
HAL Id: tel-00762173
https://theses.hal.science/tel-00762173

Submitted on 6 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Supporting Integration Activities in Object-Oriented
Applications

Verónica Uquillas-Gomez

To cite this version:
Verónica Uquillas-Gomez. Supporting Integration Activities in Object-Oriented Applications. Pro-
gramming Languages [cs.PL]. Université des Sciences et Technologie de Lille - Lille I, 2012. English.
�NNT : �. �tel-00762173�

https://theses.hal.science/tel-00762173
https://hal.archives-ouvertes.fr

FACULTEIT WETENSCHAPPEN
Vakgroep Computerwetenschappen
Software Languages Lab

Supporting Integration Activities in
Object-Oriented Applications

Proefschrift ingediend met het oog op het behalen van de graad van Doctor in de Wetenschappen

Verónica Isabel Uquillas Gómez

Promotoren: Prof. Dr. Theo D’Hondt
Dr. Stéphane Ducasse

Co-Promotor: Dr. Andy Kellens

Brussel, Oktober 2012

Print: Silhouet, Maldegem

c©2012 Verónica Isabel Uquillas Gómez

2012 Uitgeverij VUBPRESS Brussels University Press
VUBPRESS is an imprint of ASP nv (Academic and Scientific Publishers nv)
Ravensteingalerij 28
B-1000 Brussels
Tel. +32 (0)2 289 26 50
Fax +32 (0)2 289 26 59
E-mail: info@vubpress.be

www.vubpress.be

ISBN 978 90 5718 213 6
NUR 989
Legal deposit D/2012/11.161/149

All rights reserved. No parts of this book may be reproduced or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written permission of the author.

info@vubpress.be
www.vubpress.be

Université des Sciences et Technologies de Lille – Lille 1

Département de formation doctorale en informatique École doctorale SPI Lille

UFR IEEA

Supporting Integration Activities in

Object-Oriented Applications

THÈSE

présentée et soutenue publiquement le 4 octobre 2012

pour l’obtention du

Doctorat de l’Université des Sciences et Technologies de Lille

(spécialité informatique)

par

Verónica Isabel UQUILLAS GÓMEZ

Composition du jury

Rapporteurs : Michele LANZA (Professeur - Université de Lugano)
Jurgen VINJU (Directeur de Recherce - Centrum

Wiskunde & Informatica - Amsterdam)

Examinateurs : Nicolas ANQUETIL (Mâıtre de Conférence – Université de Lille1)
Viviane JONCKERS (Professeur – Vrije Universiteit Brussel)
Julia LAWALL (Directrice de Recherche – INRIA Paris)
Ann NOWE (Professeur – Vrije Universiteit Brussel)

Directeurs de thèse : Theo D’HONDT (Professeur – Vrije Universiteit Brussel)
Stéphane DUCASSE (Directeur de Recherche – INRIA Lille)

Co-Directeur de thèse : Andy KELLENS (Chercheur – Vrije Universiteit Brussel)

Laboratoire d’Informatique Fondamentale de Lille — UMR USTL/CNRS 8022
INRIA Lille - Nord Europe

Numéro d’ordre: 40882

Abstract

Modern software is built by teams of developers that work in a collaborative environment. The goal of
this kind of development is that multiple developers can work in parallel. They can alter a set of shared
artifacts and inspect and integrate the source code changes of other developers. For example, bug
fixes, enhancements, new features or adaptations due to changing environment might be integrated
into the system release.

At a technical level, a collaborative development process is supported by version control systems.
Since these version control systems allow developers to work in their own branch, merging and in-
tegration have become an integral part of the development process. These systems use automatic
and advanced merging techniques to help developers to merge their modifications in the development
repositories. However, these techniques do not guarantee to have a functional system.

While the use of branching in the development process offers numerous advantages, the activity
of merging and integrating changes is hampered by the lack of comprehensive support to assist de-
velopers in these activities. For example, the integration of changes can have an unexpected impact
on the design or behavior of the system, leading to the introduction of subtle bugs. Furthermore, de-
velopers are not supported when integrating changes across branches (cherry picking), when dealing
with branches that have diverged, when finding the dependencies between changes, or when assessing
the potential impact of changes.

In this dissertation we present an approach that aims at alleviating these problems by provid-
ing developers and, more precisely, integrators with semi-automated support for assisted integration
within a branch and across branches. We focus on helping integrators with their information needs
when understanding and integrating changes by means of characterizations of changes and streams
of changes (i.e., sequence of successive changes within a branch) together with their dependencies.

These characterizations rely on the first-class representation of systems’ histories and changes
based on program entities and their relationships rather than on files and text. For this, we provide a
family of meta-models (Ring, RingH, RingS and RingC) that offer us the representation of program
entities, systems’ histories, changes and their dependencies, along with analyses for version compar-
ison, and change and dependency identification. Instances of these meta-models are then used by our
proposed tool support to enable integrators to analyze the characterizations and changes. Torch, a
visual tool, and JET , a set of tools, actually provide the information needs to assist integration within
a branch and across branches by means of the characterization of changes and streams of changes
respectively.

Keywords: object-oriented programming; meta-models; history and version of programs; visu-
alization; semantic merging; program analyses

Samenvatting

Hedendaagse software is het resultaat van een collaboratief ontwikkelingsproces met meerdere teams
van ontwikkelaars. Het doel van dit proces is om het toe te laten dat ontwikkelaars gelijktijdig en
onafhankelijk van elkaar kunnen werken. Hiervoor hebben ze toegang tot een gedeelde verzameling
van artefacten die ze kunnen aanpassen, en hebben ze de mogelijkheid om de aanpassingen die an-
dere ontwikkelaars maken aan de broncode te inspecteren en te integreren. Zo kunnen bijvoorbeeld
bug fixes, verbeteringen en nieuwe functionaliteit tijdig geïntegreerd worden in een versie van een
softwaresysteem.

Op een technisch niveau wordt dit collaboratief ontwikkelingsproces ondersteund door versiecon-
trolesystemen. Gezien deze versiecontrolesystemen het mogelijk maken voor ontwikkelaars om in
hun eigen branch van het systeem te werken, zijn merging en integratie een volwaardig onderdeel
van het ontwikkelingsproces geworden. Hiertoe bieden deze versiecontrolesystemen geavanceerde
en geautomatiseerde merge-technieken aan die ontwikkelaars helpen om hun aanpassingen samen te
voegen met de aanpassingen van andere ontwikkelaars. Echter, deze technieken garanderen niet dat
het resultaat van dit samenvoegen tot een werkend systeem zal leiden.

Alhoewel het gebruik van branching binnen het ontwikkelingsproces vele voordelen biedt, wor-
den de hieraan verbonden taken van het invoegen en integreren van aanpassingen bemoeilijkt door
een gebrek aan ondersteuning. Bijvoorbeeld, het integreren van aanpassingen kan een onverwachte
impact hebben op het ontwerp of het gedrag van het systeem, wat dan weer kan leiden tot de intro-
ductie van subtiele fouten. Bovendien wordt er aan ontwikkelaars geen ondersteuning geboden bij het
integreren van veranderen die afkomstig zijn uit een andere branch van het systeem (het zogenaamde
cherry picking), bij divergerende branches, bij het zoeken naar afhankelijkheden tussen aanpassingen,
of bij het inschatten van de mogelijke impact van een verzameling veranderingen op het systeem.

In dit proefschrift stellen we een techniek voor die bovenvermelde problemen aanpakt door on-
twikkelaars – en in het bijzonder integrators – semi-automatisch te assisteren bij het integreren van
aanpassingen, zowel binnen één branch als tussen verschillende branches. We leggen hierbij de klem-
toon op het helpen van integrators om de informatie te verkrijgen die ze nodig hebben om aanpassin-
gen aan de software te begrijpen en te integreren. Hiervoor maken we gebruik van een karakterisering
van aanpassingen en van aanpassingsstromen (dit zijn een opeenvolging van aanpassingen binnen een
branch), te samen met een karakterisatie van de afhankelijkheden tussen de aanpassingen.

Deze karakteriseringen zijn gebaseerd op een eersterangs voorstelling van de historiek van een
systeem en de aanpassingen die binnen deze historiek werden uitgevoerd. Deze voorstelling is
gedefinieerd in termen van de feitelijke programma-entiteiten, in plaats van bestanden en tekst die
integrators niet de noodzakelijke informatie verschaffen. Hiervoor bieden we een familie van meta-
modellen aan (Ring, RingH, RingS en RingC) die een implementatie verschaffen van de voorstelling
van programma-entiteiten, de historiek van het systeem, aanpassingen, en de afhankelijkheden tussen
aanpassingen. Deze meta-modellen bieden ook de analyses aan om versies van een systeem te vergeli-
jken, en om aanpassingen en afhankelijkheden te berekenen. Verder stellen we tools voor die, gebruik
makende van instanties van onze meta-modellen, het mogelijk maken voor integrators om de karak-

iv

teriseringen van aanpassingen te analyseren. De visuele tool Torch en de verzameling van JET-tools,
voorzien in de informatie die noodzakelijk is om assistentie te bieden bij respectievelijk het integreren
van aanpassingen binnen één branch en tussen verschillende branches.

Trefwoorden: objectgericht programmeren; meta-modellen; historiek en versies van pro-
gramma’s; visualisatie; semantisch mergen; programma-analyses

Résumé

De plus en plus de logiciels sont développés par des équipes de développeurs travaillant de manière
collaborative en parallèle. Les développeurs peuvent altérer un ensemble d’artéfacts, inspecter et in-
tégrer le code de changements faits par d’autres développeurs. Par exemple, les corrections d’erreurs,
les améliorations ou nouvelles fonctionnalités doivent être intégrées dans la version finale d’un logi-
ciel et ceci à différents moments du cycle de développement.

A un niveau technique, le processus de développement collaboratif est mis en pratique à l’aide
d’outils de contrôle de versions (ex: git, SVN). Ces outils permettent aux développeurs de créer leurs
propres branches de développement, faisant des tâches de fusion ou d’intégration de ces branches
une partie intégrante du processus de développement. Les systèmes de versions de contrôle utilisent
des algorithmes de fusion pour aider les développeurs à fusionner les modifications de leur branche
dans le base de code commune. Cependant ces techniques travaillent à un niveau lexical, et elles ne
garantissent pas que le système résultant soit fonctionnel.

Alors que l’utilisation de branches offre de nombreux avantages, la fusion et l’intégration de mod-
ifications d’une branche sur une autre est difficile à mettre en oeuvre du fait du manque de support
pour assister les développeurs dans la compréhension d’un changement et de son impact. Par exemple,
l’intégration d’un changement peut parfois avoir un effet inattendu sur le système et son comporte-
ment menant à des bugs subtiles. De plus, les développeurs ne sont pas aidés lors de l’évaluation de
l’impact d’un changement, ou lors de la sélection de changements à intégrer d’une branche vers une
autre (cherry picking), en particulier lorsque ces branches ont divergé.

Dans cette dissertation, nous présentons une approche dont le but est d’apporter des solutions à
ces problèmes pour les développeurs, et plus précisément les intégrateurs. Cette approche se base
sur des outils et solutions semi-automatisés aidant à de changements la compréhension à l’intérieur
d’une branche ou entre branches. Nous nous attachons à satisfaire les besoins en information des
intégrateurs quand ils doivent comprendre et intégrer des changements. Pour cela, nous caractérisons
les changements et/ou séquences de changements et leurs dépendances.

Ces caractérisations sont basées sur la représentation comme citoyens de première classe de
l’historique du système et des changements approtés considérant les entités logicielles (ex: classes
ou méthodes) et leurs relations plutôt que des fichiers et du texte comme le font les outils de con-
trôle de versions. Pour cela, nous proposons une famille de méta-modèles (Ring, RingH, RingS et
RingC) qui offrent une représentation des entités du système, de son historique, des changements
apportés dans les différentes branches et de leurs dépendances. Des instances de ces meta-modèles
sont ensuite utilisées par nos outils destinée à assister les intégrateurs: Torch, un outil visuel qui car-
actérise les changements, et JET un ensemble d’outils qui permettent de naviguer dans des séquences
de changements.

Mots clés: programmation à objets; méta-modèles; historique et versions de programmes; vi-
sualisation de programmes; fusion sémantique; analyse de programmes.

Acknowledgments

This has been a long journey that has made a dream come true and that has provided me with many
experiences that will be part of my memories for the rest of my life. Five years ago, I left Guayaquil
– a city where the summer never ends in my home country Ecuador – to obtain a master degree in
mostly cold and rainy Belgium.

After graduating, I was awarded a four-year Dehousse scholarship to pursue a PhD at the Vrije
Universiteit Brussel. I am very grateful that I got this opportunity. Now, four years later I am writing
this to express my gratefulness to everybody that contributed in some way to the document you are
now holding and that helped me during the whole process of becoming a Doctor in Sciences.

First of all I would like to thank my promotors who were the masterminds behind my work.
I deeply thank Theo D’Hondt, my promotor at the Software Languages Lab, who had to read my
thesis in bumping buses while on holidays in Australia :) Thank you Theo because you guided me
during my master and PhD, and you advised me while taking important decisions such as working in
collaboration with an international promotor that resulted in a co-tutelle with the University of Lille1
in France. A huge thanks to Stéphane Ducasse, my promotor at the RMoD Inria Team, who came up
with uncountable ideas for tackling the problem I worked during my research. I cannot express my
gratitude for all the time and effort he put into supervising my work, for the many long and motivating
meetings and for giving me a space in his office with a large screen to work each time I went to Lille.

A special thanks to Andy Kellens, my co-promotor, colleague and friend who was always there
for me, even when I was mad at him because he gave me more and more work. He survived sharing
an office with me for 4 years and I know I did not make it easy for him, but luckily he has a lot of
patience. I really appreciated his invaluable feedback during the whole writing process. Even until
the last day when he was in Chile working on something else, he spent a lot of time reading my last
changes. Thank you Andy!!

I thank Jurgen Vinju, Michele Lanza, Nicolas Anquetil, Julia Lawall, Viviane Jonckers and Ann
Nowé for being part of my jury, for taking time to read my thesis and for giving insightful comments
during the defense.

Thanks to the CAMP group and other colleagues that helped me to prepare for my private defense.
You definitely contributed to my success that day. I would also like to thank my colleagues and ex-
colleagues at SOFT and RMoD for their support during these years and for making my integration in
the Belgian and French cultures easier.

Being far away from your loved ones is not easy. But their unconditional support at a the distance
makes everything possible. I really thank my family for that. Gracias papi Eduardo y mami Emma
por su amor, dedicación y por enseñarme desde muy pequeña que la educación es invaluable. A
ustedes les dedico este logro y espero que esten orgullosos de su hija. Gracias a mis hermanos, Lore,
Maga, Edu y David por compartir mis sueños y festejar mis logros. Gracias a mi tía Olga que siempre
esta pendiente de mi. Gracias a todos mis tíos, tías, primos, primas y a todos mis amigos que me
mandan su cariño a la distancia. Gracias a mis amigos latinos, especialmente a los ecuatorianos que
he conocido en Bélgica y hacen que no me olvide de mi tierra.

Last but certainly not least, I thank Bart, for his support and love during all this time. He has
witnessed how the life of a PhD student can be and has helped me in many ways. He has patiently

viii

heard me talking uncountable times about my research, he has proof-read several of my papers, he
has cheered me up when I was down, and so on. Bedankt Bartje voor alles ;) I also want to thank his
parents Marcel and Yolande, and all the Detry family, who have always been eager to celebrate with
me whenever we got the opportunity. All of you have made Belgium my second home.

Verónica Uquillas Gómez
Brussels, September 17th 2012

Contents

1 Introduction 1
1.1 Research Context . 1
1.2 Supporting Merge Challenges . 2
1.3 Pharo Smalltalk as a Testbed . 3
1.4 Approach . 5
1.5 Contributions . 7
1.6 Structure of the Dissertation . 8

2 Problem Analysis 11
2.1 Collaborative Software Development . 11

2.1.1 Version Control Systems . 12
2.1.2 Definition of Branching and Merging . 12
2.1.3 Version Control Systems Support Branching and Merging 13
2.1.4 Why is Branching Used? . 14

2.2 Supporting Collaborative Development Through Branches 15
2.2.1 Concrete Example: Pharo . 18
2.2.2 Integration Problems: Overview . 20

2.3 Challenges to Support Integration . 21
2.3.1 Change Characterization Challenges . 21
2.3.2 Merging Support Challenges . 23

2.4 Requirements of Solution . 25
2.5 Conclusion . 25

3 Facets of Changes 27
3.1 Integration Process: Overview . 28
3.2 Definitions and Terminology . 29
3.3 Questions Integrators Ask . 31

3.3.1 Methodology . 31
3.3.2 Catalogue of Questions . 32
3.3.3 Answering Integrator Questions . 35

3.4 Information Needs for Change Characterization . 36
3.4.1 Descriptive Information . 36
3.4.2 Structural Information . 37
3.4.3 Semantic Information . 38
3.4.4 Historical Information . 39
3.4.5 Summary . 39

3.5 State-of-the-Art . 41
3.5.1 Modeling Source Code, History and Changes 41
3.5.2 Towards Conflict Resolution and Merging 44
3.5.3 Change Impact Analysis . 47

x Contents

3.5.4 Change Dependencies . 51
3.5.5 Understanding Development Tasks . 52
3.5.6 Other Related Work . 55

3.6 Conclusion . 56

4 Ring: a Unified Model for Source Code Representation 59
4.1 Introduction . 60
4.2 Requirements for Source Code Modeling . 60
4.3 Version Control Systems Data Models . 62

4.3.1 Text-based Version Control Systems Data Models 62
4.3.2 Code-based Version Control Systems Data Models 66

4.4 Dedicated Source Code Meta-Models . 68
4.4.1 Non-Smalltalk Specific Code Meta-Models 69
4.4.2 Smalltalk-oriented Code Meta-Models . 72

4.5 The Ring Source Code Meta-Model . 77
4.5.1 Architecture of Ring . 78

4.6 Ring Usage Scenarios . 80
4.6.1 External Code File Browser: Out-of-Image Code Browsing 80
4.6.2 Refactoring Browser Source Code Scoping Model 82

4.7 Discussion . 83
4.8 Conclusion . 84

5 Torch: a Dashboard for Grasping Changes 85
5.1 Supporting Change Understanding with Torch . 86
5.2 Layout of Torch . 86
5.3 Dashboard Visualizations . 88

5.3.1 Entities Representation . 89
5.3.2 Fly-by Help . 90
5.3.3 Package-centric Visualizations . 91
5.3.4 Class-centric Visualizations . 92
5.3.5 Symbolic Clouds . 92

5.4 Supporting the Answering of Integrator Questions 93
5.5 RingS: a Single-Delta Change Model . 94

5.5.1 Architecture of RingS . 94
5.6 Torch Usage Scenarios . 97

5.6.1 Removing a feature . 97
5.6.2 Removing a feature and deprecating its API 99
5.6.3 Introducing a feature . 100
5.6.4 Pushing up methods / Introducing methods in a class hierarchy 101
5.6.5 Adding comments . 102
5.6.6 Replacing method calls . 103

5.7 Evaluation . 105
5.7.1 Field Evaluation . 105
5.7.2 Pre-Experimental User Study . 107

Contents xi

5.7.3 Threats to Validity . 111
5.7.4 Discussion . 112

5.8 Related Work . 113
5.8.1 Software Visualization . 113
5.8.2 Class and Method Understanding . 113
5.8.3 Change Characterization . 114
5.8.4 Understanding Changes . 114
5.8.5 Documenting Changes . 114
5.8.6 Aspect Analysis . 114

5.9 Conclusion . 115

6 RingH and RingC: History and Change Models & Analyses 117
6.1 Modeling the Evolution of a System . 118

6.1.1 Hismo . 118
6.1.2 Orion . 120

6.2 RingH: a History Meta-Model and Analyses . 121
6.2.1 Requirements for RingH . 121
6.2.2 Architecture of RingH . 122
6.2.3 Importing the History of a System . 129
6.2.4 Metrics and Memory Footprint . 130
6.2.5 Creating Objects in the History Model . 132
6.2.6 Querying the History Model . 134

6.3 RingC: a Change and Dependency Model and Analyses 135
6.3.1 Architecture of RingC . 135
6.3.2 Deriving the Change Model from the History Model 138

6.4 Calculating Deltas and Dependencies from the Stream 139
6.4.1 Delta Mechanism . 140
6.4.2 Dependency Mechanism . 142

6.5 Conclusion . 145

7 JET: Stream Change Analysis in Early Integration Phase 147
7.1 Introduction . 148
7.2 Characterizing Deltas and Dependencies within the Stream 148
7.3 The JET Tools . 150

7.3.1 The JET Dashboard . 151
7.3.2 The JET Map . 155
7.3.3 The JET Query Browser . 156
7.3.4 How to Use the JET Tools . 158

7.4 Supporting the Answering of Integrator Questions 159
7.5 Qualitative Evaluation: Integrating Monticello Changes into Pharo 161

7.5.1 Case Study Description: Monticello Version Control System 161
7.5.2 Part 1: Integrator Experiences . 163
7.5.3 Part 2: Effort Estimation by a Developer . 167
7.5.4 Threats to Validity . 170

xii Contents

7.5.5 Discussion . 171
7.6 Related Work . 171

7.6.1 Fine-grained Patching . 172
7.6.2 Change Characterization . 172
7.6.3 Change Impact Analysis / Change Dependencies 172
7.6.4 Understanding Changes . 173

7.7 Conclusion . 174

8 Conclusion and Future Work 175
8.1 Summary . 175
8.2 Conclusion . 176
8.3 Integrator Questions Revisited . 176
8.4 Limitations and Future Work . 178

8.4.1 Non-Supported Questions . 178
8.4.2 Improvements . 179
8.4.3 Full-fledged Validation . 180
8.4.4 Other Improvements . 181

8.5 Contributions . 181
8.5.1 Conceptual Contributions . 181
8.5.2 Technical Contributions . 183

A Torch: Field Evaluation Questionnaire 185

B Torch: User Study Pre-Test 189

C Torch: User Study Post-Test 191

Bibliography 193

List of Figures

1.1 Contributions map. 5

2.1 Branching and merging. 13

2.2 Development process driven by branches. 16

2.3 Distributed development processes. 17

2.4 Pharo / Squeak fork ecosystem: cross branching. 18

2.5 Pharo evolution: internal branching. 19

2.6 Example: stream of changes of the Monticello system. 23

3.1 Integration process: different roles and actions. 28

4.1 The Subversion data model. 63

4.2 The Git data model. 65

4.3 Monticello 1 data model. 66

4.4 Monticello 2 data model. 68

4.5 EMF Ecore code meta-model – Definitions that appear in italic represent features
otherwise elements of the meta-model. 70

4.6 FAMIX-core language independent code meta-model - Key Classes. 71

4.7 Refactoring Browser source code scoping model. 72

4.8 Smalltalk (Pharo) structural code model (with dashed border an attempt to add a rep-
resentational object for CompiledMethod). 73

4.9 Ginsu semantic model - Key classes. 74

4.10 Monticello 1 source code model – Key classes for program entities (in grey the data
entities). 75

4.11 Monticello 2 source code model – Key classes for program entities (in grey the data
entities). 76

4.12 The Ring overview. 77

4.13 Ring source code meta-model – Key definitions. 78

4.14 Ring source code meta-model – Variables. 79

4.15 Ring source code meta-model – Containers. 80

4.16 The current file contents browser and its code meta-model. 81

4.17 Ring solution for replacing the pseudo classes model in the FileContentsBrowser. 81

4.18 The new FileContentsBrowser. 82

4.19 Refactoring Browser new declarative source code scoping model using Ring. 83

5.1 Dashboard main elements: the metrics give an idea of the size of the changed entities
and the actual changes; the changes list presents the list of changes and their detailed
difference using the changes details; the changes visualizations present a map of
changes structured around packages and classes. 87

xiv List of Figures

5.2 Package containing unchanged classes (small dashed grey rectangles), removed
classes (red rectangles), added classes (green rectangle) and modified classes (blue
rectangles). Classes contain attributes (triangles) and methods (bars). 89

5.3 Structural and condensed visual representation of classes 90

5.4 Omnipresent code browsing: diff as a fly-by help. 91

5.5 Class displayed in changes only mode (left). Omnipresent class structure: class dis-
played in full mode as a fly-by help (right). 91

5.6 Added and removed symbolic clouds. 93

5.7 RingS single-delta change meta-model - Key classes. 95

5.8 RingS single-delta change meta-model – Graphic classes. 97

5.9 Removing the feature FlapTab : several methods in clients were modified and other
methods were simply removed – SLICE-FlapRemoval-AlainPlantec.1 (Oct.

17th 2009). 98

5.10 Removing the feature Pen: classes Pen and PenPointRecorded were
removed and their client classes also removed entire methods –
SLICE-2163-RemovePenAndPenPointRecorder-MarianoMartinezPeck.2

(March 18th 2010). 98

5.11 Removing the feature PointerFinder and deprecating its API: its functionality was
substituted by another tool – SLICE-PointerFinderRemove-AndyKellens.1

(June 11th 2010). 99

5.12 Introducing features: new variations of text links for code styler –
SLICE-Issue-5233-Support-Semantic-Source-Links-CamilloBruni.5

(Feb. 6th 2012). 100

5.15 Pushing up methods in the SequenceableCollection class hierar-
chy, and introducing a method in the Collection class hierarchy –
SLICE-Issue1629-universal-indexOfAnyOf-nice.1 (Dec. 18th 2009).

. 101

5.16 Adding comments: documenting the graphical TickSelection morph classes –
SLICE-Issue-4844-Add-Comments-On-TickList-Classes-BenjaminVanRyseghem.1

(Sept. 21st 2011). 102

5.17 Editing comments: removing the squeak word from the Pharo core –
SLICE-Issue-1795-RemovingSqueakReferences-VeronicaUquillas.1

(June 11th 2010). 103

5.20 Replacing method calls upTo: Character cr with nextLine –
SLICE-Issue-2539-useNextLineAndLinesDo-HenrikSperreJohansen.1

(June 12th 2010). 104

5.21 Boxplot of pre-test – participants’ background: (A) development experience, (B) OO
experience, (C) Smalltalk IDE experience, (D) usage of IDE’s facilities, and (E) usage
of version control systems’ facilities. 108

5.22 Comparison of the pre-test (shown in white) and post-test (shown in grey). X axis
represents the 5-point Likert scale, Y axis represents the number of participants that
selected a scale point. 109

List of Figures xv

5.23 Boxplots of post-test – Torch’s features: (A) detailed class representation, (B)
package-centric visualizations, (C) diff as a fly-by help, (D) full class structure as
a fly-by help, and (E) presence of unchanged entities. 110

6.1 Hismo design . 118

6.2 Overview of the Hismo meta-model . 118

6.3 Transforming a FAMIX core meta-model (snapshot) into a Hismo model 119

6.4 Orion meta-model . 120

6.5 RingH history meta-model - Key classes modeling program entities. 123

6.6 RingH history meta-model - Classes modeling associations 125

6.7 RingH: representing system’s histories. 127

6.8 Commits and snapshots. 128

6.9 Creation of program entities and relationships in the history. 133

6.10 RingC change and dependency meta-model - Key classes. 136

6.11 Deltas and changes. 137

6.12 Change and delta dependencies. 138

6.13 Graphs of snapshots and deltas. 138

6.14 Approach architectural overview. 139

6.15 Root delta: completing a change-based representation of a stream of changes. 140

6.16 Deltas in the presence of merge: taking common ancestor S2 into account. 142

6.17 Redundant delta dependencies. 144

7.1 Types of deltas by the presence of dependencies (left) – Example of characterization:
D1→2 is a source, D2→3 is an intermediate, D3→4 is an island, and D4→5 is an end
(right). 149

7.2 The JET dashboard and its main elements. 152

7.3 Example: exploring the change dependencies of an added class within delta
113.cmm (top) – Exploring why delta 124.cmm depends on delta 113.cmm (bottom).153

7.4 Example: delta dependencies of delta 12.ar. 154

7.5 The JET map: green nodes are source deltas (not depending on others), orange nodes
are intermediate deltas (having dependencies and others depending on them) and
grey nodes are end deltas (only depending on others). 155

7.6 Deltas and dependencies on the map. 156

7.7 The JET query browser and its elements. 157

7.8 Monticello - two streams of parallel changes of the core package (on April 23rd,
2012). 162

7.9 Monticello environment: showing the revisions per package (left) – History of one
revision & Changes between two revisions: browsing the textual differences of one
change (right). 163

7.10 The JET dashboard: a semantically enriched stream of changes (left). The JET map:
dependencies between deltas (right). 165

7.11 Example: use of fasterKeys introduced in delta 14.nice (left) – Changes made to
the method provision within the stream (right). 166

xvi List of Figures

7.12 Example: working copy diff showing the differences between the changes made to
method provisions and the version of that method in Pharo. 167

7.13 Example: needed and potential dependencies of delta 12.ar. 168

List of Tables

3.6 Supported questions by kind of information (* information partially supports answer-
ing a question). 40

3.7 Number of supported questions by category of questions 41

5.1 Open-source projects with which Torch was evaluated (on March 13th, 2012). 105
5.2 Summary of partial results about the use of Torch. 106

6.1 Metrics and memory footprint and of three RingH models. 131

7.1 Size of the Monticello core package (on April 23rd, 2012). 162
7.2 Metrics: changes, deltas, dependencies, memory and time. 163
7.3 Developer’s analysis of the stream of changes: classification of deltas for integration

across branches and the time taken by the analysis. 169

8.1 Integrators’ questions supported by our approach (+ means fully answered and +/-
means partially answered). 178

8.2 Non-supported questions . 179
8.3 Summary of contributions . 182

CHAPTER 1

Introduction

Contents
1.1 Research Context . 1

1.2 Supporting Merge Challenges . 2

1.3 Pharo Smalltalk as a Testbed . 3

1.4 Approach . 5

1.5 Contributions . 7

1.6 Structure of the Dissertation . 8

Modern software is built by teams of developers that work in a collaborative environment. The
goal of this kind of development is that developers can alter a set of shared artifacts and inspect and
integrate the changes of other developers. At a technical level, such a collaborative development pro-
cess is supported by version control systems. Since these version control systems allow developers to
work in their own branch, merging and integration have become an integral part of the development
process. While this development process offers numerous advantages, the activity of merging and
integrating changes is hampered by the lack of comprehensive support to assist developers in these
activities. For example, the integration of changes can have an unexpected impact on the design or
behavior of the system, leading to the introduction of subtle bugs. Furthermore, developers are not
supported when integrating changes across branches (cherry picking), when dealing with branches
that have diverged, or when assessing the impact and dependencies of changes. In this dissertation
we present an approach that aims at alleviating these problems by providing developers and, more
precisely, integrators with semi-automated support for assisted integration. We focus on helping inte-
grators with their information needs by means of characterizations of changes and streams of changes
(i.e., sequence of successive changes within a branch) together with their dependencies. These char-
acterizations rely on the representation of systems’ histories and changes based on program entities
and their relationships rather than on files and text. Furthermore, our approach also provides tool
support that enables integrators to analyze the characterizations and changes.

1.1 Research Context

Nowadays, software systems play a fundamental role in our technologically evolved society. It runs
our cars, TV, and phones, we use it at work, to plan travel, to buy groceries and to keep in touch with
family and friends. The development of software systems is no longer limited to single developers
working in isolation, but currently the development process takes place in a collaborative context with
the participation of teams of developers working together.

2 Chapter 1. Introduction

Because of the importance of software systems, they are expected to be effective, error-free,
adaptable, maintainable, and so on. This is required throughout the lifecycle of the system. Conse-
quently, it is inevitable that a software system needs to be evolved in order to cope with changes in
its environment. For example, the requirements of the system might change over time, faults need to
be corrected, the system might be expected to run on different hardware or interoperate with other
systems. All such changes need to be successfully executed to prevent the system from becoming
obsolete and unusable. At the same time, the complexity and size of systems increase resulting in a
major effort for the developers in understanding the source code and the evolution of a system.

To cope with the evolution of systems in a collaborative development process, teams of developers
use version control systems (such as CVS1, Subversion2, Git3, Mercurial4, and so on) to work together
on a shared or distributed code base. These systems have become an indispensable tool for enabling
them to work in a collaborative context. They provide developers with a means to work independently
of each other on the same or different artifacts of the system with the intention of later integrating
their changes to the source code.

Hence, the integration of changes is a key activity within the software development process. The
use of version control systems enables branching and merging. Developers are allowed to work in
separate branches of the system that later can be merged into the mainline of the system. That means,
developers publish their code into a repository, and integrators validate and merge such code into the
mainline.

Version control systems provide developers with facilities for managing the source code of a sys-
tem and maintaining that system’s history within versions. They also offer features to explore the
changes between versions, provide conflict analysis, and elementary merging support. Unfortunately,
most of the version control systems only support these tasks at a textual level. That means the pro-
gram entities and their relationships of the system are not taken into account, therefore they do not
consider the semantics of such system. This makes branching and integration a complex problem,
since integrators lack support to perform integration activities which is aggravated when integrating
across branches.

1.2 Supporting Merge Challenges

Integrators deal with the integration and merge of source code changes that represent bug fixes, en-
hancements, adaptations or new features into the mainline of a system. Automatic and advanced
merging algorithms help developers to merge their modifications in the development repositories.
However, there is no adequate support to help integrators take decisions about the integration of pub-
lished merged changes into the mainline.

The current state-of-the-art consists mostly of tools that do not provide an overview of the changes
(how changes are distributed?, what groups of entities did change?, what other changes are depend-
ing on a particular change?). At the same time, existing tools do not offer the possibility to under-
stand changes within their specific context. Almost invariably, integrators need to manually read the

1CVS: http://savannah.nongnu.org/projects/cvs
2Subversion: http://subversion.apache.org
3Git: http://git-scm.com
4Mercurial: http://mercurial.selenic.com

http://savannah.nongnu.org/projects/cvs
http://subversion.apache.org
http://git-scm.com
http://mercurial.selenic.com

1.3. Pharo Smalltalk as a Testbed 3

changed code, check the diffs, and dig up details from unchanged code in order to build an idea of a
change and to understand the context of such change.

This situation can become more complicated when developing large systems. The task of merg-
ing remains mostly manual and tedious due to a lack of practically applicable advanced tools. First,
merging techniques used by popular version control systems are based on simple, text-based algo-
rithms, and are therefore oblivious to program entities and the relationships that are merged. Even
though there exist other approaches providing advanced merging support [Apel 2011, Mens 2002]
that significantly reduce the amount of merging conflicts, such approaches do not support integrators
in identifying redundant changes or changes that introduce inconsistencies at the level of the design
of the target system. Second, there are no analyses to identify and understand the dependencies be-
tween changes. For example, there is no support to determine the dependencies of a change within a
branch that are needed in order to merge that change with another branch. As a change may require
prior changes, the integration can produce a functional system if such prior changes are merged as
well. Note however, that this not necessarily means that the system will be 100% correct. To de-
termine dependencies the integrators are left to manually compare changes within the input stream
of changes, and assess how these changes may impact the target system. Such work is particularly
tedious between product forks, where the distance between branches grows larger over time.

In addition, there is little support out of the box to be able to perform queries and analyses over
the complete history of a system to support developers and integrators in understanding changes and
therefore the evolution of a system. To support such analyses and more precisely to support integration
of changes, information that is not readily available from version control systems is required.

Developers build tool support with their own infrastructure and history analysis on top of the
version control systems [Zimmermann 2004b] to perform particular analyses, for example, finding
program entities that co-evolved together. However, certain analyses are not straightforward, like
comparing all the differences between all the senders of a given method in past versions, or providing
analysis to support cross-forks merging – which is an even more complex scenario as the branches
drifted apart. To facilitate history and change analyses we need adequate source code models to rep-
resent program entities and their evolution. Moreover, we have to take into account which definitions,
abstractions and APIs for such models are needed.

Software developers face the complex task of understanding changes in evolving systems to be
able to keep them usable. The integration of changes is part of the evolution of a system, and hence
support should be provided to integrators to assist the integration process.

1.3 Pharo Smalltalk as a Testbed

As mentioned before, integration is a key task in the development process of any software project
and lacks adequate support for developers that deal with integration activities. This problem exists
independently of the programming language or development platform used by developers and inte-
grators. Moreover, this problem is aggravated in a collaborative development environment that relies
on branching and merging to allow teams of developers to work together.

Our research aims at assisting integration of changes in a realistic context by means of scientific
methodologies. Hence, for this dissertation we have chosen a concrete case of the problems afore-
mentioned, the Pharo project (http://www.pharo-project.org). It is an open-source Smalltalk platform that

http://www.pharo-project.org

4 Chapter 1. Introduction

not only illustrates the integration problems but also serve us to evaluate our solution with its com-
munity. This provides us with real feedback from developers that actually face the inherent problems
of branching and merging.

In the following, we provide an overview of our motivation for choosing Pharo [Black 2009] as a
case study, and discuss how this impacts the generalizability of our work.

Motivation for using Pharo as a case study

• Pharo is a big open-source project that resulted from branching Squeak in 2008. Since then
both projects have evolved in isolation of each other. In Pharo branching is extensively used to
incorporate the contributions of developers for the different versions and to merge changes that
happened in Squeak that may contribute to existing shared features. Pharo lacks support for
cross-branch integration, performing cherry picking from several fork systems such as Squeak
or Cuis is a difficult task as these systems have diverged considerably from Pharo.

• Pharo provides us with access to developers and mainly to the integrators of the core develop-
ment of several projects. As we are active members of this community, we have easy access
to the community members for evaluating our work. What is also important for the evaluation
of our work is that the core developers are eager to try approaches that assist them in their
development activities. Furthermore, part of our infrastructure is already integrated with the
core of the project. This illustrates that potentially our approach has considerable impact on
this community.

• Pharo provides its own development environment and tools can be easily integrated with it.

Furthermore, we have integrated our approach with the underlying object-oriented programming
language of Pharo, namely Smalltalk, due to technical reasons. Smalltalk is a reflective and small
language (Smalltalk defines 12 types of AST nodes vs the 83 types of AST nodes in Java5), therefore
it is adapted for research prototypes. Still Smalltalk is a full object-oriented language, simple but not
simplistic.

Pharo also gives us access to other platforms such as Moose [Nierstrasz 2005], a data and soft-
ware platform (http://www.moosetechnologgy.org). It provides a rich set of analysis tools and frame-
works. To name two that we use for building our tool support: Glamour, a powerful browser
builder engine [Bunge 2009] and Mondrian, a scripting-based visualization engine [Meyer 2006,Lien-
hard 2007].

Generalizability of our approach

Due to the increased popularity of distributed versioning systems such as Git, teams of developers are
more often developing in their own branch. Therefore, the whole integration process used by Pharo is
very similar to what is happening in other development communities. In that regard, we believe that
similar integration problems occur outside the context of Pharo. Moreover, considering that Pharo
is a complex ecosystem consisting of different projects, where each project has the same kinds of
integration issues, we believe that our contribution goes beyond the Pharo community.

5Java DOM/AST: http://help.eclipse.org/helios/topic/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/

package-summary.html

http://www.moosetechnologgy.org
http://help.eclipse.org/helios/topic/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/package-summary.html
http://help.eclipse.org/helios/topic/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/package-summary.html

1.4. Approach 5

The conceptual approach proposed in this dissertation, as detailed in the next section, is agnostic
to the programming language and technology used. The whole idea of characterizing changes and
streams of changes can therefore also be applied to other languages such as Java, C# etc. Note
however that our technical realization of this approach is implemented within Pharo and is as such
tightly woven with this environment and underlying programming language.

1.4 Approach

We present a visual overview of our approach in Figure 1.1. This map shows the interaction between
the different contributions of this dissertation.

 Source Code Meta-Model (Ring)

History Meta-
Model and
Analyses
(RingH)

Torch Tools

Change & Dependency
Meta-Model and

Analyses (RingC)

JET Tools

Single-delta
Change Meta-

Model and
Analyses (RingS)

Catalogue of
Questions

Integrators'
Information

Needs

⬇

Figure 1.1: Contributions map.

This dissertation starts with an analysis of the integrators’ information needs. To achieve this
we performed a survey among professional developers that integrate changes as a means to gather
the questions they raise during the different activities involving the integration process (e.g., under-
standing, assessing or cherry picking changes). Based on the catalogue of questions we determined
the kinds of information required for supporting answering these questions. We obtain these kinds
of information by providing a representation of the history and changes of a system, along with the
dependencies between changes from source code histories stored by version control systems.

To support our ideas and achieve assisted integration we built an infrastructure consisting of sev-
eral meta-models to serve as the underlying models for our analyses, and tool support as clients of
such models. Precisely, our approach consists of a number of components: (a) the source code, his-
tory, change and dependency meta-models, (b) the version comparisons and dependency analyses,
and (c) the tools for characterizing a single delta (i.e., changes between two versions), streams of
changes and the dependencies between changes within the stream. These tools were defined to semi-
automatically assist integrators and as a way to validate our approach and results. Currently, our
approach allows integrators to analyze changes and make integration decisions separately from the
version control system.

In what follows, we take a more detailed look at each of the different components of our approach.

Catalogue of integrator questions and integrators’s information needs. We defined a catalogue
of 64 questions from a survey applied to members of three Smalltalk communities as a means to gather
questions that developers often raise when integrating changes. This catalogue serves us to identify
the integrators’ information needs required to answer these questions and assist the integration pro-

6 Chapter 1. Introduction

cess within a branch and across branches. We use such information to provide a characterization of
changes between two versions and characterization of changes within a stream of changes.

Ring. To give integrators access to their information needs, we require to provide a meta-model. We
aim at providing a meta-model consisting of several layers, the first of which being Ring as shown at
the bottom in Figure 1.1. We defined Ring, a simple unified source code meta-model for representing
object-oriented software systems. It serves as the underlying meta-model of the history and change
meta-models and as the basis for several analyses and tools. In addition, Ring was developed to be
used by other Pharo tools, for example to support remote browsing.

Ring was defined after performing an analysis of several source code meta-models used mainly by
core tools in the Pharo Smalltalk environment (e.g., the versioning system, the refactoring engine) and
offered by external frameworks in the Smalltalk community (e.g., Moose). Ring was later integrated
as the source code meta-model of choice for tool interaction in Pharo 1.4.

RingH. To represent the history of software systems and provide analyses of such histories, we
defined the RingH history meta-model on top of Ring (shown in yellow in the figure). RingH models
source code entities such as packages, classes, methods or attributes as well as the relationships
between such entities such as class inheritances, method calls, class references and attribute accesses
etc. We extract system’s history models from the source code history contained within versioning
repositories.

RingS and Torch. To assist integrators in comprehending source code changes between a pair of
versions (i.e., delta) and therefore helping them in answering questions related to single deltas and in
taking decisions about the integration within a branch, we defined RingS and Torch (shown in light
blue in the figure). RingS is a change meta-model that defines the changes and their context within a
single delta. It is built on top of Ring and serves as the underlying meta-model for version comparison
analysis.

Torch provides tool support to characterize single deltas based on a RingS model. It uses several
of the integrators’ information needs to provide such characterization of changes and by means of
visualizations aid integrators to comprehend these changes and their context. Torch provides a visual
dashboard that not only shows the changes between two versions but also the version in which those
changes were applied.

The Torch dashboard presents metrics about changes, a set of visualizations showing the structural
information of changes, symbolic clouds of the changed source code, several panels to explore the
details of changes, and two diffs as a fly-by-help to quickly explore information of changes. By com-
bining graphical and textual information, Torch brings semantic information to change exploration.

For the evaluation of Torch, we presented several usage scenarios, and we performed a field evalu-
ation (questionnaire) with 6 integrators of the Pharo community, and pretest/posttest pre-experimental
study with 10 developers (including non-Smalltalk developers).

RingC. To assist cross-branch integration our approach defines a representation, analyses and tool
support that provides integrators with their information needs regarding stream of changes that may
be integrated across branches. For this we define RingC and JET , both shown in green in the figure.

1.5. Contributions 7

RingC is a change and dependency meta-model that defines the changes of a sequence of suc-
cessive versions as they occur in a typical version control system. RingC is built on top of Ring and
utilizes the information contained within the RingH model. It serves as the underlying meta-model
for delta and dependency analyses.

JET. JET is dedicated to characterizing deltas, dependencies between changes, and dependencies
between deltas within a stream of changes. It is built on top of RingC and aims at assisting integrators
in answering questions regarding stream of changes and cherry picking changes.

JET provides a set of tools to support integrators in understanding stream of changes and their
dependencies. The dashboard offers exploration of deltas, their changes and their dependencies to-
gether with metrics about changes. The dependency map gives a visual overview of the dependencies
between deltas. The query browser explores the whole evolution of a particular change within the
stream, and few utilities to compare any change with the current system in which it would be poten-
tially integrated. Moreover, JET is integrated with Torch.

For the evaluation of JET , we performed a qualitative evaluation with a Pharo integrator and
developer on a five-year stream of changes from the Squeak project with the goal of integrating it in
Pharo.

1.5 Contributions

We present our contributions classified in two categories: conceptual and technical contributions.

Conceptual Contributions

• An in-depth analysis of the problem underlying this research.

• A catalogue of 64 integrator questions by a questionnaire filled out by three Smalltalk commu-
nities.

• Based on our catalogue, a characterization of the integrators’ information needs.

• A first-class representation of the history and changes of a system in order to obtain the infor-
mation required to provide integrators’ information needs.

• We support assisted integration by providing a characterization of changes and, by means of a
dependency analysis between such changes for characterizing streams of changes.

• Use of visualizations to understand changes and observe patterns in the changes.

• A qualitative evaluation of our approach and tools.

Technical Contributions

We have developed a tool suite to support our approach. It is tightly integrated with the Pharo devel-
opment environment. This tool suite consists of a concrete implementation of the Ring source code
meta-model (which is also part of Pharo), three models on top of it (the RingH history meta-model,
and the RingS and RingC change meta-models), and two tools (Torch and JET) to aid in characterizing
changes and streams of changes. In addition, both tools were also used in our evaluation.

8 Chapter 1. Introduction

1.6 Structure of the Dissertation

This dissertation is structured as follows:

Chapter 2. We start this dissertation by presenting an analysis of the inherent problems related
to integration. Concretely, we discuss collaborative software development and how version control
systems provide means to support integration of changes in a collaborative environment by using
branching and merging. We introduce a concrete example to motivate this dissertation, the integration
problems, the challenges to support integration and the requirements of our solution.

Chapter 3. In this chapter we introduce the definitions and terminology used in our dissertation.
We describe our study that resulted in a catalogue of integrators’ questions that are raised when
performing integration activities. Based on these questions we identify and describe the integrators’
information needs that can be used to support answering such questions, and therefore to characterize
changes that are the requirements of our solution. In this chapter we also provide a literature study
of related work by surveying other approaches that support history and change modeling, merging,
change impact analysis, change dependencies and understanding developments tasks.

Chapter 4. This chapter is dedicated to describing source code modeling and Ring, our source code
meta-model. Ring is a technical contribution of this dissertation defined to serve as the foundation for
other contributions such as meta-models and analyses. We start by describing data models used by
several version control systems and source code meta-models proposed by different approaches that
inspired Ring. We describe the architecture of the Ring source code meta-model and illustrate it with
two concrete examples of simple tools built on top of Ring.

Chapter 5. After having introduced our source code meta-model, we define RingS, our change
meta-model for representing the differences between pairs of versions. RingS is built on top of Ring
and it is the underlying meta-model to enable version comparison analysis. We describe a concrete
client of our change model, namely Torch. This is our research prototype that is implemented in
Pharo Smalltalk to provide characterization of changes within a single delta and tool support. The
use of Torch is illustrated in several examples that show real integration scenarios. We present a field
evaluation and a pre-experimental user study performed to assess Torch. We conclude this chapter
by providing a comparison of our approach for characterizing changes with several approaches we
discussed in Chapter 3.

Chapter 6. Going further to represent histories and streams of changes of a system, in this chapter
we describe our history meta-model, namely RingH, our change meta-model, namely RingC, and the
history and change dependency analyses. RingH and RingC are built on top of our Ring source code
meta-model. We present the architecture of RingH, how we import the history of a system, and how
objects are created and queried within a history model. Next, we present the architecture of RingC.
This change model differs from RingS in the sense that it is oriented to represent a stream of changes
(i.e., sequence of deltas) and it is derived from the history of a system, rather than from pairs of
versions. Finally, we describe our analyses for calculating deltas and dependencies within a stream
of changes.

1.6. Structure of the Dissertation 9

Chapter 7. In this chapter we describe JET , our approach for characterizing streams of changes
and tool support. JET is a tool built on top of the RingC change model-model and an application of
the RingH history meta-model. It is our research prototype that is implemented in Pharo Smalltalk
to provide the integrators’ informations needs and assist cross-branch integration (e.g., cherry pick-
ing). We describe how JET characterizes deltas, dependencies between changes, and dependencies
between deltas. The JET tools – the dashboard, the map, and the query browser – are explained. We
discuss how JET supports answering questions related to stream of changes. This is followed by the
qualitative evaluation of JET based on a five-year stream of changes and performed by an integrator
and a developer. We conclude this chapter with a comparison of our approach with several approaches
we discussed in Chapter 3.

Chapter 8. We present the conclusions of this dissertation and revisit the catalogue of questions
as a means to show how our approach can assist integration. We discuss some of the limitations
of our approach and implementation and suggest how we can overcome these limitations. We also
propose a number of directions of future research. Finally, we summarize the conceptual and technical
contributions of this dissertation.

Use of the Contributions Map. We show the contributions map (Figure 1.1) at the beginning of
each chapter that describes our approach. We show in light grey the contributions that were already
explained, in their original color the contributions that will be explained in that chapter, and in dark
grey the contribution that are still pending of explanation.

CHAPTER 2

Problem Analysis

Contents
2.1 Collaborative Software Development . 11

2.2 Supporting Collaborative Development Through Branches 15

2.3 Challenges to Support Integration . 21

2.4 Requirements of Solution . 25

2.5 Conclusion . 25

Overview

This chapter introduces the problems that developers face when integrating changes. The goals of this
chapter are threefold. First, we present how current software development is driven by a collaborative
environment which allows multiple developers to share artifacts and work without interfering with
their peers’ work. Second, we explain how this collaborative development is supported by the use of
branching and merging and what are the inherent problems of branching and merging. By means of a
concrete example we illustrate the use of branching and motivate the need for supporting integration.
Third, we introduce the challenges that have to be tackled to assist integration and the requirements for
a solution that can (semi-)automatically support developers integrating changes. Such requirements
are the motivation for the next chapters of this dissertation.

2.1 Collaborative Software Development

Depending on the complexity or the size of an application, the development and maintenance of such
applications may require not one developer but teams of developers working in parallel. Parallel
development has become a common phenomenon in the development of large-scale software systems
[Thione 2005]. Modern software development is highly cooperative, with co-workers potentially
being located on different continents in different time zones.

Large-scale software development involves teams of developers working on shared artifacts from
a single code base. In this environment, a principled approach is necessary (e.g., the divide and
conquer approach). A developer may work on a feature of the system while another developer may
be working on a different feature of the same system. They are working in parallel and once they
are done, their changes need to be merged. To support their development tasks they usually rely on
an infrastructure, such as version control systems (e.g., Subversion) which allow them to share and
integrate artifacts.

12 Chapter 2. Problem Analysis

Developers follow a software development model. For example, the collaborative software de-
velopment model which is a style of software development whose focus is on public availability and
communication, usually via the Internet. Here multiple developers around the world can contribute
to a system. This model is mainly used for freeware, open-source software, and commons-based peer
production.

How the development model is structured and supported has a profound effect on both the quality
and timeliness of the product. In general, team development reduces the time to market, but the cost
of coordination problems introduced by duplicate and conflicting changes in the shared artifacts can
be nontrivial [Perry 2001]. Even though each developer may have a specific task, developers may be
affected when their changes conflict with the changes introduced by others.

2.1.1 Version Control Systems

Version control systems (also known as Revision Control Systems) allow users to track and store
changes, collaborate and share project files. These files are mostly source code files, but they can also
be any document or other collections of information related to a project. Every change made to the
files is tracked and identified by a key, along with who made the change (i.e., author), when he made
it (i.e., timestamp) and why he made it (i.e., message specifying the reason of the change: problems
fixed, enhancements introduced, added features, adaptations). When the changes are stored, they are
known as revisions1. Revisions can be compared, restored, and merged. However, these actions over
files are done at a textual level.

Version control systems are essential tools for any form of distributed, collaborative development
where several teams may change the same files at the same time (e.g., a configuration file). These
systems do apply for any software development project, no matter whether it is a simple web page
or a large application. They keep data that represent the development life cycle of a system and so,
how that system evolved. They provide a rich resource that can be used to assist developers in their
implementation and maintenance tasks.

Source Code Control System (SCCS) [Rochkind 1975] was an early revision control system that
was predominantly used in the Unix community until the release of the Revision Control System
(RCS) [Tichy 1982]. Even though RCS only operates on single files, it is still used as part of the
GNU project. In 1986, the Concurrent Versions System (CVS) was released to deal with multiple
files. It was designed as a centralized system for sharing information. Subversion is a successor
of CVS and is probably the version control system with the widest adoption. Many other version
control systems have been created specially to support a distributed approach, such as Git2, Darcs3,
Mercurial4, Bazaar5, which are very popular in the open-source community.

2.1.2 Definition of Branching and Merging

Branching. In version control, branching is the process of creating a copy (branch) of a code base
(main branch) for allowing development teams or individual developers to work on a branch in parallel

1A revision is the source code in a version control system at a given point in time.
2Git: http://git-scm.com
3Darcs: http://darcs.net
4Mercurial: http://mercurial.selenic.com
5Bazaar: http://bazaar.canonical.com

http://git-scm.com
http://darcs.net
http://mercurial.selenic.com
http://bazaar.canonical.com

2.1. Collaborative Software Development 13

and in isolation to the main branch. Multiple branches can be created out of the main branch to
allow several developers to work independently of each one, or to maintain the different releases of a
software product family.

Branching implies the ability to later merge changes back into the main branch or any other
branch. Branches that are not intended to be merged are usually called forks. Such branches often
become independent systems that serve different purposes, such as supporting customizations, testing
out new technologies, and so on.

Merging. In version control, merging is the key process that reconciles multiple changes applied to
a collection of files from multiple source branches into a single target branch. For example, if a file
is modified by two developers in two different branches both versions of the file need to be merged.
When two branches are merged, the result is a single collection of files that contains a subset of both
set of changes.

develop master

A

B

C

D

develop master

A

B

C

D

F

merged

E E

tim
e

branching

merging D with E

Figure 2.1: Branching and merging.

We illustrate branching and merging in Figure 2.1. Here we have two branches (master and
develop) and their versions shown in blue and yellow. Note that the develop branch was created from
the master branch at version B. Later on, both branches evolved to versions E and D in the develop
and master branches respectively. Finally, the version D in the master branch is merged with the
version E in the develop branch resulting in the merged version F in the master branch.

Conflicts can appear when merging changes that are incompatible (i.e., changes that overlap). For
example, in one branch the line #10 was removed from file f, while in the other branch the same
line was modified in file f. In this case, a conflict is raised and the merge cannot be performed
automatically, and someone must decide manually exactly what the resulting file f should contain.

2.1.3 Version Control Systems Support Branching and Merging

Version control systems such as Subversion, Git, etc. support branching and merging. What’s more,
branching is intrinsic to distributed version control systems where there is no a central repository at
a technical level. Instead, each developer maintains his own repository from which other developers

14 Chapter 2. Problem Analysis

may merge changes. Such systems are typically used as part of a collaborative development model,
in which hundreds or even thousands of people are working towards the release of a single product.
Git [Git 2005], which is becoming increasingly popular, has placed branching at the center of its
architecture and philosophy. GitHub6 gives an idea of the importance of this practice of branching and
merging, with some projects having thousands of branches such as Bootstraps (> 4,000), homebrew
(> 3,500), Ruby on Rails (' 2,800), and 9 others with more than 1,000 branches.

Merges are distinguished by their directionality (pulling or pushing changes). Downstream
merges pull changes into lower branch levels (e.g., from the main branch to a feature branch). Con-
versely, upstream merges push changes into higher branch levels (e.g., from a develop branch into
the main branch). The first case is more typical of distributed version control system such as Git,
whereas, the second case is more typical of centralized version control system such as Subversion.

Merging changes in a large-scale collaborative software development environment poses sub-
stantial challenges [Phillips 2011, Perry 2001]. On the one hand, problems arise when dealing with
multiple branches of a software product family, for example when sharing and reusing common code,
propagating common changes across different versions, and identifying the version suited for a given
application. On the other hand, dealing with temporary branches that contain changes that are meant
to be merged raise the problem on figuring out how to merge the multiple version back into a coherent
single version, resolving potential conflicts that might arise in the process.

Concretely, if multiple developers concurrently modify the same code (or file) in different ways,
the version control system has to determine how to merge them, or must report a conflict to be manu-
ally resolved. More subtle challenges arise, however, when disjoint code fragments change but there
are dependencies between them that may cause erroneous program behavior, without reporting con-
flicts. When developers are working towards the common goal of ultimately releasing a single piece
of software, they must actively try to maintain compatibility with the mainline; if they diverge too far
from the overall software design, or make too many changes before communicating those changes
with others, merging such changes may not be possible.

2.1.4 Why is Branching Used?

Branching is used in the open and closed source development worlds. As explained before, it allows
teams or individual developers to work in parallel on the same project by each having a copy of the
code that can be modified without interfering with others’ work. It also allows developers to keep
different releases of a software product family. Creating branches is therefore motivated by the need
to prevent workflow disruption and reduce overall cycle-time, by allowing developers to stabilize
their development in isolation before integrating with the main branch. That means, if the goal was
to decompose tasks among developers to contribute to one project, their changes will have to be
integrated later on.

However, branching is not limited to the case of multiple developers working together towards
a common goal or software product family. Another, arguably more powerful, form of branching
occurs when software developers want to benefit from the maturity and advanced functionalities of
an existing project to rapidly create a new project and adapt it to other specific needs. These new
branches are the ones known as forks.

6GitHub (online project hosting site): https://github.com/popular/forked

https://github.com/popular/forked

2.2. Supporting Collaborative Development Through Branches 15

Many factors can intervene in the creation of branches that are oriented to become independent
projects. For example, a specific client’s requirements conflict with the project goals, or economic
factors interfere, as when an open-source producer is purchased by a company that does not have a
history of supporting open-source development.

Branches can be created, maintained and evolved with no intention of ever merging back with
the original code base. Because this form of software development starts with a fully functional
code base, its impact can be rapid and enormous. For example, Android began in 2003 as a branch
of the Linux operating system to take advantage of Linux’s reliability, performance, and advanced
functionalities. By branching, Android was free to make design decisions that were critical to meeting
the constraints of the mobile environment, in contrast to Linux, which targets the entire computing
spectrum from embedded systems to supercomputers. At the end of 2011, four years after its first
release in 2007, Android had captured 43% of the US mobile market7, 50% more than its nearest
competitor.

Even if the initial goal of creating a branch is to allow developers to pursue a separate agenda
from that of the original software project, if the split is amicable, the common origin of the source
code means that the new branch can still benefit from bug fixes and new functionalities developed
for other branches. The process of selectively applying code changes from one branch into another is
known as cherry picking. Cherry picking suffers from the same problems of conflicts as those cited
before for the distributed collaborative development of a single software project. But these problems
are substantially compounded as the branches involved naturally evolve and drift apart. Over time, it
becomes increasingly difficult and tedious for a developer to determine whether a change from another
branch can benefit his branch, whether the dependencies of that change exist in his branch, whether
the change will introduce bugs into his branch, and how the change relates to any modification he has
done in his branch.

2.2 Supporting Collaborative Development Through Branches

Managing multiple branches in the development process and merging changes from one branch to
another can be a sophisticated and complex task [Phillips 2011] as can be gathered from Figure 2.2 8.
This figure illustrates a proposed software development model using the Git version control system
and relying heavily on branching.

Figure 2.2 shows two main branches: the master branch (right, blue) that holds the production-
ready version of the project; and the develop branch (third from left, yellow) holding the next release
version. When the source code in the develop branch reaches a stable point all the changes should be
merged back into master and then tagged with a release number. Several features are developed in
their own feature branches (first two from left, pink). They are ultimately merged back in the develop
branch, or discarded if unsuccessful. The release branch (third from right, green) holds a short lived
version of the develop branch system when it is almost ready to be released. It allows one to iron out
the last bugs and is not intended to receive any new features. One can see it as holding the release
candidates. Finally, the hot fix branch (next to last, red) as its name indicate allows a developer to fix
critical bugs on a production version without disrupting the development of new features.

7http://www.pcmag.com/article2/0,2817,2395804,00.asp
8Taken from http://nvie.com/posts/a-successful-git-branching-model

http://www.pcmag.com/article2/0,2817,2395804,00.asp
http://nvie.com/posts/a-successful-git-branching-model

16 Chapter 2. Problem Analysis

Author: Vincent Driessen
Original blog post: http://nvie.com/posts/a-successful-git-branching-model

License: Creative Commons CC By-SA

Figure 2.2: Development process driven by branches.

2.2. Supporting Collaborative Development Through Branches 17

Author: Vincent Driessen
Original blog post: http://nvie.com/posts/a-successful-git-branching-model

License: Creative Commons CC By-SA

Figure 2.3: Distributed development processes.

Figure 2.3 shows how a team of developers may work in a distributed environment. In this case,
four developers (Alice, Bob, David and Clair) pull and push changes to a central repository (not at
a technical level) which is tagged as origin in the figure. It also shows that developers may form
sub-teams (Alice and Bob, Alice and David, and Clair and David) by pulling changes from peers.
Sub-teams allow small group of developers to work together on particular features before pushing
their changes into origin.

Defining an adequate process and branching strategy to master the complexity of parallel de-
velopment of bug fixes and new features is a common problem, other solutions, similar to the one
illustrated here, may be found, e.g., [Walrad 2002], [AmcomTechnology 2010]. For lack of more
advanced solutions, these approaches propose to use the branching mechanism of the configuration
management tool to help identify individual features and/or bug fixes.

From a purely textual point of view, one may retrieve the changes between any two revisions
of a software system in a branch and try to apply it to a revision in another branch. This is what
a developer hopes to achieve, for example in Figure 2.2, when merging a feature branch into the
develop branch. In practice, this works well if the two branches are not too different from one another
and if we only consider textual representation. As soon as we consider the semantics of the resulting
program, a simple modification from protected to private in Java can lead to unexpected failures
such as the fragile base class problem9 [Steyaert 1996]. In the case of forks, the complexity is
much greater because we consider two master (or develop) branches, each having its own release
and feature agenda. Solutions relying on a specific software process are not applicable here because
the two branches are managed by two independent communities. As a consequence, the developers
require more information to understand what are the prerequisites (e.g., dependencies) to integrate a

9The fragile base class problem is a fundamental architectural problem of object-oriented programming systems where
base classes (superclasses) are considered fragile because a seemingly safe modification to a base class, when inherited by
the derived classes, may cause the derived classes to malfunction.

18 Chapter 2. Problem Analysis

change developed for another master branch and what impact this change may have on their code.

To illustrate the use of branching, we analyze a concrete example in the next section.

2.2.1 Concrete Example: Pharo

Pharo10 is an open-source distribution of a new generation Smalltalk system. It is a platform com-
posed of a set of core libraries (compiler, stream, scheduler, collections, events, etc.), a large UI
framework, and a large set of tools such as code browsers debuggers. Pharo was born in 2008 as a fork
of Squeak11, the Smalltalk system originally developed by the team of Alan Kay. Other branches of
Squeak are also under development including Croquet, Cuis, Etoys, as shown in Figure 2.4. Around
1000 packages, for various purposes, have been developed on top of Pharo. Often such packages
can also be used with the other Squeak branches as well as on GemStone12 (a proprietary Smalltalk
system).

Pharo 1.0

Squeak 3.7

Etoys 3.0

Etoys 4.0

Squeak 3.8

Croquet
Squeak 3.9

Squeak 3.10

Cuis 1.0

Relicensing

TextEditor

MessageTally

Closure

Unicode

Unicode fixes

Squeak 4.1

Squeak 4.3
Pharo 1.4

Cuis 3.3

Cuis 3.0

Qwak

OpenQwak

Closure

Squeak 3.6

Figure 2.4: Pharo / Squeak fork ecosystem: cross branching.

Each of the Squeak branches is continuously evolving. The Pharo community actively integrates
changes from Cuis and Squeak. The Squeak community occasionally integrates changes from Pharo.

Pharo itself has evolved rapidly in 4 years and its community has grown considerably as well.
People from academia (12 research groups) and industry (34 companies) are contributing with bug
fixes, enhancements and new features. Pharo has 173 official contributors13. Currently, the Pharo

10Pharo: http://www.pharo-project.org
11Squeak: http://www.squeak.org
12GemStone: http://www.gemstone.com
13Pharo records obtained on May 31st, 2012

http://www.pharo-project.org
http://www.squeak.org
http://www.gemstone.com

2.2. Supporting Collaborative Development Through Branches 19

Consortium is being established among users and industrial partners to sustain the development of
Pharo.

Branching in Pharo

The evolution of Pharo is shown in Figure 2.5. Here each version is shown with a vertical line divided
in two parts: the arrowed dashed line represents the period of time in which its development started
until its release (pre-release), and the arrowed line represents the period of time after it was made
public until its maintenance ended (post-release).

Pharo 1.1

Pharo 1.2

Pharo 1.3

Pharo 1.4

Pharo 1.0

March 2008

June 2008

Sept 2009

June 2010

July 2010

March 2011

January 2011

June 2011

April 2012

August 2011

Pre-release Post-release Change
exchange

Pharo 2.0

Figure 2.5: Pharo evolution: internal branching.

In 4 years the Pharo community has made public five official releases: version 1.0 in June 2008,
version 1.1 in July 2010, version 1.2 in March 2011, version 1.3 in August 2011, and version 1.4 in
April 2012. Currently, version 2.0 is already under development (shown in grey).

Each version is managed as a separate branch. Note in Figure 2.5, that once a version is released
(e.g., 1.3), the main developers of Pharo also maintain the previous version (e.g., 1.2), and continue
working on the next version (e.g., 1.4) which in some cases started before the previous one was
released. In this situation, the main developers may deal with three main branches at the same time.
Moreover, the development of these versions does not happen in isolation. A continuous exchange
of changes is done between these branches, as shown with the green and read arrowed lines. For
example, between versions 1.4 and 2.0, the blue arrowed line indicates that changes done in the
post-released 1.4 version are integrated into the development 2.0 version, and the green arrowed line
indicates that changes done in the development 2.0 version are integrated into the post-released 1.4
version.

The Pharo ecosystem shown in Figure 2.4 and the Pharo evolution shown in Figure 2.5 illustrate

20 Chapter 2. Problem Analysis

the two possible scenarios of integration of changes in Pharo: a) between forks that we call cross
branching integration, and b) between branches that we call internal branching integration.

• Cross branching integration is the more complex case, as the changes come from a system (i.e.,
Squeak) that has separately evolved from the fork in which they may be integrated (i.e., Pharo).
Bringing changes from Squeak into Pharo is a very difficult task. In order to integrate such
changes, the developers not only need to understand the changes, their context and their evolu-
tion in Squeak, but also how those changes can be integrated into Pharo, which other changes
are required, and more importantly how those changes will impact Pharo and its ecosystem.

• Internal branching integration is done daily and even though changes may come from sibling
branches (e.g., from version 1.4 to version 2.0), the integration of changes is not necessarily
easier than in cross branching integration as changes at design level are taking place. Still,
the developers that are integrating changes from one branch into another need to deal with all
the activities involved in the integration process, such as, understanding the changes, selecting
the adequate changes, solving merging conflicts between changes, and analyzing the impact of
changes.

2.2.2 Integration Problems: Overview

Until now we have presented how branching supports the software development process, in particular
in a distributed environment where multiple developers are allowed to work independently of each
other in a separate branch. Furthermore, the concrete case of Pharo not only shows how multiple
branches are managed for its development but also shows how this process is still impacted by changes
applied in other forks such as Squeak or Cuis.

Despite the advantages of branching, it may pose considerable problems before, during and after
the actual integration of the work (i.e., changes) done by multiple developers happens. We present an
overview of the problems of integrating changes at two levels:

Integrating changes within a branch. We consider this case when multiple developers are working
on branches derived from the same main branch, and they are working towards releasing the same
product. For example, some features of the Pharo 2.0 version are being developed in branches that in
the future will be integrated into the main branch. Here, branches are not evolving independently of
each other. This case, however, does not imply that the integration of changes is free from conflicts
as several developer may be working on the same feature.

Integrating changes brings other activities such as understanding changes before the integration,
merging changes, solving conflicts during the actual merge, testing, and dealing with the impact of
changes after the integration. Version control systems do not offer adequate support to cover all these
activities, and developers have to perform some of them mostly manually.

Integrating changes between branches: cherry picking. When integrating changes between
forks or branches that are drifting apart in their design or development, another problem is present
when performing cherry picking. Cherry picking describes the action of selecting which changes
should be ported from one branch to another.

2.3. Challenges to Support Integration 21

Cherry picking is difficult and time consuming, considering that a developer has to manually de-
termine whether a change from another branch is relevant, whether the resources the change requires
(dependencies) are available in the developer’s branch, whether the change will break the invariants
of his branch, and how the change relates to any customizations he may have introduced.

Moreover, integrating these changes also suffers from the problems mentioned before. But these
problems are substantially compounded as the branches involved naturally evolve and drift apart. For
example, merging changes from Squeak done 2 years ago to the latest Pharo version can be loaded
with conflicts.

In the next section, we introduce the challenges to support the integration of changes and the
problems raised by this process.

2.3 Challenges to Support Integration

Integrating changes that represent fix bugs, enhancements, new features or adaptations due to chang-
ing environments are key software development activities. However, integrating these changes in a
large-scale collaborative software development environment poses substantial challenges. For exam-
ple, if two developers modify the same code in different ways, the revision control system has to
determine how to merge them, or report a conflict to be manually resolved. More subtle challenges
arise, however, when disjoint code fragments change but there are dependencies between them. While
revision control systems can help to textually detect conflicts [Berliner 1990], they do not help to
identify semantic consequences of a change.

There are several merging techniques: text-based [Leblang 1984, Tichy 1985, Berliner 1990],
syntactic-based [Asklund 1994, Buffenbarger 1995], semantic-based [Westfechtel 1991, Bink-
ley 1995], operation-based [Shen 2004, Dig 2008] and merging algorithms such as two-way
merge [Hunt 1976] and three-way merge [Lindhom 2001]. The current state-of-the-art however is
mostly constituted by textual diff tools, the widely used version control systems use text-based merg-
ing techniques where semantics is not taken into account when merging.

Integrating changes is a difficult task since integrating a change requires not only the merging of
source code but also an understanding of the changes and their context, and its potential impact on
the system. This can be more complex than doing the actual merge and there is no adequate support
for these activities.

Based on the current state-of-the-art and on the development process we identify two groups of
challenges to provide a semantic-oriented support for integration of changes: (a) Change characteri-
zation, and (b) Merging support.

In the following, we describe each of these groups of challenges, and we present particular prob-
lems in each case together with examples. They illustrate the problems that developers have to deal
with when integrating changes.

2.3.1 Change Characterization Challenges

During daily software development activities, it is required to understand changes in order to assess
their impact, review their quality, and so on. Developers and integrators (a.k.a. release managers)
need to comprehend changes before actually merging these changes with the system release or internal

22 Chapter 2. Problem Analysis

development branches. For this, they rely on repositories to extract patches. Patches are changes of
source code that do not track the complete history of actions that led to the changes [Robbes 2008a,
Ebraert 2008], this is because version control systems do not record every single change that result in
a version. From that perspective, operation-based merging [Lippe 1992, Dig 2008] is ruled out since
it is based on the idea that either refactorings or every single action made by the programmer is fully
recorded.

As mentioned before, the state-of-the-art in industry and open-source development is often lim-
ited to good diff tools. Guiffy in Eclipse or Monticello in Smalltalk support a three-way merge (i.e.,
common ancestor is taken into account to support automatic merging and conflict resolution) [Lind-
hom 2001]. Diff tools that show the changes as code snippets can be easily used by developers since
they can read and understand code fast. However, diff tools do not show the context of a change at
large and the view they provide is essentially driven by text constraints.

By proving a characterization of changes [Dragan 2011, Dragan 2010], developers can ease the
understanding of these changes [Fritz 2010, Ren 2004] and tackle the problems presented next.

2.3.1.1 Problem 1: Conflicting Changes

Often a developer performs a change against an old version of the system. Two questions then arise:
a) What was the delta in the context of the version of the system at the time of the change?, and b)
How should that delta be interpreted in the presence of the current version of system?. For example,
references to runtime objects of methods in Pharo were managed with the class MethodReference until
version 1.4. A method defined in this class for retrieving the name of the method object was meth-

odSymbol. As in Smalltalk a method name is known as selector, methodSymbol was later renamed to
selector. Integrating changes done to this method in a version where it was still called methodSymbol

to a later version where it was already renamed to selector shows a simple case of how conflicting
changes may be introduced if they are not interpreted beforehand. The version control system will
merge methodSymbol without raising conflicts as in the current version no method named methodSym-

bol exists.

2.3.1.2 Problem 2: Test Impact

An integrator is often under stress due to the fact that some changes should be integrated whereas
at the same time there is no guarantee that no new bugs get introduced or that these changes may
not affect the semantics of unchanged code. In many cases integrators rely on regression testing [El-
baum 2000, Elbaum 2003] that is a key aspect especially in presence of complex code for assessing
changes. Even though regression testing can assure that old tests work with the new changes, it does
not necessarily mean that no semantic errors are introduced. Especially, in systems where not every
functionality is accompanied by tests.

In Pharo and in many open-source systems there are no dedicated code test specialists to verify
that every single part of the system is covered by a test, and it is also not possible to guarantee
that every new change comes with a test suite. Unfortunately, commit policies such as “Test your
changes before committing” or “Do not commit changes in the presence of failing tests in the local
workspace” cannot be automatically enforced. The analysis of changes is left to the integrators who
need to understand such changes before assessing their impact.

2.3. Challenges to Support Integration 23

2.3.1.3 Problem 3: Impact of Changes

Changes can be integrated without raising syntactic conflicts, however they might negatively affect
the semantics of a system. Understanding the impact of a change is a much more difficult problem.
For example, this is particularly complex in the presence of the yoyo effect [Wilde 1992,Taenzer 1989]
and the fragile base class problem [Steyaert 1996]. The problem is that a simple change in a class
hierarchy may break existing framework customizations. In such a context the location in the class
hierarchy is a first step to assess how many subclasses are impacted by a change and to determine
their clients.

Consider a part of the hierarchy for manipulating collections in Smalltalk that consists of the class
SequenceableCollection which is the superclass of OrderedCollection, which in turn is the superclass
of SortedCollection. SequenceableCollection defines the method join:, and both OrderedCollection and
SortedCollection override it. Modifying join: in OrderedCollection not only affects this class, but its
subclass SortedCollection as well. join: in SortedCollection depends directly of the implementation
of join: in OrderedCollection. Therefore, the clients of SortedCollection can be subject to undesirable
effects. Again, the integrator must understand these changes to assess their impact on the system.

2.3.2 Merging Support Challenges

While current-day version control systems can automatically merge and resolve direct merge con-
flicts14, the detection and resolution of conflicts is based on a textual analysis. The real challenge lies
in taking into account the actual contents (e.g., program entities) of the modifications during the merg-
ing process. This could help detect indirect merge conflicts15, and unexpected interactions between
changes that may cause faulty program behavior, even when conflicts were not reported.

211.sd

210.sd

209.sd

208.sd

207.md

205.md

206.md

Monticello in Squeak

st
re

am
s

of
 c

ha
ng

es

110.cmm

109.cmm

108.ul

107.cmm

106.cmm

104.cmm

105.cmm

Monticello in Pharo

stream
s of changes

109.cmm

?

001.author delta number "001"
made by "author"

two deltas
semantically related
to create a change

delta dependency

111.cmm
106.cmm

105.cmm

source branch target branch

Figure 2.6: Example: stream of changes of the Monticello system.

14Direct merge conflicts arise when several developers affect concurrently the same file.
15Indirect merge conflicts arise when changes made by different developers on different files adversely impact each other.

24 Chapter 2. Problem Analysis

We illustrate the merge challenges by presenting an example that shows the problems faced by
developers that need to merge features across branches.

Figure 2.6 shows two streams (sequences) of changes of the Monticello distributed version control
system (core package) in two forks Squeak and Pharo as an example. Here we tagged Monticello in
Squeak as the source branch and Monticello in Pharo as target branch. Note also that each node
represents a delta (i.e., a set of changes extracted from two versions); directed edges between deltas
indicate that one delta depends on another delta; and the numbers of the deltas in the source branch
are unrelated to the numbers of the deltas in the target branch.

Now consider that a developer wants to bring changes from Squeak into Pharo. The developer
working on the target branch has to understand the changes that have been performed in the source
branch so that he can integrate some of them into the target branch. With current-day tool support,
the developer has to navigate the source branch manually to recover the dependencies between the
changes. For example, if he wants to apply the delta 109.cmm, he has to know that he should first
apply the deltas 106.cmm and 105.cmm, and second, that some part of the changes may conflict
with the current target branch. Again he has to identify such problems manually.

2.3.2.1 Problem 1: Textual merge

While version control systems offer support for merging versions, this is mostly limited to a textual
merge. Such systems do not take into account semantics of the (object-oriented) programming lan-
guage used or how the merged changes potentially introduce semantic conflicts. In these cases, it
is up to the integrator to analyze the changes manually and assess whether it is feasible to merge
these changes, how they impact the branch and how they can be integrated. Even when changes can
be merged there is no guarantee that the semantics of the system are correct, or that such merged
changes do not have an unintended impact on unchanged code.

2.3.2.2 Problem 2: Cherry picking

The task of merging non-trivial changes between various branches of a software system is still done
largely manually. Especially in the case where the branches to be merged have evolved independently
and therefore drifted apart, and automatic merging leads to an abundance of conflicts, or where a
developer wants to integrate code changes from one branch into another (known as cherry picking)
explained in previous section.

Over time, it becomes increasingly difficult and tedious for a developer to determine whether a
change from another branch can benefit his branch, whether the dependencies of that change exist in
his branch, whether the change will introduce bugs into his branch, and how the change relates to any
modification he has done in his branch.

2.3.2.3 Problem 3: Identifying change dependencies

Version control systems do not provide developers information about dependencies between changes
(i.e., which code is needed by a particular change to be semantically correct). Assessing which
changes are needed by a particular one has therefore to be done manually. As an example, consider
the case in which a developer wants to introduce the changes from the source branch delta 109.cmm
into the target branch. To do so, the developer has to check all previous changes to find out that delta

2.4. Requirements of Solution 25

109.cmm depends on delta 106.cmm, which in turns depends on delta 105.cmm. Therefore these three
deltas will probably need to be integrated simultaneously. Other problems left to the developer are
assessing the impact of integrating these changes into the target branch and how they can be integrated
without breaking the system or without introducing unwanted features.

2.4 Requirements of Solution

Our solution is to assist the integration process by means of tools that can provide developers with
information that is needed to perform integration activities. There are several factors that motivate our
solution, such as: (a) developers lack semantic information about the changes, (b) developers need to
manually extract information (e.g., dependencies between changes) that can guide the integration, (c)
developers need to assess the impact of changes before the actual integration or merging.

Providing (semi)-automatic support to assist integration as a means to alleviate the challenges and
problems present in the integration of changes, is a complex challenge as well. We do not target fully
automated support because human expertise is necessary to understand and assess the impact on the
semantics of a system.

We established two conceptual requirements for a solution that can assist the integration of
changes in the presence of branches and forks, and one technical requirement for providing such
support.

• Characterizing Changes can aid developers to comprehend changes. By characterizing changes
we can provide relevant information to developers about the changes and their context that will
ease the understanding of changes, the identification of the potential impact of integrating the
changes, and therefore will help developers taking decisions about the integration process in
general. This requirement is further described in Chapter 3.

• Characterizing Stream of Changes can guide developers to merge changes. By establishing
the dependencies of a change within a stream of changes (i.e., within a branch/fork) we can
characterize that change within the stream, and therefore aid developers to understand changes
within the stream, to cherry pick changes and to identify which dependencies present in the
stream are needed. This requirement is further described in Chapter 3 as well.

• Infrastructure is needed at a technical level to be able to characterize changes and streams
of changes. We need to establish the adequate infrastructure that allows us to represent the
evolution of a system, the changes and their dependencies in a way that we can efficiently infer
semantical information to guide the integration process. Moreover, such infrastructure should
be the foundation for building tool support. We present our infrastructure in Chapters 4 and 6.

2.5 Conclusion

In this chapter we have presented that collaborative software development is widely used mainly for
large systems. The fact that it allows a team of developers to work independently of each other in
multiple tasks of the same project without restrictions on time and location is a powerful approach
applicable not only for open-source development but also for proprietary source development.

26 Chapter 2. Problem Analysis

Version control systems support collaborative development by integrating approaches such as
branching and merging, in particular distributed version control systems (e.g., Git, Mercurial) that are
mainly focused on supporting distributed development have given branching a central role to guide
the development process.

We have presented a concrete example of an open-source development project – Pharo – in the
Smalltalk community that represents a large system used by both the academia and industry. Inde-
pendently of the programming language or version control system used in Pharo, it really shows how
branching and merging plays a fundamental role in its development. The Pharo ecosystem is complex
and involves internal and cross branching.

We emphasized that the big problem inherent in the use of branching is the integration of changes.
Integration is not easy, and integration is not one single task, it involves complex activities such as
understanding changes, selecting changes and their requirements, determining the impact of changes,
and merging changes. Moreover, the lack of support for performing these activities has resulted in a
process that in many cases is done manually. Even though, version control systems support merging,
the ones that are widely used do so at a textual level, the semantics behind the changes needs to be
understood by developers in order to take decisions in each of the activities involved in the integration
process.

Supporting integration of changes is a difficult task, there are several challenges that need to
be taken into account to propose the requirements for an adequate solution. We summarized these
challenges in two groups: a) change characterization, and b) merging support. In each group, there are
several problems that developers face when integrating changes and that are related to the activities
mentioned before. By providing a characterization of changes and a characterization of stream of
changes we can provide a solution that aids developers to tackle these challenges and support the
integration process. Along with the characterizations we require the right infrastructure to build tool
support needed by developers.

The next chapter presents the facets of changes, in concrete, we introduce terminology used in
the integration context, questions that are raised by developers when integrating changes, and we
present the characterization of changes and stream of changes needed to guide developers integrating
changes.

CHAPTER 3

Facets of Changes

Contents
3.1 Integration Process: Overview . 28

3.2 Definitions and Terminology . 29

3.3 Questions Integrators Ask . 31

3.4 Information Needs for Change Characterization 36

3.5 State-of-the-Art . 41

3.6 Conclusion . 56

Contributions Map

 Source Code Meta-Model (Ring)

History Meta-
Model and
Analyses
(RingH)

Torch Tools

Change & Dependency
Meta-Model and

Analyses (RingC)

JET Tools

Single-delta
Change Meta-

Model and
Analyses (RingS)

Catalogue of
Questions

Integrators'
Information

Needs

⬇

Overview

This chapter covers four topics that complement the background and problems associated with the
integration of changes in a collaborative development process, as presented in Chapter 2. First, we
present an overview of the integration process to introduce the definitions and terminology that we
use in this dissertation. Second, we present a catalogue of questions that are raised during the integra-
tion of changes as a means to identify the integrators’ information needs to answer these questions.
Third, we describe and characterize the different kinds of information that can be used to answer the
integrator questions. These kinds of information enable us to provide a characterization of changes
and streams of changes as part of our solution to assist integrators. Fourth, we study the state-of-the-
art relating to this dissertation. Our goal is to investigate how other approaches represent and provide
these kinds of information, and which kinds of tools exist nowadays to support answering developers
or integrators questions.

28 Chapter 3. Facets of Changes

3.1 Integration Process: Overview

In Chapter 2 we explained the collaborative software development process and how version control
systems support this process by enabling branching and merging. In this section, we illustrate the con-
ceptual process of integrating changes as it can be found in open-source projects in order to introduce
the definitions and terminology that we use in this dissertation.

Public
Code
Commit
Repository

Release
Repository

checking out
from the released

version

Submitting (merged) changes

releasing changes

Integrator
Committers

submitting changes

Releasing selected (merged) changes

INTEGRATION OF CHANGES

Figure 3.1: Integration process: different roles and actions.

An overview of the flow of changes and their integration is shown in Figure 3.1. Here we focus
on the groups of developers that support the production of a new release. From this perspective,
and ignoring issues related to testing (acceptance testing and others), we can identify two roles for
developers: committers of changes and integrators of such changes.

• committers checkout code from a repository, be it the main branch or any other (e.g., develop-
ment, feature, alpha or beta version) branch. They work on fixing bugs, enhancements or new
features and submit (i.e., publish) their changes to a repository.

• integrators analyze the code of committers, merge selected changes (which were made to pre-
vious versions) and release them into the current version.

The process of submitting changes to a shared repository is usually regulated by a commit
policy that committers are encouraged to follow, such as the commit early and commit often rule
[Berlin 2006] (e.g., continuous integration1), that aims to minimize merge conflicts, avoid duplicate
development, and avoid test failures. However, commit policies are generally not automatically en-
forceable, and integrators have to deal which such potential problems.

The integration of changes covers the complete process of gathering changes from several com-
mitters and including them in a version of the system. This process involves several activities such as
understanding changes, selecting (cherry picking) changes, merging changes, resolving merge con-
flicts, compiling, and testing the merged code. Merging is a part of the integration process, that
represents the technical operation in which two sets of changes are applied to a file or set of files. The
changes come from different branches or forks, and may raise conflicts when they affect the same
code in different ways.

1Continuous integration: http://www.martinfowler.com/articles/continuousIntegration.html

http://www.martinfowler.com/articles/continuousIntegration.html

3.2. Definitions and Terminology 29

3.2 Definitions and Terminology

In this section, we introduce the definitions and terminology that we use in the remainder of this
dissertation. Not all of them are well-known or standard terminology in the context of integration of
software changes, therefore we define them explicitly for easing the understanding of our work. Even
though these definitions and terminology are applicable for any object-oriented programming lan-
guage and version control system, we present them in the context of the Pharo Smalltalk platform and
the Monticello distributed version control system, which are part of the technology used to implement
and illustrate our approach.

Within the definitions we use the notation KEYname to refer to several terms. Classes CTest,
methods Mrun, attributes Aname, changes CHm, deltas Dn, or snapshots So.

Program entities and relationships. The key program entities that can be found in an object-
oriented software system and that we take into account in our approach are packages, classes, traits,
methods and attributes. The relationships between program entities that we take into account are
attribute accesses (e.g., attribute Avalue is being read and written within the method Mfoo), method
calls (e.g., method Mfoo invokes method Mbar), class references (e.g., method Mfoo refers to class
CZoo) and class inheritance (e.g., class CLion inherits from class CAnimal).

Repositories. A repository is where the source code and other artifacts of a system are stored.
Therefore, it contains the evolution and changes of such a system. How the data is stored depends
on the version control system or application managing the repository. For example, in Monticello
– the distributed version control system supported by our contribution – each package is published
individually containing not only changes but all the program entities existing in the package at that
point in time.

Commits. A commit in the context of version control systems refers to the act of submitting changes
of the source code to the repository. A commit can also refer to the group of additions, modifications
and removals made to the source code that developers submit to the repository and result in a new
revision (also known as version). However, in Monticello a commit as a whole does not exist, be-
cause changes are submitted to their respective packages. For example, if a set of changes (commit)
cross-cuts three packages, such changes are submitted separately resulting in three package versions.
Monticello identifies changes that happened in a particular package version, by comparing that ver-
sion to its previous version.

Snapshots. A snapshot is a set of program entities and relationships at a given point in time in the
history of a system. This set of entities represents the complete system under analysis, in contrast to
commits that refer to the changes submitted at a point in time. A snapshot is derived from a commit.
However, it also includes unchanged program entities and relationships present in the history at that
point in time. In Monticello, to determine which versions of the packages belong together (i.e.,
represent a commit), we use a sliding window technique [Zimmermann 2004a] that considers that
multiple packages belong to the same commit if they are committed by the same author within a time
interval of 5 minutes.

30 Chapter 3. Facets of Changes

History. A system’s history encapsulates the evolution of its program entities and relationships. We
consider a system’s history to be a graph of snapshots, where each node in the graph (i.e., a snapshot)
is connected to its predecessor(s) (previous snapshots of the system) and successor(s) (subsequent
snapshots of the system).

Changes. A change is any alteration applied to a program entity. We distinguish between three
kinds of actions applied by developers, namely removals, additions and modifications. For example,
introducing the new class CLion results in the added change to CLion, modifying the method Mfoo

results in the modified change to Mfoo, and so on.

Deltas. A delta is a set of changes representing the differences between two successive commits or
snapshots (known as snapshots Sbase and Starget) present in the history. Note that in the context of
Monticello we also use delta to represent the differences between two package versions. A delta can
be considered equivalent to applying a diff to two versions of a file and resulting in textual differences.

Stream of changes. A stream of changes is a sequence of successive commits in the history of a
system. In other words, a stream of changes is a sequence of deltas that may represent a part or the
whole evolution of a system. That sequence of deltas is considered to be a graph of deltas, where
each delta is connected to its predecessor(s) (previous deltas) and successor(s) (subsequent deltas).
For example, from the history of Pharo consider the feature “RecentSubmissions” (which handles
the recent changes loaded into the system). In Pharo 1.4 the revision of this feature dated August
12th 2011 was released. Up until now (June 21st 2012) this feature includes 58 revisions in the
develop branch that may be considered for the next release Pharo 2.0. In this case, these 58 revisions
developed in the past 10 months represents a stream of changes for that feature.

Change dependencies. A change dependency captures the fact that a given change CHy potentially
depends on another change CHx (i.e., CHy→CHx). For example, if a modification to method Mfoo

adds a call to a new method Mbar, this change introduces a change dependency of Mfoo to Mbar.
That means that in order to integrate the modified method Mfoo, the added method Mbar is needed.
Such a dependency can exist between changes within the same delta or between changes in different
deltas.

Delta dependencies. A delta dependency expresses a dependency from delta Dn to delta Dm (i.e.,
Dn→Dm), where a change CHy in Dn depends on a change CHx in Dm (i.e., the change depen-
dency CHy→CHx exists). That means that a delta depends on another delta if any change within it
depends on a change in other delta. Considering the example presented in the definition of change de-
pendencies but assuming that the method Mbar was added in delta D7 and that the method Mfoo was
modified in delta D8, then due to the change dependency between both changes, the delta dependency
D8→D7 is introduced.

3.3. Questions Integrators Ask 31

3.3 Questions Integrators Ask

In this section, we present a catalogue of questions that integrators ask when performing integration
of changes. The main motivation behind obtaining these questions is to identify and understand which
are the information needs of developers that deal with integration activities. As we mentioned before,
integrating changes is a difficult and tedious process, since integrators can be not the people who
implemented the original software nor the ones who changed it. By knowing which real questions
are raised during integration and are troublesome to answer, the complexity of this process can be
understood, common factors can be extracted to characterize changes, and future solutions can be
assessed.

Before presenting details of how we obtained the questions, we present a brief background (ex-
tended in Section 3.5.5) that justifies the usage of questions as a means to support development activ-
ities.

In literature, we find a number of studies that have identified the set of questions that software
developers ask themselves when dealing with changes [Sillito 2006, Sillito 2008, Fritz 2010, La-
Toza 2010]. Sillito et al. [Sillito 2006, Sillito 2008] studied the information a developer needs to
know about a code base while performing change tasks and how developers go about discovering
that information. They propose 44 questions that developers asked themselves during development.
However, many questions are related to code navigation (“Where is this method called or type refer-
enced?” or “What are the arguments to this function?”). Fritz and Murphy [Fritz 2010] focused on
team related information about changes. They listed 78 questions raised by developers mainly when
concerned about the impact of their work on other team members. Out of these 78 questions, 35 ques-
tions are code specific, for example, they included questions such as “Who is using that API [that I
am about to change]?” or open-ended questions such as “What is the evolution of the code?”. LaToza
and Myers [LaToza 2010] gathered hard-to-answer questions about code in general from professional
developers. They obtained a broad set of 371 questions, of which 218 questions are about changes.
Such questions are classified in 10 categories such as debugging, policies, history, refactorings, team-
mates, building and branching, etc. Few of these categories (e.g., history, building and branching)
contain questions such as “How can I move this code to this branch?” or “Have changes in another
branch been integrated into this branch?” that can complement our findings.

Even if previous work lists a large set of questions, many of these questions are not specific
enough or do not apply to the context of integrating streams of changes. To assess if our contributions
can answer questions adequately, we needed to identify the specific questions developers ask when
integrating changes. Therefore, we complemented these studies with our study discussed next.

3.3.1 Methodology

We conducted an open call to the developers of three Smalltalk communities to compile the questions.
Specifically, we sent a mail to three mailing-lists (VisualWorks users mailing-list vwnc@cs.uiuc.edu,
ESUG (European Smalltalk User Group) esug-list@lists.esug.org, and Pharo project mailing-list
Pharo-project@lists.gforge.inria.fr) requesting input on the questions they ask themselves when inte-
grating. We first provided an overview of the reasons of our study, next we asked “What are the ques-
tions that you ask yourselves when you are merging (or want to merge) changes into your projects?”,
finally we added six typical questions raised by one of the main Pharo integrators (e.g., “Is this change

32 Chapter 3. Facets of Changes

impacted by a change that happened in another branch of my software?”) as a way to guide their an-
swers.

In a period of 10 days we received the responses of 20 developers who integrate changes on
separate small, medium and large sized Smalltalk projects. The answers were diverse among the
group. (a) 8 participants provided concrete questions. (b) 9 participants provided concrete questions
and extra feedback (merge situations they deal with, policies they follow when merging, explanations
of why they ask these questions or think they are challenging, and broad ideas for tools supporting
merging). (c) 3 participants did not list any question at all but rather included general feedback
regarding their desiderata for merging tool support. This information was analyzed and yielded 56
questions. Moreover, we took into account the studies presented above and extended our findings with
8 questions taken from these studies. Finally, Stéphane Ducasse, a Pharo integrator helped refining
and verifying the questions.

The resulting catalogue is composed of 64 questions that we clustered into 5 different categories:
(a) authorship/ownership, (b) change nature, (c) structural change characterization, (d) bug tracking
infrastructure, and (e) changes within a stream.

Threats to Validity. Our study was performed by an heterogenous group of participants from both
industry (majority) and academia (minority but supporting real projects).

The fact that all the participants are Smalltalk experts, and their answers are focused on the inte-
gration of changes in the context of Smalltalk projects may be considered a threat to validity of our
study. However, our audience was quite diverse, the participants work on different Smalltalk projects
which follow different development policies. This is a positive aspect because we received different
points of view regarding the integration process.

Furthermore, this study covers a topic that is present in any collaborative development process
independently of the programming language and infrastructure used. The related work discussed
before also proposed the identification of developers’ information needs by means of questions. Even
though they covered other broad aspects, there are questions overlapping with our findings which
reveals common information needs. This shows the generalizability of this kind of studies, and the
questions gathered in our study can be used to assess future solutions developed with other platforms.

3.3.2 Catalogue of Questions

We briefly describe each category prior to introducing its respective questions. Each question is
accompanied by an identifier (e.g., A1) that it is used to refer to the question in later sections. Note
also that we add references to the questions that are similar to questions (or were identified) in any of
these studies [Fritz 2010, LaToza 2010, Sillito 2008].

Authorship/Ownership. The first group of questions is related to the owner of the original code,
author of the changes and committer. These questions reflect the implicit quality of the committer
and level of reliability of such changes.

Author/Owner questions
A1 Who wrote the original code that was changed?

Continued on Next Page. . .

3.3. Questions Integrators Ask 33

Author/Owner questions
A2 Who is the owner for this changed code? (part of the catalogue of Fritz and Murphy/LaToza

and Myers)

A3 Has my code been changed?
A4 Who made this change? (also part of the catalogue of Fritz and Murphy)

A5 What is the general quality of the change committer?
A6 How many people have contributed to this sequence of changes?

Change nature. The second group of questions is related to the nature, behavior and intent of a
change. Such questions can be mostly applied to changes within a single delta. Note that some of
these questions are open-ended and therefore inherently difficult to answer automatically. Moreover
they may require up front knowledge of the system as well.

Behavioral questions
B1 Does this change improve the quality?
B2 Is this change correct? (also part of the catalogue of LaToza and Myers)

B3 What is the reason for this change? (also part of the catalogue of Fritz and Murphy/LaToza
and Myers)

B4 Was this change intentional, accidental, or a hack? (part of the catalogue of LaToza and
Myers)

B5 What kind of change is it? (Bugfix/New feature/Refactoring/Documentation)
B6 What is the total impact of this change? (part of the catalogue of Sillito et al.)

B7 What will be (or has been) the direct impact of this change? (part of the catalogue of
Sillito et al.)

B8 Did this change fix/break tests? Which tests?
B9 Did the tests work before the changes?
B10 How can I test this change? (part of the catalogue of LaToza and Myers)

B11 Is the change covered by tests? What is the coverage? (also part of the catalogue of
LaToza and Myers)

B12 If I just apply the change, what are the parts of my current system that it will break?
B13 If the merge succeeds, will the change work later?
B14 What are the implications of this change for API clients? (also part of the catalogue of

LaToza and Myers)

Structural change characterization. The third group of questions is related to the structure of the
original code as well as the changes. They cover various aspects in terms of volume, impact volume,
dependencies (which packages, classes should be loaded before), and so on. From that perspective,
they are not tailored to a stream of changes but more to a single delta.

Structural change characterization questions
S1 How large is the change?
S2 What is the scope of this change? (which/how many classes/packages/. . . , is lo-

cal/global?)

Continued on Next Page. . .

34 Chapter 3. Facets of Changes

Structural change characterization questions
S3 Is this change confined to a single package?
S4 What is the complexity of the changes/of the touched entities?
S5 Does this change define only one feature?
S6 Can we split this change?
S7 Do all the changes within the commit belong together or are they unrelated?
S8 Are there other packages that would need to change as well to incorporate this change?
S9 When multiple packages are committed at the same time, do I really need to load all

of them now, or can I just load/merge with the version of the package I am working
on?

S10 Can I apply this change?
S11 What are the required structural dependencies? (also part of the catalogue of LaToza and

Myers)

S12 What other changes depend on this change? (also part of the catalogue of LaToza and
Myers)

S13 What are the conflicts?
S14 What parts of the system are directly using the changed behavior?
S15 Which features/classes/methods have been changing? (also part of the catalogue of Fritz

and Murphy/LaToza and Myers)

S16 Is this change impacted by a change that happened in another branch of my software?
S17 Does the change follow rule checking/conventions?
S18 Is the vocabulary used in the change consistent with the one of the system?
S19 What code is related to a change? (part of the catalogue of Fritz and Murphy)

Bug tracking infrastructure. The fourth group of questions is related to bug tracking facilities.

Infrastructure questions
I1 To which bug entry does this change relate?
I2 Have other bugs related to the change been reported?

Changes within a stream. The final group of questions is related to situating changes within the
context of a stream of changes, as well as to the time at which the change occurs. In particular when
working on a stream of changes, these questions capture the place of a change within the stream.

Temporal and change stream questions
T1 When was this change made? (also part of the catalogue of LaToza and Myers)

T2 What is the whole history of this method/feature? (also part of the catalogue of Fritz and
Murphy/LaToza and Myers)

T3 In which version this method change?
T4 Did this method/feature change (a lot) recently/in the past? (also part of the catalogue of

LaToza and Myers)

T5 Did this change ever happen before?
T6 Is this change still the most recent one?

Continued on Next Page. . .

3.3. Questions Integrators Ask 35

Temporal and change stream questions
T7 Is there any pending change in the sequence that supersedes it?
T8 Is this change part of a whole series of changes?
T9 Does this change depend on previous ones?
T10 Is the change ever used in subsequent changes?
T11 Is this change reverting the code to an old state?
T12 What else changed when this code was introduced or changed? (also part of the cata-

logue of LaToza and Myers)

T13 What are the changes made by the same authors/during the same time period?
T14 Did the same methods/classes change together in a particular version? what were the

missing changes?
T15 Was this method/class renamed in the past? in which version?
T16 What were the senders of this method in a particular version?
T17 What are the current senders of this method in a particular version?
T18 What are the current message calls by this method in a particular version?
T19 What are the changes based on the latest common ancestor between the version of the

changes and the system?
T20 Have changes in another branch been integrated into this branch? (part of the catalogue

of LaToza and Myers)

T21 How can I move this change to this branch? (part of the catalogue of LaToza and Myers)

T22 What are the (previous) changes needed to merge this change with another branch?
(also part of the catalogue of Sillito et al.)

T23 What are the clients potentially impacted by this change in the destination branch/fork?

3.3.3 Answering Integrator Questions

The complexity of the integration activities as a whole process is reflected by the lack of adequate
support for developers that need to integrate changes. The state-of-the-art includes several studies
that show the importance of gathering the questions that developers ask when performing diverse de-
velopment activities. The common goal of these studies is to identify and understand the developers’
information needs to reveal opportunities for developing new languages and tools that make answer-
ing these questions easier. That information can support activities such as understanding changes,
assessing the impact of changes, cherry picking changes, navigating changes, identifying team re-
lated involvement in changes, supporting decision making for branching and merging, and so on.

With version control systems (discussed in Chapter 2.1.1) and other approaches (discussed in
Section 3.5) it is impossible to answer all these questions. In particular there are no straightforward
answers to questions related to the nature of the changes (e.g., “Is this change correct?” or “What
is the reason for this change?”) that involve the semantics of the system and therefore require user
intervention. Answering many of these questions can potentially be time consuming and error prone.
Advanced low-level tools are needed. The state-of-the-art discussed in Section 3.5 shows several
approaches dedicated to assess the impact of changes. Still these approaches are semi-automatic as
they require users to provide input, interpret the output generated by tools, and ultimately decide
what to do which such output. However, activities such as understanding changes and mainly cherry

36 Chapter 3. Facets of Changes

picking have been ignored by widely used tools. For example, well known version control systems
(e.g., SVN, Git) are unable to answer questions such as “What are the required (structural) dependen-
cies?” or “What other changes depend on this change?” as they merely process changed code as text.
Developers have to manually process the changes before the actual merge happens, and even though
these changes may be successfully merged, there is no guarantee that the functionality of the system
is 100% correct or that no ripple-effects will appear in the future due to prior changes.

We do not claim that tools should support activities like cherry picking or change understanding
fully automatically, but providing semi-automatic support will greatly enhance the productivity of
integrators. Our contributions are towards that direction, and we make use of the questions presented
in this section to identify the key information to characterize changes and streams of changes. These
characterizations enable us to assist the integration process.

3.4 Information Needs for Change Characterization

Based on the catalogue of questions presented in Section 3.3.2 we identify several kinds of informa-
tion that can help us to accomplish the characterization of changes and streams of changes.

We have classified such information in four categories: (a) descriptive information, (b) structural
information, (c) semantic information, and (d) historical information. While the last category includes
information related to changes in the context of a stream of changes, the other categories provide
information that can be used for characterizing changes within a single delta and within a stream.

In the following, we present an analysis of this information that serves to define the requirements
for our solution introduced in Chapter 2.4.

3.4.1 Descriptive Information

• Size. Characterizing a change in terms of its size gives a first impression of a change. A
common metric used to measure the size of a system is based on the number of lines of code
(LOC). In the same way, a first measure to establish the size of the changes is in terms of lines
of code impacted. This can be used to answer questions like “How large is the change?”. Note
however, that the size of a change is only indicative since a small change can have huge effects.
Still, the size in terms of lines of code can indicate how difficult and risky an integration of such
changes will be. Combining the size of changes with the number of changes within a delta can
be used to characterize changes and establish patterns to aid in understanding changes (e.g.,
replacing a method call is represented by multiple changes each impacting two lines of code2).

• Author/Owner. Knowing who changed a piece of code (i.e., author) and who committed the
changed code to a source code repository (potential owner) is relevant, especially in a team
development process. Note that who changed the code may not be the same developer who
committed the changes, or that who committed may not be the owner of a changed feature.
The author of a change and the committer are kept for tracking purposes. This allows us to an-
swer questions such as “Who made this change?”, “How many people have contributed to this
sequence of changes?” or “Who wrote the original code that was changed?”. To answer ques-
tions such as “Who is the owner for this changed code?” requires the prior identification of the

2In Section 5.6 we revisit a concrete example for this scenario.

3.4. Information Needs for Change Characterization 37

owner. The owner(s) of a feature can be derived by metrics considering the number of changes
or size of changes that a developer has committed for a particular feature. Identifying the author
and committer of a change can aid other developers to establish the degree of reliability of such
a change. Managers and integrators can watch out for code which is contributed by developers
who have inadequate relevant prior experience, as their changes could lead to more failures in
the system. Ownership complements authorship, changes made by the owner of a feature could
be considered safer that changes made by other developers [Bird 2011]. Integrators can use the
author and the owner information as factor to assess changes.

• Time. The point in time at which a change happened (when) is key to establish the order of
a change, and helps to identify sequences of changes during the evolution of a system. IDEs
may record the time when a source code change is made, and version control systems register
the time when changes are submitted to the repository. Questions such as “When was this
change made?” or “What are the changes made by the same authors/during the same time
period?” can be answered. Temporal information is heavily used by processes and analyses of
the source code to support several activities in the development process (e.g., change impact
analyses [Chesley 2005,German 2009,Herzig 2011]). In our context, time is useful to establish
the history of a system and dependencies of changes. Therefore, questions such as “Is this
change still the most recent one?” can be answered.

3.4.2 Structural Information

• Structure. The packages, classes and methods are the core of programs and can be used by
the tools. Identifying which entities changed and how they relate to each other can ease in
understanding these changes (e.g., a pull up/push down method refactoring can be detected by
identifying if their respective classes belong to the same class hierarchy). This information can
support answering questions such as “Do all the changes within the commit belong together or
are they unrelated?” or “Does this change define only one feature?”. The number of packages,
classes and methods compared to the application size is another simple characterization of a
change (e.g., “What is the complexity of the changes/of the touched entities?”). However, such
an estimate can be misleading, for example when a simple API use change is applied in the
complete system.

• Change Scope. Identifying if the changed source code is local to a method, class, hierarchy, or
package, or that it cross-cuts multiple entities establishes the scope of a change (e.g., multiple
changes are contained in one single package). Questions such as “What is the scope of this
change? (which/how many classes/packages/..., is local/global?)” or “Is this change confined
to a single package?” can be answered. Moreover, assessing a local change is often simpler
than one cross-cutting several hierarchies or packages. Cross-cutting changes that are not nec-
essarily structurally related but evolve together may indicate a coupling between these changes
(“Do all the changes within the commit belong together or are they unrelated?”). Knowing
this information may help identify missing changes. Therefore, getting a fast overview of the
location of changed program entities in the context of the hierarchy and package structure is
important to assess changes.

38 Chapter 3. Facets of Changes

• Kind of Actions. Understanding whether the changes are mainly adding, removing or modifying
behavior is another level of characterization. Whether changes are at the level of entire methods
(i.e., a method was added or removed) or intra method (i.e., a method’s body was modified) is
another element. Whether the changes were actually changing the semantics of the system
(e.g., not just changes to license or comments) is complementary to the other information.
This can guide the answering of questions such as “What kind of change is it? (Bugfix/New
feature/Refactoring/Documentation)”. Identifying specific actions such as renamings3 would
definitely improve any characterization of changes. However, this can be a challenging process
when the addition differs a lot from the removal.

• Kind of Entities. Characterizing changes by kind of entity (e.g., fields, methods, comments,
etc.) they affect is straightforward. This can be used to answer questions such as “Which fea-
tures/classes/methods have been changing?”. This, combined with previous characterizations
such as kind of actions, can ease in assessing the impact of changes. For example, if only com-
ments were affected at class or method level, developers can rapidly identify that these changes
have no semantical impact on the system and answer questions like “What parts of the system
are directly using the changed behavior?”. Therefore, they can integrate these changes without
dedicating time to understand and assess their impact.

3.4.3 Semantic Information

Vocabulary. Identifiers (class names, field names, function names and parameter names) and com-
ments are important elements of the source code that give hints about semantics and intent of the de-
velopers [Takang 1996, Anquetil 1998]. They represent the vocabulary present in a system, and such
vocabulary is affected when the system evolves [Abebe 2009] (e.g., if new features are introduced or
if existing behavior is removed is reflected as additions and removals of identifiers). Assessing the
difference in vocabulary between a change and its application can give information about whether
or not that change fits the existing application. Questions related to the vocabulary such as “Is the
vocabulary used in the change consistent with the one of the system?” or “Does the change follow
conventions?” can be answered. Moreover, the amount of introduced or removed vocabulary can
provide an overview of the changes and their impact. For example, having a large number of changes
with a limited number of affected vocabulary (one added and one remove identifier) could mean that
a function was renamed, or that a call was replaced among its clients4. Or, having multiple changes
that do not affect the identifiers (i.e., only comments) indicates that they do not impact the semantics
of the system.

Reason. A system is constantly evolving due to fixes of bugs, enhancements, new features or adap-
tations for changing environment. The reason behind why a piece of code changed is fundamental
to aid in understanding and assessing the impact of a change. Questions related to the reason of a
change such as “What is the reason of this change?” or “Was this change intentional, accidental, or
a hack?” are the most difficult to answer only with tool support. Committers can add a description

3A renaming is usually stored as a removal and an addition.
4In Section 5.6 we revisit a concrete example for this scenario.

3.4. Information Needs for Change Characterization 39

(i.e., commit message) about the changes they submit into the repository. Unfortunately, commit-
ters may omit important details of what and why changed, even more when they submit multiple
unrelated changes in one commit. Despite this, such information can partially aid integrators dur-
ing the integration process to answer questions such as “What kind of change is it? (Bugfix/New
feature/Refactoring/Documentation)”.

3.4.4 Historical Information

History. The history of a system contains a wealth of information that can be used to understand
the system and its evolution, to detect problems in the system, to predict future problems, and so
on. In our context, an adequate representation of the history (i.e., not just files) can be used by
integrators to understand changes and their potential impact. Therefore it can support answering
questions such as “What is the whole history of this method/feature?” or “Did this method/feature
change (a lot) recently/in the past?”. Understanding changes within a delta is less complicated than
understanding changes within a stream of changes. For this, the context (i.e., history) in which these
changes happened is needed. By using the history questions such as “What were the senders of this
method in a particular version?” can be supported.

Change Dependency. A specific change can require several other prior changes. This is more
relevant in the case when changes come from different branches or forks. For example, if class
C subclasses class B, then class C depends on class B. If the branch in which class C is intended
to be integrated does not contain class B, then the change adding class C must be integrated with its
dependency (i.e., change adding or modifying class B). To support the integration of changes from one
branch into another – cherry picking – it is fundamental to establish dependencies between changes.
Such dependencies can be used to characterize changes and deltas within the stream, and partition
changes that should be integrated. The characterization of deltas can guide integrators to prioritize
changes, for example deltas that do not depend on any prior change can be tagged as the easy ones.
Therefore the integrator could first concentrate on the complex cases, or vice-versa. Moreover, by
means of dependencies it can be possible to establish which entities have been changing together.
This can be key in spotting problems with a change, and help integrators assessing these changes.
Dependencies can support answering questions such as “Does this change depend on previous ones?”,
“What are the required structural dependencies?”, “What other changes depend on this change?”, or
“Can we split this change?”.

3.4.5 Summary

The identified information is fundamental to support answering many of the questions presented in
Section 3.3.2 that integrators ask themselves. We illustrate in Table 3.6 and Table 3.7 two concrete
analyses. Table 3.6 shows the questions that can be supported by a particular kind of information.
Note that we make use of the questions’ identifiers to refer to the questions. Moreover, a question’s
identifier is followed by an asterisk to indicate that such question is partially supported by a kind of
information. Table 3.7 shows the extent of the support reached in terms of the number of questions
that can be answered. For each category of questions we indicate the number of questions that can be
partially or fully supported.

40 Chapter 3. Facets of Changes

Kind of Information Supported Questions

Descriptive Information

Size A2*, S1, S4, T4*

Author/Owner A1, A2*, A3, A4, A5*, A6, S6, S7*, T13

Time T1, T2*, T6, T13

Structural Information

Structure B5*, S2, S3, S4*, S5*, S6*, S7*, S11*, S12*, S13*, S15,
S19, T12, T13*

Change Scope B5*, S2, S3, S4*, S5*, S6*, S7*, S19

Kind of Actions B5*, B6*, B7*, B14*, S5*, S6*, S7*, S8*, S11*, S12*,
S13*, S14*, S15, S16*, S19, T2*, T3*, T4*, T5*, T7*, T8*,
T9*, T10*, T11*, T12, T13*, T14*, T15*, T19*, T20*, T22*,
T23*

Kind of Entities B5*, B6*, B7*, B14*, S1*, S2, S3, S4*, S5*, S6*, S7*,
S8*, S11*, S12*, S13*, S14*, S15, S16*, S19, T2*, T3*,
T4*, T5*, T7*, T8*, T9*, T10*, T12, T13*, T14*, T15*, T16*,
T17*, T18*, T19*, T22*, T23*

Semantic Information

Vocabulary S4*, S5*, S7*, S17*, S18

Reason B3*, B4*, B5*, S5*, S6*, S7*, I1*

Historical Information

History A1, A2, A3, A5*, A6, S12, S14, S15, S16*, S19, T2, T3, T4,
T5, T6, T7, T8, T9, T10, T11, T13, T14, T15*, T16, T17, T18,
T19*, T20, T21, T22, T23

Change Dependencies B6*, B7*, B14*, S6, S7*, S4*, S8*, S9, S10*, S11, S12,
S13*, S14*, S16*, S19, T8*, T9, T12*, T20*, T21, T22

Table 3.6: Supported questions by kind of information (* information partially supports answering a
question).

3.5. State-of-the-Art 41

Category of questions (id #questions) Partially Fully Supported

supports supports questions

Authorship/Ownership (An 6) 1 5 6

Change nature (Bn 14) 6 0 6

Structural change characterization (Sn 19) 6 13 19

Bug tracking infrastructure (In 2) 1 0 1

Changes within a stream (Tn 23) 1 21 22

Supported questions / 64 questions 15 / 64 39 / 64 54 / 64

Table 3.7: Number of supported questions by category of questions

We distinguish the amount of support that can be provided (i.e., partial and full). Easy ques-
tions can be answered by means of a single kind of information. For example, A4 (“Who made this
change?”) can be answered only by knowing the author of the change. Therefore, we say that author
fully supports the answering of A4. However, many of the questions are challenging and they cannot
be answered using one single kind of information, but with a combination of them. For example, S7

(“Do all the changes within the commit belong together or are they unrelated?”) can be answered by
using structural information, semantic information, author, and change dependencies. In this case,
Table 3.6 shows in each of these kinds of information S7*. Meaning that such kind of information
partially supports the answering of S7.

The numbers shown in Table 3.7 are encouraging. 39 out of 64 questions can be fully answered
using the identified information, and 15 out of 64 can be partially answered. Note that the 10 remain-
ing questions are in the categories change nature, bug tracking infrastructure and changes within a
stream. They are related to testing, change impact and bug tracking. For our current contributions,
we have not considered the use of tests or bug tracking information. Taking such information into
account is considered future work.

3.5 State-of-the-Art

In this section we introduce the related work that is pertinent to our contributions. We mainly present
approaches that are relevant to us because they provide support for similar, overlapping or comple-
mentary activities within our context. Such approaches concern modeling source code, history and
changes, merging, change impact analysis, change dependencies, and understanding development
tasks.

For each topic, we present several approaches that are related or relevant to our context. A dis-
cussion about these approaches and how their purposes differ from ours is included at the end of each
topic. Moreover, we also provide a brief analysis of other related work at the end of this section.

3.5.1 Modeling Source Code, History and Changes

To provide support for answering the questions that integrators raise during the integration of changes,
we need to model the necessary information presented in the previous section.

The use of meta-models as a means to provide common representation frameworks that can be

42 Chapter 3. Facets of Changes

leveraged by various software engineering tools is not new. Along the representations of object-
oriented programs, several approaches exist that model changes and multiple versions of a system. A
good overview of the early research in this area can be found in the book chapter by D’Ambros et
al. [D’Ambros 2008].

In the following, we introduce several meta-models that support source code, history and change
representation or reason about the evolution of a software system.

FAMIX. FAMIX [Ducasse 2000, Tichelaar 2000] is a family of meta-models for representing the
source code of object-oriented systems. FAMIX offers a language-independent, first-class repre-
sentation of object-oriented, class-based languages that has been used by a wide range of software
engineering tools such as the Moose5 platform for software and data analysis.

EMF – ECore and GenModel. ECore6 is a source code meta-model for describing Java models and
the run-time support for the models within the Eclipse Modeling Framework (EMF). EMF instantiates
models that conform to an ECore meta-model by code generation. The Java classes are generated from
an ECore meta-model specification. This process is performed in two steps: (1) the ECore meta-
model is transformed into a GenModel7 model that can contain additional implementation-specific
information. (2) a model-to-text (M2T) transformation consumes the GenModel in order to generate
the functional Java code.

Hismo. Gîrba [Gîrba 2005a,Gîrba 2006] proposed Hismo, a history-based approach that extends the
FAMIX source core meta-model to provide facilities for representing and reasoning over the history
of a software system. It represents multiple versions of a system within a single history model. A
version is a snapshot of the system, a complete FAMIX representation of that version along with
information that relates source code entities over various versions.

SpyWare. Robbes and Lanza [Robbes 2007, Robbes 2008b] developed the SpyWare change-aware
development toolset. It tracks and reasons about the changes a developer makes to a program within
the integrated development environment (IDE). SpyWare provides a fine-grained model that repre-
sents changes as first-class entities. With this change-based evolution model, systems are represented
as evolving abstract syntax trees (ASTs), composed of domain-entities (packages, classes, methods,
variables and statements) specific for the base language (Smalltalk and Java). Each entity (AST node)
has a change history containing all the changes representing one particular state of the program during
the system’s evolution.

ChEOPS. Ebraert [Ebraert 2007] presented ChEOPS, a proof-of-concept implementation of
change-based feature-oriented programming (FOP). The underlying meta-model is an extension of the
FAMIX source core meta-model that represents fine-grained first-class change objects based on de-
velopment actions. ChEOPS shares the objectives and advantages with SpyWare. However, ChEOPS
does not represent a program as evolving abstract syntax trees; instead it allows developers to define

5Moose: http://www.moosetechnology.org
6ECore: http://download.eclipse.org/modeling/emf/emf/javadoc/2.8.0/org/eclipse/emf/ecore/package-summary.html
7GenModel: http://download.eclipse.org/modeling/emf/emf/javadoc/2.8.0/org/eclipse/emf/codegen/ecore/

genmodel/package-summary.html

http://www.moosetechnology.org
http://download.eclipse.org/modeling/emf/emf/javadoc/2.8.0/org/eclipse/emf/ecore/package-summary.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.8.0/org/eclipse/emf/codegen/ecore/genmodel/package-summary.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.8.0/org/eclipse/emf/codegen/ecore/genmodel/package-summary.html

3.5. State-of-the-Art 43

their own domain-specific and high-level changes, apply those changes, undo changes and verify the
preconditions of the changes to ensure the application consistency.

Syde. Hattori and Lanza [Hattori 2009a,Hattori 2009b,Hattori 2010] proposed Syde, a client-server
toolset for synchronous development of Java systems. Syde extends Spyware’s change-based evolu-
tion model to deal with changes made by multiple developers working in parallel. The evolution
of a system is modeled as a set of sequences of changes, where each sequence is produced by one
developer. On the client-side, Syde traces two types of change operations (atomic changes and re-
name/move refactorings). On the server-side, it keeps one AST per developer, which reflects the state
of the system at a developer’s workspace.

Orion. Laval [Laval 2009, Laval 2011] developed Orion, an interactive prototyping tool for soft-
ware reengineering that allows developers to simulate changes and compare their impact on multiple
versions of software source code models. Orion’s meta-model is an extension of the FAMIX source
code meta-model designed to optimize memory usage of multiple versions for large models. Orion’s
meta-model supports the sharing of entities between versions. To save memory space and decrease
creation time, program entities which do not change are shared between different versions of the
model.

Other approaches

Ebraert and Molderez [Ebraert 2010] extended the change model underlying ChEOPS [Ebraert 2007]
with the notion of intensional changes – descriptive changes that can evaluate to an extension of
changes – to support the modularization of crosscutting features. Meyers et al. [Meyers 2010] use
that work on intensional changes to avoid co-evolution in the domain of change-based feature-oriented
programming. Ebraert et al. [Ebraert 2011] makes use of the ChEOPS’ meta-model to present a
bottom-up approach for generating Feature-Oriented Domain Analysis (FODA) diagrams from the
changes to the source code, thus bridging the gap between feature-oriented design and implementa-
tion.

Orthogonally to the mentioned modeling approaches, there exist a number of language represen-
tation toolkits such as CDT8 (Eclipse’s C/C++ Development Tooling) or Necula et al.’s [Necula 2002]
approach CIL, a high-level source code representation along with a set of tools that permit easy anal-
ysis and source-to-source transformation of C programs. These approaches do not address software
history.

Discussion

The use of first-class change objects has been applied in a variety of fields. Syde uses first-class
changes to increase awareness of changes made by other developers in multi-developer projects. Spy-
Ware has shown that the fine-grained changes contain a lot more information about the evolution of a
software system than when using snapshot-based information. ChEOPS has been used in the context
of FOP combining changes into features [Ebraert 2008]. Orion has been used to represent the future
by simulating scenarios of multiple versions of a system in the context of software reengineering.

8CDT: www.eclipse.org/cdt

www.eclipse.org/cdt

44 Chapter 3. Facets of Changes

While existing meta-models provide a rich medium to model source code or changes, none of the
existing approaches provide a complete unified representation of a system’s source code, history and
individual changes, and reason over the history and changes in the context of branching and merging.
Furthermore, the Hismo meta-model does not scale for large histories, and it is unclear how existing
models for representing changes scale with respect to large numbers of changes.

3.5.2 Towards Conflict Resolution and Merging

Version control systems (CVS, Subversion, Git, Mercurial, ...) allow developers to merge changes.
These systems are widely used in collaborative development, and thus merging techniques, and con-
flict detection and resolution have been widely studied [Mens 2002].

Merging techniques can be categorized depending on the algorithm they use (two-way or three-
way), on how they represent the software artifacts (text, trees, graphs), and on which information they
use during the merge process.

Integrating changes from one branch into another, for which they were not originally intended is
known as cherry picking. Changes from the source branch may be incompatible with the target branch
in various ways. Code within or near the changed region evolved within the two branches in different
ways, making the affected code fragments syntactically different. More subtle, the semantic structure
of the two branches can be different, e.g., in terms of variable bindings or inheritance hierarchies.
Detecting and resolving these incompatibilities is known as conflict resolution.

Merging algorithms. The two-way algorithm attempts to merge two versions of a software artifact
without relying on the common ancestor from which both versions originated [Hunt 1976,Hunt 1977].
The three-way algorithm uses the information of the common ancestor during the merge process, al-
lowing the detection of more conflicts [Lindhom 2001,Khanna 2007]. As a result, three-way merging
is more widely used by merge tools than two-way merging.

Text-based merging. Text-based merge approaches [Leblang 1984, Tichy 1985, Adams 1986,
Berliner 1990, Lubkin 1991] consider software artifacts as text (or binary) files (i.e., ignoring seman-
tic information). Commonly they use line-based merging, where lines of text are taken as indivisible
units [Hunt 1976]. Line-based merging detects parallel modifications (inserted, deleted, modified, or
moved) of text lines, but because this level is too coarse-grained, it cannot combine well two parallel
modifications to the same line. In spite of this, this approach remains a very useful technique because
of its efficiency, scalability, and accuracy. CVS, Subversion and other open-source or commercial
configuration management tools use text-based merging.

Syntactic-based merging. Syntactic-based merging [Buffenbarger 1995] is more powerful than
textual merging because it takes the syntax of software artifacts into account. This technique ig-
nores conflicts related to code comments, line breaks or tabs. Different categories of syntactic
merge systems exist depending on the data structure they manipulate, parse-trees or abstract syn-
tax trees [Grass 1992,Asklund 1994,Yang 1994] and graphs [Mens 2000,Rho 1998]. A disadvantage
of this technique is that it is unable to detect some conflicts when the merged program is syntactically
correct but semantically incorrect.

3.5. State-of-the-Art 45

Semantic-based merging. Semantic-based merging improves syntactical merging as it takes the
semantics of the changes into account. This kind of merging deals with (static) semantic conflicts
and behavioral conflicts. The context-sensitive merge approach of Westfechtel [Westfechtel 1991]
detects static semantic conflicts by augmenting the AST with relationships that express the bindings of
identities to their declarations. More advanced semantic-based approaches [Horwitz 1989,Yang 1992,
Jackson 1994, Berzins 1994, Binkley 1995] detect behavioral conflicts using denotational semantics,
program dependence graphs, and program slicing.

Structural-based merging. Structural-based merging uses the structure and semantics of the soft-
ware artifacts to resolve merge conflicts automatically. This kind of merging is oriented to solve the
conflict-resolution problems of text-based and syntactic-based merging. Furthermore, despite of this
common definition two interpretations exist about structural-based merging.

Based on the first interpretation, structural merging is language dependent. It operates on AST or
similar representations, rather than plain text, and adds extra information on the underlying language
it supports. By means of this, structural merging decreases general applicability but increases expres-
siveness to handle more merge conflicts automatically. Apel et al. [Apel 2011] mix structural-based
and text-based merging to propose a semistructured merge language-dependent approach where struc-
tural information about the artifacts is declaratively added in the form of annotated grammars to assist
automatic resolution of certain semantic conflicts (e.g., related to renaming).

Based on the second interpretation, structural merging is oriented to deal with refactorings or
restructuring transformations that are behavior preserving (i.e., they affect the structure of an artifact
but not its semantics). Then structural merge conflicts arise when one of the changes to an artifact
is a restructuring and the merge algorithm cannot decide in which way the merged result should
be structured. Hattori and Lanza [Hattori 2009b, Hattori 2010] mix change-based and structural-
based merging in Syde. Atomic operations and rename/move refactorings are recorded in a multi-
developer environment. Syde keeps the changes of each developer in a separate AST, and detects
emerging structural conflicts by comparing a developer’s AST with the others’ ASTs after a new
atomic operation has been applied.

State-based Merging. State-based merging considers only the information in the original version
and/or its revisions during the merge. A two-way algorithm is used in state-based merging.

Change-based merging. Change-based merging uses additional information about the precise
changes that were performed during evolution of the software (e.g., the intermediate changes between
committed files that are not kept in source repositories). This additional information can support the
detection of semantic conflicts.

Operation-based merging. Operation-based merging is a kind of change-based merging that mod-
els changes as explicit operations or transformations [Feather 1989, Lippe 1992, Berlage 1993,
Mens 2000, Shen 2004]. These sequences of change operations, referred as command histo-
ries [Berlage 1993], correspond to the commands issued to the integrated development environment
(IDE).

46 Chapter 3. Facets of Changes

This approach can improve conflict detection and allows better conflict solving [Feather 1989,
Lie 1989, Lippe 1992, Mens 1999]. Edwards’ operation-based framework detects and re-
solves semantic conflicts from application-supplied semantics of operations [Edwards 1997].
GINA [Berlage 1993] merges command histories using a redo mechanism to apply one developer’s
changes to other’s version. This approach cannot handle well long command histories and fine granu-
larity. MolhadoRef [Dig 2008] mixes operation-based and state-based merging to capture the seman-
tics of refactoring operations. It records the refactorings performed by the developers, and calculates
deltas that represent other changes. Therefore, it can merge changes that involve a combination of
logged refactorings and textual editing.

Delta algorithms. Delta or difference algorithms are used to calculate the difference (or delta)
between a version and one of its revisions. They can be categorized according the types of deltas that
can be distinguished:

• Symmetric vs. Directed deltas. A symmetric delta calculates the difference between two ver-
sions V1 and V2 as the set of difference V1\V2 or V2\V1. A directed delta specifies the difference
between two versions as a sequence of modification operations. Symmetric deltas are typically
used in the context of two-way merging, whereas directed deltas are useful in the context of
three-way operation-based merging.

• Textual, Syntactic, or Semantic deltas. They are related to the merging approach in which they
are used, that is for text-based, syntactic-based and semantic-based merging. Textual deltas are
obtained by comparing two text files, finding the longest common substring and then computing
a distance delta from this common substring [Hunt 1977]. The Unix diff utility [Hunt 1976], the
bdiff [Tichy 1984] and vdelta algorithms process textual deltas. Syntactic deltas are the result
of comparing two syntax representations (e.g., parse trees). Yang [Yang 1991] describes a
comparison tool for detecting syntactic differences between programs. Semantic deltas contain
the semantic differences between two versions of a program. Semantic Diff [Jackson 1994]
expresses a semantic delta in terms of the observable input-output behavior.

• Forward or Backward deltas. They are established based on how subsequent versions of a
software artifact are stored. With backward deltas [Rochkind 1975], the latest version is stored
entirely and previous versions are stored as deltas. With forward deltas [Tichy 1985], the
originally version is stored entirely, while newer versions are expressed as deltas to the original
one. Backward deltas are widely used even though they are less intuitive. They speed up
retrieval of the last and probably most frequently accessed revision.

• State-based or Change-based deltas. State-based version control systems [Rochkind 1975,
Tichy 1985] calculate the difference between a revision and its ancestor version, and store only
this difference instead of the entire revision. Change-based approaches are identified as inten-
sional or extensional. Extensional (or embedded deltas) versioning [Asklund 1994, Rho 1998]
processes annotated changes for each version. Intensional (or change set model) version-
ing [Gulla 1991] processes changes that can be specified independently from the versions to
which they are applied. Operation-based merging relies on an intensional change-based model

3.5. State-of-the-Art 47

Other approaches

Shao et al. [Shao 2007] show that there is a linear correlation between the degree of parallelism and
the likelihood of a defect in the changes. However, textual analysis can only detect a very small
portion of change interferences. To detect change interference at the semantic level, Shao et al.
subsequently implemented a tool, SCA, that combines data dependency analysis and program slicing
[Shao 2009].

Darcs9 is a distributed change-based source-code management system based on an algebra of
patches, named the theory of patches, for manipulating changes. This theory is about the commuta-
tion, or reordering, of changes in such a way that their meaning does not change. The Darcs merge
operation is based on the patch commutation algorithm. Darcs supports – similar to the Git ver-
sion control system – cherry picking allowing users to choose the patches that they want to check in
or check out. However, semi-automatic handling of conflicts and merging of features are not well
supported.

Discussion

Existing semantic merging techniques tend to be complex and require manual annotation of the source
code with meta-data to guide the merging process. Most of the existing merge tools and techniques
provide no support for detecting structural merge conflicts as they can not infer the needed information
from the source code only.

Merging techniques used by popular VCS (e.g., CVS, Subversion, Git) are based on simple, text-
based algorithms, and are therefore oblivious to the program entities they merge. Even though there
exist other approaches providing advanced merging support [Apel 2011] that significantly reduce the
amount of merging conflicts, such approaches do not support integrators in identifying redundant
changes or changes that introduce inconsistencies at the level of the design of the target system.

These approaches do not provide analyses to understand the dependencies between changes. The
integrators are left to manually compare changes within the input stream of changes, and assess how
these changes may impact the target system. Such work is particularly tedious between product forks,
where the distance between branches grows larger over time.

3.5.3 Change Impact Analysis

The integration of a change into a system requires prior assessment of the potential impact of that
change on the system’s behavior. The behavior can be greatly impacted when a change made for a
branch is merged with another branch in the case that both branches differ in purpose or design. Here
this assessment is required.

Impact analysis is among the major issues related to software change management. Understand-
ing the impact of changes has been considered in areas including software maintenance, program
refactoring [Mens 2004] and test prioritization [Elbaum 2000].

Program slicing approaches. Program slicing [Weiser 1981] provides an in-depth analysis of
impact of the changed code. Several approaches, such as CodeSurfer [Anderson 2001], use pro-

9Darcs: http://darcs.net

http://darcs.net

48 Chapter 3. Facets of Changes

gram slicing to understand which part of a program is impacted by a variable, and which are the
parts of a program that can impact a particular variable or a given source-code element in gen-
eral [Bohner 1996, Tip 1995, Welser 1984]. In the context of software maintenance, such program
slicing techniques have been widely adopted [Gallagher 1991].

Conceptual Framework. Ryder and Tip [Ryder 2001] proposed a conceptual change impact anal-
ysis for object-oriented programs in terms of affected regression or unit tests [Elbaum 2003]. The
authors introduce techniques that could determine the tests that are affected by a set of changes,
and the subset of changes responsible for the failure of each affected test. They propose to perform
the change analysis on (coarse-grained) atomic changes extracted from source code edits (e.g., added
empty class, added empty method) and their syntactic dependencies by ordering atomic changes (e.g.,
a method m can be added to class X if that class exists).

Chianti. Ren et al. [Ren 2004] proposed Chianti as the implementation and extension of the pro-
posal of Ryder and Tip [Ryder 2001]. Chianti is a (semantic) change impact analysis tool that decom-
poses the difference between two versions of a Java program into a set of extended atomic changes
(e.g., changed definition of an instance initializer) and their interdependences. They use a pairwise
comparison of the abstract syntax trees of the classes in both versions. Change impact analysis is
performed on the (dynamic) call graphs derived from a set of regression or unit tests applied to
both versions. Chianti determines the affected tests whose behavior have been modified by the ap-
plied changes, and the affecting changes for each affected test. Chianti is one of a large category
of approaches related to test prioritization [Elbaum 2000], and serves as the foundation for several
approaches that we explain below.

Crisp. Chesley et al. [Chesley 2005] presented Crisp, a tool that assists developers in isolating
relevant subsets of changes that directly cause the failure of a regression test. Crisp leverages and
augments Chianti [Ryder 2001] to detect failure-inducing changes between two versions of a Java
program. It allows developers to build compilable intermediate versions of a program with partial
changes that can be applied to the original version to ensure compilation in order to locate the exact
reason for the failure. This approach was improved in [Ren 2006] where the original dependence
relationships were refined. Three kinds of dependences between atomic changes that capture syntactic
and partially semantic dependences: (a) structural dependences capture the necessary sequences that
occur when new elements are added or deleted in a program; (b) declaration dependences capture
all the necessary element declarations that are required to create a valid intermediate version; and (c)
mapping dependences are implicit dependences introduced by atomic changes such as overloading
methods that may affect the behavior of a method despite the fact that no textual changes occur
within that method.

JUnit/CIA. Stoerzer et al. [Stoerzer 2006] proposed a change classification tool, JUnit/CIA that
helps programmers to find failure-inducing changes (between two versions of a Java program) ac-
cording to the tests that the changes affect. They rely on the change impact analysis tool Chianti [Ry-
der 2001] to extract atomic changes, affected tests and affecting changes. Then, they classify changes

3.5. State-of-the-Art 49

as Red (changes are highly likely to be the reason for the test failures), Yellow (changes are possi-
ble problematic), or Green (changes are correlated with successful tests) according to five classifiers.
These classifiers are based on the JUnit test result model (pass, fail, crash). For coverage issue, their
change classification techniques also classify changes that do not affect any test as Grey.

Celadon. Zhang et al. [Zhang 2008] proposed the tool Celadon, a change impact analysis frame-
work that uses an atomic change representation to capture the semantic differences between two ver-
sions of an AspectJ program. They built a change impact model based on static AspectJ call graphs
to determine the affected program fragments, affected tests and their responsible affecting changes.
The change impact model relies on the computation of atomic changes and their inter-dependence
relationship. The authors defined a catalogue of 21 types of atomic changes (e.g., changed pointcut
body) for AspectJ programs. They extended the concept of atomic changes proposed in [Ryder 2001]
to aspects.

Safe-commits. Wloka et al. [Wloka 2009] presented Safe-commits, an analysis-based algorithm to
identify committable changes that can be submitted early, without causing failures to existing tests
in the repository, even in cases when failing tests exist in a developers’ local code base. The idea
is to decrease the time interval between commits, by establishing three commit policies (Restrictive,
Moderate, and Permissive) that depend on the test result model and enable developers to release their
changes often. This approach relies on the data generated by Chianti [Ren 2004]. Safe-commits
takes into account all atomic changes, the affected tests (according to a commit policy), the exercised
changes by each test (changes used by a test), and the covered changes by each test (exercised changes
by a test that are applied to their dependencies as well). The output of the algorithm is a set of changes
that do not break existing tests and can be committed.

Reuse Contracts. Lucas and Steyaert [Lucas 1997, Steyaert 1996] introduced reuse contracts as
an object-oriented methodology to assist software engineers in understanding how a component can
be reused, adapting components to particular needs, and estimating the impact of changes. With
reuse contracts a component is reused on the basis of an explicit contract between the provider of the
component and a reuser that modifies this component. The provider documents how the component
can be reused, and the reuser documents how the component is reused or how the component evolves.
Their contract clauses allow to detect what the impact of changes is, and what actions the reuser must
undertake to upgrade if a certain component has evolved. Reuse contracts help in keeping the model
of the provider consistent with the model of the reuser. They were used at the implementation level
to express reuse in evolvable class inheritance hierarchies [Steyaert 1996], and reuse and evolution of
collaborating classes [Lucas 1997].

Other approaches

Kung [Kung 1994] categorized various types of changes of object-oriented systems and a formal
model for capturing and inferring the impact of class library changes to identify affected components.
Several techniques aim at identifying the so-called fragile bass class problem [Mikhajlov 1998], that
arises when changes in a framework have unexpected impacts on framework instantiations. For ex-

50 Chapter 3. Facets of Changes

ample, changing the visibility of a method from protected to private may break classes that extend the
framework.

Han [Han 1997] proposed an approach to support impact analysis and change propagation in
software engineering environments. This approach is focussed on how the system reacts to a change.
They use the environment representation of artifacts (variables, method, classes) and their depen-
dencies (association, aggregation, inheritance, and invocation) that can be impacted. Later, Abdi et
al. [Abdi 2006] reused this work for their change impact analysis. Chaumun et al. [Chaumun 2002]
defined a class-based change impact model. Their approach is similar to the previous ones but the
model is more complete and systematic. The impact of a change is calculated to ensure that the
system will still run correctly after the change is implemented.

Alam et al. [Alam 2009] used change dependency graphs [German 2009] to examine how changes
build on each other over time and determine the impact of these changes on the quality of a project.
The authors showed that time dependences vary across projects and throughout the lifetime of each
project. They also found that changes built on top of new code (instead on stable code) are more
defect prone.

Herzig [Herzig 2010] introduced the concept of transaction dependency graph based on the no-
tion of change genealogies defined by Brudaru and Zeller [Brudaru 2008]. This is a similar approach
to the change impact graphs by German et al. [German 2009], but differs considering version con-
trol transactions instead of atomic changes to define multiple dependency metrics on these change
genealogy graphs.

Law and Rothermel [Law 2003] defined a new technique – PathImpact – for impact analysis based
on dynamic information obtained through simple program instrumentation. They execute a program
with a set of inputs, collecting compressed traces for those inputs, and using the traces to predict
impact sets. PathImpact does not rely on availability of program source code and does not require
static dependency calculations.

Badri et al. [Badri 2005] propose a change impact analysis based on a call graph for making
impact predictions. This technique restricts the scope of the analysis by only considering methods
within the reachable paths of the call graph. Abdi et al. [Abdi 2009] propose a technique based on a
probabilistic model, where a Bayesian network is used to analyze the impact of a given scenario.

Discussion

Several approaches based on the conceptual framework presented by Ryder et al. [Ryder 2001] and
extending Chianti [Ren 2004] have proposed change impact analysis using an atomic representation
of changes and the notion of dependencies between these changes. They have been used to identify
failure-inducing changes, to capture the semantic differences on the context of aspect programming,
and to identify changes that can be safely committed to decrease the interval of time between commits.
They makes use of a change representation and dependencies which we intend to do. However, they
can only compare two versions of a program. No history and streams of changes is supported in the
presence of branches.

Reuse Contracts have been proposed for understanding how components can be reused, adapting
components and estimating the impact of changes. Other approaches have been applied in several
contexts: to infer the impact of change library changes, to calculate the impact of changes and support

3.5. State-of-the-Art 51

change propagation, to examine how changes build on each other and determine the impact in terms
of quality, to perform dynamic impact analysis, and to predict the impact of changing methods using
call graphs.

While there exists an extensive and varied work on change impact analysis, none of these ap-
proaches is dedicated to assess the impact of changes as a means to support integrators deciding
which changes should be integrated. Especially to perform cherry picking of changes between mul-
tiple branches that may have substantially evolved apart. These approaches are complementary to
our work and form a good foundation for providing change impact analysis to assist the integration
process.

3.5.4 Change Dependencies

One of the cornerstones of our approach, as will be explained in Chapter 6, is change dependencies.
We are not the first making use of the dependencies between changes. However, within literature,
there are not many related approaches using dependencies. The existing approaches are limited to
support change impact analysis.

GENEVA. Herzig and Zeller [Herzig 2011] proposed GENEVA, an approach that extracts change
dependency graphs (known as change genealogy) to use them as a model to analyze change impact.
By means of static analysis, they establish a change genealogy that order changes by dependen-
cies (a change CH2 depends on a change CH1 if CH2 uses or modifies code defined or previously
changed within CH1). They determine dependencies between changes across transactions (files that
changed together) in version archives. Later, they apply model checking to the change genealogy to
determine frequent rules expressed in computation tree logic (CTL) that establish temporal process
patterns. These patterns encode key features of the software process such as pending development
activities, and serve to provide recommendations for developers. As an example usage, the authors
use GENEVA to predict long-term change couplings – change couplings spanning multiple revisions
– with a precision of 70%.

Change Impact Graphs (CIGs). German et al. [German 2009] presented a method that determines
the impact of historical code changes on a particular code segment. Their approach guides develop-
ers to investigate failures in unchanged functions that are affected by bugs introduced in prior code
changes. First, they extract dependence graphs from C programs stored in version control systems
that represent the evolution of a system (with the changes tracked at line level). Second, they generate
CGIs from the dependence graphs, a reported location of a failure and the period of interest in the
history to look for prior changes (both provided by a developer). Third, they prune and annotate the
CGIs if the developer specifies areas of interest and annotation rules. The developers investigate the
CGIs to pinpoint the changes which mostly likely introduced the bugs, causing the reported failure.
Note that this approach is applied to procedural code and the dependence graphs take into account
changes (i.e., additions, modifications and deletions) of function calls but neither function pointers
nor polymorphic function calls.

Change Genealogies. Brudaru and Zeller [Brudaru 2008] introduced change genealogies as part of
their ideas to assess the long-term impact of changes by measuring the impact in terms of quality,

52 Chapter 3. Facets of Changes

effort, and maintainability. They propose to express the history of a system with change genealogy
graphs (i.e., directed acyclic graph of changes) that contain the sequences of changes which take
place in a system, as extracted from version archives, and incorporate dependencies between changes,
derived from the changed code. Having CH1→CH2 means that the change CH1 enables (and thus
impacts) a change CH2; the change CH2 thus depends on CH1 (e.g., CH1 defines the readline()

function and CH2 uses the readline() function). Dependencies could be established iff: (a) change
CH1 has an earlier timestamp than change CH2; (b) a set of common identifiers appear in both
changes, and (c) applying CH2 to a version of the system but not CH1 would not compile.

Chianti and extensions. In Section 3.5.3, we introduced Chianti [Ryder 2001] as the implementa-
tion of the change impact analysis proposed in [Ryder 2001]. This approach, and the others derived
from it [Chesley 2005, Ren 2006, Stoerzer 2006, Wloka 2009] are also situated in this category of
related work as they rely on the computation of dependencies between atomic changes for identifying
which changes affect the behavior of tests. Change dependences were summarized as syntactic de-
pendences, that is, an atomic change CH1 is dependent on another atomic change CH2, if applying
CH1 to the original version of the program without also applying CH2 results in a syntactically in-
valid program (i.e., CH2 is a prerequisite for CH1). Where syntactic dependencies do not capture all
semantic dependences between changes (e.g., consider changes related to a variable definition and a
variable use in two different methods). Later in [Ren 2006] dependences were refined and classified in
three categories: structural dependences (e.g., changing definitions of a field or method), declaration
dependences (e.g., abstract method declaration and implementation), and mapping dependences (e.g.,
overloading methods). Note, that their dependences are based on the declaration of atomic changes
for Java programs.

Discussion

Dependencies between changes have been successfully used in several impact analyses. GENEVA
has used dependencies to find patterns that represent features of the software process (e.g., long-term
change coupling). CGI has built dependencies graph to determine the impact of prior changes on
failing unchanged code. Change Genealogies have been introduced to assess the long-term impact of
changes in terms of quality, effort, and maintainability. Chianti and the approaches derived from it
have been focused on detecting failure-inducing changes between two versions.

While these approaches make use of dependencies between changes to support impact analy-
sis, none of them is focused on supporting assessing of changes for the integration process. These
analyses do not support activities such as cherry picking. This is needed when integrators have to
move changes back and forth between branches. Here the dependencies of changes play an important
role for the integration of complete changes. Providing impact analysis for aiding integrators will
definitely enhance our approach.

3.5.5 Understanding Development Tasks

Several approaches exist that use questions as a means to understand developments tasks (e.g., main-
tenance or code comprehension) and to identify the developers’ information needs. By understanding
such information it is possible to provide adequate support and by means of the questions is possi-

3.5. State-of-the-Art 53

ble to assess such support. We followed the same approach as explained in previous sections of this
chapter. Here we present an extended description of relevant studies.

Questions about Code. LaToza and Myers [LaToza 2010] conducted a survey to investigate the
real questions that developers ask and experience problems answering. Part of their survey included
a free response listing questions. From the answers of 179 developers at Microsoft to that part of
the survey they obtained 371 hard-to-answer questions (e.g., “Are the benefits of this refactoring
worth the time investment?”, “Is this functionality already implemented?” or “How does this code
interact with libraries?”). These questions were divided in 10 categories using the underlying intent,
such as rationale, debugging, policies, history, implications, implementing, refactorings, teammates,
building and branching, and testing. They concluded that having a better understanding of developers’
information needs may lead to new tools, programming languages, and process that make hard-to-
answer questions less time consuming or error prone to answer.

Study on Integration Decisions. Phillips et al. [Phillips 2012] performed an study focused on
how developers of a large-scale system make branching and integration decisions while managing
releases. Semi-structured interviews were conducted with seven professionals of the same company
using the branching and merging survey proposed in [Phillips 2011]. The authors found that de-
velopers making decisions need to consider 10 factors including code churn (line of code changed
and not yet integrated), potential conflicts, bugs counts, and dependencies between branches. The
authors also identified the information needed to support integration decision-making in a branched
context (parallel development). Release decision makers need to predict storms of conflicts, detect
pressure building up from non-integrated changes (the code churn that has built up in a branch), mon-
itor code flow between branches (how frequently integrations are occurring between branches), and
track branch health (metrics such as test results, bugs, and task completion at branch level).

Empirical Study on Branching and Merging. Premraj et al. [Premraj 2011] presented an em-
pirical study that observed developers branching without considering the consequences on merging.
The goal of the study was to understand the implications of such branching for the cost of merging
changes. The study had two parts: 1) A qualitative study where 16 software professionals were sur-
veyed (5 questions oriented to branchers and 3 questions oriented to mergers) to learn their views on
branching and merging files, and their experience with the development overhead from branching and
merging. 2) A quantitative study that calculated the number of branches, the number of merges on
a number of files, and the time spent on merging files. From the study they established (a) the roles
of the branchers and mergers (i.e., architects, configuration managers, integrators and developers),
and (b) the types of files that dictate the cost of merging (e.g., configuration files). They concluded
that software configuration management (SCM) tools and SCM best practices (e.g., branch only when
necessary, branch late, propagating early and often) are not sufficient to share files in an agile de-
velopment environment. They also suggested that contents of shared files must be aligned with the
responsibilities of the primary owners of those files, as a way to decrease conflicts of branching and
merging files.

54 Chapter 3. Facets of Changes

Questions related to Evolution Tasks. Sillito et al. [Sillito 2008] proposed a catalogue of 44 types
of questions programmers ask during software evolution tasks. The authors’ goals were to better
understand what a programmer needs to know about a code base when performing a change task,
how a programmer goes about finding that information, and how well today’s programming tools
support answering their questions. They performed two qualitative studies [Sillito 2005,Sillito 2006]
observing 9 and 16 programmers respectively, making changes to medium and large sized code based.
From the analysis of the empirical information collected during both studies, they established the used
tools, type of change tasks, paired versus individual programming, and the level of prior knowledge
of the code base. 44 questions were classified in 4 categories: (a) finding focus points (e.g., “Where in
the code is the text in this error message or UI element?”), (b) expanding finding points (e.g., “Where
is this method called or type referenced?”), (c) understanding a subgraph (e.g., “How are instances
of these types created and assembled?”), and (d) questions over groups of subgraphs (e.g., “What
will the total impact of this change be?”). They also established that 34% of the questions was fully
addressed by tools and 66% of the questions only partially addressed. From the results, they found
that programmers need better tool support for asking more refined or precise questions, maintaining
context, and piecing information together.

Information Fragment Model. Fritz and Murphy [Fritz 2010] presented a study in which they
interviewed 11 professional developers to identify different kinds of questions they need answered
during development, but for which support is lacking. From the results, they established a catalogue
of 78 questions classified in several categories such as people specific (12 questions e.g., “Which
code reviews have been assigned to which person?”), change code specific (35 questions e.g., “What
are the changes on newly resolved work items related to me?”), work item progress (11 questions
e.g., “Which features and functions have been changing?”), and so on. Alongside this study, they
introduced the information fragment model (i.e., a subset of development information for the sys-
tem of interest) and associated prototype tool built on top of Eclipse10 for answering the identified
questions by composing different kinds of information needed. This model provides a representation
that correlates various software artifacts (source code, work items, team membership, comments, bug
reports, and others). By browsing the model, developers can find answers to particular development
questions.

Discussion

The two studies related to branching and merging were performed by asking concrete questions to de-
velopers about these activities. The first was focused on understanding the implications on branching
on the cost of merging changes [Premraj 2011]. The second was focused on supporting integration
decisions [Phillips 2012]. The other three approaches gathered the questions by observing developers
performing their work or by directly getting the questions from the developers. These approaches es-
tablished catalogues of questions that are intended to identify the information needs of maintenance
tasks.

These approaches have proven the importance of gathering developers’ questions or their needed
information regarding development tasks to better understand the complexity of such tasks and to be

10Eclipse: www.eclipse.org

www.eclipse.org

3.5. State-of-the-Art 55

able to provide adequate support. Even though, these studies propose large set of questions, many
of these questions are not specific enough or do not apply to the context of integrating streams of
changes. We complemented our results with relevant questions from these studies.

3.5.6 Other Related Work

Logic Program Querying and Meta-programming Languages
Program query languages [Wuyts 2001, Janzen 2003, Hajiyev 2006, Hou 2006, De Volder 2006]
allow writing custom queries that extract information from the source code of a system.
SOUL [Wuyts 2001] is a logic-based program querying language to reason over the structure of
object-oriented systems. While the SOUL language is very similar to PROLOG, it provides a number
of specialized features (such as linguistic symbiosis) that facilitate reasoning over software systems,
as well a set of logic libraries that offer dedicated predicates for reasoning about programs written in
Smalltalk, Java, C(++) and Cobol.

The JQuery tool [De Volder 2006] uses a PROLOG dialect to offer an expressive means to query
source-code entities and the relationships between these entities. The work of Verbaere and De
Moor concerning CodeQuest [Hajiyev 2006] and SemmleCode [de Moor 2007] provides a differ-
ent approach that favours performance over expressivity. These approaches use respectively Data-
log [Ceri 1989] and QL, languages that only offer a subset of the PROLOG language by e.g., limiting
the possible forms of recursion and excluding the definition of data structures.

Meta-programming languages allow developers to write programs that generate, analyze or trans-
form other programs. Rascal11 is a new meta-programming language for source code analysis and ma-
nipulation. Rascal programs can read, analyze, transform, generate and/or visualize other programs.
It has been designed following the Extract-Analyze-SYnthesize (EASY) paradigm [Klint 2011]. Ras-
cal can be applied to several domains such as compiler construction, implementing domain-specific
languages, constraint solving, software renovation and so on.

Querying Source Code History
Kellens et al. [Kellens 2011] propose ABSINTHE, a logic-based program query language that sup-
ports querying versioned software systems using logic queries. It extends the SOUL program query
language with quantified regular path expressions for reasoning about a system’s history. These quan-
tified regular path expressions exhibit the properties of each individual version in a sequence of suc-
cessive software versions.

In previous work we have proposed Time warp [Uquillas-Gómez 2009], a prototype implementa-
tion that extends the SOUL program query language to allows developers to write queries about the
history of a system. It is based on the FAMIX and Hismo meta-models and offers an ad-hoc specifi-
cation language (library of dedicated predicates) to reason about these models, as well as to express
temporal relationships between the entities in both models.

Hindle and German [Hindle 2005] propose SCQL, a dedicated formal model and query language
for reasoning over source code repositories. A repository is instantiated as a formal model to serve as
the underlying model which they reason about. The model is a graph in which the different entities
(e.g., revisions, files, authors) stored in the repository are vertices and their relationships are edges.

11Rascal: http://www.rascal-mpl.org

http://www.rascal-mpl.org

56 Chapter 3. Facets of Changes

SCQL supports temporal logic operators such as previous, after, always, never, etc. used to express
queries.

Source Code Change Extraction
Fluri et al. [Fluri 2007] propose change distilling, a tree differencing algorithm for fine-grained source
code extraction. They identify changes between two Java programs by finding both a match between
the nodes of the compared two abstract syntax trees and a minimum edit script that can transform one
tree into the other given the computed matching. The authors improved the existing tree differencing
algorithm by Chawathe et al. [Chawathe 1996] to classify change types based on a taxonomy of source
code changes that Fluri and Gall established in a prior work [Fluri 2006]. This taxonomy defines
changes according to tree edit operations (insert, delete, move, update) in the AST and classifies each
change type with a significance level (e.g., else-part insert (high), attribute renaming (high)).

Mining Software Repositories (MSR)
MSR refers to the extraction and processing of information stored by version control systems, such as
SVN, CVS, Git. Hassan proposes [Hassan 2009] a technique to predict faults in a system by applying
complexity metrics on the changes that are present in the repository. Source Sticky Notes [Has-
san 2004] is an approach that annotates a static dependency graph of a system with information that
is extracted from the history of a system, to help developers to understand the context of the changes
they are applying. DynaMine [Livshits 2005] is a tool that applies data mining techniques on version
archives to find common usage patterns by analyzing co-changed methods.

Software Classifications
De Hondt [Hondt 1998] proposes software classifications as a means to recover architectural elements
in evolving object-oriented systems. This approach is based on Reuse Contracts that we described
before. Software classifications consist of a model and a technique. The software classification model
provides simple concepts to organize large software systems and their evolution in manageable units
(classifications). The software classification technique provides strategies to set up and recover those
manageable units. Software classifications have been applied to: (a) expressing multiple views on
software, (b) recovering of collaboration contracts, (c) recovering of reuse contracts, (d) recovering
of architectural components, and (e) management of changes.

Aspect-Oriented Software Analysis
Within the field of aspect-oriented software development, numerous techniques have been proposed
that mine for crosscutting concerns [Kellens 2007], such as the work of Marin [Marin 2007], who
uses fan-in analysis to identify possible aspect candidates.

3.6 Conclusion

In this chapter we have presented the intent of our solution: a comprehensive tool suite to provide
integrators access to the information discussed in Section 3.4.

We covered four topics related to changes that complement the problems inherent of the integra-
tion process in a collaborative environment (see Chapter 2). The use of branching and merging make

3.6. Conclusion 57

the integration process a very complex task. Unfortunately, current tools do not provide the adequate
support for developers who integrate changes within a single branch or between branches. Developers
lack tools that aid them in understanding the context of changes in an efficient manner. Such activity
is mostly manual and time consuming. Merging changes between branches is even more complicated,
and no tools exist to identify and understand changes that can be applied from one branch to another,
that is supporting cherry picking.

An overview of the integration process as it can be found in open-source development was briefly
described as a background to introduce the definitions and terminology that we use in this disserta-
tion. Even though, most of the terminology is well-known (e.g.,, commits or history), we provided
our definitions in the context of the integration of changes. We introduced terms such as stream of
changes and delta dependencies to refer to a sequence of set of changes within a branch, and to the
dependencies between these sets of changes, respectively. Note also that some definitions are tailored
to support integration in Pharo, but they can be refined and applied to other infrastructures.

The second topic presented in this chapter was a catalogue of 64 questions that developers ask
when they are integrating or want to integrate changes. We conducted a study to gather such questions
as a means to identify and understand the developers’ information needs that can ease the answering of
the questions, and therefore to support them integrating changes. Moreover, these questions serve as
the foundation to assess our contributions in Chapters 5 and 7. We described the methodology used for
our study, the data and results obtained. However, as we do not only intend to base our contributions
on our identified questions, but on to relevant questions that integrators raise independently of the
programing language or tools used, our findings were also extended and verified with other questions
found in similar but broader studies. The 64 questions were clustered in 5 categories, and for each
category a description was added. This part ended with a discussion about how tools support or can
support answering of these questions.

The third topic described the information that can be used to define the requirements for our
solution presented in Chapter 2.4. Based on the questions, we identified 12 kinds of information such
as size, author, time, structure, change scope, vocabulary, dependencies, and so on that we can use for
the change characterizations. Additionally, we presented a summary including which questions can
be answered by each kind of information, and to which extent the support can be provided.

The last topic presented the state-of-the-art of relevant work for the context of this dissertation.
We focused on five topics: (a) modeling source code, history and changes, (b) merging, (c) change
impact analysis, (d) change dependencies, and (e) understanding development tasks by means of
questions. We discussed how their goals relate or differ from ours.

The next chapter introduces the core – the Ring source code meta-model – of the infrastructure
needed to assess our contributions. Our history and change models and the analyses that will be
presented in later chapters are built on top of it.

CHAPTER 4

Ring: a Unified Model for Source Code
Representation

Contents
4.1 Introduction . 60

4.2 Requirements for Source Code Modeling . 60

4.3 Version Control Systems Data Models . 62

4.4 Dedicated Source Code Meta-Models . 68

4.5 The Ring Source Code Meta-Model . 77

4.6 Ring Usage Scenarios . 80

4.7 Discussion . 83

4.8 Conclusion . 84

Contributions Map

 Source Code Meta-Model (Ring)

History Meta-
Model and
Analyses
(RingH)

Torch Tools

Change & Dependency
Meta-Model and

Analyses (RingC)

JET Tools

Single-delta
Change Meta-

Model and
Analyses (RingS)

Catalogue of
Questions

Integrators'
Information

Needs

⬇

Overview

This chapter presents the foundation of our infrastructure, an object-oriented model for source code
representation, and the two analyses that serve as a motivation for such a meta-model. This source
code model is a technical contribution of this dissertation. We have published this work in the Jour-
nal of Computer Languages, Systems and Structures [Uquillas Gómez 2012] and presented it at the
Smalltalks Conference [Uquillas Gómez 2010a]. First, we present the requirements we established
for source code modeling. Second, we present an analysis of data models manipulated by common
version control systems as a means to identify how such systems relate to the actual source code of
a system. Third, we present an analysis of several source code meta-models as a means to motivate

60 Chapter 4. Ring: a Unified Model for Source Code Representation

the need of a unified and simple source code meta-model. Fourth, we describe the architecture of our
object-oriented source code meta-model, namely Ring. Fifth, we present two concrete illustrations
of the usage of our model applied to existing tools of the Pharo environment. Finally, we present a
discussion of technical improvements to Ring.

4.1 Introduction

Version control systems such as Subversion or Git record different versions of code. They may differ
in the way such data is stored, for example as deltas representing only changes or as snapshots of
the system representing the complete version. This information is then accessible to other tools for
specific tasks. For example, the source code can be accessed and processed for detecting changes
between versions and providing conflict analysis as well as support elementary merging. Nowadays,
there is little support out of the box to be able to perform queries and analyses over the complete
history: Tools have to build their own infrastructure and history analysis on top of version control
systems [Zimmermann 2004b]. For example, to compare all the differences between past senders
of a given method is not straightforward. Another example is how to support cross-branch merging.
Such examples, however, should be based on source code models [Lethbridge 2004]. Therefore, to
ease history and change analyses we need adequate models to represent source code program entities.
When considering such a representation, various design dimensions have to be taken into account,
such as the level of granularity, the needed API, etc.

Based on two analyses performed on four version control systems data models presented in Sec-
tion 4.3 and on seven source code models presented in Section 4.4, we established the requirements
for the source code representation needed for our infrastructure. This code representation allows us to
establish a foundation to provide integrators’ information needs that we identified in Section 3.4 and
that can support answering the integrators’ questions (presented in the catalogue in Section 3.3.2).
Our solution, the Ring source code meta-model, is described in Section 4.5 as a technical contribu-
tion of this dissertation. It is the basis for our change and history meta-models that we present in later
chapters. Moreover, Ring is already part of the infrastructure of Pharo released with the Pharo version
1.4 in April 2012.

In the next section, we discuss the requirements for Ring and we motivate the reasons of why we
did not reuse an existing meta-model.

4.2 Requirements for Source Code Modeling

The source code and the history of a system are a valuable resource for software engineers, developers
and integrators [Lethbridge 2004]. They often need to analyze and understand the current source code
or the evolution and changes of a system before performing actual maintenance or integration tasks.

The analyses of source code meta-models presented in Section 4.4, and especially referring to the
Smalltalk-oriented meta-models, served us to identify that several source code meta-models coexist in
a weakly causally connected way1 [Maes 1987]: the Smalltalk structural and reflective API coexists

1Causal connection is defined by Maes as: “A computational system is said to be causally connected to its domain if
the internal structures and the domain they represent are linked in such a way that if one of the two changes, this leads to a
correspond effect upon the other”

4.2. Requirements for Source Code Modeling 61

with the one of the Refactoring Browser or with any of the two versions of the Monticello distributed
version control system (MC1 or MC2). While having application-specific meta-models is an adequate
engineering solution when developers want to abstract over different systems and be independent of
idiosyncrasies of the underlying execution platform, in reality it multiplies the number of abstractions,
it increases maintenance efforts and reduces tool reuse when in the presence of non-polymorphic
APIs.

Furthermore, these meta-models offer a different API than the runtime and structural model of
Smalltalk. We call this problem the meta-models plague that is, when multiple meta-models have
different APIs which make the conversion between them, change propagation and test assessment
difficult. This proliferation of meta-models puts the burden on the developer that has to maintain
consistent models across tools. As a result developers resort to adding or modifying the same behavior
(e.g., introducing a predicate) in the different models for complying with the non-polymorphic APIs.
We believe that this is due to the lack of a source code meta-model which could be extended and
be the glue between source code models and tools as well as an adequate infrastructure [van den
Hamer 1996].

We have also found that none of these models provide us with a simple and complete represen-
tation of the source program entities that we need to provide the integrators’ information needs de-
scribed in Section 3.4. They do not suffice for our specific needs, therefore, our primary requirement
is to define our own source code meta-model.

Next to this primary requirement, we have identified several secondary requirements for building
our source code meta-model that emerge from reuse and practical integration with the host environ-
ment, i.e., the Pharo environment. These requirements are not related to the problem of assisted
integration, and they do not represent a scientific contribution of this dissertation. However, they
provide us with technical benefits for the foundation of our infrastructure.

No duplication of meta-models. We do not want one source code runtime meta-model and another
for the change and versioning system. Having different meta-models is costly to maintain, test,
and keep in sync. Our goal is to define a common source code core meta-model that can be
extended for specific tasks. This may come at the cost of having some parts of the objects not
used for certain scenario(s). To solve this problem, the entities within the meta-model should
be able to be annotated with any additional information that is not defined beforehand.

Model update as cheaply as possible. Updating models is also a problem since desynchronization
of the represented information may lead to subtle bugs. In addition, Smalltalk has its own
reflective meta-model that is used by the runtime system [Black 2009] which is causally con-
nected (meaning that the model reflects its subject in any circumstances). Therefore, the new
model should use the causal connection as much as possible.

Tool reusability relying on common APIs. Currently it is common for new tools to define their
own meta-model that provides a non-polymorphic API with respect to other models for
representing entities. This hampers the reuse of tools manipulating source code entities, as
they may have different APIs. Having a common meta-model will ease the integration and
reusability of those tools.

62 Chapter 4. Ring: a Unified Model for Source Code Representation

Model integrated into the Smalltalk environment. Since we use Smalltalk as a testbed for the val-
idation of this dissertation for the reasons presented in Section 1.3, the source code meta-model
should be applicable to Smalltalk.

4.3 Version Control Systems Data Models

In Section 2.1.1 we introduced Version Control Systems (VCS) as systems that allow users to track
and store changes, collaborate and share project files. We stated that version control systems support
collaborative development by integrating approaches such as branching and merging. In particular,
distributed version control systems (e.g., Git) have given branching a central role to guide the devel-
opment process.

Version control systems use a data model to store the source code of a system. The data model has
an impact on how the information is processed. Most version control systems store and manipulate
text files with changed source code i.e., commits, or files representing the source code of the complete
version. In both cases, they do not know the domain-entities they manipulate and are oblivious to the
semantics of the system.

The relation between the source code model and the version control system data model might not
be obvious. While the first models each entity as a first-class object, the latter mainly keeps track of
files of source code and treats them as a plain text. The mismatch between the source model used
by the IDE’s tools (e.g., package class browsers in Eclipse) and the data model used by VCSs leads
to extra efforts to connect two different abstractions. Having this gap is already a reason for having
different APIs and transformations between those two models.

While some specialized version control systems such as Monticello [Black 2009] or Envy
[Thomas 1988, Pelrine 2001] (in the past) keep track of classes and methods, not all of them do
so. Git [Chacon 2008] or Subversion [Collins-Sussman 2009] keep track of code; they also support
binary files. Since there may not be a direct connection between the stored model and the actual
source code, this results in a need to understand the data models used by version control systems and
their links to the actual source code. For example using Git to directly manipulate methods/classes
implies building an extra infrastructure as it stores objects with a chunk of binary data representing
the files that contain the definitions of method/classes, but not those entities independently.

In the following, we present the most representative data models used by version control systems
with a bias towards Smalltalk solutions. They are categorized in two groups: text-based and code-
based data models.

4.3.1 Text-based Version Control Systems Data Models

We present the data models used by the Subversion centralized version control system and by the Git
distributed version control system.

4.3.1.1 Subversion (SVN) Data Model

Subversion [Collins-Sussman 2009] is a centralized system for sharing information. At its core is a
repository that stores data centrally in the form of a filesystem tree –a typical hierarchy of files and
directories. Any number of clients connect to the repository, and then read from or write to these

4.3. Version Control Systems Data Models 63

files. By writing data, a client makes the information available to others; by reading data, the client
receives information from others.

The Subversion repository remembers every change ever written to it – every change to every file,
and even changes to the directory tree itself, such as the addition, deletion, and rearrangement of files
and directories.

eol-style
executable
keywords
needs-lock
mime-type

Properties

URL
revision
author
last-commit-rev
text-status
property-status
lock-owner
lock-creation-date

SVN-File

head-revision
author
date
message
action
path
copy-from-path
revision

SVN-modReport

file
commits

Transaction

Revision

name
id

Author

branch-revision

Branch

hasCreated

1..*hasRevision

hasMR

is made of hasBranch

1

*

*

1

1

1

*

*

*

1

1

1

Figure 4.1: The Subversion data model.

The Subversion data model2 is shown in Figure 4.1.

SVN-File. Subversion manages directories with files. However, it does not actually make a distinc-
tion between files or directories. Hence the data model only presents one definition, SVN-File,
for both directories and files. The SVN-File keeps the following information:

• URL: the path to the file in a SVN repository

• revision: the most current revision of a file or directory

• author: the author to whom the file “belongs”

• last commit revision: the revision and the timestamp when the revision was committed

• text status: indicates whether the file has been modified locally or both locally and in the
repository, added or removed

• property status: provides information about the non versioned properties of a file, trans-
action or directory tree (i.e., the timestamp when the transaction was created)

• lock owner: the name of the person that made a lock (read, write) to the file

• lock creation time: the date and time when the lock was applied to the file

2The Subversion data model has been extracted from [Marjanovic 2006].

64 Chapter 4. Ring: a Unified Model for Source Code Representation

Branch. Subversion has no internal concept of a branch – it only knows how to make copies. When a
directory is copied, the resultant directory is only a “branch” because we attach that meaning to
it. Therefore, a SVN-File can have multiple branches, and they exist as normal filesystem direc-
tories in the repository. This is different from other version control systems, where branches are
typically defined by adding extra-dimensional “labels” to collections of files. Finally, branches
in SVN can have branches of their own.

Transaction. Unlike CVS, Subversion has a defined transaction concept. Transactions help in dis-
tinguishing a set of operations to a file that belong to a single development step as, for instance,
a set of changes that lead to a new revision of a file. A transaction in SVN represents a set of
commits that apply to a file before the current revision changes to a new one.

Author. The author information is represented as a separate entity because it is considered to be
valuable information. An author entity holds the name of the author and an optional id, if
present.

SVN-modReport. Unlike CVS, where the modification reports for a file are appended to the file
log, SVN maintains the file and the modification information separately. When looking at
the modification report log, it provides the particular action (modified, added, deleted), the
timestamp, the author, etc. for each revision.

Properties. Properties in SVN designate the additional information in the form of tags or keywords
to a file, and they are kept as separate entities. A SVN-File can have multiple properties set.
The most interesting property is keywords. They are a common concept in many versioning
systems, such as CVS.

4.3.1.2 Git Data Model

Git [Git 2005] is a distributed revision control system (DVCS). The core of Git is composed of a
collection of tools that implement a tree structure storage and directory content management system
[Chacon 2008].

Git differs from most version control systems such as Subversion, CVS, etc. in the way it stores
data. These VCS systems store information as a list of file-based changes representing the code deltas
or diffs between one commit and the next. Instead, when Git stores a new version of a project, it stores
a snapshot of all the files in that project at a point in time. The snapshot is stored as a new tree – a
bunch of blobs of content and a collection of pointers which a full directory of files and subdirectories
can be recreated with. If a file has not changed, Git does not store the file again – only a link to the
previous identical file it has already stored. In Git, the differences between two versions is calculated
by running a new diff on the two trees representing both versions.

Git defines objects which represent the actual data. There are four main immutable object types
that are stored in the Git Object Database, which in turn is kept in the Git Directory. Each object is
referenced by a unique hash key (SHA-1) of its content plus a small header.

4.3. Version Control Systems Data Models 65

sha
object
type
tag version
tagger
message

Tag

sha
author
commiter
message

Commit

Reference
points to1

sha
file content

Blob

sha
mode
type
name

Tree

*

1

sha of commit
*

1

*

parents commits

Branch Remote

HEAD

sha + file name and mode

file

directory

points to current
branch

Figure 4.2: The Git data model.

Blob. The content of each file is stored as a blob. The files themselves –names and modes– are not
stored within the blobs, just their content. Differently named files with the same content will
only store one blob and share it. Therefore, during repository transfers (i.e., clones or fetches)
only one blob will be transferred, then expanded into multiple files upon checkout. The blob is
totally independent from its location in the directory tree, and renaming a file does not change
the blob that this file is associated with.

Tree. The physical directories map to trees. A tree is a simple list of pointers to blobs and other trees,
along with the names and modes of those trees and blobs. The content section of a tree object
consists of a very simple text file that lists the mode, type, name and hash key of each entry.

Commit. The tree history is managed by commit objects. A commit is similar to a tree. It points to
a tree (representing the contents of a directory at a certain point in time) and keeps an author,
committer, message and any parent commits.

Tag. Commits can be referred to by tags, i.e., permanent shorthand names. A tag contains an object,
type, tag version, tagger and a message. Normally the type is commit and the object is the hash
key of the commit that is being tagged.

In addition to immutable objects, mutable references are stored in Git as well. A reference is a pointer
to a particular commit, similar to a tag, but easily moveable. References are used for controlling
branches and remotes.

Branch. A branch is just a file that contains the hash key of the most recent commit for that branch.

Remote. A remote is basically a pointer to a branch in another person’s copy of the same repository
(e.g., by cloning a repository).

66 Chapter 4. Ring: a Unified Model for Source Code Representation

Figure 4.2 shows the data model with the objects and references stored in Git. Note an extra element,
the HEAD file that points to the branch a developer using Git is currently working on, and that is used
as the parent of the next commit.

4.3.2 Code-based Version Control Systems Data Models

Code-based version control systems keep complex entities to represent versioning information. We
present the data model used by both versions of the Monticello distributed version control system.

4.3.2.1 Monticello 1 Data Model

Monticello 13 is a distributed concurrent versioning system for Smalltalk dialects such as Pharo,
Squeak, GemStone and Cincom Smalltalk, in which classes and methods, rather than lines of text,
are the units of change [Black 2009]. Monticello 1 (a.k.a. MC1) is organized around snapshots
of a package, that are stored as versions. Snapshots are a declarative model of the Smalltalk code
containing a package composed of classes and methods.

id
name
message
date
time
author

MCVersionInfo

packageName
methodCategoryPrefix

PackageInfo

MCDefinition

name
workingCopy

MCPackage

changes
workingCopy

dependencies

MCVersion

1

packageInfo

patchRelativeToBase:

MCSnapshot
1

snapshot

definitions

info

*

snapshot 1

package

1

MCAncestry

ancestors*

Source code
model

Figure 4.3: Monticello 1 data model.

We present an overview of the MC1 data model in Figure 4.3. The main entities of the data model
are packages, snapshots, and versions.

Packages. A package is the unit of versioning. The classes and methods contained in a package are
recorded and versioned together in a snapshot.

Snapshots. A snapshot is the state of a package at a particular point in time. It includes definitions
of classes, methods, variables, traits4 and package categories.

3Monticello 1: http://www.wiresong.ca/monticello/v1
4A trait is a set of methods that serves as a behavioral building block for classes [Schärli 2003,Ducasse 2006b]. Classes

that use traits are still organized in a single inheritance hierarchy, but the traits specify an incremental difference in behavior
with respect to their superclasses.

http://www.wiresong.ca/monticello/v1

4.3. Version Control Systems Data Models 67

Versions. A version is a snapshot of a package. It also stores associated metadata such as VersionInfo

and the version’s ancestries. Versions are stored as zipped Monticello files .mcz, and represent
the standard data used by the system.

In summary, MC1 records a series of snapshots of the code corresponding to a package as it
evolves, as well as the ancestral relationships between snapshots. When loading a snapshot into an
Smalltalk image, MC1 locates the differences between this snapshot and the state of its package in
the image, and then makes the necessary changes to the image so that it matches the snapshot. It uses
the ancestries of snapshots to provide a merge operation, so that conflicts between two sets of changes
can be detected, and non-conflicting changes can be applied automatically.

The data model is connected to the source code model through snapshots as shown in Figure 4.3
with a grey background. In Section 4.4.2.4 we provide detailed information about the source code
model.

In spite of the presented benefits, the data model that Monticello 1 uses is based on the assumption
that packages are well-defined and have relatively stable boundaries (e.g., packages are not expected
to be removed or renamed, or their classes will not be moved to other packages), which is not always
the case. In addition, Monticello 1 limits the history to the level of packages and not to the level of
independent program entities. These issues are addressed by Monticello 2.

4.3.2.2 Monticello 2 Data Model

Monticello 25 (a.k.a. MC2) addresses the main problem encountered with Monticello 1, which is its
unit of versioning – the package – that is too coarse-grained for many situations that arise in normal
development (i.e., changes may only impact a few methods or classes, but still the whole package
needs to be versioned).

In Monticello 2, a new data model has been incorporated that does not have packages as the
fundamental unit of versioning. Instead, the unit of versioning is individual program elements (e.g.,
classes, methods, instance variables, and so on). This means that Monticello 2 can be used to version
arbitrary snippets of code. These might correspond to packages, change sets, or any other method a
developers chooses to separate “interesting" code from the rest of the image.

Rather than maintaining the version history of packages, Monticello 2 keeps track of the version
history for each element. Having such a history allows users to perform tasks that are not possible
with Monticello 1. With this data model package boundaries are no longer a restriction. Packages can
be created, renamed or destroyed, elements can be moved back and forth between packages, elements
can even belong to more than one package at a time. Since the version history is attached to the
element, it is not affected.

In Figure 4.4 we show the main classes of the MC2 data model. Note that ancestry informa-
tion is now linked at an entity-based level (ElementVersion) and not at the level of the package as in
Monticello 1.

Elements. An element is a representation of a specific program entity (e.g., classes, methods, vari-
ables).

5Monticello 2: http://www.wiresong.ca/monticello/v2

http://www.wiresong.ca/monticello/v2

68 Chapter 4. Ring: a Unified Model for Source Code Representation

Source code
model

contents
Snapshot

ImageElement

ExplicitSlice

Slice

ChangeSetSlice

Version

 *

RemovalVariant

*

Variant

PackageInfoSlice

properties
DefinitionVariant

1

ancestry
ElementVersion

element
NullVersion *

 *

 *

*

*

1

1

hashstamp
HashedObject

Figure 4.4: Monticello 2 data model.

Variants. A variant describes the state of a particular element.

Versions. A version represents the state of an element at a particular point in time. A version asso-
ciates a variant of an element with the ancestry of that element (i.e., set of versions that precede
this version), and it is identified by a hashstamp.

Hashstamps. A hashstamp is a unique identifier given to each version.

Slices. A slice groups elements together. Slices are independent and can overlap. Elements can
belong to many slices at the same time or to none. Different types of slices are supported: Pack-

ageInfoSlice for elements defined in a given package, ChangeSetSlice for elements associated
with a given ChangeSet, and ExplicitSlice for a particular collection of elements.

Snapshots. A snapshot captures the state of a slice. Snapshots record the versions’ hashstamps of
the slice’s elements.

The MC2 data model (element-based version history) allows developers to merge changes of
individual elements. Although MC1 supports cherry-picking, it does so in an awkward and non-
intuitive way. In MC2, cherry-picking is the norm, and merging an entire package is just a special
case. However, MC2 does not help developers finding any semantical issue when cherry picking and
merging.

The data model is connected to the source code model through variants and explicit slices as
shown in Figure 4.4 with grey background. The source code model is presented in Section 4.4.2.5.

4.4 Dedicated Source Code Meta-Models

While versioning focuses on how to merge and version between versions, it is important to look at
source code models. If we take for example Smalltalk, there are several source code meta-models with
different purposes (e.g., for managing changes, refactorings, merges and versions) that manipulate in
some way the Smalltalk structural meta-model. Most of the time, such meta-models are overlapping

4.4. Dedicated Source Code Meta-Models 69

or included in each other. This overlap often exists for a good reason. For example, the Refactoring
Engine was developed in VisualWorks and should work on any other Smalltalk dialect, therefore the
authors preferred to extract and build their own representation instead of extending the existing one.
A similar concern exists for Monticello.

Another important concern that we should pay attention to is that Smalltalk is a reflective language
[Rivard 1996, Ducasse 1999]. This means that it has a causally connected representation of itself
[Maes 1987]. Such a causal connection between the model of Smalltalk and its execution is a powerful
mechanism that supports tool building. When new models are populated to represent views of the
Smalltalk runtime, the question of the causal connection is key: “Should tool builders recreate the
model each time the runtime changes?”, “How do they maintain consistency across models?”. For
example, in the Moose6 software analysis platform, a model is created for a version or for the actual
code, but if such code changes the model needs to be recreated. Moose keeps immutable models as
it focuses on being able to manipulate source code written in different languages; Smalltalk being
one among others (Java, C, C++) [Nierstrasz 2005]. But since Moose is implemented in Smalltalk, it
could be possible that for a single version analysis we could use the casual connection to the actual
source code, and avoid recreating the model when changes happen.

In the following, we present the most representative source code meta-models which can serve
as an inspiration for a new source code meta-model. We analyzed these source code meta-models to
identify how they represent domain entities within an object-oriented software system such as classes,
packages, etc. Our goal was to take the best features of each model to incorporate into our Ring
source code meta-model described in Section 4.5. We classify these meta-models into two groups:
non-Smalltalk specific and Smalltalk-oriented code meta-models.

4.4.1 Non-Smalltalk Specific Code Meta-Models

We present the Eclipse Modeling Framework along with the ECore meta-model to represent Java
systems, and the language-independent FAMIX core meta-model to represent system written in Java,
C, C++, and Smalltalk.

4.4.1.1 Eclipse Modeling Framework (EMF)

According to the EMF website7, “it is defined as a modeling framework and code generation facil-
ity for building tools and other applications based on a structured data model”. Meta-models can
be specified using annotated Java, XML documents, UML, or modeling tools like Rational Rose,
then imported into EMF. The specification of a meta-model described in XMI (XML Metadata In-
terchange) serves to provide tools and runtime support that can generate a set of Java classes, such
classes represent an EMF model.

6Moose: http://www.moosetechnology.org
7EMF: http://www.eclipse.org/modeling/emf/?project=emf

http://www.moosetechnology.org
http://www.eclipse.org/modeling/emf/?project=emf

70 Chapter 4. Ring: a Unified Model for Source Code Representation

ECore and GenModel. ECore8 is a meta-model for describing models and run-time support for
the models. EMF provides two ways for instantiating models that conform to an ECore meta-model:
by reflection or by code generation. For the latter, the Java classes are generated from an ECore
meta-model specification. This process is performed in two steps: (1) the ECore meta-model is trans-
formed into a GenModel9 model that can contain additional implementation-specific information. (2)
a model-to-text (M2T) transformation consumes the GenModel in order to generate the functional
Java code.

EObject

EModelElement

EFactory ENamedElement

EPackage

EClass

EEnum

EParameterEOperationEStructuralFeature

ETypedElementEEnumLiteral

EDataType

EClassifier

EAnnotation

EAttribute EReference

Figure 4.5: EMF Ecore code meta-model – Definitions that appear in italic represent features other-
wise elements of the meta-model.

The Ecore meta-model is shown in Figure 4.5. It allows developers to define different elements
such as classes, packages, parameters, attributes, etc. According to the ECore specification [Vo-
gel 2012], several of these meta-model elements are defined as:

• EClass: represents a class, with zero or more attributes and zero or more references.

• EAttribute: represents an attribute which has a name and a type.

• EReference: represents one end of an association between two classes. It has a flag to indicate
if it represents a containment, and a reference class to which it points.

• EDataType: represents the type of an attribute, e.g., int, float or java.util.Date.

• EOperation: represents a method which has a name, a return type and may have parameters as
input.

• EParameter: represents a parameter of a method. It has a name, type and multiplicity as input.

8ECore: http://download.eclipse.org/modeling/emf/emf/javadoc/2.8.0/org/eclipse/emf/ecore/package-summary.html
9GenModel: http://download.eclipse.org/modeling/emf/emf/javadoc/2.8.0/org/eclipse/emf/codegen/ecore/

genmodel/package-summary.html

http://download.eclipse.org/modeling/emf/emf/javadoc/2.8.0/org/eclipse/emf/ecore/package-summary.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.8.0/org/eclipse/emf/codegen/ecore/genmodel/package-summary.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.8.0/org/eclipse/emf/codegen/ecore/genmodel/package-summary.html

4.4. Dedicated Source Code Meta-Models 71

4.4.1.2 FAMIX

FAMIX 3.010 is a family of meta-models for software analysis and various aspects of code represen-
tation (static, dynamic, history). These models were developed in the context of the Moose software
analysis platform [Nierstrasz 2005]. The meta-models are implemented in Smalltalk, and provide
a rich API that can be used for querying and navigating. The core of FAMIX [Demeyer 2001] is a
language independent meta-model that provides a generic representation of the static structure of pro-
grams written in multiple object-oriented and procedural programming languages, such as Smalltalk,
Java, C, and C++.

Class

Method

Attribute

Access

Inheritance

Package

Namespace

*

parentType

*

parentType

containerparentPackage

superclass

subclass

* *

Invocation sender

candidates

*

accessor

*

variable

*

*

*

*

Reference

* source

* target

*

Figure 4.6: FAMIX-core language independent code meta-model - Key Classes.

The core meta-model consists of a set of classes that represent source code at the program entity
level. Such classes map onto the different elements in a program (e.g., classes, methods, attributes,
comments), and of the associations between these elements (i.e., inheritance definitions, invocations
of methods, accesses to attributes by methods, references to classes by methods). Figure 4.6 shows
the FAMIX-core code meta-model. While the meta-model is fairly complete, it can be easily extended
in order to incorporate other language extensions.

Key points. There are two important points in the design of FAMIX that are worth stressing:

1. FAMIX does not only represent structural source code entities such as packages, classes, meth-
ods but it also explicitly represents information that is extracted from the methods’ abstract
syntax trees: a method refers to a class (Reference), a method accesses attributes (Access) and
a method invokes other methods (Invocation). In this way, FAMIX offers a finer-grained rep-
resentation of a program than a simpler meta-model and it does so in a language independent
manner. Fact extractors, which by definition have the knowledge of the targeted language,
produce language independent information in terms of FAMIX models.

2. FAMIX provides decoupling between packages and namespaces. Namespaces are scoping en-
tities that provide a lexical scope for the contained entities, while packages are scoping entities
that describe the physical structure of a system (i.e., deployment entities). This decoupling
makes sure that FAMIX can model any kind of situation at the package level.

10The Moose book: http://www.themoosebook.org/book/internals/famix

http://www.themoosebook.org/book/internals/famix

72 Chapter 4. Ring: a Unified Model for Source Code Representation

Our approach does not use the FAMIX core meta-model for three reasons:

1. FAMIX is too tainted with language independent features, e.g., multiple inheritance types,
interfaces, and lacks Smalltalk trait definitions.

2. We had specific needs such as to only represent what is needed to provide the integrators’
information needs in order to assist the integration process. Therefore, we opted for defining
our own source code meta-model, inspired by the FAMIX core meta-model.

3. We targeted a unified source code meta-model, namely Ring [Uquillas Gómez 2012], that can
be used as the foundational code model for tool integration in Pharo. Therefore, we built Ring
as a technical contribution for this dissertation.

4.4.2 Smalltalk-oriented Code Meta-Models

We present five Smalltalk source code meta-models: the Refactoring Browser code scoping meta-
model, the Smalltalk runtime and structural model-model, the Ginsu semantic meta-model, and the
code meta-models of both Monticello 1 and Monticello 2 version control systems.

4.4.2.1 Refactoring Browser

The Refactoring Browser11 (RB) [Brant 1998, Roberts 1997, Roberts 1999] is a powerful Smalltalk
browser which enables developers to perform several automated refactorings on Smalltalk programs,
such as pushing up methods, renaming variables, splitting classes, etc. The refactorings can be clas-
sified into three groups: class based refactorings, method based refactorings, and code based refac-
torings. RB also offers other productivity enhancements for programmers: Smalltalk Code Critics, a
tool that analyzes code for detecting bugs or possible errors; and the Rewrite tool for expressing the
rewriting of code through recognition of expressions (pattern matching) on ASTs.

category
comment
classVariableNames
poolVariableNames

RBClass

compiledMethod
source
selector

RBMethod
instanceVariableNames
removedMethods

RBAbstractClass

implementors
senders

RBNamespace

*newMethods

RBMetaclass

1

class
*

newClasses

*

changedClasses

BrowserEnvironment
1

environment

*
removedClasses

superclasses

subclasses

* *

model

1

theMetaClass

theNonMetaClass

CompositeRefactory
Change

1 changes

1

Figure 4.7: Refactoring Browser source code scoping model.

11The Refactoring Browser: http://www.refactory.com/RefactoringBrowser

http://www.refactory.com/RefactoringBrowser

4.4. Dedicated Source Code Meta-Models 73

RB defines different models, each having a particular purpose. The following three models are
the main ones: (a) the refactoring model represents specific refactoring operations; (b) the changes
model represents changes associated with refactorings; (c) the source code scoping model – which
is relevant to our approach – identifies the program elements that are manipulated for the rest of RB
models. In addition, the source code scoping model models a delta with respect to the current system
and is supposed to be polymorphic with the Smalltalk runtime and structural meta-model.

The complete source code model is shown in Figure 4.7. Two classes defined in another compo-
nent of RG are BrowserEnvironment and CompositeRefactoryChange (shown with dashed border), both
classes are associated with RBNamespace. The first represents the environment in which a namespace
is defined and the second allows a namespace to control changes and refactorings.

This meta-model is a very simple model, only mapping classes, methods and namespaces. How-
ever, other elements such as variables or class comments are not modeled as first-class objects. There-
fore, it does not suffice our requirements for source code representation.

4.4.2.2 Smalltalk Runtime and Structural Meta-model

Smalltalk itself defines a meta-model for representing entities at structural and runtime level [Gold-
berg 1989]. An excerpt of this meta-model extracted from Pharo is shown in Figure 4.8.

localSelectors
Metaclass

selector
pragmas

CompiledMethod

instanceVariables
ClassDescription

Behavior

*

name
classPool
sharedPool
localSelectors

Class

Object

thisClass

methodDict contains

subclasses

methodClass
selector
category

MethodReference

methodReference

1

categories
allMethodSelectors

ClassOrganizer

organization

1

subject1

superclass

1

*

classComment
commentStamp

BasicClassOrganizer

methodClass

1

SystemDictionary
environment

1

SystemOrganizer
categoryArray

Categorizer
category is managed by

namespace=

Figure 4.8: Smalltalk (Pharo) structural code model (with dashed border an attempt to add a repre-
sentational object for CompiledMethod).

The main root class in Smalltalk is Object which defines common behavior for the rest of the
classes. Classes and metaclasses derive from ClassDescription where instance variables are maintained
in an array. Classes’ methods are kept in a suitable form for interpretation by the virtual machine
(i.e., instances of CompiledMethod) and contained in a dictionary (methodDict). Classes are organized
in categories, or what is commonly known as packages. However, this model only keeps category
names in SystemOrganization, an instance of SystemOrganizer. The protocols of a class (i.e., method
categories) are managed by ClassOrganizer. Finally, every entity is associated with the environment

74 Chapter 4. Ring: a Unified Model for Source Code Representation

(i.e., namespace) in which it is known. This environment is unique and is represented by an instance
of SystemDictionary.

Key points. There are three points to underline about the Smalltalk structural code model:

1. The model is causally connected with its execution. Therefore, there is no problem related to
the synchronization of the model when a runtime entity changes.

2. The model is influenced by the information mandatory for the language execution. For exam-
ple, instance variables are not first-class objects but just strings. This is a problem when we
need to map meta-models targeted at program representations or versioning.

3. Figure 4.8 shows the class MethodReference that can be considered as a workaround to support
a representation of compiled methods. This was needed to support tools browsing different
versions of a method.

4.4.2.3 Ginsu

Ginsu12 is a cross-dialect semantic model and toolkit for partitioning Smalltalk code into packages.
Each package should have a clearly defined scope and prerequisite structure. One of the goals of
Ginsu is to be able to build analyses about code that is not executing or living in a Smalltalk runtime
image [Black 2009]. This goal is similar to the one of FAMIX but without the language independent
aspect.

Module

ModuleComponent

ScopedModule

Definition

GlobalDefinition

ClassRelatedDefinition

ClassInstanceVariable
Definition

ClassVariable
Definition

InstanceVariable
Definition

ClassMethod
Definition

InstanceMethod
Definition

GinsuClassDescription

*

*

*

*

ClassDefinition

GlobalRelated
Definition

Package

ClassAttribute
Definition

SemanticObject

CompiledMethod
Definition

*
*

Figure 4.9: Ginsu semantic model - Key classes.

Ginsu maps the elements defined in Smalltalk code to semantic objects as can be seen in Fig-
ure 4.9. A semantic object represents the semantics of a Smalltalk program. Semantic objects
(SemanticObject) are categorized as modules or components (subclasses of Module and ModuleCompo-

nent). Packages are mapped to modules, and the rest of the elements (e.g., classes, methods, variables,
etc.) to components. A particular definition (such as: ClassDefinition, InstanceMethodDefinition, Class-

VariableDefinition, etc.) exists for each kind of component.
12Ginsu: http://sourceforge.net/projects/ginsu

http://sourceforge.net/projects/ginsu

4.4. Dedicated Source Code Meta-Models 75

The key classes defined in the semantic model are shown in Figure 4.9. Note that a package
contains a set of definitions, the key idea behind Ginsu. An interesting property of Ginsu is its ability
to annotate any semantic object. Annotations are easily maintained in a dictionary attached to each
semantic object. In addition, the model defines the GinsuClassDescription which is associated with
a class definition, a set of definitions, and a package. The Ginsu browsers (i.e., PackageSystem and
PackageSupport browser) interact with class descriptions.

Another interesting property of Ginsu is that when a semantic object is built for an entity that
exists in the runtime (i.e., image), Ginsu delegates all queries to the runtime object. This approach
tries to get as much as possible out of the natural causal connection of the underlying Smalltalk model.

Ginsu lacks first-class representations for method associations, such as method calls, class refer-
ences and access to variables, or the class inheritance relationship defined in FAMIX. In our approach,
we leverage the idea of having objects with annotations.

4.4.2.4 Monticello 1 Source Code Model

The Monticello 1 distributed concurrent versioning system was introduced in Section 4.3.2.1. In this
section, we present the source code model used by MC1. This model basically consists of definitions
representing program entities.

Figure 4.10 shows the key entities of the source code model and how they are connected to the
data model (shown with grey background) described in Section 4.3.2.1.

id
name
message
date
time
author

MCVersionInfo

MCDefinition

name
workingCopy

MCPackage dependencies
changes
workingCopy

MCVersion

patchRelativeToBase:
MCSnapshot

1

snapshot

definitions

info

*

snapshot

1package1

name
MCClassDefinition

 categories
MCOrganizationDefinition

selector
source
category

MCMethodDefinition

name
MCVariableDefinition

variables

*

packageName
MCScriptDefinition

name
MCTraitDefinition

MCPostscript
Definition

MCPreamble
DefinitionMCInstaceVariable

Definition
MCClassVariable

Definition

Figure 4.10: Monticello 1 source code model – Key classes for program entities (in grey the data
entities).

A source code entity definition represents a program element (i.e., class, method, variable, trait,
package category, script). The source code model is composed of several classes. MCClassDefinition

represents a class contained in a package. MCOrganizationDefinition represents the package’s categories
in which classes are contained. Subclasses of MCVariableDefinition represent variables of classes, and
they are accessed by class references. MCMethodDefinition maps structural data of methods (selector,

76 Chapter 4. Ring: a Unified Model for Source Code Representation

source code). Finally, MCScriptDefinition subclasses represent the pre/post conditions required by
packages.

The MC1 source code model is not complete. For example, there are no definitions to represent
class extensions13 as first-class objects, but instead a naming convention in method categories (i.e.,
protocols) is used. Moreover, this model is non-polymorphic with the API of the Smalltalk structural
model presented in Section 4.4.2.2.

4.4.2.5 Monticello 2 Source Code Model

In this section we present the source code model of the Monticello 2 distributed concurrent versioning
system introduced in Section 4.3.2.2.

Figure 4.11 shows the key classes defined in the source code model of MC2. It also shows the
link of such classes to the data model presented in Section 4.3.2.2 (shown with grey background).
Note that the data model accesses the source code elements through slices and variants.

selector
classIsMeta

MethodElement

contents
Snapshot

ImageElement

ExplicitSlice

ClassElement

Slice

ChangeSetSlice

Version
 *

Removal
Variant

*

Variant

PackageInfoSlice

name
InstVarElement

properties

Definition
Variant

1

ancestry
ElementVersion

element
NullVersion *

 *

 *
*

*
1

1

hashstamp
HashedObject

theClassName

ClassAware
Element

name
ClassVarElement

comment

ClassComment
Element PoolImportElement

Figure 4.11: Monticello 2 source code model – Key classes for program entities (in grey the data
entities).

The program elements are modeled by classes that inherit from ImageElement. In Monticello 2, an
element is finer-grained than a definition in Monticello 1. For example, a comment is also represented
as an element (ClassCommentElement). Elements are mostly related to a class and thus are defined as
subclasses of ClassAwareElement. Class elements (e.g., variables, methods) can be referred to directly,
rather than by implication of the class reference.

This model also suffers from the same problem as the source code model of Monticello 1. It is
non-polymorphic with the API of the Smalltalk structural model presented in Section 4.4.2.2.

13Smalltalk supports class extensions [Bergel 2005], i.e., developers are able to add methods to classes in packages
different from the ones which the classes belong to. This is a simple mechanism that allows developers to add behavior to
existing entities without subclassing them in other packages.

4.5. The Ring Source Code Meta-Model 77

4.5 The Ring Source Code Meta-Model

In Section 4.2 we discussed the requirements for source code modeling. Our primary requirement
is to define a simple source code meta-model that allows us to represent the integrators’ information
needs or that serves as a base to obtain such information. We described these kinds of information in
Section 3.4 as descriptive, structural, semantic and historical information.

From the source code representation of a system we can provide several descriptive and structural
pieces of information such as authorship, structure or kind of entities. Note however, that the rest
of information is obtained from the history and changes of a software system. Therefore, our source
code representation should be the underlying model of the history and change models.

In this section, we stress the importance of getting a well-designed source code meta-model that
serves as foundation for solid history and change meta-models. The key points of our source code
meta-model are threefold.

• Common API with the Runtime and Structural Smalltalk model: allow existing and new tools
to interact and integrate directly with the host environment, i.e., Pharo.

• Complete representation of program entities: allow the definition of every program entity as
first-class objects.

• Extensive meta-model: allow other models to use, refer or extend it, such as the history or
change meta-models.

Smalltalk
Runtime
Model

RingS
Single-Delta

Change
Model

RingC
Change and
Dependency

Model

RingH History
Model

Ring
Declarative

Model

Other Tools

runtime
API

structural
API

JET Tools

Torch Tools

Other
Models

Figure 4.12: The Ring overview.

In Figure 4.12 we present an overview of Ring14, our solution for the source code meta-model that
is the base of our infrastructure. This figure shows how the components of our infrastructure and tools
interact. Note that the declarative and runtime models share a common API which can be referred to
by basic tools. This eases the reuse of such tools, for example a code browser should browse entities
(e.g., classes, methods) loaded in image or in external code files (e.g., changesets).

14Ring: http://www.squeaksource.com/Ring

http://www.squeaksource.com/Ring

78 Chapter 4. Ring: a Unified Model for Source Code Representation

We show three concrete meta-models that extend Ring. The RingS single-delta change model is
described in Chapter 5. The RingH history model and the RingC change and dependency model are
described in Chapter 6. Regarding tools, we show the Torch tools that are explained together with
RingS in Chapter 5, and the JET tools that are explained in Chapter 7. Note that we also show with a
dashed purple border other models that can extend Ring such as a versioning model, and other tools
that can use these models such as the version control system. The definition of such models and tools
lies outside the scope of this dissertation and is considered future work.

4.5.1 Architecture of Ring

We designed Ring after analyzing the source code models presented in Section 4.4. From several of
these models we took specific features that we consider beneficial for our approach. Concretely, we
defined in Ring the concept of annotations provided by Ginsu (described in Section 4.4.2.3) as a means
to add extra information to an object without affecting its structure. The FAMIX core meta-model
described in Section 4.4.1.2 also provided us with features that were introduced in Ring such as the
methods associations (i.e., references to classes, accesses to variables, and invocations to methods).
They were introduced to support fine-grained information at the history and change level. From the
Refactoring Browser source code scoping model (described in Section 4.4.2.1) and from the Smalltalk
structural model (described in Section 4.4.2.2) we took the notion of maintaining metaclasses as
separate definitions.

RGNamedDefinition

RGBehaviorDefinition

RGObject

RGClassDescription
Definition

RGClassDefinition

RGMetaclassDefinition

RGTraitDescription
Definition

RGTraitDefinition

RGMetatraitDefinition

RGElementDefinition

RGMethodDefinition

*

parent

theMetaClass

RGVariableDefinition

RGPackage

*

package

*

theNonMetaClass

RGGlobalDefinition

RGCommentDefinition

RGDefinition

1

*

package

Figure 4.13: Ring source code meta-model – Key definitions.

In Figure 4.13 we present the main definitions of the Ring source code meta-model to provide
fine-grained information that serves as the foundation to assist integration.

Base definitions. The root class in the source code meta-model is represented by RGObject. Every
object in a Ring model is derived from this definition which provides support for annotations. Pro-
gram entities such as classes, methods, variables, etc. are represented by definitions that subclass
RGDefinition. It provides a link to a default environment (i.e., namespace) in which each entity is

4.5. The Ring Source Code Meta-Model 79

known. Global program entities such as classes, metaclasses and global variables derive from RG-

GlobalDefinition. Finally, as many definitions are identified by a name we define the RGNamedDefinition

that serve as indirect superclass.

Classes and Traits. The specific behavior of classes and traits for managing their definition, su-
perclass, methods and protocols is supported by the RGBehaviorDefinition class. By means of this
class we also provide the causal connection from a definition in the model to its corresponding exist-
ing object in the runtime environment (i.e., image). The instance variables that can be defined in a
class or metaclass are managed by RGClassDescriptionDefinition. This class is the direct superclass of
both RGClassDefinition and RGMetaclassDefinition. For traits and metatraits we also defined a similar
class hierarchy by means of the class RGTraitDescriptionDefinition which manages their client users
(e.g., classes). The concrete definitions of traits and metatraits is represented by RGTraitDefinition and
RGMetatraitDefinition.

Elements of Classes and Traits. A class, trait or metaclass may consist of methods, variables, pro-
tocols and a comment. For representing these definitions we provide the abstract RGElementDefinition

class. A class knows which are its elements, and each element knows which is its parent (i.e., the
class in which it is defined). An element within the model may also know its corresponding existing
object in the runtime environment.

Class comments, methods and variables are defined by RGCommentDefinition, RGMethodDefinition

and subclasses of RGVariableDefinition, respectively. A comment knows by whom and when it was
written. A method knows several properties such as its protocol, source code, package, timestamp
and author. Moreover, a method provides the causal connection to the runtime model by accessing
the actual compiled Smalltalk method object, provided by the Smalltalk runtime environment.

Variable definitions. In Ring we support four kinds of variables that are shown in Figure 4.14
together with their relationships.

RGClassDefinition RGMetaclassDefinition
theMetaClass

RGVariableDefinition

RGInstance
VariableDefinition

RGClassVariable
Definition

RGPoolVariable
Definition

theNonMetaClass

RGClassInstance
VariableDefinition

* *

**

Figure 4.14: Ring source code meta-model – Variables.

Variables within Smalltalk can be defined in a class or metaclass. As seen in the figure, instance
variables, class variables and pool variables may be associated with a class. They are defined by
means of the classes RGInstanceVariableDefinition, RGClassVariableDefinition and RGPoolVariableDefi-

nition respectively. A metaclass may define instance variables which are represented by RGClassIn-

stanceVariableDefinition.

80 Chapter 4. Ring: a Unified Model for Source Code Representation

Container definitions. Ring also provides several definitions that model containers as shown in
Figure 4.15. Even though only the RGPackage class is relevant for other definitions in the source
code model, the other containers were defined to support the models and analyses built on top of
Ring.

RGNamespace

RGSliceRGContainer

RGPackage

RGOrganization

RGAbstractContainer

RGNamedDefinition
*elements

Figure 4.15: Ring source code meta-model – Containers.

RGAbstractContainer is the root definition of the container class hierarchy. It knows the elements
that it contains and provides other definitions along with an API to manipulate such elements. RGCon-

tainer is the direct superclass of concrete containers (i.e., namespaces, packages, slices), and provides
the specific API to interact with three kinds of elements: classes, methods, and packages. Names-
paces, packages and slices are represented by the definitions RGNamespace, RGPackage, and RGSlice

respectively. A namespace represents the environment in which entities such as classes, traits, global
variables and pool dictionaries are known. A package may contain classes, traits, class extensions and
package categories. A slice is a set that groups entities from one or multiple packages, i.e., it contains
packages, classes and methods.

Within Monticello, packages are not a first-class entity but rather a property of a class (i.e., pack-
age category). To accommodate this, we also include an organization container that enables analyses
of Monticello data.

4.6 Ring Usage Scenarios

The Ring source code meta-model was picked up by the community and it is already integrated
in Pharo 1.4 as the source code model for tool integration. In this section, we present two usage
scenarios to demonstrate how simple it is to build tools on top of Ring. We show how two existing
tools of the Pharo environment were ported to use Ring as their source code meta-model. Concretely,
we present the external code file browser and the refactoring browser source scoping model using
Ring. Note however, that both cases are under evaluation for future integration with Pharo.

4.6.1 External Code File Browser: Out-of-Image Code Browsing

Smalltalk IDEs allow developers to browse and load the contents of external source code files –
change set files (.cs) or Smalltalk source files (.st). Before loading source code files into an
image, developers usually browse the contents of such files to be sure that these files contain the
needed source code.

For this task, the Pharo environment provides users with a FileContentsBrowser shown in Fig-
ure 4.16 (left). The source code is represented with a meta-model created for this particular browser.

4.6. Ring Usage Scenarios 81

PseudoMetaclass

PseudoClassOrganizer

name
definition
organization
source
metaClass
isMeta

PseudoClass subject
classComment
commentStamp

BasicClassOrganizer
fullName
classes
doIts
sourceSystem

FilePackage

*

type
class
category
meta
stamp
string

ChangeRecord

*

Figure 4.16: The current file contents browser and its code meta-model.

This model is known as the pseudo classes model and is shown in Figure 4.16 (right).

PseudoClass and PseudoMetaclass represent classes and their metaclasses. On the one hand, both
classes are not related to the ones that define classes in the Smalltalk structural meta-model (shown
in Section 4.4.2.2), and do not fully implement the same API. On the other hand, a part of the class
data (i.e., comment, stamp and method categories) is managed by PseudoClassOrganizer, a subclass
of BasicClassOrganizer that is defined in the Smalltalk structural meta-model. Note that there is no
pseudo-method definition, but instead ChangeRecord objects representing methods are associated to
a pseudo class. This model also lacks a representation to explore traits from source code files.

baseClass
RGMetaclassDefinition

metaClass
classVariables
poolDictionaries
package
comment

RGClassDefinition

instancesVariables

RGClassDescription
Definition

superclass
methods
protocols

RGBehaviorDefinition

fileIn
fileInDefinition

RGFileBasedMetaclass
Definition

fileIn
fileInDefinition
hasChanges

RGFileBasedClass
Definition

fileInProtocol:
fileInMethods:
hasDefinition
hasChanges
addMethodFromChangeRecord:
addRemovedSelector:

RGTFileBasedBehavior
Definition

<<trait>>

protocol
sourceCode
stamp
package

RGMethodDefinition

*

fullName
classes
doIts

RGFileContents
Manager

theMetaClass

theNonMetaClass

*

users

RGTraitDescription
Definition

metaClass
package
comment

RGTraitDefinition

baseClass
RGMetatraitDefinition

fileIn
fileInDefinition

RGFileBasedMetatrait
Definition

fileIn
fileInDefinition
hasChanges

RGFileBasedTrait
Definition

theMetaClass

theNonMetaClass
*

Figure 4.17: Ring solution for replacing the pseudo classes model in the FileContentsBrowser.

Our solution for browsing source code file contents using Ring is shown in Figure 4.17. The
pseudo classes are replaced by Ring subclasses. They are shown without background and the Ring

82 Chapter 4. Ring: a Unified Model for Source Code Representation

classes appear with a grey background. Note that the model is larger in comparison to the current
pseudo classes, however we deal with all program definitions as first-class entities. Only classes and
traits have been extended to provide the specific behavior required by this browser (i.e., loading data
from change records/source code files and filing the source code in the image). For this we have
extended four classes of the Ring model. As classes and traits share the specific behavior mentioned
before, we provide the trait RGTFileBasedBehaviorDefinition to avoid code duplication.

We also simplified the original FilePackage and replaced it by RGFileContentsManager. This class
is dedicated to read files, to load the source code in the browser, and to offer the possibility to load
the code in the image (file in).

Figure 4.18: The new FileContentsBrowser.

Finally, we also included a new FileContentsBrowser shown in Figure 4.18. We did not “port” the
tool, but rather we recreated it using the extended Ring model and Glamour15, an engine for building
dedicated browsers.

4.6.2 Refactoring Browser Source Code Scoping Model

The Refactoring Browser and its current declarative source code scoping model were introduced in
Section 4.4.2.1. This case shows how we redesigned its source code model extending three classes of
Ring.

Figure 4.19 shows our solution for the source scoping model on top of Ring. We only needed
to subclass three Ring classes: RGClassDefinition, RGMetaclassDefinition and RGNamespace to repre-
sent classes, metaclasses and namespaces, respectively, with specific behavior of the browser. For
methods, we reused 6 of our the 18 methods from the original class and defined a class extension in
RGMethodDefinition to add parsing behavior.

The behavior of the Refactoring browser for classes and metaclasses to manage changes, refac-
toring and conditions was defined in the trait RBTClassDescription to avoid code duplication. An
important improvement of our solution is that variables are defined as first-class entities by means
of the Ring classes, which are not modeled in the current source code scoping model. This change

15Glamour: http://www.moosetechnology.org/tools/glamour

http://www.moosetechnology.org/tools/glamour

4.7. Discussion 83

RGClassDefinition

RGMetaclassDefinition

RGMethodDefinition

theMetaClass

RBNamespace

RBClass

RBMetaclass

RBTClassDescription
<<trait>>

theNonMetaClass

* *

RGClassInstanceVariable
Definition

RGClassVariableDefinition

RGInstanceVariable
Definition

RGPoolVariableDefinition

*

*

*

*

RGNamespace

newClasses

removedClasses changedClasses

BrowserEnvironment

CompositeRefactory
Change

changes

1

theMetaClass

theNonMetaClass

Figure 4.19: Refactoring Browser new declarative source code scoping model using Ring.

however did not affect the way the model refers to variables resulting beneficial for our solution as we
did not need to modify methods in any model within RB (i.e., source code model, refactoring model
and changes model).

Finally, the RBNamespace class that deals with changes of program entities and keeps such
changes in separated groups depending on their change status (i.e., new, removed, changed) suffered
few adaptations in its API. Concretely, we inherited it from the Ring RGNamespace class, removed
three methods and one instance variable.

4.7 Discussion

In this section, we discuss three aspects that need to be considered for improving the Ring source code
meta-model. They do not have an impact on the scientific contributions of this dissertation but refer
to technical aspects of our infrastructure that can provide developers with more extensible support for
source code representation and the analyses built on top of it.

Applicability to Other Languages. In general, Ring can be applied to other object-oriented pro-
gramming languages even though some of its definitions are specific to Smalltalk (e.g., traits, meta-
classes), while some specific constructs of other languages – such as interfaces for Java – are lacking.
We could consider to extend Ring directly with such definitions or build a layer on top such as a
RingJ source code model for Java programs. However, the added value of a new layer is not clear,
as a language-independent source code meta-model will be very similar to the FAMIX core source
model. Building such a language-independent source code meta-model on top of Ring would how-
ever offer the advantage that the other meta-models, as introduced in later chapters, could be used for
other programming languages.

Unifying Models. As shown in Figure 4.12, the Ring source code meta-model and the Smalltalk
runtime model are independent of each other but they implement a common API. We need to con-
sider whether both models should be merged. The question of knowing whether the runtime entities

84 Chapter 4. Ring: a Unified Model for Source Code Representation

know their representation is an interesting question from the perspective of a reflective model having
another separate and unconnected representation [Ducasse 2009]. The inverse is simpler, keeping
track of the runtime representation of entities from the declarative definitions makes it easy and ef-
ficient (e.g., Ginsu takes advantage of this). If we cannot simply have either reflective entities that
can be disconnected and play the role of declarative ones, merging both models can be an optimal
implementation of Ring.

Core source model API. We intend to encourage tool reusability by relying on a common API
of the main entities (i.e., classes, methods, variables) that basic tools may refer to. This avoids
having non-polymorphic APIs for representing entities among different tools. Related to the API the
question that arises is: “Are we considering all the definitions that external tools may need?”. A
typical problem is related to instance variables. Indeed instance variables are not first-class entities
in the Smalltalk reflective API even though they are important information for a number of tools.
Bridging both worlds and making sure that both structures can be navigated (for example using a
visitor) is considered a topic for further investigation.

4.8 Conclusion

In this chapter we presented Ring, our source code meta-model to represent the structure of object-
oriented software systems. This model is the base of the infrastructure provided in the context of this
dissertation as a means to assist integration. Ring is a technical contribution that enables us to build
a representation for changes and history of software systems and that in turn serve as the underlying
models for providing characterization of changes.

First, we introduced the requirements established for modeling the source code of a system taking
into account that such model must support history and change representation and analyses.

Second, we presented an analysis of four version control systems data models that we classified
in two groups: textual-based and code-based data models. These data models illustrate how version
control system store the information and how such information is related to the actual program entities
within the source code.

Third, we presented an analysis of seven source code meta-models defined for several purposes.
We classified such meta-models in two groups: non-Smalltalk specific and Smalltalk-oriented meta-
models. These meta-models served us to determine how current approaches represent program enti-
ties and gave us a background for introducing several features into our source code meta-model. In
the case of the Monticello source code meta-models, we showed how such models are connected to
the data models.

Fourth, we presented Ring, our source code meta-model together with its architecture. We illus-
trated the interaction between Ring and other components of our infrastructure. We then showed two
usage scenarios were we integrated Ring with existing tools from the Pharo as a means to illustrate
the use of the meta-model.

Finally, we discussed three aspects that we should consider as future technical improvements to
Ring.

CHAPTER 5

Torch: a Dashboard for Grasping
Changes

Contents
5.1 Supporting Change Understanding with Torch . 86

5.2 Layout of Torch . 86

5.3 Dashboard Visualizations . 88

5.4 Supporting the Answering of Integrator Questions 93

5.5 RingS: a Single-Delta Change Model . 94

5.6 Torch Usage Scenarios . 97

5.7 Evaluation . 105

5.8 Related Work . 113

5.9 Conclusion . 115

Contributions Map

 Source Code Meta-Model (Ring)

History Meta-
Model and
Analyses
(RingH)

Torch Tools

Change & Dependency
Meta-Model and

Analyses (RingC)

JET Tools

Single-delta
Change Meta-

Model and
Analyses (RingS)

Catalogue of
Questions

Integrators'
Information

Needs

⬇

Overview

This chapter describes our approach for characterizing changes within a single delta and the change
meta-model that it is the underlying model for our approach. This approach is an extension of our
work published at the Working Conference on Reverse Engineering [Uquillas Gómez 2010b]. First,
we introduce Torch, a characterization of changes and tool support for aiding integrators in under-
standing the context of single deltas. It provides the integrators’ information needs described in
Section 3.4 regarding changes within a delta. Second, we describe the architecture of RingS, a change
meta-model that represents changes between pairs of versions and the context in which these changes

86 Chapter 5. Torch: a Dashboard for Grasping Changes

exist. It was built on top of the Ring source code meta-model presented in the previous chapter. Third,
our approach is evaluated by means of usage scenarios, a field evaluation with six integrators and a
pre-experimental user study with ten developers. Finally, we compare Torch with other approaches
that we described in the state-of-the-art in Section 3.5.

5.1 Supporting Change Understanding with Torch

We described the challenges to characterize changes in Chapter 2.3 and we presented the requirements
for our solution in Section 2.4. Torch1 is part of our solution to assist integration within a branch.
For this, we make use of the integrators’ information needs described in Section 3.4 to provide a
characterization of changes from a single delta, and offer a means to integrators to support answering
questions from the catalogue (presented in Section 3.3.2) regarding these changes.

To support change integration within a branch, and in particular to assist integrators in compre-
hending changes, our approach, Torch, characterizes changes according to structural, authorial and
symbolic information. It provides a dashboard displaying object-oriented changes within a delta us-
ing class hierarchy inheritance and package distribution visualizations. The visualizations offer an
omnipresent contextual diff based on a fly-by help that allows integrators to explore changes.

Torch characterizes changes from a RingS change model. It provides visual tool support to in-
tegrators to comprehend changes in context. This means that changes are visualized with respect to
a target version. Torch helps integrators in making decisions about the integration of changes be-
fore performing the actual merging. In addition, it also offers developers a means to understand and
control their changes before publishing them.

5.2 Layout of Torch

In Figure 5.1 we show the Torch dashboard and its main elements. Several visualizations showing the
structural representations of changes are the core of the dashboard. It includes a contextual diff as a
fly-by help on top of the visualizations to speed up access to the textual information of changes. Torch
brings semantic information to changes exploration by combining graphical and textual information.
The visual mapping of changes to their structural representation helps users to get a quick overview
of the changes and to understand some of their characteristics, such as scope, size, type of change,
vocabulary involved, and number of impacted entities. The visualizations can also help integrators to
identify patterns among the changes (e.g., feature removals, methods calls replacements), and other
aspects such as complexity or semantic impact of the changes. In addition, Torch provides a set of
metrics about changes per program entity and per author.

In the following, we present an overview of the main elements of the dashboard (as shown in
Figure 5.1). In Section 5.3 we present a more extended description of the Changes visualizations
element of the dashboard.

Metrics. These present the size of the entities impacted by the changes (# packages, classes, meth-
ods) as well as measures characterizing the changes themselves (# added, modified, removed
entities). The first metric summary shows information per program entity (i.e., packages,

1Torch: http://soft.vub.ac.be/torch

http://soft.vub.ac.be/torch

5.2. Layout of Torch 87

Changes list

Parameters

Legend

Metrics

Changes
visualizations

Changes details

classesmethods

in place diff as a
fly-by-help

comment

variables

inheritance
(intra-package)

package

Figure 5.1: Dashboard main elements: the metrics give an idea of the size of the changed entities and
the actual changes; the changes list presents the list of changes and their detailed difference using
the changes details; the changes visualizations present a map of changes structured around packages
and classes.

classes, methods, variables) and per kind of action (i.e., added, modified, removed). The sec-
ond metric summary presents measures of changes per user and per kind of action, as it may be
important to understand who was responsible for the changes.

Legend. Colors are used to represent program entities and kind of actions. They are always visible to
help users to get instantaneous information and reinforcement of their knowledge. The legend is
the same in the entire dashboard: green for additions, blue for modifications, red for removals,
and yellow for modifications of class comments2. Icons follow these conventions as well.

Parameters. By default the visualizations display data of changed classes and intra-package rela-
tionships. Note that the changed status refers to added, modified or removed and it is applica-
ble to any program entity. Users can parameterize which classes should display their details by
means of the class status parameter (i.e., added, modified, removed, unchanged). Inter-package
relationships are shown on demand using the relationships parameter.

Changes list. Changes representing classes and methods are listed here. Selecting metrics and visual
entities filters changes from this list.

Changes details. Class definitions and comments, method source code, authors, protocols, and
symbols (i.e., vocabulary involved) are mainly presented using a diff view in this element of

2Modifications of class comments appear in yellow to increase the contrast with the background.

88 Chapter 5. Torch: a Dashboard for Grasping Changes

the dashboard.

Changes visualizations. Corresponds to the main element of the dashboard that visually shows
unchanged and changed program entities with their structural representations (e.g., see Fig-
ure 5.1). The changes are highlighted respecting the Conventions. The visualizations include a
contextual fly-by help that supports an in-place diff view.

5.3 Dashboard Visualizations

The comparison of two versions (i.e., base and target version) is graphically presented in the main
element of the dashboard, named Changes visualizations. This element shows software visualizations
with program entities, their relationships, and the vocabulary involved in changes (i.e., keywords
from the source code). Additionally, Torch does not only show changed entities between pairs of
versions but also unchanged entities within the target version, providing a complete visual, structural
representation of the target version with the context and characteristics of changes.

Software visualization. is the use of any graphic means (typography, graphic design, animation,
etc.) to facilitate human understanding of complex software systems [Stasko 1998]. A well-conceived
visualization [Tufte 2001, Ware 2004] triggers the human brain’s inherent capacity to combine com-
plex information from visual clues, making it possible to quickly understand a complex software
system. Furthermore, visualizations allow users to pre-attentively process3 the visual information:
rather than having to search for specific information (e.g., by extracting it from the source code),
visualizations can immediately draw a user’s attention to specific parts of a system.

Philosophy behind Torch’s visualizations

• Do not restrict the level of detail of the information provided

• Provide a single convention for multiple visualizations

• Maintain the link between a graphical program entity and its source code

• Maintain the link between the different visual representations of program entities

In object-oriented programs two main definitions are available for structuring a system: the pack-
age containment4 and the class inheritance relationships. In particular, it is important to understand
a change in its context since changes made in a class will impact subclasses or lead to the “yoyo ef-
fect" [Taenzer 1989,Wilde 1992]. Even a list of changes does not offer such a context and an overview
of the changes at the same time. This is why we design visualizations structured around these two
main axes: packages and inheritance hierarchies.

Before describing the main visualizations, in the rest of this section we explain the visual repre-
sentation of entities and the fly-by help utility.

3Pre-attentive processing is the unconscious accumulation of information from the environment [Van der Heijden 1996].
First, available information is pre-attentively processed. Then, the brain filters what is important for further and more
complete analysis by conscious (attentive) processing [Van der Heijden 1996].

4Note that package containment is not limited to object-oriented programs.

5.3. Dashboard Visualizations 89

5.3.1 Entities Representation

Torch uses two shapes for representing program entities: rectangles and triangles. Rectangles repre-
sent packages, classes, traits and methods; triangles represent attributes. The Torch dashboard uses
the same representations and conventions for displaying classes and traits, with the exception of how
the border is visualized. Dashed borders are used for traits and class extensions. Three kind of edges
are used for representing relationships: (a) arrowed edges for class-inherits-class, (b) dashed arrowed
edges for class-uses-trait, and dashed edges for class-is-extended-in-package. Colors are mapped
onto a kind of action (i.e., added, removed, modified, moved) of a program entity or inheritance
relationship.

Figure 5.2: Package containing unchanged classes (small dashed grey rectangles), removed classes
(red rectangles), added classes (green rectangle) and modified classes (blue rectangles). Classes
contain attributes (triangles) and methods (bars).

Packages. Figure 5.2 shows the modified System-FilePackage and its changed classes using a struc-
tural representation of classes. A package is displayed as a large rectangle containing all its classes
and traits (not only changed ones). Inside, when possible, classes are organized in class hierarchies,
and they show changes using any of the class representations explained later. Unchanged classes and
traits are represented by small dashed boxes.

Classes. A class has two visual representations for its changes: structural representation and con-
densed representation. Figure 5.3 shows both class representations making use of three classes
(added, removed and modified class). Note that the color of the border of a class and a light ver-
sion of the same color as the background of the class name represent whether the class was entirely
added (green), removed (red) or simply modified (blue). If the class comment of a class changed, this
is indicated with a colored box next to the class’ name (i.e., the comment was added - green, removed
- red or modified - yellow).

• Structural representation. A class is displayed using sections: the class name section, attributes
section and methods section (see classes on the top of Figure 5.3). DiffElement and ScreenCon-

troller have changed attributes, methods and comment, whereas CrLfFileStream has changed

90 Chapter 5. Torch: a Dashboard for Grasping Changes

Structural
representation

Condensed
representation

added comment

class name
attributes
methods

3 added
attributes

10 added
methods

2 added
methods

5 modified
methods

removed comment modified comment

Figure 5.3: Structural and condensed visual representation of classes

methods and comment, therefore the attributes section is hidden. The height of the bar repre-
senting a method is related to its number of lines of code. Modified methods have a blue border
and may include three inner colors which are mapped to the changes per line in their source
code (added line – green, removed line – red, and unchanged line – white), e.g., 5 methods in
the class CrLfFileStream.

• Condensed representation. Changed attributes and methods may also be presented together as
a single bar summarizing the number of changes (see classes at the bottom of Figure 5.3). The
bar is composed of colored segments. Each segment groups changes (e.g., added attributes,
removed methods), uses a color for that group of changes (e.g., added methods in dark green,
added attributes in light green, modified methods in blue) and has a height (the number of
those changes). This visual representation also includes a class name section as the Structural
representation.

5.3.2 Fly-by Help

Within our visualizations we provide two omnipresent fly-by helps to show the source code of any
method and the structure of any class or trait. They are available at any time when the user hovers
over a method, class or trait.

Diff as a fly-by help. The main visualization of the dashboard shows the structural representation
of changed classes/traits and makes use of a fly-by help to show the source code differences (diff) and
other information of any method. One important design point is that most of the visual representations
can be hovered over to display the associated code without having to change tool/pane.

Figure 5.4 shows a source diff as a fly-by help. It shows a method’s code and highlights line
additions in green and removals in red. The background color of added and removed lines appears
in light green and light red respectively. This allows us to show empty lines that were added to or
removed from the code. In addition, extra information of a method is displayed on top of the source
diff: the scope (i.e., instance or class method), the protocol, the author and the timestamp when the
change happened.

5.3. Dashboard Visualizations 91

modified class
modified method showing

addition and removal
method diff as a fly-by-help

scope, protocol, author and timestamp of method

Figure 5.4: Omnipresent code browsing: diff as a fly-by help.

Full class structure as a fly-by help. Most of our visualizations that display classes only include
changed attributes and methods. Torch complements this information by also offering a fly-by help
of the full class structure that appears when hovering over a class name, shown in Figure 5.5 (right).
Developers can see unchanged attributes and methods that are defined in a class (i.e., white bars and
triangles with grey border), and thus have a real idea of the number of changes that affected that class.
Furthermore, the fly-by help is also available for unchanged classes, allowing developers to observe
the structure of any class in the dashboard.

modified class displayed in
changes only mode

modified class displayed in
full mode

unchanged
class

hovering over class name

Figure 5.5: Class displayed in changes only mode (left). Omnipresent class structure: class displayed
in full mode as a fly-by help (right).

5.3.3 Package-centric Visualizations

Package-centric visualizations provide the structural context of any existing change, by distributing
classes and traits in packages and methods in classes or traits. Three visualizations are proposed and
represent the most complete source of information that Torch offers to integrators. Each has a special
purpose for supporting the understanding of changes. Figure 5.11 shows an example usage of this
kind of visualization.

92 Chapter 5. Torch: a Dashboard for Grasping Changes

• Changed Packages (details). When comparing versions with many unchanged packages, we de-
crease the size and complexity of the visualizations by only presenting changed packages. The
purpose is to provide an integrator with a visual, structural representation of changed entities.
Each package shows its classes and the inheritance relations defined within that package. Each
changed class shows its structural definition only containing changed methods and attributes,
allowing an integrator to focus only on what was changed in that class.

• Changed Packages (condensed). This visualization only presents changed packages. Its pur-
pose is to further minimize the visualization of the changes by using the condensed representa-
tion of changed classes.

• Packages (condensed). This visualization differs from the previous ones by also presenting
unchanged packages. Classes are shown with the condensed representation. The goal is to
show the general impact of changes (location, size and complexity) over the whole version.
An integrator can compare the size of changed versus unchanged packages and can observe
and explore classes defined in unchanged packages that may have relationships with changed
classes (e.g., inheritance).

5.3.4 Class-centric Visualizations

Class-centric visualizations exclude packages. This means that classes and traits are linked together
by their class inheritance and trait-use relationships. We also refer to this kind of visualizations as
inheritance-based. They are included in the dashboard because we consider that omitting package
containment relationships can provide an integrator with different views of how all the classes under
analysis are related. An example usage of this kind of visualization is shown in Figure 5.15.

• Changed Classes (details). This visualization shows the changed classes and other classes that
are part of its class hierarchy (i.e., superclasses and subclasses). The purpose of this visual-
ization is to show a more complete hierarchy of the changed classes allowing an integrator to
identify which unchanged classes may be affected by external changes.

• Classes (condensed). This visualization shows the same information as the Packages (con-
densed) visualization. However, it provides the general impact of changes by displaying all
classes and their inheritance relationships without package containment relationships. Classes
are shown using the condensed representation to minimize the size of the visualization.

5.3.5 Symbolic Clouds

Symbolic Clouds are the third kind of visualization presented in the dashboard. They show the vocab-
ulary that changed instead of changed program entities. The goal of symbolic clouds is to give hints
of the developers’ intentions while changing the source code (e.g., whether the change vocabulary is
different from the one of the application or new vocabulary is introduced).

The clouds are built by extracting method invocations, class references, and accesses to instance
variables and to three literals values (i.e., nil, true, false) from changed source code. Each symbol
is associated with the number of its occurrences in the source code and with a color defined in the

5.4. Supporting the Answering of Integrator Questions 93

added 20 times

removed 20 times

Figure 5.6: Added and removed symbolic clouds.

conventions (i.e., green for added symbols and red for removed symbols). The number is mapped
onto a font size that is used for drawing that symbol.

Three symbolic clouds convey the added, removed and mixed symbolic information. Figure 5.6
shows the two first clouds applied to the scenario where the combined method calls at:ifAbsent: and
at:put: (red symbols) were replaced by the method call at:ifAbsentPut: (green symbol). Figure 5.20
shows another example usage based on the mixed symbolic cloud.

5.4 Supporting the Answering of Integrator Questions

In this Section, we discuss how Torch can aid in answering the questions that integrators ask them-
selves when performing integration activities. We introduced a catalogue of 64 questions in Sec-
tion 3.3 that served to identify the integrators’ information needs in order to assist them during the
integration process. Multiple questions motivated several of the features provided by the dashboard
such as the diff as a fly-by help, symbolic clouds, metrics of changes, package-centric and class-
centric visualizations. These features ease answering several questions.

We guide our discussion based on the 5 categories used to classify the questions: (a) author/owner
questions, (b) behavioral questions, (c) structural change characterization questions, (d) infrastructure
questions, and (e) temporal and change stream questions.

Author questions. Four of the six questions in this group can be fully answered with Torch (e.g.,
“Who made this change?” or “Who wrote the original code that was changed?”), and the question
“What is the general quality of the change committer?” can be partially answered. The author of
any change and the committers of the versions compared are shown in the change lists. The diff as
a fly-by help also provides this information for any change on the visualizations. Answering “How
many people have contributed to this sequence of changes?” is not possible with Torch because it
only visualizes a delta and not a stream of changes.

Behavioral questions. Six out of the fourteen questions in this group can be partially supported
(e.g., “What is the reason for this change?” or “What are the implications of this change for API
clients?”). For this, the integrator can use the descriptive and structural information provided by the
dashboard. Questions such as “Does this change improve the quality?” or “Is this change correct?”
are not supported by Torch, and in fact both questions are not supported by our whole approach

94 Chapter 5. Torch: a Dashboard for Grasping Changes

because their subjectivity. The questions related to test coverage such as “Is the change covered by
tests? What is the coverage?”, “Did this change fix/break tests? Which tests?” or “Did the tests work
before the changes?” are not supported because currently Torch does not take tests into account.

Structural change characterization questions. Torch provides answers to 10 out of the 19 ques-
tions in this group (e.g., “What is the scope of this change? (which/how many classes/packages/..., is
local/global?)” or “Is this change confined to a single package?”). They are related to change size,
change scope and change structure. Two of them are partially supported (i.e., “Does the change fol-
low rule checking/conventions?” and “Is the vocabulary used in the change consistent with the one
of the system?”) by providing the symbolic clouds.

Questions such as “What are the required structural dependencies?” or “What other changes
depend on this change?” are not supported because Torch does not analyze prior changes that may be
needed by the changes within the delta that is visualized in the dashboard.

Infrastructure questions. The question “To which bug entry does this change relate?” regarding
the bug tracking infrastructure can be partially supported by Torch when the commit logs include that
information. Torch does not take other artifacts like documentation or bug reports into account, and
therefore such questions lie outside the scope of our approach.

Temporal and change stream questions. Most of the questions in this category are not supported
by Torch because they are related to changes within a stream (i.e., sequence of successive versions).
Torch partially supports 2 questions out of the 23 (i.e., “When was this change made?” and “What else
changed when this code was introduced or changed?”) by providing the timestamp of the changes
and the visualized structural information.

5.5 RingS: a Single-Delta Change Model

In Chapter 4 we presented the Ring source code meta-model. In this section, we present RingS, our
change meta-model for representing changes within a single delta (i.e., a set of changes between two
versions) extending our source code model. RingS enables the characterization of changes provided
by Torch to assist integration within a branch. As Torch requires us to know both which entities
changed, and in which way they changed, we introduce RingS to represent descriptive and structural
information. Both kinds of information are part of the integrators’s information needs described in
Section 3.4. By means of this information we can support answering questions from the catalogue
presented in Section 3.3.2 from within Torch regarding changes within a delta.

5.5.1 Architecture of RingS

RingS is a change meta-model built on top of Ring, and it is the underlying model for version com-
parisons and characterization of changes within a single delta. With RingS we can compare a pair of
versions (i.e., base and target), or multiple pairs of versions at the same time. Since our tools target
the Pharo environment and the Monticello version control system, this comparison takes into account
that a commit may consist of multiple package versions published separately, therefore a delta may
be the result of comparing pairs of package versions.

5.5. RingS: a Single-Delta Change Model 95

RingS models the changes between a base and target version by providing a representation of the
entities in the target version, along with the respective status for each entity (e.g., added, unchanged).
Moreover, any entity is aware of which of its properties changed (e.g., for a method its source code
may have changed). To provide the context of the changes, we are required to model the whole target
version and not only the differences between the base and the target versions.

RGSClass

RGSMetaclass

RGSTrait

RGSMetatrait

RGSMethod

RGSPackage

RGSTObject
<trait>

RGSChangeElement

RGClassDefinition

RGMetaclassDefinition

RGTraitDefinition

RGMetatraitDefinition

RGMethodDefinition

RGPackage

RGInstanceVariableDefinition

RGClassVariableDefinition

RGPoolVariableDefinition

RGClassInstanceVariableDefinition

RGSPoolVariable

RGSClassVariable

RGSInstanceVariable

RGSClassInstanceVariable

RGObject

RGSlice

RGElementDefinition

RGCommentDefinition RGSComment

RGSProtocol

RGSSlice

RGSAuthor

RGSExtension
*

*

*

*

RGSTBehavior
<trait>

Figure 5.7: RingS single-delta change meta-model - Key classes.

In Figure 5.7 we show the RingS single-delta change meta-model (classes with white background)
and how it extends the Ring source meta-model (classes with grey background). Note that in this
diagram we mostly show the inheritance relationships between RingS and Ring classes. Other rela-
tionships such as associations between RingS classes are the same as in the Ring meta-model shown
in Figure 4.13, e.g., a RGSClass object may have zero or more RGSInstanceVariable objects.

Base Classes

To manage the status of every object and the status of its properties, we defined a core trait, namely
RGSTObject. It is used by the classes in the model, as seen in the figure (right).

RGSTObject defines the behavior for setting and retrieving the status of an object, such as added,
removed, modified and unchanged. It also manages the attributes (i.e., variables in Smalltalk) of any
object when such attributes are changed.

The changes between versions may be represented as changed properties within program entities
(e.g., the superclass of a class, the source code of a method, etc). To deal with changed properties in
RingS, the class RGSChangedElement has been defined. This class also uses the RGSTObject trait,

96 Chapter 5. Torch: a Dashboard for Grasping Changes

and allows RGSChangedElement objects to be marked as added, modified or removed. For example,
suppose we compare two versions in which the superclass of class Monkey was changed from the
class Animal to the class Mammal. In a RingS model the status of the Monkey object is modified, and
its superclass instance variable has a RGSChangedElement object with the Animal and Mammal objects
corresponding to the previous and current values respectively.

Another trait – RGSTBehavior – is defined for sharing behavior between classes and traits that
manage methods, protocols and variables. This trait uses RGSTObject and therefore it provides classes
and traits with the RGSTObject behavior as well.

We group all entities from the target version(s) in a so-called slice, which is a concept that comes
from Monticello. A slice is a set that groups entities from one or multiple packages, i.e., it contains
packages, classes and methods. A slice is used to version multiple packages together and to alleviate
partially the lack of explicit commits. RingS models slices with the class RGSSlice.

Additional Classes

RingS defines two additional classes with respect to Ring for managing the author of the changes, and
protocols of methods and class extensions.

Authors are defined as first-class entities by means of the class RGSAuthor. This allows us to
associate metrics to each author (e.g., number of additions). An author can be directly associated with
a class and a method (independently of the status of such entity). The authors of a slice are defined as
the set of authors of all the entities contained within the slice.

In Smalltalk methods can be annotated with the category to which they belong, known as a pro-
tocol. It serves as a means to organize methods by their underlying purpose. Therefore, a protocol
does not affect the semantics of the system. However, instead of defining protocols as String objects,
in RingS protocols are defined as first-class entities. They are modeled with the class RGSProtocol

that is a subclass of RGElementDefinition from Ring. Therefore a protocol is also an element of a class
or trait.

Smalltalk supports class extensions [Bergel 2005], i.e., developers are able to add methods to
classes that are contained in packages different from the ones which the classes belong to. For ex-
ample, if class C is contained in package P and method foo of class C is contained in package R,
then method foo is a class extension of C. This is a simple mechanism that allows developers to add
behavior to existing entities without subclassing them in other packages.

In RingS, class extensions are also represented as first-class entities by means of the class RG-

SExtension. This class is a subclass of RGSClass. Note on the figure that a RGSClass object or a
RGSTrait object that models classes and traits may contain multiple class extensions.

Graphic Layer

Another characteristic of the program entities defined in the RingS change meta-model is that each is
associated to a class that defines how such entity is drawn on the dashboard. By means of this, we
can easily reuse the graphic representation of entities throughout Torch.

The graphical logic of several program entities is shown in Figure 5.8. For each entity that needs to
be drawn in the dashboard a class has been defined (i.e., slice, package, class, trait, extension, method,
variable and protocol). We call them graphic classes. They inherit from the class RGSGraphicObject.

5.6. Torch Usage Scenarios 97

RGSGraphicClass

RGSGraphicTrait

model
RGSGraphicObject

RGSGraphicExtension

RGSGraphicMethod

RGSGraphicPackage

RGSGraphicProtocol

RGSGraphicSlice

RGSGraphicVariable

RGSGraphicSymbolicCloud
<<trait>>

Figure 5.8: RingS single-delta change meta-model – Graphic classes.

This class knows the model (i.e., entity) to be drawn and how to draw it. Several objects (e.g.,
methods) are able to display the symbolic clouds explained in Section 5.3.5. They use the behavior
defined in the trait RGSGraphicSymbolicCloud.

5.6 Torch Usage Scenarios

In this section, we show as part of an evaluation of our approach how Torch characterizes changes
within a single delta by using the integrators’ information needs (described in Section 3.4). More
precisely, we illustrate the usage of Torch by applying it to the changes5 of the Pharo project. This is
a qualitative evaluation performed by the author of this dissertation. We took the repositories located
at www.squeaksource.com/PharoInbox and ss3.gemstone.com/ss/PharoInbox containing the commits of the
Pharo versions 1.3 and 1.4, and the repositories located at www.squeaksource.com/PharoTreatedInbox and
ss3.gemstone.com/ss/PharoTreatedInbox containing the commits once they have been integrated into the
current release. By means of this internal evaluation, we show how Torch helps understanding and
characterizing some typical scenarios. Note that Torch can be applied to any other change scenario.
The purpose of this section is to give an idea of how the dashboard reflects the changes.

Torch can supports integrators answering several questions from the catalogue presented in
Section 3.3.2. Especially, the ones in the authorship/ownership and structural changes cate-
gories. Such as: “Who made this change?”, “What kind of change is it? (Bugfix/New fea-
ture/Refactoring/Documentation)”, “How large is the change?”, “What is the scope of this change?
(which/how many classes/packages/..., is local/global?)”, etc.

In the following, we apply Torch to six scenarios and discuss how it assists integrators in obtaining
their information needs.

5.6.1 Removing a feature

In particular cases, certain features that became irrelevant or unused are removed. An integrator can
easily detect a feature removal with the Torch dashboard. The pattern is simple (i.e., mostly removed

5Our usage scenarios are based on changes that were published as slices. The name of a slice has the following notation:
“SLICE”-(“Issue”-numberOfIssue)-description-committer.numberOfVersion

www.squeaksource.com/PharoInbox
ss3.gemstone.com/ss/PharoInbox
www.squeaksource.com/PharoTreatedInbox
ss3.gemstone.com/ss/PharoTreatedInbox

98 Chapter 5. Torch: a Dashboard for Grasping Changes

entities which appear all in red) but it can be subtle: indeed clients may need to remove references
to the removed features (i.e., such clients can be represented as modified classes and modified or
removed methods). The dashboard provides a broader view than a list of changes. It shows the
magnitude and impact of such a removal on the system using the structure of its program entities.

removed FlapTab
modified client methods

removed client methods

removed client methods

Figure 5.9: Removing the feature FlapTab : several methods in clients were modified and other
methods were simply removed – SLICE-FlapRemoval-AlainPlantec.1 (Oct. 17th 2009).

Figure 5.9 shows the removal of the UI feature FlapTab. The class FlapTab was completely
removed (all its methods are red and the class border is red as well indicating that the class has been
removed), as well as many of its client methods. We can also see that some client methods got adapted
(i.e., modified) by removing a few lines of code (methods with blue border).

Figure 5.10: Removing the feature Pen: classes Pen and PenPointRecorded

were removed and their client classes also removed entire methods –
SLICE-2163-RemovePenAndPenPointRecorder-MarianoMartinezPeck.2 (March 18th

2010).

Figure 5.10 shows the removal of the feature Pen. The classes Pen and PenPointRecorder were
completely removed as well as their client methods.

Both cases show how Torch visually eases the identification of feature removals. Regarding the
integrators’ information needs, the kinds of actions play a key role (in these cases removals are pre-
dominant while modifications may appear for client adaptations). An integrator can also observe the
different structural information of changes such as the kinds of entities that are affected (e.g., methods,

5.6. Torch Usage Scenarios 99

classes, variables, packages), the structure (e.g., class hierarchies within packages, variables within a
class), and the scope of the changes (e.g., the first case shows the removal of FlapTab within a single
package, while the second case shows the removal of Pen cross-cutting 4 packages). At the same
time, descriptive information such as the size of the changes is provided, and therefore an integrator
can answer questions such as “How large is the change?” by only observing the number of affected
entities in the dashboard. The diff as a fly-by help can ease answering author/owner questions.

5.6.2 Removing a feature and deprecating its API

Changes associated to a feature removal are mostly deletions of source code. However, the complete
removal of a feature is not often a practice that is adequate and deprecating the API is an important
action to help clients adapt to the new interface. In addition it may happen that the feature is kept
while the objects responsible to implement it are changed.

In this section we show the pattern of feature deprecation. This pattern is a variant of the feature
removal pattern discussed above. The most important difference is that in this pattern, facilities are
introduced to make developers aware that they are using deprecated code.

Figure 5.11: Removing the feature PointerFinder and deprecating its API: its functionality was
substituted by another tool – SLICE-PointerFinderRemove-AndyKellens.1 (June 11th 2010).

This case shows that in Pharo existed two tools to identify memory leaks (trace pointers), namely
PointerFinder and PointerExplorer. The developers opted to remove this duplicated functionality by
deprecating PointerFinder.

Figure 5.11 shows the effect of the feature deprecation. Nearly all the methods of the class
PointerFinder were removed as shown by the red methods, and three methods were modified (i.e.,
marked as deprecated) as shown by the green and red stripes within the bars with a blue border. The
source code of the method pointersTo: before and after the deprecation is shown in the omnipresent
diff as a fly-by help.

100 Chapter 5. Torch: a Dashboard for Grasping Changes

To ease migration of existing client code of PointerFinder, the developers added a couple of meth-
ods offering access to the pointer tracing functionality in ProtoObject (see class at the top, second
package). All other changes (mostly modifications in methods) correspond to the clients of Point-

erFinder that now make use of the new implementation.
Note that this case shows a different visual pattern than when fully removing a feature. As can be

seen in Figure 5.11, no class removals exist. Instead multiple method removals within a single class
are present. The integrator can easily identify this pattern but making use of the diff as a fly-by help
on the affected program entities and the structural information provided. For example, an integrator
can first focus on the class with the majority of removed methods (in this case PointerFinder), and
second inspect the changes cross-cutting other packages to verify whether they correspond to users of
the deprecated feature. By exploring the changes in the dashboard the integrator can answer questions
such as “Do all the changes within the commit belong together or are they unrelated?”

5.6.3 Introducing a feature

The dashboard reflects new features as a set of added classes and/or methods, along with some mod-
ifications in existing classes (i.e., method modifications) that make use of the new features. When
a feature introduction is submitted as a single set of changes, it is easily identified in the dashboard.
Otherwise having other unrelated changes in the same delta may decrease the visibility of this pattern.

added text links representing
variables, methods and classes

styler class makes
use of the new text links

new clients of text links

Figure 5.12: Introducing features: new variations of text links for code styler –
SLICE-Issue-5233-Support-Semantic-Source-Links-CamilloBruni.5 (Feb. 6th 2012).

Figure 5.12 shows the introduction of three variations of text hyperlinks. They are TextClassLink,
TextMethodLink and TextVariableLink hyperlinks. The code styler feature SHTextStylerST80 (large class
in the package on the right) is the main user of these hyperlinks. The boxes of the three added
classes have a green border to represent additions. We see these classes as indirect subclasses of
the TextAttribute root class, accompanied by few method additions in several classes in that hierarchy.
Browsing the code of other changed classes with the fly-by help confirms that they are clients of the
new features, in particular the styler SHTextStylerST80, TextEditor and Paragraph (not displayed in the
figure).

For an integrator, detecting the addition of a feature on the dashboard is very similar to a removal.
The only difference is that instead of having multiple red classes or methods, with a new feature

5.6. Torch Usage Scenarios 101

the dashboard shows multiple green classes and methods. This is combined with the blue classes
representing the clients using the new feature (i.e., classes that added, modified or removed methods).
Note again that structural information of the changes such as kinds of actions, kinds of entities,
structure and scope allow an integrator answering questions such as “Does this change define only
one feature?” or “What is the complexity of the changes/of the touched entities?”.

5.6.4 Pushing up methods / Introducing methods in a class hierarchy

Since classes are structured in inheritance trees and methods may impact multiple classes, it is impor-
tant to understand where the changes happen in an inheritance tree. Torch provides package-centric
and class-centric visualizations that both make use of the inheritance relationships between classes.
However, when changes affect an inheritance tree that cross-cuts several packages, the class-centric
visualizations show a better view of these changes and ease the identification of change patterns (e.g.,
a push up method refactoring).

Package-centric visualization

Class-centric visualization

Figure 5.15: Pushing up methods in the SequenceableCollection class hi-
erarchy, and introducing a method in the Collection class hierarchy –
SLICE-Issue1629-universal-indexOfAnyOf-nice.1 (Dec. 18th 2009).

Figure 5.15 shows a push up method refactoring affecting a inheritance tree contained in three
packages. At the top a package-centric visualization and at the bottom a class-centric visualization
of the same scenario are shown. Note that class-centric visualizations can be more appropriate to
observe this kind of changes. The method indexOfAnyOf: and its variants – originally implemented in
String (removed methods) – were pushed up to its indirect superclass SequenceableCollection and their

102 Chapter 5. Torch: a Dashboard for Grasping Changes

redefinitions were added in two subclasses of String (green methods).

This scenario also shows another change affecting the same inheritance tree: the introduction of
findFirstInByteString:startingAt: in Collection, the top superclass of this hierarchy, and its redefinitions
(added methods) in CharacterSetComplement, WideCharacterSet and CharacterSet.

The integrator can use any of the visualizations for each scenario. However, he can observe that
certain scenarios fit better with a particular kind of visualization. This case for example, as shown in
the package-centric visualization displays modified classes (with blue borders) in three packages that
are linked by inheritance relationships. Still, this visualization does not give an immediate overview
of the inheritance tree. Therefore, a class-centric visualization that omits the package containment
relationship (as shown on the bottom) is more appropriate. Note that an integrator can have a first idea
of what happened: by using the diff as a fly-by help he can confirm that the affected methods represent
a refactoring. Moreover, he can also identify that a second change introducing behavior in the same
inheritance tree was submitted in the same commit. Questions such as “When multiple packages are
committed at the same time, do I really need to load all of them now, or can I just load/merge with
the version of the package I am working on?” can be answered.

In this scenario, the structure of changes plays a key role to ease understanding these changes. By
only observing the dashboard an integrator can already infer what happened in the inheritance tree
and which other classes within the tree may be affected.

5.6.5 Adding comments

Non-functional changes, such as additions or modifications of class/method comments do not change
the semantics of an application. Usually, these changes are distributed over several entities producing
large lists of changes. Users of diff tools have to check each change just to find whether it was a
cosmetic change, using valuable time for a task that should not demand it. Torch presents a class
comment as a box next to the class name, and it is displayed in green, red or yellow for an added,
removed or modified comment respectively. The users can know that even though a change can be
large in terms of the number of modified entities, there is no semantic impact.

modified method
(added comment)

added class comments modified class comment

Figure 5.16: Adding comments: documenting the graphical TickSelection morph classes
– SLICE-Issue-4844-Add-Comments-On-TickList-Classes-BenjaminVanRyseghem.1

(Sept. 21st 2011).

Figure 5.16 shows the addition and modification of comments in the graphical TickSelection

classes. Figure 5.17 shows the modification of comments in many classes defined in the Pharo core

5.6. Torch Usage Scenarios 103

modified methods

modified class comments

Figure 5.17: Editing comments: removing the squeak word from the Pharo core –
SLICE-Issue-1795-RemovingSqueakReferences-VeronicaUquillas.1 (June 11th 2010).

(64 classes among 41 packages were modified) removing any reference to the word squeak (the an-
cestor of the Pharo system) from the documentation. Both cases also show a couple of comment
additions and modifications at method level (two shown with the diff as fly-by help). Basically, in
these scenarios the developers documented several classes, which are displayed in the dashboard as
the colored boxes next to the class names.

Characterizing changes of class comments by means of colored boxes can speed up understand-
ing of the changes within a delta. More importantly, an integrator can immediately identify that
these changes do not affect the semantics of the system and therefore they can be safely integrated.
Note that by providing this characterization of changes, an integrator can mainly focus on under-
standing the changed methods. Again, questions such as “What kind of change is it? (Bugfix/New
feature/Refactoring/Documentation)” and in this concrete case, questions about the impact of changes
(e.g., “What is the total impact of this change?” or “If I just apply the change, what are the parts of
my current system that it will break?”) can be answered.

5.6.6 Replacing method calls

Introducing enhancements to a system such as replacing or renaming particular methods, results in a
set of changes consisting of both the methods and the clients that call these methods. Depending on
how many clients call these methods, a large number of changes may be produced. The integration
of this kind of changes can also demand a lot of time from integrators as they will probably inspect
every change, even though the change itself is simple.

The package-centric visualization of this scenario will show multiple modifications of methods
cross-cutting several packages. As in this case the vocabulary involved in the change (i.e., the old
call and new calls) is limited, the use of the symbolic clouds can greatly enhance the visualization of
changes. The symbolic clouds aim at showing the relevant vocabulary affected by a change. When
replacing or renaming method calls they will show few symbols referring to the old and new calls,
each with a high occurrence (i.e., drawn with large font sizes).

Figure 5.20 shows two visualizations applied to the same scenario where a method call was re-
placed on its clients. At the top a package-centric visualization and at the bottom a symbolic cloud

104 Chapter 5. Torch: a Dashboard for Grasping Changes

Package-centric visualization

Mixed symbolic cloud

added 14 times

removed 14 times

Figure 5.20: Replacing method calls upTo: Character cr with nextLine –
SLICE-Issue-2539-useNextLineAndLinesDo-HenrikSperreJohansen.1 (June 12th

2010).

are shown. The pattern in the package-centric visualization shows each modified method having two
colored sections (corresponding to an added and a removed line of code). The symbolic cloud com-
plements that visual information of program entities by providing the added and removed symbols
that actually changed in the code. In the scenario, the mixed symbolic cloud shows that 14 methods
were modified. In each method the two combined method calls upTo: and Character cr were replaced
by nextLine.

An integrator can observe from the symbolic cloud that the vocabulary involved is small even if
the change is large. Moreover, this structural information obtained from the methods’ source code is
relevant to support answering questions such as “Is the vocabulary used in the change consistent with
the one of the system?”. By combining the symbolic clouds with the visualization of changes that
displays mostly modified methods, the integrator can infer the kind of change.

5.7. Evaluation 105

5.7 Evaluation

In the previous section we provided anecdotal evidence showing that Torch supports specific integra-
tion tasks. The usage scenarios described in the previous section show us that Torch helps integrators
and developers understanding and taking decisions when integrating changes. Now the question of
knowing whether our approach is useful in practice is an important and difficult one to answer. Indeed
it is difficult to perform a controlled experiment with master or PhD students since we need experts
of complex systems. In addition, accessing a large number of integrators is nearly impossible since
integrators are unavailable for performing large experiments. For the first evaluation we performed a
limited field study with the integrators of three projects (Moose6, Pharo, Seaside7) from the Smalltalk
community. For the second evaluation we performed a pre-experimental user study about the usability
of Torch with ten developers.

Usability. Nielsen emphasized that usability is not a single, one-dimensional property of a user
interface, but that it is associated with five attributes: learnability, efficiency, memorability, errors,
and satisfaction [Nielsen 1993]. Another known definition of usability is provided by ISO 9241-11
(Guidance on usability) as “the extent to which a product can be used by specified users to achieve
specified goals with effectiveness, efficiency and satisfaction in a specified context of use”.

5.7.1 Field Evaluation

Table 5.1 shows the characteristics of the three Smalltalk projects obtained from http://www.

squeaksource.com (Projects).

Project Packages Classes Methods LOC Versions Downloads

Moose 4.x 95 599 7186 60359 3434 341031

Pharo 1.x 156 1937 44644 346447 9616 1397493

Seaside 3.0 155 1268 11577 83145 4823 1203350

Table 5.1: Open-source projects with which Torch was evaluated (on March 13th, 2012).

Moose is an extensive platform for software and data analysis of several object-oriented program-
ming languages [Nierstrasz 2005]. It offers multiple services ranging from importing and pars-
ing data, to modeling, measuring, querying, mining, and building interactive and visual analysis
tools.

Seaside is an open-source framework for developing sophisticated web applications in
Smalltalk [Ducasse 2010]. It supports agile development through interactive debugging and
unit testing.

We asked two integrators of each of these projects to use Torch during their daily work. We also
asked them to answer the questionnaire presented in Appendix A. The questionnaire is composed of
two main parts. The first part presents closed questions that the integrators needed to mark using a

6Moose: http://www.moosetechnology.org
7Seaside: http://www.seaside.st

http://www.squeaksource.com
http://www.squeaksource.com
http://www.moosetechnology.org
http://www.seaside.st

106 Chapter 5. Torch: a Dashboard for Grasping Changes

5-point Likert scale: strongly disagree = 1, disagree = 2, neither agree nor disagree = 3, agree = 4,
and strongly agree = 5. The second part consists of open questions oriented to obtain more feedback
of what can be improved in Torch.

The six integrators agree that change integration is a difficult task (3 rated agree and 3 rated
strongly agree). With respect to their personal qualification, they reported to be expert on the system
they integrate, and five of them find visualizations in general very useful. One integrator reported that
in general he does not find visualizations useful (he gave a neutral answer on the question Do you
find visualizations useful?), but after performing the evaluation he reported that the dashboard and its
visualizations helped him in the integration process and that he wants to use Torch from now on.

In Table 5.2 we present a summary of the results of nine questions of the first part of the ques-
tionnaire (see Appendix A). We classify these results in two categories: (a) common tasks that they
perform when comparing versions, and (b) their experience using Torch. Note that in the second cate-
gory we only show the questions about the general overview of the use of Torch. The values presented
in the table correspond to the number of integrators that marked a rating scale.

Question Strongly Disagree Neither agree Agree Strongly
disagree nor disagree agree

Tasks when comparing versions

Identify if changes contain one or multiple fixes 0 1 1 2 2
Identify / characterize changes (semantic, cosmetic,
structural fix) or (maintenance, addition, removal, en-
hancement)

0 0 0 2 4

Assess criticality of changes 0 1 1 1 3
Analyze impact of changes 0 0 0 0 6
Compare branches for merge 0 1 0 1 4
Torch experience

Would you like to use Torch in your daily integration
process?

0 0 0 3 3

Does the Torch dashboard help you? 0 0 0 3 3
Do you find the diff as a fly-by help showing code on
any entity useful?

0 0 0 0 6

Do you think you got a better understanding of the
changes, their scope and their impact using Torch?

0 0 0 3 3

Table 5.2: Summary of partial results about the use of Torch.

The results for the first category show that for integrators the main goal of comparing versions is
to assess the impact of changes, followed by the identification and characterization of changes, and
the comparison of changes between branches for merging purpose. This confirms again that such
activities play a key role when integrating changes.

The results in the second category show that integrators were positive, especially when it comes
to using Torch in their daily integration process. In particular, they were really positive about the
omnipresent diff as a fly-by help. This confirms that integration is a textual activity but that visualiza-
tions and textual diffs can be efficiently integrated. Finally, the six integrators also agreed that Torch
provided them with a better way to understand changes.

5.7. Evaluation 107

The second part of the questionnaire included open questions such as:

• Which features of Torch need to be improved?

• Do you think some aspects are not covered by Torch? Which features are missing?

• Do you know about existing approaches/tools intended for version comparison presenting vi-
sualizations with the structural model and changes as Torch does? If yes, mention them.

None of them know about approaches that present an overview of changes using their structural
information as Torch. This in particular reinforces our knowledge about the lack of support for help-
ing the integration process with other tools than file or folder diffs. Furthermore, they provided us
valuable feedback for improvements and missing features. Below we present some of the integrators’
recommendations. We consider these as future work. “Torch should...”:

• classify changes by semantic impact.

• steer the decision to merge or cherry pick a change directly from Torch and not with yet another
tool.

• detect simple renamings.

• merge some visualizations and provide the different representation of classes (structural and
condensed) on demand.

• include a panel to allow integrators to customize the level of details presented in one visualiza-
tion, instead of providing multiple visualizations.

Other suggested improvements by the integrators were already implemented in Torch, such as:

• show inheritance or trait usage relationships on demand (especially when unchanged classes
are linked to changed classes).

• add extra information of a method when showing the diff as a fly-by help of its source code.

5.7.2 Pre-Experimental User Study

We performed a second evaluation to assess the usability of Torch. This pre-experimental user study
was mostly oriented to Smalltalk developers. Even if this kind of study cannot result in any absolute
claim regarding the usability of Torch, it provides insights about the perception of users towards the
tool and several of its features. Quasi-experiments have been successfully applied for providing an
initial assessment of program comprehension tools [Matthijssen 2010].

The definitions of usability before mentioned relate to the perceptions of the participants that we
quantify in our evaluation of Torch and its features. By means of using Torch in concrete scenarios
the participants provide their opinions about its usability.

Study design. The quasi-experiment consists of a pre-test and post-test, both presented in Ap-
pendixes B and C. The pre-test quantifies the attitude of developers towards tool support and change
understanding, and their expectations regarding change visualization tools. The post-test quantifies
their perception about the task performed, their experience using Torch, and the evaluation of Torch
and its different features. The results of the post-test give us insights about how the participants feel
about the efficiency and satisfaction of using Torch to analyze and understand changes.

108 Chapter 5. Torch: a Dashboard for Grasping Changes

We compare the results of the pre-test and the post-test to quantify how the use of Torch influenced
the developers’ perception of a visual tool for understanding changes, and which of Torch’s features
were considered useful by the developers. To this end, we measured the following properties:

• Value of visualizations: Do visualizations aid in understanding changes?

• Information usage: Does the combination of textual and graphical information speed change
exploration and understanding?

• Class representation: Do UML like class representations provide a suitable means to express
structural characteristics?

Ten developers performed the experiment that took about 40 minutes in total and consisted of the
following steps:

1. Fill out the pre-test. This test consisted of 21 statements that, next to measuring the properties
aforementioned, asked them about their background knowledge.

2. Attend a short presentation about Torch and its features.

3. Use Torch to understand two usage scenarios and identify the change patterns in each case.

4. Fill out the post-test consisting of 22 statements.

For the third step, we provided the participants with a Pharo image loaded with Torch and the
two usage scenarios. We made use of two scenarios presented in Section 5.6. More precisely, the
“removing a feature and deprecating its API” and “pushing up methods / introducing methods in a
class hierarchy” scenarios, as both show interesting change patterns.

Both tests used a 5-point Likert scale to score each statement: totally disagree = 1, disagree = 2,
neither agree nor disagree = 3, agree = 4, and totally agree = 5.

Developers profile. The ten participants of our user study are experienced software developers with
various backgrounds. 2 hold an Engineering degree, 5 hold a Master degree and the remaining 3 a
PhD. The initial part of the pre-test asked them about their knowledge of development in general,
Pharo usage, IDE usage and version control systems usage.

1

2

3

4

5

A B C D E

Figure 5.21: Boxplot of pre-test – participants’ background: (A) development experience, (B) OO
experience, (C) Smalltalk IDE experience, (D) usage of IDE’s facilities, and (E) usage of version
control systems’ facilities.

5.7. Evaluation 109

Figure 5.21 shows a summary of the results in this part of the pre-test using boxplots. They give
an indication of how the data (i.e., answers) is distributed. As seen in the boxplots for the values of
(A) and (B), note that the median in both cases is 4 (agree on the scale), the maximum value is 5
(totally agree) and at least one developer rated 3 (neutral answer) as the minimal value. Meaning that
the majority qualified themselves as experienced OO developers. Regarding the use of a Smalltalk
IDE (not necessarily Pharo), the result for (C) shows that our group of participants was not limited
to Smalltalk developers. For example, at least one developer has no Smalltalk knowledge, several
developers have little knowledge of Smalltalk IDEs and several developers are proficient with Pharo.
As it can be seen in (D), all of the developers highly use some facilities of IDEs. Finally, they also
regard themselves as knowledgeable users of version control systems. At least one participant rated
himself as intermediate user, as shown in (E).

The results in general indicate that our participants were qualified for performing our experiments
using Torch. The majority are experienced object-oriented developers with a good knowledge of
IDEs and version control systems. We consider the fact that not all of them are Smalltalk experts
an advantage, because we can receive different points of view regarding the support provided for
understanding changes.

Pre-test vs. Post-test. For each of the three properties mentioned before we compare two state-
ments: one from the pre-test and one from the post-test. We show the comparison of the three mea-
sures in Figure 5.22. The white bars represent the values from the pre-test and the grey bars represent
the values from the post-test.

!"

#"

$"

%"

&"

'!"

'" #" (" $")"

!"#$%"&'($)*$+,-'"&,."/)0-$

!"

#"

$"

%"

&"

'!"

'" #" (" $")"

!"#$%&'()*+,(&$-.+/0$

!"

#"

$"

%"

&"

'!"

'" #" (" $")"

!"#$%&'(($)*+)*(*,-'./,$

Figure 5.22: Comparison of the pre-test (shown in white) and post-test (shown in grey). X axis
represents the 5-point Likert scale, Y axis represents the number of participants that selected a scale
point.

The value of visualizations property shown in Figure 5.22(a) measures the statements “Having a
visualization helps understanding changes” and “Torch aids in understanding changes”.

The information usage property shown in Figure 5.22(b) measures the statements “Graphical and
textual information about changes should be combined together to speed change exploration
and understanding” and “I like the fly-by help to explore the source code from within the
visualizations at any time without opening a new window”.

The class representation property shown in Figure 5.22(c) measures the statements “I find diagrams
of my software (UML, ...) useful” and “Torch’s use of class representations (UML like) makes
change identification easier”.

110 Chapter 5. Torch: a Dashboard for Grasping Changes

As we can see in Figure 5.22(a), all developers were very positive about the value provided by
Torch (see grey bars). One agree and nine of them strongly agree that Torch helped them understand-
ing changes. In the pre-test, the results were less positive than in the post-test. This shows that Torch
exceeded their initial perception of the usefulness of visualization for understanding changes.

For the information usage property shown in Figure 5.22(b) all participants (strongly) agreed with
the advantages of combining textual and graphical information in the pre-test. Regarding the post-
test, only one participant did not agree with the advantage of the diff as a fly-by help as a means
to provide textual information on top of the visualizations. Despite being asked, this person did not
fill out any details. The rest strongly agree that the fly-by help offers an advantage, confirming that
combing both kinds of information enhances the support provided by Torch.

With respect to the visual representation of classes shown in Figure 5.22(c), the results were het-
erogenous in both the pre-test and post-test. The opinion of the developers is divided with respect
the usefulness of diagrams such as UML: two disagree, three were neutral, and five (strongly) agree.
This perception improved after using Torch as shown in the results of the post-test. Only one partici-
pant strongly disagreed and one was neutral about the usefulness of a visual representation for classes
similar to the one used in UML diagrams. Eight developers (strongly) agreed that this eased change
identification.

Features of Torch. From the post-test we extracted relevant information about the usefulness of
several features of Torch. In particular, we present the developers’ perception related to five features:
(a) is the detailed class representation useful?, (b) does the package-centric visualizations provide
enough information?, (c) is the diff as a fly-by help useful?, (d) is the full class structure as a fly-by
help useful?, and (e) is the presence of unchanged program entities needed to understand the context
of the changes?. The results are shown as boxplots in Figure 5.23.

1

2

3

4

5

A B C D E

Figure 5.23: Boxplots of post-test – Torch’s features: (A) detailed class representation, (B) package-
centric visualizations, (C) diff as a fly-by help, (D) full class structure as a fly-by help, and (E)
presence of unchanged entities.

For the first feature, the majority of the results are positive. The median is 5 corresponding to
totally agree and the minimum value is 3 corresponding to neither agree nor disagree. With respect
to package-centric visualizations, the results indicate that developers agreed with the usefulness of
this feature and several have a neutral opinion about it. The third boxplot refers to the diff as a fly-by
help. It shows that nine developers totally agreed with the advantages of the diff and one disagreed
without providing a reason for this. The results for the fourth feature are also very encouraging. All

5.7. Evaluation 111

participants saw the advantage of providing this information on top of the visualizations. Finally, the
developers were positive about the presence of unchanged entities in the visualizations. As seen on
the last boxplot (E) the median is 4 corresponding to agree.

5.7.3 Threats to Validity

For the field study, we contacted the integrators by email. To prevent the introduction of any bias
regarding the use of Torch, we did not interact personally with these integrators. We provided inte-
grators with: (1) a short tutorial about the features of Torch and how to use them, (2) the instructions
to load Torch into a Pharo image, and (3) the questionnaire to be filled out. None of integrators had
problems loading or using Torch, and all of them were able to try each of its features. This field study
provided us with insights about the usability of our tool.

For the pre-experimental user study, we gathered the 10 developers in one room to explain them
about the experiment. After they filled out the pre-test, we only provided a short demonstration of
Torch that took about 10 minutes. For the rest of the experiment, they were left on their own. Each
developer went to his respective office to apply Torch to two real scenarios and fill out the post-test.
As with the field study, we did not want to influence them when using the tool.

Our pre-experimental study does not allow us to make any generalizable claims regarding the
usability of Torch. Nevertheless, the user study does allow us to observe how potential users perceived
our tool. The validity of these observations is however subject to a number of threats.

Performed Tasks. One possible threat to validity of this study is the definition of the set of tasks
performed by our participants. Our scenarios showed the benefits of our approach characterizing
changes. While there is a chance that these scenarios coincidentally favor Torch, we would like to
stress that they were not designed for this experiment. Both scenarios came from actual integration
activities within the development history of the Pharo project. We described them in Section 5.6
among other usage scenarios. However, we are aware that a more extensive evaluation of our approach
is needed and we discuss with future work in Section 8.4.

Size of the group. The number of participants in our pre-experimental user study was small. Ten
developers might not form a representative sample to evaluate the usability of the features of Torch.
However, we believe it to be representative since the background of the participants was diverse. Only
3 participants are researchers, which means the majority evaluated Torch with the expectation of an
actual tool and not just an experimental approach. They all reported to be experienced developers,
and not necessarily Smalltalk developers. Five participants master other languages such as Java or
C++. This gave us different points of view regarding the use of Torch and its features, considering
that they are used to different IDEs such as Eclipse.

Language generalization. The integrators who replied to our first validation are all Smalltalk de-
velopers. The developers who participated in the second validation formed a rather heterogeneous
group. However, most of them use Smalltalk for their work. We did not test Torch on Java or C#
programs and with integrators. Since the file structure of these languages is also based on packages,
classes, methods, and since the RingS meta-model used by Torch can be extended we believe that our
approach can be adapted to other languages.

112 Chapter 5. Torch: a Dashboard for Grasping Changes

Generalization. As with any field study, it is difficult to conclude that our approach can be fully
generalized. The projects we selected are real open-source projects with a large number of versions.
They are heavily maintained and developed. We would like to investigate if Torch can be efficiently
used for Java applications, however we are concerned with the engineering cost of integrating Torch
in the Eclipse/Idea IDEs in addition to the Smalltalk ones.

5.7.4 Discussion

The evaluations performed with integrators and developers were very productive. They not only gave
us feedback regarding the usability of our approach but also provided us with valuable ideas for
improvements from the point of view of (potential) users.

In the case of the field study, the six integrators filled out every single open question with various
suggestions of what can be improved, added or even removed. In general, they all found Torch useful
for their respective integration tasks. Even though, not all of them are used to deal with visualizations
as a means to support tasks, after using Torch they agreed that the dashboard eased the understanding
of changes. We were very satisfied after knowing that the integrator reluctant about the value of
visualizations requested to have an image with the tool to use it for his work.

In the case of the pre-experimental user study, we could evaluate the perception of potential users
of Torch. Having an heterogenous group, with no just Smalltalk developers was an advantage. As
we could gather the perception of developers regarding the usability of a tool that supports change
understanding from different points of view. This study also provided us with in-depth insights about
every single feature in Torch and what can be improved.

Furthermore, while applying Torch to our usage scenarios described in Section 5.6 we can see
patterns in the visualizations that speed up understanding of changes, for example, feature removals,
cross-cutting changes, documentation changes, and so on. This can guide integrators during the
comprehension of changes, e.g., they can focus on analyzing particular changes that do not fit within
the visual pattern. The usage scenarios also served us to detect possible cases that decrease the level
of help provided to integrators and developers. In the following, we present three aspects that should
be considered for improving our approach.

• When commits are messy and contain unrelated code, Torch presents the situation as it is.
Currently, it does not support tagging to classify changes. Being able to tag changes into a kind
of slices (i.e., separate groups of changes) would help in this situation.

• In the same vein, due to the fact that Torch allows the simultaneous comparison of multiple
pairs of versions (e.g., all the package versions involved in a commit), this may result in a
complex visualization with a high number of drawn entities and inheritance relationships. For
example, if changed classes have a considerable number of subclasses cross-cutting several
packages, the edges representing inter-package inheritance relationships produce noise. One
integrator pointed out this problem and gave some ideas of improvements, which we have since
taken into account.

• The most important limitation of Torch is that it only shows structural information. How an
integrator or developer understands the impact in terms of different program behavior is also
very important. We are aware that assessing the impact of a change on the program behavior is

5.8. Related Work 113

needed but at the same time it is a difficult task since it is another step towards semantic merge
or understanding program semantics. We address this point as an avenue for future work in
Section 8.4.

5.8 Related Work

In Section 3.5 we presented the state-of-the-art including several approaches that support understand-
ing changes. After explaining Torch we can provide a more in-depth look of how these approaches
differ from Torch. In the following, we start by presenting a summary of approaches in the area
of software visualization, then we proceed to a more extended discussion related to approaches that
characterize, understand and document changes, and provide aspect analyses.

5.8.1 Software Visualization

Within the reverse engineering and software maintenance community, software visualizations are a
well-established medium for supporting tasks related to program comprehension and evolution. Tasks
that benefit from software visualization include software exploration [Storey 1997b, Storey 1997a],
visualization of metrics [Lanza 2004, Arbuckle 2008], visualization of co-changes [Beyer 2005], the
study of evolution patterns [Lanza 2001, D’Ambros 2006, D’Ambros 2007], and the comprehen-
sion of individual classes [Ducasse 2005, Robbes 2005] and packages [Ducasse 2006a]. Beyond
source code, visualizations have been proposed for other types of data such as bug tracking informa-
tion [D’Ambros 2007] and versioning information [Lungu 2010] as well as aspect-oriented program-
ming [Fabry 2011].

However, none of these approaches target aiding developers in comprehending how particular
changes affect a software system, as is needed for cherry picking changes and therefore in assisting
integration.

5.8.2 Class and Method Understanding

Ducasse and Lanza [Ducasse 2005] provide a call-flow based representation of classes to support
class understanding. Their approach – Class Blueprints – is a semantically augmented visualiza-
tion that shows the internal structure of a class distributed by showing different layers that group
methods and attributes. Another visualization approach – Microprints – is proposed by Robbes et
al. [Robbes 2005]. It offers three pixel-based visual representations of methods enriched with seman-
tic information such as state access, control flow, and invocation relationship. This approach provides
fine-grained information about the method signature and body for supporting method understanding.

While both approaches provide deep understanding of program entities (classes and methods),
they do not provide the same information as Torch necessary for characterizing changes within a
delta. Torch eases in understanding changes in a single delta regarding to the structure of the system.
Torch could be enhanced by integrating Class blueprints and Microprints into the changed classes and
methods.

114 Chapter 5. Torch: a Dashboard for Grasping Changes

5.8.3 Change Characterization

Dragan et al. [Dragan 2011] propose a technique to characterize a commit based on the methods that
were added or removed in that commit. This approach is influenced by their previous works on reveal-
ing patterns of design from the current version of the system at three different levels of abstraction:
method [Dragan 2006], class [Dragan 2010], and system [Dragan 2009]. Such a categorization of
methods (stereotypes) [Dragan 2006] takes various properties of the method (accessing data, changing
state, interaction with other objects, and so on) into account. By detecting these method stereotypes
and, by studying the distribution of the method stereotypes within a commit, they propose a number
of categories of different kinds of commits. This approach is related to our work in the sense that the
identified commit types can provide an integrator with valuable information regarding the size and
scope of a commit. However, this technique only takes into account the changes that might impact
the system’s design and therefore does not provide a general overview of the changes, or a complete
categorization of changes prior the integration phase.

5.8.4 Understanding Changes

Fritz and Murphy [Fritz 2010] present a study in which they interviewed developers regarding the
different kinds of questions they need answered during development. Alongside this study, they
introduce the information fragment model and associated prototype tool for answering the identified
questions. This model provides a representation that correlates various software artifacts (source
code, work items, teams, comments, and so on). By browsing the model, developers can find answers
to particular development questions.

While a number of the questions that developers need answered during development align with
those they need answered during integration of changes, the information fragment model is purely
textual and does not provide visualizations of the changes related to the structure of the system.

Several change impact analysis approaches presented in Section 3.5, such as Chianti [Ren 2004],
decompose the difference between two versions of a software project into a set of atomic changes.
Most of them report change impact in terms of affected (regression or unit) tests whose behavior may
have been modified by the applied changes.

While both approaches provide a means to better understand changes, Torch offers visual
overviews and characterization of changes. This could be complemented with a change impact anal-
ysis similar to the one provided by Chianti.

5.8.5 Documenting Changes

Commit 2.0 [D’Ambros 2010] is a tool that supports documentation of software changes at commit
time. Using visualizations, the tool allows developers to enrich commit comments with annotations.
While similar to our approach, their visualizations are less detailed and contain less information about
the changes.

5.8.6 Aspect Analysis

Pfeiffer and Gurd [Pfeiffer 2006] propose Asbro, a tool that provides a tree map visualization of where
aspects apply in packages and types. Rectangles representing classes or packages are colored with an

5.9. Conclusion 115

aspect color if an aspect applies there. The authors assess their tool as being beneficial for obtaining
a high-level overview of aspect application, and state that it is scalable up to on average 2100 classes.
Coelho and Murphy propose ActiveAspect [Coelho 2006], a tool that shows an automatically selected
subset of the elements in the code, depending on the current focus of the developer. They extend UML
with a representation of aspects, method execution advice and method call advice.

Fabry et al. [Fabry 2011] propose a visualization tool – AspectMaps – that shows implicit invo-
cations in the source code by visualizing join point shadows where aspects are specified to execute.
It provides fine-grained information (e.g., type of advice, specified precedences) for any joint point
shadow. AspectMaps allows users to obtain more information of the structure of the code by using a
selective structural zooming functionality.

Asbro, ActiveAspect and AspectMaps are dedicated to the visualization of aspects and do not
support diff of source code or removal/changed code support or author information.

5.9 Conclusion

In this chapter we presented Torch, our tool for providing a characterization of changes within a single
delta and supporting change understanding. Torch offers a change overview by means of visualiza-
tions, change metrics and two omnipresent contextual fly-by helps. Furthermore, Torch offers a diff
to explore the source code of a method, and a visual representation to explore the complete structure
of a class in the dashboard.

First, we explained the layout and main components of Torch, along with the different kinds of
visualizations available: package-centric, class-centric and symbolic clouds.

Second, we presented the RingS single-delta change meta-model that allows us to provide de-
scriptive and structural information of program entities within a target version and of the changes
regarding to a base version.

Third, we described our evaluation of Torch by means of six usage scenarios extracted from the
development history of Pharo. By means of the usage scenarios, we have presented the capabilities
of Torch for charactering changes, defining change context and overview. Moreover, these scenar-
ios allows us to visualize change patterns on the visualizations, such as feature removal or method
replacement.

Fourth, we described two studies as part of the evaluation of Torch. (a) A limited field study
performed with six integrators of 3 projects within the Smalltalk community. Integrators applied
Torch to their daily integration activities and they filled out a questionnaire. This study provided us
with valuable feedback regarding the usability of Torch and with suggestions for improvement. (b) A
pre-experimental user study by means of pre-tests and post-tests performed by 10 developers. They
applied Torch to two of our usage scenarios. We did not make generalizable claims out of the results,
but they have provided us with insights into how users perceive Torch and several of its features.

Fifth, we discussed several approaches related to Torch in the areas of software visualization, class
and method understanding, change characterization, change understanding and aspect analysis.

CHAPTER 6

RingH and RingC: History and Change
Models & Analyses

Contents
6.1 Modeling the Evolution of a System . 118

6.2 RingH: a History Meta-Model and Analyses . 121

6.3 RingC: a Change and Dependency Model and Analyses 135

6.4 Calculating Deltas and Dependencies from the Stream 139

6.5 Conclusion . 145

Contributions Map

 Source Code Meta-Model (Ring)

History Meta-
Model and
Analyses
(RingH)

Torch Tools

Change & Dependency
Meta-Model and

Analyses (RingC)

JET Tools

Single-delta
Change Meta-

Model and
Analyses (RingS)

Catalogue of
Questions

Integrators'
Information

Needs

⬇

Overview

This chapter presents two meta-models – RingH and RingC– that support the analysis of systems’
histories and serve as the underlying models for the version comparisons and streams of changes
analyses. Both models are built on top of the Ring source code meta-model described in Chapter 4.
First, we describe existing meta-models that model the evolution of Smalltalk systems. Second,
we present the history meta-model RingH and how the history of a system stored in a versioning
repository is built in terms of RingH. Third, we present the change and dependency meta-model
RingC and how a change model is created. Fourth, we explain the delta and dependency mechanisms
that compute deltas and dependencies. In this chapter we present RingC and the delta and dependency
analyses at a contextual level. In the next chapter, we present a client tool built on top of RingC and
also provide some benchmarks regarding the efficiency and size of the model and analyses.

118 Chapter 6. RingH and RingC: History and Change Models & Analyses

6.1 Modeling the Evolution of a System

In Section 3.5, we briefly presented several approaches modeling source, changes and history. Later
in Chapter 4, we discussed in-depth several meta-models for source code representation, and we
introduced our own unified source code meta-model, namely Ring. This meta-model is the basis of
our infrastructure and serves as foundation for modeling the history and changes of a system.

In this section, we revisit two Smalltalk approaches for history and multiple version representation
introduced in Section 3.5. Both approaches extend the FAMIX source code meta-model that we
discussed in Section 4.4.1.2.

6.1.1 Hismo

Hismo [Gîrba 2005a, Gîrba 2006] is a meta-model based on the transformation of a structural meta-
model into a history-aware meta-model for software evolution analysis. Key to this meta-model is
that the history needs to be modeled as a first-class entity for being accessed and manipulated by other
tools. Various analyses have been implemented based on Hismo: for example in [Gîrba 2005b] it was
used to assess the evolution of class hierarchies.

Figure 6.1 and Figure 6.2 illustrate part of the Hismo meta-model.

rank: Integer
date: Date
referenceVersion: Version

Version
Snapshot

AbstractEntity

ranks[*]: Integer
referenceHistory: History
select(filter: Predicate): History

History 1
rank snapshot

1

*

HasVersion
0..1

history
version

/succ

0..1
0..1

/pred

Figure 6.1: Hismo design

Figure 6.2: Overview of the Hismo meta-model

6.1. Modeling the Evolution of a System 119

Hismo is based on the notion of history as a sequence of versions. Given a representation of
a Snapshot (i.e., an entity at a point int time), time information is added to it through a Version.
Moreover, a Version exists in the context of a History. Hismo models are constructed by transforming
snapshot meta-models, e.g., FAMIX core meta-models, where each FAMIX model represents a single
version of the system.

As shown in Figure 6.2, Hismo uses a class hierarchy to model the different entities and relations
in the version history. Considering that the Snapshots are modeled using the FAMIX core, Hismo
offers a means to represent the versions of entities that can be found in such a meta-model. More
precisely, it models the history of packages, namespaces, classes, methods and attributes, along with
the inheritance associations that are defined between the classes.

In a Hismo model, the history of each entity (e.g. class, method, inheritance relationship) is rep-
resented by a single history object, that contains a representation of all the versions of this entity. For
example, in the figure we can see ClassHistory that is a representation of the history of one particular
Class. Within such a class history, each version of the class is represented by a Version object (for the
version of a class, this object is the ClassVersion).

Figure 6.3: Transforming a FAMIX core meta-model (snapshot) into a Hismo model

Note that the Hismo model is dual to the FAMIX core meta-model, as shown in Figure 6.3.
In other words, if there exists a relationship between two entities (e.g. an inheritance relationship
between two classes), this also implies that there will be a relationship between the versions of these
classes in the Hismo model.

Hismo is limited because it is a copy-based approach. It does not matter that a program entity
only changed a few times in the lifetime of a system: if the system’s history is made of 100 versions,
Hismo creates 100 Version objects for that particular entity. Therefore, the memory consumption and
object creation time is related to the size of the system and the size of its history.

Now consider a concrete case – the history of the Monticello1 distribution in Pharo 1.3. The core
package of Monticello is defined by 98 classes and 1080 methods. The history of this package is
made of 143 versions. To ease the calculation of potential created objects by Hismo assume that these
classes and methods existed since the initial version. The resulting Hismo model will contain (143 *
1080) 154440 MethodVersion objects, (143 * 98) 14014 ClassVersion objects, and the same applies for
attributes, accesses, inheritance, and so on.

1Monticello in the released Pharo 1.3 (located at http://www.squeaksource.com/Pharo) data on June 25th, 2012

http://www.squeaksource.com/Pharo

120 Chapter 6. RingH and RingC: History and Change Models & Analyses

This is a small case compared to the history of Pharo until version 1.3. The history of the Pharo’s
core is made up of 9622 versions, and the core itself is defined by 156 packages, 2020 classes and
45779 methods. Hismo models for large systems do not scale and are impractical for performing
history analysis.

6.1.2 Orion

Orion [Laval 2009, Laval 2011] is an interactive prototyping tool for software reengineering that
allows developers to simulate changes and compare their impact on multiple versions of software
source code models. Orion’s meta-model is an extension of the FAMIX source code meta-model.
The key point of this meta-model is the memory usage optimization of multiple versions for large
models, that is, to save memory space and creation time, entities which do not change are shared
between different versions of the model.

run(): void

OrionAction

parentVersion

contains(OrionEntity): boolean
createChildVersion(): OrionModel
retrieveEntity(OrionEntity): OrionEntity

OrionModel

1
0..n

OrionContext

currentModel(): OrionModel

FAMIXEntity

FAMIXReference

FAMIXAccess

FAMIXInvocation

FAMIXInheritance

FAMIXClass

FAMIXMethod

FAMIXNamespace

FAMIXPackage

MooseModel

OrionReference

OrionAccess

OrionInvocation

OrionInheritance

OrionClass

OrionMethod

OrionNamespace

OrionPackage

CompositeAction

AtomicAction

currentVersion(): OrionEntity
orionID(): Integer

<<interface>>
OrionEntity

entities

0..n

1
1

currentModel

1

0..n

changedEntities

0..n

0..n

2..nchanges

targets

Figure 6.4: Orion meta-model

Figure 6.4 shows an overview of the Orion meta-model. OrionModel, OrionEntity, and OrionAction

are the core classes in this model.
OrionModel models a version of the system. Each version knows its parentVersion which allows to

build a tree structure of the system’s history. The tree root represents the original model and contains
the program entities from the current source code. An OrionModel keeps a set of OrionEntity objects.
OrionContext points to the current version of the system where the reengineering is happening. Thus,
navigating between versions implies changing the OrionContext to point to the wanted version.

OrionEntity represents a structural program entity or a reified association between entities. Four
kinds of entities are supported: OrionClass, OrionMethod, OrionPackage and OrionNamespace, and

6.2. RingH: a History Meta-Model and Analyses 121

four kinds of associations: OrionReference (from a method to a class), OrionInvocation (method call),
OrionInheritance, and OrionAccess (from a method to a attribute). Each OrionEntity has an orionID which
is unique across all versions. A newly created entity receives a new, unique orionID. A changed entity
keeps the same orionID as its ancestor. This identifier allows Orion to keep track of changed entities
between different versions of the system.

OrionAction models two kinds of actions – AtomicAction and CompositeAction – that can be per-
formed during the reengineering. AtomicAction such as remove a method, move a class, or create a
package, and CompositeAction such as merge two packages or split a class are supported.

The sharing of entities between models happens when importing the history of a system. That
is, OrionEntity objects are only created when a program entity or association actually changed. This
combined with the usage of an unique identifier for each program entity or association throughout the
models representing a system’s history optimizes the memory usage and querying time.

While Orion tackles the disadvantages of Hismo by introducing the notion of shared entities be-
tween versions, Orion has been designed to support reengineering. Concretely, it simulates scenarios
by means of actions to create snapshots that represent the future of a system. Moreover, Orion does
not handle explicit changes and dependencies. Both issues limit the applicability of Orion in our con-
text. We focus on representing the history, changes and dependencies to support streams of changes
analyses and thus assist the integration process.

6.2 RingH: a History Meta-Model and Analyses

In this section we present our history meta-model and analyses, RingH, that supports the represen-
tation and analyses of system histories. We mention the requirements for our meta-model before
describing its architecture and analyses.

6.2.1 Requirements for RingH

We established several requirements for representing the history that enable us to provide a complete
and efficient support for performing analyses.

• Model history as a first-class entity: reify the history to encapsulate knowledge about evolution
and version information. This allows using historical information to understand the evolution
of a system.

• Allow fine-grained representation: more than representing packages, classes or methods, we
also require to track the history of attributes, class inheritances, and relationships existing in a
method’s body such as method calls, reference to classes, and accesses to attributes.

• Use a unique identifier for program entities and relationships: the use of a unique identifier for
the same program entity throughout the history allows to keep track of the whole evolution of
this entity and ease the access to such information.

• Model only changed program entities and relationships: the history of an entity should only be
represented by objects defining a different state of its evolution. Disregarding the number of
versions of which the history consists. For example, if a method only changed once in a system

122 Chapter 6. RingH and RingC: History and Change Models & Analyses

made of 15 versions, the method history should be represented by two method definitions (i.e.,
one for the original method, one for the modified method) shared among the rest of the versions.

• Keep track of deleted entities: identify that an entity introduced in Vn already existed in a
previous version makes the history more complete. It could be important for an integrator to
identify why an entity was removed and later reintroduced.

• Represent multiple branches and merges: with a heavy use of branching, the history of a system
may be scattered between branches. We need to take this into account and be able to model and
track merge operations.

• Ease of querying: for large and complex histories an important requirement is to ease the access
to such information for integrators.

Furthermore, for representing large systems with large histories two technical requirements
should be taken into account: (a) minimal object creation time, and (b) optimized memory con-
sumption. Note that both technical requirements are the motivation for the meta-model of the Orion
tool presented in Section 6.1.2. They can be tackled by the requirements use a unique identifier
for program entities and relationships and model only changed program entities and relationships,
following the same approach taken by Orion.

6.2.2 Architecture of RingH

Based on the requirements we define RingH, a meta-model to provide a historical representation of the
program entities and their relationships conforming a system’s history. RingH is inspired by Orion’s
meta-model and built on top of the Ring source code meta-model presented in Chapter 4.

RingH models the history program entities such as packages, classes, traits, methods and at-
tributes, and the history of relationships such as attribute accesses (method-to-attribute), method
calls (method-to-method), class references (method-to-class) and class inheritances (class-to-class or
class-to-classes).

The classes in RingH are extensions of the classes in Ring. This allows us to take advantage of the
API and behavior supported by the program definitions and relationships defined in the source code
meta-model.

Figure 6.5 shows the main classes of the history meta-model (shown without background) and
how these classes are linked to the main classes of the source code meta-model (shown with grey
background).

Core Classes of RingH

In the following, we provide a brief description of the main classes defined in the meta-model. We
group them based by their purpose.

Base Class. As Smalltalk does not support multiple inheritance and the classes of the history meta-
model already inherit from the correspondent classes of the source code meta-model, we needed
another mechanism to support the historical behavior of each class without duplicating code. We
implemented several traits, RGTHistory being the core trait in the history meta-model.

6.2. RingH: a History Meta-Model and Analyses 123

RGClassHistory

RGMetaclassHistory

RGTraitHistory

RGMetatraitHistory

RGMethodHistory

RGPackageHistory
entity

*

RGTHistory
<trait>

RGRemovedHistory

RGHistoryWrapper

RGSnapshot

RGClassDefinition

RGMetaclassDefinition

RGTraitDefinition

RGMetatraitDefinition

RGMethodDefinition

RGPackage

RGInstanceVariableDefinition

RGClassVariableDefinition

RGPoolVariableDefinition

RGClassInstanceVariableDefinition

RGPoolVariableHistory

RGClassVariableHistory

RGInstanceVariableHistory

RGClassInstanceVariableHistory

snapshot

RGObject
predeccessors*

elements

lookupSnapshot

Figure 6.5: RingH history meta-model - Key classes modeling program entities.

A trait is a collection of methods that can be included in the behavior of a class without the need
for inheritance. This makes it easy for classes to have a unique superclass, yet still share useful
methods with otherwise unrelated classes.

RGTHistory defines the behavior that applies to every historical entity in the system. Note in
Figure 6.5 that all the classes connect to RGTHistory by means of a dashed edged line which indicates
that a class uses the behavior defined in a trait. RGTHistory allows classes in the history to define
and access key information, such as the unique identifier (id) described in the requirements. The
predecessors and successors of an entity that show how that entity evolved (e.g., if the history of class
Zoo is represented by Zoo → Zoo’ → Zoo” where each of them have the same id, then the predecessor
of Zoo’ is Zoo and its successor is Zoo”. The snapshot in which each object is created (e.g., the class
Zoo was created in the first snapshot S1). The snapshot in which each object may be resolved (e.g.,
if the class Zoo” was created in the third snapshot S3 and it is be resolved in S1 the result is the Zoo

object). Additionally, RGTHistory provides key utilities for comparison, evolution support, querying,
testing and so on.

At the end of this section we describe snapshots in detail. Meanwhile, a snapshot can be con-
ceptually considered to be the version of the system in which an entity changed with respect to its
previous state.

Special Classes. In the model we define three special classes: RGNilHistory, RGRemovedHistory and
RGHistoryWrapper. Here we describe the two first classes that play an important role in the evolution
of any program entity. RGHistoryWrapper is explained together with snapshots at the end of this
section.

RGNilHistory is a singleton used to represent the beginning of the evolution of any program entity
or relationship. It can be considered like the nil object in Smalltalk. For example, the history of class
Zoo is then represented by:

124 Chapter 6. RingH and RingC: History and Change Models & Analyses

instance of RGNilHistory → Zoo → Zoo’ → Zoo”

Where the predecessor of Zoo is a RGNilHistory object. The class RGNilHistory has minimal be-
havior that allows us to keep consistency regarding to the used API, and at the same time to keep a
consistent representation of the objects conforming to the evolution of any program entity or relation-
ship.

RGRemovedHistory represents a removed program entity or relationship in the history of a system.
By means of this class we tackle the requirement keep track of deleted entities. This also helps detect
cases when a deleted entity is later reintroduced, and at the same time allows us to keep track of the
whole evolution of that entity. For example, if class Zoo” is removed in the snapshot S5, the new
history of this class is represented by

instance of RGNilHistory → Zoo → Zoo’ → Zoo” → RGRemovedHistory Zoo′′

Now suppose that in a later snapshot the class Zoo was added again to the system, the new repre-
sentation Zoo”’ is linked with its previous existing history resulting in

instance of RGNilHistory → Zoo → Zoo’ → Zoo” → RGRemovedHistory Zoo′′ → Zoo”’

At the implementation level, RGRemovedHistory wraps the last existing entity (Zoo”) and the last
snapshot(s) in which that entity existed. Note that Zoo” was created in S3 but existed till S4. A
RGRemovedHistory object is the successor of the last existing program entity, and if that program
entity is later reintroduced then the RGRemovedHistory object is its corresponding predecessor. RingH
treats a removed object somehow as any other historical object.

Representation of Program Entities. RingH models the evolution of packages, classes, traits,
methods and attributes (known as variables in Smalltalk) as shown in Figure 6.5. Modeling these
program entities is part of the information needed to characterize changes discussed in Section 3.4
regarding the structural information and in particular kind of entities. Therefore, their history can
be used to answer several of the questions from the catalogue presented in Section 3.3.2. In the
following, we describe the different classes of RingH that model the evolution of program entities.

Classes and Traits. The concrete definitions that model the evolution of classes and traits are
RGClassHistory and RGTraitHistory. They inherit from RGClassDefinition and RGTraitDefinition,
both defined in the Ring source code meta-model. The historical behavior of classes and traits
is defined by means of traits. RGTBehaviorHistory is the trait that defines their common behavior
and allows them to manage the history of methods. Another trait RGTClassDescriptionHistory

used by RGClassDefinition provides the behavior to manage the history of attributes (i.e., vari-
ables). Furthermore, RingH also models the evolution of metaclasses (inherent to Smalltalk)
as first-class entities. Instead of mixing the methods and variables defined at the class-side of
a class, and the methods defined at the class-side of a trait, we model metaclasses as separate
entities by means of RGMetaclassHistory and RGMetatraitHistory respectively. Therefore, the
evolution of a class and its metaclass is maintained separately, but connected at the same time
by specifying which is the metaclass of a class, and which is the class of a metaclass. Both
definitions always exist together upon evolution.

6.2. RingH: a History Meta-Model and Analyses 125

Methods. The evolution of methods is represented by the RGMethodHistory class that inherits from
RGMethodDefinition. A method knows in which class, trait or metaclass it is defined, and in
which package it is contained.

Variables. Regarding variables, in Smalltalk there exist 3 kinds of variables that can be defined in
a class (i.e., instance variables, class variables, and pool variables also known as pool dictio-
naries), and one kind of variable that can be defined in a metaclass (i.e., class instance vari-
ables). RingH models the evolution of these kinds of variables with RGInstanceVariableHistory,
RGClassVariableHistory, RGPoolVariableHistory and RGClassInstanceVariableHistory respectively.
These four classes inherit from their corresponding definitions in the Ring source code meta-
model (see Figure 6.5).

Packages. RingH also models the evolution of packages with the class RGPackageHistory. A package
knows which classes and methods it contains, and classes and methods know in which packages
they are contained. Moreover, a RGPackageHistory object also contains versioning information
corresponding to its committed package version, such as commit message, committer, times-
tamp, version name, location (repository), etc. Even though a package is not really considered
a source code program entity but instead it is used for deployment, our meta-model treats pack-
ages as another program entity to ease their representation and querying. This also reflects the
fact that integrators require information of packages as they do with any other program entity.
Hence, keeping the history of packages as first-class entities can be used to answer questions
and to characterize changes as well.

Representation of Relationships. RingH also models the evolution of five kinds of relationships:
class inheritances (class-inherits-class) and (class-is-inherited-by-subclasses), method calls (method-
calls-method) (known as invocations in Smalltalk), class references (method-refers-class), and vari-
able accesses (method-accesses-variable). We refer to the first two relationships as class’ relation-
ships, and to the last three kinds of relationships as method’s relationships.

RGReferenceHistory

RGSuperInheritanceHistory

RGSubInheritancesHistory

RGInvocationHistory

RGTHistory
<trait>

RGAccessHistory

RGReferenceDefinition

RGInheritanceDefinition

RGInvocationDefinition

RGSelfInvocationHistory

RGStaticInvocationHistory
RGAccessDefinition

RGAssociationDefinition

RGSuperInvocationHistory

RGUnknownInvocationHistory

RGClassHistory

RGMethodHistory

*

*

*

1

1

superclass / subclass

*subclasses

superclass 1

accesses

invocations

references

*

candidates

*

*

*

predeccessors
*

Figure 6.6: RingH history meta-model - Classes modeling associations

Figure 6.6 shows the different relationships (shown without background) and how they extend
from classes defined in the Ring source code meta-model (shown with grey background).

126 Chapter 6. RingH and RingC: History and Change Models & Analyses

Modeling these relationships allows us to have the history of a system at a fine-grained level,
which is one of the requirements established for RingH. Class’ relationships are part of the structural
information needed to characterize changes, and method’s relationships serve to identify the structural
dependencies at method level (e.g., method foo refers to class Zoo therefore it depends on class Zoo).
Relationships are fundamental to analyze streams of changes because they can be used to establish
the dependencies of a change within a stream, which in turn enables the characterization of changes
within that stream.

Class’ relationships. RingH models the evolution of inheritance relationships at two levels: (a) a
class inherits from a class, and (b) a class is directly inherited by subclasses. Both are mod-
eled with the classes RGSuperInheritanceHistory and RGSubInheritancesHistory respectively. For
example, if we have the classes Animal, Monkey, Capuchin and Mandrill, where Animal is the su-
perclass of Monkey, and Monkey is the superclass of Capuchin and Mandrill, then three RGSuper-

InheritanceHistory objects exist: between Animal and Monkey, Monkey and Capuchin, and Monkey

and Mandrill; and two RGSubInheritancesHistory objects exist: between Animal and a collection
consisting of Monkey, and Monkey and a collection consisting of Capuchin and Mandrill.

Note that the second relationship can be inferred from the first, however, we determined that
such relationship can ease and speed up the querying of hierarchical information in large mod-
els. Instead of performing a lookup every time that we need to identify the direct subclasses
of a class, the history meta-model provides direct access to this information. We omit RGSu-

perInheritanceHistory objects from examples shown later to make shorter the representation of
history and changes.

Method’s relationships. The evolution of method calls, class references and variable accesses is
modeled with the classes RGInvocationHistory, RGReferenceHistory, and RGAccessHistory re-
spectively. These relationships are obtained from a method’s source code and provide fine-
grained information regarding the history (as discussed in Section 3.4) that can be used to
answer questions such as “What are the current message calls by this method in a particular
version?” or “What were the senders of this method in a particular version?” (T18 and T16

from the catalogue - Section 3.3.2). Additionally, method’s relationships cover the majority
of possible dependencies between changes within a stream of changes. For example a method
depends on the methods being invoked (method calls) and on the classes being referred (class
references).

Method’s Relationships in a Dynamic Context. Smalltalk is a dynamically typed oriented-
oriented programming language. Therefore, in the absence of type information and in the presence of
method polymorphism, we need to provide very fine-grained information about method calls. This en-
ables us to be more accurate finding which methods are being called (or invoked) by another method.
For example, if method foo calls method bar, we can look for the bar methods that potentially will
receive the call (i.e., dynamic dispatch). We refer to that potential set of methods as a candidate set.

Figure 6.6 also shows four subclasses of RGInvocationHistory that RingH provides to model the
evolution of method calls. These classes reflect how method lookup works.

• RGSelfInvocationHistory partially identifies the receiver of a call. This corresponds to the self
calls within a method m. All candidates for that call need to be situated in the entire inheritance

6.2. RingH: a History Meta-Model and Analyses 127

tree of the class in which m is defined. For example, method foo has a self call to method bar,
and it is defined in class B. The candidate set is composed of the method bar defined in class B,
in its superclasses, and its subclasses.

• RGSuperInvocationHistory identifies the receiver of a call. This corresponds to the super calls
within a method m. A super call is bound statically. This means that, by analyzing the code, we
can determine which method will be invoked. Concretely, this is the method with the correct
selector implemented by the direct superclass of the class that defines m. If this superclass does
not implement the selector, it is the implementation at the next level higher up in the inheritance
tree, and so on. For example, method foo has a super call to method bar, and it is defined in
class B. The candidate set consists of the method bar defined in a direct or indirect superclass
of B (the superclass that implements a selector bar as it is close to B in the inheritance tree).

• RGStaticInvocationHistory knows exactly which is the receiver of a call. This comes from class
references. For example, method foo includes D bar – a reference to class D and a call to method
bar. The candidate set is composed of a unique method (bar defined in the metaclass of D).

• RGUnknownInvocationHistory does not know which is the receiver of a call. For example, method
foo has a call to method bar. The candidate set consists of every existing method bar.

Note that by defining the different kinds of method calls, we are able to decrease the amount of
false positives that may exist in a candidate set. Hence, it decreases the number of false positives of
dependencies between changes within a stream as well.

Representation of Systems’ Histories. We have described mainly the classes that model the evo-
lution of program entities and relationships. Here, we illustrate how the history of a system is defined
by means of RingH.

SVN

Monticello

Git commits

V12

V13-bV13-a

V14

V15

snapshot

snapshot
predecessor

package

Figure 6.7: RingH: representing system’s histories.

Figure 6.7 shows an overview of a resulting system’s history modeled with RingH. Note that
the history of a system – in terms of source code – is retrieved from a versioning repository (e.g.,
Monticello). That history is defined in terms of a graph of snapshots.

128 Chapter 6. RingH and RingC: History and Change Models & Analyses

The definition of snapshots was introduced in Section 3.2. A snapshot defines the complete view
of a system at a given time. It contains the program entities as well as the relationships between such
entities. Therefore, a snapshot represents the context in which a program entity needs to be resolved,
and it could be conceptually considered as a version of the system. RingH models snapshots by means
of the class RGSnapshot.

RGSnapshot objects are treated as any historical object: they can have predecessors and succes-
sors. The arrowed edges shown in Figure 6.7 correspond to the links between snapshots and their
predecessor. Note that by means of this we can assemble the whole history and we are able to model
branches. For example, the snapshot V12 is the predecessor of snapshots V13−a and V13−b, which at
the same time indicates branching. Both branches were later merged in snapshot V15.

Snapshots originated from commits contained within a versioning repository. In our context, the
Monticello version control system is package-based. It lacks explicit commits: instead packages
are individually versioned (i.e., package versions) containing their whole definitions (i.e., not just
changes). Therefore, a commit is determined by grouping package versions that belong together. We
use a sliding window technique [Zimmermann 2004a] that considers that several packages belong to
the same commit if they are committed by the same committer within a time interval of 5 minutes.

V1

packages

time

Kernel Tools Files Tests

V1

V1

V1

V2

V2V2

T1

T2

T3

V1

V1

Snapshot (Sn)

Commit Sn1

Sn2

Sn3

predecessor

Figure 6.8: Commits and snapshots.

The difference between a commit and a snapshot is that a commit refers to a set of changes (in
Monticello to the packages that were changed), whereas a snapshot refers to the complete system. In
Figure 6.8, we illustrate how commits and snapshots are established by simulating a scenario in the
context of Monticello.

Along the x axis we show the different packages that are contained within a Monticello repository.
The y axis represents the various sliding windows2 [Zimmermann 2004a](Tn) at which a commit
occurred.

At T1 the first version V1 of packages Kernel and Tools were published. Both versions represent
the first commit and also the first snapshot S1. Next, at T2 a new version was committed of the
previously existing package Tools (V2), and a newly created package Files (V1) was added to the
system. The changes made to these two packages correspond to the second commit and hence also
snapshot S2. Note that the second snapshot S2 also includes the package Kernel (V1) that was already

2A sliding window is a time period that stretches back in time from the present.

6.2. RingH: a History Meta-Model and Analyses 129

present in the repository. Finally, at T3 a third commit was published containing a new version of the
package Files (V2) and the first version of the package Tests (V1). The third snapshot S3 includes both
packages and also includes the unchanged packages Kernel (V1) and Tools (V2) as they were part of
the system in that sliding window.

Our example applies to Monticello, but the same approach can be used to represent the history of
systems stored by other version control systems such as Git, Subversion, and so on. In fact, for such
sources it is rather simple to model the history because they keep explicit commits.

As we mentioned before, snapshots represent a complete view of the system. Based on the re-
quirement “model only changed program entities and relationships”, the evolution of program en-
tities and relationships only takes into account the presence of changes (i.e., when they were intro-
duced, modified and removed). Therefore, program entities and relationships need to be shared in the
snapshots in which they have not changed. For example, if class Zoo was added in snapshot S1 and
modified in snapshot S4, the first representation of class Zoo is shared by the snapshots S2 and S3.

Querying information in a history that shares unchanged entities between snapshots requires a
means to explicitly indicate which is the context (i.e., snapshot) to resolve queries. RingH includes
a special class RGHistoryWrapper to support queries between snapshots and optimize navigation. A
wrapper links a historical object (except snapshots) together with the snapshot in which that object
exists (i.e., its context). For example, if Zoo is queried in S4 the result is a wrapped object of the
second Zoo object and the snapshot S4 (because it exists in S4); any message that is sent to Zoo is
then resolved in the context of S4.

6.2.3 Importing the History of a System

We propose an approach that imports the history of a system stored into a version control system’s
repository. Currently, RingH is developed in Pharo and we aim to process the history of Smalltalk
projects stored in Monticello repositories. However, our architecture can be applied to other pro-
gramming languages such as Java, and to version control systems such as Git or SVN with some
engineering effort.

The history of a system is represented by a graph of snapshots as shown in Figure 6.7. Note
that to support other programing languages the history meta-model might need to be extended in
order to define specific languages constructs (e.g., interfaces in Java) that are not present in Smalltalk.
Supporting other version control systems depends on providing the importers for these respective
systems.

In the following, we present a high-level overview of the algorithm behind our history importer
for Smalltalk projects.

Algorithm: Importing the History

1. Find all versions to import (versions in the project’s repository and external repositories if
merges happened)

(a) Calculate a package graph containing all the versions

(b) Calculate a commit graph based on the package graph

(c) Calculate a snapshot graph based on the package graph and commit graph

130 Chapter 6. RingH and RingC: History and Change Models & Analyses

(d) Apply a topological sort to the snapshot graph to order the nodes based on how the
versions were published into the repositories

2. For each node in the snapshot graph:

(a) Set the current model (a RGSnapshot object where the import happens)

• If the node has no predecessors directly instantiate the class RGSnapshot

• If the node has predecessors, make a descendant of the first of its predecessors and
merge that descendant with the other predecessors

(b) For each version associated to the node:

• Find the packages in the version

– For each package:

∗ Import the package into the current model

∗ For each class contained in the package:

· Import the class into the current model

· Import the attributes of the class into the current model

· Import the methods of the class into the current model

∗ For each trait contained in the package:

· Import the trait into the current model

· Import the methods of the trait into the current model

(c) From the imported methods:

• Import class extensions into the current model

(d) From the imported classes and methods:

• Import class inheritances into the current model

• Import method invocations into the current model

• Import class references into the current model

• Import attribute accesses into the current model

6.2.4 Metrics and Memory Footprint

We imported and generated RingH models of the history of three Smalltalk projects as a means to
illustrate several metrics and memory footprint of the our importer and RingH.

• Ring. We selected the history of Ring and RingH contained in the repository located at http:

//www.squeaksource.com/Ring

• Monticello. We selected the history of the Monticello version control system in Squeak con-
tained in the repository located at http://source.squeak.org/trunk

• Fuel3 is a general-purpose fast object serialization framework developed in Pharo. We selected
the history of the core of Fuel contained in the repository located at http://www.squeaksource.com/

Fuel

http://www.squeaksource.com/Ring
http://www.squeaksource.com/Ring
http://source.squeak.org/trunk
http://www.squeaksource.com/Fuel
http://www.squeaksource.com/Fuel

6.2. RingH: a History Meta-Model and Analyses 131

Monticello Ring Fuel

Number of versions imported 196 290 554
Number of packages imported 392 5777 5768
Number of classes imported 47702 60376 132808
Number of methods imported 267070 611205 505133
Lines of code imported 1509024 3110084 3148265

Number of classes in representation 518 1977 1585
Number of methods in representation 3002 13665 5976

Total amount of memory (Mb) 101 163 216

Table 6.1: Metrics and memory footprint and of three RingH models.

Table 6.1 shows the measurements of imported entities, lines of code and classes/methods rep-
resented in the model, and the memory footprint obtained from the generation of these three RingH
models.

We have divided the metrics in two groups. The first group of metrics represents the number of
versions, packages, classes, methods and lines of code that were imported from a repository. This
means the amount of code and the number of entities that occur in the history of a project that was
imported. Note that the histories of the three projects are quite large. For example, the smallest
history corresponding to Monticello consists of 1509 KLOC, and the largest history corresponding to
Fuel consists of 31483 KLOC. These projects are not trivial and their source code histories are made
up of a huge number of entities.

The second group of metrics represents the number of classes and methods that were actually
represented (created) within the RingH model. This means for example, for the Fuel project, that
out of 132808 classes existing in its source code history (i.e., number of classes imported) only 1585
classes have to be represented in the model (i.e., number of classes in representation). This number
corresponds to all the changes made to classes in the source code history. Remember that the version
control system used by Pharo or Squeak – namely Monticello – versions packages containing all their
definitions (i.e., classes and methods) and not only changes. Our history representation only keeps
track of entities that actually changed within the history. This is one of the requirements established
for RingH in Section 6.2.1 as a means to optimize memory consumption and minimize object creation
time. The same difference exists for methods. While we imported 505133 methods from the source
code history of Fuel, within the RingH model we only needed to represent 5976 methods. This
number corresponds to the number of changed methods in the source code, which is significantly
smaller than the total number of methods imported 505133 (1.18%).

The last row presented in the table shows the memory footprint of the history models. In the case
of Fuel, the entire history model only takes up 216 Mb of memory. As a result, we are able to load
the entire history of Fuel in memory and analyze it.

Regarding the time that was needed to import and create the model, we report that all the imports
ran under 10 minutes.

3Fuel: http://rmod.lille.inria.fr/web/pier/software/Fuel.

http://rmod.lille.inria.fr/web/pier/software/Fuel

132 Chapter 6. RingH and RingC: History and Change Models & Analyses

6.2.5 Creating Objects in the History Model

We have already described RingH and the underlying algorithm of the history importer. Our history
meta-model was conceived in such a way as to minimize memory consumption and object creation
time, and to easily query its information in order to support the representation of large systems with
large histories. Each program entity and relationship uses a unique identifier that remains stable over
evolution. Moreover, we only fully represent program entities and relationships when they actually
changed with respect to a previous version. This implies that snapshots may share unchanged objects.
Note that both are requirements established for RingH as explained in Section 6.2.1, and they are the
optimization of similar ideas proposed by Orion as explained in Section 6.1.2.

These requirements are key points in our history meta-model to assist the integration process of
large systems in the presence of multiple branches. Snapshots share entities that did not change be-
tween versions. They keep track of the unique identifiers of objects along with the objects themselves
representing program entities or relationships that existed in the system at a given time. The rest of
the objects in the model (e.g., packages, classes, methods) only keep pointers to the identifiers of
other objects related to them (e.g., a package only keeps the identifiers of the classes it contains).

In the following we show a basic scenario to illustrate how the program entities and relationships
are created, and how the lookup of entities occurs upon evolution. Concretely, consider the scenario
where a system is composed of one package (Model), and in the history exist two versions of this
package. In the initial version, the package Model contains three classes (Zoo, Animal, Lion). The class
Zoo defines the attribute animals and two methods (addAnimals, feedAnimals), and the class Animal

defines the method eat. The class Lion is a subclass of Animal but it does not redefine any behavior. In
the second version, the following changes occurred: the class Lion was removed and the class Animal

introduced the attribute name.

Figure 6.9 shows the graph of snapshots representing the two versions of this system, and how
the entities are created along with their respective identifiers. Note that for each version (i.e., commit)
a snapshot was created. We display snapshots as rounded rectangles, and their predecessor links by
means of an arrowed edge. An edge from Snapshot1 to Snapshot2 denotes that Snapshot1 is the
predecessor of Snapshot2.

Within a snapshot we have included a UML-like model of the system in the top left side, the entity
table (equivalent to a v-table) mapping the identifiers to the entities that the snapshot can resolve in
the top right side (e.g., ID2 corresponds to the id of the class Zoo), and how the entities interact with
other entities shown in the bottom side. The UML-like model shows a simple view of how we map
the entities and relationships onto the objects using RingH.

Snapshot1 contains an entity table with the identifiers and objects existing at that time. This
table contains 8 definitions (from identifiers ID1 to ID8) representing the program entities (package,
classes, attribute and methods), and 4 definitions (from identifiers ID9 to ID12) representing
relationships (attribute access, class reference, method invocation, and class inheritance). Note that
all the objects displayed at the bottom have only pointers to the identifiers of other objects, for
example class Zoo has a pointer to the identifier ID5 of its attribute animals and two pointers to the
identifiers ID6 and ID7 of its methods addAnimals and feedAnimals respectively.

6.2. RingH: a History Meta-Model and Analyses 133

Model

addAnimals
feedAnimals

animals
Zoo

eat

Animal

Lion

access

invokes

refers

attributes -> {ID5}
methods -> {ID6, ID7}

class Zoo (ID2)

ID1 -> package Model
ID2 -> class Zoo
ID3 -> class Animal
ID4 -> class Lion
ID5 -> attribute animals
ID6 -> method addAnimals
ID7 -> method feedTime
ID8 -> method eat
ID9 -> access addAnimals::animals
ID10 -> reference addAnimals::Animal
ID11 -> invocation feedAnimals::eat
ID12 -> inheritance Lion::Animal

snapshot's elements

classes -> {ID2, ID3, ID4}
package Model (ID1)

methods -> {ID8}
class Animal (ID3)

accesses -> {ID9}
references -> {ID10}

method addAnimals (ID6)

invocations -> {ID11}
method feedAnimals (ID7)

inheritance -> ID12
class Lion (ID4)

method eat (ID8)

attribute animals (ID5)

accessor -> ID6
attribute -> ID5

access (ID9)

source -> ID6
target -> ID3

reference (ID10)
sender -> ID7
receiver -> ID8

invocation (ID11)

subclass -> ID4
superclass -> ID3

inheritance (ID12)

Snapshot 1

Model

addAnimals
feedAnimals

animals
Zoo

eat
name

Animal

access

invokes

refers

attributes -> {ID5}
methods -> {ID6, ID7}

class Zoo (ID2)

ID1 -> package Model
ID2 -> class Zoo
ID3 -> class Animal
ID4 -> X
ID5 -> attribute animals
ID6 -> method addAnimals
ID7 -> method feedAnimals
ID8 -> method eat
ID9 -> access addAnimals::animals
ID10 -> reference addAnimals::Animal
ID11 -> invocation feedAnimals::eat
ID12 -> X
ID13 -> attribute name

snapshot's elements

classes -> {ID2, ID3}
package Model (ID1)

attributes -> {ID13}
methods -> {ID8}

class Animal (ID3)

accesses -> {ID9}
references -> {ID10}

method addAnimals (ID6)

invocations -> {ID11}
method feedAnimals (ID7)

attribute name (ID13)

method eat (ID8)

attribute animals (ID5)

accessor -> ID6
attribute -> ID5

access (ID9)

source -> ID6
target -> ID3

reference (ID10)
sender -> ID7
receiver -> ID8

invocation (ID11)

Snapshot 2

removed class
Lion (ID4)

removed
inheritance

Lion::Animal
(ID12)

modified class
Animal

modified
package Model

added attribute
name (ID13)

pointer

created in
snapshot

pointer

created in snapshot

shared with a
previous predecessor

predecessor

Figure 6.9: Creation of program entities and relationships in the history.

Snapshot2 reflects the changes between both versions: the removal of the class Lion and the

134 Chapter 6. RingH and RingC: History and Change Models & Analyses

addition of the attribute name in the class Animal. Snapshot2’s table contains the definitions of the
objects in the history as follows:

• The object associated with ID4 was replaced by a RGRemovedHistory object representing the
removal of the class Lion (we show the removal as an X to make it simple).

• The object associated with ID12 was replaced by a RGRemovedHistory object representing the
removal of the class inheritance relationship between the removed class Lion and its superclass
Animal.

• A new definition was added (ID13) to represent the attribute name introduced in class Animal.

• The objects associated to ID1 (package Model) and to ID3 (class Animal) were replaced by
new objects created in this snapshot. This is due to the class removal and attribute addition that
affected both respectively.

• The rest of the definitions are shared with its predecessor Snapshot1. Note that Snapshot2

tracks the identifiers of the objects that did not change, and shares these objects with Snapshot1

(shown in grey).

The fact that the class Lion was removed implied that the package Model no longer contains a
pointer to ID4. Therefore, a new version of Model was created in Snapshot2. Something similar
happened to the class Animal, as it introduced the attribute name, a new version of this object has to be
created in Snapshot2 to include a pointer to the newly created object representing the attribute name

with identifier ID13.
Finally, note at the bottom in Snapshot2 that we display the objects that did not change using

grey dashed rectangles. They are the shared objects with its predecessor Snapshot1.

6.2.6 Querying the History Model

Searching for information within a model (i.e., querying that model) allows tools to navigate between
entities of the model. Basic queries may represent questions like: “What are the methods of a class?”,
“What are the invocations of a method?”, “What is the superclass of a class?”, “What are the classes
contained in a package?”, and so on. Complex queries are composed of basic queries, for example:
“What are the superclasses of the classes contained in package System that define the method test,
which in turns invokes the method run?”

Querying the history represented using RingH implies taking into account the fact that snapshots
may share entities. For example, starting from a given snapshot (S5), a query may run on shared
entities from older snapshots (S2, S1). The results must always be interpreted in the context of the
given snapshot (S5), as the shared entities may point to entities that have since changed. Therefore,
to run a query we need to know the context (i.e., snapshot) in which such a query will be interpreted.

The challenge of running queries over shared entities given a current snapshot is summarized as
follows:

• Queries retrieve entities which may or may not reside in a parent snapshot.

• RingH should resolve each retrieved entity in the correct snapshot.

6.3. RingC: a Change and Dependency Model and Analyses 135

Resolving entities in the history can be compared to late binding. However, in RingH there is no
look-up through predecessor snapshots, but a direct access through the entity table (equivalent to a
method table or v-table) of the snapshot that keeps track of the identifiers and objects. Where that
snapshot is the context to resolve a query.

Using the example shown in Figure 6.9, we illustrate the following queries written in Smalltalk.
We use the notation query ⇒ results.

1. S2 packages ⇒ { Model }
This is a basic query that returns the packages in the context of S2. Note that Model was
modified in S2, therefore, it is not a shared entity with S1.

2. (S1 packageNamed: ‘Model’) classes ⇒ { Zoo, Animal, Lion }
This query returns the classes of the package Model in the context of S1. This is a composed
query that (1) resolves the package Model, and (2) resolves the classes of Model. Note that the
package and the classes all reside in S1.

3. (S2 packageNamed: ‘Model’) classes ⇒ { Zoo, Animal }
This query returns the classes of the package Model in the context of S2. Class Zoo exists in S2

but resides in S1 (as this entity did not change). This is an example of shared entities between
snapshots. Zoo is reachable in S2 because its table has a key-value pair pointing to the most
recent entity with respect to S2.

4. (((S2 packageNamed: ‘Model’) classNamed: ‘Zoo’) methodNamed: ‘addAnimals’) references
⇒ { Animal }
This query returns the class references of the method Zoo»addAnimals contained in package
Model in the context of S2. This composed query (1) resolves the package Model that resides
in S2, (2) resolves the class Zoo that exist in S2 but resides in S1, (3) resolves the method
addAnimals that exist in S2 but resides in S1, and (4) resolves the class reference to Animal that
resides in S2. Note that the query did not return the class Animal residing in S1 even though
the method requesting the references in addAnimals resides in S1. Instead, the class Animal was
interpreted in the context S2 where the query is running.

6.3 RingC: a Change and Dependency Model and Analyses

In Chapter 3 we introduced definitions such as changes, deltas and dependencies. In this section, we
present our meta-model, RingC, that allows us to model such definitions, and create a change-based
representation of a system’s history. By means of a change model of the history, we can analyze and
characterize streams of changes to assist the integration process across branches.

6.3.1 Architecture of RingC

RingC is a change and dependency meta-model built on top of the Ring source code meta-model de-
scribed in Chapter 4, and it is an application of the RingH history meta-model described in Section 6.2.
Within RingC we can represent changes, deltas, change dependencies, and external dependencies as
first-class entities. Figure 6.10 shows an overview of these definitions of the meta-model.

136 Chapter 6. RingH and RingC: History and Change Models & Analyses

entity
delta

RGChange
1

RGAddedChange

previousEntity
RGModifiedChange

RGRemovedChange

dependentDeltas
neededDeltas
potentialDeltas

RGChangeDependencies
RGExternalDependencies

neededDeltas
potentialDeltas
externalDependencies

RGDelta

RGSnapshot

RGClassHistory

*

*1

1

base target

RGTHistory
entity

previousEntity

1

1

*

changes

change

delta

changeDependencies
classes

1 externalDependencies

1

RingH
history
model

RGChangeDependency
*

dependencies

Figure 6.10: RingC change and dependency meta-model - Key classes.

Changes. With RingC, we represent changes as first-class entities. Having this representation of
changes enable us to perform a straightforward dependency analysis. Changes are extracted from the
history representation of a system (i.e., from the graph of snapshots modeled with RingH).

Three kinds of changes can be modeled: additions, modifications, and removals of program en-
tities and relationships. RingC provides the classes RGAddedChange, RGModifiedChange, and RGRe-

movedChange to represent additions, modifications and removals respectively. Note that they all
inherit from RGChange.

A change object knows the program entity or relationship that was changed upon evolution. This
creates a link between the change-based representation of the evolution of a system to the history-
based representation of such evolution. Figure 6.10 shows how the change model explicitly refers to
the history model (shown with a grey background).

Note that a change object due to a modification, not only knows the program entity or relationship
that changed, but also its previous program entity or relationship.

Deltas. A delta defines the differences between two snapshots in terms of a set of changes. Within
RingC, we provide the RGDelta class to model deltas. A delta knows its predecessor(s) delta and
successor(s) delta, where they represent the previous set of changes and the subsequent set of changes
that happened regarding that delta. This follows the same approach as for snapshots, and serves to
model a stream of changes as a graph of deltas as shown later in Figure 6.14. A delta contains a set of
RGChange objects and by means of the dependency analysis (explained in Section 6.4.1) a delta can
identify the set of dependencies of its changes and its dependencies to other deltas within the stream.

We illustrate changes and deltas using the same scenario introduced in Section 6.2.5. It was
originally used to illustrate how objects are created within a history model (shown in Figure 6.9).
This scenario presents two snapshots of a simple system consisting of the package Model and two
classes Animal and Lion. The second snapshot changed with respect to the first snapshot by removing
the class Lion and adding the attribute name to Animal.

6.3. RingC: a Change and Dependency Model and Analyses 137

Snapshot 1Model

addAnimals
feedAnimals

animals
Zoo

eat

Animal

Lion

access

invokes

refers

Snapshot 2Model

addAnimals
feedAnimals

animals
Zoo

eat
name

Animal

access

invokes

refers

Animal.name
<attribute>

Added

Lion
<class>

Removed

Animal
<class>

Modified

Delta 1->2

Lion :: Animal
<inheritance>

Removed

Model
<package>

Modified

Figure 6.11: Deltas and changes.

Figure 6.11 shows how a delta expresses the differences between two snapshots. Note on the left
side, that we show the UML-like models representing both snapshots instead of the resulting history
model to facilitate the discussion. Here, we do not provide details of how changes and deltas are
calculated. That is described in Section 6.4.1.

On the right side, we show the delta expressing the changes between Snapshot1 and Snapshot2.
Additions, removals and modifications are shown in green, red and blue respectively. The removal of
class Lion is represented as (1) removal of the class itself, (2) removal of the class inheritance (Lion

inherited from Animal), and (3) modification of the package Model (Model in Snapshot2 does not refer
to Lion). The addition of the attribute name to class Animal is represented as (1) addition of attribute,
and (2) modification of the class Animal (Animal in Snapshot2 refers to name). Each change knows
the respective object(s) in the snapshots (shown by means of the arrowed dashed edges).

Change Dependencies. A change dependency captures the fact that a given change potentially
depends on another change. In RingC, the RGChangeDependency class models a dependency between
two changes. This dependency can exist between changes within the same delta or between changes
in different deltas. Our approach characterizes a change dependency based on the locality and size of
potential changes that can satisfy this dependency.

Delta Dependencies. Our approach makes use of the notion of dependencies between deltas to
characterize deltas within a stream. A delta dependency expresses a dependency between two deltas
based on the change dependencies between changes. Concretely, a delta Dn depends on delta Dm if a
change CHy in Dn depends on at least one change CHx in Dm. Delta dependencies are not modeled
as a first-class entity, instead a delta knows the deltas on which it (potentially) depends.

In Figure 6.12, we illustrate both kinds of dependencies: change dependencies and delta depen-
dencies. Change dependencies are shown using directed dashed edges and delta dependencies are

138 Chapter 6. RingH and RingC: History and Change Models & Analyses

D1->2

D2->3

Delta and changes

Delta dependency

Delta predecessor

Change dependency

Figure 6.12: Change and delta dependencies.

shown using directed edges. This example contains two deltas. The delta D1→2 and its successor
delta D2→3. Delta D2→3 contains 2 changes that depend on 2 other changes of the same delta, and 2
changes that depend on changes contained in the predecessor delta D1→2. Therefore the delta D2→3

has a delta dependency on its predecessor D1→2.

External Dependencies. A change within a stream may depend on a class defined in external com-
ponents. For example, the change to method foo introduced a reference to the class B. However, the
class B does not exist within the stream. In this case, we say that the modification to method foo has
an external dependency to class B.

RingH models external classes as stub classes, therefore they are also part of the history-based
representation of a system. Such information is then used to establish potential external dependencies
present in the change-based representation.

Within RingC, we model external dependencies of a change by means of the class RGExternalDe-

pendencies. An RGExternalDependencies object knows the stub classes on which a change depends.

6.3.2 Deriving the Change Model from the History Model

The characterization of streams of changes relies on the dependencies between changes and between
deltas themselves within a stream. To enable de calculation of dependencies we require a repre-
sentation of the history in terms of deltas and changes. In other words, we need a change-based
representation of the history.

S1

S2

S4

S3

D1->2

D3->5

D2->4

D1->3

S5

D4->5

SnapshotsDeltas Deltas
S3

snapshot

snapshot
predecessor

D3->5

delta

delta
predecessor

snapshots-delta

Figure 6.13: Graphs of snapshots and deltas.

6.4. Calculating Deltas and Dependencies from the Stream 139

From the history (i.e., a graph of snapshots), we derive a change-based representation (i.e., a graph
of deltas). Figure 6.13 illustrates how a graph of snapshots can be used to obtain a graph of deltas. In
Section 6.4 we describe the calculation of the change-based representation.

The graph of snapshots appears in the middle of the graph of deltas. Snapshots are shown with
rounded rectangular shapes, while deltas are shown with rectangular shapes. A delta knows the base
and target snapshots from which it was defined (shown by means of the dashed lines). For example,
D1→2 defines the differences between S1 and S2.

As explained before, a delta also knows its previous delta (predecessor) and its subsequent delta
(successor). For example, D1→2 is the predecessor of D2→4, and D2→4 is the successor of D1→2.
These relationships are denoted by means of a line with a circle towards the successor. They allow to
assemble the graph of deltas.

6.4 Calculating Deltas and Dependencies from the Stream

In this section we describe the analyses that allow the calculation of deltas and dependencies used to
characterize streams of changes. We explain this characterization in Chapter 7.

SVN

Monticello

Git

commits

snapshots

Common
Ancestor
Analysis

Dependency
Analysis

V12

V13-bV13-a

V14

V15

changes and dependencies

delta and
changes

snapshot

change
dependency

history representation stream of changes representation

delta
dependency

Figure 6.14: Approach architectural overview.

We propose an approach that enables the characterization of successive sets of changes (i.e.,
deltas) and their dependencies within a stream of changes. Figure 6.14 shows an overview of the
architecture of this approach. Note that the first part of the figure (from left to right) corresponds
to the representation of a system’s history by means of RingH as described in Section 6.2.2 (also
shown in Figure 6.7). Therefore, the history is the input data for the definition of changes and de-
pendencies. This process is based on the common ancestor analysis and dependency analysis (shown
in the middle), and results in a representation of the history in terms of deltas, and change and delta
dependencies by means of RingC (shown on the right).

More concretely, from the graph of snapshots representing a system’s history, our approach com-
putes a graph of deltas and dependencies between the changes of each delta and between deltas
themselves.

In the rest of this section, we describe our algorithm to calculate deltas and the dependencies
between deltas.

140 Chapter 6. RingH and RingC: History and Change Models & Analyses

6.4.1 Delta Mechanism

Our algorithm to calculate deltas and the dependencies between deltas takes as input a graph of
snapshots and computes a change-based representation of this graph of snapshots, along with the
dependencies between and inside deltas.

We divide our algorithm into two different stages: (1) calculating deltas, and (2) finding depen-
dencies. First we introduce the stage dedicated to calculate deltas and then we proceed to explain the
main steps of the process.

Stage 1: Calculating Deltas

1. Find all root snapshots (snapshots with no predecessors)

2. For each root snapshot:

(a) Calculate a root delta containing additions of the snapshot’s elements

(b) Traverse the graph of snapshots from the root to its most recent successor(s)

• Calculate a delta for each pair (predecessor, successor) containing their differences

3. Assemble a graph of deltas by finding the predecessors of each delta

4. Retrieve all merged snapshots (snapshots with more than one predecessor)

5. For each merged snapshot, refine related deltas by taking the common ancestor of the snap-
shots that originate the merge into account

Calculating Root Deltas

We consider all snapshots that do not have predecessors to be root snapshots. Earlier, we have defined
a delta as the representation of the differences between two snapshots. As root snapshots do not
have any predecessors, we introduce here the notion of root deltas. We compute a root delta by
creating RGAddedChange objects for each of the program entities and relationships defined in the
root snapshot.

eats: void
species: String

Monkey

added class Monkey
added attribute species
added method eats

S1

S2

S4

S3

D1->2

D3->4
D2->4

D1->3

SnapshotsDeltas Deltas

Droot

Figure 6.15: Root delta: completing a change-based representation of a stream of changes.

6.4. Calculating Deltas and Dependencies from the Stream 141

Figure 6.15 shows a graph of snapshots (in the middle) containing one root snapshot S1. The
root snapshot contains a single class Monkey and two methods breed and eat. Therefore, the root
delta Droot contains added changes for each of these program entities: an added class for Monkey, an
added attribute for species and an added method for eat (shown with a UML-like diagram). Note that
from the method’s body, other added changes may be created to represent the method’s relationships
(method calls, class references and attribute access). We omit the relationships here to avoid cluttering
the figure.

Calculating Deltas

A delta is computed by extracting the differences between a pair of snapshots (predecessor, succes-
sor). The differences are then reified as changes and represented as additions, modifications and
removals using the RingC change and dependency meta-model shown in Figure 6.10.

We consider that an entity has been modified when its definition has been changed:

• Package. If a new subpackage was added or an existing subpackage was removed.

• Class. If its name, superclass, variables or comment changed.

• Method. If its source code (including signature) or its protocol4 changed.

The deltas are calculated by traversing the graph of snapshots, starting with the root snapshots
until we reach snapshots that do not have any successors.

We illustrate this process in Figure 6.15. The root snapshot S1 has two successors S2 and S3

(which reflects branching). For each pair of snapshots (predecessor, successor) a delta is calculated.
When applied to our example this results in two deltas: delta D1→2 for the pair (S1, S2) and delta
D1→3 for the pair (S1, S3). After processing snapshot S1, we continue traversing the graph via the
successors of S2 and S3. The snapshot S2 has a successor S4 which results in the delta D2→4. Finally,
the snapshot S3 has a successor S4 which results on the delta D3→4.

After traversing the whole graph of snapshots and computing deltas, we assign the predecessors
and successors of each delta based on the predecessors and successors of the snapshots that generated
such delta. The root delta Droot has two successors D1→2 and D1→3. D1→2 has as predecessor Droot

and as successor D2→4, whereas, D1→3 has as predecessor Droot and as successor D3→4.

Refining Deltas in the Presence of a Merge

Up until now, our calculation of deltas does not take into account that a snapshot might be the result
of merging two snapshots. One of the requirements for RingH is to represent the history made of
multiple branches and merges, therefore our change model RingC also takes branches and merges
into account. Branches play an important role for our contribution considering that our goal is to
assist the integration of changes between branches, i.e., support cherry picking. In particular we aim
at the characterization of streams of changes which due to a collaborative development process it may
be composed of multiple branches.

Based on Figure 6.15, the snapshot S4 is a merge between the snapshots S2 and S3, or in other
words a merge of two branches in the history. The snapshots S2 and S3 correspond to the predecessors

4Methods in Smalltalk are classified in protocols.

142 Chapter 6. RingH and RingC: History and Change Models & Analyses

of S4. For each of them, we have calculated a separate delta resulting in D2→4 and D3→4. However,
due to the merge, each of these deltas might be “polluted” with a number of changes that might have
occurred in the other branch. As we are only interested in the changes that contribute to a merged
snapshot, we perform a post-processing step on all deltas that are associated with a merged snapshot
to prune away changes that do not contribute to the result of the merge. To this end, we propose a
technique similar to three-way merging algorithms [Lindhom 2001].

S9

S2

S4

S3

D3->10

D2->10

D2->3

S10

D9->10

SnapshotsDeltas Deltas

Figure 6.16: Deltas in the presence of merge: taking common ancestor S2 into account.

We illustrate our technique by means of a slightly more complex scenario, as shown in Fig-
ure 6.16. In this scenario, we have a snapshot S10 that is the result of merging S3 and S9. Note that
both predecessors have a common ancestor – namely S2 (shown at the bottom). Assuming that S3 is
closer to the common ancestor S2 than S9, the delta D3→10 (shown in orange) potentially contains a
number of changes that may be present in the other branch from the snapshots S4 to S9. Note that
changes from S9 are merged in S10. Therefore, such changes are unrelated to the changes of S3 that
actually contribute to the merged snapshot S10.

In other words, we are interested in all the changes that have occurred between snapshots S2 and
S3 (indicated with the blue dashed lines) together with all the changes between S3 and S10, minus the
changes happening in the other branch from S2 to S10. If we generalize this, we obtain:

Dop→m - Dca→m + Dca→p

where op is the oldest predecessor, m the merge, ca the common ancestor, and p the predecessor.

Applying this formula to refine D3→10, we see that the delta is obtained by computing D3→10

(original delta) - D2→10 (indicated with the green dashed lines) + D2→3 (indicated with the blue
dashed lines).

6.4.2 Dependency Mechanism

Once changes and deltas are established, the second part of the process is to calculate the dependen-
cies between changes and deltas. We introduce the second stage of our algorithm and then we proceed
to explain the main steps of the process.

6.4. Calculating Deltas and Dependencies from the Stream 143

Stage 2: Finding dependencies
For each delta:

1. Filter the changes within the delta: only select those that may depend on another change

(a) Include additions and modifications of classes and methods

(b) Exclude modifications of methods that do not introduce new method calls or class refer-
ences

2. For each change that may depend on other changes, determine its dependencies:

• A change to a class depends on:

– The most recent change to its superclass

– If such a change does not exist, its superclass is an external reference. Add a depen-
dency to this external reference.

• A change to a method depends on:

– The most recent changes to the potentially called methods.

– The most recent changes to the referred classes.

– If changes to the referred classes do not exist, the method refers to external classes.
Add a dependency to each external reference.

3. Prune redundant delta dependencies

Filtering Changes Within a Delta

Not all changes within a delta lead to the introduction of dependencies. As a pre-filtering step, we
partition the changes within a delta into two groups: (1) changes that potentially depend on other
changes, and (2) changes that do not depend on another change.

For the first group, we only consider additions and modifications of classes and methods that
result in the introduction of dependencies. The reason is that we only require dependencies that are
needed when integrating changes, and therefore we do not include removals. Furthermore, we exclude
modifications to methods that changed their source code without introducing or removing method
calls and class references (e.g., when a method only changed comments or variable accesses, or even
when lines of code were moved around). These changes do not introduce or remove dependencies to
other changes. Changes to classes that did not change the superclass of the class are also filtered out.
This considering that e.g., adding an attribute to a class does not introduce any dependency. All other
changes within the delta are considered to belong to the second group.

Determining Dependencies

We proceed to determine the dependencies for each change within a delta that was categorized as a
change that may potentially depend on other changes. A change dependency is a relation between
two changes, where both changes can be present in the same delta or in different deltas. Changes to
classes and methods can depend on other changes based on the following rules:

• Class level: Changes to a class depend on the most recent change to its superclass. The reason
is that to integrate a class we also require its superclass.

144 Chapter 6. RingH and RingC: History and Change Models & Analyses

• Method level: Changes to a method depend on:

– Change to class references: The most recent changes to the referred classes.

– Change to method calls: The most recent changes to potentially called methods (i.e.,
candidate set). The set of potentially called methods is bounded statically taking into
account polymorphism.

To minimize false positives in the candidate set of a method call from method m, we identify the
potential receiver of the call (i.e., the class that understands a message with the name of the call). This
can be (a) a superclass in the inheritance tree of the class defining m, (b) any class in the inheritance
tree of the class defining m, (c) the class of a reference, (d) any class implementing a method with the
same name of the call. In Section 6.2.2, we described how these method calls are modeled.

To determine the most recent change of an entity, we make use of the graph of deltas that was
determined in a previous step of our algorithm.

For example, delta Dm contains a modification to the class Monkey that changed its superclass
from Animal to Mammal. Therefore, that change now depends on the most recent change within the
graph of deltas (and with respect to delta Dm) of the superclass Mammal.

If the superclass Mammal was never modified, its most recent change corresponds to the addition
of this class. Note that, if this class was never added in the history under analysis, it is considered to
be a dependency on an external entity.

Based on the dependencies between changes, we also compute the dependencies between deltas
(delta dependencies). We say that delta D1 is dependent on another delta D2, if there exists at least
one change in D1 that depends on a change in D2.

Pruning Redundant Delta Dependencies

Note that our algorithm for calculating delta dependencies can result in redundancies. To illustrate
this, consider the left graph of deltas depicted in Figure 6.17, where delta dependencies are indicated
by means of a black directed edge.

D5

D3

D2

D1

D4

D5

D3

D2

D1

D4

D5 {D4, D2, D1}
D4 {D2, D1}
D3 {D2}
D2 {D1}

D5 {D4}
D4 {D2}
D3 {D2}
D2 {D1}

Figure 6.17: Redundant delta dependencies.

6.5. Conclusion 145

If we take a look at delta D4, we see that it depends on deltas D2 and D1. However, since delta D2

also depends on delta D1, the dependency between D4 and D1 is redundant as it is already implied
by the configuration of deltas. Likewise, delta D5 depends on tree deltas (D4, D2 and D1) of which
the dependencies D5→D2 and D5→D1 are also implied by the chain of dependencies D4→D2, and
D2→D1. Therefore, these redundant delta dependencies (indicated by means of a red directed dashed
edge in the right graph of deltas) can be safely pruned.

6.5 Conclusion

In this chapter we have described the meta-models and analyses that enable us to represent the his-
tory of a system stored in versioning repositories and the changes made to the program entities and
relationships present in that history as first-class entities.

By means of a history-based and a change-based representation of the evolution of a system, our
approach can later provide a characterization of streams of changes and assist integrators in under-
standing the changes and their requirements within the stream. Therefore, we can assist the integration
of changes across branches and support cherry picking.

We have presented three topics in this chapter. First, we started by presenting other related meta-
models that allow the representation of the evolution of a system. We optimized some of their ideas
in our history meta-model.

Second, we have described RingH, our history meta-model and the analyses that allow us to define
and query a history-based representation of the evolution of a system.

Third, we have described RingC, our change and dependency meta-model and the delta and de-
pendency analyses needed to define a change-based representation from a history-based representa-
tion of a system.

In the next chapter, we present our tool support JET built on top of our history and change models.
It characterizes a stream of changes in terms of deltas and dependencies, and allows integrators to
navigate and query the stream. Moreover, we provide some benchmarks regarding the efficiency and
size of RingC and the delta and dependency analyses.

CHAPTER 7

JET: Stream Change Analysis in Early
Integration Phase

Contents
7.1 Introduction . 148

7.2 Characterizing Deltas and Dependencies within the Stream 148

7.3 The JET Tools . 150

7.4 Supporting the Answering of Integrator Questions 159

7.5 Qualitative Evaluation: Integrating Monticello Changes into Pharo 161

7.6 Related Work . 171

7.7 Conclusion . 174

Contributions Map

 Source Code Meta-Model (Ring)

History Meta-
Model and
Analyses
(RingH)

Torch Tools

Change & Dependency
Meta-Model and

Analyses (RingC)

JET Tools

Single-delta
Change Meta-

Model and
Analyses (RingS)

Catalogue of
Questions

Integrators'
Information

Needs

⬇

Overview

This chapter presents JET , our approach and (semi-)automated tool support for assisting cross-branch
integration. JET provides integrators with a characterization of changes and dependencies within a
stream of changes, and allows integrators to navigate and query the information required to answer
their questions. JET is built on top of RingC and it is integrated with Torch, both described in Sec-
tion 6.3 and Chapter 5 respectively. First, we explain the characterization of deltas and dependencies.
Second, we describe the JET tools: the dashboard, the map and the query browser. Third, we discuss
how JET can aid answering questions regarding how changes from one branch can be merged with
another branch. These questions are part of the catalogue presented in Section 3.3.2. Fourth, we
present a qualitative assessment of JET by means of an evaluation applied to a five-year stream of

148 Chapter 7. JET: Stream Change Analysis in Early Integration Phase

changes from Squeak with the goal of integrating it into Pharo. The evaluation consisted of two parts:
(a) an integrator analyzed and cherry picked changes from the stream, and (b) a developer estimated
the effort required for integrating such stream. Fifth, we discuss and compare JET with related work.

7.1 Introduction

Assisting integrators in understanding changes across branches and performing cherry picking is very
important in a collaborative development environment where the use of branching may require that
integrators move changes back and forth between multiple branches. Integrating changes is one of the
hardest problems that integrators are faced with, because it usually involves changes from multiple
developers and code that the integrator may be unfamiliar with.

In Chapter 5 we have presented Torch, our approach and tool support that characterizes changes
within a single delta and aims at easing the understanding of such changes. In this chapter we present
JET , our approach and tool support for integrators that characterizes a stream of changes and aims
at assisting integrators at cherry picking changes from the stream. While Torch is oriented to aid
integrators in understanding changes within a delta, JET extends Torch’s philosophy to aid integrators
at understanding changes and their dependencies within a stream, with the goal of merging across
branches.

JET offers a characterization of the changes and dependencies within a stream of changes to pro-
vide additional information about these changes that can assist integrators in answering the questions
they ask themselves in order to understand and select suitable changes to merge across branches. In
Section 3.3.2 we presented a catalogue of questions as a means to identify the integrators’ informa-
tion needs to assist with the integration process. JET supports integrators in answering several of
these questions by providing integrators the information described in Section 3.4. Such information
is accessible by means of simple queries (e.g., changes a certain change relies on, callers of a changed
method) complemented by a dedicated dashboard and visualization that aid in comprehending deltas
and their dependencies.

JET is a tool built on top of the RingC change and dependency meta-model, and our analyses
that calculate changes and identify dependencies (as described in Section 6.3 and Section 6.4 re-
spectively). Both analyses take the first-class representation of the a system’s history (described in
Section 6.2) to generate a first-class representation of the changes and dependencies within that his-
tory (i.e., stream), therefore allowing JET to characterize the stream of changes.

7.2 Characterizing Deltas and Dependencies within the Stream

JET1 is our (semi-)automated tool support for assisting cross-branch integration. It allows integrators
to contextualize changes, deltas and dependencies within a stream of changes. The goal of this char-
acterization is to speed up the process of understanding changes within a stream, their context and
their dependencies, and to support integrators in the decision-making process regarding the integra-
tion of changes across branches, especially to assist integrators cherry picking changes. For example,
the information provided by JET can aid integrators in filtering changes that are irrelevant in a partic-

1JET: www.squeaksource.com/JET

www.squeaksource.com/JET

7.2. Characterizing Deltas and Dependencies within the Stream 149

ular context and that should not be integrated anyway, in prioritizing which changes to integrate first
or last, and so on.

Presence of dependencies. As a first criterion for characterizing dependencies we consider whether
a delta has dependencies or not, and the orientation of these dependencies. As mentioned earlier, a
delta can depend on other deltas, and a delta can be the dependency of other deltas.

Is Is a
Type of delta dependent dependency

Source x
Intermediate x x

Island
End x

D4->5

D2->3

D1->2

D3->4

end

island

source

intermediate

Figure 7.1: Types of deltas by the presence of dependencies (left) – Example of characterization:
D1→2 is a source, D2→3 is an intermediate, D3→4 is an island, and D4→5 is an end (right).

We classify deltas depending on the existence of such dependencies. This classification provides
an initial indication of the complexity of a delta and it is therefore potentially valuable to an integrator.
In Figure 7.1 we present the four types of deltas (left) along with an illustrative example (right).

• Island: a delta that does not depend on another delta and is not the dependency of any delta.
Islands are the simplest type of delta; integrating them only requires the changes in the delta to
be processed.

• Source: a delta that has no dependencies but is a dependency of other deltas. Sources can still
be considered as simple cases as no other changes need to be analyzed beforehand.

• End: a delta that depends on other deltas but no other delta depends on it. Ends are already
complex deltas, because they have to be integrated together with the deltas they depend on.

• Intermediate: a delta that depends on, and is the dependency of other deltas. Intermediates
are the most complex deltas and the ones that should be integrated carefully.

Type and cardinality of change dependencies. The changes belonging to a delta can require the
presence of certain source code entities that were introduced (i.e., added entities) or changed (i.e.,
modified entities) in preceding deltas. As a second criterion, we distinguish between change depen-
dencies that can or cannot be found within the stream.

• Local: a dependency is local when the entity it depends on exists within the stream of changes.
For example, added class BinaryTree inherits from class Tree, therefore the class BinaryTree

depends on class Tree, and class Tree exists within the stream.

• External: a dependency is external when the entity it depends on does not exist within the
stream. For example, modified method printOn: refers to class Set, but class Set is a library
class that was not introduced in the stream of changes.

150 Chapter 7. JET: Stream Change Analysis in Early Integration Phase

As we are analyzing object-oriented programming languages, this introduces a level of uncertainty
in the case of polymorphic calls (message sends in Smalltalk). A polymorphic call can result in the
execution of one of several different methods (i.e., implementations of a polymorphic call). The
choice is made at run time, and depends on the type of the receiving object (the first argument). As
a third criterion, we consider for a particular change dependency whether multiple changes that can
satisfy such dependency may be present within the stream.

• Unique: a change dependency is unique if only one potential change exists in the stream that
satisfies the dependency. For example, modified method foo calls method bar, therefore the
method foo depends on method bar, and there is only one implementor of bar in the stream.

• Multiple: a change dependency is multiple if two or more potential changes exist only in
the stream that satisfy the dependency. This is due to polymorphism (i.e., multiple classes
implementing the same selector), lack of static type information, and so on. For example,
modified method foo calls method bar, and there are four implementors of bar in the stream.

Delta dependency classification. Based on our previous characterization of change dependencies,
we also provide a characterization of delta dependencies:

• Needed: a delta D1 is a needed delta dependency for delta D2 if at least one change in D1 is
the unique change dependency of a change in D2. In other words, in order to integrate delta
D2, we are certain that we also need to analyze the changes in D1.

• Potential: a delta D1 is a potential delta dependency for delta D2 if there are changes in D2

with multiple change dependencies and at least one of these change dependencies belongs to
D1. In other words, in order to integrate delta D2, a developer will need to analyze these change
dependencies in D1, to be safe.

• External: we say that a delta has external dependencies if at least one of its changes requires
an entity that is not present within the stream (e.g., a reference to a library).

The dashboard presents deltas and dependencies by using these characterizations. The map, how-
ever, only displays needed dependencies to simplify the view. Furthermore, which priority is given to
the different types of deltas, or which priority is given to the different types of delta dependencies is
up to the developers.

7.3 The JET Tools

Our approach complements the characterization of streams of changes with (semi-)automated tool
support – the JET tools – that allow integrators to navigate and query a stream of changes i.e., changes,
deltas and their dependencies. The JET tools offer integrators a means to access their information
needs in order to answer questions they ask themselves when integrating changes.

The JET dashboard presents lists of deltas, lists of changes per delta, lists of dependencies per
change, lists of dependencies per delta, and summaries about the number of changes, deltas and de-
pendencies, as can be seen in Figure 7.2. Moreover, the dashboard adds several metrics to each change
such as the number of times that an entity was changed, the number of callers and implementors of a

7.3. The JET Tools 151

method in a single version, or throughout the stream of changes. The JET query browser (shown in
Figure 7.7) presents the evolution of an entity within the stream, and it complements the information
provided by the metrics of each change on the dashboard.

The textual information provided by the dashboard is also complemented by the JET map, a vi-
sualization displaying deltas with their dependencies, as can be seen in Figure 7.5. The map provides
a visual display of a number of metrics such as the number of dependencies of a delta, the number of
deltas that depend on a certain delta. By means of a color convention, the map displays a characteri-
zation of a set of deltas following the criteria discussed in Section 7.2. Finally, JET provides several
utilities to developers that allow them to filter and manipulate dependencies and deltas.

In its current state, JET is intended to be loaded into the Pharo system in which the integration of
changes is performed. This also allows us to access the current working copy (a.k.a image) so that a
developer not only can assess a stream of changes with respect to its history, but also with respect to
the already integrated source code present in the image.

Philosophy behind the JET tools

• Use the same conventions for the dashboard, query browser and map (when applicable)

• Provide multidirectional navigation of changes, deltas and dependencies on the dashboard

• Always provide access to the source code within the target system on the dashboard and query
browser (when applicable)

• Always keep relevant information on the dashboard, query browser and map visible

In the explanation of the JET tools we use examples taken from the case study evaluated in Section 7.5
to illustrate several features.

7.3.1 The JET Dashboard

The structure and main elements of the dashboard are shown in Figure 7.2. The dashboard offers tex-
tual information extracted from the change-based representation of the history of a software system,
such as deltas and dependencies, and also allows a developer to access the whole stream in detail.

Deltas. The delta mechanism described in Section 6.4.2 retrieves deltas from a graph of snapshots.
These deltas are listed in the first panel of the dashboard (on the top left). Deltas are sorted fol-
lowing the topological order of the snapshots (as described in the import process of the history in
Section 6.2.3). To aid integrators in finding the delta they are looking for, the label of each delta
is composed of its number2, the committer, and a summary of the commit message. For example,
delta 179.cmm - Fix for package renaming corresponds to the 179th delta in the stream, committed
by cmm3, and it fixed a bug concerning package renaming.

2The number of a delta is a sequential number assigned to every delta within the stream. For example, if the stream
is composed of 100 deltas, the oldest delta is the number 1 and the latest delta is the number 100. This number can be
considered as a commit number.

3In Pharo, committers often use their initials instead of their full name.

152 Chapter 7. JET: Stream Change Analysis in Early Integration Phase

change dependencies

deltas
source code diff

changes

delta dependencies

package versions

conventions

Figure 7.2: The JET dashboard and its main elements.

Package versions. Each delta represents the changes that happened between a base and a target
snapshot (i.e., predecessor and successor within the graph of snapshots). This panel lists separately
the package versions included in each snapshots, and for each package version the complete commit
message is presented as well. Monticello uses the following convention to name package versions:
package name-commiter.revision number. For example, Compiler-MarkusDenker.293 corresponds to
the 293rd revision of the package Compiler committed by MarkusDenker.

Changes. The changes to packages, classes and methods belonging to a delta are classified into two
lists: Changes with dependencies and Changes without dependencies. Both lists allow a developer to
inspect all changes of a delta and their evolution within the stream.

Each change in the list is accompanied by metrics such as the number of times that the entity
changed or the number of changes that appear in later deltas with regard to the delta under analysis
(i.e., changes to the entity that happened later in the history). This information aims at speeding up
the analysis of changes that affected the same entity by indicating for example that a particular change
is not the latest one within the stream. An integrator can then inspect the whole evolution of such an
entity instead of trying to understand each change separately.

A change to any kind of entity has the metric number of changes (Ch) corresponding to the
number of times that the entity changed, e.g., Ch 5/2 corresponds to 5 changes over the total stream
and 2 more changes in two later deltas.

A change to a method m has two other metrics that take into account information from the target
snapshot from which originated the delta under analysis. By means of this, we query the complete
view of the system where the changed was applied. We refer to a delta’s target snapshot as delta’s
snapshot. The first metric is number of callers4 (Se), for example: Se 0/1 corresponds to 0 methods
calling m in the delta’s snapshot, and 1 method calling m in a later delta’s snapshot. The second metric

4In Smalltalk, the callers of a method are known as senders.

7.3. The JET Tools 153

is number of implementors (Im), for example: Im 3/5/4 corresponds to 3 classes implementing a
method with selector5 m in the delta’s snapshot, 5 classes implementing a selector m in a later delta’s
snapshot, and 4 classes implementing a selector m in the working copy6.

Source code diff. The source code of a change is shown in a panel named Stream code or Stream
diff. The first appears for additions and removals and shows the plain source code that was added or
removed. The second appears for modifications and shows a diff highlighting the part of the code that
changed (in red or green for added and removed respectively). Moreover, if the changed entity (e.g.,
method) exists in the working copy, another diff (Working copy diff) will appear comparing both. By
providing the Working copy diff an integrator not only can inspect the code that changed within the
stream but can also compare that code to the current code of the system. Finally, additional informa-
tion about the change is displayed, such as the author that changed the entity and the timestamp of the
change. Other information will appear depending of the kind of entity, e.g., the protocol of a method.

Change dependencies. This panel shows the change dependencies of methods and classes grouped
by invocations (method calls), class references and superclasses (as shown in Figure 7.2). Each
change dependency indicates the change associated to it and the delta to which that change belongs.

Figure 7.3: Example: exploring the change dependencies of an added class within delta 113.cmm
(top) – Exploring why delta 124.cmm depends on delta 113.cmm (bottom).

An example is illustrated in Figure 7.3. On the top it shows that the added class MCFileReposito-

ryInspector of delta 113.cmm depends on the superclass MCRepositoryInspector (i.e., its superclass).
Since this superclass was most recently modified in delta 112.cmm, there exists a change depen-
dency between added MCFileRepositoryInspector and modified MCRepositoryInspector, and it implies
the delta dependency 113.cmm → 112.cmm.

From this panel, an integrator can also filter change dependencies, or can inspect which of
the changes of one delta are a dependency of another delta, e.g., Figure 7.3 (on the bottom)
shows that delta 124.cmm depends on delta 113.cmm (left), and that the modified method
MCRepositoryInspector»refreshEmphasis7 of 124.cmm calls the modified method MCRepositoryIn-

spector»identifyNewerVersionsOf: of 113.cmm (right) causing the delta dependency 124.cmm →
113.cmm.

5The name of a method is known as selector in Smalltalk.
6The working copy is the code loaded in a Pharo image.
7In Pharo, the usual convention to refer to methods is ClassName»methodName.

154 Chapter 7. JET: Stream Change Analysis in Early Integration Phase

Delta dependencies. This panel presents four lists of dependencies for a particular delta. Three cor-
respond to the characterization of delta dependencies based on the categories discussed in Section 7.2:
Needed dependencies, Potential dependencies, and External dependencies. To ease navigation of ev-
ery dependency related to a delta, the fourth list shows the Deltas depending on me which include the
deltas that depend on a particular delta. Figure 7.4 illustrates the delta dependencies of delta 12.ar:
(a) it needs the intermediate delta 11.cwp, (b) it potentially needs the island delta 7.bf, (c) end
deltas 22.ar and 35.ar depend on it, and (d) it has four external dependencies to classes Error,
InMidstOfFileinNotification, OrderedCollection and SyntaxError.

Figure 7.4: Example: delta dependencies of delta 12.ar.

Conventions. Colors are used to represent the types of deltas and dependencies described in Sec-
tion 7.2. They help developers get instantaneous information and reinforcement of their knowledge.
The conventions are the same in the entire dashboard: pink for island deltas, green for source deltas,
grey for end deltas, orange for intermediate deltas, yellow for unique change dependencies and ma-
genta for multiple change dependencies. Font styles are used to complement dependencies, italic for
change dependencies within the same delta, and underlining for redundant dependencies. Icons are
also used to represent each kind of change: green plus for additions, blue pencil for modifications and
red minus for removals. These icons are the same used in Torch to represent additions, modifications
and removals.

Integration with Torch

In Chapter 5 we described Torch, our tool support that allows integrators to understand changes and
their context within a single delta. JET aims at providing the same aid but it is augmented for a stream
of changes (i.e., set of deltas). The main goal is to assist the integrating of changes across branches,
and therefore assist cherry picking.

JET integrates Torch with the dashboard in order to provide integrators with extended support.
Integrators can first have an overview of the changes and dependencies within a stream of changes by
means of JET , and then have an in-depth understanding of the changes of a particular delta by means
of Torch. Note that Torch does not need to be used for understanding each single delta, as JET already
provides valuable information about changes. However, depending on the complexity of a particular
delta Torch can play an important role to ease its understanding, for example in cases when a delta

7.3. The JET Tools 155

consists of a large number of changes, displaying the context of such changes provides a better view
of the changes.

Considering that Torch makes use of the RingS meta-model described in Section 5.5 to represent
the changes within a single delta, JET provides Torch with the base and target snapshots that generate
the delta instead of the delta itself.

7.3.2 The JET Map

The map is a visualization that aims at providing an overview of deltas and their dependencies, and
guiding integrators in determining where to start the analysis of a stream of changes. The map, as
shown in Figure 7.5, mainly offers a simplified view of the dashboard information in order to give an
initial insight of the requirements of deltas. In a sense, this visualization provides integrators with a
means to assess how complex it is to integrate the changes of a particular delta.

intermediate deltas

source deltas

end deltas

delta dependencies

124 depends on 113 and 122

124 is the dependency of 132

Figure 7.5: The JET map: green nodes are source deltas (not depending on others), orange nodes
are intermediate deltas (having dependencies and others depending on them) and grey nodes are end
deltas (only depending on others).

By means of the map, we provide information about a stream of changes that can support in-
tegration across branches. Among the integrator’s information needs described in Section 3.4, we
identified change dependencies as part of the historical information required to answer several ques-
tions. The map shows dependencies between deltas to allow integrators to quickly identify which
dependencies are required by a particular set of changes (i.e., commit).

The map only visualizes deltas that have dependencies or serve as dependencies of other deltas.
That is, it shows source, intermediate and end deltas, and omits island deltas. Rectangles are used
to represent deltas and directed edges to represent dependencies. A rectangle includes the label of a
delta (number and committer). The height of a rectangle (delta) is related to the number of deltas that
depend on this delta. The border width of a rectangle is related to the number of dependencies of this

156 Chapter 7. JET: Stream Change Analysis in Early Integration Phase

delta. The map uses the same color conventions as the dashboard (i.e., green for sources, grey for
ends and orange for intermediates).

Figure 7.6: Deltas and dependencies on the map.

The map also allows integrators to navigate over the deltas. It uses red directed edges to point to
the dependencies of a delta, and blue directed edges to indicate which deltas depend on a particular
delta. Figure 7.6 takes a more in-depth view of two deltas on the map. The example on the left
displays the intermediate delta 112.cmm (the orange node in the middle) that only depends on the
intermediate delta 111.cmm, therefore the border of 112.cmm is thin. A red directed edge indicates
this dependency. On the top, we see twelve deltas that depend on 112.cmm which makes the rect-
angle considerably taller than the other visualized deltas. Blue edges are highlighted to indicate these
dependencies. The example on the right displays the end delta 159.fbs (the grey node at the top)
that has three dependencies on source deltas 143.kb and 6.bf (green nodes), and on intermediate
delta 112.cmm (orange node). Thus the border of the node in this case is thicker compared to the
previous example. As this is an end delta, meaning that no deltas depend on it, the height of the
rectangle has the smallest possible value.

Finally, the map also offers textual information as a fly-by-help when the integrators navigate over
the deltas and dependencies. For a delta it shows the commit messages and for a dependency it shows
the deltas involved and their commit messages. Note that this is not shown in Figure 7.6.

7.3.3 The JET Query Browser

JET complements the information provided by the dashboard and the map with a third browser, the
query browser that provides more fine-grained information about the changes. This browser aims at
aiding integrators in understanding the complete evolution of an entity, together with its dependencies
and users at any point in time (i.e., a delta) within the stream.

The historical information described in Section 3.4 is key information to accomplish our charac-
terization of streams of changes. The query browser provides integrators with this information which
is needed to answer many questions presented in the catalogue in Section 3.3.2. They are related to
changes within a stream, such as “Is this change still the most recent one?” or “Is there any later
change in the sequence that supersedes it?”.

The structure of the query browser is shown in Figure 7.7. Note that it follows the same conven-
tions (color, font styles and icons) and reuses two components of the dashboard (change dependencies
and source code diff), both described in the Section 7.3.1. In the following we describe each of the
components of the query browser.

7.3. The JET Tools 157

change history
source code diff

callers

implementors

change dependencies

Figure 7.7: The JET query browser and its elements.

Change history. The changes of an entity are listed in the first panel of the browser. This shows
how an entity has evolved within the stream, and therefore already answers several questions related
to frequency of change, who are the authors, in which version the entity change, when was the entity
changed, which are the later changes of that entity. For each change, the kind of action is shown by
means of an icon (addition, modification, removal) as well as the delta in which the change occurred.
Note that this component provides the currently selected context of the browser as seen in Figure 7.7.

Source code diff. This component is the same as the source code diff described in Section 7.3.1.
The advantage of this component in the context of the query browser is that for a particular entity the
integrator is able to explore how the code evolved, together with who (author) changed the code and
when (timestamp). That means, within one browser the whole sequence of changes applied to the
same entity can be textually compared.

Change Dependencies. The component lists dependencies of methods or classes. It is the same
change dependencies component of the dashboard explained in Section 7.3.1. While in the dashboard
changes are grouped per delta, the query browser list the sequence of changes made to the same entity,
and therefore allows integrators to compare how the dependencies of a particular change evolved.

Callers. This panel is shown when exploring the evolution of a method. For a method m, the callers
correspond to the set of methods that are invoking method m. Callers are found in the target snapshot
that caused the delta (current delta) to which the change under analysis belongs. By means of this, we
query the callers in the complete view of the system where the change was applied. In what follows,
when we mention the delta’s snapshot, we mean the target snapshot of the delta

Two lists are used to present the callers of a method. The first list shows the callers that exist in the

158 Chapter 7. JET: Stream Change Analysis in Early Integration Phase

current delta’s snapshot. The second list shows the callers that exist in subsequent delta’s snapshots
(later points in the stream). This shows whether a method is actually used within the delta and also
how important it is for the subsequent deltas. Callers that are removed later in the stream appear with
a light red background in the first list. Callers that are added later in stream appear with a light green
background in the second list.

Implementors. This panel is also shown when exploring the evolution of a method. For a method
m, the implementors correspond to the set of classes that define a method with selector m. We extract
the implementors following the same logic as for callers, i.e., we use the current delta and the delta’s
snapshot.

Implementors are presented in three lists. As for callers, the first two lists present the imple-
mentors found in the current delta’s snapshot, and in subsequent delta’s snapshots (later points in the
stream), respectively. Both lists follow the same color convention as well. The third list complements
the historical information by showing the implementors existing in the working copy. An integrator
can compare the classes that implement a selector within the stream of changes to the current classes
of the system (in Pharo) that implement the same selector.

7.3.4 How to Use the JET Tools

Here we describe the intended process of using JET to assist the integration of changes.

1. To make use of JET an integrator is required to load the JET tools8 into a Pharo image con-
taining the latest version of the Pharo system where the integration is done. This corresponds
to the current system (i.e., target branch) of the integration process.

2. The complete or partial history of the feature or system that will be integrated into Pharo needs
to be imported (described in Section 6.2.3). This corresponds to creating the history-based
representation of the stream of changes from the source branch.

3. The delta and dependency analyses described in Section 6.4 need to be performed to create a
change-based representation (i.e., deltas an dependencies) of the history resulting in the previ-
ous step.

4. Provide to the dashboard the deltas and dependencies representing the stream of changes for
characterizing the stream.

The dashboard provides the characterization of deltas and dependencies, and it is the entry point
to the map and the query browser. The toolbar at the top of the dashboard has icons to access the
map and the history browser. This simple auxiliary tool allows integrators to explore the history-
based representation of the stream in detail. Each of the changes listed on the dashboard allows an
integrator to access the query browser, and each of the deltas allows access to the Torch dashboard
where the changes within that delta are characterized and visualized. Other utilities to filter and
manipulate dependencies and deltas are available in the dashboard.

Because the JET tools are under evaluation, they are not currently integrated with other tools
within the Pharo environment. For example, with the version control system. The analysis of a

8The JET tools: www.squeaksource.com/JET

www.squeaksource.com/JET

7.4. Supporting the Answering of Integrator Questions 159

stream of changes is performed in isolation. From this analysis, integrators can decide which changes
are suitable for integration, and later using the version control system to perform the actual merge.
Note that the integrator is free to use the version control system and browsing facilities provided by
Pharo to complement his analysis regarding the potential impact of such changes on the target system.

Providing support to perform the actual cherry picking and merging within the JET tools, and
therefore integrating JET with the version control system is an avenue for future work.

7.4 Supporting the Answering of Integrator Questions

In this Section, we discuss how JET can aid in answering the questions that integrators ask themselves
when performing integration activities. We introduced a catalogue of 64 questions in Section 3.3 that
served to identify the integrators’ information needs in order to assist them during the integration
process. These questions also serve as motivation for several of the features provided by the dashboard
and query browser such as the list of changes, metrics per change, list of dependencies per change or
delta, source code diffs, etc. These features provide integrators with the needed information and ease
the answering of their questions.

We guide our discussion based on the 5 categories used to classify the questions: (a) author/owner
questions, (b) behavioral questions, (c) structural change characterization questions, (d) infrastructure
questions, and (e) temporal and change stream questions.

Author questions. Answering five of the six questions in this group can easily be done with JET
(e.g., “Who wrote the original code that was changed” or “Who made this change?”). The author of
any change and the committer of a group of changes are shown in the dashboard and query browser.
The committers are also shown on the map. Moreover, the query browser (described in Section 7.3.3)
allows integrators to identify how many developers and who have changed an entity within the stream.
For example, the query browser shown in Figure 7.7 presents the evolution of the method MCRepos-

itoryInspector»refresh. It was changed by two developers: edc who introduced this method in delta
1.edc, and cmm who modified it later in deltas 106.cmm, 109.cmm, 111.cmm, 112.cmm and
124.cmm. Answering “What is the general quality of the change committer?” is subjective and it is
up to the integrator to establish the quality of a committer.

Behavioral questions. Most of the questions in this category are not supported by JET . Only 6 out
of the 14 questions in this group can be partially supported. For example, for answering questions
such as “What is the reason of this change?” or “What are the implications of this change for API
clients?” JET does not provide straightforward answers. The integrator can use the information
provided by the tools but it is up to him to find the answers. However answering “What kind of change
is it? (Bugfix/New feature/Refactoring/Documentation)” depends on the complexity of the change
and on how the committer coupled the modifications that collaborate to the same change instead
of committing multiple unrelated changes. Moreover a single kind of change may be represented
by a sequence of commits making the identification of the change troublesome. New features or
removals could be easily identified as the tools show when entities are added, modified or removed,
along with their structure e.g., knowing that a delta contains mostly additions of code are likely the
introduction of a new feature. The access to Torch from within JET to explore a single delta also

160 Chapter 7. JET: Stream Change Analysis in Early Integration Phase

eases in answering this question. The other 8 questions are related to test coverage which is not part
of our approach and therefore answering “Is the change covered by tests? What is the coverage?”,
“Did this change fix/break tests? Which tests?” or “Did the tests work before the changes?” is not
possible.

Structural change characterization questions. Most of the simple questions in this category are
directly covered by JET . 14 questions can be fully answered using the dashboard and taking advantage
of its integration with the Torch dashboard (described in Chapter 5). These questions are related to
change size (“How large is the change?”), change scope and structure (“What is the scope of this
change (which/how many classes/packages/..., local/global?” or “Is this change confined to a single
package?”), change dependencies (“What are the required structural dependencies?”), and correlation
of changes (“Are there other packages that would need to change as well to incorporate this change?”).

Six questions are more challenging and JET does not offer complete support for answering them.
For example, support for answering the question “What is the complexity of the changes / of the
touched classes?” could be improved. To give the integrator an initial idea of the complexity of a
change, we could for example use metrics such as Cyclomatic complexity. Note however that this
does not necessarily provide a good approximation of the complexity of change as this metric is
structurally-oriented. Some changes with a low cyclomatic complexity can still pose a real challenge
to integrate because of a complex interaction with the system.

The question “Can I apply this change?” is also hard to answer and is partially supported. JET
uses the change and dependency model to identify mostly structural dependencies in order to find
which changes are required to apply/integrate a particular change. However, JET does not perform
behavioral analysis in the sense of Reuse Contracts [Steyaert 1996] for example. In addition, since
Smalltalk is dynamically-typed, static analysis on the integrated changes cannot be performed. Note
that, if we were supporting statically-typed languages such as Java, it would be possible to perform
static analysis. We plan to investigate this in future work.

The implication of the question “What parts of the system are directly using the changed behav-
ior?” is challenging. Indeed an integrator wants to assess the impact of a change on the system. JET
provides some support for that based on a model that does not take types into account. Therefore, lots
of false positives may be reported in the presence of heavy polymorphic invocations that need to be
manually processed by the integrator.

The question “Does the change follow rule checking/conventions?” is not supported by JET at
the level of rule checking. However, rule checker results could easily be integrated with JET . Finally,
the question “Is the vocabulary used in the change consistent with the one of the system?” can also be
partially supported by analyzing the vocabulary introduced with the change. Note that JET provides
such information by means of the symbolic clouds offered by Torch (described in Section 5.3.5). This
however could be improved to provide an assessment of the vocabulary of changes regarding the
system.

Infrastructure questions. Two questions regarding the bug tracking infrastructure such as “Have
other bugs related to the change been reported?” are not supported by JET . In its current incarnation,
our approach only analyzes the source code of a system, and JET provides characterization of changes
and dependencies extracted from the source code. Therefore questions involving other artifacts like

7.5. Qualitative Evaluation: Integrating Monticello Changes into Pharo 161

documentation or bug reports are not taken into account. They lie outside the scope of our approach.

Temporal and change stream questions. Most of the questions in this category are covered by
JET . 22 out of 23 questions can be fully answered. The package versions feature of the dashboard
and the source code diffs show the commit timestamps and the timestamps at which any change
occurred. Therefore answering questions such as “Did this method/feature change (a lot) recently/in
the past?” or “Did this change ever happen before?” is trivial.

The dashboard and query browser are dedicated to answering these questions. Especially, the
query browser that shows the history of an entity and the change metrics play a fundamental role
in answering temporal questions. For example, the question “Is the change ever used in subsequent
changes?” can immediately be answered by an user of our tool using the metrics (number of callers)
shown with each change. Similarly, answering “Is this change part of a whole series of changes?” or
“Does this change depend on previous ones?” is explicitly supported by the characterization of deltas
based on dependencies.

The question “Was this method/class renamed in the past? in which version?” is a challenging
one as no renamings are directly identified and modeled with our RingC change meta-model, and
therefore JET does not provide such information. However, this can be improved considering the
fine-grained information represented by our RingH history meta-model (both models described in
Chapter 6).

7.5 Qualitative Evaluation: Integrating Monticello Changes into Pharo

In this section we present a qualitative assessment of our approach, in particular we evaluate how the
characterization of a stream of changes and tool support assist cross-branch integration. As a case
study, we considered the integration of the latest changes of the Squeak branch of Monticello into
the Pharo system. Our case study consists of two parts. In the first part, we asked one of the Pharo
integrators to use the JET tools while integrating (parts of) Monticello. For the second part, we asked
a developer knowledgable in Monticello to use JET to estimate the effort required for integrating the
Squeak branch of Monticello with Pharo. While the former part of the case study provides us some
insights into the perceived usefulness of the different features of JET , the latter part aims at assessing
the effort and time required to use JET for analyzing a part of the history of Monticello in Squeak.

Note that this case study does not allow us to make any generalizable claims regarding the useful-
ness of JET . Given the challenges associated with change integration, a full-fledged validation would
require a controlled experiment with advanced developers (instead of for example groups of master
students). We consider such an experiment as an avenue for future work and it will be discussed in
Section 8.4.

7.5.1 Case Study Description: Monticello Version Control System

Figure 7.8 shows the context of our case study, concretely two streams of changes of the Monticello
version control system. After forking Pharo from Squeak in 2008, Pharo developers modified their
own branch of the Monticello core package9 (268 commits), while the Squeak developers continued

9The Monticello core package excludes UI and tests.

162 Chapter 7. JET: Stream Change Analysis in Early Integration Phase

575*
(MarkusDenker)

time

www.squeaksource.com/Pharo

309 (sd)

308 (md)

309 (md)

504 (bf)

source.squeak.org/trunk

Pharo

Sq
ue

ak

Feb 2007

April 2012

July 2006

March 2008

March 2012

integrate changes

June 2011

(*) www.ss3.gemstome.com/ss/Pharo14

523
(MarkusDenker)

Figure 7.8: Monticello - two streams of parallel changes of the core package (on April 23rd, 2012).

the development of the core package (196 commits) in the original repository. Although some of the
changes in the Squeak branch were already integrated into Pharo, this process occurred in an entirely
ad-hoc manner.

The Monticello core package implements the version control system used by Squeak and Pharo:
streaming in/out of code, code representation, ancestor analysis, textual diff tools, three-way merge,
working copy diffing, remote distributed code repositories and their management. This package is
complemented by a UI (Monticello Tools10) and tests. Table 7.1 shows the size of the Monticello
version control system (core package) in Squeak and Pharo.

Description In Squeak In Pharo
Classes 117 116
Methods 1559 1587
Lines of code 7739 8083

Table 7.1: Size of the Monticello core package (on April 23rd, 2012).

Prior to performing the case study, we loaded the history of the Squeak branch of Monticello (from
February 2007 to April 2012) into JET11. Table 7.2 gives an overview of several metrics provided
by JET regarding changes, deltas and dependencies, along with the memory footprint and creation
time. Note that the total deltas shown on the table is 193 instead of 196 because three versions
of the Monticello core package were missing from the Squeak repository. The last two rows show
the memory footprint of the calculation of deltas and change dependencies and the time this took12.
While we do not claim that our approach scales, these numbers seem to indicate that the computational
overhead of our approach is limited.

10The Monticello Tools: https://gforge.inria.fr/frs/download.php/27018/Monticello.pdf
11An image containing JET and the case study can be found at: http://soft.vub.ac.be/~vuquilla/JET-Pharo-1.

3-13328-OneClick.zip
12On an Apple MacBook Pro with an Intel Core 2 Duo 2.8GHz processor and 4GB of RAM.

https://gforge.inria.fr/frs/download.php/27018/Monticello.pdf
http://soft.vub.ac.be/~vuquilla/JET-Pharo-1.3-13328-OneClick.zip
http://soft.vub.ac.be/~vuquilla/JET-Pharo-1.3-13328-OneClick.zip

7.5. Qualitative Evaluation: Integrating Monticello Changes into Pharo 163

Description #

Additions 2354
Modifications 593
Removals 601
Total changes 3548
Changes with dependencies 1909
Changes without dependencies 1639
Changes with external dependencies 607
Change dependencies 11530
Delta dependencies 111
External dependencies 122
Intermediate deltas (orange) 18
Island deltas (pink) 105
End deltas (grey) 48
Source deltas (green) 22
Total deltas 193

Memory footprint 2.46 Mb
Object creation time 31298 ms

Table 7.2: Metrics: changes, deltas, dependencies, memory and time.

7.5.2 Part 1: Integrator Experiences

As mentioned earlier, the first part of our case study consisted of observing an experienced Pharo
integrator – Stéphane Ducasse – using JET while integrating changes from the Squeak branch of
Monticello into Pharo.

Figure 7.9: Monticello environment: showing the revisions per package (left) – History of one revi-
sion & Changes between two revisions: browsing the textual differences of one change (right).

He was also given access to the tools offered by Monticello to confirm the information he ob-
tained from JET . As an experienced developer, the integrator was accustomed to using the Mon-
ticello environment shown in Figure 7.9. This figure shows the Monticello tools being used to

164 Chapter 7. JET: Stream Change Analysis in Early Integration Phase

explore the history of the Monticello core package on the Squeak branch (repository located at
http://source.squeak.org/trunk). On the left, we see the Monticello tool for browsing the list of revisions
per package (i.e., package versions) along with the commit log within a repository. On the right, we
see the Monticello tool that allows an user to browse the history of a selected revision (in this case
revision cmm.469), and the tool that shows the changes between two revisions in that history (in this
case between revisions cmm.468 and cmm.469). Along with the changes, a textual view showing
the differences introduced by each change is shown.

The tools provided by Monticello have the same purpose as the tools provided by other version
control systems (e.g., Subversion). However, with Monticello the information of package versions is
presented at the level of classes and methods instead of plain text within files.

7.5.2.1 Protocol

We observed the integrator while he was using JET during 5 sessions of 30 minutes each. During
these sessions we asked him to talk out loud which made it easier to take notes of his actions. After
each session, we asked him for some clarifications about certain choices he made while using the
tools. On average, the integrator analyzed 12 deltas per session. According to the integrator, his usual
rate for such a task is about 5 to 6 deltas over the same period of time. While this is encouraging, we
cannot claim that this speed-up was caused by the use of our tools. It could also have been due to
other factors such as the complexity of a change, and so on.

The integrator produced a log for each delta in the list. He wrote a small summary and some notes
about the difficulty of integrating each delta and what should be done: if the changes were already
integrated, if the changes were applicable to Pharo, if the changes were still valid (not modified later
in the list), etc. As an example, the log written for delta 16.nice is presented below.

===

Delta: 16.nice (island)

Commit summary:

Use #keys rather than #fasterKeys

Note that pattern (x keys asArray sort) could as well be written (x keys sort) now that keys returns an Array.

This #asArray is here solely for cross-dialect/fork compatibility

Pharo action:

do nothing - since they reverted the #fasterKeys change to use #keys as we do

===

7.5.2.2 Observations

In the following, we describe the observations based on the main actions taken by the integrator.

Identifying committers. The integrator was acquainted with the level of expertise of certain com-
mitters. Therefore he took more time to analyze the changes made by not so experienced developers.

http://source.squeak.org/trunk

7.5. Qualitative Evaluation: Integrating Monticello Changes into Pharo 165

From this perspective, having the name13 of the committer associated with a number for identifying
a delta was considered a useful feature of JET .

Prioritizing deltas. The integrator started the analysis of the case study by prioritizing the deltas to
be integrated based on their complexity. To this end, he based himself on the colors identifying kinds
of deltas following the characterization offered by JET . This is illustrated in Figure 7.10. On the left,
we see the list of all deltas shown on the dashboard (which is equivalent to the list shown in Figure 7.9
on the left). Here the delta 113.cmm is being explored. On the right, we see the map opened on the
same list of deltas. The delta 113.cmm is highlighting its dependencies and the deltas depending on
it by means of the red and blue edges.

Figure 7.10: The JET dashboard: a semantically enriched stream of changes (left). The JET map:
dependencies between deltas (right).

The integrator identified that the islands (pink) and sources (green) deltas were the most suitable
candidates to integrate. As islands only contain changes without dependencies, he considered these
to be easy to integrate and ignored them at the beginning. When asked for the reason, he explained
that his motivation was to spend his efforts on the changes that were more complex and thus more
challenging to integrate. He started with investigating the source deltas in more detail. In particular, he
wanted to identify the different ‘chains’ of deltas within the stream of changes that might constitute
a single feature or fix. As such chains originate from a source (green), the integrator ignored the
intermediate (orange) and end (grey) deltas for the time being.

Afterwards, the integrator mentioned that the colors of the nodes were useful in providing an
initial assessment of the kinds of deltas, and that the consistent use of the color conventions eased
usage of the tool. Despite the presence of the map (see Figure 7.10 on the right), we noticed that
the integrator mostly used the dashboard (list view). We hypothesize that this is because the map of
the case study was rather complex and the layout algorithm did not succeed in providing an intuitive

13In the Squeak community authors are identified by their initials.

166 Chapter 7. JET: Stream Change Analysis in Early Integration Phase

layout. Therefore the integrator had to move around nodes (deltas) to get a better understanding of
the different chains within the stream. He spent time moving nodes trying to get a mental picture of
the dependencies but afterwards mainly used the list.

Using change metrics. The metrics of the changes described in Section 7.3.1 were frequently used
by the integrator in combination with the query browser. For example, when he noticed that for a
particular change the altered entity was also changed in later deltas, this often served as a cue to open
the query browser and inspect the evolution of the changed entity. We identified three different usages
where the presence of change metrics supported the integrator.

1. The integrator used the number of callers metrics to identify if a particular method should be
integrated by checking whether it was called anywhere later on in the stream.

2. The integrator used the number of changes metrics to see if methods were still modified later
in forthcoming deltas. As a reason, he mentioned that he did not want to integrate changes that
would be superseded by other changes.

3. The integrator used the number of implementors metrics to see if a changed method was already
in use in the current Monticello in Pharo. That was possible because the JET tools were loaded
in the image in which the integration process was happening.

Figure 7.11: Example: use of fasterKeys introduced in delta 14.nice (left) – Changes made to the
method provision within the stream (right).

To illustrate this use of JET , we briefly discuss an example shown in Figure 7.11 and that it is
related to the integrator’s aforementioned log. In the history of Squeak, a method fasterKeys was
introduced in the implementation of the Dictionary class as an optimized version to return the keys

in a dictionary. Consequently, within the Squeak branch of Monticello a method named provisions

was changed in delta 14.nice to make use of this optimized method (as shown in Figure 7.11 –
left). The number of change metrics for method provision, were Ch 4/2 meaning that this method
changed 4 times in total, of which 2 times in later deltas than the delta in which the use of fasterKeys

was introduced (14.nice). As the method fasterKeys was not present in Pharo and came from
the external reference to class Smalltalk (shown on the diff and dependencies), the integrator was
wondering whether this method should also be integrated in order to support the changes made to
Monticello in Squeak. By knowing that the provision method was still changed 2 times in later deltas,
he was encouraged to first investigate the evolution of the method using the query browser (as shown
in Figure 7.11 – right). He found out that this method changed again in deltas 16.nice and 63.ar.

7.5. Qualitative Evaluation: Integrating Monticello Changes into Pharo 167

As a result, the integrator noticed that the use of fasterKeys was later on reverted in delta 16.nice,
and that in delta 63.ar the method was changed to reach the same state it was in Pharo (as shown in
Figure 7.12 – top). Therefore, these changes could safely be ignored.

Comparing with the current version in Pharo. The final feature of JET that the integrator used
frequently was the Working copy diff to assess the difference between a changed method in the stream
and the current version of that method in Pharo. The dashboard and the query browser offer that
feature in the source code diff panel.

Figure 7.12: Example: working copy diff showing the differences between the changes made to
method provisions and the version of that method in Pharo.

In Figure 7.12, we illustrate the use of this feature applied to the previous example. Here we show
the differences between the changes to method provision (within the stream) and the version of that
method in the working copy (loaded with the current version of provision into Pharo).

Note that the integrator compared the latest version of the method in the stream with its previous
and future versions within the stream. The idea was to assess (1) if the change was already in Pharo,
and (2) if it was worth to look at this particular version of the change. Note that the previous example
also illustrates the usage of this feature.

Ignoring potential delta dependencies. Our characterization of delta dependencies makes a dis-
tinction between needed dependencies and potential dependencies in order to take the uncertainty
introduced by e.g., polymorphism into account.

Figure 7.13 shows both kind of dependencies for the delta 12.ar. The integrator was confused
by potential dependencies and decided to ignore them, due to the fact that this introduced quite a few
false positives to be processed. In the example shown in Figure 7.13, the potential dependency to
delta 7.bf was indeed due to false positives. Even though JET provides support for handling and
filtering potential dependencies, this is a clear indication that this feature of JET should be improved.

7.5.3 Part 2: Effort Estimation by a Developer

7.5.3.1 Protocol

The second part of our case study focuses on providing some insights into the time and effort required
to use JET to analyze a stream of changes. We asked another developer knowledgeable about Mon-

168 Chapter 7. JET: Stream Change Analysis in Early Integration Phase

Figure 7.13: Example: needed and potential dependencies of delta 12.ar.

ticello to assess the complete sequence of changes from the Squeak branch of Monticello, and for
each delta, determine the potential actions to be taken by someone who wants to integrate that delta
into Pharo. More specifically, we asked Marcus Denker to classify the deltas in several categories:
Already integrated - meaning that the change was already integrated in Pharo; Ignore - meaning that
it is not relevant or interesting for Pharo; Unresolved - meaning that after investigation it is not clear
what decision should be taken; and To integrate - meaning that the delta is worth integrating and that
its impacts are understood and appear to be under control.

For each delta that he processed, we measured the amount of time that he took to assess the delta
and decide on its categorization. The developer used a dual-screen setup (27 inch main monitor +
13 inch laptop screen): due to the amount of information provided by JET it requires a significant
amount of screen real-estate; this setup allowed him to separate the JET tools from his code browsing
activities. Next to a Pharo image with the JET tools loaded, he also had access to the Squeak system
in order to explore the context of the original changes. He was left to perform his tasks without
interference from the authors.

7.5.3.2 Results

During the time slot of 4 hours that the developer allocated for the case study, he was able to analyze
134 of the 193 deltas. He processed the deltas in chronological order, hence starting with the oldest
version (i.e., delta 1.edc).

Table 7.3 gives a summary of the delta classification made by the developer, along with the total
time necessary for the analysis of each group of deltas, and the average amount of time per delta.
Next to these average times, we would like to report that there were four unresolved deltas that took
significantly longer to process than the other deltas (approximately 10 minutes each). Examples of
these are the deltas 31.ar in which trait support was introduced in Monticello, and 154.cmm in
which extensive renaming occurred. As these deltas introduced complex changes to Monticello, it is
not surprising that processing them took a relatively long amount of time.

This case study does not provide any claims regarding the correctness of the classification as

7.5. Qualitative Evaluation: Integrating Monticello Changes into Pharo 169

total time ∆ average time
deltas (seconds) (seconds)

Already integrated 27 1620 60
Ignore 39 2145 55
To integrate 33 4620 140
Unresolved 35 6300 180

Total 134 14685 –

Table 7.3: Developer’s analysis of the stream of changes: classification of deltas for integration
across branches and the time taken by the analysis.

produced by the developer, but merely serves as a means to analyze the amount of time needed to
understand deltas using JET . For future work, we plan to use the results provided by the developer
and integrate them into Pharo as a means to calculate the number of false positives.

Classification of Deltas. Overall, the developer was able to classify the deltas in a short amount
of time. As expected, the cases marked as Ignore took little time, as such cases were often features
that are either not applicable to Pharo, or that reversed a previous (incorrect) commit. Likewise,
cases identified as Already integrated were also processed rather quickly. The reason for this, as
mentioned by the developer, is that the dashboard includes a view that allows him to compare the
difference between a change to an entity and the current version of that entity in Pharo (i.e., usage of
the working copy diff). Consequently, after a few glances the developer could identify that the changes
were already integrated and no further investigation of the delta was needed. After the case study, this
led us to believe that such cases could be identified (semi-)automatically, which we consider as a
possible extension for a future version of JET .

He limited himself to take at the most 10 minutes in analyzing a particular delta, because he
preferred to build a larger list of understood deltas than losing time on more complex ones. While
the To Integrate and Unresolved cases took considerably longer to analyze, the amount of time per
delta was on average still limited to around 3 minutes. We speculate that this is caused by the fact
that the number of cases for which the developer needed to invest a lot of time was rather limited.
First, most of the deltas did not contain a lot or complex changes. Second, when the same entity was
modified in multiple deltas, the developer had to investigate only one change and then could use the
query browser to study the evolution of the entity, resulting in that he had to spend less time analyzing
subsequent changes to the same entity. Typical examples of this case are API changes, or reverting
to prior changes like the example discussed beforehand. Third, since deltas tend to be related, the
developer could spend a considerable amount of time understanding particular deltas; subsequent
deltas that were related to this delta were then processed much quicker.

Observations. After the case study, the developer also made a number of observations regarding
his process. First, he remarked that the size of the delta is not correlated with the complexity of the
analysis required to take a decision. For example, changes to a single polymorphic method could be
harder to assess – due to their impact on the system – than a large set of simple changes. Second,
the developer remarked that solely analyzing the dependencies of a change did not suffice in order
to classify a delta. As one example, he listed the case in which the order of calls in a method was

170 Chapter 7. JET: Stream Change Analysis in Early Integration Phase

changed. While such a change does not have an impact on the dependencies of the change (as no new
calls are added or removed), it can have a drastic impact on the behavior of the system. In such cases,
the developer appreciated the presence of the query browser that allowed him to explore the evolution
of the method within the stream.

Used Tools. The developer mainly used the dashboard and the query browser. The map was only ex-
plored at the beginning of the analysis, where he identified potential complex deltas such as 112.cmm
and 122.cmm, because multiple deltas were depending on them (as can be seen in Figure 7.10). This
confirms that the map is not suitable for performing a in-depth analysis of individual changes but
for providing an initial overview of the stream of changes. The metrics provided by each change
on the dashboard were heavily used especially at the level of methods. This was combined with the
use of the query browser to explore the evolution of methods. Many deltas were quickly assessed
because their changes evolved in later deltas, and the developer put more effort on investigating what
happened later in the stream.

Analysis of Dependencies. Regarding dependencies, the developer triggered the analysis of each
delta by exploring in detail the needed delta dependencies and then quickly exploring the depen-
dencies of a change. In some cases, he just checked the source code diff of a change instead of its
change dependencies. This was the case when the textual differences were minimal. However, when
the developer was intrigued by the presence of a delta dependency, he explored the changes causing
such dependency and their change dependencies. The developer ignored the potential dependencies
in most of the cases, and he only paid attention to them when a delta did not have needed delta de-
pendencies. He found out that a good number of these dependencies were false positives. Finally,
for deltas where he detected that multiple unrelated changes were present, he took advantage of the
dashboard integration with the Torch dashboard. In these cases, he first opened the Torch dashboard
to understand a single delta before studying its dependencies with other deltas within the stream.

7.5.4 Threats to Validity

We performed each evaluation with one participant. Both are core integrators and developers of
the Pharo project, and they are knowledgable of the Monticello version control system. They were
provided with an explanation of how to use JET and its main features.

Both qualitative evaluations allow us to observe how real users interact with the JET tools and to
estimate the time and effort needed when using JET to analyze a concrete stream of changes. The
validity of these observations is however subject to a number of threats.

Performed Tasks. One possible threat to validity of the evaluations is that both experiments were
performed using the same case study: a stream of changes representing a five-year development of
Monticello in the Squeak system. Even though we use one concrete case, it is large and complex
enough to illustrate what integrators and developers may deal when analyzing streams of changes
and how difficult it can be to determine the dependencies between changes without tool support. In
addition, we did not design this case for our evaluations, but we took a real case study that the Pharo
integrators wanted to analyze to identify changes that can be cherry picked and integrated into the
Monticello system in Pharo.

7.6. Related Work 171

Participants. One participant for each evaluation might not form a representative sample to evalu-
ate the JET tools. However, we are limited by the fact that we need experts of the system to analyze
and real integrators that are willing to perform these kinds of experiments. From this perspective, we
believe that the results obtained are representative since both participants deal with daily integration
tasks and know the Monticello system. Another threat to validate to consider is the bias that existed
with the integrator, Stéphane Ducasse, as he is involved in this research. However, he did not partic-
ipate in the implementation of the tools, and therefore he was not aware of how to use JET or what
were its features. He had to receive the explanation of how to use the JET tools, and then he was
observed when analyzing the stream of changes.

7.5.5 Discussion

While both evaluations of JET applied to the Monticello case study seem to suggest that JET has an
added value, the problem of integrating cross-branch changes is not yet solved since we do not do
impact analysis and real merging. However, we believe that JET is the first step in the direction of
such (semi-)automated tool support for assisting integration.

In the following we discuss in more detail both limitations that are already considered as avenues
for future work:

Impact of changes. While JET provides developers tool support to analyze a stream of changes by
offering more information regarding changes such as the characterization of deltas and dependencies
within the stream, and by providing navigation and querying facilities of the history of the system,
JET does not provide guarantees that the code will execute when integrated. It does not provide an
impact analysis of the changes. In fact, semantic merging is still a real challenge. This point is even
more challenging for dynamically typed languages such as Smalltalk, since static analyses are limited
and the code model is less precise. Still tools should be able to show the potential impact that a
change may have on the current system. As an avenue for future work, we propose to investigate the
use of program slicing or regression testing techniques on both source code and changes to provide a
fine-grained impact analysis.

Cross-branch integration. Even though JET supports the analysis of streams of changes, it cur-
rently does not provide a full-fledged solution for assessing the impact of a stream of changes on a
target system and for migrating changes from one branch to another. For example, in our validation
the developer performed a change and dependency analysis of the changes made to the Monticello
version control system in Squeak without taking into account the evolution of Monticello in Pharo.
The developer only looked at the current version of Monticello in Pharo without considering some
other versions in its history. Hence, being able to also establish the potential effects of integrating
the changes made for Monticello in Squeak into Pharo is required. As an avenue for future work, we
propose to extend JET such that the history of multiple systems can be taken into account.

7.6 Related Work

To the best of our knowledge, neither related tools nor approaches that aim at understanding commits
and assist cherry picking with the goal of merging such commits across branches exist. In the state-of-

172 Chapter 7. JET: Stream Change Analysis in Early Integration Phase

the-art presented in Section 3.5 several approaches that are related and relevant for our contributions
were described. Now that JET has been explained, we can provide a more in-depth look of how they
differ from JET . Moreover, we also introduce other related work in the context of JET . In the fol-
lowing, we present approaches that focus on replaying, characterizing, analyzing and understanding
changes.

7.6.1 Fine-grained Patching

Semantic patches [Padioleau 2008] offer a declarative domain-specific language (SmPL) for express-
ing collateral evolutions. With SmPL a developer can describe a generic patch as a transformation of
the source code that can be applied to multiple source code files. As an extension of this work spdiff

is presented [Andersen 2010]: a tool that, given a set of standard patches, automatically generates a
semantic patch.

While semantic patches can be used to generalize a set of changes made in one branch and apply
these changes to another branch, they do not fully tackle the issues addressed by JET . In particular,
semantic patches do not aid in solving the problem that a set of changes might depend on previous
changes that were made in the same branch, and that also need to be migrated to obtain a functioning
system. As our approach aids integrators in understanding changes and their dependencies within
a stream, JET is largely complementary to semantic patches and can potentially aid integrators in
defining and managing such semantic patches.

Collard et al. [Collard 2006] present an approach for easing the integration of large changes by
factoring single commits into a series of smaller changes based on syntactic criteria. Based on an
XML representation of a diff of a system, a developer can partition this diff into a number of smaller
sets of changes. The idea is that these factored changes can then be integrated individually. First,
this process of factoring a commit is done manually and might benefit from the information provided
by our tool. Second, similarly to semantic patches, the factored commit does not take into account
previous commits and hence does not address the problem of dependencies between changes.

7.6.2 Change Characterization

Dragan et al. [Dragan 2011] propose a technique to characterize a commit based on the methods
that were added or removed in that commit. In previous work, they have presented a categorization
of methods (stereotypes) that take various properties of the method (accessing data, changing state,
interaction with other objects,etc.) into account. Their technique leverages these method stereotypes
and, by studying the distribution of the various kinds of method stereotypes within a commit, proposes
a number of categories of different kinds of commits. This technique is related to ours in the sense
that the identified commit types can provide an integrator with valuable information regarding the
size and scope of a commit. However, this technique does not provide any information regarding the
dependencies between commits and the ease with which a commit can be integrated across branches.

7.6.3 Change Impact Analysis / Change Dependencies

Dependencies between changes have been used in the context of change impact analysis. Chi-
anti [Ren 2004] decomposes the difference between two versions of a Java system into a set of atomic
changes. Change impact is then reported in terms of affected (regression or unit) tests whose behavior

7.6. Related Work 173

may have been modified by the applied changes. Chianti relies on syntactic dependencies between
atomic changes for the change impact analysis. Other approaches extend Chianti and use dependen-
cies for similar change impact analyses. Ren et al. [Ren 2006] extended the syntactic dependencies
to three kinds of dependencies between atomic changes that capture syntactic and partially semantic
dependencies to detect failure-inducing changes between two versions. While the dependencies pro-
vided by Chianti and its derived approaches overlap with our change dependencies, they only apply
to a single delta. These approaches do not offer characterization of deltas based on change and delta
dependencies within a stream of changes.

CGIs [German 2009] determines the impact of historical code changes on a particular code seg-
ment by means of dependence graphs. This approach guides developers to investigate failures in
unchanged functions that are affected by bugs introduced in prior code changes. Structural dependen-
cies between C functions are used to build the dependence graphs. These dependencies correspond to
a subset of our change dependencies. GENEVA [Herzig 2011] uses dependencies to perform change
impact analysis for providing recommendations to developers (e.g., predicting long-term change
coupling). This approach builds change dependency graphs (known as change genealogies [Bru-
daru 2008]) by ordering changes based on dependencies, and later applies model checking to the
change genealogy. The dependencies are determined across transactions in version archives. While
these dependencies are very similar to our change dependencies, GENEVA’s change genealogy and
CGIs do not offer the notion of deltas and dependencies between deltas that can be used to character-
ize sets of changes within a stream. Moreover, both determine dependencies that are not relevant in
the context of integration or that can assist in understanding streams of changes and cherry picking.

7.6.4 Understanding Changes

Fritz and Murphy [Fritz 2010] present a study in which they interviewed developers regarding the
different kinds of questions they need answered during development. They introduce the information
fragment model and associated prototype tool for answering the identified questions. This model
provides a representation that correlates various software artifacts (source code, work items, teams,
comments, and so on). By browsing the model, developers can find answers to particular development
questions.

While a number of the questions that developers need answered during development align with
those they need answered during integration of changes, the information fragment model does not
provide functionality to calculate dependencies between changes, which is necessary for integrating
changes across branches.

The approaches performing change impact analysis presented above provide a means to better
understand changes. However, some of them are limited to a single delta, and none of them support
understanding streams of changes in the context of integration. JET could be complemented with a
change impact analysis similar to the one provided by Chianti [Ren 2004].

We introduced Torch in Chapter 5. Torch is the tool support that we propose as part of our
contributions to allow developers understand changes within a single delta. It visualizes how a delta
is related to the structure of the system and characterize changes within a delta. JET generalizes and
augments Torch’s philosophy: (1) a stream of changes is characterized, (2) a stream can be queried
and navigated, (3) dependencies between the changes are computed and help driving change analyses.

174 Chapter 7. JET: Stream Change Analysis in Early Integration Phase

Changes are not treated in isolation but within a stream of changes.

7.7 Conclusion

In this chapter we have presented an approach and (semi-) automated tool support for characterizing
a stream of changes. Concretely, deltas, dependencies between changes, and dependencies between
deltas are characterized within the stream. Our approach, named JET , is part of the requirements
of our solution established in Section 2.4 as a means to assist integrators during the integration of
changes. JET aims at assisting the integration across branches i.e., cherry picking changes from one
branch to merge them with another branch.

We have presented five topics in this chapter. First, we explained how deltas and dependencies are
characterized. Deltas are characterized based on the presence of dependencies: source, intermediate,
island and end. Change dependencies are characterized based on the presence of changes on the
stream: local and external, and based on the amount of potential changes existing in the stream that
satisfy the dependency: unique and multiple. Delta dependencies are characterized based on the
presence of change dependencies: needed, potential and external.

Second, we have presented the JET tools that allow an integrator to visualize and analyze de-
pendencies between changes and deltas themselves. The dashboard performs the characterization of
changes and provides most of the information to integrators. It offers lists of deltas, lists of changes
per delta, lists of dependencies per change, lists of dependencies per delta, and metrics about the
amount of changes, deltas and dependencies within the stream. Each change on the list also adds
several metrics that extract information from the stream, the history and the working copy. The map
is a visualization that displays deltas and their dependencies. It provides integrators with a general
overview of the complexity of the stream. The query browser allows integrators to explore the evo-
lution of an entity within the stream and its users within the stream and within the working copy. It
reuses several components of the dashboard such as the list of dependencies per change or the source
code diffs.

Third, we discussed how several questions (presented in Section 3.3.2) are supported by JET . This
part also served as a motivation for the features of JET in order to allow answering the questions.

Fourth, we presented the qualitative assessment of the capabilities of JET tools by performing an
exploratory case study on a considerable five-year stream of changes: changes made to the Monti-
cello version control system in Squeak with the goal of integrating them into Pharo. The evaluation
consisted of two parts performed by an integrator and a developer of the Pharo project.

Fifth, we discussed several approaches related to JET in the areas of replaying changes, change
characterization, change impact analysis, change dependencies and change understanding, and we
compared these approaches with JET .

CHAPTER 8

Conclusion and Future Work

Contents
8.1 Summary . 175

8.2 Conclusion . 176

8.3 Integrator Questions Revisited . 176

8.4 Limitations and Future Work . 178

8.5 Contributions . 181

8.1 Summary

The motivation of this dissertation is that in a collaborative development environment where the use
of branching and therefore merging is extensive, integrators lack adequate support to assist them in
performing integration activities such as understanding changes, establishing the dependencies of
changes, cherry picking changes, assessing the impact of changes, resolving merging conflicts, and
so on.

The complexity of these tasks is aggravated by several factors: (a) the integrators may not be
familiar with the code they need to integrate, (b) the changes may come from a branch that has drifted
apart from the branch in which the changes need to be integrated (this is common when integrating
changes between forks), (c) the support provided by versioning control systems regarding to merging
is mostly limited to textual comparisons resulting in conflicts that need to be solved manually, (d)
there is no support whatsoever to determine the requirements of a change in order to assist cherry
picking, (e) there is no guarantee that after a successful integration the system is 100% functional or
that in the future, prior changes do not negatively impact unchanged code.

The integration of changes is key in the development process, however, developers that play the
role of integrators lack adequate support. Note that each of the tasks required to integrate changes may
represent a problem by its own, making the whole integration process tedious and time consuming.
There is a clear need for tools that can assist integrators in each of these tasks.

In this dissertation we introduced a novel approach that partially tackles the aforementioned
problems by supporting assisted integration of changes within a branch and across branches. Our
approach is based on an analysis of the integrators’ information needs when understanding and inte-
grating changes. This analysis identifies which kinds of information an integrator potentially needs
to characterize changes and streams of changes in their respective context. To provide integrators
with access to this information, we provide a first-class representation of the history of a system,
the changes made to the system, and an analysis of the dependencies between these changes. As a
concrete implementation, we presented four meta-models: Ring, RingH, RingS and RingC.

176 Chapter 8. Conclusion and Future Work

On top of these meta-models and analysis, we provide tool support – by means of visualizations
and advanced browsers – that allows an integrator to access the information regarding particular
changes, and that aids in the decision making process when integrating changes. Two concrete tools
have been implemented to support this idea, namely Torch that characterizes changes within a single
delta and JET that characterizes a stream of changes and their dependencies.

8.2 Conclusion

Due to the importance of integration of changes in the software development process and even more
in a collaborative development environment, it is necessary to provide integrators with approaches
that can assist them in the different activities involved with integration. Throughout this dissertation
we have argued that by providing integrators with access to their information needs at an adequate
level of abstraction, and tool support to query such information we can assist integration.

Our approach aims at assisting integration as a first step towards supporting full, semantic merging
across branches.

First, we performed this research in the context of a real development project – Pharo – and its
community, therefore we focused on proposing an approach using scientific methodologies that can
be applied in a realistic context. We did not apply our approach to toy examples, but rather to concrete
examples of integration problems. We developed our contributions with the intention of integrating
them in the core of this project, and we evaluated our contributions by consulting developers and
integrators of the Pharo community.

Second, we proposed a language-independent solution that can be used to (semi-)automatically
assist integration activities in the context of object-oriented applications. We do not target fully auto-
mated support because human expertise is necessary to understand the impact on the semantics of a
system. Depending on the context and complexity of the changes it may not be possible to automati-
cally identify impact on semantics. For example, if we intend to integrate a method that impacts the
lookup order of a particular call, it is required to have a human check to know if this method can or
cannot be integrate.

Third, we presented an initial evaluation of our approach that suggests that our approach and tool
support aid integrators in understanding changes in isolation and changes within a stream. Further-
more, we also hypothesize based on our evaluation that our approach can also be used to provide a
means to understand changes and stream of changes needed in other contexts. For example: (a) for
maintenance tasks where developers may rely on the history of the system to understand the code that
they need to change, (b) for aiding new team members to get acquainted with the evolution of the
system, and (c) for helping committers to control their changes before committing.

Fourth, despite the fact that our approach only offers a simple change and dependency model
along with a dependency analysis, it is able to provide integrators with a significant amount of their
information needs. Therefore it can provide answers to most of the questions in the catalogue.

8.3 Integrator Questions Revisited

As a means to show how our approach can assist integrators, we revisit in Table 8.1 the questions
from the catalogue introduced in Section 3.3.2 that are supported by our approach. In Section 3.4.5

8.3. Integrator Questions Revisited 177

we already presented two summaries regarding the support provided by our approach in answering
these questions. Moreover, in Section 7.4 we discussed how questions related to streams of changes
can be supported. Note that in the table for each question we indicate the information required (as
described in Section 3.4), the support provided (+ means fully supported and +/- means partially
supported) and the tools aiding in answering the question.

Question Information required Can be Supporting
answered? Tools

Authorship/Ownership
A1 Author/Owner, History + Torch, JET

A2 Author/Owner, History + Torch, JET

A3 Author/Owner, History + Torch, JET

A4 Author/Owner + Torch, JET

A5 Author/Owner, History +/- Torch, JET

A6 Author/Owner, History + JET

Change nature
B3 Reason +/- Torch

B4 Reason +/- Torch

B5 Structure, Change Scope, Kind of Actions, Kind of Entities, Reason +/- Torch, JET

B6 Kind of Actions, Kind of Entities, Change Dependencies +/- Torch, JET

B7 Kind of Actions, Kind of Entities, Change Dependencies +/- Torch, JET

B14 Kind of Actions, Kind of Entities, Change Dependencies +/- Torch, JET

Structural change characterization
S1 Size, Kind of Entities + Torch

S2 Kind of Entities, Structure, Change Scope + Torch

S3 Kind of Entities, Structure, Change Scope + Torch

S4 Size, Kind of Entities, Structure, Change Scope, Vocabulary,
Change Dependencies

+ Torch, JET

S5 Kind of Entities, Structure, Change Scope, Kind of Actions, Vocab-
ulary, Reason

+ Torch

S6 Kind of Entities, Structure, Change Scope, Kind of Actions, Rea-
son, Change Dependencies

+ Torch, JET

S7 Kind of Entities, Structure, Change Scope, Kind of Actions, Vocab-
ulary, Reason, Change Dependencies

+ Torch, JET

S8 Kind of Entities, Kind of Actions, Change Dependencies +/- JET

S9 Change Dependencies + JET

S10 Change Dependencies + JET

S11 Change Dependencies, Kind of Entities, Structure, Kind of Actions + JET

S12 Kind of Entities, Structure, Kind of Actions, History, Change De-
pendencies

+ JET

S13 Kind of Entities, Structure, Kind of Actions, Change Dependencies +/- JET

S14 Kind of Entities, Kind of Actions, History, Change Dependencies +/- JET

S15 Kind of Entities, Structure, Kind of Actions, History + JET

S16 Kind of Entities, Kind of Actions, History, Change Dependencies +/- JET

S17 Vocabulary +/- Torch, JET

S18 Vocabulary +/- Torch, JET

S19 Kind of Entities, Structure, Change Scope, Kind of Actions, His-
tory, Change Dependencies

+ Torch, JET

Bug tracking infrastructure
I1 Reason +/- Torch, JET

Continued on Next Page. . .

178 Chapter 8. Conclusion and Future Work

Question Information required Can be Supporting
answered? Tool

Changes within a stream
T1 Time + Torch, JET

T2 History, Time, Kind of Actions, Kind of Entities + JET

T3 History, Kind of Actions, Kind of Entities + JET

T4 History, Size, Kind of Actions, Kind of Entities + JET

T5 History, Kind of Actions, Kind of Entities + JET

T6 History, Time + JET

T7 History, Kind of Actions, Kind of Entities + JET

T8 History, Kind of Actions, Kind of Entities, Change Dependencies + JET

T9 History, Kind of Actions, Kind of Entities, Change Dependencies + JET

T10 History, Kind of Actions, Kind of Entities + JET

T11 History, Kind of Actions + JET

T12 Structure, Kind of Actions, Kind of Entities, Change Dependencies + Torch, JET

T13 History, Time, Author/Owner, Structure, Kind of Actions, Kind of
Entities

+ JET

T14 History, Kind of Actions, Kind of Entities + JET

T16 History, Kind of Entities + JET

T17 History, Kind of Entities + JET

T18 History, Kind of Entities + JET

T19 History, Kind of Actions, Kind of Entities +/- JET

T20 History, Kind of Actions, Change Dependencies + JET

T21 History, Change Dependencies + JET

T22 History, Kind of Actions, Kind of Entities, Change Dependencies + JET

T23 History, Kind of Actions, Kind of Entities + JET

Table 8.1: Integrators’ questions supported by our approach (+ means fully answered and +/- means
partially answered).

8.4 Limitations and Future Work

In this section we discuss some of the limitations of our approach and propose future work aimed at
eliminating these limitations.

8.4.1 Non-Supported Questions

In Table 8.2 we revisit the questions from the catalogue introduced in Section 3.3.2 that are not
supported by our approach. At the end we also discuss the questions that are partially answered.

There are 10 out of 64 questions that cannot be answered by our approach. They belong to three
categories of questions: change nature, bug tracking infrastructure and changes within a stream. We
identified two main reasons of why they are not supported. First, our approach does not take into
account information related to other artifacts of the system such as bug reports or tests but it only
relies on the source code of a system stored in versioning repositories. Therefore questions such as I2

and the ones in change nature category related to tests (B8, B9, B10, and B11) cannot be answered.
Second, some questions are very subjective, for example: related to quality (B1), to correctness (B2,
B8, B9, B12, B13) and to renamings (T15).

For future work, our approach can support answering the first kind of questions by incorporating

8.4. Limitations and Future Work 179

Id Question

Change nature
B1 Does this change improve the quality?
B2 Is this change correct?
B8 Did this change fix/break tests? Which tests?
B9 Did the tests work before the changes?
B10 How can I test this change?
B11 Is the change covered by tests? What is the coverage?
B12 If I just apply the change, what are the parts of my current system that it will break?
B13 If the merge succeeds, will the change work later?

Bug tracking infrastructure
I2 Have other bugs related to the change been reported?

Changes within a stream
T15 Was this method/class renamed in the past? in which version?

Table 8.2: Non-supported questions

other sources of information, such as bug trackers or tests. To support the second category of questions
that regard more semantical information, our approach can be completed with metrics/link rules to
answer questions related to quality, with unit testing to answer questions related to correctness, and
with the use of refactoring tools to answer behavioral preserving questions such as renamings.

Finally, as seen in Table 8.1 there are 15 questions that can be partially answered (+/-). Six
questions are in the change nature category, six questions are in the structural change characterization
category, and one question in the categories bug tracking infrastructure, authorship/ownership and
change within a stream. Most of these questions are partially answered because of the same reasons
mentioned before. Other questions such as “What is the total impact of this change?” (B6) are
only partially supported because our approach does not provide a change impact analysis (which is
discussed later).

8.4.2 Improvements

Our discussion of future work is based on several improvements of the work we have presented and
in particular of the Torch and JET tools.

Simultaneous analysis of multiple branches

Our approach supports the analysis of a stream of changes from a source branch in order to cherry
picking changes that can be integrated with a target branch. However, within JET we do not fully
provide an analysis that takes the evolution of both branches into account at the same time as a means
to identify the implications of merging such changes. Currently, our approach considers the stream
of changes from the source branch and the current version of the target branch. This is not enough
to completely assess the impact of integrating a stream of changes into a target branch or to identify
what can be migrated from one branch into another without interfering with past integration actions.
For example, consider that the stream may be reintroducing features that were previously removed
from the target branch.

180 Chapter 8. Conclusion and Future Work

For supporting the analysis of multiple branches we should take into account that our change and
dependency model may need to be extended with other representations e.g., cross dependencies, the
importers may need adjustments and our tools Torch and JET can be still applied but as part of a tool
suite that incorporates new tool support. The concrete idea is to provide tool support for performing
a cross-branch analysis where both streams of changes are compared and can be explored within the
same (visual) dashboard, and see for instance that a change (fix) in the source branch was applied to
the target branch, and therefore it is actually redundant, even though, in the target branch the problem
was fixed in a different way (making visible such differences between both fixes).

Cross-branch integration

Our methodology and tool support provide a means to comprehend changes and stream of changes
in isolation. That means our approach is used to make integration decisions and later using the
version control system perform the actual integration. In order to provide comprehensive support for
integration our approach should also provide a means to allow integrators to cherry pick changes and
merge them with the target branch from within our tools, making the process smooth for integrators.
This is considering that our approach provides detailed information about the changes that can ease
and speed up the integration. For example, an integrator may want to merge a change and take its
dependencies into account automatically from within the dashboards. To achieve this, our tools Torch
and JET need to be extended with version control facilitates. In fact, Torch and JET can be part of a
new generation of version control systems.

Change impact analysis

We presented several approaches that propose change impact analysis in Sections 3.5.3 and 7.6. Most
of them are related to our approach because they use the notion of dependencies between changes
although limited to pairs of versions. We put that our approach can be enhanced with an explicit
impact analysis to (semi-)automatically infer the impact of merging a single change within a branch
or a stream of changes across branches, concretely, to find out whether the semantics of the system is
affected if integrating a particular change. For example, if a merge adds an overridden method in a
class hierarchy, our approach and tools could identify if and how this change impacts the semantics.
This could allow us to give the integrator warnings when the semantics is affected, in this example
something like “merging this change will have an impact on what is executed in the super call”.

These approaches can serve as the foundation to define a change impact analysis that can be in-
corporated in our approach. Even though most of them also rely on test prioritization, we already
mentioned that our approach can be complemented with unit testing to support non-answered ques-
tions. Such source of information can be used for impact analysis as well. Another point to take into
account is the use of Reuse Contracts [Steyaert 1996] as a means to perform behavioral analysis

8.4.3 Full-fledged Validation

In Chapters 5 and 7 we presented the evaluations that were performed to assess our contributions.
Even though, we executed two qualitative evaluations using JET for the analysis of a five-year stream
of changes of a real system, we cannot make any generalizable claims regarding the usefulness of
JET for characterizing streams of changes and assisting cherry picking. We consider it necessary to

8.5. Contributions 181

perform a controlled experiment with advanced developers and integrators to assess JET , its char-
acterization of deltas and dependencies, and its integration with Torch. For this, we intend to reach
integrators and developers from the Smalltalk community, in particular from the Pharo and ESUG
communities. However, we are aware that getting them all together is unfeasible and therefore, we
may consider to travel to various research institutions and companies that use Smalltalk to perform
individual evaluations of the use of our approach.

Applying our approach and tools in multiple integration scenarios provide us with means to assess
the scalability of our approach and allows us to identify the real benefits of our approach in assisting
the integration process. Moreover, by means of a more elaborated evaluation we can identify other
improvements and refinements of our tools and formalism.

8.4.4 Other Improvements

For future work we have already identified several improvements to our tools that do not require major
engineering efforts or the addition of new information.

First, we propose to enhance Torch with some features of JET and vice versa. We can incorporate
the notion of dependencies within Torch and provide a characterization of dependencies similar to the
one in JET . This can allow us to directly infer co-related changes within a delta. Moreover, RingS can
also represent method’s relationships (method calls, class references and variable access) as is done in
RingC to provide finer-grained information on the Torch dashboard and visualizations. In JET we can
incorporate visualizations similar to the ones in Torch for exploring deltas together with its changes,
or for providing a visual dashboard as the one in Torch.

Second, we also consider several improvements for Torch that were discussed in Sections 5.7.1
and 5.7.4. Most of them correspond to technical adjustments to customize the visualizations within
the dashboard. Another suggestion is related to the classification of changes in the visualizations by
their semantic impact. We can achieve this by providing the change impact analysis discussed above.

8.5 Contributions

We first present a summary of our contributions in Table 8.3, and then we conclude by describing the
conceptual and technical contributions of the work we have presented in this dissertation to tackle
an important problem existing in the software development process, namely the lack of support for
assisted integration of changes within a branch and across branches.

8.5.1 Conceptual Contributions

• We present an in-depth analysis of the problem underlying this research. We explain the rel-
evance of collaborative software development, how version control systems support this kind
of development by means of branching and merging, the challenges that need to be faced to
support integration, and the requirements of a solution that should be considered to assist inte-
gration.

• We present a catalogue of 64 questions that shows which questions integrators ask themselves
when performing integration activities. We gathered most of the questions from a study in

182 Chapter 8. Conclusion and Future Work

Supporting Integration Activities
within system across branches
(two versions) (sequence of versions)

Models ◦ Ring ◦ Ring
◦ RingS ◦ RingH

◦ RingC
Study ◦ catalogue of questions (64)
Analyses � generation of changes � generation of history

� characterization of changes � calculation of deltas
� calculation of dependencies
� characterization of dependencies
� characterization of deltas

Tool Support Torch JET
Evaluation . questionnaire (6 integrators) . qualitative (integrator)

. pre / post tests (10 developers) . qualitative (developer)

. examples . examples

Table 8.3: Summary of contributions

which 20 developers that integrate changes within Smalltalk projects participated. Moreover,
we complemented their questions with other questions regarding integration that we found in
related studies. The goals of this study were to identify the integrators’ information needs to
establish our requirements, and to use these questions as a means to validate our contributions.

• We present a characterization of integrators’ information needs based on the catalogue of ques-
tions. The identified kinds of information were classified as (a) descriptive information (e.g.,
size), (b) structural information (e.g., change scope), (c) semantic information (e.g., reason),
and (d) historical information (e.g., change dependencies). By means of this we aim at provid-
ing integrators with the required information to assist the integration.

• We propose a first-class representation of the history and changes of a software system stored in
versioning repositories. This serves as the underlying representation for history, version com-
parisons and streams of changes analyses (i.e., delta and dependency analyses) to characterize
changes and streams of changes.

• We propose the idea of assisted integration by means of the characterizations of changes and
streams of changes, together with (semi-)automated tool support that can be used by integrators
to access their information needs.

• We propose the use of visualizations as a way to observe patterns in the changes (e.g., removal
of features, refactorings, etc.). By means of visual representations of the changes within their
context our approach aims at providing an overview of these changes, easing and speeding up
the comprehension of these changes.

• We performed several evaluations of our approach: First, regarding the assisted integration of
a single delta within a branch we presented: (a) a questionnaire intended for integrators in the
Smalltalk community to evaluate the characterization of changes within a single delta and our

8.5. Contributions 183

tool support (Torch), (b) a pre-test and a post-test intended for developers to identify what sup-
port they require to understand and integrate changes, and to evaluate how the characterization
of changes provided by Torch helped them, and (c) examples showing how Torch can ease in
understanding changes made to the Pharo environment. Second, regarding the assisted inte-
gration of a stream of changes across branches we presented: (a) a qualitative evaluation with
a Pharo integrator that analyzed a considerable stream of changes made to fork (i.e., Squeak)
using our tool support (JET), (b) a qualitative evaluation with a Pharo developer that analyzed
the same stream of changes using JET and categorized these changes (e.g., integrate, ignore,
..), and (c) examples showing how JET can assist integrators answering the questions they raise
during the integration.

• We propose an approach that is general enough to assist integration activities such as under-
standing changes, cherry picking changes, assessing changes, etc. in any software development
process. Our approach is inherently language independent and it can be applied to assist integra-
tors in a collaborative development environment independently of the programming language
and infrastructure used.

8.5.2 Technical Contributions

• We implemented the Ring source code meta-model. This meta-model is not only the foundation
of our other meta-models RingS, RingH and RingC, but it is also used as the Smalltalk source
code meta-model to support tool integration in the Pharo environment. Ring has been adopted
by the Pharo community and it is integrated in Pharo 1.4 which was released in April 2012.

• We implemented the RingS change meta-model to define models that denote the difference
between two versions. RingS is built on top of the Ring source code meta-model. We refer to
RingS as the single-delta change model regarding the fact that we compare two versions within
the system (i.e., base and target version). However, RingS differs from other change models in
the sense that it not only defines the changes between both versions, but it defines the complete
state of the target version and what changed from base to target. By means of this we can offer
integrators the context in which the changes occurred.

• We implemented the RingH history meta-model to define history models containing the whole
or partial evolution of a system. This model is built on top of the Ring source code meta-
model and therefore provides representations of language constructs in Smalltalk. Despite this,
RingH is generic enough to be extended to support program definitions in other object-oriented
programming languages such as interfaces in Java.

• We implemented the RingC change meta-model to define models containing a stream of
changes in the form of deltas, changes (i.e., additions, modifications and removals) and de-
pendencies. RingC is built on top of Ring and it uses RingH because a change model is derived
from a history model. A change model consists of the changes made to the program entities
and relationships that exist within the history model.

• We implemented the Torch tool to provide the characterization of changes within single deltas.
Torch is the client of the RingS meta-model and it allows integrators to visually comprehend

184 Chapter 8. Conclusion and Future Work

changes and their context using descriptive, structural and semantic information. Torch offers
integrators a dashboard that gathers as much information as possible regarding the changes. It
includes several visualizations, fly-by-helps, diffs, metrics, summaries and lists of changes to
ease the navigation and querying of the changes. Moreover, we have integrated Torch with the
Monticello version control system to ease the access of the source code repositories. We have
also enabled Torch to support RingH models as the input for defining RingS models.

• We implemented the JET tools to provide the characterization of streams of changes. JET is
the client of the RingC meta-model, which in turn uses a RingH model. JET extends Torch’s
philosophy but offering integrators a means to comprehend a stream of changes, their context
and their dependencies using descriptive, structural, semantic and historical information. JET
offers three tools: (1) the dashboard that characterizes the stream and allows integrators to
explore deltas, changes and dependencies along with metrics and diffs, (2) the map that offers a
visual overview of the dependencies between deltas, and (3) the query browser that provides a
means to explore the evolution of an entity within the stream. Furthermore, we have integrated
JET with Torch to allow integrators to perform an in-depth analysis of any delta within the
stream.

APPENDIX A

Torch: Field Evaluation Questionnaire

1 2 3 4 5
Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree

1 2 3 4 5
Qualify the context
Is software change integration difficult?

Qualify yourself
Are you skilled using visualizations?

Do you find visualizations useful?

Are you an integrator?

Are you an expert of the system(s) that you integrate?

Common tasks when comparing versions
identify if it contains one fix or multiple fixes?

identify / characterize changes (semantic fix, cosmetic/doc,
structural/organizational fix) or (maintenance, feature addi-
tion/removal, enhancements...) ?

assess criticality of changes?

analyze the impact of changes?

compare branches for merge?

Torch experience
“Imagine that Torch would be more than a prototype”
Would you like to use Torch in your daily integration process?

Does the System Dashboard help you?

Does the Package Dashboard help you?

Did you use the Enhanced Changes List? was it useful?

Do you understand the two different scenarios (changes against
ancestor and working copy) in the MC Repository browser?

Did you use one of those scenarios more frequently? which one?

Do you like the fact that we do not show only visual elements but
also the Diff tool all the time?

Do you find the fly-by help showing code on any entity useful?

Do you think that you got a better understanding of the changes,
their scope and their impact using Torch instead of the tools you
currently use?

186 Appendix A. Torch: Field Evaluation Questionnaire

For the components of the Torch Dashboard:

Changes list

Parameters

Legend

Metrics

Changes
visualizations

Changes details

classesmethods

in place diff as a
fly-by-help

comment

variables

inheritance
(intra-package)

package

have used considered useful
Yes No 1 2 3 4 5

Components

Summary (metrics & users)

Parameters (class state & width)

Changes List

Diff Tool (& other data)

Visualizations

Changed Packages (details)

Changes Packages (condensed)

Packages (condensed)

Changed Classes (details)

Classes (condensed)

Symbolic Clouds

Entity Names

Navigation Features

Class Structure fly-by help

Source Code fly-by help

Contextual Menu

Changes List refreshing by selected entity or metric

Continued on Next Page. . .

187

have used considered useful
Yes No 1 2 3 4 5

Legends

Colors (kinds of changes and entities)

Border Styles (kinds of changes and entities)

Line Styles (kinds of relations)

Open questions

• Which applications do you commonly use for version comparison (e.g. Changes List,
Monticello Changes List, Diff File tools, etc.)?

• Which software projects do you mostly integrate?

• Which features of Torch need to be improved?

• Which features of Torch are not useful at all and should be removed? Why?

• Do you think there exist some aspects that are not covered by Torch? Which features are
missing? What do you recommend us to add?

• Do you know about existing approaches/tools intended for version comparison presenting (vi-
sualizations with) the structural model and changes as Torch does? If yes, mention them.

APPENDIX B

Torch: User Study Pre-Test

Personal Background

Please answer the following questions with regard to your age and education background. The an-
swers will be kept private and only serve to put your other answers in context.

What is your age?:

Please sketch your background (PhD, Master, Bachelor, etc):

Questionnaire

For each of the statements below, please rate each one on a scale from 1 (totally disagree) to 5 (totally
agree) to indicate to what extend they represent your opinion.

1 2 3 4 5
Totally disagree Disagree Neither agree nor disagree Agree Totally agree

Scale
General Background

I consider myself an experienced developer 1 2 3 4 5

I consider myself a proficient OO developer 1 2 3 4 5

I am an expert user of the Pharo or any other Smalltalk IDE 1 2 3 4 5

I use facilities (search, senders, implementors, . . .) of my IDE
when coding

1 2 3 4 5

I use facilities (change lists, merge) of my version control system 1 2 3 4 5

Attitude towards tool support

IDEs are essential for software development 1 2 3 4 5

Version Control Systems (e.g. Git, Monticello, Store) are essen-
tial for software development

1 2 3 4 5

I find software visualizations useful for understanding source
code

1 2 3 4 5

Continued on Next Page. . .

190 Appendix B. Torch: User Study Pre-Test

Scale
I find diagrams of my software (UML,) useful 1 2 3 4 5

Attitude towards change understanding

Advanced development tools ease software development 1 2 3 4 5

Understanding changes of the developers is an essential part of
the development process

1 2 3 4 5

Understanding changes can be difficult when you did not imple-
ment them

1 2 3 4 5

Version control systems provide sufficient help in understanding
the changes of a program

1 2 3 4 5

Having a visualization helps understanding changes 1 2 3 4 5

Most questions about source code changes can be answered using
the facilities of versioning control systems

1 2 3 4 5

Expectations of a change visualization tool

Visually exploring changes is essential for change understanding 1 2 3 4 5

Graphical notations should make it easier to identify changes than
just reading code

1 2 3 4 5

Visualizations should provide semantic information about
changes

1 2 3 4 5

Graphical and textual information about changes should be com-
bined together to speed change exploration and understanding

1 2 3 4 5

The Pharo IDE provides sufficient change understanding facilities 1 2 3 4 5

Monticello provides sufficient change understanding facilities 1 2 3 4 5

APPENDIX C

Torch: User Study Post-Test

Questionnaire

For each of the statements below, please rate each one on a scale from 1 (totally disagree) to 5 (totally
agree) to indicate to what extend they represent your opinion.

1 2 3 4 5
Totally disagree Disagree Neither agree nor disagree Agree Totally agree

Scale
Exercise Experience

I was able to follow and complete the exercise 1 2 3 4 5

The exercise was too simple 1 2 3 4 5

The tasks of the exercise are the same to the ones I perform during
development

1 2 3 4 5

Torch Experience

The Torch package-based visualizations provide an overview of
changes

1 2 3 4 5

I find the Torch package-based visualizations useful to understand
changes

1 2 3 4 5

I find the Torch class-based visualizations useful to understand
changes

1 2 3 4 5

I find the Torch symbolic clouds useful to understand changes 1 2 3 4 5

Visual representation of program entities in Torch are easy to un-
derstand

1 2 3 4 5

Evaluation of Torch

Torch’s use of class representations (UML like) makes change
identification easier

1 2 3 4 5

Torch’s use of source code as a fly-by help makes change explo-
ration easier

1 2 3 4 5

Torch brings semantic information not provided by textual change
lists

1 2 3 4 5

Torch complements Monticello’s change exploration facilities 1 2 3 4 5

Visualizations in Torch are easy to understand 1 2 3 4 5

Continued on Next Page. . .

192 Appendix C. Torch: User Study Post-Test

Scale
Torch aids in understanding changes 1 2 3 4 5

I would use Torch in my development activities 1 2 3 4 5

Features of Torch

I find the detailed class representation useful 1 2 3 4 5

I find the condensed class representation unnecessary 1 2 3 4 5

The package-based visualizations provide enough information to
get an idea of the changes

1 2 3 4 5

I like the fly-by help to explore the source code from within the
visualizations at any time without opening a new window

1 2 3 4 5

I like the fly-by help to explore the complete structure of any class 1 2 3 4 5

I find the mixed symbolic cloud redundant 1 2 3 4 5

I find the presence of unchanged program entities needed to un-
derstand the context of the changed ones

1 2 3 4 5

Comments

Please note any additional comment you might have, either on the assignment, or on the tool. Please
include features that you think might be enhanced, or added in order to make Torch a better tool (You
can continue on the other side of the sheet).

Bibliography

[Abdi 2006] M. K. Abdi, H. Lounis and H. Sahraoui. Analyzing Change Impact in Object-Oriented
Systems. In Proceedings of the 32nd EUROMICRO Conference on Software Engineering and
Advanced Applications, EUROMICRO’06, pages 310–319, 2006. IEEE Computer Society.

[Abdi 2009] Mustapha Abdi, Hakim Lounis and Houari Sahraoui. Analyse et prédiction de l’impact
de changements dans un système à objets : Approche probabiliste. In Proceedings of
LMO’09, 2009.

[Abebe 2009] Surafel Lemma Abebe, Sonia Haiduc, Andrian Marcus, Paolo Tonella and Giuliano
Antoniol. Analyzing the Evolution of the Source Code Vocabulary. In Proceedings of the
2009 European Conference on Software Maintenance and Reengineering, CSMR’09, pages
189–198. IEEE Computer Society, 2009.

[Adams 1986] Evan Adams, Wayne Gramlich, Steven S. Muchnick and Soren Tirfing. SunPro: en-
gineering a practical program development environment. In International workshop on Ad-
vanced programming environments, pages 86–96, 1986. Springer-Verlag.

[Alam 2009] Omar Alam, Bram Adams and Ahmed E. Hassan. Measuring the progress of projects
using the time dependence of code changes. In Proceedings of the 25th IEEE International
Conference on Software Maintenance, ICSM’09, pages 329–338. IEEE, 2009.

[AmcomTechnology 2010] AmcomTechnology. Source Code Management with Multi-
ple QA environments using Git. http://www.amcomtech.net/client/index.cfm/2010/10/28/

Source-Code-Management-with-Multiple-QA-environments-using-Git, 2010. [Online; accessed
30-May-2012].

[Andersen 2010] J. Andersen and J. Lawall. Generic patch inference. Automated Software Engi-
neering, vol. 17, no. 2, pages 119–148, 2010.

[Anderson 2001] Paul Anderson and Tim Teitelbaum. Software Inspection Using CodeSurfer. In
Proceedings of the International Workshop on Inspection in Software Engineering, WISE’01,
2001.

[Anquetil 1998] Nicolas Anquetil and Timothy C. Lethbridge. Assessing the relevance of identifier
names in a legacy software system. In Proceedings of the 1998 conference of the Centre
for Advanced Studies on Collaborative research, CASCON’98, pages 213–222. IBM Press,
1998.

[Apel 2011] Sven Apel, Jörg Liebig, Benjamin Brandl, Christian Lengauer and Christian Kästner.
Semistructured merge: rethinking merge in revision control systems. In Proceedings of the
19th ACM SIGSOFT symposium and the 13th European conference on Foundations of soft-
ware engineering, ESEC/FSE’11, pages 190–200. ACM, 2011.

http://www.amcomtech.net/client/index.cfm/2010/10/28/Source-Code-Management-with-Multiple-QA-environments-using-Git
http://www.amcomtech.net/client/index.cfm/2010/10/28/Source-Code-Management-with-Multiple-QA-environments-using-Git

194 Bibliography

[Arbuckle 2008] Tom Arbuckle. Visually Summarising Software Change. In Proceedings of the 12th
International Conference Information Visualisation, pages 559–568. IEEE Computer Society,
2008.

[Asklund 1994] Ulf Asklund. Identifying Conflicts During Structural Merge. In Nordic Workshop
Programming Environment Research, pages 231–242, 1994.

[Badri 2005] L. Badri, M. Badri and D. St-Yves. Supporting predictive change impact analysis: a
control call graph based technique. In Proceedings of the 12th Asia-Pacific Software Engi-
neering Conference, APSEC’05, pages 9–15, dec 2005.

[Bergel 2005] Alexandre Bergel, Stéphane Ducasse, Oscar Nierstrasz and Roel Wuyts. Classboxes:
Controlling Visibility of Class Extensions. Journal of Computer Languages, Systems and
Structures, vol. 31, no. 3-4, pages 107–126, December 2005.

[Berlage 1993] Thomas Berlage and Andreas Genau. A framework for shared applications with a
replicated architecture. In Proceedings of User Interface Software and Technology Sympo-
sium, UIST’93, pages 249–257, 1993. ACM.

[Berlin 2006] Daniel Berlin and Garrett Rooney. Practical Subversion, second edition. Apress, 2006.

[Berliner 1990] Brian Berliner. CVS II: Parallelizing Software Development. In Proceedings of
the USENIX Conference (The Advanced Computing Systems Professional and Technical
Association), pages 22–26, 1990.

[Berzins 1994] Valdis Berzins. Software merge: semantics of combining changes to programs. Jour-
nal of ACM Transactions on Programming Languages and Systems (TOPLAS), vol. 16, no. 6,
pages 1875–1903, 1994.

[Beyer 2005] Dirk Beyer. Co-change visualization. In Proceedings of the 21st IEEE International
Conference on Software Maintenance, Industrial and Tool volume, ICSM’05, pages 89–92,
2005.

[Binkley 1995] David Binkley, Susan Horwitz and Thomas Reps. Program integration for languages
with procedure calls. Journal of ACM Transactions on Software Engineering and Methodol-
ogy (TOSEM), vol. 4, no. 1, pages 3–35, 1995.

[Bird 2011] Christian Bird, Nachiappan Nagappan, Brendan Murphy, Harald Gall and Premkumar
Devanbu. Don’t touch my code!: examining the effects of ownership on software quality. In
Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering, ESEC/FSE’11, pages 4–14. ACM, 2011.

[Black 2009] Andrew P. Black, Stéphane Ducasse, Oscar Nierstrasz, Damien Pollet, Damien Cassou
and Marcus Denker. Pharo by example. Square Bracket Associates, Kehrsatz, Switzerland,
2009.

[Bohner 1996] Shawn A. Bohner and Robert S. Arnold. Software change impact analysis. IEEE
Computer Society Press, 1996.

Bibliography 195

[Brant 1998] John Brant and Don Roberts. “Good Enough” Analysis for Refactoring. In Object-
Oriented Technology Ecoop ’98 Workshop Reader, LNCS, pages 81–82. Springer-Verlag,
1998.

[Brudaru 2008] Irina Ioana Brudaru and Andreas Zeller. What is the long-term impact of changes? In
Proceedings of the 2008 international workshop on Recommendation Systems for Software
Engineering, RSSE’08, pages 30–32. ACM, 2008.

[Buffenbarger 1995] Jim Buffenbarger. Syntactic Software Merging. In Selected papers from the
ICSE SCM-4 and SCM-5 Workshops, on Software Configuration Management, pages 153–
172, 1995. Springer-Verlag.

[Bunge 2009] Philipp Bunge. Scripting browsers with Glamour. Master’s thesis, University of Bern,
April 2009.

[Ceri 1989] S. Ceri, G. Gottlob and L. Tanca. What You Always Wanted to Know About Datalog (And
Never Dared to Ask). IEEE Transactions on Knowledge and Data Engineering, vol. 1, no. 1,
pages 146–166, 1989.

[Chacon 2008] Scott Chacon. Git Internal. PeepCode, 2008.

[Chaumun 2002] M. Ajmal Chaumun, Hind Kabaili, Rudolf K. Keller and Francois Lustman. A
change impact model for changeability assessment in object-oriented software systems. Sci-
ence of Computer Programming, vol. 45, no. 2-3, pages 155 – 174, 2002.

[Chawathe 1996] Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina and Jennifer
Widom. Change detection in hierarchically structured information. pages 493–504, 1996.

[Chesley 2005] Ophelia C. Chesley, Xiaoxia Ren and Barbara G. Ryder. Crisp: A Debugging Tool
for Java Programs. In Proceedings of the 21st IEEE International Conference on Software
Maintenance, ICSM’05, pages 401–410, 2005.

[Coelho 2006] Wesley Coelho and Gail C. Murphy. Presenting crosscutting structure with active
models. In Proceedings of the 5th International Conference on Aspect-Oriented Software
Development, AOSD’06, pages 158–168, 2006. ACM Press.

[Collard 2006] M. Collard, H. Kagdi and J. Maletic. Factoring Differences for Iterative Change Man-
agement. In International Workshop on Source Code Analysis and Manipulation, SCAM’06,
pages 217–226. IEEE, 2006.

[Collins-Sussman 2009] Ben Collins-Sussman, Brian W. Fitzpatrick and C. Michael Pilato. Version
control with subversion (for subversion 1.6). O’Reilly Media, June 2009.

[D’Ambros 2006] Marco D’Ambros, Michele Lanza and Mircea Lungu. The Evolution Radar: Inte-
grating Fine-grained and Coarse-grained Logical Coupling Information. In Proceedings of
the 3rd International Workshop on Mining Software Repositories, MSR’06, pages 26 – 32,
2006.

196 Bibliography

[D’Ambros 2007] Marco D’Ambros and Michele Lanza. BugCrawler: Visualizing Evolving Soft-
ware Systems. In Proceedings of the 11th IEEE European Conference on Software Mainte-
nance and Reengineering, CSMR’07, page to be published, 2007.

[D’Ambros 2008] M. D’Ambros, H. Gall, M. Lanza and M. Pinzger. Analysing Software Reposito-
ries to Understand Software Evolution. In Software Evolution, pages 37–67. Springer-Verlag,
2008.

[de Moor 2007] O. de Moor, M. Verbaere, E. Hajiyev, P. Avgustinov, T. Ekman, N. Ongkingco,
D. Sereni and J. Tibble. Keynote address: .QL for source code analysis. In IEEE Computer
Society, editeur, Proceedings of the 7th IEEE International Working Conference on Source
Code Analysis and Manipulation, SCAM’07, pages 3–16, 2007.

[De Volder 2006] K. De Volder. JQuery: A Generic Code Browser with a Declarative Configuration
Language. Proceedings of the 8th International Symposium on Practical Aspects of Declara-
tive Languages, pages 88–102. Springer, 2006.

[Demeyer 2001] Serge Demeyer, Sander Tichelaar and Stéphane Ducasse. FAMIX 2.1 — The
FAMOOS Information Exchange Model. Rapport technique, University of Bern, 2001.

[Dig 2008] Danny Dig, Kashif Manzoor, Ralph E. Johnson and Tien N. Nguyen. Effective Software
Merging in the Presence of Object-Oriented Refactorings. IEEE Transactions on Software
Engineering, vol. 34, no. 3, pages 321–335, 2008.

[Dragan 2006] Natalia Dragan, Michael L. Collard and Jonathan I. Maletic. Reverse Engineering
Method Stereotypes. In Proceedings of the 22nd IEEE International Conference on Software
Maintenance, ICSM’06, pages 24–34. IEEE, 2006.

[Dragan 2009] Natalia Dragan, Michael L. Collard and Jonathan I. Maletic. Using method stereotype
distribution as a signature descriptor for software systems. In Proceedings of the 25th IEEE
International Conference on Software Maintenance, ICSM’09, pages 567–570. IEEE, 2009.

[Dragan 2010] Natalia Dragan, Michael L. Collard and Jonathan I. Maletic. Automatic identification
of class stereotypes. In Proceedings of the 26th IEEE International Conference on Software
Maintenance, ICSM’10, pages 1–10. IEEE, 2010.

[Dragan 2011] N. Dragan, M. Collard, M. Hammad and J. Maletic. Categorizing Commits Based on
Method Stereotypes. In Proceedings of the 27th IEEE International Conference on Software
Maintenance, ICSM’11, pages 520–523. IEEE, 2011.

[Ducasse 1999] Stéphane Ducasse. Evaluating Message Passing Control Techniques in Smalltalk.
Journal of Object-Oriented Programming (JOOP), vol. 12, no. 6, pages 39–44, June 1999.

[Ducasse 2000] Stéphane Ducasse, Michele Lanza and Sander Tichelaar. Moose: an Extensible
Language-Independent Environment for Reengineering Object-Oriented Systems. In Pro-
ceedings of the 2nd International Symposium on Constructing Software Engineering Tools,
CoSET ’00, June 2000.

Bibliography 197

[Ducasse 2005] Stéphane Ducasse and Michele Lanza. The Class Blueprint: Visually Supporting the
Understanding of Classes. Transactions on Software Engineering (TSE), vol. 31, no. 1, pages
75–90, January 2005.

[Ducasse 2006a] Stéphane Ducasse, Tudor Gîrba and Adrian Kuhn. Distribution Map. In Proceed-
ings of 22nd IEEE International Conference on Software Maintenance, ICSM’06, pages 203–
212, 2006. IEEE Computer Society.

[Ducasse 2006b] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts and Andrew P.
Black. Traits: A Mechanism for fine-grained Reuse. ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 28, no. 2, pages 331–388, March 2006.

[Ducasse 2009] Stéphane Ducasse, Marcus Denker and Adrian Lienhard. Evolving a Reflective Lan-
guage. In Proceedings of the International Workshop on Smalltalk Technologies, IWST’09,
pages 82–86, aug 2009. ACM.

[Ducasse 2010] Stéphane Ducasse, Lukas Renggli, C. David Shaffer, Rick Zaccone and Michael
Davies. Dynamic web development with seaside. Square Bracket Associates, 2010.

[D’Ambros 2010] Marco D’Ambros, Michele Lanza and Romain Robbes. Commit 2.0. In Proceed-
ings of the 1st Workshop on Web 2.0 for Software Engineering, Web2SE’10, pages 14–19.
ACM, 2010.

[Ebraert 2007] Peter Ebraert, Jorge Vallejos, Pascal Costanza, Ellen Van Paesschen and Theo
D’Hondt. Change-oriented software engineering. In Proceedings of the 2007 international
conference on Dynamic languages: in conjunction with the 15th International Smalltalk Joint
Conference, ICDL ’07, pages 3–24. ACM, 2007.

[Ebraert 2008] Peter Ebraert. First-Class Change Objects for Feature-Oriented Programming. In
Proceedings of the 15th Working Conference on Reverse Engineering, WCRE’08, pages 319–
322. IEEE Computer Society, 2008.

[Ebraert 2010] Peter Ebraert, Theo D’Hondt, Tim Molderez and Dirk Janssens. Intensional changes:
modularizing crosscutting features. In Proceedings of the 2010 ACM Symposium on Applied
Computing, SAC ’10, pages 2176–2182. ACM, 2010.

[Ebraert 2011] Peter Ebraert, Quinten David Soetens and Dirk Janssens. Change-based FODA dia-
grams: bridging the gap between feature-oriented design and implementation. In Proceed-
ings of the 2011 ACM Symposium on Applied Computing, SAC’11, pages 1345–1352. ACM,
2011.

[Edwards 1997] W. Keith Edwards. Flexible conflict detection and management in collaborative
applications. In Proceedings of the 10th annual ACM symposium on User interface software
and technology, UIST’97, pages 139–148, 1997. ACM.

[Elbaum 2000] Sebastian G. Elbaum, Alexey G. Malishevsky and Gregg Rothermel. Prioritizing
test cases for regression testing. In Proceedings of the 2000 ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA’00, pages 102–112. ACM Press, 2000.

198 Bibliography

[Elbaum 2003] S. Elbaum, P. Kallakuri, A. G. Malishevsky, G. Rothermel and S. Kanduri. Un-
derstanding the effects of changes on the cost-effectiveness of regression testing techniques.
Journal of Software Testing, Verification, and Reliability, vol. 13, no. 2, pages 65–83, June
2003.

[Fabry 2011] Johan Fabry, Andy Kellens, Simon Denier and Stéphane Ducasse. AspectMaps: A Scal-
able Visualization of Join Point Shadows. In Proceedings of the 19th International Conference
on Program Comprehension, ICPC’11, pages 121–130. IEEE Computer Society Press, 2011.

[Feather 1989] Martin S. Feather. Detecting interference when merging specification evolutions. In
IWSSD ’89: Proceedings of the 5th international workshop on Software specification and
design, pages 169–176, 1989. ACM.

[Fluri 2006] Beat Fluri and Harald C. Gall. Classifying Change Types for Qualifying Change Cou-
plings. In Proceedings of the 14th IEEE International Conference on Program Comprehen-
sion, ICPC’06, pages 35–45, 2006. IEEE Computer Society.

[Fluri 2007] Beat Fluri, Michael Wuersch, Martin PInzger and Harald Gall. Change Distilling: Tree
Differencing for Fine-Grained Source Code Change Extraction. IEEE Transactions on Soft-
ware Engineering, vol. 33, pages 725–743, 2007.

[Fritz 2010] Thomas Fritz and Gail C. Murphy. Using information fragments to answer the questions
developers ask. In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering, ICSE’10, pages 175–184. ACM, 2010.

[Gallagher 1991] Keith Brian Gallagher and James R. Lyle. Using Program Slicing in Software
Maintenance. Transactions on Software Engineering, vol. 17, no. 18, pages 751–761, August
1991.

[German 2009] Daniel M. German, Ahmed E. Hassan and Gregorio Robles. Change impact graphs:
Determining the impact of prior code changes. Journal of Information Software Technology,
vol. 51, no. 10, pages 1394–1408, October 2009.

[Gîrba 2005a] Tudor Gîrba. Modeling History to Understand Software Evolution. PhD thesis, Uni-
versity of Bern, Bern, November 2005.

[Gîrba 2005b] Tudor Gîrba, Michele Lanza and Stéphane Ducasse. Characterizing the Evolution of
Class Hierarchies. In Proceedings of 9th European Conference on Software Maintenance and
Reengineering, CSMR’05, pages 2–11, 2005. IEEE Computer Society.

[Gîrba 2006] Tudor Gîrba and Stéphane Ducasse. Modeling History to Analyze Software Evolution.
Journal of Software Maintenance: Research and Practice (JSME), vol. 18, pages 207–236,
2006.

[Git 2005] Git. Git: The fast version control system. http://git-scm.com, 2005.

[Goldberg 1989] Adele Goldberg and Dave Robson. Smalltalk-80: The language. Addison Wesley,
1989.

http://git-scm.com

Bibliography 199

[Grass 1992] J.E. Grass. Object-Oriented Design Archeology with CIA++. Computing Systems,
vol. 5, no. 1, pages 5–67, 1992.

[Gulla 1991] Bjørn Gulla, Even-André Karlsson and Dashing Yeh. Change-oriented version de-
scriptions in EPOS. Software Engineering Journal, vol. 6, no. 6, pages 378–386, November
1991.

[Hajiyev 2006] Elnar Hajiyev, Mathieu Verbaere and Oege de Moor. CodeQuest: Scalable Source
Code Queries with Datalog. In Proceedings of the 20th European Conference on Object-
Oriented Programming, ECOOP’06, pages 2–28. Springer-Verlag, 2006.

[Han 1997] Jun Han. Supporting Impact Analysis and Change Propagation in Software Engineering
Environments. In Proceedings of the 8th International Workshop on Software Technology
and Engineering Practice (including CASE ’97), STEP’97, page 172, 1997. IEEE Computer
Society.

[Hassan 2004] Ahmed Hassan and Richard Holt. Using Development History Sticky Notes to Under-
stand Software Architecture. In Proceedings of the 12th International Workshop on Program
Comprehension, IWPC’04, pages 183–193. IEEE Computer Society, 2004.

[Hassan 2009] A. Hassan. Predicting Faults Using the Complexity of Code Changes. In Proceedings
of the 31st International Conference on Software Engineering, ICSE’09, pages 78–88. IEEE
Computer Society, 2009.

[Hattori 2009a] L. Hattori and M. Lanza. An environment for synchronous software development. In
ICSE Companion, pages 223–226. IEEE, 2009.

[Hattori 2009b] L. Hattori and M. Lanza. Mining the history of synchronous changes to refine code
ownership. In Proceedings of the 6th International Workshop on Mining Software Reposito-
ries, MSR’09, pages 141–150. IEEE, 2009.

[Hattori 2010] L. Hattori and M. Lanza. Syde: a tool for collaborative software development. In
ICSE Tool demo, pages 235–238. ACM, 2010.

[Herzig 2010] Kim Sebastian Herzig. Capturing the long-term impact of changes. In Proceedings
of the 32nd ACM/IEEE International Conference on Software Engineering, ICSE’10, pages
393–396. ACM, 2010.

[Herzig 2011] Kim Herzig and Andreas Zeller. Mining Cause-Effect-Chains from Version Histories.
In Proceedings of the 22nd International Symposium on Software Reliability Engineering,
ISSRE’11, pages 60–69. IEEE, 2011.

[Hindle 2005] Abram Hindle and Daniel German. SCQL: A formal model and a query language
for source control repositories. In Proceedings of the 2nd International Workshop on Mining
Software Repositories, MSR’05, pages 100–105, 2005.

[Hondt 1998] Koen De Hondt. A Novel Approach to Architectural Recovery in Evolving Object-
Oriented Systems. PhD thesis, Vrije Universiteit Brussel, Belgium, December 1998.

200 Bibliography

[Horwitz 1989] Susan Horwitz, Jan Prins and Thomas Reps. Integrating Non-Interfering Versions of
Programs. ACM Trans. Program. Lang. Syst., vol. 11, no. 3, pages 345–387, 1989.

[Hou 2006] D. Hou and J. Hoover. Using SCL to Specify and Check Design Intent in Source Code.
IEEE Transactions on Software Engineering, vol. 32, pages 404–423, 2006.

[Hunt 1976] James W. Hunt and M. Douglas McIlroy. An Algorithm for Differential File Compari-
son. Rapport technique 41, AT&T Bell Laboratories Inc, 1976.

[Hunt 1977] James W. Hunt and Thomas G. Szymanski. A Fast Algorithm for Computing Longest
Common Subsequences. Commun. ACM, vol. 20, no. 5, pages 350–353, 1977.

[Jackson 1994] Daniel Jackson and David A. Ladd. Semantic Diff: A Tool for Summarizing the
Effects of Modifications. In Proceedings of the International Conference on Software Main-
tenance, ICSM’94, pages 243–252. IEEE Computer Society, 1994.

[Janzen 2003] Doug Janzen and Kris de Volder. Navigating and Querying Code Without Getting
Lost. In Proceedings of the 2nd International Conference on Aspect-Oriented Software De-
velopment, AOSD’03, pages 178–187, 2003. ACM.

[Kellens 2007] Andy Kellens, Kim Mens and Paolo Tonella. A Survey of Automated Code-Level
Aspect Mining Techniques. Transactions on Aspect-Oriented Software Development, vol. 4,
no. 4640, pages 143–162, 2007.

[Kellens 2011] Andy Kellens, Coen De Roover, Carlos Noguera, Reinout Stevens and Viviane Jon-
ckers. Reasoning over the Evolution of Source Code Using Quantified Regular Path Expres-
sions. In Proceedings of the 18th Working Conference on Reverse Engineering, WCRE’11,
pages 389–393. IEEE Computer Society, 2011.

[Khanna 2007] Sanjeev Khanna, Keshav Kunal and Benjamin C. Pierce. A formal investigation
of Diff3. In Proceedings of the 27th international conference on Foundations of software
technology and theoretical computer science, FSTTCS’07, pages 485–496. Springer-Verlag,
2007.

[Klint 2011] Paul Klint, Tijs van der Storm and Jurgen Vinju. EASY meta-programming with ras-
cal, volume 6491 of Lecture Notes in Computer Science, Generative and Transformational
Techniques in Software Engineering III, pages 222–289. Springer-Verlag, 2011.

[Kung 1994] D. Kung, J. Gao, P. Hsia, F. Wen, Y. Y. Toyoshima and C. Chen. Change impact
identification in object oriented software maintenance. In Proceedings of the International
Conference on Software Maintenance, pages 202–211, 1994.

[Lanza 2001] Michele Lanza. The Evolution Matrix: Recovering Software Evolution using Software
Visualization Techniques. In Proceedings of the International Workshop on Principles of
Software Evolution, IWPSE’01, pages 37–42, 2001.

[Lanza 2004] Michele Lanza. CodeCrawler — Polymetric Views in Action. In Proceedings of the
19th IEEE International Conference on Automated Software Engineering, ASE’04, pages
394–395. IEEE CS Press, 2004.

Bibliography 201

[LaToza 2010] Thomas D. LaToza and Brad A. Myers. Hard-to-answer questions about code. In
Evaluation and Usability of Programming Languages and Tools, PLATEAU 10, pages 8:1–
8:6. ACM, 2010.

[Laval 2009] Jannik Laval, Simon Denier, Stéphane Ducasse and Andy Kellens. Supporting In-
cremental Changes in Large Models. In Proceedings of ESUG International Workshop on
Smalltalk Technologies, IWST’09, pages 1–7, 2009.

[Laval 2011] Jannik Laval, Simon Denier, Stéphane Ducasse and Jean-Rémy Falleri. Supporting
Simultaneous Versions for Software Evolution Assessment. Journal of Science of Computer
Programming (SCP), vol. 76, no. 12, pages 1177–1193, May 2011.

[Law 2003] James Law and Gregg Rothermel. Whole Program Path-Based Dynamic Impact Analy-
sis. In Proceedings of the 25th International Conference on Software Engineering, ICSE’03,
pages 308–318. IEEE Computer Society, 2003.

[Leblang 1984] David B. Leblang and Robert P. Chase. Computer-Aided Software Engineering in a
distributed workstation environment. SIGSOFT Software Engineering Notes, vol. 9, no. 3,
pages 104–112, April 1984.

[Lethbridge 2004] Timothy Lethbridge, Sander Tichelaar and Erhard Plödereder. The Dagstuhl Mid-
dle Metamodel: A Schema For Reverse Engineering. In Electronic Notes in Theoretical
Computer Science, volume 94, pages 7–18, 2004.

[Lie 1989] A. Lie, R. Conradi, T. M. Didriksen and E.-A. Karlsson. Change oriented versioning
in a software engineering database. In Proceedings of the 2nd International Workshop on
Software configuration management, pages 56–65, 1989. ACM.

[Lienhard 2007] Adrian Lienhard, Adrian Kuhn and Orla Greevy. Rapid Prototyping of Visualiza-
tions using Mondrian. In Proceedings IEEE International Workshop on Visualizing Software
for Understanding, Vissoft’07, pages 67–70, June 2007. IEEE Computer Society.

[Lindhom 2001] Tancred Lindhom. A 3-way merging algorithm for synchronizing ordered trees -
the 3DM merging and differencing tool for XML. Master’s thesis, Helsinki University of
Technology, 2001.

[Lippe 1992] Ernst Lippe and Norbert van Oosterom. Operation-based merging. In Proceedings of
the 5th ACM SIGSOFT symposium on Software Development Environments, SDE’92, pages
78–87, 1992. ACM Press.

[Livshits 2005] Benjamin Livshits and Thomas Zimmermann. DynaMine: finding common er-
ror patterns by mining software revision histories. SIGSOFT Software Engineering Notes,
vol. 30, no. 5, pages 296–305, September 2005.

[Lubkin 1991] David Lubkin. Heterogeneous configuration management with DSEE. In Proceedings
of the 3rd International Workshop on Software Configuration Management, pages 153–160.
ACM, 1991.

202 Bibliography

[Lucas 1997] Carine Lucas. Documenting Reuse and Evolution with Reuse Contracts. PhD thesis,
Programming Technology Lab, Vrije Universiteit Brussel, Brussels, Belgium, 1997.

[Lungu 2010] Mircea Lungu, Michele Lanza, Tudor Gîrba and Romain Robbes. The Small Project
Observatory: Visualizing Software Ecosystems. Science of Computer Programming, Elsevier,
vol. 75, no. 4, pages 264–275, April 2010.

[Maes 1987] Pattie Maes. Computational Reflection. PhD thesis, Laboratory for Artificial Intelli-
gence, Vrije Universiteit Brussel, Belgium, January 1987.

[Marin 2007] Marius Marin, Arie van Deursen and Leon Moonen. Identifying crosscutting concerns
using fan-in analysis. ACM Transactions on Software Engineering and Methodology, vol. 17,
no. 1, pages 1–37, 2007.

[Marjanovic 2006] Dane Marjanovic. Developing a Meta Model for Release History Systems, 2006.

[Matthijssen 2010] Nick Matthijssen, Andy Zaidman, Margaret-Anne Storey, Ian Bull and Arie van
Deursen. Connecting Traces: Understanding Client-Server Interactions in Ajax Applica-
tions. In Proceedings of the 18th IEEE International Conference on Program Comprehension,
ICPC’10, pages 216–225. IEEE, 2010.

[Mens 1999] Tom Mens. A formal foundation for object-oriented software evolution. PhD thesis,
Vrije Universiteit Brussel, September 1999.

[Mens 2000] Tom Mens. Conditional Graph Rewriting as a Domain-Independent Formalism for
Software Evolution. In Proceedings of the International Workshop on Applications of Graph
Transformations with Industrial Relevance, AGTIVE’99, pages 127–143. Springer-Verlag,
2000.

[Mens 2002] T. Mens. A State-of-the-Art Survey on Software Merging. IEEE Transactions on Soft-
ware Engineering, vol. 28, no. 5, pages 449–462, 2002.

[Mens 2004] Tom Mens and Tom Tourwé. A Survey of Software Refactoring. IEEE Transaction on
Software Engineering, vol. 30, no. 2, pages 126–139, 2004.

[Meyer 2006] Michael Meyer, Tudor Gîrba and Mircea Lungu. Mondrian: An Agile Visualization
Framework. In ACM Symposium on Software Visualization, SoftVis’06, pages 135–144,
2006. ACM Press.

[Meyers 2010] Bart Meyers, Peter Ebraert and Dirk Janssens. Intensional changes avoid co-
evolution! In Proceedings of the 7th Workshop on Reflection, AOP and Meta-Data for
Software Evolution, RAM-SE’10, pages 4:1–4:6. ACM, 2010.

[Mikhajlov 1998] Leonid Mikhajlov and Emil Sekerinski. A Study of the Fragile Base Class Prob-
lem. In Proceedings of the European Conference on Object-Oriented Programming, numéro
1445 de Lecture Notes in Computer Science, pages 355–383. Springer-Verlag, 1998.

Bibliography 203

[Necula 2002] George C. Necula, Scott McPeak, Shree Prakash Rahul and Westley Weimer. CIL:
Intermediate Language and Tools for Analysis and Transformation of C Programs. In Inter-
national Conference on Compiler Construction, numéro 2304 de Lecture Notes in Computer
Science, pages 213–228, April 2002.

[Nielsen 1993] Jakob Nielsen. Usability engineering. Morgan Kaufmann, 1st édition, September
1993.

[Nierstrasz 2005] Oscar Nierstrasz, Stéphane Ducasse and Tudor Gîrba. The Story of Moose: an Ag-
ile Reengineering Environment. In Michel Wermelinger and Harald Gall, editeurs, Proceed-
ings of the European Software Engineering Conference, ESEC/FSE’05, pages 1–10, 2005.
ACM Press. Invited paper.

[Padioleau 2008] Y. Padioleau, J. Lawall and G. Muller. Documenting and automating collateral
evolutions in linux device drivers. In Proceedings of the 3rd SIGOPS/EuroSys European
Conference on Computer Systems, EuroSys’08, pages 247–260. ACM, 2008.

[Pelrine 2001] Joseph Pelrine and Alan Knight. Mastering envy/developer. Cambridge University
Press, 2001.

[Perry 2001] Dewayne E. Perry, Harvey P. Siy and Lawrence G. Votta. Parallel changes in large-
scale software development: an observational case study. ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 10, no. 3, pages 308–337, July 2001.

[Pfeiffer 2006] J.-Hendrik Pfeiffer and John R. Gurd. Visualisation-based tool support for the devel-
opment of aspect-oriented programs. In Proceedings of the 5th International Conference on
Aspect-Oriented Software Development, AOSD’06, pages 146–157. ACM, 2006.

[Phillips 2011] Shaun Phillips, Jonathan Sillito and Rob Walker. Branching and merging: an in-
vestigation into current version control practices. In Proceedings of the 4th International
Workshop on Cooperative and Human Aspects of Software Engineering, CHASE’11, pages
9–15. ACM, 2011.

[Phillips 2012] Shaun Phillips, Guenther Ruhe and Jonathan Sillito. Information needs for integra-
tion decisions in the release process of large-scale parallel development. In Proceedings
of the ACM 2012 conference on Computer Supported Cooperative Work, CSCW’12, pages
1371–1380. ACM, 2012.

[Premraj 2011] Rahul Premraj, Antony Tang, Nico Linssen, Hub Geraats and Hans van Vliet. To
branch or not to branch? In Proceedings of the 2011 International Conference on Software
and Systems Process, ICSSP’11, pages 81–90. ACM, 2011.

[Ren 2004] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara Ryder and Ophelia Chesley. Chianti: A
tool for change impact analysis of Java programs. In Proceedings of the Object-Oriented
Programming, Systems, Languages & Applications, OOPSLA’04, pages 432–448, oct 2004.
ACM.

204 Bibliography

[Ren 2006] Xiaoxia Ren, Ophelia C. Chesley and Barbara G. Ryder. Identifying Failure Causes in
Java Programs: An Application of Change Impact Analysis. IEEE Transactions on Software
Engineering, vol. 32, no. 9, pages 718–732, September 2006.

[Rho 1998] Jungkyu Rho and Chisu Wu. An Efficient Version Model of Software Diagrams. In
Proceedings of the 5th Asia Pacific Software Engineering Conference, APSEC’98, pages
236–243, 1998. IEEE Computer Society.

[Rivard 1996] Fred Rivard. Reflective Facilities in Smalltalk. Revue Informatik/Informatique, revue
des organisations suisses d’informatique. Numéro 1 Février 1996, February 1996.

[Robbes 2005] Romain Robbes, Stéphane Ducasse and Michele Lanza. Microprints: A Pixel-based
Semantically Rich Visualization of Methods. In Proceedings of 13th International Smalltalk
Conference, ISC’05, pages 131–157, 2005.

[Robbes 2007] Romain Robbes and Michele Lanza. A Change-based Approach to Software Evo-
lution. Electronic Notes in Theoretical Computer Science, vol. 166, pages 93–109, January
2007.

[Robbes 2008a] Romain Robbes. Of Change and Software. PhD thesis, University of Lugano,
Switzerland, December 2008.

[Robbes 2008b] Romain Robbes and Michele Lanza. SpyWare: a change-aware development toolset.
In Proceedings of the 30th International Conference on Software Engineering, ICSE’08,
pages 847–850, 2008. ACM.

[Roberts 1997] Don Roberts, John Brant and Ralph E. Johnson. A Refactoring Tool for Smalltalk.
Theory and Practice of Object Systems (TAPOS), vol. 3, no. 4, pages 253–263, 1997.

[Roberts 1999] Donald Bradley Roberts. Practical Analysis for Refactoring. PhD thesis, University
of Illinois, 1999.

[Rochkind 1975] Marc Rochkind. The Source Code Control System. IEEE Transactions on Software
Engineering, vol. 1, no. 4, pages 364–370, 1975.

[Ryder 2001] Barbara G. Ryder and Frank Tip. Change impact analysis for object-oriented pro-
grams. In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analy-
sis for software tools and engineering, pages 46–53. ACM Press, 2001.

[Schärli 2003] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz and Andrew P. Black. Traits:
Composable Units of Behavior. In Proceedings of European Conference on Object-Oriented
Programming, volume 2743 of ECOOP’03, pages 248–274. Springer Verlag, July 2003.

[Shao 2007] D. Shao, S. Khurshid and D.E. Perry. Evaluation of semantic interference detection in
parallel changes: an exploratory experiment. In Proceedings of the 23rd IEEE International
Conference on Software Maintenance, ICSM’07, pages 74–83, oct 2007.

[Shao 2009] Danhua Shao, Sarfraz Khurshid and Dewayne E. Perry. SCA: a Semantic Conflict An-
alyzer for Parallel Changes. In Proceedings of the the 7th joint meeting of the European

Bibliography 205

Software Engineering Conference and the ACM SIGSOFT symposium on the Foundations of
Software Engineering, ESEC/FSE’09, pages 291–292, 2009.

[Shen 2004] Haifeng Shen and Chengzheng Sun. A Complete Textual Merging Algorithm for Soft-
ware Configuration Management Systems. In Proceedings of the 28th Annual International
Computer Software and Applications Conference, COMPSAC’04, pages 293–298, 2004.
IEEE Computer Society.

[Sillito 2005] Jonathan Sillito, Kris De Volder, Brian Fisher and Gail Murphy. Managing software
change tasks: An exploratory study. In Proceedings of the International Symposium on Em-
pirical Software Engineering, pages 23–32. IEEE Computer Society, 2005.

[Sillito 2006] J. Sillito, G.C. Murphy and K. De Volder. Questions Programmers Ask During Soft-
ware Evolution Tasks. In Proceedings of the 14th International Symposium on Foundations
on Software Engineering, SIGSOFT ’06/FSE-14, pages 23–34. ACM, 2006.

[Sillito 2008] J. Sillito, G.C. Murphy and K. De Volder. Asking and Answering Questions during
a Programming Change Task. IEEE Transactions on Software Engineering, vol. 34, no. 4,
pages 434–451, jul 2008.

[Stasko 1998] John T. Stasko, John Domingue, Marc H. Brown and Blaine A. Price. Software visu-
alization — programming as a multimedia experience. The MIT Press, 1998.

[Steyaert 1996] Patrick Steyaert, Carine Lucas, Kim Mens and Theo D’Hondt. Reuse Contracts:
Managing the Evolution of Reusable Assets. In Proceedings of the International Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA’96,
pages 268–285. ACM Press, 1996.

[Stoerzer 2006] Maximilian Stoerzer, Barbara G. Ryder, Xiaoxia Ren and Frank Tip. Finding
Failure-Inducing Changes in Java Programs using Change Classification. In Proceedings
of the 14th ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing, SIGSOFT ’06/FSE-14, pages 57–68. ACM, nov 2006.

[Storey 1997a] Margaret-Anne D. Storey, Kenny Wong, F. D. Fracchia and Hausi A. Müller. On in-
tegrating visualization techniques for effective software exploration. In Proceedings of IEEE
Symposium on Information Visualization, InfoVis’97, pages 38–48. IEEE Computer Society,
1997.

[Storey 1997b] Margaret-Anne D. Storey, Kenny Wong and Hausi A. Müller. How Do Program
Understanding Tools Affect How Programmers Understand Programs? In Proceedings of
the 4th Working Conference on Reverse Engineering, pages 12–21. IEEE Computer Society,
1997.

[Taenzer 1989] David Taenzer, Murthy Ganti and Sunil Podar. Problems in Object-Oriented Software
Reuse. In Proceedings of the 3rd European Conference on Object-Oriented Programming,
ECOOP’89, pages 25–38, 1989.

206 Bibliography

[Takang 1996] Armstrong A. Takang, Penny A. Grubb and Robert D. Macredie. The effects of com-
ments and identifier names on program comprehensibility: an experimental investigation.
Journal of Programming Languages, vol. 4, no. 3, pages 143–167, 1996.

[Thione 2005] Gian Lorenzo Thione and Dewayne E. Perry. Parallel Changes: Detecting Semantic
Interferences. In Proceedings of the 29th International Computer Software and Applications
Conference, COMPSAC’05, pages 47–56. IEEE Computer Society, 2005.

[Thomas 1988] Dave Thomas and Kent Johnson. Orwell — A Configuration Management System
for Team Programming. In Proceedings of the Object-Oriented Programming, Systems, Lan-
guages & Applications, ACM SIGPLAN Notices, volume 23 of OOPSLA’88, pages 135–141,
November 1988.

[Tichelaar 2000] Sander Tichelaar, Stéphane Ducasse, Serge Demeyer and Oscar Nierstrasz. A Meta-
model for Language-Independent Refactoring. In Proceedings of International Symposium on
Principles of Software Evolution, ISPSE’00, pages 157–167. IEEE Computer Society Press,
2000.

[Tichy 1982] Walter F. Tichy. Design, implementation, and evaluation of a Revision Control System.
In Proceedings of the 6th International Conference on Software Engineering, ICSE’82, pages
58–67. IEEE Computer Society Press, 1982.

[Tichy 1984] Walter F. Tichy. The string-to-string correction problem with block moves. Journal of
ACM Transactions on Computer Systems (TOCS), vol. 2, no. 4, pages 309–321, November
1984.

[Tichy 1985] Walter F. Tichy. RCS—a system for version control. Software Practice and Experience,
vol. 15, no. 7, pages 637–654, July 1985.

[Tip 1995] Frank Tip. A survey of program slicing techniques. Journal of Programming Languages,
vol. 3, pages 121–189, 1995.

[Tufte 2001] Edward R. Tufte. The visual display of quantitative information. Graphics Press, 2nd
édition, 2001.

[Uquillas-Gómez 2009] Verónica Uquillas-Gómez, Andy Kellens, Johan Brichau and Theo
D’Hondt. Time warp, an approach for reasoning over system histories. In Proceedings of the
joint International and annual ERCIM workshops on Principles of Software Evolution, and
Software Evolution workshops, IWPSE-Evol’09, pages 79–88. ACM, 2009.

[Uquillas Gómez 2010a] Verónica Uquillas Gómez, Stéphane Ducasse and Theo D’Hondt. Meta-
models and Infrastructure for Smalltalk Omnipresent History. In Smalltalks’2010, 2010.

[Uquillas Gómez 2010b] Verónica Uquillas Gómez, Stéphane Ducasse and Theo D’Hondt. Visually
Supporting Source Code Changes Integration: the Torch Dashboard. In Proceedings of the
17th Working Conference on Reverse Engineering, WCRE’10, pages 55–64, October 2010.

[Uquillas Gómez 2012] Verónica Uquillas Gómez, Stéphane Ducasse and Theo D’Hondt. Ring: a
Unifying Meta-Model and Infrastructure for Smalltalk Source Code Analysis Tools. Computer
Languages, Systems and Structures, vol. 38, no. 1, pages 44–60, April 2012.

Bibliography 207

[van den Hamer 1996] Peter van den Hamer and Kees Lepoeter. Managing Design Data: The Five
Dimensions of CAD Frameworks, Configuration Management, and Product Data Manage-
ment. In Proceedings of the IEEE, volume 84, pages 42 – 56. IEEE CS Press, January 1996.

[Van der Heijden 1996] A. H. C. Van der Heijden. Perception for selection, selection for action, and
action for perception. Visual Cognition, vol. 3, no. 4, pages 357–361, December 1996.

[Vogel 2012] Lars Vogel. Eclipse Modeling Framework (EMF) - Tutorial. http://www.vogella.com/

articles/EclipseEMF/article.html, 2012.

[Walrad 2002] C. Walrad and D. Strom. The importance of branching models in SCM. Computer,
vol. 35, no. 9, pages 31–38, 2002.

[Ware 2004] Colin Ware. Information visualisation. Elsevier, Sansome Street, San Fransico, 2004.

[Weiser 1981] Mark Weiser. Program slicing. In Proceedings of the 5th International Conference on
Software Engineering, ICSE’81, pages 439–449, 1981. IEEE Press.

[Welser 1984] M. Welser. Program Slicing. IEEE Transactions on Software Engineering, pages
352–357, 1984.

[Westfechtel 1991] Bernhard Westfechtel. Structure-oriented merging of revisions of software docu-
ments. In Proceedings of the 3rd international workshop on Software configuration manage-
ment, pages 68–79, 1991. ACM.

[Wilde 1992] Norman Wilde and Ross Huitt. Maintenance Support for Object-Oriented Programs.
IEEE Transactions on Software Engineering, vol. 18, no. 12, pages 1038–1044, December
1992.

[Wloka 2009] Jan Wloka, Barbara Ryder, Frank Tip and Xiaoxia Ren. Safe-commit analysis to
facilitate team software development. In Proceedings of the 31st International Conference on
Software Engineering, ICSE’09, pages 507–517. IEEE Computer Society, 2009.

[Wuyts 2001] Roel Wuyts. A Logic Meta-Programming Approach to Support the Co-Evolution of
Object-Oriented Design and Implementation. PhD thesis, Vrije Universiteit Brussel, 2001.

[Yang 1991] Wuu Yang. Identifying syntactic differences between two programs. Software Practice
& Experience, vol. 21, no. 7, pages 739–755, June 1991.

[Yang 1992] Wuu Yang, Susan Horwitz and Thomas Reps. A program integration algorithm that
accommodates semantics-preserving transformations. ACM Transactions on Software Engi-
neering and Methodology, vol. 1, no. 3, pages 310–354, July 1992.

[Yang 1994] Wuu Yang. How to merge program texts. Journal of Systems and Software, vol. 27,
no. 2, pages 129–135, November 1994.

[Zhang 2008] Sai Zhang, Zhongxian Gu, Yu Lin and Jianjun Zhao. Change Impact Analysis for
AspectJ Programs. In Proceedings of the 24th IEEE International Conference on Software
Maintenance, ICSM’08, pages 87–96. IEEE, 2008.

http://www.vogella.com/articles/EclipseEMF/article.html
http://www.vogella.com/articles/EclipseEMF/article.html

208 Bibliography

[Zimmermann 2004a] Thomas Zimmermann and Peter Weißgerber. Preprocessing CVS Data for
Fine-Grained Analysis. In Proceedings of the 1st International Workshop on Mining Software
Repositories, MSR’04, pages 2–6, 2004. IEEE Computer Society Press.

[Zimmermann 2004b] Thomas Zimmermann, Peter Weißgerber, Stephan Diehl and Andreas Zeller.
Mining Version Histories to Guide Software Changes. In Proceedings of the 26th Interna-
tional Conference on Software Engineering, ICSE’04, pages 563–572. IEEE Computer Soci-
ety Press, 2004.

	Introduction
	Research Context
	Supporting Merge Challenges
	Pharo Smalltalk as a Testbed
	Approach
	Contributions
	Structure of the Dissertation

	Problem Analysis
	Collaborative Software Development
	Version Control Systems
	Definition of Branching and Merging
	Version Control Systems Support Branching and Merging
	Why is Branching Used?

	Supporting Collaborative Development Through Branches
	Concrete Example: Pharo
	Integration Problems: Overview

	Challenges to Support Integration
	Change Characterization Challenges
	Merging Support Challenges

	Requirements of Solution
	Conclusion

	Facets of Changes
	Integration Process: Overview
	Definitions and Terminology
	Questions Integrators Ask
	Methodology
	Catalogue of Questions
	Answering Integrator Questions

	Information Needs for Change Characterization
	Descriptive Information
	Structural Information
	Semantic Information
	Historical Information
	Summary

	State-of-the-Art
	Modeling Source Code, History and Changes
	Towards Conflict Resolution and Merging
	Change Impact Analysis
	Change Dependencies
	Understanding Development Tasks
	Other Related Work

	Conclusion

	Ring: a Unified Model for Source Code Representation
	Introduction
	Requirements for Source Code Modeling
	Version Control Systems Data Models
	Text-based Version Control Systems Data Models
	Code-based Version Control Systems Data Models

	Dedicated Source Code Meta-Models
	Non-Smalltalk Specific Code Meta-Models
	Smalltalk-oriented Code Meta-Models

	The Ring Source Code Meta-Model
	Architecture of Ring

	Ring Usage Scenarios
	External Code File Browser: Out-of-Image Code Browsing
	Refactoring Browser Source Code Scoping Model

	Discussion
	Conclusion

	Torch: a Dashboard for Grasping Changes
	Supporting Change Understanding with Torch
	Layout of Torch
	Dashboard Visualizations
	Entities Representation
	Fly-by Help
	Package-centric Visualizations
	Class-centric Visualizations
	Symbolic Clouds

	Supporting the Answering of Integrator Questions
	RingS: a Single-Delta Change Model
	Architecture of RingS

	Torch Usage Scenarios
	Removing a feature
	Removing a feature and deprecating its API
	Introducing a feature
	Pushing up methods / Introducing methods in a class hierarchy
	Adding comments
	Replacing method calls

	Evaluation
	Field Evaluation
	Pre-Experimental User Study
	Threats to Validity
	Discussion

	Related Work
	Software Visualization
	Class and Method Understanding
	Change Characterization
	Understanding Changes
	Documenting Changes
	Aspect Analysis

	Conclusion

	RingH and RingC: History and Change Models & Analyses
	Modeling the Evolution of a System
	Hismo
	Orion

	RingH: a History Meta-Model and Analyses
	Requirements for RingH
	Architecture of RingH
	Importing the History of a System
	Metrics and Memory Footprint
	Creating Objects in the History Model
	Querying the History Model

	RingC: a Change and Dependency Model and Analyses
	Architecture of RingC
	Deriving the Change Model from the History Model

	Calculating Deltas and Dependencies from the Stream
	Delta Mechanism
	Dependency Mechanism

	Conclusion

	JET: Stream Change Analysis in Early Integration Phase
	Introduction
	Characterizing Deltas and Dependencies within the Stream
	The JET Tools
	The JET Dashboard
	The JET Map
	The JET Query Browser
	How to Use the JET Tools

	Supporting the Answering of Integrator Questions
	Qualitative Evaluation: Integrating Monticello Changes into Pharo
	Case Study Description: Monticello Version Control System
	Part 1: Integrator Experiences
	Part 2: Effort Estimation by a Developer
	Threats to Validity
	Discussion

	Related Work
	Fine-grained Patching
	Change Characterization
	Change Impact Analysis / Change Dependencies
	Understanding Changes

	Conclusion

	Conclusion and Future Work
	Summary
	Conclusion
	Integrator Questions Revisited
	Limitations and Future Work
	Non-Supported Questions
	Improvements
	Full-fledged Validation
	Other Improvements

	Contributions
	Conceptual Contributions
	Technical Contributions

	Torch: Field Evaluation Questionnaire
	Torch: User Study Pre-Test
	Torch: User Study Post-Test
	Bibliography

