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Abstract

This thesis concerns hyperbolic Coxeter polytopes, their reflection groups and associated
combinatorial and geometric invariants. Given a Coxeter group G realisable as a discrete
subgroup of IsomHn, there is a fundamental domain P ⊂ Hn naturally associated to it.
The domain P is a Coxeter polytope. Vice versa, given a Coxeter polytope P, the set of
reflections in its facets generates a Coxeter group acting on Hn.

The reflections give a natural set S of generators for the group G. Then we can express
the growth series f(G,S)(t) of the group G with respect to the generating set S. By a result
of R. Steinberg, the corresponding growth series is the power series of a rational function.
The growth rate τ of G is the reciprocal to the radius of convergence of such a series. The
growth rate is an algebraic integer and, by a result of J. Milnor, τ > 1. By a result of
W. Parry, if G acts on Hn, n = 2, 3, cocompactly, then its growth rate is a Salem number.
By a result of W. Floyd, there is a geometric correspondence between the growth rates of
cocompact and finite co-volume Coxeter groups acting on H2. This correspondence gives
a geometric picture for the convergence of Salem numbers to Pisot numbers. There, Pisot
numbers correspond to the growth rates of finite-volume polygons with ideal vertices. We
reveal an analogous phenomenon in dimension 3 by considering degenerations of compact
Coxeter polytopes to finite-volume Coxeter polytopes with four-valent ideal vertices. In
dimension n ≥ 4, the growth rate of a Coxeter group G acting cocompactly on Hn is known
to be neither a Salem, nor a Pisot number.

A particularly interesting class of Coxeter groups are right-angled Coxeter groups. In
the case of a right-angled Coxeter group acting on Hn, its fundamental domain P ⊂ Hn

is a right-angled polytope. Concerning the class of right-angled polytopes in H4 (compact,
finite volume or ideal, as subclasses), the following questions emerge:

- what are minimal volume polytopes in these families?

- what are polytopes with minimal number of combinatorial compounds (facets, faces,
edges, vertices) in these families?

Various results concerning the above questions in the case of finite-volume right-angled

polytopes were obtained by È. Vinberg, L. Potyagăılo and recently by B. Everitt, J. Ratcliffe,

S. Tschantz. In the case of compact right-angled polytopes the answer is conjectured by

È. Vinberg and L. Potyagăılo. In this thesis, the above questions in the case of ideal right-

angled polytopes are considered and completely answered. We conclude with some partial

results concerning the case of compact right-angled polytopes.
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Zusammenfassung

Diese Dissertation behandelt hyperbolische Coxeterpolytope, deren Spiegelungsgruppen und
die damit verbundenen kombinatorischen und geometrischen Invarianten. Für eine Coxeter-
gruppe G, die als diskrete Gruppe in IsomHn realisierbar ist, gibt es einen Fundamental-
bereich P ⊂ Hn. Der Fundamentalbereich P ist ein Coxeterpolytop. Umgekehrt erzeugt
ein Coxeter Polytop P durch die Menge der Spiegelungen an seinen Fazetten eine Coxeter-
gruppe, die auf Hn operiert.

Diese Spiegelungen liefern ein natürliches Erzeugendensystem S für die Gruppe G.
Damit können wir die Wachstumreihe f(G,S)(t) der Gruppe G in Bezug auf die Menge
S betrachten. Nach einem Resultat von R. Steinberg ist diese Wachstumreihe die Poten-
zreihe einer rationalen Funktion. Die Wachstumsrate τ der Gruppe G ist der Kehrwert
des Konvergenzradius ihrer Wachstumreihe. Somit ist die Grösse τ eine ganze algebrais-
che Zahl, und nach einem Resultat von J. Milnor gilt τ > 1. Falls G auf Hn, n = 2, 3,
mit kompaktem Fundamentalbereich operiert, gilt nach einem Satz von W. Parry, dass die
Wachstumsrate von G eine Salemzahl ist. Nach einem Resultat von W. Floyd gibt es eine
geometrischen Zusammenhang zwischen den Wachstumsraten von Coxetergruppen, welche
auf H2 kokompakt und mit endlichem Kovolumen operieren. Dieser Zusammenhang erklärt
auf geometrische Weise die Konvergenz der Salemzahlen gegen Pisotzahlen. Wir leiten ein
entsprechendes Phänomen in Dimension 3 her, indem wir die Entartung von Coxeterpolyed-
ern mit mindestens einer 4-valenten idealen Ecke untersuchen. Es sei hinzugefügt, dass die
Wachstumsrate τ einer Coxetergruppe G ⊂ IsomHn für n ≥ 4 im allgemeinen weder eine
Salem- noch eine Pisotzahl ist.

Eine besonders interessante Klasse von Coxetergruppen bilden die rechtwinkligen Cox-
etergruppen. Im Falle einer rechtwinkligen Coxetergruppe, die auf Hn operiert, ist ein
Fundamentalbereich P ⊂ Hn ein rechtwinkliges Polytop. Für rechtwinklige Polytope in
H4, die in die Teilmengen der kompakten Polytope, Polytope von endlichem Volumen
beziehungsweise idealen Polytope eingeteilt werden können, untersuchen wir folgende Fra-
gen:

- welche sind die Polytope von minimalem Volumen in den entsprechenden Teilmengen?

- welche sind die Polytope mit der minimalen Anzahl der kombinatorischen Elemente
(Fazetten, Flächen, Kanten, Ecken) in diesen Teilmengen?

Im Falle von rechtwinkligen Polytopen von endlichem Volumen wurde die Antwort von

È. Vinberg, L. Potyagăılo und auch von B. Everitt, J. Ratcliffe, S. Tschantz geliefert. Für

kompakte rechtwinklige Polytope stellen È. Vinberg und L. Potyagăılo eine entsprechende

Vermutung auf. In dieser Dissertation geben wir eine vollständige Antwort für die Fami-

lie der idealen rechtwinkligen Polytope und beschliessen sie mit einigen Teilresultaten im

kompakten Fall.
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Résumé

Cette thèse est centrée sur l’étude des polytopes hyperboliques, des groupes de réflexions et
invariants associés. Soit G un groupe de Coxeter, sous-groupe de IsomHn. Alors, il existe
un domaine fondamental P ⊂ Hn qui est naturellement associé à ce groupe G. Le domaine
P est un polytope de Coxeter. Réciproquement, chaque polytope de Coxeter P engendre
un groupe de Coxeter agissant sur Hn: le groupe engendré par les réflexions par rapport à
ses facettes.

Ces réflexions forment un ensemble naturel de générateurs pour le groupe G. On peut
donc exprimer la série de d’accroissement fS(t) du groupe G par rapport à l’ensemble S.
Par un résultat de R. Steinberg, la série d’accroissement associée correspond à la série de
Taylor d’une fonction rationnelle. Le taux d’accroissement τ de G est l’inverse du rayon
de convergence de cette dernière. Le taux de convergence est un entier algébrique et,
par un résultat de J. Milnor, τ > 1. Par un résultat de W. Parry, si G agit sur H2 de
façon co-compacte, son taux d’accroissement est un nombre de Salem. Par un résultat de
W. Floyd, il existe un lien géométrique entre les taux d’accroissement des groupes de Coxeter
cocompacts et ceux des groupes à co-volume fini agissant sur H2. Ce lien correspond à une
image géométrique de la convergence d’une suite de nombres de Salem vers un nombre de
Pisot. Dans cette thèse, on verra un phénomène analogue en dimension 3. En dimension
n ≥ 4, le taux d’accroissement d’un groupe de Coxeter agissant de façon cocompacte sur
Hn n’est plus un nombre de Salem, ni un nombre de Pisot.

Nous nous intéressons à une classe particulière de groupes de Coxeter est celle des
groupes de Coxeter rectangulaires. Dans ce cas, les domaines fondamentaux sont des poly-
topes aux angles dièdres droits. Concernant la classe de polytopes rectangulaires compacts
(réspectivement, à volume fini, idéaux) dans H4, on pose les problèmes suivants:

- déterminer le volume minimal dans ces familles,

- déterminer le nombre minimal de composante combinatoire (facettes, faces, arêtes,
sommets) dans ces familles.

Dans le cas des polytopes rectangulaires à volume fini, la solution a été donnée par

È. Vinberg, L. Potyagailo et par B. Everitt, J. Ratcliffe, S. Tschantz. Pour les polytopes rect-

angulaires compacts, il existe seulement une conjecture. Dans cette thèse, nous répondons

à ces questions dans le cas des polytopes rectangulaires idéaux.
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and without a reference. If the reference is omitted, then the corresponding claim is due to

the author. The content of Chapter 4 mainly reproduces the papers [36, 37].
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Chapter 1

Polytopes in spaces of constant
curvature

1.1 The three main geometries

It is known [59, Theorem 2.1], that there exist only three complete simply-connected

Riemannian manifolds of constant sectional curvature in every dimension n ≥ 2: the

sphere Sn, the Euclidean space En and the hyperbolic space Hn. The corresponding

curvatures are +1, 0 and −1. We shall discuss of the projective model for these

geometries first, in order to give a uniform picture of them and their isometry groups.

By the end, we will consider particular cases of dimension two and three hyperbolic

geometries and indicate several ways to represent these spaces and their isometries.

The main references for this chapter are [59, Chapters 1-2], [45, Chapters 1-3] and

[54, Chapter 4].

1.1.1 Models for Xn

Let k ∈ {−1, 0,+1} and let us consider the vector space Rn+1 equipped with the

following bilinear form on it:

〈x, y〉k = x1y1 + · · ·+ xnyn + kxn+1yn+1, (1.1)

where x = (x1, . . . , xn+1), y = (y1, . . . , yn+1).

The form 〈·, ·〉0 is positive definite if k = +1, semi-definite if k = 0, and has

Lorentzian signature (n, 1) if k = −1.

Two well-known quadric surfaces arise due to (1.1):

1) The sphere Sn = {x ∈ Rn+1 | 〈x, x〉1 = 1},

2) The two-sheeted hyperboloid Hn = {x ∈ Rn+1 | 〈x, x〉−1 = −1}.
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Taking the hyperplane En = {x ∈ Rn+1|xn+1 = 0} equipped with the metric

dE(x, y) =
√
〈x− y, x− y〉, (1.2)

we obtain the unique n-dimensional complete simply-connected Riemannian space of

constant sectional curvature 0.

The bilinear form 〈·, ·〉1 defines the angular distance on Sn, by means of the formula

cos dS(x, y) = 〈x, y〉1. (1.3)

for every pair of points x, y ∈ Sn. We get the distance in the interval [0, π].

The space Sn endowed with the distance given by (1.3) is known to be the unique

n-dimensional compact complete simply-connected Riemannian space of constant sec-

tional curvature +1.

Now we pass to the case k = −1. The bilinear form 〈·, ·〉−1 is not positive definite

on the whole Rn+1. However, we still may define a Riemannian metric on Hn. The

tangent space to a point x ∈ Hn is defined by

Tx(H
n) = {y ∈ Rn+1|〈x, y〉−1 = 0}.

The form 〈·, ·〉−1 is positive definite on Tx(H
n) for every x ∈ Hn, since 〈x, x〉−1 = −1

on Hn and the signature of the bilinear form in question is (n, 1).

Since the hyper-surface Hn is not connected, we choose one of its connected com-

ponents,

Hn
+ = {x ∈ Rn+1 | 〈x, x〉−1 = −1, xn+1 > 0}.

Then endow it with the Riemannian structure defined by the restriction of the

form 〈·, ·〉−1 to each TxH
n
+ in the tangent bundle THn

+. We obtain the resulting

Riemannian space Hn. The metric on Hn is

cosh dH(x, y) = 〈x, y〉−1. (1.4)

The space Hn with the metric dH is the hyperboloid or vector space model for

the unique n-dimensional complete simply-connected Riemannian space of constant

sectional curvature −1, called the hyperbolic space Hn.

We now describe briefly several other models for Hn, that we shall use later on.

Each of them has its own advantages, which will be of use to provide explanation of

various geometric facts in a less sophisticated way.

There are two conformal models ofHn, which are due to H. Poincaré, the ball model

Bn (see [45, Section 4.5]) and the upper half-space model Un (see [45, Section 4.6]).
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The conformal property means that the angles between hyperplanes seen in these

models correspond to the real angles measured by means of Riemannian geometry.

The ball model is the most symmetric one and an equidistant set with respect to

its center o = (0, 0, . . . , 0) is a usual Euclidean sphere. More precisely, the equidistant

sphere So,r = {x|dH(x, o) = r} is the Euclidean sphere of radius tanh(r/2) around o.

Each sphere So,r carries a natural metric of constant positive sectional curvature.

In the upper half-space model one may easily observe horospheres. Namely, the

horosphere S∞,a = {x ∈ Un|xn = a}, a > 0, centred at the point ∞ is a plane parallel

to ∂Un. It carries a natural metric of zero sectional curvature.

Also, the upper half-space model is suitable for computations, since the Poincaré

extension allows us to reduce the dimension of the isometry group [45, Section 4.4].

Of particular interest is the projective ball model Dn (see [45, Section 6.1]), where

the geodesics are straight line segments, and hyperplanes are parts of Euclidean hy-

perplanes inside the unit ball. This property is particularly good for drawing pictures

(see Section 1.1.2).

1.1.2 Hyperplanes in Xn

In case of En, an (n− 1)-dimensional hyperplane He,t is given by

〈x, e〉1 + t = 0, (1.5)

where e ∈ Rn, 〈e, e〉1 = 1 and t ∈ R.

Let us define a reflection ρe,t in the hyperplane He,t defined by (1.5) as

ρe,t(x) = x− 2(〈x, e〉1 + t) e. (1.6)

By analogy, an (n− 1)-dimensional hyperplane He in Sn is the intersection

He = {x ∈ Rn+1|〈x, e〉1 = 0} ∩ Sn. (1.7)

A reflection in the spherical hyperplane He given by (1.7) is the restriction of the

corresponding Euclidean reflection in the hyperplane He,0 to the sphere Sn.

An (n− 1)-dimensional Lorentzian hyperplane He,t is given by the equation

He = {x ∈ Rn+1|〈x, e〉−1 = 0}. (1.8)

The vector e is called time-like if ‖e‖2−1 = −1, space-like if ‖e‖2−1 = 1 and light-

like if ‖e‖2−1 = 0. Depending on the squared Lorentzian norm of the vector e, the
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hyperplane He is either space-like, if every vector x ∈ He is space-like, or time-like, if

a vector x ∈ He is time-like, or light-like otherwise.

An (n−1)-dimensional hyperplane He in the hyperboloid model Hn of the hyper-

bolic space is given by

He = {x ∈ Rn+1|〈x, e〉−1 = 0} ∩Hn
+ 6= ∅, (1.9)

which means that the vector e is space-like.

Let us define a Lorentzian reflection in the Lorentzian hyperplane (1.8) as

ρe(x) = x− 2〈x, e〉−1 e. (1.10)

A reflection in the hyperbolic hyperplane He is the restriction of ρe(x) given by

(1.10) to Hn
+.

Hyperplanes in other models of hyperbolic geometry, the ball Bn and the upper

half-space model Un, are described in [45, Sections 4.5-6].

1.1.3 Isometries of Xn

In the following we shall list and describe the groups of isometries of the spaces

Xn introduced above. Let us denote the isometry group of Xn by IsomXn. Since the

Riemannian space Xn has a natural orientation coming from that of the ambient space

Rn+1 of its model, there exists the index two subgroup Isom+Xn of the orientation-

preserving isometries.

The most part of the present subsection will describe different representations for

the isometries of the hyperbolic space with respect to its models.

1.1.3.1 Isometries of En

Let O(n) denote the group of orthogonal transformations of Rn. Let SO(n) denote

the group of orientation-preserving orthogonal transformations of Rn. Recall that Rn

acts on itself by parallel translations. Then the isometry group of En is the semi-direct

product IsomEn ∼= Rn ⋊ O(n).

The following theorem gives a description of a Euclidean isometry in terms of

reflections.

Theorem 1 Any isometry of En is a composition of a finite number of reflections.

One needs at most n+ 1 reflections.
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1.1.3.2 Isometries of Sn

Let us note that the group O(n + 1) maps bijectively the sphere Sn on itself. Since

this group preserves the bilinear form 〈·, ·〉1, it preserves the distance defined by (1.3).

Indeed, by restricting the action of O(n + 1) on Rn+1 to the sphere, we obtain its

full isometry group. Thus, Isom Sn ∼= O(n + 1). Again, any element of Isom Sn is a

composition of a finite number of reflections in spherical hyperplanes.

1.1.3.3 Isometries of Hn

The hyperbolic space Hn has several models as mentioned above. Since they are all

equivalent, we may translate the notion of isometry from one model to another.

Let us describe the isometry group IsomHn by using the hyperboloid model. Let

O(n, 1) be the group of all linear automorphisms of Rn+1 that preserves the bilinear

form 〈·, ·〉−1.

Concerning the hyperboloid Hn, the action of this group could be one of the

following type:

• Preserving the sheet Hn
+ and its counterpart Hn

− = Hn \Hn
+.

• Reversing the sheets Hn
+ and Hn

−.

Let O◦(n, 1) denote the index two subgroup of O(n, 1) that preserves the sheets

of Hn. The action of O◦(n, 1) now restricts to Hn
+, so that the group acts on Hn

+ by

isometries. Hence IsomHn ∼= O◦(n, 1). As before, any isometry ofHn is a composition

of a finite number of hyperbolic reflections [5, Theorem A.2.4].

1.2 Polytopes in Xn

1.2.1 Hyperplanes and half-spaces

With every hyperplane He = {x ∈ Rn+1|〈x, e〉k = 0} in Xn, as described in Sec-

tion 1.1.2, we associate the positive half-space H+
e = {x ∈ Rn+1|〈x, e〉k ≥ 0}. The

negative half-space H−
e is defined correspondingly by the condition 〈x, e〉k ≤ 0.

An (n − k)-dimensional hyperplane H(n−k) in Xn is an intersection of k distinct

(n − 1)-dimensional hyperplanes H
(n−1)
i , i = 1, . . . , k, given by (1.9) with linearly

independent normals ei, i = 1, . . . , k.

Now we draw our attention mainly to the case Xn = Hn. Two (n−1)-dimensional

hyperplanes H1 := He1 and H2 := He2 in Hn intersect if |〈e1, e2〉−1| < 1. The angle

between H1 and H2 is then defined by cosα12 = 〈e1, e2〉−1. In case |〈e1, e2〉−1| = 1
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the hyperplanes H1 and H2 are said to be parallel. They do not intersect inside

Hn. If |〈e1, e2〉−1| > 1, the hyperplanes H1 and H2 are said to be ultra-parallel and

have a common perpendicular of length h12. The perpendicular is unique and its

length is defined by cosh h12 = |〈e1, e2〉−1|. A detailed explanation is provided by [45,

Sections 3.1-2].

1.2.2 Polytopes

A polytope P in Xn is the intersection of a finite number of half-spaces H−
i , i =

1, . . . , m, that is P =
⋂m

i=1H
−
i , satisfying the following conditions:

• If Xn = Sn, then P fits in an open hemisphere. This means that for every two

points x, y ∈ P we have dS(x, y) < π.

• If Xn = En or Hn, then P has finite volume.

Later on, in Section 1.2.3.1 we shall see that for the class of acute-angled polytopes

there is a clear criterion for volume finiteness.

One may vary the number of half-spaces in the definition of P, so that still

P =
⋂

i∈I H
−
i , I is a finite set. Each hyperplane Hi corresponding to a half-space

H−
i is a supporting hyperplane of P if the condition Hi ∩ ∂P 6= ∅ is satisfied. The

intersection of a supporting hyperplane Hi and P is a facet of P. A k-dimensional

face of P, 0 ≤ k ≤ n− 1, is a non-empty intersection of at least (n− k) hyperplanes

Hi, i ∈ I, containing a k-dimensional ball of the respective ambient space. An (n−1)-

dimensional face of P is a facet of P, while a 0-dimensional face of P is a vertex.

If P is a compact polytope in Xn = Sn or En, then P is the geodesic convex hull

of its vertices (see [45, Theorems 6.3.17-18]).

Let us now consider a convex hyperbolic polytope P in the projective ball model

Dn. Its closure clP could be viewed as a polytope in En, and then two types of

vertices will arise: a vertex of clP inside Dn is a proper (or finite) vertex of P,

while a vertex of clP on ∂Dn is an ideal vertex of P. In what follows, we shall call

a vertex of P either its proper or ideal vertex, indicating it, if necessary. According

to [45, Theorem 6.4.7], a convex polytope P ⊂ Hn is the geodesic convex hull of its

vertices (proper and ideal, if any).

If v is a proper vertex of P viewed in the ball model Bn, then by means of a

suitable isometry we may arrange it to be the centre o of the unit ball. Then the

sphere So,ε of a sufficiently small radius ε intersects the faces of P containing v in an
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(n−1)-dimensional polytope Pv, called the vertex figure of v. This polytope inherits

a constant positive curvature metric from the sphere So,ε (see Section 1.1.1).

If v is an ideal vertex of P viewed in the upper half-space model Un, then we may

arrange it to be the point ∞. Then the vertex figure Pv is the intersection of the

horosphere S∞,a with a sufficiently large a and the faces of P containing v in their

closure. The polytope Pv inherits a zero sectional curvature metric from S∞,a (see

Section 1.1.1).

Let Ωk(P) denote the set of k-dimensional faces of clP, 0 ≤ k ≤ n− 1. We set

Ωn(P) := P. Then Ω∗(P) =
⋃n

k=0Ωk(P) ∪ ∅ ordered with respect to the face inclu-

sion relation is a lattice called the face lattice of P. Let fk = cardΩk(P) be the num-

ber of k-dimensional faces of P, 0 ≤ k ≤ n− 1. The vector f(P) = (f0, f1, . . . , fn−1)

is the face vector of P. Two polytopes P1 and P2 in Xn are combinatorially iso-

morphic if their face lattices are isomorphic. The polytopes P1 and P2 are isometric

if there exists an element φ ∈ IsomXn such that φ(P1) = P2.

1.2.3 Gram matrix of a polytope

Let P be a polytope in Xn, defined by P =
⋂m

i=1H
−
i , where Hi := Hei and the

normals are outward with respect to H−
i . Then the Gram matrix of P is defined by

G(P) = (〈ei, ej〉k)mi,j=1. (1.11)

The matrix G(P) is symmetric and has unit diagonal.

If Xn = Sn, the polytope P is compact, the matrix G(P) is positive semi-definite

of rank n + 1 and defines P up to an isometry. Given two supporting hyperplanes

Hi and Hj for the respective facets of P, we have that the dihedral angle αij between

them is defined by cosαij = −〈ei, ej〉1.
If Xn = En, the polytope P is compact and the matrix G(P) is positive semi-

definite of rank n. The entries of G(P) have the following meaning:

〈ei, ej〉0 =
{

− cosαij if Hi ∩Hj 6= ∅,
−1 if Hi and Hj are parallel.

If Xn = Hn, then the polytope P may not be compact, however it has finite

volume. The matrix G(P) is indefinite of rank n + 1 and has Lorentzian signature

(n, 1). Its entries enjoy the following relations (see [45, Sections 3.1-2]):

〈ei, ej〉−1 =





− cosαij if Hi and Hj intersect,
−1 if Hi and Hj are parallel,
− cosh hij if Hi and Hj are ultra-parallel.
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1.2.3.1 Acute-angled and Coxeter polytopes

A polytope P in Xn is called acute-angled if all its dihedral angles are less than

or equal to π/2. A polytope P is a Coxeter polytope if all its dihedral angles are

sub-multiples of π, that means, of the form π/m, where m ≥ 2 is an integer.

Consider acute-angled polytopes in Xn 6= Hn. It turns out, that there is a short

and convenient description of them.

Theorem 2 (Theorem 1.5, [59]) Let P be an acute-angled polytope in Xn. Then

• if Xn = Sn then P is a simplex;

• if Xn = En then P is either a simplex or a direct product of lower-dimensional

simplices.

Furthermore, the following theorem describes acute-angled simplices in Xn = Sn,

En in terms of their Gram matrices.

Theorem 3 (Theorem 1.7, [59]) Any positive definite (degenerate indecomposable

positive semi-definite) real symmetric matrix with unit diagonal and non-positive en-

tries off it is the Gram matrix of an acute-angled spherical (resp., Euclidean) simplex

which is defined uniquely up to an isometry of Sn (resp., En).

If we drop the condition “to be indecomposable” for the matrix above, then after a

certain permutation of its rows and columns the corresponding block-diagonal matrix

should be checked block by block in accordance with Theorem 3. If each block corre-

sponds to a Euclidean simplex, then we have a direct product structure as mentioned

in Theorem 2.

Let us turn to polytopes in the hyperbolic space Hn. The following theorem

describes their Gram matrices.

Theorem 4 (Theorem 2.2, [59]) Any indecomposable real symmetric matrix of Lo-

rentzian signature (n, 1) with unit diagonal and non-positive entries off it is the Gram

matrix of an acute-angled polytope in Hn. This polytope is unique up to an isometry.

Moreover, by looking at the principal sub-matrices of a given Gram matrix G :=

G(P) of a polytope P ⊂ Hn, we may describe its combinatorial structure directly

from the matrix G.

A positive definite principle sub-matrix of the Gram matrix G := G(P) of a

polytope P is said to be elliptic if it is positive definite.
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Theorem 5 (Theorem 2.3, [59]) Let P ⊂ Hn be an acute-angled polytope. Let

G := G(P) denote its Gram matrix. With each lower-dimensional face F we as-

sociate a principal sub-matrix GF formed by the rows and columns corresponding to

the facets of P that contain F . Then the mapping F → GF is a one-to-one corre-

spondence between the set of all faces of the polyhedron P and the set of all elliptic

principal sub-matrices of the matrix G.

The theorem above helps to detect all lower-dimensional faces of the polytope

P ⊂ Hn, including its proper (or finite) vertices. However, P may have an ideal

vertex which is not described by Theorem 5. Given the Gram matrix G := G(P)

and an ideal vertex v ∈ Ω0(P), let Gv be the sub-matrix of G that consists of the

rows and columns corresponding to the facets of clP containing v.

A real symmetric matrix with non-positive elements off the diagonal is said to

be parabolic if a certain permutation of its rows and columns brings it to the block-

diagonal form, where each block is a degenerate indecomposable positive semi-definite

matrix.

Theorem 6 (Theorem 2.5, [59]) Let P ⊂ Hn be an acute-angled polytope with the

Gram matrix G := G(P). Then the mapping v → Gv is a one-to-one correspondence

between the set of all ideal vertices of P and the set of all parabolic principal rank

(n− 1) sub-matrices of the matrix G.

Given a vertex v ∈ Ω0(P), proper or ideal, the matrix Gv is the matrix of its

vertex figure Pv, that enjoys respectively the properties of either the Gram matrix

of an acute-angled polytope in Sn, or those of an acute-angled polytope in En.

If every vertex v of an acute-angled polytope P ⊂ Hn with Gram matrix G has

either elliptic or parabolic Gv, then P has finite volume (see [58, Theorem 4.1]).

1.2.4 Examples

1.2.4.1 A spherical simplex

According to Theorem 3, the identity 4 × 4 matrix is the Gram matrix of a totally

right-angled simplex in S3.
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1.2.4.2 A Euclidean simplex

The following matrix is the Gram matrix of a Euclidean simplex, corresponding to

the affine Coxeter group Ã3 (see Section 2.2.2.2):

G =




1 − cos π
3

0 − cos π
3

− cos π
3

1 − cos π
3

0
0 − cos π

3
1 − cos π

3

− cos π
3

0 − cos π
3

1


 .

The fact that it determines a Euclidean simplex follows from Theorem 3. We have

that detG = 0 and the other principal minors are positive.

1.2.4.3 A hyperbolic simplex

Let us consider the orthoscheme (3, 3, 6) (see, e.g. [59, Section 3.2, p. 124] for the

definition), that is a hyperbolic simplex with the Gram matrix

G =




1 − cos π
3

0 0
− cos π

3
1 − cos π

3
0

0 − cos π
3

1 − cos π
6

0 0 − cos π
6

1


 .

The fact that it determines a hyperbolic simplex follows from Theorem 4. Moreover,

by Theorem 5 applied to the order three principal sub-matrices, the corresponding

simplex has three proper vertices. By Theorem 6, it has a single ideal vertex.

1.2.5 Andreev’s theorem

The Gram matrix approach to the existence of an acute-angled polytope in Hn sug-

gested by Theorem 4 could always be applied, however the Gram matrix may have an

arbitrarily large order, what makes an actual computation difficult. In lower dimen-

sions, there exist a number of theorems that allow us to decide about the existence

of a given polytope in terms of its dihedral angles only.

Theorem 7 A convex k-gon with dihedral angles 0 ≤ αi < π, i = 1, . . . , k, exists in

H2 if and only if

α1 + α2 + · · ·+ αk < (k − 2) π.

The following results concerning acute-angled polyhedra in H3 are helpful in the

study of Coxeter groups acting on the hyperbolic space.
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Theorem 8 (E.M. Andreev, [2, 59]) A compact acute-angled polyhedron in Hn,

n ≥ 3, is determined by its face lattice and dihedral angles up to an isometry.

In order to state the next theorem, let us define a k-circuit, k ≥ 3, to be an ordered

sequence of faces F1, . . . , Fk of a given polyhedron P such that each face is adjacent

only to the previous and the following ones, while the last one is adjacent only to the

first one and to the penultimate one, and no three of them share a common vertex.

Theorem 9 (E.M. Andreev, [3, 59]) Let P be a combinatorial polyhedron, not a

simplex, such that three or four faces meet at every vertex. Enumerate all the faces of

P by 1, . . . , |Ω2(P)|. Let Fi be a face, Eij = Fi ∩ Fj an edge, and Vijk = ∩s∈{i,j,k}Fs

or Vijkl = ∩s∈{i,j,k,l}Fs a vertex of P. Let αij ≥ 0 be the weight of the edge Eij. The

following conditions are necessary and sufficient for the polyhedron P to exist in H3

having the dihedral angles αij:

(m0) 0 < αij ≤ π/2.

(m1) If Vijk is a vertex of P, then αij + αjk + αki ≥ π, and if Vijkl is a vertex of P,

then αij + αjk + αkl + αli = 2π.

(m2) If Fi, Fj, Fk form a 3-circuit, then αij + αjk + αki < π.

(m3) If Fi, Fj, Fk, Fl form a 4-circuit, then αij + αjk + αkl + αli < 2π.

(m4) If P is a triangular prism with bases F1 and F2, then α13 + α14 + α15 + α23 +

α24 + α25 < 3π.

(m5) If among the faces Fi, Fj, Fk, the faces Fi and Fj, Fj and Fk are adjacent, Fi

and Fk are not adjacent, but concurrent in a vertex v∞, and all three Fi, Fj, Fk

do not meet at v∞, then αij + αjk < π.

For a triangular prism one more condition is needed. Namely, that at least one

of the dihedral angles between its lateral faces and bases is strictly less than π/2. For

a tetrahedron the extra condition is that the signature of its Gram matrix has to be

Lorentzian.
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1.2.6 Rivin’s theorem

Let us consider an ideal convex polyhedron P in H3, that is a polyhedron with all

vertices on ∂H3. Such a polyhedron is said to be ideal for brevity’s sake. We may view

it as a convex Euclidean polyhedron in the projective model D3. Then P turns out

to be a polyhedron inscribed in the sphere ∂D3 representing the ideal boundary. Let

P∗ denote its dual, i.e. the polytope such that each facet F ∈ Ωn−1(P) corresponds

to a vertex v ∈ Ω0(P
∗). If e is an edge of P, let α(e) be the dihedral angle along it.

For the corresponding edge e∗ of the dual, let us set α(e∗) = π− α(e). The following

theorem holds.

Theorem 10 (I. Rivin, [46]) The dual polyhedron P∗ of a convex ideal polyhedron

P ⊂ H3 satisfies the following conditions:

• 0 < α(e∗) < π for all edges of P∗,

• if the edges e∗1, . . . , e
∗
k form the boundary of a face of P∗, then

k∑

i=1

α(e∗i ) = 2π,

• if the edges e∗1, . . . , e
∗
k form a closed circuit but do not bound a face, then

k∑

i=1

α(e∗i ) > 2π.

Conversely, any polyhedron P∗ with a given face lattice and dihedral angles satisfying

the above conditions is the dual of a convex ideal polyhedron P ⊂ H3. The polyhedron

P is unique up to an isometry.

Observe that the theorem above does not require the polyhedron P to be acute-

angled, and so we have more freedom.

1.2.7 Examples

1.2.7.1 Löbell polyhedra

Let us consider the family of polyhedra Ln, n ≥ 5 (see also Section 4.1.4.1). Com-

binatorially, each one is presented by bottom and top n-gons with two stripes of

pentagons in between, going around the border of both n-gonal faces. In Fig. 1.1 the

polyhedron L6 is given drawn in the ball model B3 by means of a computer script
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Figure 1.1: The Löbell polyhedron L6

from [16]. Let us point out, that L5 is combinatorially a dodecahedron. By Andreev’s

theorem (Theorem 9), all Ln are realisable as compact right-angled polyhedra in H3.

The polyhedra Ln, n ≥ 6, provide fundamental domains for a family of discrete

and torsion-free groups of isometries Γn and of pairwise non-isometric compact hy-

perbolic manifolds H3�Γn, while the dodecahedron L5 cannot be such a fundamental

domain [56].

Figure 1.2: The icosahedron I

1.2.7.2 An obtuse-angled icosahedron

Let us consider a regular icosahedron I in Fig. 1.2. We want to realise it as an

ideal hyperbolic polyhedron with all dihedal angles 3π/5. In the notation of Rivin’s

theorem (Theorem 10), one has α(e) = 3π/5 and α(e∗) = 2π/5.
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The dual polyhedron I∗ of the icosahedron is a dodecahedron. Thus, if a circuit of

edges {e∗i }5i=1 bounds a face, we obtain for the angle sum
∑5

i=1 α(e
∗
i ) = 5 · 2π/5 = 2π.

If a closed circuit of edges {e∗i }ni=1 does not bound a face, then it circumferences at

least two adjacent pentagons in I∗. Hence n ≥ 8 and the corresponding sum is
∑n

i=1 α(e
∗
i ) ≥ 8 · 2π/5 > 2π. Thus, I is realisable as an ideal hyperbolic polyhedron.

Finally, let us note that in this case all the dihedral angles are equal to 3π/5 > π/2,

so Andreev’s theorem is not applicable.

1.2.7.3 Numerical algorithm to construct polyhedra

There exists a number of MATLAB scripts running an algorithm producing acute-

angled polyhedra with given combinatorics and dihedral angles. This algorithm has

first been described in the original paper of Andreev [2]. However, it contains a

significant combinatorial flaw corrected in [16]. The scripts are created by R. Roeder

[16], who discovered the flaw in the original algorithm while coding the first version

of his scripts. Many examples of acute-angled polyhedra studied numerically with

help of Roeder’s scripts are given in [47].
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Chapter 2

Growth of Coxeter groups

2.1 The growth series, growth function and growth

rate

The main reference for next section is [25, Chapters VI-VII].

2.1.1 Basic notions and facts

Let G denote a multiplicative group. A subset S ⊂ G \ {1} is a generating set for

the group if every element g ∈ G can be written as a product of elements in S. The

elements of S are called generators of G. If the set S may be chosen to be finite,

we say that the group G is finitely generated. For the rest of this work we suppose

all groups to be finitely generated. Also we suppose that the generating set S is

symmetric, that is, for each s ∈ S its inverse s−1 ∈ S as well.

Let us denote by F (S) the free group of rank cardS generated by S. Let R be a

finite collection of words in F (S). Then we say a group G to have the presentation

〈S|R〉 with generators S and relations R if G ∼= F (S)� ≪ R ≫, where ≪ · ≫ means

the normaliser of a set of words in G. Let us also denote by 〈T 〉 a subgroup of G

generated by a subset T ⊂ S.

Let us choose a generating set S = {s1, . . . , sm} for a group G. The length function

‖ ·‖S : G → Z≥0 is defined as the minimal number of elements from S needed to write

an element g ∈ G up. In the case g = 1, we set ‖1‖S = 0.

Let ak, k ≥ 0, denote the number of elements g ∈ G such that ‖g‖S = k. E.g., we

have a0 = 1 and a1 = cardS. Let f(G,S)(t) denote the respective growth series of the

group G, defined by

f(G,S)(t) =

∞∑

k=0

akt
k. (2.1)
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If the groupG is finite, then its growth series is just a polynomial with the property

that f(1) = cardG. In general, the function f(t) := f(G,S)(t) is holomorphic in t inside

the disc of convergence {t ∈ C||t| < R} with R = 1/(cardS − 1), at least [18].

If the group G happens to be reducible, i.e. G ∼= G1 × G2 such that Gi, i = 1, 2

are generated by Si, i = 1, 2 then its growth function splits into factors as follows.

Proposition 1 With G, Gi and Si, i = 1, 2, as above we have

f(G,S)(t) = f(G1,S1)(t) f(G2,S2)(t), (2.2)

where S = (S1 × {1}) ∪ ({1} × S2)

Let us define the growth rate τ of G by τ = lim supn→∞
n
√
an. Then, τ is related

to the radius of convergence of the series (2.1) by R = τ−1 according to Hadamard’s

formula.

If the growth rate τ of G with respect to a certain generating set is bigger than

1, then we say G has (at least) exponential growth. Since a finitely generated group

G with generating set S satisfies ak ≤ (cardS)k, k ≥ 0, its growth could be at most

exponential.

Theorem 11 (Proposition VI.27 [25]) The exponential growth property does not

depend on the generating set.

In contrast to Theorem 11, the value of the growth rate τ depends on the chosen

generating set. Therefore, τ is not a group invariant, but an invariant for the pair

〈G, S〉. As in [25, 24] one may define the following “least” growth rate

τG = inf
S
{τG,S|τG,S is a growth rate of G with respect to the generating set S}.

(2.3)

The recent references with examples and explicit computations of τG for various

groups are [55, 61].

The following theorem by J. Milnor describes a wide and important class of groups

having exponential growth.

Theorem 12 (J. Milnor, [39]) If M is a compact connected Riemannian mani-

fold with negative sectional curvatures, then its fundamental group G := π1(M) has

exponential growth, i.e. there exists γ > 1 such that

ak ≥ γk, for all k ≥ 0. (2.4)

More generally, every Gromov hyperbolic group has exponential growth (refer to

[25] for more details).
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2.1.2 Examples

2.1.2.1 Free groups

Let Fn be the free group on n generators s1, . . . , sn. The symmetric generating set Sn

for it will be {s±1
1 , . . . , s±1

n }. For the growth series coefficients of Fn we have a0 = 1

and ak = 2n(2n− 1)k−1, k ≥ 1. Finally, the rational function

f(Fn,Sn)(t) =
1− (2n− 1)t2

(1− t)(1− (2n− 1)t)
(2.5)

corresponds to the analytic extension of the growth series (2.1) beyond the open disc

|t| < R = 1/(2n−1). The convergence radius of this series is exactly R, corresponding

in this case to the real pole of f(Fn,Sn)(t) with the smallest absolute value.

Let us now consider the groups F2 and F3. Their growth functions are given

respectively by formula (2.5). Then recall the fact that F3 is isomorphic to the

subgroup F
(2)
2 of even length words in F2. That is, if F2 = 〈a±1, b±1〉, then F

(2)
2 =

〈a±2, b±2, ab, b−1a−1〉 ∼= F3. Then we have

f
(F

(2)
2 ,S2)

(t) =
f(F2,S2)(

√
t) + f(F2,S2)(−

√
t)

2
=

1− 9t2

1− 10t+ 9t2
6= f(F3,S3)(t). (2.6)

Thus, the growth function is defined by both the group and its generating set together.

All free groups are of exponential growth, as could be seen from formula (2.5).

2.1.2.2 Surface groups

Let Σg be a compact genus g ≥ 0 orientable surface. The surfaces Σg with g ≥ 2 are

known to be hyperbolic, that is they are realisable as Riemannian two-dimensional

manifolds of constant sectional curvature −1. Thus, by Theorem 12, π1(Σg), g ≥ 2,

has exponential growth. The corresponding growth function with respect to the

standard presentation

π1(Σg) = 〈a1, b1, . . . , ag, bg|
g∏

n=1

[an, bn]〉 (2.7)

was computed by J.W. Cannon and Ph. Wagreich [8]. From the explicit computation

one can also see that the growth rate τ with respect to generating set from (2.7) is

greater than 1.

However, the growth of π1(Σ1) = 〈a, b|aba−1b−1〉 ∼= Z× Z is linear. The torus Σ1

admits a Euclidean metric, but no hyperbolic one due to the Gauß-Bonnet theorem

[45, Theorem 9.3.1]. Indeed, for π1(Σ1) we have a0 = 1 and ak = 4k, k ≥ 1. Since
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the growth function for Z ∼= 〈a〉 ∼= 〈b〉 is 1+t
1−t

, by Proposition 1, the growth function

of π1(Σ1) is
(
1+t
1−t

)2
. Thus, the corresponding growth rate τ is equal to 1 and, due to

Theorem 11, can not be greater for any generating set.

2.2 Coxeter groups

The main references for this section are [29] and [12].

2.2.1 Basic notions and facts

A Coxeter group G can be defined in several different ways, all equivalent, that we

shall consider below. The first description is given in terms of generators and relations.

A group G is a Coxeter group, if it has a presentation of the form

G = 〈s1, s2, . . . , sn|(sisj)mij〉, (2.8)

where mii = 1 for all i = 1, . . . , n, mij = mji ∈ {2, 3, . . . ,∞} for all i, j = 1, . . . , n,

i 6= j. The property mij = ∞ leaves us with no relation of the form (sisj)
mij .

The symmetric matrixM = (mij)
n
i,j=1 is called the Coxeter matrix for the groupG.

The pair (G, S), where G is a Coxeter group with generating set S = {s1, s2, . . . , sn}
is called a Coxeter system.

The Coxeter matrix can also be given by means of a labelled graph called the

Coxeter diagram of (G, S). To produce such a graph out of the Coxeter matrix or

the group presentation [6, 12] we will use the following rules:

(1) The vertices of the graph are labelled by generator subscripts i for si ∈ S.

(2) Vertices i and j are connected if and only if mij ≥ 3.

(3) An edge is labelled with the value of mij whenever mij ≥ 4.

Sometimes, concerning rule (3), we use a multiple edge of multiplicity mij − 2 to

indicate the value of mij . However, this way of depicting a Coxeter diagram becomes

inconvenient if mij is large.

2.2.2 Examples

2.2.2.1 Finite Coxeter groups

The list of finite Coxeter groups is given below in Table 2.1. It contains three infinite

families An, n ≥ 1, Bn = Cn, n ≥ 2, and Dn, n ≥ 4, of increasing rank n and a
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one-parameter family of rank two G
(n)
2 , n ≥ 3. Furthermore, there are the singletons

E6, E7, E8, F4 and H3, H4.

Group Coxeter diagram

An

Bn = Cn

Dn

E6

E7

E8

F4

G
(n)
2

H3

H4

Table 2.1: Finite Coxeter groups

The groups A3, B3 and H3 are known to be the symmetry groups of the Platonic

solids. Namely, A3 corresponds to the symmetries of a regular tetrahedron, B3 to a

regular cube/octahedron, H3 to a regular dodecahedron/icosahedron.

2.2.2.2 Affine Coxeter groups

The list of affine Coxeter groups is given below in Table 2.2 (see Section 3 for the

geometric terminology). It contains four infinite families Ãn, n ≥ 2, B̃n, C̃n, n ≥ 3,

and D̃n, n ≥ 4, of increasing n rank. Besides, the are five singleton groups Ẽ6, Ẽ7,

Ẽ8, F̃4 and G̃2.

The affine Coxeter groups are infinite, but each contains a normal abelian subgroup

such that the respective quotient is a finite Coxeter group. An obvious correspondence

between the diagrams in Table 2.1 and Table 2.2 is the addition of one extra node

and one or two extra edges.
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Group Coxeter diagram

Ãn

B̃n

C̃n

D̃n

Ẽ6

Ẽ7

Ẽ8

F̃4

G̃2

Table 2.2: Affine Coxeter groups

As an example, let us consider the group Ã3 having the following presentation:

Ã3
∼= 〈a, b, c|a2, b2, c2, (ab)3, (bc)3, (ac)3〉.

Then consider its abelian normal subgroup N = 〈abcb, baca, cbab〉. We easily see

that the quotient group is Ã3�N ∼= A2.

Remark. Given a Coxeter diagram, the corresponding Coxeter system is com-

pletely defined. That is, each Coxeter diagram corresponds to a unique pair (G, S).

However, speaking about the group G we don’t have a 1-to-1 correspondence between

Coxeter groups and diagrams. As an example, one may consider the dihedral group

D6 of order 12. Observe that it corresponds to two different Coxeter systems, G
(6)
2

and A1 × A2.
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2.2.3 Growth of Coxeter groups

We have introduced the notion of growth in Section 2.1. Now we shall restrict our-

selves to the particular case of Coxeter groups.

By the result of Steinberg [53] the growth function of a Coxeter group is known

to be rational. The key result concerning its computation [53, Theorem 1.28] tells us

that there exists a correspondence between the growth function of the whole group

and the growth functions of its finite subgroups. Namely, the following theorem holds:

Theorem 13 (R. Steinberg, [53]) Let G be a Coxeter group with generating set

S. Then
1

f(G,S)(t−1)
=

∑

T∈F

(−1)cardT

f(〈T 〉,T )(t)
, (2.9)

where F = {T ⊆ S | the subgroup of G generated by T is finite}.

Since a finite subgroup of G generated by a subset T ⊂ S is a Coxeter group itself,

then Table 2.1 contains all possible subgroups from F in (2.9).

The rational function f(G,S)(t) = P (t)/Q(t) obtained from the Steinberg formula

(2.9) is an analytic continuation of the growth series (2.1). Let R be its convergence

radius and τ = R−1 be the growth rate of (G, S). Then R is a pole of f(G,S)(t).

Moreover, R is the least positive real zero of the denominator Q(t).

2.2.4 Examples

2.2.4.1 Spherical triangle groups

The finite Coxeter groups have polynomial growth functions. The maximal degree

of the growth polynomial f(t) of a finite Coxeter group G equals cardG. Consider

three generator finite Coxeter groups, also known as sphere tilings, in order to give

an example. These belong to the more general class of triangle groups, having the

presentation

∆k,l,m = 〈a, b, c|a2, b2, c2, (ab)k, (bc)l, (ac)m〉. (2.10)

The group Euler characteristic of ∆k,l,m equals χ := χ(∆k,l,m) = 1/k+1/l+1/m− 1.

If χ is positive, then ∆k,l,m is called spherical, if χ is zero ∆k,l,m is Euclidean, otherwise

hyperbolic. Indeed, depending on χ, the group ∆k,l,m is respectively either a sphere,

or a Euclidean, or a hyperbolic plane tiling group.

The finite ones have the triple (k, l,m) equal to (2, 2, n), n ≥ 2, (2, 3, 3), (2, 3, 4)

and (2, 3, 5) only. These groups are called spherical triangle groups and correspond

to regular tilings of the sphere S2 by triangles. The corresponding growth functions
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were computed in [52] and are given below in Table 2.3. The notation [n], n ≥ 1 an

integer, stands for the sum 1 + t+ · · ·+ tn−1. Also, we put [n,m] := [n] · [m], and so

on.

Group Coxeter system Growth function

∆22n A1 ×G
(n)
2 [2, 2, n]

∆233 A3 [2, 3, 4]
∆234 B3 [2, 4, 6]
∆235 H3 [2, 6, 10]

Table 2.3: Finite triangle groups

2.2.4.2 Euclidean triangle groups

Here the groups ∆k,l,m of Euclidean plane tilings are given by triplets (k, l,m) equal

(2, 4, 4), (3, 3, 3) and (2, 3, 6). These are exactly the three generator affine Coxeter

groups. We can find the corresponding growth functions fklm(t) by means of the

Steinberg formula (2.9). Since the group itself is infinite in case of a Euclidean

triangle group, we have

1

fklm(t−1)
= 1− 3

[2]
+

1

[2, k]
+

1

[2, l]
+

1

[2, m]
. (2.11)

Here we substitute the above mentioned values of the parameters k, l, m and

finally obtain

f244(t) =
[2, 4]

(1− t)2[3]
, f333(t) =

[3]

(1− t)2
, f236(t) =

[2, 6]

(1− t)2[5]
. (2.12)

2.2.4.3 Hyperbolic triangle groups

These are triangle groups ∆k,l,m with χ(∆k,l,m) < 0. As an example we give the

triangle group ∆2,3,7. This group has a faithful representation into the group of

isometries IsomH2 of the hyperbolic plane H2 [45, Section 7.2]. In this way one can

make visible that the finite subgroups in formula (2.9) are generated by one or a pair

of the generators. We deduce the expression

f237(t) =
[2]2[3, 7]

1 + t− t3 − t4 − t5 − t6 − t7 + t9 + t10
(2.13)

The growth rate of ∆2,3,7 is τ ≈ 1.17628 and equals the least known Salem number

[28]. This is an algebraic integer of a special type, whose minimal polynomial over Z

is given by the denominator of f237(t). Later on, a more profound connection between

growth rates of Coxeter groups and Salem numbers will come in sight (see Chapter 4,

Section 4.1).
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2.2.4.4 Growth rate and co-volume in dimensions two and three

In the paper [28] (see also [33]) by E. Hironaka the minimal growth rate of cocompact

Coxeter groups acting on H2 is computed. This is the growth rate of ∆2,3,7 triangle

group. Moreover, the group ∆2,3,7 is uniquely determined by its growth minimality

property. On the other hand, the result [51] of C. Siegel, implies that the minimal

co-volume cocompact reflection group acting on H2 is exactly ∆2,3,7.

The following question is posed in [23, Problem 16].

Question. Is there a direct connection between the area of hyperbolic polygon and

the asymptotic growth rate of the underlying Coxeter reflection group?

In general the answer is “no” according to the following propositions [33].

Let P ⊂ Hn be a Coxeter polytope. Then we denote by G := G(P) the group

generated by the set S of reflections in its facets. We denote the growth rate of G

with respect to S by τP := τ(G(P)).

Proposition 2 There exist two infinite families Pk and Qk, k ≥ 4, of compact hy-

perbolic Coxeter polygons, such that τPk
= τQk

, but |AreaPk −AreaQk| is unbounded
for k → ∞.

Proof. Let Pk, k ≥ 4, be a hyperbolic k-gon with all angles equal π/3. Let Qk,

k ≥ 4, be a hyperbolic (k+1)-gon with right angles. The polygons Pk and Qk, k ≥ 4,

exist by Theorem 7. The corresponding growth functions of G(Pk) and G(Qk) are

fPk
(t) =

[3]

t2 − (k − 1)t+ 1
, fQk

(t) =
[2]2

t2 − (k − 1)t+ 1
.

Observe that the growth rate of G(Pk) equals that of G(Qk), k ≥ 4, since the denom-

inator polynomials of fPk
(t) and fQk

(t) coincide.

According to Serre’s formula [49], AreaPk = −2π/fPk
(1) and AreaQk = −2π/fQk

(1).

We compute AreaPk = 2π/3 · (k − 3), AreaQk = 2π/4 · (k − 3) and |AreaPk −
AreaQk| = π/6 · (k − 3). Thus |AreaPk −AreaQk| → ∞ as k → ∞. Q.E.D.

Proposition 3 There exist two infinite families Rk and Sk, k ≥ 2, of compact hy-

perbolic Coxeter polygons, such that AreaRk = AreaSk, but |τRk
− τSk

| is unbounded
for k → ∞.

Proof. Let Rk be a hyperbolic (4k)-gon with right angles and let Sk be a hyperbolic

(3k)-gon with all angles equal π/3. Both families of polygons exist for k ≥ 2 by

Theorem 7. The corresponding growth functions are

fRk
(t) =

[2]2

1− (4k − 2)t+ t2
, fSk

(t) =
[3]

1− (3k − 1)t+ t2
.
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Then Serre’s formula [49] gives AreaRk = −2π/fRk
(1) and AreaSk = −2π/fSk

(1),

that implies AreaRk = AreaSk = 2π(k − 1). A straightforward computation of the

roots of the denominator polynomials provides |τRk
− τSk

| → ∞ as k → ∞. One can

even deduce that τRk
/τSk

→ 4/3 for k → ∞. Q.E.D.

We may address an analogous question in the three-dimensional case. According

to [33], the minimal growth rate τ(3,5,3) ≈ 1.35098 belongs to the reflection group

of the hyperbolic orthoscheme (3, 5, 3). However, the minimal volume among the

Coxeter simplices belongs to (4, 3, 5), as computed in [31, Appendix]. We illustrate

the discrepancy between the growth rate and the covolumes of Coxeter groups acting

on H3 as follows [33].

Proposition 4 There exist two infinite families Nk and Mk, k ≥ 5, of compact

hyperbolic Coxeter polyhedra, such that τNk
= τMk

, but |VolNk−VolMk| is unbounded
for k → ∞.

Proof. Following [56], let Lk, k ≥ 5, be the k-th Löbell polyhedron (refer to Fig. 4.12

in Section 4). The dihedral angles of Lk are right. Let L1 and L2 be two isometric

copies of L2k, k ≥ 5. By matching them together along (2k)-gonal faces F1 and F2,

one obtains the garland of L1 and L2. The edges of Fi, i = 1, 2, disappear since the

dihedral angles along them double after glueing and become equal to π. By analogy,

we construct a garland of several polyhedra by matching l ≥ 2 isometric copies of Lk

along (2k)-gonal faces. Denote such a garland by L(l)
k for k ≥ 5, l ≥ 2.

Using Löbell polyhedra and their garlands, we construct two desired families Nk

and Mk. Let Nk, k ≥ 5, be the Löbell polyhedron L2k. Let f = (f0, f1, f2) be its

f -vector that consists of the number of vertices f0, the number of edges f1 and the

number of faces f2. For the polyhedron Nk we have f(Nk) = (8k, 12k, 4k + 2). Let

Mk, k ≥ 5, be the garland L(3)
k defined above. In this case f(Mk) = (8k, 12k, 4k+2),

since the edges of glued faces disappear together with their vertices.

Observe that Nk and Mk are right-angled and so formula (3.5) of [34, Remark 5]

applies. For the corresponding growth functions fNk
and fMk

of G(Nk) and G(Mk)

we have

fNk
(t) = fMk

(t) =
[2]3

1− (4k − 1)t+ (4k − 1)t2 − t3
.

Thus, the growth rates of G(Nk) and G(Mk) are equal for every k ≥ 5.

Consider the volumes of Nk and Mk, k ≥ 5. By formula (7) of [56, Corollary 2],

we have the following asymptotic behaviour for k large enough:

VolNk ∼ 20 k v3, VolMk ∼ 30 k v3,
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where the constant v3 is the volume of a regular ideal tetrahedron, which equals

2Λ(π/6) ≈ 1.014 in terms of the Lobachevsky function. Now it is seen that |VolNk −
VolMk| ∼ 10 k v3 is unbounded for k → ∞. Q.E.D.

Proposition 5 There exist two infinite families Uk and Vk, k ≥ 6, of compact hy-

perbolic Coxeter polyhedra, such that VolUk = VolVk, but |τUk
− τVk

| is unbounded for

k → ∞.

Proof. Let L(l)(k) be a garland obtained from l ≥ 2 isometric copies of Lk, k ≥ 6,

glued along k-gonal faces as in the proof of Proposition 4. Let Lk(l) be the garland

obtained from l ≥ 2 isometric copies of Lk, k ≥ 6, glued along pentagonal faces. We

set Uk to be L(2)
k and Vk to be Lk(2). The corresponding growth functions are

fUk
(t) =

[2]3

1− (3k − 1)t+ (3k − 1)t2 − t3

and

fVk
(t) =

[2]3

1− (4k − 6)t+ (4k − 6)t2 − t3
.

An easy computation of the roots of the denominator polynomials of fUk
(t) and fVk

(t),

k ≥ 6, yields |τUk
− τVk

| → ∞ as k → ∞. More precisely, τUk
/τVk

→ 3/4 for k → ∞.

On the other hand, VolUk = VolVk = 2VolLk. Q.E.D.
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Chapter 3

Reflection groups

3.1 Coxeter polytopes and reflection groups

The main references for this chapter are [6, Chapter 5] and [59, Chapter 5].

3.1.1 Basic notions and facts

Let us recall the notion of a reflection in a hyperplane of Xn. First, consider the case

of Xn = En. A reflection in En in the hyperplane H := He,t given by formula (1.5), is

sH(x) = x− 2(〈x, e〉1 + t)e.

Now consider the case Xn = Sn. A spherical hyperplane H := He is defined in

Section 1.1.2 by formula (1.7). The corresponding reflection in the hyperplane H is

given by

sH(x) = x− 2〈x, e〉1e. (3.1)

In case of the hyperbolic space Xn = Hn, let us consider its hyperboloid described

in Section 1.1.3.3. Then the reflection in the Lorentzian hyperplane H := He with

space-like normal vector e defined by formula (1.9) is given by

sH(x) = x− 2〈x, e〉−1e. (3.2)

A reflection group acting on Xn is a discrete group generated by a finite number

of reflections.

Let us recall that every discrete group G acting by isometries on Xn has a fun-

damental domain, that tessellates the space Xn under the action of G [45]. There is

always a convex fundamental domain for a discrete group, namely a Dirichlet poly-

tope, which is a particular convex polytope in Xn [45, Sections 6.7 and 13.5].
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A Coxeter polytope in Xn is a polytope with dihedral angles given by integer

submultiples of π, i.e. each having the form π/m, for some integer m ≥ 2.

The following theorem highlights a relation between reflection groups and Coxeter

polytopes in Xn.

Theorem 14 (Proposition 1.4, [59]) Let G be a reflection group acting on Xn and

let P ⊂ Xn be a fundamental domain for G. Then P is a Coxeter polytope, unique

up to an isometry, and G is generated by reflections in the supporting hyperplanes of

its facets.

Group notation Coxeter diagram

(k, 2, l), k, l ≥ 2

(5, 3, 3)

(3, 4, 3)

(4, 3, 3)

(2, 3, 5)

(3, 3, 3)

(2, 3, 4)

(2, 3, 3)

(3, 31,1)

Table 3.1: Coxeter simplices in S3

Let us note that Theorem 14 immediately implies that a reflection group G acting

on a constant curvature space Xn is a Coxeter group. Given a Coxeter polytope P,

let us define its Coxeter diagram as follows:

(1) Each vertex of the diagram vi corresponds to a facet Fi, i = 1, . . . , cardΩn−1(P ).

(2) Two vertices vi and vj are connected by an edge whenever the corresponding

dihedral angle between the facets is of the form π/mij , mij ≥ 3. If mij ≥ 4,

then the edge is labelled mij .
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(3) Two vertices vi and vj are connected by an edge labelled ∞, if Fi and Fj have

parallel supporting hyperplanes in Xn = Hn, i.e. share a point at the ideal

boundary ∂Hn.

(4) Two vertices vi and vj are connected by a dashed edge, if Fi and Fj have a

common perpendicular in Xn = En or Hn. The edge may be labelled by the

length of the common perpendicular, or the length could be omitted.

As one may observe, the Coxeter diagram of a Coxeter polytope is the Coxeter dia-

gram that determines the corresponding reflection group with some additional indi-

cations having a geometric meaning.

3.1.2 Examples

3.1.2.1 Coxeter simplices in S3

In Table 3.1 we collect all Coxeter simplices in S3 [11]. The corresponding reflection

groups produce a finite tiling of S3 and thus are finite themselves. In general, any

reflection group acting on Xn = Sn is finite, since Sn is compact.

Group notation Polyhedron Coxeter diagram

(∞, 2,∞, 2,∞, 2) Cube

(∞, 2, 4, 4) Prism

(∞, 2, 3, 6) Prism

(∞, 2, (33)) Prism

(4, 2, 4) Simplex

(4, 31,1) Simplex

((34)) Simplex

Table 3.2: Coxeter polyhedra in E3
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3.1.2.2 Coxeter polyhedra in E3

In Table 3.2 we collect all possible Coxeter polyhedra of finite volume in E3 [11]. One

may observe that their combinatorial type is either a simplex, or a prism (a product

of a simplex and an interval), or a cube (a product of three intervals) as implied by

Theorem 2.

3.2 Coxeter groups acting on Xn

We are interested in Coxeter groups G = 〈S|R〉 acting discretely by reflections on

a constant sectional curvature space Xn = Sn, En or Hn, such that a fundamental

domain is a compact or finite-volume polytope P ⊂ Xn. If P is compact then the

action of G on Xn is called co-compact. If P has finite volume then the action of G

on Xn is of finite co-volume. Sometimes one does not distinguish between a Coxeter

group G and its action by reflection on Xn, so G itself is called respectively co-compact

or of finite co-volume.

By Theorem 14, classifying Coxeter groups acting discretely and co-compactly (or

finite co-volume actions) on Xn means classifying compact (or finite-volume) Coxeter

polytopes in Xn.

By Theorem 2, if Xn = Sn or En, such a classification means listing all Coxeter

simplices in Xn (see Section 2.2.2.1 and Section 2.2.2.2) by means of their Coxeter

diagrams. In case Xn = En one should take into consideration all possible products

of the lower-dimensional simplices, as well.

In case of the hyperbolic space Xn = Hn, the picture is rather different. The

following two theorems tell us that the dimension n of the space cannot be arbitrarily

large.

Theorem 15 (È. Vinberg, [58]) There is no co-compact Coxeter group acting on

Hn, if n > 30.

Theorem 16 (M.N. Prokhorov, [44]) There is no finite co-volume Coxeter group

acting on Hn, if n > 995.

The bounds in the above theorems are apparently far from being exact, since the

known examples of compact Coxeter polytopes in Hn go up to dimension 8 and those

of finite-volume Coxeter polytopes – up to dimension 21.

Let us consider the following class of Coxeter groups, that are of particular interest.

A Coxeter group G = 〈S|R〉, with generating set S = {s1, . . . , sn} and relations
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R = {(sisj)mij}ni,j=1 is called right-angled if mii = 1, mij = 2 or ∞ if i 6= j, for all

i, j = 1, . . . , n.

If such a group acts discretely on Xn by reflections, the corresponding fundamental

domains are Coxeter polytopes having only right dihedral angles.

In case Xn = Hn, they could be compact or of finite volume. There are more

precise dimension bounds for this class of polytopes given by the following theorems

(see also Section 3.2.1).

Theorem 17 (È. Vinberg, L. Potyagăılo, [43]) There is no co-compact right -

angled Coxeter group acting on Hn, if n > 4, and the bound is sharp. There is no

finite co-volume right-angled Coxeter group acting on Hn, if n > 14.

In case of a finite co-volume action, the bound has been recently improved.

Theorem 18 (G. Dufour, [15]) There is no finite co-volume right-angled Coxeter

group acting on Hn, if n > 12.

The most important technical feature in all Theorems 15-18 is the following in-

equality.

Theorem 19 (V. Nikulin, [41]) Let P ⊂ Hn be a convex polytope. Let fℓk(P) :=
1

fk(P)

∑
F∈Ωk(P) fℓ(F ) be the average number of ℓ-dimensional faces of P in each k-

dimensional one. Then for 1 ≤ ℓ < k ≤ ⌊n
2
⌋, the following inequality holds:

fℓk(P) <

(
n− ℓ

n− k

)(⌊n
2 ⌋
ℓ

)
+
(⌊n+1

2 ⌋
ℓ

)
(⌊n

2 ⌋
k

)
+
(⌊n+1

2 ⌋
k

) . (3.3)

The right-hand side of the inequality above depends on the combinatorial param-

eters k, ℓ and n only and is a decreasing function in n if k and ℓ are fixed, while

the left-hand side depends on the geometry of the polytopes of a given type. Thus,

estimating the quantity fℓk(P) from below, one gets an upper bound on n. Differ-

ent geometric and combinatorial techniques to obtain a lower bound for fℓk(P) are

described in [58, 43, 15].

There are many examples of co-compact Coxeter groups acting on Xn = Hn and

several combinatorial families of Coxeter polyhedra are classified in [20, 21]. There are

even infinitely many non-isometric Coxeter polyhedra in dimensions 2 ≤ n ≤ 19 [1].
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3.2.1 Example

Let P2 be a regular right-angled pentagon in H2, which exists by Theorem 7. Let P3

be a regular dodecahedron with regular pentagonal faces, which exists by Andreev’s

theorem (Theorem 9). Let P4 ⊂ H4 be a polytope with all angles right and combi-

natorially isomorphic to the 120-cell, that means, P4 is the regular four-dimensional

polytope having 120 dodecahedral facets, 720 pentagonal faces, 1200 edges and 600

vertices. Such a polytope can be obtained by means of the Wythoff construction [11]

applied to the hyperbolic simplex given by the Coxeter scheme .

Thus, there are examples of compact right-angled hyperbolic polytopes Pn in dimen-

sions n = 2, 3, 4.

Now let us note that the minimal number of sides of a right-angled polygon is

five, according to Theorem 7. As well, each vertex figure of a right-angled compact

polytope is a right-angled spherical simplex. Thus, all low-dimensional faces are also

right-angled. This implies that for a compact right-angled polytope P ⊂ Hn we have

f23(P) ≥ 5, since each two-dimensional face is a right-angled polygon and has at least

five edges. By plugging this estimate into equation (3.3), we obtain n ≤ 4. Thus, the

first assertion of Theorem 17 follows.

3.3 Growth of hyperbolic reflection groups

3.3.1 Coxeter groups acting on H2

By means of Steinberg’s formula 2.9 from Section 2.2.3 we may compute the growth

function of a given Coxeter group G = 〈S|R〉, as soon as we determine its finite

principal subgroups. If such a group acts on the hyperbolic plane H2 by reflections,

this task is fairly easy. The fundamental polytope P for the group G acting on

H2 is a hyperbolic k-gon with plane angles satisfying the conditions of Theorem 7.

If si and sj are reflections in two adjacent sides intersecting in H2, then the sub-

group 〈si, sj|s2i , s2j , (sisj)mij〉 is a dihedral group Dmij
of order 2mij. If si and sj

are parallel and meet in a vertex at ∂H2 or admit a common perpendicular, then

the group 〈si, sj〉 ∼= Z2 ∗ Z2 is infinite. There is a simple expression for the growth

function f(G,S)(t) of G if the polygon P is compact. Let v be a vertex of P with the

corresponding plane angle π
mij

. Let gv(t) be a function associated to v of the form

gv(t) = − t

[2]

[mij ]

[mij + 1]
. (3.4)
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Then, according to formulas (0.2)-(0.3) in [42], we have

1

f(G,S)(t−1)
= 1 +

∑

v∈Ω0(P)

gv(t). (3.5)

3.3.2 Coxeter groups acting on H3

Let us now consider the case of a Coxeter group G = 〈S|R〉 acting by reflections on

H3. According to Andreev’s theorem (Theorem 9) a fundamental polytope P for the

group G is either a Coxeter tetrahedron (a Lanner or a quasi-Lanner tetrahedron, as

classified in [29, Section 6.9] or [45, Sections 7.2 and 7.3]), a Coxeter triangular prism

(as classified in [32, 58]) or, if it has a different combinatorial type, a polyhedron with

the following properties:

(1) The polyhedron P satisfies conditions (m0)-(m5) of Andreev’s theorem.

(2) If v ∈ Ω0(clP) is a proper vertex of P, then v is necessarily trivalent and

its stabiliser Stab(v), generated by reflections in the adjacent faces, is a finite

triangle group from Table 3.3.

Vertex group Stab(v)
Coxeter exponents
m1 m2 m3

∆22n, n ≥ 2 1 1 n− 1
∆233 1 2 3
∆234 1 3 5
∆235 1 5 9

Table 3.3: Coxeter exponents

The following theorem holds if the fundamental polyhedron P for the group G is

compact.

Theorem 20 (W. Parry, [42]) Let G = 〈S|R〉 be a co-compact reflection group

acting on H3 with fundamental Coxeter polyhedron P. Then the growth function

f(S,R)(t) satisfies the identity

1

f(S,R)(t−1)
=

t− 1

t+ 1
+

∑

v∈Ω0(P)

gv(t), (3.6)

where

gv(t) =
t(1− t)

2

[m1, m2, m3]

[m1 + 1, m2 + 1, m3 + 1]
(3.7)
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is a function associated with each vertex v ∈ Ω0(P); the integers m1, m2, m3 are the

Coxeter exponents (as defined in [29, Section 3.16, p. 75]) of the finite Coxeter group

Stab(v) given in Table 3.3.

3.3.3 Coxeter groups acting on Hn, n ≥ 4

Let us introduce several notions concerning the form of the growth function for a

given Coxeter group G = 〈S|R〉. According to Steinberg’s formula (Theorem 13),

such a growth function has the form

f(G,S)(t) =
p(t)

q(t)
, (3.8)

with relatively prime polynomials p(t) and q(t) over the integers. We shall change

its form for the purpose of technical convenience. First of all, the right-hand side

of Steinberg’s formula (2.9) comprises some of the growth functions of finite Coxeter

groups given in Table 3.4. Namely, it has the form

∑

T∈F

(−1)cardT

f(〈T 〉,T )(t)
,

with F = {T ⊆ S| the subgroup generated by T is finite}.

Group Coxeter exponents Growth function

An 1, 2, . . . , n− 1, n [1, 2, . . . , n, n+ 1]

Bn 1, 3, . . . , 2n− 3, 2n− 1 [2, 4, . . . , 2n− 2, 2n]

Dn 1, 3, . . . , 2n− 5, 2n− 3, n− 1 [2, 4, . . . , 2n− 1][n]

G
(n)
2 1, n− 1 [2, n]

F4 1, 5, 7, 11 [2, 6, 8, 12]

E6 1, 4, 5, 7, 8, 11 [2, 5, 6, 8, 9, 12]

E7 1, 5, 7, 9, 11, 13, 17 [2, 6, 8, 10, 12, 14, 18]

E8 1, 7, 11, 13, 17, 19, 23, 29 [2, 8, 12, 14, 18, 20, 24, 30]

H3 1, 5, 9 [2, 6, 10]

H4 1, 11, 19, 29 [2, 12, 20, 30]

Table 3.4: Irreducible finite Coxeter groups and their growth functions [52]

Each fT (t) := f(〈T 〉,T )(t) is actually a polynomial, so we may define the virgin form

of the numerator for f(G,S)(t) as

Virg(S) := LCM {fT (t)|T ∈ F}. (3.9)
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From Steinberg’s formula (2.9), it follows that the polynomial p(t) in expression

(3.8) for the growth function divides Virg(S). Thus, we may write f(G,S)(t) in the

form

f(G,S)(t) =
Virg(S)

q(t) r(t)
, (3.10)

with a suitable polynomial r(t) ∈ Z[t] resulting from the ratio of the virgin form of

the numerator to p(t).

The polynomial Virg(S) has factors of the form [k], k ≥ 2, and of the form 1+xk,

k ≥ 2. Each factor of the form 1 + xk could be turned into [2k] by means of the

identity [k](1 + xk) = [2k], k ≥ 2. By applying this procedure to the factors of

Virg(S), we get the extended form of the numerator Ext(S). Again, we may write

f(G,S)(t) =
P (t)

Q(t)
, (3.11)

with P (t) in the extended form and Q(t) a polynomial over the integers.

If the function f(G,S)(t) has its numerator in the extended form, we say f(G,S)(t)

is in its complete form. Later on, in Chapter 4, we shall use both of these forms to

represent growth functions in a suitable way.

Now recall several general facts concerning growth functions of reflection groups

acting on Hn and their relation to the co-volume of the respective group.

Let P (t) be a polynomial and let P̃ (t) := tdeg PP (t−1) be the reciprocal polynomial

to P (t). If P̃ (t) equals P (t), then P (t) is a reciprocal polynomial. If P̃ (t) equals

−P (t), then P (t) is an anti-reciprocal one.

Let f(t) be a rational function, which is not a polynomial. Then we say f(t) to

be reciprocal if f(t−1) equals f(t) and anti-reciprocal if f(t−1) equals −f(t).

The following theorem concerns the growth function of a Coxeter group acting

co-compactly on Hn.

Theorem 21 (R. Charney, M. Davis, [9]) Let G be a Coxeter group generated

by a set S of reflections in the facets of a compact polytope in Hn. Then f(G,S)(t
−1) =

(−1)nf(G,S)(t).

According to the above theorem, the function given by formula (3.5) is reciprocal,

and that given by formula (3.6) is anti-reciprocal.

By representing the growth function of a co-compact Coxeter group G acting

discretely on Hn in its complete form,

f(G,S)(t) =
P (t)

Q(t)
=

P (t)
∑N

i=0 bkt
k
, (3.12)
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one has a recursion formula representing the coefficients bk, k = 0, . . . , N , in combina-

torial terms related to choosing finite principal subgroups of G. The precise formula

is due to R. Kellerhals and G. Perren ([34, Theorem 2.5]).

The following theorem relates together the growth function f(G,S)(t), the Euler

characteristic χ(G) and the co-volume of a given Coxeter group G generated by the

set S of reflections in the facets of a finite-volume polytope in Hn, if n ≥ 2 is even.

Theorem 22 (G.J. Heckman, T. Zehrt, [27, 62]) Let G be a Coxeter group gen-

erated by a set S of reflections in the facets of a finite-volume polytope in Hn. Then

1

f(G,S)(1)
= χ(G) = χorb(H

n/G) =

{
(−1)

n
2

2VolP
Vol Sn

, if n is even;
0, if n is odd.

(3.13)

where χ(G) is the Euler characteristic of G, χorb(H
n/G) is the orbifold Euler char-

acteristic of the quotient space Hn/G and VolP is the hyperbolic volume of P.
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Chapter 4

Main results

4.1 Deformation of hyperbolic Coxeter polyhedra,

growth rates and Pisot numbers

Growth series for Coxeter groups are series expansions of certain rational functions

according to Steinberg’s formula (2.9). By considering the growth function of a hyper-

bolic Coxeter group, being a discrete group generated by a finite set S of reflections in

hyperplanes of hyperbolic space Hn, J.W. Cannon [7, 8], P. Wagreich [60], W. Parry

[42] and W. Floyd [22] in the beginning of the 1980’s discovered a connection be-

tween the real poles of the corresponding growth function and algebraic integers such

as Salem numbers and Pisot numbers for n = 2, 3. In particular, there is a kind of

geometric convergence for the fundamental domains of cocompact planar hyperbolic

Coxeter groups giving a geometric interpretation of the convergence of Salem num-

bers to Pisot numbers, the behaviour discovered by R. Salem [48] much earlier in

1944. In the following, we provide a generalisation of the result by W. Floyd [22] to

the three-dimensional case (c.f. Theorem 23). These results are published in [36] and

are, to a large extent, reproduced here, up to a few exceptions.

4.1.1 Growth rates and algebraic integers

Let P ⊂ Hn, n ≥ 2, be a finite-volume hyperbolic Coxeter polyhedron and let

G = G(P) be a discrete subgroup of Isom(Hn) it gives rise to, in accordance with

Theorem 14, generated by the set S of reflections in the finitely many bounding

hyperplanes of P. We call G = G(P) a hyperbolic Coxeter group. In the following

we will study the growth function of G = (G, S) = G(P).

Observe that all finite subgroups of G are stabilisers of elements F ∈ Ωk(P) for

some k ≥ 0. The growth rate of the reflection group G(P) is τ > 1, if P is compact,
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by Milnor’s theorem (Theorem 12) or, if P has finite volume, by the result of de la

Harpe [26] and so the growth function fS(t) has a pole in (0, 1).

In the context of growth rates we shall look at particular classes of algebraic

integers.

A Salem number is a real algebraic integer α > 1 such that α−1 is an algebraic

conjugate of α and all the other algebraic conjugates lie on the unit circle of the

complex plane. Its minimal polynomial over Z is called a Salem polynomial.

A Pisot-Vijayaraghavan number, or a Pisot number for short, is a real algebraic

integer β > 1 such that all the algebraic conjugates of β are in the open unit disc of

the complex plane. The corresponding minimal polynomial over Z is called a Pisot

polynomial.

The following result is very useful in order to detect Pisot polynomials.

Lemma 1 (W. Floyd, [22]) Let P (t) be a monic polynomial with integer coeffi-

cients such that P (0) 6= 0, P (1) < 0, and P (t) is not reciprocal. Let P̃ (t) be the

reciprocal polynomial for P (t). Suppose that for every sufficiently large integer m,
tmP (t)−P̃ (t)

t−1
is a product of cyclotomic polynomials and a Salem polynomial. Then

P (t) is a product of cyclotomic polynomials and a Pisot polynomial.

The convergence of Salem numbers to Pisot numbers was first discovered and

analysed in [48]. A geometrical relation between these algebraic integers comes into

view as follows. Growth functions of planar hyperbolic Coxeter groups were calculated

explicitly in [22, Section 2]. The main result of [22] states that the growth rate τ of

a co-compact hyperbolic Coxeter group – being a Salem number by [42] – converges

from below to the growth rate of a finite co-volume hyperbolic Coxeter group under

a certain deformation process performed on the corresponding fundamental domains.

More precisely, one deforms the given compact Coxeter polygon by decreasing one

of its angles π/m. This process results in pushing one of its vertices toward the

ideal boundary ∂H2 in such a way that every polygon under this process provides a

co-compact hyperbolic Coxeter group.

Therefore, a sequence of Salem numbers αm given by the respective growth rates

τm arises. The limiting Coxeter polygon is of finite area having exactly one ideal

vertex, and the growth rate τ∞ of the corresponding Coxeter group equals the limit

of β = limm→∞ αm and is a Pisot number. We study analogous phenomena in the

case of spatial hyperbolic Coxeter groups.
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4.1.1.1 Example

Let Dn ⊂ H3 , n ∈ N , be a hyperbolic dodecahedron with all but one right dihedral

angles. The remaining angle along the thickened edge of Dn, as shown in Fig. 4.1,

equals π
n+2

, n ≥ 0. The initial polyhedron D0 is known as the Löbell polyhedron L5.

As n → ∞, the sequence of polyhedra tends to a right-angled hyperbolic polyhedron

D∞ with precisely one vertex at infinity. Let us compute the growth functions and

growth rates of G(Dn), n ≥ 0, and G(D∞).

Figure 4.1: The dodecahedron Dn ⊂ H3, n ≥ 0, with all but one right dihedral angles.
The specified angle equals π

n+2

By Theorem 20, the growth function of G(Dn), with respect to the generating set

S of reflections in the faces of Dn, equals

fn(t) =
(1 + t)3 (1 + t+ · · ·+ tn−1)

1− 8t+ 8tn+1 − tn+2
, (4.1)

and similarly

f∞(t) =
(1 + t)3

(1− t)(1− 8t)
. (4.2)

Observe that the function (4.1) is anti-reciprocal, but the function (4.2) is not.

The computation of the growth rates τn, n ≥ 0, for G(Dn) and of the growth rate

τ∞ for G(D∞) gives

τ0 ≈ 7.87298 < τ1 ≈ 7.98453 < · · · < τ∞ = 8.

Thus, the Salem numbers numbers τn, n ≥ 0, tend from below to τ∞, which is a Pisot

number.

Consider a finite-volume polytope P ⊂ Hn and a compact face F ∈ Ωn−2(P) with

dihedral angle αF . We always suppose that P is not degenerate (i.e. not contained in
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a hyperplane). Suppose that there is a sequence of polytopes P(k) ⊂ Hn having the

same combinatorial type and the same dihedral angles as P = P(1) apart from αF

whose counterpart αF (k) tends to 0 as k ր ∞. Suppose that the limiting polytope

P∞ exists and has the same number of facets as P. This means the facet F , which

is topologically a co-dimension two ball, is contracted to a point, which is a vertex at

infinity v∞ ∈ ∂Hn of P∞. We call this process contraction of the face F to an ideal

vertex.

Remark. In the case n = 2, an ideal vertex of a Coxeter polygon P∞ ⊂ H2 comes

from “contraction of a compact vertex” [22]. This means a vertex F ∈ Ω0(P) of

some hyperbolic Coxeter polygon P is pulled towards a point at infinity.

In the above deformation process, the existence of the polytopes P(k) in hyper-

bolic space is of fundamental importance. Let us consider the three-dimensional case.

Since the angles of hyperbolic finite-volume Coxeter polyhedra are non-obtuse, An-

dreev’s theorem (Theorem 9) may be used in order to conclude about their existence

and combinatorial structure.

4.1.2 Coxeter groups acting on hyperbolic three-space

4.1.2.1 Deformation of finite volume Coxeter polyhedra

Let P ⊂ H3 be a Coxeter polyhedron of finite volume with at least five faces. Sup-

pose that k1, k2, n, l1, l2 ≥ 2 are integers. An edge e ∈ Ω1(P) is a ridge of type

〈k1, k2, n, l1, l2〉 if e is compact and has trivalent vertices v, w such that the dihedral

angles at the incident edges are arranged counter-clockwise as follows: the dihedral

angles along the edges incident to v are π
k1
, π

k2
and π

n
, the dihedral angle along the

edges incident to w are π
l1
, π

l2
and π

n
. In addition, the faces sharing e are at least

quadrilaterals (see Fig. 4.2).

Figure 4.2: A ridge of type 〈k1, k2, n, l1, l2〉
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Note. All the figures Fig. 4.4-4.10 are drawn according to the following pattern: only

significant combinatorial elements are highlighted (certain vertices, edges and faces),

and the remaining ones are not specified and overall coloured grey. In each figure,

the polyhedron is represented by its projection onto one of its supporting planes, and

its dihedral angles of the form π/m are labelled with m.

Proposition 6 Let P ⊂ H3 be a Coxeter polyhedron of finite volume with |Ω2(P)| ≥
5. If P has a ridge e ∈ Ω1(P) of type 〈2, 2, n, 2, 2〉, n ≥ 2, then e can be contracted

to a four-valent ideal vertex.

Proof. Denote by P(m) a polyhedron having the same combinatorial type and the

same dihedral angles as P, except for the angle αm = π
m

along e. We show that

P(m) exists for all m ≥ n. Both vertices v, w of e ∈ Ω1(P(m)) are points in H3,

since the sum of dihedral angles at each of them equals π + π
m

for m ≥ n ≥ 2. Thus,

condition m1 of Andreev’s theorem holds. Condition m0 is obviously satisfied, as well

as conditions m2-m4, since αm ≤ αn.

During the same deformation, the planes intersecting at e become tangent to a

point v∞ ∈ ∂H3 at infinity. The point v∞ is a four-valent ideal vertex with right

angles along the incident edges. Denote the resulting polyhedron by P∞.

Since the contraction process deforms only one edge to a point, no new 3- or 4-

circuits do appear in P∞. Hence, for the existence of P∞ ⊂ H3 only condition m5

of Andreev’s theorem remains to be verified. Suppose that condition m5 is violated

and distinguish the following two cases for the polyhedron P leading to P∞ under

contraction of the edge e.

1. P is a triangular prism. There are two choices of the edge e ∈ Ω1(P), that

undergoes contraction to v ∈ Ω∞(P∞), as shown in Fig. 4.3 on the left and on the

right. Since P∞ is a Coxeter polyhedron, the violation of m5 implies that the dihedral

angles along the edges e1 and e2 have to equal π/2. But then, either condition m2 or

m4 is violated, depending on the position of the edge e.

2. Otherwise, the two possible positions of the edge e are in Fig. 4.4 and Fig. 4.5. The

dihedral angles along the top and bottom edges are right, since m5 is violated after

contraction.

2.1 Consider the polyhedron P in Fig. 4.4 on the right. Since P is not a triangular

prism, we may suppose (without loss of generality) that the faces I, II, III, IV in

the picture are separated by at least one more face lying in the left grey region. But

then, the faces I, II, III and IV of P form a 4-circuit violating condition m3 of

Andreev’s theorem.
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Figure 4.3: Two possible positions of the contracted edge e. The forbidden 3-circuit
is dotted and forbidden prism bases are encircled by dotted lines

Figure 4.4: The first possible position of the contracted edge e. The forbidden 4-
circuit is dotted. Face IV is at the back of the picture

2.2 Consider the polyhedron P on the right in Fig. 4.5. As before, we may suppose

that the faces I, II, III form a 3-circuit. This circuit violates condition m2 of

Andreev’s theorem for P.

Thus, the non-existence of P∞ implies the non-existence of P, and one arrives

at a contradiction. Q.E.D.

Note. Proposition 6 describes the unique way of ridge contraction. Indeed, there

is only one infinite family of distinct spherical Coxeter groups representing Stab(v),

where v is a vertex of the ridge e, and this one is ∆2,2,n, n ≥ 2. One may compare the

above limiting process for hyperbolic Coxeter polyhedra with the limiting process for

orientable hyperbolic 3-orbifolds from [17].
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Figure 4.5: The second possible position of the contracted edge e. The forbidden
3-circuit is dotted. Face III is at the back of the picture

Figure 4.6: Two possible ridges resulting in a four-valent vertex under contraction

Proposition 7 Let P ⊂ H3 be a Coxeter polyhedron of finite volume with at least

one four-valent ideal vertex v∞. Then there exists a sequence of finite-volume Coxeter

polyhedra P(n) ⊂ H3 having the same combinatorial type and dihedral angles as P

except for a ridge of type 〈2, 2, n, 2, 2〉, with n sufficiently large, giving rise to the

vertex v∞ under contraction.

Proof. Consider the four-valent ideal vertex v∞ of P and replace v∞ by an edge e

in one of the two ways as shown in Fig. 4.6 while keeping the remaining combinatorial

elements of P unchanged. Let the dihedral angle along e be equal to π
n
, with n ∈ N

sufficiently large. We denote this new polyhedron by P(n). The geometrical meaning

of the “edge contraction” - “edge insertion” process is illustrated in Fig. 4.7. We have

to verify the existence of P(n) in H3.

Conditions m0 and m1 of Andreev’s theorem are obviously satisfied for P(n).

Condition m5 is also satisfied since n can be taken large enough.

Suppose that one of the remaining conditions of Andreev’s theorem is violated.

The inserted edge e of P(n) might appear in a new 3- or 4-circuit not present in P
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Figure 4.7: Pushing together and pulling apart the supporting planes of polyhedron’s
faces results in an “edge contraction”-“edge insertion” process

so that several cases are possible.

1. P(n) is a triangular prism. The polyhedron P(n) violating condition m2 of

Andreev’s theorem is illustrated in Fig. 4.3 on the right. Since P(n) is Coxeter, the

3-circuit depicted by the dashed line comprises the three edges in the middle, with

dihedral angles π
n
, π

2
and π

2
along them. Contracting the edge e back to v∞, we observe

that condition m5 for the polyhedron P does not hold.

Since there are no 4-circuits, the only condition of Andreev’s theorem for P(n),

which might be yet violated, is m4. This case is depicted in Fig. 4.3 on the left. A

similar argument as above leads to a contradiction.

Figure 4.8: Forbidden 3-circuit: the first case

2. Otherwise, we consider the remaining unwanted cases, when either condition m2 or

condition m3 is violated.

2.1 Case of a 3-circuit. In Fig. 4.8 and Fig. 4.9, we illustrate two ways to obtain a

3-circuit in P(n) for all n sufficiently large, which violates condition m2 of Andreev’s

theorem. The faces of the 3-circuit are indicated by I, II and III. In Fig. 4.8, the

edge e is “parallel” to the circuit, meaning that e belongs to precisely one of the faces

I, II or III. In Fig. 4.9, the edge e is “transversal” to the circuit, meaning that e is

the intersection of precisely two of the faces I, II or III. Contracting e back to v∞
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leads to an obstruction for the given polyhedron P to exist, as illustrated in Fig. 4.8

and Fig. 4.9 on the right. The polyhedron P in Fig. 4.8 has two non-geometric faces,

namely I and III, having in common precisely one edge and the vertex v∞ disjoint

from it. The polyhedron P in Fig. 4.9 violates condition m5 of Andreev’s theorem

because of the triple, that consists of the faces I, II and III (in Fig. 4.9 on the right,

the face III is at the back of the picture).

Figure 4.9: Forbidden 3-circuit: the second case. The forbidden circuit going through
the ideal vertex is dotted. Face III is at the back of the picture

2.2 Case of a 4-circuit. First, observe that the sum of dihedral angles along the edges

involved in a 4-circuit transversal to the edge e does not exceed 3π
2
+ π

n
, and therefore

is less than 2π for all n > 2. This means condition m3 of Andreev’s theorem is always

satisfied for n sufficiently large.

Figure 4.10: Forbidden 4-circuit. The forbidden circuit going through the ideal vertex
is dotted. Face II is at the back of the picture

Finally, a 4-circuit parallel to the edge e in P(n) is illustrated in Fig. 4.10. The

faces in this 4-circuit are indicated by I, II, III, IV . Suppose that the 4-circuit
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violates condition m3. Contracting e back to v∞ (see Fig. 4.10 on the right) leads to

a violation of m5 for P because of the circuit, that consists of the faces I, II and

III (in Fig. 4.10 on the right, the face II is at the back of the picture). Q.E.D.

Note. The statements of Proposition 6 and Proposition 7 are essentially given in

[59, p. 238] without proof. In the higher-dimensional case, no codimension two face

contraction is possible. Indeed, the contraction process produces a finite-volume

polytope P∞ ⊂ Hn, n ≥ 4, whose volume is a limit point for the set of volumes of

P(k) ⊂ Hn as k → ∞. But, by the theorem of H.-C. Wang [59, Theorem 3.1], the

set of volumes of Coxeter polytopes in Hn is discrete if n ≥ 4.

4.1.3 Limiting growth rates of Coxeter groups acting on H3

The result of this section is inspired by W. Floyd’s work [22] on planar hyperbolic

Coxeter groups. We consider a sequence of compact polyhedra P(n) ⊂ H3 with a

ridge of type 〈2, 2, n, 2, 2〉 converging, as n → ∞, to a polyhedron P∞ with a single

four-valent ideal vertex. According to [42], all the growth rates of the corresponding

reflection groups G(P(n)) are Salem numbers. Our aim is to show that the limiting

growth rate is a Pisot number.

The following definition will help us to make the technical proofs more trans-

parent when studying the analytic behaviour of growth functions. For a given Cox-

eter group G with generating set S and growth function f(t) := f(G,S)(t), we set

F (t) = F(G,S)(t) :=
1

f(t−1)
.

Proposition 8 Let P∞ ⊂ H3 be a finite-volume Coxeter polyhedron with at least one

four-valent ideal vertex obtained from a sequence of finite-volume Coxeter polyhedra

P(n) by contraction of a ridge of type 〈2, 2, n, 2, 2〉 as n → ∞. Denote by fn(t) and

f∞(t) the growth functions of G(P(n)) and G(P∞), respectively. Then

1

fn(t)
− 1

f∞(t)
=

tn

1− tn

(
1− t

1 + t

)2

.

Moreover, the growth rate τn of G(P(n)) converges to the growth rate τ∞ of G(P∞)

from below.

Proof. We calculate the difference of Fn(t) and F∞(t) by means of equation (2.9).

In fact, this difference is caused only by the stabilisers of the ridge e ∈ Ω1(P(n)) and

of its vertices vi ∈ Ω0(P(n)), i = 1, 2. Let [k] := 1 + · · ·+ tk−1. Here Stab(e) ≃ Dn,

the dihedral group of order 2n, and Stab(vi) ≃ ∆2,2,n. The corresponding growth
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functions are given by fe(t) = [2][n] and fvi(t) = [2]2[n], i = 1, 2 (see Tables 3.3 and

3.4). Thus

Fn(t)− F∞(t) =
1

fe(t)
− 1

fv1(t)
− 1

fv2(t)
=

1

tn − 1

(
t− 1

t + 1

)2

. (4.3)

Next, perform the substitution t → t−1 on (4.3) and use the relation between Fn(t),

F∞(t) and their counterparts fn(t) and f∞(t) according to the definition above. As a

result, we obtain the desired formula, which yields 1
fn(t)

− 1
f∞(t)

> 0 for t ∈ (0, 1).

Consider the growth rates τn and τ∞ of G(P(n)) and G(P∞). The least positive

pole of fn(t) is the least positive zero of 1
fn(t)

, and fn(0) = 1. Similar statements hold

for f∞(t). Hence, by the inequality above and by the definition of growth rate, we

obtain τ−1
n > τ−1

∞ , or τn < τ∞, as claimed.

Finally, the convergence τn → τ∞ as n → ∞ follows from the convergence 1
fn(t)

−
1

f∞(t)
→ 0 on (0, 1), due to the first part of the proof. Q.E.D.

Note. Given the assumptions of Proposition 8, the volume of P(n) is less than that

of P∞ by Schläfli’s volume differential formula [40]. Thus, growth rate and volume

are both increasing under contraction of a ridge.

Consider two Coxeter polyhedra P1 and P2 in H3 having the same combinatorial

type and dihedral angles except for the respective ridges H1 = 〈k1, k2, n1, l1, l2〉 and

H2 = 〈k1, k2, n2, l1, l2〉. We say that H1 ≺ H2 if and only if n1 < n2.

The following proposition extends Proposition 8 to a more general context.

Proposition 9 Let P1 and P2 be two compact hyperbolic Coxeter polyhedra having

the same combinatorial type and dihedral angles except for an edge of ridge type H1

and H2, respectively. If H1 ≺ H2, then the growth rate of G(P1) is less than the

growth rate of G(P2).

Proof. Denote by f1(t) and f2(t) the growth functions of G(P1) and G(P2),

respectively. As before, we will show that 1
f1(t)

− 1
f2(t)

≥ 0 on (0, 1). Without loss

of generality, we may suppose the ridges Hi to be of type 〈k1, k2, ni, l1, l2〉, i = 1, 2,

up to a permutation of the sets {k1, k2}, {l1, l2} and {{k1, k2}, {l1, l2}}. By means of

Table 3.3 showing all the finite triangle reflection groups, all admissible ridge pairs

can be determined. We collected them in Tables 1–2 in Appendix 4.4. The rest of the

proof, starting with the computation of 1
f1(t)

− 1
f2(t)

in accordance with Theorem 20,

equations (3.6) and (3.7), follows by analogy to Proposition 8. Q.E.D.

From now on P(n) always denotes a sequence of compact polyhedra in H3 having

a ridge of type 〈2, 2, n, 2, 2〉, with n sufficiently large, that converges to a polyhedron
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P∞ with a single four-valent ideal vertex. The corresponding growth functions for

the groups G(Pn) and G(P∞) are denoted by fn(t) and f∞(t). As above, we will

work with the functions Fn(t) and F∞(t). By Theorem 21, both fn(t) and Fn(t) are

anti-reciprocal rational functions.

The next result describes the virgin form (see Section 3.3.3, equations (3.9)-(3.10))

of the denominator of F∞(t).

Proposition 10 Let P∞ ⊂ H3 be a polyhedron of finite volume with a single four-

valent ideal vertex. Then the function F∞(t) related to the Coxeter group G(P∞) is

given by

F∞(t) =
t(t− 1)P∞(t)

Q∞(t)
,

where Q∞(t) is a product of cyclotomic polynomials, degQ∞(t)− deg P∞(t) = 2, and

P∞(0) 6= 0, P∞(1) < 0.

Proof. The denominator of F∞(t) in its virgin form is a product of cyclotomic

polynomials Φk(t) with k ≥ 2. By means of the equality F∞(1) = χ(G(P∞)) = 0

(Theorem 22), the numerator of F∞(t) is divisible by t−1. Moreover, by [10, Corollary

5.4.5], the growth function f∞(t) for G(P∞) has a simple pole at infinity. This

means F∞(t) has a simple zero at t = 0, so that the numerator of F∞(t) has the form

t(t−1)P∞(t), where P∞(t) is a polynomial such that P∞(0) 6= 0. The desired equality

degQ∞(t)− degP∞(t) = 2 follows from f∞(0) = 1.

The main part of the proof is to show that P∞(1) < 0. By the above, dF∞

dt
(1) =

P∞(1)
Q∞(1)

whose denominator is a product of cyclotomic polynomials Φk(t) with k ≥ 2

evaluated at t = 1. Hence Q∞(1) > 0, and it suffices to prove that dF∞

dt
(1) < 0.

Consider a sequence of combinatorially isomorphic compact polyhedra P(n) in

H3 having a ridge of type 〈2, 2, n, 2, 2〉 and converging to P∞. By Proposition 8,

dFn

dt
(1)− dF∞

dt
(1) =

1

4n
.

In order to show dF∞

dt
(1) < 0, it is enough to prove that dFn

dt
(1) < 0 for n large enough.

To this end, we consider the following identity which is a consequence of Theorem 20,

equations (3.6)-(3.7):
dFn

dt
(1) =

1

2
+

∑

v∈Ω0(P(n))

dgv
dt

(1) .

In Table 3, we list all possible values dgv
dt
(1) depending on the subgroup Stab(v)

of G(P(n)). It follows that dgv
dt
(1) ≤ − 1

16
for every v ∈ Ω0(P(n)). Provided

|Ω0(P(n))| ≥ 10, we obtain the estimate dFn

dt
(1) ≤ −1

8
.
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Figure 4.11: Simple polyhedra with eight vertices

Consider the remaining cases 5 ≤ |Ω0(P(n))| < 10. By the simplicity of the

polyhedron P(n), we have that 2|Ω1(P(n))| = 3|Ω0(P(n))|. Therefore |Ω0(P(n))|
is an even number. Hence, the only cases consist of |Ω0(P(n))| = 8, meaning that

P(n) is either a combinatorial cube or a doubly truncated tetrahedron (see Fig. 4.11),

and |Ω0(P(n))| = 6, meaning that P(n) is a combinatorial triangular prism. In

the former case, not all the vertices of P(n) have their stabilizers isomorphic to

∆2,2,2, since P(n) is a non-Euclidean cube or a non-Euclidean tetrahedron with two

ultra-ideal vertices. Then Table 3 (see Appendix 4.4) provides the desired inequality
dFn

dt
(1) < 0. The latter case requires a more detailed consideration. We use the list of

hyperbolic Coxeter triangular prisms given by [32, 58]. These prisms have one base

orthogonal to all adjacent faces. More general Coxeter prisms arise by gluing the

given ones along their orthogonal bases, if the respective planar angles coincide.

Among all triangular Coxeter prisms, we depict in Fig. 34-36 (see Appendix 4.4)

only ones having a ridge of type 〈2, 2, n, 2, 2〉. A routine computation of their growth

functions allows to conclude dFn

dt
(1) < 0. Q.E.D.

Proposition 11 Let P(n) ⊂ H3 be a compact Coxeter polyhedron with a ridge of

type 〈2, 2, n, 2, 2〉 for n sufficiently large. Then the function Fn(t) related to the group

G(P(n)) is given by

Fn(t) =
(t− 1)P (t)

(tn − 1)Q∞(t)
,

where Q∞(t) is the denominator polynomial associated with the deformed polyhedron

P∞ with a unique four-valent ideal vertex from Proposition 10, and P (t) is a product

of cyclotomic polynomials and a Salem polynomial. In addition, P (1) = 0.

Proof. Denote by Finn := {fω(t) |ω ∈ Ω∗(P(n)) such that G(ω) is finite}, and
by Fin∞ := {fω(t) |ω ∈ Ω∗(P∞) such that G(ω) is finite} where ∗ ∈ {0, 1, 2}. Let

Fn(t) =
P (t)
Q(t)

be given in its virgin form, that means Q(t) is the least common multiple
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of all polynomials in Finn. For the corresponding function F∞(t), Theorem 13 implies

that Q∞(t) is the least common multiple of all polynomials in Fin∞.

Denote by e the edge of P(n) undergoing contraction, and let v1, v2 be its vertices.

Then the growth function of Stab(e) ∼= Dn is fe(t) = [2][n], and the growth function

of Stab(vi) ∼= ∆2,2,n is fvi(t) = [2]2[n], i = 1, 2. The sets Finn and Fin∞ differ only by

the elements fe(t), fv1(t), fv2(t). Furthermore, both sets contain the polynomial [2]2,

since the polyhedra P(n) and P∞ have pairs of edges with right angles along them

and stabilizer D2. The comparison of the least common multiples for polynomials in

Finn and in Fin∞ shows that Q(t) = Q∞(t) · [n], as claimed.

The assertion P (1) = 0 follows from the fact that Fn(1) = 0 while limt→1
tn−1
t−1

= n.

Finally, the polynomial P (t) is a product of cyclotomic polynomials and a Salem

polynomial by [42]. Q.E.D.

Theorem 23 Let P(n) ⊂ H3 be a compact Coxeter polyhedron with a ridge e of

type 〈2, 2, n, 2, 2〉 for sufficiently large n. Denote by P∞ the polyhedron arising by

contraction of the ridge e. Let τn and τ∞ be the growth rates of G(P(n)) and G(P∞),

respectively. Then τn < τ∞ for all n, and τn → τ∞ as n → ∞. Furthermore, τ∞ is a

Pisot number.

Proof. The first assertion follows easily from Proposition 8. We prove that τ∞ is a

Pisot number by using some number-theoretical properties of growth rates. Consider

the growth functions fn(t) and f∞(t) of G(P(n)) and G(P∞), respectively, together

with associated functions Fn(t) =
1

fn(t−1)
and F∞(t) = 1

f∞(t−1)
. Then the growth rates

τn and τ∞ are the least positive zeros in the interval (1,+∞) of the functions Fn(t)

and F∞(t).

By using Propositions 8, 10 and 11 in order to represent the numerator and

denominator polynomials of Fn(t) and F∞(t), one easily derives the equation

(t− 1)P (t)

(tn − 1)Q∞(t)
− t(t− 1)P∞(t)

Q∞(t)
=

1

tn − 1

(
t− 1

t+ 1

)2

. (4.4)

For the polynomial P (t), we prove that

P (t) = tn+1P∞(t)− P̃∞(t) (4.5)

is a solution to (4.4), where P̃∞(t) denotes the reciprocal polynomial of P∞(t), that

is, P̃∞(t) = tdeg P∞(t)P∞(t−1). Since Q∞(t) is a product of cyclotomic polynomials

Φk(t) with k ≥ 2, one has Q∞(t) = Q̃∞(t) = tdegQ∞(t)Q∞(t−1).
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Now, replace P (t) in (4.4) by its expression from (4.5) and simplify each term.

This yields

t(t− 1)P∞(t)

Q∞(t)
− (t− 1)P̃∞(t)

Q∞(t)
=

(
t− 1

t+ 1

)2

.

By replacing the reciprocal polynomials and by using the fact of Proposition 10,

saying that degQ∞(t)− degP∞(t) = 2, we obtain

t(t− 1)P∞(t)

Q∞(t)
+

t−1(t−1 − 1)P∞(t−1)

Q∞(t−1)
=

(
t− 1

t+ 1

)2

. (4.6)

The identity for F∞(t) as described by Proposition 10 transforms the equation (4.6)

into F∞(t) + F∞(t−1) =
(
t−1
t+1

)2
. Then Proposition 8 provides the equivalent identity

Fn(t) + Fn(t
−1) = 0, which is true by the anti-reciprocity of Fn(t) (see Theorem 21).

As a consequence, the relation P (t) = tn+1P∞(t)− P̃∞(t) holds for n large enough.

Since we already know that P (t) is a product of cyclotomic polynomials and a Salem

polynomial, Lemma 1 implies that P∞(t) is a product of cyclotomic polynomials and

a Pisot polynomial. Hence, the growth rate τ∞ is a Pisot number. Q.E.D.

Figure 4.12: Löbell polyhedron Ln, n ≥ 5 with one of its perfect matchings marked
with thickened edges. Left- and right-hand side edges are identified. All the dihedral
angles are right

4.1.4 Examples

4.1.4.1 Deforming Löbell polyhedra

The family of Löbell polyhedra Ln, n ≥ 5 is described in Section 1.2.7.1. Contracting

an edge of L5, a combinatorial dodecahedron, one obtains the smallest 3-dimensional

right-angled polyhedron with a single ideal four-valent vertex. Contracting all the

vertical edges of Ln as shown in Fig. 4.12 one obtains an ideal right-angled anti-prism
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An, n ≥ 5. Note, that contracted edges form a perfect matching of Ln considered

as a three-valent graph. The analogous ideal right-angled polyhedra A4 and A3 also

exist. Observe that A3 is a combinatorial octahedron. The growth rate of An, n ≥ 3,

belongs to the (2n)-th derived set of Salem numbers by Propositions 7 and 8.

4.1.4.2 Deforming a Lambert cube

Contracting essential edges of a Lambert cube, one obtains a right-angled polyhedron

R. This polyhedron could also be obtained from the Lanner tetrahedron (3, 4, 4) by

means of construction described in [43]. The polyhedron R is known to have the

minimal number of faces among all the right-angled three-dimensional hyperbolic

polyhedra of finite volume [19].

Figure 4.13: The dodecahedron D with one ideal three-valent vertex. All the unspec-
ified dihedral angles are right

4.1.4.3 Finite volume Coxeter polyhedra with an ideal three-valent vertex

Consider the dodecahedron D in Fig. 4.13. It has all but three right dihedral angles.

The remaining ones, along the edges incident to a single ideal three-valent vertex,

equal π
3
. The growth function of the corresponding Coxeter group is given by

f(t) =
(1 + t)3(1 + t+ t2)

9t4 − 2t2 − 8t + 1
=:

Q(t)

(t− 1)P (t)
,

where the polynomial P (t) has integer coefficients. Its reciprocal P̃ (t) is the minimal

polynomial of the corresponding growth rate τ . More precisely, P̃ (t) = 9+9t+7t2−t3

with roots τ ≈ 8.2269405 and ς1 = ς2 ≈ −0.6134703 + 0.8471252i. Since ς1ς2 ≈
1.0939668 > 1, the growth rate τ of the group G(D) is neither a Salem number, nor

a Pisot number.
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4.2 A note about Wang’s theorem

Let Γ be a discrete group acting on Hn by isometries. Then the quotient space

O := Hn�Γ is a hyperbolic n-dimensional orbifold. The covolume of the group Γ is

the volume of O or, equivalently, the volume of a fundamental domain for the action

of Γ.

Let us recall the following theorem by H.-C. Wang about the covolumes of discrete

groups acting on Hn.

Theorem 24 (Theorem 3.1, [59]) The set Voln of volumes of all hyperbolic n-

dimensional orbifolds is discrete if n ≥ 4.

Let P(k), k = 0, 1, 2, . . . , be an infinite sequence of finite-volume Coxeter poly-

topes in Hn. Consider each P(k) as a polytope in the Beltrami-Klein model Bn of

the hyperbolic space and denote this particular realisation by P̃(k). Note that one

can consider P̃(k) as a Euclidean polytope embedded in a unit ball Bn. We say that

the sequence P(k) converges to a polytope P∞ ⊂ Hn as k → ∞ if and only if the

sequence P̃(k) converges to P̃∞ as a sequence of convex bodies in En, see [2, p. 256].

Consider Wang’s theorem as stated in Theorem 24. Let P(k), k = 1, 2, . . . be

a sequence of Coxeter polytopes undergoing a co-dimension two face contraction,

and thus tending to a certain finite-volume polytope P∞. Let Γk := G(P(k)) be

the reflection groups associated with the polytopes P(k). By the Schläfli formula,

all P(k) have different volumes [40] and VolP(k) increases with k ր ∞. This

gives rise to the sequence Ok := Hn�Γk of hyperbolic orbifolds such that the set

V := {VolOk|k = 1, 2, . . . } has a limiting point, which is VolP∞. Clearly, V ⊂ Voln.

This contradicts Wang’s theorem (Theorem 24). Thus, no face contraction is possible

in dimension n ≥ 4.

In the following, we shall prove an analogue to Wang’s theorem (Theorem 24)

in the particular case of Coxeter orbifolds, that means quotients of Hn by a discrete

reflection subgroup.

Theorem 25 There exists no infinite sequence P(k) ⊂ Hn, k = 0, 1, 2, . . . , of pair-

wise non-isometric Coxeter polytopes of finite volume having the same combinatorial

type, which tends to a non-degenerate non-compact finite-volume Coxeter polytope

P∞ ⊂ Hn, if n ≥ 4.

Proof. First, we describe the four-dimensional picture. Let P(k) ⊂ H4 be an

infinite sequence of Coxeter polytopes converging to a non-degenerate polytope P∞
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as k → ∞. Since the sequence P(k) consists of non-isometric polytopes, there exist

several faces F1, . . . , Fm ∈ Ω2(P(k)), such that the corresponding dihedral angles

α(F1) = π/n1, . . . , α(Fm) = π/nm tend to zero. This means that each face Fi,

i = 1, . . . , m, will be contracted to a point vi ∈ ∂H4. Indeed, for each Fi there

exist two facets Pi, P
′
i ∈ Ω3(P(k)) intersecting at Fi with dihedral angle α(Fi).

While α(Fi) ց 0 the supporting hyperplanes of Pi and P ′
i become tangent at a point

vi ∈ ∂H4, since P∞ is of finite volume.

Figure 4.14: Vertex figure for a vertex of a compact face subject to contraction

Consider F – one of the faces above – say F := F1. We claim that F is compact

and each vertex v ∈ Ω0(F ) has a tetrahedral vertex figure L, as shown in Fig. 4.14.

Suppose on the contrary, that there exists an ideal vertex v∞ ∈ Ω0(P(k)) of F .

Consider the vertex figure L of v∞. Then L ⊂ E3 is a Euclidean Coxeter polyhedron

with one of its dihedral angles decreasing down to zero. But this is impossible due to

the finiteness of the number of such polyhedra, see [29, Chapter 2.5]. Hence L is a

spherical Coxeter tetrahedron, and one of its dihedral angles satisfies α(F ) ց 0. This

implies G(L) ∼= Dp × Dq, for certain p, q ≥ 2, by [29, Chapter 2.4]. We denote by

α := α(F ) = π/p the dihedral angle corresponding to the face F . Let F ′ ∈ Ω2(P(k))

be the face, such that v = F ∩ F ′ ∈ Ω0(F ). Denote by β := α(F ′) = π/q the

corresponding dihedral angle of L at F ′. The remaining dihedral angles of L are

right. The edge lengths of L are ℓα = β, ℓβ = α and π/2 for the remaining edges by

means of spherical geometry formulas [59, Chapter 4.2]. We have α → 0 and ℓα → 0,

since F is contracted to a point. Thus β → 0 and ℓβ → 0, that means the face F ′

has to be contracted together with F . Moreover, if a face F ′ ∈ Ω2(P(k)) shares not

only a vertex with F , but an edge e ∈ Ω1(P(k)), then F ′ can not be contracted.
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Supposing the contrary, we consider the vertex figure L of a vertex on e. Then L is a

spherical Coxeter tetrahedron with more than two arbitrarily small dihedral angles.

We arrive at a contradiction with the classification of spherical Coxeter polytopes,

see [29, Chapter 2.4].

Let F⋆ be the set of all two-dimensional faces that undergo contraction, together

with their lower-dimensional subfaces, that is, adjacent edges and vertices. As de-

scribed above, every two faces in F⋆ share at most one vertex. Let G be a graph

having a vertex for each face in F⋆ and an edge connecting two vertices if the cor-

responding faces intersect each other. Each vertex of G has valency greater than or

equal to three, since every two-dimensional face of P(k) is at least triangular and

each vertex v shared by two faces in F⋆ has its vertex figure L as in Fig. 4.14. Hence,

G can not be a tree, since G is finite. Let T be a maximal sub-tree of G. Then

G \ T 6= ∅. Consider the fundamental group π1(G). By [38, Theorem 6.2], this is a

free group, its rank is the number of edges in G \ T , and, moreover,

χ(G) = 1− rank π1(G) ≤ 0, (4.7)

since G \ T 6= ∅ implies rank π1(G) ≥ 1.

Let f⋆i , i = 0, 1, 2, be the number of vertices, edges and two-dimensional faces in

F⋆. For the Euler characteristic of F⋆, we have χ(F⋆) =
∑2

i=0(−1)if⋆i . Since the

graph G is homotopy equivalent to F⋆, χ(G) = χ(F⋆)∗. Let f∞0 ≥ 1 be the number of

new ideal vertices that appear in P∞. We have |Ω0(P∞)| = |Ω0(P(k))|−f⋆0+f∞0 and

|Ωi(P∞)| = |Ωi(P(k))| − f⋆i , i = 1, 2. By definition of face contraction, |Ω3(P∞)| =
|Ω3(P(k))|. Then

χ(P∞) =
3∑

i=0

(−1)i|Ωi(P∞)| =
3∑

i=0

(−1)i|Ωi(P(k))| −
2∑

i=0

(−1)if⋆i + f∞0 =

= χ(P(k))− χ(G) + f∞0 .

Since P∞ is non-degenerate, χ(P∞) = χ(P(k)). Finally, we obtain

χ(G) = f∞0 ≥ 1. (4.8)

But this new inequality (4.8) contradicts (4.7). Hence there is no sequence of Coxeter

polytopes P(k) ⊂ H4 having all the same combinatorial type which converges to a

non-degenerate polytope P∞.

To generalise this theorem to the case of higher dimensions n ≥ 5, we consider an

(n−2)-dimensional face F ∈ Ωn−2(P(k)), a vertex v ∈ Ω0(F ) and its vertex figure L.

∗ If the graph G is not connected, we set χ(G) =
∑m

i=1
χ(Gk), when G =

⊔m

i=1
Gi.
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By an argument similar to that of the four-dimensional case, L is a spherical Coxeter

n-simplex such that G(L) ∼= Dn1×· · ·×Dnk
if n is even, or G(L) ∼= Dn1×· · ·×Dnk

×A1

if n is odd, with k = ⌊n/2⌋, ni ≥ 2 integers. Then we consider two faces F , F ′ ∈
Ωn−2(P(k)), with F subject to contraction, sharing the vertex v and intersecting

each other at a codimension four face only. This codimension four face gives rise to

a spherical Coxeter tetrahedron as in Fig. 4.14, and the proof proceeds by analogy.

Q.E.D.

4.3 The optimality of the hyperbolic 24-cell

In this section, we consider the 24-cell C , that is a four-dimensional regular ideal

hyperbolic polytope with Schläfli symbol {3, 4, 3} (see [11, Chapter 13.5]) and with

all dihedral angles right. The polytope C has 24 octahedral facets, 96 triangular faces,

96 edges and 24 cubical vertex figures. It could be obtained by means of the Wythoff

construction [11, Section 11.6] performed with the simplex .

We show that the 24-cell has minimal volume and minimal facet number among all

ideal right-angled polytopes in H4. In the sequel, we reproduce mainly the content of

the work [37].

4.3.1 Hyperbolic right-angled polytopes

Let P be a polytope in the hyperbolic n-dimensional space Hn. Let fk denote the

number cardΩk(P) of k-dimensional faces and let f(P) = (f0, · · · , fn−1) be the face

vector of the polytope P.

Call P ⊂ Hn a regular hyperbolic polytope if it is combinatorially isomorphic to

a regular n-dimensional Euclidean polytope and all the dihedral angles of P in its co-

dimension two faces are equal. Recall that there are infinitely many regular polygons.

Dimension three provides five Platonic solids. There exist six regular four-dimensional

polytopes. Starting from dimension five, there are only three combinatorial types of

convex regular polytopes (see [11, Table I]).

A polytope is right-angled if all the dihedral angles equal π/2. Notice that the only

regular four-dimensional polytope, realisable as an ideal right-angled hyperbolic one,

is the 24-cell. Considered as a regular polytope, it has the Schläfli symbol {3, 4, 3},
octahedral facets {3, 4} and cubical vertex figures {4, 3}. We denote it by C and call

it the hyperbolic 24-cell.

Recall that a polytope P ⊂ Hn is simple if each vertex belongs to n facets only,

and P is called simple at edges if each edge belongs to n−1 facets only. Every vertex
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figure of a compact acute-angled hyperbolic polytope is a combinatorial simplex of co-

dimension one [59, p. 108, Theorem 1.8]. Every vertex figure of an ideal right-angled

hyperbolic polytope is a combinatorial cube of co-dimension one [15, Proposition 1].

Thus, a compact acute-angled hyperbolic polytope is simple and an ideal right-angled

hyperbolic polytope is simple at edges.

Let us consider the following two problems in the class of four-dimensional ideal

right-angled hyperbolic polytopes.

I: Find a polytope of minimal volume,

II: Find a polytope of minimal facet number.

Since Coxeter’s work [11], the 24-cell is known for its nice combinatorial and

geometric Euclidean structure. We shall demonstrate that the 24-cell solves both

problem I on minimal volume and problem II on minimal facet number. Question I is

closely related to the volume spectrum of four-dimensional hyperbolic manifolds [45],

question II is new and is both of combinatorial and geometric nature. Furthermore,

using the results of [35, 41] (Theorem 19), we obtain a new dimension bound for ideal

right-angled hyperbolic polytopes. The case of right-angled hyperbolic polytopes with

both proper and ideal vertices was considered before in [15, 43].

4.3.2 The 24-cell and volume minimality

Lemma 2 (Combinatorial identities) Let P ⊂ H4 be an ideal right-angled poly-

tope with face vector f(P) = (f0, f1, f2, f3). Then the following combinatorial identities

hold.

f0 − f1 + f2 − f3 = 0, (4.9)

f1 = 4 f0, (4.10)

12 f0 =
∑

F∈Ω2(P)

f0(F ). (4.11)

Proof. We list the proofs of (4.9)-(4.11) below in the respective order.

(4.9) This is Euler’s identity. Since P is a convex four-dimensional polytope, its

surface ∂P is homeomorphic to S3. Hence, for the Euler characteristic of ∂P, we

have f0 − f1 + f2 − f3 =: χ(∂P) = χ(S3) = 0.

(4.10) Let v ∈ Ω0(P) be a vertex. Each vertex figure Pv of P is a cube. The vertices

of Pv correspond to the edges of P emanating from a given vertex v ∈ Ω0(P). This
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means that eight edges are adjacent at v. On the other hand, each edge has two

vertices. Thus, we obtain 2 f1 = 8 f0 and (4.10) follows.

(4.11) The edges of the vertex figure Pv, a cube, correspond to the two-dimensional

faces of P meeting v. Thus, twelve two-dimensional faces meet at each vertex.

Hence, if we sum up the number of vertices f0(F ) over all the two-dimensional faces

F ∈ Ω2(P), we count each vertex of P twelve times. Then the desired formula

follows and the lemma is proven. Q.E.D.

Lemma 3 (Volume formula) Let P ⊂ H4 be an ideal right-angled polytope with

face vector f(P) = (f0, f1, f2, f3). Then its volume equals

VolP =
f0 − f3 + 4

3
π2.

Proof. We shall compute the growth function f(t) of G(P). By Theorems 13 and

21 we obtain
1

f(t)
= 1− f3

[2]
+

f2
[2]2

− f1
[2]3

, (4.12)

where the denominators come from the fact that the vertex figure of each vertex is a

Euclidean cube (both combinatorially and geometrically, see Section 3.2.1), Table 3.4

and Proposition 1. Thus, every finite rank k, k = 1, 2, 3, subgroup of G(P) that

contributes to formula (4.12) is a direct product of k copies of A1. These are stabilisers

of (4 − k)-faces of P, respectively. A vertex stabiliser is an infinite Coxeter group

generated by reflections in the faces of a three-dimensional cube (see Table 3.2).

Hence, all the vertex stabilisers of P do not contribute to formula (4.12).

Now we apply relations (4.9)-(4.10) together with Vol S4 = 8π2/3 and compute

the volume of P by Theorem 22:

VolP =
1

2

Vol S4

f(1)
=

f0 − f3 + 4

3
π2.

Q.E.D.

The hyperbolic 24-cell C has f0 = f3 = 24, f1 = f2 = 96, see [11, Table I, (ii)].

Hence, by the lemma above, its volume equals 4π2/3.

Theorem 26 (Minimal volume) A four-dimensional ideal right-angled hyperbolic

polytope of minimal volume is C , up to an isometry.

Proof. Let us consider an ideal right-angled hyperbolic polytope P ⊂ H4. Let

f2(k) denote the number of its two-dimensional k-gonal faces, k ≥ 3, which are ideal

hyperbolic polygons. Then

f2 = f2(3) + · · ·+ f2(N),
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where N = maxF∈Ω2(P) f0(F ) ≥ 3. By Lemma 2, formula (4.11), we obtain

12 f0 =
∑

F∈Ω2(P)

f0(F ) = 3 f2(3) + · · ·+N f2(N).

By using Lemma 2, formulas (4.9)-(4.10), one subsequently computes

f0 − f3 = 4f0 − f2 =
1

3

N∑

k=4

(k − 3)f2(k) ≥ 0. (4.13)

Then, by Lemma 3,

VolP ≥ 4

3
π2 = VolC .

If VolP equals the volume of C , one immediately has f2(k) = 0 for all k ≥ 4 by

(4.13). This means that all the two-dimensional faces of P are triangles. Consider

a facet P ∈ Ω3(P). Observe that P ⊂ H3 is an ideal right-angled polyhedron which

has only triangular faces. Then P is a combinatorial octahedron and it is isometric

to the right-angled hyperbolic octahedron by Andreev’s theorem (Theorems 8 and

9). Hence, all the facets of P are ideal right-angled octahedra. So the polytope P

is combinatorially isomorphic to a regular four-dimensional Euclidean polytope with

octahedral facets only, that is, the 24-cell by [11, Table I, (ii)]. Thus P is isometric

to C by Andreev’s theorem (Theorem 8). Q.E.D.

4.3.3 The 24-cell and facet number minimality

Theorem 27 (Minimal facet number) The facet number of a four-dimensional

ideal right-angled hyperbolic polytope P satisfies f3(P) ≥ f3(C ) = 24. Any four-

dimensional ideal right-angled hyperbolic polytope P with f3(P) = 24 is isometric to

the hyperbolic 24-cell C .

The proof will be based on Proposition 12 and Lemma 4 below. Their proofs will

be given in Section 4.3.3.3.

4.3.3.1 Three-dimensional ideal right-angled hyperbolic polyhedra with
few faces

Let Ak ⊂ H3, k ≥ 3, be an ideal right-angled antiprism depicted in Fig. 4.15. In

the figure, the leftmost and the rightmost edges are identified, so that the surface of

the polyhedron is partitioned into top and bottom k-gonal faces and 2k triangular

faces in the annulus between them. Such an antiprism exists for every k ≥ 3 and it

is unique up to an isometry due to Andreev’s theorem (Theorems 8 and 9).
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Figure 4.15: Antiprism Ak, k ≥ 3.

Antiprisms Ak will later play the rôle of possible facets for a four-dimensional

ideal right-angled hyperbolic polytope in the proof of Theorem 27.

Proposition 12 (Antiprism’s optimality) A three-dimensional ideal right-angled

hyperbolic polyhedron of minimal face number, which has at least one k-gonal face,

k ≥ 3, is isometric to the antiprism Ak with f2(Ak) = 2k + 2.

Proof. Let P ⊂ H3 be an ideal right-angled polyhedron. Let F ∈ Ω2(P) be a k-

gonal face, k ≥ 3. For each edge e ∈ Ω1(F ) there is exactly one further face adjacent

to F along e. For each vertex v, being four-valent by Andreev’s theorem (Theorem

9), there exists a face intersecting F at v only. Moreover, all the faces mentioned

above are different from each other, so that we have f2(P) ≥ 2k + 1. Observe that

these faces can not constitute yet a polyhedron. Indeed, consider F as a “bottom”

face of P. Then the new faces we have added make a surface wrapping around the

interior of P along the edges of F . Since all vertices are four-valent, at least one

additional “top” face is required to close up the polyhedron. Hence f2(P) ≥ 2k + 2.

The antiprism Ak satisfies

f2(Ak) = 2k + 2 (4.14)

and so has minimal face number.

It remains to show that a polyhedron P with f2(P) = f2(Ak) is in fact isometric

to Ak. Since P has four-valent vertices, 2f1(P) = 4f0(P). From this equality and

Euler’s identity f0(P)− f1(P) + f2(P) = 2 we obtain that

f2(P) = f0(P) + 2. (4.15)

Consider the faces adjacent to the k-gon F along its edges. We shall prove that

no pair of them can have a common vertex v /∈ Ω0(F ). By supposing the contrary,

let us denote two such faces Fi, i = 1, 2, and let them intersect at v. Observe that Fi,

59



(a) Three-circuit that consists of the
faces F , F1 and F2 (b) Circuit that is indicated by the dashed line

Figure 4.16: Circuits deprecated by Andreev’s theorem

i = 1, 2, are adjacent to F along two disjoint edges e1 and e2. In fact, if e1 intersects

e2 in a vertex u ∈ Ω0(F ), then since P has convex faces we obtain two geodesic

segments joining v to u. One of them belongs to F1 and the other belongs to F2. This

is impossible, unless the considered segments are represented by a common edge e of

Fi, i = 1, 2, adjacent to both v and u. But then the vertex u has only three adjacent

edges: e1, e2 and e. This is a contradiction to u having valency four. Now if F1 and

F2 share an edge e such that v ∈ Ω0(e), then condition (m2) of Andreev’s theorem

(Theorem 9) does not hold as depicted in Fig. 4.16a. If F1 and F2 share only the

vertex v, then condition (m5) of Andreev’s theorem (Theorem 9) is not satisfied as

depicted in Fig. 4.16b.

Suppose that a face F ′ adjacent to the k-gon F ∈ Ω2(P) along an edge is not

triangular. Then F ′ has f0(F
′) vertices, and two among them are already counted in

f0(F ). Hence we have at least
∑

F ′ adjacent to
F along an edge

(f0(F
′)− 2) ≥ (k − 1) + 2 = k + 1

additional vertices, since f0(F
′) ≥ 3 for each F ′ among k faces adjacent to F and at

least one such face F ′ has f0(F
′) ≥ 4. Thus f0(P) ≥ 2k+1, and by (4.15) the estimate

f2(P) ≥ 2k + 3 follows. Equality (4.14) implies f2(P) > f2(Ak) and we arrive at a

contradiction. Hence all the faces adjacent to F along its edges are triangular.

Consider the faces of P adjacent to the k-gon F ∈ Ω2(P) only at its vertices.

Suppose that one of them, say F ′, is not triangular. Then we have
∑

F ′ adjacent to
F at a vertex

f1(F
′) ≥ 3(k − 1) + 4 = 3k + 1

60



additional edges. But then f1(P) ≥ 4k+ 1 and we arrive at a contradiction. Indeed,

in this case f1(P) > f1(Ak) = 4k.

Hence we have a k-gonal face F , k ≥ 3, together with 2k triangular side faces

adjacent to it along the edges and at the vertices. By adding another one k-gonal

face we close up the polyhedron P, while its vertex number remains unchanged.

Observe that there is no other way to finish this construction without increasing the

vertex number.

Thus, an ideal right-angled polyhedron P ⊂ H3 having minimal face number,

which contains at least one k-gon, is combinatorially isomorphic to Ak. By Theo-

rems 8-9 the polyhedron P is isometric to Ak. Q.E.D.

Note (to Proposition 12). The classification of polygonal maps on the two-

dimensional sphere given in [14] provides another argument to show the uniqueness

of antiprism stated above. Namely, [14, Theorem 1] says that P has in fact not less

than two k-gonal faces. Hence f2(P) = 2k + 2 if and only if P has exactly two

k-gonal faces and 2k triangular faces. Polygonal maps of this kind are classified by

[14, Theorem 2]. Among them only the map isomorphic to the one-skeleton of Ak

satisfies Steiniz’s theorem [63, Chapter 4]. Thus, the polyhedron P is combinatorially

isomorphic to Ak.
∗

4.3.3.2 Combinatorial constraints on facet adjacency

Let F1, . . . , Fm be an ordered sequence of facets of a given hyperbolic polytope

P ⊂ H4 such that each facet is adjacent only to the previous and the following ones

either through a co-dimension two face or through an ideal vertex, while the last facet

Fm is adjacent only to the first facet F1 (through a co-dimension two face or through

an ideal vertex, as before) and no three of them share a lower-dimensional face. Call

the sequence F1, . . . , Fm a (k, ℓ) circuit, k + ℓ = m, if it comprises k co-dimension

two faces and ℓ ideal vertices shared by the facets. We complete the analysis carried

out in [43] in the following way.

Lemma 4 (Adjacency constraints) Let P ⊂ H4 be an ideal right-angled polytope.

Then P contains no (3, 0), (4, 0) and (2, 1) circuits.

Proof. By [43, Proposition 4.1] there are no (3, 0) and (2, 1) circuits. Suppose

on the contrary that there exists a (4, 0) circuit formed by the facets Fk ∈ Ω3(P),

k = 1, 2, 3, 4. Let ek, k = 1, 2, 3, 4, denote the outer unit vector normal to the support

∗ the author is grateful to Michel Deza for indicating the very recent paper [14].
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Figure 4.17: The vertex figure Pv

hyperplane of Fk. Consider the Gram matrix of these vectors w.r.t. the Lorentzian

form 〈·, ·〉4,1:

G = (〈ei, ej〉)4i,j=1 =




1 0 − cosh ρ13 0
0 1 0 − cosh ρ24

− cosh ρ13 0 1 0
0 − cosh ρ24 0 1


 ,

where ρij > 0 is the length of the common perpendicular between two disjoint support

hyperplanes for Fi and Fj respectively. The eigenvalues of G are {1 ± cosh ρ13, 1 ±
cosh ρ24}, that means two of them are strictly negative and two are strictly positive.

Thus, we arrive at a contradiction with the signature of a Lorentzian form. Q.E.D.

4.3.3.3 Proof of Theorem 27

Let P ⊂ H4 be an ideal right-angled polytope. Let P ∈ Ω3(P) be a facet. For

every two-face F ∈ Ω2(P ) there exists a corresponding facet P ′ ∈ Ω3(P), P ′ 6= P ,

such that P and P ′ share the face F . Since each vertex figure of P is a cube, there

exists an opposite facet P ′′ ∈ Ω3(P) for every vertex v ∈ Ω0(P ). The vertex figure

is depicted in Fig. 4.17, where the grey bottom face of the cube corresponds to P

and the top face corresponds to P ′′. These new facets P ′ and P ′′ together with P are

pairwise different. In order to show this we use the following convexity argument.

Convexity argument. First, observe that no facet of a convex polytope can meet

another one at two different two-faces. Now suppose that P ′ ∈ Ω3(P) is a facet

adjacent to P at a face F ∈ Ω2(P ) and a single vertex v ∈ Ω0(P ) not in F . The

facets P and P ′ have non-intersecting interiors, but the geodesic going through a

given point of F to v belongs to both of them by the convexity of P. So we arrive

at a contradiction.
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The same contradiction arises if we suppose that there is a facet P ′ ∈ Ω3(P)

adjacent to P at two distinct vertices v, v′ ∈ Ω0(P ). In this case we consider the

geodesic in P going through v to v′.

By the convexity argument above, the facet number of P has the lower bound

f3(P) ≥ f2(P ) + f0(P ) + 1,

or, by means of equality (4.15),

f3(P) ≥ 2 f2(P )− 1. (4.16)

Observe that the hyperbolic 24-cell C has only triangle two-faces. Suppose that

P has at least one k-gonal face F ∈ Ω2(P) with k ≥ 4. We shall show that the

estimate f3(P) ≥ 25 holds, by considering several cases as follows.

A) Suppose that P has a k-gonal two-dimensional face with k ≥ 6. Then, by (4.16)

and Proposition 12, we have

f3(P) ≥ 2 f2(Ak)− 1 = 2(2k + 2)− 1 ≥ 27.

Thus P can not be isometric to C .

B) Suppose that P has a pentagonal two-dimensional face F contained in a facet

P ∈ Ω3(P). Suppose P is not isometric to A5. This assumption implies f2(P ) > 12.

Then (4.16) grants f3(P) ≥ 25.

C) Suppose that all the facets of P containing a pentagonal two-face are isometric

to A5. Let P0 be one of them. Then it has two neighbouring facets Pk, k = 1, 2 both

isometric to A5. Now we count the facets adjacent to Pk, k = 0, 1, 2 in Fig. 4.18,

where P0 is coloured grey. Observe that two-faces in Fig. 4.18 sharing an edge are

marked with the same number and belong to a common facet, since P is simple at

edges. However, the two-faces marked with different numbers, correspond to different

adjacent facets. Suppose on the contrary that there are two faces F ∈ Ω2(Pi), F
′ ∈

Ω2(Pj), i, j ∈ {0, 1, 2}, marked with distinct numbers and a facet P ′ ∈ Ω3(P) such

that P ′ is adjacent to Pi at F and to Pj at F
′ and consider the following cases.

C.1) If i = j, we arrive at a contradiction by the convexity argument above.

C.2) If i = 0, j ∈ {1, 2}, then there exists a unique geodesic joining a point p of

F to a point p′ of F ′. Observe in Fig. 4.18, that the point p′ may be chosen so

that p′ ∈ F ′ ∩ P0. Then the geodesic between p and p′ intersects both the interior

of P ′ and the interior of P0. Again, we use the convexity argument and arrive at a

contradiction.
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Figure 4.18: Three facets of P isometric to A5 and their neighbours

C.3) Let i = 1, j = 2. Then if there exist a face F̃ ∈ Ω2(P0), F̃ ∩ F 6= ∅, and a

face F̃ ′ ∈ Ω2(P0), F̃ ′ ∩ F ′ 6= ∅, we reduce our argument to case C.1 by considering a

geodesic segment joining a point of F̃ ∩ F to a point of F̃ ′ ∩ F ′.

The only case when no such two faces F̃ and F̃ ′ exist is if F has number 21 and

F ′ has number 22 in Fig. 4.18. Then the (4, 0)-circuit P0P1P
′P2 appears, in contrary

to Lemma 4.

Thus, one has 22 new facets adjacent to Pk, k = 0, 1, 2. Together with Pk them-

selves, k = 0, 1, 2, they provide f3(P) ≥ 25.

D) By now, cases A, B and C imply that if an ideal right-angled hyperbolic polytope

P ⊂ H4 has at least one k-gonal face with k ≥ 5, then f3(P) ≥ 25. Suppose that

Ω2(P) contains only triangles and quadrilaterals.

By Andreev’s theorem (Theorem 9), each facet P ∈ Ω3(P) has only four-valent

vertices. By assumption, P has only triangular and quadrilateral faces. Combina-

torial polyhedra of this type are introduced in [13] as octahedrites and the list of

those possessing up to 17 vertices is given. Note that in view of (4.16) we may con-

sider octahedrites that have not more than twelve faces or, by equality (4.15) from

Proposition 12, ten vertices. In Fig. 4.19, 4.20 we depict only those realisable as ideal

right-angled hyperbolic polyhedra with eight, nine and ten vertices.

The ideal right-angled octahedron has six vertices and completes the list. By

considering each of the polyhedra in Fig. 4.19 and Fig. 4.20 as a possible facet P ∈
Ω3(P), we shall derive the estimate f3(P) ≥ 25.
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Figure 4.19: Hyperbolic octahedrites with 8 (left) and 9 (right) vertices

Figure 4.20: Hyperbolic octahedrite with 10 vertices
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Figure 4.21: Hyperbolic octahedrite with 10 vertices as a facet of P and its neighbours

D.1) Let P0 ∈ Ω3(P) be the hyperbolic octahedrite with ten vertices depicted in

Fig. 4.21. Consider the facets of P adjacent to P0 at its faces. One has f2(P0) = 12,

and hence f3(P) ≥ 12. Consider the faces coloured grey in Fig. 4.21: the front face

is called F1 and the back face, called F2, is indicated by the grey arrow.

The facets P1, P2 ∈ Ω3(P) adjacent to P0 at F1 and F2, respectively, contain

quadrilaterals among their faces. By Proposition 12, it follows that f2(Pi) ≥ f2(A4) =

10, i = 1, 2. We shall count all new facets P ′ brought by face adjacency to Pi, i = 1, 2.

Observe that no P ′, which does not share an edge with P0, can be adjacent

simultaneously to Pi and Pj , i, j ∈ {1, 2}, at two-faces, since otherwise the (4, 0)

circuit P1P0P2P
′ appears in contrary to Lemma 4.

Each facet P ′ that shares an edge with Fk, k = 1, 2, is already counted as adjacent

to P0. The facets P1 and P2 are already counted as well, by the same reason. Then the

total number of new facets coming together with P1 and P2 is at least
∑2

i=1 f2(Pi)−∑2
i=1 f1(Fi)−2 ≥ 2·10−2·4−2 = 10. This implies the estimate f3(P) ≥ 12+10 = 22.

Consider the facets Pi, i = 3, 4, adjacent to P0 only at the corresponding circum-

scribed grey vertices vi, i = 3, 4, in Fig. 4.21. Then consider the case if P ′ is adjacent

to Pj , j ∈ {1, 2} at a two-face F ′ ∈ Ω2(Pj). If there exist a face F̃ ′ ∈ Ω2(P0) such

that F ′ ∩ F̃ ′ 6= ∅, then choose a point p ∈ F ′ ∩ F̃ ′ and use the convexity argument

again for the geodesic going through p to vi. If F ′ ∩ F̃ ′ = ∅, then the (2, 1) circuit

P0P1P
′ appears in contrary to Lemma 4. Adding up two new facets gives f3(P) ≥ 24.

Finally, we count P0 itself and arrive at the estimate f3(P) ≥ 25.

D.2) Let P0 ∈ Ω3(P) be the hyperbolic octahedrite with nine vertices and eleven

faces depicted on the right in Fig. 4.19. Consider the facets adjacent to P0 at its
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Figure 4.22: Hyperbolic octahedrite with 9 vertices as a facet of P and its neighbours
(omitted edges are dotted)

two-dimensional faces. By counting them, we have f3(P) ≥ f2(P0) = 11.

Consider the facet P1 adjacent to the triangle face F1 of P0 coloured grey in the

center of Fig. 4.22. By Proposition 12, we have f2(P1) ≥ f2(A3) = 8. By excluding

already counted facets adjacent to P0 like in case D.1, the facet P1 brings new f2(P1)−
f1(F1) − 1 ≥ 8 − 3 − 1 = 4 ones by face adjacency. Then f3(P) ≥ 15. The visible

part of the facet P2 adjacent to P0 at its back face F2 is coloured grey in Fig. 4.22.

Again, we have f2(P2) ≥ f2(A3) = 8. By counting new facets adjacent to P2 at faces,

it brings another f2(P2)− f1(F2)− 1 ≥ 8− 3− 1 = 4 new ones. Hence f3(P) ≥ 19.

The facets P̂k, k = 3, 4, 5, adjacent to P0 only at the circumscribed hollow vertices

vk, k = 3, 4, 5, in Fig. 4.22 are different from the already counted ones either by the

convexity argument or by Lemma 4, which forbids (2, 1) circuits, c.f. the argument

of case D.1. Thus f3(P) ≥ 22.

Let P̂k, k = 6, 7, 8, be the facets of P adjacent to P2 only at the respective

circumscribed grey vertices vk, k = 6, 7, 8 in Fig. 4.22. Let the faces of P1 and P2,

that contain a single circumscribed hollow or grey vertex, be Fk, k = 3, . . . , 8. Finally,

let P (k), k = 6, 7, 8, denote the facets adjacent to P2 at Fk, k = 6, 7, 8, respectively.

By the convexity argument or by Lemma 4, similar toD.1, the facets P̂i, i = 6, 7, 8

can not coincide with the already counted ones, except for P̂j, j = 3, 4, 5 and the facets

adjacent only to P1.

First consider the case when a facet from P̂i, i ∈ {6, 7, 8}, coincides with P̂j,

j ∈ {3, 4, 5}. Then
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Figure 4.23: Sub-graphs τ (on the left) and σ (on the right)

Figure 4.24: Sub-graph σ in an octahedron (on the left) and in the facet P (i) (on the
right)

1) either P̂i = P̂j is such that (i, j) 6= (7, 3), (6, 4) and (8, 5), so the (2, 1) circuit

P̂jP (i)P0 appears;

2) or P̂i = P̂j has (i, j) = (7, 3), (6, 4), or (8, 5), and contains therefore a part of the

geodesic going from vi to vj by convexity. Since the edge shared by Fi and Fj belongs

to three facets P0, P2 and P (i), then P (i) is adjacent to P0 at Fj and to P2 at Fi.

Hence P (i) contains the vertices vi, vj and the geodesic segment between them as

well. Since P (i) and P̂i have non-intersecting interiors, the two following cases are

only possible.

2.1) The geodesic segment vivj belongs to a triangle face of P (i): then vivj is an edge.

Observe that the face Fj of P (i) is always a triangle, as in Fig. 4.22, while the face

Fi is either a triangle or a quadrilateral. Then the edges of Fi, Fj and the edge vivj

constitute a sub-graph in the one-skeleton of P (i). The possible sub-graphs τ and σ

depending on the vertex number of Fi are depicted in Fig. 4.23. The graph τ is the
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Figure 4.25: The segment vivj belongs to a quadrilateral face

Figure 4.26: Sub-graphs ν (on the left) and ω (on the right)

one-skeleton of a tetrahedron. The graph σ is the one-skeleton of a square pyramid

without one vertical edge. By assumption, the facet P (i) is an octahedrite with not

more than ten vertices. Such octahedrites are depicted in Fig. 4.19-4.20, and none of

them contains in its one-skeleton a sub-graph combinatorially isomorphic to τ or σ.

The case when P (i) is an octahedron still remains. Clearly, its one-skeleton does

not contain a sub-graph combinatorially isomorphic to τ . However, it contains a

sub-graph isomorphic to σ. The only possible sub-graph embedding of σ into the

one-skeleton of an octahedron, up to a symmetry, is given in Fig. 4.24 on the left.

But then the face Fi of P2 correspond to the interior domain F in P (i) coloured grey

in Fig. 4.24 on the right. Thus, we arrive at a contradiction with the convexity of

facets.

2.2) The geodesic segment vivj belongs to a quadrilateral face of P (i). The general

picture of this case is given in Fig. 4.25. Again two sub-graphs ν and ω arise, as

depicted in Fig. 4.26. Such sub-graphs appear at most for the octahedrites as given
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Figure 4.27: Embeddings of the graph ν into octahedrite facets with 8 (left) and 9
(right) vertices

(a) Embedding 1 (b) Embedding 2

Figure 4.28: Embeddings of the graph ω into the octahedrite facet with 10 vertices

(a) Embedding 3 (b) Embedding 4

Figure 4.29: Embeddings of the graph ω into the octahedrite facet with 10 vertices
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(a) Embedding 5 (b) Embedding 6 (c) Embedding 7

Figure 4.30: Embeddings of the graph ω into the octahedrite facet with 10 vertices

in Fig. 4.19-4.20. Observe, that none of them contains in its one-skeleton a sub-graph

isomorphic to ν.

All possible embeddings of ω into the one-skeleton of each considered octahedrite

are given, up to a symmetry, in Fig. 4.27, 4.28a-4.30c. Since the edges e and e′

belong to a single face as in Fig. 4.25, we arrive at a contradiction, since there is no

embedding of ω with this property.

Finally, consider the case when a facet from P̂i, i ∈ {6, 7, 8}, coincides with a facet

P ′ adjacent only to P1 at a two-face. Then the (4, 0) circuit P0P1P
′P (i) arises, in

contrary to Lemma 4.

So the facets P̂k, k = 6, 7, 8, are different from the already counted ones. Adding

them up, we obtain f3(P) ≥ 22 + 3 = 25.

D.3) Let P0 ∈ Ω3(P) be the hyperbolic octahedrite with eight vertices depicted

on the left in Fig. 4.19. Observe that this polyhedron is combinatorially isomorphic

to A4, and hence isometric to it by Andreev’s theorem (Theorem 8). Moreover, we

suppose that all facets of P are isometric to A4, since other possible facet types are

already considered in D.1 and D.2.

Consider the facets Pk, k = 1, 2, adjacent to the front and the back quadrilateral

faces of P0. The facets Pi, i = 0, 1, 2, are depicted together in Fig. 4.31, where P0 is

coloured grey. We count the facets adjacent to Pi, i = 1, 2, 3, at faces in Fig. 4.31.

Observe that different numbers on the faces shown in Fig. 4.31 correspond to distinct

facets of P adjacent to them. The counting arguments are completely analogous to

those of C. Hence, we obtain the estimate f3(P) ≥ 18. By taking into account the

facets Pi, i = 1, 2, 3, themselves, it becomes f3(P) ≥ 21.

Consider the facets P̂i, i = 1, 2, 3, 4, adjacent to P2 only at its circumscribed

vertices vi, i = 1, 2, 3, 4 in Fig. 4.31. By analogy with the proof in D.2, the P̂i’s are
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Figure 4.31: Hyperbolic octahedrite with 8 vertices as a facet of P and its neighbours

different from the already counted ones. Thus, we add four new facets and obtain

f3(P) ≥ 25.

Hence, a polytope P with f3(P) = 24 has only octahedral facets and, by the

argument from Theorem 26, is isometric to the hyperbolic 24-cell. �

4.3.3.4 A dimension bound for ideal right-angled hyperbolic polytopes

Let us note that Nikulin’s inequality previously stated as Theorem 19 could be gener-

alised to the case of finite-volume hyperbolic polytopes. Namely, Nikulin’s inequality

relies on the fact that the given polytope is simple. It has been shown by A. Khovan-

skĭı [35], that the condition of being simple at edges already suffices.

Corollary (of Theorem 27) There are no ideal right-angled hyperbolic polytopes in

Hn, if n ≥ 7.

Proof. Suppose that P ⊂ Hn is an ideal right-angled hyperbolic polytope, n ≥ 4.

Since we have f34(P) ≥ 24 by Theorem 27, then the Nikulin-Khovanskĭı inequality

(Theorem 19) implies n ≤ 5 for n odd and n ≤ 6 for n even. Q.E.D.
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4.4 Towards the optimality of the hyperbolic 120-

cell

In this section, we consider the 120-cell Z , that is a four-dimensional regular com-

pact hyperbolic polytope with Schläfli symbol {5, 3, 3} (see [11, Chapter 7.8]) and

all dihedral angles right. The polytope Z has 120 octahedral facets, 720 pentag-

onal faces, 1200 edges and 600 tetrahedral vertex figures. It could be obtained by

means of the Wythoff construction [11, Section 11.6] performed with the simplex

. In the following, we shall refer to Z as to the hyperbolic 120-

cell. Like in Section 4.3, one may ask the following questions regarding the class of

all compact right-angled polytopes in H4:

I: Does the hyperbolic 120-cell have minimal volume ?

II: Does the hyperbolic 120-cell have minimal facet number ?

Below we present some partial results concerning the combinatorial and geometric

properties of compact right-angled polytopes in H4. One fact is that the inequality

f3(P) > f3(Z ) = 120 implies VolP > VolZ = 34/3 π2 (see Corollary below).

Thus, Question II is the most interesting one. Let us recall, that first it was posed

by È.B. Vinberg and L. Potyagăılo in [43].

Lemma 5 (Combinatorial identities) Let P ⊂ H4 be a compact polytope with

face vector f(P) = (f0, f1, f2, f3). Then the following combinatorial identities hold.

f0 − f1 + f2 − f3 = 0, (4.17)

f1 = 2 f0, (4.18)

4 f0 =
∑

P∈Ω3(P)

f0(P ). (4.19)

Proof. We list the proofs of (4.17)-(4.19) below in the respective order.

(4.17) This is Euler’s identity, the same as in Lemma 2.

(4.18) Let v be a vertex of P. Each vertex figure Pv of P is a tetrahedron, since

P is a compact non-obtuse polytope. The vertices of Pv correspond to the edges

emanating from v. Thus, there are four edges adjacent at each vertex v ∈ Ω0(P).

On the other hand, each edge has two vertices. Thus 4 f0 = 2 f1 and (4.18) follows.

(4.19) The faces of the vertex figure Pv, which is a tetrahedron, correspond to the

facets of P sharing v. Thus, four facets meet at each vertex. Hence if we sum up the

number of vertices f0(P ) over all the facets P ∈ Ω3(P), we count each vertex of P

four times. Then formula (4.19) follows and the lemma is proven. Q.E.D.
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Lemma 6 (Proposition 3.5(d), [34]) Let P ⊂ H4 be a compact right-angled poly-

tope. Then its volume equals

VolP =
f0 − 4 f3 + 16

12
π2. (4.20)

The above lemma leads to the following corollary.

Corollary (of Lemma 6) Let P ⊂ H4 be a compact right-angled polytope. Then

the inequality f3(P) > f3(Z ) = 120 implies VolP > VolZ = 34/3 π2.

Proof. By [30], one knows that the minimal number of faces (as well as edges and

vertices) for a compact right-angled polyhedron in H3 belongs to the right-angled

hyperbolic dodecahedron D (or, equivalently, the Löbell polyhedron L5). Since each

facet of a (compact) right-angled polytope P ⊂ H4 is a (compact) right-angled

polyhedron P ⊂ H3, as explained in Section 4.3.1, we have f0(P ) ≥ f0(D) = 20 for

each P ∈ Ω3(P). Thus, by formula (4.19),

4 f0 =
∑

P∈Ω3(P)

f0(P ) ≥ 20 f3,

i.e. f0 ≥ 5 f3, and hence, if f3 > 120, the above inequality implies f0 − 4 f3 ≥ f3 > 120

and, by Lemma 6, it turns out that VolP > VolZ = 34/3 π2. Q.E.D.

Figure 4.32: The polyhedra R5, R6 and R7 (from left to right)

In the work [30], the ordering of the compact right-angled polyhedra in H3 with

respect to their volumes has come into view. In [50, 57] the list of the first eleven

compact right-angled polyhedra with respect to their volume is given.

From [4], we know that, in general, the volume in this family of polyhedra increases

with the number of their faces (edges, vertices). The first six polyhedra described in

[50, 57] are depicted in Fig. 4.32-4.33. The table of their volumes is given (see Table 4

in Appendix 4.4).
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Figure 4.33: The polyhedra R611, R621 and R622 (from left to right)

In the following, let us define a set Small of small polyhedra as being the set

containing the compact right-angled polyhedra R5, R6, R611, R7, R621 and R622 and

possibly further ones.∗

Question 1. Let P ⊂ H4 be a compact right-angled polytope with face vector

f(P) = (f0, f1, f2, f3), such that for each P ∈ Ω3(P) we have P /∈ Small. Then

f3(P) > f3(Z ) = 120 and f0(P) > f0(Z ) = 600.

At the end of this work, we suggest the following conjecture.

Question 2. Let P ⊂ H4 be a compact right-angled polytope, which has a facet

that is not a right-angled dodecahedron. Then f3(P) > f3(Z ) and f0(P) > f0(Z ).

We remark that the components of the face vector f(P) are independent.

∗ using the notation of [57]. In our notation R5, R6, R7 are the Löbell polyhedra L5, L6, L7,
respectively.
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Appendix A

Figure 34: Prisms that admit contraction of an edge: the first picture
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Figure 35: Prisms that admit contraction of an edge: the second picture

Figure 36: Prisms that admit contraction of an edge: the third picture
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Type of H1 Type of H2
1

f1(t)
− 1

f2(t)
=

〈2, 2, n, 2, 2〉, 〈2, 2, n+ 1, 2, 2〉, tn(1−t)3

(1−tn)(1−tn+1)(1+t)2
,

n ≥ 2 n ≥ 2 n ≥ 2

〈2, 2, 2, 2, 3〉 〈2, 2, 3, 2, 3〉 t2(1−t)
(1+t)3(1+t2)

〈2, 2, 3, 2, 3〉 〈2, 2, 4, 2, 3〉 t3(1−t)
(1+t)3(1−t+t2)(1+t+t2)

〈2, 2, 4, 2, 3〉 〈2, 2, 5, 2, 3〉 t4(1−t)(1−t+t2)(1+t+t2)
(1+t)3(1+t2)(1−t+t2−t3+t4)(1+t+t2+t3+t4)

〈2, 2, 2, 2, 4〉 〈2, 2, 3, 2, 4〉 t2(1−t)(1+t2)
(1+t)3(1−t+t2)(1+t+t2)

〈2, 2, 2, 2, 5〉 〈2, 2, 3, 2, 5〉 t2(1−t)(1+2t2+t3+2t4+t5+2t6+t7+2t8+t10)
(1+t)3(1+2t2+3t4+3t6+3t8+2t10+t12)

〈2, 3, 2, 2, 3〉 〈2, 3, 3, 2, 3〉 t2(1−t)
(1+t)(1+t2)(1+t+t2)

〈2, 3, 3, 2, 3〉 〈2, 3, 4, 2, 3〉 t3(1−t)
(1+t)3(1+t2)(1−t+t2)

〈2, 3, 4, 2, 3〉 〈2, 3, 5, 2, 3〉 t4(1−t)
(1+t)3(1+t2)(1−t+t2−t3+t4)

〈2, 3, 2, 2, 4〉 〈2, 3, 3, 2, 4〉 t2(1−t)(1+t+t2+t3+t4)
(1+t)3(1+t2)(1−t+t2)(1+t+t2)

Table 1: Table for Proposition 9
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Type of H1 Type of H2
1

f1(t)
− 1

f2(t)
=

〈2, 3, 2, 2, 5〉 〈2, 3, 3, 2, 5〉 t2(1−t)(1+t2)(1+t3+t6)
(1+t)3(1+3t2+5t4+6t6+6t8+5t10+3t12+t14)

〈2, 4, 2, 2, 4〉 〈2, 4, 3, 2, 4〉 t2(1−t)
(1+t)3(1−t+t2)

〈2, 4, 2, 2, 5〉 〈2, 4, 3, 2, 5〉 t2(1−t)(1+t2)(1+t3+t6)
(1+t)3(1−t+t2)(1−t+t2−t3+t4)(1+t+t2+t3+t4)

〈2, 5, 2, 2, 5〉 〈2, 5, 3, 2, 5〉 (1−t)t2(1+t2+2t3−t4+2t5+t6+t8)
(1+t)3(1−t+t2)(1−t+t2−t3+t4)(1+t+t2+t3+t4)

Table 2: Table for Proposition 9 (continuation)

Vertex group Stab(v)
Its Coxeter exponents

Quantity dgv
dt
(1)

m1 m2 m3

∆2,2,n, n ≥ 2 1 1 n− 1 −1
8

(
1− 1

n

)

∆2,3,3 1 2 3 −1
8

∆2,3,4 1 3 5 − 5
32

∆2,3,5 1 5 9 − 3
16

Table 3: Table for Proposition 10. The column on the right follows from Theorem 20,
formulas (3.6)-(3.7)

Polyhedron Volume Polyhedron Volume
R5 4.3062 R7 7.5632
R6 6.0230 R621 7.8699
R611 6.9670 R622 8.0002

Table 4: Volumes of small polyhedra from Section 4.4
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