degree ℓ. Based on Appourchaux et al. (2000) and
Christensen-Dalsgaard (1989) and on the limb-darkening de-
scription of Allen (1991), we have derived this parameter for
GOLF and BiSON.

GONG is not a spectrophotometer but a Fourier tachometer.
We have derived Cobs for the modes ℓ = 1 and 2 from the value
for ℓ = 0 modes (given by F. Hill, private communication) and
from their geometrical visibility.

All these values are listed in Table 1.

5. Observation heights

As mentioned in Sect. 2.1, the mass of the modes is one of the
parameters needed to compute the excitation rate. As this mode
mass is the mode inertia (an intrinsic characteristic) normalised
by the displacement at the height where the wave is observed,
this height must be properly estimated to derive correct values
of the excitation rate. However, obtaining reliable formation

Table 1. Observational correction Cobs for the different instruments
and modes (see Sect. 4).

ℓ = 0 ℓ = 1 ℓ = 2

GOLF 2.33 2.59 6.19

BiSON 2.99 3.38 8.41

GONG 3.27 3.88 10.91

heights of solar lines is a complex problem. In addition, each
instrument analyses a well delimited part of the profile of the
line, and as from the center of the line to the wings the height of
formation varies by hundreds of km, the characteristics of each
instrument must be taken into account. For the three relevant
spectral lines used here, we have made use of Jones (1989) for
GONG, and Bruls & Rutten (1992) for BiSON and GOLF. The
work done by Jones is perfectly suited as it takes into account
the manner in which GONG measurements are performed. On
the other hand, the work of Bruls & Rutten is more general, but
provides enough information to estimate the formation height
of the K line of BiSON and the Na D1 of GOLF. Unfortunately,
this work does not include the neighbouring Na D2 line.

We have taken these estimates as a first approach and are
aware of their limitations. In addition to the missing D2 line,
some other aspects are neglected, e.g., integration over the en-
tire solar disc and limb darkening effect. A complete and co-
herent treatment of the three lines, applied to the specific case
of each instrument, is necessary but remains the next step for a
future work.

It is not easy to define a formation height since physically
it is not a single altitude in the solar atmosphere, but a range of
contributing altitudes to the radiation of interest. The heights
we extract from the literature must be considered only as esti-
mates of the maximum of contribution. From Fig. 3 of Jones
(1989), we have estimated the observation height of GONG at
hGONG ≈ 240 km above the photosphere. Knowing the average
position at which BiSON and GOLF measurements are made
in the wings of K and Na lines, we have set hBiSON ≈ 280 km
from Fig. 10 of Bruls & Rutten (1992), and hGOLF ≈ 340 km
from their Fig. 11. Again, these estimates have to be taken as
approximate, not only for the reasons already mentioned but
also because they result from an average of different physical
cases (the “hot” and “cool” models of Bruls & Rutten). More
recently, Georgobiani et al. (2003) also showed that the defini-
tion of height is not trivial when comparing geometrical height
and optical height.

The effect of height formation influences the determined
acoustic rates, via the mode mass, mainly at high frequencies
(ν ≥ 3 mHz); the effect is much weaker at lower frequencies
(see Fig. 1). As such, this makes the interpretation of the results
easier.

6. Measurements

The parameters necessary for the derivation of the acoustic rate
are listed in Sect. 2. From the observations, two characteris-
tics of the modes are needed: their width and their height in
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Fig. 1. Mode mass computed for different heights. Because the modes
at higher frequencies are concentrated closer to the surface, the masses
tend to decrease with increasing frequency. The increasing value of the
eigenfunction ξ for larger heights gives the variation of mass versus
height.

Fig. 2. Excitation rate computed from Lorentzian profiles and asym-
metric profiles, showing a significant bias.

the power spectrum. They have been obtained by a classical fit-
ting procedure applied in exactly the same manner to the three
data sets. The modes are fitted using the asymmetric profile
described by Nigam et al. (1998). This slight deformation of
the peak is known to have a significant influence on frequency,
but omitting it also leads to a bias in the determination of the
acoustic rate, as shown in Fig. 2.

In the frequency interval from 2 to 3.5 mHz in the three
datasets, the signal to noise ratio (SNR) is good and the fitting
procedure extracts robust estimates of the mode parameters.
However, as shown in Samadi et al. (2003), the high frequen-
cies part (higher than 3.5mHz) of the spectrum is interesting as
observations and models tend to differ here. It is also the most
difficult part of the spectrum to analyse, first because of the de-
creasing SNR, and second because of the increasing width of
the modes. This makes the pairs ℓ = 0/2 and ℓ = 1/3 overlap.
This in turn makes the fitting more difficult as cross-talk will
appear between the modes.

To minimize the effect of cross-talk between neighbour-
ing modes, as well as between the fitted parameters of a sin-
gle mode, we modified the fitting strategy at high frequen-
cies. The aim of these changes was to minimize the number of

Fig. 3. Fitted heights for m = ±1 for ℓ = 1 modes, which shows that
the hypothesis of equal height for |m| = ℓ components is acceptable
(error bars are 1σ).

Fig. 4. Power spectrum at high frequencies from GOLF data, showing
the overlapping pairs of modes.

fitted parameters; these were tested on the high SNR part of the
spectrum and then applied at high frequencies. The changes
applied can be something as simple as imposing the same am-
plitude for the |m| = ℓ components of a mode (see Fig. 3), or
the same asymmetry for a pair ℓ = 0/2 or ℓ = 1/3 as shown
by Thiery et al. (2000). However, at very high frequencies
(n ≥ 29), some more parameters have to be fixed in order to
avoid poor convergence in the fits. First, we have chosen to re-
strict ourselves to the extracted ℓ = 1 parameters, as full-disc
observations are much less sensitive to ℓ = 3 (see Fig. 4). The
comparable heights of the ℓ = 0 and ℓ = 2 make this pair much
more difficult to fit. Then, the strategy chosen here consisted
of fixing the frequency difference in ℓ = 1/3 pairs (leaving the
ℓ = 1 frequency to be fitted) in addition to fixing the relative
height (from estimates done in the part of the spectrum with
good SNR) of the ℓ = 3 mode compared to that of the nearby
ℓ = 1 (which is fitted).

An additional way of improving the fitting is to use av-
eraged power spectra. Instead of taking the power spectrum
of the whole time series, one divides the series in N subsets,
whose N spectra are averaged. It is the averaged spectrum that
is then fitted. As the quantity of information is the same in
both cases, no improvement should be expected in precision.
Nevertheless, as the averaged spectrum has a reduced variance
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Fig. 5. Comparison of the excitation rate computed from the fitting
procedure applied to a simulated spectrum (solid line) and the input
excitation rate used for the simulation (crosses).

compared to the single (long) spectrum, and despite a poorer
frequency resolution because of the shorter subsets, the fitting
algorithm works better at high frequencies where the under-
lying shape of the peaks in the spectrum becomes then more
evident. For this work, we averaged N = 20 spectra, each made
from contiguous 40.25-d pieces. Uncertainties in the fitted pa-
rameters were computed according to Appourchaux (2003).

In order to check the reliability of the fitting, we performed
a “blind” test using artificial data. The spectrum used is the
main Hare-and-Hounds set of the Fitting at Low Angular-
degree Group (FLAG)2. One of us (WJC) generated the data
for the fitter (FB) to analyse, with the basic underlying mode
parameters unknown to the latter. As shown in Fig. 5, the out-
put of the fitting procedure are in very good agreement with
the input of the simulation, except at very high frequencies
where a tendency to a slight underestimation is visible (but
generally smaller than the error bars). Even if extensive sim-
ulations should be necessary to completely validate the fitting
procedure, we consider that this first test is significant.

7. Results

7.1. Raw results

First, we compare the results for the acoustic rate of excitation
of the modes, without any correction for the different observa-
tion heights in the solar atmosphere. The mode mass used was
computed for an observation height of h = 0 km. This height is
certainly not suited for any of the three instruments, but allows
a comparison of the raw results in order to check for a possible
bias due to the fitting procedure. Corrected results are shown
and discussed in Sect. 7.2.

One can see from Fig. 6 that the independent measure-
ments from the three helioseismic instruments coincide rea-
sonably well. The error bars used in Fig. 6 are 1σ errors. The
different measurements agree typically to within 1 or 2σ. The
agreement between the different datasets is particularly con-
vincing at low frequencies, except for an almost constant dif-
ference: in the range 2−3 mHz, the GOLF rate is systematically

2 http://bison.ph.bham.ac.uk/∼wjc/Research/FLAG.html

Fig. 6. Raw (no mass mode correction) acoustic rates for the three
instruments.

lower than that of BiSON (by about 20% on average), whereas
that of GONG is systematically higher (≈15%). As mentioned
in Sect. 5, mode mass does not make an important difference
in this frequency range. The most likely origin of this discrep-
ancy is an inaccurate absolute calibration of the three signals.
However, we regard the level of agreement achieved as more
than satisfactory given the complexities and uncertainties in-
volved in the calibration.

At higher frequencies (ν ≥ 3 mHz), it is the difficulty in fit-
ting the mode parameters (see Sect. 6) that is most problematic.
Moreover, the mode mass correction is no longer negligible at
these frequencies. However, despite a larger dispersion of the
results, the GOLF rates are seen to be sytematically higher than
those of BiSON, most of which are in turn higher than those of
GONG. This ordering is different from the one seen at low fre-
quencies, and in fact reflects that of the observation heights of
the three instruments. It is clearly necessary to correct for this
effect.

7.2. Mode mass corrected results

The mode masses for the correction applied here were com-
puted using the observation heights chosen in Sect. 5: hGONG ≈

240 km, hBiSON ≈ 280 km and hGOLF ≈ 340 km. As expected,
the correction does not make a large difference in the compar-
ison of BiSON and GONG, as their observation heights are
similar. Also foreseeable was the GOLF results were moved
towards those of the other instruments, because of its higher
observation height. However, the GOLF results remain higher
than the others, particularly if one takes into account the appar-
ent underestimation at low frequencies, which is certainly due
to the absolute calibration as discussed in the next section.

8. Discussion

A first general conclusion that can be drawn from this work is
that the excitation rate of solar p modes can be measured to
relatively good accuracy. We have measured it from three com-
pletely independent datasets and found that the results were in
agreement (without the need for speculative corrections). The
discrepancies are of the order of 1σ (which corresponds to a
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Table 2. Computed and measured (using GOLF data) parameters for ℓ = 1 modes, including the mode mass correction for acoustic rates.

Mode Frequency Mode mass Height Width Supply rate

identification (µHz) (kg) (m/s)2/Hz (µHz) (Joule/s)

n = 11 ℓ = 1 1749.33 2.64e+23 133.19 0.26 1.23e+14

n = 12 ℓ = 1 1885.10 1.53e+23 256.89 0.28 1.58e+14

n = 13 ℓ = 1 2020.83 9.58e+22 303.58 0.47 3.32e+14

n = 14 ℓ = 1 2156.79 6.13e+22 516.56 0.54 4.65e+14

n = 15 ℓ = 1 2292.03 4.02e+22 717.22 0.74 8.05e+14

n = 16 ℓ = 1 2425.57 2.84e+22 1257.09 0.88 1.40e+15

n = 17 ℓ = 1 2559.24 2.19e+22 1981.39 0.94 1.96e+15

n = 18 ℓ = 1 2693.39 1.78e+22 3890.51 0.92 3.01e+15

n = 19 ℓ = 1 2828.15 1.48e+22 5669.65 0.94 3.78e+15

n = 20 ℓ = 1 2963.29 1.25e+22 11138.21 0.80 4.55e+15

n = 21 ℓ = 1 3098.16 1.07e+22 9901.91 1.08 6.28e+15

n = 22 ℓ = 1 3233.13 9.44e+21 12005.16 1.12 7.31e+15

n = 23 ℓ = 1 3368.56 8.48e+21 5356.12 1.84 7.90e+15

n = 24 ℓ = 1 3504.07 7.73e+21 2781.75 2.83 8.78e+15

n = 25 ℓ = 1 3640.39 7.07e+21 1678.01 3.85 9.00e+15

n = 26 ℓ = 1 3776.61 6.47e+21 831.83 5.90 9.57e+15

n = 27 ℓ = 1 3913.49 5.95e+21 522.33 8.09 1.04e+16

n = 28 ℓ = 1 4049.46 5.48e+21 331.52 10.73 1.07e+16

n = 29 ℓ = 1 4186.98 5.05e+21 236.70 12.69 9.84e+15

n = 30 ℓ = 1 4324.79 4.64e+21 147.81 16.39 9.42e+15

n = 31 ℓ = 1 4462.08 4.25e+21 108.15 17.35 7.07e+15

n = 32 ℓ = 1 4599.96 3.88e+21 78.85 26.42 1.09e+16

mean relative error of 22% for GOLF and 28% for BiSON and
GONG) at low frequencies. These discrepancies can reach a
level of 2 or 3σ at high frequencies, where the analysis is par-
ticularly difficult.

The level of agreement achieved has been possible by us-
ing a careful fitting of the data. The model fitted to the obser-
vations included an asymmetry in the peaks, since we found
that the use of a Lorentzian profile yielded a small but system-
atic error. A strategy was adopted at high frequencies, where in
the fitting of the ℓ = 1/ℓ = 3 pairs we used a fixed frequency
difference and a fixed amplitude ratio. This gave robust fits de-
spite the poor signal to noise ratio (SNR) and the large width
of the peaks. A comparison with simulated data (the Hare-and-
Hounds FLAG spectrum) validated this approach. However,
extensive simulations would be necessary to estimate, for ex-
ample, the influence of a poor SNR at high frequencies.

The agreement between the results from the three sets al-
lows us to put constraints on the excitation rate. The excitation
rate can be conveniently expressed as a power law: P ∝ να (see
for example Goldreich et al. 1994). At low frequencies, the ex-
ponent α mainly represents the inertia dependence of the exci-
tation. At high frequencies, the excitation (and so the slope α)
is strongly dependent on the adopted description of the turbu-
lence. The three sets considered here yield similar values of α
at low frequencies (1.8 mHz ≤ ν ≤ 2.8 mHz): (7.7 ± 0.3) for
GOLF; (7.5 ± 0.4) for BiSON; and (6.9 ± 0.4) for GONG. At
higher frequencies (3.3 mHz ≤ ν ≤ 4.8 mHz), the task is more
difficult. First, the raw data (Fig. 6) – which have a positive,
null and negative value for α – show the necessity of applying

Fig. 7. Mode mass corrected acoustic rates for the three instruments.

a mode mass correction to take account of the height of ob-
servation in the solar atmosphere. After the correction has
been applied (Fig. 7), the three instruments yield α values of:
(0.3±0.5) for GOLF; (−2.1±0.7) for BiSON; and (−2.3±0.5)
for GONG. This shows that the mode mass correction brings
the GOLF results closer to those of BiSON and GONG.

However, there is still some residual high-frequency dis-
crepancy. This suggests that more work is needed, in particular:
(i) on the determination of the observation heights; and (ii) on
the influence of the SNR on the measurements at high frequen-
cies. If the Na line used by GOLF were higher than expected
in the solar atmosphere, the mode mass correction would be
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stronger and this might possibly make the GOLF results com-
patible with those of BiSON and GONG. Calculations based
on the same hypothesis for radiative transfer in the solar at-
mosphere for the three atomic lines used are necessary to de-
termine the three heights consistently. Moreover, these calcu-
lations must take into account the instrumental details in each
case to allow an accurate determination. On the other hand,
it must be noted that because of their lower-fill window func-
tions, the SNR in the BiSON and GONG spectra is lower than
for GOLF. The poor SNR in the Fourier spectra at high fre-
quencies might bias the observed excitation rate. Extensive nu-
merical simulations are needed to test the extent of this.

This work must be seen as a first step towards a better un-
derstanding of p-mode excitation and an improved description
of convection in the outer layers of the Sun. The use of three
different datasets shows that the estimation of the excitation
rate is not trivial, as several instrument related effects must
be taken into account. However, the results from the three in-
struments show that it is possible to provide reliable estimates.
This is necessary to allow fruitful comparisons between mod-
els and observations and to obtain information on the excitation
process (is it dominated by Reynolds stress or entropy fluctua-
tion?) and on turbulent convection (for instance its dynamical
properties such as the degree of correlation in the turbulent con-
vection). This will be the aim of a following paper.
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Abstract. The observation of a few mixed modes on solar-like oscillating stars would enable their rotation profile to be inverted
with success. Here simulated data are used to show that it is possible to find models for solar-like stars that present stochastically
excited mixed modes with detectable amplitudes. We take special care to build the mode set by computing the mode amplitudes
and selecting those modes with amplitudes compatible with the performance of the forthcoming seismic space experiment,
COROT. The frequency set is inverted for various cases where input and trial stellar models differ and where random noise
is added to the splittings. We show it is possible to localize a rotation gradient and assess its magnitude. Moreover the use of
inverse and forward procedures in parallel gives access to a large part of the profile. We provide several constraints to help the
selection of such stars. One looks for a relatively evolved star (still on the main sequence) of ≃1.5 M⊙ and the rotation rate on
the surface should not be too small.

Key words. stars: oscillations – stars: rotation

1. Introduction

Helioseismology has proven to be a powerful tool for probing
the interior of the Sun. In particular the inversion of the so-
lar eigenfrequencies has provided localized information on the
internal structure and rotation of our star (Gough et al. 1996;
Basu & Christensen-Dalsgaard 1997; Basu et al. 2000; Schou
et al. 1998). Solar-like oscillations have now been detected for
several other stars from the ground;αCen A (Butler et al. 2004;
Bedding et al. 2004), Procyon (Martić et al. 2004; Eggenberger
et al. 2004), β Hydri (Bedding et al. 2002), η Bootis (Kjeldsen
et al. 2003); for a review see (Bouchy & Carrier 2003; Bedding
& Kjeldsen 2003). Furthermore, ongoing and forthcoming
space seismic missions (MOST, COROT) should provide much
more accurate data.

The tools developed for helioseismology can be adapted to
study stellar interiors; however, the transition from helioseis-
mology to asteroseismology is not an easy task. Stars other
than the Sun are not spatially resolved. Because of averaging
over the stellar surface, only oscillation modes with low de-
grees will be detected. The available mode sets will be much
more restricted than in the solar case. Several studies have nev-
ertheless explored what we can expect from inversion to probe
the structure of solar-like stars; e.g. Basu (2003) has reviewed
the different attempts in this field using simulated data sets.

These attempts to invert solar-like oscillations focused
mostly on inversion for the structure of the star (sound speed,

density profile, etc.) It has been shown that structure inver-
sion for solar-like stars is not as straightforward as for the
Sun but remains possible. The success of the inversion is
definitely linked to the number of observed modes bearing
independent information, to the accuracy of the frequency
measurement, but also to the quality of other observational
constraints on the star, such as the basic stellar parameters
which are usually poorly known. Rotational inversions based
on simulated data sets have also been performed for δ Scuti
stars, using opacity-driven modes (Goupil et al. 1996). It is ex-
pected that such inversions are unlikely to succeed with pure
p mode oscillations (see Christensen-Dalsgaard 2004). Gough
& Kosovichev (1993) showed successful rotational inversion
results with solar-like oscillations; but the nature of the modes
was not mentioned, and the relative error on the splittings was
very small.

Obviously a restricted mode set and a degraded frequency
resolution prevent the inversion process from providing com-
parable constraints on the stellar interiors to those on the solar
interior. However we aim here at showing that for some spe-
cific stars, rotational inversion can be achieved using solar-like
oscillations, primarily in the framework of the space seismic
mission COROT. Indeed some stars must present a few mixed
modes in the high frequency regime where modes are usually
pure p modes (see Christensen-Dalsgaard 2004). These mixed
modes present dual characterisitics as they have kinetic energy
both in the inner regions of the star (g mode nature) and in the

Article published by EDP Sciences and available at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20041900
125



940 J. Lochard et al.: Rotation profile inversion in solar-like stars

outer layers (p mode nature). Such modes may have already
been observed for the star ηBoo (Christensen-Dalsgaard et al.
1995; Guenther & Demarque 1996; Di Mauro et al. 2003). We
expect that observation of such modes might help to determine
the variation of the rotation profile along the radius and local-
ize some possible strong rotational gradient. This information
would be valuable in providing useful constraints for the mod-
elling of the angular momentum transport mechanisms inside
the star.

To establish what one can expect from rotational inver-
sion with low degree, high radial order modes, we needed to
construct artificial “observational” datasets comprised of rota-
tional splittings. To do so, we began selecting a stellar model
and generating the frequencies and the rotational kernels asso-
ciated with its eigenmodes; see Sect. 3. In this selection, our
main criterion was the existence of a few mixed modes in the

stochastically excited frequency range. As the mode set is cru-
cial to the success of the inversion (Basu et al. 2002), we took
special care in its selection (Sect. 4). We first formulated an
a priori mode rejection process based on criteria such as the de-
gree and the physical nature of the modes. Then we computed
the oscillation amplitudes for the remaining modes according
to our current knowledge of the excitation and damping pro-
cesses. We also determined a detection threshold according to
the expected performance of COROT. Amplitudes of the modes
were then compared to the COROT threshold to select the set
of modes (Sect. 4). Assuming a slow rotation with a given rota-
tional profile, we then computed the rotational splittings which
were optionally contaminated with random noise.

We then inverted the rotational splittings using the SOLA
inversion technique (Sect. 2) for three different cases, from the
ideal to a more realistic case: 1) inversion of the splittings us-
ing the input kernels; 2) inversion of the same splittings using
trial kernels, i.e. kernels computed from a stellar model differ-
ing from the input model used to build the rotational splittings,
where the trial model was selected according to observational
constraints such as the location of the model in the HR diagram
and the large and small frequency separations; 3) inversion with
trial kernels and splittings contaminated by noise. The results
of these inversions for rotation –Ω(r) – are presented in Sect. 5.

2. SOLA inversion technique

For slow rotators, the rotational splitting of an (ℓ, n)
mode (δωn,ℓ) is related to the rotational rate along the radius,
Ω(r), as follows:

δωn,ℓ =

∫ 1

0
kn,ℓ(r) Ω(r)dr + ǫn,ℓ, (1)

where kn,ℓ(r) is the rotational kernel and ǫn,ℓ the error associ-
ated with the (n, ℓ) mode (Christensen-Dalsgaard 1998). Pure
p mode rotational kernels are not highly localized, so that the
splittings only provide an average of the rotation rate over their
widths.

We use here the SOLA inversion method (Pijpers &
Thompson 1994), which aims at constructing an inversion

kernel K(r0, r) localized in r0 built as a linear combination of
the rotational kernels, i.e.:

K(r0, r) =
∑

j

c j(r0) k j(r), (2)

where the subscript j denotes the (n, ℓ) indices of the mode.
K(r0, r) is sought to match a pre-selected target function J(r0, r)
as close by as possible, while keeping the effects of the data
errors low. The aim is to minimize the following combination
of the distance between K and J and the data error propagation:
∫ 1

0
(J(r0, r) − K(r0, r))2dr + µ

∑

i j

Ei jcic j, (3)

where µ is a trade-off parameter to set the relative weight
between the first and second terms in Eq. (3). E is the er-
ror variance-covariance matrix of the observed frequencies.
Combining Eqs. (2) and (1) yields the average rotation rate
around r0:

〈Ω〉r0 ≡
∑

j

c jδω j =

∫ 1

0
K(r0, r)Ω(r)dr +

∑

j

c j(r0)ǫ j. (4)

The target function is chosen here as a Gaussian with width ∆:

J(r0, r) =
1
N

exp

(

−

(

r − r0

∆

) 2
)

(5)

where N is a normalization factor. The error on 〈Ω〉r0 is Σ jc jǫ j,
with ǫ j the errors on the observed splittings δω j. For errors on
the splittings independent of frequency (ǫ), the error magnifi-
cation can be expressed as follows:

Λ(r0) =

















∑

j

[c j(r0)]2

















1/2

. (6)

In this case, the error on 〈Ω〉r0 is:

σΩ(r0) = Λ(r0) ǫ. (7)

Hereafter rotation rates are normalized to the surface rotation
rate Ωsurf . Thus the errors are normalized as well.

3. Stellar modelling

Our stellar models were computed with the CESAM stellar
evolution code (Morel 1997). This computation assumed the
EFF equation of state, OPAL opacities (Iglesias & Rogers
1996), the classical theory for convection (MLT), and the
NACRE nuclear reaction rates (Gautier & Morel 1997).
Diffusion and rotation were neglected in the stellar model com-
putations.

In the next sections the choice of the mass and the age
of the stellar models is motivated by the expected amplitudes
and the nature of the oscillation modes respectively. A correct
choice of these parameters ensures that mixed modes exist in
the stochastically excited frequency range. Numerical calcula-
tions showed that for main sequence stars with mass lower than
1.50 M⊙, mixed modes are less likely to appear in the appropri-
ate frequency range. As a typical case, our input model had the
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following parameters: M = 1.55 M⊙, while the initial hydro-
gen and helium abundances were X0 = 0.705 and Y0 = 0.275.
The mixing-length parameter was set to α = 1.76, and no over-
shoot was included for this model (αov = 0). Our input model
was on the main sequence with a central hydrogen abundance
Xc = 0.10. The input model and its evolutionary track are rep-
resented in Fig. 3. The input rotation profile, Ω(r), used in this
study was built a posteriori, assuming local conservation of an-
gular momentum.

4. Selection of the mode set

The ability to recover the correct rotation profile with an in-
version process is strongly linked to the available mode set. To
make this study as realistic as possible we selected the mode
set on the basis of the expected amplitudes of the modes and of
the constraints imposed by performance of the space seismic
mission COROT (launch in 2006).

4.1. A priori selection

We selected a priori specific modes according to their nature
and degree, ℓ, since the quality of the inversion kernels de-
pends on these properties. The depths which the modes probe
depend very much on the nature of the modes. Pure p modes
mainly probe the outer layers of the star where most of their
kinetic energy is concentrated. Gravity modes – also named
g modes – have most of their energy in the deep interior. Their
large inertia are responsible for their very small amplitudes on
the surface. For this reason their detection seems unlikely (see
Unno et al. 1989). However, for sufficiently massive stars the
convective core recedes with evolution, which leads to an in-
crease in the chemical composition gradient at the edge of the
core. This gradient is directly involved in the expression of the
Brunt-Väissälä frequency N. Figure 2 shows that N2 increases
at the edge of the core with the age of the star. For relatively
evolved stars, modes with mixed nature appear. These mixed

modes present a g mode character in the deep interior and a
p mode character in the outer part of the star. They share their
kinetic energy between these two regions, the degree of their
“mixedness” depends on their fraction of energy in these re-
gions. Some of these modes showing a dual nature have inertia
that allows them to be detected, thus making it possible to probe
the star at low radii.

We chose here to reject the pure gravity modes from our
mode set and to keep only pure p modes and those mixed modes
with a rather low mixed character i.e. with their p mode nature
dominating over their g mode nature.

The apparent amplitude of a mode is an average of the
mode amplitude over the stellar surface, which strongly de-
pends on the degree ℓ of the mode. The observable ampli-
tude decreases with ℓ. The forthcoming space missions, such as
COROT, are expected to measure modes with ℓ ≤ 3. According
to Libbrecht (1992) the signal to noise ratio and the uncertainty
on the eigenfrequency determinations are linked; thus the fre-
quencies of ℓ = 3 modes may be determined with a rather low
precision. We therefore restrained ourselves to ℓ = 1, 2 modes.

4.2. Amplitude computation

For these a priori selected modes, the root mean square am-
plitudes in terms of velocity, v was calculated from the acous-
tic excitation rate P and damping rate η, itself obtained from
the tables of Houdek et al. (1999), calculated on the basis
of Gough (1977a,b)’s non-local and time-dependent formula-
tion of convection. We used the closest available model from
the input model in Houdek’s table of mass and temperature
(M = 1.50 M⊙ and Teff = 6400 K).

Excitation rates were computed according to the model of
stochastic excitation by Samadi & Goupil (2001). The calcu-
lations assumed a Lorentzian function for modelling the con-
vective eddy time-correlations (see Samadi et al. 2003). For
simplicity, we used the adiabatic assumption formulated by
Kjeldsen & Bedding (1995) to deduce the root mean square

of the intrinsic mode amplitudes in terms of luminosity fluctu-
ations (δL/L)intrinsic from their velocity v according to:

(

δL

L

)

intrinsic,max
=

(

δL

L

)

⊙,intrinsic,max

Vmax

V⊙max

√

Teff,⊙

Teff
· (8)

One should point out that this relation has been established
for bolometric amplitudes while COROT observes only in a
finite bandwidth. Although this bandwidth is optimized for
solar-like stars, the actual amplitudes are expected to be very
similar to the bolometric ones. For the Sun we took the rms
values (δL/L)⊙,max ≃ 4 ppm (see Kjeldsen & Bedding 1995,
Table 2; Barban et al. 2004) and V⊙max ≃ 27 cm/s according
to Chaplin et al. (1998)’s seismic observations. As the adia-
batic assumption is not correct in the outer layers of a star, we
performed a rough comparison with what is available in the
literature (Houdek et al. 1999). At a high frequency, the adi-
abatic assumption underestimates the amplitudes compared to
Houdek’s results, so it is quite conservative in this case. At a
low frequency a rough estimate showed that the adiabatic ap-
proach overestimates the amplitudes of the luminosity fluctu-
ations; thus considering the non-adiabatic assumption would
result in the present case losing one mode with a mixed char-
acter from the final mode set. This has no severe consequence
for the inversion results. At the worst, it would mean that the
present results are relevant for a star that is only a little more
massive or evolved than our case.

Strictly speaking the theory underlying the excitation and
damping rate computations used here is valid only for radial
pure p modes. Only non-radial modes present rotational split-
tings but the ℓ = 1, 2 modes are quasi-radial in the zone where
the excitation occurs. They are excited in the same manner as
the radial modes. Then, as the excitation rate is proportional
to the inverse of the mode inertia I, the excitation rates of the
non-radial modes Pℓ can be deduced from those of the radial
ones P0 according to the relation:

Pℓ

P0
≃

I0

Iℓ
(9)

for pure p and low ℓ degree modes I0/Iℓ ≃ 1. To some ex-
tent, it is the same for the damping rates. Indeed according to
Balmforth (1992), the main contribution to damping is due to
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Fig. 1. Apparent mode amplitudes in terms of relative luminosity vari-
ations for ℓ = 0, 1, 2. The solid line shows the amplitude of the ra-
dial modes; the triangle and square symbols represent the ℓ = 1 and
ℓ = 2 modes respectively. The filled symbols represent the mixed
modes. The horizontal lines correspond to Eq. (15) and apply to modes
whose widths are smaller than the frequency bin in the Fourier do-
main (i.e. modes with ν � 0.4 mHz). The upper line (dashed-dot)
corresponds to SNR∞ = 9 (confidence level: 99%) and the lower
one (dashed-dot-dot-dot) to SNR∞ = 6 (confidence level: 95%). The
frequency-dependent thresholds apply to the other modes and cor-
respond to Eq. (18) computed with SNR= 9 (dashed-dot line) and
SNR= 6 (dashed-dot-dot-dot line).

convection and occurs mainly in the uppermost part of the con-
vection zone where the modes are quasi-radial. Then we can
deduce ηℓ from η0 using the relation:

ηℓ

η0
≃

I0

Iℓ
(10)

with η being the damping rates. In the region where excitation
and damping of the modes takes place, the mixed modes have
the characteristics of pure p modes. Thus Eqs. (9) and (10) also
apply to mixed modes.

The intrinsic amplitude
(

δL
L

)

intrinsic
and the apparent ampli-

tude
(

δL
L

)

of a mode with a degree ℓ are related by:

(

δL

L

)

ℓ
= S ℓ ∗

(

δL

L

)

intrinsic,ℓ
(11)

where S l is the spatial filtering function (see
Christensen-Dalsgaard 1998). We used here the filtering
functions used for the VIRGO instrument aboard SOHO
spacecraft (Appourchaux et al. 1997), which observes the Sun
as a star and monitors its luminosity variations as COROT
and future asteroseismology space missions will do for other
stars. S l=1 and S l=2 were set to 0.9 and 0.5 respectively, these
coefficients depend on the angle between the rotation axis of
the star and the line of sight. As an illustrative case we take
the solar values. Figure 1 presents the apparent amplitudes of
the luminosity variations for the ℓ = 0, 1, 2 modes. The mixed
modes are found at low frequency, and their amplitudes clearly
depart from those of the pure p modes, while their smaller
amplitudes are due to their larger inertia.

Fig. 2. Squared normalized Väissälä frequency for 1.55 M⊙ models
at different evolutionary stages. The Väissälä frequency is normal-
ized by (G 〈ρ〉 /π)1/2 with 〈ρ〉 the mean density and G the gravita-
tional constant. The solid line corresponds to the ZAMS model (the
hydrogen abundance in the core is Xc = 0.7), the dotted line to an
Xc = 0.4 model. The dashed line represents the Väissälä frequency for
an Xc = 0.10 model. In the insert frame, we focus on the deep inte-
rior, where one can see that along evolution, at the edge of the core, a
cavity where g modes can be trapped develops in the high frequency
regime.

Fig. 3. Hertzsprung-Russell diagram with the evolutionary tracks of
the input model (solid line) and the trial model (dashed line). Both
models are represented by the black points on the tracks. The box ma-
terializes the typical uncertainties in determination of the luminosity
and effective temperature.
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4.3. COROT detection threshold and frequency

accuracy

Our detection threshold was based on COROT specifications.
The white noise level over 5 days of observation will be
0.61 ppm for a star of magnitude 5.7 (Auvergne & COROT
Team 2000); consequently the level of the photon noise in the
power spectrum B is (see Berthomieu et al. 2001):

B = (0.61 ppm)2 5 days =
(0.61 ppm)2

2.3 µHz
(ppm)2 s. (12)

To set the threshold and to determine the precision at which a
mode frequency can be measured, two distinct cases must be
considered depending on the widths of the modes versus the
frequency resolution of the spectrum (also refer to Berthomieu
et al. 2001).

4.3.1. Modes with long lifetimes

Modes with lifetimes longer than the observation time have
their widths in the frequency domain smaller than the fre-
quency bin and hence correspond to a single peak in the power
spectrum with height H∞ given by (see Berthomieu et al.
2001):

H∞ =
Tobs

2
(δL/L)2 (ppm)2 s, (13)

where δL/L is the root mean square of the observed apparent

mode amplitude in intensity as defined in Eq. (11).
The corresponding signal to noise ratio (SNR hereafter)

in the power spectrum, SNR∞, is then according to Eqs. (13)
and (12):

SNR∞ ≡
H∞

B
=

1
2

(δL/L)2

(0.61 ppm)2

Tobs

5 days
(14)

where Tobs is expressed in unit of days. We stress that the SNR

is expressed in terms of power (i.e. in terms of the square of the
mode amplitude) because theoretical evaluations of the mode
amplitudes (see Sect. 4.2) are derived in terms of mean square.
A possible alternative is to define a signal to noise in terms of
amplitude as in Kjeldsen & Frandsen (1992).

The value of SNR∞ does not affect the precision of fre-
quency determination. Indeed, for long lifetimes, whatever the
value of SNR∞, the uncertainty on the frequency determina-
tion corresponds to the size of the bin, that is, to 0.08 µHz for
Tobs = 150 days. However the value of SNR∞ sets the confi-
dence level for the detection of an eigenmode. For SNR∞ = 9,
the confidence level reached is 99%.

For modes with long lifetimes, the detection threshold is
from Eq. (14) then:

(

δL

L

)

∞,threshold
=

√

2 SNR∞
5 days
Tobs

0.61 ppm. (15)

For SNR∞ = 9 (confidence level: 99%), the threshold (Eq. (15))
is equal to ≃ 0.47 ppm, and for SNR∞ = 6 (confidence level:
95%) it is equal to ≃0.39 ppm. These thresholds are shown in
Fig. 1 by horizontal dashed lines and are relevant for modes

whose widths are smaller than a single frequency bin, viz.,
modes below ν ≃ 0.4 mHz. Mixed modes are shown in
Fig. 1 with filled symbols. Two ℓ = 1 modes lie above the
SNR∞ = 9 threshold, while another ℓ = 2 stands between the
SNR∞ = 9 and SNR∞ = 6 thresholds. The first two modes are
detected with a 99% confidence level and the latter with a level
above 95%.

4.3.2. Modes with short lifetimes

For a mode with lifetime shorter than the observation time, the
amplitude in the Fourier domain spreads over several frequency
bins. In a first approximation the mode profile in the power
spectrum is Lorentzian. The mean squared apparent amplitude
of a mode is the integral over the peak profile. Consequently
the height of the Lorentzian profile H is linked to the mode
apparent amplitude δL/L and its width through the following
relation (in ppm2/µHz) (see e.g. Baudin et al. 2005)

H =
(δL/L)2

πΓ
(16)

where Γ = η/π is the mode line-width in µHz with η the damp-
ing rate. According to Eqs. (12) and (16) the signal to noise
ratio (SNR) then becomes:

SNR ≡
H

B
=

(δL/L)2

(0.61 ppm)2

2.3µHz
πΓ

· (17)

Again, for SNR∞ = 9 , the mode is detected with a confidence
level of ∼99%. Thus from Eq. (17) the detection threshold for
modes with short lifetimes is:

(

δL

L

)

threshold
=

√

SNR
πΓ

2.3 µHz
0.61 ppm. (18)

Hence, for SNR= 9, a mode with amplitude δL/L >

(δL/L)threshold is detected with a confidence level better
than 99%. The threshold given by Eq. (18) is plotted in Fig. 1
for SNR = 9 and SNR = 6. Only modes with SNR ≥ 6 were
kept. Most of the modes were detected with a confidence level
better than 99%; however, few ℓ = 2 modes were detected with
a confidence level between 99% and 95%.

Note that the threshold depends only on Γ; as the width de-
pends on the mode, the threshold also varies with frequency.
We point out that Eqs. (16) and (12) assume that the Fourier
transform is normalized with respect to T

−1/2
obs , where Tobs is

the duration of observation. This is why Eqs. (16) and (12) are
independent of Tobs. However whatever the choice of normal-
ization, Eqs. (17) and (18) do not depend on Tobs. Increasing
the duration of observation does not increase the SNR but does
decrease the stochastic fluctuations of the mode profile lead-
ing to better precision when determining of the mode fre-
quency. Indeed Eq. (2) in Libbrecht (1992) gives the precision
at which the frequency of a mode – with a life time shorter
than the observation time – can be measured for a given SNR.
This precision depends on the observation time (Tobs), on the
mode line-width (Γ), and also on the SNR Eq. (17). Among
the remaining modes with short lifetimes, the precision in fre-
quency ranged between ∼0.05 µHz and ∼0.3 µHz, according to
Libbrecht (1992)’s formula.
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4.4. Final set

The selection above left us with a set of 50 ℓ = 1, 2 modes
among which 3 were mixed modes. For these modes, we com-
puted the associated rotational splittings according to Eq. (1)
and assumed local conservation of angular momentum in the
star. At high frequency, the widths of the modes increase. This
might make the determination of the rotational splittings less
accurate and some of the corresponding splitting useless; how-
ever, modes at such a frequency have very redundant kernels.
The loss of their splittings does not affect the inversion results.
In Sect. 5 below, we discuss the inversion results in cases of
a set of splittings free of noise and one set contaminated with
random noise. For short lifetime modes the error bars on the
splittings were deduced from Eq. (2) in Libbrecht (1992). For
modes with long lifetime, the error bars were set to the fre-
quency bin.

5. Results of inversion

In this study we proceeded in 3 steps, successively aiming at
more realistic conditions.

5.1. Optimal case

We first inverted the rotational splittings of our simulated data
set, using the associated rotational kernels issued from the in-
put model for k j in Eq. (2). These are the optimal conditions,
to check how far we can recover the rotational profile. The
modes become evanescent in the convective core for interme-
diate mass stars and it was not possible to recover the rotational
information in that specific region. On the other hand, Fig. 6a
shows that we properly retrieved the rotation rate from the edge
of the core (0.07 r/R∗) to ≃0.30 r/R∗ with R∗ the star radius. It
was found that a few mixed modes only are sufficient to con-
struct localized rotational kernels close to the core.

At intermediate radii, i.e. from ≃0.30 to 0.70 r/R∗, it was
not possible to construct localized inversion kernels. Neither
pure p modes nor mixed modes have enough energy at inter-
mediate radii, as their rotational kernels do not peak in these
regions.

Further up in the outer layers of the star, p modes were sen-
sitive to the rotation. The rotational kernels differ much more
with the degree ℓ of the mode than with the mode frequency. As
we assumed that we had access only to ℓ = 1 and 2, the avail-
able p mode rotational kernels were too redundant to enable
to construct localized inversion kernels. To obtain an estimate
of the rotation rate in these layers, we are left with the forward
method. As in Soufi et al. (1998), one can write the r-dependent
rotational profile Ω(r) as:

Ω(r) = Ω̄(1 + η(r)) (19)

where Ω̄ is the mean rotation rate. A rigid body rotation corre-
sponds to η(r) = 0. One can then write Eq. (1) as follows:

δωn,ℓ = Ω̄

∫ 1

0
kn,ℓ(r)dr + Ω̄

∫ 1

0
kn,ℓ(r)η(r)dr (20)

and
∫ 1

0
kn,ℓ(r)dr = 1 −Cnℓ, (21)

where Cnℓ is the Ledoux constant in the inertial frame (see
Unno et al. 1989, Eq. (19.46)). For pure p modes, Cnℓ can be
neglected with regard to 1. In the outer part of the star, rota-
tion is expected to be almost rigid, i.e. η(r) ≃ 0. Thus the mean
rotation rate in these layers can be expressed as:

Ω̄ ∼
〈

δωn,ℓ

〉

. (22)

We selected a subset of rotational splittings of pure p modes in
the asymptotic frequency range (32 modes). We then computed
the mean value of the subset. The extent of the pure p mode
kernels lead to a value which is an average over a large region.
This mean value of the rotation rate is represented in Fig. 6a at
r/R∗ = 0.78. The horizontal error bar extended between 0.55
to 1 stellar radius and was determined so that more than 95%
of the kernel energy is located within this range for the subset
of modes used for the forward computation. The vertical bar is
the linear average of the errors on the splittings. One notices
that the rotational rate obtained by forward computing is over-
estimated. This shift is linked to the relatively small extent of
the rotational kernels in the deep interior where the rotational
rate increases.

5.2. Inversion with trial kernels

The stellar model used in the inversion process is not expected
to represent the real star exactly. This departure from reality
also exists for the rotational kernels used for the inversion pro-
cess. In our simulated experiment, therefore, we must assume
that the rotational kernels issued from computed models would
not match the real ones exactly. To study the impact of differ-
ences between the true and trial kernels, we inverted the split-
tings with rotational kernels associated with a stellar model dif-
fering from the input one. The input or reference model is the
model described in Sect. 3. The trial model was determined as
for a blind experiment, i.e. by trying to approach our reference
model as close as possible.

We used two steps to constrain the trial model. The first step
consisted in getting as close as possible to the input model us-
ing the HR diagram information. As for real observations, we
drew an error box around the input model in the HR diagram
with typical observational uncertainties (σTeff = 150 K and
σL/L⊙ = 0.15, Fig. 3). We built several models with various ini-
tial parameters and retained only those consistent with the error
box. Then the asteroseismic constraints enabled us to make a
selection among the remaining trial models. The comparison of
the large and small separations of the trial and input models, as
defined in Eqs. (23) and (24) below, gave additional constraints.
The large separation – Eq. (23) – is mostly linked to the overall
structure of the star and to its mean density. The small separa-
tion – Eq. (24) – is related to the chemical composition gradient
close to the core, giving hints about the evolutionary stage of
the reference model (see Christensen-Dalsgaard 2004).

∆νn,ℓ = νn,ℓ − νn−1,ℓ (23)
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Fig. 4. Comparison of the large separations for the input and the trial
models; see Eq. (23). Diamonds represent the large separation of the
input model and filled circles correspond to that of the trial model.
Each panel corresponds to a given degree ℓ (top panel: ℓ = 0 to bottom

panel: ℓ = 2).

δν02 = ν0,n − ν2,n−1. (24)

For several models within the HR diagram error box, we could
reproduce the large separation reasonably well (see Fig. 4).
However, we could recover the small separation only over a
part of the frequency range (see Fig. 5). We gave priority
to the model reproducing the small separation in the interval
0.5–1 mHz, as we were mainly interested in low frequency
modes; modes above 1 mHz indeed produce very redundant
rotational kernels. Eventually we selected the most appropriate
model according to these criteria: M = 1.52 M⊙, X0 = 0.7,
Y0 = 0.28, α = 1.8, and an overshoot parameter αov = 0.1.

As was already the case when using the input kernels for
the inversion, we recovered the rotational profile only partially.
However, in this case the retrieved rates depart from the orig-
inal profile, see Fig. 6b, although still in an acceptable way.

Fig. 5. Comparison of the small separations between ℓ = 0, 2 – see
Eq. (24) – for the input (crosses with associated error bars) and the
trial models (diamonds).

Fig. 6. Rotational profiles along the normalized radius of the stellar
model. The dashed line represents the input rotation profile. The in-
verted rotation profiles are represented by black dots and their associ-
ated error bars: a) input rotational kernels, no noise included; b) trial
rotational kernels, no noise included; c) one typical realization for trial
rotational kernels, noise included (Vsurf = 30 km s−1, ǫ = 0.08 µHz). In
each panel, the point at 0.75 r/R∗ is derived from the forward compu-
tation (see Sect. 5.1). The vertical error bar represent a 1σ error bars;
the horizontal bars correspond to the width of the inversion kernels.

As previously, we used the forward computation to derive an
estimate of the outer region rotation rate.

5.3. Inversion with trial kernels and splittings including

random errors

Finally, the third case used the trial kernels and rotational split-
tings with random noise added prior to inversion. The noise was
gaussian and several variance values were used corresponding
to the COROT specifications and assumed surface rotation rates
between 20 and 30 km s−1. The recovered rates for one typical
realization are shown in Fig. 6c. The retrieved rates based on
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Fig. 7. Histogram of the differences between the recovered and in-
put rotation rates at r/R∗ = 0.08, both rates were normalized to
the surface rotation rate. The full and dashed lines correspond to
Vsurface = 30 km s−1 and Vsurface = 20 km s−1, respectively. The ver-
tical line corresponds to zero bias. The bins were set to 0.1 Ωsurface.

the set of splittings with random noise generally differ by a few
percent from the retrieved rates based on noise-free splittings.

To test the efficiency of the inversion process in the pres-
ence of noise, we created 5000 realizations of noisy splittings
and inverted them. In Fig. 7 we plotted the histogram of the
difference between the recovered and the initial rates at a given
radius for several uncertainty levels.

We first checked the validity of the error bars on the rota-
tional rates retrieved by inversion shown in Fig. 6. These un-
certainties, expressed in Eq. (7), correspond to magnification
of the initial errors on the measured splittings through the in-
version process. If unbiased they should match the dispersion
of the 5000 recovered rates. We thus compared the standard
deviation of these rates to the propagated errors and found that
they matched extremely well at every radius. This shows that
the errors bars are estimated without bias.

Secondly, we calculated the averages of the recovered rates
at each radius over the 5000 realizations and compared them to
the input rates. If there were no bias, mean value of the differ-
ence between the retrieved and the input rotation rates would
be zero. There actually is a small nonzero difference at each in-
version radius, which is identical to the departure between the
input and the output rates when the inversion was processed
without random noise. This bias is due to the finite widths of
the inversion kernels, which set the ultimate limit in retrieving
the input rotation rate.

In Fig. 6c, the vertical error bars correspond to 1σ normal-
ized uncertainties on the rotation rate, which were computed

Fig. 8. Input and fitted rotational profiles. The full line curve stands for
the initial rotational profile. The dotted curves fit the retrieved points
of Fig. 6c. The middle one fits the central values, the two others fit the
extreme values of the error bars.

assuming uncertainties on the splittings presented in Sect. 4.4
for a star rotating with a surface velocity of Vsurface = 30 km s−1.
This σ value corresponds in Fig. 7 to the half-width of the dis-
tribution. In the best case -with full line (Vsurface = 30 km s−1)-
only a few percent of the random realizations in the tail of the
gaussian distribution give misleading rotation rates. In the sec-
ond case in Fig. 7 – dashed line – the 1σ normalized error
already corresponds to a large departure by the inverted rota-
tion rate compared to the true value. In the conservative case,
where we consider 3σ error bars, a rotation gradient can still
be measured – if large enough – in the best case in Fig. 7. This
is probably no longer possible in the the worst case where the
error bars strongly degrade our ability to estimate a rotational
gradient.

As a final step, we estimated how discriminating the inver-
sion is for reconstructing the rotational profile. We fitted the re-
trieved points with a decreasing exponential function. Figure 8
shows the mean and extreme profiles one could derive from
the rates recovered in Fig. 6c where a random noise had been
added to the splittings. We then computed the rotational split-
tings corresponding to these three profiles (mean and extreme).
In Fig. 9 we plotted the input splittings – noise included – with
black dots. The shaded area spans the values of the splittings
computed from the extreme fitted profiles in Fig. 8. The input
and the forward rotational splittings agree within the error bars.

This last step – i.e. computing the splittings from the re-
covered rotation rates – must be seen as a way to check the
reliability of the inversion results. Inverted rotational profiles
departing too much from the original will lead to computed
splittings that do not match the true ones.
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Fig. 9. Input and retrieved rotational splittings. The black dots rep-
resent the input splittings to which random noise was added, as in
Fig. 6c. The shaded zone represents the range in which the solutions
can be obtained by forward computation from the different fitted pro-
files in Fig. 8.

6. Discussion

As is well known, it is not possible to construct localized ker-
nels for rotation with mode sets limited to ℓ = 1, 2 and con-
taining only pure p modes. Introducing ℓ = 3 modes in the set
improves the quality of the inversion kernels but does not pro-
vide enough diversity in the shapes of the rotational kernels to
extract localized information at outer radii. However, we show
here that stars exist which can present solar-like oscillations
with a few mixed modes of detectable amplitudes. This pres-
ence in the mode set enables us to recover localized informa-
tion on the rotation rate at several radii close to the core, leading
to an estimate of the expected gradient.

As seen in Sect. 5.2, an important step is to model the ob-
served star so as to build rotational kernels as close as possible
to the real star. Combining the HR diagram and asteroseismic
information (large and small separations) strongly constrains
the model to be used to build the kernels. Accurate determina-
tion of stellar parameters, such as the luminosity and the effec-
tive temperature, is crucial at this step in the process.

We show that the inverse and forward procedures in stellar
conditions are complementary and should be used in parallel.
At low radii the inversion indeed provides localized and reli-
able information on the rotation rate and its evolution along
the radius. In the outer part of the star the redundance of the
pure p mode rotational kernels does not allow us to build local-
ized inversion kernels. Thus we derive the average rotation rate
in this region directly from the splittings. Besides, the forward
method can also be useful for checking the reliability of the
rates retrieved by inversion. From the recovered points one can
draw a rough rotational profile and use it to compute the split-
tings. By comparing the computed and the observed splittings
it is possible to discard spurious profiles.

In short, a successful inversion of the rotational profile re-
quires that the star fulfills several constraints. First, it has to
be relatively evolved in order to have a receding convective

core so that avoided crossing occurs in the proper frequency
range (roughly for Xcore ≤ 0.2). Secondly, the mass range,
which yields mixed modes with large enough amplitude to be
detected, spreads from ≃1.5 M⊙ up to masses that place the
star in the instability strip of the HR-diagram, although study-
ing stars above this upper mass limit is beyond the scope of
this paper. For stars less massive than ≃1.5 M⊙, it is unlikely
that mixed modes are detectable within the stochastically ex-
cited frequency domain. One must see the present results as
prospecting. Some assumptions such as the adiabatic one – see
Sect. 4.2 – might be too optimistic, in this case mixed modes
will be detected in solar-like oscillations for stars with slightly
higher mass or at more evolved stages than the one presented
in this paper.

Finally, the surface rotation rate of the “ideal” target star
should not be too small so that the splittings can be deter-
mined with a good accuracy and that the relative errors on
the splittings remain small enough. We must add that impor-
tant physical effects have been neglected here. One will prob-
ably, for instance, have to consider the effects of rotation and
of the magnetic field on the large and small frequency spacings
(Dziembowski & Goupil 1998). Moreover for faster rotators
above Vsurf ≃ 20−30 km s−1 higher order effects on the rota-
tional splittings will have to be considered.
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ABSTRACT

We compute the rates P at which acoustic energy is injected into the solar radial p modes for several solar models. The solar models are
computed with two different local treatments of convection: the classical mixing-length theory (MLT) and the formulation by Canuto et al.
(1996, ApJ, 473, 550, CGM). Among the models investigated here, our best models reproduce both (i) the solar radius and the solar luminosity
at solar age and (ii) the observed Balmer line profiles. For the MLT treatment, the rates P do significantly depend on the properties of the
atmosphere, whereas for the CGM treatment, the dependence of P on the properties of the atmosphere is found to be smaller than the error
bars attached to the seismic measurements. The excitation rates P for modes associated with the MLT models are significantly underestimated
compared with the solar seismic constraints. The CGM models yield values for P closer to the seismic data than do the MLT models. We
conclude that the solar p-mode excitation rates provide valuable constraints and, according to the present investigation, clearly favor the CGM
treatment with respect to the MLT, although neither of them yields values of P as close to the observations as recently found for 3D numerical
simulations.

Key words. convection – turbulence – Sun: atmosphere – stars: atmospheres – Sun: oscillations – radiative transfer

1. Introduction

In the outermost part of the convective zone (CZ) of intermedi-
ate mass stars, convection is highly superadiabatic because of
the rapid radiative heat gains and losses of the convective fluid.
In that region, entropy fluctuations are the largest, and the re-
sulting decrease in the convective transport efficiency is com-
pensated for by a large increase in the eddy motions, which is
responsible for the oscillation mode driving. Modelling ineffi-
cient convection is complex. 3D numerical simulations are now
being performed but remain still very time-consuming. Hence
for massive stellar computations, 1D stellar models are used
in which only simple prescriptions of convection are imple-
mented.

Among these simplified treatments, the Canuto &
Mazzitelli (1991, CM91 hereafter) approach differs from the
classic mixing length approach (MLT hereafter) in that it takes
the contribution of eddies with different sizes into account in
the calculation of the convective flux and velocity, while keep-
ing the computational expenses as low as the MLT. An im-
proved version was proposed by Canuto et al. (1996, CGM
hereafter), which takes into account the feedback of the tur-
bulence on the energy input from the source which gener-
ates turbulent convection. These multi-eddy convection models

are usually refered to as Full Spectrum of Turbulence (FST)
models.

Several non-local formulations of convection have also
been proposed (Gough 1977; Xiong 1978, 1985; Canuto 1992,
1993; Canuto & Dubovikov 1998). However, we focus here on
the effects of proposed improvements in the description of the
energy spectrum and therefore consider only local treatments
and compare FST models with MLT ones.

Any model of convection must satisfy several observational
constraints provided by our Sun: the solar radius at the solar
age, the Balmer line profiles, and the uvby color indices. The
MLT, CM91’s, and CGM’s local treatments have been con-
fronted to these observational constraints (e.g. Fuhrmann et al.
1993, 1994; van’t Veer-Menneret & Megessier 1996; Smalley
& Kupka 1997; Bernkopf 1998; Heiter et al. 2002; Montalbán
et al. 2004). One main result is that these observational quan-
tities are more sensitive to the adopted value of the convective
scale length of the eddies than to the formulation of convection.

Solar seismic observations provide strong additional con-
straints. Comparisons of theoretical oscillation frequencies
with observed solar ones have shown for instance that signif-
icant improvement in the agreement between observation and
model at high frequency and degree ℓ can be achieved with
3D simulations (Rosenthal et al. 1999). We are interested here
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in amplitudes of oscillation that can also bring several con-
straints on the convective process in the outer solar envelope.
Indeed, the amplitudes of solar-like oscillations result from a
balance between excitation and damping. Measurements of the
oscillation mode growth rates (through their line-widths) and
of the mode amplitudes enable the evaluation of the excita-
tion rates P. Excitation of solar-like oscillations is known to be
both due to turbulent convective motions through the driving by
the turbulent Reynolds stresses (see Goldreich & Keeley 1977;
Balmforth 1992; Samadi & Goupil 2001) and due to the advec-
tion of turbulent entropy fluctuations by the turbulent move-
ments (see Samadi & Goupil 2001). The excitation rates P are
thus directly related to the velocity of the convective elements
and to the amount of thermal energy advected by convective
motions (i.e. the convective flux). The excitation rates then
depend crucially on the way the convective velocity and flux
are modelled (see Houdek et al. 1999). Solar seismic measure-
ments therefore provide – through a model of mode excitation
– additional constraints on the stellar convective properties. In
this framework, the goal of the present paper is to investigate
the influence of different local treatments of convection on the
calculation of the rates at which energy is injected into the so-
lar radial p modes and to compare our results with the solar
seismic constraints.

For this purpose we compute two calibrated solar models
with the Böhm-Vitense formulation of the MLT (Böhm-Vitense
1958, hereafter BV) and with the CGM multi-eddy convec-
tion treatment. In each case, the same convection formulation is
adopted for the interior and the model atmosphere. Models for
the internal structure are built so as to reproduce the solar ra-
dius and the solar luminosity at the solar age. The atmosphere
of each model is constructed using a T (τ) law which is de-
rived from a Kurucz’s model atmosphere (Kurucz 1993) com-
puted with the same convection formulation (as described in
Heiter et al. 2002). These model atmospheres are built in order
to provide the best agreement between synthetic and observed
Balmer line profiles (as in van’t Veer-Menneret & Megessier
1996, for the MLT treatment) (Sect. 2). The matching of the
model atmosphere with the interior model is performed – in
the manner of Morel et al. (1994) – by ensuring the continuity
of the temperature gradient, ∇, and of the convective flux in a
transition region between the interior and the atmosphere.

We also compute two models with an Eddington gray at-
mosphere, one with the MLT treatment and the second with the
CGM formulation. These two additional models are considered
for comparison purpose only. Indeed, they have an atmosphere
with the same mixing-length parameter as in the interior and
do not reproduce the Balmer line profiles. As a consequence,
in contrast with the interior models including a Kurucz’s at-
mosphere as described above, their atmospheres do not fulfill
constraints on the properties of the convection at the surface.

Calculation of the excitation rates requires the computation
of the convective flux, Fc, and of the convective velocity, v. This
is done in Sect. 3 by paying special attention to the problem
of the transition region. Indeed, the continuity of ∇ and of Fc

through the transition region imposes a spatial variation of the
mixing-length parameter in the transition region. This variable
mixing-length parameter is then used in Sect. 3 to compute v.

Note that our approach, which is used here to compute v and P,
is different from that of Schlattl et al. (1997), who built stellar
models that assume a spatially varying mixing-length parame-
ter, with a spatial variation imposed a priori from a comparison
to 2D numerical simulations of convection, in order to compute
p mode frequencies.

As a last step (Sect. 4), we compute the adiabatic eigen-
modes and the excitation rates P for each model. The adopted
model of excitation is that of Samadi & Goupil (2001, Paper I
hereafter) in which the characteristic wavenumber k0, the
wavenumber dependency of the turbulent spectra, as well as
the frequency component (χk) of the correlation product of the
turbulent velocity field are constrained with a 3D simulation
of the Sun as in Samadi et al. (2003c, Paper II hereafter) and
Samadi et al. (2003b, Paper III hereafter). Comparison with so-
lar seismic constraints then allows us to conclude about the best
local treatment of convection in the solar case (Sect. 5).

2. Solar models

All solar models discussed here are computed with the CESAM
code (Morel 1997) including the following input physics and
numerical features:

1. Equation of state (EOS): CEFF EOS (Christensen-
Dalsgaard & Däppen 1992).

2. Opacities: OPAL (Iglesias & Rogers 1996) data, com-
plemented by Alexander & Ferguson (1994) data for
T <∼ 104 K, both sets of data being given for Grevesse &
Noels (1993) solar mixture.

3. Thermonuclear reaction rates: Caughlan & Fowler (1988).
4. Convection: either MLT or CGM’s formalism. The same

convection formalism has been used in the interior and in
the model atmosphere.

5. Microscopic diffusion: all models include microscopic dif-
fusion of helium and heavy elements calculated according
to the simplified formalism of Michaud & Proffitt (1993),
where heavy elements are treated as trace elements.

6. Chemical composition and mixing length parameter for
convection: the Grevesse & Noels (1993) heavy elements
solar mixture has been adopted. The constraint that so-
lar models have the observed solar luminosity and radius
at solar age yields the initial helium content Y0 and the
mixing length parameter of the interior model αi (solar
model calibration). Microscopic diffusion modifies the sur-
face composition, therefore the initial ratio of heavy ele-
ments to hydrogen (Z/X)0 is adjusted so as to get the ratio
(Z/X)⊙ = 0.0245 at solar age.

7. The models were calculated with 285 shells in the atmo-
sphere and about 2000 shells in the interior.

The CGM formulation of convection is implemented according
to Heiter et al. (2002). In contrast with Heiter et al. (2002),
we use a characteristic scale length of convection for the two
formulations which is the mixing-length Λ = αHp, where Hp

is the pressure scale heigth and α the mixing-length parameter,
which can be different in the interior and in the atmosphere.
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Fig. 1. The observed solar Hβ profile is compared to theoretical ones computed with CGM models and assuming different values for αa.
Abscissae are distances in Å from the line center, and ordinates are the flux in the profile normalized to the continuum. The large scatter is due
to the presence of many spectral lines which overlap and cause an apparent enlargement of the true profile.

2.1. The “Kurucz models” (KMLT and KCGM models)

We consider here two stellar models: one computed with the
MLT formulation of convection and the second one with the
CGM formulation. They will be labelled hereafter as KMLT
model and KCGM model, respectively.

Treatment of the atmosphere: the model atmospheres of
those models are computed using the ATLAS 9 code (Kurucz
1993) as described in Heiter et al. (2002). Solar model atmo-
spheres are built assuming different values for αa, the mixing-
length parameter assumed for the model atmosphere: αa =

0.4, 0.5, 0.6, 0.7. The model atmospheres with αa = 0.4 and
αa = 0.5 provide the best agreement between synthetic and
observed Hβ Balmer line profiles for the two formulations of
convection. This is shown in Fig. 1 for the CGM model at-
mosphere. For the MLT treatment, see Fuhrmann et al. (1993,
1994) and van’t Veer-Menneret & Megessier (1996). Above
αa ≃ 0.6, the synthetic profile rapidly departs from the ob-
served one, as well as the effective temperature Teff from the
known solar Teff .

There are no significant differences for the Hβ Balmer line
profile between the model atmospheres with αa = 0.4 and
αa = 0.5. Among those model atmospheres we adopt arbitrarily
those with αa = 0.5. Indeed, choosing the model atmospheres

with αa = 0.4 instead of αa = 0.5 will not change the con-
clusions of this article. For each formulation of convection we
then obtain a T (τ) law.

The atmospheres of the KMLT and KCGM stellar models
are recomputed according to the procedure described in Morel
et al. (1994) from the T (τ)-laws mentioned above; the fit be-
tween interior (where the diffusion approximation is valid) and
atmosphere is performed in a region where τ1 <∼ τ <∼ τ2 (an
acceptable range of values for τ1 and τ2 is discussed below). In
the interior region where τ >∼ τ2, the temperature gradient ∇i is
obtained from the MLT or CGM formalism. In the atmospheric
region, where τ <∼ τ1, the temperature gradient ∇a is computed
using the T−τ law of the model atmosphere built with the same
model of convection as in the interior. In the transition region,
where τ1 <∼ τ <∼ τ2, in order to ensure the continuity of the tem-
perature gradient, ∇ is obtained by a linear interpolation of ∇i

and ∇a as a function of the optical depth as follows:

∇ = β(τ)∇a + (1 − β(τ))∇i (1)

where β(τ) = (τ2 − τ)/(τ2 − τ1).
Once the temperature gradients of the interior and the at-

mosphere are linked together in the transition region according
to Eq. (1), we compute afterward in that region the convective
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flux and an equivalent mixing-length parameter (i.e. a depth-
dependent mixing-length parameter) as explained in Sect. 3.

Acceptable ranges for τ1 and τ2: using a Newton-Raphson
scheme, ∇i is adjusted in order that F

(i)
c + F

(i)
rad = L⊙/4πr2,

where L⊙ is the luminosity of the Sun and F
(i)
rad is the radiative

flux of the internal model. Calculation of F
(i)
c assumes the diffu-

sion approximation for the radiative transfer for Frad. This ap-
proximation is valid at rather high values of τ, typically τ � 10
(see Morel et al. 1994). Therefore, τ1 cannot be much smaller
than τ ≃ 10. Otherwise, ∇i will have an unrealistic contribu-
tion to ∇ below τ ≃ 10. On the other hand, for the calculation
of F

(a)
c , the radiative flux Frad is based on a Kurucz’s model at-

mosphere, which treats the radiative transfer more realistically
than the diffusion approximation.

The Kurucz model atmosphere is based on the Kurucz
(1992, 1993) opacity tables which are given up to T ≃ 2×105 K
and P = 108 dyn cm−2. As a consequence, τ2 cannot be larger
than τ ≃ 107.5, i.e. layers for which T ≃ 30 000 K. In order to
ensure a satisfactory continuity of the temperature gradient, τ2

must be sufficiently larger than τ1. On the other hand, the tran-
sition region should be as small as possible; i.e. τ2 − τ1 must
be as small as possible. The main constraint for this region is
thus to avoid discontinuities between the interior and the atmo-
sphere. It is defined through an empirical procedure rather than
based on a strict physical theory.

In practice, we find that τ1 = 4 is the minimal acceptable
value for τ1; below this value the bias introduced by the dif-
fusion approximation has a significant effect on Fc. In addi-
tion, we find that above τ2 ≃ 50, the convective velocity v (see
Sect. 3.2) shows a pronounced “kink” at τ = τ2 for the CGM
model (see Fig. 3, such a “kink” is also observed for Fc, but it
is less pronounced). On the other hand, the choice of τ2 = 20
avoids the angular point. For the MLT model, whatever the
value of τ2, v shows such a feature. This is a consequence of the
much higher values of the mixing length parameter required in
the interior in order to still obtain the correct solar radius, if a
lower value of α is also used in regions further within the enve-
lope. The requirement of matching R⊙ hence provides a more
stringent upper limit for the choice of τ2 (cf. also the discussion
in Montalbán et al. 2004 on the computation of solar entropy as
a function of radius). In the following, we will consider τ1 = 4
and τ2 = 20 as our optimal choice.

Calibration: the mixing-length parameter αi for the inter-
nal structure, Y0, and (Z/X)0 are adjusted such that the stel-
lar model simultaneously reproduces the solar radius, the so-
lar luminosity, and the observed ratio (Z/X)⊙ = 0.0245 at
the solar age. The calibration yields (Z/X)0 = 0.0279 and
Y0 = 0.275. At solar age, the helium abundance in the convec-
tion zone is Y = 0.246, in reasonable agreement with the value
Y = 0.249 ± 0.003 obtained from seismology (Basu 1997).
Table 1 gives the calibrated values of the mixing-length param-
eters αi for each complete solar model. The radius resulting
from the adjustement of αi, as well as the size of the convec-
tive zone, are given in Table 2. All the interior models have a
depth of the convective zone of ≃0.286 R⊙, which is in good
agreement with the value of 0.287 ± 0.003 R⊙ determined seis-
mically by Christensen-Dalsgaard et al. (1991).

Table 1. Values of the mixing-length parameters of the KCGM and
KMLT models: αi (for the interior) and αa (for the model atmosphere).
αi results from the calibration of the full model while αa is fixed (see
Sect. 2.1).

model αi αa

KMLT 2.51 0.50
KCGM 0.78 0.50

Table 2. ∆R ≡ R − R⊙, where R⊙ is the radius at the photosphere (i.e.
at T = Teff), and depth of the convective zone (CZ) for the KCGM and
KMLT models. These quantities are given with respect to the solar
radius R⊙ (we assume the Guenther et al. (1992) value of R⊙).

model ∆R/R⊙ depth CZ

KMLT −10−6 0.2860
KCGM 5 10−6 0.2859

Table 3. Values of the the mixing-length parameter α of the ECGM
and EMLT models obtained for calibrated solar models.

model α

EMLT 1.76
ECGM 0.69

2.2. Eddington approximation based models (EMLT

and ECGM models)

For comparison purposes, we consider two additional stellar
models here with an Eddington classical gray atmosphere in-
stead of the Kurucz atmosphere models described in Sect. 2.1.
One of these models assumes the MLT formulation of con-
vection and the other the CGM formulation. In the following
they will be labelled as EMLT model and ECGM model, re-
spectively. The mixing-length parameter α of these models (the
same α in the interior as in the atmosphere) is adjusted in or-
der to reproduce the solar luminosity and radius at the solar
age. However, as mentioned in the introduction, these models
do not reproduce the Balmer line profiles. Table 3 gives the
calibrated values of the mixing-length parameters.

2.3. Comments

With the CGM treatment, αi is found to be less than one and
closer to αa = 0.5. In contrast, with the MLT treatment the
value of αi is much larger than αa = 0.5.

The CGM models result in a much lower value for the
mixing-length parameter (αi for the KCGM model and α for
the ECGM model) than the MLT models, because the convec-
tion in nearly adiabatic regions is more efficient with the CGM
formulation than with the MLT one. Indeed, for the same value
of the mixing-length parameter and in the region of high con-
vective efficiency (below the superadiabatic region), the CGM
treatment predicts a convective flux ten times larger than the
MLT one for a given superadiabatic gradient. In a solar model,
this behavior results in a gradient closer to the adiabatic one
below a smaller superadiabatic zone in comparison to the MLT
case (Canuto et al. 1996). At the top of the quasi-adiabatic
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Fig. 2. The superadiabatic gradient ∇−∇ad is plotted versus the optical
depth τ in the outer region for the KMLT model (dashed line), EMLT
model (dot-dashed line), ECGM model (dot-dot-dot-dashed line), and
KCGM model (solid line). The dotted vertical lines correspond to the
layers where τ = τ1 = 4 and τ = τ2 = 20, respectively, and delimit the
transition region.

region, energy is predominantly transported by convection,
such that Fc ≃ F where Fc is the convective flux and F the
total energy flux. Above, convective transport is no longer ef-
ficient (Fc < F). Therefore, the solar energy flux F at the top
of the quasi-adiabatic region can be reproduced for the CGM
models with a lower value of the mixing-length parameter than
the one required for the MLT.

The superadiabatic gradients are displayed in Fig. 2 as a
function of τ. The angular point observed in ∇ − ∇ad at the op-
tical depth τ ≃ 20 for the KMLT model corresponds to the
matching point; i.e. at R⊙ − r ≃ 100 km, where R⊙ is the
solar radius at the photosphere, defined to be where τ = 2/3
and calibrated at the precision level given in Table 2. It results
from the large difference between αi and αa. This difference is
much smaller for the KCGM model, and therefore the “kink”
at τ ≃ 20 is much less pronounced.

Our last comment concerns the large difference in the value
of the mixing-length parameter between the KMLT and the
EMLT models. Both models differ only by the structure of
their uppermost layers located 50–100 km below the photo-
sphere (see Fig. 3, middle), which represent a tiny fraction
of the convection zone depth. The KMLT has a model atmo-
sphere in which convection is much less efficient than that of
the EMLT model as a consequence of the fact that αa = 0.5 in
the Kurucz’s model atmosphere (see Sect. 2.1). This is why the
superadiabatic gradient, ∇ − ∇ad, at that depth reaches much
higher values for the KMLT model than for the EMLT model.
Now if ∇ − ∇ad from two models are vastly different, so is the
entropy jump of both. Hence, if a certain entropy of the inte-
rior convection zone and thus a certain radius of the convection
zone are to be matched, a much more drastic change in α is re-
quired with the KMLT model to avoid to large an entropy jump
(see a detailed discussion in Montalbán et al. 2004).

Fig. 3. Top: Fc is plotted versus R⊙ − r for the KMLT model (dashed
curve), EMLT model (dot-dashed line), ECGM model (dot-dot-dot-
dashed line), and KCGM model (solid line). As in Fig. 2, the dotted
vertical lines delimit the transition region. Middle: same as the top
panel for α∗ (see Sect. 3.2). Bottom: same as the top panel for the root
mean square of the convective velocity, v.

3. Convective velocity and entropy fluctuations

3.1. Convective flux

Part of the mode excitation rates stems from the advection of
turbulent entropy fluctuations by turbulent motions (the so-
called “entropy source term”). This term scales – see Paper I
– as α2

s〈s
2
t 〉u

2
0, where st represents the entropy fluctuations due

to turbulent convection, αs ≡ (∂p/∂s)ρ, ρ, s, and p are, re-
spectively, the density, the entropy and the pressure, 〈〉, denotes
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spatial and time average, u2
0 ≡ 1/3 〈u2〉, where u is the velocity

field associated with the turbulence. The factor 1/3 arises from
the simplifying assumption made in Paper I that the acoustic
emission is injected into the p-mode isotropically in all three
directions.

The “entropy source term” scales as the square of the con-
vective flux Fc. Indeed, we show (see Appendix A) that it scales
as (αs/ρ0T0)2

(

Φ̄/3
)

F2
c , where T0 and ρ0 are the mean temper-

ature and density, respectively, and Φ̄ is the spatially averaged
anisotropy factor, which is defined as (Gough 1977):

Φ̄(r) ≡
〈u2〉

〈u2
z 〉
≡
v2

w2
(2)

where uz is the vertical component of u, and v and w are defined
as v2 ≡ 〈u2〉 and w2 ≡ 〈u2

z 〉, respectively.
For the CGM formulation, Fc is computed according to

Eqs. (2) and (17)–(21) in Heiter et al. (2002), and for the MLT
treatment, it is calculated according to Eq. (14.118) in Cox
(1968, Chap. 14).

Fc can be viewed as function of α and ∇, Fc = h(∇, α),
where h is given by the adopted model of convection.

ECGM and EMLT models: for these two models only one
mixing-length parameter is involved and Fc can directly be re-
trieved from α and ∇.

KCGM and KMLT models: in the outer region (τ < τ1),
as well as in the interior region (τ > τ2), values of Fc can
be directly retrieved from α and ∇. In the transition region
(τ1 < τ < τ2), however, we have to deal with two functions
for the convective flux: F

(i)
c = h(∇i, αi), the convective flux cal-

culated as in the interior, and F
(a)
c = h(∇a, αa), the convective

flux calculated for the atmosphere. As a result of Eq. (1), the
convective flux Fc of the model in the transition region can be
related to F

(i)
c and F

(a)
c as follows:

Fc = λ(τ)F
(a)
c + (1 − λ(τ))F(i)

c (3)

where λ(τ) is – like β(τ) (Eq. (1)) – a function of τ, which en-
sures the continuity of the convective flux. This function must
decrease with τ and must fulfill λ(τ) = 1 for τ ≤ τ1 and
λ(τ) = 0 for τ ≥ τ2. We point out that both F

(i)
c and F

(a)
c fulfill

Fc + Frad = L⊙/4πr2 at any optical depth τ. Just as for β(τ), the
choice λ(τ) is rather arbitrary. As for the case of ∇ (Eq. (1)),
we assume λ(τ) = β(τ) = (τ2 − τ)/(τ2 − τ1) for τ1 < τ < τ2.
Figure 3 shows Fc as a function of τ for the KMLT and KCGM
models.

Calculation of the driving by the entropy source term re-
quires, in addition to the convective flux (Fc), a model for
the mean anisotropy (Φ̄). In the CGM model of convection,
the expressions for v2 and Fc do not depend explicitly on the
mean anisotropy factor Φ̄. However, CGM adopt a model of
anisotropy which fixes the ratio x ≡ kh/kv, where kh and kv
are the horizontal and vertical wavenumbers associated with
the eddy of wavenumber k (note that k2 = k2

h
+ k2
v ). As a re-

sult of that model, for the largest scales x = 1/2, while it
increases quadratically with the total wavenumber k for the
smaller scales. Let us defineΦ(k) ≡ u2(k)/u2

z (k), a k-dependent
anisotropy factor. For an incompressible fluid – a property as-
sumed by the models investigated here (see also CM91) – one

can show that Φ(k) = 1 + x−1. Hence x = 1/2 implies Φ = 3,
i.e. an isotropic velocity field. As a result of its functional de-
pendence on k, from the larger scales (k ∼ k0) to the smaller
scales (k ≫ k0) Φ(k) decreases in the CGM model from ∼3 to-
wards ∼1. However, we recall that the model of stochastic exci-
tation (MSE) we consider is basically isotropic. The anisotropy
is taken into account only at large scales through Gough’s mean
anisotropy factor (Φ̄). Therefore, although CGM’s treatment
adopts a model where the anisotropy varies with k, we are left
with the inconsistency that the turbulent spectrum, E(k), as-
sumed for the MSE (see Sect. 4.1), is isotropic along the turbu-
lent cascade. A possible anisotropy is only taken into account
at large scales through Φ̄. But as the modes are predominantly
excited by turbulent eddies with k ∼ k0, which carry most of
the kinetic energy, this approximation is not expected to affect
our prediction significantly. Hence, we assume Φ̄ = 3 for the
CGM models in the discussion given below.

3.2. Convective velocity

Driving of the oscillation modes by the Reynolds term is pro-
portional to ρ0v

4.
Like the convective flux, the convective velocity v can be

viewed as a function of ∇ and α, i.e. v = f (∇, α), where
the function f depends on the formulation of convection.
For the CGM treatment, v = f (∇, α) is computed accord-
ing to Eqs. (88)–(90) of CGM. For the MLT approach, we
first compute w(∇, α) according to Eq. (14.110) of Cox (1968,
Chap. 14). We then deduce v = f (∇, α) from Eq. (2) with Φ̄ = 2
consistently with BV’s formulation of the MLT (see Gough
1977).

ECGM and EMLT models: as for the convective flux, v can
be retrieved from α and ∇.

KCGM and KMLT models: in the outer region (i.e. τ < τ1),
as well as in the inner region (τ > τ2), only one α and one
∇ are defined. In those regions v is computed as v = f (∇, α).
However, in the transition region we must deal with two differ-
ent values of α (namely αi and ∇i from the inner region and αa

and ∇a from the atmosphere) and v is not a linear function of α.
We thus face the difficulty of properly defining a convective
velocity consistent with Fc (Eq. (3)) in this region.

We proceed as follows: ∇(τ) and Fc(τ) are defined by
Eqs. (1) and (3), respectively. Then, at fixed ∇ and τ, we
define an equivalent mixing-length parameter, α∗, such that
Fc = h(∇, α∗). This parameter is variable with depth. We next
compute v = f (∇(τ), α∗) which is thus consistent with Fc of
Eq. (3).

Figure 3 (middle and bottom) shows α∗ and v as a function
of depth. For the MLT models, our calculation of v assumes
Φ̄ = 2, which is consistent with BV’s formulation of the MLT
(see Gough 1977), and for the CGM models it assumes Φ̄ = 3.

3.3. Comments

As shown in Fig. 3, the EMLT and KMLT models have very
different convective structures: up until close to the top of the
superadiabatic region (located at R⊙ − r ∼ 70 km for those
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models), the EMLT model results in a convective velocity and
convective flux smaller than those of the KMLT model. This
is a consequence of the fact that αEMLT < αKMLT

i (see Tables 1
and 3). On the other hand, the EMLT model results in larger v
and Fc above the top of the superadiabatic region because
αEMLT > αKMLT

a = 0.5.
In contrast with the MLT models, the KCGM and ECGM

models have rather similar convective structures. Indeed,
vKCGM and vECGM (FKCGM

c and FECGM
c resp.) have very simi-

lar shapes. This in turn is a consequence of the fact that the
CGM models require values of αKCGM

i
and of αECGM close to

that one required for the atmosphere (αa = 0.5).
For the KMLT model, there is a pronounced “kink” at the

bottom boundary of the transition region (i.e. at τ = 20 or R⊙ −

r = 100 km), especially for v. For the KCGM model, the “kink”
is much less important. These features are directly connected
with the angular point observed for∇ in that layer (see Sect. 2.3
and Fig. 2).

At the bottom of the transition region (i.e. at τ = τ2), for
both the KMLT and KCGM models, α∗(τ) reaches – as ex-
pected – the “interior” value of the mixing-length parameter
(i.e. αi), namely: αKCGM

i = 0.78 and αKMLT
i = 2.51. At the top

of the transition region (i.e. at τ = τ1), α∗(τ) reaches for both
the KCGM and KMLT models the asymptotic value α∗ ≃ 0.50.

4. Calculation of the solar p mode excitation rates

4.1. Procedure

We compute the rate P at which acoustic energy is injected
into solar radial p-modes according to the theoretical model of
stochastic excitation of Paper I, and assume here – as in Paper II
and Paper III – that injection of acoustic energy into the modes
is isotropic and consider only radial p modes. The rate at which
a given mode with frequency ω0 = 2πν0 is excited is then cal-
culated with the set of Eqs. (1)–(11) of Paper III and Eq. (3) of
Samadi et al. (2005).

The calculation requires the knowledge of three different
types of quantities. First of all, quantities which are related to
the average properties of the medium:

• the mean density ρ, αs (Eq. (A.5)), the mean square convec-
tive velocity v2, and the mean square of the entropy fluctua-
tions s2 (Eq. (A.6)). They are obtained from the equilibrium
models as explained in Sect. 3.

Secondly, quantities which are related to the oscillation modes:

• the eigenfunctions ξr and the eigenfrequency ν. They are
computed with the adiabatic pulsation code FILOU (Tran
Minh & Leon 1995) for each model.

Finally, quantities which are related to the properties of the tur-
bulent flow:

• the wavenumber (k) dependency of E, i.e. the turbulent ki-
netic energy spectrum;
• the values and depth dependency of k0, the wavenumber

at which the convective energy has its maximum and is “in-
jected” into the inertial range of the turbulent kinetic energy
spectrum E;

Fig. 4. The computed solar p mode excitation rates, P(ν), are plotted
versus the frequency for the KMLT (dashed line), EMLT (dot-dashed
line), ECGM (dot-dot-dot-dashed line), and KCGM (solid line) mod-
els. The filled circles represent the “observed” solar values of P(ν)
derived – according to Eq. (4) – from the amplitudes and line widths
of the ℓ = 0 p-modes measured by Chaplin et al. (1998).

• the ν-dependency of χk, the frequency component of the
auto-correlation product of the turbulent velocity field.

According to the results in Papers II and III obtained on
the basis of a 3D numerical solar granulation simulation, the
k-dependency of E(k, ν) is approximately reproduced by an
analytical spectrum called “Extended Kolmogorov Spectrum”
(EKS) and defined in Musielak et al. (1994). The ν-dependency
of χk is found to be better modelled with a Lorentzian function
rather than by a Gaussian function, which is usually assumed
for χk (see Paper III). Within most parts of the excitation re-
gion, the spatially averaged anisotropy factor Φ̄ is found almost
constant with a value of Φ̄ ∼ 2 in agreement with BV’s value.

At the top of the superadiabatic region, it was found that
k0 ∼ 3.6 Mm−1 and that k0 decreases slowly inwards with depth
(see Paper II). A good approximation for our region of interest
within the Sun is to assume a constant k0.

4.2. Comparison with the observations

Results for P are presented in Fig. 4. The theoretical esti-
mates for P are compared with the “observed” Pobs, calculated
from the seismic data of Chaplin et al. (1998) according to the
relation:

Pobs(ν) = 2π Γ
I

ξ2r (rs)
v2s(ν) = 2π ΓM v2s(ν), (4)

where: ν is the mode frequency; rs is the radius at which oscil-
lations are measured;

I ≡

∫ M

0
dm ξ2r (5)

is the mode inertia; M = I/ξ2r (rs) is the mode mass; and fi-
nally Γ and vs are the mode line-width and the mode surface ve-
locity, respectively, and are obtained from Chaplin et al. (1998).
We point out that, according to the definition of Eq. (4), the de-
rived value of Pobs depends on the model one considers through
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Fig. 5. The integrand dP/dm (Eq. (2) of Paper II) is plotted versus
R⊙ − r for a mode with order n = 20 (n = 1 being the fundamen-
tal mode) for the KMLT model (dashed line), EMLT model (dot-
dashed line), ECGM model (dot-dot-dot-dashed line), and KCGM
model (solid line).

M. Indeed, for a given mode, M – a priori – differs from one
model to another. However, the mode masses of the models
we consider here are very close to each other such that the
changes on Pobs due to the use of the mode mass of the different
models are not significant compared to the error bars attached
to the measurements. For each mode, we can then compute a
unique value for Pobs and compare the values of P obtained for
the different models to each other and to Pobs. We choose to
derive M from the radial eigenfunctions ξr computed for the
KCGM model and adopt rs = R⊙ + 200 km consistently with
the Chaplin et al. (1998) observations.

As shown in Fig. 4, differences between PKCGM and PECGM

are found smaller than the error bars associated with Pobs from
Chaplin et al. (1998). This is a consequence of the fact that
the ECGM and KCGM models present very similar convective
structures (see Sect. 3.3 and Fig. 3). On the other hand, PKMLT

is found significantly larger than PEMLT as a consequence of the
fact that the KMLT models result in larger v and Fc values than
the EMLT ones (see Sect. 3.3 and Fig. 3) for τ � 10 . . .20.

Furthermore, PKCGM and PECGM are found closer to Pobs

than PKMLT. However, above ν � 2.5 mHz, differences be-
tween Pobs and PKCGM (or PECGM) remain important. The ori-
gin of this discrepancy is discussed in Sect. 5.

For the KCGM and ECGM models, we have so far assumed
Φ̄ = 3. According to Eq. (A.6), assuming Φ̄ = 2 – a value
which is consistent with results from the 3D solar simulation
– results in a driving by the entropy source smaller by a fac-
tor ∼2/3 compared to the case Φ̄ = 3. This decrease, however,
remains small compared to the difference in P between the dif-
ferent models and hence does not influence our main results.

We present in Fig. 5 the integrand dP/dm (Eq. (2) of
Paper II) corresponding to the excitation rate P of a mode of
order n = 20. The plot is done for the four solar models. For
three of the four models the extent of the region where most
of the excitation takes place is very thin (less than 50 km).
Obviously, this is the consequence of the very shallow extent
of the superadiabatic region (see Fig. 2). This tiny extent of the

excitation region strongly contrasts with the one found in Stein
& Nordlund (2001) and in Paper III. For instance, those authors
found a size of the order of ∼500 km for a mode of the same or-
der. This discrepancy is attributed to the local nature of the con-
vective treatments investigated in this work (see Sect. 5). Note
that in Fig. 5 the EMLT model, with its large value of α for
the entire superadiabatic region, predicts a broader excitation
region than the other models. This is due to a smaller superadi-
abatic peak. However, in this model the transport of convective
heat occurs with a smaller convective velocity and hence, as ex-
pected, the excitation is smaller than for the other models. We
note here that despite the EMLT model results in a temperature
structure closer to the numerical simulations (smaller supera-
diabatic peak), the predicted excitation amplitudes are smaller
than for the other models investigated here and are the most
discrepant in comparison with the data. This confirms that ex-
citation rates provide a decisive additional test for convection
models.

5. Conclusions

We have computed the rates P at which acoustic energy is in-
jected into the solar radial p modes for several solar models.
The solar models are computed with two different local treat-
ments of convection: MLT and CGM.

For one set of solar models (EMLT and ECGM models), the
atmosphere is gray and assumes Eddington’s approximation.
The models assume only one mixing-length parameter value
and reproduce the solar radius at solar age but not the Balmer
line profiles. For a second set of models (KMLT and KCGM
models), the atmosphere is built using a T (τ) law which was
obtained from a Kurucz’s model atmosphere computed with the
same local treatment of convection. The mixing-length param-
eter in the model atmosphere is chosen so as to provide good
agreement between synthetic and observed Balmer line pro-
files, while the mixing-length parameter in the interior model
is calibrated so that the model reproduces the solar radius at
solar age.

Both the KMLT and the KCGM models reproduce the
Balmer line profile and the solar radius and luminosity but – as
shown in Figs. 2–4 – the CGM models model the transition be-
tween the region of high convective efficiency (the interior) and
the region of low efficiency (the atmosphere) in a more realistic
way than do the MLT models, as they reproduce the observed
excitation rate P more closely and predict a smoother transition
region. Furthermore, the KMLT model requires a change of the
mixing-length by a factor of five in a layer of ∼20 km thick-
ness, which is significantly less than a pressure scale height
(∼300 km). Given the meaning of alpha, this means that the
mixing-length varies from about 150 km to 750 km in a layer
of ∼20 km thickness (!), which does not make much sense from
a physical point of view. On the other hand, the KCGM model
does not require such large change in α.

For the MLT treatment, the oscillation excitation rates, P,
do significantly depend on the properties of the atmospheres
investigated here. Indeed, differences in P between the EMLT
model and the KMLT model are found to be very large. On the
other hand, for the CGM treatment, differences in P between
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the ECGM and the KCGM models are very small compared to
the error bars attached to the seismic measurements. This result
shows that an Eddington gray atmosphere can be assumed for
the calculation of P when the CGM formulation is adopted.
This would be particulary convenient in the case of massive
computations of P for a large set of stellar models.

For the EMLT and KMLT models, P is significantly under-
estimated compared to the solar seismic constraints obtained
from the Chaplin et al. (1998) measurements. KCGM and
ECGM models yield values for P closer to the seismic data than
the EMLT and KMLT models. Contraints on the Hβ Balmer line
profile and on the solar radius can be satisfied by the two for-
mulations (MLT and CGM), provided that the mixing-length
parameters αi and αa are suitably adjusted. Once the above
constraints are satisfied, the solar seismic data provide addi-
tional valuable constraints and, according to the present inves-
tigation (focussed on local approaches), they cleary favor the
CGM treatment.

Our calculations are based here on Grevesse & Noels
(1993)’s solar abundances. There was recently a change in
these values (see Asplund et al. 2004, 2005) with quite some
implications for the internal structure of the Sun (see Basu &
Antia 2004; Montalbán et al. 2004; Bahcall et al. 2005; Antia
& Basu 2005). Then the implication for the calculation of the
excitation rates (P) must in principle be tested consistently by
changing the solar mixture both in the interior and the atmo-
sphere (work in progress). However, we expect small changes
in P. Indeed, as a first step we calculated a solar model hav-
ing the low metallicity Z/X = 0.0171 inferred from the new
Asplund et al. (2004)’s revised solar abundances, in which the
interior calculation is based on the detailed Asplund et al. mix-
ture and associated opacities, while the atmosphere considers
the low metallicity but keeps the Grevesse & Noels (1993)’s so-
lar abundances and associated opacities. Changes in P smaller
than ∼10% – much smaller than the errors bars (∼20%) associ-
ated with the current measurements – were obtained.

The remaining discrepancy above ν � 2.5 mHz between
computed and observed P (Fig. 4) is attributed to the assump-
tion of locality in the present treatment of convection. As a
matter of fact, Samadi et al. (2003b, Paper III) have succeeded
in reproducing the seismic constraints much better using con-
straints from a 3D solar granulation simulation. One reason
for this improvement is that convection is intrinsically a non-
local phenomenon. In the terminology of classical turbulence
modelling, the eddies located at different layers contribute to
the convective flux of a given layer (cf. also the discussion
in Houdek 1996). Hence, a non-local description of convec-
tion is expected to predict a more extended superadiabatic re-
gion. This is suggested, for instance, by the comparison of
our present results with that of Paper II. Non-local theories –
such as those by Gough (1977) and by Canuto & Dubovikov
(1998) – also support this explanation by typically predicting a
smaller temperature gradient in the superadiabatic region than
the local theories do (see Houdek 1996; Kupka & Montgomery
2002), and thus a more extended superadiabatic region as well.
Another property of solar granulation caused by non-locality
is the observed asymmetry between the areas covered by up-
and downflows. This allows for a lower root mean square

velocity while larger velocities (and thus more effective mode
driving) can be reached in the downflows with their much
higher velocities (note that such an asymmetry can be ac-
counted for through non-local models as proposed by Canuto
& Dubovikov (1998, see also Kupka & Montgomery 2002),
although in a more simplified manner). On the other hand, the
local models studied here cannot account for the different prop-
erties of up- and downflow areas at all. Hence, the superadia-
batic region in these models is physically different from the one
expected from non-local models and found in numerical simu-
lations. Solar modes above ν � 2 mHz, however, are predomi-
nantly excited in the superadiabatic region (Paper III). A larger
amount of acoustic energy is then injected into those modes
when convection is treated – as is in the 3D simulation or on
the base of a non-local theory – in a more realistic manner than
through local theories.

The results presented here so far only concern our Sun.
Samadi et al. (2003a) found that P scales as (L/M)s where s

is the slope of the power law and L and M are the mass and lu-
minosity of their computed 1D stellar models. By building a set
of stellar models with the MLT and another one with Gough’s
(1977) non-local formulation of convection, the authors found
that the slope s is quite sensitive to the 1D treatment of con-
vection. In this respect, it would be interesting to compare the
influence of the CGM formulation or of Canuto & Dubovikov’s
(1998) non-local convection treatment on the value of s and to
test whether or not measurements of P can – for stars other than
the Sun – distinguish the best 1D treatment of convection.
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Appendix A: Relation between the entropy

fluctuations and the convective flux

As in Paper I, we relate the entropy fluctuations, st, to temper-
ature fluctuations, θ, as follows:

st =
cp

T0
θ, (A.1)

where T0 is the mean temperature and cp = (∂s/∂ ln T )p.
Hence, the mean square of the entropy fluctuations, 〈s2

t 〉, can
be expressed as

〈

s2
t

〉

≈

(

cp

T0

)2
〈

θ2
〉

. (A.2)

The convective flux is related to θ and uz, the vertical compo-
nent of convective velocity, as

Fc ≈ ρ0 cp 〈uz θ〉, (A.3)

143



242 R. Samadi et al.: Influence of local treatments of convection upon solar p mode excitation rates

where ρ0 is the mean density. We furthermore assume, consis-
tently with the adopted quasi-normal approximation in Paper I,
that 〈uz st〉

2 can be decomposed as

〈uz st〉
2 = 〈u2

z 〉 〈s
2
t 〉 = w

2 〈s2
t 〉. (A.4)

Finally, one can show that

αs ≡

(

∂p

∂s

)

ρ

= ρ0T0Γ1∇ad, (A.5)

where s is the entropy and p the pressure, T0 is the mean
temperature, Γ1 = (∂ ln p/∂ ln ρ)s is the adiabatic exponent, and
∇ad = (∂ ln T/∂ ln p)s is the adiabatic temperature gradient.

The mean square of the entropy fluctuations can then be
deduced from the set of Eqs. (A.1)–(A.5) and (2):

〈

s2
t

〉

≈
Φ̄

3

(

Fc

ρ0T0u0

)2

, (A.6)

where Φ̄ is the spatially averaged anisotropy factor, which is
defined in Eq. (2). Driving by the entropy source term is then
proportional to (αs/ρ0T0)2

(

Φ̄/3
)

F2
c – see Paper I – and thus

scales like the square of Fc.
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ABSTRACT

Context. Oscillations of stellar p modes, excited by turbulent convection, are investigated. In the uppermost part of the solar convection
zone, radiative cooling is responsible for the formation of turbulent plumes, hence the medium is modelled with downdrafts and
updrafts.
Aims. We take into account the asymmetry of the up- and downflows created by turbulent plumes through an adapted closure model.
In a companion paper, we apply it to the formalism of excitation of solar p modes developed by Samadi & Goupil (2001).
Methods. Using results from 3D numerical simulations of the uppermost part of the solar convection zone, we show that the two-scale
mass-flux model (TFM) is valid only for quasi-laminar or highly skewed flows (Gryanik & Hartmann 2002) and does not reproduce
turbulent properties of the medium such as velocity-correlation products. We build a generalized two-scale mass-flux Model (GTFM)
model that takes both the skew introduced by the presence of two flows and the effects of turbulence in each flow into account. In
order to apply the GTFM to the solar case, we introduce the plume dynamics as modelled by Rieutord & Zahn (1995) and construct
a closure model with plumes (CMP).
Results. The CMP enables expressing the third- and fourth-order correlation products in terms of second-order ones. When compared
with 3D simulation results, the CMP improves the agreement for the fourth-order moments by a factor of two approximately compared
with the use of the quasi-normal approximation or a skewness computed with the classical TFM.
Conclusions. The asymmetry of turbulent convection in the solar case has an important impact on the vertical-velocity fourth-order
moment, which has to be accounted for by models. The CMP is a significant improvement and is expected to improve the modelling
of solar p-mode excitation.

Key words. convection – turbulence – Sun: oscillations

1. Introduction

In the uppermost part of the solar convective zone, turbulent en-
tropy fluctuations and motions of eddies drive acoustic oscil-
lations. 3D numerical simulations of the stellar turbulent outer
layers have been used to compute the excitation rates of solar-
like oscillation modes (Nordlund & Stein 2001). As an alterna-
tive approach, semi-analytical modelling can provide an under-
standing of the physical processes involved in the excitation of
p modes: in this case, it is indeed rather easy to isolate the dif-
ferent physical mechanisms at work in the excitation process and
to assess their effects. Various semi-analytical approaches have
been developed by several authors (Goldreich & Keeley 1977;
Goldreich et al. 1994; Balmforth 1992; Samadi & Goupil 2001);
they differ from each other by the nature of the assumed exci-
tation sources, by the assumed simplifications and approxima-
tions, and also by the way the turbulent convection is described
(see the review by Stein et al. 2004). Among the different the-
oretical approaches, that of Samadi & Goupil (2001) includes
a detailed treatment of turbulent convection, which enables us to
investigate different assumptions about turbulent convection in
the outer layers of stars (Samadi et al. 2005). In this approach,
the analytical expression for the acoustic power supplied to the

⋆ Appendix A is only available in electronic form at
http://www.aanda.org

p modes involves fourth-order correlation functions of the turbu-
lent Reynolds stress and the entropy source term, which for the
sake of simplicity are expressed in terms of second-order mo-
ments by means of a closure model.

The most commonly used closure model at the level
of fourth-order moments (FOM) is the Quasi-Normal
Approximation (QNA), which is valid for a Gaussian probability
distribution function (see Lesieur 1997) and was first introduced
by Millionshchikov (1941). The QNA is rather simple and
convenient to implement. However, Ogura (1963) has shown
that such a closure could lead to part of the kinetic energy
spectrum becoming negative. In this paper, we confirm the
results of Kupka & Robinson (2006, hereafter KR2006), namely
that this approximation indeed provides a poor description of
the physical processes involved in solar turbulent convection.

Mass flux models (e.g., Randall et al. 1992; Abdella &
McFarlane 1997) explicitly take the effects of updrafts and
downdrafts on the correlation products into account. The pres-
ence of two well-defined flow directions then introduces an ad-
ditional contribution when averaging the fluctuating quantities,
since averages of fluctuating quantities over each individual flow
differ from averages over the total flow. For applications in at-
mospheric sciences, the mass-flux model for convection has re-
cently been improved by Gryanik & Hartmann (2002, here-
after GH2002). Their motivation has been to account for the fact
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that horizontal scales of temperature and velocity fluctuations
are different (hence their improvements lead to a “two-scale
mass-flux model” (TFM)) as well as to understand and measure
the effects of the skewness of their distribution. According to
GH2002, mass-flux models, which also include the TFM, under-
estimate the FOM by as much as 70%. Therefore, such models
clearly miss some important physical effects present in convec-
tive flows. Gryanik & Hartmann (2002) and Gryanik et al. (2005)
studied the asymptotic limits of TFM which led the authors to
propose an interpolation between the QNA and the limit of large
skewness provided by the TFM. This new parametrization per-
mits a much better description of the FOM for convection in
the atmosphere of the Earth (GH2002). We show that for their
parametrization to be applicable to the case of solar convection,
a more realistic estimate for the skewnesses of velocity and tem-
perature fluctuations is required than that provided by the TFM
itself (Sect. 2).

The parametrization of GH2002 requires the knowledge of
the skewnesses and second-order moments to compute FOM.
These have to be provided either by measurements, by another
model, or by numerical simulations. In the present paper we do
not aim to construct a complete model to compute these quan-
tities, which is the goal of the Reynolds stress approach (e.g.,
Canuto 1992; Canuto & Dubovikov 1998). Rather, we aim to
analyze the shortcomings of the TFM and suggest improvements
using numerical simulations of solar convection as a guideline.
The conclusions drawn from this analysis are used to derive
a model for fourth-order moments in terms of second-order mo-
ments that can be used in computations of solar p-mode excita-
tion rates.

To proceed with the latter, we developed a formulation of
the TFM that takes the effects of turbulence in each flow into ac-
count. This generalized TFM model (hereafter GTFM) is useful
for both the superadiabatic and adiabatic outer solar layers. This
formulation can actually be applied in other contexts than just
the excitation of solar p modes as long as the convective system
is composed of two flows.

The GTFM is more general and realistic than the TFM, but it
requires the knowledge of additional properties of both the tur-
bulent upwards and downwards flows. We choose to determine
these properties by means of a plume model. Turbulent plumes
are created at the upper boundary of the convection zone, where
radiative cooling becomes dominant and where the flow reaches
the stable atmosphere. In this region the updrafts become cooler
and stop their ascent. This cooler flow is more dense than its
environment and it triggers the formation of turbulent plumes
(Stein & Nordlund 1998). As shown by Rieutord & Zahn (1995),
these structures drive the dynamics of the flow; hence, to con-
struct a closure model, we study the plume dynamics developed
by Rieutord & Zahn (1995, hereafter RZ95). This makes it possi-
ble to build a closure model with plumes (CMP), which is valid
in the solar quasi-adiabatic convective region. In a companion
paper (Belkacem et al. 2006, hereafter Paper II), we general-
ize this one-point correlation model to a two-points correlation
model and calculate the power injected into solar p modes.

The paper is organised as follows: Sect. 2 introduces the
TFM. Its validity is then tested with a 3D numerical simula-
tion of the uppermost part of the solar convection region. In
Sect. 3, we extend the TFM formulation (GTFM) in order to take
into account turbulent properties of both upward and downward
flows. We next investigate the asymptotic limits of the GTFM. In
Sect. 4, we construct the CMP with the help of the RZ95 plume
model. We test the validity of this model with results from the
3D simulation and show that the use of the plume model limits

the validity of the CMP to the quasi-adiabatic zone. The CMP
is then used to obtain analytical expressions for the third- and
fourth-order moments. Section 5 is dedicated to discussions and
conclusions.

2. The two-scale mass-flux model

2.1. The model

The TFM considers a convective medium composed of upward
and downward flows that are horizontally averaged. The pres-
ence of two flows introduces the possibility of a non-zero skew-
ness for the moments of turbulent quantities when averages are
done globally over the whole system. The TFM was developed
in order to take into account this non-zero skewness.

Any averaged turbulent quantity φ can be split into two parts,
one associated with the updrafts and the other with the
downdrafts:

〈φ〉 = a〈φ〉u + (1 − a)〈φ〉d, (1)

where 〈〉 denotes ensemble spatial (in the horizontal plane) and
time averages. 〈φ〉u and 〈φ〉d are the averages for the upflow and
downflow, respectively. a and 1 − a are the mean fractional area
occupied by the updrafts and downdrafts, respectively (Randall
et al. 1992; Gryanik & Hartmann 2002; Canuto & Dubovikov
1998).

Fluctuating quantities defined as φ′ = φ − 〈φ〉 can be
rigourously written as: 〈φ′〉 = a 〈φ′〉u + (1 − a) 〈φ′〉d, where
the subscripts u and d are meant for upflow and downflow, re-
spectively. For vertical velocity fluctuations w′, one then writes:

〈w′〉 = a 〈w′〉u + (1 − a) 〈w′〉d. (2)

GH2002 propose to make the same decomposition for tempera-
ture fluctuations (θ′); thus, hot and cold regions are considered
separately. This step was motivated by the observation that for
the case of atmospheric boundary layer the characteristic hori-
zontal scales of velocity and temperature flucutations are differ-
ent from each other and by the fact that the plain mass flux av-
erage Eq. (1) violates certain symmetries between velocity and
temperature flucutations. Indeed, hot and cold regions do not
necessarily coincide with updrafts and downdrafts, respectively.
Hence, a second quantity (b), the mean fractional area occupied
by warm drafts, is introduced, and in most cases, a � b (thus the
name TFM). Then,

〈θ′〉 = b〈θ′〉h + (1 − b)〈θ′〉c. (3)

Furthermore, the TFM defines the velocity fluctuations inside
the upflow (w′u) and downflow (w′d), respectively, as:

w′u = wu − 〈w〉 and w′d = wd − 〈w〉. (4)

Similarly, for the temperature fluctuations inside hot (θ′h) and
cold (θ′d) regions, respectively, one has

θ′h = θh − 〈θ〉 and θ′c = θc − 〈θ〉. (5)

The quantities wu, wd, θh, and θc are the averages of veloc-
ity and temperature, respectively, over all updrafts (wu), down-
drafts (wd), hot (θh) drafts, and cold (θc) drafts. Clearly, averages
of the four fluctuating quantities in Eqs. (4) and (5) do not van-
ish because the average of a quantity over the whole flow differs
from the average over one single (up or down, hot or cold) draft.

It is expected that the differences between the updrafts and
downdrafts lead to a probability distribution function (PDF) that
is no longer symmetric with respect to vanishing velocities and
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temperature differences. As the third-order moments (〈w′3〉 and
〈θ′3〉) vanish when the PDF is symmetric, their values provide
a measure for the deviation from a symmetric PDF. The skew-
nesses are defined as:

S w =
〈w′3〉
〈w′2〉3/2

and S θ =
〈θ′3〉
〈θ′2〉3/2

, (6)

respectively, for the vertical velocity and temperature fluctua-
tions. In order to compute expressions for higher order mo-
ments in terms of velocity and temperature fluctuations, Eqs. (4)
and (5), GH2002 followed Randall et al. (1992), using an addi-
tional simplifying approximation, i.e.,

〈φn〉 ≈ 〈φ〉n, (7)

where φ = {w′u,d, θ
′
h,c}. This approximation neglects the contri-

butions of flucutations within the up- and downdrafts and differ-
ences in temperature and velocity between the individual drafts.

Given this approximation and the known second-order mo-
ments, the TFM provides third-order moments as follows (see
GH2002):

〈w′2θ′〉 = S w〈w′2〉1/2〈w′θ′〉 (8)

〈w′θ′2〉 = S θ〈θ′2〉1/2〈w′θ′〉

and FOMs as:

〈w′4〉 = (1 + S 2
w) 〈w′2〉2

〈θ′4〉 = (1 + S 2
θ ) 〈θ

′2〉2 (9)

〈w′3θ′〉 = (1 + S 2
w) 〈w′2〉 〈w′θ′〉

〈w′θ′3〉 = (1 + S 2
θ ) 〈θ

′2〉 〈w′θ′〉.

The skewnesses S w and S θ (Eq. (6)) are related to a and b
through

S w =
1 − 2a
√

a(1 − a)
and S θ =

1 − 2b
√

b(1 − b)
(10)

(GH2002; see also Randall et al. 1992, for the case of S w).
In the following we consider only vertical-velocity moments.

Assuming S w = S θ = 0 in Eq. (9) gives:

〈w′4〉 = 〈w′2〉2. (11)

Such a result is not consistent with a quasi-normal (Gaussian)
PDF. Indeed, when w′ follows a normal distribution, then
(Lesieur 1997):

S w = S θ = 0 and 〈w′4〉 = 3〈w′2〉2. (12)

GH2002 found that the two-scale mass-flux average,
Eqs. (8)–(10), underestimates both skewness and fourth-
order moments as measured by aircraft data for planetary
boundary layer convection (see their Figs. 4 and 7). To account
for the omitted contributions from fluctuations within and be-
tween the up- and downdrafts, they suggested generalizing the
TFM by building the fourth-order moments as an interpolation
between two asymptotic regimes:

– S w = 0, assuming the quasi-normal approximation (QNA)
limit that is valid for a Gaussian PDF, and

– S w ≫ 1, the large skewness limit (GH2002).

GH2002 hence proposed:

〈w′4〉 = 3

(

1 +
1
3

S 2
w

)

〈w′2〉2

〈θ′4〉 = 3

(

1 +
1
3

S 2
θ

)

〈θ′2〉2 (13)

〈w′3θ′〉 = 3

(

1 +
1
3

S 2
w

)

〈w′2〉 〈w′θ′〉

〈w′θ′3〉 = 3

(

1 +
1
3

S 2
θ

)

〈θ′2〉 〈w′θ′〉.

Corresponding expressions for other FOMs (〈w′2θ′2〉 and those
including horizontal velocities) can be found in Gryanik et al.
(2005, hereafter GH2005).

2.2. Validation with a 3D numerical simulation
of the solar external layers

We consider the uppermost part of the solar turbulent convec-
tion. Turbulent plumes are known to exist within this region
(Cattaneo et al. 1991; Stein & Nordlund 1998). Here, we test
the validity of the TFM using 3D numerical simulations of these
upper solar layers. The geometry is plane-parallel with a physi-
cal size of 6 Mm × 6 Mm × 3 Mm. The upper boundary corre-
sponds to a convectively stable atmosphere and the lower one to
a quasi-adiabatic convection zone. The 3D simulations used in
this work were obtained with Stein & Nordlund’s 3D numerical
code (Stein & Nordlund 1998). Two simulations with different
spatial grids were considered: 253×253×163 and 125×125×82.

Averages and moments of the velocity and temperature
fluctuations were computed in a two-stage process:
a is given as the number of grid points per layer with upwards
directed vertical velocity divided by the total number of points
in that layer. The instantaneous value of b is obtained in a similar
manner, comparing the temperature at a given point in a layer
with its horizontal average. Moments related to updrafts were
obtained from horizontal averaging, using only those grid points
at which vertical velocity was directed upwards at the given
instant in time, and likewise, quantities related to downdrafts
were obtained from horizontal averaging using only those grid
points at which vertical velocity was directed downwards. In
a second step, time averages were performed over a sufficiently
long period of time such that averages no longer depended on
the integration time beyond a few percent.

— Calculation of the skewnesses: computations of the mean
fractional area of the upflow (a) and downflow (1 − a), as well
those of the warm (b) and cold (1 − b) drafts from the numer-
ical 3D simulations (Fig. 1), show that the upper part of the
solar convection zone can be divided into three parts: the sta-
ble atmosphere, the superadiabatic zone, and the quasi-adiabatic
zone. In the convectively stable atmosphere (z < 0 Mm, where
z = 0 is approximately at the bottom of the photosphere and
z = −0.5 Mm is the uppermost boundary of the simulation),
there are no asymmetric motions. In the superadiabatic zone
(0 < z < 0.5 Mm), from the top downwards, the departure
from symmetry for the flows strongly increases (Fig. 1), and the
skewnesses, S w and S θ, significantly differ from zero (Fig. 2).
Hence, one must expect a non-negligible departure from the
QNA, which is explained by radiative cooling creating turbulent
plumes. In the quasi-adiabatic zone, plumes have already been
formed and no additional asymmetry is therefore created. Hence,
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Fig. 1. On the top, the superadiabatic gradient (∇−∇ad) is plotted versus
the depth (z). The reference depth (z = 0 Mm) corresponds to the photo-
sphere. At the bottom, the mean fractional area of the upflow (a) and the
warm drafts (b) are given. To calculate these quantities the upflow and
downflow are separated using the sign of w′ as a criterion. The same is
done for the warm and cold drafts.

the asymmetry remains large and constant (a ≈ b ≈ 0.7) and the
skewnesses show a constant departure from S w = S θ = 0.

The last two regions are of interest in this work because both
show a departure from the quasi-normal PDF in terms of fluctu-
ating vertical velocity and temperature. The comparison of the
above numerical results with the results from the classical TFM
(Eq. (9)) and the TFM model (Fig. 2) shows that Eq. (10) fails
to reproduce the behaviour of the skewnesses from the 3D sim-
ulation (as was also found by Gryanik & Hartmann 2002 for
convection in the atmosphere of the Earth, see their Fig. 4).

— Detailed comparison of a fourth-order moment: the
GH2002 interpolation relation Eq. (14) combined with the TFM
relation for skewness, Eq. (10), shows only a slight improvement
of the QNA description for the FOM 〈w′4〉, when compared to
the numerical result (Fig. 3).

To conclude, it seems that a physical process is missing in the
quasi-adiabatic convective zone. To explain such a disagreement
between the numerical results and the TFM, we must come back
to its main approximation (see Eq. (7)). For n = 2, Eq. (7) yields:

〈w′2〉 − 〈w′〉2 ≈ 0 〈θ′2〉 − 〈θ′〉2 ≈ 0. (14)

Hence, the TFM assumes that the variances of the fluctuations
of vertical velocity and temperature within and among individual
drafts vanish, and the detailed turbulent nature of the flows them-
selves does not have to be taken into account. In order to com-
pensate for the shortcoming of Eq. (9) and thus the consequences
of the approximation Eq. (7) on the model predictions, Gryanik
& Hartmann (2002) proposed a more general interpolation

Fig. 2. The skewnesses S w (on the top) and S θ (on the bottom) are plot-
ted versus the depth (z). Solid lines represent direct calculation from
the 3D numerical simulation (Eq. (6)) and dashed lines represent the
skewnesses calculated using the TFM model (Eq. (10)).

Fig. 3. Fourth-order moment (〈w′4〉) as a function of depth (z) normal-
ized to the FOM, as calculated directly from the simulation. The solid
line denotes the moment calculated using Eq. (14) with S w taken di-
rectly from the simulation; the dashed line shows the result if S w is
instead taken from Eq. (10), as in the TFM case; and the dotted line
is the QNA (Eq. (26)). Equations (14) and (26) involve second-order
moments that are computed using the numerical simulation.

relation (Eq. (14)) that uses Eq. (9) only for one of two asymp-
totic limits.

As seen above, Eq. (10) fails to describe the numerical re-
sults. The question therefore is whether the interpolated relation
(Eq. (14)) is still valid, provided a correct value for the skewness
is used. Hence, we assess the validity of Eq. (14) by inserting
the value of S w directly given by the 3D numerical result. The
result is shown in Fig. 3 as well. This is the model that Gryanik
& Hartmann (2002) proposed to be used instead of the TFM
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itself and its associated relation for the skewnesses, Eq. (10). We
obtain an accurate description of the FOM 〈w′4〉 in the quasi-
adiabatic region, but not in the superadiabatic zone, where the
interpolated relation does not seem well adapted (cf. KR2006
for a more detailed discussion).

3. The generalized two-scale mass-flux model

3.1. Theoretical formulation

Here we remove the approximation of Eq. (7) and instead con-
sider the exact expression:

〈w′n〉 = a〈w′n〉u + (1 − a)〈w′n〉d. (15)

Our main idea is to separate the effect of the skewness intro-
duced by the presence of two flows from the effect of the turbu-
lence that occurs in each individual flow. We note that in a geo-
physical context Siebesma & Cuijpers (1995) and Petersen et al.
(1999) studied the transport properties of classical mass-flux
models that also involved a separation of large-scale and turbu-
lent components. Here, we start from the more recent viewpoint
of the TFM by Gryanik & Hartmann (2002) and Gryanik et al.
(2005), which takes into account that updrafts and downdrafts
are not strictly correlated with hot and cold drafts, respectively.
As a first step we define the intrinsic fluctuations within one of
the flows as:

w̃′j = w j − 〈w〉 j, (16)

where j = {u, d}. They are fluctuations with vanishing averages.
To express w′

j
in terms of w̃′

j
(Eq. (4)), we write:

w′j = w̃
′
j + 〈w〉 j − 〈w〉. (17)

Applying the decomposition of Eq. (1) to 〈w〉 in the above
expression yields:

w′u = w̃
′
u + (1 − a) δw

w′d = w̃
′
d − a δw (18)

with

δw = 〈w〉u − 〈w〉d = |〈w〉u| + |〈w〉d|, (19)

because 〈w〉u > 0 and 〈w〉d < 0.
Inserting Eq. (18) into Eq. (15) for n = 2, 3 yields:

〈w′2〉 = a(1 − a) δw2 + a〈w̃′2〉u + (1 − a)〈w̃′2〉d (20)

〈w′3〉 = a(1 − a)(1 − 2a) δw3 + a〈w̃′3〉u + (1 − a)〈w̃′3〉d
+3a(1 − a)

[

〈w̃′2〉u − 〈w̃′2〉d
]

δw. (21)

The third-order moment (Eq. (21)), which is related to the skew-
ness (see Eq. (6)), is composed of four contributions:

– the first term is the expression derived by Gryanik &
Hartmann (2002). It is a measure of the skewness introduced
by the presence of two flows;

– the second and third terms represent the asymmetry of the
PDF within each flow induced by turbulence;

– the fourth term measures the difference of the fluctuating ve-
locity dispersion. Hence, if one of them is larger than the
other, the PDF becomes asymmetric.

The description of the turbulence in individual flows that has
been neglected in the TFM is included in the present formulation
through the last three terms in Eq. (21).

We next focus on the fourth-order moment 〈w′4〉, which is of
interest in the context of stochastic excitation of solar p modes
(see Paper II). Then setting n = 4 in Eq. (15), we have:

〈w′4〉 = a(1 − a)(1 − 3a + 3a2) δw4

+6a(1 − a)
(

(1 − a)〈w̃′2〉u + a〈w̃′2〉d
)

δw2

+4a(1 − a)
(

〈w̃′3〉u − 〈w̃′3〉d
)

δw

+a〈w̃′4〉u + (1 − a)〈w̃′4〉d. (22)

We stress that the TFM is recovered from the present generalized
formulation when proper fluctuations (i.e., turbulence) within
and among the individual drafts are neglected, i.e., 〈w̃′n〉 = 0.

The same decomposition can be performed in terms of tem-
perature fluctuations. As the calculation is symmetrical in w′, a
and θ′, b, we hence have:

〈θ′2〉 = b(1 − b) δθ2

+b〈θ̃′2〉h + (1 − b)〈θ̃′2〉c
〈θ′3〉 = b(1 − b)(1 − 2b) δθ3

+b〈θ̃′3〉h + (1 − b)〈θ̃′3〉c
+3b(1 − b)

[

〈θ̃′2〉h − 〈θ̃′2〉c
]

δθ

〈θ′4〉 = b(1 − b)(1 − 3b + 3b2) δθ4

+6b(1 − b)
(

(1 − b)〈θ̃′3〉h + b〈θ̃′2〉c
)

δθ2

+4b(1 − b)
(

〈θ̃′3〉h − 〈θ̃′3〉c
)

δθ

+b〈θ̃′4〉h + (1 − b)〈θ̃′4〉c. (23)

The next step consists of the derivation of the cross terms
〈w′θ′〉, 〈w′2θ′2〉, 〈w′2θ′〉 and 〈w′θ′2〉; it is convenient to define the
coefficients auh, auc so as to take into account the four types of
flow (see also GH2005):

– warm updraft, auh
– cold updraft, auc = a − auh
– warm downdraft, adh = b − auh
– cold downdraft, adc = 1 − b − auc.

Expressions for the third and fourth cross-correlation moments
are given in Appendix A.

The generalized TFM has the advantage of isolating the
skewness introduced by the two flows (as measured by S w and S θ
in Eq. (10)) from the effects of turbulence in each of the flows (as
measured for instance by the two terms w̃′2d and w̃′2u ). The GTFM
allows us to take the effects of turbulence into account. We note
that a small value of the kurtosis can occur only if proper fluc-
tuations lead to negligibly small deviations from the root mean
square average. Such a flow pattern consisting of clearly defined
up- and downflows as well as hot and cold areas with a kurtosis
Kw >∼ 1 can be considered as representing a quasi-laminar state.
We stress that for the quasi-laminar case, Eq. (9) remains exact;
thus the kurtosis becomes:

Kw =
〈w′4〉
〈w′2〉2

= (1 + S 2
w) with S w =

1 − 2a
√

a(1 − a)
· (24)

For a = 0.5, one obtains Kw = 1, which is far from the value for
a Gaussian PDF (Kw = 3). To take into account turbulence within
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the up- and downdrafts, one can use Eq. (14) (see Sect. 2.2) with
the skewness S w = 〈w′3〉/〈w′2〉3/2 from the GTFM. In this case
we obtain:

Kw = 3

(

1 +
1
3

S 2
w

)

. (25)

This implies that a (moderately small) non-vanishing skewness
will make the value of Kw closer to three than in the quasi-
laminar case. In the solar case, in the quasi-isentropic zone
S 2
w ≈ 4 (Fig. 2), hence Kw ≈ 3 + 4/3. In the physical picture

underlying Eq. (14), turbulence prevents the PDF from being too
far from a Gaussian one (Kw → 3).

We notice that one important source of turbulence that can
be considered responsible for at least part of the fluctuations in
a draft – in addition to those created by the radiative processes
on top of the convection zone – is related to shearing stresses be-
tween the up- and downdrafts. However, the investigation of the
sources of turbulence is beyond the scope of the present work.
Those mechanisms certainly play an important role in both the
small scale velocity and the thermal fluctuations. Their study is
definitely desirable in the future. One should also note that the
splitting approach of the GTFM is valid and can be used for any
convective system, provided that it is composed of two flows.
As it is unclosed, it must be seen as a good basis for building
a closure model.

3.2. Asymptotic limits

In the following, we study the asymptotic limits of the GTFM,
focusing on the fourth-order moment 〈w′4〉. The standard mass
flux model is easily recovered when setting the proper moments
to zero: 〈w̃′n〉 = 0 in Eqs. (20)–(22). The same holds for the
TFM, Eqs. (8)–(9), which is recovered, if in addition 〈θ̃′n〉 = 0
in Eq. (23) (cf. Eqs. (7) and (8) in Gryanik & Hartmann 2002).
We now turn to the QNA limit and the limit for large skew-
ness, which are more interesting as they are used by Gryanik
& Hartmann (2002) and Gryanik et al. (2005) in order to corrob-
orate the interpolation formula Eq. (14).

3.2.1. The quasi-normal limit

To obtain the QNA (Eq. (12)), it is necessary that S w = 0, but
it is not sufficient. In fact, a vanishing skewness only shows that
the PDF is symmetric, but not that the PDF is Gaussian. Further
conditions are necessary:

– the moments must have zero mean, which implies |〈w〉u| =
|〈w〉d| = 0 from Eqs. (2) and (18);

– for the QNA to apply to the whole system, one must assume
that the QNA is valid for each flow;

– we must also assume that a = 0.5;
– the turbulent pressure must be the same in the upflow and

downflow. Otherwise the skewness (S w) is different from
zero, according to Eq. (21), and the consequence is an asym-
metric PDF, which is not consistent with the quasi-normal
assumption. So the condition 〈w̃′2〉u = 〈w̃′2〉d is required.

Then starting with Eq. (22), we find:

〈w′4〉 = a 〈w̃′4〉u + (1 − a) 〈w̃′4〉d

=
3
2
〈w̃′2〉2u +

3
2
〈w̃′2〉2d,

and finally

〈w′4〉 = 3〈w′2〉2, (26)

which is the expression for the fourth order moment in the QNA.
Note that the TFM (Sect. 2) is unable to properly recover the
QNA. Within the GTFM the QNA results from two terms, 〈w̃′4〉u
and 〈w̃′4〉d, which are related to the intrinsic turbulence in each
flow, but these are neglected in the TFM. This example also
demonstrates that for a convective flow, the deviation of a PDF
from a Gaussian one cannot be modelled by the TFM without
further modifications of that model (even if a = 0.5).

3.2.2. The large skewness limit

Gryanik et al. (2005) have shown that the TFM must be recov-
ered when considering a convective system with large skewness.
Then, for S w ≫ 1, the expression for 〈w′4〉 in Eq. (14) becomes:

〈w′4〉 ≈ S 2
w〈w′2〉2. (27)

The large skewness limit physically corresponds to either a ≈ 1
or a ≈ 0. Indeed, it means that one of the two flows dominates
over the other one in terms of mean fractional area in the hori-
zontal plane. Thus, due to conservation of mass, the mean verti-
cal velocity becomes large such that δw ≫ 1 m s−1 in the solar
case (see Sect. 4, Eq. (41)).

In Eq. (22), the term proportional to δw4, which measures the
effects introduced by an asymmetric flow, dominates and leads
to the TFM expression for the fourth-order moment 〈w′4〉:

〈w′4〉 = a(1 − a)
(

a3 + (1 − a)3
)

δw4. (28)

Gryanik & Hartmann (2002) demonstrated that this expression
leads to the relation:

〈w′4〉 = (1 + S 2)〈w′2〉2 ≈ S 2〈w′2〉2 for S ≫ 1, (29)

where, as in Eq. (10), S = (1 − 2a)/
√

a(1 − a). The same would
result if the exact function S w were taken in this limit instead of
its approximation, Eq. (10).

Hence, the GTFM enables us to show that the asymptotic
limits used by Gryanik & Hartmann (2002) to motivate the in-
terpolated expressions for the FOMs (Eq. (14)) are limiting cases
for a flow that consists of a coherent part with two components
(up- and downdrafts), which themselves are subject to turbu-
lence (cf. the discussion of the GH2002 model in KR2006). In
Sect. 2.2 we have shown, using the 3D numerical simulation,
that this interpolation is valid provided the skewness is taken di-
rectly from the 3D simulation. This property can be understood
using the GTFM, as it permits us to obtain the different ingredi-
ents of the interpolation formula of Gryanik & Hartmann (2002)
from Eq. (22) and the individual contributions to Eq. (22), can
be analyzed using numerical simulations.

4. The closure model with plumes

Section 2.2 confirmed the conclusion by KR2006 that the inter-
polated relations in Eq. (14) proposed by Gryanik & Hartmann
(2002) could be adapted for the solar case provided that the
skewnesses are appropriately calculated. Using the GTFM to
model skewnesses, Eq. (21) shows that the skewness S w, for in-
stance, depends on six quantities: δw, 〈w̃′3〉u,d, 〈w̃′2〉u,d, and a. As
shown below, some of the terms in S w turn out to be negligible in
the quasi-adiabatic convective region because plumes are more
turbulent in the downflow than in the upflow (Stein & Nordlund
1998). The remaining dominant terms are modelled hereafter by
a plume model (Rieutord & Zahn 1995) in the quasi-adiabatic
convective region, where the CMP is valid.
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Fig. 4. Second-order moment of the upflow over that of the downflow
(〈w̃′2〉u/〈w̃′2〉d) as a function of depth, calculated directly from the simu-
lation. Upflow and downflow are determined according to the sign of w′.

4.1. Turbulence in upflows and downflows

In Fig. 4, we compare the second-order moments of both flows.
These quantities are of the same order of magnitude in the up-
per part, above the photosphere. From the photosphere, the ratio
〈w̃′2〉u/〈w̃′2〉d then sharply decreases, with increasing depth (z).
Hence, contributions to the skewness (S w), involving 〈w̃′2〉u
(Eqs. (20) and (21)) can be neglected in comparison with those
involving 〈w̃′2〉d in the quasi-adiabatic part of the convection
zone. The third-order moments 〈w̃′3〉d and 〈w̃′3〉u can also be dis-
carded (see Fig. 5) because their contributions are negligible.

The skewness S w then becomes:

S w =
a(1 − a)
〈w′2〉3/2

(

(1 − 2a)δw2 − 3〈w̃′2〉d
)

δw, (30)

where δw is given by Eq. (19). Hence, only 〈w̃′2〉d and δw remain
to be modelled. Similarly, the 3D calculations show that the cool
medium is more turbulent than the hot one and that third-order
moments for the temperature fluctuations can be neglected. Then
the expression for S θ becomes:

S θ = b(1 − b)
1

〈θ′2〉3/2
(

(1 − 2b)δθ2 − 3〈θ̃′2〉c
)

δθ, (31)

where the quantities δθ = 〈θ〉h−〈θ〉c and 〈θ̃′2〉c must be modelled.
Note that in the QNA limit δw = 0, so that for the expression

Eq. (30), S w = 0, and according to Eq. (14),

〈w′4〉 = 3〈w′2〉2.
However, because we have assumed 〈w̃′2〉u ≪ 〈w̃′2〉d when de-
riving the expression S w, rigourously speaking, S w does not tend
correctly to zero in the QNA limit. Such an expression there-
fore cannot be used in the case of a near QNA regime. In our
case, we have shown in Sect. 2.2 that the medium is far from the
QNA limit in the quasi-adiabatic zone, and hence the expression
Eq. (30) can be safely used.

To proceed further, 〈w̃′2〉d and 〈θ̃′2〉c are written in a more
suitable form. We neglect 〈w̃′2〉u in Eq. (20) for 〈w′2〉, and 〈θ̃2〉h
in Eq. (23) for 〈θ′2〉. This yields:

〈w′2〉 = a(1 − a) δw2 + (1 − a)〈w̃′2〉d
〈θ′2〉 = b(1 − b) δθ2 + (1 − b)〈θ̃′2〉c. (32)

We then derive expressions for 〈w̃′2〉d and 〈θ̃′2〉c in terms of 〈w′2〉,
δw, and 〈θ′2〉, δθ, respectively (see Eq. (32)). Inserting them into
Eqs. (30) and (31), one then obtains:

S w =
1

〈w′2〉3/2
a

(

(1 − a)(1 − 5a)δw2 − 3〈w′2〉
)

δw (33)

Fig. 5. The terms 3a(1 − a)〈w̃′2〉dδw (solid line), a〈w̃′3〉u (dot-dot-dot-
dashed line), and (1 − a)〈w̃′3〉d (dashed line) are plotted versus the
depth (z). From Eq. (21), the dominant terms remains 3a(1−a)〈w̃′2〉dδw.
This justifies the assumptions that the terms involving third-order mo-
ments can be neglected in the quasi-adiabatic zone.

and

S θ =
1

〈θ′2〉3/2
b

(

(1 − b)(1 − 5b)δθ2 − 3〈θ′2〉
)

δθ. (34)

We assume that the second-order moments (〈w′2〉 and 〈θ′2〉) are
known. In the present work, they are computed from the 3D nu-
merical simulation. In principle, they could also be taken from
a convection model such as the mixing-length theory. The last
step then is to determine δw and δθ (as well as a and b). As δw is
the difference between the mean velocities of upward and down-
ward flows, it is possible to model it by means of a plume model.
This approach is also used to determine δθ.

4.2. The plume model

4.2.1. Determination of δw

We use the model of plumes developed by Rieutord & Zahn
(1995). The plume is considered in an axisymmetric geometry
with a Gaussian horizontal profile for the vertical velocity (wd),
the fluctuations of enthalpy (δh), and density (δρ) such that

wd(r, z) = V(z) exp(−r2/b2
p),

δρ(r, z) = ∆ρ(z) exp(−r2/b2
p), and

δh(r, z) = ∆h(z) exp(−r2/b2
p). (35)

where bp(z) is the radius of the plume. We assume, as in RZ95,
an isentropic and polytropic envelope structure, hence

ρ(z) = ρ0 (z/z0)q,

T (z) = T0 (z/z0), (36)

where q is the polytropic coefficient. ρ0 and T0 are the density
and temperature at depth z = z0, and z0 is the reference depth
that corresponds to the base of the convective region.

In Fig. 6, we show that the mean velocity of upflow and
downflow in the quasi-adiabatic convection zone both obey
a power law in (z/z0)r. We therefore assume a power law for
the mean velocity of the downflow (i.e., the plumes). Then

〈w〉d = wd0

(

z

z0

)r

(37)

with

wd0 =

⎛

⎜

⎜

⎜

⎜

⎝

12F

β2
0πρ0gz

2
0

⎞

⎟

⎟

⎟

⎟

⎠

1/3

, (38)
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Fig. 6. Mean velocity profile of the upflow (dashed line) and downflow
(solid line) as a function of the depth. Note that the peak at z = 0.1 Mm
corresponds to the maximum turbulent pressure. The use of power laws
limits the validity of the CMP to the quasi-adiabatic zone, as is implied
by the deviation of the profiles from power laws in the superadiabatic
region.

Table 1. Solar values of plume model parameters (from RZ95).

β0 ≈0.1
ρ0 190 kg m−3

L⊙ 3.9 × 1026 W
z0 ≈2 × 108 m
g⊙ 270 m s−2

(RZ95), where r = (−q + 1)/3, β0 = 3α/(q + 2), and α = 0.083
is the entrainment constant for a Gaussian profile (Turner 1986).
F is the convective energy flux and g is the gravitational accel-
eration. In Table 1, we list solar values of the previously intro-
duced parameters taken from RZ95. These values are used in the
present paper except for F, which is taken from the 3D numerical
simulation (as explained below). For a monoatomic perfect gas,
one has q = 3/2, hence r = −1/6. However, our 3D numerical
simulations indicate a value of r closer to 0. The reason is likely
that there is radiative cooling. Hence, γ〉Γ = cP/cV , where γ is
the polytropic index (q = 1/(γ − 1)).

Following Rieutord & Zahn (1995), we assume that all the
convective energy flux is transported by the plume, thus

F = L⊙/N, (39)

where N is the number of plumes in the shell at h = R⊙ − z. We
find N ≈ 6 × 106 from the 3D numerical simulation. To obtain
such a result, one has to use the relation between a and N:

a = Nπb2
p/4πh

2, (40)

where (a) is mean fractional area of the upflow, h = R⊙−z, and bp
is the radius of a plume. (bp) and a are taken from the 3D numer-
ical simulation. We assume a = 0.7, as taken from Fig. 1, which
shows that the mean fractional area a is roughly constant in the
quasi-adiabatic convection zone. The plume radius, bp, is esti-
mated at the top of the simulated box, which corresponds to the
photosphere.

At this stage, we have modeled the downdrafts, but not yet
the updrafts. The 3D numerical simulations show that mean
velocities of upflow and downflow obey the same power law
(Fig. 6). This can be explained as follows: from the conserva-
tion of the mass flux one has

〈ρw〉 = a〈ρw〉u + (1 − a)〈ρw〉d = 0. (41)

Fig. 7. Fourth-order moment 〈w′4〉 as a function of depth z normalized
to the FOM calculated directly from numerical simulations. The solid
line shows 〈w′4〉 calculated using the CMP model, the dashed line is the
moment as obtained from Eq. (14) with Eq. (10) for S w, and the dotted
line is the QNA, Eq. (26).

Fluctuating parts of densities in up and downflows are neglected
such that ρu ≈ 〈ρ〉u and ρd ≈ 〈ρ〉d (see Fig. 2b of RZ95). Thus,

〈w〉u = −
(1 − a)

a

〈ρ〉d
〈ρ〉u
〈w〉d. (42)

Then, assuming that 〈ρ〉u = ρu0(z/z0)q and 〈ρ〉d = ρd0(z/z0)q

obey the same power law as in Eq. (36):

〈w〉u ≈ −
(1 − a)

a

ρd0

ρu0
〈w〉d. (43)

ρu0 and ρd0 are the values at the reference depth z0. We set
a ≈ 0.7 (see Fig. 1), which is the value obtained in the quasi-
adiabatic zone from the 3D numerical simulation. Assuming
further that ρd0/ρu0 ≈ 1, one obtains

|〈w〉u| ≈ 0.45 |〈w〉d|, (44)

which is approximately what is seen in Fig. 6.

4.2.2. Skewness Sw and the fourth-order moment

We use Eq. (33) for the skewness with

δw = (〈wu〉 − 〈wd〉) ≈ 1.45wd0. (45)

The vertical depth of the computation box is narrow in com-
parison with the reference depth z0, thus δw varies only weakly
with z. Hence, we assume r = 0 in the solar case. The fourth-
order moment 〈w′4〉 can then be computed by means of the inter-
polated relation Eq. (14). In Fig. 7, we show the resulting 〈w′4〉.
The CMP clearly is an improvement compared to the QNA and
the TFM expression for S w, Eq. (10) combined with Eq. (14),
by at least a factor two in the quasi-adiabatic zone. The FOM in
the superadiabatic zone is overestimated. Indeed, as mentioned
above, the CMP is not able to describe such a zone mainly be-
cause the assumptions of Sect. 4.1 are not valid. Note that it is
possible to use the same procedure to compute any other third-
and fourth-order moment.

4.2.3. Determination of δθ

Similarly to the procedure in the previous section, we evaluate
〈θ̃′2〉 with the help of Eqs. (32) and (34). We therefore need to
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Fig. 8. Fourth-order moment 〈θ′4〉 as a function of depth z normalized
to the directly numerically calculated FOM. In solid lines the moment
stems from 〈θ′4〉 calculated using the CMP model, the dashed line is the
moment as obtained from Eqs. (14) and (10) for S θ and the dotted line
is the QNA.

determine δθ. The temperature profile is more sensitive to de-
parture from adiabaticity than the velocity profile. It is therefore
not suitable to assume an isentropic envelope. Such an approxi-
mation can still be used in the downflow, but not for the upflow,
which is far from being adiabatic due to radiative cooling. Then,
for the sake of simplicity, we assume a power law to obtain δθ:

δθ ≈ δθ0
(

z

z0

)m

· (46)

For z > 1 Mm in the simulated box (z = 0 Mm denotes the
photosphere), one derives m = −1.5, δθ0 ≈ 170 K from the
3D numerical simulation. Using the power law (Eq. (46)) with
m = −1.5, the skewness S θ can be calculated using Eq. (34).
In Fig. 8, we present the fourth-order moment 〈θ′4〉 computed
using the CMP, and as expected, the description of the FOM is
improved. In the deeper part of the convection zone (i.e., the
adiabatic region), δθ is easier to model because Eq. (36) can be
used and the difference δθ becomes a power law. From Eqs. (8),
(14), (33), and (34) all the third- and fourth-order moments can
be modelled with the CMP.

4.2.4. Summary: the CMP in a nutshell

In practice, one uses the CMP to compute 〈w′4〉 by means of
the interpolation formula Eq. (14), where the second-order mo-
ment 〈w′2〉 is supposed to be known and where the skewness S w
is computed from Eq. (33). In the latter expression, δw is de-
termined using the plume model through Eq. (45) and using
Eqs. (37) to (40) with appropriate values of parameters for the
case studied (in the present paper we used the values from
Table 1, which are suitable for the solar case). Here, a(z), N,
bp, and other input quantities are taken from the 3D numeri-
cal simulation. When the CMP is used to obtain the other third-
and fourth-order moments, additional quantities have to be de-
termined, namely b and m in Eq. (46) for S θ (see Eq. (34)).

5. Conclusions

With the help of 3D numerical simulations of the upper part of
the solar convective region, we have shown that the QNA and the
TFM fail to describe the fourth-order velocity and temperature
correlation moments, if merely used on their own. These results

confirm KR2006 and geophysical studies (Gryanik & Hartmann
2002) and led us to generalize the TFM in order to take the ef-
fects of the turbulent properties of the up- and downflows explic-
itly into account (GTFM). We point out that the GTFM can be
used in other contexts than the solar one as long as the convective
system can be described with two turbulent flows.

One might wonder whether it is likely that the CMP and the
model for p mode excitation developed in Paper II are gener-
ally applicable to solar-like stars. To answer this question re-
quires further work, but results on important ingredients of these
models are encouraging. The case of convection in the plane-
tary boundary layer of the atmosphere of the earth was already
discussed in GH2002. Their interpolation model for FOMs has
meanwhile been investigated for the case of convection in the
ocean (Losch 2004) and solar granulation (Kupka & Robinson
2006, who also study the case of a K dwarf; preliminary results
were published in Kupka & Hillebrandt 2005). We corroborate
the latter here with simulations for solar granulation based on
more realistic boundary conditions. The overall conclusion that
can be drawn from these studies is that, at least away from the
boundary layers of convection zones, the FOMs in purely con-
vective flows can be estimated according to the interpolation
model by GH2002 with an accuracy typically in the range of
20% to 30%, whereas the QNA is off by a factor of two to three.
For the superadiabatic layer, the discrepancies of the QNA re-
main the same in any case of the same size.

We focused here on the solar case, more precisely a region
that is nearly adiabatic, just below the superadiabatic zone where
the acoustic modes are excited. As indicated by the 3D simula-
tions, the coherent downdrafts, called plumes, are more turbulent
than the upflow. In addition, we use the plume model developed
by RZ95 to estimate the upward and downward mean velocities.
With these additional approximations, the GTFM yields a clo-
sure model, the CMP, which can be applied in the quasi-adiabatic
zone (located just below the superadiabatic one). Comparisons
of calculations based on the CMP with direct calculations from
the 3D numerical simulations show a good agreement. Hence,
the CMP provides an analytical closure for third- and fourth-
order moments. These moments are expressed in a simple way
and require only the knowledge of the second-order moments
and the parameters of the plume model. We stress that the CMP
involves four parameters: the number of plumes in the consid-
ered shell (i.e., near the photosphere), the exponent of the power
law for the mean vertical velocity of plumes, the law to describe
the temperature difference between the two flows, and the mean
fractional area of the updrafts and hot drafts.

A study of the dependence of the results on these parame-
ters is in progress. For instance, an increase of a will imply an
increase of S w in Eq. (33), and hence of the fourth-order mo-
ment 〈w′4〉. Nevertheless, it is extremely difficult to deduce the
behaviour of the system, since from Eq. (41) a variation of a
changes the velocities of the flows. Instead, one could use a set
of numerical simulations to study the effect of a change of the
parameter a. In a companion paper, we use the CMP in a semi-
analytical approach to calculate the power supplied to the solar
p modes. It is found that the power is quite significantly affected
by the adopted closure model.

Our final aim is to apply the CMP to the study of stochastic
excitation of solar-like p modes in stars other than the Sun. It will
be necessary to assess the validity of the CMP approximations
to extend their application to stellar conditions different from the
solar case. This will also require investigating the dependence of
the parameters entering the CMP, for instance, on the effective
temperature of the star (work which is in progress). As pointed
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out in Sect. 4, the CMP is valid only in the quasi-adiabatic zone
due to the power laws used to model the plume dynamics. This
will be discussed further in the companion paper in which the
present model will be used in the superadiabatic zone in order to
propose a new closure for the calculation of stellar p modes.

Finally, we note that in the present work we do not take the
effect of differential rotation and meridional circulation into ac-
count. However, recent helioseismic investigations (Schou et al.
2002; Zhao & Kosovichev 2004) have shown that variability
of those large-scale flows gradually affects wavelength and fre-
quencies, leading to a redistribution of the observed power spec-
trum (Shergelashvili & Poedts 2005; Hindman et al. 2005).
Hence, it could have an indirect effect on the amplitudes of
p modes. Furthermore, large-scale laminar non-uniform flows
can have a significant effect on the formation of the coherent
structures and intrinsic turbulence (Miesch et al. 2000; Brun &
Toomre 2002; Rempel 2005). To what extent they can affect
solar p mode amplitudes, through the closure model and the
Reynolds stresses, remains to be investigated.
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Appendix A: Cross-correlation moments

As explained in Sect. 3.1, we provide the cross-correlation mo-
ments:

〈w′θ′〉 = auh〈w̃′θ̃′〉u,h + auc〈w̃′θ̃′〉u,c
+adc〈w̃′θ̃′〉d,c + adh〈w̃′θ̃′〉d,h + η δwδθ (A.1)

〈w′2θ′〉 = auh〈w̃′2θ̃′〉u,h + auc〈w̃′2θ̃′〉u,c
+adh〈w̃′2θ̃′〉d,h + adc〈w̃′2θ̃′〉d,c
+β1 δθ + β2 δw + β3 δw

2δθ (A.2)

〈w′θ′2〉 = auh〈w̃′θ̃′2〉u,h + auc〈w̃′θ̃′2〉u,c
+adh〈w̃′θ̃′2〉d,h + adc〈w̃′θ̃′2〉d,c
+γ1 δw + γ2 δθ + γ3 δwδθ

2 (A.3)

〈w′2θ′2〉 = auh〈w̃′2θ̃′2〉u,h + auc〈w̃′2θ̃′2〉u,c
+adh〈w̃′2θ̃′2〉d,h + adc〈w̃′2θ̃′2〉d,c
+φ1 δθ + φ2 δw + φ3 δθ

2 + φ4 δw
2

+φ5 δwδθ + φ6 δw
2δθ2 (A.4)

where:

η =

[

auh(1 − a)(1 − b) − aucb(1 − a) + adcab − adha(1 − b)
]

β1 =

[

auh(1 − b) − aucb

]

〈w̃′2〉u

+

[

adh(1 − b) − adcb

]

〈w̃′2〉d

β2 = 2
[

auh〈w̃′θ̃′〉u,h + auc〈w̃′θ̃′〉u,c − a(〈w′θ′〉 − η)
]

β3 =

[

auh(1 − a)2(1 − b) − aucb(1 − a)2 + adha2(1 − b) − adca
2b

]

γ1 =

[

auh(1 − a) − adha

]

〈θ̃′2〉h

+

[

auc(1 − a) − adca

]

〈θ̃′2〉c

γ2 = 2
[

auh〈w̃′θ̃′〉u,h + adh〈w̃′θ̃′〉d,h − b(〈w′θ′〉 − η)
]

γ3 =

[

auh(1 − a)(1 − b)2 − aucb
2(1 − a) − adha(1 − b)2 − adcab2

]

φ1 = 2
[

auh〈w̃′2θ̃′〉u,h + adh〈w̃′2θ̃′〉d,h

−b(〈w′2θ′〉 − β1 − β2 − β3)
]

φ2 = 2
[

auh〈w̃′θ̃′2〉u,h + auc〈w̃′2θ̃′〉u,c

−a(〈w′θ′2〉 − γ1 − γ2 − γ3)
]

φ3 =

[

auh(1 − b)2 − aucb2
]

〈w̃′2〉u

+

[

adh(1 − b)2 − adcb
2
]

〈w̃′2〉d

φ4 =

[

auh(1 − a)2 − adha2
]

〈θ̃′2〉h

+

[

auc(1 − a)2 − adca2
]

〈θ̃′2〉c

φ5 = 4
[

auh(1 − a)(1 − b)〈w̃′θ̃′〉u,h − aucb(1 − a)〈w̃′θ̃′〉u,c

−adha(1 − b)〈w̃′θ̃′〉d,h + adcab〈w̃′θ̃′〉d,c
]

φ6 =

[

auh(1 − a)2(1 − b)2 + auc(1 − a)2b2 + adha2(1 − b)2

+adca
2b2
]

.
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ABSTRACT

Context. Amplitudes of stellar p modes result from a balance between excitation and damping processes taking place in the upper-
most part of convective zones in solar-type stars and can therefore be used as a seismic diagnostic for the physical properties of these
external layers.
Aims. Our goal is to improve the theoretical modelling of stochastic excitation of p modes by turbulent convection.
Methods. With the help of the closure model with plume (CMP) developed in a companion paper, we refine the theoretical descrip-
tion of the excitation by the turbulent Reynolds stress term. The CMP is generalized for two-point correlation products so as to apply
it to the formalism developed by Samadi & Goupil (2001, A&A, 370, 136). The excitation source terms are then computed with this
improvement, and a comparison with solar data from the GOLF instrument is performed.
Results. The present model provides a significant improvement when comparing absolute values of theoretical amplitudes with obser-
vational data. It gives rise to a frequency dependence of the power supplied to solar p modes, which agrees with GOLF observations.
It is shown that the asymmetry of the turbulent convection zone (up and downflows) plays a major role in the excitation processes.
Despite an increase in the Reynolds stress term contribution due to our improved description, an additional source of excitation, iden-
tified as the entropy source term, is still necessary for reproducing the observational data.
Conclusions. Theoretical excitation rates in the frequency range ν ∈ [2.5 mHz, 4 mHz] now are in agreement with the observational
data from the GOLF instrument. However, at lower frequencies, it exhibits small discrepancies at the maximum level of a few per
cent. Improvements are likely to come from a better physical description of the excitation by entropy fluctuations in the superadiabatic
zone.

Key words. convection – turbulence – Sun: oscillations

1. Introduction

Amplitudes of solar-like oscillations result from a balance be-
tween excitation and damping. Excitation is attributed to tur-
bulent motions that excite the p modes. In the uppermost part
of the convection zone, entropy fluctuations and eddy motions
drive oscillations. In this region, convection becomes inefficient
and there is an increase of the eddy velocities and entropy fluc-
tuations. Solar-like oscillations are mainly excited in such a re-
gion, thus a theoretical model of the excitation processes is a
powerful tool in understanding the properties of the convective
zones of solar-type stars. Goldreich & Keeley (1977) have pro-
posed a model for the excitation process using the turbulent
Reynolds stress and deduced an estimation of the power supplied
to the p modes. The underestimation of the excitation rates by
around a factor 103 compared to the observed solar values (Osaki
1990) led to alternative formulations (Goldreich & Kumar 1990;
Goldreich et al. 1994). Another source of excitation was iden-
tified by Goldreich et al. (1994): the so-called entropy source
term. Its contribution cannot be neglected, even though Stein &
Nordlund (2001) have shown that excitation from the Reynolds
stress remains dominant in comparison with the entropy fluctua-
tion source term.

Samadi & Goupil (2001) propose a generalized formalism,
taking the Reynolds and entropic fluctuation source terms into
account. This approach allows investigation of the effects of sev-
eral models of turbulence (Samadi et al. 2003b,a) by express-
ing the source terms as functions of the turbulent kinetic energy
spectrum and the time-correlation function.

A confrontation of this model with data from the BiSON in-
strument (data from Chaplin et al. 1998) led to the conclusion
that the theoretical predictions were in good agreement with the
observations (Samadi et al. 2003a). Nevertheless, observational
data from the GOLF instrument and a study of the BiSON data
indicate that some discrepancies remain between the theoretical
computation and observational data. In Samadi & Goupil (2001)
(see also Samadi et al. 2005), one of the main assumptions is the
quasi-normal approximation (QNA), which is useful for corre-
lation functions of the turbulent Reynolds stress and the entropy
fluctuation source terms (Samadi & Goupil 2001).

The uppermost part of the convection zone being a turbu-
lent convective system composed of two flows, the probability
distribution function of the fluctuations of the vertical velocity
and temperature does not follow a Gaussian law (Lesieur 1997).
Thus, the use of the QNA, which is exact for a normal distribu-
tion, becomes a doubtful approximation.
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In a companion paper (Belkacem et al. 2006, hereafter
Paper I), we propose another approach in order to build a clo-
sure model that expresses fourth-order correlation functions in
terms of the second-order ones. This alternative approach con-
sists in considering the convection zone as composed of two
flows (the updrafts and downdrafts). Starting from the Gryanik
& Hartmann (2002) approach, we develop a generalized two-
scale mass-flux model (GTFM) that takes the physical proper-
ties of each flow into account. Then a theoretical description of
the plumes developed by Rieutord & Zahn (1995) is used to con-
struct the closure model with plumes (CMP). This model is valid
for one-point correlation functions and in the quasi-adiabatic
zone. However, what is needed here is a closure model for two
point correlation functions. In the present paper, we then propose
a simple way to obtain this closure model to use it for calculat-
ing of the excitation rates according to Samadi & Goupil (2001).
Only the Reynolds stress source term is corrected, mainly be-
cause it is the dominant term (Stein & Nordlund 2001; Samadi
et al. 2003a). The entropy fluctuations are considered in the same
way as explained in Samadi & Goupil (2001) (i.e. using the
QNA approximation).

The paper is organized as follows: the theoretical model of
stochastic excitation of p modes is briefly summarized in Sect. 2.
In Sect. 3, the closure model with plume (CMP) is generalized
for two-point correlation products and implemented into the for-
malism of Samadi & Goupil (2001). In Sect. 4, the calculation
of theoretical power is explained. In Sect. 5, GOLF observa-
tional data are presented together with the derivation of observ-
able quantities. A comparison between the theoretical power and
heights computed as described in Sect. 4 with the corresponding
observed quantities defined in Sect. 5 is performed in Sect. 6.
Section 7 is dedicated to discussions and conclusions.

2. A model for stochastic excitation of solar-like

p modes

The theoretical model of stochastic excitation considered here
is basically that of Samadi & Goupil (2001; see also Samadi
et al. 2005). It takes two sources into account that drive the
resonant modes of the stellar cavity. The first one is related to
the Reynolds stress tensor and as such represents a mechanical
source of excitation. The second one is caused by the advec-
tion of the turbulent fluctuations of entropy by the turbulent mo-
tions (the so-called “entropy source term”) and thus represents
a thermal source of excitation (Goldreich et al. 1994; Stein &
Nordlund 2001).

The power fed into each mode, P, is given by (see e.g.
Samadi et al. 2001):

P ≡
dE

dt
= 2η E = η 〈|A|2〉 I ω2

0, (1)

where 〈〉 denotes the ensemble average, 〈|A|2〉 the mean square
amplitude, η the damping rate, and E the energy that is defined as

E =
1
2
〈|A|2〉 Iω2

0 (2)

where I is the mode inertia and ω0 is the oscillation eigenfre-
quency (see Samadi & Goupil 2001, for details).

The mean square amplitude, as explained in Samadi &
Goupil (2001), is

〈

| A |2
〉

=
1

8 η (Iω0)2

(

C2
R + C2

S

)

(3)

where C2
R and C2

S are the turbulent Reynolds stress and entropy
contributions, respectively. Their expressions for radial modes
are given by

C2
R =

∫

d3x0 ρ
2
0 fr

∫ +∞

−∞

dτ e−iω0τ

∫

d3r
〈

w2
1w

2
2

〉

(4)

C2
S =

∫

d3x0 gr

∫ +∞

−∞

dτ e−iω0τ

∫

d3r 〈(wst)1 (wst)2 〉 (5)

where w is the vertical component of the velocity, st the turbu-

lent entropy fluctuation and fr(ξr,m) ≡
(

∂ξr
∂r

)2
, where ξr is the

radial component of the eigenfunction, and gr a function that
involves the first and second derivatives of ξr (see Eq. (9) of
Samadi et al. 2003b). Quantities labelled with 1 and 2 denote two
spatial and temporal positions, hence

〈

w2
1w

2
2

〉

and 〈(wst)1 (wst)2 〉

correspond to two-point fourth-order correlation products. These
correlation products are usually approximated by expressions in-
volving second-order products only (closure model). In Samadi
& Goupil (2001), the simplest approximation was used i.e. the
quasi-normal hypothesis. We study here consequences of using a
closure model closer to reality (i.e. the CMP from Paper I). Both
are recalled in the next section.

3. Closure models

3.1. The quasi-normal approximation

The QNA (Lesieur 1997, Chap. VII-2) is adopted in Samadi &
Goupil (2001) as a convenient means to decompose the fourth-
order velocity correlations in terms of a product of second-order
vertical velocity correlations, that is, one uses

〈w2
1w

2
2〉QNA = 2 〈w1w2〉

2 + 〈w2
1〉〈w

2
2〉

〈(wst)1 (wst)2 〉QNA = 〈w1w2〉 〈st1st2〉 , (6)

where st is considered as a passive scalar.
This approximation (Eq. (6)) remains strictly valid for nor-

mally distributed fluctuating quantities with zero mean. As
shown by Kraichnan (1957) in the context of turbulent flows
and Stein (1967) in the solar context, the cumulant (the devia-
tion from the QNA) can be large and therefore not negligible.
The CMP presented in Paper I was shown to be a significant
improvement on the QNA for the one-point correlation prod-
ucts. However, we need two-point correlation products here (see
Eqs. (4) and (5)). A generalization of the CMP for two-point
correlation products is therefore developed in Sect. 3.2 below.

The second-order correlation products in Eq. (6) are ex-
pressed in the Fourier domain (k, ω) where k and ω are the
wavenumber and the frequency associated with a turbulent
element (see Samadi & Goupil 2001, for details).

3.2. The closure model with plumes

The closure model with plumes (see Paper I) has been estab-
lished only for one-point correlation products. Here we gen-
eralize the CMP to two-point correlation products. We start
in Fig. 1 by comparing the correlation product 〈w2

1w
2
2〉 calcu-

lated directly from 3D numerical simulations obtained from the
Stein & Nordlund code (see Sect. 4) with those calculated using
Eq. (6) of the QNA with second-order correlation products taken
from the 3D simulation. The question is whether the modelling
of the k dependency on the two-point correlation function by the
QNA can be used. For the sake of simplicity, we assume that the
QNA can be used for the ω dependency.
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Fig. 1. Fourth-order correlation function calculated in the quasi-
adiabatic zone directly from the 3D numerical simulation (solid
line) and using the QNA approximation (Eq. (6); dashed lines). The
fourth-order moments are presented as a function of the correlation
length (∆X), and the two curves are normalized so as to emphasise only
their k dependency.

The correlation products 〈w2
1w

2
2〉 in Fig. 1 are normalized

so as to compare only the k dependency of these quantities.
In the quasi-adiabatic region, the line width at half-maximum
of the QNA and the numerical product are roughly the same.
Discrepancies at high values of ∆X (the correlation length) are
expected to have a negligible influence on the correlation prod-
uct. Hence, we assume that the modelling of the k dependency
on the two-point correlation product by the QNA is valid due
to a small difference between the line width at half-maximum.
Hence it is legitimate to use the (k, ω) dependency given by the
QNA. One then needs only to correct the value of the correla-
tion product at (k = 0, ω = 0) (which corresponds to the one
point correlation function) with the CMP (see Paper I) for the
turbulent Reynolds stress term contribution. We use the interpo-
lation formula of Gryanik & Hartmann (2002) for the FOM of
the velocity (Paper I, Eq. (13))

〈w2
1w

2
2〉CMP =

(

1 +
1
3

S 2
w

)

〈w2
1w

2
2〉QNA, (7)

with 〈w2
1w

2
2〉QNA given by Eq. (6) the skewness S w is calculated

from the CMP (see Paper I for details).
In Fig. 2, calculations using Eqs. (6) and (7) are compared

to the direct numerical correlation product. The above general-
ization of the CMP to two-point correlation products provides a
good approximation mainly in the quasi-adiabatic region where
the CMP is the more accurate one (see Paper I). The k depen-
dence is approximatively modelled by the QNA (Fig. 1) except
for large correlation lengths (∆X > 0.2 Mm), but these con-
tribute only negligibly to 〈w2

1w
2
2〉. However, in the superadia-

batic zone, the generalization of the CMP and the QNA both
fail to describe the two-point correlation function. In that zone,
the temperature gradient is varying quickly, which is not the
case in the CMP. In the plume model (Paper I) the tempera-
ture gradient appears only through a polytropic law, and for sake
of simplicity we assume an isentropic atmosphere. In addition,
for modelling the FOM 〈w4〉, the interpolated formula derived
by Gryanik & Hartmann (2002) (Paper I, Eq. (13)) is not valid
in the superadiabatic zone. Thus, in this zone the treatment of

Fig. 2. Fourth-order correlation function calculated in the superadia-
batic zone (at the top) and in the quasi-adiabatic zone (at the bottom)
directly from the 3D numerical simulation (dotted line), using the QNA
approximation (Eq. (6); dashed lines) and using the CMP (Eq. (7); solid
line).

Eqs. (6) and (7) will introduce an energy excess injected into
high-frequency p modes.

4. Calculation of the theoretical p mode excitation

rates

The rate (P) at which energy is injected per unit time into a mode
is calculated according to the set of Eqs. (4)−(6) when the QNA
is used and Eqs. (4)−(7) using the CMP (see Sect. 4.1). The cal-
culation thus requires the knowledge of four different types of
quantities:

1) quantities that are related to the oscillation modes: the eigen-
functions (ξr) and associated eigenfrequencies (ω0);

2) quantities that are related to the spatial and time-averaged
properties of the medium: the density ρ0, the vertical veloc-
ity w̃, the entropy s̃, and αs = ∂P0/∂s̃;

3) quantities that contain information about spatial and tempo-
ral correlations of the convective fluctuations: E(k), Es(k),
and χk(ω);

4) quantities that take anisotropies into account: a and Φ. The
value of a is the mean horizontal fractional area of the up-
drafts (see Paper I), whereas Φ measures the anisotropy of
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turbulence and is defined according to Gough (1977; see also
Samadi & Goupil 2001, for details) as:

Φ =
〈w2〉

〈u2〉
, (8)

where u2 = w2 + u2
h

and uh is the horizontal velocity.

Both a and Φ are necessary to describe the flow because
a measures the geometric anisotropy between up and downflows
while Φ corresponds to the measure of the velocity anisotropies.
However, these two quantities are linked because of mass con-
servation. An explicit relation can be easily derived between
them using the formalism developed in Paper I to obtain

Φ =
a(1 − a)δw2 + a〈w̃2〉u + (1 − a)〈w̃2〉d

a(1 − a)δw2 + a〈ũ2〉u + (1 − a)〈ũ2〉d
(9)

where the ˜ refers to the velocities of only one flow (updraft
or downdraft) and δw is defined as in Paper I. For consistency
reason, a and Φ are provided by the 3D numerical simulation.

4.1. The solar case

Calculations of the eigenfrequencies and eigenfunctions (in
point 1) above) are performed as in Samadi et al. (2003b) on the
basis of a 1D solar model built according to Gough’s (1977) non-
local formulation of the mixing-length theory (GMLT hereafter).

The spatial and time-averaged quantities in point 2) are ob-
tained from a 3D simulation of the solar surface. The 3D sim-
ulations used in this work were built with Stein & Nordlund’s
3D numerical code (see Stein & Nordlund 1998; Samadi et al.
2003a). Two simulations with different spatial mesh grids are
considered, namely 253 × 253 × 163 and 125 × 125 × 82, in or-
der to verify that the results are not sensitive to the spatial mesh
resolution.

Finally, for the quantities in point 3) the total kinetic en-
ergy contained in the turbulent kinetic spectrum, E(k), its depth
dependence, and its k-dependence are obtained directly from a
3D simulation of the uppermost part of the solar convective zone.
It was found in Samadi et al. (2003a) from 3D simulations that
a Gaussian – usually used for modelling χk – is inadequate: a
Lorentzian fits the frequency dependence of χk best. Hence, we
adopt a Lorentzian here for χk.

4.2. Calculation of the power injected into the solar p modes
with the CMP

We use the generalized CMP for two-point correlation functions
presented in Sect. 3.2 (Eq. (7)) to model the Reynolds-stress
source term. By replacing Eq. (6) with Eq. (7) in Eq. (4), the
calculation of C2

R (as in Samadi & Goupil 2001) yields:

C2
R =

64
15
π3
∫ M

0
dm (1 +

1
3

S 2
w) ρ0

(

dξr
dr

)2 ∫ ∞

0
dk

×

∫ ∞

−∞

dω
E2(k)

k4
χk(ω0 + ω, r) χk(ω, r). (10)

Equation (10) shows that the CMP causes an increase in the
power injected into p modes in comparison with calculation us-
ing only the QNA. On the other hand, the entropy source term,
C2

S, is still computed using the QNA closure model (see Samadi
& Goupil 2001, for details).

5. Observational data and inferring observed

excitation rates

The observational data set selected here for comparison with the-
oretical calculations was obtained with the GOLF instrument,
onboard SOHO. GOLF (Gabriel et al. 1997) is a spectrome-
ter measuring velocities of the photosphere integrated over the
whole solar disc. Its location on the space platform yields a very
good signal-to-noise ratio and also continuous observations (the
actual duty cycle reaches almost 100%). This latter characteristic
greatly improves the signal to noise ratio in the Fourier spectrum.

However, GOLF suffers from some technical problems,
which restricts the measurements to one wing of the Na D1 line
instead of both wings. This results in a more difficult absolute
calibration of the measured velocity and thus a possible bias
(which does not exceed 20% in terms of the acoustic rate of ex-
citation). Characteristics of the data set used here are described
in Baudin et al. (2005).

These observations correspond to two periods when GOLF
was observing in the same instrumental configuration (blue wing
of the Na line) with a duration of 805 and 668 days, starting on
April 11, 1996 and November 11, 2002, respectively. The level
of solar activity was different during these two periods, but the
measured excitation rate shows no dependence on activity, as the
increase in width compensates for the decrease in height of the
peaks, as shown by Chaplin et al. (2000) or Jiménez-Reyes et al.
(2003).

The GOLF results were compared to BiSON observations
and are compatible with them over a wide frequency range.
A discrepancy appears at high frequency (ν > 3.2 mHz). As
the height and width of peaks in the Fourier spectrum are
affected by the presence of noise and gaps in the data (see
Chaplin et al. 2003), GOLF was chosen for the comparison
model/observations. We consider only the ℓ = 1 modes for
which their properties (line-width, amplitude) are more accu-
rately determined than the ℓ = 0 modes (see Baudin et al. 2005,
for details).

In order to compare theoretical results and observational
data, the mode excitation rates are inferred from the observa-
tions according to the relation

Pobs(ω0) = 2 π ΓνM v2s (ω0) (11)

where M ≡ I/ξ2r (h) is the mode mass, h the height above the
photosphere where oscillations are measured, Γν = η/π the mode
linewidth at half maximum (in Hz), and v2s the mean square of the
mode surface velocity. The last is derived from the observations
according to

v2s = πH ΓνCobs (12)

where H is the maximum height of the mode profile in the
power spectrum and Cobs the multiplicative constant factor that
depends on the observation technique (see Baudin et al. 2005).
Equation (12) supposes that the mode line profiles are symmet-
ric, but it is well known that the mode profile deviates from a
Lorentzian. However, Baudin et al. (2005) show that this equa-
tion is accurate enough for the evaluation of the mean square of
the mode velocity, Eq. (12). On the other hand, the mode asym-
metry is taken into account when determining mode line widths
from observational data.

The mode mass is very sensitive to altitude at high frequency
(see Fig. 1 of Baudin et al. 2005), so the layer (h) where the mode
mass is evaluated must be properly estimated to derive correct
values of the excitation rates. Indeed, solar seismic observations
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in Doppler velocity are usually measured from a given spectral
line. The layer where oscillations are measured then depends on
the height where the line is formed. The GOLF instrument uses
the Na I D 1 and D 2 lines whose height of formation is estimated
at the height h ≈ 340 km (see Baudin et al. 2005).

As an alternative to comparing theoretical results and obser-
vational data, Chaplin et al. (2005) propose to derive the max-
imum height of the mode profile (H) from the theoretical exci-
tation rates and the observed mode line width according to the
relation:

H =
P

2π2MΓ2
νCobs

, (13)

where Cobs = 2.59 for ℓ = 1 modes.
Representation of the excitation rates themselves (Eq. (11))

emphasises disagreement at high frequencies, whereas disagree-
ment at low frequency is more apparent with a representation
using the profile height (Eq. (13)). Note that in the case of the
observable height, only the slopes are the meaningful quantities,
as the amplitude magnitude depends on the phase of the solar
cycle when the observations were recorded.

As the maximum height H strongly depends on the obser-
vation technique, one cannot compare values of H coming from
two different instruments. In Fig. 6, we therefore plot the prod-
uct HCobs, a quantity that is less dependent on the observational
data (but still throughM). Note that for ease of notation, HCobs
is noted H in the following.

It is important to stress that the mode height (H) calculated
from the theoretical excitation rates (Eq. (11)) depends on the
observations through the line width Γν. This is why in Figs. 5
and 6 error bars appear in the theoretical results. In any case,
the observational data can be characterised by at least three
main features that the theoretical calculations (see above) must
reproduce:

1. the frequency dependence from low to medium frequencies
(ν < 3 mHz);

2. the maximum of amplitude at 3 mHz for H and the slope for
frequencies between 3 and 4 mHz or a nearly flat maximum
between ν ≈ 3.8 mHz and 4 mHz for P;

3. the slope at very high frequencies ν > 4 mHz.

6. Comparison between theoretical and observed

excitation rates

6.1. Turbulent Reynolds stress contribution

Figure 3 compares the observed power P injected into solar
p modes with the theoretical one computed with only the tur-
bulent Reynolds stress term assuming either the CMP or the
QNA closure models. Figure 4 shows the associated heights H
as computed according to Eq. (13). The comparison shows that
the closure model has a significant effect on the resulting ex-
citation rates. Indeed, the CMP induces an increase in the en-
ergy injected into the mode by about a factor two in comparison
with the QNA closure model and brings the theoretical excita-
tion rates closer to the observational ones. This energy increase
is not uniform in terms of frequencies, due to the variation in
the skewness with the depth (z) (see Paper I for details) and to
the fact that the mean square velocity amplitudes of the turbulent
elements decrease with depth. Indeed, at the top of the convec-
tion zone where the highest frequency modes are confined, the
inefficiency of the convective transport causes an increase in the

Fig. 3. Rate P at which acoustic energy is injected into the solar ra-
dial modes. Only the Reynolds stress contribution is computed. Cross
dots represent P computed from Baudin et al. (2005) solar seismic data
from the GOLF instrument (see Sect. 5). The associated error bars take
into account uncertainties both from the line width (Γν) and from the
maximum height of the mode profile (H). The curves represent theo-
retical values of P computed as explained in Sect. 4: dash-dotted lines
correspond to the calculation of P using the QNA closure model, and
solid lines represent P using the CMP for the Reynolds stress term. We
present the results in linear (at the top) and logarithmic scale (at the
bottom).

velocities. Thus the effect of the flow anisotropy becomes domi-
nant for such high-frequency modes.

At low frequencies (ν < 2.5 mHz), the turbulent Reynolds
stress contribution reproduces the observed power P (Fig. 3)
within the observational uncertainties. As best emphasised in
Fig. 4, it is possible that the theoretical results are slightly over-
estimated, although this remains within the observational error
bars.

At intermediate frequencies 4 > ν > 3 mHz), the turbulent
Reynolds stress term is not sufficient to reproduce the observa-
tions, so the additional excitation coming from entropy fluctua-
tions is necessary.

At high frequencies ν > 4 mHz), Observational data seem to
indicate a decrease in the power, which is not reproduced by the
theoretical power.
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Fig. 4. Mode height H calculated as explained in Sect. 5 using only
the Reynolds stress contribution. The solid (resp. dash-dotted) line rep-
resents H calculated with the CMP (resp. QNA) closure model, and
cross-dots represent GOLF data with associated error bars. Error bars
associated with the curves are due to mode line widths that are taken
from observations (see Eq. (13)).

6.2. Adding the entropy fluctuation contribution

To proceed further, we add the C2
S contribution (Eq. (5)). Results

for the excitation rate and the maximum height are presented
in Fig. 5. The additional (positive) entropy contribution causes
an overall increase in the excitation rates as shown in Fig. 5.
The theoretical modelling now reproduces the maximum of the
power supplied to the modes when compared with the observa-
tional data. For the frequency behaviour of the excitation rate
and height, Fig. 5 show:

At low frequency (ν ∈ [1.6 mHz; 3 mHz]). We pointed out
in Sect. 6.1 that the contribution from the Reynolds stress term
can be sufficient for reproducing the GOLF data, perhaps even
overestimating it. The combination of both Reynolds stress and
entropy fluctuation is too large compared with the observation,
and the resulting slope differs from the observational one in this
frequency domain. Note however, that in Fig. 5 error bars repre-
sent 1σ error bars (Fig. 5).

For intermediate and high frequencies (ν ∈ [3 ; 4] mHz), the
Reynolds (CMP) and entropy excitation model reproduces the
ν variation in P. This is confirmed with the H representation
(Fig. 5 at the bottom). However from a theoretical point of view,
the description of the behaviour at high frequencies (ν > 4 mHz)
is more complicated because these p modes are mainly excited
in the superadiabatic zone, which is difficult to model properly.
On the observational side, it must be kept in mind that even data
with a signal-to-noise ratio as good as GOLF lead to linewidths
difficult to measure at high frequencies.

7. Discussions and conclusions

We use a closure model (CMP, Paper I) that is more realistic than
the usual QNA approximation to model the correlation prod-
ucts in a semi-analytical description of the excitation process
of solar p modes. The present excitation model gives the the-
oretical slope of the power at intermediate and high frequencies
(ν ∈ [2.5 mHz; 4 mHz]), which agrees with the observed data.
We also find that including the CMP causes a global increase
in the injected power. This brings the power computed with the

Fig. 5. Top: rate (P) at which acoustic energy is injected into the solar
radial modes as a function of frequency. Cross dots represent P com-
puted from the Baudin et al. (2005) solar seismic data from the GOLF
instrument (see Sect. 5). The curves represent theoretical values of P
computed as explained in Sect. 4: the solid line represents P using both
the Reynolds stress (using the CMP) and entropy source contributions.
The dotted line corresponds to the calculation for the Reynolds stress
term only (using the CMP). Bottom: mode height (H) calculated as
explained in Sect. 5. The solid line represents H calculated with the
CMP closure model, using the Reynolds stress and entropy fluctuation
contributions. The dotted line represents H computed with the CMP
closure model, using only the Reynolds stress contribution. Cross-dots
represent GOLF data with the associated error bars. Error bars associ-
ated with the curves are due to mode line widths that are taken from
observations (see Eq. (13)). Only observations near minimum solar ac-
tivity have been used, and they correspond to the second period as
explained in Sect. 5.

Reynolds stress contribution alone closer to (although, at inter-
mediate frequency, still below) the observations. On the other
hand, the power obtained by including both the Reynolds stress
and the entropy fluctuation contributions reproduces the obser-
vations at the maximum of the excitation rates. The compari-
son can now be made in linear scale, hence at lower frequencies
there is still a small over-estimation (which amounts roughly to
a few per cents and the errors bars represent 1σ error bars). The
reason for this overestimation cannot be attributed to the CMP.
Indeed, the Reynolds stress contribution was compared to the

Annexe A. Articles reproduits

162



K. Belkacem et al.: A closure model with plumes. II. 189

Fig. 6. Mode height H calculated as explained in Sect. 5 using only the
Reynolds stress contribution. Solid lines represent H calculated with the
CMP closure model and dots-line is the same except that a Gaussian is
used for χk . Crosses represent GOLF data with associated error bars.
Error bars associated with the curves are due to mode line widths which
are taken from observation (see Eq. (13)).

3D numerical simulation (see Paper I), and the one-point fourth-
order moment 〈w4〉was found to agree with the simulation result.
The remaining departure from the numerical simulation shows
that the CMP actually underestimates the FOM in the quasi-
adiabatic region, so correcting for this bias would result in an
even larger overestimation of the power.

Various sources of discrepancies are likely to exist: the sep-
aration of scales used in the formalism that consists in assum-
ing that the stratification and the oscillations have characteristic
scale lengths larger than the eddies contributing to the excitation
(see Samadi & Goupil 2001, for details). The physical descrip-
tion of the outer layers in the 1D solar model can also play an im-
portant role directly through the velocity and indirectly through
the eigenfunctions. In this paper, we use Gough’s (1977) non-
local formulation of the mixing-lenght theory which shows an
improvement in comparison with the local formulations in terms
of the maximum of power P (Samadi et al. 2006) by about a few
percent. Concerning the excitation model itself, some improve-
ments in the modelling of Reynolds and entropy contributions
that ought to be investigated are outlined below.

7.1. Turbulent Reynolds stress tensor contribution shortages

At low frequencies, a possibly small overestimation of the
Reynolds stress contribution can be attributed to the frequency
dependent factor (χk, see Eq. (10) in Sect. 4.1). Chaplin et al.
(2005) use a Gaussian χk whereas Samadi et al. (2003b) use
a Lorentzian factor. In Fig. 6, we present the calculation as-
suming a Gaussian and a Lorentzian for χk. As shown there,
the frequency-dependent factor χk is likely between these two
regimes. In the quasi-adiabatic convection zone, plumes are
well-formed, and the convective system must be treated as com-
posed of two flows (see Paper I). Hence, the upflows that are
less turbulent can be modelled by a white noise (Gaussian), but
downflows are turbulent creating a departure from a Gaussian.
We expect this effect to cause a decrease in the theoretical power
and bring it closer to the observation. A rough idea can be ob-
tained by taking this effect into account as follows: we split
the computation of the power supplied into the modes into two

parts. Those parts correspond to upflow (χk: Gaussian) and to
downflows (χk: Lorentzian). The result indicates a decrease in
the power at low frequency, which brings the theoretical power
closer to the observation. This is true mainly for low-frequency
modes, which are less sensitive to the superadiabatic zone where
plumes are formed, because this region cannot be modelled by
such a simple model. This issue needs further investigation.

7.2. Entropy source contribution shortages

In the present model, the turbulent entropy fluctuations are as-
sumed to behave as a passive scalar, in other words, the entropy
fluctuations are assumed to be advected by the turbulent velocity
field without dissipation. It means that the entropy field does not
have any effect on the velocity field.

This assumption associated with the QNA has the advantage
of simplifying the closure of the fourth-order moments involving
the entropy fluctuations (see Eq. (3.1)). However the biases in-
troduced by this assumption remain to be evaluated. If the biases
turn out to be large, alternative models must be developed.

7.3. Perspectives

Finally, we stress that there is an additional dependency, the co-
efficient a, which is the mean fractional area of updraft on the
horizontal plane (see Eq. (9)). It is a measure of the asymmetry
of the flows and a small variation in its value plays a major role
on the excitation rates. This parameter has been fixed here us-
ing the results of 3-D simulations. The influence of parameter a
is very important, as a small variation of its value leads to an
increase in power P through the skewness S w (see Paper I). It
is beyond the scope of this paper to estimate the true effect of a
variation in this parameter because its value is linked to the phys-
ical properties of the flows through, for instance, conservation of
the mass flux. Hence a consistent approach is to investigate a set
of different numerical simulations.

The CMP closure model, indeed, strongly depends on the
structure of the upper convection zone, which again emphasises
that the structure of this region is very important in the theoret-
ical prediction of the power injected into the p modes, because
the skew introduced by the asymmetry increases with the depar-
ture of a from the value 0.5. It is then possible to obtain physical
constraints on the asymmetry of the convection zone flows.

To understand what can affect a is therefore an important is-
sue, and in near future it will be necessary to study the variation
in a with the type of star and from a hydrodynamical point of
view to determine what the main processes that are responsible
for this asymmetry. One interesting issue is the influence of a
magnetic field on this parameter: as described by Weiss et al.
(2002) and Vögler et al. (2005), the effect of a strong magnetic
field induces a reduction in the typical length scale of convec-
tion, as well as the structure of the flows (hence the value of a).

The study of the mean fractional area a as a function of the
magnetic field intensity therefore represents an interesting per-
spective for characterising B from the excitation rates, at least
for stars with an expectedly strong magnetic field.
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ABSTRACT

Aims. We extend semi-analytical computations of excitation rates for solar oscillation modes to those of other solar-like oscillating
stars to compare them with recent observations
Methods. Numerical 3D simulations of surface convective zones of several solar-type oscillating stars are used to characterize the
turbulent spectra as well as to constrain the convective velocities and turbulent entropy fluctuations in the uppermost part of the
convective zone of such stars. These constraints, coupled with a theoretical model for stochastic excitation, provide the rate P at
which energy is injected into the p-modes by turbulent convection. These energy rates are compared with those derived directly from
the 3D simulations.
Results. The excitation rates obtained from the 3D simulations are systematically lower than those computed from the semi-analytical
excitation model. We find that Pmax, the Pmaximum, scales as (L/M)s where s is the slope of the power law and L and M are the mass
and luminosity of the 1D stellar model built consistently with the associated 3D simulation. The slope is found to depend significantly
on the adopted form of χk, the eddy time-correlation; using a Lorentzian, χL

k
, results in s = 2.6, whereas a Gaussian, χG

k
, gives s = 3.1.

Finally, values of Vmax, the maximum in the mode velocity, are estimated from the computed power laws for Pmax and we find that
Vmax increases as (L/M)sv. Comparisons with the currently available ground-based observations show that the computations assuming
a Lorentzian χk yield a slope, sv, closer to the observed one than the slope obtained when assuming a Gaussian. We show that the
spatial resolution of the 3D simulations must be high enough to obtain accurate computed energy rates.

Key words. convection – turbulence – Sun: oscillations – Hertzsprung-Russell (HR) and C-M – stars: variables: general –
methods: numerical

1. Introduction

Stars with masses M � 2 M⊙ have upper convective zones where
stochastic excitation of p-modes by turbulent convection takes
place as in the case of the Sun. As such, these stars are of-
ten referred to as solar-like oscillating stars. One of the major
goals of the future space seismology mission CoRoT (Baglin &
The Corot Team 1998), is to measure the amplitudes and the
line-widths of these stochastically driven modes. From the mea-
surements of the mode line-widths and amplitudes, it is possible
to infer the rates at which acoustic modes are excited (see e.g.
Baudin et al. 2005). Such measurements will then provide valu-
able constraints on the theory of stellar oscillation excitation and
damping. In turn, improved models of excitation and damping
will provide valuable information about convection in the outer
layers of solar-like stars.

The mechanism of stochastic excitation has been modeled
by several authors (e.g. Goldreich & Keeley 1977; Osaki 1990;
Balmforth 1992; Goldreich et al. 1994; Samadi & Goupil 2001,
for a review see Stein et al. 2004). These models yield the
energy rate, P, at which p-modes are excited by turbulent con-
vection but require an accurate knowledge of the time averaged
and – above all – the dynamic properties of turbulent convection.

Eddy time-correlations. In the approach of Samadi & Goupil
(2001, hereafter Paper I), the dynamic properties of turbulent
convection are represented by χk, the frequency component of
the auto-correlation product of the turbulent velocity field; χk

can be related to the convective eddy time-correlations. Samadi
et al. (2003b, hereafter Paper III) have shown that the Gaussian
function usually used for modeling χk is inappropriate and is at
the origin of the under-estimation of the computed maximum
value of the solar p-modes excitation rates when compared with
the observations. On the other hand, the authors have shown that
a Lorentzian profile provides the best fit to the frequency depen-
dency of χk as inferred from a 3D simulation of the Sun. Indeed,
values of P computed with the model of stochastic excitation of
Paper I and using a Lorentzian for χk = χ

L
k

is better at reproduc-
ing the solar seismic observations whereas a Gaussian function,
χG

k
, under-estimates the amplitudes of solar p-modes. Provided

that such a non-Gaussian model for χk is assumed, the model
of stochastic excitation is – for the Sun – rather satisfactory. An
open question, which we address in the present paper, is whether
such non-Gaussian behavior also stands for other solar-like os-
cillating stars and what consequences arise for the theoretical
excitation rates, P.

Stochastic excitation in stars more luminous than the Sun.
In the last five years, solar-like oscillations have been detected
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in several stars (see for instance the review by Bedding &
Kjeldsen 2003). Theoretical calculations result in an overestima-
tion of their amplitudes (see Kjeldsen & Bedding 2001; Houdek
& Gough 2002). For instance, using Gough’s (1976, 1977) non-
local and time dependent treatment of convection, Houdek et al.
(1999) have calculated expected values of Vmax, the maximum
oscillation amplitudes, for different solar-like oscillating stars.
Their calculations, based on a simplified excitation model, im-
ply that Vmax of solar-type oscillations scale as (L/M)1.5 where
L and M are the luminosity and mass of the star (see Houdek &
Gough 2002, hereafter HG02). A similar scaling law was empir-
ically found earlier by Kjeldsen & Bedding (1995). As pointed
out by HG02, all these scaling laws overestimate the observed
amplitudes of solar-like oscillating stars hotter and more mas-
sive than the Sun (e.g. βHydri, ηBootis, Procyon, ξHydrae). As
the mode amplitude results from a balance between excitation
and damping, this overestimation of the mode amplitudes can
be attributed either to an overestimation of the excitation rates
or an underestimation of the damping rates. In turn, any over-
estimation of the excitation rates can be attributed either to the
excitation model itself or to the underlying convection model.

All the related physical processes are complex and difficult to
model. The present excitation model therefore uses a number of
approximations such as the assumption of incompressibility, and
the scale length separation between the modes and the turbulent
eddies exciting the modes. It has been shown that the current
excitation model is valid in the case of the Sun (Paper III), but
its validity in a broader region of the HR-diagram has not been
confirmed until now.

Testing the validity of the theoretical model of stochastic ex-
citation with the help of 3D simulations of the outer layers of
stellar models is the main goal of the present paper. For that
purpose, we compare the p-mode excitation rates for stars with
different temperatures and luminosities as obtained by direct cal-
culations and by the semi-analytical method as outlined below.

Numerical 3D simulations enable one to compute directly
the excitation rates of p-modes for stars with various tempera-
tures and luminosities. For instance this was already undertaken
for the Sun by Stein & Nordlund (2001) using the numerical
approach introduced in Nordlund & Stein (2001). Such calcu-
lations will next be called “direct calculations”. They are time-
consuming and do not easily allow massive computations of the
excitation rates for stars with different temperatures and lumi-
nosities. On the other hand, an excitation model offers the ad-
vantage of testing separately several properties entering the ex-
citation mechanism which are not well understood or modeled.
Furthermore, once it is validated, it can be used for a large set of
1D models of stars.

As it was done for the Sun in Samadi et al. (2003c, hereafter
Paper II) and Paper III, 3D simulations can also provide quanti-
ties which can be implemented in a formulation for the excitation
rate P, thus avoiding the use of the mixing-length approach with
the related free parameters, and assumptions about the turbulent
spectra. Such calculations will next be called “semi-analytical
calculations”.

We stress however that in any case, we cannot avoid the use
of 1D models for computing accurate eigen-frequencies for the
whole observed frequency range. In the present paper, the 1D
models are constructed to be as consistent as possible with their
corresponding 3D simulations, as described in Sect. 3.

This paper is organized as follows: in Sect. 2 we present the
methods considered here for computing P, that is the so-called
“direct” method based on Nordlund & Stein’s (2001) approach
(Sect. 2.1) and the so-called “semi-analytical” method based on

the approach from Paper I, with modifications as presented in
Papers II and III and in the present paper (Sect. 2.2).

Comparisons between direct and semi-analytical calcula-
tions of the excitation rates are performed in seven representative
cases of solar-like oscillating stars. The seven 3D simulations all
have the same number of mesh points. Section 3 describes these
simulations and their associated 1D stellar models.

The 3D simulations provide constraints on quantities re-
lated to the convective fluctuations, in particular the eddy time-
correlation function, χk, which, as stressed above, plays an im-
portant role in the excitation of solar p-modes. The function χk

is therefore inferred from each simulation and compared with
simple analytical function (Sect. 4).

Computations of the excitation rates of their associated
p-modes are next undertaken in Sect. 5 using both the di-
rect approach and the semi-analytical approach. In the semi-
analytical method, we employ model parameters as derived from
the 3D simulations in Sect. 4.

In Sect. 5.2 we derive the expected scaling laws for Pmax,
the maximum in P, as a function of L/M with both the direct
and semi-analytical methods and compare the results. This al-
lows us to investigate the implications of such power laws for
the expected values of Vmax and to compare our results with the
seismic observations of solar-like oscillations in Sect. 5.3. We
also compare with previous theoretical results (e.g. Kjeldsen &
Bedding 1995; Houdek & Gough 2002).

We finally assess the validity of the present stochastic excita-
tion model and discuss the importance of the choice of the model
for χk in Sect. 6.

2. Calculation of the p-mode excitation rates

2.1. The direct method

The energy input per unit time into a given stellar acoustic mode
is calculated numerically according to Eq. (74) of Nordlund &
Stein (2001) multiplied by S, the area of the simulation box, to
get the excitation rate (in erg s−1):

P(ω0) =
ω2

0 S
8 ∆ν Eω0

∣

∣

∣

∣

∣

∫

r

dr ∆P̂nad(r, ω0)
∂ξr

∂r

∣

∣

∣

∣

∣

2

(1)

where ∆P̂nad(r, ω) is the discrete Fourier component of the non-
adiabatic pressure fluctuations,∆Pnad(r, t), estimated at the mode
eigenfrequency ω0 = 2πν0, ξr is the radial component of the
mode displacement eigenfunction, ∆ν = 1/T the frequency res-
olution corresponding to the total simulation time T and Eω0 is
the mode energy per unit surface area defined in Nordlund &
Stein (2001, their Eq. (63)) as:

Eω0 =
1
2
ω2

0

∫

r

dr ξ2r ρ

(

r

R

)2
. (2)

Note that Eq. (1) corresponds to the direct calculation of PdV
work of the non-adiabatic gas and turbulent pressure (entropy
and Reynolds stress) fluctuations on the modes. The energy in
the denominator of Eq. (1) is essentially the mode mass. The
additional factor which turns it into energy is the mode squared
amplitude which is arbitrary and cancels the mode squared am-
plitude in the numerator. For a given driving (i.e. P dV work),
the variation of the mode energy is inversely proportional to the
mode energy (see Sect. 3.2 of Nordlund & Stein 2001). Hence,
for a given driving, the larger the mode energy (i.e., the mode
mass or mode inertia) the smaller the excitation rate.
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In Eq. (1) the non-adiabatic Lagrangian pressure fluctua-
tion, ∆P̂nad(r, ω), is calculated as the following: we first compute
the non-adiabatic pressure fluctuations ∆Pnad(r, t) according to
Eq. (A.3) in Appendix A. We then perform the temporal Fourier
transform of ∆Pnad(r, t) at each depth r to get ∆P̂nad(r, ω).

The mode displacement eigenfunction ξr(r) and the mode
eigenfrequencyω0 are calculated as explained in Sect. 3. Its ver-
tical derivative, ∂ξr/∂r, is normalized by the mode energy per
unit surface area, Eω0 , and then multiplied by ∆P̂nad. The re-
sult is integrated over the simulation depth, squared and divided
by 8∆ν. We next multiply the result by the area of the simula-
tion box (S) to obtain P, the total excitation rates in erg s−1 for
the entire star. Indeed the nonadiabatic pressure fluctuations are
uncorrelated on large scales, so that average ∆P2

nad is inversely
proportional to the area. Multiplication by the area of the stellar
simulation gives the excitation rates for the entire star as long as
the domain size is sufficiently large to include several granules.

2.2. The semi-analytical method

Calculations of excitation rates by the semi-analytical method
are based on a model of stochastic excitation. The excitation
model we consider is the same as presented in Paper I. In this
model of excitation and in contrast to previous models (e.g.
Goldreich & Keeley 1977; Balmforth 1992; Goldreich et al.
1994), the driving by turbulent convection is ensured not only by
the Reynolds stress tensor but also by the advection of the tur-
bulent fluctuations of entropy by the turbulent movements (the
so-called entropy source term).

As in Paper I, we consider only radial p-modes. We do
not expect any significant differences for low ℓ degree modes.
Indeed, in the region where the excitation takes place, the low ℓ
degree modes have the same behavior as the radial modes. Only
for very high ℓ degree modes (ℓ ≫ 100) – which will not be seen
in stars other than the Sun – can a significant effect be expected,
as is quantitatively confirmed (work in progress).

The excitation rates are computed as in Paper II, except for
the change detailed below. The rate at which a given mode with
frequency ω0 = 2πν0 is excited is then calculated with the set
of Eqs. (1)–(11) of Paper II. These equations are based on the
excitation model of Paper I, but assume that injection of acous-
tic energy into the modes is isotropic. However, Eq. (10) of
Paper II must be corrected for an analytical error (see Samadi
et al. 2005). This yields the following correct expression for
Eq. (10) of Paper II:

S R(r, ω0) =
∫ ∞

0

dk

k2

E(k, r)

u2
0

E(k, r)

u2
0

×
∫ +∞

−∞
dωχk(ω0 + ω, r) χk(ω, r) (3)

where u0 =
√
Φ/3 ū, Φ is Gough’s (1977) anisotropy factor, ū is

the rms value of u, the turbulent velocity field, k the wavenumber
and χk(ω) is the frequency component of the correlation product
of u.

The method then requires the knowledge of a number of
input parameters which are of three different types:

1) Quantities which are related to the oscillation modes: the
eigenfunctions (ξr) and associated eigen-frequencies (ω0).

2) Quantities which are related to the spatial and time aver-
aged properties of the medium: the mean density (ρ0), αs ≡
〈(∂p/∂s)ρ〉 – where s is the entropy, p the gas pressure and
〈. . .〉 denotes horizontal and time averages – the mean square

of the vertical component of the convective velocity, 〈w2〉,
the mean square of the entropy fluctuations, 〈s̃2〉, and the
mean anisotropy,Φ (Eq. (2) of Paper II).

3) Quantities which contain information about spatial and tem-
poral auto-correlations of the convective fluctuations: the
spatial spectrum of the turbulent kinetic energy and entropy
fluctuations, E(k) and Es(k), respectively, as well as the tem-
poral spectrum of the correlation product of the turbulent
velocity field, χk.

Eigen-frequencies and eigenfunctions (in 1) above) are
computed with the adiabatic pulsation code ADIPLS
(Christensen-Dalsgaard & Berthomieu 1991) for each of
the 1D models associated with the 3D simulations (see Sect. 3).

The spatial and time averaged quantities (in 2) and 3) above)
are obtained from the 3D simulations in the manner of Paper II.
For E(k), however, we use the actual spectrum as calculated
from the 3D simulations and not an analytical fit as was done
in Paper II. However as in Paper II, we assume for Es(k) the k-
dependency of E(k) (we have checked this assumption for one
simulation and found no significant change in P).

For each simulation, we determine χk as in Paper III (cf.
Sect. 4). Each χk is then compared with various analytical forms,
among which some were investigated in Paper III. Finally we se-
lect the analytical forms which are the closest to the behavior of
χk and use them, in Sect. 5, to compute P.

3. The convection simulations and their associated

1D models

Numerical simulations of surface convection for seven differ-
ent solar-like stars were performed by Trampedach et al. (1999).
These hydrodynamical simulations are characterized by the ef-
fective temperature, Teff and acceleration of gravity, g, as listed
in Table 1. The solar simulation with the same input physics and
number of mesh points is included for comparison purposes. The
surface gravity is an input parameter, while the effective temper-
ature is adjusted by changing the entropy of the inflowing gas at
the bottom boundary. The simulations have 50 × 50 × 82 grid
points. All of the models have solar-like chemical composi-
tion, with hydrogen abundance X = 0.703 and metal abundance
Z = 0.0145. The simulation time-series all cover at least five
periods of the primary p-modes (highest amplitude, one node at
the bottom boundary), and as such should be sufficiently long.

The convection simulations are shallow (only a few percent
of the stellar radius) and therefore contain only few modes. To
obtain mode eigenfunctions, the simulated domains are aug-
mented by 1D envelope models in the interior by means of
the stellar envelope code by Christensen-Dalsgaard & Frandsen
(1983a). Convection in the envelope models is based on the
mixing-length formalism (Böhm-Vitense 1958).

Trampedach et al. (2006a) fit 1D stellar envelopes to aver-
age stratifications of the seven convection simulations by match-
ing temperature and density at a common pressure point near the
bottom of the simulations. The fitting parameters are the mixing-
length parameter, α, and a form-factor, β, in the expression for
turbulent pressure: P1D

turb = β̺u
2
MLT, where uMLT is the convective

velocities predicted by the mixing-length formulation. A consis-
tent matching of the simulations and 1D envelopes is achieved
by using the same equation of state (EOS) by Däppen et al.
(1988, also referred to as the MHD EOS, with reference to
Mihalas, Hummer, and Däppen) and opacity distribution func-
tions (ODF) by Kurucz (1992a,b), and also by using T -τ rela-
tions derived from the simulations (Trampedach et al. 2006b).
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Table 1. Characteristics of the convection 3D simulations: tsim is the duration of the relaxed simulations used in the present analysis, Hp is the
pressure scale height at the surface, Lh the size of the box in the horizontal direction, Cs the sound speed and ts the sound travel time across Hp.
All the simulations have a spatial grid of 50 × 50 × 82.

Star tsim size log g Teff Hp Lh/Hp Cs ts tsim/ts

[min] [Mm3] [K] [km] [km s−1] [s]
αCen B 59 4.0 × 4.0 × 2.2 4.5568 5363 95. 42.1 7.49 12.72 278.3
Sun 96 6.0 × 6.0 × 3.4 4.4377 5802 134 44.8 7.78 17.30 332.9
Star A 80 11.6 × 11.6 × 6.4 4.0946 4851 316 36.7 7.98 39.66 121.0
αCen A 44 8.9 × 8.8 × 5.1 4.2946 5768 189 47.1 7.81 24.17 109.2
Star B 110 20.7 × 20.7 × 11.3 4.0350 6167 359 57.7 7.76 46.29 142.6
Procyon 119 20.7 × 20.7 × 10.9 4.0350 6470 380 54.5 7.52 50.50 141.4
ηBoo 141 36.9 × 36.9 × 16.3 3.7534 6023 709 52.0 7.40 96.13 88.0

Fig. 1. Location of the convection simulations in the HR dia-
gram. The symbol sizes vary proportionally to the stellar radii.
Evolutionary tracks of stars, with masses as indicated, were calcu-
lated on the base of Christensen-Dalsgaard’s stellar evolutionary code
(Christensen-Dalsgaard 1982; Christensen-Dalsgaard & Frandsen
1983a).

The average stratifications of the 3D simulations, augmented
by the fitted 1D envelope models in the interior, were used as
the basis for the eigenmode calculations using the adiabatic pul-
sation code by Christensen-Dalsgaard & Berthomieu (1991).
These combinations of averaged 3D simulations and matched
1D envelope models will, from hereon, be referred to as the
1D models.

The positions of the models in the HR diagram are presented
in Fig. 1 and their global parameters are listed in Table 2. Five
of the seven models correspond to actual stars, while Star A and
Star B are merely sets of atmospheric parameters; their masses
and luminosities are therefore assigned somewhat arbitrarily (the
L/M-ratios, only depending on Teff and g, are of course not
arbitrary).

4. Inferred properties of χk

For each simulation, χk(ω) is computed over the whole
wavenumber (k) range covered by the simulations and at
different layers within the region where modes are excited. We
present the results at the layer where the excitation is maximum,

Table 2. Fundamental parameters of the 1D-models associated with the
3D simulations of Table 1.

Star Teff M/M⊙ R/R⊙ L/L⊙ LM⊙/ML⊙
[K]

αCen B 5363 0.90 0.827 0.51 0.56
Sun 5802 1.00 1.000 1.02 1.02
Star A 4852 0.60 1.150 0.66 1.10
αCen A 5768 1.08 1.228 1.50 1.38
Star B 6167 1.24 1.769 4.07 3.28
Procyon 6470 1.75 2.102 6.96 3.98
ηBoo 6023 1.63 2.805 9.31 5.71

i.e., where u0 is maximum, and for two representative wavenum-
bers: k = kmax at which E(k) peaks and k = 10 kmin, where kmin
is the first non-zero wavenumber of the simulations. Indeed, the
amount of acoustic energy going into a given mode is largest at
this layer and at the wavenumber k ≃ kmax, provided that the
mode frequency satisfies: ω0 � (kmax u0). Above ω0 ∼ kmax u0,
the efficiency of the excitation decreases rapidly. Therefore low
and intermediate frequency modes (i.e., ω0 � kmax u0) are pre-
dominantly excited at k ≃ kmax. On the other hand, high fre-
quency modes are predominantly excited by small-scale fluctua-
tions, i.e. at large k. The exact choice of the representative large
wavenumber is quite arbitrary; however it cannot be too large
because of the limited number of mesh points k � 25 kmin and
in any case, the excitation is negligible above k ≃ 20 kmin. We
thus chose the intermediate wavenumber k = 10 kmin. Figure 2
presents χk as obtained from the 3D simulations of Procyon,
αCen B and the Sun, at the layer where u0 is maximum and for
the wavenumber kmax. Although defined as a function of ω, for
convenience, χk is plotted as a function of ν = ω/2π through-
out this paper. Figure 3 displays χk for k = 10 kmin. Results for
the other simulations are not shown, as the results for Procyon,
αCen B and the Sun correspond to three representative cases.

In practice, it is not easy to implement directly in the exci-
tation model the ν-variation of χk inferred from the 3D simula-
tions. An alternative and convenient way to compute P is to use
simple analytical functions for χk which are chosen so as to best
represent the 3D results. We then compare χk computed with the
3D simulations with the following simple analytical forms: the
Gaussian form

χG
k (ω) =

1

ωk

√
π

e−(ω/ωk)2
, (4)

the Lorentzian form

χL
k (ω) =

1
πωk/2

1

1 + (2ω/ωk)2
, (5)
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Fig. 2. The filled dots represent χk obtained from the 3D simulations
for the wavenumber k at which E(k) is maximum and at the layer where
the excitation is maximum in the simulation. The results are presented
for three simulations: Procyon (top), the Sun (middle) and αCen B
(bottom). The solid curves represent the Lorentzian form, Eq. (5), the
dashed curves the Gaussian form Eq. (4), and the dot dashed curves the
exponential form Eq. (6).

and the exponential form

χE
k (ω) =

1
ωk

e−|2ω/ωk |. (6)

In Eqs. (4)–(6),ωk is the line-width of the analytical function and
is related to the velocity uk of the eddy with wave number k as:

ωk ≡ 2 kuk. (7)

In Eq. (7), uk is calculated from the kinetic energy spectrum E(k)
as (Stein 1967)

u2
k =

∫ 2k

k

dk E(k). (8)

Fig. 3. Same as Fig. 2 for k = 10 kmin where kmin is the first non-zero
wavenumber of the simulation.

As shown in Figs. 2 and 3, the Lorentzian χL
k

does not re-
produce the ν-variation of χk satisfactorily. This is particularly
true for the solar case. This contrast with the results of Paper III
where it was found that χL

k
reproduces nicely – at the wavenum-

ber where E is maximum – the ν-variation of χk inferred from the
solar simulation investigated in Paper III. These differences in
the results for the solar case can be explained by the low spatial
resolution of the present solar simulation compared with that of
Paper III. Indeed we have compared different solar simulations
with different spatial resolution and found that the ν-variation of
χk converges to that of χL

k
as the spatial resolution increases (not

shown here). This dependency of χk with spatial resolution of
the simulation is likely to hold for the non-solar simulations as
well. This result then suggests that χk is in fact best represented
by the Lorentzian form, χL

k
.

As a consequence, realistic excitation rates evaluated directly
for a convection simulation should be based on simulations with
higher spatial resolution. However the main goal of the present
work is to test the excitation model, which can be done with the
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present set of simulations. Indeed, we only need to use as inputs
for the excitation model the quantities related to the turbulent
convection (E(k), χk,. . . ) as they are in the simulations, no matter
how the real properties of χk are.

For the present set of simulations, we compare three ana-
lytical forms of χk: Lorentzian, Gaussian and exponential. For
large k, χk is overall best modeled by a Gaussian (see Fig. 3 for
k = 10 kmin). For small k (see Fig. 2 for k = kmax) both the expo-
nential and the Gaussian are closer to χk than the Lorentzian.

For a given simulation, depending on the frequency, differ-
ences between χk(ν) and the analytical forms are more or less
pronounced.

The discrepancy between χk(ν) inferred from the 3D sim-
ulations and the exponential or the Gaussian forms vary sys-
tematically with stellar parameters; decreasing as the convec-
tion gets more forceful, as measured by, e.g., the turbulent- to
total-pressure ratio. Of the three simulations illustrated in Fig. 2,
Procyon has the largest and αCen B has the smallest Pturb/Ptot-
ratio.

As a whole for the different simulations and scale lengths k,
we conclude that the ν-variation of χk in the present set of sim-
ulations lies between that of a Gaussian and an exponential.
However, neither of them is completely satisfactory. Actually a
recent detailed study by Georgobiani et al. (2006, in prepara-
tion) tends to show that χk cannot systematically be represented
at all wavenumbers by a simple form such as a Gaussian, an ex-
ponential or a Lorentzian, but rather needs a more generalized
power law. Hence, more sophisticated fits closer to the simu-
lated ν-variation of χk could have been considered, but for the
sake of simplicity we chose to limit ourselves to the three forms
presented here.

5. p-mode excitation rates across the HR diagram

5.1. Excitation rate spectra (P(ν))

For each simulation, the rates P at which the p-modes of the
associated 1D models are excited are computed both directly
from the 3D simulations and with the semi-analytical method
(see Sect. 2). In this section, the semi-analytical calculations are
based on two analytical forms of χk: a Gaussian and an exponen-
tial form as described in Sect. 4. The Lorentzian form as intro-
duced in Sect. 4 is not investigated in the present section. Indeed
our purpose here is to test the model of stochastic excitation by
using constraints from the 3D simulations, and a Lorentzian be-
haviour is never obtained in the present 3D simulations.

The results of the calculations of P using both methods are
presented in Fig. 4 for the six most representative simulations. In
order to remove the large scattering in the direct calculations, we
perform a running mean over five frequency bins. The results of
this averaging are shown by dot-dashed lines. The choice of five
frequency bins is somewhat arbitrary. However we notice that
between 2 to 10 frequency bins, the maximum and the shape of
the spectrum do not significantly change.

Comparisons between direct and semi-analytical calcula-
tions using either χG

k
or χE

k
all show systematic differences: the

excitation rates obtained with the direct calculations are sys-
tematically lower than those resulting from the semi-analytical
method. These systematic differences are likely due to the too
low spatial resolution of the 3D simulations which are used here
(see Sect. 5.2 below).

At high frequency, the use of χE
k

instead of χG
k

results in
larger P for all stars. This arises from the fact that χE

k
spreads

slightly more energy at high frequency than χG
k

does (see Fig. 2).

The largest difference between the two types of calculation
(direct versus semi-analytical) is seen in the case of Procyon.
Indeed, the simulation of Procyon shows a pronounced depres-
sion around ν ∼ 1.5 mHz. Such a depression is not seen in the
semi-analytical calculations. The origin of this depression has
not been clearly identified yet but is perhaps related to some in-
terference between the turbulence and the acoustic waves which
manifests itself in the pressure fluctuations in the 3D work inte-
gral but is not included in the semi-analytical description.

5.2. Influence of the 3D simulation characteristics

In order to assess the influence of the spatial resolution of the
simulation on our results, we have at our disposal three other
solar 3D simulations, with a grid of 253 × 253 × 163, 125 ×
125 × 82 and 50 × 50 × 82 (hereafter S1), and a duration of
∼42 min, 70 min and 100 min, respectively.

We have computed the p-modes excitation rates according to
the direct method for those three simulations. For each of those
simulations we have also computed the excitation rates accord-
ing to the semi-analytical method assuming either a Lorentzian
χk or a Gaussian χk.

As shown in Fig. 5 (top), the excitation rates computed ac-
cording to the direct calculation increase as the spatial resolution
of the 3D simulation increases. The excitation rates computed
with the 3D simulations with the two highest spatial resolutions
reach approximately the same mean amplitude level, indicating
that this level of spatial resolution is sufficient for the direct cal-
culations.

We note that as the spatial resolution increases, the semi-
analytical calculations using a Lorentzian χk decrease by a fac-
tor ∼2 (not shown here). The differences in the semi-analytical
calculations based on the 253 × 253 × 163 simulation and the
125 × 125 × 82 simulation are found very small, indicating that
this level of spatial resolution is sufficient for the semi-analytical
calculations too.

Finally, we note that the excitation rates obtained for the
50×50×82 solar simulation (S1) are approximatively two times
smaller than excitation rates for the 50 × 50 × 82 solar simu-
lation otherwise used throughout this work (S0 hereafter). This
difference is attributed to the fact that the two simulations do not
correspond to the same realization. Indeed, as a test, we have ex-
tended the duration of the simulation S1 up to 500 min. The full
time series has then been divided into subsets of equal duration
of 100 min and p-mode excitation rates have been computed for
each subset. We find that the maximum in the p-modes excitation
ratesP(ν) oscillates from a subset to another about a mean value.
The observed variations are large: the maximum in P(ν) can be
larger (smaller resp.) by ∼1.5 (0.5 resp.) times the maximum in
the power spectrum obtained by averaging the power spectra of
all subsets. Hence we find that at low spatial resolution, different
realizations yield excitation rates that are scattered about a mean
value at each frequency. This dispersion is likely to be respon-
sible for the factor of two difference between the excitation rate
maxima obtained for the two realizations S0 and S1. This type
of dependency of P – with the starting time of the time series
and its duration – is expected to be smaller for simulations with
resolution higher than 50×50×82, because of the larger number
of excitation sources there. This will be studied in a subsequent
work.
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Fig. 4. Excitation rates, P, are presented as functions of mode frequency for six of the seven convection simulations listed in Tables 1 and 2. Each
triangle corresponds to a single evaluation of the 3D work integral estimated for a given eigenfrequency according to Eq. (1). The dot-dashed lines
correspond to a running mean of the triangle symbols performed over five frequencies. The solid and dashed lines correspond to the excitation rates
calculated with the semi-analytical method and using the Gaussian and the exponential forms of χk, respectively. All results shown are obtained as
the sum of contributions from the two sources of excitation: excitation by the turbulent pressure and excitation by the non-adiabatic gas pressure.

5.3. Eddy-time correlation: Lorentzian versus Gaussian

As seen in Sect 5.2 above, the characteristics of the simulations
influence the semi-analytical calculations of the mode excita-
tion rates (through the input parameters which enter the semi-
analytical calculations and which are taken from the 3D simu-
lation). We want to compare the results of the semi-analytical
calculations using χL

k
with the semi-analytical calculations using

χG
k

. It is then necessary to insert the 3D inputs in these calcula-
tions coming from simulations with the highest quality, here the
highest available resolution.

Figure 5 (bottom) compares semi-analytical calculations us-
ing a Lorentzian χk with those using a Gaussian χk. All theses
semi-analytical calculations are here based on the energy spec-
trum of the simulation with the spatial resolution of 253× 253×
163 (see Sect. 5.2).
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Fig. 5. Top: as in Fig. 4 for solar simulations only. The solid line corre-
sponds to the semi-analytical calculations based on a Lorentzian χk and
a simulation with a spatial resolution of 253× 253× 82. The other lines
are running means over five frequencies of the direct calculation based
on solar simulations with different spatial resolution: 253 × 253 × 82
(dashed line), 125×125×82 (dot dashed line) and 50×50×82 (dot dot
dashed line). Bottom: the solid and dashed lines have the same mean-
ing as in the top figure. The dot-dashed line corresponds to the semi-
analytical calculations based on a Gaussian χk .

The average level of the excitation rates calculated accord-
ing to the direct method and with the simulation with the highest
spatial resolution is in between the semi-analytical calculations
based on Lorentzian χk and those based on a Gaussian χk, never-
theless they are in general slightly closer to the semi-analytical
calculations based on Lorentzian χk. This result is discussed in
Sect. 6.2.1.

5.4. Maximum of P as a function of L/M

Figure 6 shows Pmax, the maximum in P, as a function of L/M
for the direct and the semi-analytical calculations.

The same systematic differences between the direct and the
semi-analytical calculations as seen in Fig. 4 are of course ob-
served here. Note that the differences slightly decrease with
increasing values of L/M.

We have also computed the excitation rate with the semi-
analytical method using χL

k
. The maximum excitation rate as

evaluated with χL
k

is systematically larger than both the direct
calculations and the semi-analytical results based on χG

k
or χE

k
.

Fig. 6. Pmax versus L/M where L is the luminosity and M is the mass of
the 1D models associated with the 3D simulations. The triangles corre-
spond to the direct calculations (labeled as “DirEx 3D” in the legend),
and the other symbols correspond to the semi-analytical calculations us-
ing the three forms of χk: the crosses assume a Gaussian, the diamonds
an exponential and the squares a Lorentzian, respectively. Each set of
Pmax is fitted by a power law of the form (L/M)s where s is the slope of
the power law. The line-styles correspond to the three semi-analytical
cases and the direct calculations, as indicated in the lower right corner
of the plot.

Table 3. Values found for the slopes s (see Sect. 5.4) and sv (see
Sect. 5.5). “Method” is the method considered for the calculations of P.

Method χk s sv

direct — 3.4 —
semi-analytical Gaussian 3.1 1.0
semi-analytical exponential 3.0 0.9
semi-analytical Lorentzian 2.6 0.7

In the solar case, Pmax is found to be closer to the value de-
rived from recent helioseismic data (Baudin et al. 2005) when
using a Lorentzian compared to a Gaussian (see also Belkacem
et al. 2006b, B06b hereafter). The “observed” excitation rates
are derived from the velocity observations V as follows:

P = 2π ΓνM(h) V2 (9)

where M is the mode mass, V is the mode velocity amplitude
and h is the height above the photosphere where the mode mass
is evaluated. The mode line width at half maximum in Hz, Γν =
η/π, (η is the mode amplitude damping rate in s−1) is determined
observationally in the solar case.

Using the recent helioseismic measurements of V and Γν by
Baudin et al. (2005) and the mode mass computed here for our
solar model at the height h = 340 km (cf. Baudin et al. 2005),
we find Pmax,⊙ = 6.5 ± 0.7 × 1022 erg s−1. This value must be
compared with those found with χL

k
and χG

k
, namely PL

max,⊙ =

4.9 × 1022 erg s−1 and PG
max,⊙ = 1.2 × 1022 erg s−1 respectively.

Scaling laws: All sets of calculations can be reasonably well
fitted with a scaling law of the form Pmax ∝ (L/M)s where s
is a slope which depends on the considered set of calculations.
Values found for s are summarized in Table 3.
• For the semi-analytical calculations, we find s = 2.6 using

χL
k
, s = 3.0 using χE

k
and s = 3.1 for the Gaussian form.
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The Lorentzian form results in a power law with a smaller
slope than the Gaussian. This can be understood as follows: a
Gaussian decreases more rapidly with ν than a Lorentzian. As
the ratio L/M of a main sequence star increases, the mode fre-
quencies shift to lower values. Hence p-modes of stars with large
values of L/M receive relatively more acoustic energy when
adopting a Gaussian rather than a Lorentzian χk. It is worth-
while to note that even though the ratio L/M is the ratio of two
global stellar quantities, it nevertheless characterizes essentially
the stellar surface layers where the mode excitation is located
since L/M ∝ T 4

eff/g.
• For the set of direct calculations, some scatter exists as a

consequence of the large statistical fluctuations in Pmax and a
linear regression gives s = 3.4. As expected, this value is rather
close to that found with the semi-analytical calculations using
either χG

k
or χE

k
.

5.5. Maximum of the mode amplitudes (Vmax)
as a function of L/M

The theoretical oscillation velocity amplitudes V can be com-
puted according to Eq. (9) The calculation requires the knowl-
edge of the excitation rates,P, damping rates, η, and mode mass,
M. Although it is possible – in principle – to compute the con-
vective dampings from the 3D simulations (Nordlund & Stein
2001), it is a difficult task which is under progress. However,
using for instance Gough’s Mixing-Length Theory (1976; 1977,
G’MLT hereafter), it is possible to compute η and P for different
stellar models of given L,M and deduce Vmax, the maximum of
the mode amplitudes, as a function of L/M at the cost of some
inconsistencies.

In Samadi et al. (2001), calculations of the damping rates η
based on G’MLT were performed for stellar models with differ-
ent values of L and M. Although these stellar models are not
the same as those considered here, it is still possible, for a crude
estimate, to determine the dependency of Vmax with L/M.

Hence we proceed as follows: for each stellar model com-
puted in Samadi et al. (2001), we derive the values of η and
M at the frequency νmax at which the maximum amplitude is
expected. From the stars for which solar-like oscillations have
been detected, Bedding & Kjeldsen (2003) have shown that this
frequency is proportional to the cut-off frequency. Hence we
determine νmax = (νc/νc,⊙) νmax,⊙ where νc is the cut-off fre-
quency of a given model and the symbol ⊙ refers to solar quan-
tities (νmax,⊙ ≃ 3.2 mHz and νc,⊙ ≃ 5.5 mHz). We then obtain
(ηmax Mmax) as a function of L and M.

On the other hand, in Sect. 5.4, we have established Pmax
as a function of L and M. Then, according to Eq. (9), we can
determine Vmax(L,M) for the different power laws of Pmax.

We are interested here in the slope (i.e. variation with L/M)
of Vmax and not its absolute magnitude, therefore we scale the
theoretical and observed Vmax with a same normalization value
which is taken as the solar value Vmax,⊙ = 33.1 ± 0.9 cm s−1 as
determined recently by Baudin et al. (2005).

We find that Vmax increases as (L/M)sv with different values
for sv depending on the assumptions for χk. The values of sv are
summarized in Table 3 and illustrated in Fig. 7. We find sv ≃ 0.7
with χL

k
and sv ≃ 1.0 with χG

k
.

These scaling laws must be compared with observations of a
few stars for which solar-like oscillations have been detected in
Doppler velocity. The observed Vmax are taken from Table 1 of
HG02, except for ηBoo, ζ Her A, β Vir, HD 49933 and µ Ara,
for which we use the Vmax quoted by Carrier et al. (2003), Martić
et al. (2001), Martić et al. (2004), Mosser et al. (2005) and

Fig. 7. Same as Fig. 6 for Vmax/Vmax,⊙, the maximum of the mode ampli-
tudes relative to the observed solar value (Vmax,⊙ = 33.1 ± 0.9 cm s−1).
The filled symbols correspond to the stars for which solar-like oscil-
lations have been detected in Doppler velocity. The lines – except the
dashed line – correspond to the power laws obtained from the predicted
scaling laws for Pmax (Fig. 6) and estimated values of the damping
rates ηmax (see text for details). Results for two different eddy time-
correlation functions, χk, are presented: Lorentzian (solid line) and
Gaussian (dot-dashed line) functions. For comparison the dashed line
shows the result by HG02. Values of the slope sv are given on the plot
and in Table 3.

Bouchy et al. (2005) respectively and ǫ Oph and η Ser quoted
by Barban et al. (2004).

Figure 7 shows that the observations also indicate a mono-
tonic logarithmic increase of Vmax with L/M despite a large dis-
persion which may at least partly arise from different origins of
the data sets. For the observations we find a “slope” sv ≃ 0.7.
This is close to the theoretical slope obtained when adopting χL

k

and definitely lower than the slopes obtained when adopting χG
k

or adopted by HG02.

6. Summary and discussion

One goal of the present work has been to validate the model
of stochastic excitation presented in Paper I. The result of this
test is summarized in Sect. 6.1. A second goal has been to study
the properties of the turbulent eddy time-correlation, χk, and the
importance for the calculation of the excitation rates, P, of the
adopted form of χk. Section 6.2 deals with this subject.

6.1. Validation of the excitation model

In order to check the validity of the excitation model, seven
3D simulations of stars, including the Sun, have been consid-
ered. For each simulation, we calculated the p-mode excita-
tion rates, P, using two methods: the semi-analytical excitation
model (cf. Sect. 2.2) that we are testing, and a direct calculation
as detailed in Sect. 2. In the latter method, the work performed
by the pressure fluctuations on the p-modes is calculated directly
from the 3D simulations.

In the semi-analytical method, P is computed according to
the excitation model of Paper I. The calculation uses, as input,
information from the 3D simulations as for instance the eddy

173



306 R. Samadi et al.: Excitation of solar-like oscillations across the HR diagram

time-correlation (χk) and the kinetic energy spectra (E(k)).
However although χk has been computed for each simulation, in
practice for simplifying the problem of implementation as well
as for comparison purpose with Paper III, we chose to represent
the ν variation of χk with simple analytical functions. It is found
that the ν-variation of χk in the present simulations lies loosely
between that of an exponential and a Gaussian. We then perform
the validation test of the excitation model using those two forms
of χk.

We find that using either χG
k

or χE
k

in the semi-analytical cal-
culations of P results in systematically higher excitation rates
than those obtained with direct 3D calculations. These system-
atic differences are attributed to the low spatial resolution of our
present set of simulations. Indeed we have shown here that using
solar simulations with different spatial resolutions, the resulting
excitation rates increase with increasing spatial resolution.

We have next investigated the dependence of Pmax with L/M
(See Fig. 6), where L and M are the stellar luminosity and mass
respectively. As in previous works based on a purely theoretical
approach (e.g. Samadi et al. 2003a), we find that Pmax scales
approximatively as (L/M)s where s is the slope of the scaling
law: we find s = 3.4 with the direct calculations and s = 3.2
and s = 3.1 with the semi-analytical calculations using χG

k
and

χE
k

respectively. This indicates a general agreement between the
scaling properties of both types of calculations, which validates
to some extent the adopted excitation model across the domain
of the HR diagram studied here.

For the sake of simplicity, only simple analytical forms for
χk have been investigated here. We expect that the use of more
sophisticated forms for χk would reduce the dispersion between
the analytical and direct calculations, but would not affect the
conclusions of the present paper.

6.2. The eddy time-correlation spectra, χk

The slope s of the scaling law for Pmax, is found to depend
significantly on the adopted analytical form for χk. The semi-
analytical calculations using the Lorentzian form for χk results in
a significantly smaller slope s than those based on the Gaussian
or the exponential or from direct calculations (see Table 3).

Except for the Sun, independent and accurate enough con-
straints on both the mode damping rates and the mode exci-
tation rates are not yet available. We are then left to perform
comparison between predicted and observed mode amplitudes.
Unfortunately, obtaining tight constraints on χk using compari-
son between predicted and observed mode amplitudes is ham-
pered by large uncertainties in the theoretical estimates of the
damping rates. It is therefore currently difficult to derive the ex-
citation rates P for the few stars for which solar-like oscillations
have been detected (see Samadi et al. 2004). The future space
mission COROT (Baglin & The Corot Team 1998) will provide
high-quality data on seismic observations. Indeed the COROT
mission will be the first mission that will provide both high pre-
cision mode amplitudes and line-widths for stars other than the
Sun. It will then be possible to use the observed damping rates
and to derive the excitation rate P free of the uncertainties asso-
ciated with a theoretical computation of damping rates. In par-
ticular, it will be possible to determine Pmax as a function of L
and M from the observed stars. Such observations will provide
valuable constraints for our models for χk.

We can, nevertheless, already give some arguments below in
favor of the Lorentzian being the correct description for χk.

6.2.1. Solar case

In the 3D simulations studied here, including that of the Sun,
the inferred ν dependency of χk is far from a Lorentzian, in
contrast to that found with the solar 3D simulation investigated
in Paper III. However, by investigating solar simulations with
different resolutions, we find that, as the spatial resolution in-
creases, χk tends towards a Lorentzian ν-dependency. This ex-
planation is likely to stand for non-solar simulations too, but has
not yet been confirmed (work in progress).

Furthermore, as shown in Fig. 5, bottom, the direct calcula-
tions obtained with the simulation with the highest spatial res-
olution available is slightly closer to the semi-analytical calcu-
lations using the Lorentzian form than those using the Gaussian
one.

Independently of the resolution (if large enough of course),
a Lorentzian χk predicts larger values for Pmax than a Gaussian
or an exponential do. In particular in the solar case, the semi-
analytical calculation using χL

k
results in a Pmax closer to the he-

lioseismic constraints derived by Baudin et al. (2005) compared
to using χG

k
or χE

k
. This latter result is in agreement with that of

Paper III.
Part of the remaining discrepancies with the helioseismic

constraints are attributed to the adopted closure model according
to Belkacem et al. (2006b, B06b hereafter). Indeed, theoretical
models of stochastic excitation adopt the quasi-normal approx-
imation (QNA). As shown in B06b, the skew introduced by the
QNA result in a under-estimation of the solar p mode excitation
rates. When the so-called closure model with plumes proposed
by Belkacem et al. (2006a) is adopted, new semi-theoretical cal-
culations fit rather well the recent helioseismic constraints de-
rived by Baudin et al. (2005, see B06b).

6.2.2. Vmax as a function of L/M

Consequences of the predicted power laws for Pmax have also
been crudely investigated here for the expected value of Vmax,
the maximum value of the mode velocity (Fig. 7). Calculations
of Vmax from Pmax require the knowledge of the mode damping
rates, η, which cannot be fully determined from the simulations.
We are then led to use theoretical calculations of the damping
rates. We consider here those performed by Samadi et al. (2001)
which are based on Gough’s (1976; 1977) non-local and time-
dependent formulation of convection. From those values of η
and the different power laws for Pmax expected values of Vmax
are obtained.

We find, as in Houdek & Gough (2002, HG02), that Vmax
scales as (L/M)sv. Calculations by HG02 result in sv ≃ 1.5. Our
semi-analytical calculations of Pmax based on a Gaussian χk re-
sult in a slightly smaller slope (sv ≃ 1.0). On the other hand,
using a Lorentzian χk results in a slope sv ≃ 0.7 which is closer
to that derived from the few stars for which oscillation ampli-
tudes have been measured.

From this result, we conclude that the problem of the over-
estimation of the amplitudes of the solar-like oscillating stars
more luminous than the Sun is related to the choice of the model
for χk. Indeed, previous theoretical calculations by Houdek et al.
(1999) are based on the assumption of a Gaussian χk. As shown
here, the Gaussian assumption results in a larger slope sv than
the Lorentzian χk. This is the reason why Houdek et al. (1999)
over-estimate Vmax for L/M > L⊙/M⊙.

On the other hand, if one assumes χk = χ
L
k
, a scaling factor

is no longer required to reproduce Pmax for the solar p-modes.
Moreover, as a consequence of the smaller slope, sv, resulting
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from a Lorentzian χk, the predicted amplitudes for other stars
match the observations better.

This result further indicates that a Lorentzian is the better
choice for χk, as was also concluded in Paper III.

Departures of the theoretical curve from the observed points
in Fig. 7 can be attributed to several causes which remain to be
investigated:

1) A major uncertainty comes from the computed damping
rates as no accurate enough observations are available yet
to validate them. As V results from the balance between P
and η, the slope sv can also depend on the variation of η with
L/M. Thus, the large differences in sv between the seismic
observations and the calculations based on χG

k
can also be,

a priori, attributed to an incorrect evaluation of the damp-
ing rates. However ηmax – the value of the damping rate at
the frequency νmax at which the maximum amplitude is ex-
pected – does not follow a clear scaling law with L/M. We
have looked at the ηmax variation in our set of G’MLT models
and found no clear dependence of ηmax on L/M but rather a
dispersion.

2) The observed stars in Fig. 7 have somewhat different chemi-
cal compositions; this can cause some scatter in the relation
Vmax–L/M which has not been taken into account here. All
the simulations investigated in the present work employ a
solar metal abundance. The metallicity has a direct impact
on the opacity and the EOS. Both in turn affect the internal
structure and are also decisive for the transition from convec-
tion to radiation in the photosphere and therefore determine
the structure of the super-adiabatic region. Hence, the prop-
erties of the super-adiabatic region, relevant for the excita-
tion rates, differ for stars located at the same position in the
HR diagram (e.g., same Teff and same g) but with different
metal abundances. Consequently the excitation of p-modes
for such stars probably differ, although it remains to be seen
to what extent. A differential investigation of the metallicity
effect is planned for the future.

6.3. Relative contribution of the turbulent pressure

Another issue concerns the relative contribution of the turbu-
lent pressure. The excitation of solar-like oscillations is gener-
ally attributed to the turbulent pressure (i.e. Reynolds stress) and
the entropy fluctuations (i.e. non-adiabatic gas pressure fluctua-
tions) and occurs in the super-adiabatic region where those two
terms are the largest. In Paper III, it was found that the two driv-
ing sources are of the same order of magnitude, in contradiction
with the results by Stein & Nordlund (2001) who found – based
on their 3D numerical simulations of convection – that the tur-
bulent pressure is the dominant contribution to the excitation.
The discrepancy is removed here as we used a corrected version
of the formulation of the contribution of the Reynolds stress of
Paper I (see Eq. (3)), leading to a larger contribution from the
Reynolds stress.

For the Sun, assuming χL
k

(χG
k

resp.), we now find that the
Reynolds stress contribution is 5 times (3 times resp.) larger than
that due to the entropy fluctuations (non-adiabatic gas-pressure
fluctuations). Hence, the Reynolds stress is indeed the dominant
source of excitation in agreement with the results of Stein &
Nordlund (2001). The best agreement with the latter results is
obtained with a Lorentzian χk.

However, we find that the relative contribution from
Reynolds stresses decreases rapidly with (L/M). For instance, in

the simulation of Procyon, the Reynolds stress represents only
∼30% of the total excitation rate.

From that, we conclude that the excitation by entropy fluc-
tuations cannot be neglected, especially for stars more luminous
than the Sun.
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Appendix A: Calculation of the non adiabatic

pressure fluctuations

The adiabatic variation of the gas pressure does not contribute
to the ∆(PdV) work over an oscillation period as it is in phase
with the volume (or density) variation. In practice, however, it
is beneficial for the accuracy of the computation of excitation to
subtract the adiabatic part of the gas pressure fluctuation, since it
reduces the coherent part. That part gives zero contribution only
in the limit of infinite time, or for an exact integer number of
periods. However, in practice, it gives rise to a random (or noisy)
contribution. Indeed, as we deal with a lot of different modes it is
hard to find a time-interval which is an integer number of periods
of each and all of the modes at the same time.

The Lagrangian variations of gas pressure, ∆Pgas must
satisfy

∆Pgas =
Γ1Pgas

ρ
∆ρ +

∂Pgas

∂S
∆S (A.1)

where Pgas, ρ and S are the gas pressure the density and the
entropy respectively and where the operator ∆ represents the
pseudo Lagrangian fluctuations of a given quantity. The concept
of pseudo Lagrangian fluctuations is introduced in Nordlund &
Stein (2001). Accordingly we derive the non-adiabatic gas pres-
sure fluctuations as:

∆Pgas,nad(r, t) ≡ ∆Pgas − c2
s ∆ρ (A.2)

where c2
s ≡ Γ1Pgas/ρ is the sound speed.

However, what we want to subtract off from ∆Pgas is that
part of the pressure variation that is due to adiabatic compression
and expansion due to the particular radial wave modes (i.e. the
low amplitude perturbation of ρ(r) on top of the possibly large
variations horizontally of ρ(r) that ρ(r) is an average of).

To find the nonadiabatic pressure fluctuations, we start with
calculations of horizontal averages of the primary quantities,
Pgas, Pturb, ρ and c2

s . We convert these averages to the pseudo-
Lagrangian frame of reference, in which the net mass flux van-
ishes. We then compute fluctuations of the resulting quantities
with respect to time, i.e., subtract their time averages:

∆Pgas = 〈Pgas〉h − 〈Pgas〉h,t
∆Pturb = 〈Pturb〉h − 〈Pturb〉h,t

∆ρ = 〈ρ〉h − 〈ρ〉h,t.
Here, 〈〉h refers to horizontal average and 〈〉h,t refers to conse-
quent time average performed on a horizontally averaged quan-
tity. Finally, the non-adiabatic fluctuations of the total pressure
(that is gas + turbulent pressure) are:

∆Pnad = ∆Pgas,nad + ∆Pturb

= ∆P − 〈c2
s〉h,t ∆ρ (A.3)

where ∆P ≡ ∆Pgas + ∆Pturb.
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Martić, M., Lebrun, J. C., Schmitt, J., Appourchaux, T., & Bertaux, J. L. 2001,

in ESA SP SOHO 10/GONG 2000 Workshop: Helio- and Asteroseismology
at the Dawn of the Millennium, 464, 431
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ABSTRACT

From different seismic observations we infer the energy supplied per unit of time by turbulent convection to the acoustic modes of
α Centauri A (HD 128620), a star that is similar but not identical to the Sun. The inferred rates of energy supplied to the modes (i.e.
mode excitation rates) are found to be significantly higher than in the Sun. They are compared with those computed with an excitation
model that includes two sources of driving, the Reynolds stress contribution and the advection of entropy fluctuations. The model also
uses a closure model, the Closure Model with Plumes (CMP hereafter), that takes the asymmetry between the up- and down-flows (i.e.
the granules and plumes, respectively) into account. Different prescriptions for the eddy-time correlation function are also compared
to observational data. Calculations based on a Gaussian eddy-time correlation underestimate excitation rates compared with the values
derived from observations for α Centauri A. On the other hand, calculations based on a Lorentzian eddy-time correlation lie within the
observational error bars. This confirms results in the solar case. Compared to the helioseismic data, those obtained for α Centauri A
constitute an additional support for our model of excitation. We show that mode masses must be computed taking turbulent pressure
into account. Finally, we emphasize the need for more accurate seismic measurements in order to distinguish between the CMP
closure model and the quasi-normal approximation in the case of α Centauri A, as well as to confirm or not the need to include the
excitation by the entropy fluctuations.

Key words. convection – turbulence – stars: oscillations – stars: atmospheres

1. Introduction

The star α Centauri A is the most promising after the Sun for
constraining the modeling of p-mode excitation by turbulent
convection. Indeed, due to its proximity and its binarity, the fun-
damental parameters of α Centauri A (effective temperature, lu-
minosity, metallicity, gravity, radius) are quite well known. For
this reason this star and its companion (α Cen B) have been
extensively studied (see for instance the most recent modeling
by Miglio & Montalbán (2005) and the references therein). As
pointed out by Samadi et al. (2007a), the detection of p-modes
and the measurement of their amplitudes as well as their mode
linewidths (i.e. lifetime), from α Centauri A enable the rates at
which energy is supplied to the acoustic modes for this star to
be derived. These observational constraints can then be used to
check models of p-mode excitation by turbulent convection.

Such comparisons were first undertaken in the case of the
Sun by various authors (see the recent review by Houdek 2006).
They enable different models of stochastic excitation of acoustic
modes to be tested as well as different models of turbulent con-
vection (see e.g. Samadi et al. 2006). Among those theoretical
prescriptions, we consider that one of Samadi & Goupil (2001)
with the improvements proposed by Samadi et al. (2003) and
Belkacem et al. (2006b). It was shown by Samadi et al. (2003)
that the way the eddy time correlation is modeled plays an im-
portant role in the efficiency of excitation. Indeed, calculations of
the mode excitation rates,P, that use a Lorentzian eddy-time cor-
relation function reproduce helioseismic data better than those
using a Gaussian one. In addition, Belkacem et al. (2006b), in
the case of the Sun, show that excitation rates computed using
an adapted closure model that takes the presence of plumes into

account reproduce the solar observations much better than the
calculations based on the classical quasi-normal approximation
(Millionshchikov 1941).

An alternative theoretical model of the excitation of acous-
tic modes by turbulent convection proposed by Chaplin et al.
(2005) differs from that by Samadi & Goupil (2001) in several
ways: it does not take the driving by the advection of the entropy
fluctuations by the velocity field into account. They only use the
classical quasi-normal approximation. More importantly, these
authors claim that a Gaussian eddy-time correlation function
reproduces one the frequency dependence of mode excitation
rates inferred from helioseismic data better than a Lorentzian
one. However, they are led to introduce a factor to their model
by which they multiply their formulation to reproduce the
maximum of the solar mode excitation rates.

A second opportunity is provided by α Centauri A for testing
various assumptions in the modeling of the p-mode excitation:
the amplitudes of the acoustic modes detected in α Centauri A
were derived by Butler et al. (2004) using spectrometric data.
From those data, an estimate of the averaged mode linewidths
has been first proposed by Bedding et al. (2004) and more
recently updated in Kjeldsen et al. (2005). Using a different
method and data from the WIRE satellite, Fletcher et al. (2006)
propose a new estimate of the averaged mode linewidths that
differ significantly from the one derived by Kjeldsen et al.
(2005). Indeed, the two data sets place the mode lifetime be-
tween 2.2 days (Kjeldsen et al. 2005) and 3.9 days (Fletcher
et al. 2006). For comparison, the averaged mode life time de-
rived for the Sun by Bedding et al. (2004) in a similar way as for
α Centauri A by Kjeldsen et al. (2005) is about two days.
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Samadi et al. (2007a) inferred the p-mode excitation rates
P from those sets of seismic constraints. They find that they are
significantly larger than those associated with the solar p-modes.
Furthermore, P peaks in the frequency domain ∼2.2−2.6 mHz,
while it peaks at the frequency νmax ∼ 3.8 mHz in the case of the
Sun.

Although the spectroscopic characteristics (Teff = 5810 K,
log g = 4.305) of α Centauri A are close to those of the Sun
(Teff = 5780 K, log g = 4.438), the seismic signatures are
quite different. Consequently, finding agreement between pre-
dicted and observed excitation rates would be a nontrivial result,
providing additional support for the theory.

A preliminary comparison with theoretical calculations ob-
tained in the manner of Belkacem et al. (2006a) was carried out
by Samadi et al. (2007a). Discrepancies between the excitation
rates inferred from the observations and the theoretical calcula-
tions were found. We update this study here by proceeding in a
similar way as in Rosenthal et al. (1999). Indeed, these authors
have built a solar 1D model where the surface layers are taken di-
rectly from a fully compressible 3D hydrodynamical numerical
model. We refer here to such a 1D model as a “patched” model.
Rosenthal et al. (1999) have obtained a much better agreement
between observed and theoretical eigenfrequencies of the Sun
computed for such a “patched” 1D model than for a “standard”
1D model based on the standard mixing-length theory with no
turbulent pressure included. Following Rosenthal et al. (1999),
we built such a “patched” model to derive adiabatic mode radial
eigen-displacements (ξr) and mode inertia (I). We used them to
compute the mode excitation rates, which we compared with ex-
citation rates computed using ξr and I obtained with a “standard”
1D model.

The paper is organized as follows: in Sect. 2 we describe
our procedure for computing the mode excitation rates for the
specific case of α Centauri A. We then describe in Sect. 3 the
way the mode excitation rates are inferred from seismic obser-
vations of α Centauri A. In Sect. 4, we compare theoretical cal-
culations of P with those inferred from the seismic data obtained
for α Centauri A. We compare and explain in Sect. 5 the differ-
ences between α Centauri A and the Sun. Finally, Sects. 6 and 7
are devoted to the discussion and conclusions, respectively.

2. Modeling the excitation of p-modes

2.1. General formulation

Because the theoretical model of stochastic excitation is basi-
cally that of Samadi & Goupil (2001; see also Samadi et al.
2005) with the improvements of Belkacem et al. (2006a,b), we
recall only some key features here. The model takes two driving
sources into account. The first one is related to the Reynolds
stress tensor and, as such, represents a mechanical source of
excitation. The second one is caused by the advection of the
turbulent fluctuations of entropy by the turbulent motions (the
so-called “entropy source term”) and thus represents a thermal
source of excitation (Goldreich et al. 1994; Stein & Nordlund
2001). The power fed into each radial mode, P, is given by

P =
1

8 I

(

C2
R + C2

S

)

, (1)

where C2
R and C2

S are the turbulent Reynolds stress and entropy
contributions, respectively and

I =

∫ M

0
dm |ξr|

2 (2)

is the mode inertia, ξr is the adiabatic radial mode displacement
and M the mass of the star. The expressions for C2

R and C2
S are

given for a radial mode with frequencyω0 by

C2
R =

64π3

15

∫

dm ρ0 fr

(

1 +
1
3
S2
w

)

S R(ω0), (3)

C2
S =

16π3

3ω2
0

∫

dm
α2

s

ρ0
gr S S(ω0), (4)

where we have defined

S R(ω0) =
∫

dk

k2
E2(k)

∫

dω χk(ω + ω0) χk(ω), (5)

S S(ω0) =
∫

dk

k2
E(k) Es(k)

∫

dωχk(ω + ω0) χk(ω), (6)

where fr ≡ (dξr/dr)2, and gr is a function that involves the first
and the second derivatives of ξr . Then, E(k) is the spatial turbu-
lent kinetic energy spectrum, Es(k) the spectrum associated with
the entropy fluctuations, χk the time correlation function of the
eddies, αs = (∂P/∂s)ρ where s is the entropy, P the gas pres-
sure, ρ the density, ρ0 the equilibrium density profile, and ω0 the
eigenfrequency.

Finally, Sw ≡ 〈w3〉/(〈w2〉)3/2 is the skewness and w the verti-
cal component of the velocity (see Belkacem et al. 2006a,b, for
details). Indeed, the expression of Eq. (3) depends on the clo-
sure model used to express the fourth-order moments involved
in the theory in terms of the second-order ones. The most com-
monly used closure model at the level of fourth-order moments
is the quasi-normal approximation (QNA). Such an assumption
leads to a vanishing skewness Sw. However, in the solar case, the
deviation from the QNA stems from the presence of turbulent
plumes. Taking both the effect of the skewness introduced by
the presence of two flows and the effect of turbulence onto each
flow into account Belkacem et al. (2006a) thus propose a new
closure model, which leads to a non-vanishing skewness, Sw, in
Eq. (3). In the present work, Sw is then obtained directly from
the 3D numerical model.

Calculation of the mode excitation rates is performed essen-
tially in the manner of Belkacem et al. (2006b) as explained in
Samadi et al. (2007a) in the specific case of α Centauri A: all re-
quired quantities, except the mode eigenfunctions ξr and mode
inertia I, are directly obtained from a 3D simulation of the outer
layers of α Centauri A, whose characteristics are described in
Sect. 2.2 below.

The mode displacement ξr and mode inertia I must be
computed from a global 1D equilibrium model. We chose
to study two such equilibrium models which are described
in Sect. 2.3. Finally, eigenfrequencies and eigenfunctions
are computed using the adiabatic pulsation code ADIPLS
(Christensen-Dalsgaard & Berthomieu 1991).

2.2. The 3D hydrodynamical model of the outer layers
of α Centauri A

We consider the 3D hydrodynamical model of the outer layers of
α Centauri A computed by Samadi et al. (2007a) using the Stein
& Nordlund (1998) code. The assumed micro-physics (e.g. the
equation of state and the opacity table) are explained in Samadi
et al. (2007b). The hydrogen, helium, and metal abundances are
solar, and the chemical mixture of the heavy elements is set ac-
cording to the Grevesse & Noels (1993) mixture.

The 3D model associated with α Centauri A has a horizontal
size of 8.17 Mm× 8.17 Mm and a vertical size of 4.31 Mm. The
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grid is 125 × 125× 82. As pointed out by Samadi et al. (2007b),
this spatial resolution is sufficient for calculating the p-mode
excitation rates. The simulation duration is 323 min, while the
acoustic depth of the simulation is 410 s and the characteris-
tic eddy turnover time is ∼20 min (see Sect. 5). The duration
of the simulation then represents ∼47 sound travels across the
simulated domain and about 15 eddy turnover times.

The effective temperature Teff is adjusted to 5809 K± 15, in
good agreement with the value Teff = 5810 K ± 50 adopted by
Miglio & Montalbán (2005). The gravity is set to log g = 4.305
to exactly match the value (log g = 4.305± 0.005) inferred from
the precise measurements of the mass and the radius of the star
(see the related references in Miglio & Montalbán 2005).

2.3. 1D models

2.3.1. Standard model

The first 1D equilibrium model has the effective temperature
and the gravity of α Centauri A and is built by requiring that,
for the temperature at the bottom of the 3D simulation box, the
1D model has the same pressure and density as the 3D simu-
lation (see Fig. 1). The 3D simulation is therefore used to con-
strain this 1D equilibrium model such that its interior structure
is compatible with the second 1D model described later on, in
Sect. 2.3.2 (see also Fig. 1). Convection in the 1D model is de-
scribed according to Böhm-Vitense (1958)’s mixing-length local
theory of convection (MLT) and turbulent pressure is ignored.
Microscopic diffusion of helium and heavy elements are treated
according to the simplified formalism of Michaud & Proffitt
(1993). We assume a solar abundance to be consistent with the
3D model.

The mixing-length parameter, α, the age, the mass (M), the
initial helium abundance (Y0), and the initial (Z/X)0 ratio where
X and Z are the hydrogen and metal mass fractions, respectively,
are fitted such that the model simultaneously reproduces the ef-
fective temperature of the star, its gravity, the solar composi-
tion, and the temperature-pressure relation at the bottom of the
3D simulation box. The outer layers of this model, which matter
here, then have the stratification given by a standard MLT model.
This model is referred to as standard hereafter.

The matching results in α = 1.694. For comparison, the
same matching performed for a solar 3D simulation results in
α = 1.899. The mass of the standard model is M = 1.012 M⊙
and the radius R = 1.1722 R⊙. They are slightly less than
expected for this star, namely M = 1.105 ± 0.007 M⊙ and
R = 1.224±0.003 R⊙ (see Miglio & Montalbán 2005). This is be-
cause we have assumed a solar abundance for consistency with
the 3D model. A global 1D model with the iron-to-hydrogen
abundance ([Fe/H]) of α Centauri A (namely [Fe/H] = 0.2),
would have the expected mass and radius of the star.

Slightly different R, M and [Fe/H] values might have some
influence on the mode excitation rates (P). To measure the ef-
fect of having an R, M and [Fe/H] different than required for
α Centauri A, we computed two global models. The first model
has an abundance [Fe/H] = 0.2 and the second has a solar abun-
dance. Both models have the effective temperature and gravity of
α Centauri A. In contrast with the “standard” model described
above, we do not match these models with the 3D model. The
model with [Fe/H] = 0.2 almost has the radius and the mass ex-
pected for α Centauri A, while the second has almost the same R
and M as the standard model investigated here. We find that P
changes between the two models by less than ∼5%; this is much
less than the uncertainties associated with the observations.

Fig. 1. Density as a function of the temperature. The solid line corre-
sponds to the “patched” model and the dashed line to the “standard”
model. The thick solid line is the part of the patched model obtained
from the 3D simulation. The filled circle shows the position of the
bottom of the 3D simulation box.

2.3.2. “Patched” model

To consider a more realistic description of the superadiabatic
outer layers, we built a 1D global model, following Trampedach
(1997, see also Samadi et al. 2007b), in which the outer layers
are replaced by the averaged 3D simulation (see Fig. 1).

“Standard” and 3D models share the same microphysics but
mainly differ in the way convective motions and radiative trans-
fer are treated. In the 3D model convective motions are treated by
solving the Navier-Sokes equation while in the standard model
convective motions are modeled according to the mixing-length
model of convection and no turbulent pressure is included in
the hydrostatic equation. In the standard model, radiative trans-
fer is gray and assumes the Eddington approximation. In the
3D model, radiative transfer is explicitly solved in LTE for four
opacity bins (see details in Stein & Nordlund 1998).

The interior of the “patched” model is the same as in the stan-
dard model and does not include the turbulent pressure. At the
bottom of the 3D simulation box, turbulent pressure is already
negligible (∼0.6% of the total pressure). Then, neglecting it in
the interior has negligible effects on the properties of the eigen-
functions considered here. This global model will be referred to
as a patched model. Note that this patched model has the same
total mass and a radius very close to that of the standard model,
namely R = 1.1726 R⊙.

The stratifications in density of the patched and standard
models are compared in Fig. 1. At the top of the convective
region, we see that the density is lower in the patched model
compared to the standard model. This is because the patched
model includes turbulent pressure that provides additional sup-
port against gravity: accordingly, the patched model has lower
gas pressure at a given total pressure (Ptot). Now, since T (Ptot) is
the same with and without turbulent pressure, the patched model
has a lower density at a given temperature than the standard
model.

Because the treatment of photospheric radiative transfer is
not (and in practice cannot be) identical between a 3D calcu-
lation and a 1D model in the atmosphere, small differences in
the stratifications of the very outer layers exist between the two
models as seen in Fig. 1. In any case these differences do not
play any significant role in the quantities that matter here, such
as inertia. Note that some explanations about the differences seen
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between the outer layers of 3D models and 1D models have been
proposed by e.g. Nordlund & Stein (1999) and Rosenthal et al.
(1999).

3. Inferring the excitation rates from seismic

constraints

Mode excitation rates are derived from seismic observations
according to the relation

P(ν) = 2πM Γ (v/S 0)2 (7)

where M = I/ξ2r (rh) is the mode mass evaluated at the layer
rh ≡ R + h in the atmosphere where the mode is measured in
radial velocity, R the radius at the photosphere (i.e. at T = Teff),
h the height above the photosphere, Γ the mode full width at half
maximum (in ν), v(rh, ν) is the rms apparent velocity amplitude
of the mode at the layer rh, ν = ω0/2π the mode frequency, and
S 0 the visibility factor of the ℓ = 0 mode.

Kjeldsen et al. (2005) have derived the apparent amplitude
velocity spectrum, v(ν) of the modes detected in α Centauri A.
However, their spectrum corresponds to amplitudes normalized
to the mean of ℓ = 0 and 1 modes rather than to ℓ = 0.
Furthermore, they do not take the mode visibilities into account.
Recently, Kjeldsen et al. (2008) have derived the (apparent) am-
plitudes of the modes, normalized to the ℓ = 0 modes and tak-
ing both the mode visibilities and limb-darkening effects into ac-
count. Finally, to derive the intrinsic mode amplitudes, we divide
v(ν) by S 0 = 0.712, the visibility factor of the ℓ = 0 modes ob-
served in velocity (Kjeldsen et al. 2008). For the mode linewidth,
Γ, we use the averaged values provided by Kjeldsen et al. (2005)
and Fletcher et al. (2006).

Concerning mode masses, M, as discussed in Sect. 6, it is
not trivial to determine the height h where the Doppler velocities
are predominantly measured. As we do not know the height rep-
resentative of the observations precisely, we evaluate the mode
masses – by default – at the optical depth τ500 nm ≃ 0.013, which
corresponds to the depth where the potassium (K) spectral line
is formed (but see Sect. 6 for a discussion). This optical depth
corresponds to h = 470 km.

Neither the standard nor the patched models have exactly the
radius and the mass expected for α Centauri A (see Sect. 2.3.1).
However, this inconsistency only has a negligible effect on the
mode mass M = I/ξ2r . Indeed, since the eigenmode displace-
ment, ξr , is directly proportional to R, the mode inertia I scales
as R2 (see Eq. (2)). Accordingly, the ratio I/ξ2r is almost insensi-
tive to a small change in R. Furthermore, we checked that M is
also insensitive to a small change in M.

4. Comparison between observations and modeling

We first compare theoretical calculations of P performed with
eigenfunctions computed with the patched equilibrium model
with those computed using the standard equilibrium model (see
Sect. 2.2). However, eigenmodes computed with those two mod-
els do not have the same inertia and hence not the same mode
masses M. Thus, we instead compare the ratios P/M. As shown
in Fig. 2, theoretical calculations that use the patched model
lie well inside the observed domain of the seismic constraints.
On the other hand, using the standard model leads to underes-
timated theoretical values compared to the two sets of seismic
constraints.

When comparing the integrands of the product PM – excita-
tion power times mode mass – between the patched and standard

Fig. 2. Ratio of the rates P at which energy is injected into p-modes to
mode masses (M) for α Centauri A. The dashed area represents the ob-
served domain for P/M = 2π Γ (v/S 0)2 as a function of ν. This domain
is defined by merging the uncertainties associated with two indepen-
dently derived values of Γ and with the mode amplitudes v (Eq. (7)).
The solid (resp. dashed) line corresponds to computed excitation rates
with the eigenmodes obtained using the “patched” (resp. “standard”)
1D global model. All calculations here use the CMP and the Lorentzian
function (LF) for the eddy time-correlation function χk in Eqs. (5)
and (6).

equilibrium models, we find that they are quite similar. On the
other hand, the mode masses M are quite different for the two
equilibrium models in the domain 1−3 mHz where the modes
are mostly excited. This is due to the turbulent pressure that is
present in the patched model and ignored in the standard model.
At a given radius in the super-adiabatic region, the patched
model has a lower gas pressure and density (see Fig. 1). As a
consequence, inertia of the modes, which are confined within
the super-adiabatic region where the turbulent pressure has its
maximum, are less for the patched model than for the standard
model; accordingly, the ratios P/M, which are inversely propor-
tional to the squared mode mass M2, are about two times higher
for the patched model.

In Fig. 3, we compare two sets of calculations for a patched
stellar model that assumes two different prescriptions for the
eddy-time correlation function (χk) and two different closure
models, namely the QNA and the Closure Model with Plumes
(CMP hereafter) in the excitation model. The theoretical calcu-
lations based on a Lorentzian χk and the CMP closure model lie
inside the range allowed by the two sets of seismic constraints.
The differences between calculations based on the CMP and on
the QNA are found smaller than the differences between the two
data sets. On the other hand, calculations based on a Gaussian
χk yields significantly underestimated values compared to the
seismic constraints.

Note that Samadi et al. (2007a) found a discrepancy between
theoretical calculations and observations. Part of this discrep-
ancy was due to the horizontal size of the simulation box be-
ing set to that of the solar simulation used in Belkacem et al.
(2006b). Indeed, the kinetic energy spectrum E involved in the
expression for S R and S S in Eqs. (5) and (6) must be normalized
with respect to the horizontal size of the simulation box, as done
here. Furthermore, the mode inertia considered by Samadi et al.
(2007a) were computed for a standard MLT model (i.e. no tur-
bulent pressure included) instead of using a patched model as is
done here. As shown in Fig. 2, this results in an underestimation
of the ratio P/M by a factor of about two (see Fig. 2).
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Fig. 3. Rates P at which energy is injected into the p-modes of
α Centauri A. The dashed area has the same meaning as in Fig. 2. The
lines correspond to different theoretical calculations (all using a patched
model): the solid line uses the Lorentzian function (LF) and the CMP,
the dashed line uses the LF and the QNA closure model, the dot-dashed
line uses the Gaussian function (GF) and the CMP.

5. Differences between α Centauri A and the Sun

5.1. Excitation rates

Figure 4 compares the excitation rates, P, inferred for
α Centauri A with those inferred from helioseismic measure-
ments obtained for the Sun. For α Centauri A, excitation rates are
obtained from the seismic measurements as explained in Sect. 3.

For the Sun we consider the helioseismic data studied by
Baudin et al. (2005). We use here solar mode masses obtained
with a patched model computed as for α Centauri A in Sect. 2.
Mode masses are evaluated for the optical depth τ ≃ 5 × 10−4

since SOHO/GOLF observations are based on the Na D1 and
D2 spectral lines (see Houdek 2006).

We find Pmax,⊙ ≃ 3.5 ± 0.4 × 1015 [J/s]. The excitation rates
inferred for α Centauri A with mode masses M evaluated at the
optical depth associated with the potassium line (τ ≃ 0.013) give
Pmax = 8.25±1.0×1015 [J/s]. This is about 2.3±0.3 times larger
than Pmax,⊙. If mode masses are evaluated at the photosphere
(h = 0, T = Teff), we obtain Pmax = 15.9 ± 8.0 × 1015 [J/s]. In
that case this is about ∼4.4 ± 2 times larger than Pmax,⊙.

As seen in Fig. 4, the frequency where P peaks is ∼2.4 mHz
for α Centauri A. For comparison, in the solar case, P peaks
around 3.8 mHz. Clearly, the modes in α Centauri A are excited
at a lower frequency compared to the solar modes. Note also that
the frequency domain where the derivation of P is possible from
the available seismic data is much smaller for α Centauri A than
for the Sun. This is obviously because the quality of the seismic
data is much lower for α Centauri A than for the Sun.

5.2. Excitation rates as a function of depth

Figure 5 shows the integrand dP/dm of the excitation rates
(Eq. (1), (3), (4)) as a function of the temperature for the mode
for which P is maximum in the Sun and in α Centauri A. The top
panel shows the contribution of the Reynolds stress (dPR/dm)
and the bottom panel the contribution of the entropy fluctuations
(dPS/dm). Excitation due to the Reynolds stress is maximum
where the rms value of velocity, u, peaks. Excitation due to the
entropy fluctuations is maximum where s̃, the rms value of the
entropy fluctuations, peaks. Figure 5 shows that the excitation

Fig. 4. Excitation rates P inferred from seismic data according to
Eq. (7). Filled circles correspond to the helioseismic constraints ob-
tained by Baudin et al. (2005). The dashed area represents the observed
domain for the excitation rates derived for α Centauri A.

rate is larger for α Centauri A than for the Sun and occurs over
a slightly more extended region in α Centauri A than in the Sun.

The excitation due to the entropy fluctuations occurs in
a more shallow region compared to the Reynolds stress. For
α Centauri A, the relative contribution of the entropy fluctua-
tions to the total excitation is ≃18%, which is similar to the Sun
(≃15%). Hence, in both cases the excitation due to the Reynolds
stress remains the dominant contribution.

5.3. Differences in the characteristic properties of convection

To summarize, we find that P is significantly larger in
α Centauri A than in the Sun. Furthermore, P peaks at lower
frequency. As shown below, all these seismic differences can
be attributed to differences in the characteristic properties of
convection between α Centauri A and the Sun.

5.3.1. Why P is larger for α Centauri A?

At a given layer, the power supplied to the modes by the
Reynolds stress is proportional – per unit mass – to ρ0 u3Λ4

whereΛ is the characteristic eddy size and u the rms value of the
velocity (see Samadi & Goupil 2001). The flux of the kinetic en-
ergy, Fkin, is proportional to ρ0 u3. Hence, the greater Fkin or Λ,
the greater the driving by the Reynolds stress.

The power supplied to the modes by the so-called
entropy source term is proportional – per unit mass –
to ρ0 u3Λ4 R2 /(τΛω0)2 where ω0 is the mode frequency,
τΛ ∼ Λ/u is the characteristic eddy turn over time, and finally
R ∝ Fconv/Fkin where Fconv ∝ wαs s̃ is the convective flux and
s̃ is the rms of entropy fluctuations (see Samadi et al. 2006).
The higher R, the higher the relative contribution of the en-
tropy source to the excitation. The driving is maximum for mode
frequency (see, e.g., Samadi & Goupil 2001)

ω0 ∼ 2π/τΛ. (8)

Hence, at the mode frequency ω0 ∼ 2π/τΛ, the higher the ratio
Fconv/Fkin, the greater the relative contribution of the entropy
source term to the total excitation rate.

As a summary, for both Reynolds stress and entropy con-
tributions, the larger the characteristic scale length (Λ) or the
higher the kinetic energy (Fkin), the greater the excitation.
Furthermore, the higher R, the greater the relative contribution
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Fig. 5. Top: the integrand dPR/dm (Eq. (1)) associated with the contri-
bution of the Reynolds stress to the excitation is plotted as a function
of the horizontally and temporally averaged temperature in the simu-
lation box for the mode for which P is maximum. The solid line cor-
responds to the 3D simulation associated with α Centauri A and the
dashed line to the one associated with the Sun. Bottom: as the top panel
for dPS/dm, the integrand associated with the contribution due to the
entropy fluctuations.

of the entropy source term to the excitation. We study the dif-
ferences in Λ, Fkin, and R between the Sun and α Centauri A
below.

Kinetic energy flux (Fkin):
The maximum in u is up to ∼10 % greater in the 3D simulation
associated with α Centauri A than in the solar one. However,
the differences in the flux of kinetic energy, Fkin, between the
3D simulations associated with α Centauri A and the solar one
are small (<∼10%). This small effect on Fkin despite its cubic de-
pendence on u is due the lower ρ0 for a layer with the same
average T in the simulation for α Centauri A as compared to the
simulation for the Sun. The lower ρ0 in turn is a consequence of
the lower surface gravity of α Cen A compared to the Sun.

Relative contribution of the entropy source term:
We also find that s̃ is ∼25 % greater in the 3D simulation associ-
ated with α Centauri A. However, the convective flux, Fconv ∝
wαs s̃, in the 3D simulation associated with α Centauri A is
very close to that of the solar simulation. This is not surprising
since the two stars have almost the same effective temperature.
Furthermore, as pointed out above, the differences in Fkin be-
tween α Centauri A and the Sun are small. As a consequence
R ∝ Fconv/Fkin does not differ between α Centauri A and the
Sun. This explains why the contribution of the entropy term

Fig. 6. The kinetic energy spectrum, E, as a function of the horizontal
wavenumber k (lower axis) and the scale length Λk = 2 π/k (upper
axis) for the layer where u is maximum. The solid line corresponds to
the 3D simulation associated with α Centauri A and the dashed line to
the one associated with the Sun.

relative to the Reynolds stress is similar between α Centauri A
and the Sun.

Characteristic scale length (Λ):
Figure 6 shows the kinetic energy spectrum E as a function of
the horizontal wavenumber k and the scale length Λk = 2 π/k
for the layer where u is maximum. As seen in Fig. 6, for the
3D simulation associated with α Centauri A, E is maximum at
a larger scale length compared to the solar simulation. Then, the
eddies have a larger characteristic scale length in α Centauri A
than in the Sun. This explains why the excitation of p-modes is
significantly stronger for α Centauri A than for the Sun.

Since the number of grid points is the same for both simula-
tions, the α Centauri A simulation has a larger physical grid size,
thus a smaller maximum wavenumber, and in turn the cut-off in
the spectrum occurs at a lower k. This explains the earlier drop-
off of E(k) for α Centauri A in Fig. 6. For that reason the high
wavenumber part (beyond a k value of about 15 Mm−1, or a Λk

less than 0.4 Mm) should not be compared directly. On the other
hand, the scaling chosen in Fig. 7 allows a direct comparison.

We point out that the characteristic scale length, Λ, scales as
the pressure scale height. Indeed, we have plotted in Fig. 7 the
kinetic energy spectrum, E, as a function of kHp where Hp is
the pressure height at the layer where u is maximum. Except at
small scale lengths, we see that the k-dependency of the spec-
trum is almost the same between the simulation associated with
α Centauri A and the solar one.

The ratio between Hα cen A
p and H⊙p (Hα cen A

p /H⊙p ≃ 1.38) is
very close to the ratio g⊙/gα cen A (≃1.36). This is obviously re-
lated to the fact that Hp = P/ρg ∝ T/g. Accordingly, since
P ∝ Λ4 (see above), we then have P/P⊙ ∝ (Λ/Λ⊙)4 ∝
(Hα cen A

p /H⊙p )4 ∝ (gα cen A/g⊙)4 ∼ 3.4. For comparison, excita-
tion rates computed for α Centauri A are two times greater than
in the Sun.

5.3.2. Why P peaks at lower frequency?

The characteristic eddy turnover time can be estimated as the
quantity τ̃ ∼ Lh/u where Lh is the horizontal extent of the 3D
model and u the velocity at a given layer. At the layer where u is
maximum, we find that τ̃, evaluated at the layer where u peaks,
is larger in α Centauri A (∼30 min) than in the Sun (∼23 min).
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Fig. 7. The kinetic energy spectrum, E, as a function of k Hp (lower
axis) and Λk/Hp (upper axis) for the layer where u is maximum. The
lines used have the same meaning as in Fig. 6.

This explains that for α Centauri A P peaks at lower frequency
than in the Sun (ω0 ∼ 2π/τ̃, cf. Eq. (8)).

Both u and Λ are larger for α Centauri A than for the Sun.
However, the net result is a larger τ̃ for α Centauri A.

5.3.3. Interpretation

The differences in characteristics of convection between
α Centauri A and the Sun can be understood as follows: as
seen in Sect. 5.3.1, the characteristic size Λ is mainly controlled
by Hp ∝ T/g (for a given composition). The surface grav-
ity for α Centauri A is ∼35% times weaker than for the Sun
while the effective temperature is very similar to that of the Sun.
Consequently, Λ is larger than in the Sun. Furthermore because
of the lower gravity, the density at the photosphere is lower than
in the Sun. Hence, to transport the same amount of energy per
unit surface area by convection, the convective cells must have
higher speed (u).

6. Discussion

6.1. Effect of chemical composition

The star α Centauri A has an iron-to-hydrogen abundance of
[Fe/H] = 0.2 (see Miglio & Montalbán 2005). The 3D simu-
lation considered here has a solar abundance. Preliminary work
tends to show that, at the given effective temperature, a 3D sim-
ulation with a metal abundance 10 times less than the solar one
results in mode excitation rates ∼2 times smaller. This can be un-
derstood as follows: the radiative flux is larger for a low metal-
licity than in a medium with a solar metallicity. In that case, to
transport the same amount of energy, convection is less vigorous
(i.e. lower flux of kinetic energy, Fkin), leading to a lower effi-
ciency of the driving. If we extrapolate this preliminary result,
we can expect that mode excitation rates ought to increase with
[Fe/H]. A quantitative estimate of the expected increase must be
performed, however, in particular for α Centauri A, which will
require computing a 3D simulation with a non-solar abundance
representative of the surface layers of the star (in progress).

6.2. Estimation of mode mass

Mode masses must be evaluated at the layer in the atmosphere
where the acoustic modes are predominantly measured. The

Fig. 8. Ratio of the rates P at which energy is injected into the p-modes
to the mode masses (M) for α Centauri A. The dashed area represents
the observed domain for P/M = 2π Γ(v/S 0)2 as a function of ν (see
Sect. 3). The solid lines correspond to the ratio P/M where the excita-
tion rates, P, are calculated according to Eq. (1) and the mode masses,
M, are evaluated at different heights h above the photosphere. The lower
curve corresponds to the photosphere (h = 0) and the upper curve to the
top of the atmosphere (h = 1000 km). The step in h is 200 km.

result of a comparison with seismic constraints significantly de-
pends on the effective heights h where mode masses are evalu-
ated. Indeed, we plot in Fig. 8 the ratio P/M for mode masses
evaluated at different heights h in the atmosphere, namely from
h = 0 (the photosphere) up to the top of the simulated do-
main (h ≃ 1000 km). This ratio is compared to the quantity
2π Γ (v/S 0)2 obtained from the seismic constraints (Eq. (7)). For
h >∼ 600 km (i.e. for optical depth <∼0.005), the ratio P/M is
outside the observational domain.

Seismic observations of α Centauri A were performed us-
ing UCLES and UVES spectrographs. UVES and UCLES use a
similar technique to measure the acoustic modes (Bedding, pri-
vate communication). Like other spectrographs dedicated to stel-
lar seismic measurements, the UCLES instrument uses a large
number of spectral lines to reach a high enough signal-to-noise
ratio. In the case of stellar seismic measurements, it is then more
difficult than for helioseismic observations to estimate the effec-
tive height h (for the solar case see, e.g., Baudin et al. 2005). A
recent work by Kjeldsen et al. (2008) allows us to estimate the
value for an effective h. Indeed, the authors have found that solar
modes measured with the UCLES spectrograph have amplitudes
slightly less than those measured by the BiSON network. The
instruments of the BiSON network use the potassium (K) spec-
tral line, which is formed at an optical depth τ500 nm ≃ 0.013
(see Houdek 2006). The Kjeldsen et al. (2008) results then sug-
gest that acoustic modes measured by UCLES are measured at
an effective height (h) slightly below the formation depth of
the K line, i.e. at optical depth slightly above τ500 nm ≃ 0.013.
Accordingly, we have evaluated the mode masses at that optical
depth, which corresponds to h = 470 km.

A more rigorous approach would be to compute an effec-
tive mode mass by appropriately weighting the different mode
masses associated with the different spectral lines that contribute
to the seismic measurement. To infer accurate mode excitation
rates from the seismic data of α Centauri A, the mode masses
representative of the observation technique and the spectral lines
of α Centauri A must be derived. This is, however, beyond the
scope of this paper.
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7. Conclusions

Theoretical estimations for the energy supplied per unit of time
by turbulent convection (P) to α Centauri A acoustic modes were
compared to values obtained from observations. This allows us
to draw the following conclusions.

7.1. Differences with the Sun

Although α Centauri A has an effective temperature very close
to that of the Sun, we find here that the p-mode excitation rates P
inferred from the seismic constraints obtained for α Centauri A
are about two times higher than in the Sun. These differences
are attributed to the fact that the eddies in α Centauri A have a
larger characteristic size (Λ) than in the Sun. This is related to
the weaker surface gravity of α Centauri A.

Furthermore, the p-mode excitation rates for α Centauri A
are maximum at lower frequencies than in the Sun. This behavior
is related to the eddies having a longer turnover time as a result
of a larger Λ.

The seismic characteristics of the p-modes detected in
α Centauri A significantly differ from that of the Sun. They
can therefore provide additional constraints on the model of
stochastic excitation.

7.2. Inferred versus modeled excitation rates

Our modeling gives rise to excitation rates within the error bars
associated with the observational constraints. We stress that this
modeling was undertaken for α Centauri A independently from
the solar case, i.e. without using a formulation fitted on the he-
lioseismic data as is the case, for instance, for the Sun in Chaplin
et al. (2005) or in the case for α Centauri A in Houdek (2002).
The seismic constraints from α Centauri A then provide a clear
validation of the basic underlying physical assumptions included
in the theoretical model of stochastic excitation, at least for stars
that are not too different from the Sun.

7.3. Constraints on the description of turbulence: eddy-time
correlation

We find that our theoretical estimations of P, which assume
a Lorentzian eddy-time correlation function (χk) and the CMP
proposed by Belkacem et al. (2006a), lie in the observed domain.
On the other hand, when a Gaussian function is chosen for χk, P
is significantly underestimated. The comparison with the seismic
data for α Centauri A confirms the results for the solar case ob-
tained by Samadi et al. (2003) that χk significantly departs from
a Gaussian. As in Samadi et al. (2003), we attribute the depar-
ture of χk from a Gaussian to diving plumes (i.e. down-flows),
which are more turbulent than granules (i.e. the up-flows). This
result confirms that a Lorentzian function is a more adequate
description for the eddy-time correlation than a Gaussian.

7.4. Constraints on the modeling of turbulent convection
in the equilibrium stellar model

Calculations involving eigenfunctions computed on the basis of
a global 1D model that includes a realistic description of the
outer layers of the star (taken from 3D simulations) reproduce
much better (see Fig. 2) the seismic data than calculations that
use eigenfunctions computed with a standard stellar model built
with the MLT and ignoring turbulent pressure. This is because
a model that includes turbulent pressure results in higher mode

masses M than a model that ignores turbulent pressure. This can
be understood as follows. Within the super-adiabatic region, a
model that includes turbulent pressure provides an additional
support against gravity, hence has a lower gas pressure and den-
sity (see Fig. 1) than a model that does not include turbulent
pressure. As a consequence, mode inertia (hence mode masses)
are then larger in a model that includes turbulent pressure.

These conclusion are similar to that obtained in the Sun.
Indeed, the mode masses considered by Belkacem et al. (2006b)
in the case of the Sun were obtained with a 1D model com-
puted using the Gough (1977) non-local mixing-length formula-
tion of convection. The model thus includes turbulent pressure.
We do not observe significant differences between excitation
rates obtained with this non-local model and those obtained with
a “patched” solar computed as described here in the case of
α Centauri A. On the other hand, excitation rates computed with
mode masses obtained with a “standard” solar model (that is,
with no turbulent pressure included) or with a model in which
turbulent pressure is included according to the MLT significantly
under-estimate the helioseismic constraints.

These results tell that one must compute mode masses from
1D models that include turbulent pressure using a 3D hydrody-
namical model or using a non-local description of convection.

7.5. Need for improved data sets

As shown by Samadi et al. (2003) in the case of the Sun, con-
tribution of the entropy fluctuations to the excitation cannot be
neglected. Furthermore, recently, Belkacem et al. (2006b) have
shown that theoretical calculations based on the CMP result in
a better agreement with the helioseismic constraints than those
based on QNA.

However, in the case of α Centauri A, differences between
theoretical calculations that use the CMP and those based on
the QNA (see Fig. 3), as well as differences between calcula-
tions including driving by entropy fluctuations and those that do
not include it (not shown), are of the same order as the observa-
tional uncertainties associated with the two data sets. The present
seismic constraints therefore are unable to distinguish between
these assumptions. This emphasizes the need for more accurate
seismic data for α Centauri A.
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ABSTRACT

Context. Turbulent motions in stellar convection zones generate acoustic energy, part of which is then supplied to normal modes of
the star. Their amplitudes result from a balance between the efficiencies of excitation and damping processes in the convection zones.
Aims. We develop a formalism that provides the excitation rates of non-radial global modes excited by turbulent convection. As a first
application, we estimated the impact of non-radial effects on excitation rates and amplitudes of the high-angular-degree modes that
are observed on the Sun.
Methods. A model of stochastic excitation by turbulent convection was developed to compute the excitation rates and then successfully
applied to solar radial modes. We generalise this approach to the case of non-radial global modes. This enables us to estimate the
energy supplied to high-(ℓ) acoustic modes. Qualitative arguments, as well as numerical calculations, are used to illustrate the results.
Results. We find that non-radial effects for p modes are non-negligible:
- For high-n modes (i.e. typically n > 3) and for high values of ℓ, the power supplied to the oscillations depends on the mode inertia.
- For low-n modes, independent of the value of ℓ, the excitation is dominated by the non-radial components of the Reynolds stress
term.
Conclusions. Our numerical investigation of high-ℓ p modes shows that the validity of the present formalism is limited to ℓ < 500
due to the spatial separation of scale assumption. Thus, a model for very high-ℓ p-mode excitation rates calls for further theoretical
developments; however, the formalism is valid for solar g modes, which will be investigated in a paper in preparation.

Key words. convection – turbulence – Sun: oscillations

1. Introduction

Amplitudes of solar-like oscillations result from a balance be-
tween stochastic excitation and damping in the outermost lay-
ers of the convection zone, which extends nearly to the surface
of the star. Accurate measurements of the rate at which acous-
tic energy is supplied to the solar p modes are available from
ground-based observations (GONG, BiSON), as well as from
spacecraft (SOHO/GOLF and MDI). From those measurements
and a comparison with theoretical models, it has been possible
to demonstrate that excitation is due to eddy motions in the up-
permost part of the convection zone and by advection of entropy
fluctuations.

Stochastic excitation of radial modes by turbulent convec-
tion has been investigated by means of several semi-analytical
approaches (Goldreich & Keeley 1977; Goldreich et al. 1994;
Balmforth 1992; Samadi & Goupil 2001), they differ from each
other in the nature of the assumed excitation sources, the as-
sumed simplifications and approximations, and also by the way
the turbulent convection is described (see reviews by Stein et al.
2004; Houdek 2006). Two major mechanisms have nevertheless
been identified as driving the resonant p modes of the stellar
cavity: the first is related to the Reynolds stress tensor and, as
such, represents a mechanical source of excitation; the second is
caused by the advection of turbulent fluctuations of entropy by
turbulent motions (the entropy source term), and as such it repre-
sents a thermal source of excitation (Goldreich et al. 1994; Stein
& Nordlund 2001). Samadi & Goupil (2001, hereafter Paper I)
proposed a generalised formalism, taking the Reynolds and

entropy fluctuation source terms into account. In this model, the
source terms are written as functions of the turbulent kinetic en-
ergy spectrum and the temporal-correlation function. This al-
lowed us to investigate several possible models of turbulence
(Samadi et al. 2003a,b). The results were compared with GOLF
data for radial modes, and the theoretical values were found to be
in good agreement with the observations (Samadi et al. 2003b).
Part of the remaining discrepancies has recently been removed
by taking into account the asymmetry introduced by turbulent
plumes (Belkacem et al. 2006a,b).

In this paper we take an additional step by extending the
Samadi & Goupil (2001) formalism to the case of non-radial
global modes. This will enable us to estimate the excitation rates
for a wide variety of p and g modes excited in different types
of stars. The present model provides the energy supplied to the
modes by turbulence in inner, as well as outer, stellar convec-
tive regions, provided the turbulent model appropriate for the
relevant region is used. Studies of the stochastic excitation of
solar radial modes (Samadi et al. 2003a,b) have given us access
mainly to the radial properties of turbulence. The present gen-
eralised formalism enables us to take the horizontal properties
of turbulence into account (through the non-radial components
of the Reynolds stress contribution) in the outermost part of the
convective zone.

In the Sun, high-angular-degree p modes (as high as one
thousand) have been detected (e.g., Korzennik et al. 2004). From
an observational point of view, Woodard et al. (2001) found that
the energy supplied to the mode increases with ℓ, but that above
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some high-ℓ value, which depends on the radial order n (see
Woodard et al. 2001, Fig. 2), the energy decreases with increas-
ing ℓ. They mention the possibility of an unmodelled mechanism
of damping. Hence one of the motivations of this work is to in-
vestigate such an issue. As a first step, we develop here a theoret-
ical model of the stochastic excitation taking the ℓ-dependence
of the source terms into account to seek a physical meaning for
such a behaviour of the amplitudes.

Modelling of the mechanisms responsible for excitating non-
radial modes is useful not only for high-ℓ acoustic modes but
also for gravity modes, which are intrinsically non-radial. As for
p modes, gmodes are stochastically excited by turbulent convec-
tion; the main difference is that the dominant restoring force for g
modes is buoyancy. We, however, stress that convective penetra-
tion is another possible excitation mechanism for g modes (e.g.
Dintrans et al. 2005). Such modes are trapped in the radiative in-
terior of the Sun, so their detection promises closer knowledge of
the deep solar interior. However, they are evanescent in the con-
vection zone; thus, their amplitudes at the surface are very small
and their detection remains controversial. A theoretical predic-
tion of their amplitudes is thus an important issue. It requires an
estimation of the excitation rates but also of the damping rates.
Unlike p modes, the damping rates cannot be inferred from ob-
servations, and this introduces considerable uncertainties; e.g.,
theoretical estimates of the g-mode amplitudes (Gough 1985;
Kumar et al. 1996) differ from each other by orders of magni-
tudes, as pointed out by Christensen-Dalsgaard (2002). We thus
stress that the present work focuses on the excitation rates –
damping rates are not investigated. A specific study of gravity
modes will be considered in a forthcoming paper.

The paper is organised as follows: Sect. 2 introduces the gen-
eral formalism, and a detailed derivation of the Reynolds and
entropy source terms is provided. In Sect. 3, we demonstrate
that the formalism of Samadi & Goupil (2001) is a special case
and an asymptotic limit of the present model. In Sect. 4, we use
qualitative arguments to determine the different contributions to
the excitation rates and identify the dominant terms involving
the angular degree ( ℓ ). Section 5 presents the numerical results
where excitation rates are presented. Section 6 discusses the lim-
itations of the model and some conclusions are formulated in
Sect. 7.

2. General formulation

Following Paper I, we start from the perturbed momentum and
continuity equation

∂(ρ0 + ρ1)u
∂t

+ ∇ : (ρ0uu) = −∇p1 + ρ1g0 + ρ0g1 + ρ1g1, (1)

∂ρ1

∂t
+ ∇ · ((ρ0 + ρ1)u) = 0 (2)

where ρ is the density, p the pressure, and g the gravity. The
subscripts 1 and 0 denote Eulerian perturbations and equilibrium
quantities, respectively, except for velocity where the subscript
1 has been dropped for ease of notation. In the following, the
velocity field is split into two contributions, namely the oscilla-
tion velocity (uosc) and the turbulent velocity field (u), such that
u = uosc + u. For a given mode, the fluid displacement can be
written as

δrosc =
1
2

(

A(t) ξ(r)e−iω0t + c.c.
)

, (3)

where ω0 is the eigenfrequency, ξ(r) the displacement eigen-
function in the absence of turbulence, A(t) the amplitude due
to the turbulent forcing, and c.c denotes the complex conjugate.
The power ( P ) injected into the modes is related to the mean-
squared amplitude ( 〈|A|2〉 ) by (see Paper I)

P = η〈|A|2〉I ω2
0 , (4)

where the operator 〈〉 denotes a statistical average performed on
an infinite number of independent realisations, η is the damping
rate, and I is the mode inertia.

We use the temporal WKB assumption, i.e. that A(t) is
slowly varying with respect to the oscillation period, η ≈
dlnA(t)/dt ≪ ω0 (see Paper I for details). Under this assump-
tion, using Eq. (3) with Eqs. (1) and (2) (see Paper I) yields:

dA(t)
dt
+ ηA(t) =

1

2ω2
0I

∫

d3 x ξ∗ ·
∂S

∂t
eiω0t, (5)

where d3x is the volume element and S = −( f t+∇ht+gt) the ex-
citation source terms. Temporal derivatives appearing in Eq. (5)
are

– The Reynolds stress contribution

∂ ft

∂t
= −
∂

∂t
(∇ : (ρ0uu)) , (6)

where u is the turbulent component of the velocity field.
– The entropy term

∂

∂t
∇ht = −∇

(

αs
dδst

dt
− αsu · ∇st

)

, (7)

where δst is the turbulent Lagrangian fluctuation of the en-
tropy (αs = dp1/dst ) and p1 denotes the Eulerian pressure
fluctuations.
The last term in the right hand side of Eq. (7) represents the
advection of entropy fluctuations by turbulent motion and,
as such, is a thermal driving. Note that it was shown in
Belkacem et al. (2006b) that this term is needed to reproduce
the maximum in the amplitude as a function of frequency in
the case of solar radial p modes.

– The fluctuating gravity term

∂gt

∂t
=
∂ρ1g1

∂t
, (8)

where g1 is the fluctuation of gravity due to the turbulent
field. This contribution can be shown to be negligible and
will not be considered in detail here for p modes.

Several other excitation source terms appear on the right hand
side of Eq. (1). However, as shown in Paper I, their contributions
are negligible since they are linear in terms of turbulent fluctua-
tions.1

From Eq. (5), one obtains the mean-squared amplitude

〈|A|2 (t)〉 =
e−2ηt

4(ω0I)2

∫ t

−∞

dt1dt2

×

∫

d3r1d3r2eη(t1+t2)+iω0(t1−t2)

× 〈(ξ∗(r1) · S(r1, t1)) (ξ(r2) · S∗(r2, t2))〉 , (9)

1 Linear terms are defined as the product of an equilibrium quantity
and a fluctuating one.
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where subscripts 1 and 2 denote two spatial and temporal loca-
tions. To proceed further, it is convenient to define the following
coordinates:

x0 =
r2 + r1

2
t0 =

t1 + t2

2
r = r2 − r1 τ = t2 − t1

where x0 and t0 are the average space-time position and r and τ
are related to the local turbulence.

In the following, ∇0 is the large-scale derivative associated
with x0, ∇r is the small-scale one associated with r, and the
derivative operators ∇1 and ∇2 are associated with r1 and r2,
respectively. The mean-squared amplitude can be rewritten in
terms of the new coordinates as

〈

| A |2 (t)
〉

=
1

4(ω0I)2

×

∫ t

−∞

dt0 e2η(t0−t)
∫ 2(t−t0)

2(t0−t)
dτ
∫

d3x0 d3r e−iω0τ

×

〈(

ξ∗ ·S[x0 −
r

2
, t0 −

τ

2
]
) (

ξ · S∗
[

x0 +
r

2
, t0 +

τ

2

])〉

. (10)

Subscripts 1 and 2 are the values taken at the spatial and temporal
positions [x0 −

r
2 ,−

τ
2 ] and [x0 +

r
2 ,
τ
2 ] respectively. In the excita-

tion region, the eddy lifetime is much smaller than the oscillation
lifetime (∼1/η) of p modes such that the integration over τ can
be extended to infinity. Hence all time integrations over τ are
understood to be performed over the range ] − ∞,+∞[.

We assume a stationary turbulence, therefore the source term
( S ) in Eq. (10) is invariant to translation in t0. Integration over
t0 in Eq. (10) and using the definition of S (Eq. (6), Eqs. (7) and
(8) yields

〈|A|2〉 =
1

8η(ω0I)2

(

C2
R +C2

S +CRS

)

, (11)

where C2
R and C2

S are the turbulent Reynolds stress and entropy
fluctuation contributions whose expressions are, respectively,

– the Reynolds source term:

C2
R =

∫

d3x0

∫ +∞

−∞

dτ e−iω0τ

∫

d3r

×
〈 (

ρ0 u jui ∇
j

0ξ
i
)′ (

ρ0 ulum ∇
l
0ξ
∗m
)′′〉

(12)

where a separation of scales is assumed, i.e. that the spa-
tial variation of the eigenfunctions is large compared to the
typical length scale of turbulence (see Sect. 6 for a detailed
discussion).

– the entropy contribution

C2
S =

∫

d3x0

∫ +∞

−∞

dτ e−iω0τ

∫

d3r

×
〈 (

ht ∇0 jξ
j
)

1

(

ht ∇0lξ
∗l
)

2

〉

, (13)

where CRS is the cross-source term representing interference be-
tween source terms. For p modes, CRS turn out to be negligible
because it involves third-order correlation products that are small
and strictly vanish under the QNA assumption (Belkacem et al.
2006b).

2.1. Turbulent Reynolds stress contribution

Equation (12) is first rewritten as

C2
R =

∫

d3x0

∫ +∞

−∞

dτ e−iω0τ

∫

d3r ρ2
0

×∇
j

0ξ
i
〈 (

u jui

)

1
(ulum)2

〉

∇l
0ξ
∗m. (14)

The fourth-order moment is then approximated assuming the
quasi-normal approximation (QNA, Lesieur 1997, Chap. VII-2)
as in Paper I. The QNA is a convenient means of decomposing
the fourth-order velocity correlations in terms of a product of
second-order velocity correlations; that is, one uses

〈(uiu j)(1)(ulum)(2)〉 = 〈(uiu j)(1)〉 〈(ulum)(2)〉

+〈(ui)(1)(ul)(2)〉 〈(u j)(1)(um)(2)〉

+〈(ui)(1)(um)(2)〉 〈(u j)(1)(ul)(2)〉. (15)

A better approximation is the closure model with plumes
(Belkacem et al. 2006a,b) which can be adapted to the present
formalism in order to take the presence of up and downdrafts in
the solar convection zone into account.

It is then possible to express the Fourier transform (FT ) of
the resulting second-order moments in term of the turbulent ki-
netic and entropy energy spectrum (see Paper I for details)

φi j = FT (〈uiu j〉) =
E(k, ω)
4πk2

(

δi j −
kik j

k2

)

, (16)

where E(k, ω) is the turbulent kinetic energy spectrum.
The turbulent Reynolds term Eq. (12) takes the following

general expression under the assumption of isotropic turbulence:

C2
R = π

2
∫

d3x0

(

ρ2
0 b∗i jblm

)

S
i jlm

(R) (ω0) (17)

where

S
i jlm

(R) =

∫ +∞

−∞

dω
∫

d3k
(

T i jlm + T i jml
)

×
E2(k)

k4
χk(ω0 + ω) χk(ω) (18)

T i jlm =

(

δil −
kikl

k2

) (

δ jm −
k jkm

k2

)

(19)

bi j ≡ ei · (∇0 : ξ) · e j (20)

where {ei} are the spherical coordinate unit vectors, (k, ω) are
the wavenumber and frequency associated with the turbulent
eddies and turbulent kinetic energy spectrum E(k, ω), which
is expressed as the product E(k) χk(ω) for isotropic turbulence
(Lesieur 1997). The kinetic energy spectrum E(k) is normalized
as
∫ ∞

0
dk E(k) =

1
2
Φw2 (21)

where w is an estimate for the vertical convective velocity and Φ
is a factor introduced by Gough (1977) to take anisotropy effects
into account. A detailed discussion of the temporal correlation
function (χk) is addressed in Samadi et al. (2003b).

The contribution of the Reynolds stress can thus be written
as (see Appendix A.1)

C2
R = 4π3

∫

dm ρ0 R(r) S R(ω0), (22)
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with

R(r) =
16
15

∣

∣

∣

∣

∣

dξr
dr

∣

∣

∣

∣

∣

2

+
44
15

∣

∣

∣

∣

∣

ξr

r

∣

∣

∣

∣

∣

2

+
4
5

(

ξ∗r

r

dξr
dr
+ c.c

)

+ L2

(

11
15
|ζr |

2 −
22
15

(
ξ∗r ξh

r2
+ c.c)

)

−
2
5

L2

(

dξ∗r
dr

ξh

r
+ c.c

)

+

∣

∣

∣

∣

∣

ξh

r

∣

∣

∣

∣

∣

2 (16
15

L4 +
8
5
Fℓ,|m| −

2
3

L2

)

(23)

where we have defined

L2 = ℓ(ℓ + 1) (24)

ζr ≡
dξh
dr
+

1
r

(ξr − ξh) (25)

Fℓ,|m| =
|m|(2ℓ + 1)

2

(

ℓ(ℓ + 1) − (m2 + 1)
)

(26)

S R(ω0) =
∫

dk

k2
E2(k)

∫

dω χk(ω + ω0) χk(ω). (27)

Note that in the present work, nonradial effects are taken
only into account through Eq. (23). A more complete descrip-
tion would require including anisotropic turbulence effects in
Eq. (18), but this is beyond the scope of the present paper.

2.2. Entropy fluctuations contribution

The entropy source term is computed as for the Reynolds contri-
bution in Sect. 2.1. Then Eq. (13) becomes

C2
S =

2π2

ω2
0

∫

d3x0 α
2
s hi j S

(S )
i j

(ω0) , (28)

where

S S
i j(ω0) =

∫

d3k Ti j

E(k)
k2

Es(k)
k2

∫

dωχk(ω0 + ω)χk(ω)

with

Ti j =

(

δi j −
kik j

k2

)

, (29)

where Es(k) is the entropy spectrum (see Paper I), and

hi j = |C|2 ∇i
1(ln | αs |)∇

j

2(ln | αs |)

−C∗ ∇i
1(ln | αs |)∇

j

2(C)

−C∇i
1(ln | αs |)∇

j

2(C∗) + ∇i
1(C∗)∇ j

2(C) , (30)

where C ≡ ∇. ξ is the mode compressibility.
The final expression for the contribution of entropy fluctua-

tions reduces to (see Appendix A.2)

C2
S =

4π3H

ω2
0

∫

d3x0 α
2
s (Aℓ + Bℓ) SS(ω0), (31)

whereH is the anisotropy factor introduced in Paper I which, in
the current assumption (isotropic turbulence), is equal to 4/3. In
addition,

Aℓ ≡
1
r2

∣

∣

∣

∣

∣

Dℓ
d (ln | αs |)

d ln r
−

dDℓ

d ln r

∣

∣

∣

∣

∣

2

(32)

Bℓ ≡
1
r2

L2 |Dℓ|
2 (33)

SS(ω0) ≡
∫

dk

k4
E(k) Es(k)

∫

dωχk(ω0 + ω) χk(ω) (34)

where

Dℓ(r, ℓ) ≡ Dr −
L2

r
ξh , Dr ≡

1
r2

d
dr

(

r2ξr
)

. (35)

3. The radial case

We show in this section that we recover the results of Paper I
providing that:

– we restrict ourselves to the radial case by setting ℓ = 0 (ξh =
0), and

– we assume a plane-parallel atmosphere.

In the entropy source term (C2
S), the mode compressibility for a

radial mode becomes

C = −
δρ

ρ
=

1
r2

d
(

r2 ξr
)

dr
Yℓ,m (36)

and from Eqs. (32) and (33), one then has

Aℓ=0 =
1
r2

∣

∣

∣

∣

∣

Dr

d
d ln r

ln | αs | −
dDr

d ln r

∣

∣

∣

∣

∣

2

(37)

Bℓ=0 = 0. (38)

We thus obtain (Eq. (31))

C2
S =

4π3H

ω2
0

∫

d3x0 α
2
s

×
1
r2

∣

∣

∣

∣

∣

Dr

d ln | αs |

d ln r
−

dDr

d ln r

∣

∣

∣

∣

∣

2

SS(ω0). (39)

For the Reynolds stress contribution, Eq. (22) reduces to

C2
R = 4π3

∫

d3x0 ρ
2
0

×

(

16
15

∣

∣

∣

∣

∣

dξr
dr

∣

∣

∣

∣

∣

2

+
44
15

∣

∣

∣

∣

∣

ξr

r

∣

∣

∣

∣

∣

2

+
4
5
ξ∗r

r

dξr
dr
+ c.c.

)

SR(ω0). (40)

To proceed further, we use the plane-parallel approximation. It
is justified (for p modes) by the fact that excitation takes place
in the uppermost part of the convection zone ( r/R ≈ 1 ). It is
valid when the condition r kosc ≫ 1 is fulfilled in the excitation
region (kosc being the local wavenumber), i.e. where excitation
is dominant. Consequently,
∣

∣

∣

∣

∣

dξr
dr

∣

∣

∣

∣

∣

≫

∣

∣

∣

∣

∣

ξr

r

∣

∣

∣

∣

∣

· (41)

The validity of this inequality has been numerically verified and
is discussed in Sect. 4 (Eq. (49))

With Eqs. (41), (39) and (40) simplify as

C2
S =

4π3H

ω2
0

∫

d3x0 α
2
s

×
1
r2

∣

∣

∣

∣

∣

∣

dξr
dr

d ln | αs |

d ln r
−

d
d ln r

(

dξr
dr

)
∣

∣

∣

∣

∣

∣

2

SS(ω0) (42)

C2
R =

64
15
π3
∫

d3x0 ρ
2
0

∣

∣

∣

∣

∣

dξr
dr

∣

∣

∣

∣

∣

2

SR(ω0). (43)

These are the expressions obtained by Paper I and Samadi et al.
(2005) for the radial modes in a plane-parallel geometry.
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4. Horizontal effects on the Reynolds and entropy

source terms

We derive asymptotic expressions for the excitation source terms
(Eqs. (22) and (31)) in order to identify the major nonradial con-
tributors to the excitation rates in the solar case.

4.1. The ℓ dependence of the eigenfunctions

Let us consider the equation of continuity and the transverse
component of the equation of motion for the oscillations. Let
us neglect the Lagrangian pressure variation and Eulerian gravi-
tational potential variation at r = R (the surface). The ratio of the
horizontal to the vertical displacement at the surface boundary is
then approximately given by (Unno et al. 1989, p. 105)

ξh

ξr
≃ σ−2 , (44)

where σ is the dimensionless frequency defined by

σ2 =
R3

GM
ω2 , (45)

where ω is the angular frequency of the mode, R the star radius,
and M its mass. Frequencies of solar p modes then range be-
tween σ ≈ 10 and σ ≈ 50 (ν ∈ [1, 5] mHz). Hence, for the solar
oscillations, one always has

|ξr | ≫ |ξh| . (46)

However Eqs. (23) and (35) involve coefficients depending on
the angular degree (ℓ). We then also consider the ratio

L2 ξh

ξr
≈ L2 σ−2. (47)

Equation (47) is of order of unity for ℓ ∼ σ. For example, for
a typical frequency of 3 mHz, one cannot neglect the horizontal
effect L2

∣

∣

∣

ξh
r

∣

∣

∣ in front of
∣

∣

∣

ξr
r

∣

∣

∣ for values of ℓ equal or greater than
30.

In what follows, we introduce the complex number f , which
is the degree of non-adiabaticity, defined by the relation

f =
δp/p

Γ1δρ/ρ
· (48)

Note that f = 1 for adiabatic oscillations.
Let now compare the derivatives. Under the same assump-

tions above, neglecting the term in (p/ρ)d(δp/p)/dr in the ra-
dial component of the equation of motion (standard mechanical
boundary condition), one gets, near the surface,

dξr
dr
/

(

ξr

r

)

≃ ( fΓ1)−1[σ2 + 2 + (L2/σ2 − 2)( fΓ1 − 1)]

≃ σ2/( fΓ1). (49)

Hence, we always have |∂ξr/∂r| ≫ |ξr/r| in the excitation re-
gion (except near a node of ∂ξr/∂r). Similar to Eq. (44), one can
assume

dξh
dr
/

dξr
dr
≃ σ−2 . (50)

In fact, comparing Eq. (50) with the numerically-computed
eigenfunctions shows that it holds even better than Eq. (44) in
the excitation region.

Finally, we can group the different terms of Eqs. (23) and
(31) into four sets

S 1 =

∣

∣
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dξr
dr

∣

∣

∣

∣

∣

2

≈ σ4
∣

∣

∣

∣

∣

ξr

r

∣

∣

∣
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, (51)

S 2 = L4
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∣

∣
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r
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∣

∣

∣

∣
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∣
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∣

∣

∣
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, (52)

S 3 =
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∣

∣

∣
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∣
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∣

∣

∣

∣

, L2
∣

∣

∣
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∣
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, (53)
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∣
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d|ξr |2

dr

∣

∣

∣

∣

∣

∣

, L2
∣

∣

∣

∣

∣

ξr

r

∣

∣

∣

∣

∣

∣

∣
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∣
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}

. (54)

The terms in S 4 are always negligible compared to the others. At
fixed frequency (σ) we have thus:

S 1 ≫ S 3 ≫ S 4 ≫ S 2 for ℓ ≪ σ (55)

S 1 ≫ S 3 ≫ S 4 ≈ S 2 for ℓ ≈ σ (56)

S 1 ≈ S 3 ≈ S 2 ≫ S 4 for ℓ ≈ σ2 (57)

S 2 ≫ S 3 ≫ S 1 ≫ S 4 for ℓ ≫ σ2. (58)

In conclusion, the contribution of the horizontal displacement
terms (S 2, S 3) begins to dominate the excitation for ℓ ≫ σ2.

4.2. Source terms as functions of ℓ

Reynolds stress contribution:

We start by isolating non-radial effects in the range ℓ ∈
[0; 500]. Note that the limit ℓ = 500 is justified in Sect. 6.1 by
the limit of validity for the present formalism. We investigate
two cases, ℓ ≪ σ2 and ℓ ≈ σ2 respectively. The condition for
which ℓ ≃ σ2 is satisfied for around the f mode for ℓ > 50 and
in the gap between the g1 and f mode, for ℓ < 50.

Using the set of inequalities Eqs. (55) to (58), for a typical
frequency of 3 mHz (i.e. σ ≈ 30), R(r) (Eq. 23) becomes for
high-n modes (ℓ ≪ σ2):

R(r) ≈
16
15

∣

∣

∣

∣

∣

dξr
dr

∣

∣

∣

∣

∣

2

· (59)

Hence, for high-n acoustic modes one can use Eq. (59) instead
of Eq. (23), and in terms of the excitation source term, the for-
malism reduces to the radial case for ℓ < 500 and high-n modes.

For low-n modes (ℓ ≈ σ2, i.e. for instance σ ≈ 10) some
additional dependency must be retained (see Eq. (57)). One gets

R(r) ≈
16
15

∣

∣

∣

∣

∣

dξr
dr

∣

∣

∣

∣

∣

2

+
16
15

L4
∣
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∣

∣

∣

ξh

r

∣

∣

∣

∣

∣

2

−
2
5

L2

(

dξ∗r
dr

ξh

r
+ c.c

)

+
11
15

L2 |ζr |
2 . (60)

The additional terms correspond to the non-diagonal contribu-
tions of the tensor ∇ : ξ appearing in the Reynolds stress term
C2

R because we are in the range ℓ ≈ σ2 (see Eq. (57)). The radial
and transverse components of the divergence of the displacement
nearly cancel so that δρ/ρ takes its minimum values. This is due
to the fact that they are nearly divergence-free, i.e.

∇ · ξ = Dℓ Ym
ℓ ≈

dξr
dr
− L2 ξh

r
≈ 0 . (61)
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As the divergence of the mode corresponds to the diagonal
part of the tensor ∇ : ξ, one can then expect that the excitation
rate decreases (through the terms in dξ∗r /dr × ξh/r in Eq. (60)).
However, such a decrease is compensated for by the non-radial
component of the tensor (ζ2

r in Eq. (60)). Thus, for low-n
p modes there is a balance between the effect of incompress-
ibility that tends to diminish the efficiency of the excitation and
the non-diagonal components of the tensor ∇ : ξ that tend to
increase it.

Entropy contribution:
Numerical investigation shows that the non-radial compo-

nent of the entropy source term does not affect the excitation
rates significantly except for ℓ > 1000, which is out of the va-
lidity domain of the present formalism (see Sect. 6.1). The non-
radial effects appear through the mode compressibility, L2 |Dℓ|

2

(Eq. (33)). From Eq. (57) one can show that non-radial contri-
butions play a non-negligeable role for low-n modes. However,
such low-frequency modes are not enough localised in the su-
peradiabatic zone, where the entropy source term is maximum,
to be efficiently excited by this contribution.

5. Numerical estimations for a solar model

5.1. Computation of the theoretical excitation rates

In the following, we compute the excitation rates of p modes
for a solar model. The rate (P) at which energy is injected
into a mode per unit time is calculated according to the set of
Eqs. (11)–(13). The calculation thus requires knowledge of four
different types of quantities:

1) Quantities related to the oscillation modes: the eigenfunc-
tions (ξr, ξh) and associated eigenfrequencies (ω0).

2) Quantities related to the spatial and time-averaged properties
of the medium: the density ( ρ0 ), the vertical velocity ( w̃ ),
the entropy ( s̃ ), and αs = ∂P1/∂s̃.

3) Quantities that contain information about spatial and tempo-
ral correlations of the convective fluctuations: E(k), Es(k),
and χk(ω).

4) A quantity that takes anisotropy into account: Φ measures
the anisotropy of the turbulence and is defined according to
Gough (1977) (see also Paper I for details) as:

Φ =
〈u2〉

〈w2〉
, (62)

where u2 = w2 + u2
h

and uh is the horizontal velocity.
To be consistent with the current assumption of isotropic
turbulence, we assume Φ = 3.

Eigenfrequencies and eigenfunctions (in point 1) above) were
computed using the adiabatic pulsation code OSC (Boury et al.
1975). The solar structure model used for these computations
(quantities in point 2) was obtained using the stellar evolution
code CESAM (Morel 1997) for the interior, and a Kurucz (1993)
model for the atmosphere. The interior-atmosphere match point
was chosen at log τ = 0.1 (above the convective envelope).
The pulsation computations used the full model (interior+ at-
mosphere). In the interior model, we used the OPAL opacities
(Iglesias & Rogers 1996) extended to low temperatures with
the opacities of Alexander & Ferguson (1994), and the CEFF
equation of state (Christensen-Dalsgaard & Daeppen 1992).
Convection is included according to a Böhm-Vitense mixing-
length formalism (see Samadi et al. 2006, for details), from

Fig. 1. Top: the rate (P) at which energy is supplied to each ℓ, n mode
for ℓ = 50, 100, 300 is divided by the excitation rate ( Pradial ) obtained
for the ℓ = 0, n mode. Computation of the theoretical excitation rates is
performed as explained in Sect. 5.1. Bottom: ratio P I/(P I)radial where
I is the mode inertia.

which w̃ is computed. The Φ value is set to 2 in the calculation.
This is not completely consistent as we assume isotropic turbu-
lence (i.e. Φ = 3). This does not, however, affect the conclu-
sions of the present paper, as all results on nonradial excitation
rates are normalized to the radial ones. Note also that the equi-
librium model does not include turbulent pressure. These two
limitations are of small importance here as our investigation in
this first work on nonradial modes remains essentially qualita-
tive.

Finally, for the quantities in point 3, the total kinetic energy
contained in the turbulent kinetic spectrum (E(k)) is obtained
following Samadi et al. (2006).

5.2. Excitation rates

The rate (P) at which energy is supplied to the modes is plot-
ted in Fig. 1, normalized to the radial excitation rate (Prad). It
is seen that the higher the ℓ, the more energy is supplied to
the mode. This is explained by additional contributions (com-
pared to the radial case) due to mode inertia, the spherical sym-
metry (departure from the plane-parallel assumption), and the
contribution of horizontal excitation. Note that, as discussed
in Sect. 3 (see Eq. (41)), the departure from the plane-parallel
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approximation is negligible for p modes. Then, to discuss the
other two contributions, one can rewrite Eq. (4) as

P =

(

|ξr(R)|2

8I

)

×

⎛

⎜

⎜

⎜

⎜

⎝

C2
R +C2

S

|ξr(R)|2

⎞

⎟

⎟

⎟

⎟

⎠

, (63)

where |ξr(R)| is taken at the photosphere. Note that both terms
of the product (Eq. (63)) are independent of the normalization
of the eigenfunctions. Thus, as shown by Eq. (63), the power
supplied to the modes is composed of two contributions that both
depend on ℓ. The first is due to the mode inertia, which is defined
as

I =

∫ M

0
dm |ξ|2 =

∫ R

0

(

|ξr |
2 + L2 |ξh|

2
)

r2 ρ0dr. (64)

High-ℓ modes present a lower inertia despite the L2 contribu-
tion in Eq. (64) because they are confined high in the atmosphere
where the density is lower than in deeper layers.

The second term of the product Eq. (63) depends on the non-
radial effects through the excitation source terms (Eqs. (31) and
(22)). To investigate this quantity independent of the mode mass
(defined as I/ |ξr(R)|2), we plot the ratio PI/(PI)radial in Fig. 1.
One can then discuss two types of modes, namely low-n (≤ 3)
and high-n (>3) modes (see Fig. 1).

– For high-n modes, non-radial effects play a minor role in the
excitation source terms. The dominant effect (see Fig. 1) is
due to the mode inertia as discussed above.

– For lower values of n, there is a contribution to the excitation
rates due to the horizontal terms in Eq. (22).

Thus, contrary to high-n modes, the term dξr
dr

in R(r) (Eq. (23))
is no longer dominant in front of the terms involving ξh for low-
order modes. Turbulence then supplies more energy to the low-
frequency modes due to horizontal contributions, which explains
the higher excitation rates for low-n modes as seen in Fig. 1.
We stress that there is still turbulent energy that is supplied to
the modes despite their nearly divergence-free nature. For such
modes, the non-diagonal part of the tensor∇ : ξ, which is related
to the shear of the mode, compensates for and dominates the
diagonal part, which is related to the mode compression.

5.3. Surface velocities

Another quantity of interest is the theoretical surface velocity,
which can be compared to observational data. We compute the
mean-squared surface velocity for each mode according to the
relation (Baudin et al. 2005):

v2s (ω0) =
P(ω0)

2 π ΓνM
(65)

where M ≡ I/ξ2r (h) is the mode mass, h the height above the
photosphere where oscillations are measured, Γν = η/π the mode
linewidth at half maximum (in Hz), and v2s is the mean square of
the mode surface velocity. Equation (65) involves the damping
rates (η = πΓν) inferred from observational data in the solar case
for low-ℓ modes (see Baudin et al. 2005, for details). We then
assume that the damping rates are roughly the same as for the
ℓ = 0 modes. Such an assumption is supported for low-ℓ modes
(ℓ ≈ 50) as shown by Barban et al. (2004).

Figure 2 displays the surface velocities for ℓ = 0, 20, and 50.
Note that the surface velocities are normalized to the maximum
velocity of the ℓ = 0 modes (V0 ≈ 8.5 cm s−1 using MLT). This

Fig. 2. Surface rms velocities of ℓ = 0, 20, 50 modes calculated using
Eq. (65) and normalized to the maximum velocity of the radial modes
(see text). Note that the damping rates are taken from GOLF (Baudin
et al. 2005) and are chosen to be the same for all angular degrees ( ℓ ).
Three σ error bars derived from GOLF are plotted on the ℓ = 0 curve.

choice is motivated by the dependence of the absolute values of
velocities on the convective model that is used, and it is certainly
imperfect. However, its influence disappears when considering
differential effects. As an indication, 3 σ error bars estimated
from GOLF for the ℓ = 0 modes are plotted (see Baudin et al.
2005, for details). The differences between the radial and non-
radial computations are indeed larger than the ℓ = 0 uncertainties
for ℓ > 20. For a more significant comparison, error bars for non-
radial modes should be used, but they are difficult to determine
with confidence (work in progress). For ℓ larger than 50, we do
not give surface velocities; as derived, those here depend on the
assumption of approximately constant damping rate that is not
confirmed for ℓ > 50.

When available, observational data should allow us to inves-
tigate the two regimes that have been emphasised in Sect. 5.2,
namely the high- and low-n modes.

6. Discussion

6.1. The separation of scales

The main assumption in this general formalism appears in
Eq. (11), where it has been assumed that the spatial variation of
the eigenfunctions is large compared to the typical length scale
of turbulence, leading to what we call the separation of scales. In
order to test this assumption, one must compare the oscillation
wavelength to the turbulent one or, equivalently, the wavenum-
bers. To this end, we use the dispersion relation (see Unno et al.
1989)

k2
r =
ω2

c2
s

⎛

⎜

⎜

⎜

⎜

⎝

1 −
S 2
ℓ

ω2

⎞

⎟

⎟

⎟

⎟

⎠

(

1 −
N2

ω2

)

and k2
h =

L2

r2
(66)

where N is the buoyancy frequency, S ℓ the Lamb frequency, and
kr, kh the radial and horizontal oscillation wavenumbers, respec-
tively, and L2 = ℓ(ℓ + 1).

For the turbulent wavenumber, we choose to use, as a lower
limit, the convective wavenumber kconv = 2π/Lc, where Lc is the
typical convective length scale. Thus, the assumption of separa-
tion of scales is fulfilled, provided

kr,h/kconv ≪ 1. (67)
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Fig. 3. Top: ratio of the horizontal oscillation wavenumber to the con-
vective wavenumber (kh/kconv), versus the normalized radius (r/R). kconv

is computed using the mixing length theory such that kconv = 2π/Lc (Lc

is the mixing length) and kr is computed using the dispersion relation
Eq. (66). Note that the ratio kh/kconv is computed for a frequency of
around ν = 3 mHz, depending on the angular degree ( ℓ ). Bottom: the
same as in the top but for the ratio kr/kconv.

In Fig. 3 the ratios kr/kconv and kh/kconv are plotted. Those plots
focus on the uppermost part of the solar convection zone where
most of the excitation takes place. The assumption of separation
of scale is valid for the horizontal component of the oscillation,
since one has kh/kconv ≪ 1 (for ℓ ≤ 500) in the region where ex-
citation is dominant. However, we must recall that our criterion
is based on the mixing length for computing kconv. As shown
by Samadi et al. (2003a) using 3D numerical simulations, the
convective length scale (computed using the CESAM code, see
Sect. 5.1) must be multiplied by a factor around five to repro-
duce the injection scale (Lc) in the superadiabatic layers. Hence,
for a more conservative criterion, we must then multiply the ra-
tio kh/kconv by a factor of five, which leads to a ratio near unity
for ℓ ≈ 500 (see Fig. 3). Thus, for higher values of the angular
degree, the separation-of-scale hypothesis becomes doubtful.

Concerning the radial component of the oscillation
wavenumber, the limiting value of ℓ seems to be the same (i.e.
ℓ = 500). Thus, we conclude that, for modes of angular degree
lower than 500 one can use the separation of scales assump-
tion. For ℓ > 500, the characteristic length of the mode becomes
shorter than the characteristic length Lc of the energy bearing ed-
dies. Those modes will then be excited by turbulent eddies with
a length-scale smaller than Lc, i.e. lying in the turbulent cascade.
These eddies inject less energy into the mode than the energy

bearing eddies do, since they have less kinetic energy. We can
then expect that – at fixed frequency – they received less energy
from the turbulent eddies than the low-degree modes. A theoret-
ical development is currently underway to properly treat the case
of very high ℓ modes.

6.2. The closure model

A second approximation in the present formalism is the use of
a closure model. The uppermost part of the convection zone is a
turbulent convective system composed of two flows (upward and
downward), and the probability distribution function of the fluc-
tuations of the vertical velocity and temperature does not obey a
Gaussian law (Lesieur 1997). Thus, the use of the quasi-normal
approximation (QNA, Millionshchikov 1941), which is exact for
a normal distribution, is no longer rigorously correct. A more
realistic closure model has been developed in Belkacem et al.
(2006a) and can be easily adapted for high-ℓ modes. This alter-
native approach takes the existence of two flows (the up- and
downdrafts) within the convection zone into account. However,
the QNA is nevertheless often used for the sake of simplicity
as is the case here. Note that, when using the closure model
with plumes, it is no longer consistent to assume that the third-
order velocity moments strictly vanish; however, as shown by
Belkacem et al. (2006a,b), their contribution is negligible in the
sense that their effect is weaker than the accuracy of the presently
available observational data.

6.3. Mode inertia

We have shown that the excitation rates for high-ℓ and n modes
are sensitive to the variation in the mode inertia (I). The value
of I depends on the structure of the stellar model and the proper-
ties of the eigenfunctions in these external regions. Samadi et al.
(2006) have shown that different local formulations of convec-
tion can change the mode inertia by a small amount. This sen-
sitivity then affects the computed excitation rates (P). However,
the changes induced in P are found to be smaller than the ac-
curacy to which the mode excitation rates are derived from the
current observations (see Baudin et al. 2005; Belkacem et al.
2006b). Furthermore, concerning the way the modes are ob-
tained, we have computed non-adiabatic eigenfunctions using
the time-dependent formalism of Gabriel for convection (see
Grigahcène et al. 2005). The mode inertia obtained with these
non-adiabatic eigenfunctions exhibits a ν dependency different
from those obtained using adiabatic eigenfunctions (the approx-
imation adopted in the present paper). On the other hand, the
mode inertia using non-adiabatic eigenfunctions (see Houdek
et al. 1999, for details) obtained according to Gough’s time-
dependent formalism of convection (Gough 1977) shows smaller
differences with the adiabatic mode inertia. Accordingly, the
way the interaction of oscillation and time-dependent convection
is modelled affects the eigenfunctions differently. As explained
in Sect. 5.3, the formalism developed in this paper can be an
efficient tool for deriving constraints on the mode inertia to dis-
tinguish between the different treatments of convection. Further
work is thus needed on that issue.

7. Conclusions

We extended the Samadi & Goupil (2001) formalism in order
to predict the amount of energy that is supplied to non-radial
modes. In this paper, we focused on high-ℓ acoustic modes
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with a particular emphasis on the solar case. The validity of
the present formalism is limited to values of the angular de-
gree lower than ℓ = 500, due to the separation of scale assump-
tion that is discussed above in Sect. 6.1. We have demonstrated
that non-radial effects are due to two contributions, namely the
effect of inertia that prevails for high-order modes (n > 3)
and non-radial contributions in the Reynolds source term in C2

R
(see Eq. (22)) that dominate the radial one for low-order modes
(n < 3).

Contrary to Belkacem et al. (2006b) who used 3D simula-
tions to build an equilibrium model, we restricted ourselves to
the use of a simple classical 1D MLT equilibrium model. Indeed,
we were interested in deriving qualitative conclusions on nonra-
dial contributions. Forthcoming quantitative studies will have to
use more realistic equilibrium models, particularly for the con-
vection description, such as models including turbulent pressure
(e.g. Balmforth 1992) or patched models (e.g. Rosenthal et al.
1999).

From a theoretical point of view, several improvements and
extensions of the present formalism remain to be carried out.
For instance, one must relax the assumption of the separation of
scales if one wants to model very high-ℓ modes. Such an inves-
tigation (which is currently underway) should enable us to draw
conclusions about the observational evidence that, beyond some
value of ℓ the energy supplied to the modes decreases with fre-
quency (see Woodard et al. 2001, Fig. 2). Another hypothesis
is the isotropic turbulence that has been assumed in the present
work as a first approximation. Such an assumption needs to be
given up to get a better description of the nonradial excitation of
modes by turbulent convection, which requires further theoreti-
cal developments.

The present work focuses on p modes, but the formalism is
valid for both p and g modes. We will address the analysis of
gravity modes in a forthcoming paper.

Appendix A: Detailed expressions for source terms

The eigenfunctions ( ξ ) are developed in spherical coordinates
(er, eθ, eφ) and expanded in spherical harmonics. Hence, the fluid
displacement eigenfunction for a mode with given n, ℓ,m is
written as

ξ(r) = (ξrer + ξh ∇H) Yℓ,m (A.1)

with

∇H =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

eθ
∂

∂θ

eφ
1

sin θ
∂

∂φ

(A.2)

where the spherical harmonics (Yℓ,m(θ, φ)) are normalized
according to
∫

dΩ
4π

Yℓ,m Y∗ℓ,m = 1 (A.3)

with Ω being the solid angle (dΩ = sin θ dθdφ).
The large-scale gradient ∇0 appearing in Eqs. (13) and (14) for
instance is given, in the local spherical coordinates, by

∇0 = er

∂

∂r
+

1
r
∇H . (A.4)

A.1. Contribution of the turbulent Reynolds stress

The Reynolds stress contribution can be written as (see Sect. 2.1)

C2
R = π

2
∫

d3x0

(

ρ2
0 b∗i jblm

)

∫

d3k

∫

dω

×
(

T i jlm + T i jml
) E2(k)

k4
χk(ω0 + ω) χk(ω) (A.5)

where

T i jlm =

(

δil −
kikl

k2

) (

δ jm −
k jkm

k2

)

. (A.6)

and

bi j ≡ ei · (∇0 : ξ) · e j (A.7)

where the double dot denotes the tensor product.
We now consider the covariant (ar, aθ, aφ) and the con-

travariant (ar, aθ, aφ) natural base coordinates where the eigen-
function can be expanded:

ξ = ξ̂kek = qkak k = {r, θ, φ}. (A.8)

The natural and physical coordinates are related to each other by

ei =
1
√

|gii|
ai, (A.9)

where gi j is the metric tensor in spherical coordinates (see
Table 6.5-1 in Korn & Korn 1968), i.e.,

grr = 1, gθθ = r2, gφφ = r2 sin2 θ ,

gi j = 0 for i � j. (A.10)

Equation (A.7), with the help of Eq. (A.8), can then be developed
in covariant coordinates

∇0 : ξ = ai ∂ξ

∂xi
= ai a j

(

∂q j

∂xi

)

+ ai q j

(

∂a j

∂xi

)

= ai a j

(

∂q j

∂xi

)

− q j Γ
j

pi
ai ap (A.11)

where Γ j

pi
is the Christoffel three-index symbol of the second

kind (Korn & Korn 1968). According to Eqs. (A.11) and (A.9),
bi j (Eq. (A.7)) can be written as

bi j =
1

√

|gii g j j|

(

∂q j

∂xi
− qp Γ

p

ji

)

. (A.12)

To proceed, one has to express Eq. (A.12) in terms of the phys-
ical coordinates (ξ̂k). With the help of Eqs. (A.8) and (A.9), we
relate the covariant coordinates qi to the physical (contravariant)
components ξ̂ j

q j =
gi j
√

|g j j|
ξ̂ j, (A.13)

where the component ξ̂k are derived from Eq. (A.1)

ξ̂r = ξrYℓ,m; ξ̂θ = ξh
∂Yℓ,m

∂θ
; ξ̂φ = ξh

1
sin θ

∂Yℓ,m

∂φ
· (A.14)
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Hence Eq. (A.12) becomes

brr =

(

dξr
dr

)

Yℓ,m

brθ =

(

dξh
dr

)

∂Yℓ,m

∂θ

brφ =

(

dξh
dr

)

1
sin θ

∂Yℓ,m

∂φ

bθr =
1
r

(ξr − ξh)
∂Yℓ,m

∂θ

bθθ =
ξh

r

(

∂2Yℓ,m

∂θ2

)

+
ξr

r
Yℓ,m

bθφ = bφθ =
ξh

r

∂

∂θ

[

1
sin θ

∂Yℓ,m

∂φ

]

bφr =
1
r

(ξr − ξh)
1

sin θ

∂Yℓ,m

∂φ

bφφ =
ξr

r
Yℓ,m +

ξh

r

[

1

sin2 θ

(

∂2Yℓ,m

∂φ2

)

+
cos θ
sin θ

(

∂Yℓ,m

∂θ

)]

·

(A.15)

The contribution of the Reynolds stress can thus be written as

C2
R = 4π3

∫

dm

∫

dk

∫

dω R(r, k)

×
E2(k)

k2
χk(ω + ω0)χk(ω) , (A.16)

where we have defined dm = 4πr2ρ0dr, and

R(r, k) ≡
∫

dΩ
4π

∫

dΩk

4π
b∗i j blm

(

T i jlm + T i jml
)

. (A.17)

Because T i jlm = T jiml, it is easy to show that

R(r, k) ≡
∫

dΩ
4π

∫

dΩk

4π
B∗i j Blm

(

T i jlm + T i jml
)

where Bi j ≡ (1/2)(bi j + b ji).
Using the expression Eq. (A.6) for T i jlm, we write

R(r, k) ≡ R1 − R2 + R3 (A.18)

where

R1 = 2
∫

dΩ
4π

∫

dΩk

4π

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∑

i, j

B∗i jBi j

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

R2 = 4
∫

dΩ
4π

∫

dΩk

4π

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∑

i, j

B∗i jBil

k jkl

k2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

R3 = 2
∫

dΩ
4π

∫

dΩk

4π

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∑

i, j

B∗i jBlm

kik jklkm

k4

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (A.19)

We assume isotropic turbulence, hence the k components satisfy
∫

dΩk

kik j

k2
= δi j

∫

dΩk

k2
r

k2

with δi j as the Kronecker symbol for i, j = r, θ, φ. Then we obtain

R1 = 2
∫

dΩ
4π

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∑

i, j

|Bi j|
2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

R2 = 4
∫

dΩ
4π

∫

dΩk

4π
k2

r

k2
(
∑

i, j

|Bi j|
2) = 2α R1

R3 = 2β
∫

dΩ
4π

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∑

i, j

|Bi j|
2 +
∑

i� j

(B∗iiB j j + cc)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= β R1 + 2 β

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∫

dΩ
4π

∑

i� j

(

B∗iiB j j + c.c
)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (A.20)

where we have set

α ≡

∫

dΩk

4π
k2

r

k2
; β ≡

∫

dΩk

4π
k4

r

k4
· (A.21)

To compute R1,R2, and R3, we write

Brr = brr; Bθθ = bθθ; Bφφ = bφφ

Brθ =
1
2
ζr
∂Yℓ,m

∂θ

Brφ =
1
2
ζr

1
sin θ

∂Yℓ,m

∂φ
(A.22)

Bθφ = bθφ = bφθ

with

ζr =
dξh
dr
+

1
r

(ξr − ξh) . (A.23)

Using the expression Eq. (A.22) for the quantities Bi j, we obtain,
after some manipulation,

R1 = 2
∣

∣

∣

∣

∣

dξr
dr

∣

∣

∣

∣

∣

2

+ 4
∣

∣

∣

∣

∣

ξr

r

∣

∣

∣

∣

∣

2

+ 2L2(L2 − 1)
∣

∣

∣

∣

∣

ξh

r

∣

∣

∣

∣

∣

2

+L2

(

|ζr |
2 − 2(

ξ∗rξh

r2
+ c.c)

)

. (A.24)

For R3, some lengthy manipulation leads to:

R3/β = 2
∣

∣

∣

∣

∣

dξr
dr

∣

∣

∣

∣

∣

2

+ 8
∣

∣

∣

∣

∣

ξr

r

∣

∣

∣

∣

∣

2

+ 2
(

L4 + 4Fℓ,|m|
)

∣

∣

∣

∣

∣

ξh

r

∣

∣

∣

∣

∣

2

+L2

(

2 |ζr |2 − 2(
dξ∗r
dr

ξh

r
+ 2
ξ∗rξh

r2
+ c.c)

)

+4(
ξ∗r

r

dξr
dr
+ c.c) (A.25)

where we have defined

Fℓ,|m| =
(2ℓ + 1)

2
(A.26)

×
(

(|m| + 1)A2
ℓ,|m| + (|m| − 1)B2

ℓ,|m|

)

A2
ℓ,m =

1
4

(ℓ(ℓ + 1) − m(m + 1)) (A.27)

B2
ℓ,m =

1
4

(ℓ(ℓ + 1) − m(m − 1)) . (A.28)

To derive R1,R2, and R3, the following relations have been used

∂2Yℓ,m

∂θ2
+

cos θ
sin θ

∂Yℓ,m

∂θ
+

1

sin2 θ

∂2Yℓ,m

∂φ2
= −L2Yℓ,m (A.29)

−m
cos θ
sinθ

Yℓ,m = Aℓ,mYℓ,m+1e−iφ + Bℓ,mYℓ,m−1eiφ (A.30)

∂Yℓ,m

∂θ
= Aℓ,mYℓ,m+1e−iφ − Bℓ,mYℓ,m−1eiφ (A.31)
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∫

dΩ
4π

(

∇HY∗ℓ,m · ∇HYℓ,m
)

= L2 (A.32)

−

∫

dΩ
4π

(

∇2
HY∗ℓ,m

)

Yℓ,m = L2 (A.33)

∫

dΩ
4π

∣

∣

∣

∣

∣

∣

∂θ

(

1
sinθ

∂Yℓ,m

∂φ

)
∣

∣

∣

∣

∣

∣

2

= Fℓ,|m| . (A.34)

Combining Eqs. (A.24), (A.20), (A.20), and (A.18), with α =
1/3, β = 1/5 (isotropic turbulence, see Paper I for details), yields

R(r) =
16
15

∣

∣

∣

∣

∣

dξr
dr

∣

∣

∣

∣

∣

2

+
44
15

∣

∣

∣

∣

∣

ξr

r

∣

∣

∣

∣

∣

2

+
4
5

1
r

d|ξr |2

dr

+ L2

(

11
15
|ζr |

2 −
22
15

(
ξ∗r ξh

r2
+ c.c)

)

−
2
5

L2

(

dξ∗r
dr

ξh

r
+ c.c

)

+

∣

∣

∣

∣

∣

ξh

r

∣

∣

∣

∣

∣

2 (16
15

L4 +
8
5
Fℓ,m −

2
3

L2

)

. (A.35)

For radial modes, this reduces to

R(r) =
16
15

∣

∣

∣

∣

∣

dξr
dr

∣

∣

∣

∣

∣

2

+
44
15

∣

∣

∣

∣

∣

ξr

r

∣

∣

∣

∣

∣

2

+
4
5

d |ξr |2

dr
· (A.36)

The final expression for the Reynolds source term is then given
by

C2
R = 4π3

∫

dm R(r) S R(ω0) , (A.37)

with

S R(ω0) =
∫

dk

k2
E2(k)

∫

dω χk(ω + ω0)χk(ω) (A.38)

and R(r) by Eq. (A.35).

A.2. Contribution of entropy fluctuations

We start from Eq. (28), and to proceed further in the derivation
of the entropy fluctuation source term, one has to compute
∫

dΩk hi j Ti j . (A.39)

Then, ξ and k are expanded in spherical coorindates (ar, aθ, aφ).
We assume an isotropic turbulence; as a consequence, the quan-
tities kr kθ, krkφ, kθkφ vanish when integrated over Ωk. One next
obtains
∫

dΩk hi j Ti j = 2πH
(

hrr + hθθ + hφφ
)

(A.40)

where H is the anisotropy factor introduced in Paper I, which
in the current assumption (isotropic turbulence) is equal to 4/3.
Assuming that αs = αs(r), we have, according to Eq. (A.4),

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

hrr =

∣

∣

∣

∣

∣

C
d ln | αs |

dr
−
∂C

∂r

∣

∣

∣

∣

∣

2

hθθ =
1
r2

∣

∣

∣

∣

∣

∂C

∂θ

∣

∣

∣

∣

∣

2

hφφ =
1

r2 sin2 θ

∣

∣

∣

∣

∣

∂C

∂φ

∣

∣

∣

∣

∣

2

·

(A.41)

To proceed, it is necessary to express the divergence of the eigen-
function

C ≡ ∇0 · ξ = Dℓ Ym
ℓ (A.42)

with

Dℓ(r, ℓ) ≡ Dr −
L2

r
ξh ; Dr ≡

1
r2

∂

∂r

(

r2ξr
)

, (A.43)

where again L2 = ℓ(ℓ + 1).
We next integrate Eq. (28) over dΩ/4π, the solid angle associ-
ated with the eigenfunctions ξ. One obtains, with the help of
Eq. (A.42) and according to Eq. (A.41),
∫

dΩ
4π

∫

dΩk hi j Ti j =

2πH
r2

(

L2 |Dℓ|
2 +

∣

∣

∣

∣

∣

Dℓ
d ln | αs |

d ln r
−

dDℓ

d ln r

∣

∣

∣

∣

∣

2)

· (A.44)

The final expression for the contribution of entropy fluctuations
reduces to

C2
S =

4π3H

ω2
0

∫

d3x0 α
2
s (Aℓ + Bℓ) SS(ω0), (A.45)

where H is the anisotropy factor introduced in Paper I that in
the current assumption (isotropic turbulence) is equal to 4/3. In
addition,

Aℓ ≡
1
r2

∣

∣

∣

∣

∣

Dℓ
d (ln | αs |)

d ln r
−

dDℓ

d ln r

∣

∣

∣

∣

∣

2

(A.46)

Bℓ ≡
1
r2

L2 |Dℓ|
2 (A.47)

SS(ω0) ≡
∫

dk

k4
E(k) Es(k)

×

∫

dωχk(ω0 + ω) χk(ω) . (A.48)
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ABSTRACT

Context. Detection of solar gravity modes remains a major challenge to our understanding of the inner parts of the Sun. Their fre-
quencies would enable the derivation of constraints on the core physical properties, while their amplitudes can put severe constraints
on the properties of the inner convective region.
Aims. Our purpose is to determine accurate theoretical amplitudes of solar g modes and estimate the SOHO observation duration for
an unambiguous detection of individual modes. We also explain differences in theoretical amplitudes derived from previous works.
Methods. We investigate the stochastic excitation of modes by turbulent convection, as well as their damping. Input from a 3D global
simulation of the solar convective zone is used for the kinetic turbulent energy spectrum. Damping is computed using a parametric
description of the nonlocal, time-dependent, convection-pulsation interaction. We then provide a theoretical estimation of the intrinsic,
as well as apparent, surface velocity.
Results. Asymptotic g-mode velocity amplitudes are found to be orders of magnitude higher than previous works. Using a 3D numer-
ical simulation from the ASH code, we attribute this to the temporal-correlation between the modes and the turbulent eddies, which
is found to follow a Lorentzian law rather than a Gaussian one, as previously used. We also find that damping rates of asymptotic
gravity modes are dominated by radiative losses, with a typical life time of 3 × 105 years for the ℓ = 1 mode at ν = 60 µHz. The
maximum velocity in the considered frequency range (10−100 µHz) is obtained for the ℓ = 1 mode at ν = 60 µHz and for the ℓ = 2
at ν = 100 µHz. Due to uncertainties in the modeling, amplitudes at maximum i.e. for ℓ = 1 at 60 µHz can range from 3 to 6 mm s−1.
The upper limit is too high, as g modes would have been easily detected with SOHO, the GOLF instrument, and this sets an upper
constraint mainly on the convective velocity in the Sun.

Key words. convection – turbulence – Sun: oscillations

1. Introduction

The pioneer works of Ulrich (1970) and Leibacher & Stein
(1971) led to the identification of the solar five-minutes os-
cillations as global acoustic standing waves (p modes). Since
then, successful works have determined the Sun internal struc-
ture from the knowledge of its oscillation frequencies (e.g.,
Christensen-Dalsgaard 2004). However, p modes are not well-
suited to probing the deepest inner part of the Sun. On the other
hand, g modes are mainly trapped in the radiative region and are
thus able to provide information on the properties of the central
part of the Sun (r < 0.3 R⊙) (e.g., Turck-Chièze et al. 2001;
Christensen-Dalsgaard 2006). As g modes are evanescent in the
convective region, their amplitudes are expected to be very low
at the photosphere and above, where observations are made, their
detection is thus quite a challenge for more than 30 years.

The first claims of detection of solar gravity modes began
with the work of Severnyi et al. (1976) and Brookes et al. (1976).
Even after more than ten years of observations from SOHO,
there is still no consensus about detection of solar g modes.
Most of the observational efforts have been focused on low-order
gmodes motivated by a low the granulation noise (Appourchaux
et al. 2006; Elsworth et al. 2006) and by previous theoretical

estimates of g-mode amplitudes (e.g., Turck-Chièze et al. 2004;
Kumar et al. 1996). Recently, García et al. (2007) have investi-
gated the low-frequency domain, with the hope of detecting high
radial-order g modes. The method looked for regularities in the
power spectrum, and the authors claim to detect a periodicity in
accordance with what is expected from simulated power spectra.
The work of García et al. (2007) present the advantage of ex-
ploring a different frequency domain (ν ∈ [25; 140] µHz) more
favorable to a reliable theoretical estimation of the g-mode am-
plitudes, as we will explain later on.

Amplitudes of g modes, as p modes, are believed to result
from a balance between driving and damping processes in the
solar convection zone. Two major processes have been identi-
fied as stochastically driving the resonant modes in the stellar
cavity. The first is related to the Reynolds stress tensor, the sec-
ond is caused by the advection of turbulent fluctuations of en-
tropy by turbulent motions. Theoretical estimations based on
stochastic excitation have been previously obtained by Gough
(1985) and Kumar et al. (1996). Gough (1985) made an order of
magnitude estimate based on an assumption of equipartition of
energy as proposed by Goldreich & Keeley (1977b). He found
a maximum velocity around 0.5 mm s−1 for an ℓ = 1 mode at
ν ≈ 100 µHz. Kumar et al. (1996) used a different approach
based on the Goldreich et al. (1994) modeling of stochastic
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excitation by turbulent convection, as well as an estimating of the
damping rates (Goldreich & Kumar 1991) that led to a surface
velocity near 0.01 mm s−1 for the ℓ = 1 mode at ν ≈ 100 µHz.
The results differ from each other by orders of magnitude, as
pointed out by Christensen-Dalsgaard (2002b). Such differences
remain to be understood. One purpose of the present work is
to carry out a comprehensive study of both the excitation and
damping rates of asymptotic gmodes. Our second goal is to pro-
vide theoretical oscillation mode velocities, as reliably as possi-
ble. Note, however, that penetrative convection is another possi-
ble excitation mechanism (Andersen 1996; Dintrans et al. 2005),
but it is beyond the scope of this paper.

Damping rates are computed using the Grigahcène et al.
(2005) formalism that is based on a non-local time-dependent
treatment of convection. We will show that, contrary to p modes
and high frequency g modes, asymptotic g-mode (i.e. low fre-
quency) damping rates are insensitive to the treatment of con-
vection. This then removes most of the uncertainties in the es-
timated theoretical oscillation mode velocities. Consequently,
we restrict our investigation to low-frequency gravity modes.
Stochastic excitation is modeled in the same way as in Belkacem
et al. (2008), which is a generalization to non-radial modes of the
formalism developed by Samadi & Goupil (2001) and Samadi
et al. (2003b,a), for radial modes. As in the case of p-modes,
the excitation formalism requires knowing the turbulent proper-
ties of the convection zone, but unlike p modes, the excitation
of gravity modes is not concentrated towards the uppermost sur-
face layers. One must then have some notion about the turbulent
properties across the whole convection zone. Those properties
will be inferred from a 3D numerical simulation provided by the
ASH code (Miesch et al. 2008).

The paper is organized as follows. Section 2 briefly recalls
our model for the excitation by turbulent convection and de-
scribes the input from a 3D numerical simulation. Section 3
explains how the damping rates are computed. Section 4 gives
our theoretical results on the surface velocities of asymptotic
g modes and compares them with those from previous works.
Section 5 provides the apparent surface velocities, which take
disk integrated effects and line formation height into account.
These quantities can be directly compared with observations. We
then discuss our ability to detect these modes using data from
the GOLF instrument onboard SOHO as a function of the ob-
serving duration. The discussion is based on estimations of de-
tection threshold and numerical simulations of power spectra.
In Sect. 6, uncertainties on the estimated theoretical and appar-
ent velocities, due to the main uncertainties in our modeling, are
discussed. Finally, conclusions are provided in Sect. 7.

2. Excitation by turbulent convection

The formalism we used to compute excitation rates of non-radial
modes was developed by Belkacem et al. (2008) who extended
the work of Samadi & Goupil (2001) developed for radial modes
to non-radial modes. It takes the two sources into account that
drive the resonant modes of the stellar cavity. The first is related
to the Reynolds stress tensor and the second one is caused by the
advection of the turbulent fluctuations of entropy by the turbu-
lent motions (the “entropy source term”). Unlike for p modes,
the entropy source term is negligible for g modes. We numer-
ically verified that it is two to four orders of magnitude lower
than the Reynolds stress contribution depending on frequency.
This is explained by the entropy contribution being sensitive
to second-order derivatives of the displacement eigenfunctions
in the superadiabatic region where entropy fluctuations are

localized. As the gravity modes are evanescent in the convec-
tion zone, the second derivatives of displacement eigenfunctions
are negligible and so is the entropy contribution.

The excitation rate, P, then arises from the Reynolds stresses
and can be written as (see Eq. (21) of Belkacem et al. 2008)

P =
π3

2I

∫ M

0
dm ρ0 R(r)

∫ +∞

0
dk Sk (1)

Sk =
1
k2

∫ +∞

−∞
dω E2(k) χk(ω + ω0) χk(ω) (2)

where m is the local mass, ρ0 the mean density, ω0 the mode an-
gular frequency, I the mode inertia, Sk the source function, E(k)
the spatial kinetic energy spectrum, χk the eddy-time correlation
function, and k the wavenumber. The term R(r) depends on the
eigenfunction, its expression is given in Eq. (23) of Belkacem
et al. (2008), i.e.
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where we have defined

L2 = ℓ(ℓ + 1) (4)

ζr ≡
dξh
dr
+

1
r

(ξr − ξh) (5)

Fℓ,|m| =
|m|(2ℓ + 1)

2

(

L2 − (m2 + 1)
)

, (6)

and ξr, ξh are the radial and horizontal components of the fluid
displacement eigenfunction (ξ), and ℓ,m represent the degree
and azimuthal number of the associated spherical harmonics.

2.1. Numerical computation of theoretical excitation rates

In the following, we compute the excitation rates of g modes
for a solar model. The rate (P) at which energy is injected
into a mode per unit time is calculated according to Eq. (1).
Eigenfrequencies and eigenfunctions are computed using the
adiabatic pulsation code OSC (Boury et al. 1975). The solar
structure model used for these computations is obtained with
the stellar evolution code CESAM (Morel 1997) for the interior
and a Kurucz (1993) model for the atmosphere. The interior-
atmosphere matching point is chosen at log τ = 0.1 (above the
convective envelope). The pulsation computations use the full
model (interior+atmosphere). In the interior model, we used the
OPAL opacities (Iglesias & Rogers 1996) extended to low tem-
peratures with the opacities of Alexander & Ferguson (1994) and
the CEFF equation of state (Christensen-Dalsgaard & Däppen
1992). Convection is included according to a Böhm-Vitense
mixing-length (MLT) formalism (see Samadi et al. 2006, for de-
tails), from which the convective velocity is computed. Turbulent
pressure is not included (but see discussion in Sect. 6).

Apart from the eigenfunctions and the density stratification,
Eq. (1) involves both the convective velocity and the turbulent
kinetic energy spectrum. To get some insight into the turbu-
lent properties of the inner part of the solar convection zone,
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Fig. 1. Luminosity flux contributions versus radius, averaged over hor-
izontal surfaces and in time. The solid line corresponds to the enthalpy
luminosity (Le), the short dashed-line to the radiative luminosity (Lr),
the dotted-dashed line to the kinetic energy luminosity (Lkin), the long-
dashed line to the total luminosity (Ltot), and the dot-dashed line corre-
spond to the unresolved eddy luminosity (Led) (Brun et al. 2004). We
particularly emphasize the negative kinetic-energy flux that results in a
larger convective flux (see text for details).

we chose to use results from (ASH) 3D numerical simulations.
Such a choice was motivated by the uncertainties inherent in the
treatment of turbulence by the MLT. The MLT indeed only gives
us an estimation of the convective flux but is not able to assess
the contributions of all scales involved in turbulent convection.
Thus, in the following, the rms convective velocity is taken from
the mixing-length theory, while both the spatial and temporal
turbulent properties are inferred from the 3D simulation. Then,
velocity from the numerical simulation is not used in our calcu-
lation. This choice is motivated by the rigid boundary condition
at the top of the simulation that results in an unrealistic decrease
in the vertical velocity for r > 0.93 R⊙.

2.2. The 3D convection simulation

One way of assessing the dynamical properties of the deep solar
turbulent convection zone is to exploit a high resolution numeri-
cal simulation such as those performed with the anelastic spheri-
cal harmonic (ASH) code (Miesch et al. 2008; Brun et al. 2004).
The simulation of global scale turbulent convection used in the
present work is discussed in detail in Miesch et al. (2008). The
ASH code solves the hydrodynamic anelastic equations within
a spherical shell extending from r = 0.71 up to r = 0.98 R⊙,
yielding an overall radial density contrast of 132. Solar values
were assumed for the rotation rate and the imposed luminosity.
Figure 1 represents the energy flux balance (converted to lumi-
nosity and normalized to the solar luminosity) in the simulation.
We clearly see how dominant, and overluminous, the convective
(enthalpy) flux is in carrying the heat outward. This is mostly
due to the strong density contrast and to the corresponding strong
asymmetry between up- and downflows yielding a large inward
kinetic energy flux (see Miesch et al. 2008, for more details).
We have seen above that, in order to compute the excitation rate
of the waves, one needs some well-defined physical quantities,
such as the kinetic energy spectrum (Ek) and the eddy time func-
tion (χk). It is straightforward to deduce these quantities from
the 3D simulation as explained in Appendix B. We then directly
use Ek in Eq. (2) to compute the source function, whereas for
χk we perform a fit of the 3D results with a simple analytical

Fig. 2. E(kh) computed as explained in Appendix B, for three shell radii
that sample the convection zone, as a function of the local horizontal
wave number kh.

expression. In the ASH code, the set of anelastic equations is
projected onto spherical harmonics for the horizontal dimen-
sions. This implies that the kinetic energy spectrum is obtained
as a function of the spherical degree l. The local wavenumber kh
is obtained via the simple expression kh =

√
l(l + 1)/r, with r

the shell radius.

2.2.1. Kinetic energy spectrum and time-correlation function

The kinetic energy spectrum of the total velocity (i.e. the hor-
izontal and vertical components), E(kh), is plotted in the top
panel of Fig. 2 as a function of the local horizontal wave num-
ber kh. The rms convective velocity (u) increases with r, thus
explaining that the deeper the layers, the smaller E(k) since
∫

dk E(k) = 1/2 u2. In terms of excitation rates, an important
issue is the scale at which the spectrum peaks. As pointed out
by Miesch et al. (2008), the scale at which the kinetic energy
spectrum is maximum is the scale between the downwflows. It
is about 58 Mm at the top of the simulation (r = 0.98 R⊙) up to
300 Mm at the bottom. This is quite different from what is found
in the uppermost layers in 3D numerical simulations of the Sun
(e.g., Stein & Nordlund 1998), in which the maximum of E(k)
is found on a scale around 1 Mm. Such a difference is explained
by the density that strongly decreases in the upper layers.

The time-correlation function (χk) also plays an impor-
tant role. Usually, a Gaussian time-correlation function is used
(Goldreich et al. 1994; Chaplin et al. 2005). Samadi et al.
(2003a) demonstrate that χk is reproduced better by a Lorentzian
function. They argue that the departure from a Gaussian func-
tion can be explained by the presence of plumes in the upper-
most part of the convection zone. This result, obtained with
3D numerical simulations, was then confirmed by confronting
solar-p modes excitation rates, computed with Gaussian and
Lorentzian functions, with the observational data. It turns out
that the Lorentzian function greatly improves the agreement be-
tween models and observations. However, the time-correlation
function is unknown at deeper layers. The eddy-time correlation
function derived from the 3D numerical simulation provided by
the ASH code is therefore compared to Gaussian and Lorentzian
functions that are respectively defined as

χk(ω) =
1

ωk

√
π

e−(ω/ωk)2
(7)

χk(ω) =
1

πωk/2
1

1 + (2ω/ωk)2
(8)
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Fig. 3. Top: crosses represent χk(ω) obtained from the 3D simulation at
the wave number k0 that corresponds to the maximum of E(k), and at
the radius r/R⊙ = 0.89. Data are obtained with a time series of dura-
tion ≈45.83 days with a sampling time of 4×104 s. Analytical functions
are normalized so that their integrals are equal to unity. Bottom: the
same as the upper panel except that data are obtained with a time series
of duration ∼4.68 days with a sampling time of 800 s. The theoretical
curves are normalized so that their integrals over frequency equal that
of the simulated data.

with the condition
∫ +∞

−∞
χk(ω)dω = 1 (9)

where ωk is its linewidth, defined as

ωk ≡
2 k uk

λ
· (10)

where λ is a parameter as in Balmforth (1992), the velocity uk

of the eddy with wavenumber k is related to the kinetic energy
spectrum E(kh) by (Stein 1967)

u2
k =

∫ 2k

k

dk E(k). (11)

Figure 3 presents the comparison between analytical
time-correlation functions, computed following the set of
Eqs. (7)−(11), and χk computed from the 3D numerical sim-
ulation. The latter is calculated as described in Appendix B.
The Lorentzian function represents the eddy-time correlation
function better than a Gaussian function in the frequency range
we are interested in (ν ∈ [20 µHz; 110 µHz]).

The best fit is found using a sum of a Lorentzian function
with λ = 3 and a Gaussian with λ = 1/3 as shown in the top

Fig. 4. The source function is plotted versus the spherical angular de-
gree (l), and the frequency for two radii: r = 0.95 R⊙ (top panel) and
r = 0.74 R⊙ (bottom panel). Bright (red) and dark (blue) tones indicate
the high and low intensity of the source function, respectively. The color
table is logarithmic. The black line corresponds to an arbitrary contour
line that is the same for both panels.

panel of Fig. 3. In the frequency range we are interested in, i.e.
at frequencies corresponding to the gravity modes (bottom panel
of Fig. 3) the fit reproduces the time-correlation given by the
3D numerical simulation. We also clearly see that the eddy-time
correlation function is very poorly represented by a Gaussian
function, which only reproduces very low frequencies that do
not significantly contribute to the excitation, then it fails and un-
derestimates χk by many order of magnitudes (see Sect. 4.2.2).

The results presented in Fig. 3 are for the depth r ≈ 0.8 R⊙,
where excitation is dominant, and for an angular degree cor-
responding to the maximum of the kinetic energy spectrum
(ℓ = 40), whose contribution is dominant in the excitation rates.
Those results do not depend on the shell considered but instead
on the wavenumber. For very high angular degree (ℓ > 300) we
find that χk becomes more and more Gaussian. Nevertheless, as
shown by Fig. 2, those contributions are negligible compared to
large-scale ones.

The value of the parameter λ is also of interest. Contrary
to the upperlayers where λ = 1 (Samadi et al. 2003b), we find
a higher value, λ = 3, that accords with the result of Samadi
et al. (2003b) who find that the deeper the layers, the higher this
parameter.

2.2.2. The source function

Figure 4 displays the source function (Sk, Eq. (1)) as a func-
tion of both the angular degree l involved in the summation
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Fig. 5. Rate (P) at which energy is supplied to the modes versus the
frequency for modes with angular degree ℓ = 1, 2, and 3. The computa-
tion is performed as detailed in Sect. 2.1, using a Lorentzian eddy-time
correlation function.

Eq. (B.1) and the mode frequency. The function Sk evaluated
at two levels, r = 0.95 R⊙ and r = 0.74 R⊙, is shown in or-
der to emphasize the dependence of Sk with the radius. Near
the top of the convection zone, Sk is non-negligible at high fre-
quencies (ν > 50 µHz) and on small scales. From top to bottom,
the intensity of the source function decreases such that at the
bottom, significant intensities exist only on large scales (small
l values) and low frequencies. This behavior corresponds to the
evolution of convective elements, i.e. turbulent eddies evolve on
larger time and spatial scales with depth. Thus, we conclude that
high-frequency g modes are mainly excited in the upper layers,
whereas low ones are excited deeper; however, the net excitation
rate, Eq. (1), is a balance between the eigenfunction shape and
the source function.

2.3. Excitation rates

Anticipating the following (see Sect. 3), we stress that modes
with high angular degree will be highly damped, making their
amplitudes very small; hence, we restrict our investigation to
low-ℓ degrees (ℓ < 4). In Fig. 5, we present the excitation rates
for low-frequency gravity modes (i.e., ℓ = 1, 2, 3). By asymp-
totic modes we denote low-frequency modes (ν < 100 µHz, i.e.
high-|n| modes) while high frequencies (ν > 100 µHz) corre-
spond to low-|n| modes. At low frequencies (ν < 100 µHz), the
excitation rate (P) decreases with increasing ν, it reaches a min-
imum and then at high frequency increases with the frequency.
This can be explained by considering the two major contribu-
tions to the excitation rate P (Eqs. (1) and (3)) which are the
inertia I (in Eq. (1)) and mode compressibility (∇ · ξ, appearing
in R(r), Eq. (3)).

Mode inertia decreases with frequency as shown by Fig. 6
since the higher the frequency, the higher up the mode is con-
fined in the upper layers. This then tends to decrease the effi-
ciency of the excitation of low-frequency modes. On the other
hand, mode compressibility (Fig. 6) increases with frequency
and consequently competes and dominates the effect of mode
inertia. Mode compressibility can be estimated as
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Fig. 6. Top: absolute value of mode compressibility for ℓ = 1 modes ver-
sus the frequency, computed for three different layers in the convection
zone. Bottom: mode inertia versus frequency for modes with angular
degree ℓ = 1, 2, 3.

The mode compressibility is minimum when both terms in
Eq. (12) are of the same order. Following Belkacem et al. (2008),
one has
∣
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with σ2 =

R3

GM
ω2

0 (13)

where σ is the dimensionless frequency, ω0 is the angular fre-
quency of the mode, R the Sun radius, and M its mass. According
to Eq. (13), mode compressibility is minimum for ν ≈ 100 µHz
depending on ℓ, as shown by Fig. 6. In contrast, in the asymp-
totic regime (ν < 100 µHz), the modes are compressible and this
compressibility increases with decreasing frequency.

It is important to stress that for the asymptotic g modes, in
the frequency range [20; 110] µHz, the horizontal contributions
in Eq. (3) are dominant. For low-ℓ g modes, the dominant con-
tributions come, in Eq. (3), from the component of the mode
divergence (see Eq. (12)). Then the ratio of the horizontal to the
vertical contributions to Eq. (1) is around a factor five, imposing
the use of a non-radial formalism.

3. Damping rates

To compute theoretical (surface velocities) amplitudes of
g modes, knowledge of the damping rates is required.

3.1. Physical input

Damping rates have been computed with the non-adiabatic
pulsation code MAD (Dupret 2002). This code includes a
time-dependent convection (TDC) treatment described in
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Grigahcène et al. (2005): it takes into account the role played
by the variations of the convective flux, the turbulent pressure,
and the dissipation rate of turbulent kinetic energy. This TDC
treatment is non-local, with three free parameters a, b, and c
corresponding to the non-locality of the convective flux, the tur-
bulent pressure and the entropy gradient. We take here the val-
ues a = 10, b = 3, and c = 3.5 obtained by fitting the con-
vective flux and turbulent pressure of 3D hydrodynamic simula-
tions in the upper overshooting region of the Sun (Dupret et al.
2006c). According to Grigahcène et al. (2005), we introduced
a free complex parameter β in the perturbation of the energy
closure equation. This parameter is introduced to prevent non-
physical spatial oscillation of the eigenfunctions. We use here
the value β = −0.5i, which leads to a good agreement between
the theoretical and observed damping rates and phase lags in the
range of solar pressure modes (Dupret et al. 2006a). The sensi-
tivity of the damping rates to β is discussed in Sect. 3.2.1, and we
show in next sections that the values of those parameters have no
influence on the results since we are interested in low-frequency
g modes.

We use the TDC treatment as described in Dupret et al.
(2006b), in which the 1D model reproduces exactly the mean
convective flux, the turbulent pressure and the mean superadi-
abatic gradient obtained from a 3D hydrodynamic simulation
by Stein & Nordlund (1998), by introducing two fitting param-
eters, the mixing-length, and a closure parameter (see Dupret
et al. 2006b, for details). We also stress that, for low-frequency
g modes, particular attention is to be paid to the solution of the
energy equation near the center as explained in Appendix A for
the ℓ = 1 modes since those dipolar modes present a peculiar
behavior near the center that must be properly treated.

3.2. Numerical results for a solar model

3.2.1. Sensibility to the time-dependent treatment
of convection

To understand the contribution of each layer of the Sun in the
damping of the g modes, we give the normalized work integral
in Fig. 7 in such a way that the surface value is the damping rate η
(in µHz)1. Results obtained with our TDC treatment (solid lines)
and with frozen convection (FC, dashed line) are compared for
4 different modes with ν ≃ 60 µHz (top panel) and ν ≃ 20 µHz
(bottom panel). We see that most of the damping occurs in the
inner part of the radiative core. The work integrals obtained with
TDC and FC treatments are not very different; hence, the un-
certainties inherent in the treatment of the coherent interaction
between convection and oscillations do not significantly affect
the theoretical damping rates of solar asymptotic g modes. This
means that the frozen convection is adapted to low-frequency
g modes. This can be explained by paying attention to the ratio
Q = ω0/ωc, where ω0 is the oscillation frequency and ωc the
convective frequency, defined to be ωc = 2πΛ/umlt where Λ is
the mixing length and umlt the convective velocity. In the whole
solar convective zone Q is higher than unity except near the sur-
face (the superadiabatic region). However contributions of the
surface layer remain small in comparison with the radiative ones
for asymptotic g modes (see Fig. 7).

One can thus draw some conclusions:

– for high-frequency g modes (ν > 110 µHz), the work in-
tegrals and thus the damping rates are sensitive to the

1 Note that, regions where the work decreases outwards have a damp-
ing effect on the mode, or a driving effect when it increases outwards.

Fig. 7. Work integrals for ℓ = 1 and ℓ = 2 modes at ν ≃ 60 µHz
(top panel) and ν ≃ 20 µHz (bottom panel), the surface values give
the damping rates η in µHz.

parameter β that is introduced to model the convec-
tion/pulsation interactions because the role of the surface
layers in the work integrals becomes important. As a result,
the results on the damping rates are questionable for high
frequencies since the value of β is derived from the observed
p modes and that there is no evidence it can be applied safely
for g modes;

– in contrast, for low-frequency g modes (ν < 110 µHz), we
find that the work integrals and then the damping rates are in-
sensitive to parameter β. Also, we numerically checked that
the damping rates are insensitive to the non-local parameters
introduced in Sect. 3.1.

3.2.2. Contributions to the work integral

Figure 8 allows us to investigate the respective roles played by
different terms in the damping of the mode. More precisely we
consider two modes (ℓ = 1, g10, ν ≈ 60 µHz and ℓ = 1, g32,
ν ≈ 20 µHz) in the frequency interval of interest here and give
in Fig. 8 the modulus of:

– the contribution to the work by the radial part of the radiative
flux divergence variations (solid line)

dWFRr = ℜ
{

(

δT

T

)∗ ∂δLR

∂x

}

R

GM2σ
, (14)

where T is the temperature, LR the radiative luminosity, R the
solar radius, M the solar mass, x the normalized radius,σ the
real part of the normalized frequency σ = ω0/(GM/R3)1/2,
and x the normalized radius (see Appendix A). Note that δ
denotes the wave Lagrangian perturbations,ℜ the real part,
and ∗ the complex conjugate;
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Fig. 8. Contributions to the work by the radial radiative flux variation
(solid line), the transverse radiative flux variation (dotted line), and the
time-dependent convection terms (dashed line), for the mode ℓ = 1, g10

(top panel) and ℓ = 1, g32 (bottom panel). Details are given in the text.

– the contribution to the work by the transversal part of the
radiative flux divergence variations (dotted line):

dWFRh = −ℓ(ℓ + 1)ℜ

{

δT ∗

T

(

δT

xdT/dx
− ξr

r

)}

RL

GM2σx
; (15)

– the contribution to the work by the time-dependent convec-
tion terms (dashed line): dWC (see Sect. 4 of Grigahcène
et al. 2005).

Integration of these terms over the normalized radius gives their
global contribution to the work performed during one pulsation
cycle.

The time-dependent convection terms have a very low
weight for both modes in the frequency range ν < 110 µHz. It
confirms the conclusion of Sect. 3.2.1 that the damping rates of
low-frequency g modes are not dominated by the perturbation
of the convective flux, i.e. the interaction convection/oscillation
(through the parameter β). The higher the mode frequency, the
higher the integrated convective contribution of the work (WC),
which becomes dominant for ν > 110 µHz.

While the transverse radiative flux term plays a significant
role near the center, the major contribution to the work comes
from the radial component of the radiative flux variations. As
a result, the radiative damping is the dominant contribution for
low-frequency gravity modes.

In Fig. 9, we give the theoretical damping rates η of g-modes
of degree ℓ = 1, 2, 3, as a function of the oscillation frequency
in µHz. We see that for ν < 110 µHz, η is a decreasing function

Fig. 9. Theoretical damping rates η of g modes of degree ℓ = 1, 2, 3 as
a function of the oscillation frequency in µHz.

of frequency. We find that the frequency dependence is η ∝ ω−3
0 .

To understand this behavior, we express the integral expression
of the damping rate (see Grigahcène et al. 2005, for details) as

η =
1

2ω0I

∫ M

0
Im

(

δρ

ρ

∗
TδS

)

(Γ3 − 1) dm (16)

with

I =

∫ M

0
dm |ξ|2 and (Γ3 − 1) =

(

∂ ln T

∂ ln ρ

)

s

(17)

where δρ, δS are the perturbations of the density and entropy,
respectively, ρ, T are the density and temperature, ξ the eigen-
function, and the star denotes the complex conjugate.

Keeping only the radial contribution of the radiative flux in
the energy equation (Eq. (A.1)) because it is the dominant contri-
bution, and neglecting the production of nuclear energy (ǫ = 0),
one gets

TδS =
i

ω0

∂δL

∂m
· (18)

This approximation comes from the dominance of the radial
contribution of the radiative flux. In addition, in the diffusion
approximation

δL

L
=

(

1
(dT/dr)

∂δT

∂r
+ 2
ξr

r
+ 3
δT

T
− δκ
κ
− δρ
ρ
− ∂ξr
∂r

)

· (19)

Because of the high wavenumber for low-frequency g modes,
the term in ∂δT/∂r is very high in Eq. (14), dominates in
Eq. (19), and is the main source of damping. This term ap-
pears as a second-order derivative in the work integral, and in-
troduces a factor k2

r (kr ≈
√
ℓ(ℓ + 1)N/(ω0r) is the vertical local

wavenumber). Thus, from Eqs. (19), (18), and (16) one obtains
η ∝ ω−5

0 /I. By using an asymptotic expansion of the eigenfunc-
tions (Christensen-Dalsgaard 2002a), one gets I ∝ ω−2

0 , which
permits η ∝ ω−3

0 and explains the behavior of η in Fig. 9. The
argument is the same for the variation of η with the angular de-
gree at fixed frequency becomes it comes from the wave-number
dependence k2

r .
Above 110 µHz, the role of the radiative zone in the mode

damping is smaller. There, the damping rates begin to increase
with frequency simply because the kinetic energy of the modes
decreases faster than the mechanical work.
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4. Surface velocities of g modes

4.1. Theoretical (intrinsic) velocities

We compute the mean-squared surface velocity (v2s ) for each
mode as

v2s (h) =

〈∫

Ω

(

u(r, t) · u(r, t)
)

dΩ

〉

(h) (20)

where h is the height in the stellar atmosphere, 〈〉 the time av-
erage. Using the expression Eq. (C.3) in Appendix C, one then
has

v2s (h) = A2
[

v2r (h) + ℓ(ℓ + 1)v2h(h)
]

. (21)

The amplitude A2 = (1/2)〈|a(t)|2〉 is given by (Eq. (C.6)):

A2 =
P

2 η Iω2
0

(22)

where 〈〉 denotes the time average, I the mode inertia, η the
damping rate, and vr,h(h) = ω0 ξr,h(h) with ξr(h) and ξh(h) re-
spectively the radial and horizontal displacement eigenmode
components.

In this section, we consider the level of the photosphere
h = R with R the radius at the photosphere. Figure 10 presents
intrinsic values of the velocities. The behavior of the surface ve-
locities as a function of the angular degree (ℓ) is mainly due
to the damping rates, which rapidly increase with ℓ; hence, at
fixed frequency, the higher the angular degree, the lower the sur-
face velocities. As a consequence, amplitudes are very low for
ℓ > 3. At fixed ℓ, vs increases with frequency with a slope result-
ing from a balance between the excitation and damping rates.
Nevertheless, modes of angular degree ℓ = 1 exhibit a singular
behavior, i.e. a maximum at ν ≈ 60 µHz. This is due to the vari-
ation of the slope in the excitation rates (see Fig. 5). In terms
of amplitudes, the maximum is found to be ≈5 mm/s for ℓ = 1
at ν ≈ 60 µHz, which corresponds to the mode with radial or-
der |n| = 10. It is important to stress that the velocities shown in
Fig. 10, are intrinsic values of the modulus that must not be con-
fused with the apparent surface velocities (see Sect. 5), which
are the values that can be compared with observed ones.

4.2. Comparison with previous estimations

The theoretical intrinsic velocities obtained in the present work
must be compared to previous estimations based on the same as-
sumption that modes are stochastically excited by turbulent con-
vection. All works cited in the next sections deal with intrinsic
velocities, i.e. ones not corrected for visibility effects.

4.2.1. Estimation based on the equipartition of energy

The first estimation of g-mode amplitudes was performed
by Gough (1985), who found a maximum of velocity of
about 0.5 mm s−1 for the ℓ = 1 mode at ν ≈ 100 µHz.
Gough (1985) used the principle of equipartition of energy,
which consists in equating the mode energy (E) with the ki-
netic energy of resonant eddies whose lifetimes are close to
the modal period. This “principle” has been theoretically jus-
tified for p modes, by Goldreich & Keeley (1977b) assuming
that the modes are damped by eddy viscosity. They found that
the modal energy to be inversely proportional to the damping
rate, η, and proportional to an integral involving the term Eλ vλ λ
where Eλ ≡ (1/2) mλ v

2
λ

is the kinetic energy of an eddy with

Fig. 10. Top: theoretical intrinsic surface velocities of g-modes of de-
gree ℓ = 1, 2, 3 as a function of the oscillation frequency in µHz, com-
puted as described in Sect. 4.1 using a Lorentzian χk. Bottom: surface
velocities of gravity modes of angular degree ℓ = 1 and ℓ = 2 com-
puted using a Gaussian χk and a Kolmogorov spectrum to reproduce
the results of Kumar et al. (1996).

size λ, velocity vλ, and mass mλ = ρ λ
3 (see Eq. (46) of Goldreich

& Keeley 1977b). Using a solar model, they show that the damp-
ing rates of solar p modes are dominated by turbulent viscos-
ity and that the damping rates are accordingly proportional to
the eddy-viscosity, that is, η ∝ vλ λ (see Eq. (6) of Goldreich
& Keeley 1977a). Hence, after some simplifying manipulations,
Goldreich & Keeley (1977b) found the modal energy to be (see
their Eq. (52))

E ≈ 0.26 Eλ = 0.13 mλ v
2
λ. (23)

This principle then was used by Christensen-Dalsgaard &
Frandsen (1983) for p modes and Gough (1985) for solar
g modes. However, as mentioned above, the result strongly de-
pends on the way the modes are damped, and for asymptotic
g modes there is no evidence that this approach can be used and
in particular, as shown in this work, if the damping is dominated
by radiative losses.

4.2.2. Kumar et al. (1996)’s formalism

Another study was performed by Kumar et al. (1996), which
was motivated by a claim of g-mode detection in the solar wind
(Thomson et al. 1995). Computations were performed using the
Goldreich et al. (1994) formalism; both turbulent and radiative
contributions to the damping rates were included as derived
by Goldreich & Kumar (1991) who obtained mode lifetimes
around 106 yrs. This is not so far from our results (see Fig. 9).
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Kumar et al. (1996) found that the theoretical (i.e. not corrected
for visibility factors) surface velocity is around 10−2 cm s−1 near
ν = 200 µHz for ℓ = 1 modes. However, as shown in Sect. 3, the
results for this frequency range are very sensitive to the convec-
tive flux perturbation in the damping rate calculations. Thus, we
do not discuss the result obtained for those frequencies.

More interesting for our study, Kumar et al. (1996) also
found very low velocities (10−2 mm s−1) for ν < 100 µHz. This is
significantly lower than what we find. However, the efficiency of
the excitation strongly depends on how the eddies and the waves
are temporally-correlated. As already explained in Sect. 2.1,
the way the eddy-time correlation function is modeled is cru-
cial since it leads to major differences between, for instance, a
Gaussian and a Lorentzian modeling. The Goldreich & Keeley
(1977b) approach, from which Kumar et al. (1996)’s formula-
tion is derived, implicitly assumes that the time-correlation be-
tween the eddies is Gaussian. The present work (as explained
in Sect. 2.1) assumes a Lorentzian for the time correlation func-
tion χk, which results in v = 3 mm s−1 in amplitude for ℓ =
1 mode at ν ≈ 60 µHz (Sect. 4.1).

We performed the same computation but now assuming χk

to be Gaussian (Eq. (7)) and using a Kolmogorov spectrum as in
Kumar et al. (1996). In that case (see Fig. 10), we find velocities
of the order of 10−2 mm s−1 for ℓ = 1 which agree with the result
of Kumar et al. (1996), which is significantly lower than when
assuming a Lorentzian.

5. Apparent surface velocities

We denote as disk-integrated apparent velocities the values of
amplitudes that take both geometrical and limb darkening effects
into account. Contrary to solar p modes, one cannot neglect the
horizontal component of ξ compared to the vertical one. The
observed velocity (Vobs) is given by the apparent surface veloc-
ity 〈|Vapp(r, t)|2〉1/2 (see Appendix C) evaluated at the observed
line formation height h:

Vobs =













P

2ηIω2
0













1/2
(

αm
ℓ vr(h) + βm

ℓ vh(h)
)

(24)

where αm
ℓ

and βm
ℓ

are the visibility factors defined in Appendix C.
In Appendix C we follow the procedure first derived by

Dziembowski (1977) and for asymptotic gmodes by Berthomieu
& Provost (1990). We use a quadratic limb-darkening law fol-
lowing Ulrich et al. (2000) for the Sun with an angle between
the rotation axis and the Equator of 83 degrees. As mentioned
above, the apparent velocities are evaluated at the level h, i.e. the
height above the photosphere where oscillations are measured.
Then h is set so as to correspond to the SoHO/GOLF measure-
ments that use the NaD1 and D2 spectral lines, formed at the op-
tical depth τ = 5 × 10−4 (see Bruls & Rutten 1992). The results
are presented in Tables 1 and 2 for angular degrees ℓ = 1, 2, 3.

Figure 11 displays the apparent velocities for modes ℓ =
1, 2, 3 and ℓ = m. For a given angular degree, the azimuthal order
degree is chosen such that the apparent velocity is maximal. The
velocities of the m = 0 modes are strongly attenuated by the vis-
ibility effects, while the m = ℓ modes are less sensitive to them.
For ℓ = 1 modes, the amplitudes are divided by a factor of two
with respect to the intrinsic velocities, while the ℓ = 2, 3 mode
velocities remain roughly the same. Consequently, our calcula-
tions show that both the ℓ = 1 and ℓ = 2 (m = ℓ) are the most
probable candidates for detection with amplitudes ≈3 mm s−1.

Table 1. Values of the visibility coefficient αm
ℓ

of the radial component
of the velocity, corresponding to an inclination angle of θ0 = 83◦.

m 0 1 2 3
ℓ = 1 0.117 0.675
ℓ = 2 0.346 0.107 0.437
ℓ = 3 0.06 0.164 0.0552 0.184

Table 2. Values of the visibility coefficient βm
ℓ

of the radial component
of the velocity, corresponding to an inclination angle of θ0 = 83◦.

m 0 1 2 3
ℓ = 1 0.094 0.540
ℓ = 2 0.833 0.258 1.053
ℓ = 3 0.291 0.649 0.268 0.892

Fig. 11. Apparent surface velocities for g modes of degree ℓ = 1, 2, 3
as a function of the oscillation frequency in µHz (visibility factors are
taken into account).

5.1. Detectability of g modes; only a matter of time

To compare our calculated apparent velocities with observa-
tions, we used data from the GOLF spectrometer (Gabriel et al.
2002) onboard the SOHO platform, which performed Doppler-
like measurements on the disk-integrated velocity of the Sun,
using the Na D lines. We used here a series of 3080 days to esti-
mate the background noise level and compare it to the apparent
velocities determined in this work.

A first possible approach is to use some analytical and sta-
tistical calculations such as the ones developed by Appourchaux
et al. (2000) (Eq. (10)). Once a length of observation T (in units
of 106 s), a frequency range ∆ν (in µHz), and a level of confi-
dence pdet are set, this gives the corresponding signal-to-noise
ratio
sdet

〈s〉 ≃ ln(T ) + ln(∆ν) − ln(1 − pdet), (25)

where sdet is the power of the signal to be detected, and 〈s〉 the lo-
cal power of the noise. This means that any peak in the frequency
range ∆ν above this ratio has a probability pdet of not being due
to noise. Choosing a frequency range of ∆ν = 10 µHz centered
on the frequency of the highest expected velocities (60 µHz)
sets the background level at ≈500 (m s−1)2/Hz. Equation (25)
gives an amplitude of 5.2 mm s−1 for a detection with a confi-
dence level pdet of 90% for 15 years of observation, 4.6 mm s−1

for 20 years, and 3.8 mm s−1 for 30 years.
However, this approach has to be repeated for each mode

(with its own proper noise level) to have a global view of detec-
tion possibilities. To do so, we used simulations. Again relying
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Table 3. Number of peaks above the detection level in the simulated
power spectra versus the duration of observation in three cases. In the
simulated signal, the modes are given an amplitude Amax. The 3 cases
respectively correspond to Amax being the apparent amplitudes A readily
stemmed from our calculation, Amax = 1.5A and Amax = 2A. The last
two cases take into account that uncertainties in the modeling globally
tend to underestimate the amplitudes as discussed in Sect. 6.

Amax 10 years 15 years 20 years 25 years 30 years
A 0.8 1.6 0.8 1.4 1.7

1.5A 1.4 2.9 4.5 6.5 8.8
2A 4.6 8.5 13.4 20.0 21.7

on the GOLF data to estimate the noise spectrum, we simulated
synthetic data including noise and g modes with the apparent
velocities as above (and with random phases). Several durations
of observation were simulated, from 10 to 30 years. A hundred
simulations were performed in each case. The noise level is esti-
mated locally and so is the detection level, following Eq. (25), on
the frequency range [30 µHz, 100 µHz]. Thus, with a confidence
level of 90% and with 7 independent subsets of 10 µHz, noise is
expected to show no peak above the global detection level with a
probability of 48%, and to show 1 peak above the global detec-
tion level with a probability of 32% (and even 2 peaks in 12% of
the realizations). Table 3 lists the average (over 100 simulations)
number of peaks detected above the detection level for different
observation durations. These simulations were performed using
amplitudes Amax assuming three different cases:

• Case 1: we assumed for Amax the apparent surface velocity
amplitudes calculated above, A.
Due to uncertainties in the theoretical modeling (as discussed
in Sect. 6), we also assume:
• Case 2: that amplitudes are larger than the amplitudes esti-

mated above by 50% i.e. Amax = 1.5 A;
• Case 3: that amplitudes are larger than the amplitudes esti-

mated above by a factor 2 i.e. Amax = 2 A.

Cases 1 and 3 are the two limits of this exercise. The number of
detected peaks in case 3 shows that the predicted amplitudes can-
not be overestimated by a factor of two, because in this case, the
solar g modes would have already been detected without doubt.
Case 1 sets a lower limit, because in this case, even with longer
(30 years) observation, g modes would not be detected. Case 2
shows that if real solar amplitudes are just a few tens of percent
higher than the present estimations, then g modes could be de-
tected no doubt after say 15 to 20 years of observation (to be
compared to the present status of observation: 12 years). The
results are summarized in Figs. 12.

We must stress that, apart from visibility effects and height
of line formation, we took no other instrumental effects on the
apparent amplitude determination into account, because they de-
pend on the instrument. The impact is probably a decrease in the
measured amplitudes compared to the apparent amplitudes as
computed here. This does not change the above conclusion for
Case 1. We expect that the instrumental uncertainty is less than
the theoretical uncertainties discussed in Sect. 6 below, which
led to case 2 and 3.

6. Discussion

In Sect. 5 above, we explained why estimates of g-mode ampli-
tudes obtained by previous authors differ from each other by or-
ders of magnitude (Christensen-Dalsgaard 2002b). We propose

Fig. 12. Simulated spectrum for an observation length of 30 years, in
Case 1. The dashed line indicates the level of detection (see text and
Eq. (25)). The vertical lines indicate the frequencies of the simulated
modes. Here, only one mode is above the detection level. Bottom: aver-
age number and standard deviation (from the 100 realizations) of modes
detected in simulations versus the length of observation for the three
cases (see text). Above the hashed region (less than four peaks de-
tected), one can consider the detection to be unambiguous. The upper
curve corresponds to the case 3 (Amax = 2A), the middle one to case 2
(Amax = 1.5A), and the lower one to case 1 (Amax = A).

an improved modeling based on the input of 3D numerical simu-
lations and on a formalism that had successfully reproduced the
observations for p modes (Belkacem et al. 2006). Nevertheless,
several approximations remain, and they lead to uncertainties
that can reach a factor two in the estimation of g-mode apparent
velocities (overestimation). We next discuss the most important
ones.

6.1. Equilibrium model: description of convection

Convection is implemented in our equilibrium models according
to the classical Böhm-Vitense mixing-length (MLT) formalism
(see Samadi et al. 2006, for details).

6.1.1. Convective velocities

Values of the MLT convective velocity, u, are by far the most
important contributions to mode amplitude uncertainties because
the mode surface velocities depend on u3. First, we verified that a
non-local description of turbulence does not modify the convec-
tive velocities by more than a few per cent except near the upper-
most part of the convection zone, which does not play any role
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here. Second, we compared the rms velocities from the 3D nu-
merical simulation with MLT velocities to estimate of the un-
certainties. The MLT underestimates the velocity, relative to the
more realistic numerical simulation (far from the boundaries).
Indeed, it comes from the negative kinetic energy flux that re-
sults in a larger enthalpy flux in order to carry the solar flux to
the surface. A direct consequence is that in 3D simulations the
velocities are higher than the ones computed by MLT by a factor
of about 50%. This may in turn result in a possible underestima-
tion of the amplitudes of the modes by a factor 2, when, as here,
MLT is used to estimate the velocities.

6.1.2. Anisotropy

The value for the velocity anisotropy, which is the ratio between
the square of the vertical velocity to the square of the rms ve-
locity parameter, Φ, is derived from the MLT: its value is 2.
However, this is not fully consistent since we assume, in the ex-
citation model, isotropic turbulence (i.e. Φ = 3). Nevertheless,
increasing the value of Φ from two to three results in an increase
of only 15% in the mode surface velocities. This is lower than
the uncertainties coming from χk (see Sect. 6.2).

6.1.3. Turbulent pressure

Our solar equilibrium model does not include turbulent pres-
sure. However, unlike p modes, low-frequency (high radial or-
der) gravity modes, i.e. those considered in this work, are only
slightly affected by turbulent pressure. The reason is that such
modes are excited in the deepest layers of the convection zone,
i.e. between r = 0.7 R⊙ and r = 0.9 R⊙ where turbulent pressure
has little influence on the equilibrium structure since the ratio
of the turbulent pressure to the gas pressure increases with the
radius.

6.2. Stochastic excitation: the role of the eddy-time
correlation function

A Gaussian function is commonly used to describe the frequency
dependence of the turbulent kinetic energy spectrum, χk, (e.g.,
Samadi & Goupil 2001; Chaplin et al. 2005). However, Samadi
et al. (2003a) show that, for p modes, a Lorentzian function rep-
resents the results obtained using 3D numerical simulations bet-
ter. Furthermore, the latter function yields a theoretical modeling
in accordance with observations, while using a Gaussian func-
tion fails (Samadi et al. 2003b). This led us to investigate χk(ω)
for gmodes. We find that different choices of the functional form
for χk(ω) result in order of magnitude differences for the mode
amplitudes.

Uncertainties inherent in the eddy-time correlation function
are related to the value of the λ parameter (Sect. 2.2.1) and to
the contribution of low frequency components in the 3D sim-
ulation. As a rough estimate, decreasing λ from 3 to 2 leads
to an increase of 20% for the surface velocity. Figure 3 shows
that low-frequency components in the turbulent kinetic energy
spectrum are better-fitted using a Gaussian function. However,
the source of such low-frequency components remains unclear,
because they can originate from rotation; in particular, it is not
clear whether they must be taken into account when estimating
the mode excitation rates. By removing those contributions, the
resulting surface velocities decrease by around 25%.

6.3. Mode damping: the convection-pulsation coupling

Last but not least, modeling damping rates of damped, stochas-
tically excited modes remains one of the most challenging is-
sues. The strong coupling between convection and oscillation in
solar-like stars makes the problem difficult and still unsolved,
since all approaches developed so far failed to reproduce the so-
lar damping rates without the use of unconstrained free param-
eters (e.g., Dupret et al. 2005; Houdek 2006). Such descriptions
fail to correctly describe the interaction between convection and
oscillations when both are strongly coupled, i.e. when the char-
acteristic times associated with the convective motions are the
same order of magnitude as the oscillation periods. This explains
why we do not use an extrapolation based on a fit of p mode
damping rates, but instead consider a frequency domain in which
the damping is dominated by radiative contributions. A reliable
computation of the damping rates at higher frequencies, beyond
this paper’s scope, would require a sophisticated analytical or
semi-analytical theory of the convection-oscillation interaction,
which will not be limited to the first order in the convective fluc-
tuations and which will take the contribution of different spatial
scales into account.

7. Conclusions

We performed a theoretical computation of the surface oscil-
lation velocities of asymptotic gravity modes. This calculation
requires knowing excitation rates, which were obtained as de-
scribed in Belkacem et al. (2008) with input from 3D numerical
simulations of the solar convective zone (Miesch et al. 2008).
Damping rates, η, are also needed. As mentioned in Sect. 6, we
restricted our investigation to the frequency domain for which η
is dominated by radiative contributions (i.e. ν ∈ [20; 110] µHz).
For higher frequencies, the coupling between convection and os-
cillation becomes dominant, making the theoretical predictions
doubtful. For asymptotic g-modes, we find that damping rates
are dominated by the modulation of the radial component of the
radiative flux by the oscillation. In particular for the ℓ = 1 mode
near ν ≈ 60 µHz, η is around 10−7 µHz, then the mode life
time is ≈3 × 105 yrs. Maximum velocity amplitude at the pho-
tosphere arises for this same mode and is found at the level of
3 mm s−1 (see Fig. 11). Modes with higher values of the angular
degree ℓ present smaller amplitudes since the damping is pro-
portional to ℓ2.

Amplitudes found in the present work are orders of magni-
tude larger than those from previous works, which themselves
showed a large dispersion between their respective results. In
one of these previous works, the estimation was based on an
equipartition principle derived from the work of Goldreich &
Keeley (1977a,b) and designed for p modes. Its use for asymp-
totic gmodes is not adapted as the damping rates of these modes
are not dominated by turbulent viscosity. Kumar et al. (1996)
have carried another investigation of g mode amplitudes, and its
calculation is rather close to our modeling. Most of the quanti-
tative disagreement with our result lies in the use of a different
eddy-time correlation function. Kumar et al. (1996) assumed a
Gaussian function as is commonly used. Our choice relies on re-
sults from 3D simulations and is closer to a Lorenztian function.

Taking visibility factors, as well as the limb-darkening, into
account we finally found that the maximum of apparent surface
velocities of asymptotic g-modes is ≈3 mm s−1 for ℓ = 1 at
ν ≈ 60 µHz an ℓ = 2 at ν ≈ 100 µHz. Due to uncertainties in the
theoretical modeling, amplitudes at maximum, i.e. for ℓ = 1 at
60 µHz, can range from 3 to 6 mm s−1. By performing numerical
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simulations of power spectra, it is shown that, with amplitudes
of 6 mm s−1, the modes would have been already detected by the
GOLF instrument, while in the case of an amplitude of 3 mm s−1

the g modes would remain undetected even with 30 years of
observations. The theoretical amplitudes found in this work are
then close to the actual observational limit. When detected, the
amplitude detection threshold of these modes will, for instance,
establish a strict upper limit to the convective velocities in the
Sun.
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Appendix A: Energy equation near the center

For the full non-adiabatic computation of g-mode damping rates,
much care must be given to the solution of the energy equation
near the center of the Sun for the modes of angular degree ℓ =
1. We give in Eqs. (A.1) and (A.2) the perturbed energy and
transfer equations in a purely radiative zone:

iω0 T δS = −
d δL
dm
+ ǫ

(

δǫ

ǫ
+
δρ

ρ
+

1
r2

d (r2ξr)
dr

)

+ℓ(ℓ + 1)
L

4πρr3

(

δT

r dT/dr
−
ξr

r

)

, (A.1)

δL

L
= 2
ξr

r
+ 3
δT

T
−
δκ

κ
−
δρ

ρ
+

1
dT/dr

dδT
dr
−

dξr
dr
· (A.2)

The radial (first term of Eq. (A.1)) and transverse parts (last term
of Eq. (A.1)) of the perturbed flux divergence are both singular
at the center. But this singularity is lifted when the two terms are
joined and an appropriate change of variables is carried out:

σ =
ω0

√

GM/R3

ξr

r
= ζ xℓ−2

δs

cv
= η xℓ ;

δT

T
= ϑ xℓ ;

δρ

ρ
= γ xℓ

δǫ

ǫ
= δǫx xℓ

k = (GM/R3)−1/2 L(r)
4πρr3cv

ǫ1 =

(

4πρr3

3
ǫ

L(r)
− 1

)

3
x2

T1 =
x

d ln T/dx

T2 =
x2

L

d
dx

(

L

x2

1
d ln T/dx

)

x =
r

R
· (A.3)

All of these variables and quantities are regular at the solar cen-
ter, where the perturbed energy equation takes the form

iση

k
= 3 δǫx + 2 γ

−(ℓ + 3)
(

(4 − κT )ϑ − (1 + κρ) γ
)

−ℓ T2 ϑ − (2ℓ + 3) T1
d2ϑ

dx2

+2(ℓ − 1)ǫ1 ζ + (2ℓ + 3)
d2ζ

dx2
· (A.4)

For a precise solution of the non-adiabatic problem by a finite
difference method, it is crucial to use a discrete scheme that tends
continuously towards Eq. (A.4) at the center. If not, the eigen-
functions diverge towards the center; in the particular case of the
solar g modes, this can lead to an overestimate of the damping
rates by a factor of about 2.

Appendix B: Computation of the kinetic energy

spectrum from the ASH code

The ASH code solves the hydrodynamical equations in spherical
coordinates (r, θ, φ). Each component of the velocity is decom-
posed in terms of spherical harmonics as

Vp(t, r, θ, φ) =
∑

l,m

Vl,m,p(t, r) Yl,m(θ, φ) (B.1)

where p = r, θ, φ. The spherical harmonic Yl,m(θ, φ) is defined as

Ym
l (θ, φ) ≡ Nl,m Pm

l (cos θ) eimφ (B.2)

where Pm
l

is the associated Legendre function, and the normal-
ization constant Nl,m

Nl,m =

√

2l + 1
4π

√

(l − m)!
(l + m)!

(B.3)

is chosen such that
∫

dΩ Yl,m(θ, φ) Yl′,m′ (θ, φ) = δl,l′ δm,m′ (B.4)

where dΩ = sin θdθdφ.
The kinetic energy spectrum that is averaged over time and

the solid angle is defined following Samadi et al. (2003b) as

E(ℓ, r) ≡ 1
2

∑

m,p

〈

(

Vl,m,p −
〈

Vl,m,p

〉)2
〉

(B.5)

where 〈(.)〉 refers to time average. As in Samadi et al. (2003b),
density does not enter into the definition of the kinetic energy
spectrum. Indeed, the Samadi & Goupil (2001)’ formalism as-
sumes a homogeneous turbulence. This assumption is justified
when the turbulent Mach number is low. This is the case in
most parts of the convective zone except at the top of convec-
tive region.

The mean kinetic energy spectrum, E(l, r), verifies the
relation
∑

l

E(l, r) =
1
2

u2(r) (B.6)

where u(r) is the root mean square velocity at the radius r.
Following Samadi et al. (2003a), we also define a kinetic en-

ergy spectrum as a function of frequency (ν) and averaged over
the solid angle, E(l, ν, r) such that

∑

l

E(l, ν, r) ≡ 1
2

∫

dΩ
4π

∑

p

∥

∥

∥V̂p(ν, r, θ, φ)
∥

∥

∥

2
(B.7)

where V̂p(ν, r, θ, φ) is the time Fourier transform of Vp(t, r, θ, φ)−
〈

Vp

〉

. Using Eqs. (B.1) and (B.4), Eq. (B.7) yields:

E(l, ν, r) =
1
2

∑

m,p

∥

∥

∥V̂l,m,p(ν, r)
∥

∥

∥

2
(B.8)
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where V̂l,m,p(ν, r) is the time Fourier transform of Vl,m,p(t, r) −
〈

Vl,m,p

〉

. As in Samadi et al. (2003a), we decompose E(l, ν, r) as

E(l, ν, r) = E(l, r) χl(ν, r) (B.9)

where the function χl(ν, r) satisfies the normalization condition
∫ +∞

−∞
dν χl(ν, r) = 1. (B.10)

According to the Parseval-Plancherel relation, one has
∑

l

∫ +∞

−∞
dνE(l, ν, r) =

∑

l

E(l, r) =
1
2

u2(r), (B.11)

We consider a short time series of duration ≈4.68 days with
a sampling time of 800 s. Accordingly the Nyquist frequency
is ≈1 mHz and the frequency resolution reachs ≈2.5 µHz. In ad-
dition, we use a longtime series of duration ≈45.83 days with
a sampling time of 4 × 104 s that permits us to get χk at very
low frequencies. In practice, E(l) is derived from Eq. (B.5) and
is directly implemented into Eq. (1), while χk(ν) inferred from
the simulation is computed using Eqs. (B.9) and (B.5).

By using E(l) from the numerical simulation, we assume a
planparallel approximation (E(k) dk = E(l) dl) since the maxi-
mum of the kinetic energy spectrum occurs on scales ranging
between l ≈ 20 and l ≈ 40.

Appendix C: Visibility factors

Visibility factors have been computed first by Dziembowski
(1977). Berthomieu & Provost (1990) studied the case of
g modes which, for convenience, we recall below in our own
notation. We denote the spherical coordinate system in the ob-
server’s frame by (r, θ, φ) where r = 0 corresponds to the center
of the star and the θ = 0 axis coincides with the observer’s direc-
tion. At a surface point (r, θ, φ), the unit vector directed toward
the observer is n = cos θ er − sin θ eθ. The apparent surface
velocity is obtained as

Vapp(r, t) =

∫

h(µ) (u(r, t) · n) dΩ
∫

h(µ) dΩ
, (C.1)

where u(r, t) is the intrinsic mode velocity and h(µ) the limb-
darkening function, which is normalized such that:
∫ 1

0
µ h(µ)dµ = 1. (C.2)

To first order in linearized quantities in Eq. (C.1), the effect of
the distorted surface is neglected, and dΩ = R2 sin θdθdφ is the
solid angle around the direction of the observer n with R the
stellar radius.

For slow rotation, the oscillation velocity can be described in
a pulsation frame with a single spherical harmonic. The coordi-
nate system (r,Θ,Φ) in the pulsation frame is chosen such that
the pulsation polar axis coincides with the rotation polar axis.
The velocity vector at a level r in the atmosphere of the star for
a mode with given ℓ,m and pulsation frequency ω0 can then be
written with no loss of generality as

u(r, t) =
1
2

a(t) ω0 ξ(r) eiω0t + c.c. (C.3)

where c.c. means complex conjugate and with the displacement
eigenvector defined as

ξ(r) = ξr(r) Ym
ℓ (Θ,Φ) er + ξh(r) ∇HYm

ℓ (Θ,Φ) (C.4)

with

∇H =

(

0,
∂

∂Θ
,

1
sinΘ

∂

∂Φ

)

· (C.5)

The dimensionless complex velocity amplitude av(t) is assumed
to be a slowly varying function of time for a damped stochas-
tically excited mode (Samadi & Goupil 2001; Samadi et al.
2003b; Belkacem et al. 2008). The theoretical expression is
given by

〈|a(t)|2〉 = P

ηIω2
0

(C.6)

where the power P is defined in Eq. (1), I is the mode iner-
tia, η the damping rate and 〈〉 represents a statistical average,
or equivalently here a time average.

To obtain the apparent velocity from Eq. (C.1) using
Eqs. (C.3) and (C.4), one must compute the scalar product:
ξ(r) · n.

ξ(r) · n = ξr(r) Ym
ℓ (Θ,Φ) (er · n) + ξh(r) (∇HYm

ℓ · n). (C.7)

A change in coordinate system shows that er · n = cos θ and

∇HYm
ℓ (Θ,Φ) · n = − sin θ

∂Ym
ℓ

(Θ,Φ)

∂θ
·

We use the spherical harmonics as defined in Eq. (B.2) and the
following property

Pm
ℓ (cosΘ)eimΦ =

ℓ
∑

m′=−ℓ
qℓm,m′(Θ0,Φ0)Pm′

ℓ (cos θ) eim′φ, (C.8)

which for convenience, we use under the form

Ym
ℓ (Θ,Φ) = Nℓ,m

ℓ
∑

m′=−ℓ
qℓm,m′(Θ0,Φ0) Pm′

ℓ (cos θ) eim′φ (C.9)

where Nℓ,m is defined in Eq. (B.3), and (Θ0,Φ0) are the coordi-
nates of the line-of-sight direction in the pulsation frame. The
scalar product Eq. (C.7) becomes

ξ(r) · n = Nℓ,m

ℓ
∑

m′=−ℓ
qℓm,m′(Θ0,Φ0) eim′φ

×












ξr(r) Pm′

ℓ cos θ − ξh(r) sin θ
dPm′

ℓ

dθ













· (C.10)

As emphasized by Dziembowski (1977), only the qℓ
m,0 coeffi-

cients survive the φ integration in Eq. (C.1). Its expression is

qℓm,0(Θ0,Φ0) = Pm
ℓ (cosΘ0) eimΦ0 . (C.11)

The angle Θ0 between the observer and the rotation axis is often
denoted i. Integration over the solid angle leads to:
∫

h(µ)(ξ(r) · n)dΩ = Ym
ℓ (Θ0,Φ0)

×
(

ξr(r)
∫ 1

0
µ2 h(µ) Pℓ(µ)dµ

+ξh(r)
∫ 1

0
µ h(µ) (1 − µ2)

dPℓ(µ)
dµ

dµ
)

. (C.12)

Finally, using properties of spherical harmonics, one obtains
∫

h(µ)(ξ(r) · n)dΩ
∫

h(µ)dΩ
= Ym

ℓ (Θ0,Φ0) (ξr(r) uℓ + ξh(r) wℓ) (C.13)
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where we have defined

uℓ =

∫ 1

0
dµ µ2h̃(µ) Pℓ(µ) (C.14)

wl = ℓ

∫ 1

0
dµ µ h̃(µ) (Pℓ−1 − µPℓ) (C.15)

with

h̃(µ) =
h(µ)

∫ 1

0
h(µ)dµ

· (C.16)

Collecting Eq. (C.3) and Eq. (C.13), the apparent velocity is then
given by

Vapp(r, t) =
1
2

a(t) ω0 Nℓ,m Pℓ(cosΘ0) (C.17)

× (ξr(r)ul + ξh(r)wl) ei(ω0 t+mφ0) + c.c. (C.18)

We assume a quadratic limb-darkening law of the form

h(µ) = 1 + c1 X2 + c2 X2 + c3 X3 (C.19)

where X = 1 − µ, ci={1,2,3} are the associated limb-darkening co-
efficients, which respective values are −0.466, −0.06 and −0.29
for the NaD1 spectral line, as derived by Ulrich et al. (2000). We
find that our conclusion depends neither on the adopted limb-
darkening law nor on the limb-darkening coefficients, results in
accordance with Berthomieu & Provost (1990).

Using Eq. (C.6), the rms velocity is obtained as:

(〈|Vapp(r, t)|2〉)1/2 =













P

2ηIω2
0













1/2

ω0 Nℓ,m |Pℓ(cosΘ0)| (C.20)

×|ξr(r) ul + ξh(r) wl|

which we finally rewrite as

(〈|Vapp(r, t)|2〉)1/2 =













P

2ηIω2
0













1/2

(C.21)

×|vr(r) αm
ℓ + vh(r) βm

ℓ |,

where we have defined

αm
ℓ = Nℓ,m Pℓ(cosΘ0) ul (C.22)

βm
ℓ = Nℓ,m Pℓ(cosΘ0) wl, (C.23)

and

vr(r) = ω0 ξr(r) ; vh(r) = ω0 ξh(r). (C.24)
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ABSTRACT

Context. Measuring amplitudes of solar-like oscillations and the granulation power spectral density constitute two promising sources
of information to improve our understanding and description of the convection in outer layers of stars. However, different instruments,
using different techniques and different bandpasses, give measurements that cannot be directly compared to each other or to theoretical
values.
Aims. In this work, we define simple response functions to derive intrinsic oscillation amplitudes and granulation power densities,
from photometry measurements obtained with a specific instrument on a specific star.
Methods. We test this method on different photometry data sets obtained on the Sun with two different instruments in three different
bandpasses.
Results. We show that the results are in good agreement and we establish reference intrinsic values for the Sun with photometry. We
also compute the response functions of the CoRoT instrument for a range of parameters representative of the Main Sequence solar-
like pulsators to be observed with CoRoT. We show that these response functions can be conveniently described by simple analytic
functions of the effective temperature of the target star.

Key words. Sun: oscillations – Sun: granulation – stars: oscillations – techniques: photometric – convection

1. Introduction

Solar-like oscillations are being detected in a rapidely growing
number of stars (see e.g. Bedding & Kjeldsen 2007). The ex-
citation of these oscillations, first observed in the Sun, is at-
tributed to the acoustic noise generated by convection in the
outer layers of stars and the measurement of their amplitude is a
source of information on the convection process (see e.g. Samadi
et al. 2007a,b). The existing theoretical works generally con-
sider parametric scaling laws calibrated on the Sun. However,
as noticed by Kjeldsen et al. (2005), measurements made on
different stars with different instruments using different tech-
niques in velocimetry or photometry, in different spectral lines
or bandpasses, have different sensitivity to the oscillations. They
cannot be directly compared to each other, or to theoretical val-
ues. The comparison to the Sun is not straightforward either,
since the different existing data sets obtained on the Sun have not
been translated into a proper standard reference suitable for com-
parison with stars. Kjeldsen et al. (2005) initiated such a normal-
ization work and a comparison between several stars. Kjeldsen
et al. (2008) measured the solar oscillation amplitude with stellar
techniques, aiming at setting up a consistent reference for stellar
oscillation measurements. This was done with velocimetry, since
until now the vast majority of solar-like oscillations measured
in other stars has been obtained with this technique. However,
CoRoT (Baglin et al. 2006) has started photometric measure-
ments of oscillations in solar-like pulsators which will need to be

measured quantitatively and compared with those of the Sun and
with those obtained in velocimetry. In addition to oscillations,
rapid photometry might allow us to measure, in approximately
the same domain of frequency, the power density spectrum con-
tribution associated with the stellar granulation. Granulation be-
ing a manifestation of the convective motion at the photosphere
level, the profile of its power density spectrum is expected to re-
flect characteristic time scales and geometric scales associated
with the convection process as described by heavy 3D numerical
simulations (see e.g. Ludwig 2006; Trampedach et al. 1998) or
by parametrized models (see e.g. Baudin et al. 2007).

In the present work, we consider measurements of solar
photometric variations obtained with two different instruments
in four different bandpasses (SOHO/VIRGO/PMO6 and SPM
three channels). In the corresponding instrumental power den-
sity spectra, we fit contributions from the solar background and
from the acoustic oscillations (Sect. 2). In Sect. 3, we establish a
simple instrumental response function relating the instrumental
power density measurement to the intrinsic bolometric lumi-
nosity relative variation. These response functions can be ap-
plied to infer the intrinsic (bolometric) power density of the so-
lar background from specific photometry measurements. They
also can be used to derive intrinsic amplitudes of solar radial
oscillations from the same data. We discuss how they can be
adapted for non-radial modes. Following Kjeldsen et al. (2005)
and Kjeldsen et al. (2008), we also propose to relate the oscilla-
tion mean power density measurement to an intrinsic amplitude
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Fig. 1. Observational power density spectrum obtained for: SPM-blue
a) and SPM-green b) data over 700 days; a moving mean is applied with
a 4 µHz boxcar (plain black line); the same spectrum highly smoothed
with a 0.405 mHz boxcar (3∆) is superimposed (plain light grey line
[yellow]); individual powerlaws associated with granulation and meso-
granulation are shown (dash lines [purple]); the white noise component
(horizontal line [red]); the global fit of solar background + white noise
components is represented (plain grey line [green]) but differs from the
mean power density only in the domain of oscillations. Vertical error
bars associated with the fit precision are illustrated at different frequen-
cies for each component of the fit. For clarity, in the case of the white
noise component, the error bar is represented only once at 1 mHz.

chosen here to be the bolometric amplitude for radial modes.
In Sect. 4, we show that the results obtained with the different
data sets considered here are consistent to a good approximation
and allow us to produce a reference value of bolometric radial
oscillation amplitude for the Sun observed as a star, and a refer-
ence bolometric power density spectrum for Solar granulation.
Then (Sect. 5), we compute the response functions adapted to the
CoRoT instrument for stars representative of potential solar-like
pulsators on the Main Sequence in terms of effective tempera-
tures, log g values and chemical compositions. We show that to
a great extent, the dependency on log g and chemical compo-
sition can be neglected and that the CoRoT response functions
can be conveniently described with good precision by analytic
functions of Teff.

2. Observational material and power density

spectra

We consider four data sets obtained on the Sun with different
techniques and different band pass by SOHO/VIRGO/PMO6
(essentially bolometric variations) and by SOHO/VIRGO/SPM
(photon counting) in three narrow (5 nm) bands at 402 nm (blue),
500 nm (green) and 862 nm (red) (Frohlich et al. 1997). For
each of these time series, we compute the power density spec-
trum shown in Figs. 1 and 2. Following the technique proposed
by Kjeldsen et al. (2005) for stellar oscillation measurements,
we smooth these spectra with a boxcar of width 405 µHz corre-
sponding to 3 times the solar large separation (135 µHz).

Fig. 2. Same as Fig. 1 for, from top to bottom: SPM-blue (a), SPM-
green (b), SPM-red (c) data over 700 days and PMO6 (d) data over
800 days, but here we forced Ci = 4.

Then, we perform a least square fit of each spectrum with
three components: a flat white noise contribution essentially
due to photon counting noise, the solar background contribution
detailed hereafter, and on top, the stellar oscillation spectrum
contribution. For the solar background contribution, following
Harvey (1985) and Andersen et al. (1998a), we consider a sum
of powerlaws: P(ν) = ΣiPi(ν), and Pi(ν) = aiζi

2τi/(1+ (2πτiν)
Ci )

(also noted Pi(ν) = Ai/(1 + (Biν)
Ci ) for convenience hereafter),

with ν the frequency, τi the characteristic time scale and Ci

the slope at high frequency associated with each powerlaw, and

ai a normalizing factor such as ζi
2 =

∫

Pi(ν) dν correspond-
ing to the variance of the time series. Note that in the case of
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Table 1. Fit with seven parameters. Values of the parameters are given
as well as the associated one-sigma error estimates.

Data A1 B1 A2 B2 D C1 C2

σA1 σB1 σA2 σB2 σD σC1 σC2
(

ppm2

µHz

)

(s)

(

ppm2

µHz

)

(s)

(

ppm2

µHz

)

SPMb 1.46 1297 0.60 444 3 ×10−4 4.2 3.7

0.12 22 0.09 27 8.6 ×10−3 0.4 0.5

SPMg 0.69 1300 0.28 438 4 ×10−4 4.4 3.8

0.10 41 0.07 50 8.3 ×10−3 0.8 1.1

SPMr 0.23 1320 0.09 438 −2 ×10−4 4.6 3.4

0.10 117 0.08 185 1 ×10−2 2.4 3.0

PMO6 0.54 1350 0.13 409 1.87 ×10−2 3.6 3.8

0.20 110 0.12 156 1.20 ×10−2 1.6 3.0

Harvey (1985), Ci being set to 2, ai = 2. This corresponds to a
signal whose autocorrelation in time has a decreasing exponen-
tial behaviour. However, as mentioned by Harvey (1985), other
values for the decay rate power over time might be found for dif-
ferent types of data probing the atmosphere at different heights
(see e.g. Andersen et al. 1998a).

The physical processes most commonly considered in the
solar background and represented by such power laws are: ac-
tivity (predominant up to ∼10 µHz), supergranulation (up to
∼100 µHz), mesogranulation (up to ∼1 mHz), and granulation
(see e.g. Andersen et al. 1998b; Anklin et al. 1998; Aigrain et al.
2004). In the present study, we will focus on the two latter pro-
cesses showing significant contribution above 100 µHz, in the
frequency domain where oscillations are found.

An estimate of the two first contributions (white noise and
solar background) is obtained by a simultaneous fit of the spec-
trum outside the domain where the oscillation signal is seen with
function D + ΣiPi(ν), where D represents the white noise contri-
bution. After subtraction of these two components, we isolate
the one due to stellar oscillations.

The two powerlaw components (7 parameters: Ai, Bi, Ci, and
D) give a satisfactory fit of the background for our purpose and
we do not find it necessary to include other components like su-
pergranulation or activity.

As shown by error values in Table 1, the fit gives satisfactory
results in the case of SPM data, especially for the blue and green
channels. In the case of SPM/red channel, the coefficients are
obtained with very large error bars and in the case of PMO6,
the convergence precision is even worse, due to the larger white
noise component. We note that these fits all suggest a value of
Ci around 4, in agreement with the results obtained by Andersen
et al. (1998a). We thus decided to fit again the previous function,
but forcing the Ci coefficients to the value 4, thus reducing the
number of free parameters to 5 and obtaining a more precise
determination of them.

The results shown in Fig. 2 (see also Table 2) are very satis-
factory, and we will refer to these values hereafter.

As could be expected, the level of the intensity compo-
nents (A1 and A2) attributed to granulation and mesogranulation
is very different in the measurements associated with different
techniques and different bandpasses (see Fig. 3 top). The same
is true for the contribution associated to the oscillations (Fig. 3
bottom), stressing the necessity to establish a reference indepen-
dent of the instrument for the Sun oscillations and for compari-
son with other stars to be observed with other instruments.

Table 2. Fit with five parameters.

Data set A1 B1 A2 B2 D
σA1 σB1 σA2 σB2 σD
(

ppm2

µHz

)

(s)

(

ppm2

µHz

)

(s)

(

ppm2

µHz

)

SPMb 1.52 1292 0.55 433 4 ×10−3

0.02 18 0.02 12 3 ×10−3

SPMg 0.74 1302 0.25 419 1 ×10−3

0.02 37 0.02 27 3 ×10−3

SPMr 0.26 1321 0.07 403 1 ×10−3

0.02 105 0.01 89 3 ×10−3

PMO6 0.50 1349 0.14 439 20 ×10−3

0.02 55 0.02 42 3 ×10−3

Fig. 3. a) Observational instrumental power density spectrum associ-
ated with the stellar background contribution and estimated as described
in the text, for PMO6 data (plain black line), SPM-blue (dot [blue]),
SPM-green (dash [green]), SPM-red (long dash [red]); b) same for the
oscillation contribution.

3. Instrumental response functions

In this section we establish a relation between intensity variation
observed with a given instrument (hereafter “instrumental flux
variation”) and an intrinsic quantity defined as the “bolometric
luminosity variation”. This relation features a response function
characteristic of the instrument.

We derive the response function for an individual non-radial
mode (Sect. 3.2), then for a smoothed power density spectrum
(Sect. 3.3), and finally for the granulation (Sect. 3.4).

This is done taking into account both the band-width of the
instrument, the spectral energy distribution of the given star (ap-
proximated by a black body law) and the dependence of the
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stellar limb-darkening with the wavelength (given by stellar
atmosphere models).

3.1. Instrumental flux variation and local temperature
variation

Here, we express the relative instrumental flux variation δI/Ī as
a function of the local relative variation of the temperature at the
stellar photosphere δT (θ, φ)/T̄ .

First we define the relative variation of the instrumental
flux I:

(

δI

Ī

)

(t) =

∫

λ
dλ E(λ) δFλ
∫

λ
dλ E(λ) Fλ

(1)

where E(λ) is the global efficiency in terms of energy of the in-
strument at the wavelength λ, Fλ the flux received from the star
at the wavelegth λ and δFλ its variation.

Then, following the approach of Berthomieu & Provost
(1990), we show (see Appendix A) that Fλ and δFλ can be
approximated as

Fλ = 2πHλGλ Bλ (2)

where Bλ is the black body law evaluated at the photosphere, i.e.
at T = Teff and where we have defined

Hλ ≡ 2

(∫ 1

−1

dµ gλ(µ)

)−1

(3)

and

Gλ ≡

∫ 1

0

dµ µ gλ(µ). (4)

with gλ the limb-darkening function, µ = cos(θ) and θ and φ re-
fer to the spherical coordinates for a z-axis pointing toward the
observer (observer reference frame) and

δFλ = Hλ

(

dBλ

d ln T

) ∫ 2π

0

dφ

∫ 1

0

dµ µ gλ(µ)

(

δT

T̄

)

(5)

where T is the temperature, δT its variation, the meaning of other
terms staying the same.

At this stage, we have expressed the instrumental flux rela-
tive variation δI/Ī as a function of δT/T̄ the local (µ,φ) relative
variation of the temperature at the photosphere.

3.2. Response function for an individual non-radial mode

Here, in the case of an individual oscillation mode, we show
that we can relate δT (θ, φ)/T̄ to a “bolometric luminosity relative
variation” (δL/L̄)ℓ,m, defined as an extension of the specific case
of radial modes where (δL/L̄) = 4δTeff/T̄eff.

As detailed in Appendix A, we consider the relative tem-
perature fluctuations associated with a mode with degree ℓ and
azimuthal order m:
(

δT

T̄

)

(t, θ, φ) = Θℓ,m(t) Ym
ℓ (θ′, φ′) (6)

where Θℓ,m(t) is the intrinsic and instantaneous mode amplitude
in terms of temperature fluctuation, Ym

ℓ
is the spherical harmonic

associated with the mode with degree ℓ and azimutal order m,
and (r, θ′, φ′) (resp. (r, θ, φ)) the spherical coordinate system in
the pulsation frame (resp. in the observer frame). As discussed

in Appendix A,
(

δT/T̄
)

and hence Θℓ,m(t) are evaluated at the

photosphere.
For a radial mode, the bolometric and instrinsic luminosity

fluctuation is related to the relative instrinsic temperature fluctu-
ation as:

(

δL

L̄

)

ℓ=0
(t) = 4

(

δTeff

Teff

)

0

= 4Θ0(t) (7)

where Teff is the effective temperature and L the luminosity of
the star. Then, by extension of the radial case, we define, in the
general case, the bolometric and instrinsic mode amplitude in
terms of luminosity:

(

δL

L̄

)

ℓ,m

(t) ≡ 4Θℓ,m(t). (8)

Note that, in the present case, since the mode excitation is a ran-
dom process, we rather consider the rms quantities

(

δL

L̄

)rms

ℓ,m
≡

√

(

δL

L̄

)2

ℓ,m
(t) = 4

√

Θ2
ℓ,m

(t). (9)

The rms label will however be generally omitted in the following
for conciseness of the notation.

Then, we establish the relation between
(

δI/Ī
)

ℓ,m,i
(the ob-

served relative intensity fluctuations due to a given mode (ℓ,m),
for a given inclination i) and the instrinsic mode amplitude:

(

δI

Ī

)

ℓ,m,i

= Rℓ,m,iΘℓ,m =
Rℓ,m,i

4

(

δL

L̄

)

ℓ,m

(10)

with Rℓ,m,i the instrumental response function associated with the
mode with degree ℓ and azimuthal order m and inclination i. The
expression for Rℓ,m,i is:

Rℓ,m,i ≡

∫

λ
dλ E(λ)

dBλ

d ln T
S ℓ,m,i(λ)

∫

λ
dλ E(λ) Bλ

(11)

where S ℓ,m,i(λ) is the so-called “visibility” coefficient associated
with the mode.

The visibility coefficient, S ℓ,m,i, measures the contribution of
the mode integrated over the projected stellar surface, taking into
account the effect of the limb-darkening (see e.g. Dziembowski
1977; Berthomieu & Provost 1990). An expression for S ℓ,m,i is
given in Eq. (A.19). Note that in the case of radial modes, S 0 is
independent of λ and S 0 = 1 by definition.

An interesting property of the visibility coefficients S ℓ,m,i is
that, assuming equipartition of energy among different modes
of a same multiplet, the global visibility contribution of each
multiplet (composed of modes of the same radial order n, same
degree ℓ, and different azimuthal order m) is independent of the
inclination i (Dziembowski 1977; Toutain & Gouttebroze 1993).
It is thus possible to compute a global visibility function S ℓ =
√

ΣmS 2
ℓ,m,i

, which is independent of i for the different multiplets.

This property will be useful in the next section.

3.3. Response function for smoothed oscillation power
density spectrum

In the case of stellar observations, as remarked by Kjeldsen et al.
(2005) the measurement of individual modes or even individual
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multiplets might be delicate and it might give more precise re-
sults to estimate oscillation amplitudes from the smoothed os-
cillation power density contribution as represented in Sect. 1.
In this case, as suggested by Kjeldsen et al. (2005), the oscilla-
tion power density contribution (Posc, in ppm2/µHz) is smoothed
over typically three or four times the large separation (∆); then,
once multiplied by the estimate of the large separation (in µHz),
it is representative of Pn

I , the total power (in ppm2) concen-
trated in all modes present in one large separation (of order n).
Accordingly, we have

Pn
I ≃ 2 Posc ∆ (12)

where ∆ is the large separation and the factor 2 multiplying Posc

is introduced to take into account the power density spread in the
negative part of the spectrum.

Let define Pℓ,m,i as the observed power (in ppm2) associated
with a mode (ℓ,m), with inclination i. Assuming that Θℓ,m is the
same for all the modes that are within the same separation and
using Eq. (7), it can easily be shown that :

Pn
I =
∑

l,m

Pℓ,m
I = R2

oscΘ
2
0
(t) =

R2
osc

16

(

δL

L̄

)2

0
(t) (13)

with

Rosc ≡

√

∑

ℓ

Rℓ
2 (14)

Rℓ ≡

∫

λ
dλ E(λ)

dBλ

d ln T
S ℓ(λ)

∫

λ
dλ E(λ) Bλ

(15)

and Θ2
0
(t) (resp.

(

δL

L̄

)2

0
(t) ) is the mean square value of Θ0(t)

(resp. (δL/L)0 (t)) for a radial mode. Note that in Eq. (13) the
sum over (ℓ,m) is performed among all the multiplets within
the same separation. The expression for the visibility coefficient
S ℓ is given by Eq. (A.22). The visibility factor associated with
modes ℓ > 4 can be neglected. Accordingly, Eq. (14) can be
simplified as:

Rosc =

√

R2
0
+ R2

1
+ R2

2
+ R2

3
. (16)

In practice, we consider Posc, the smoothed power density com-
ponent associated with oscillations derived from observations,
as in Sect. 1. Using Eqs. (12), 13 and (9), one obtains the (rms)
bolometric amplitude normalised to radial mode given by

Abol,ℓ=0 ≡

(

δL

L̄

)rms

0
=

4

Rosc

√

2 Posc ∆ (17)

where Rosc is the response function given by Eq. (16) and com-
puted for each data set using Eqs. (15) and (A.22).

In the present work, the S ℓ(λ) coefficients (Eq. (A.22)) are
computed taking into account monochromatic specific intensi-
ties derived from stellar atmosphere models (see Barban et al.
2003) with relevant Teff , [Fe/H], and log g.

3.4. Response function for granulation

As detailed in Appendix A, since we are interested in rms values
with time and assuming that these values are identical all over
the stellar surface, the granulation component can be treated in a
similar way as a radial mode. Accordingly, the relation between

Table 3. Response functions for different sets of solar data.

Resp. Func. SPMb SPMg SPMr PMO6

Rosc(Teff,Sun) 11.63 9.02 5.26 7.15
Rg(Teff,Sun) 6.24 5.02 3.06 4.00

the observed relative intensity fluctuations and the associated
intrinsic fluctuations is
(

δI

Ī

)

g
(t) = RgΘg(t) =

Rg

4

(

δL

L̄

)

g
(t) (18)

where the quantities have the same meaning as previously for
radial modes but subscript g refers to the granulation and

Rg = Rℓ=0,m=0 =

∫

λ
dλ E(λ) dBλ

d ln T
∫

λ
dλ E(λ) Bλ

· (19)

As for the radial modes, we define the rms and instrinsic relative
luminosity fluctuation due to granulation as the quantity

(

δL

L̄

)rms

g

≡

√

(

δL

L

)2

g
(t) = 4

√

Θ2
g(t) =

4

Rg

(

δI

Ī

)rms

g

(t). (20)

If we consider the power density contribution associated with
granulation (Pg) determined in Sect. 1, we can derive the corre-
sponding bolometric power density spectrum according to

Pg,bol = 16 Pg/Rg
2 (21)

which is expected to characterize granulation independently of
the instrument considered. The application to the different data
sets obtained on the Sun (Rg values are given in Table 3) with
different instrumental techniques and with different bandpasses
shows a good agreement (see Sect. 4).

4. Results for different data sets

4.1. A reference solar bolometric oscillation amplitude

The resulting estimates of the bolometric amplitude per radial
mode are shown in Fig. 4 (Rosc values computed for the differ-
ent data sets considered here are given in Table 3). We compare
the curves obtained for each data set, with special attention to
the value at maximum often taken as a convenient characteris-
tic measurement of the oscillations amplitudes in stars (see also
Table 4). Although some residuals of the initial difference seem
to subsist (suggesting that our response function might be re-
fined further), we notice a reasonable agreement of the different
curves, within one-sigma error bar estimates. This allows us to
propose as a reference for the Sun a 2.53 ± 0.11 ppm of max-
imum bolometric amplitude per radial mode (mean of the four
values weighted by 1/σi). We checked that this result was not
affected significantly by changing the smoothing boxcar width
from 2 times to 4 times ∆.

4.2. A reference bolometric granulation power density
spectrum

The different mean profiles of bolometric background power
density spectra are shown in Fig. 5. Here again, we notice the
good agreement of the different curves. Coefficients character-
izing the different curves are given in Table 4 as well as refer-
ence values proposed for the Sun background contribution. Here
again, the influence of the size of the smoothing boxcar (be-
tween 0.1 to 4 times ∆) has been tested and found negligible
within the present error bars.
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Fig. 4. Observational bolometric amplitude per radial mode estimated
as described in the text, for PMO6 data (plain black line), SPM-blue
(dot [blue]), SPM-green (dash [green]), SPM-red (long dash [red]).
Error bars are given for the estimate of the maximum (boxcar: 3 times
Large Separation taken as 135 µHz).

Table 4. Bolometric parameters. The last line corresponds to refer-
ence values resulting from a mean of the values given in the other lines,
weighted by 1/σi.

Data A1,bol ζ1 τ1 A2,bol ζ2 τ2 Abol,ℓ=0

σA1bol σζ1 στ1 σA2bol σζ2 στ2 σAbol,ℓ=0

set

(

ppm2

µHz

)

(s)

(

ppm2

µHz

)

(s) (ppm)

SPMb 0.62 8.2 ×10−3 206 0.23 8.5 ×10−3 69 2.83

0.01 1.0 ×10−4 3 0.01 2.0 ×10−4 2 0.16

SPMg 0.47 7.1 ×10−3 207 0.16 7.2 ×10−3 67 2.47

0.01 1.0 ×10−4 6 0.01 3.0 ×10−4 4 0.19

SPMr 0.44 6.8 ×10−3 210 0.13 6.6 ×10−3 64 2.14

0.03 4.0 ×10−4 17 0.02 1.0 ×10−3 14 0.52

PMO6 0.50 7.2 ×10−3 215 0.14 6.7 ×10−3 70 2.36

0.02 2.0 ×10−4 9 0.02 5.0 ×10−4 7 0.23

Ref. 0.52 7.6 ×10−3 208 0.18 7.6 ×10−3 68 2.53

0.01 1.0 ×10−4 3 0.01 2.0 ×10−4 2 0.11

5. Response functions of CoRoT for objects

on the Main Sequence

Stellar atmosphere models are computed with the Atlas 9 code
(Kurucz 1993) in a modified version including the CGM con-
vection (see Heiter et al. 2002). Considering the CoRoT total
efficiency shown in Fig. 6, we compute the CoRoT response
functions for stellar atmosphere models characterized by dif-
ferent values of Teff , log g and chemical compositions illus-
trative of possible solar-like candidates on the Main Sequence
(−1 < [Fe/H] < +1, 3.9 < log g < 4.5, 5800 < Teff < 6750 K).

As shown in Fig. 7, the dependency of the CoRoT response
function Rosc on log g and chemical composition is small in the
considered range. To a great extent (within 0.6%), it can be ne-
glected and Rosc as Rg can be described as simple polynomial
functions of Teff only:

Rosc(Teff) = Rosc(Teff,Sun)+ A (Teff − Teff,Sun)+ B (Teff − Teff,Sun)2.

We proceed in the same way for Rg.

Values of the parameters obtained for the fit are given in
Table 5.

Fig. 5. Observational bolometric power density spectrum estimated as
described in the text, for PMO6 data (plain black line), SPM-blue (dot
[blue]), SPM-green (dash [green]), SPM-red (long dash [red]). a): gran-
ulation+ mesogranulation components; b): granulation and mesogran-
ulation individual components.

Fig. 6. CoRoT total efficiency.

6. Conclusions

Measurement of stellar oscillations or granulation provides in-
strumental values which depend on the instrumental technique
and bandpass and on the star considered. In this work, with the
purpose of helping future comparisons between stars observed
in photometry,

1. We propose a simple expression for response functions
connecting specific instrumental photometric measurements
with intrinsic bolometric values for oscillation amplitudes
and granulation power density.

2. We test and validate this expression on four sets of data ob-
tained on the Sun, in four different bandpasses and with two
different instrumental techniques.

3. We establish reference bolometric measurements for the
Solar oscillation amplitudes (2.53 ± 0.11 ppm) and for the
Solar granulation power density.

4. We compute the response functions for the CoRoT instru-
ment and give an analytic expression for it.

Acknowledgements. SOHO is a mission of international collaboration between
ESA and NASA.

Annexe A. Articles reproduits

218



E. Michel et al.: Intrinsic photometric characterisation of stellar oscillations and granulation 985

Fig. 7. Polynomial fit of the CoRoT response function Rosc (dash [red])
and Rg (plain [blue]) for different stellar atmosphere models mentioned
in the text.

Table 5. Fit of CoRoT response functions.

Resp. Func. R(Teff,Sun) A(K−1) B(K−2) χ2

σR(Teff,Sun
) σA σB

Rosc(Teff) 7.134 −96.8 × 10−5 13 × 10−8 8 × 10−3

9 × 10−3 4.4 × 10−5 4 × 10−8

Rg(Teff) 4.0420 −523 × 10−6 71 × 10−9 1.3 × 10−5

4 × 10−4 2 × 10−6 2 × 10−9

Appendix A: Derivation of the instrumental

response functions

Here we derive the relation between the observed flux fluctu-
ation and the intrinsic temperature fluctuations induced by the
presence of non-radial modes or granulation on the surface of the
star. We proceed in the manner of Berthomieu & Provost (1990).
We summarize the main steps and emphasize the approxima-
tions that we adopt in the present study. The flux, Fλ, received
from the star at the wavelength λ is given by (see Berthomieu &
Provost 1990):

Fλ =

∫

A

dA Iλ(τ = 0, µ) (A.1)

whereA is the total oberved surface, dA = dA.n the elementary
observed surface around the direction of the observer, n a unit
vector in the direction of the observer, dA the differential surface
element perpendicular to the stellar surface, τ the optical depth,
µ = cos(θ), and Iλ(µ) the specific intensity at the wavelength λ.
We adopt a spherical coordinate system with the z-axis pointing
toward the observer. The specific intensity is assumed to be in-
variant with respect to any rotation along the z-axis; this is why
here Iλ depends only on µ. Note that the integral of Eq. (A.1) is
evaluated at the optical depth τ = 0.

We define the limb-darkening function, gλ, as

gλ ≡
Iλ(µ)

Iλ(1)
(A.2)

where Iλ(1) ≡ Iλ(µ = 1). Finally, we define the mean intensity
as the quantity

Jλ ≡
1

4π

∫

dΩ Iλ(µ) (A.3)

where dΩ is the elementary solid angle. Using Eqs. (A.2)
and (A.3) we then derive the relation:

Jλ = Iλ(1)/Hλ (A.4)

where we have defined

Hλ ≡ 2

(∫ 1

−1

dµ gλ(µ)

)−1

. (A.5)

According to Eqs. (A.1), (A.2) and (A.4), a small variation of Fλ
is given by

δFλ =

∫

A

dA
(

ḡλ H̄λδJλ + J̄λH̄λ δgλ + J̄λḡλ δHλ
)

+ δ (dA) J̄λ ḡλ (A.6)

where () refers to the equilibrium quantity. The first term on
the RHS of Eq. (A.6) corresponds to the perturbations of the
mean intensity evaluated at an effective optical depth τ = τ0 in
the atmosphere. This effective optical depth corresponds to the
layer that contributes predominantly to the variation of the emer-
gent flux (see Berthomieu & Provost 1990). As in Berthomieu &
Provost (1990), we assume that gλ and hence Hλ do not depend
on τ0 and are evaluated at τ = 0.

The three last terms in RHS of Eq. (A.6) are the perturbation
of the limb-darkening function and the surface distortion (for de-
tails see Berthomieu & Provost 1990). All these perturbuations
are shown to have a negligible contribution to δFλ compared to
that of δJλ. Accordingly, Eq. (A.6) can be simplified as:

δFλ =

∫ 2π

0

dφ

∫ 1

0

dµ µ gλ(µ) Hλ δJλ , (A.7)

where we have dropped () from gλ and Hλ.
We place ourself in Local Thermodynamic Equilibrium and

assume adiabatic perturbations for linearisation, accordingly
δJλ = δBλ where Bλ is the black body law whose expression is

Bλ =
2h c2

λ5

1

eh c/λ k T − 1
(A.8)

where T is the local temperature, c the speed of the light, h
Planck’s constant, and k Boltzmann’s constant.

The local variation of Bλ is induced by a local variation of T .
Assuming small perturbations, we have

δJλ = δBλ =

(

dBλ

d ln T

)

(

δT

T

)

(τ0, t, θ, φ). (A.9)

Using Eqs. (A.9) and (A.15), Eq. (A.7) can then be written as:

δFλ = Hλ

(

dBλ

d ln T

) ∫ 2π

0

dφ

∫ 1

0

dµ µ gλ(µ)

(

δT

T

)

. (A.10)

Finally, we approximate Eq. (A.1) as

Fλ = 2πHλGλ Bλ, (A.11)

where Bλ is evaluated at the photosphere, i.e. at T = Teff and
where we have defined

Gλ ≡

∫ 1

0

dµ µ gλ(µ). (A.12)

The relative variation of the total flux I received by the
instrument is finally given by

(

δI

Ī

)

(t) =

∫

λ
dλ E(λ) δFλ
∫

λ
dλ E(λ) Fλ

(A.13)
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where E(λ) is the global efficiency in terms of energy of the
instrument at a given wavelength. The function E(λ) is nor-
malised as
∫ +∞

0

dλ E(λ) = 1. (A.14)

A.1. Non-radial oscillations

In the case of a non-radial spheroidal mode, δT/T is by defini-
tion:
(

δT

T

)

(τ0, t, θ, φ) = Θℓ(t, τ0) Ym
ℓ (θ′, φ′) (A.15)

where Θℓ(t, τ0) is the intrinsic and instantaneous mode ampli-
tude in terms of temperature fluctuation, Ym

ℓ
is the spherical har-

monic associated with the mode with a degree ℓ and azimutal
order m, and (r, θ′, φ′) the spherical coordinate system in the
pulsation frame. The pulsation frame is chosen such that its po-
lar axis coincides with the star rotation axis. The spherical har-
monic, Ym

ℓ
, is normalized here as:

∫

dΩ′
∥

∥

∥Ym
ℓ (θ′, φ′)

∥

∥

∥

2
= 4π (A.16)

where Ω′ is the elementary solid angle associated with the pul-
sation coordinate system. Note that for low ℓ degree, Θ(t, τ0) is
expected to negligibly depend on ℓ (Belkacem et al. 2008).

As shown by Berthomieu & Provost (1990), for low ℓ degree,
τ0 marginally depends on ℓ. Furthermore, they show that – in
the Sun – the optical depth τ0 is very close the the photosphere,
which by definition corresponds to the layer T = Teff and τ =
2/3. Then, from here, we will assume that τ0 coincides with the
photosphere (τ = 2/3).

Using Eqs. (A.10), (A.11), (A.13), (A.12), and (A.15), we
then derive the flux variation due to the mode:
(

δI

Ī

)

(t) = Rℓ,m,iΘℓ(t) (A.17)

with

Rℓ,m,i ≡

∫

λ
dλ E(λ)

dBλ

d ln T
Gλ Hλ S ℓ,m,i(λ)

∫

λ
dλ E(λ) BλGλ Hλ

(A.18)

where we have defined the “visibility” coefficient, S ℓ,m,i, as the
quantity:

S ℓ,m,i(λ) ≡

∫ 2π

0
dφ
∫ 1

0
dµ µ gλ(µ) Ym

ℓ
(θ′, φ′)

2 π
∫ 1

0
dµ µ gλ(µ)

· (A.19)

Note that, from the definition of S ℓ,m,i, we have for a radial
mode S 0 = 1.

By using stellar atmosphere models, we find that – in the do-
main of Teff and gravity we are interested here – Gλ Hλ varies
slowly with λ compared to Bλ and dBλ / d ln T . Accordingly,
Eq. (A.18) can be simplified as:

Rℓ,m,i ≡

∫

λ
dλ E(λ)

dBλ

d ln T
S ℓ,m,i(λ)

∫

λ
dλ E(λ) Bλ

· (A.20)

Following Dziembowski (1977), we can decompose S ℓ,m,i(λ) as:

S ℓ,m,i = qℓ,m(i) S ℓ (A.21)

with

S ℓ(λ) =

∫ 1

0
dµ µ gλ(µ) Y0

ℓ
(µ)

∫ 1

0
dµ µ gλ(µ)

(A.22)

qℓ,m(i) =

√

(l − m)!

(l + m)!

∣

∣

∣P
|m|

ℓ

∣

∣

∣ cos(i) (A.23)

where i is the angle between the observer and the rotation axis

and P
|m|

ℓ
the associated Legendre function.

The bolometric flux variation,
(

δI/Ī
)bol

, is obtained from

Eq. (A.17) by assuming in Eq. (A.20) a constant E(λ), this gives

(

δI

Ī

)bol

(t) = Rbol
ℓ,m,iΘℓ(t) (A.24)

with

Rbol
ℓ,m,i ≡

π

σT 4
eff

∫

λ

dλ
dBλ

d ln T
S ℓ,m,i(λ). (A.25)

For a radial mode, S 0,0 = 1 and Rbol,0,0 = 4. We have then for a
radial mode:
(

δI

Ī

)bol

(t) = 4Θ0(t). (A.26)

By definition of the effective temperature (Teff) and the stel-
lar radius R∗, the total luminosity of the star, L, is given by
Steffan’s law:

L = 4πσT 4
eff R2

∗ (A.27)

where σ is Steffan’s constant. Variation of the stellar radius due
to the mode can be neglected. Accordingly, the relative variation
of L due to a radial mode is given by the relation

(

δL

L̄

)

= 4

(

δTeff

T̄eff

)

· (A.28)

We have again for a radial mode:

(

δI

Ī

)bol

=

(

δL

L̄

)

(A.29)

Then, according to Eqs. (A.26) and (A.28), we have
(

δTeff

T̄eff

)

= Θ0. (A.30)

Thus, for a radial mode, Θ0 (resp.
(

δI/Ī
)bol

) is then directly

related to a variation of Teff (resp. L). On the other hand, for

a non-radial mode,
(

δI/Ī
)bol

is related to the instrinsic mode

amplitude in terms of temperature, Θℓ, through the coefficient
given by Eq. (A.25) that depends on the mode geometry and the
limb-darkening law. However, by extension of the radial case,
we define, in the general case, the bolometric and instrinsic
mode amplitude in terms of luminosity as the quantity:
(

δL

L̄

)

ℓ

≡ 4Θℓ. (A.31)

Now, according to Eqs. (A.17) and (A.31), we can writte:

(

δI

Ī

)

(t) = Rℓ,m,iΘℓ =
Rℓ,m,i

4

(

δL

L̄

)

ℓ
· (A.32)

Eq. (A.32) then relates the observed intensity fluctuations to the
bolometric and instrinsic mode amplitude in terms of luminosity.
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A.2. Granulation

We define (δT/T )g = Θg(t, µ, φ) as the relative temperature per-
turbation due to the granulation at the instant t and the posi-
tion (θ, φ).

As for the mode, we derive the flux perturbation, δIg,λ, due
to the granulation:

(

δI

Ī

)

g
(t) =

∫

λ
dλ E(λ) δFg,λ
∫

λ
dλ E(λ) Fλ

(A.33)

with

δFg,λ =

(

dBλ

d ln T

) ∫ 2π

0

dφ

∫ 1

0

dµ µ gλ(µ)Θg(t, µ, φ). (A.34)

To go further, one needs to know how temperature fluctuations
due to the granules are distributed along the star surface. We
note that we are only interested in the time averaged intensity
fluctuations. As a simplification, we assume that distribution of
the temperature fluctuations is – in time average – homogeneous.
Accordingly, we can ignore the dependence of Θg with (µ, φ).
This is formally equivalent to assuming in Eq. (A.15) that Ym

ℓ
=

1, as for a radial mode ((ℓ,m) = (0, 0)). Then, the expression

for
(

δI/Ī
)

g
is derived from Eqs. (A.32) and (A.20) by assuming

(ℓ,m) = (0, 0). Accordingly, δ
(

I/Ī
)

g
can be written as

(

δI

Ī

)

g
(t) = RgΘg(t) =

Rg

4

(

δL

L̄

)

g
(t) (A.35)

with

Rg = Rℓ=0,m=0 =

∫

λ
dλ E(λ) dBλ

d ln T
∫

λ
dλ E(λ) , Bλ

(A.36)

(

δL

L̄

)

g
= 4Θg. (A.37)

As for the radial modes,
(

δL/L̄
)

g
represents the bolometric and

instrinsic luminosity variation due to the granulation.
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ABSTRACT

Context. Solar-like oscillations are stochastically excited by turbulent convection at the surface layers of the stars.
Aims. We study the role of the surface metal abundance on the efficiency of the stochastic driving in the case of the CoRoT target
HD 49933.
Methods. We compute two 3D hydrodynamical simulations representative – in effective temperature and gravity – of the surface
layers of the CoRoT target HD 49933, a star that is rather metal poor and significantly hotter than the Sun. One 3D simulation has
a solar metal abundance, and the other has a surface iron-to-hydrogen, [Fe/H], abundance ten times smaller. For each 3D simulation
we match an associated global 1D model, and we compute the associated acoustic modes using a theoretical model of stochastic
excitation validated in the case of the Sun and α Cen A.
Results. The rate at which energy is supplied per unit time into the acoustic modes associated with the 3D simulation with [Fe/H] = –1
is found to be about three times smaller than those associated with the 3D simulation with [Fe/H] = 0. As shown here, these differences
are related to the fact that low metallicity implies surface layers with a higher mean density. In turn, a higher mean density favors
smaller convective velocities and hence less efficient driving of the acoustic modes.
Conclusions. Our result shows the importance of taking the surface metal abundance into account in the modeling of the mode driving
by turbulent convection. A comparison with observational data is presented in a companion paper using seismic data obtained for the
CoRoT target HD 49933.

Key words. convection – turbulence – stars: oscillations – stars: individual: HD 49933 – Sun: helioseismology

1. Introduction

Using the measured linewidths and the amplitudes of the solar
acoustic modes, it has been possible to infer the rate at which
energy is supplied per unit time into the solar acoustic modes.
Using these constraints, different models of mode excitation by
turbulent convection have been extensively tested in the case of
the Sun (see e.g. recent reviews by Samadi et al. 2008b; and
Houdek 2006). Among the different approaches, we can distin-
guish pure theoretical approaches (e.g. Samadi & Goupil 2001;
Chaplin et al. 2005), semi-analytical approaches (e.g. Samadi
et al. 2003b,a) and pure numerical approaches (e.g. Nordlund
& Stein 2001; Stein et al. 2004; Jacoutot et al. 2008). The ad-
vantage of a theoretical approach is that it easily allows mas-
sive computation of the mode excitation rates for a wide vari-
ety of stars with different fundamental parameters (e.g. effective
temperature, gravity) and different surface metal abundance.
However, pure theoretical approaches are based on crude or sim-
plified descriptions of turbulent convection. On the other hand,
a semi-analytical approach is generally more realistic since the
quantities related to turbulent convection are obtained from 3D
hydrodynamical simulation. 3D hydrodynamical simulations are

⋆ The CoRoT space mission, launched on December 27, 2006, has
been developped and is operated by CNES, with the contribution of
Austria, Belgium, Brasil, ESA, Germany and Spain.

at this point in time too time consuming, so that a fine grid of
3D models with a sufficient resolution in effective temperature
(Teff), gravity (log g) and surface metal abundance (Z) is not yet
available. In the present paper, we study and provide a procedure
to interpolate for any value of Z the mode excitation rates P be-
tween two 3D simulations with different Z but the same Teff and
log g. With such interpolation procedure it is no longer required
to have at our disposal a fine grid in Z of 3D simulations.

The semi-analytical mode that we consider here is based
on Samadi & Goupil (2001)’s theoretical model with the im-
provements proposed by Belkacem et al. (2006a). This semi-
analytical model satisfactorily reproduces the solar seismic data
(Samadi et al. 2003a; Belkacem et al. 2006b). Recently, the seis-
mic constraints obtained for α Cen A (HD 128620) have pro-
vided an additional validation of the basic physical assump-
tions of this theoretical model (Samadi et al. 2008a). The star
α Cen A has a surface gravity (logg = 4.305) lower than
that of the Sun (log g⊙ = 4.438), but its effective temperature
(Teff = 5810 K) does not significantly differ from that of the
Sun (Teff,⊙ = 5780 K). The higher Teff, the more vigorous the
convective velocity at the surface and the stronger the driving by
turbulent convection (see e.g. Houdek et al. 1999). For main se-
quence stars with a mass M � 1.6 M⊙, an increase of the convec-
tive velocity is expected to be associated with a larger turbulent
Mach number, Mt (Houdek et al. 1999). However, the theoretical
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models of stochastic excitation are strictly valid in a medium
where Mt is – as in the Sun and α Cen A – rather small. Hence,
the higher Mt, the more questionable the different approxima-
tions and the assumptions involved in the theory (see e.g. Samadi
& Goupil 2001). It is therefore important to test the theory with
another star characterized by a Teff significantly higher than in
the Sun.

Furthermore, the star α Cen A has an iron-to-hydrogen abun-
dance slightly larger than the Sun, namely [Fe/H] = 0.2 (see
Neuforge-Verheecke & Magain 1997). However, the modeling
performed by Samadi et al. (2008a) for α Cen A assumes a so-
lar iron abundance ([Fe/H] = 0). According to Houdek et al.
(1999), the mode amplitudes are expected to change with the
metal abundance. However, Houdek et al. (1999)’s result was
obtained on the basis of a mixing-length approach involving sev-
eral free parameters and by using a theoretical model of stochas-
tic excitation in which a free multiplicative factor is introduced
in order to reproduce the maximum of the solar mode excitation
rates. Therefore, it is important to extend Houdek et al. (1999)’s
study by using a more realistic modeling based on 3D hydrody-
namical simulation of the surface layers of stars and a theoretical
model of mode driving that reproduces – without the introduc-
tion of free parameters – the available seismic constraints.

To this end, the star HD 49933 is an interesting case for
three reasons: first, this star has Teff = 6780 ± 130 K (Bruntt
et al. 2008), log g ≃ 4.25 ± 0.13 (Bruntt et al. 2008) and
[Fe/H] ≃ −0.37 dex (Solano et al. 2005; Gillon & Magain 2006).
The properties of its surface layers are thus significantly differ-
ent from those of the Sun and α Cen A. Second, HD 49933 was
observed in Doppler velocity with the HARPS spectrograph.
A seismic analysis of these data performed by Mosser et al.
(2005) has provided the maximum of the mode surface veloc-
ity (Vmax). Third, the star was more recently observed continu-
ously in intensity by CoRoT during 62 days. Apart from obser-
vations for the Sun, this is the longest seismic observation ever
peformed both from the ground and from space. This long term
and continuous observation provides a very high frequency res-
olution (∼0.19 µHz). The seismic analysis of these observations
undertaken by Appourchaux et al. (2008) or more recently by
Benomar et al. (2009) have provided the direct measurements of
the mode amplitudes and the mode linewidths with an accuracy
not previously achieved for a star other than the Sun.

We consider two 3D hydrodynamical simulations represen-
tative – in effective temperature and gravity – of the surface lay-
ers of HD 49933. One 3D simulation has [Fe/H] = 0, while the
second has [Fe/H] = –1. For each 3D simulation, we match an
associated global 1D model and compute the associated acoustic
modes and mode excitation rates, P. This permits us to quantify
the variation ofP induced by a change of the surface metal abun-
dance Z. From these two sets of calculation, we then deduce P
for HD 49933 by taking into account the observed iron abun-
dance of the star (i.e. [Fe/H] = –0.37). In a companion paper
(Samadi et al. 2010, hereafter Paper II), we will use these theo-
retical calculations of P and the mode linewidths obtained from
the seismic analysis of HD 49933 performed with the CoRoT
data to derive the expected mode amplitudes in HD 49933. These
computed mode amplitudes will then be compared with the ob-
served ones. This comparison will then constitute a test of the
stochastic excitation model with a star significantly different
from the Sun and α Cen A. It will also constitute a test of the
procedure proposed here for deriving P for any value of Z be-
tween two 3D simulations with different Z.

The present paper is organised as follows: we first describe
in Sect. 2 the method to compute the theoretical mode excitation

rates associated with the two 3D hydrodynamical simulations.
Next, the effects on P of a different surface metal abundance
are presented in Sect. 3. Then, by taking into account the actual
iron abundance of HD 49933, we derive theoretical values of
P expected for HD 49933. Finally, Sect. 5 is dedicated to our
conclusions.

2. Calculation of mode excitation rates

2.1. Model of stochastic excitation

The energy injected into a mode per unit time P is given by the
relation (see Samadi & Goupil 2001; Belkacem et al. 2006b):

P =
1

8 I

(

C2
R + C2

S

)

, (1)

where C2
R

and C2
S

are the turbulent Reynolds stress and entropy
contributions, respectively, and

I =

∫ M

0
dm |ξr |

2 (2)

is the mode inertia, ξr is the adiabatic radial mode displacement
and M is the mass of the star. The expressions for C2

R
and C2

S
are

given for a radial mode with frequencyωosc by

C2
R =

64π3

15

∫

dm
ρ̄ ũ4

k3
0 ω0

Kw

3
fr S R(r, ωosc), (3)

C2
S =

16π3

3ω2
osc

∫

dm
(αs s̃ ũ)2

ρ̄ k3
0 ω0

gr S s(r, ωosc) (4)

where we have defined the “source functions”:

S R(r, ωosc) =
k3

0 ω0

ũ4

∫

dk

k2
E2(k)

×

∫

dωχk(ω + ωosc) χk(ω) (5)

S s(r, ωosc) =
k3

0 ω0

ũ2 s̃2

∫

dk

k2
E(k) Es(k)

×

∫

dωχk(ω + ωosc) χk(ω) (6)

where P is the gas pressure, ρ the density, s the entropy, ρ̄ the
equilibrium density profile, αs ≡ (∂P/∂s)ρ, fr ≡ (dξr/dr)2 and gr

are two functions that involve the first and second derivatives of
ξr respectively, k is the wavenumber, E(k) is the turbulent kinetic
energy spectrum, Es(k) is the spectrum associated with the en-
tropy fluctuations (s), s̃ is the rms of s, χk is the time-correlation
function associated with the velocity, ũ is a characteristic veloc-
ity defined in a way that 3 ũ2 = 〈u2〉, 〈.〉 refers to horizontal
and time average, u is the turbulent velocity field, and finally
Kw ≡ 〈u

4
z 〉/〈u

2
z 〉

2 is the Kurtosis (see Belkacem et al. 2006a,b,
for details). Furthermore, we have introduced for convenience
the characteristic frequency ω0 and the characteristic wavenum-
ber k0:

ω0 ≡ k0 ũ (7)

k0 ≡
2π
Λ

(8)

where Λ is a characteristic size derived from E(k) as explained
in Samadi et al. (2003b). Note that the introduction of the term
k3

0 ω0 ũ−4 in the RHS of Eq. (5) and the term k3
0 ω0 ũ−2 s̃−2 in the

RHS of Eq. (6) ensure dimensionless source functions.
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The kinetic spectrum E(k) is derived from the 3D simulation
as detailled in Samadi et al. (2003b). As shown by Samadi et al.
(2003b), the k-dependence of Es(k) is similar to that of the E(k).
Accordingly, we assume Es ∝ E.

In Samadi et al. (2008a), two different analytical functions
for χk(ω) have been considered, namely a Lorentzian function
and a Gaussian one. In the present study we will in addition
derive χk(ω) directly from the 3D simulations as detailled in
Samadi et al. (2003a). Once χk(ω) is derived from the 3D simu-
lation, it is implemented in Eqs. (5) and (6).

We compute the mode excitation as detailled in Samadi et al.
(2008a): all required quantities – except ξr, I and ωosc – are ob-
tained directly from two 3D hydrodynamical simulations repre-
sentative of the outer layers of HD 49933, whose characteristics
are described in Sect. 2.2 below.

The quantities related to the modes (ωosc, I and ξr) are calcu-
lated using the adiabatic pulsation code ADIPLS (Christensen-
Dalsgaard & Berthomieu 1991) from 1D global models. The
outer layers of these 1D models are derived from the 3D sim-
ulation as described in Sect. 2.3.

2.2. The 3D simulations

We computed two 3D radiation-hydrodynamical model at-
mospheres with the code CO5BOLD (Freytag et al. 2002;
Wedemeyer et al. 2004). One 3D simulation had a solar iron-
to-hydrogen [Fe/H] = 0.0 while the other had [Fe/H] = –1.0.
The 3D model with [Fe/H] = 0 (resp. [Fe/H] = –1) will be here-
after referred to as model S0 (resp. S1). The assumed chemi-
cal composition is similar (in particular for the CNO elements)
to that of the solar chemical composition proposed by Asplund
et al. (2005). The abundances of the α-elements in model S1
were assumed to be enhanced by 0.4 dex. For S0 we obtain
Z/X = 0.01830 and Y = 0.249, and for S1 Z/X = 0.0036765
and Y = 0.252. Both 3D simulations have exactly the same grav-
ity (log g = 4.25) and are very close in effective temperature
(Teff). Both models employ a spatial mesh with 140× 140× 150
grid points, and a physical extent of the computational box of
16.4×16.4×24.2 Mm3. The equation of state takes into account
the ionisation of hydrogen and helium as well as the forma-
tion of H2 molecules according to the Saha-Boltzmann statistics.
The wavelength dependence of the radiative transfer is treated
by the opacity binning method (Nordlund 1982; Ludwig 1992;
Vögler et al. 2004) using five wavelength bins for model S0
and six for model S1. Detailed wavelength-dependent opaci-
ties were obtained from the MARCS model atmosphere package
(Gustafsson et al. 2008). Table 1 summarizes the characteristics
of the 3D models. The effective temperature and surface gravity
correspond to the parameters of HD 49933 within the observa-
tional uncertainties, while the two metallicities bracket the ob-
served value.

For each 3D simulation, two time series were built. One has
a long duration (38h and 20h for S0 and S1, respectively) and
a low sampling frequency (10 mn). This time series is used
to compute time averaged quantities (ρ̄, E(k), etc.). The sec-
ond time series is shorter (8.8 h and 6.8 h for S0 and S1, re-
spectively), but has a high sampling frequency (1 mn). Such
high sampling frequency is required for the calculation of χk(ω).
Indeed, the modes we are looking at lie between ν ≈ 1.25 mHz
and ν ≈ 2.4 mHz.

The two 3D simulations extend up to T = 100 000 K.
However, for T � 30 000 K, the 3D simulations are not com-
pletely realistic. First of all, the MARCS-based opacities are
provided only up to a temperature of 30 000 K; for higher

Table 1. Characteristics of the 3D simulations.

Label [Fe/H] Y Z Z/X Teff [K]
S0 0 0.249 13.5 × 10−3 0.018305 6725 ± 17
S1 –1 0.252 2.74 × 10−3 0.003676 6730 ± 12

temperatures the value at 30 000 K is assumed. Note that we
refer to the opacity per unit mass here. For the radiative transfer
the opacity per unit volume is the relevant quantity, i.e. the prod-
uct of opacity per mass unit and density. Since in the simulation
the opacity is still multiplied at each position with the correct
local density, the actual error we make when extrapolating the
opacity is acceptable.

Another limitation of the simulations is the restricted size
of the computational box which does not allow for a full devel-
opment of the largest flow structures, again in the layers above
T ≃ 30 000 K. Two hints make us believe that the size of the
computational domain is not fully sufficient: i) in the deepest
layers of the simulations there is a tendency that structures align
with the computational grid; ii) the spatial spectral power P of
scalar fields in a horizontal layer does not tend towards the ex-
pected asymptotic behaviour P × k for low spatial wavenum-
ber k. We noticed this shortcoming only after the completion of
the simulation runs. To mitigate its effect in our analysis, we
will later by default integrate the mode excitation rates up to
T = 30 000 K. However, for comparison purposes, some com-
putations have been extended down to the bottom of the 3D sim-
ulations. For S0, the layers located below T ≃ 30 000 K con-
tribute only by �10% to the excitation of the modes lying in the
frequency range where modes have the most chance to be de-
tected (ν ≃ 1.2−2.5 mHz). For S1, the contribution of the deep
layers is even smaller (∼5%).

Finally, one may wonder how the treatment of the small-
scales or the limited spatial resolution of the simulation can
influence our calculations. Dissipative processes are handled
in CO5BOLD on the one hand side implicitely by the numer-
ical scheme (Roe-type approximate Riemann solver), and on
the other hand explicitely by a sub-grid model according to
the classical Smagorinsky (1963) formulation. Jacoutot et al.
(2008) found that computed mode excitation rates significantly
depend on the adopted sub-grid model. Samadi et al. (2007) have
found that solar mode excitation rates computed in the manner
of Nordlund & Stein (2001), i.e., using data directly from the 3D
simulation, decrease as the spatial resolution of the solar 3D sim-
ulation decreases. As a conclusion the spatial resolution or the
sub-grid model can influence computed mode excitation rates
(see a discussion in Samadi et al. 2008a). However, concerning
the spatial resolution and according to Samadi et al. (2007)’s re-
sults, the present spatial resolution (1/140 of the horizontal size
of the box and about 1/150 of the vertical extent of the simu-
lation box) is high enough to obtain accurate computed energy
rates. The increased spatial resolution of our models in compar-
ison to the work of Jacoutot et al. (2008) reduces the impact of
the unresolved scales.

2.3. The 1D global models

For each 3D model we compute an associated 1D global model.
The models are built in the manner of Trampedach (1997)
as detailled in Samadi et al. (2008a) in such way that their
outer layers are replaced by the averaged 3D simulations de-
scribed in Sect. 2.2. The interior of the models are obtained
with the CESAM code assuming standard physics: Convection is
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Table 2. Characteristics of the 1D “patched” models. α is the mixing-
length parameter.

[Fe/H] Y Z Teff [K] R/R⊙ M/M⊙ α

0 0.249 13.5 × 10−3 6726 1.473 1.408 1.677
–1 0.252 2.74 × 10−3 6732 1.261 1.033 1.905

Fig. 1. Mean density ρ̄ as a function of temperature, T . The solid line
corresponds to the 3D model with the metal abundance (S0) and the
dashed line to metal poor 3D model (S1). The filled dots show the lo-
cation where the 1D models have been matched to the associated 3D
simulation.

described according to Böhm-Vitense (1958)’s local mixing-
length theory of convection (MLT), and turbulent pressure is ig-
nored. Microscopic diffusion is not included. The OPAL equa-
tion of state is assumed. The chemical mixture of the heavy ele-
ments is similar to that of Asplund et al. (2005)’s mixture. As in
Samadi et al. (2008a), we will refer to these models as “patched”
models hereafter.

The two models have the effective temperature and the grav-
ity of the 3D simulations. One model is matched with S0 and
has [Fe/H] = 0, while the second is matched with S1 and has
[Fe/H] = –1. The 1D models have the same chemical mixture
as their associated 3D simulations. The parameters of the 1D
patched models are given in Table 2. The stratification in density
and temperature of the patched 1D models are shown in Fig. 1.
At any given temperature the density is larger in S1 as a conse-
quence of its lower metal abundance. Indeed, the lower the metal
abundance, the lower the opacity; then, at a given optical depth
(τ), the density is larger in S1 compared to S0. The photosphere
corresponds to the optical depth τ = 2/3. Since the two 3D simu-
lations have approximatively the same effective temperature, the
density in S1 is larger at optical depth τ = 2/3. Since the den-
sity in S1 increases with depth even more rapidly than in S0, the
density in S1 remains larger for τ > 2/3 than in S0.

3. Effects of the metal abundance on excitation

rates

The mode excitation rates (P) are computed for the two 3D sim-
ulations according to Eqs. (1)–(6). The integration is performed
from the top of the simulated domains down to T = 30 000 K
(see Sect. 2.2). In the following, P1 (resp. P0) corresponds to
the mode excitation rates associated with the 3D model with
[Fe/H] = –1 (resp. [Fe/H] = 0).

Fig. 2. Mode excitation rates P as a function of the mode frequency, ν.
The solid line corresponds to the 3D model with the canonical metal
abundance (S0) and the dashed line to the metal poor 3D model (S1).
The dot-dashed line corresponds to the mode excitation rates derived
for the specific case of HD 49933 as explained in Appendix A.

3.1. Results

Figure 2 shows the effect of the assumed metal abundance of
the stellar model on the mode excitation rates. P1 is found to
be three times smaller than P0, i.e. p modes associated with the
metal poor 3D model (S1) receive approximatively three times
less energy per unit time than those associated with the 3D model
with the solar metal abundance (S0).

For both 3D models, the dominant part of the driving is en-
sured by the Reynolds stresses. The entropy fluctuations con-
tribute by only ∼30% of the total power for both S0 and S1. By
comparison, in the case of the Sun and α Cen A it contributes
by only ∼15%. Furthermore, we find that the contribution of the
entropy source term is – as for the Reynolds stress term – about
three times smaller in S1 than in S0. We conclude that the effect
of the metal abundance on the excitation rates is almost the same
for the Reynolds stress contribution and the entropy source term.

3.2. Interpretation

From Eqs. (1), (2), (3), (7) and (8) we show that at a given layer
the power supplied to the modes – per unit mass – by the
Reynolds stress is proportional to FkinΛ

4 S R/M, where Fkin is
the flux of the kinetic energy, which is proportional to ρ̄ ũ3, Λ is
a characteristic length (see Sect. 2.1) andM is the mode mass
defined as:

M =
I

ξ2r
(9)

where ξr is the mode displacement evaluated at the layer in the
atmosphere where the mode is measured.

The power supplied to the modes – per unit mass – by the
entropy source term is proportional to ρ̄ ũ3Λ4 R2 S s where ωosc
is the mode frequency, R ∝ Fconv/Fkin, where Fconv ∝ wαs s̃
is the convective flux, and finally s̃ is the rms of the entropy
fluctuations (see Samadi et al. 2006). We recall that the higher
R, the higher the relative contribution of the entropy source to
the excitation. We study below the role of M, Fkin, Λ, S R, S s

and R:

– Mode mass (M): The frequency domain, where modes
are strongly excited, ranges between ν ≈ 1.2 mHz and
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ν ≈ 2.5 mHz. In this frequency domain, the mode masses
M associated with S0 are quite similar to those associated
with S1 (not shown). Consequently the differences between
P1 and P0 do not arise from the (small) differences inM.

– Kinetic energy flux (Fkin): The larger Fkin, the larger the driv-
ing by the Reynolds stress. However, we find that the two 3D
models have very similar Fkin. This is not surprising since
the two 3D models have very similar effective temperatures.
This means that the differences between P1 and P0 do not
arise from the (small) differences in Fkin.

– Characteristic length (Λ): In the manner of Samadi et al.
(2003b) we derive from the kinetic energy spectra E(k) of the
two 3D simulations the characteristic length Λ (Λ = 2π/k0,
see Eq. (8)) for each layer of the simulated domain. We find
that the differences in Λ between the two 3D simulations is
small and does not play a significant role in the differences
in P. This can be understood by the fact that S0 and S1 have
the same gravity. Indeed, as shown by Samadi et al. (2008a)
– at a fixed effective temperature – Λ scales as the inverse
of g. We conclude that the differences between P1 and P0 do
not originate from the (small) differences in Λ.

– Source functions (S R and S s): The dimensionless source
functions S R and S s are defined in Eqs. (5) and (6) re-
spectively. Both source functions involve the eddy time-
correlation function χk(ω). We define ωk as the frequency
width of χk(ω). As shown by Samadi et al. (2003a) and as
verified in the present case, ωk can be evaluated as the prod-
uct k uk where uk is given by the relation (Stein 1967):

u2
k =

∫ 2k

k

dk E(k) (10)

where E(k) is normalised as:
∫ +∞

0
dk E(k) = 1

2 〈u
2〉 ≡ 1

2 ũ2. (11)

According to Eqs. (10) and (11), uk is directly proportional
to ũ. At a fixed k/k0, we then have ωk ∝ ũ k0 = ω0.

As seen above, ω0 controls ωk, the frequency width of χk. Then,
at fixed ωosc, we can easly see from Eqs. (5) and (6) that the
smaller ω0, the smaller S R(ωosc) and S s(ωosc). Sinceω0 = ũ k0 =

2π ũ/Λ and since both 3D simulations have approximately the
same Λ, smaller ũ results directly in smaller ω0 and hence in
smaller source functions.

We have plotted in Fig. 3 the characteristic velocity ũ. This
quantity is found to be up to 15% smaller for S1 compared with
S0. In other words, the metal poor 3D model is characterized
by lower convective velocities. Consequently, the source func-
tions are smaller for S1 compared to S0. Although the convec-
tive velocities differ between S0 and S1 by only 15%, the exci-
tation rates differ by a factor ∼3. The reason for this is that he
source functions, which are non-linear functions of ũ, decrease
very rapidly with ũ. This is the consequence of the behavior of
the eddy-time correlation χk. Indeed, this function varies with
the ratio ωosc/ωk approximately as a Lorentzian function. This
is why χk varies rapidly with ũ (we recall that ωk ∝ ũ k0).

In conclusion, the differences betweenP1 and P0 are mainly
due to differences in the characteristic velocity ũ. In turn, the low
convective velocity in S1 is a consequence of the larger density
compared to S0. Indeed, as shown in Fig. 1, the density is sys-
tematically higher in S1. At the layer where the modes are the
most excited (i.e. at T ∼ 10 000 K), the density is ∼50% higher.
Since the two 3D models have a similar kinetic energy flux (see

Fig. 3. Characteristic velocity ũ defined in Eq. (7) as a function of tem-
perature, T . The solid and dashed lines have the same meaning as in
Fig. 2. The dot-dashed line corresponds to the solid line multiplied by
γ1, where γ1(T ) ≡ (ρ̄0/ρ̄1)1/3 and ρ̄0 (resp. ρ̄1) is the mean density strat-
ification of S0 (resp. S1) (see Appendix A).

above), it follows that a larger density for S1 then implies lower
convective velocities.

Relative contribution of the entropy source term (R): The
convective flux Fconv in S1 is almost identical to that of S0. This
is due to the fact that the two 3D simulations have almost the
same effective temperature. Furthermore, as pointed out above,
the differences in Fkin between S1 and S0 are small. As a conse-
quence, the ratio R ∝ Fconv/Fkin does not differ between the two
3D simulations. Accordingly, as for the Reynolds contribution,
the variation of the excitation rates with the metal abundance is
only due to the source term S S . The latter varies with ω0 in the
same manner as S R, which is in turn the reason for the contribu-
tion of the entropy fluctuations to show the same trend with the
metal abundance as the Reynolds stress term.

4. Theoretical calculation of P for HD 49933

We derive the mode excitation rates P for HD 49933. According
to Gillon & Magain (2006), HD 49933 has [Fe/H] = −0.37 ±
0.03 dex, while we only have two 3D simulations with values of
[Fe/H], respectively [Fe/H] = 0 and [Fe/H] = –1.

As seen in Sect. 3.2, differences in P between S0 and S1 are
a direct consequence of the differences in the source functions
S R and S S . It follows that in order to deriveP for HD 49933, we
only have to derive the expected values for S R and S S . As seen
in Sect. 3.2, differences in S R (or in S S ) between S0 and S1 are
related to the surface metal abundance through the surface densi-
ties that impact the convective velocities (ũ). The determination
of the HD 49933 convective velocities allows us to determine its
source function. To this end, we use the fact that the kinetic flux
is almost unchanged between S1 and S0 (see Sect. 3.2) to derive
the profile of ũ(T ), expected at the surface layers of HD 49933.
This is performed by interpolating in Z between S0 and S1, the
surface density stratification representative of the surface layers
of HD 49933. The whole procedure is described in Appendix A.

In order to compute P for HD 49933, we then need to
know Z for this star. Since we do not know its surface helium
abundance, we will assume by default the solar value for Y:
Y = 0.249 ± 0.003 (Basu 1997). Gillon & Magain (2006)’s
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analysis shows that the chemical mixture of HD 49933 does not
significantly differ from that of the Sun. According to Asplund
et al. (2005), the new solar metal to hydrogen ratio is (Z/X)⊙ =
0.0165 Accordingly, since [Fe/H] = –0.37 ± 0.03 dex, we de-
rive Z = 5.3 × 10−3 ± 0.4 × 10−3 for HD 49933. Note that
assuming Grevesse & Noels (1993)’s chemical mixture yields
Z = 7.8 × 10−3 ± 0.5 × 10−3.

The result of the calculation is shown in Fig. 2. The maxi-
mum P is 1.08 ± 0.05 × 1017 J/s when Asplund et al. (2005)’s
chemical composition is assumed (see Appendix A). This is
about 30 times larger than in the Sun and about 14 times larger
than in α Cen A. When Grevesse & Noels (1993)’s chemical
mixture is assumed, the maximum in P is in that case equal to
1.27±0.05×1017 J/s, that is about 30% larger than with Asplund
et al. (2005)’s solar chemical mixture.

We note that the uncertainties in the knowledge of [Fe/H]
set uncertainties on P which are on the order of 10% in the fre-
quency domain of interest.

5. Conclusion

We have built two 3D hydrodynamical simulations representa-
tive in effective temperature (Teff) and gravity (g) of the surface
layers of an F type star on the main sequence. One model has a
solar iron-to-hydrogen abundance ([Fe/H] = 0) and the other has
[Fe/H] = –1. Both models have the same Teff and g. For each 3D
simulation, we have computed an associated “patched” 1D full
model. Finally, we have computed the mode excitation rates P
associated with the two “patched” 1D models.

Mode excitation rates associated with the metal poor 3D sim-
ulation are found to be about three times smaller than those as-
sociated with the 3D simulation which has a solar surface metal
abundance. This is explained by the following connections: the
lower the metallicity, the lower the opacity. At fixed effective
temperature and surface gravity, the lower the opacity, the denser
the medium at a given optical depth. The higher the density,
the smaller are the convective velocities to transport the same
amount of energy by convection. Finally, smaller convective ve-
locities result in a less efficient driving. On the other hand, a
surface metal abundance higher than the solar metal abundance
will result in a lower surface density, which in turn will result in
a higher convective velocity and then in a more efficient driving.
Our result can then be qualitatively generalised for any surface
metal abundance.

By taking into account the observed surface metal abundance
of the star HD 49933 (i.e. [Fe/H] = –0.37), we have derived, us-
ing two 3D simulations and the interpolation procedure devel-
oped here, the rates at which acoustic modes are expected to be
excited by turbulent convection in the case of HD 49933. These
excitation rates P are found to be about two times smaller than
for a model built assuming a solar metal abundance. These the-
oretical mode excitation rates will be used in Paper II to derive
the expected mode amplitudes from measured mode linewidths.
We will then be able to compare these amplitudes with those de-
rived for HD 49933 from different seismic data. This will con-
stitute an indirect test of our procedure which permits us to in-
terpolate for any value of Z the mode excitation rates P between
two 3D simulations with different Z but the same Teff and log g.
We must stress that a more direct validation of this interpolation
procedure will be to compute a third 3D model with the surface
metal abundance of the star HD 49933 and to compare finally
the mode excitation rates obtained here with the interpolation
procedure with that obtained with this third 3D model. This rep-
resents a long term work since several months (about three to

four months) are required for the calculation of this additional
3D model, which is in progress.
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Appendix A: Theoretical calculation of the mode

excitation rates for HD 49933

The mode excitation rateP is inversely proportional to the mode
massM (see Eqs. (9), (2) and (2)). This is why we can deriveM
andMP separately in order to derive P for HD 49933.

A.1. Derivation ofMP

As pointed out in Sect. 3.2, the kinetic flux Fkin = ρ̄ ũ3 is almost
unchanged between S1 and S0 because both 3D models have the
same Teff. This has also to be the case for HD 49933 (same Teff
and same log g than S0 and S1). Therefore, the calculation of
MP for HD 49933 relies only on the evaluation of the values
reached – at a fixed mode frequency – by the source functions
SR and SS .

As seen in Sect. 3.2, ω0 = k0 ũ controls the width of χk in a
way that the source functionsSR(ωosc) and SS (ωosc) can be seen
as functions of the dimensionless ratio ωosc/ω0. The variation of
E with k as well as the variation of χk with ω/ω0 are shown to
be similar in the two 3D simulations. Furthermore, S0 and S1
have approximately the same characteristic length Λ and hence
approximately the same k0 ≡ 2π/Λ. Therefore, the source func-
tion SR (resp.SS ) associated with S0 only differs from that of S1
by the characteristic velocity ũ. This must then also be the case
for HD 49933. Further, in order to evaluate the source functions
in the case of HD 49933, we only need to know the factor γ
by which ũ is modified in HD 49933 with respect to S1 or S0.
According to Eq. (5) (resp. Eq. (6)), multipling ũ by γ is equiv-
alent to replace SR(ωosc) (reps. SS (ωosc)) by γSR(ωosc/γ) (resp.
γSs(ωosc/γ)).

Since the kinetic flux Fkin in HD 49933 must be the same
for S0 or S1, the characteristic velocity ũ can be derived for
HD 49933 according to ũ∗(T ) = ũ1 γ∗ with γ∗(T ) ≡ (ρ̄1/ρ̄∗)1/3

where ρ̄1(T ) is the mean density stratification of S1, ũ1(T )
the characteritic velocity of S1 and ρ̄∗ the mean density of
HD 49933. Once γ∗ and then ũ∗ are derived for HD 49933, we
then compute the source functions associated with HD 49933.
Finally, we computeMP by keeping Fkin constant. We now turn
to the derivation of the factor γ∗.

A.2. Derivation of γ∗

To derive γ∗ at a given T , we need to know how the mean den-
sity ρ̄ varies with the metal abundance Z. In order to this we
consider five “standard” 1D models with five different values
of Z. These 1D models are built using the same physics as de-
scribed in Sect. 2.3. Two of these models have the same abun-
dance as S0 and S1. All of the 1D models have approximately
the same gravity (log g ≃ 4.25) and the same effective tempera-
ture (Teff ≃ 6730 K).

The set of 1D models shows that – at any given temperature
within the excitation region – ρ̄ varies with Z rather linearly.
In order to derive ρ̄ for HD 49933, we apply – at fixed T and
between S0 and S1 – a linear interpolation of ρ̄(T ) with respect
to Z.
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Fig. A.1. Mode excitation ratesP as a function of the mode frequency ν.
The thin dot-dashed line corresponds to P01, the mode excitation rates
derived for S1 from S0 (see Appendix A4). The other lines have the
same meaning as in Fig. 2.

A.3. Derivation ofM

As shown in Sect. 3.2 above in the frequency domain where
modes are detected in HD 49933, M does not change signifi-
cantly between S0 and S1. This suggests that the mode masses
associated with a patched 1D model with the metal abundance
expected for HD 49933 would be very similar to those associ-
ated with S0 or S1. Consequently we will assume for the case
of HD 49933 the same mode masses as those associated with
S1, since this 3D model has a Z abundance closer to that of
HD 49933.

A.4. Derivation of P

Before deriving P for HD 49933, we check that, from S0 and
the knowledge of P0, we can approximately reproduce P1, the
mode excitation rates, associated with S1 following the proce-
dure described above. Let γ1 ≡ (ρ̄0/ρ̄1)1/3. As seen in Fig. 3,
when we multiply ũ0 by γ1(T ) we matche ũ1. Then, using γ1(T )
and following the procedure described above, we derive P01, the
mode excitation rates associated with S1 but derived from S0.
The result is shown in Fig. A.1. P01 matches P1 rather well.
However, there are differences remaining in particular in the fre-
quency domain ν = 1.2−1.5 mHz. Nevertheless, the differences
between P01 and P∞ are in any case not significant compared to
the accuracy at which the mode amplitudes are measured with
the CoRoT data (see Paper II). This validates the procedure, at
least at the level of the current seismic precisions.

Since the metal abundance Z of HD 49933 is closer to that of
S1 than that of S0, we derive the mode excitation rates P associ-
ated with HD 49933 from S1 following the procedure detailled
above. The result is shown in Fig. 2. As expected, the mode
excitation ratesP associated with HD 49933 lie between those of

S0 and S1, while remaining closer to S1 than to S0. Note that
the differences between P1 and the excitation rates derived for
HD 49933 (P) are of the same order as the differences seen lo-
cally between P1 and P01. These differences remain small com-
pared to the current seismic precisions. On the other hand the
differences betweenP and P0 are significant and have an impor-
tant impact on the mode amplitudes (see Paper II).
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ABSTRACT

Context. The seismic data obtained by CoRoT for the star HD 49933 enable us for the first time to measure directly the amplitudes
and linewidths of solar-like oscillations for a star other than the Sun. From those measurements it is possible, as was done for the Sun,
to constrain models of the excitation of acoustic modes by turbulent convection.
Aims. We compare a stochastic excitation model described in Paper I with the asteroseismology data for HD 49933, a star that is
rather metal poor and significantly hotter than the Sun.
Methods. Using the seismic determinations of the mode linewidths detected by CoRoT for HD 49933 and the theoretical mode
excitation rates computed in Paper I for the specific case of HD 49933, we derive the expected surface velocity amplitudes of the
acoustic modes detected in HD 49933. Using a calibrated quasi-adiabatic approximation relating the mode amplitudes in intensity to
those in velocity, we derive the expected values of the mode amplitude in intensity.
Results. Except at rather high frequency, our amplitude calculations are within 1-σ error bars of the mode surface velocity spectrum
derived with the HARPS spectrograph. The same is found with respect to the mode amplitudes in intensity derived for HD 49933
from the CoRoT data. On the other hand, at high frequency (ν >∼ 1.9 mHz), our calculations depart significantly from the CoRoT
and HARPS measurements. We show that assuming a solar metal abundance rather than the actual metal abundance of the star would
result in a larger discrepancy with the seismic data. Furthermore, we present calculations which assume the “new” solar chemical
mixture to be in better agreement with the seismic data than those that assumed the “old” solar chemical mixture.
Conclusions. These results validate in the case of a star significantly hotter than the Sun and α Cen A the main assumptions in
the model of stochastic excitation. However, the discrepancies seen at high frequency highlight some deficiencies of the modelling,
whose origin remains to be understood. We also show that it is important to take the surface metal abundance of the solar-like pulsators
into account.

Key words. convection – turbulence – stars: oscillations – Sun: helioseismology – stars: individual: HD 49933

1. Introduction

The amplitudes of solar-like oscillations result from a balance
between excitation and damping. The mode linewidths are di-
rectly related to the mode damping rates. Once we can measure
the mode linewidths, we can derive the theoretical value of the
mode amplitudes from theoretical calculations of the mode ex-
citation rates, which in turn can be compared to the available
seismic constraints. This comparison allows us to test the model
of stochastic mode excitation investigated in a companion paper
(Samadi et al. 2010, hereafter Paper I).

As shown in Paper I, a moderate deficit of the surface metal
abundance results in a significant decrease of the mode driv-
ing by turbulent convection. Indeed, by taking into account the
measured iron-to-hydrogen abundance ([Fe/H]) of HD 49993

⋆ The CoRoT space mission, launched on December 27 2006, has
been developped and is operated by CNES, with the contribution of
Austria, Belgium, Brasil, ESA, Germany and Spain.

([Fe/H] = −0.37), we have derived the theoretical values of the
mode excitation rates P expected for this star. The resulting
value of P is found to be about two times smaller than for a
model with the same gravity and effective temperature, but with
a solar metal abundance (i.e. [Fe/H] = 0).

The star HD 49933 was first observed in Doppler velocity
by Mosser et al. (2005) with the HARPS spectrograph. More
recently, this star has been observed twice by CoRoT. A first
time this was done continuously during about 61 days (initial
run, IR) and a second time continuously during about 137 days
(first long run in the center direction, LRc01). The combined
seismic analysis of these data (Benomar et al. 2009) has pro-
vided the mode linewidths as well as the amplitudes of the
modes in intensity. Then, using mode linewidths obtained for
HD 49933 with the CoRoT data and the theoretical mode ex-
citation rates (obtained in Paper I), we derive the expected val-
ues of the mode surface velocity amplitudes. We next compare
these values with the mode velocity spectrum derived following
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Kjeldsen et al. (2005) with seismic data from the HARPS spec-
trograph (Mosser et al. 2005).

Mode amplitudes in terms of luminosity fluctuations have
also been derived from the CoRoT data for 17 radial orders.
These data provide us with not only a constraint on the maximum
of the mode amplitude but also with the frequency dependence.
The relative luminosity amplitudes δL/L are linearly related to
the velocity amplitudes. This ratio is determined by the solution
of the non-adiabatic pulsation equations and is independent of
the stochastic excitation model (see Houdek et al. 1999). Such
a non-adiabatic calculation requires us to take into account, not
only the radiative damping, but also the coupling between the
pulsation and the turbulent convection. However, there are cur-
rently very significant uncertainties concerning the modeling of
this coupling (for a recent review see Houdek 2008). We relate
further for the sake of simplicity the mode luminosity ampli-
tudes to computed mode velocity amplitudes by assuming adia-
batic oscillations as Kjeldsen & Bedding (1995). Such a relation
is calibrated in order to reproduce the helioseismic data.

The comparison between theoretical values of the mode am-
plitudes (both in terms of surface velocity and intensity) consti-
tutes a test of the stochastic excitation model with a star signifi-
cantly different from the Sun and α Cen A. In addition it is also
possible to test the validity of the calibrated quasi-adiabatic re-
lation, since both mode amplitudes, in terms of surface velocity
and intensity, are available for this star.

This paper is organized as follows: we describe in Sect. 2 the
way mode amplitudes in terms of surface velocity vs are derived
from the theoretical values of P and from the measured mode
linewidths (Γ). Then, we compare the theoretical values of the
mode surface velocity with the seismic constraint obtained from
HARPS observations. We describe in Sect. 3 the way mode am-
plitudes in terms of intensity fluctuations δL/L are derived from
theoretical values of vs and compare δL/L with the seismic con-
straints obtained from the CoRoT observations. Finally, Sects. 4
and 5 are dedicated to a discussion and conclusion respectively.

2. Surface velocity mode amplitude

2.1. Derivation of the surface velocity mode amplitude

The intrinsic rms mode surface velocity vs is related to the mode
exitation rate P(ν) and the mode linewidth Γ(ν) according to
(see, e.g., Baudin et al. 2005):

vs(rh, ν) =

√

P

2πMh Γ
(1)

where P is the mode excitation rate derived as described in
Paper I, Γ is the mode full width at half maximum (in ν),
ν = ωosc/2π the mode frequency andMh is the mode mass de-
fined as:

Mh =
I

ξ2r (rh)
(2)

where I is the mode inertia (see Eq. (2) of Paper I), ξr the radial
mode eigendisplacement, rh ≡ R + h the layer in the atmosphere
where the mode is measured in radial velocity, R the radius at
the photosphere (i.e. at T = Teff) and h the height above the
photosphere.

In Sect. 2.2 we will compare estimated values of vs with
the seismic constraint obtained by Mosser et al. (2005) with the
HARPS spectrograph. We therefore need to estimate vs at the
layer h where the HARPS spectrograph is the most sensitive to

the mode displacement. As discussed by Samadi et al. (2008a),
the seismic measurements obtained with HARPS spectrograph
are likely to arise from the optical depth τ 500 nm ≃ 0.013, which
corresponds to the depth where the potassium (K) spectral line
is formed. We then compute the mode mass at the layer h asso-
ciated with the optical depth τ500 nm (Christensen-Dalsgaard &
Gough 1982). For the model with [Fe/H] = 0 (resp. [Fe/H] = −1)
this optical depth corresponds to h ≃ 390 km (resp. h ≃ 350 km).

For the mode linewidth Γ we use the seismic measurement
obtained from the seismic analysis of the CoRoT data performed
by Benomar et al. (2009). This seismic analysis combined the
two CoRoT runs available for HD 49933. Two different ap-
proaches were considered in this analysis: one based on the
maximum likelihood estimator and the second one using the
Bayesian approach coupled with a Markov Chains Monte Carlo
algorithm. The Bayesian approach remains in general more
reliable even in low signal-to-noise conditions. Nevertheless,
in terms of mode amplitudes, mode heights and mode linewidths,
both methods agree within 1-σ. We will consider here the seis-
mic parameters and associated error bars obtained on the basis
of the Bayesian approach.

2.2. Comparison with the HARPS measurements

The seismic analysis in velocity has been performed by Mosser
et al. (2005) using data from the HARPS spectrograph. The
quality of these data is too poor to perform a direct compari-
son between the observed spectrum and the calculated amplitude
spectrum (vs, Eq. (1)). Indeed, the observed spectrum is highly
affected by the day aliases. Furthermore, the quality of the data
does not allow to isolate individual modes, in particular modes
of a different angular degree (ℓ). A consequence is that energies
of modes which are close in frequency are mixed.

In order to measure the oscillation amplitude in a way that
is independent of these effects, we have followed the method in-
troduced by Kjeldsen et al. (2005, see also Kjeldsen et al. 2008).
This method consists in deriving the oscillation amplitudes from
the oscillation power density spectrum smoothed over typically
four times the large separation (i.e. four radial orders). Next,
we multiply this smoothed spectrum by a coefficient in order
to convert the apparent amplitudes into intrinsic amplitudes.
This coefficient takes into account the spatial response func-
tion of the angular degrees ℓ = 0−3 (see Kjeldsen et al. 2008).
We have checked that the sensitivity of the visibility factor with
the limb-darkening law is significantly smaller in comparison
with the error associated with the Mosser et al. (2005) seismic
measurements. The amplitude spectrum vHARPS derived follow-
ing Kjeldsen et al. (2005) is shown in Fig. 1. The 1-σ error bar
associated with each values of vHARPS is constant and equal to
∆VHARPS = 7 cm/s.

The maximum of vHARPS reaches Vmax = 50.2 ± 7 cm/s.
By comparison, Mosser et al. (2005) found a maximum of 40 ±
10 cm/s, which once converted into intrinsic amplitude repre-
sents a maximum of 42 ± 10 cm/s. The difference between the
two values is within the 1-σ error bars. The different value found
by Mosser et al. (2005) can be explained by the way the maxi-
mum of the mode amplitude was derived. Indeed, Mosser et al.
(2005) have constructed synthetic time series based on a the-
oretical low degree p-modes eigenfrequency pattern and theo-
retical mode lines widths (Houdek et al. 1999). The maximum
amplitudes were assumed to follow a Gaussian distribution in
frequency. Using a Monte-Carlo approach, the maximum ampli-
tude was then determined in order to obtain comparable energy
per frequency bin in the synthetic and observed spectra. On the
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Fig. 1. Top: intrinsic mode surface velocity as a function of the mode
frequency (ν). The filled circles connected by the thick solid line cor-
respond to the mode surface velocity (vs) derived for HD 49933 ac-
cording to Eq. (1), where the mode excitation rates P are derived as
explained in Paper I and the mode linewidths and their associated er-
ror bars are derived by Benomar et al. (2009) from the CoRoT data.
The thick dashed line corresponds to the mode velocity associated with
the model with [Fe/H] = 0. The thick and red solid line corresponds
to the amplitude spectrum derived from the seismic observations ob-
tained with the HARPS spectrograph (see text). The dotted line corre-
sponds to the 1-σ domain associated with this measurement. Bottom:
differences between vs and vHARPS. The 1-σ error bars correspond to

σv ≡

√

∆v2s + ∆v
2
HARPS (see text).

other hand, except for the mode response function, the method
by Kjeldsen et al. (2005) does not impose a priori constraints
concerning the modes. This method can then be considered to
be more reliable than the method by Mosser et al. (2005).

We compare in Fig. 1 vHARPS with the calculated mode sur-
face velocity vs (Eq. (1)). However, in order to have a consis-
tent comparison, we have smoothed vs quadratically over four
radial orders. We note ∆vs the 1-σ error bars associated with vs.
They are derived from ∆Γ, the 1-σ error bars associated with Γ.
As pointed out in Paper I, the uncertainty related to our knowl-
edge of the metal abundance Z for HD 49933 results in an un-
certainty about the determination of P. However, in terms of
amplitude, this uncertainty is of the order of 5%; this is negli-
gible compared to the uncertainty that arises from ∆Γ (ranging
between 25% to 50% in terms of amplitude).

The difference between computed values and observations
is shown in the bottom panel of Fig. 1. This difference must be

compared with σv, the 1-σ interval resulting from the errors as-
sociated with vs and this in turn associated with vHARPS, that is

σv ≡

√

∆v2s + ∆v
2
HARPS. As seen in Fig. 1, except at high fre-

quency (ν >∼ 1.9 mHz), the theoretical vs lie well in the 1-σv do-
main. However, there is a clear disagreement at high frequencies
where the computed mode surface velocities overestimate the
observations. This disagreement is attributed to the assumptions
in the theoretical model of stochastic excitation (see Sect. 4.5).

Assuming the 3D model with the solar abundance results
in significantly larger vs. In that case the differences between
computed vs and the seismic constraint are in general larger
than 2-σv. This shows that ignoring the metal abundance of
HD 49933 would result in a larger discrepancy between vs
and vHARPS.

3. Amplitudes of mode in intensity

3.1. Derivation of mode amplitudes in intensity

Fluctuations of the luminosity L due to variations of the stel-
lar radius can be neglected since we are looking at high n or-
der modes; accordingly the bolometric mode intensity fluctua-
tions δL are mainly due to variations of the effective temperature,
that is:

δL

L
= 4
δTeff

Teff
· (3)

As in Kjeldsen & Bedding (1995), we now assume that δTeff is
proportional to the variation of the temperature induced by the
modes at the photosphere (i.e. at T = Teff). This assumption is
discussed in Sect. 4.3. Assuming further low degree ℓ and adi-
abatic oscillations, one can derive a relation between δTeff/Teff
and the radial mode velocity v that is:

δTeff

Teff
= (Γ3 − 1)

∣

∣

∣

∣

∣

1
ωosc ξr

dξr
dr

∣

∣

∣

∣

∣

v (4)

where Γ3 = ∇ad Γ1 + 1, ∇ad is the adiabatic temperature gradient,
Γ1 =

(

∂ ln Pg

∂ ln ρ

)

s
, ξr the radial mode eigendisplacement, and v the

mode velocity at the photosphere. Finally, according to Eqs. (3)
and (4), one has:
(

δL

L

)

= 4 β (Γ3 − 1)
∣

∣

∣

∣

∣

1
ωosc ξr

dξr
dr

∣

∣

∣

∣

∣

v (5)

where v is computed using Eq. (1) with h = 0 (the photosphere),
that is:

v =

√

P
2πM0 Γ

(6)

whereM0 is the mode mass evaluated at the photosphere (h = 0).
In Eq. (5), β is a free parameter introduced so that Eq. (5)

gives, in the case of the solar p modes, the correct maximum
in δL/L. Indeed, Eq. (5) applied to the case of the solar p modes,
overestimates by ∼10 times the mode amplitudes in intensity.
This important discrepancy is mainly a consequence of the adi-
abatic approximation.

From the SOHO/GOLF seismic data (Baudin et al. 2005),
we derive the maximum of the solar mode (intrinsic) surface
velocity, that is 32.6 ± 2.6 cm/s. Then, using ξr, we infer the
maximum of mode velocity at the photosphere, that is 18.5 ±
1.5 cm/s. According to Michel et al. (2009), the maximum of
the solar mode (bolometric) amplitude in intensity is equal to
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2.53 ± 0.11 ppm. Then, by applying Eq. (5) in the case of the
Sun, we derive the scaling factor β = 0.103 ± 10%. We have
checked that this calibration depends very little on the choice
of the chemical mixture (see also Sect. 4.3). We then adopt this
value for the case of HD 49933.

3.2. The mode intensity fluctuations measured by CoRoT

The seismic analysis by Benomar et al. (2009) provides the
apparent amplitude Aℓ of the ℓ = 0−2 modes and the asso-
ciated error bars. However, the CoRoT measurements Aℓ cor-
respond to relative intensity fluctuations in the CoRoT pass-
band. Furthermore, the observed (apparent) mode amplitudes
depend on the degree ℓ. Therefore, to transform them into bolo-
metric and intrinsic intensity fluctuations normalised to the ra-
dial modes, we divide them by the CoRoT response function,
Rℓ, derived here for ℓ = 0−2, following Michel et al. (2009).
The adopted values for Rℓ are: R0 = 0.90, R1 = 1.10, and
R2 = 0.66. We finally derive the bolometric intensity fluctua-
tions normalised to the radial modes according to:

(δL/L)CoRoT =

√

1
3















(

A0

R0

)2

+

(

A1

R1

)2

+

(

A2

R2

)2












· (7)

We shall stress that the differences between the amplitudes de-
rived by Benomar et al. (2009) and by Appourchaux et al. (2008)
are smaller than the 1-σ error bars. Furthermore, these ampli-
tudes are in agreement with those found by Michel et al. (2008),
using a different technique.

3.3. Comparison with the CoRoT measurements

We compute the mode amplitudes in terms of bolometric
intensity fluctuations, δL/L, according to Eqs. (5) and (6)
(see Sect. 3.1). As for vs, the uncertainty associated with the
measured mode linewidths, Γ, put uncertainties on the theoreti-
cal values of δL/L. Furthermore, the uncertainty associated with
the calibrated factor β (see Sect. 3.1) also puts an additional
uncertainty on δL/L. From here on, ∆(δL/L) will refer to the
1-σ uncertainties associated with δL/L. Accordingly, we have

∆(δL/L) = (δL/L)
√

(

1
2 ∆Γ/Γ

)2
+ (∆β/β)2, where ∆Γ (reps. ∆β)

is the 1-σ uncertainty associated with Γ (resp. β).
Figure 2 compares, as a function of the mode frequency,

δL/L to the CoRoT measurements: (δL/L)CoRoT. The difference
between our calculations and the observations is shown in the
bottom panel. As for the velocity, this difference must be com-
pared with σL, the 1-σ interval resulting from the association of
the 1-σ error bars ∆(δL/L) and the 1-σ error, ∆(δL/L)CoRoT, as-
sociated with the CoRoT measurements. Accordingly, we have
σL ≡

√
a2 + b2 where a ≡ ∆(δL/L) and b ≡ ∆(δL/L)CoRoT.

As seen in Fig. 2, below ν <∼ 1.9 mHz, values of δL/L
are within approximately 1-σL in agreement with (δL/L)CoRoT.
However, above ν ∼ 1.9 mHz, the differences between δL/L
and (δL/L)CoRoT exceed 2-σL.

Assuming a solar abundance ([Fe/H] = 0) results in a
clear overestimation of ∆(δL/L)CoRoT. Furthermore, calculations
which assume the Grevesse & Noels (1993) chemical mixture
result in mode amplitudes larger by ∼15%.

Both in terms of intensity and velocity, differences between
the calculated mode amplitudes and those derived from the
observations (CoRoT and HARPS) are approximately within
the 1-σ domain below ν ∼ 1.9 mHz. This then validates the

Fig. 2. Top: mode bolometric amplitude in intensity as a function of
the mode frequency (ν). The filled circles connected by the thick solid
line correspond to the mode amplitudes in intensity, δL/L, derived for
HD 49933 according to Eqs. (5) and (1) where the mode surface veloc-
ity v is evaluated at the photosphere. The thick dashed solid line cor-
responds to the mode amplitude in intensity associated with the model
with [Fe/H] = 0. The red triangles and associated error bars correspond
to the mode amplitudes in intensity, (δL/L)CoRoT, obtained from the
CoRoT data (Benomar et al. 2009). These measurements have been
translated into bolometric amplitudes following Michel et al. (2009).
Bottom: same as top for the difference between δL/L and (δL/L)CoRoT.
The 1-σ error bars correspond here to

√
a2 + b2 where a ≡ ∆(δL/L) and

b ≡ ∆(δL/L)CoRoT (see text).

intensity-velocity relation given by Eq. (5) at the level of the
current seismic precision.

The maximum (δL/L) peaks at νmax ≃ 1.9 mHz and
the maximum of vs at νmax ≃ 1.8 mHz. By comparison,
(δL/L)CoRoT peaks at νmax ≃ 1.8 mHz and vHARPS peaks at
νmax ≃ 1.7 mHz. The difference in νmax between the obser-
vations (CoRoT and HARPS) and the model can be partially
a consequence of the clear tendency at high frequency toward
over-estimated amplitudes compared to the observations.

4. Discussion

4.1. Uncertainties in the knowledge of the fundamental
parameters of HD 49933

Uncertainties in the knowledge of Teff and log g place uncer-
tainties on the theoretical values of P and hence on the mode
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amplitudes (vs and δL/L). However, estimating these uncertain-
ties would require the consideration of 3D models with a Teff
and a log g that depart more than 1-σ from the values adopted
in our modeling, i.e. Teff = 6750 K and log g = 4.25. This is
beyond the scope of our efforts since such 3D models are not yet
available.

4.2. Influence of the mode mass

As discussed in details in Samadi et al. (2008a), the computed
mode surface velocities vs significantly depend on the choice
of the height h in the atmosphere where the mode masses
are evaluated. According to Samadi et al. (2008a), seismic
measurements performed with the HARPS spectrograph reflect
conditions slightly below the formation depth of the K line.
Accordingly, we have evaluated by default the mode masses
at the optical depth where the K line is expected to be formed
(i.e. τ500 nm ≃ 0.013), which corresponds, for our 3D models,
to a height of about 350 km above the photosphere. We can
evaluate how sensitive we are to the choice of h. Indeed, eval-
uating the mode mass at the photosphere results in values of vs
which are about 15% lower and hence would reduce the discrep-
ancy with the HARPS observations. On the other hand, eval-
uating the mode mass one pressure scale height (∼300 km at
the photosphere) above h = 350 km results in an increase of vs
of about 10%. A more rigorous approach to derive the different
heights in the atmosphere where the measurements are sensitive
would require a dedicated modeling (see a discussion in Samadi
et al. 2008a).

4.3. The intensity-velocity relation

Sensitivity to the location: the derivation of Eq. (4) (or equiva-
lently Eq. (5)) is based on the assumption that δTeff ∝ δT |T=Teff

(see Sect. 3.1). This is quite a arbitrary simplification. In order to
check how sensitive our results are to this assumption, we have
computed Eqs. (5) and (6) for two different positions in the at-
mosphere. The first position, h = h1, is chosen one pressure scale
height (≃300 km) above the photosphere, which corresponds to
an optical depth of τ ∼ 0.02. The second position, h = h2, is cho-
sen one pressure scale height beneath the photosphere, that is
around τ ∼ 200. For both positions, the mode amplitudes with
frequencies below ∼1.9 mHz are almost unchanged. Concerning
the amplitudes of modes with frequencies above ∼1.9 mHz, they
are increased by up to ∼20% when h = h1 and are in turn almost
unchanged when h = h2. Since the fluctuations of L induced by
the oscillations are mostly due to temperature changes that occur
around an optical depth of the order of the unit, we can conclude
that our calculations are almost insensitive to the choice of the
layer in the visible atmosphere where δT is evaluated.

Non-adiabatic effects: the modes are measured at the surface
of the star where non-adiabatic interactions between the modes
and convection as well as radiative losses of the modes are im-
portant. Assuming Eq. (4) is then a crude approximation. In fact,
it is clearly non-valid in the case of the Sun since it results in
a severe over-estimation of the solar mode amplitudes in inten-
sity (see Sect. 3.1). Avoiding this approximation requires non-
adiabatic eigenfunctions computed with a time-dependent con-
vection model. However, such models (e.g. Grigahcène et al.
2005; Balmforth 1992) are subject to large uncertainties, and
there is currently no consensus about the non-adiabatic mech-
anisms that play a significant role (see e.g. the recent review by

Houdek 2008). For instance, parameters are usually introduced
in the theories so that they cannot be used in a predictive way.

In the present study, we adopt by default the adiabatic ap-
proximation and introduce in Eq. (5) the parameter β calibrated
with helioseismic data. We show here that despite the deficiency
of the quasi-adiabatic approximation, it nevertheless provides
the correct scaling, at least at low frequency and at the level of
the present seismic precisions.

As an alternative approach, comparing the spectrum ob-
tained from the 3D models in intensity with that obtained in ve-
locity can provide valuable information concerning the intensity-
velocity relation, in particular concerning the departure from the
adiabatic approximation and the sensitivity to the surface metal
abundance. We have started to carry out such a study. For the ve-
locity, the (few) acoustic modes trapped in the simulated boxes
can be extracted and their properties measured. But this was im-
possible to do for the intensity with the simulations at our dis-
posal because the computed spectrum for the intensity is dom-
inated by the granulation background. As a consequence it is
not possible to extract the mode amplitudes in intensity with
sufficient accuracy. A comparison between the spectra obtained
from the 3D models requires a much longer time series (work in
progress).

Sensitivity to the metal abundance: we have shown in this study
how the mode amplitudes in the velocity are sensitive to the sur-
face metal abundance. An open question is how sensitive is the
intensity-velocity relation in general to the metal abundance?
A theoretical answer to this question would require a realistic
and validated non-adiabatic treatment. The pure numerical ap-
proach mentionned above can also in principle provide some
answers to this question. However, as discussed above, this ap-
proach is not applicable with the time series at our disposal.
Concerning the quasi-adiabatic relation of Eq. (5): a change of
the metal abundance has a direct effect on Γ3 and an indirect
effect on the properties of the (radial) eigen-displacement ξr.
However, the comparison between the metal-poor 3D model
(S1) and the 3D model with the solar abundances (S0) shows
that – at a fixed frequency ωosc – the ratio (δL/L)/v, which is
equal to 4 β (Γ3 − 1) (dξr/dr)/(ξrωosc), is almost unchanged be-
tween S0 and S1 (the differences are less than ∼1%). In conclu-
sion, the quasi-adiabatic relation of Eq. (5) depends very weakly
on the surface metal abundance. Accordingly, the choice of the
solar chemical mixture has a negligible impact on the value of
the calibration factor β.

4.4. The solar case

As seen in this study, the surface metal abundance has a pro-
nounced effect on the mode excitation rates. One may then won-
der about the previous validation of the theoretical model of
stochastic excitation in the case of the Sun (Belkacem et al.
2006; Samadi et al. 2008b). Indeed, this validation was car-
ried out with the use of a solar 3D model based on an “old”
solar chemical mixture (namely those proposed by Anders &
Grevesse 1989) while the “new” chemical mixture by Asplund
et al. (2005) is characterized by a significantly lower metal
abundance.

In order to adress this issue, we have first considered two
global 1D solar models. One model has an “old” solar abun-
dance (Grevesse & Noels 1993, model Mold hereafter) while the
second one has the “new” abundances (Asplund et al. 2005,
model Mnew hereafter). At the surface where the excitation
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occurs, the density of the solar model Mnew is only ∼5% lower
compared to the model Mold. According to the arguments de-
veloped in Paper I, this difference in the density must imply
a difference in the convective velocities (ũ) of the order of
∼(ρold/ρnew)1/3, where ρold (resp. ρnew) is the surface density as-
sociated with Mold (resp. Mnew). Accordingly, ũ is expected to be
∼1.7% higher for Mnew compared to Mold.

The next question is what is the change in the solar mode
excitation rates induced by the above difference in ũ? We have
computed the solar mode excitation rates exactly in the same
manner as for HD 49333 by using a solar 3D simulations based
on the “old” abundances. We obtained a rather good agreement
with the different helioseismic data (see the result in Samadi
et al. 2008b). To derive the solar mode excitations expected with
the “new” solar abudance, we have proceeded in a similar way
as the one done in Paper I: we have increased the convective ve-
locity ũ derived from the solar 3D model by 2% while keeping
the kinetic flux constant (see details in Paper I). This increase of
∼2% of ũ results in an increase of ∼10% of the mode excitation
rates. This increase is significantly lower than the current uncer-
tainties associated with the different helioseismic data (Baudin
et al. 2005; Samadi et al. 2008b).

4.5. Discrepancy at high frequency

The discrepancy betwen theoretical calculations and observa-
tions is particularly pronounced at high frequency. This discrep-
ancy may be attributed to a canceling between the entropy and
the Reynolds stress contributions (see Sect. 4.5.1) or the “scale
length separation” assumption (see Sect. 4.5.2).

4.5.1. Canceling between the entropy
and the Reynolds stress contributions

The relative contribution of the entropy fluctuations to the exci-
tation is found to be about 30% of the total excitation. This is
two times larger than in the case of the Sun (∼15%). This can
be explained by the fact HD 49933 is significantly hotter than
the Sun and, as pointed-out by Samadi et al. (2007), the larger
(L/M) ∝ T 4

eff/g, the more important the relative contribution of
the entropy. Although more important than in the Sun, the con-
tribution of the entropy fluctuations remains relatively smaller
than the uncertainties associated with the current seismic data.
This is illustrated in Fig. 3: the difference between theoretical
mode amplitudes which take into account only the Reynolds
stress contribution (C2

R, see Eq. (3) of Paper I) and those that in-
clude both contributions (entropy and Reynolds stress) is lower
than σv. In terms of amplitudes, the entropy fluctuations con-
tribute only ∼15% of the global amplitude. This is significantly
smaller than the uncertainties associated with the current seismic
measurements. Seismic data of a better quality are then needed
to constrain the entropy contribution and its possible canceling
with the Reynolds stress.

Numerical simulations show some cancellation between the
entropy source term and the one due to the Reynolds stress
(Stein et al. 2004). However, in the present theoretical model of
stochastic excitation, the cross terms between the entropy fluc-
tuations and the Reynolds stresses vanish (see Samadi & Goupil
2001). This is a consequence of the different assumptions con-
cerning the entropy fluctuations (see Samadi & Goupil 2001; see
also the recent discussion in Samadi et al. 2008b). Accordingly,
the entropy source term is included as a source indepen-
dent from the Reynolds stress contribution. As suggested by

Fig. 3. Top: same as Fig. 1. The thin dashed line corresponds to a cal-
culation that takes only the contribution of the Reynolds stress into ac-
count. The dot-dashed line corresponds to a calculation in which we
have assumed that the contribution of the Reynolds stress interferes to-
tally with that of the entropy fluctuations (see text). The thick solid line
has the same meaning as in Fig. 1. Bottom: same as top for δL/L. The
triangles and associated error bars have the same meaning as in Fig. 2.

Houdek (2006), a partial canceling between the entropy fluctua-
tions and the Reynolds stress can decrease the mode amplitudes
of F-type stars and reduce the discrepancy between the theoreti-
cal calculations and the observations.

There is currently no theoretical description of these inter-
ferences. In order to have an upper limit of the interferences, we
assume that both contributions locally and fully interfer. This as-
sumption leads to the computation of the excitation rates per unit
mass as:

dP
dm
=

(

dP
dm

)

RS

+

(

dP
dm

)

E

− 2

√

(

dP
dm

)

RS

(

dP
dm

)

E

(8)

where (dP/dm)RS and (dP/dm)E are the contributions per unit
mass of the Reynolds stress and entropy respectively. The re-
sult is presented in Fig. 3 in terms of velocity (top pannel) and
in terms of intensity (bottom pannel). The mode amplitudes are
decreased by up to ∼55%. In that case, (δL/L)CoRoT is system-
atically under-estimated. Obviously, a partial canceling between
the entropy contribution and the Reynolds stress would result in
a smaller decrease.

We have assumed here that the cancellation between the
two terms is independent of the mode frequency (see Eq. (8)).
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However, according to Stein et al. (2004), the level of the cancel-
lation depends on the frequency (see their Fig. 8). In particular,
for F-type stars, the cancellation is expected to be more impor-
tant around and above the peak frequency.

As a conclusion, the existence of a partial canceling between
the entropy fluctuations and the Reynolds stress can decrease the
mode amplitude and could improve the agreement with the seis-
mic observations at high frequency. However, there is currently
no theoretical modeling of the interference between theses two
terms. Further theoretical developements are required.

4.5.2. The “scale length separation” assumption

The “scale length separation” assumption (see the review by
Samadi et al. 2008b) consists of the assumption that the eddies
contributing effectively to the driving have a characteristic length
scale smaller than the mode wavelength. This assumption is jus-
tified for a low Mach number (Mt). However, this approxima-
tion is less valid in the super-adiabatic region where Mt reaches
a maximum (for the Sun Mt is up to 0.3) and accordingly affects
the high-frequency modes more. This approximation is then ex-
pected to be even more questionable for stars hotter than the
Sun, since Mt increases with Teff. This spatial separation can be
avoided, however if the kinetic energy spectrum associated with
the turbulent elements (E(k)) is properly coupled with the spa-
tial dependence of the modes (work in progress). In that case,
we expect a more rapid decrease of the driving efficiency with
increasing frequency than in the present formalism where the
spatial dependence of the modes is totally decoupled from E(k)
(i.e. “scale length separation”).

5. Conclusion

From the mode linewidths measured by CoRoT and theoretical
mode excitation rates derived for HD 49933, we have derived
the expected mode surface velocities vs which we have com-
pared with vHARPS, the mode velocity spectrum derived from
the seismic observations obtained with the HARPS spectrograph
(Mosser et al. 2005). Except at high frequency (ν >∼ 1.9 mHz), the
agreement between computed vs and vHARPS is within the 1-σ do-
main associated with the seismic data from the HARPS spectro-
graph. However, there is a clear tendency to overestimate vHARPS
above ν ∼ 1.9 mHz.

Using a calibrated quasi-adiabatic approximation to relate
the mode velocity to the mode amplitude in intensity (Eq. (5)),
we have derived for the case of HD 49933 the expected mode
amplitudes in intensity. Computed mode intensity fluctuations,
δL/L, are within 1-σ in agreement with the seismic constraints
derived from the CoRoT data (Benomar et al. 2009). However,
as for the velocity, there is a clear tendency at high frequency
(ν >∼ 1.9 mHz) towards over-estimated δL/L compared to the
CoRoT observations.

Calculations that assume a solar surface metal abundance
result, both in velocity and in intensity, in amplitudes larger
by ∼35% around the peak frequency (νmax ≃ 1.8 mHz) and by
up to a factor of two at lower frequency. It follows that, ig-
noring the current surface metal abundance of the star results
in a more severe over-estimation of the computed amplitudes
compared with observations. This illustrates the importance of
taking the surface metal abundance of the solar-like pulsators
into account when modeling the mode driving. In addition, we
point out that the Grevesse & Noels (1993) solar chemical mix-
ture results in mode amplitudes larger by about 15% with re-
spect to calculations that assume the “new” solar abundance by

Asplund et al. (2005). However, this increase remains signifi-
cantly smaller than the uncertainties associated with current seis-
mic measurements.

Since both mode amplitudes in terms of surface velocity and
intensity are available for this star, it was possible to test the
validity of the calibrated quasi-adiabatic relation (Eq. (5)). Our
comparison shows that this relation provides the correct scaling,
at least at the level of the present seismic precisions.

Both in terms of surface velocity and of intensity, the dif-
ferences between predicted and observed mode amplitudes are
within the 1-σ uncertainty domain, except at high frequency.
This result then validates for low frequency modes the basic un-
derlying physical assumptions included in the theoretical model
of stochastic excitation for a star significantly different in effec-
tive temperature, surface gravity, turbulent Mach number (Mt)
and metallicity compared to the Sun or α Cen A.

As discussed in Sect. 4, the clear discrepancy between pre-
dicted and observed mode amplitudes seen at high frequency
may have two possible origins: first, a canceling between the en-
tropy contribution and the Reynolds stress is expected to occur
and to be important around and above the frequency of the max-
imum of the mode excitation rates (see Sect. 4.5.1). Second, the
assumption called the “scale length separation” (Samadi et al.
2008b) may also result in an over-estimation of the mode am-
plitudes at high frequency (see Sect. 4.5.2). These issues will be
investigated in a forthcoming paper.
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Abstract We investigate the possibility that gravity modes
can be stochastically excited by turbulent convection in mas-
sive main-sequence (MS) stars. We build stellar models of
MS stars with masses M = 10M⊙,15M⊙, and 20M⊙. For
each model, we then compute the power supplied to the
modes by turbulent eddies in the convective core (CC) and
the outer convective zones (OCZ). We found that, for as-
ymptotic gravity modes, the major part of the driving occurs
within the outer iron convective zone, while the excitation of
low n order modes mainly occurs within the CC. We com-
pute the mode lifetimes and deduce the expected mode am-
plitudes. We finally discuss the possibility of detecting such
stochastically-excited gravity modes with the CoRoT space-
based mission.

Keywords Turbulence · Convection · Oscillations · Mode
driving · Massive stars

1 Introduction

Stochastic excitation of solar gravity modes by turbulent
convection has been recently studied in detail by Belkacem
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et al. (2009b). The modelling performed by these authors put
the theoretical amplitudes of solar gravity modes close to the
SoHO/GOLF detection threshold. A new issue then arises:
can we expect such stochastically-excited gravity modes to
be more easily detectable in other stars than the Sun?

Main-sequence stars significantly more massive than the
Sun are potentially interesting for seeking stochastically-
excited modes. Indeed, stochastically-excited p modes have
recently been detected in a massive star (Belkacem et al.
2009a). The question remains: can gravity modes be sto-
chastically excited in such stars? Stars with mass above
M ≈ 1.2M⊙ have a convective core (CC hereafter) and
the more massive the star, the higher is the eddies’ kinetic
energy in the CC. We therefore consider here the illustra-
tive cases of massive main-sequence stars with masses M =

10 M⊙,15 M⊙, and 20 M⊙. Amplitudes of stochastically-
excited gravity modes are computed following Belkacem et
al. (2009b) as explained in Sect. 2. We describe in Sect. 3
the efficiency of the different driving regions. The results of
our calculations are presented and commented on in Sect. 4,
and our conclusions are summarized in Sect. 5. We finally
discuss in Sect. 5 the possibility of detecting stochastically-
excited gravity modes with the CoRoT space-based mission.

2 Mode amplitudes

We compute the mean-squared surface velocity for each
non-radial mode according to (see e.g. Belkacem et al.
2009b, and references therein):

v2
s =

P

2ηM
(1)
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where P is the mode excitation rate, η the mode damping
rate (which is equal to the inverse of the mode lifetime τ )
and M the mode mass. The latter is defined as

M =
I

ξ2
r (R∗) + ℓ(ℓ + 1) ξ2

h (R∗)
(2)

where I is the mode inertia, ℓ the mode angular degree, ξr

and ξh respectively are the radial and the horizontal com-
ponents of the mode eigendisplacement. Both quantities are
evaluated here at the photosphere, i.e. at the radius r = R∗

where R∗ is the stellar radius. The mode inertia is defined as
I =

∫
dm(ξ2

r (r) + ℓ(ℓ + 1) ξ2
h (r)).

The mode amplitude in terms of the intensity (or bright-
ness fluctuations) is then deduced at the photosphere accord-
ing to (Dziemblowski 1977; Pesnell 1990)

δL

L
= 4

δTeff

Teff
+ 2

δR∗

R∗

(3)

where δL is the bolometric intensity fluctuation, δTeff the ef-
fective temperature fluctuation, and δR∗ the variation of the
stellar radius for each given mode. As seen in (1), the modal
amplitude is a balance between driving (P) and damping
(η). Determination of the mode amplitude then requires
knowledge of P (see Sect. 2.1) and η (see Sect 2.2).

2.1 Excitation rates (P)

Mode excitation rates are computed on the basis of the for-
malism due to Belkacem et al. (2008). This formalism is
a generalization of the work of Samadi and Goupil (2001,
SG01 hereafter) to non-radial modes. Two sources of driving
are taken into account: the Reynolds stress tensor and the
advection of the turbulent fluctuations of entropy by the tur-
bulent motions (the “entropy source term”).

In the CC, the entropy contribution represents less than
∼10% of the total excitation rates. This is because the grav-
ity modes are evanescent within the CC. Accordingly, the
second derivative of displacement eigenfunction is negligi-
ble and so is the entropy source term (see details in Belka-
cem et al. 2008, 2009b). On the other hand, in the outer con-
vective zone (OCZ hereafter), this source term is not negli-
gible since it represents up to ∼50%. This is a consequence
of the fact that energy is inefficiently transported by con-
vection within the OCZ. As a consequence, non-adiabatic
fluctuations of the gas pressure are important compared to
the turbulent pressure. For the sake of brevity we will not
discuss further the entropy contribution.

When limited to Reynolds stresses, the excitation rates,
P , can be written as (see (21) of Belkacem et al. 2008)

P =
π3

2I

∫ M

0
dm

ρ0 u4
0

k3
0 ω0

R(�r,m) SR(ωosc,m) (4)

SR =
k3

0 ω0

u0
4

∫ +∞

0

dk

k2
E2(k)

×

∫ +∞

−∞

dω χk(ω + ωosc) χk(ω) (5)

where m is the local mass, ρ0 the mean density, ωosc the
mode angular frequency, u0 a characteristic velocity associ-
ated with the energy bearing eddies, SR the dimensionless
source function associated with the Reynolds stress, E(k)

the spatial kinetic energy spectrum, χk the eddy-time cor-
relation function, and k the wave number. The term R(r)

depends on the eigenfunction, its expression is given in (23)
of Belkacem et al. (2008). We have introduced, for conve-
nience, the characteristic frequency ω0 ≡ k0 u0 and the char-
acteristic wave number k0 ≡ 2π/Λ where Λ is the charac-
teristic size of the energy bearing eddies.

2.2 Damping rates (η)

Mode damping rates (η) are computed using the full non-
adiabatic and non-radial pulsation code MAD (Dupret 2002;
Dupret et al. 2003). This code includes a time-dependent
convection (TDC) treatment described in Grigahcène et al.
(2005), which allows us to take into account the role played
by the variations of the convective flux, the turbulent pres-
sure, and the dissipation rate of the turbulent kinetic energy.
Actually, the damping of the gravity modes is dominated by
the perturbation of the radiative flux. We have numerically
verified that the interaction between convection and pulsa-
tion does not affect the damping rates.

2.3 Computational details and assumptions

We consider main-sequence stellar models computed with
the stellar evolution code CLÉS (Scuflaire et al. 2008).
These models use standard physics, in particular convec-
tion is treated according to the Böhm–Vitense mixing-length
(MLT) formalism, but overshoot is not included. Details
of the physical inputs used are given in (Belkacem et al.
2009c). Three models are computed; one with a mass M =

10M⊙ (M10 hereafter), the second with M = 15M⊙ (M15
hereafter), and the third with M = 20M⊙ (M20 hereafter).
All models are at the same evolutionary stage, namely Xc =

0.5 where Xc is the hydrogen core abundance.
The mode damping rates (η) or equivalently the mode

lifetimes (τ = 1/η), as well as the relation between δTeff

and δR∗ are obtained using the pulsation code MAD (see
Sect. 2.2).

The rate (P) at which energy is injected into a mode per
unit time is then computed according to (4). The density
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stratification, ρ0, is obtained from the equilibrium model.
Mode eigenfrequencies and eigenfunctions are computed
using the adiabatic pulsation code OSC (Scuflaire et al.
2008). We consider modes with angular degree ℓ = 1 and
radial orders between n = −2 and n = −21 (asymptotic g
mode). Modes with ℓ > 1 are not considered, since those
modes are expected to have lower amplitudes. Modes be-
low n = −21 are not considered for several reasons: the cal-
culation of gravity modes with lower values of n requires
models with a much denser mesh-grid than those at our dis-
posal. Furthermore, in the limit where n → −∞, the density
of gravity modes becomes very high in frequency. Below a
given value of n, it is then no longer possible to distinguish
in the Fourier spectrum one mode from another.

Apart from the eigenfunctions and ρ0, (4) involves both
the eddy-time correlation function (χk) and the turbulent ki-
netic energy spectrum (E). However, the properties of tur-
bulent convection are poorly known for main-sequence mas-
sive stars, in particular in the CC (see the discussion in
Sect. 5). We therefore need to set a priori χk , the k de-
pendence of E and the characteristic wave number (k0) or
equivalently the characteristic length scale (Λ) at which en-
ergy is injected into the turbulent cascade.

• χk : It has been shown that the use of a Lorentzian func-
tion for χk results for the Sun (Samadi et al. 2003;
Belkacem et al. 2006) and α Cen A (Samadi et al. 2008)
in good agreement between observed mode amplitudes
and computed ones. We will then by default consider a
Lorentzian for χk . However, in order to probe the sensi-
tivity of our results to this choice we will also consider for
comparison a Gaussian for χk (see Sect. 5).

• E(k): Among the different analytical functions tested so
far for E (see e.g. Samadi et al. 2003; Chaplin et al. 2005),
the best agreement with a solar 3D simulation was found
with the so-called “Extended Kolmogorov Spectrum” de-
fined by Musielak et al. (1994). We will then use by de-
fault this analytical empirical spectrum.

• Λ: One usually assumes by default that Λ is proportional
to the classical mixing length (ΛMLT), i.e. Λ = β ΛMLT

where ΛMLT is the mixing length, and β is a free parame-
ter introduced in order to probe the sensitive of our results
to this definition of Λ (see SG01). According to Samadi
et al. (2003), one must assume β = 5 in order that—in the
case of the Sun—ΛMLT matches the characteristic length
Λ derived from the numerical simulations of the upper
part of the solar convection zone. However, in the CC,
ΛMLT and hence Λ exceeds the size of the CC (Λc). In
the CC, we will therefore assume the upper limit Λ = Λc.
In order to probe our sensitivity to Λ, other choices will
be investigated in Sect. 5.

3 Efficiency of the driving regions

At a given layer, the power supplied to the modes by
the Reynolds stress is proportional—per unit mass—to
Fkin Λ4 SR R(�ξ,m)/I where Fkin is the vertical flux of ki-
netic energy, which is proportional to ρ0 u3

0 (for details see
Samadi 2010). It is important to stress that the value taken
by the dimensionless source function, SR, depends on the
way mode and turbulent eddies are time-correlated: SR is
maximum for posc � τ0 (resonance) where τ0 ≡ 2π/ω0 is
the characteristic eddy turn-over time and posc = 2π/ωosc

is the period of the mode. On the other hand SR decreases
very rapidly for posc < τ0 (off-resonance). Fkin, Λ and SR

depend directly on the properties of the convective regions.
The efficiency of the driving will then depend on the balance
between these three terms. We discuss below the efficiency
of the different convective regions.

We distinguish three convective regions.

• The convective zone associated with the helium opacity
bump: this region is located at T ≈ 40 000 K, and is in-
efficient to transport energy with a negligible ratio of the
convective heat flux to the radiative one. This region is
located near the star surface, where density and, as a con-
sequence, Fkin are low. The mixing length, ΛMLT, is more
than hundred times smaller than the size of the CC (Λc).
Furthermore, the characteristic eddy turn-over time (τ0)
is very long compared to the period (posc) of the modes
we are interested in here. Driving of the gravity modes is
then expected to be negligible in the helium CZ.

• The convective zone associated with the iron opacity
bump, located at T ≈ 200 000 K: as for the helium con-
vective region, the transport of energy by convection is
still inefficient. However, this region is located deeper
than the helium one, where density is higher. Fkin is still
negligible compared to the total flux, but the ratio of the
kinetic energy flux of the iron convective zone to the he-
lium one is ∼108 for e.g. M10. Furthermore, τ0 is of the
order of posc. The excitation in this region is then ex-
pected to be much stronger than in the helium CZ.

• The convective core (CC): convection is fully efficient,
meaning that most of the flux is transported by convec-
tion. The kinetic energy is several magnitudes higher than
for the iron convective zone (ICZ hereafter), due to the
high densities. For instance in M10, Fkin is about 105

larger than in the ICZ. Furthermore, Λ is several mag-
nitudes higher than in the ICZ. The driving is then ex-
pected to be potentially stronger in the CC than in the
OCZ. However, τ0 is significantly longer than posc. In
other words, excitation lies off-resonance within the CC.
In this region, the final efficiency of the driving will de-
pend on the net balance between Fkin, SR , and Λ.
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Fig. 1 Top: contribution of the CC to the mode excitation rates (PC) as
a function of the mode period (posc). PC is shown for the three models:
M = 10M⊙ (dashed line), M = 15M⊙ (solid line) and M = 20M⊙

(dot-dashed line). Bottom: contribution of the outer convective zones
(OCZ) to the mode excitation rates (PS) as a function of the mode
period (posc). The line style is the same as in the top panel.

4 Result

4.1 Excitation in the convective core

The contribution of the CC to the mode excitation rates (PC

hereafter) are presented in Fig. 1 (top) for the three models.
Important wiggles are seen on PC. They are due to the be-
havior of the mode eigendisplacements in the vicinity of the
CC. More precisely, mode amplitude in the CC depends on
the phase of the eigenfunction at the frontier of the CC.

The values reached by PC are larger for M15 compared
to M10. On the other hand, the values reached by PC for
M15 are as high as for M20. These results are explained as
follows: the larger Fkin, the stronger the driving. However,
P is inversely proportional to I (see 4). Hence—at fixed
Fkin—the larger I , the lower is P . Generally, the larger M ,
the higher is I . On the other hand, the larger M , the higher is
Fkin in the CC. There is then a balance between Fkin and I .

4.2 Excitation in the outer convective zones

The contribution of the outer convective zones (OCZ) to the
mode excitation rates (PS hereafter) are presented in Fig. 1
(bottom). We find that, within the OCZ, the excitation pre-
dominantly occurs within the iron convective zone. This is a
direct consequence of the arguments developed in Sect. 3.

As clearly seen in Fig. 1 (bottom), the larger M the higher
PS. This is because the larger M , the higher the temperature
at the surface. Now, the higher the temperature, the larger the
energy transported by convection and accordingly the larger
Fkin.

At low frequency (posc � 3 days), PS is in general larger
than PC. On the other hand, this contribution decreases more
rapidly with decreasing posc than does PC. This is because
PS depends on the mode compressibility, which decreases
with increasing frequency (i.e. decreasing n), while PC de-
pends on the amplitude of the mode displacement in the
vicinity of the CC, which increases with increasing fre-
quency. At high frequency (posc � 3 days), the excitation
turns out to be dominated by the contribution of the CC
(PC).

4.3 Mode amplitudes

We sum the contribution of the CC (PC) with that of the
OCZ (PS); this gives the total mode excitation rates P =

PS + PC. From P and η, we then derive the mode am-
plitudes in terms of surface velocity (vs, (1)) and intensity
(δL/L, (3)). The result is shown in Fig. 2. We have not taken
the mode visibility factor into account; in other words, the
amplitudes shown in Fig. 2 correspond to intrinsic (in oppo-
sition to apparent) rms amplitudes.

5 Conclusion and discussion

We have computed, for three main-sequence stellar models,
the power (P) supplied by turbulent convection into gravity
modes. According to our theoretical calculations and asso-
ciated assumptions, gravity modes are expected to be effi-
ciently excited both in the CC and the iron convective zone.
On the other hand, the driving within the helium CZ is found
to be negligible compared to the driving taking place in the
other driving regions.

We have next computed the mode damping rates (equiv-
alently, the mode lifetimes). We found that the mode damp-
ing is dominated by the perturbation of the radiative flux.
The computed η are then more reliable than if the coupling
between pulsation and convection were at the origin of the
damping.

We have finally derived the mode amplitudes. The ampli-
tudes of asymptotic g-modes are mainly fixed by the driving
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Fig. 2 Intrinsic mode amplitudes as a function of posc. The line style
is the same as in Fig. 1. Top: mode amplitudes in terms of surface
velocity, vs (see (1)). Bottom: mode amplitudes in terms of intensity,
δL/L (see (3)).

taking place within the iron convective zone. On the other
hand, the amplitudes of the low n order modes are expected
to be predominantly fixed by the driving within the CC.
However, the relative contribution of the CC and the iron
convective zone to the mode excitation rates significantly
depends on the assumptions concerning the characteristic
length Λ and the eddy-time correlation function χk .

The theoretical mode amplitudes in surface velocity (vs)
are found in general to be significantly larger than those of
the solar p-modes (∼30 cm/s). Mode amplitudes in intensity
are found to be of the same order as for the solar p-modes
(≃2.5 ppm, see Michel et al. 2009).

For asymptotic g-modes, the larger M , the larger are the
mode amplitudes. This is because the higher M , the higher is
the energy transported by convection and hence the stronger
the driving within the OCZ. For low n order modes, the
maximum of the mode amplitudes depends weakly on M .
Indeed, the square of the mode amplitude is inversely pro-
portional to the mode inertia (I ). Furthermore, the driving
within the CC results from the balance between the kinetic
flux (Fkin) in the CC and I . Fkin in the CC increases with

Fig. 3 Mode heights in terms of intensity and as a function of the pe-
riod. The black curves have the same meaning as in Fig. 1. The red

curve corresponds to an estimate of the upper limit of the CoRoT in-
strumental noise level (see text). The dashed red curve corresponds to
the associated detection threshold (see text)

increasing M . For low n order modes, I also increases with
increasing M . Therefore, the increase of Fkin with M is par-
tially compensated by the increase of I with M .

At this point several issues arise.

(i) How reliable are our amplitude estimates?
(ii) Can we detect such stochastically-excited gravity modes

with CoRoT?

We now address these two questions.

Uncertainties: Among the different assumptions adopted
in the present model concerning the properties of turbulent
convection, the major sources of uncertainty are the char-
acteristic length Λ, the adopted prescription for χk , and the
wave-number dependence of E(k).

Concerning Λ, in the absence of other physical consid-
eration, it is usually assumed—by default—that Λ is pro-
portional to the mixing length (which is by definition pro-
portional to the pressure scale height). The coefficient of
proportionality, β , was—as in the case of the Sun—set to
5 (see Sect. 2.3). However, in the CC, Λ cannot be larger
than Λc. Therefore, we have assumed by default Λ = Λc

in the CC. Accordingly, our theoretical calculation of the
excitation in the CC then corresponds to an upper limit. As-
suming Λ = Λc/10 in the CC results in significantly lower
mode amplitudes. Concerning the OCZ, assuming as in the
Sun β = 5 is rather arbitrary. In order to probe the sensitiv-
ity of our results to this choice we performed a calculation
for which Λ = ΛMLT in the OCZ and Λ = Λc/10 in the CC.
In that case the computed mode amplitudes are found to be
about 20 times lower compared to our default case.

Concerning χk and E(k), we have chosen the analyti-
cal forms that match hydrodynamical 3D simulations of the
outer layer of stars analogues to the Sun and that result—in
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the case of the Sun and α Cen A—in good agreement be-
tween computed and observed P . However, whether these
analytical forms remain valid in the present case is an open
question.

Finally, we point out that some 3D hydrodynamical mod-
els of stars with CC have been performed (see e.g. Browning
et al. 2004; Meakin and Arnett 2007). These 3D models can
provide some hints about the properties of turbulent convec-
tion in the CC. This will be investigated in future work.

Detection: The noise level of the CoRoT instrument in
the Fourier domain can be estimated by considering the
Fourier spectrum of a CoRoT star that is almost constant. We
thus consider the CoRoT target HD 50170 (F2, mv = 6.82),
which almost does not show intrinsic variability. We have
fitted the power spectrum of this target using a Lorentzian
function. The result is shown in Fig. 3. This fitted spectrum
then represents an estimate of the upper limit of the CoRoT
instrumental noise. From this limit we can then derive a de-
tection threshold for a given confidence level. This thresh-
old is presented in Fig. 3 for a confidence level of 95 %.
This threshold must be compared with the mode height
and not with the mode amplitude (see the definition of the
mode height in e.g. Lochard et al. 2005). This comparison
is shown in Fig. 3. The mode heights are all found below
the CoRoT detection threshold associated with individual
modes. We point out that taking into account the mode visi-
bility factor would result in lower mode height. As a conclu-
sion, the detection of stochastically-excited gravity modes
with CoRoT seems to be challenging. However, an open
question is whether or not the current Kepler mission or the
future PLATO mission will be able to detect such modes.
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ABSTRACT

Theoretical modeling of the driving processes of solar-like oscillations is a powerful way of understanding the properties of the
convective zones of solar-type stars. In this framework, the description of the temporal correlation between turbulent eddies is an
essential ingredient to model mode amplitudes. However, there is a debate between a Gaussian or Lorentzian description of the
eddy-time correlation function (Samadi et al. 2003b, A&A, 403, 303; Chaplin et al. 2005, MNRAS, 360, 859). Indeed, a Gaussian
description reproduces the low-frequency shape of the mode amplitude for the Sun, but is unsatisfactory from a theoretical point of
view (Houdek 2010, Ap&SS, 328, 237) and leads to other disagreements with observations (Samadi et al. 2007, A&A, 463, 297).
These are solved by using a Lorentzian description, but there the low-frequency shape of the solar observations is not correctly
reproduced. We reconcile the two descriptions by adopting the sweeping approximation, which consists in assuming that the eddy-
time-correlation function is dominated by the advection of eddies, in the inertial range, by energy-bearing eddies. Using a Lorentzian
function together with a cut-off frequency derived from the sweeping assumption allows us to reproduce the low-frequency shape of
the observations. This result also constitutes a validation of the sweeping assumption for highly turbulent flows as in the solar case.

Key words. convection – turbulence – Sun: oscillations

1. Introduction

Excitation of solar-like oscillations is attributed to turbulent mo-
tions that excite p modes (for a recent review, see Samadi 2009).
Their amplitudes result from a balance between excitation and
damping and crucially depend on the way the eddies are tem-
porally correlated as shown for solar p and g modes (Samadi
et al. 2003b; Belkacem et al. 2009b; Appourchaux et al. 2010),
for main-sequence stars (Samadi et al. 2010b,a), for red giants
(Dupret et al. 2009), or for massive stars (Belkacem et al. 2009a,
2010). Hence, the improvement of our understanding and mod-
eling of the temporal correlation of turbulent eddies, hereafter
denoted in the Fourier domain as χk(ω), is fundamental to infer
turbulent properties in stellar convection zones.

There are two ways to compute the eddy-time correlation
function. A direct computation from 3D numerical simula-
tions is possible and was performed by Samadi et al. (2008a).
Nevertheless, Samadi (2009) pointed out that the results depend
on the spatial resolution, and therefore dedicated high-resolution
3D numerical simulations are required. This then becomes an
important limitation when computing mode amplitudes for a
large number of stars, preventing us from applying statistical
astereosismology.

The second way to compute χk consists in using appropriate
analytical descriptions. Most of the theoretical formulations of
mode excitation explicitly or implicitly assume a Gaussian func-
tional form for χk(ω) (Goldreich & Keeley 1977; Dolginov &
Muslimov 1984; Goldreich et al. 1994; Balmforth 1992; Samadi
et al. 2001; Chaplin et al. 2005). However, 3D hydrodynam-
ical simulations of the outer layers of the Sun show that at
the length-scales close to those of the energy-bearing eddies
(around 1 Mm), χk is a Lorentzian function (Samadi et al. 2003a;

Belkacem et al. 2009b). As pointed out by Chaplin et al. (2005),
a Lorentzian χk is also a result predicted for the largest, most-
energetic eddies by the time-dependent mixing-length formu-
lation derived by Gough (1977). Therefore, there is numerical,
theoretical, and also observational evidence (Samadi et al. 2007)
that χk is Lorentzian.

However, Chaplin et al. (2005), Samadi (2009), and Houdek
(2010) found that a Lorentzian χk, when used with a mixing-
length description of the whole convection zone, results in a se-
vere over-estimate for the low-frequency modes. In this case,
low-frequency modes (ν < 2 mHz) are excited deep in the so-
lar convective region by large-scale eddies that give a substan-
tial fraction of the energy injected to the modes. Chaplin et al.
(2005) and Samadi (2009) then suggested that most contributing
eddies situated deep in the Sun have a χk more Gaussian than
Lorentzian because at a fixed frequency, a Gaussian χk decreases
more rapidly with depth.

We therefore propose a refined description of the eddy-time
correlation function based on the sweeping approximation to
overcome this issue. This consists in assuming that the temporal
correlation of the eddies, in the inertial subrange, is dominated
by the advection by energy-bearing eddies. This assumption was
first proposed by Tennekes (1975), and was subsequently inves-
tigated by Kaneda (1993) and Kaneda et al. (1999). In this letter,
we demonstrate that the low-frequency shape of the observed en-
ergy injection rates into the solar modes is very sensitive to this
assumption and more precisely to the Eulerian microscale, de-
fined as the curvature of the time-correlation function at the ori-
gin. Hence, modeling of the solar p-mode amplitudes is shown
to constitute an efficient test for temporal properties in highly
turbulent flows.
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The paper is organized as follows: Sect. 2 defines the eddy-
time correlation function. In Sect. 3, we propose a short-time
expansion of the eddy-time correlation function. The use of the
Eulerian microscale as a cut-off is introduced in the computation
of solar p mode amplitudes and the result is compared to the ob-
servations in Sect. 4. Finally, Sect. 5 is dedicated to conclusions
and discussions.

2. The Eulerian eddy time-correlation function

For a turbulent fluid, one defines the Eulerian eddy time-
correlation function as

〈u(x + r, t + τ) · u(x, t)〉 =
∫

E(k, t, τ) eik·x d3 k, (1)

where u is the Eulerian turbulent velocity field, x and t the space
and time position of the fluid element, k the wave number vec-
tor, τ the time-correlation length, and r the space-correlation
length. The function E in the RHS of Eq. (1) represents the time-
correlation function associated with an eddy of wave-number k.

We assume an isotropic and stationary turbulence, accord-
ingly E is only a function of k and τ. The quantity E(k, τ) is
related to the turbulent energy spectrum according to

E(k, τ) =
E(k, τ)
2πk2

, (2)

where E(k, τ) is the turbulent kinetic energy spectrum whose
temporal Fourier transform is

E(k, ω) ≡
1

2π

∫ +∞

−∞

E(k, τ) eiωτ dτ, (3)

where ω is the eddy frequency, and E(k, ω) is written following
an approximated form proposed by Stein (1967)

E(k, ω) = E(k) χk(ω) with
∫ +∞

−∞

χk(ω) dω = 1, (4)

where χk(ω) is the frequency component of E(k, ω). In other
words, χk(ω) represents – in the frequency domain – the tem-
poral correlation between eddies of wave-number k.

As already discussed in Sect. 1, theoretical and observational
evidence show that χk(ω) is Lorentzian, i.e.

χk(ω) =
1
πωk

1

1 + (ω/ωk)2
, (5)

where ωk is by definition the width at half maximum of χk(ω).
In the framework of Samadi & Goupil (2001)’s formalism, this
latter quantity is evaluated as:

ωk = k uk with u2
k =

∫ 2k

k

E(k) dk, (6)

where E(k) is defined by Eq. (4). However, in the high-frequency
regime (ω ≫ ωk), corresponding to the short-time correlation
(τ ≈ 0), the situation is less clear. We next investigate short-time
correlations (τ ≈ 0).

3. The sweeping assumption for the Eulerian

time-correlation function

3.1. Short-time expansion of the eddy-time correlation
function

The function E(k, t, τ) (Eq. (1)) can be expanded for short-time
scales, in the inertial sub-range (i.e. for k > k0 and k < kd, where

k0 is the wave number of energy-bearing eddies and kd is the
wave-number of viscous dissipation), using the Navier-Stokes
equations and the sweeping assumption, as (see Kaneda 1993,
for a derivation)

E(k, τ) = E(k, τ = 0)

(

1 − αk |τ| −
1
2

(ωEτ)
2 + . . .

)

, (7)

where the characteristic frequency αk is defined by the relation

ǫ = −
1
2

d
dt
〈u · u〉 =

∫

αk E(k, τ = 0) d3 k (8)

with ǫ the dissipation rate of energy. Hence, αk is the typical
frequency of energy dissipation at the scale k. It can be esti-
mated by assuming that a large fraction of the kinetic energy
of eddies is lost within one turnover time (Tennekes & Lumley
1972). Hence, αk is approximated by the turn-over frequency
αk = k uk = ωk (see Eq. (6)).

The second characteristic frequency, ωE(k), is the curvature
of the correlation function near the origin (Kaneda 1993), and is
defined by

ωE = k u0. (9)

The associated characteristic time τE(k) = 2πω−1
E is also referred

to as the Eulerian micro-scale1 (Tennekes & Lumley 1972). An
approximate expression for ωE(k) can be obtained by assuming
the random sweeping effect of large eddies on small eddies. This
assumption consists in assuming that the velocity field u(k) as-
sociated with an eddy of wave-number k lying in the inertial-
subrange (i.e. large k compared to k0) is advected by the energy-
bearing eddies with velocity u0 (i.e. of wave-number k0). This
time-scale is obtained by assuming uniform density, which is
valid in the Sun for k > k0 (i.e. in the inertial sub-range) since
the density scale-height approximately equals the length-scale
of energy-bearing eddies ((dln ρ/dr)−1 ≈ 2π/k0). It also assumes
the quasi-normal approximation (see Kaneda 1993; Kaneda et al.
1999; Rubinstein & Zhou 2002, for details). The Eulerian micro-
scale then corresponds to the timescale over which the energy-
bearing eddies of velocity u0 advect eddies of size 2πk−1. It is
the lowest time-scale (highest frequency) on which those eddies
can be advected.

3.2. Eulerian time micro-scale as a cut-off frequency

The issue is now to estimate to what extentωE can be considered
as a cut-off frequency, i.e. that there is a sharp change in the slope
of χk at high ω.

To this end, we first remark that the zero-th- and first-order
terms in Eq. (7) are consistent with an exponential decrease of
width αk (i.e. a Lorentzian in the frequency domain of width
ωk, Eq. (5)) for small τ. In contrast, the zero-th-order term to-
gether with the second order term in Eq. (7) are consistent with
a Gaussian behavior of width τE. Hence, the relative importance
of those two regimes depends on the relative magnitude of the
second and third terms in Eq. (7). Let us define the ratio (R) of
the first to the second order term in the expansion of E (Eq. (7))

R = 2 (ωEτ)−1

(

ωk

ωE

)

, (10)

To evaluate this ratio, we compare the typical frequenciesωk and
ωE using Eq. (9) together with Eq. (6). Adopting a Kolmogorov

1 It is the time equivalent of the Taylor micro-scale, which corresponds
to the largest scale at which viscosity affects the dynamic of eddies.
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Fig. 1. Schematic time-correlation (χk) versus normalized eddy fre-
quency (ω/ωE) at k = 5k0 (i.e. in the inertial subrange such as kd ≫ k >
k0), where k0 = 6.28×10−6 m−1. Note that the value of k0 does not influ-
ence the result. The solid line (resp. dashed triple dot line) correponds
to the Lorentizan functional form of χk for ω < ωE (resp. ω < ωE).
The dashed line corresponds to a Gaussian modeling (χk ∝ e−(ω/ωE)2

)
of characteristic frequency ωE. (we numerically verified that e−(τ/τE)2

is a good approximation of Eq. (7), see also Sect. 3.2). We stress that
the sharp decrease the functional form given by Eq. (7), in the temporal
Fourier domain, then justifies to consider ωE as a cut-off frequency. In
other words, χk is computed according to Eq. (12).

spectrum E(k) = CK ǫ
2/3 k−5/3, with CK the Kolmogorov univer-

sal constant (close to 1.72), we have u2
k
= β u2

0 (k/k0)−2/3 , where
β = 0.555. Hence

ωE

ωk

=
u0

uk

= β−1/2

(

k

k0

)1/3

· (11)

From Eq. (11) we conclude that for k ≫ k0 (i.e. at small scale)
we have ωE/ωk ≈ β

−1/2 (k/k0)1/3 ≫ 1, then τE ≪ τk. And for
k ≈ k0 (i.e. at large scale), we have ωE/ωk = β

−1/2 ≈ 1.4. Hence,
we always are in the situation where ωE > ωk.

From Eq. (10), it immediately follows that for ω � ωE the
second order term dominates over the first order one in Eq. (7),
at all length-scales. We then conclude that for frequencies near
the micro-scale frequency (ω � ωE), the eddy-time correlation
function behaves as a Gaussian function (e−(ω/ωE)2

) instead of a
Lorentzian function, resulting in a sharp decrease with ω (see
Fig. 1). Hence, the contributions for ω > ωE are negligible and
the temporal correlation is computed as follows

χk(ω) =























1
1 + (ω/ωk)2 ifω ≤ ωE

0 ifω > ωE.

(12)

4. Computation of the p-mode energy injection

rates

4.1. Computation of the energy injection rate

The formalism we used to compute excitation rates of radial
modes was developed by Samadi & Goupil (2001) and Samadi
et al. (2005) (see Samadi 2009, for a thorough discussion)

For a radial mode of frequency ω0 = 2π ν0, the excitation
rate (or equivalently, the energy injection rate), P, mostly arises

from the Reynolds stresses and can be written as (see Eq. (21) of
Belkacem et al. 2008)

P(ω0) =
π3

2I

∫ M

0















ρ0

(

16
15

) (

∂ξr

∂r

)2 ∫ +∞

0
Sk dk















dm (13)

Sk =
E2(k)

k2

∫ +∞

−∞

χk(ω + ω0) χk(ω) dω, (14)

where ξr is the radial component of the fluid displacement eigen-
function (ξ), m is the local mass, ρ0 the mean density, ω0 the
mode angular frequency, I the mode inertia, Sk the source func-
tion, E(k) the spatial kinetic energy spectrum, χk the eddy-time
correlation function, and k the wave-number.

The rate (P) at which energy is injected into a mode is com-
puted according to Eq. (13). In this letter, we consider two theo-
retical models, namely:

– an analytical approach: the 1D calibrated solar structure
model used for these computations is obtained with the
stellar evolution code CESAM2k (Morel 1997; Morel &
Lebreton 2008). The atmosphere is computed assuming an
Eddington grey atmosphere. Convection is included accord-
ing to a Böhm-Vitense mixing-length (MLT) formalism (see
Samadi et al. 2006, for details), from which the convective
velocity is computed. The mixing-length parameter α is ad-
justed in a way that the model reproduces the solar radius
and the solar luminosity at the solar age. This calibration
gives α = 1.90, with an helium mass fraction of 0.245, and
a chemical composition following Grevesse & Noels (1993).
The equilibrium model also includes turbulent pressure;

– a semi-analytical approach: calculation of the mode excita-
tion rates is performed essentially in the manner of Samadi
et al. (2008a,b). All required quantities, except the eddy-time
correlation function, the mode eigenfunctions (ξr) and mode
inertia (I), are directly obtained from a 3D simulation of the
outer layers of the Sun (see Samadi 2009, for details on the
numerical simulation).

In both cases, the eigenfrequencies and eigenfunctions are com-
puted with the adiabatic pulsation code ADIPLS (Christensen-
Dalsgaard 2008). We stress again that in both cases χk is imple-
mented as an analytical function.

4.2. Results on mode amplitudes

When the frequency range of χk is extended toward infinity,
computation of P according to Eq. (13) and Eq. (14) fails to re-
produce the observations, in particular the low-frequency shape.
In order to illustrate this issue, we have computed the solar
model excitation rates, using the solar global model described
in Sect. 4.1. The turbulent kinetic energy spectrum (E(k)) is as-
sumed to be a Kolmogorov spectrum to be consistent with the
derivation of τE as proposed by Kaneda (1993). In addition, the
eddy-time correlation function is supposed to be Lorentzian as
described by Eq. (5) for all ω > 0. In agreement with the re-
sults of Chaplin et al. (2005) and Samadi (2009), it results in an
over-estimate of the excitation rates at low frequency (see Fig. 2
top).

In contrast, by assuming that the time-dynamic of eddies
in the Eulerian point of view is dominated by the sweeping,
the Eulerian time micro-scale arises as a cut-off frequency (see
Sect. 3.2). Hence, χk(ω) is modeled following Eq. (5) forω < ωE
and χk(ω) = 0 elsewhere. Using this procedure to model χk(ω)
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Fig. 2. Solar p-mode excitation rates as a function of the frequency ν.
The dots correspond to the observational data obtained by the GONG
network, as derived by Baudin et al. (2005), and the triangles corre-
sponds to observational data obtained by the GONG network as de-
rived by Salabert et al. (2009) for ℓ = 0 to ℓ = 35. The dashed line
corresponds to the computation of the excitation rates using the ana-
lytical approach together with a Lorentzien description of χk without
any cut-off frequency. Note that this modeling is similar to that men-
tioned by Chaplin et al. (2005). The solid line corresponds to the com-
putation of mode excitation rates using the semi-analytical approach as
described in Sect. 4.1 and using a Lorentzian χk together with a cut-
off frequency at ω = ωE. The dashed triple dot line corresponds to
the analytical approach using a Lorentzian description of χk down to
the cut-off frequency ωE. Finally, the dashed-dot line corresponds to a
semi-analytical approach using a Gaussian description of χk . Note that
both solid (Lorentzian χk) and dashed-dot (Gaussian χk) lines present a
similar frequency dependance, and since both are computed using the
3D numerical simulations for the convective motions the differences
only comes from the way turbulence is temporally correlated.

(i.e. by introducing ωE as a cut-off frequency) permits us to re-
produce the low-frequency (ν < 3 mHz) shape of the mode exci-
tation rates as observed by the GONG network (see Fig. 2). This
is explained as follows: for large-scale eddies near k−1

0 , situated
deep in the convective region, the cut-off frequency ωE is close
to ωk as shown by Eq. (11). As a consequence, the frequency
range over which χk is integrated in Eq. (14) is limited, resulting
in lower injection rates into the modes.

Note that the absolute values of mode excitation rates are not
reproduced by using a mixing-length description of convection,
this is in agreement with Samadi (2009), and arises because that
it underestimates the convective velocities as well as convective
length-scales. It then explains the differences between the com-
putation of mode excitation rates using the MLT and the 3D nu-
merical simulations (Fig. 2).

5. Conclusion and discussion

By using a short-time analysis and the sweeping assumption, we
have shown that there is a frequency (ωE the micro-scale fre-
quency) beyond the temporal correlation χk sharply decreases
with frequency. Including this frequency as a cut-off in our mod-
eling of χk and assuming a Lorentzian shape we are able to
reproduce the observed low-frequency (ν < 3 mHz) excitation
rates.

These results then re-conciliate the theoretical and obser-
vational evidence that the frequency dependence of the eddy-
time correlation may be Lorentzian in the whole solar convective

region down to the cut-off frequency ωE. Finally, it also repre-
sents a validation of the sweeping assumption in highly turbulent
flows.

We note, however, that one must remove several theoretical
shortcomings to go further. For instance, a rigourous treatment
of the energy-bearing eddies is needed. The short-time analysis
and the computation of the Eulerian miscro-scale must be recon-
sidered by including the effect of buoyancy that mainly affects
large scales. Furthermore, some discrepancies remain at high-
frequency (ν > 3 mHz), and to go beyond these one has to re-
move the separation of scales assumption (see Belkacem et al.
2008, for a dedicated discussion) and include non-adiabatic ef-
fects.

Eventually, we note that the modeling of amplitudes under
the sweeping assumption is to be extended. In particular, the
investigation of the effect of the sweeping assumption on solar
gravity mode amplitudes is desirable.
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ABSTRACT

Context. A growing number of solar-like oscillations has been detected in red giant stars thanks to the CoRoT and Kepler space-crafts.
In the same way as for main-sequence stars, mode driving is attributed to turbulent convection in the uppermost convective layers of
those stars.
Aims. The seismic data gathered by CoRoT on red giant stars allow us to test the mode driving theory in physical conditions different
from main-sequence stars.
Methods. Using a set of 3D hydrodynamical models representative of the upper layers of sub- and red giant stars, we computed the
acoustic mode energy supply rate (Pmax). Assuming adiabatic pulsations and using global stellar models that assume that the surface
stratification comes from the 3D hydrodynamical models, we computed the mode amplitude in terms of surface velocity. This was
converted into intensity fluctuations using either a simplified adiabatic scaling relation or a non-adiabatic one.
Results. From L and M (the luminosity and mass), the energy supply rate Pmax is found to scale as (L/M)2.6 for both main-sequence
and red giant stars, extending previous results. The theoretical amplitudes in velocity under-estimate the Doppler velocity measure-
ments obtained so far from the ground for red giant stars by about 30%. In terms of intensity, the theoretical scaling law based on the
adiabatic intensity-velocity scaling relation results in an under-estimation by a factor of about 2.5 with respect to the CoRoT seismic
measurements. On the other hand, using the non-adiabatic intensity-velocity relation significantly reduces the discrepancy with the
CoRoT data. The theoretical amplitudes remain 40% below, however, the CoRoT measurements.
Conclusions. Our results show that scaling relations of mode amplitudes cannot be simply extended from main-sequence to red giant
stars in terms of intensity on the basis of adiabatic relations because non-adiabatic effects for red giant stars are important and cannot
be neglected. We discuss possible reasons for the remaining differences.

Key words. stars: solar-type – stars: oscillations – sun: oscillations – turbulence – convection – waves

1. Introduction

Before CoRoT (launched in December 2006), solar-like oscil-
lations had been detected for a dozen of bright red giant stars
either from the ground or from space with MOST (e.g., Barban
et al. 2007). Thanks to CoRoT and Kepler, it is now possible
to detect and measure solar-like oscillations in many more (sev-
eral thousands) red giant stars (e.g., de Ridder et al. 2009; Huber
et al. 2010; Bedding et al. 2010; Kallinger et al. 2010; Stello
et al. 2011; Mosser et al. 2012). With such a large set of stars,
it is possible to perform ensemble asteroseismology by deriving
scaling relations that relate seismic parameters to a few funda-
mental stellar parameters (e.g. masses, radii, luminosities etc.).
These approaches are now commonly applied to global seismic
parameters, such as the cutoff-frequency or peak frequency (e.g.,
Miglio et al. 2009; Stello et al. 2009; Kallinger et al. 2010;
Mosser et al. 2010). However, scaling relation is used only in-
frequently for mode amplitudes. The main reason for this is our
poor theoretical understanding of the underlying physical mech-
anisms for mode driving and damping.

Using a large set of red giant stars observed by CoRoT,
Baudin et al. (2011) have derived scaling relations in terms of
mode lifetimes and amplitudes. These authors have found that
the scaling relation proposed by Samadi et al. (2007) for the
mode amplitude significantly departs from the measured one.
This result was recently confirmed by Huber et al. (2011), Stello
et al. (2011) and Mosser et al. (2012) with Kepler observations,
and is easily understood by noting that Samadi et al. (2007) es-
tablished the scaling for for main-sequence stars only, and only
for mode surface velocity. Indeed, those results point out that a
dedicated theoretical investigation of mode amplitudes in inten-
sity for red giants is needed to provide an adequate theoretical
background.

Towards the end of their lives, low-mass stars greatly expand
their envelope to become red giant stars. As a consequence, the
low density of the envelope favours a vigorous convection such
that excitation of solar-like oscillations occurs in a medium with
very different physical conditions than encountered in the Sun.
This introduces new problems about the physical mechanism
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related to mode driving. For instance, the higher the turbulent
Mach number, the more questionable the assumptions involved
in the theory (Goldreich & Keeley 1977; Goldreich et al. 1994;
Samadi & Goupil 2001; Chaplin et al. 2005; Belkacem et al.
2010).

In addition, red giant stars are characterised by high lu-
minosities and hence have relatively short convective thermal
time-scales at the upper most part of their convective envelope.
One can therefore expect a stronger departure from adiabatic
oscillations because the perturbation of entropy fluctuations re-
lated to the oscillations dimensionally depends on the ratio L/M
(where L is the luminosity and M the mass). Thus, extreme phys-
ical conditions in the uppermost convective regions of red gi-
ants raise new questions about the energetic aspects of damped
stochastically excited oscillations (more precisely mode driving
and damping). In the present paper, we focus on modelling mode
driving. We derive scaling relations for red giant stars in terms
of mode amplitude (in velocity and intensity) and compare them
with the available CoRoT observations.

This paper is organised as follows: from a grid of 3D hydro-
dynamical models representative for the upper layers of red giant
stars, we derive in Sect. 2 theoretical scaling laws for the mode
amplitudes in velocity (Sect. 2.1) and in intensity (Sect. 2.4).
These scaling laws are then compared in Sect. 3 with seismic
data. Finally, Sect. 4 is dedicated to conclusions.

2. Theoretical scaling relations for mode

amplitudes

In this section our objective is to compute theoretical scaling
relations of mode amplitudes both in terms of surface velocity
and intensity. To this end, the mode amplitude will be computed
with the help of hydrodynamical 3D numerical simulations.

2.1. Surface velocity mode amplitude, v

The mean-squared surface velocity for each radial mode is given
by (e.g. Samadi 2011, and references therein)

v2(ν, r) =
τ(ν)

2
P(ν)
M(ν, r)

, (1)

where ν is the mode frequency,P the mode excitation rate, τ the
mode life-time (which is equal to the inverse of the mode damp-
ing rate η),M the mode mass, and r the radius in the atmosphere
where the mode velocity is evaluated. The mode massM is de-
fined for radial modes as

M(ν, r) =
1

|ξr(ν, r)|2

∫ M

0
|ξr(ν,m)|2 dm, (2)

where ξr is the radial component of the mode eigendisplacement.
The quantities v,M and ξr are evaluated at two relevant layers:

– the photosphere, i.e. at r = R∗ where R∗ is the stellar radius;
– at a layer where spectrographs dedicated to stellar seis-

mology are the most sensitive. According to Samadi et al.
(2008), for the Sun and solar-type stars, this layer is close to
the depth where the potassium (K) spectral line is formed,
that is at the optical depth τ 500 nm ≃ 0.013. For stars with
different spectral type this layer may vary, but by an as yet
unknown manner (see the discussion in Samadi et al. 2008).
By default we therefore adopt this reference optical depth to
be representative for the Doppler velocity measurements for
red giant stars. This assumption is discussed in Sect. 3.2.

Table 1. Characteristics of the 3D models.

Label log g Teff

[K]
S1 2.50 4964 ± 22
S2 2.50 4475 ± 10
S3 2.00 4551 ± 16
S4 3.50 4931 ± 20
S5 3.50 5431 ± 23
S6 3.50 5885 ± 16
S7 3.00 5039 ± 11

Notes. Teff is the effective temperature, and g the surface gravity.

In Eq. (1), P and M are computed in the manner of Samadi
et al. (2008) using a set of 3D hydrodynamical models of the up-
per layers of sub- and red giant stars. However, this calculation
differs from Samadi et al. (2008) in two aspects. First, instead
of adopting a pure Lorentzian function for the eddy-time corre-
lation in the Fourier domain, we introduce, following Belkacem
et al. (2010), a cut-off frequency derived from the sweeping as-
sumption. Second, the 3D models at our disposal have a limited
vertical extent that results in an under-estimation by up to ∼10%
of the maximum of P. To take into account the driving that oc-
curs at deeper layers we extend the calculation to deeper layers
using standard 1D stellar models (see below).

The 3D hydrodynamical models were built with the
CO5BOLD code (Freytag et al. 2002; Wedemeyer et al. 2004;
Freytag et al. 2012). All 3D models have a solar metal abun-
dance. The chemical mixture is based on Asplund et al. (2005).
The characteristics of these 3D models are given in Table 1. All
models have a helium abundance of Y = 0.249 and a metal abun-
dance of Z = 0.0135. The 3D models S1, S2, S3, and S7 corre-
spond to red giant stars while S4, S5 and S6 to sub-giant stars.

For each 3D model, an associated complete 1D model (inte-
rior+surface) is computed in such a way that the outer layers are
obtained from the 3D model (see Samadi et al. 2008, for details)
while the interior layers are computed using the CESAM2K
code (Morel & Lebreton 2008). In these 1D models, convection
is treated according to the Canuto et al. (1996) local formula-
tion of convection. This formulation requires a prescription for
the size Λ of the strongest eddies. We assume that Λ = αHp
where Hp is the pressure scale height and α a parameter adjusted
such that the interior model matches the associated 3D model
as detailed in Samadi et al. (2008). The complete models (inte-
rior+surface) are from now on referred to as patched models.

The characteristics of the patched models are given in
Table 2. We then computed the global acoustic modes associated
with each of the patched models using the adiabatic pulsation
code ADIPLS (Christensen-Dalsgaard 2008). Finally, the mode
lifetimes τ are evaluated using the measurements performed by
Baudin et al. (2011, see Sect. 3.1).

Our objective is to establish a scaling for the maximum of
v (Eq. (1), Vmax hereafter) as a function of stellar parameters
and assuming that the mode lifetime τ is known. As shown
by Belkacem et al. (2011), the mode lifetime τ is expected to
reach a plateau at a characteristic frequency, νmax. As we will
see in Sect. 2.2, the maximum of (P/M) also peaks at νmax.
Accordingly, to derive a scaling law for Vmax, one needs to de-
termine how the ratio (P/M)max scales with stellar parameters
(see Sect. 2.2).

Among these parameters, apart from the classical fundamen-
tal parameters (luminosity L, mass M, effective temperature Teff ,
gravity g, etc.), we in addition considered the acoustic cut-off
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Table 2. Characteristics of the 1D “patched” models.

Label M α log g Teff L ∆ν νc
[M⊙] [K] [L⊙] [µHz] [µHz]

M1 3.74 0.565 2.51 4962 172.5 3.43 63
M2 0.98 0.621 2.50 4463 30.4 4.77 67
M3 4.20 0.610 1.99 4551 444 1.40 21
M4 1.39 0.636 3.53 4927 5.86 25.11 637
M5 1.74 0.596 3.50 5392 11.5 23.30 607
M6 1.73 0.576 3.51 5856 15.9 23.30 583
M7 2.49 0.615 3.00 5040 39.3 9.00 199

Notes. L is the luminosity, M the mass, ∆ν the large separation, and νc
the acoustic cutoff-frequency.

frequency νc and the large frequency separation ∆ν (see e.g.
Christensen-Dalsgaard 1982), since the former is related to the
properties of the surface and the latter to the mean density of the
star. These parameters scale as

νc = νc,⊙
g

g⊙

√

Teff,⊙

Teff
(3)

∆ν = ∆ν⊙

√

M

M⊙

(

R⊙
R

)3

, (4)

where quantities labelled with the symbol⊙ refer to solar values,
νc,⊙ = 5100 µHz (see Jiménez 2006, and references therein), and
∆ν⊙ = 134.9 µHz (Toutain & Froehlich 1992). The values of νc
and ∆ν associated with each model are given in Table 2.

Finally, we stress that the characteristic frequency νmax, at
which τ reaches a plateau and P/M is maximum, is related to
a resonance in the uppermost layers of solar-like stars between
the thermal time-scale and the modal period (see Belkacem et al.
2011, and reference therein). This is why it scales as the acoustic
cut-off frequency νc in very good approximation:

νmax = νmax,⊙
νc

νc,⊙
, (5)

where νmax,⊙ = 3101 µHz.

2.2. Scaling relation for (P/M)max

The maximum of P is plotted in Fig. 1 (top) as a function of the
ratio L/M ∝ T 4

eff/g. This dependence with Teff and g was already
highlighted and explained by Stein et al. (2004) and Samadi
et al. (2007; see also the review by Samadi 2011), and is nicely
confirmed by Fig. 1 (top). Indeed, Pmax follows a power law of
the form

Pmax = P0
max

(

L

L⊙

M⊙
M

)s

with s = 2.60 ± 0.08, (6)

where P0
max =

(

4.2+1.0
−0.8

)

× 1015 J/s. The maximum of P is found
to peak at a frequency close to νmax. We note also that the value
of the exponent and the constant P0

max in Eq. (6) are compati-
ble with the results of Samadi et al. (2007) established on the
basis of a small set of 3D models of the surface layers of main-
sequence (MS) stars. We thus confirm the validity of this relation
from MS to red giant stars.

We turn now to the mode mass,M. Because we aim to com-
pare theoretical mode velocities with measurements made from
the ground with spectrographs dedicated to stellar seismology,
we evaluateM at the optical depth τ500 nm = 0.013 (see Sect. 2.1

Fig. 1. Top: Pmax as a function of L/M. The triangles are associated
with the 3D models. The red line is a power law of the form (L/M)s

with s = 2.6. Bottom: mode mass at ν = νmax (Mmax) as a function
of the large separation ∆ν. The mode masses are evaluated here at the
layer corresponding to the optical depth τ 500 nm = 0.013 (see text). The
triangles are associated with the 3D models. The red line is a power law
of the form (∆ν/∆ν⊙)−p with p = 2.1.

and Samadi et al. 2008). For a given model, the mode mass (M)
decreases rapidly with ν, but above a characteristic frequency
close to νmax it decreases more slowly. Although M does not
have a minimum, we found that, as P, the ratio (P/M) reaches
a maximum close to νmax, which scales as given by Eqs. (3)
and (5). Therefore, we evaluate M at ν = νmax. From now on
we label this quantity asMmax.

Among the different stellar parameters mentioned in
Sect. 2.1, a clear correlation of Mmax is found with g, (L/M),
νc or ∆ν. However, the more pronounced correlation is found
with ∆ν. We therefore adopt the scaling with ∆ν. The variation
ofMmax with∆ν is shown in Fig. 1 (bottom).Mmax can be nicely
fitted by a power law of the form

Mmax =M0
max

(

∆ν

∆ν⊙

)−p

with p = 2.1 ± 0.1, (7)

whereM0
max =

(

4.5+1.8
−1.3

)

× 1021 kg, and∆ν is given by the scaling
relation of Eq. (4).

By using Eqs. (6) and (7), the maximum of the ratio P/M
then varies according to:

(P/M)max =
(

P0
max/M0

max

)

(

L

L⊙

M⊙
M

)s (
∆ν

∆ν⊙

)p

· (8)
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2.3. Scaling relation for Vmax

Equation (8) now permits us to proceed by considering the scal-
ing law for mode amplitudes, in terms of surface velocities. The
maximum of the mode surface velocity, by using Eq. (8) together
with Eq. (1), reads

Vmax = v0

√

τmax

τ0

(

L

L⊙

M⊙
M

)s (
∆ν

∆ν⊙

)p

, (9)

where τmax is the characteristic lifetime at ν = νmax, and

v0 =

√

τ0

2

( P0
max

M0
max

)

, (10)

with τ0 a reference mode lifetime whose values are arbi-
trary fixed to the lifetime of the solar radial modes at the
peak frequency, that is τ0 = 3.88 days. Accordingly, we have
v0 = 0.41 m/s.

It is worthwhile to note that our scaling relation (Eq. (9))
differs from the result of Kjeldsen & Bedding (2011). This is
explained by the fact that the postulated relation of Kjeldsen &
Bedding (2011) for mode amplitudes in velocity (their Eq. (16))
does not take the mode masses into account, while this is defini-
tively necessary as seen in Eq. (1).

2.4. Scaling relation for bolometric amplitude

The instantaneous bolometric mode amplitude is deduced at the
photosphere according to (Dziemblowski 1977; Pesnell 1990)

δL(t)
L
= 4
δTeff(t)

Teff
+ 2
δR∗(t)

R∗
, (11)

where δL(t) is the mode Lagrangian (bolometric) luminos-
ity perturbation, δTeff(t) the effective temperature fluctuation,
and δR∗(t) the variation of the stellar radius.

Since the second term of Eq. (11) is found negligible in
front of δTeff(t), one obtains the rms bolometric amplitudes
according to
(

δL

L

)

rms
= 4

(

δTeff

Teff

)

rms

, (12)

where the subscript rms denotes the root mean-square.
We now need a relation between (δTeff/Teff)rms (or equiv-

alently (δL/L)rms) and the rms mode velocity Vmax. For con-
venience we introduce the dimensionless coefficient ζ defined
according to

(δL/L)rms = 4

(

δTeff

Teff

)

rms

= ζ (δL/L)⊙rms

(

vrms

v⊙

)

, (13)

where (δL/L)⊙rms = 2.53± 0.11 ppm is the maximum of the solar
bolometric mode amplitude (Michel et al. 2009), T⊙eff = 5777 K
the effective temperature of the Sun, and v⊙rms = 18.5 ± 1.5 cm/s
the maximum of the solar mode (intrinsic) surface velocity eval-
uated at the photosphere as explained in Samadi et al. (2010).

The quantity ζ in Eq. (13) is defined at an arbitrary layer,
which is generally the photosphere (i.e. at r = R∗). Accordingly,
we must evaluate the velocity and hence the mode mass M at
that layer. This implies the following scaling forMmax:

Mmax,∗ =M0
max,∗

(

∆ν

∆ν⊙

)−p∗

, (14)

where p∗ = 2.0 ± 0.10,M0
max,∗ =

(

8.0+2.8
−2.1

)

× 1021 kg and ∆ν is
given by the scaling relation of Eq. (4).

Combining Eq. (13) with (9) gives the scaling for the bolo-
metric amplitude
(

δL

L

)

max
= ζ

(

δL

L

)⊙

rms

(

v0,∗

v⊙rms

)

×

√

τmax

τ0

(

L

L⊙

M⊙
M

)s (
∆ν

∆ν⊙

)p∗

, (15)

where v0,∗ ≡
√

τ0

2

(

P0
max

M0
max,∗

)

= 0.31 m/s.

2.4.1. Adiabatic case

Within the adiabatic approximation, it is possible to relate the
mode surface velocity to intensity perturbations (e.g., Kjeldsen
& Bedding 1995); this give:

ζK95 =

√

T⊙eff
Teff
, (16)

which assumes that the modes are quasi-adiabatic, but not only.
It supposes that the modes propagate at the surface where they
are measured. This approximation is not valid in the region
where the modes are measured since in this region they are
evanescent. Furthermore, it assumes an isothermal atmosphere.
A more sophisticated quasi-adiabatic approach has been pro-
posed by Severino et al. (2008). The authors went beyond the
approximation of isothermal atmosphere by taking into account
the temperature gradient as well as the fact that the intensity is
measured at constant instantaneous optical depth. Both effects
are taken into account by the method described in Sect. 2.4.2,
which in addition considers non-adiabatic modes.

We present in Fig. 2 ζK95 as a function of (L/M). The adi-
abatic coefficient remains almost constant for the type of stars
investigated here (sub- and red giant stars). This is obviously be-
cause ζK95 varies as the inverse of the square root of Teff.

2.4.2. Non-adiabatic case

We also computed ζ using the MAD non-adiabatic pulsation
code (Grigahcène et al. 2005). This code includes the time-
dependent convection (TDC) treatment described in Grigahcène
et al. (2005).

This TDC formulation involves a free parameter β, which
takes complex values and enters the perturbed energy equa-
tion. This parameter was introduced to prevent the occurrence
of non-physical spatial oscillations in the eigenfunctions (see
Grigahcène et al. 2005, for details). To constrain this parame-
ter we used the scaling relation between the frequency of the
maximum height in the power spectrum (νmax) and the cut-off
frequency (νc). When scaled to the Sun, one can use this scal-
ing to infer νmax for the models we used and the parameter β is
then adjusted so that the plateau (or depression) of the computed
damping rates coincides (see Belkacem et al. 2012).

Note also that TDC is a non-local formulation of convection
and is based on the Gabriel (1996) formalism as explained in
Dupret et al. (2006b) and Dupret et al. (2006a). In this frame-
work, non-local parameters related to the convective flux (a)
and the turbulent pressure (b) are chosen in the same way as
in Dupret et al. (2006b, see their Eqs. (17) and (18), see also
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R. Samadi et al.: Amplitudes of solar-like oscillations in red giant stars

Fig. 2. Coefficient ζ (see Eq. (13)) as a function of L/M for sub- and
red giants. The filled circles correspond to the values, ζnad, obtained
with the MAD non-adiabatic pulsation code (see details in the text).
The empty squares correspond to the adiabatic coefficient Kjeldsen &
Bedding (1995) (see Eq. (16)). The red line corresponds to a power law
of the form ζ0 (L/M)k with k = 0.25. Both intensity-velocity relations ζ
have been calibrated so that for the Sun ζ = 1 (see text).

Dupret et al. 2006c) so that it fits the solar 3D numerical simula-
tion. This calibration results in a = 10.4 and b = 2.9 (assuming
a mixing-length parameter α = 1.62).

For sub- and red giant stars (L/M � 10 L⊙/M⊙), the non-
adiabatic intensity-velocity relation obtained with the MAD
code can quite well be fitted by a power law of the form

ζnad = ζ0

(

L

L⊙

M⊙
M

)k

, (17)

where k = 0.25 ± 0.05 and ζ0 = 0.59 ± 0.07. For main-sequence
stars (L/M � 10 L⊙/M⊙), ζnad remains almost constant (not
shown). For the Sun, we find ζnad ≃ 0.95, which is close to the
value expected by definition for the Sun. Therefore, we are then
led to multiply ζnad by only a factor 1.05 so that, for the Sun,
theoretical (δL/L)max matches the helioseismic measurements.
The result is shown in Fig. 2 for the sub- and red giant stars
(L/M � 10 (L⊙/M⊙)). The non-adiabatic coefficient increases
rapidly with increasing (L/M) while ζK95 remains almost con-
stant. Hence, the higher (L/M), the larger the difference between
the non-adiabatic and the adiabatic coefficient (ζK95).

3. Comparison with the observations

We compare in this section theoretical mode amplitudes with
seismic measurements made from the ground in terms of
Doppler velocity (Sect. 3.2) and from space by CoRoT in terms
of intensity (Sect. 3.3). We recall that computing the theoreti-
cal mode amplitudes requires knowledge of τmax (see Eqs. (9)
and (15)), which is obtained from a set of CoRoT targets as ex-
plained in Sect. 3.1.

3.1. The CoRoT data set

Baudin et al. (2011) have measured the mode amplitudes for
360 CoRoT red giant targets. Among those targets, many show
very narrow peaks, close to the frequency resolution of the spec-
trum, while the others have resolved peaks. About 65% of those
targets have a highest mode whose width is sufficiently broad to

be fitted with a Lorentzian profile. For those targets, the height
of the highest mode, Hmax, and its lifetime τmax are thus de-
rived from the fit procedure. However, it is not excluded that
some modes with a width more narrow than the frequency reso-
lution may have been fitted with a Lorentzian profile because
of the low signal-to-noise ratio. To exclude those modes, we
only considered modes with a width Γmax = 1/(πτmax) broader
than twice the frequency resolution of the spectra (which is
0.081 µHz). This subset represents about 170 targets for which
we have an estimate of the mode lifetime (τmax) at the peak
frequency. For each target of this subset, the maximum of the
mode amplitude in intensity (Amax) was obtained according to
the relation Amax =

√

Hmax/τmax. Finally, a bolometric correc-
tion was applied in the manner of Michel et al. (2009) to convert
the apparent intensity fluctuation Amax into a bolometric ampli-
tude (δL/L)max.

3.2. Maximum velocity amplitude (Vmax)

The mode amplitude in terms of velocity is given by Eq. (9).
Calculating Vmax requires to know the mode life time τmax at
the peak frequency. We used the values of τmax available for our
set of CoRoT targets (see Sect. 3.1). We also determined the
ratio L/M as well as∆ν. The luminosity and mass of these targets
are unknown. However, Baudin et al. (2011) have proposed to
derive an estimate of the ratio L/M using the following scaling:

L

M
∝

T
7/2
eff

νmax
, (18)

where νmax is the frequency of the maximum mode height Hmax
and Teff is determined from photometric broad-band measure-
ments as explained in Baudin et al. (2011). Note that the scal-
ing law of Eq. (18) assumes that νmax scales as νc, which scales
as g/

√
Teff (see Eq. (3)). Concerning ∆ν, as first established by

Stello et al. (2009), Hekker et al. (2009) and Kallinger et al.
(2010), there is a clear scaling relation between this quantity
and νmax. We derived this quantity here according to the rela-
tion derived by Mosser et al. (2010) from a large set of CoRoT
red giant stars:

∆ν = 0.280 ν0.747
max . (19)

Theoretical values of Vmax were compared with the stars whose
Vmax has been measured so far in Doppler velocity from the
ground. We considered the different measurements published
in the literature (Frandsen et al. 2002; Barban et al. 2004;
Bouchy et al. 2005; Carrier et al. 2005a,b; Mosser et al. 2005,
2008; Arentoft et al. 2008; Kjeldsen et al. 2008; Teixeira et al.
2009; Ando et al. 2010). The values quoted in the literature
are generally given in terms of peak amplitudes. In that case
they were converted into root-mean-square (rms) amplitudes.
Furthermore, we rescaled all amplitudes into intrinsic (by op-
position to observed) amplitudes. Measured values of Vmax are
shown in Fig. 3 (top panel) as a function of L/M. We have an es-
timate of the ratio L/M for only a few stars while for almost all of
them we have a seismic measure of νmax, which is typically more
accurate than the determination of the ratio L/M. Therefore, we
also show Vmax in Fig. 3 (bottom) as a function of νmax. The
theoretical values of Vmax obtained for our subset of red giants
are found to be close to the measurements obtained for the red
giant stars observed in Doppler velocity from the ground. Note
that the considerable dispersion seen in the theoretical values of
Vmax comes from the dispersion in the measured value of τmax.
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Fig. 3. Top: maximum of the mode velocity Vmax as a function of L/M.
The filled circles correspond to the MS stars observed in Doppler ve-
locity from the ground and the red line to the power law of the form
(L/M)0.7 obtained by Samadi et al. (2007) using 3D models of MS stars.
The blue squares correspond to the theoretical Vmax derived according
to Eq. (9) (see Sect. 3.2). The red square corresponds to the median
value of the theoretical Vmax and the associated vertical bar corresponds
to bias introduced by the 1-σ error associated with the parameters p, s,
P0, andM0 (Eq. (8)). Bottom: same as top as a function of νmax.

Furthermore, we point out that the parameters p, s, P0, andM0,
which appear in Eq. (8), are mostly determined with quite a large
error. The errors associated with the parameters introduce a bias
on the theoretical Vmax, which is shown in Fig. 3 by a red vertical
bar. As seen in Fig. 3, the theoretical Vmax are found, on average,
to be about 30% lower than the measurements.

Using several 3D simulations of the surface of main-
sequence stars, Samadi et al. (2007) have found that Vmax scales
as (L/M)sv with sv = 0.7. As seen in Fig. 3, this scaling law
reproduces the MS stars quite well. When extrapolated to the
red giant domain (L/M � 10 L⊙/M⊙), this scaling law re-
sults for Vmax in values very close to our present theoretical
calculations.

The mode masses Mmax were so far evaluated a the refer-
ence optical depth τ 500 nm = 0.013 (see Sect. 2.1). We now dis-
cuss the sensitivityMmax to the optical depth at which they are
computed. To evaluate our sensitivity to this choice, we alterna-
tively computed the theoretical Vmax at the photosphere and at
an optical depth ten times lower than our reference level, that
is at τ 500 nm = 10−3. Theoretical Vmax are found to be ∼30%
lower at the photosphere and higher by∼20% at the optical depth

τ 500 nm = 10−3. This result illustrates at which level Vmax is
sensitive to the depth where the acoustic modes are supposed
to be measured. This depth is not well known, however, but we
believe that it should be located between the photosphere and
our reference optical depth.

3.3. Maximum bolometric amplitude ((δL/L)max)

3.3.1. Adiabatic case

We computed (δL/L)max according to Eq. (15) using the scal-
ing law given by Eq. (9) for v and assuming the adiabatic co-
efficient ζK95 (Eq. (16)). Figure 4 (top) shows (δL/L)max as a
function of ratio (L/M), where this ratio is estimated accord-
ing to Eq. (18). We also plotted the mode amplitudes measured
for a small sample of CoRoT main-sequence stars (see Baudin
et al. 2011, and references therein). Theoretical (δL/L)max under-
estimates the amplitudes measured on the CoRoT red giant stars
by a factor of about 2.5.

3.3.2. Non-adiabatic case

We computed (δL/L)max according to Eq. (15) assuming the non-
adiabatic scaling law established in Sect. 2.4.2 (see Eq. (17))
for ζ. The result is shown in Fig. 4 (bottom). Using the non-
adiabatic coefficient results in an increase of the bolometric am-
plitude by a factor ∼1.5 compared to the calculations based on
the adiabatic coefficient. This renders the theoretical bolometric
amplitude closer to the observations.

We have plotted in Fig. 5 the histogram of the relative dif-
ference between observed and theoretical (δL/L)max, that is, the
histogram of the quantity γ ≡ (Aobs − A)/A, where A is the theo-
retical amplitude and Aobs the observed one. The dispersion seen
in the histogram is due both to the errors associated with the data
and the fact that we observe a heterogeneous population of stars
with different chemical abundance.

The red horizontal bar shows the bias introduced by the 1-σ
errors associated with the determination of the parameters p∗,
s, P0, M0,∗, k, and ζ0 as well the measurement of (δL/L)⊙rms
and v⊙rms (see Eq. (13)). The median of γ is close to 0.8 (the verti-
cal dashed line). This means that theoretical amplitudes remains,
on average, ∼40% below the CoRoT measurements.

4. Conclusion

4.1. Theoretical scaling relation for the velocity mode
amplitude

We have extended the calculations performed by Samadi et al.
(2007) for main-sequence stars to sub- and red giant stars. We
found that the maximum of the mode excitation rate,Pmax, scales
approximately as (L/M)s with s = 2.60 ± 0.08. Accordingly, for
sub- and red giant stars, theoretical Pmax scales in same way as
for the main-sequence stars.

We also found that the mode mass at the peak frequency,
Mmax, which was evaluated at a reference level in the atmo-
sphere, scales as ∆ν−p where∆ν ∝ (M/R3)1/2, with p = 2.1±0.1.
Since (M/R3) represents also the mean density, we have that
Mmax scales almost linearly as the inverse of the star mean den-
sity. This tight relation still remains to be understood, however.
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Fig. 4. Top: maximum of the mode intensity fluctuation (δL/L)max as a
function of L/M. The filled circles correspond to the seismic measure-
ments performed by Baudin et al. (2011) on a large number of CoRoT
red giant stars (∼170 targets). We only considered the targets for which
the mode line width is broader than twice the frequency resolution (see
Sect. 3.1). The empty circles correspond to the MS stars observed so
far by CoRoT (see Baudin et al. 2011), and the blue squares are the
theoretical (δL/L)max computed according to the Kjeldsen & Bedding
(1995) adiabatic coefficient (Eq. (16), see Sect. 3.3.1). The red square
corresponds to the median value of the theoretical (δL/L)max and the as-
sociated vertical bar corresponds to the bias introduced by the 1-σ error
associated with the parameters p∗, s, P0, and M0,∗, (δL/L)⊙rms and v⊙rms
(see Eq. (15)). Bottom: same as top, the theoretical (δL/L)max are com-
puted here assuming for ζ the non-adiabatic scaling relation established
in Sect. 2.4.2 (see also Fig. 2). The red error bar here also accounts for
the 1-σ error associated with the parameters k and ζ0 (see Eq. (17) and
Sect. 2.4.2).

From the scaling laws forMmax andPmax, we finally derived
a scaling law for the maximum of the mode velocity, which has
the following form:

Vmax ∝ (τmax)1/2
(

L

M

)s/2 (M

R3

)p/4

, (20)

where τmax is the mode lifetime at the peak frequency.
Using CoRoT data, Baudin et al. (2011) have found that

τmax scales approximately as T−m
eff where m = 16.2 ± 2 for the

main-sequence and sub-giant stars. Recently, Appourchaux et al.
(2012) have found a slope m = 15.5 ± 1.6 with Kepler data,
which is hence compatible with that of Baudin et al. (2011).
Such a power law is also supported by the theoretical calcula-
tions of Belkacem et al. (2012) performed for main-sequence,

Fig. 5. Histogram of the relative difference (γ) between observed and
theoretical (δL/L)max (see text). The vertical dashed line shows the po-
sition of the median value. The horizontal error bar corresponds to the
bias introduced by the 1-σ error associated with the determination of the
parameters p∗, s, P0,M0,∗, k, and ζ0 and the measurement of (δL/L)⊙rms
and v⊙rms.

sub- and red giant stars. Furthermore, althoughMmax scales bet-
ter with ∆ν, it also scales well as g−p′ with p′ = 1.66±0.15 (note
the larger uncertainty for p′ compared to p). Accordingly, since
L/M ∝ T 4

eff/g, we can rewrite the scaling for Vmax (Eq. (20)) as
a function of the star spectroscopic parameters only:

Vmax ∝ T
(2s−m/2)
eff g(p′/2−s/2). (21)

Using a set of CoRoT red giant stars for which the mode life-
times have been measured (Baudin et al. 2011), we derived from
the scaling law of Eq. (20) theoretical values of Vmax. These val-
ues were found to be close to the measurements made from the
ground in terms of Doppler velocity for red giant stars. However,
the Doppler measurements remain on average under-estimated
by a about 30%. We discuss in Sect. 5 possible reasons for this
under-estimation.

4.2. Theoretical scaling relation for the bolometric mode
amplitude

When converted in terms of intensity using the Kjeldsen &
Bedding (1995) adiabatic relation, the theoretical amplitudes
under-estimate the bolometric mode amplitudes measured by
Baudin et al. (2011) on a set of CoRoT red giant stars by a fac-
tor about 2.5. Alternatively, we have considered the MAD non-
adiabatic pulsation code (Grigahcène et al. 2005) to establish a
non-adiabatic relation between intensity and velocity. We found
that this relation scales as (L/M)k with k = 0.25 ± 0.05. We
finally established for the mode amplitude in intensity the fol-
lowing scaling law:

(δL/L)max ∝ (τmax)1/2
(

L

M

)s/2+k (M

R3

)p∗/4

, (22)

where p∗ = 2.0 ± 0.1. As for the scaling relation for Vmax, the
one for (δL/L)max can be rewritten as a function of the star spec-
troscopic parameters only:

(δL/L)max ∝ T
(2s−m/2+4k)
eff g(p′∗/2−s/2−k), (23)

where p′∗ = 1.63 ± 0.15.
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Using the non-adiabatic scaling law for (δL/L)max reduces
the difference between theoretical and measured amplitudes by a
factor ∼1.5. Our analysis hence explains qualitatively the recent
results obtained for red giant stars using photometric CoRoT
and Kepler observations (Baudin et al. 2011; Huber et al. 2011;
Stello et al. 2011; Mosser et al. 2012). Indeed, we stress that the-
oretical relation obtained for mode amplitudes in velocity cannot
be simply extrapolated into photometry because non-adiabatic
effects dominate the relation between mode amplitude in veloc-
ity and intensity.

However, while the non-adiabatic treatment implemented in
the MAD code (Grigahcène et al. 2005) reduces the discrepancy
with the CoRoT measurements, the latter are still underestimated
on average by about 40%. Possible reasons for this discrepancy
are discussed in Sect. 5.

5. Discussion

The mode masses are sensitive to the layer at which they are
evaluated, which must in principle correspond to the height in
the atmosphere at which spectrographs dedicated to stellar seis-
mology are the most sensitive (see Sects. 2.1, 3.2, and Samadi
et al. 2008). However, the uncertainty associated with the lack
of knowledge of this layer introduces an uncertainty on the com-
puted amplitudes that should not exceed ∼30% (see Sect. 3.2).

The discrepancy with the velocity measurements can also be
attributed to the under-estimation of the mode driving. It is not
clear which part of the excitation model might be incorrect or
incomplete. Nevertheless, we believe that a possible bias can
arise from the way oscillations are currently treated in the re-
gion where the driving is the most efficient (i.e. the uppermost
part of the convective region). Indeed, in this region the oscilla-
tion period, the thermal time-scale and the dynamical time-scale
are of the same order, making the coupling between pulsation
and convection stronger and energy losses more significant (see
e.g. Belkacem et al. 2011, and references therein). We have com-
pared non-adiabatic and adiabatic eigenfunctions computed for
the global standard 1D model. The non-adiabatic eigenfunctions
obtained with the MAD pulsation code differ from the adiabatic
ones only in a small fraction of the excitation region. We found
a negligible difference between excitation rates computed with
non-adiabatic eigenfunctions and those computed with adiabatic
eigenfunctions. However, we point out that the underlying the-
ory is based on a time-dependent version of the mixing-length
theory, which is well known to be a crude formulation of con-
vection. Therefore a more realistic and consistent non-adiabatic
approach that does not rely on free parameters and that includes
constraints from 3D hydrodynamical models is required.

Finally, part of the differences with amplitudes (δL/L)max
measured by CoRoT can be attributed to the intensity-velocity
relation. Indeed, if we suppose that the mode masses are cor-
rect, then we must multiply the mode excitation rates Pmax
by a factor ∼1.52 = 2.25 to match the velocity measure-
ments. In that case only a difference of about 20% with the ob-
served (δL/L)max remains, which must then be attributed to the
intensity-relation. The intensity-relation strongly depends on the
way non-adiabatic effects are treated, and as mentioned above,
the current non-adiabatic treatment is based on a crude descrip-
tion of the convection and its inter-action with pulsation.
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Nom, prénoms : SAMADI, Davoud Réza
Date et lieu de naissance : 31/12/71 à Meched (Iran)
Nationalité : Française
Coordonnées :

Observatoire de Paris - section Meudon
Bat. 14, 5 place Jules Janssen
92 195 Meudon
France

Tél : +33 1 45 07 78 48
Fax : +33 1 45 07 79 59
e-mail : Reza.Samadi@obspm.fr

Carrière professionnelle

01/2004- Astronome adjoint à l’Observatoire de Paris dans le Laboratoire d’études
spatiales et d’instrumentation en astrophysique (LESIA, UMR8109), Uni-
versité Pierre et Marie Curie, Université Denis Diderot

06/2003-12/2003 Boursier de la Fondation portugaise pour la Science et la Technologie (FCT)
à l’Observatoire de Coimbra (Coimbra, Portugal)

02/2003-05/2003 Boursier de la Société de Secours des Amis des Sciences au LESIA (Obser-
vatoire de Paris)

10/2002-01/2003 Vacataire de recherche au LESIA (Observatoire de Paris)
10/2000-09/2002 Chercheur Assistant au Queen Mary University of London (Londres,

Royaume-Uni) sous la responsabilité de I. Roxburgh
10/1997-09/2000 Allocataire de recherche au DESPA (Observatoire de Paris)

Séjours à l’étranger

09/2001 [3 mois] Niels Bohr Institut for Astrophysics, Physics and Geophysics, Copen-
hagen, Denmark

01/2003 [5 semaines] Michigan State University, Lansing, Michigan, USA
10/2004 [2 semaines] Standford University, Standford, California, USA
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Diplomes et qualifications

2001 Qualifié par la section 34 de la Commission Nationale des Universités (CNU)
1997-2000 Thèse de doctorat de l’Université Pierre et Marie Curie (Paris 6)

• Spécialité : « Méthodes instrumentales en Astrophysique et leurs applications
spatiales ».

• Sujet : « Excitation stochastique des oscillations stellaires. Application à la mis-
sion spatiale COROT ».

• Laboratoire : DESPA, Observatoire de Paris.
• Date et lieu de soutenance : 8 décembre 2000, Observatoire de Meudon.
• Directeurs de thèse : Annie BAGLIN, Directeur de recherche à l’Observatoire

de Paris et Marie-Jo GOUPIL, Astronome à l’Observatoire de Paris
• Mention : Très honorable avec les félicitations du Jury.
• Financement : allocation de recherche MESR.

1996-1997 DEA « Méthodes instrumentales en Astrophysique et leurs applications spatiales »,
Paris 6, mention Bien

1994-1995 Maîtrise de Physique Fondamentale, Paris 6, mention Assez Bien
1993-1994 Licence de Physique, Paris 6, mention Bien
1992-1993 DEUG A, Paris 6, mention Bien
1991-1992 Classe Préparatoire Maths Sup., au lycée Fénelon (Paris 5)
1990-1991 Baccalauréat série C au lycée Gustave Eiffel (Cachan, Val de Marne)

Enseignements ponctuels

01/2011 1 h de cours dispensé dans le cadre du module « conduite de projet » de l’Ecole
Doctorale d’Astronomie et d’Astrophysique d’Ile-de-France. Titre du cours :
« PLATO : Objectifs et besoins scientifiques »

10/2008 1 h de cours dispensé dans le cadre de l’Ecole Internationale CoRoT. Titre du
cours : « The CoRoT data »

10/2008 2 h de TP dispensés dans le cadre de l’Ecole Internationale CoRoT. Titre du cours :
« Practice : asteroseismology data analysis »

10/2008 1 h de cours dispensé lors de l’Ecole St Flour du CNRS « Les pulsations du Soleil
et des étoiles ». Titre du cours : « Processus d’excitation des modes par la convec-
tion turbulente »

Enseignements
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2011- Licence 2eme année : « Électrostatique, Magnétostatique et Induction » (UE LP
203), Université Pierre et Marie Curie (Paris 6). Travaux dirigés et travaux pra-
tiques

2005-2010 Licence 1ere année : « Electrocinétique et optique par l’expérience » (UE LP 103),
Université Pierre et Marie Curie (Paris 6). Cours magistraux, travaux dirigés et
travaux pratiques. Co-direction d’un amphi avec Eric Michel. Mise en place d’un
site internet dédié (http ://www.edu.upmc.fr/physique/lp103ElectOpt/). Mise en
ligne des cours, énoncés de TD et sujets d’examen

2004- Module de méthodologie, Master Astronomie Astrophysique et Sciences de l’Es-
pace de l’Observatoire de Paris

2004- Enseignement de post-master « TP de méthodes inverses », Ecole Doctorale As-
tronomie et Astrophysique d’Ile de France

2002-2003 6 heures d’encadrement de TP d’électronique à l’université Paris 6
18 heures d’encadrement de TP de sismologie à des doctorants de l’Ecole Docto-
rale d’Astronomie et d’Astrophysique d’Ile-de-France

2001-2002 26 heures de TP/TD d’informatique dispensées à des étudiants en 1ième année de
DEUG SM de l’université Versailles-Saint Quentin-En-Yvelines (UVSQ)

2000-2001 28 heures de TP/TD d’informatique dispensées à des étudiants en 2ième année de
DEUG SM de l’UVSQ
15 heures de TP de modélisation numérique en astrophysique dans le cadre des
enseignements du DEA « Mathématique de la modélisation, simulation et applica-
tion de la physique » de l’UVSQ

1999-2000 8 heures de colles en Physique dispensées à des étudiants en 2ième année de
DEUG préparant les concours ENSI à l’université Paris 7

Encadrements de thèses

10/2005-10/2008 Co-encadrement avec M. Goupil de la thèse de K. Belkacem
09/2004-12/2007 Implication sur la thèse de Fabio Fialho (Directeur : M. Auvergne)
09/2002-12/2005 Implication sur la thèse de Jérémie Lochard (Directeurs : M.J Goupil et P.

Boumier)

Encadrements de stagiaires
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01/06/2012-
30/08/2012

[3 mois] Direction d’ingénieur de Florian Ferreira de l’Ecole d’Ingénieur Denis
Diderot EIDD, Spécialité Architecture des Systèmes Physiques. Sujet : « Mission
spatiale PLATO : simulation de la réponse instrumentale et traitement photomé-
trique bord »

23/04/2012-
15/06/2012

[7 semaines effectives] Direction du stage de M1 de Maylis Dozieres de l’Uni-
versité Pierre et Marie Curie. Sujet : « Modélisation du spectre de la granulation
stellaire dans une variété d’étoiles »

01/04/2011-
30/08/2011

[73 mois] Direction du stage de M2R de Julien Auriac de l’Université Pierre et
Marie Curie. Sujet : « Étude de la réponse instrumentale des télescopes à bord du
satellite PLATO (ESA) ». Soutenu le 20/09/2011

01/04/2010-
15/05/2010

[7 semaines] Direction du stage de M1 de F. ZHANG & Y. CAO (binôme) de
l’Université Pierre et Marie Curie. Sujet : « Transport convectif dans les étoiles :
un modèle théorique et son implémentation » Soutenu le 14/06/2010

04/01/2010-
15/01/2010

(2 semaines) Stage de L3, Guichard Marc & Rodriguez Diego (binôme). Sujet :
« Transport convectif dans les étoiles : étude d’un modèle théorique et son implé-
mentation »

01/04/2005-
30/06/2005

[3 mois] Direction du stage de M2R de Kévin Belkacem de l’Ecole Doctorale
d’Astronomie et d’Astrophysique d’Ile-de-France, Sujet : « Modèle de fermeture
avec panaches. Application à l’excitation stochastique des oscillations stellaires »

Responsabilités scientifiques et techniques

09/2010- Au sein du PLATO Data Center (PDC) : responsable du groupe de travail « Data
Processing Algorithms » (WP 32). Responsable des études et des définitions dé-
taillées des algorithmes scientifiques de traitement bord et sol. Animation et ges-
tion du groupe de travail (12 collaborateurs ingénieurs et chercheurs). Évaluation
des performances attendues. Rédaction de notes techniques et rapports d’avance-
ment. Encadrement d’un ingénieur CDD de 18 mois financé par le CNES

09/2007- Maintenance de la chaine de traitement des données scientifiques CoRoT. Valida-
tion et surveillance des traitements

6/2008-
10/2010

Participation au groupe système PLATO (phase Assessement Study). Responsabi-
lité de l’étude et de la définition des algorithmes scientifiques du projet de mission
spatiale PLATO (ESA - Cosmic Vision). Participation à la rédaction des docu-
ments définissant l’architecture complète de la charge utile, documents sur la base
desquels la mission a été sélectionnée pour une étude approfondie

2007-2011 co-I de l’ANR blanc SIROCO (SIsmologie, ROtation et COnvection stellaire avec
le satellite COROT)

01/2004-
08/2007

Direction et coordination des travaux du groupe responsable de la mise en place
de la chaine de traitement scientifique sol de la mission spatiale CoRoT. Définition
et développement de la chaine de traitement. Encadrement de trois CDD

01/2002-
12/2006

Participation aux activités du groupe de travail (CoRoT - Seismology Working
Group) en charge de la préparation scientifique à l’interprétation des données Co-
RoT

Encadrement ingénieurs et post-doctorants
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07/2010-12/2011 Encadrement de Dr. J. Green dans le cadre du groupe de travail WP32 de la
mission PLATO. CCD financé par le CNES

06/2005-03/2007 Encadrement de P. Journoud dans le cadre du développement de la chaine
de traitement des données scientifiques CoRoT. CCD financé par le CNES

01/2006-06/2010 Encadrement (mi-temps) de Dr. L. Lefevre dans le cadre du développement
d’outils d’analyse et de caractérisation des données CoRoT et de la réduc-
tion photométrique sol. CCD financé par le CNES

01/2004-12/2006 Encadrement (mi-temps) de Dr. E. Costa dans le cadre du développement
des algorithmes de correction du fond de ciel et d’outils de visualisation des
données CoRoT. CCD financé par le ministère brésilien de la recherche.

Responsabilités administratives et électives

2010-2012 Secrétaire de la Société Française d’Astronomie et d’Astrophysique (SF2A)
(2nd mandat de 2ans)

2008-2010 Secrétaire de la SF2A (1er mandat de 2 ans)
2008-2012 Membre élu du conseil de la SF2A (2nd mandat de 4 ans)
2004-2008 Membre élu du conseil de la SF2A (1er mandat de 4 ans)
1999-2007 Membre de la Commission Jeunes Chercheurs de l’Observatoire de Paris.

Diffusion de l’information auprès des jeunes chercheurs et des étudiants en
DEA. Gestion du serveur internet et de la liste de diffusion de la commission
jeune chercheur.

Organisation de conférences internationales et nationales

2008 Membre du comité local d’organisation et du comité scientifique de la Semaine 2008
de l’Astrophysique Française, 30 juin - 4 juillet, 2008, Paris

2009 Membre du comité scientifique de la Semaine 2009 de l’Astrophysique Française, 29
juin - 4 juillet 2009, Besançon

2010 Membre du comité scientifique de la Semaine 2010 de l’Astrophysique Française,
21-24 juin, 2010, Marseille

2011 Responsable du comité local d’organisation et membre du comité scientifique de la
Semaine 2011 de l’Astrophysique Française , juin 2011, Paris

2011 Membre du comité scientifique de l’atelier « Helio et asterosismologie, avancées et
perspectives dans le contexte des nouvelles missions spatiales et instruments ter-
restres », 20 Juin 2011, Paris 2011

2011 Membre du comité scientifique de l’atelier « SIROCO Workshop », 8-9 juin 2011,
Paris

2012 Membre du comité scientifique de la Semaine 2012 de l’Astrophysique Française, 5-8
juin 2012, Nice

2012 Membre du comité scientifique de l’atelier « CoRoT/Kepler : contribution to stars
characterization », 5 juin 2012, Nice

Edition scientifique
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2012 S. Boissier, P. de Laverny, N. Nardetto, R. Samadi R. (chair), Valls-Gabaud D., H.
Wozniak, 2012, « SF2A 2012 : Semaine de l’Astrophysique Française », mise en ligne
en cours

2011 Alecian G., Belkacem K., R. Samadi R. (chair), Valls-Gabaud D., 2011, « SF2A
2011 : Semaine de l’Astrophysique Française », http://sf2a.cesr.fr/php/
spip/spip.php?article350

2010 Boissier S., Heydari-Malayeri, M. ; Samadi, R. (chair), Valls-Gabaud D., « SF2A
2010 : Semaine de l’Astrophysique Française », http://sf2a.cesr.fr/php/
spip/spip.php?article279

2009 Heydari-Malayeri, M. ; Reylé C., Samadi, R. (chair), « SF2A 2009 : Semaine
de l’Astrophysique Française », http://sf2a.cesr.fr/php/spip/spip.php?
article205

2008 Charbonnel C., Combes F. (chair), Samadi R., « SF2A 2008 : Semaine de l’Astrophy-
sique Française », http://sf2a.cesr.fr/2008/proceedings2008.html

Autre experience professionnelle

09/1995-09/1996 Informatique, dépouillement de données et traitement du signal au DESPA
(Observatoire de Paris) dans le cadre du Service National. Travail sur le
projet spatial EVRIS (MARS 96) en collaboration avec M. Auvergne et
G.Epstein.

Autres responsabilités

01/2004- Gestion des serveurs de calculs et des codes numériques de l’équipe

Informatique

Langages C/C++, JAVA, IDL, Matlab, Fortran 77, Python.
Environnements Unix, Linux (utilisation et administration), Windows XP
Logiciels Word, LATEX, Excell
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1. Degroote, P., Aerts, C., Michel, E., Briquet, M., Pápics, P. I., and 12 colleagues, The CoRoT B-
type binary HD50230 : a prototypical hybrid pulsator with g-mode period and p-mode frequency
spacings, 2012, A&A, 542, 88

2. Samadi, R., Belkacem, K., Dupret, M.-A., Ludwig, H.-G., Baudin, F., and 3 colleagues, Ampli-
tudes of solar-like oscillations in red-giant stars : Evidences for non-adiabatic effects using CoRoT
observations, 2012, A&A, 543, 120

3. Pápics, P. I., Briquet, M., Baglin, A., Poretti, E., Aerts, C., and 12 colleague(s), Gravito-inertial
and pressure modes detected in the B3 IV CoRoT target HD 43317, 2012, A&A, 542, A55

4. Mantegazza, L., Poretti, E., Michel, E., Rainer, M., Baudin, F., and 12 colleague(s), Pulsation
spectrum of δ Scuti stars : the binary HD 50870 as seen with CoRoT and HARPS, 2012, A&A,
542, A24

5. Belkacem, K., Dupret, M. A., Baudin, F., Appourchaux, T., Marques, J. P., and 1 colleague(s),
Damping rates of solar-like oscillations across the HR diagram. Theoretical calculations confron-
ted to CoRoT and Kepler observations, 2012, A&A, 540, L7

6. Mosser, B., Goupil, M. J., Belkacem, K., Michel, E., Stello, D., and 13 colleague(s), Probing the
core structure and evolution of red giants using gravity-dominated mixed modes observed with
Kepler, 2012, A&A, 540, A143

7. Baudin, F., Barban, C., Goupil, M. J., Samadi, R., Lebreton, Y., and 13 colleague(s), Modelling a
high-mass red giant observed by CoRoT, 2012, A&A, 538, A73

8. Mosser, B., Elsworth, Y., Hekker, S., Huber, D., Kallinger, T., and 13 colleague(s), Characteri-
zation of the power excess of solar-like oscillations in red giants with Kepler, 2012, A&A, 537,
A30

9. Degroote, P., Acke, B., Samadi, R., Aerts, C., Kurtz, D. W., and 9 colleague(s), CoRoT’s view
on variable B8/9 stars : spots versus pulsations. Evidence for differential rotation in HD 174648,
2011, A&A, 536, A82

10. Baudin, F., Barban, C., Belkacem, K., Hekker, S., Morel, T., and 10 colleague(s), Amplitudes and
lifetimes of solar-like oscillations observed by CoRoT (Corrigendum). Red-giant versus main-
sequence stars, 2011, A&A, 535, 1

263



Annexe C. Publications

11. Blomme, R., Mahy, L., Catala, C., Cuypers, J., Gosset, E., and 13 colleague(s), Variability in the
CoRoT photometry of three hot O-type stars. HD 46223, HD 46150, and HD 46966, 2011, A&A,
533, A4

12. Mosser, B., Barban, C., Montalbán, J., Beck, P. G., Miglio, A., and 13 colleague(s), Mixed modes
in red-giant stars observed with CoRoT, 2011, A&A, 532, A86

13. Belkacem, K., Goupil, M. J., Dupret, M. A., Samadi, R., Baudin, F., and 2 colleague(s), The
underlying physical meaning of the νmax - νc relation, 2011, A&A, 530, A142

14. Ballot, J., Gizon, L., Samadi, R., Vauclair, G., Benomar, O., and 25 colleague(s), Accurate p-mode
measurements of the G0V metal-rich CoRoT target HD 52265, 2011, A&A, 530, A97

15. Baudin, F., Barban, C., Belkacem, K., Hekker, S., Morel, T., and 10 colleague(s), Amplitudes
and lifetimes of solar-like oscillations observed by CoRoT. Red-giant versus main-sequence stars,
2011, A&A, 529, A84

16. Pápics, P. I., Briquet, M., Auvergne, M., Aerts, C., Degroote, P., and 11 colleague(s), CoRoT
high-precision photometry of the B0.5 IV star HD 51756, 2011, A&A, 528, A123

17. Briquet, M., Aerts, C., Baglin, A., Nieva, M. F., Degroote, P., and 11 colleague(s), An asteroseis-
mic study of the O9V star HD 46202 from CoRoT space-based photometry, 2011, A&A, 527,
A112

18. Belkacem, K., Samadi, R., and Goupil, M. J., Amplitudes of solar p modes : Modelling of the
eddy time-correlation function, 2011, Journal of Physics Conference Series, 271, 012047

19. Goupil, M. J., Lebreton, Y., Marques, J. P., Samadi, R., and Baudin, F., Open issues in probing
interiors of solar-like oscillating main sequence stars 1. From the Sun to nearly suns, 2011, Journal
of Physics Conference Series, 271, 012031

20. Mosser, B., Belkacem, K., Goupil, M. J., Michel, E., Elsworth, Y., and 10 colleague(s), The uni-
versal red-giant oscillation pattern. An automated determination with CoRoT data, 2011, A&A,
525, L9

21. Mahy, L., Gosset, E., Baudin, F., Rauw, G., Godart, M., and 11 colleague(s), Plaskett’s star :
analysis of the CoRoT photometric data, 2011, A&A, 525, A101

22. Chapellier, E., Rodríguez, E., Auvergne, M., Uytterhoeven, K., Mathias, P., and 16 colleague(s),
The γ Doradus CoRoT target HD 49434. II. Frequency analysis of the CoRoT data, 2011, A&A,
525, A23

23. Degroote, P., Aerts, C., Samadi, R., Miglio, A., Briquet, M., and 5 colleague(s), Asteroseismology
of OB stars with CoRoT, 2010, Astronomische Nachrichten, 331, 1065

24. Barban, C., Baudin, F., Mosser, B., Goupil, M. J., De Ridder, J., and 5 colleague(s), Frequency
spacings of p-modes in red giants observed by CoRoT, 2010, Astronomische Nachrichten, 331,
1016

25. Gaulme, P., Deheuvels, S., Weiss, W. W., Mosser, B., Moutou, C., and 11 colleague(s), HD 46375 :
seismic and spectropolarimetric analysis of a young Sun hosting a Saturn-like planet, 2010, A&A,
524, A47

26. Belkacem, K., Samadi, R., Goupil, M. J., Baudin, F., Salabert, D., and 1 colleague(s), Turbulent
eddy-time-correlation in the solar convective zone, 2010, A&A, 522, L2

27. Suárez, J. C., Goupil, M. J., Reese, D. R., Samadi, R., Lignières, F., and 2 colleague(s), On the
Interpretation of Echelle Diagrams for Solar-like Oscillations Effect of Centrifugal Distortion,
2010, ApJ, 721, 537
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28. Degroote, P., Briquet, M., Auvergne, M., Simón-Díaz, S., Aerts, C., and 13 colleague(s), Detection
of frequency spacings in the young O-type binary HD 46149 from CoRoT photometry, 2010,
A&A, 519, A38

29. Samadi, R., Belkacem, K., Goupil, M. J., Dupret, M.-A., Brun, A. S., and 1 colleague(s), Stochas-
tic excitation of gravity modes in massive main-sequence stars, 2010, Ap&SS, 328, 253

30. Carrier, F., Morel, T., Miglio, A., Montalbán, J., Auvergne, M., and 17 colleague(s), The red-giant
CoRoT target HR 7349, 2010, Ap&SS, 328, 83

31. Gaulme, P., Vannier, M., Guillot, T., Mosser, B., Mary, D., and 17 colleague(s), Possible detection
of phase changes from the non-transiting planet HD 46375b by CoRoT, 2010, A&A, 518, L153

32. Mathur, S., García, R. A., Catala, C., Bruntt, H., Mosser, B., and 20 colleague(s), The solar-like
CoRoT target HD 170987 : spectroscopic and seismic observations, 2010, A&A, 518, A53

33. Mosser, B., Belkacem, K., Goupil, M.-J., Miglio, A., Morel, T., and 8 colleague(s), Red-giant
seismic properties analyzed with CoRoT, 2010, A&A, 517, A22

34. Charpinet, S., Green, E. M., Baglin, A., van Grootel, V., Fontaine, G., and 8 colleague(s), CoRoT
opens a new era in hot B subdwarf asteroseismology. Detection of multiple g-mode oscillations in
KPD 0629-0016, 2010, A&A, 516, L6

35. Deheuvels, S., Bruntt, H., Michel, E., Barban, C., Verner, G., and 14 colleague(s), Seismic and
spectroscopic characterization of the solar-like pulsating CoRoT target HD 49385, 2010, A&A,
515, A87

36. Aerts, C., Lefever, K., Baglin, A., Degroote, P., Oreiro, R., and 13 colleague(s), Periodic mass-
loss episodes due to an oscillation mode with variable amplitude in the hot supergiant HD 50064,
2010, A&A, 513, L11

37. Kallinger, T., Weiss, W. W., Barban, C., Baudin, F., Cameron, C., and 8 colleague(s), Oscillating
red giants in the CoRoT exofield : asteroseismic mass and radius determination, 2010, A&A, 509,
A77

38. Carrier, F., De Ridder, J., Baudin, F., Barban, C., Hatzes, A. P., and 11 colleague(s), Non-radial
oscillations in the red giant HR 7349 measured by CoRoT, 2010, A&A, 509, A73

39. Lüftinger, T., Fröhlich, H.-E., Weiss, W. W., Petit, P., Aurière, M., and 13 colleague(s), Surface
structure of the CoRoT CP2 target star HD 50773, 2010, A&A, 509, A43

40. Samadi, R., Ludwig, H.-G., Belkacem, K., Goupil, M. J., Benomar, O., and 5 colleague(s), The
CoRoT target HD 49933 . II. Comparison of theoretical mode amplitudes with observations, 2010,
A&A, 509, A16

41. Samadi, R., Ludwig, H.-G., Belkacem, K., Goupil, M. J., and Dupret, M.-A., The CoRoT target
HD 49933 . I. Effect of the metal abundance on the mode excitation rates, 2010, A&A, 509, A15
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Résumé

Alors que les oscillations solaires n’ont pas fini de nous révéler tous leurs secrets, des oscillations
acoustiques analogues sont détectées dans un nombre croissant d’étoiles. Comme sur le Soleil, ces os-
cillations (dite de type solaire) sont amorties par des mécanismes complexes et encore mal connus et
excitées par la turbulence dans l’enveloppe convective supérieure des étoiles. Grâce à la qualité photo-
métrique exceptionnelle des missions spatiales CoRoT (CNES) et Kepler (NASA) ainsi qu’à la continuité
long terme des observations qu’elles fournissent, on mesure maintenant précisément fréquences, ampli-
tudes et durées de vie de ces oscillations dans une variété d’étoiles dotées de caractéristiques diverses
concernant leur stade évolutif, paramètres fondamentaux, composition chimique, champ magnétique,
rotation ... etc.

Plus que ne le fait la mesure de leurs fréquences, la mesure des amplitudes et durées vies des modes
de type solaire nous fournit des contraintes sur les propriétés statiques et dynamiques de la convection,
sur la physique des modes et enfin sur la stratification en surface des étoiles. Le jeux conséquent d’étoiles
pulsantes détectées par CoRoT et Kepler nous révéle aussi que les amplitudes et durées de ces oscilla-
tions varient d’une étoile à l’autre selon des lois d’échelles caractéristiques qui dépendent d’un nombre
restreint de paramètres stellaires (masse, luminosité, température effective ... etc).

Ce mémoire de thèse résume les travaux que j’ai menés dans ce contexte depuis plus de dix ans
en collaboration avec mes collègues et avec les étudiants que j’ai encadré. Ces travaux ont cherché
à comprendre et mieux modéliser les amplitudes des oscillations excitées par la convection turbulente,
notamment les lois d’échelles observées. Ce faisant, ils ont visé à établir des diagnostics sur les propriétés
statiques et dynamiques des régions convectives, avec pour objectif à plus long terme d’améliorer la
modélisation des processus de transport convectif dans les intérieurs stellaires.

Mots-clés: Turbulence - convection - oscillations - excitation stochastique
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