. Moreover, we have ?(t ij ) = {t V i

. Proof, This assertion can easily be checked by comparing the relations

U. V. , W. {?-(-t, U. , V. ?. Id, W. Id-u-?-t et al., 1.10) and Lemma 6.1.3 (in the case n = 3) that X, p.1

J. Ellegaard-andersen, J. Mattes, and N. Reshetikhin, Quantization of the algebra of chord diagrams, Mathematical Proceedings of the Cambridge Philosophical Society, vol.124, issue.3, p.451467, 1998.
DOI : 10.1017/S0305004198002813

]. E. Art47 and . Artin, Theory of braids, Ann. of Math, vol.48, issue.2, p.101126, 1947.

]. R. Bez94 and . Bezrukavnikov, Koszul DG-algebras arising from conguration spaces

P. Bellingeri and L. Funar, Braids on surfaces and nite type invariants, C. R. Math. Acad. Sci. Paris, vol.338, issue.2, p.157162, 2004.

P. Bellingeri and S. Gervais, Surface framed braids, Geometriae Dedicata, vol.9, issue.2, p.5169, 2012.
DOI : 10.1007/s10711-011-9645-5

URL : https://hal.archives-ouvertes.fr/hal-00450226

J. S. Birman, On the stable equivalence of plat representations of knots and links. Canad, J. Math, vol.28, issue.2, p.264290, 1976.

A. James-bene, N. Kawazumi, and R. C. Penner, Canonical extensions of the Johnson homomorphisms to the Torelli groupoid, Adv. Math, vol.221, issue.2, p.627659, 2009.

[. Bar-natan, On the Vassiliev knot invariants, Topology, vol.34, issue.2, pp.423-472, 1995.
DOI : 10.1016/0040-9383(95)93237-2

[. Bar-natan, Vassiliev and quantum invariants of braids In The interface of knots and physics, Proc. Sympos. Appl. Math, vol.51, p.129144, 1995.

D. Bar-natan and A. Ip-stud, Non-associative tangles, Geometric topology, p.139183, 1993.

Z. Bnd-]-dror-bar-natan and . Dancso, Homomorphic expansions for knotted trivalent graphs

[. Bar-natan and Z. Dancso, Pentagon and hexagon equations following Furusho, Proc. Amer, p.12431250, 2012.
DOI : 10.1090/S0002-9939-2011-10996-1

]. N. Bou72 and . Bourbaki, Éléments de mathématique. Fasc. XXXVII. Groupes et algèbres de Lie. Chapitre II: Algèbres de Lie libres. Chapitre III: Groupes de Lie, 1972.

P. Cartier, Construction combinatoire des invariants de Vassiliev- Kontsevich des n÷uds, C. R. Acad. Sci. Paris Sér. I Math, issue.11, pp.3161205-1210, 1993.

S. Chmutov, S. Duzhin, and J. Mostovoy, Introduction to Vassiliev knot invariants
DOI : 10.1017/CBO9781139107846

D. Calaque, B. Enriquez, and P. Etingof, Universal KZB Equations: The Elliptic Case, Algebra, Arithmetic, and Geometry: Honor of Yu. I. Manin, Progress in Mathematics. Birkhäuser Boston, 2010.
DOI : 10.1007/978-0-8176-4745-2_5

URL : https://hal.archives-ouvertes.fr/hal-00133162

. Kuo-tsai-chen, Formal Differential Equations, The Annals of Mathematics, vol.73, issue.1, pp.110-133, 1961.
DOI : 10.2307/1970284

C. Kuo-tsai, Iterated path integrals, Bull. Amer. Math. Soc, vol.83, issue.5, p.831879, 1977.

D. Cheptea, K. Habiro, and G. Massuyeau, A functorial LMO invariant for Lagrangian cobordisms, Geometry & Topology, vol.12, issue.2, pp.1091-1170, 2008.
DOI : 10.2140/gt.2008.12.1091

URL : https://hal.archives-ouvertes.fr/hal-00135215

D. Cheptea, T. Q. Thang, and . Le, A TQFT Associated to the LMO Invariant of Three-Dimensional Manifolds, Communications in Mathematical Physics, vol.188, issue.3, pp.601-634, 2007.
DOI : 10.1007/s00220-007-0241-3

V. G. Drinfeld, Quasi-Hopf algebras, Algebra i Analiz, vol.1, issue.6, p.114148, 1989.

V. G. Drinfeld, On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal, Algebra i Analiz, p.149181, 1990.

D. Robert, R. C. Edwards, and . Kirby, Deformations of spaces of imbeddings, Ann. Math, vol.93, issue.2, p.6388, 1971.

[. Enriquez, Elliptic associators, Selecta Mathematica, vol.104, issue.3
DOI : 10.1007/s00029-013-0137-3

J. González-meneses and L. Paris, Vassiliev invariants for braids on surfaces, Trans. Amer. Math. Soc, vol.356, issue.1, p.219243, 2004.

V. Godin, The unstable integral homology of the mapping class groups of a surface with boundary, Mathematische Annalen, vol.130, issue.2, p.1560, 2007.
DOI : 10.1007/s00208-006-0025-7

K. Habiro, Claspers and nite type invariants of links, Geom. Topol, vol.4, p.183, 2000.

L. John and . Harer, The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math, vol.84, issue.1, p.157176, 1986.

L. John and . Harer, The cohomology of the moduli space of curves, Theory of moduli, p.138221, 1985.

M. W. Hirsch, Dierential topology, Graduate Texts in Mathematics, issue.33, 1976.

N. Habegger and G. Masbaum, The Kontsevich integral and Milnor???s invariants, Topology, vol.39, issue.6, p.12531289, 2000.
DOI : 10.1016/S0040-9383(99)00041-5

K. Habiro and G. Massuyeau, Symplectic Jacobi diagrams and the Lie algebra of homology cylinders, Journal of Topology, vol.6, issue.2, p.527569, 2009.
DOI : 10.1112/jtopol/jtp020

URL : https://hal.archives-ouvertes.fr/hal-00193555

S. Kamada, Braid and knot theory in dimension four, volume 95 of Mathematical Surveys and Monographs, 2002.

C. Kassel, Quantum groups, volume 155 of Graduate Texts in Mathematics, 1995.

S. Kobayashi and K. Nomizu, Foundations of dierential geometry Wiley Classics Library, 1996.

T. Kohno, Monodromy representations of braid groups and Yang- Baxter equations, Ann. Inst. Fourier (Grenoble), vol.37, issue.4, p.139160, 1987.

M. Kontsevich, Vassiliev's knot invariants, Adv. Soviet Math. Amer. Math. Soc, vol.16, p.137150, 1993.

. Kronecker, Zur theorie der elliptischen funktionen, Mathematische Werke, pp.313318-1881

C. Kassel and V. Turaev, Chord diagram invariants of tangles and graphs. Duke Math, J, vol.92, issue.3, p.497552, 1998.

A. [. Knizhnik and . Zamolodchikov, Current algebra and Wess- Zumino model in two dimensions, Nuclear Phys. B, vol.247, issue.1, p.83103, 1984.

C. Lescop, Introduction to the Kontsevich integral of framed tangles . Lectures notes from "École d'été : Invariants de noeuds et de variétés de dimension 3, 1999.

J. Lieberum, UNIVERSAL VASSILIEV INVARIANTS OF LINKS IN COVERINGS OF 3-MANIFOLDS, Journal of Knot Theory and Its Ramifications, vol.13, issue.04, p.515555, 2004.
DOI : 10.1142/S0218216504003275

J. Lieberum, The Drinfeld associator of gl(1|1) In Quantum groups, IRMA Lect. Math. Theor. Phys. Eur. Math, vol.12, p.3980

X. Lin, Power series expansions and invariants of links, Geometric topology, p.184202, 1993.

T. Quoc, T. Le, and J. Murakami, The universal Vassiliev-Kontsevich invariant for framed oriented links, Compositio Math, vol.102, issue.1, p.4164, 1996.

[. Lane, Categories for the working mathematician, Graduate Texts in Mathematics, vol.5, 1998.
DOI : 10.1007/978-1-4612-9839-7

J. Murakami and T. Ohtsuki, Topological quantum eld theory for the universal quantum invariant, Comm. Math. Phys, vol.188, issue.3, p.501520, 1997.

J. Mostovoy and T. Stanford, ON A MAP FROM PURE BRAIDS TO KNOTS, Journal of Knot Theory and Its Ramifications, vol.12, issue.03, p.417425, 2003.
DOI : 10.1142/S021821650300255X

[. Ohtsuki, Quantum invariants, volume 29 of Series on Knots and Everything A study of knots, 3-manifolds, and their sets, 2002.

]. R. Pen87 and . Penner, The decorated Teichmüller space of punctured surfaces

]. R. Pen88 and . Penner, Perturbative series and the moduli space of Riemann surfaces, J. Dierential Geom, vol.27, issue.1, p.3553, 1988.

V. [. Reshetikhin and . Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys, vol.127, p.126, 1990.

M. Shum, Tortile tensor categories, Journal of Pure and Applied Algebra, vol.93, issue.1, pp.57-110, 1994.
DOI : 10.1016/0022-4049(92)00039-T

G. Vladimir and . Turaev, Quantum invariants of knots and 3-manifolds, 2010.

N. David and . Yetter, Functorial knot theory, volume 26 of Series on Knots and Everything Categories of tangles, coherence, categorical deformations, and topological invariants, 2001.

D. Zagier, Periods of modular forms and Jacobi theta functions, Inventiones mathematicae, vol.2, issue.1, p.449465, 1991.
DOI : 10.1007/BF01245085