N

N

End-user service composition from a social networks
analysis perspective
Abderrahmane Maaradji

» To cite this version:

Abderrahmane Maaradji. End-user service composition from a social networks analysis perspective.
Other [cs.OH]. Institut National des Télécommunications, 2011. English. NNT: 2011TELE002S .
tel-00762647

HAL Id: tel-00762647
https://theses.hal.science/tel-00762647
Submitted on 7 Dec 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-00762647
https://hal.archives-ouvertes.fr

TELECOM | ;Lj r
g UPMC

——rr ImE1 PARIS
3] |
Ecole Doctorale EDITE

Thése présentée pour I'obtention du diplome de
Docteur de Télécom & Management SudParis

Doctorat conjoint Télécom & Management SudParis et Université Pierre et Marie Curie

Par
Abderrahmane MAARAD]I

Titre
End-user Service Composition From a Social
Networks Analysis Perspective

Soutenue le 2 décembre 2011 devant le jury composé de :

Rapporteur Professeur Jean-Marc PETIT
Rapporteur Professeur Zakaria MAAMAR
Examinateur Professeur Athena VAKALI
Examinateur Professeur Marcelo DIAS DE AMORIM
Examinateur Professeur Salima BENBERNOU
Co-encadrant Monsieur Johann DAIGREMONT
Co-encadrant Docteur Hakim HACID

Directeur de thése Professeur Noél CRESPI

Thése n° 2011TELE0028

Abstract

Service composition has risen from the need to make information systems more
flexible and open. The Service Oriented Architecture has become the reference
architecture model for applications carried by the impetus of Internet (Web). In
fact, information systems are able to expose interfaces through the Web which has
increased the number of available Web services. Moreover, with the emergence of
Web 2.0, service composition has evolved toward Web users with limited technical
skills. Those end-users, named Y generation, are participating, creating, sharing
and commenting content through the Web. This evolution in service composition is
translated by the reference paradigm of Mashup and Mashup editors such as Yahoo
Pipes! This paradigm has established the service composition within end users com-
munity enabling them to meet their own needs, for instance by creating applications
that do not exist. Additionally, Web 2.0 has also brought its social dimension, allow-
ing users to interact, either directly through the online social networks or indirectly
by sharing, modifying content, or adding metadata.

In this context, this thesis aims to support the evolving concept of service com-
position through meaningful contributions. The main contribution of this thesis
is indeed the introduction of the social dimension within the process of building a
composite service through end users’ dedicated environments. In fact, this concept
of social dimension considers the activity of composing services (creating a Mashup)
as a social activity. This activity reveals social links between users based on their
similarity in selecting and combining services. These links could be an interesting
dissemination means of expertise, accumulated by users when composing services. In
other terms, based on frequent composition patterns, and similarity between users,
when a user is editing a Mashup, dynamic recommendations are proposed. These
recommendations aim to complete the initial part of Mashup already introduced
by the user. This concept has been explored through (i) a step-by-step Mashup
completion by recommending a single service at each step, and (ii) a full Mashup
completion approaches by recommending the whole sequence of services that could
complete the Mashup.

Beyond the integration of the social dimension within the service composition
process, this thesis has addressed a particular constraint for this recommendation
system which conditions the interactive systems requirements in terms of response
time. In this regard, we developed robust algorithms adapted to the specificities
of our problem. Whereas a composite service is considered as a sequence of ba-
sic service, finding similarities between users comes first to find frequent patterns
(subsequences) and then represent them in an advantageous data structure for the
recommendation algorithm. The proposed algorithm FESMA, meets exactly those
requirements based on the FSTREE structure with interesting results compared to
the prior art.

Finally, to implement the proposed algorithms and methods, we developed a

Mashup creation framework, called Social Composer (SoCo). This framework, dedi-
cated to end users, firstly implements abstraction and usability requirements through
a workflow-based graphic environment. As well, it implements all the mechanisms
needed to deploy composed service starting from an abstract description entered
by the user. More importantly, SoCo has been augmented by including the dy-
namic recommendation functionality, demonstrating by the way the feasibility of
this concept.

Keywords: Service composition, Mashup, dynamic service recommendation,
frequent sequence mining algorithm

List of original articles

This thesis is based on the following original articles:

1.

10.

A. Maaradji, H. Hacid, R. Skraba, A. Vakali and N. Crespi; “Service Compo-
sition Full Completion Based on Novel Frequent Sequence Mining”, Bell Labs
Technical Journal, (under reviews, to appear in 2012).

. A. Maaradji, H. Hacid, R. Skraba, and A. Vakali; “Social Web Mashups

Full Completion via Frequent Sequence Mining”; The 7th IEEE 2011 World
Congress on Services (SERVICES 2011), Washington DC,USA, July 2011.

A. Maaradji, H. Hacid, R. Skraba, A. Lateef, J. Daigremont, and N. Crespi;
“Social-based Web Services Discovery and Composition for Step-by-step Mashup
Completion”, The 9th IEEE International Conference on Web Services (ICWS
2011), Washington DC,USA, July 2011.

A. Maaradji, H. Hacid, R. Skraba, A. Lateef, J. Daigremont, N. Crespi; “Social
Discovery and Composition of Web Services”; in the EUD4Services Workshop-
Empowering End-Users to Develop Service-based Applications; Torre Canne,
Italy, June 2011.

A. Maaradji, H. Hakim, J. Daigremont, N. Crespi, “Towards a Social Network
Based Approach for Services Composition”, in IEEE International Conference
on Communications (ICC 2010), Cape Town, South Africa, May 2010.

A. Maaradji, H. Hacid, J. Daigremont, N. Crespi, “Social Composer: A Social-
Aware Mashup Creation Environment”, ACM Conference on Computer Sup-
ported Cooperative Work CSCW 2010 (demo session), Savannah, Georgia,
USA, February 2010.

A. Maaradji, H. Hacid, J. Daigremont and N. Crespi, “Composition de services
web basée sur les réseaux sociaux”, in Conférence Internationale Francophone
sur I’Extraction et la Gestion des Connaissances, Tunisia, January 2010.

R. Skraba, M. Beauvais, J. Stan, A. Maaradji, J. Daigremont, “Developing
Compelling Social-Enabled Applications with Context-Based Social Interac-
tion Analysis”, in International Conference on Advances in Social Network
Analysis and Mining, July 20009.

A. Maaradji, C. Huang and N. Crespi, “Towards Personalized Services Com-
position on IMS: A Basic Approach”, International Conference on Advanced
Infocomm Technology, Xi’an, China, July 2009.

A. Maaradji, A. Gonguet, N. Crespi and J. Daigremont, "La composition de
services dans 'IMS, un premier pas vers I'ubiquitous computing", présenté au

22¢éme Congrés DNAC : La convergence des réseaux IP et le Post-IP, Paris,
France, Décembre 2008.

Contents

1 Introduction 1
1.1 Business context and motivation of the thesis 1
1.2 Research context and problem statement 3
1.3 Contributions of the thesis 5
1.4 Manuscript organization Lo 6

2 State of the art 7
2.1 Imtroduction 7
2.2 Web Services 7
2.3 Service Oriented Computing 8

2.3.1 Service Oriented Architecture 9

2.4 Service Composition 11
2.4.1 Main requirements and research topics and challenges in ser-

vices composition field 12

2.5 Taxonomy for services composition, 14

2.5.1 System perspective 15

2.5.2 User perspective 23

2.6 Mashups Editors: An End-user Services Composition Environment . 27

2.6.1 Mashup and Mashup creation environment 27

2.6.2 Overview of major Mashup creation environment 27

2.6.3 General properties analysis 0L L. 32

2.6.4 End-user support 34

2.7 Discussiono 35

3 Service Dynamic Recommendation For End-User Support 37
3.1 Imtroduction 37
3.2 Brief overview of recommendation systems 38
3.3 Providing support to end-usero 38

3.3.1 Usescases o 39
3.4 Social-based approach 0oL 42
3.5 A new approach to service recommendation 43
3.5.1 Social graph variants00 45
3.6 Assumptions 46
3.7 Implicit social graph construction 46
3.7.1 Local information o000 47
3.7.2 Semi-global information, 48
3.7.3 Global information 0L 48
3.7.4 Graph reduction (Top-k links) 49

3.7.5 From user-transition interactions to implicit social graph: Ap-
plication on transition composition pattern 49

ii

Contents

3.8 The Completion process 50
3.8.1 Completion pattern Recommendation Confidence (RC). . . . 51
3.8.2 Recommendation algorithm design 51
3.8.3 Basic enhancements L. 51
3.8.4 Service Post-interest for new comer services 53

3.9 Step-by-step approach evaluation 53
3.9.1 Dataset generationo 54
3.9.2 Experimentation protocolo 54
3.9.3 Evaluation o o 55

3.10 Synthesis 57
3.10.1 Results interpretation and Learned lessons 57

Full Mashup Completion Based on Frequent Sequence Mining 59

4.1 Introduction 59
4.2 Datamodel 61
4.3 Frequent sequence mining for full completion 62
4.3.1 Frequent sequence mining applications 62
4.4 Fast and efficient sequence mining algorithm FESMA 63
4.4.1 Algorithm design 63
4.4.2 Algorithm complexity analysis 63
4.4.3 Some illustrationso 63
4.5 From community to social fine grained full completion 65
4.5.1 Community-based recommendation 65
4.5.2 Social networks based recommendation 66
4.6 Implementation and evaluation 70
4.6.1 Experimentation protocol 70
4.6.2 FESMA Vs AprioriSeq 71
4.6.3 FESMA performances 72
4.6.4 Social overhead oL 73
4.6.5 Completion runtime 73
4.7 Comparison to the closest related work and conclusion 74

Social Composer: An Augmented Mashup Creation Environment 77

5.1 Imntroduction 7
5.2 Classic service composition environment requirements 7
5.2.1 Graphical User Interface 77
5.2.2 Userdirectoryo 78
5.2.3 Service directory 78
5.2.4 Orchestration engine for dynamic service composition aspect 78
5.3 SoCo application design and implementation 79
5.3.1 The SoCo GUI 79
5.3.2 SoCo framework design 79
5.3.3 SoCo implementation 81

5.3.4 Illustrative class diagram and sequence diagram 85

Contents

iii

5.3.5 A running exampleo

5.4 Conclusion
6 Conclusion

Bibliography

85
88

89

91

CHAPTER 1

Introduction

1.1 Business context and motivation of the thesis

The concept of service composition has evolved in many forms and names over
decades. Its most recent remarkable achievement is the “Service Oriented Architec-
ture” (SOA) model which considers the service as a building block for any application
design. This model translates the concept by aiming at creating modular, scalable,
composable, and interoperable applications. Traditionally, this need raised in a
Business-to-Business context, and was commonly known as “Enterprise Application
Integration” (EAI).

With the rise and overwhelming success of the World Wide Web (WWW), the
concepts of SOA and service composition have been consolidated and drew more in-
terest. Indeed, in the recent few years, there has been an explosion of the number of
applications published on the Web. In fact, Web business actors are competing to be
first to market by providing applications and providing Application Programming
Interfaces (APIs) through the Web. These APIs are to be reused by other applica-
tions. Moreover, the rise of SOA concept and service composition are more or less
supported by the mitigated success of standardization efforts. Actually, whether
to describe services, publish them on the Web, or compose them, a multitude of
standards (WSDL, UDDI, BPEL, ...) are proposed and supported.

Besides, Web and Telecom convergence has established new business rules that
made the traditional actors in the Telecom world reconsider their strategies in order
to stay competitive and take into account the rapid rise of the WWW business
actors embodied by Google. In this context, Alcatel-Lucent has launched the new
strategy of “Application Enablement”! in order to highlight the resources provided
by the network. This strategy aims to expose network and infrastructure resources
as services to enable the creation of intelligent and innovative applications and
solutions.

In this global context, Alcatel-Lucent implements, at business and research lev-
els, its strategy of “Application Enablement”. Although our interest is the research
aspect, we briefly mention some business initiatives implementing this strategy.
Firstly, in order to bring together an ecosystem of service providers, enterprises,
and developers to drive the creation of innovative applications, Alcatel-Lucent has
launched the “Open API Service”? website. This website provides a platform for

Thttp://www.alcatel-lucent.com /applicationenablement
2http:/ /openapiservice.com

2 Chapter 1. Introduction

developers that facilitates development and testing of new applications through in-
novative APIs bundles coupled with a revenue sharing model that eliminates upfront
costs. To strengthen its position, Alcatel-Lucent went off realizing a series of acqui-
sitions of various technology innovations.

Among these acquisitions, ProgrammableWeb?, the technology industry’s uni-
versal source for Web APIs used by application developers to build Web, mobile,
and other connected applications that serve consumers and the workplace. Another
acquisition is OpenPlug?, a company that offers a widely deployed set of software
tools used to create new mobile handsets and the next generation of mobile applica-
tions. On the basis of those platforms, and associated with developers community
events, many contests and workshops have been performed in order to bring together
not only developers but end-users communities as well, in fast growing applications
ecosystem. All of these innovative service composition technologies and platforms
have been continuously and relentlessly promoted by Alcatel-Lucent to gain accep-
tance within the developers and end-users communities. Developers’ community
events, workshops and contests have been the vehicle through which the promotion
of those platforms occurred. This ultimately led to a complete fast going ecosystem
of the developers to the end-users communities.

At the research level, in order to embed this strategy, the Bell Labs developed
many paradigms, such as “Everything As A Service” (EaaS) that basically considers
any digital resource as a service. For instance, communicating objects, stream-
ing video, or even a network bandwidth are considered as services and could be
composed according to a given logic. In particular, a watchful look is dedicated
to service composition from the end-user perspective in term of environment, use
cases, and applications that may result. The Bell Labs participates in several FEu-
ropean research projects related to this paradigm. As an example, we cite the "Do
It Yourself Smart Experience" and the SERVERY projects. Both projects aim at
facilitating service composition by end-users. Additionally, SERVERY particularity
highlights the services provided by the networks (Telecom). Within this framework,
the SocialCom department, which sponsored the current work, has addressed the
EaaS paradigm from end-user’s social dimension perspective. Indeed, by considering
the proliferation of communication means and socialization of the Web, the user is
immersed in a digital social environment. Precisely, considering service composition
as a social activity takes a special interest. In fact, social networks analysis (SNA)
techniques can be adapted to assist end-users in the service composition within a
Web social environment. This thesis, conducted in this department, attempts to
meet these aspirations by providing theoretical and practical responses beyond the
state of the art.

Shttp://www.programmableweb.com /
“http:/ /www.openplug.com/

1.2. Research context and problem statement 3

1.2 Research context and problem statement

Creating services from scratch, to satisfy customers’ growing demands, needs too
many programmers, costs too much, and takes too long to reach the market. Cre-
ating value-added services by reusing existing ones, known as service composition,
represents an alternative way to meet this increasing demand by allowing to pro-
duce numerous services quickly. Another important goal of service composition is to
make possible services customization according to end-user’s preferences. In other
words, it provides end-users with personalized and user-centric services.

Web services composition has been a key issue in service sciences and heavily in-
vestigated from both industrial and academic perspectives [ter Beek 2007|[Yuan 2007].
Indeed, three main approaches have been defined in the service composition research
community in order to deal with service composition from an end-user perspective:
(i) manual, (ii) automatic, or (iii) semi-automatic approaches. In the first approach,
the user has to compose services by writing entire programs (without any automated
assistance). This program has to embed Web services invocations (calls) according
to the composition logic. In this case, end-users are required to have high pro-
gramming technical skills, which makes this approach very limited. The goal of
the second approach is to automatically build composite services in order to match
end-user’s request which is supposed to be expressed through a user friendly inter-
face or even automatically computed on the basis of information gathered from his
context. This approach has to handle indecision problems [Balbiani 2006], that will
ultimately need to involve the end-user within the composition task. This leads to
the semi-automatic approach, the third and last one, which aims at providing end-
users with an enhanced service composition environment. This environment offers
support for automated processing of some composition tasks where the end-user
operates in a more or less involved manner. Semi-automatic composition, somehow,
comes as an alternative approach by focusing on particular issues, for instance the
difficulty of selecting a relevant service among the many available ones of the same
category.

Initially, Web service composition was reserved for expert users like program-
mers. However, with the emergence of Web 2.0, it is becoming more important
to make the composition process much more end-user friendly. Consequently, the
service composition concept has left the frontiers of the enterprise to reach the Web.
We are particularly interested in this approach as described in the following.

We should specify at this stage that we here address a particular type of users
who have commonly been referred to as the “Net Generation”, “Digital Natives”, or
even “Generation Y”, and are claimed to be very different from their predecessors
in their familiarity with technologies and the regularity with which they use them
[Palfrey 2010], and that we call here end-users. In the Web 2.0 context, one of
the interesting properties of end-users is their ability to produce or participate in
producing content. In fact, the Web 2.0 has brought a set of different technologies
dedicated to end-users with limited technical skills (even in an enterprise context).
It became then very easy for such users to publish or annotate resources (User

4 Chapter 1. Introduction

Generated Content (UGC)), and to stay in touch with their social relatives with the
emergence of social networks and collaborative environments.

As mentioned above, the semi-automatic approach has the main advantage of
making the user participate in creating composite services, which are called Mashups
in the context of Web 2.0. Mashups creation environments, a new paradigm in Web
2.0, enable end-users to easily create Web-based applications and services (Mashups)
that address their specific needs and interests [Liu 2007, Yu 2008|. Several IT and
Web actors provide Mashup creation Web environments (named also Mashup ed-
itors) as easy-to-use service composition tools. The majority of existing Mashup
editors (see section 2.6) offer many user-friendly features in order to assist the end-
user and fit with his limited skills, as highlighted in [Grammel 2008, Ennals 2007a].
These feature include abstraction, visibility, juxtaposability, and community fea-
tures. Those existing features are involved in the pre- and/or post-composition
process, particularly social features like annotating and ranking services. In other
words, those features can be leveraged for the benefit of the service discovery and
selection phases without taking into account the current composition context as
explained in Section 2.6.4. By contrast, in the composition process itself, those
existing features do not currently provide any direct support to end-users. In this
specific area, and despite some existing works that provide support to the composi-
tion process, we believe there is still a gap to fill in order to consolidate and provide
more support to the end-user, especially by benefiting from the social environments
in which the end-user operates. In other words, the objective is to prevent having a
one way task ,i.e. users tagging for simply searching, but restitute that information
and effort to the user in a better way for a better support.

The problem, that we are interested in, is how to facilitate the service compo-
sition by the end-user, characterized with limited technical skills, in the context of
the explosion of the number of services over the Web. So the challenge is to fill the
gap between an environment dedicated to the end-user and the technical complexity
of the composition of Web services (standards, scripts, etc.). In order to address
this general issue, we started by identifying the obstacles that hinder the develop-
ment of service composition in the population of Web end-users and then propose
solutions to each one of them. These challenges are primarily related to: (i) the
level of abstraction of end-user frameworks for service composition, considered as
being low and based on end-user programming concept instead of the combination
of functionality (services); (ii) and the selection of services rendered difficult by their
large number.

Our proposals to answer those issues do not come as monolithic or systemic
solutions but have to be considered as contributions to existing works. Indeed, the
existing works (Chapter 2) are already providing some partial but necessary so-
lutions as building blocks to solve the problems mentioned above. In fact, many
studies have been conducted to establish best practices to follow when designing
Mashup creation environments in terms of basic functionalities, abstraction require-
ments, and GUI design. However, only few studies have focused on facilitating
service selection within the large number of exposed services. Furthermore, after

1.3. Contributions of the thesis 5

reviewing the state of the art, we found that the proposed approaches do not really
take advantage of the Web 2.0 environment in which the user is evolving. Particu-
larly, the social dimension has been neglected although it contains assets of usable
information to facilitate service composition. This constitutes the cornerstone of
our contribution. Regarding this particular point, and in addition to the problems
stated before, the problem we are addressing is:

e What would be the social dimension in this context?

e What wold be the impacts and the benefits the social dimension may bring to
the services?

e In a service composition framework dedicated to end-users, how to leverage
social interactions in a way to enable and facilitate composite services creation?

1.3 Contributions of the thesis

To assist the user in the task of creating a composite service (editing a scheme of
composition), we propose the automatic completion of composition schemes initiated
by the user. The basic idea is accompanying the user into the process of choosing
services for composition by dynamically recommending the most relevant services to
the considered user and the beginning part of his introduced composition schema.
The first contribution of this thesis is the consideration of the social dimension in a
service composition environment in order to facilitate the editing of the composition
schema for end-users. In addition to the interactions that occur in the margins of
the composition process, i.e. the interactions between users and the interactions
between users and services in terms of tagging and rating, the central idea of our
contribution is to consider the activity of creating composite services as a social
activity. For each user, this activity represents the model of his/her behavior which
can be deduced by analyzing the interactions between him /her and the patterns of
composition that he/she has created. The analysis of the behaviors of different users
can reveal the implicit interests between them. Users can therefore be represented in
a social network of interest. Based on this social network, we built a recommendation
system that compute relevant completions to be suggested dynamically to users
when creating a composite service.

Insofar as the user creates composed services within an interactive system, the
interactive recommendation system’s main constraint is the response time needed
to suggest completions. Indeed, to satisfy the constraints of interactivity, the rec-
ommendation system should respond within a reasonable time. Even if the quality
of recommended completions is important, the response time of the recommenda-
tion system has been selected to be the main evaluation criteria. This contribution
has been implemented in two forms based on two completion approaches: the first
approach is the step-by-step completion and the second is the full completion. The
second approach has particularly required the development of new datamining algo-
rithm (frequent pattern mining) for analyzing user-composed services interactions.

6 Chapter 1. Introduction

These algorithms have been compared to and outperformed existing frequent se-
quence and itemsets algorithms using the reference datasets.

The theoretical contributions that we have described above have been imple-
mented in a real end-user service composition environment. Indeed, it was nec-
essary to develop a composite service creation environment to test the proposed
algorithms. The environment developed, called Social Composer (SoCo) takes the
form of a website that allows the creation of Mashups (the advanced form of a
composite service), and offers basic functionalities of existing Mashup creation envi-
ronments such as Yahoo Pipes! or Open Mashup Studio. Basically, this environment
shares more or less the same basic features that others provide: a Graphical User
Interface (GUI), the ability for the end-user to link graphically basic services as
an abstract description of the composed service he wants to create. This abstract
description entered by the user is then compiled into a machine executable language
which invokes services according to the logic described by the user. The main added
feature of SoCo is the step-by-step recommendation functionality that implements
the theatrical approach.

1.4 Manuscript organization

The next chapter (Chapter 2) presents the literature review, and analyses the dif-
ferent existing approaches and solutions. Chapter 3 highlight the social dimension
within the composition process, and introduces the service dynamic recommenda-
tion concept that aims at assisting the user during the task of composition. This
chapter outlines the concepts and basic models of this proposed contribution. Ad-
ditionally, it presents the step-by-step solution as the primarly approach. Chapter
4), presents the description of the full Mashup completion, as a second instantiation
of the dynamic service recommendation concept. This chapter focuses on the eval-
uation of the full Mashup completion approach that is based on a novel frequent
sequence mining algorithm. Chapter 5 describes the proposed SoCo Framework,
its basic features, design and implementation. Finally, our conclusion are stated
in chapter 6 after recapitulating the contributions and obtained results that offer a
starting point for future perspectives of this work.

CHAPTER 2

State of the art

2.1 Introduction

This chapter reviews and analyzes the concepts and existing works related to the
composition of Web services by the end-user, drawing the useful conclusions in order
to position our contributions. First, we review the concept of Web services compo-
sition through the basics of Web Services and Service Oriented Architecture (SOA),
and provide some classifications based on different criteria. Then, we present a de-
tailed review of the composition tools of Web Services by the end-user particularly
Mashups. In that regard, we analyze the few existing mechanisms of assistance and
support to end-users, and point out the lack of such features. Finally, we conclude
by summarizing the main ideas that emerge from the overall analysis of the chapter.

2.2 Web Services

Nowadays, the concept of service is so pervasive that we talk about Science of Ser-
vices [Spohrer 2007]. This domain combines the understanding of organizations
(enterprises or institutions) and humans with business and technological sciences.
In this regard, a service is defined as “Any act or performance that one party can
offer to another that is essentially intangible” |Kotler 1984, in contrast with the
physical industry (manufacturing and agriculture). More widely, Zeitham et al.
|Zeithaml 1996] state that “Services are deeds, Processes and Performance”. By
grouping existing definitions in an synthesized one , we propose the following defi-
nition:

Définition 1 “A service is an intangible provision, composable, expressed in a per-
ceptible manner, which, in a predetermined operating condition, is a source of value
for the consumer and the supplier (service provider)”.

This concept is much more prevalent in the I'T world where people speak of Web
Services. Web Services are platform-independent software, available in distributed
environments such as Internet. They are mostly used in enterprise context for appli-
cation integration and streamlining B2B, where they enable developing applications
by assembling existing Web services translating the Service Oriented Architecture
(SOA) philosophy. Indeed, Web services are the most significant achievement of the
SOA in which applications are self descriptive and low-coupled modules. They are
defined by a set of standards that allow us to describe software interfaces and access

8 Chapter 2. State of the art

Entreprise A

Service A1

Entreprise B

Service B1

Service A1

Service A1 Service B2

(U J

NS

Figure 2.1: Illustration of SOC paradigm through outsourcing example

functions on a network using XML messages [Kirda 2001]. Web Services related un-
derlying standards and technologies (such as WSDL, UDDI) are exposed in section
2.5.1.2. Basically, World Wide Web Consortium (W3C)! has defined Web service
as the following:

Définition 2 “A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface described in
a machine-processable format (specifically WSDL). Other systems interact with the
Web service in a manner prescribed by its description using SOAP messages typically
conveyed using HTTP with an XML serialization in conjunction with other Web-
related standards”.

The next section introduces the SOA concept that relies on Web Services as the
basic building blocks in a structured architecture.

2.3 Service Oriented Computing

The reference architecture SOA is conceptually derived from the Service Oriented
Computing (SOC) paradigm|Papazoglou 2003|. By analogy to operating systems
where the concept of “a file” is omnipresent, the SOC paradigm advocates the use
of the concept of a service (not just Web Services) as a building block in any infor-
mation system project. This paradigm found its dedication in integrating enterprise
applications due to business needs (merge, acquisition, consolidation, outsourcing
...) which is definitly replicating the concept of business services within the IT
world. Further than technological and compatibility constraints, this paradigm goal
is to surpass the silo-based information system model towards a systemic (holistic)

"http://www.w3.org/ TR /ws-gloss/

2.3. Service Oriented Computing 9

Pugchasmg méem‘ory‘
Campasition

process logie

-

Services
processses -
and datasources \ \ < :

Infrastructure -

rassources Packagad

A
Applications Databases

Figure 2.2: A lyered view of SOA Concept

model where inter-system transactions happen seamlessly. Through this paradigm,
one (organization) can offer, find, use, and compose services according to its own
needs and business requirements. Figure 2.1 shows an example of enterprise “A”
outsourcing two services from enterprise “B” thanks to the SOC paradigm. SOC
gives rise to several research issues including the composition of services that forms
the main topic of this thesis.

2.3.1 Service Oriented Architecture

One of the most successful instances of the SOC paradigm is SOA model. SOA
provides a simple model of programming and deployment of applications based on
standards that run through the Web infrastructure. This architecture uses Web
Services as building blocks. Basically, it defines a software architecture in an open
information system, a set of components with well defined roles. This architecture
allows presenting the organizations’ business processes as services based on a mod-
ular architecture where each business basic functionally is represented by a basic
service. The components defined within this architecture allow establishing this in-
formation system structure and integrating its services into workflows that translate
more or less complex business processes. Through a layered view, Figure 2.2 illus-
trates how business processes are represented through the system based on basic
services in an SOA.

The SOA reference architecture was first introduced in [Erl 2005, then was
adopted and integrated by many standardization bodies? (OASIS, OMG, The Open
Group...) relying on the same main principles illustrated in Figure 2.3. As men-
tioned before, the basic notion is a Web Service which represents a function encap-
sulated in a component that can be invoked (queried) using a query consisting of one
or more parameters and providing one or more answers. Ideally each service must
be independent of the others to ensure its reusability and interoperability. Service

2http:/ /www.opengroup.org/onlinepubs /7699909399 /toc.pdf

10

Chapter 2. State of the art

Publish,
unpublished, update

Discover services

CLIENT

(Service Requeste

M

Invoke

Figure 2.3: SOA basic architecture

Oriented Architecture main actors are:

e The service provider (or a third party mandated by him) has in charge the

service creation, deployment, description, and then publication through the
repository (registry) publication interface.

The service repository which hosts the description of services that have been
published by the service provider, and offers the possibility for clients to seek
for a specific service among those available and to access service descriptions.

The client (service consumer) should be able to look for services described in
the service repository, and select those of interest to him. Based on a service
description, a client should be able to invoke this specific service hosted by
the service provider.

Then, SOA defines a set of operations and roles as follows (those defined opera-

tions and roles are based on standards that are described in Section 2.5.1.2)

The description of the service consists of enumerating the input parameters
of the service as well as the output parameters (type of data). The primary
format for describing services is WSDL (Web Services Description Language)
standardized by W3C.

The service publication is to publish in a registry (or repository) services
available to clients (service consumers).

Service discovery includes the ability to search for a service among those that
have been published. The primary standard used is UDDI (Universal Descrip-
tion Discovery and Integration), standardized by OASIS.

The invocation consists in the customer query (connection) and interaction
with the service. The main protocol used for the invocation of services is

SOAP (Simple Object Access Protocol) presented in 2.5.1.2.

2.4. Service Composition 11

The following section describes and analyzes related existing research from the
service composition point of view, the main research topic of our work.

2.4 Service Composition

Creating value-added services by reusing existing ones, which is well known as service
composition, has been a key facet for service delivery both for IT and Telecom
worlds [Yuan 2007]. Numerous services need to be produced quickly because of
the growing demand of customers. Creating services from scratch, to satisfy the
increasing demand, needs too much programmers, costs too much resources, and
results in too long time to market.

In this context, using the services composition approach can offer a good op-
portunity to fix those issues. The purpose of services composition is the reuse of
existing services to create new ones. This optimizes the development cycle and de-
ployment of innovative services. Another important goal of services composition
is to provide the ability to customize services according to end-user’s preferences.
This approach provides end-users by personalized and user-centric services. With
the generalization of the internet, we are witnessing in the recent years the evolution
of the service composition paradigm, initially dedicated to a restricted audience of
IT specialists for business application integration (software architect, developers,),
to a broader audience of Web users.

We can already see the two different dimensions that the composition of services
includes: organization (EAI) and end-users dimensions. From the EAI perspective,
existing conducted researches aim to overcome mainly the technological constraints
by defining a range of standards and protocols for information engineering under
the banner of SOA principles. This dimension dominates the majority of research
works on services composition. The second dimension represents the challenges
in integrating the end-user in the process of composition. This last dimension is
relatively growing and taking more space in the area of services composition. This
evolution is taking place at the end-user level. It is driven by his needs to customize
services with an emphasis of the Internet environment context that encourages users
to share, create and comment on content. Indeed, an innovative concept has recently
emerged in the Internet, concept that allows end-users to create and share their own
services from the composition of other services |Yelmo 2008].

Next, we review the research challenges that rise in the service composition
topic through the main themes of SOA and the two dimensions mentioned before.
Figure 2.4 (from [Papazoglou 2003]) represents an extended architecture of SOA in
an information system. It schematically illustrates the different levels of SOA within
which research contributions have been made. Proposed technologies (standards and
protocols) and formalisms for each challenge are detailed in Section 2.5.

Firstly, service composition involves methods, mechanisms and tools that allow
the expression of needs whether at the enterprise level for business specification, or
at the end-user level. In this regard, numerous formalisms and tools have been pro-

12 Chapter 2. State of the art

Market maker

Service operator

Role actions

performs ———p»
publishes —----- »

Service provider

Service client b i \

Service aggregator

Figure 2.4: The Extended Service Oriented Architecture emphasizing main research
topics

posed. Some of these tools are based on formal models. Business Process Execution
Language (BPEL) is by far the reference in the field but remains unsuitable for the
intended end-user (non-developers). Other tools are listed in Section 2.5.1.2 within
their corresponding category.

After the expression of needs, the process of composition consists of selecting
the most suitable services, and then scheduling (arranging) them in the most appro-
priate schema in order to fit the logic of the expressed need. Once the composition
schema is defined, the resulting composed service needs to be deployed. The de-
ployment could take the form of a choreography or orchestration of services. After
the deployment operation, tools and control measures are implemented to monitor
the various performance indicators of the deployed service. This operation is called
monitoring. The overall composition process is illustrated in Figure 2.5. In the
following, we detail each step from the research point of view.

2.4.1 Main requirements and research topics and challenges in ser-
vices composition field

This subsection covers the service description, publication and discovery; the com-
position description and optimization including services interoperability; and finally
the composed service deployment and monitoring.

2.4.1.1 The description of services

It is clear that the service description plays an important role in the composition
process. A well-described service increases the relevance of its selection as well as the
consistency (correctness) of the resulting composition pattern. Indeed, a service is

2.4. Service Composition 13

——

Needs expression

¥

Services selection

v

Services scheduling

v

e A
Composed service
L depltiment)
4 . "\
Composed service
monitoring
(. J

Figure 2.5: Illustration of the Composition Process steps

represented by its description which correspond to the functional and non-functional
priorities.

The functional properties, as their name suggests, relates to the functionality
delivered by the service. It includes descriptions of the input/output parameters
and logic function (business) that the service performs. For example, a service
whose logic function is sending an SMS has as input two strings: the number of
the recipient and the message body. The description of non-functional properties
is an important aspect in the process of composition. Indeed, this part of the
description indicates for instance the availability of the service, response time, or
even its business model (for example the rates per hours). For instance, for the SMS
service, non-functional properties could be the business model (prices, promotions,
...), and quality of service (the maximum delay of delivering a message, ...).

The functional and nonfunctional descriptions generate non-insignificant com-
plexity in the composition process. Thus, several protocols have been proposed
where the functional aspect is predominant compared to the non-functional aspect.
For example, WSDL (the current reference) is used to express the operations pro-
vided by the service. Web Ontology Language for Service(OWL-S) and Web Service
Modeling Ontology (WSMO) add a layer of semantic description based on either
domain-specific or general ontologies to assist service discovery (see Section 2.5.1.3).

In addition, all proposed protocols and languages (described later) were designed
from the perspective of information systems and are intended to experienced users.
The semantic description, especially tagging techniques, contributes, not only for
better interpretation by machines through reasoning, but for bridging the gap be-
tween service description technologies and end-users as well.

14 Chapter 2. State of the art

2.4.1.2 The publication and discovery of services

Service publication and discovery are two important operations for the composition
process and particularly for the selection of most relevant service. The publishing
operation essentially raises issues of data and information engineering summarized
in databases technologies and access means to populate those databases with ser-
vices description. Service discovery, based on those databases technologies, have to
provide not only access means but should guarantee access to the services descrip-
tions that best fit the selection criteria (the request). This actually constitutes an
optimization problem. From the perspective of SOA specifications, UDDI technol-
ogy with its variants is the reference. Semantic technologies are also an alternative
for optimizing the discovery and selection services in the composition process.

2.4.1.3 The Efficiency of the composition process

The heart of the service composition is the selection and scheduling of services to
match the description of the service we would like to compose. This description
should provide the hints needed to form the composite service schema. Several
approaches and technologies are possible. For this purpose, many standards have
been proposed to explicitly define the description of a composition pattern namely
BPEL4WS, BPML, WSCI. Less explicit tools, based either on textual or graphical
interfaces, have been proposed to allow the definition of the composed service logic.
For the automatic approach, the logic of composition is formed based on information
taken from the user context.

2.4.1.4 Interoperability, execution and monitoring of composite services

Interoperability between services is also a key issue in service composition. Factually,
a composite service is represented by a composition pattern which reflects the logic of
this service. This logic includes the information flow between services and settings.
Two schemes of interoperability are defined in the state of the art of choreography
and orchestration [Peltz 2003| (described below) where services communicate with
each other through standardized languages. The defined composite service has to be
defined according to the interoperability schema. Based on this schema, monitoring
tools are designed to gather information about the composite service running state
and issues that could occur due to the unpredictability of external partner services
or unexpected behavior of composite services [Pistore 2004].

2.5 Taxonomy for services composition

Composition of services in particular, and the Service Oriented Computing in gen-
eral, have been a fairly productive area of research. Contributions made in that area
vary according to addressed issues and approaches. Indeed, and according to the
previous section, these contributions may include data engineering techniques for
service description languages, protocols for publications and discovery operations,

2.5. Taxonomy for services composition 15

optimization of services selection and scheduling, and deployment and monitoring
of composed services. In reality, these contributions are part of more comprehensive
approaches that drive to a more coherent reading of these contributions. We have
therefore identified many perspectives of the problems. Thus, it is possible to ad-
dress the services composition from the system’s perspective. This represents either
semantic, formal or data engineering techniques and technologies used to address
the problem. Another perspective is engendered from the user point of view. Basi-
cally, the user has to define the composition logic in a more or less explicit manner
based on the provided tools. In this scope, automatic, manual or semi-automatic
approaches are identified. The rest of the section details each of these approaches
in order to position our contributions among the state of the art.

2.5.1 System perspective

In contrast to the user’s perspective, the system perspective provides details about
the techniques and mechanisms used to achieve services composition in terms of
service publication/discovery, and scheduling and deployment. In this perspective,
we identify three non-exclusive approaches: Formal approach which provides the
tools and formalisms which allow for example the formal validation or verification
of a number of predefined properties; Structural approach which looks to establish
data structures and access methods in formal operational protocols and languages
that are often used by other approaches; and finally Semantic approach which brings
semantics to improve and optimize composition’s operations mentioned above. The
structural approach.

2.5.1.1 Formal approach

Formal models can be used for automatic or manual modeling of composed services.
The formal description techniques allow the use of methods and tools to make the
development cycle of services more reliable, faster and cheaper. Formalisms for
specifying these services are based on precise and mathematically-based syntaxes
and semantics. Developing models will apply methods and tools in three major
phases of development lifecycle of the service: (i) the verification, (ii) the automatic
or semi-automatic code generation, and (iii) the generation of the test benches.

The objective of the verification phase is to improve the reliability of the process
of developing an implementation by ensuring that the formal model on which the
implementation is based is valide with respect to a given set of properties. These
properties are represented in the form of logical properties or sub-sets of an automata
[Clarke 1999] [Gordon 2000.

The formal test phase is a set of executions of specific test sequences on the
implementation. Test sequences are obtained from the formal model by trying to
cover all aspects of the service compound. Tests can be generated automatically
or semi-automatically based on criteria, goals or assumptions. There are many
stages and types of tests in the development process of a service: the conformance,

16 Chapter 2. State of the art

the interoperability, the unit test, the integration tests. The majority of these
procedures are standardized or described in some reference software development
lifecycle management [Fernandez 1997].

Depending on the degree of modeling, it is possible to generate code for all or
part of the application model. The more semantics modeling language is precise, the
more code generation is complete. For instance, in the UML formalism, semantics
are weak or nonexistent. At best, it will generate the interfaces from the model.
Many modeling languages have been standardized and are based on various concepts
such as automata, the states/transitions systems, temporal logic, interaction, etc.
[Zhao 2006|. Some of them are briefly described in the following.

The Specification and Description Language (SDL) [Broy 1991] is a stan-
dard of the International Telecommunication Union (ITU-T), which aims at describ-
ing communication protocols. Even if the SDL language is a modeling language that
was initially used for communication protocols description, it is more generally used
for modeling real-time applications. This is due to the syntax of the language which
describes a service using the following:

e Description in the form of state machines;
e Exchange of information via asynchronous messages;

e Use of timers;

The ECharts formalism is defined by ATT laboratories. It has been intro-
duced in 1999 and continues to be supported until today. The ECharts objective
is enabling to easily describe modules, services, composite services that are verifi-
able, maintainable and reusable. The modeling aspect is captured by the fact that
ECharts is based on a state machine formalism. In ECharts, transitions may have
priorities. This mechanism allows flexibility in the reuse of models from a given
machine, new transitions can be added in some states with a higher priority than
the existing transitions. These will be executed modifying the behavior of the initial
machine [Bond 2006].

In summary, this approach offers formal methods to verify or test software com-
ponents (services) automatically, and are necessary for the composition of service.
However, those formalisms are too specific and require high technical and mathemat-
ical skills, and therefore could not be directly used by end-users, but can intervene
at underlying layers to ensure some required properties (such as security properties).

2.5.1.2 Structural approach

This approach is more about providing formalisms and tools to describe service
interfaces (inputs/outputs) and behavior in order to compose services and create new
ones. For instance WSDL provides XML-based syntax for describing services and
BPEL provides a framework for orchestrating services. By contrast, formal methods

2.5. Taxonomy for services composition 17

(Automata, Petri Nets) provide tools to improve the reliability of the process of
developing an implementation by ensuring the conformity of the formal model on
which the implementation is based to a given set of properties. We present hereafter
a number of standards in the area of Web services that allow implementing the SOA
concepts |Curbera 2002]. This includes WSDL, SOAP, HTTP, XML and UDDI.

Web Services Description Language (WSDL)[Christensen 2001]: It is a
XML-based language that is used to describe the Web service. In other words, it
describes: what can a web service do, where it is, how to access it, and in which
format. The WSDL provides features for the service naming, the operations naming
(input parameters and responses organized in the form of messages). It also con-
tains detailed information about the used communication protocol (often HTTP),
information on the technique of data encoding and network address in the form of
a URL. It does not contain semantic information about operation, and there is no
notion of order on the invocation process. The client can use SOAP to actually call
one of the operations listed in the WSDL file.

The Universal Description Discovery and Integration (UDDI): The ser-
vice directory (also called repository or registry) is the place where the services are
registered. The SOA concepts can be instantiated by using the standard UDDI? as
service directory. The UDDI is structured in three pages (components): White (in-
formation by name), Yellow (Information by category) and Green (Service provided
by WSDL). It is designed to be interrogated by SOAP messages and to provide
access to service description documents (WSDL).

Simple Object Access Protocol (SOAP)[Box 2000]: This is the technical
container which encapsulates the XML message according to the SOAP exchange
standard. SOAP is itself represented in XML with a header part and a part that
corresponds to the application payload (called Body, but also called Payload). SOAP
header part is optional and generally used to transfer data authentication or session
management. These are aspects that are borne by the underlying protocol. Body
Part in turn is in charge of encoding the names of operations and their parameters
and returned results. The SOAP is typically deployed over HI'TP but can also
operate over SMTP or JMS. The SOAP is also defined by an envelope which allows
describing the specification of the name space. There are also features for error
handling.

Business Process Execution Language (BPEL): The BPEL (actually BPEL4AWS)
has been introduced by OASIS standardization group as the successor of XLANG
and WSFL. The BPEL is an XML representation used as an instantiation of a
service-oriented architecture (SOA) concept. Specifically, in the SOA, the enter-
prise applications are managed from a common platform to enhance dialog between

3http:/ /www.uddi.org

18 Chapter 2. State of the art

applications, and their integration. BPEL organizes the dialog between the different
applications of SOA by invoking basic services according to a predefined schema 2.6.

namespace pns
namespace Ins

“http://example.com/loan-approval/™;
"http://example.com/loan-approval /wsdl/";

it vpe “hitp schemas . spmlsoap. org/wsdl

import 1ServicePT = lns::"loanSeF“icePT.wsdl"j

suppressJoinfFal =
process pns: pprovalProcess {
partn ke custamer = (1lns::loanPartnerlT, loanService, null),
apprat (1ns::loanipprovallT, null, approver),
assessor = {lns::riskissessmentlLT, null, assessor);
try £
parallel ¥
@partType "1ns::loanServicePT" @createlnstance
request = receivelcustamer, requestl;
signalireceive-to-assess, [Srequest.amount < 100807);
signal{receive-to-approval, [Srequest.amount >= 100907);
¥ and {
join{receive-to-assess);
dport Tvpe "1ns::riskAssessmentPT
risk = invokeiassessor, check, request);
signal{assess-to-setliessage, [Srisk.level = 'lon']);
signal{assess-to-approval, [Srisk.lewel != 'lon']);
¥} and A
join(assess-to-setiessage);
approval.accept = “yes™;
signalisetMessage-to-reply);
T} and A
Joinireceive-ta-approval, assess-ta-approvall;
@partType loanspprovalPT

appraval = invoke{approver, approve, request);
signal{approval -to-reply);

¥ and 4
Jjoin{approval-to-reply
spartTipe "1n loanSe

setiessage-to-reply);
cePl"
reply{customer, reguest, approval);

¥

iFault err e

oanPracessFault) { |error|

catch(lns:

aport Ty pe “1ns loanSer . icePT i ault unableToHandleRequest

reply{customer, reqguest, errorl;

Figure 2.6: A simple BPEL script

BPEL is a complete and open standard, with a lot of supporting engines. With-
out serious concurrent, BPEL was quickly accepted by the industry and is now the
dominant technology in the field of Web service composition. It takes the form of
an XML file readable in the engines of business process management. It organizes
the conduct of business processes (workflow). The BPEL file is therefore on matters
such as processing data, sending messages or calling a function. There are two types
of BPEL processes:

e An abstract, which specifies the exchange of messages between the various
parties without specifying the internal behavior of these parties;

e An executable process: that specifies the execution order of activities. Each
activity represents a given process (a Web service) involved in the main com-
position script.

Services Composition using BPEL: The ability to integrate or compose exist-
ing services into new services is the most important functionality provided by SOAs.
The service composition must be created taking into account the maintenance of
services that rely on other services. The SOA offers a homogeneous environment

2.5. Taxonomy for services composition 19

for the composition in a way that all parts of it are respectively described in the
same way and communicating with the same standards for exchanging messages.
The composition of services is achieved through a framework which consists of three
parts:

e Models of composition and language: The composition of services means the
creation of a workflow that defines the order in which the services are invoked,
how the data is transmitted and how the logic is implemented. A composition
model provides a language in which the composite service workflow has to be
written.

e A development environment: This development environment consists of an ed-
itor for the language of composition sach as programming languages Integrated
Develepment Environment (IDE).

e A runtime environment: A composition of services is executed by creating
instances of the composition script and deploying thems in an execution envi-
ronment (application servers).

There are two distinct ways to conceive a composition of services, i.e. the chore-
ography and orchestration:

e Choreography: The choreography describes the collaboration between services
to accomplish a given goal. The control logic of a choreography is distributed.
Each service knows what to do and which service to contact. Choreography
languages allow the description of protocols that the participants have to fol-
low. In |[Turner 2005], two main choreography approaches are defined: (1) the
global model, which describes a protocol from a global view of the messages
exchanged by all parties and (2) the interaction model in which each service de-
scribes its temporal and logical dependencies among the exchanged messages,
which is similar to defining a kind of interface. WS-CDL (WS Choreography
Description Language) adopts the global model, while WSCI and the abstract
BPEL process are based on the interaction model.

e Orchestration: The orchestration of services allows the definition of the se-
quence of services according to a predefined schema, and run through “or-
chestration scripts”. These scripts are often represented by business processes
or workflows inside or outside entreprises. They describe the interactions be-
tween applications by identifying the messages and by connecting the logic and
invocation sequences. Orchestration describes the way in which Web services
can interact together using messages, including the business logic and execu-
tion order. These could include different services from different organizations
and the result could be a model of a long-term transactional and multi-stages
process.

An important difference between orchestration and choreography is that the
orchestration is centralized, i.e. the process is under control from the business

20 Chapter 2. State of the art

perspective. However, the choreography provides a comprehensive and collab-
orative coordination. It describes the role of each participant involved in the
application.

In summary, we have seen approaches which address the composition of services
in terms of techniques, protocols and standards. The fact remains that these proto-
cols and standards all require technical skills that end users do not have. However,
this approach, more practical, results in simpler tools covering all these protocols.
For instance it provides tools for service publication and discovery, or tools to sketch
service composition BPEL scripts (Figure 2.7), that reduce the level of required
technical skills but remains too complex for the end-user.

1: Requast | 2 Request

Eighoy
Travel

T statis

G Raply 3: Reply Status Weh
\portType/ / \

< cimvoke{asne) > > < cimoke(asie)>>

| Got plane ticket cffer){ Gt plare tickst offer
\Jrom Amarcar Arines frm Dalta Arfines

Client

American
Airlines
wehb
Service

4,1 Invoka

4.2, Call-bach|

5.2; Call-hack

Deta
ortTyne Aidines

51 bwoks Service

Example BPEL Process For
Business Travels

Figure 2.7: A schema simplifying a BPEL script

2.5.1.3 Semantic approach

The Semantic Web should enable greater access to services on the Web. Users and
software should be able to discover, invoke, compose, and monitor Web resources
offering particular services and having particular properties, and should be able
to do so with a high degree of automation. Number of common standards were
introduced in the world of Semantic Web services. We describe hereafter two main

ones.

Web Ontology Language for Service(OWL-S) (formerly DAML-S) [Martin 2004]
is a services ontology that provides a solution to these functionalities. The overall
structure of the OWL-S ontology is composed by three main parts: (i) a service
profile describes what the service requires from users and what it gives them; (ii) a
service model specifies how the service works; and (iii) a service grounding gives in-
formation on how to use the service|Milanovic 2004]. The process model is a service
model subclass that describes a service in terms of inputs, outputs, preconditions,
postconditions, and, if necessary, its own subprocesses. In the process model, we

2.5. Taxonomy for services composition 21

can describe composite processes and their dependencies and interactions. OWL-S
also defines three model of processes: atomic, which have no sub-processes; simple,
which are not directly invokable and are used as an abstraction element for either
atomic or composite processes; and composite, which consist of sub-processes.

With respect to BPEL tools, OWL-S efforts are still focused on research issues
and few implementations are currently available. However we can cite the OWL-S
Editor [Elenius 2005] developed by the SRI International as a Protege® plugin, which
provides a graphical environment for editing an OWL-S service resource, the control
flow graph of a process, and “run” (test) a defined process. The OWL-S IDE project
% is also concerned with the development of OWL-S services. The OWL-S IDE
is a plug-in for Eclipse, which attempts to integrate the semantic markup with the
programming environment. Developers can write their Java code in Eclipse, and run
a Java20OWLS tool to generate an OWL-S “skeleton” directly from the Java sources.
The idea of integrating SWSs more closely with the programming environment used
to develop the service implementations is a powerful feature. However it will often be
more useful to generate the semantic markup before the Java (or other) code, as the
semantic descriptions can be seen as a higher level of abstraction of the programming
modules. The OWL-S IDE does not provide any graphical visualization of services
or processes.

Another OWL-S editor is provided by the University of Malta [Scicluna 2004]. It
is a stand-alone program providing WSDL import as well as a graphical editor and
visualization for control flow and data flow. Not being integrated with an ontology
editor, it shares some of the drawbacks of the OWL-S IDE, without gaining the
advantage of programming-language integration.

Web Service Modeling Ontology (WSMO) The Web Services Modeling On-
tology (WSMO) |Roman 2005] shares with OWL-S the vision that ontologies are
essential to supporting mechanisms like automatic discovery, inter-operation, and
composition of Web Services. Similarly to OWL-S, WSMO is an ontology for de-
scribing various aspects related to semantic web services. Moreover the WSMO effort
defines an expressive Web-oriented language, WSML [Lausen 2005|, which provides
a uniform syntax for sub-dialects ranging from description logic to first-order logic.
Like OWL-S, WSMO Web services specifications is based on the service capabil-
ity which consists of inputs, outputs, preconditions, and results. Unlike OWL-S,
WSMO does not provide a notation for building the composite processes in terms
of control flow and data flow. Instead, it focuses on specification of internal and
external choreography and orchestration using an approach based on abstract state
machines (with guarded transitions).

The service basis of WSMO is defined in the same way as the one of OWL-S. This
task is achieved by a mediator, which is a key concept in WSMO. In WSMO’s ap-
proach, mediators perform tasks such as translation between ontologies, or between

“http://protege.stanford.edu/
Shttp:/ /projects.semwebcentral.org/projects /owl-s-ide/, formerly known as CODE

22 Chapter 2. State of the art

the messages produced by one Web service and those expected by another. WSMO
includes a taxonomy of possible mediators that helps to classify the different tasks
mediators are supposed to solve. The definition of mediators in WSMO calls at-
tention to some important translation tasks associated with web services. Not sur-
prisingly, these same translation tasks are needed in support of interactions with
OWL-S described Web Services. Some OWL-S based systems [Paolucci 2004] also
make use of mediator components. However, rather than requiring the existence of
a distinguished type of entity in the Web Services infrastructure, OWL-S takes the
view that mediators are services and as such these mediation services can use the
mechanisms provided by OWL-S for discovery, invocation and composition. Other
distinguishing characteristics include WSMO’s emphasis on the production of a ref-
erence implementation of an execution environment, WSMX, and on the specifica-
tion of mediators (i.e., mapping programs that solve the interoperation problems
between Web Services).

WSMO instances can be created with WSMO Studio [Dimitrov 2007] which is
a real complete and an open source Semantic Web Service and Semantic Business
Process modeling environment. It provides support for WSMO editing with inte-
grated WSML Reasoner, WSML text editor and validator, Choreography designer,
SAWSDL editor for adding semantic annotations to WSDL documents, execution
engine and many other features. Moreover it also provides a Semantic Business Pro-
cess Modeling according to the Business Process Modeling Ontology, a semantically
extended version of BPEL, called BPEL4SWS [Filipowska 2007].

As a conclusion the Semantic approach adds an extra layer on top of the struc-
tural approach (section 2.5.1.2) by integrating the semantic properties within the
operations of description / discovery, and composition of services. With these prop-
erties it is possible to link services together semantically. For instance, it is possible
to propose a schema of composition from a natural language request (see natural
composer in section 2.6.2.2). This is a major step forward from the end-user’s per-
spective. While this approach is valid for very simple patterns of composition, it
is unfortunately not advanced as to allow expressing the logic of composition for
complex cases.

2.5.1.4 Horizontal Vs Vertical compositions

Several recent research efforts have dealt with the Web service composition problem
trying to divide it into two or more sub-problems, introducing vertical /horizontal
service compositions and abstract/concrete services concepts. In [Hassine 2006], au-
thors argue that automatically composing Web services involves two main processes
of composition, the vertical and horizontal compositions. Vertical composition, aims
at finding the “best” combination of abstract Web services, namely, the abstract
workflow to achieve the main objective, while satisfying all restrictions interdepen-
dently. Abstract services refer to each of the sub-tasks (abstract functionality)
when joined together represent the main objective of the composite services. Each
abstract service can be executed by many equivalent Web services called concrete

2.5. Taxonomy for services composition 23

services. Consequently, the horizontal composition goal is to find the “best” concrete
Web service among a set of functionally-equivalent services available on the Web.
Those functionally equivalent services represent a web service community (concept
introduced in [Maamar 2007]). The choice of a concrete Web service is done based
on functional (eg, on inputs) and / or non-functional attributes (eg, related to QoS).
The main advantage of distinguishing between these two processes of composi-
tion is to simplify the Web service composition problem to reduce the computational
complexity. It provides an easier way to consider user intervention, so the user is
able to modify / adapt the abstract workflow where necessary [Greenshpan 2009].
Most of the described work considers Web services from more a system perspec-
tive. These last years, end-users have become the center of different technologies.
Web services could not resist to this phenomena as we explain in the following.

2.5.2 User perspective

With the emergence of the Web 2.0 and the related technologies, composing services
has left the traditional frontiers of enterprises. SOA concepts need to shift to this
new area in order to take into account end-users which represent a new opportunity
of evolution for these concepts. Actually, with the growing number of services
available through the Web, the introduction of the end-users in the loop is taking
more and more importance. In fact, the end-user needs to use a certain kind of
composition in different situations especially that Web 2.0 has brought a set of
technologies making it easy to create or collaborate on new services or use others
services for e.g. Mashups.

This new perspective brings a totally new “breathing space” for research in the
area of services composition. In this section, we discuss of existing research from the
user’s point of view. It will show in particular the limitations of conventional meth-
ods (called manual) because it requires significant skills in languages, formalisms
and protocols related to the composition of services reserved to experienced users
(developers). In addition, this section highlights the limitations of the automatic ap-
proach that decouples the composition from users. This approach is facing complex
problems that are hard to resolve (even undecidable in some cases |[Balbiani 2006]).
The hybrid approach, called semi-automatic, involves the user in the composition
process and represents an interesting alternative. Eventually, it provides tools for
the simplification and abstraction of the different tools and techniques of composi-
tion, and also provides functionalities to support the end-user.

2.5.2.1 Manual Web services composition

The first approach is based on composing manually multiple services by the user.
This operation must be entirely and manually performed by the end-user. Formal
languages like SDL can be used. Alternatively, textual editors and GUI-based tools
that are based on technical protocols and formalisms like BPEL-based IDEs can
also be used. It is not necessary to mention that both alternatives require a high

24 Chapter 2. State of the art

level of technical knowledge and experience which are lacked by the user. Because
the majority of end-users are not programmers, this approach is highly criticized for
requiring an unrealistic technical level on the end-users, which makes dramatically
its use limits.

2.5.2.2 Automatic Web services composition

The second approach is the automatic services composition. This approach aims at
automatically building composite services that are in response to a user context or
request. Except of the request, the end-user does’t provide any more information
to the composition process. We cite below some works that falls with the auto-
matic approach’s category and summarizes the overall landscape of contributions
made in that area. The most common technique used in this approach is based on
the so-called goal-driven service composition, and particularly the inputs/outputs
matching. In other terms, from a final goal definition (set by the user and/or his
context), this technique uses the matching between output and input interfaces data
types in order to define the most likely pair of services that can be composed to-
gether. Step by step, this operation should succeed to building the composition
pattern.

In [Zhang 2003], authors propose a method based on semantic matching between
the input parameters (respectively pre-condition properties) of a service with the
output parameters (respectively the post-condition properties) of its predecessor. In
a similar way [Lécué 2008] introduces a framework for service composition based on
functional aspects, in which services are chained according to their functional de-
scription. The suggested framework uses the Causal Link Matrix (CLM) formalism
in order to facilitate the computation of the final service composition as a semantic
graph.

On another side, context-aware service composition is considered as another
way to automatically compose services. Authors in [Zhovtobryukh 2006] argue that
incorporating context awareness into web service composition mechanisms increases
relevance and the robustness of produced compositions. Zhovtobryukh proposes a
Petri net based approach to enhance core composition mechanisms. Just like final
state automata, other formal modeling tools [Milanovic 2004] are used to perform
automatic service composition.

Full automation of the composition process is not without inconveniences. Prat-
ically, in the absence of the user involvement validation, the automated operation
offers few guarantees about the relevance of the selected and composed services,
and can even lead to an end product that does not match the initial goal.Moreover,
automation includes a significant complexity that can lead to situations of indeci-
sion (in a formal-based approach). Indeed, [Balbiani 2006] shows that checking an
e-service composition model is undecidable in some cases. The authors argue that
undecidability is due to unbounded FIFO queues. The transaction sequential con-
sistency problem provides another perspective for understanding the queue effect,
where independent transactions are allowed to commute.

2.5. Taxonomy for services composition 25

2.5.2.3 Semi-automatic Web services composition

The third approach is the semi-automatic services composition which aims to provide
end-users with an enhanced service creation environment. This environment offers
support for automated processing of the composition where the end-user operates in
a more or less manner. This approach gains more interest as the automated service
composition approach presents serious limitations. The semi-automatic composition
comes to resolve the situation by involving the end-user in the composition process
by addressing particular issues, for instance the difficulty of selecting a relevant
service among the many available.The semi-automatic composition has taken several
forms that evolved over time. A current evolution of semi-automatic composition is
what is now commonly called Mashups |Liu 2007|. This latter evolution incarnates
the emergence of web2.0 and more specifically its User Generated Content(UGC)
aspect.

More generally, based on exiting related works, we can see the emergence of
a multitude of methods for semi-automatic composition that are identified and
axplained hereafter. Generally, from the user perspective, semi-automatic service
composition includes composition frameworks with graphical or textual interfaces,
semantic-based tools like tagging technics, or even social features like sharing or
rating services (both basic and composed). Those characteristics are detailed in
the next section (section 2.6). However, beyond the simple and direct user involve-
ment (participation) through selecting and scheduling services and still from the
user perspective, we have identified three major ways of considering the user in the
composition process. In fact some systems focus on single end-user by tracking his
own interests or preferences and leverage them for his need. An alternative way is
to consider the user as part of a community. consequently, the system tracks the
interest of this community in order to build a list of preferences used to help in the
composition process. A third emerging way, introduced here in this work, is a social
network oriented approach which is based on leveraging the social aspect of how
end-users operates in the service composition environment.Those three approaches
are detailed in the following.

User-centric approach The first kind aims at building a profile of the user or
involve him in the indecision stages by providing tools and interfaces to facilitate
the service composition process. In this approach we can find numerous user-driven
composition tools like in [Lord 2005] where semantic service discovery facilities are
provided based on user preferences. A similar approach is presented in [Law 2007]
where the author introduces a system called Koala (currently Co-Script). This
system, materialized by a “side bar” in the Firefox browser, learns from the user
behavior when processing a web page, and transform sthis behavior into a series of
actions. the system objectives are (i) to parametrize the following abstract actions
and makes them executable; and (ii) to allow end-users to share their composed
actions. For the last case, the script can be modified by other users or adapted to
their profiles. Even if this approach goal is to provide the end-user facilities and

26 Chapter 2. State of the art

support tools for service composition, we may notice that it is not taking advantages
from the whole information available about how users use services in semi-automatic
service composition environment.

Community-centric approach The second kind relies on the knowledge pro-
duced in communities or in specific-domains. A community can be involved in the
process of composition through two ways. The first one is tagging or annotating
basic and composite services in order to provide advanced descriptions of services
(semantics, classification). This first way allows the improvement of the discovery
and selection operations which could be leveraged to support users forward and
downstream the composition process itself (what we name “a priori or posteriori
support”); The second way of community involvement is to extract the generated
knowledge in a community or a specific domain in order to define a set of rules
considered as "best pratices" in this community or specific domain. These rules are
used to build recommendation systems to assist users in the composition process.

In this regard, authors [Chen 2003| provide an interesting introduction of domain-
knowledge for services composition. First, they explain the observed lack in the ser-
vices composition structural approach (UDDI, WSDL, SOAP). In fact, this latter
does not address the issue of coordination and scheduling of services. Several indus-
try standards such as BPEL and WSFL offer solutions for “a priori” composition.
According to the authors, this is unsuited to a domain-specific approach (targeting
a specific area, for instance scientific computing).

The other approach addressing this problem is the semantic approach based
on ontologies witch enables a “sophisticated” service discovery. Some researches
describe the possibility of using this technique of discovery (semantic matching) to
manage the services composition. The lack of this method is the indeterminism that
may arise during the selection phase, which is based on the semantic description of
service functionalities. The authors stress the fact that the e-science domain implies
a certain dynamic processes that the structural and semantic approaches can not
cover. Hence, the domain-specific knowledge is established to support the services
dynamic selection and configuration. Methods such as CommonKADS and OilEd
have been introduced to interpret the domain-specific knowledge provided by experts
in a list of rules and actions. This list allows building a service recommendation
system. Those recommendations can be provided to a software agent or the end-user
through the development environment. This will help to pro-actively improve the
services selection and composition processes.

Coming back to [Chen 2003|, the author proposed a prototype for the specific
domain of engineering design search and optimization (EDSO) for modeling, anal-
ysis and optimization of aerodynamic object. This prototype helps less or more
experienced users to build (compose) a suite of EDSO algorithms represented in
Web service form to meet their specific needs. Another study [DiBernardo 2008|
suggested the same approach for services composition by upgrading this process
using domain specific-knowledge (in this case it refers to a life-science domain).

2.6. Mashups Editors: An End-user Services Composition Environment
27

2.6 Mashups Editors: An End-user Services Composi-
tion Environment

Nowadays, we’re witnessing the proliferation of Web services and APIs exposed
through the Web [Yu 2009b|. Services composition tools propose environment to
take advantage of this proliferation by allowing users to compose services for their
own interest. Beside that, Web2.0 is “cultivating” and promoting a population of
creative users who generate a significant amount of content. However as we have
mentioned before, end-users have no required skills to manipulate Web services.
Thus, services composition platforms and tools aim at providing features and fa-
cilities to help end-users in these operations. These efforts led to the emergence of
the so-called Mashups. As an introduction, a Mashups is defined as a Web appli-
cation created by reusing existing Web resources considered here as services. The
framework and environment used to create a Mashup is a named Mashup editor
(called also Mashup creation environment or Mashup maker). This section presents
existing Mashup frameworks and conducted research studies with a special focus on
features related to support for the end-user.

2.6.1 Mashup and Mashup creation environment

An application that combines content from more than one source into an integrated
experience or service is called a Mashup. The process of “mashup creation” can
be obviously done at the level of a web programming language (e.g. php, java)
by developers, or more easily done in frameworks (e.g. Mashup Editors) by end-
users. Mashup is a more informal service composition. Service developers often have
strong preferences with regards to their service creation environment. For end-users,
a more user-friendly environment is more attractive, but will of course imply less
options|Yu 2007|. Because they are very intuitive, emerging service creation tools
focus on how to enable the end-user himself to create Mashups. For instance we find
in the Internet world Yahoo Pipes ¢, Microsoft Popfly 7, MashMaker [Ennals 2007b],
[Ennals 2007a], MARGMASH [Diaz 2007] and MARMITE [Wong 2007]|, and in the
telecom world eZweb [Soriano 2007]. This section introduces a brief description of
each environment, whereas a entire section is the chapter 5 is allocated to describe
the common internal architecture of a Mashup creation environment.

2.6.2 Overview of major Mashup creation environment

Mashups creation platforms supports the user in integrating and orchestrating ser-
vices for his final composite application and provides an abstract layer that hides
the complexity of the underlying process model (e.g. BPEL). The growing visual
programming paradigm (graphical) of Mashups is the most common way to meet
those requirements. Other ways are the description of the processes via a natural

%Yahoo Pipes, http://pipes.yahoo.com /pipes/
"Microsoft Popfly, It was discontinued on August 24, 2009

28 Chapter 2. State of the art

readable rule language occasionally called Controlled Natural Language (CNL) or
the implementation of a timeline that describes the user interaction on the basis
of their chronological appearance. In order to come to a comprehensive solution
for the modeling process several other aspects like event-handling, dependencies
between user interaction or message flows have to be considered.

2.6.2.1 Graphical editor

The Graphical mashups editor tool allows an end-user to create simple mashups by
using the graphical user interface for drawing the workflow describing the logic of
the compiste service. The end-user can simply drag/drop boxes representing the
available building blocks (representing Web services), and connect them to indicate
the flow dependencies.

Yahoo pipes! Yahoo Pipes is a Web application that consists of a graphical tool
that provides end-users with the service composition capabilities (Mashup). Figure
2.8 is a screenshot of the Yahoo Pipes tool. The left side of the figure is the service
database, and the right side is the composite service created by the end-user. The
composite service is defined by a set of chained input/output boxes which represent
service interfaces, and wires which represent input/output connection between these
interfaces.

%Sipes Copy of Just Listed Craigsiist Apartments

Lajout Bxpand Al Collapse Al Back to My Pipes | New Save | Saveacopy Properties
~Sowces ~

(Feteh G&V)

(Feed Auto-
[C

Name: EnterCity
Prompt. City

4| Base

String

O Path elements
© hitpst

Position: nuimbe, D o
Default stoay

Debug: soay

© indexrss

craigslistorg

i

Gongle Base
ahoo! Local)
Vahoo Searth)

» User inpurs

» Operators

»ui

» Stiing

» Date

» Location

Query parameters

Y

Debugger: Pipe Output (15 items)
Tirne taker: 1.903201s Refresh
' Remodeled. Top Floor. &: Super Sunny Apartment in 4-unit Victorian (potrero hill) $2500 2bd

te 2BD/2BTH Abode! (DOVN-TOWN) $1600
deled Condo in a Great Locall (corte m) $1350 2bd
e 3 i 199 (1 P
! Gorgeous Brand Hi e Master bedroom for remt (hercu. pinole. san pablo. el sob) $798
Today Only Best Ever == Hust See == (downtown ~ 7 van ness) $1675
) Beautiful 1 bedroom home available now! (lover pac hts) $1384 lbd
' Beautiful apartments ready for immediate occupancy. (samta rosa)
47 more...

'€

Figure 2.8: HousingMaps programmed in Yahoo! Pipes

MashMaker is a Firefox plug-in which enables the end-user to create his own
Mashup from existing web sites. The most important innovation here is the data
extraction from web pages that contain unstructured data. Figure 2.9 shows a
“Facebook” web page in which Mashmaker component extracts automatically all
addresses, names and phone numbers. Thereafter, if the user wants to display these
addresses in a Map, he just has to drag/drop it in a mapping service (such as Yahoo
Maps or Google Maps).

2.6. Mashups Editors: An End-user Services Composition Environment

29
[D e T E=F7
Ba e e Wgiory Beckmany Tess Men e
@i o D B ot o el G =

B e e | Tkl)

S HOr e . Aok DomDI et 1 JTIRET 12 44T
oot PR p—
ampuyer Dt

polfical ey et

& ARFriends « St lpdites

Seardh -
| e S e i — St I i
S - TS
I Phoiss I v e s g gt e
M oo S 5 o s |
. i -
2] - Saruh Pt oo do e WD e oreee.
Sr— A o -
Bane o

Figure 2.9: MashMaker example (over Facebook Webpage)

MARMITE is another framework which enables the end-user to create their own
Mashup with an incremental execution; users can execute composite service step by
step and see the intermediate results (see Figure 2.10). It is implemented as a
Firefox plug-in too. Such as in Yahoo Pipes!, Marmite composite services are a set
of boxes (called operators) chained with wires. However, some services can have
alternative associated displays such as a map or a video player. Users can link the
output of a given service with the input of an intended successor service. MARMITE
authors have tested their framework on a sample of six persons [Wong 2007|, where
two of them are experienced programmers, and two others have experience with
spdreadsheet but not with programming while the remaining two others have no
experience with neither programming nor spreadsheet. As a result, three out of six
did not succeed to build a composite service and those who have succeeded are those
who have knowledgeable in development and one of those who have spreadsheet
experience.

Open Mashups Studio The Open Mashups Studio ® is a Mashup creation en-
vironment introduced by Orange Labs. It is based on Open Mashups Modeling
(OMM). OMM is a domain specific language dedicated to applications based on
component assembly. It uses a data flow paradigm to connect components and a
very simple type system to represent exchanged data. As figure 2.11 shows, Open

Shttp://www.open-mashups.org/

30 Chapter 2. State of the art

o - Worklow ______________ Step 4: Yahoo Maps!
BEm— () > Se'oct Links From Page g SROW. | vahoo! Map 18]
v Search...
v ForEvents... 00 S e
onEVDB
on Upcoming org. $ T
v Froma Web Page.. @ > Extract Address o Brighton “eghts
Select Links
v Extract... it S
All Links e o ° cks
A Table * o
From Each Web Page EXtact... 3
R - @) v Geocode g e §
ABie. w Inputs
A Street Address e
v Address | C: Sreet Address %) i
Date City D: City) m;:" S
4 Time State E: State [
v Convert... o
© Geocode Geocode service Yahoo! Geocode T3] » 5
v Displayon...] v motsr wt
Yahoo = ; 5 s ot
- Latiide | new column 3 i 9 oo s
Add some addresses “ Longiude new column 1) - [ouen ek 2 2006 Hhast nc
Displays: _view resuits for this step

00

¥
@) v YahooMaps! g

+ g

Latitude F: Latitude 5
Longiude G:Longinds %)
000

Figure 2.10: HousingMaps programmed in MARMITE

Mashups Studio is a Firefox plug-in and provides a similar environment as Yahoo
pipes or Marmite. In addition, Open Mashups Studio users can specify the Mashup
interface.

Open Mashupsts wdia = pkes i=[=)|

.
Fle Edit View Repository Help
CE® avas
() TRTSITRCT N Ok -~ |
Widgets
] — =
Positioning e =
(%)= @ e

.t Ak
Inputs. L

S

|

(TIA
(e

S

Sendas MMSto: | 33630497522 | send |

) i— D
Welcome to Open Mashups Studio Click here for help

Figure 2.11: Open Mashups Studio Screenshot

2.6.2.2 Natural language Editor

The introduction of the semantic Web paradigm in service-oriented architectures
enables explicit representation and reasoning about services, via a semantically rich
description of their operations. Natural Language Composition focuses on the de-
velopment of interactive service composition tools which use a textual user interface
based on a natural language. For instance, |[Bosca 2005] introduces an approach
towards service selection and composition based upon the interpretation of user

2.6. Mashups Editors: An End-user Services Composition Environment
31

requests expressed through an informal human-computer interaction interface that
employs a controlled (restricted) natural language.

Natural Language Composer First introduced in [Shiaa 2008| then furthered in
the SERVERY? project, The Natural Language Composer is used to create compos-
ite services based on the interpretation of a service request done using a restricted
natural language. This interpretation is obviously constrained by the number of
service components that are annotated for natural language usage. An example of
sentence that can be interpreted is “Send by SMS Paris weather translated in En-
glish” which will result in on-the-fly creation of a service that will sequence three
basic services: retrieval of the weather forecast from Paris, translation of a given
text in English and finally SMS sending. Four main steps are done to make the
system capable of interpreting such sentences and then being able to generate a
service that can be executed:

1. Based on Natural Language Annotation of services in the system, the parsing
of sentences is generally recursive in order to analyse then find a possible
candidate among the list of existing annotated services;

2. Construction of the interpretation graph (in an intermediate formalism);

3. Based on interpretation graph, the system generates the orchestration script
in order to create a sequence of service calls and the arguments appropriately
assigned;

4. Deploying the script into a given execution technology.

Fend Shis to mamie with Paris weather

translation + call +

ynomym + o ~ filter +

Figure 2.12: Interface of the Natural Language Composer

“http:/ /projects.celtic-initiative.org/servery /

32 Chapter 2. State of the art

Ubiquity (from Mozilla labs [Erlewine |), an add-on for Mozilla Firefox 1, is an
experimental interface based on natural language input. It is a collection of quick
and easy natural-language-derived commands that act as Mashups of web services,
thus allowing users to get information and relate it to current and other webpages.
Users requests are based on restricted natural language command which can be
extended by the community (see figure 2.13). Basically, Ubiquity commands are
small chunks of javascript (as an intermediate scripting language) which can be
interfaced with Web services.

ity

GETINVOLVED ABO|

ench translation;

links Y L‘Elécs
e ubiquity
ery

bvs—anly links o them

& o mobile devices, whers limited capability and fidelity makes this anerous or

#ost people do not ha easy way to manage the of the Web ta simplify their

task at hand, For they are left trundling betwesn web sites, perfarming common

tasks resulting in frustration and wasted time.

Figure 2.13: Exemple of user’s request using Ubiquity

2.6.3 General properties analysis

In [Yu 2008], authors present an overview of tools and environments for creating
Mashup to identify research issues. The authors point and explain the difference
between Mashup development and classic component-based application develop-
ment. The Mashup targets specific situational needs (typically a use case). To per-
form this analysis, the authors selected some Mashup creation environments (Yahoo
Pipes, Google Mashup Editor, Microsoft Popfly ...). They propose to review those
tools instantiated in a particular Mashup sort that is the “housing maps applica-
tion”. They identify the conceptual and practical features that will help to structure
the analysis. At the conceptual level, two paradigms are distinguished: (i) the ba-
sic components that will be used to create a Mashup, which could be either data,
application logic or user interface. this classification results in a layered view of
Mashups creation that will include three layers: presentation layer (interface), data
layer and functional processes layer. (ii) The second identified paradigm is the com-
position logic, in other words how the components are assembled. This operation

Ohttps: / /mozillalabs.com /ubiquity/

2.6. Mashups Editors: An End-user Services Composition Environment
33

depends on several parameters which include: the output type (data, application
logic or interface), the orchestration style (flow-based, event-based or layout-based),
inter-component communication (one -to-one interface, centralized communication
media), and the composition execution (instance-based or continuous).

At the Mashup creation environment level, several characteristics have been iden-
tified and classified here through two concepts: (i) the user interface, which can be
browser-based (sometimes plug-ins) is characterized by an environment type (drag
& drop, textual or hybrid) in order to provide facilities for the user who could be a
web-user, an advanced user, or a programmer. (ii) The execution environment is an
important parameter to consider since it stands for delivering Mashups for users. It
is characterized by the deployment type (hosting: local, Mashup provider or a third
party), the integration operation which may occur on the server side (engine-based
or webapp- based implementation style) or on the client side (for instance within
the browser via JavaScript), and finally the scalability of the execution environment
(number of data sources, composition models or users). This structured analysis
allows a detailed comparison of different Mashup makers according to various cri-
teria. However, unlike [Grammel 2008]|, this analysis mainly highlights the Mashup
environment technical aspects from the service providers’ viewpoint. It helps to
identify the technical issues to consider when implementing a Mashup maker for
social networking matter (e.g. scalability). Nevertheless, this study does not pro-
vide elements that help to identify requirements that each Mashup framework has
to meet to become as user-friendly as possible.

In [Hoyer 2008], a similar study highlighted that Mashup creation can be separated
into several conceptual levels. This has introduced the concept of “lightweight com-
position” which is just another name, from the end-user point of view, for Mashup
creation process. Furthermore, authors have focused on Mashup makers with a spe-
cial focus on community-related and social networks properties which they named
“mass collaboration” features.

From the end-user point of view, Grammel et al. [Grammel 2008] investigated tools
and environments for creating Mashups which they called “Mashup makers”. This
investigation provided an advanced analysis about the main characteristics and
properties provided by these environments from the end-user point of view. Au-
thors define a Mashup as “an end-user driven recombination of web-based data and
functionalities”. In this study, six Mashup makers are selected and classified into
three categories: information Mashup, process Mashup and Web site customization.
Seven dimensions were defined in order to analyze the selected Mashup makers, in-
cluding the support for community features dimension which represents a particular
interest in our context. Indeed, community members provide elements that can be
reused by other members, create examples, and help each other. Some features were
identified and classified as: (i) Mashups sharing, (ii) collaborative classification, no-
tation or marking (iii) exchanges and discussion forums. Accordingly, the proposed
analysis can be applied to the social network (of friends) case. For instance, this
analysis could be useful for the specification of a “Mashup maker” in order to opti-
mize end-users support features. We may notice that the authors have highlighted

34 Chapter 2. State of the art

the need to introduce the social networking features at the heart of the Mashup
creation process.

2.6.4 End-user support

After reviewing the general properties of Mashup creation environment, the next
section highlights, based on existing studies, the growing need of support features
to the end-users in order to help them composing services. Table 2.1 summaries the
main features provided by the Mashup creation environments cited above. Those
features could potentially be used as support for end-users at several levels. More-
over, in order to facilitate service composition for end-users, current Mashup editors
provide as abstraction layer that hides the technical specifications and simplifies
them for the users. For example: providing a web service with abstract description
in a form of input/output black box, and a composed service in a form of a graphic
flow or sequence of services. Most Mashup editors also allow the reuse of created
composed services as building blocks to compose other services. In addition, to
help end-users to compose services, Mashup creation environments provide learning
materials as videos, tutorials, and forums for assistance. Learning by example is
also an approach that allows new users to reuse and edit Mashups that have been
created by others. We categorize the features listed above as indirect support for
users in the process of composition.

To provide direct assistance to end-users, most Mashup editors tend to ease the
end-user intervention in the process of composition. This intervention can take place
at three levels:

e Pre-composition support: by facilitating the selection of services by features
that are either service categorization, textual or contextual selection.

e Post-composition support: by providing the ability to tag or rate basic services.
This information is used later on by recommendation systems (collaborative
filtering or content-based) at the pre-composition phase in order to allow the
automatic selection of services that fit with users’ preferences.

e In-composition support (at the services scheduling phase): For this case, no
direct features have been identified in the current Mashup editors that help
end-users in selecting services when he is creating a composite service (con-
necting services).

Nevertheless , several studies have shown the potential of exploiting the inter-
actions of users with services as basis for supporting features to the end-user. In
the same direction, through a use-case approach, Floyd et al. [Floyd 2007| high-
light the APIs proliferation on the Web in parallel with the number of creative Web
users. The study shows the benefits of the collaboration between end-users and
developers that combines the innovation and creativity of end-users with the exper-
tise of developers. Automating this collaboration is the important challenge we are
looking to tackle. In that regard, an interesting study [Jones 2009| describes the

2.7. Discussion 35

Table 2.1: Summary of the most relevant features offered by some Mashups envi-
ronments

-

0

=
Q =~

! R

0

| &| 2| E
o= A %) %)
oh © ©
Sl sl 2| =
=| »| 8] 3
Abstraction Level Reuse of complete Mashup Y Y Y Y
Visual data-flow languages Y Y Y N
Learning support Y Y Y Y
Sharing Mashups Y Y Y Y
Taggi Y Y Y Y
Community features Rzgig;:g v v v N
Text-Based Search Y Y Y N
Discovery and selection Categorization of services Y Y Y N
Context Y N N N

interactions of Yahoo! Pipes’ users. This can be used to extract social structures
based on an analysis of user interactions. Furthermore, those users interact with
services through the Mashups they create. Soriano et al. [Soriano 2008| empha-
sizes the growing importance of the user-service relationship in a Service Oriented
Architecture for composing services. In fact, the authors introduce EZWeb, an en-
vironment for sharing Mashups between colleagues, as a basis for co-production in
an enterprise context. In addition, [Maamar 2009] emphasizes the phenomenon of
what they call “social interaction” between services. In fact, the aspects of trust
and reliability between services may impact the service selection for composition.
Yu and Woodard [Yu 2009b| propose a very interesting view of the ecosystem of
Mashups. This study, on the Programmableweb API repository'!, has truly shown
that utilization of services follows a long-tail effect (power-law distribution), one
of the major and interesting properties in social networks [Wasserman 1994]. We
believe that service recommendation is a solution to spread expertise between users
to enable them composing services.

2.7 Discussion

We presented in this chapter a literature review of web services, service composition
and end-user oriented composition environments (Mashup editors). In fact, we
have reviewed the concepts of service, SOA and Web services composition and key

"http://programmableweb.com

36 Chapter 2. State of the art

concepts that they emerge from. We classified the different approaches to service
composition either from system or end-user perspectives. This review has allowed us
to highlight the main issues in the service composition research area and particularly
focus on the exact issues we have identified as central in our work.

Furthermore, we have pointed out the concepts of SOC and composition of ser-
vices, which were originally developed for enterprise application integration, and
that have recently evolved to end-users, typically Web users. Those end-users are
characterized by limited technical and programming skills, but are nevertheless pro-
ducing Web content. In fact, in the Web 2.0 context, one of the interesting property
of end-users is their ability to produce or participate in producing content. The
Web 2.0 has brought a set of different technologies dedicated for end-users (even in
an enterprise context) so it becomes very easy for such users to publish or annotate
resources (User Generated Content (UGC)). Furthermore, those end-users are tying
new relationships based on interests to the generated content, and stay in touch with
their social relatives through online social networks and collaborative environments.
Consequently, the composition of services should nowadays to be driven by end-user
needs, as it is encouraged by online environments of sharing and social interactions
through the Internet.

Mashup editors have emerged as an answer to this evolution in order to overcome
the technical complexity that the end-users were facing and to ease the composi-
tion process for them. Actually, through this mashup concept, existing works have
provided (i) abstraction features such as visual workflow language, and (ii) commu-
nity features such as rating and tagging, and (iii) service selection facilities such as
text-based search. Even if those features are absolutly necessary, we hardly believe
that they are sufficient. In particular, during the composition process itself, and as
we have pointed out, existing features do not currently provide any direct support
to end-users. In fact, The users have to manually select and connect all services
in order to compose them according to specific requirements and the composition
logic. This phase of the composition represents a relatively painful phase of the
process due to the lack of support it is characterized with. This is the key issue that
we are addressing in this thesis, the gap we are proposing to fill, and to which we
are providing solutions in order to offer more and more support to end-users, and
therefore contributing to the semi-automatic services composition approach. Some
recent interesting works, that are being explored including ours, promote contin-
uously assistance of the end-user when he is composing services. Next chapters
introduce the concept of dynamic service recommendation original approach that
is the proposed answer to the key issue mentioned above. It represents the main
contributions of this work that is based on the introduction of the social dimension
within the composition process.

CHAPTER 3

Service Dynamic
Recommendation For End-User
Support

3.1 Introduction

The main idea, as introduced in Chapter 1, consists of providing a framework for
creating a Mashup driven composite service. This framework must provide basic
features essential to compose a service, namely (i) basic services directory exposed
through the framework (whether services are deployed locally or remotely); (ii) a user
graphical interface to express the logic of the Mashup (composite service schema);
and (iii) a platform to translate the introduced logic into an executable script repre-
senting the composed service which will then be deployed in a runtime environment.
The framework, its basic features, and their implementation are described in Chap-
ter 5. In addition to basic functionalities, we are committed to fully assist the end
user in the task of composition. The main reason behind this commitment is the
lack of expertise of the end user, and the growing number of services that are ex-
posed. Our contribution consists of a dynamic recommendation service feature to
assist the user during the task of composition. This chapter outlines the concepts
and basic models of this proposed contribution. The model of completion followed
by the proposed recommendation feature can be realized through two projections or
instantiations. The first one, a step-by-step completion, is described and evaluated
in this chapter, whereas the second one, a full Mashup completion, is described in
Chapter 4.

Even if the dynamic recommendation is not a new concept by itself, the idea
of dynamically recommending services in the context of Mashup creation environ-
ment is a novel feature. However, its novelty does not exclude the fact that it still
needs to comply with a couple of requirements derived from Mashup creation en-
vironment and recommender systems requirements. Current related works, such as
[Ennals 2007a] and |Greenshpan 2009], do highlight minimum set of these require-
ments that are summarized in two points: (i) ensure successful user experience in a
user-centric interactive framework by optimizing the system response time, and (ii)
improve the quality of the recommendation to meet the end user’s actual needs.

Before presenting the adopted recommendation algorithm and its variants based
on what we named the recommendation confidence metric in Section 3.8, several
entities and concepts have to be introduced and presented in detail. Consequently,

3&hapter 3. Service Dynamic Recommendation For End-User Support

Section 3.2 briefly reviews the recommender system related work. Section 3.3 high-
lights both the emergence and importance of the social dimension in the Web 2.0
context. It simultaneously introduces the idea of social networks based dynamic
recommendation that preludes and justifies the path that led to the design of the
algorithm. Section 3.4 details the construction of the implicit social graph which
constitutes the foundation model of the algorithm. Section 3.6 explains the con-
siderations (assumptions and simplifications) adopted when the dynamic service
algorithm is instantiated within the Social Composer (SoCo) framework.

3.2 Brief overview of recommendation systems

The field of recommender systems, with its multiple applications, is a well estab-
lished research area. Generally, all recommender systems are a variant or hybrid
of the two conventional approaches: (i)collaborative filtering recommender, and (ii)
content-based recommender.

In particular, applications of the recommendation for the selection of services in
a semi-automatic service composition context are a variant of previously mentioned
approaches. However, as we detailed in Section 2.5.2.3, when considering service
selection recommender systems from the end user point of view, existing applications
take two approaches: user-centric and community-centric. In fact some systems
focus on a single end-user by tracking his own interests and/or preferences and
leveraging it for his needs. An alternative way is to consider the user as part of a
community; As this will be described in the following.

3.3 Providing support to end-user

The main features of the Social Composer (Web service composition framework de-
tailed in Chapter 5) are intended to assist end-users in the composition process by
providing support when selecting a service. This support is based on the current
configuration of composition and user’s social neighbors composition behavior. To
help the user in the composition process, SoCo includes two main steps represented
by: (i) a social knowledge extraction and modeling component and (ii) a recommen-
dation manager as depicted in Figure 3.1

Figure 3.1 illustrates the general architecture of the framework. The first step
consists in extracting and modeling the existing “knowledge” in a social network.
Knowledge here stands for information which can be used in the context of services
composition, e.g. which person uses which service in which composition and at
which rate. This knowledge is captured in order to define and construct a set of
rules and actions. These rules and actions describe in fact the composition behaviors
that could be used to improve and customize a incomplete part of a particular
composition schema in relation to a particular user. This operation is the role of
the second component (recommendation manager).

3.3. Providing support to end-user 39

Figure 3.1: General architecture of SoCo framework for social network integration
in the composition process

The main purpose of our framework is to support user in the process of composi-
tion. This consists of the dynamic recommendation of services as the user composes
new services by linking existing ones. This feature must meet a certain number of
requirements to ensure an efficient interactive user experience. Regarding interac-
tive application requirement [Shneiderman 1984, end-users prefer a response time
of less than one second. This implies the following constraint: the recommenda-
tion engine used in SoCo has to provide suggestions (recommendations) within the
allotted timeframe of one second.

3.3.1 Uses cases

We discuss in this section some illustrative use-cases which help expose the different
dimensions of the proposed framework. The first type of use cases groups the case
of Mashup creation by typical Web end-users who seek to automate some tasks.
The second type of use cases groups the cases of Mashup creation in a business
context (enterprise environment) where service composition is seen as an easy-to-
use workflow creation.

3.3.1.1 Web end-user typical use cases

The ”Cinema fan” use case Consider Alice, a young fan of movies and cinema.
To plan her cinema outings, Alice generally performs several tasks before selecting
the movie she is going to watch. For instance, she needs to consult many Web pages
to get information about the quality of a particular movie, ask her friends, read the
different comments about the movies to find out whether the movie is related to
her preferences, or locate a good cinema where she can watch the movie. This is

4@ hapter 3. Service Dynamic Recommendation For End-User Support

generally time and effort consuming. Alice is novice in services composition even
if she already uses Mashup editors; but she has a good social network that could
help her in the operation of selecting and combining services. However, her friends
are generally not available to help her in building her service (Mashup application).
The SoCo system can verily be of a great interest for Alice in this situation.

Thus, Alice decides to create a Mashup that will automate this kind of activity
using the SoCo in order to take advantage of the Mashup created by her social rela-
tives. These Mashups could gives some hints of the best practices when composing
services and are effectively used to provide some dynamic suggestions to Alice. Alice
first searches for relevant services related to cinema by querying the services repos-
itory. She finds out that FilmAduviser, a service that returns movies suggestions on
the basis of a set of users preferences, is available for use. She selects the service
and drops it into the SoCo editing area. Simultaneously, the recommendation sys-
tem receives a query for finding services that can possibly come after the currently
selected service (i.e., FilmAdviser).

Using the different information the system has about, for instance, the social
relations of Alice, the usage rate of the different services by that social network,
etc. SoCo recommends Cine-Map-Calendar, a service which is generally used in the
social network just after FilmAdviser. Cine-Calendar is a service which considers a
movie as an input and gives an output of the movie and its different planning during
the Week. After that, SoCo proposes another service, Cine-Map, which, given the
title of a movie and a specific city, displays on a map the different cinemas where
that movie is shown in that city. The system also recommends the use of a service
that allows Alice to finally buy cinema tickets. Alice prefers to buy the tickets when
she gets to the cinema and thus she didn’t use that service.

To complete the chain, SoCo recommends to Alice the use of the RDVSchedular
service which allows a group of people to select available time slots. Alice accepts
the suggestion of the system but will additionally need a reminder for that event.
This is a typical situation when planning and event and is frequent in the social
network of Alice. Thus, SoCo recommends SMSReminder as a service that sends
an SMS reminder to participants of an event. Satisfied, Alice decides to stop at this
level and initiates the deployment the resulting composed service.

The sequence composition use-case Consider three users Alice, Bob, and
Carol who compose services using their favorite Mashup creation environment.
Alice and Bob, who are more or less familiar to composing services, create var-
ious Mashups. In order to find the definition of a word in English, translate
it into French and then email it, Alice creates a Mashup composed as follows:
Dictionary — Translator — Email. Moreover, in order to find the weather fore-
cast, translate it and receive it by SMS, Alice creates a new Mashup as follows:
Weather — Translator — SMS. On his side, Bob would like to create a Mashup
that finds the weather description from his location, send it on his blog, and then
post a tiny URL of his blog on his Twitter profile. Thus, he creates the following

3.3. Providing support to end-user 41

Mashups: Mylocation — Weather — BlogPost — tinyU RL — PostTwitter.

Carol would like now to create a new Mashup based on a weather forecast ser-
vice. Once she selects the weather service, she gets a list of completions. Each
completion is a sequence (one or more linearly connected services) which when con-
nected to that weather service forms a complete Mashup. These completions are
based on other users’ usage and are listed in the following: (i) — T'ranslator, (ii)
— Translator — Email, (iii) — BlogPost, (iv) — BlogPost — tinyU RL, and (v)
— BlogPost — tinyURL — PostTwitter. However, since she doesn’t really have
experience with these services, Carol wishes that the completion list would prefer-
entially rank completions related to her social relatives. If we suppose that Carol
is socially close to Alice (shares more interest with her), it is more likely that the
system would prefer a recommendation originating from Alice rather than from the
whole community. Suppose that Carol selected the completion (i) — Translator.
After her selection, the completion list is updated dynamically. It will offer, follow-
ing to Weather — Translator two completions: — sendSM .S or — Email, and so
on until Carol chooses to terminate the Mashup.

3.3.1.2 Business context type use cases

Conference attending workflow use case The enterprise is a goldmine for so-
cial networking applications. Even if this environment appears well organized and
hierarchical, it hides more complex social interactions and organizations. An en-
terprise environment is also interesting regarding privacy issues, as it is controlled
and managed and knowing that interactions (typically e-mails exchange) between
employees are supposedly dealing with company-related issues. It is therefore rele-
vant to analyze the interactions and define the profiles of employees and the links
between them. The profiles of employees represent their expertise areas and skills,
when the links between them represent the formal and informal information flows
and exchanges context.

We present hereafter a use case that occurs frequently in companies especially for
new procedures for which no internal processes are defined and may involve several
departments of the company. Participating in an external conference or workshop
is a relevant example. Bob is an employee and would like to attend a conference or
workshop. Bob decides to create a Mashup with SoCo framework to manage this
special need and shares his experience with his colleagues.

On the basis of the process already defined in the company by other colleagues,
SoCo assists Bob in the creation of his Mashup by proposing and recommending
services. First, Bob selects the service that provided information about the con-
ference (date, location, prices, ...). Soco proposes two services: ManagerValidation
and TravelBooking with a stronger recommendation for ManagerValidation. Bob
decides to choose ManagerValidation. As a result, SoCo recommends three services:
VisaApplication, TravelBooking, and HotelBooking. Bob chooses TravelBooking then
HotelBooking. The system continues to propose other services as a service that al-
lows employees claim their travel expenses, but Bob decides to built and share this

4Zhapter 3. Service Dynamic Recommendation For End-User Support

Mashup on the company Web 2.0 portal.

Meeting report composed service use case In a business context, Bob is an
employee and often makes phone calls to his partners for meeting. At each end of a
meeting, he has to remember the various discussed topics and draft a report about
those conducted phone calls. Bob decides to use SoCo in order to automate this task.
He selects the first service voice call. At this level, SoCo recommendation system
processes or has already processed compositions already made by Bob’s colleagues
and releases a recommendation list that proposes to use other services following the
current voice call service. Thus, SoCo proposes to use a restricted list of services
redirection service (redirect the call in case of failure), SensSMS (send an SMS
when the call is done), Calendar updating (to report on the agenda that the call has
been done), speech-to-text followed by eMail (in order to transcribe the call in text
format then emailed), or speech-to-text followed by SendSMS (in order to transcribe
the call in text format and then sent it by SMS).

3.4 Social-based approach

A social network can not be viewed as a community (see community approach in the
previous section). The major difference is that community describes a gathering of
individuals around “one” common topic of interest, generating communities special-
izing in particular areas (what justifies this approach). In contrast, social networks
describe individual networks constructed on the basis of specific interests or friend-
ship for each pair of individual relationships in the network. In other words, the
knowledge defined in a social network can not be processed as a community knowl-
edge since a social network necessarily includes one or many communities. Table 3.1
summarizes the most relevant differences between the two approaches. Therefore,
a different approach needs to be applied for social network based recommendation
system.

As we are clearly in a Web 2.0 environment, we consider that the user needs to
be part of in the process not only as a separate entity or a group of people but as an
interlinked entity with other entities following a relation translating, e.g., common
interests and friendship. This will lead to fine grained, more precise and personalized
support for users. Introducing this dimension, i.e., the social dimension, incorporates
the interesting observation that a user is more interested in the recommendations
that come from members of his social networks (family, friends, colleagues, etc.) or
from people with whom he shares common interests. Our full completion strategy
takes into account users’ specificities that are reflected in their different service
composition behaviors. Table 3.2 enumerates some interactions between the different
managed entities in a Mashup platform which may indicate a social behavior.

We consider the following types of interactions between entities in the system:
the Composition and Diffusion as for the interactions between users and services,
Follow interactions between services, and Friends and Communities interactions

3.5. A new approach to service recommendation 43

Table 3.1: Community Vs social networks services composition

Community

Social Networks

describes a gathering of individuals
around a common topic of interest

describes friends networks constructed
on the basis of specific interests for each
relationship in the network

specific domain knowledge and Com-
munity generated knowledge

The extracted knowledge can not be
processed as community knowledge

Knowledge processing methods already
exist in the literature (CommonKADS
and OilEd)

Existing Social networks analysis meth-
ods are not appropriate and need to be
adapted

involved either in the pre-composition
process at the discovery and selection
levels, or at post-composition process
by annotating, ranking, and rating ser-
vice

In addition to be involved in pre and
post-composition, social knowledge in
directly involved in the composition
process itself.

Simple recommendation system

Complex recommendation system

High granularity level of users consid-

eration (i.e., community level)

Detailed level of granularity for user
consideration (i.e., individual level)

Table 3.2: Example of possible interactions that could be extracted from a Mashup

creation environment

Users and services interactions | Service interactions | User interactions
- Creation - Follow - Friends

- Discovery - Competition - Communities

- Composition - Replacement - Influence

- Diffusion - Collaboration - Mentor

- Annotation - etc. - Hierarchy

- ete. - ete.

between users. This is motivated by the well known observation from Web 2.0:

90% of users consult content (i.e., equivalent of using an existing composition in
our context), 9% comment on the content (make a recommendation in our context),
and 1% create new content (creation of new services in our context) [Nielsen 2006].
Thus, the interactions that are our focus are those that impact the largest audience:
the 90% of users who interact with existing service compositions. We consider
interactions that involve end-users as social interactions, and part of the social

dimension.

3.5 A new approach to service recommendation

In Web 2.0, people can create, use, and share services in communities and social
networks. These services can be simple Web services or more sophisticated services

44 hapter 3. Service Dynamic Recommendation For End-User Support

as Mashups. The question we address is: how can social interactions be leveraged to
enable and facilitate composite services creation for end users?

Regarding this problem statement and the related work, we propose a general
approach for dynamic service recommendation based on the transformation of both
user — users and user — services interactions into social networks on top of which
statistical processes may be applied to fire recommendations for assisting the user
in constructing the Mashup (a composition of services). In other words, we leverage
knowledge retrieved from social networks, applied to a Mashup and Web services
composition. Before detailing our proposal, let’s clearly define the two notions of
composition pattern and social network that are used frequently:

Définition 3 [Composition pattern] A composition pattern is the repetitive
schema or a part of schema that describes a composition of services representing
the logic of a Mashup. In general, this schema is represented as a workflow of basic
services. Therefore, every part of that workflow represents a composition pattern.

It comes out from the definition that given a Mashup schema created by a
given user, one can deduce one or many composition patterns related to that user.
Actually, those composition patterns tell us about the behavior of that user, which
consequently allows us to answer the question: "how does each user behave when
composing services?”. As described hereafter a pattern may take different forms
depending on how a composition schema is modeled. For instance, the pattern
could be either a simple sequence of two or many services.

To clarify the meaning of a social network in our approach, we propose the
following definition.

Définition 4 [Social network] A social network is a graph representation of all
interactions that occur between people and services in a composition environment.

In our context, this structure may be directly extracted or inferred (deduced)
from common interests between the users of the composition platform. In other
words, the social network we consider at this stage, may be either (i) explicitly
declared by users or (ii) an implicit structure inferred from the common interests of
users. We have compared these two variants and detailed each one in Section 3.5.1,
which results in a focus on the implicit case as sophisticated approach for modeling
interaction between end-users.

By construction, this social network includes a profile for each user containing
information that describes his/her special interests and preferences, and the history
of his/her interactions with the system (i.e., dynamic profiles). Typically, these
include statistics on services utilization (consumption and composition). This in-
formation enables us to learn about the expertise of a given person in a particular
area, and thus the relevance of services used by that person. The social network
includes as well the description of links that define the social graph itself. These
links are used to calculate the social proximity between two users according to a
particular context. This information allows us to calculate the service recommenda-
tion confidence between two individuals based on specific joint interests. To leverage

3.5. A new approach to service recommendation 45

this information, it is therefore very important to extract, analyze and model the
information contained in a social network.

Information regarding user interactions are used by the recommendation system
to support users during the creation of new Mashups. It dynamically suggests ser-
vices according to the current status of the services composition task, i.e., which
pattern (service or sequence of services) is likely to come after the currently intro-
duced one? Thus, it intervenes in the services selection process. This recommenda-
tion logic considers different parameters as the user’s position within his/her social
network, and usage information of services by the social neighbors.

More concretely, during the creation of a composed service through the SoCo
service creation environment, a user generally is undecided about the selection of
a service going to follow an already introduced Mashup part in the composition
diagram. In this situation, the recommendation system will propose a list of services
ranked on the basis of information provided from the social network analysis. Thus,
the relevance of a service recommendation is proportional to its usage history with
respect to the user’s social proximity. This means that the more a service is used
in this social network the more the recommendation becomes significant. Similarly,
when users are close in the social network to the current user, services they use
are more important to be recommended (according to the current need). Moreover,
when users who use certain services are experts, their choices are supposed to be
more relevant which implies better recommendations as well.

3.5.1 Social graph variants

In the context of a Web 2.0 environment, many types of social networks (meaning
social graph) is emerging taking different forms. Generally, the most common type
of social network is the explicitly dedicated social networking web sites like Facebook
or Twitter where the end-user solely and actively builds his/her relationships. In
this case, we talk about explicit social networks. Verily, end-users decide themselves
whether they are interested or not in connecting to other users, which leads to a
user-user explicit social graph. Moreover, users are able to declare their interests
in terms of shared content as well. In the particular case of service composition,
end users can declare their interest to a given service (which service they usually
like to use in a composition schema). We talk in this latter case about user-service
explicit social graph, from which we can perceive shared interest between users.
As explained in using collaborative filtering recommender approach, those shared
common interests actually represent potential hidden relationships that lead to what
we call an implicit social graph. We describes in [Maaradji 2010b| how this explicit
form of social network can be leveraged in a dynamic recommendation system.

By contrast to explicit user-service interactions, implicit user-service interactions
refers to users’ usage of services. In fact, users consume services as is (for instance
a calling service or geographic mapping service) or use it to compose other services.
This type of user-service activity actually represents user behavior regarding services
and it can therefore be considered as a set of implicit interactions. We believe that

4@ hapter 3. Service Dynamic Recommendation For End-User Support

user-service interactions can be leveraged to unveil the non-explicit user-user hidden
relationships that we define as the implicit social network. The next section focuses
on describing the concept of implicit social graph.

3.6 Assumptions

We have seen in section 2, many tools are available for this operation. Besides,
we have already argued that the visual workflow concept (graphical workflow) is
one of the most relevant and appropriate tool to express the composition pattern
in order to satisfy the abstraction requirements. This workflow consists a set of
services connected together to express the logic of composition. Depending on how
services are connected, the graphical workflow could more or less have a complex
form. Basically, there are two forms that a graphical workflow may have.Firstly,
the sequence of services, also known as pipeline, is the simplest way to define a
composition logic. Secondly, a more complex form is possible particularly to express
parallel logic, or even conditional and loop logic.

However, given the current state of the art, we are considering only the sequences
of services as a possible composition pattern. We have already shown in Section
2 that, either in actual realizations [Erlewine , Shiaa 2008 or theoretical modeling
|Greenshpan 2009], a Mashup is often considered as a sequence (pipeline) of services.
This is not only due for the need of theoretical simplification but also because
end-users tend to describe a complex process as in sequence of simple processes
[Koop 2008]. More over a more complex composition could be represented more
easily by combining sequences fo services.

Given this facts, completing a Mashup becomes nothing but predicting remaining
parts of a given partial sequence introduced by the user. By ‘remaining part” here,
we mean a subsequence of services which when connected at the end of the partial
sequence introduced by the user will result in complete Mashup. In a summary,
we lay down assumptions that a Mashup (a composed service) is a linear sequence
of services (the composition pattern), and Mashup completion is suggesting the
forward remaining subsequence of a given subsequence.

3.7 Implicit social graph construction

An implicit social relation is inferred according to the activities of the different users,
e.g. when two users use the same composition pattern. In this case, we end-up with
a graph linking the users according to their interests defined by their composition
activities.

We firstly consider users — pattern interactions as a bipartite graph [Guillaume 2004].
This graph represents the usage rate users have on services they use. It should be
noticed here that the bipartite graph is solely based on the usage frequency of ser-
vices by the users in composition schemes and without taking into account services
succession in those schemes. Figure 3.2 illustrates a bipartite graph of services and

3.7. Implicit social graph construction 47

users. The links represent how frequently a user u; uses a service p; in all the
compositions he created. We denote this usage frequency by f(u;,p;).

In order to interpret and leverage social interactions in a Mashup environment,
one needs to process the users — patterns interactions into a social graph between
users. In fact, we have two sets of distinct inputs: users and services sets. There
may certainly exist several techniques for doing so (collaborative filtering method).
We describe in the following our approach which uses three levels of information
extracted from this representation: (i) local information, (ii) semi-global informa-
tion, and (iii) global information. These three levels are combined at the end to
fire recommendations. This process guarantees to take into account all the types of
interactions that could exists between users and services.

Users Composition patterns
Figure 3.2: Illustration of a bipartite graph between users and patterns

3.7.1 Local information

The local information considers only the interaction between a specific user and a
specific composition pattern. This means that we consider a user and a pattern
independently of the other users and services of the system. This information tells
us whether a specific user is confident (i.e., expertise indicator) using this pattern
among other patterns. The more a given user is confident about his usage of a given
pattern, the more the recommendation of this pattern matters.

To materialize this idea, we define this information in a quantity called Activity
defined in Equation 3.1 where M is the total of pattern a user exploited in his
different compositions.

Act(ui,pj) = =PIl
A P3) = A o)

(3.1)

48 hapter 3. Service Dynamic Recommendation For End-User Support

3.7.2 Semi-global information

In this level of semi-global information, we consider the interest a user may have in
other users regarding a given pattern. Thus, for a given user u; we calculate how
much the service s; recommended by the user w; matters to him. This is called
Special Interest (SI) and is calculated using Equation 3.2.

f(Ul,pj)

f(ui, pj) (3.2)

ST(us,u,pj) =

This results into a strata of social graph, as shown in figure 3.3, where each
stratum represents a transition specific interest social graph.

Figure 3.3: Illustration of the output after applying a semi-global information level

3.7.3 Global information

In order to have as precise transformation as possible that we can tune later, we add
another level of information in the transformation process. The global information
captures whether a couple of users have common general interest or not. At this
stage of our study, and for simplification reasons, we consider that the general
interest of a couple of users is equal to the sum of their specific interests, thus
building the implicit graph as illustrated in Equation 3.3.

M

IG(uiyup) =Y ST(ui, wy, pr) (3-3)
k=1

The output of this step is a graph aggregating all the specific interests graphs
obtained previously as shown in Figure 3.4.

3.7. Implicit social graph construction 49

Figure 3.4: Ilustration of the output after applying a semi-global information level

3.7.4 Graph reduction (Top-k links)

For optimization goal, and based on observations that each user may have few edges
that are much greater than the rest in the implicit graph, we decided to reduce those
corresponding edges following a Top-K strategy. The resulting graph is called the
Top-K implicit graph. This post-processing step cleans up the obtained outputs.
The recommendation strategy will be built on top of the outcome of this step.

In fact, we use a very simple variant of Fagin’s Top-k algorithm [Ilyas 2008].
The algorithm separately selects the highest weighted out-edges (top 5) for each
node. The Top-k implicit graph is obtained by aggregating the remaining edges.
We chose this approach to avoid dropping nodes from the graph and to guarantee
that each node (user) is not excluded from the recommendation system. However,
a threshold-based Top-k algorithm is more relevant to keep only significant edges
(interests) even if some nodes in the graph are lost [Leskovec 2007]. Nevertheless,
we believe that ultimately a more elaborated approach need to be designed in order
to avoid loosing the so coveted social network properties (small word, etc.). In
fact, [Ilyas 2008| shows that selective node dropping in a social graph could induce
loosing social network properties. From this point on onwards, each reference to
implicit graph (IG) refers to a Top-k implicit graph.

3.7.5 From user-transition interactions to implicit social graph:
Application on transition composition pattern

As we have introduced it before, several patterns of composition may exist, among
them, the transition between two services. Indeed, when we reduced the expression
of a composite service into an ordered sequence of many services, the basic element of
this sequence becomes the transition between two services (sequence of two services).
In the following, we applied the previous model to build the implicit graph in the
case of a simple transition to define the relationship between users, and then use it

5@ hapter 3. Service Dynamic Recommendation For End-User Support

in a context of dynamic recommendation system.

Following the described model, we consider users — T'ransition interactions as
a bipartite graph which represents the usage rate users have on transitions they use.
To transform the bipartite graph into a social graph for successor recommendation
we rely on the three main steps described before that we summarize in the following.

The local information considers only the interaction between a specific user and
a specific transition. This information tells us whether a specific user is confident
(i.e., expertise indicator) using this transition among others. The more a given user
is confident about his usage of a given transition, the more the recommendation of
this service matters. In this regard Activity in updated in Equation 3.4 where M is
the total number of services a user exploited in his different compositions.

fu, (85 = i)

Zévj:l Zthl fur, (sg = sn))

In this level of semi-global information, we consider the interest a user may have

ACttrans(ulv (Sj — Sk)) = (34)

in other users regarding a given transition. Thus, for a given user u; we calculate
how much the transition ¢; recommended by the user u; matters. This is defined
and shown in Equation 3.5.

[, (85 = sp))
f(ui, (sj = sg))

As defined in the general model, this phase is about integrating all the special

STirans(wi, up, (s5 — si)) = (3.5)

interest graphs within a single graph that expresses the overall interest between in-
dividuals. The aggregate function chosen here is a simple sum of individual interests
as illustrated in Equation 3.6. The output of this step is a graph aggregating all the
specific interests graphs obtained previously.

M M
IGtrans ula ul = ZZSISUCC Ug, UL, (Sg - Sh)) (36)
g=1h=1

3.8 The Completion process

This section aims at presenting the completion process which is the visible part the
recommendation system from the end-user point of view. As we explained earlier,
the completion consists of retrieving the most likely termination of the currently
introduced composition pattern, and recommending the most relevant with respect
to user’s interest. To perform this recommendation, we need first to retrieve all
possible terminations of the given part of a pattern. In other terms, when a user
introduces a service or a sequence of services, the first step is to consider this input
as a request to figure out all possible completions, named here completion list (or
recommendation list). The second step is to sort this completion list according to
many parameters (including to the social proximity between users). At this regard
we define a global metric that we named the Recommendation Confidence.

3.8. The Completion process 51

Let’s consider the completion operation is the step-by-step approach which de-
fine a transition of two services as the basic pattern of a composition. Computing
the completion becomes simply the completion (termination) of the last transition
(if possible). In other terms, we need to consider the last service introduced by the
user as the first part of a transition, and then retrieve the second part of the tran-
sition (constituted by both services) if it exists. Then, each selected transition (a
candidate termination) is sorted in the recommendation list based on its calculated
Recommendation Confidence metric.

3.8.1 Completion pattern Recommendation Confidence (RC)

Coming back to the general model, once the bipartite graph is transformed to a social
graph thanks to the three previously described steps, we proceed to recommendation
calculation to suggest a coming completion pattern according the completion list.
Thus, considering the intrinsic user’s usages frequency (local information), the spe-
cific interests between two users (semi-global information), and the implicit graph
which expresses the global interest between users, we define the recommendation
confidence of a given pattern p; with respect to a current pattern p; for the user u;
as follows:

RCZmp uwp]ypk uuuhpk X ACt(ulapk) X IG(ulvul) (37)

||Mz

In the case where the composmon pattern is simple such as simple transition,
we define the recommendation confidence of a given service s; to follow a current
service s; for the user u; as follows:

N

Rctrans(uia Sj, Sk) = Z SItrans(uia ur, (Sj — Sk))XACttrans(ula (Sj — Sk))XIGtrans(uia Ul)
=1
(3.8)

3.8.2 Recommendation algorithm design

Algorithm 1 summarizes the recommendation process. Given a configuration (u;,
pj) where u; represents the current user and p; the introduced pattern, the algorithm
returns Recyr;st, a sorted list of recommended patterns that are socially relevant to
complement p; for user u;. It should be noted that since the output of the algorithm
is a list and the selection follows a T'op — K principle (K patterns), the values are
not necessarily inside the interval [0, 1] even if this could be easily integrated by, e.g.,
maintaining the maximum value of the recommendation to normalize the output.

3.8.3 Basic enhancements

In recommender systems, the problem of new users or items (here services) continues
to generate a significant research output and contributions [Adomavicius 2005].

5Zhapter 3. Service Dynamic Recommendation For End-User Support

Algorithm 1 The Recommendation algorithm for semi-automatic services compo-
sition
input u; €U, s; € S
for each s, where serv; — servy exists do
RCkx =0
for each u;, where u; is neighbor of u; in a specific graph of s; do
RCx = RCk + ACt(’U,k, Sk) X SI(ui, Uk, Sk) X IG(Uk, Sk)
Add (sg,RCY) in Recr;st
Sort Recrs in descending order of RCY,
output RecLiSt = {(Sk, RCK)}

In fact, various and diverse methods have been proposed to overcome the lack of
knowledge about newcomers into the system. Those methods are mainly based on
users or services popularity in the system (community-oriented approach mentioned
in section 2.5.2.3) or diversification methods. In our system, it is quite possible
to incorporate such methods. However, a difference should be notied between a
newcomer user and newcomer service.

3.8.3.1 Combination of social and community approaches for newcomer
users

By definition, a newcomer user has not previously used any service and therefore the
system has no usable traces. In this case, it is possible to rely on current practices
in the community (all other users) to recommend a composition behavior to this
newcomer user in order to facilitate him interaction with the system, hence allowing
the collection of a maximum of interactions to build this user implicit social graph.
More concretely, to calculate the recommendation confidence of a candidate service
to this specific user, it is possible to use a weighted balance between the quantity
defined (Form RC), and popular services in the community:

RC(us, 54, 51) = 0RCimp(us, S5, i) + BPopularity(s;, si) (3.9)

Where Popularity(s;, si,) refers to how many times s, follows s; over all existing
succesions.

The weighting parameters (a, §) gradually evolve from (0,1) to (1,0) to as the
amount of knowledge on a user increases. Moreover, the concept of "a posteriori
interest" complements the previous approach in addressing newcomers issue. In
fact, this concept allows the establishment of a temporary link between a given user
and a service candidate that was never used by that user. This is a practical way
to open up the system to new users. At the last resort for our system, the explicit
user self-declared graph can also boost his starting phase in the system.

3.9. Step-by-step approach evaluation 53

3.8.4 Service Post-interest for new comer services

Newly introduced services in the platform are never going to be recommended by
the system under its basic implementation. In other words, if a service has never
been used before by any user, it will never be recommended. This represents a ma-
jor issue for the recommendation strategy. Diversification methods are the primary
solution for this issue: They aim at making such services “visible” in the system. A
random selection among this population could be sufficient. In the service composi-
tion context, we are proposing to use non-functional properties of services to select
candidates for diversification. In a more detailed description, it is possible to match
potential service successions from interfaces description of each newcomer service
(e.g., input/output description). This will identify the new services as potential
candidates for diversified recommendation.

Furthermore, By construction, our recommendation system based on modeling
of social graphs could enhance diversification approach [Yu 2009a]. Indeed, as men-
tioned before, the purpose of diversification is to make visible the new introduced
services in the system.

One way of realizing the diversification is to recommend the newly introduced
services primarily for key individuals in the social graph. Because these users have
an important influence in the graph, the recommendation of new services to them
will make these services more visible as illustrated in what follows:

e The properties of the social graph allow the identification of the key users (also
called key players) in the social network

o Recommending the new services to those key players will result in having these
services overweighted in the recommendation system

Furthermore, the recommendation of the new services to these key players has an-
other benefit. Because key users are also identified by the system as experts re-
garding a set of services, recommending newly introduced services to them will help
improve the quality of services. They implicitly play the role of good trusted filters
of the system.

These proposed approaches provide some hints of solutions to the newcomers
issue. However, it is necessary to experiment how efficient these methods are. Def-
initely, the problems of newcomers service and users both combined represent the
startup problem of a recommender system, also called cold start or bootstrap prob-
lem. We can not predict whether the proposed approaches will be sufficient to over-
come this critical phase of a recommendation system but we believe that practical
experimentations are the appropriate way to properly evaluate these approaches.

3.9 Step-by-step approach evaluation

In this section, we propose to evaluate the performance and the behavior of the
algorithm through the observation of different parameters and variation of different

54Chapter 3. Service Dynamic Recommendation For End-User Support

variables through the step-by-step approach implementation. In fact, before going
beyond, we needed to have a deep understanding of how this algorithm may behave
regarding different tuning parameters.

3.9.1 Dataset generation

For evaluation purpose, we have generated many datasets representing users usages
for services. Datasets were generated randomly following two statistical distributions
namely the uniform and power-law distributions.

3.9.2 Experimentation protocol

To implement the proposed algorithm, we have used the SoCo framework introduced
in [Maaradji 2010a]. This framework provides a graphical environment for the user
to create Mashups. It includes the recommendation algorithm to provide dynamic
suggestion to users. Figure 3.5 shows a screenshot of the SoCo framework. On the
left side, SoCo displays the list of basic services below the reduced list fo suggested
services (recommendation list).

Hello alice! | Sigr Ot

SoCo - Social Composer @ o |3 uaas | zow | @ oot [0 | [+ um |

Services Directory [] 2l [

Recommendations (1SG) (@

Email

PostTwitter

Figure 3.5: A SoCo screenshot of services suggestion after selecting a service

Based on a Web client/server architecture, SoCo captures user-service interac-
tions on the client side; information that is stored and then modeled to supply the
recommendation system (algorithm) on the server side. During the editing process,
the user receives dynamic recommendations computed by the algorithm. For imple-
mentations needs, we used the PHP programming language, MySQL and Apache
server (Intel Core 2 Duo P8600 machine with 2.4GHz and 2GB RAM).

We have considered in our evaluations, as a first step, the response time (i.e.,
recommendation time for a successor of a service) as the main performance indicator.
More explicitly, we measure the duration it takes to the algorithm to respond to a
query for a given configuration. It is naturally suitable that the algorithm answers

3.9. Step-by-step approach evaluation 55

quickly to queries to ensure the system’s interactivity with the user. To perform
this measurement, the following parameters are used in this simulation:

e The size of Mashups represented by the number of services that make up those
Mashups;

e The overall number of services |S| or Mashups |M| stored in the system. The
number of Mashups is generally proportionally larger from 1 to 3 times to the

number of services according to observations collected on Programmable Web!
(IM] =3 x5]);

e The number of users in the system |U|.

Another parameter that may impact performances is the of the recommendation
list. This parameter is not considered in our case. In fact, the proposed algorithm
doesn’t consider this information since it calculates the recommendation confidence
for all potential successors to the current service. Given the three performance
parameter defined above, we conducted three experiments. For each experiment, we
fixed two parameters and we varied the last one. Due to the lack of benchmarks,
the data sets used in these experiments were generated randomly. More concretely,
services that compose a Mashup are independently and uniformly selected. A less
important parameter representing the creation of a Mashup by a user is also a
randomly generated relation. We run each experiment 25 times: 5 times for 5
randomly generated couple of (u;: current user, sj: current service), and each point
in the curves shows the average.

3.9.3 Evaluation
3.9.3.1 Users directory size

As a third experiment, we evaluated the impact of the number of users on the
algorithm’s performances. Indeed, we set (i) a number of services |S| = 10? (the
number of Mashups | M| = 30x 103), (ii) the size of Mashups is uniformly distributed
between 2 and 5, and we vary the number of users |U|. Figure 3.6 shows the obtained
results where the algorithm response time remains stable even if the number of users
increases to up to |U| = 10°.

3.9.3.2 Services directory size

As a second experiment, we vary the number of services |S| in the system. Thus,
we fix the number of users set to |[U| = 10* and the size of Mashup uniformly
distributed between 2 and 5. Varying the number of services has an impact on the
number of Mashups. Figure 3.7 illustrates the obtained results. We can notice that
the algorithm’s response time is not exponential, but could be approximated by a
linear regression.

"http://www.programmableweb.com

5@ hapter 3. Service Dynamic Recommendation For End-User Support

0.5 T T T T T

03 q

0.2~ I

Algorithm runtime (seconcs)

01 I

R — -

0 I 1 I I 1 1 I 1 1

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 10000

of users

Figure 3.6: Impact of the number of users on the the performances of the algorithm

35 I

25 T

1.5 - 7

Algorithm runtime (seconcs)
¥

0.5~ I

| 1 1 1
0
0 10000 20000 30000 40000 50000 60000 7000C

#service (=1/3 #mashup)

Figure 3.7: Impact of the number of services on the performances of the algorithm

3.9.3.3 Mashup size

To measure the impact of the Mashups size on the performances of the algorithm,
we have started by fixing the number of users |[U| = 15 x 10 and the number of
services |S| = 1740. We played with the variation of the size of Mashups (in terms
of services composing each Mashup) from 2 to 7 services. Figure 3.8 shows the
impact of the Mashups size on the behavior of the algorithm. Generally, the size
of a Mashup has a tangible impact on the algorithm which is materialized by the
response times for recommending a service. We can notice also that the response
time of the algorithm increases linearly with respect to the increasing size of the
Mashup (even if the takeoff of the curve is dry).

Other simulations were performed with more realistic statistical distributions
that has impacted the behavior of the algorithm. Indeed, as pointed out previ-
ously, several studies [Yu 2009b] have shown that the popularity of services used
for Mashup creation follows a long-tail distribution meaning that some services are
much more frequently used than others. For example, mapping services are the
most used for Mashups. As a social network, the graph representing the links be-
tween users, is characterized by its special features such as small-world property,

3.10. Synthesis 57

Algorithm runtime (seconcs)

of service

Figure 3.8: Mashup size impact on algorithm execution time

nodes’ degree distribution following a power-law distribution. These features could
then be leveraged for better evaluating the system. Concretely, we have generated
datasets following a long-tail distribution (Zipf’s law) that have been used as input
of the recommendation algorithm. The results show that algorithm response time
has decreased compared to the response time for uniformly distributed datasets (see
Figure 3.9).

10 T T T T
uniform ¥
powerlaw —*

Algorithm runtime {seconcls)

4

of service

Figure 3.9: The long-tail distribution impact on algorithm performance

3.10 Synthesis

3.10.1 Results interpretation and Learned lessons

Overall, these results are interesting and show that this algorithm is suitable for an
interactive application. However, they show that the response time of the algorithm
is particularly sensitive to the size of Mashups which is, according to related studies
and our observations on Programmable Web, distributed between 2 and 5 (rather
close to 2). From a more general perspective, we believe that there is still room for
improvement by optimizing the recommendation strategy.

5&hapter 3. Service Dynamic Recommendation For End-User Support

Even if one could consider step-by-step completion as interesting in that it pro-
vided ongoing assistance to the user, the fact remains that it could be improved.
Considering the analogy between Mashup completion and word completion (as in
a Web search engine). Completing a Mashup step by step would by analogy for
word completion be the suggestion at each step the following letter for the part
of word already introduced by the user. This is obviously onerous and heavy for
word completion and is also for Mashup completion. The natural solution would
be to suggest the entire completion for the part of a word introduced but the user,
in the case of word completion. Similarly, it would be more useful for the user to
receive suggestions that are full completions of the partially introduced Mashup.
The advantage of this method is to further accelerate the process of composition.

CHAPTER 4
Full Mashup Completion Based on
Frequent Sequence Mining

4.1 Introduction

Since creating Mashups is now an emerging trend, as discussed in Chapter 2, semi-
automatic Mashup composition will assist in developing Mashups in a faster and
user-tailored manner. In fact, different types of interactions occurring between en-
tities are involved in a Mashup’s creation. By learning from a sequence of services
that are integrated progressively, one can proceed to recommend services that com-
plete a Mashup. Typically two categories are distinguished: (i) single completion, in
which a list of potential services is suggested to the user on the basis of the currently
selected service [Goethals 2003| and described in the previous Chapter, and (ii) full
completion, in which the whole composition (or a part of it) is recommended to the
user [Greenshpan 2009|. This Chapter focuses on an approach to full Mashup com-
pletion and aims at predicting and recommending the most interesting combination
of services that should follow a current service creation flow. The problem we are
tackling here could be summarized as follows: Given a user creating a Mashup within
a Mashup creation platform, how can the platform suggest the finished Mashup that
best meets his/her intentions, within a reasonable amount of time? The goal of the
proposed approach is to improve Mashup creation time and quality while addressing
the following constraints:

1. terminating condition: In recommending a full completion, there is no specific
boundary to completions size due to the fact that the number of required ser-
vices to complete the Mashup is not known a-priori. Therefore, recommenda-
tion of services involves an unknown parameter that increases the complexity
in Mashups full completion.

2. scalability: since the number of potential candidates to a full completion is
combinatory larger than the number of candidate services to a transition com-
pletion (see Section 3.7.5). This directly impacts the system’s scalability for
proposing solutions.

3. recommendation detail level: Given the enormous variety of different services
and resources that are at the disposition of a recommender system for meeting
the end user’s intent and to consider his social environment.

Chapter 4. Full Mashup Completion Based on Frequent Sequence

60 Mining
SoCo - Social Composer | @ New |3 Lond | ¢y 8 | @ Deiets [@ e | [mum |
Services Directory n
Recommendations (1SG) @ Wl eatien B

Email | city ® (& uansio________Fa]
S Dt * from Eﬂghsh
24 W~ herm————
BlegPost) TinyUrl ot 4@ Povea)
FostTwitter o
Basic Services]
arrent varter
——
——————
——
—

Figure 4.1: Hlustration of the front-end of SoCo, the tool integrating our proposal

This work addresses the aforementioned constraints by identifying frequent Mashup
combinations and capturing users’ social interactions over them. This approach is
used for predicting and suggesting the next services that will complete an initiated
Mashup by exploiting both co-occurrence frequencies and social interactions on ear-
lier composed services. In this regard, we propose to follow the enumerated steps
that meet one-by-one the previously mentioned problems:

1. modeling the problem of full completion as a frequent sequence mining prob-
lem. Simply use existing frequent sequence mining techniques as basic solu-
tion.

2. addressing the scalability issues related to the existing frequent sequence min-
ing algorithms. This is performed via the introduction of a new frequent se-
quence mining algorithm, called FESMA. FESMA offers a high performances
in terms of computation time outperforming the existing algorithms in our
context.

3. more precise and personalized full completions. This is achieved through the
introduction of a social dimension in the process. The social dimension is
essential to this work. In fact, in Web 2.0, people can create, use, and share
services. We assume that Mashup environments reflect the social behaviors
of users and thus, social structures can be extracted from the interactions
between users and services (and between users). These interactions can be
analyzed and injected as a social information into the process of full completion
for services discovery and composition.

The proposed approach has been implemented and evaluated in the framework
developed at Bell labs. Figure 4.1 show the interfaces corresponding to the Mashup
full completion feature with three dynamic full completion suggestions.

4.2. Data model 61

4.2 Data model

Basically, the idea of full Mashup completion is to predict the remaining part of a
Mashup during its creation by a user, based on the current introduced initial part.
Figure 4.2 illustrates three Mashups created by different users in which different
services are combined together to achieve specific goals. It can easily be observed
that there is a recurring configuration of services that appear together in the different
compositions. We illustrate one of them represented by the chain: ws — wy — ws.
Since this configuration is repeated, it would be interesting to suggest it whenever
similar composition schemes are started.

List of Sugyestions

Frequent co-oceurences

Mzshup 1ty
Useru

vasiazy (e
poa M e M

azhup 3 3 m m ' m l
Lser L =
Figure 4.3: Illustration of full com-

Figure 4.2: Example of services co- pletion apphed to the example of Flg_
occurrences in different compositions ure 4.2

Intuitively, a services composition is based on the combination of different ser-
vices together where the output of a service w; is the input of service w;1 (or a part
of it) immediately following w;. This results in different chains of services produc-
ing different patterns. Thus, Mashups (and services compositions in general) can
be considered as sequences of services !. Let W = {w,...,w,} be a set of n items
(|W] = n) that we explicitly call Web services from now on. Let S = {s1, ..., $;} be
a set of m sequences (|S| = m). A sequence, representing a Mashup in our case, is
defined as an ordered set of services denoted by s;(w; — we — ... = wy) where w;
(i = 1,...,k) represents the i Web service.

For each sequence we associate: (i) the length &, denoted len(s;), of the sequence
defining the number of succession of services included in the sequence (i.e., with rep-
etition) (ii) a set pref(s;) representing the set of prefixes of a sequence s;. As com-
monly used for strings, a prefix represents a subsequence having as a first service the
first service of s; with a length less than len(s;). As an example, let’s consider the se-
quence s;(w; — we — ws) then pref(s;) = {(w1), (wy — ws)}. Finally, we associate
a set suf(s;) representing the set of suffixes of a sequence s; which represents all the
subsequences having as a last service that of s;. As an example, let’s consider the
sequence s;(w; — wy — w3) then suf(s;) = {(ws), (wa — ws), (w1 — w2 — w3)}.
Note that we didn’t consider the longest sequence in this example for simplicity
matters.

!This should not be confused with the composition patterns that include sequence operations,
parallel operations, etc. but rather the way services are modeled at a logical level.

Chapter 4. Full Mashup Completion Based on Frequent Sequence
62 Mining

4.3 Frequent sequence mining for full completion

Coming back to the problem of services full completion, the basic idea is to identify
and count recurrent subsequences in compositions that have been previously cre-
ated by users within the system. Those frequent sequences represent actually, on
one hand, the composition behaviors of each individual, and, on the other hand,
the common habits and behaviors shared implicitly between groups of users. The
problem then is reduced to finding frequent subsequences having the same prefix as
the query sequence of a certain length &k € {1, ..., max(k)}.

The natural approach is to investigate the state of the art of frequent pattern
mining algorithms, and select one of them that is adapted to the Mashup full
completion context. In this regards, we briefly review in the following related work
to full Mashup completion and frequent pattern mining algorithm.

4.3.1 Frequent sequence mining applications

Mashup full completion is an emerging field that seeks to complete a composition
of services supplied by the user. To the best of our knowledge, there is no study
that addresses directly this issue (except |Greenshpan 2009]). Therefore, the prob-
lem has been compared to similar work in other areas leading to studies in many
fields: words and phrases full completion, DNA sequence prediction, travel itinerary
recommendation, and others dealing with sequence mining [Dong 2007].

The most frequent case in full completion occurs in the context of search engines
where full completion of words displays strings that are the most relevant to complete
the introduced prefix (typed words or letters). Classical approaches, such as suffix
trees [McCreight 1976], could not be used directly in our case. In fact, in words full
completion, only whole words are considered in the training phase without taking
into account sub-strings within those words. However, ideas coming from this field
were a source of inspiration for different proposals. Typically, [Chaudhuri 2009] has
shown fault-tolerant full completion considering variants of the introduced prefix, a
feature targeted as a future direction to our work. Another similar topic is predicting
user actions based on user logs and preferences. For instance, [Davison 1998| predicts
UNIX commands that a user may enter based on previously entered sequences. As
mentioned before, full completion is based on frequent pattern mining.

In the area of frequent sequence mining, many algorithms , issued from the area
of frequent item sets mining, have been proposed like Apriori [Agrawal 1993] and
Eclat [Zaki 2000]. However, the most known algorithm for frequent sequence mining
is SPADE [Zaki 2001]. SPADE has been defined for the particular case of frequent
sequent mining. Similar to Eclat, SPADE uses a vertical representation of a sequence
database with simple joins (intersection). Furthermore, it uses a lattice-theoretic
approach to decompose the original search space in order to be processed separately
in the main memory. SPADE algorithm scans the database only 3 times, leading it
to outperform some sequence mining algorithms as AprioriAll [Agrawal 1995| and
GSP [Srikant 1996]. However, authors in [P. 2001] have argued that the prefizspan

4.4. Fast and efficient sequence mining algorithm FESMA 63

proposed algorithm is mostly faster than the SPADE algorithm. Finally, Bodon in
[B. 2005] has shown that their APRIORI implementation (named here ArioriSeq)
always outperformed (time and memory usage) prefizspan [P. 2001| with high sup-
port thresholds and also with low thresholds on databases with long transactions.

In order to choose the appropriate algorithm, the previous section has shown that
no algorithm had shown significantly better performances than the others [Goethals 2003].
Actually, frequent pattern algorithm performance are heavily tied to the nature of
the dataset that has been used to measure it. Each algorithm has shown better or
worse performance depending on the dataset density and distribution.

In our context, scalability was given the first priority since we need to process
completion queries in real time and return better personalized completion sugges-
tions. This latter (personalized completion) require fine grained suggestion that
negatively impact existing algorithms performance. We propose then a new algo-
rithm for frequent sequence mining to tackle at a first stage, the scalability problem.

4.4 Fast and efficient sequence mining algorithm FESMA

The algorithm we propose is called FESMA for Fast and Efficient Sequence Mining
Algorithm. Just like the FP-growth algorithm [Han 2000], FESMA doesn’t generate
any candidates and uses a compact prefix tree representation to store all sequences
(i.e., sub-Mashups) that exist within the transactions database (i.e., all created
Mashups). By contrast to other sequence mining algorithms, FESMA scans the
database only once. During this scan, and for each transaction, all sequences are
added to the tree representation by updating the support associated with each se-
quence and the user’s specific supports. We named that tree FSTree for frequent
sequences tree.

4.4.1 Algorithm design

4.4.2 Algorithm complexity analysis

From the FESMA algorithm definition, we can see that one needs exactly one scan
of the database to parse existing Mashups (i.e., transactions). The cost of parsing
the database is O(m), where m is the size of the database. In order to update the
sequence tree F'STree with subsequences, each transaction is parsed once. The cost
of inserting a sequence in the tree depends on the sequence length (depth of the
tree). In the worst case, this operation costs O(K?) with K corresponding to the
size of the longest sequence. In summary, the overall complexity of the algorithm
in the worst case is O(m x K?).

4.4.3 Some illustrations

In order to illustrate the algorithm, let’s consider the simple example of Table 4.1
which shows three Mashups and their associated users as input.

Chapter 4. Full Mashup Completion Based on Frequent Sequence
64 Mining

Algorithm 2 Fast and Efficient Sequence Mining Algorithm (FESMA)
1. S={sj,j=1,...,m} {list of sequences}
2: for j =1tom do
3: {scan all Mashups}
s;j = GetSequence(j)

4: for k =1 to len(s;) do
5: {parse all subsequences of s;}
SSeq := subsequence(sj, k)
6: if SSeq € F'Stree then
7 Update the corresponding branch by incrementing nodes support in
FSTree
8: else
9: Create a branch and set its node support to 1
{update the F'STree prefix tree}
10: Update users supports

11: Return F'Stree

Table 4.1: illustration of Mashups database
1D, user Transactions

Mashupy, user ‘a’ | wy — wo — w3 — Wg — W5 — Wg

Mashupo, user ‘b’ w3y — W4 — W5 — We — W2

Mashups, user ‘a’ Wy — W3 — Wy — W5 — W1

As the algorithm visits every Mashup in the database, the FSTree is updated
to keep a current count of all the subsequences encountered, as follows: for every
possible suffix of the current Mashup, a path corresponding to that suffix is followed
through the F'STree incrementing the value of existing nodes that are visited, and
creating new nodes if necessary (with a value of 1) to finish the path. For instance,
let’s consider Mashup; of user ‘a’ which generates the following subsequences:
(wl),(wl — wg),(wl — W2 — ’U}3),(w1 — W2 — W3 — w4),(w1 — W2 — w3 —
Wy —r w5),(w1 — W9 — W3 — W4 — W5 — ’LUG),(U)Q),(IUQ — wg),(’wg — w3 —
wy), (we — w3 — wyg — ws), (Wy — w3 — Wy — ws — wg), (w3), (wg — wy), (W —
Wy — ’LU5), (’LU3 — W4 — W5 — wg), (QU4), (w4 — w5), (’LU4 — W5 — w6), (’LU5), (w5 —
wg), (wg). When updating the FSTree with (w3 — ws — ws — wg), this will
actually update the tree with (ws), (w3 — wy), (w3 — wyg — ws), (w3 — wg —
ws — wg). This process is repeated on the whole sequences (all Mashups). The tree
illustrated in Figure 4.4 is provided as an output.

4.5. From community to social fine grained full completion 65

Figure 4.4: Illustration of the output tree after the execution of FESMA on the
example of Table 4.1

4.5 From community to social fine grained full comple-
tion

At this stage, we have succeeded in adapting the frequent sequence computation
and making it more efficient via a faster computation and limited database scans.
In this section, we focus on the use of the generated representation and the com-
puted sequences. Intuitively, when processing the set of sequences using FESMA or
any other frequent sequence mining algorithm, the only information we have is the
frequencies of subsequences, providing a strictly global perspective for possible com-
pletion strategies. In other words, since the co-occurrences are computed according
to their appearances over all existing sequences, this process considers only the ag-
gregation of the behavior of all existing users regarding the most popular sequences.
Thus, any assistance can only operate at a high level of granularity, i.e., community
or global, equally valid for one user as for another, yet customized for neither.

In the following, we describe an enhanced community-based strategy for rank-
ing the completion lists which improves on this global perspective of the direct
application of frequent sequence mining algorithms to the full completion problem.
Afterwards, we introduce and motivate a fine grained strategy based on social net-
works implicitly extracted from the analysis of interactions between the entities of
the system.

4.5.1 Community-based recommendation

This functionality can be achieved by using any frequent sequence mining algorithm.
At this stage, it is necessary to keep in mind that we are aiming at offering support

Chapter 4. Full Mashup Completion Based on Frequent Sequence
66 Mining

for end-users (e.g., under the form of recommendations) to easily build her Mashup.
Applying the aforementioned algorithms produces a set of subsequences with their
frequencies as defined in Equation 4.1:

S = {(sé, freq(sh))/st = (w1 — ..wy) Al < Argmaa:(len(si))} (4.1)

Where freq(s}) is the frequency of subsequence s, in the initial set of sequence S,
and Argmax(len(s;)) is the length of the longest sequence in the initial set playing
the role of highest limit, i.e., it is obviously not possible to find subsequences longer
than the longest sequence in the initial sequence set. Depending on the algorithm
used, this output could be represented and indexed as a tree. A query sequence sq
is sent to the system in the form of a service or a sequence of services (i.e., built
from an initial successive combination of services). The system selects candidate
sequences from S’, where the prefix of the candidate subsequence is a suffix of the
query sequence. All selected subsequences represent potentially interesting answers
for completing s,. At this stage, according to a predefined strategy, the recovered
sequences are ranked by their relevance and only the top — k sequences are proposed
to the user. Algorithm 3 provides an abstract description of the completion process.

Algorithm 3 Completion abstract algorithm

1: sq: {the query sequence}
S: {the set of existing Mashups}
. 8" =FSM(S) {mine frequent sequences}
. for all each sq} € suf(sq){all suffizes of the query} do
TempList = Select s, from S” where s¢ is prefix of s
RecList <= RecList UTemplList
{building the recommendation list}
: Rank RecList
7: Return top — k elements of RecList

(o)

Basically, the full completion algorithm cost (complexity) depends on the length
of the query sequence |s4|. In fact, for each suffix of the query sequence, the algorithm
retrieves completions from the frequent subsequences list. This makes the use of
traditional frequent sequence mining algorithm unsuitable in this context?. Our
alternative approach uses the F.STree representation which can be traversed with
more efficient computation and access times. Once the branch of the query sequence
suffix is retrieved, one needs just to browse that branch to access the most frequent
sequences (with additional “meta-data” if it exists).

4.5.2 Social networks based recommendation

Based on the limitations of the community based approach, we propose to integrate
a social dimension to the previous solution in order to leverage Social Networks

2The execution times of existing algorithms are discussed in the evaluation section.

4.5. From community to social fine grained full completion 67

Analysis (SNA). This is motivated by the need for deeper exploitation of the huge
amount of information generated by users interactions in the Web 2.0 paradigm. We
believe that this will lead to a fine grained, more precise and personalized support
for users. Introducing this dimension incorporates the interesting observation that
a user is more interested in the recommendations that come from members of his
social networks (family, friends, colleagues, etc.) or from people with whom he
shares common interests. Our full completion strategy takes into account users’
specificities that are reflected in their different service composition behaviors. We
consider interactions that involve end-users as social interactions, and part of the
social dimension. The remaining type of interactions, i.e., those between services,
is considered as a structural support for the approach since such information is
necessary to, e.g., ensure that the input of service w;;1 is compatible with the
output of service w;.

4.5.2.1 Augmented FESMA

The frequent sequence mining algorithms, and even FESMA, do not consider a very
fine level of granularity since (i) they mainly operate at a global level and (ii) they
reason about one type of entities, i.e., services. Thus, they need to be adapted not
only to keep track of social information but also to support the high number of
possible combinations due to the introduction of the user in the process. A social
network in this context is then defined as an abstraction of interactions that occur
between people and services in Web services environments, capturing the behavior
of social entities in the form of a social graph. This structure may be inferred or
extracted directly from common interests between the users of the composition plat-
form. The principle is based on the transformation of user — services interactions
to a user — users social network on top of which statistical processes are applied
to, e.g., fire recommendations for assisting the user in constructing the Mashup. Im-
pacts and interests of the social dimension have been introduced in [Maaradji 2010b]
and were heavily discussed. Since the objective here is to show how this dimension
is leveraged for building sophisticated full completion strategies, we don’t detail this
aspect further in this section of the document.

With this new constraint, the method has to enumerate and count not only
the support for each subsequences (i.e., number of occurrences), but the specific
sequence support for each user. In other words, each node is related to the users
who have used the subsequence it represents. This information is associated in the
form of an array capturing: user u; has used subsequences s;, [times. In order to
reduce the construction cost, this information is updated while building the tree.
The result is illustrated in Figure 4.5. Thus, Equation 4.1 needs to be revisited to
incorporate this level of granularity, as in Equation 4.2:

S = {(sg,uj,freq(sé,uj))/s?C eSS A uj € U} (4.2)

In terms of algorithm complexity, adding the users’ specific sequence occurrence
within the FESMA sequence mining algorithm, i.e., Algorithm 3, impacts not im-

Chapter 4. Full Mashup Completion Based on Frequent Sequence
68 Mining

Figure 4.5: F'STree after the addition of the users information

pacts not only the algorithm computation resources but also the memory space
occupied.

4.5.2.2 From services sequences to social completion

In order to consider that social dimension, we propose in the following an efficient
strategy for a social-based full completion approach based on the construction of an
implicit social graph between users. We consider the resulting graph as social since
it captures the behavior of users regarding services composition and their potential
common interests.

Besides the users — (single services) relationship, we consider users — sequences
interactions as a bipartite graph [Guillaume 2004| that represents how frequently
users include sequences in composition schemes. Figure 4.6 illustrates a bipartite
graph of sequences and users. The links represent the usage frequency denoted by
f(us, sj), which a user u; has of a sequences s; in all the compositions he created.
To transform the bipartite graph into a social graph to help rank recommenda-
tions we rely on three main steps: (i) local information extraction, (ii) semi-global
information extraction, and (iii) global information extraction.

Local information extraction The local information considers only the inter-
action between a specific user and a specific sequence. This information tells us
whether a specific user is confident (i.e., expertise indicator) using this sequence
among other sequences. To materialize this idea, we define this information in a

4.5. From community to social fine grained full completion 69

Users

Sequences

Figure 4.6: Illustration of a bipartite graph between users and services

quantity called Activity defined in Equation 4.3 where M is the total number of
sequences a user u; exploited in her different compositions.

f(uia Sj)

At 53) = A e on)

(4.3)

Semi-global information extraction At the level of semi-global information,
we consider the interest a user may have in other users regarding a given sequence.
Thus, for a given user u; we calculate how much the sequence s; recommended by
the user u; matters to her. This is called Special Interest (SI) and is calculated using
Equation 4.4.

ST(ui,u,s5) = m (4.4)

Global Information extraction In order to have as precise transformation as
possible with less data loss, we add another level of information in the transformation
process. The global information captures whether a couple of users have common
general interests or not. At this stage of our study, and for simplification reasons,
we consider that the general interest of a couple of users is equal to the sum of their
specific interests, thus building the implicit graph as illustrated in Equation 4.5.
The output of this step is a users’ social graph aggregating all the specific interests
graph obtained previously.

I1G(uiyw) =) SI(ui, u, sg) (4.5)

I

Chapter 4. Full Mashup Completion Based on Frequent Sequence
70 Mining

Services recommendation strategy Once the bipartite graph is transformed
to a social graph thanks to the three previously described steps, we proceed to
recommendation calculation to suggest a coming sequence according to a selected
query sequence. Thus, considering the intrinsic user’s usages frequency (local in-
formation), the specific interest between two users (semi-global information), and
the implicit graph (global interest between users), we define RC of a given pre-
fix fregseq according to the introduced sequence s, for the user u; as follows (see
Equation 4.6):

N

RC(uj, s, freqseq) = > SI(uj, w, fregseq)
=1 (4.6)
x Act(uy, fregseq)

X [G(uz, ul)

The recommendation confidence is the metric that indicates how a completion is
important to the user. Concretely, when the user w; is creating a new composition of
services, and has entered s, as prefix for Mashup full completion, a ranked list of rec-
ommended Mashup completions is proposed in decreasing order of recommendation
confidence RC.

4.6 Implementation and evaluation

In this section, we discuss the performed evaluations on the method to validate our
proposal. We have performed mainly two kinds of evaluation: (i) a comparison
evaluation in which we compare the performances of our approach to four existing
frequent sequence mining algorithms, and (ii) an evaluation of particular properties
of FESMA to measure the overhead generated by the consideration of the social
dimension.

4.6.1 Experimentation protocol

The choice of the dataset is important to measure the performance of the pro-
posed approach. Evidently, being a succession of services, Mashups have their own
statistic properties, e.g., their distribution and their length (according to analy-
sis of available data on ProgrammableWeb [Yu 2009b]). Thus, the dataset which
can be used need to respect the behavior of real world observations. On the other
hand, another important aspect, especially when comparing to other methods, is
to select datasets which are supported by existing approaches. We have decided to
use the synthetic data generator from “IBM quest data generator”. For instance,
IBM-Artificial dataset T10k — L5 contains 10° transactions (defining Mashups in
our case) and the average sequence length is equal to 5.

Generally speaking, the main performance criteria used to evaluate this kind of
methods are: (i) the execution time and (ii) the memory space required by each

4.6. Implementation and evaluation 71

algorithm to find frequent sequences in a dataset. It should be noted that in the
case of FFESMA, this time includes reading the dataset from an input file and writing
results to an output file (costly operations in terms of time). FESMA is implemented
using a standard C++ library. Finally, all the test are performed on an Intel Core
2 Duo T9600 With 2.8GHz of processor and 3GB of RAM.

Table 4.2: List of datasets used to evaluate the performances of FESMA

Dataset Number of | Transactions

name transaction | average length
T100k-L2.5 10° 2.5
T200k-1.2.5 2 x 10° 2.5
T500k-1.2.5 5 x 10° 2.5
T1000k-L2.5 106 2.5
T100k-L5 10° 5
T200k-L5 2 x 10° 5
T500k-L5 5 x 10° 5
T1000k-L5 106 5
T100k-L10 10° 10
T200k-L10 2 x 10° 10
T500k-L10 5 x 10° 10

4.6.2 FESMA Vs AprioriSeq

In order to compare FESMA to state-of-the-art frequent sequence mining algo-
rithms, we run it over a bunch of datasets. Table 4.2 shows a list of datasets used to
evaluate the proposal with a comparison to existing algorithms. We illustrate the
comparison results between FESMA and Aprioriseq |B. 2005] on 3 different datasets
represented in Figures 4.7, 4.8, and 4.9 respectively. We could not reproduce the
experiments using other algorithms due to some compilation problems of the code
available on different Web sites. We could not even reproduce the obtained results
published the literature, even with the use of the same datasets. The hardware
configuration not being the same, we believe the comparison would be inaccurate
and unfair.

Regarding the obtained results, it appears that there is a clear gap between
the results obtained by AprioriSeq and FESMA with a better performances for
FESMA on all the configurations of the support (i.e., z-axis). We believe that
with these results, even other algorithms will be outperformed. Another interesting
observation regarding FESMA is its ability to manage large datasets formed by very
short frequent sequences that generally pose a problem to existing methods. Finally,
it can be easily observed that FESMA is stable after considering a minimum support
of 2 services. This means that the support doesn’t influence the performances of
the method too much contrary to other existing methods.

Chapter 4. Full Mashup Completion Based on Frequent Sequence

72

Mining

Algorithm runtime (seconds)

1000

100

10 F

T 3
FESMA ¥]
APRIORISEQ —=—]

minimum support

Figure 4.7: FESMA vs Apriori runtime over support (loglog scale) on T100kL2.5

dataset.

Algorithm runtime {secons)

1000

100

T
FESMA ¥
APRIORISEQ — *

minimum support

Figure 4.8: FESMA vs Apriori runtime over support (loglog scale) on T200kL2.5

dataset.

4.6.3 FESMA performances

Once this information checked, and since we could not use larger datasets with the
implementation of the AprioriSeq that we have, we wanted to check the scalabil-
ity of the proposed approach. We have considered the same datasets described in
Table 4.2. The results are illustrated in Figure 4.10. Considering the size of the
datasets and the minimum support, the results are satisfactory since the maximum
time needed to build the tree with 10 rows is about 90 seconds. Note also the
behavior of the algorithm which reproduces exactly the same stability for all the
situations like the one observed before.

4.6. Implementation and evaluation 73

1000 T T T T T T]
FESMA ¥ A

APRIORISEQ —%—]
] -]
Tt
= —
2 i S
(=]
§ 100f
@
o
@
E
E
=
E
£
= 10 F e
E +
=
v v v - - - -
1 L L L ! L L L
1 2 3 4 5 6 T 8 9

minimum support

Figure 4.9: FESMA vs Apriori runtime over support (loglog scale) on T'100kL5
dataset.

4.6.4 Social overhead

As a second experiment, we wanted to measure the overhead generated by the inte-
gration of the social dimension within FESMA. To evaluate this, we have modified
an initial dataset, i.e., T1014D100K, by associating to each sequence a user iden-
tifier who is supposed to be the creator of such sequence (i.e., Mashup). We have
generated a User <— Mashups association satisfying the most important prop-
erty of social networks, i.e. the long tail of the activity distribution. This property
argues that some users (Web-users) are much more active than others in terms of
generated content (Mashups). Figure 4.11 illustrates the obtained results.

The results clearly show that the algorithm’s runtime responses keep the same
behavior with an average of 25% of overhead for social dimension which is reasanable
regarding the personalizarion and social added-value features provided to users. In
the same time, even with the overhead generated by the social dimension, the results
are more interesting than all the existing algorithms without the consideration of
the social dimension.

4.6.5 Completion runtime

At this stage we wanted to measure the response time of the completion strategy. In-
deed, the completion strategy needs to satisfy interactive application requirements
since it’s supposed to provide real-time and dynamic recommendations and sug-
gestions to users who are creating (editing) Mashups. As mentioned before, the
completion algorithm uses the prefix frequent sequence tree generated by FESMA
in order to retrieve the remaining piece of a sequence introduced by the user.

To perform this evaluation, we construct on the previous dataset and F'STree
and associate for each frequent sequence its users. Then, we consider different initial
queries by different users (randomly selected from the database) while varying the
size of each query sequence from 1 to 10, i.e. len(sq) € {1,...,10}. We recover then

Chapter 4. Full Mashup Completion Based on Frequent Sequence
74 Mining

100 T T T T

T
T100k-L2.5 -+
T200k-L2.5 —<—
T500k-L2.5 -
T1000k-L2.5 ----&---

T100k-L5 =
T200k-L5
T500k-L5
T1000k-L5 - & -

- S R T100k-L10 — = -

0 T200k-L10 v
 T500k-L10 —~—

N
N
\ LR IR R e R G
- B e
L} L] "

10

Algorithm runtime (seconds)

TRy
= u n - n

Y

minimum support

Figure 4.10: FESMA runtime on all the datasets

the maximum time for each value of the size. The results are illustrated in Fig-
ure 4.12 with time unit expressed in milliseconds. The results shown in Figure 4.12
illustrate the efficiency of the proposed completion strategy and its ability to sup-
port real-time queries , and show that the more the length of a query sequence is
high, the more the response time decreases.

4.7 Comparison to the closest related work and conclu-
sion

We have proposed and evaluated a full Mashup dynamic completion approach in
order to assist end-users when composing services. We have clearly seen that the
performance of our algorithms allow perfectly to satisfy application interactivity
requirements. In order to better assess this approach, we propose in the following
to slightly discuss our results with respect to a similar study in 7?7 even if they are
not directly comparable. This is, to the best of our knowledge, the only work in
the literature which is directly related to full Mashups completion. Our work has
the same objective as that in [Greenshpan 2009] but from a different perspective.
In fact, this latter study has shown a full mashup completion solution based on
community approach with contrast to the social-based approach we are proposing.
In Greenshpan et al. [Greenshpan 2009], the authors rely on services categories to
compute completions of Mashups using a top-k strategy. In fact, we consider not
only the community level but especially the individual level (how the end-users
are related in social network) to compute completions. Another difference is that
in our approach considers each service when computing the completions list, in
contrast with service categories in [Greenshpan 2009]|. Instead of requiring more

4.7. Comparison to the closest related work and conclusion 75

100 ———ry ———rTy Ty Ty
community ¥
social —®— 4

L2
LA 1
TEVIEY 9 VRV ¥ ¥V T IVIEIV WV VW OIVVEeY

Algorithm runtime (seconds)
i
=

1 1 1 1
1 10 100 1000 1000¢C

minimum support

Figure 4.11: Overhead generated by the social dimension

01 T T T T T T T
0.01 [
0.001

0.0001 [

compltion algorithm runtime {seconds)

1e-005

1e-006

query sequence size

Figure 4.12: Obtained results on completion times

resources, the computational efficiency of our approach adequately copes with the
increase in precision. The scalability of our approach is advantageous, using datasets
five times larger and with more precision than in |Greenshpan 2009|. The main
performance parameter used in 77 is the completion algorithm response time which
presents results of about 0.5 second. Even if the social approach, that we are
proposing, introduces more complexity by considering differentiation between users’
composition patterns both in mining and completion steps, we succeed to reach less
then 0.05 second for completion response time which outperforms the state of the art
results. Our performance is mainly due to the FSTree data structure which presents
optimal results (direct access) when querying it with any given partial mashup
introduced by the user. Our approach to service full completion is innovative since
this is the first approach that offers fine grained recommendations. Moreover, our
approach leverages both the community-based principles and a social dimension
with a well balanced importance thus providing the user with well targeted and

Chapter 4. Full Mashup Completion Based on Frequent Sequence
76 Mining

more personalized recommendations.

CHAPTER 5
Social Composer: An Augmented
Mashup Creation Environment

5.1 Introduction

We presented in the previous two chapters two approaches that aim to assist end
users in the process of service composition using a Mashup Creation environment.
In addition to putting into practice these features, we implemented a complete envi-
ronment for creating Mashups enriched with the dynamic service recommendation
called Social Composer.

The current chapter describes in detail the Social Composer (SoCo). In the
first section we present the general requirements of any environment for creating
Mashups. Then, we detail the design and implementation of SoCo. Afterwards, we
focus on the dynamic recommendation functionality by illustrating it through some
use cases. We, also, show the integration of SoCo in a global service composition
framework developed in the SERVERY European project.

5.2 Classic service composition environment requirements

In chapter 2, we reviewed existing Mashup creation environments such as Yahoo
Pipes! and Open Mashup Studio. These environments share more or less the same
basic architecture. They all offer, through a Graphical User Interface(GUI), the
ability to end user to link graphically basic services. This abstract description
entered by the user is then translated into an executable language which invokes
services according to the logic described by the user. Thus, the common components
of any Mashup creation environment are the directories of basic services and users,
the GUI, and the orchestration engine.

5.2.1 Graphical User Interface

As previously mentioned, there are several tools that allow the user to express the
composition logic to perform. The graphical interface particularly instantiates the
concept of semi-automatic composition by offering the possibility to interact with
the end user. It is used for graphically connecting services of particular interest to
the user in a way that express the composition logic. It provides a level of abstraction
that incorporates the principle of workflow, which already exists as a workflow in the
enterprise context. Indeed, a Mashup expressed through this type of interface allows

Chapter 5. Social Composer: An Augmented Mashup Creation
78 Environment

expressing, with relative accuracy, the logic of the desired composition. Depending
on the level of abstraction, expressed composition schemas are to a certain extend
similar services orchestrating scripts described below. Commonly, basic services are
presented in a list from which the user selects the services he wants, drags/drops
them on an edition area, and then connects them.

5.2.2 User directory

Any Mashup creation environment has to provide the basic functionality for man-
aging user accounts. This feature allows the user to manage the schemas of compo-
sition with the following operations: create, edit, deploy (implement), and publish
a composition schema. These operations are particularly important in our system
because they express the user-service relationship. A directory of users and their
interactions are maintained in a database to ensure these operations.

5.2.3 Service directory

In every Mashup creation environment, a directory of basic services is maintained.
It stores descriptions of basic services. As shown in chapter 2, many languages for
service description and protocol for service discovery and publication are proposed.
The couple UDDI et WSDL represents the most popular configuration used for Web
services. The WSDL description represents a service (operations input/output and
the endpoint). The UDDI technology database ensures the discovery and publication
operations of WSDL descriptions. The created composed service (Mashup) should
be registered to be reused later as a basic service in a new composition schema.

5.2.4 Orchestration engine for dynamic service composition aspect

Once a composition logic is expressed in the edition area and validated by the end
user, that description is translated into an executable script that has to orchestrate
basic services according to the expressed logic. There are a number of service or-
chestration languages but BPEL has been accepted as the De-facto standard in the
market due to its usefulness. There are other languages that could orchestrate the
services that include SPATEL, BPEL4J and BPMN. To support the semi-automatic
service composition, we had to choose an easy way to implement orchestration lan-
guage, so we narrowed down our research to BPEL and SPATEL after carefully
examining the pros and cons of other languages.

Compared to BPEL, SPATEL is not a fully specified language, and has no sup-
port material on the Internet. It doesn’t have any mechanism to seamlessly integrate
external services that are not hosted within the SPATEL orchestration engine. Cur-
rently, the SPATEL engine requires that every external service has to be explicitly
encapsulated with a customized wrapper, itself written in SPATEL, to be properly
integrated within the environment (orchestration engine). In contrast, BPEL is
complete, open source and is an adopted standard with many supporting engines.
Being easy to implement, scalable, and flexible, BPEL was quickly accepted by the

5.3. SoCo application design and implementation 79

industrial community and is now the dominant technology in the field of Web service
composition. BPEL supports all the constructs that any structural programming
language contains (conditional statement, loop statement, ...) allowing the descrip-
tion of any complex composed service. Deployment and reuse of the composed
service is versatile in BPEL.

For those reasons, and in order to achieve dynamic service composition, we have
chosen BPEL as an orchestration language. Similar to several other orchestration
languages having a corresponding number of engines, BPEL also has several cor-
responding engines. After selecting the BPEL as an orchestration language, the
orchestration engine had to be chosen as well. We shortlisted few BPEL engine can-
didates like ActiveBPEL, Apache ODE, and Open ESB. We found Apache ODE to
be more suitable for dynamic service composition due to its simplicity in deploying
the composition script, the good quality of its available support on the Internet, and
for its performance.

5.3 SoCo application design and implementation

After reviewing the main general requirements of any Mashup environment, we focus
in the following on the SoCo as a Mashup creation environment augmented with
dynamic services recommendation feature. we propose first an overview of the GUI.
Then, we present the SoCo application general design. After that, we detail the
technical implementation choices.

5.3.1 The SoCo GUI

First, we present here SoCo GUI which is the visible part of the Social Composer
that interacts with the end-user. Figure 5.1 shows this interface includes two main
parts. The service repository, exposes existing basic services in the form of a list.
The user is able to drag/drop any service in the edition area where services could
be linked and manipulated as black boxes. In fact, this operation (drag/drop)
automatically transform the service to a box according to a service description, for
instance WSDL. As the user is editing a new Mashup, and automatically when
dropping a service into the edition area, dynamic suggestions are automatically
provided according to the approach detailed in Chapter 3. Once the user has finished
to edit his Mashup, he can actually run the created Mashup and publish it (by
clicking on the "Run Button”). This last operation feeds in parallel the user-service
interactions repository in order to allow the recommendation system to compute
relevant dynamic recommendations.

5.3.2 SoCo framework design

In this part we explicit the internal architecture of SoCo. Figure 5.2 shows the main
components including the GUI, the service and user repositories, and the translator
of the graphical user description into an executable script to be interpreted by an

Chapter 5. Social Composer: An Augmented Mashup Creation

80 Environment
Running mashup
(dynamic BPEL process)
o
Service List
!.;‘."'"”_ " Edition
Suggestions «~ o Area

Figure 5.1: Social Composer Graphic User Interface

orchestration engine, itself deployed in an executable environment. In addition,

interfaces between those components are described in the following. We will not

detail the recommendation system in what is described further.

1.

Server repository It contains all the basic services that a system could need
to compose the services. This is an UDDI server that has the endpoints of all
the services, which are registered.

Service repository - GUI list This is the interface for sending the service
list from the Service repository to the GUI. The GUI can only get the list of
service from the service repository. To register service a separate interface is
used.

Loading service description into the Mashup editor(edition area)
This module is responsible for showing the list in a panel or Mashup editor in
a way that any service could be added to the editor as an abstract input/output
box that is conforms to its description.

GUI - Mashup BPEL Translator (MBT) This is the first used module
after the user sends the request for services composition by clicking on "Run”
button. The request contains the information about the services that are to be
interacted during the process execution and how they are connected to each
other.

Mashup BPEL Translator (MBT) Based on the description sent by the
previous module, the MBT generates mandatory files that translate the in-
troduced description into an executable script (the BPEL script and resulting
WSDL file) in order to deploy the process on the orchestration engine.

5.3. SoCo application design and implementation 81

Interface/GUI and Mashup editor @

O\
@ [*] [

Mashup-BPEL TrMator Recommend
@ @ ation sys
Service

Repository I {/6\)
BPEL/Orchestration\::Kgine 1
-
omposed
(3] Service
. Process Execution Repository
Accessible

I (SOAP)
services o 9
end-points C/ N

Figure 5.2: Social Composer Internal Architecture

6. MBT - BPEL Engine This is the deployment module, MBT sends informa-
tion to BPEL engine in order to deploy and run the BPEL process.

7. MBT - Composed Service Repository This interface is responsible for
publishing the created composed service by sending information to composed
service repository; This information consists of a WSDL file including the
composed service endpoint. The Composed Service Repository is also a UDDI
server.

8. BPEL Engine - Process Execution This interface is responsible for send-
ing a signal that the process has been deployed over the engine and is ready
to receive any SOAP request.

9. Process Execution This module executes the process by sending the SOAP
request to the process’s endpoint. It also sends back the response of the
execution (results).

5.3.3 SoCo implementation

This section explains the technical details of the system i.e., how the applica-
tion/system is implemented and what choices are made during the implementation
part. For more clarity, we run some examples of service composition.

Graphical User Interface (GUI) This Social Composer GUI is a Javascript-
based Web client that uses Yahoo! User Interface Library (YUI). As shown in Figure

Chapter 5. Social Composer: An Augmented Mashup Creation

82 Environment
GUI
Mashup editor
I
Database PHP/Javabridge SOAP Request/
Process Execution
UDDI | | Services List Service Composer

Mashups-Services Translator

Tomeat/ODE
WSDL BPEL Gen. Deployment et environment

Gen. Script Gen.

Figure 5.3: Social Composer implementation technical properties

5.1, SoCo’s GUI is quite simple: it has a list of services that are divided into cate-
gories or sections e.g., these include basic services, composed services, recommended
services, etc. The client side (JavaScript) uses JSON-RPC format to interact with
other components of SoCO. More over, it uses the JSON String for describing com-
posed service in the edition area. This includes listing, creating and linking the
basic services.

Mashup Editor (edition area) It is a panel where the user can add, remove, or
link the services to each other. Although there are many kinds of services abstract
box templates that are provided by YUI library, we only use one kind of abstract
box i.e., an input/output box with the possibility of filling inputs manually (text) or
making links between service inputs and outputs according to the logic of composed
services. The user can also save the Mashups he/she created into the panel and load
the previously saved Mashups. The most important thing in the GUI is the Run
button that actually does the work. By clicking on it, the user invokes the process of
service composition mechanism. In order to compose a service, the user is required
to drag and drop the services he wants to compose into the panel. If a user likes
to get the weather information on his mobile phone by SMS, then he would have to
drag the Weather service first, and then the SMS service(Figure 5.4).

PHP /Java Bridge An other important feature of SoCo is the ability to run the
composed service. This part of the framework was developed by generating WSDL
and BPEL files corresponding to the created service. Developed in Java and PHP,
we have used an open source PHP /Java Bridge API to establish a channel to call
the Java methods from PHP back-end. This bridge is responsible for getting the

5.3. SoCo application design and implementation 83

Weather SMS
Service Service
Mashup C ©) Mashup

Figure 5.4: Simple example of a composed service schema

request for service lists and forwards it to the Java module i.e., Services List. The
other task is to get the request for composing the services and sending it to the
service composer module.

Services List This module receives the request for Services Lists in the UDDI
server from PHP/Java Bridge and acts accordingly. It queries the UDDI server
for the services that are SoCo related. In other terms, it queries the WSDL to
built the abstract description of each service (input/output abstract box) and their
deployment endpoint i.e., what operation to execute and what the relevant elements
are. Based upon this information, it builds the JSON string. On receiving the JSON
string, the client side script displays the services list accordingly.

UDDI Server This repository contains all the WSDL files of services that are in
SoCo framework (internal services) or provided by external partners. If a user wants
to compose services of any type, then the endpoints of each service are retrieved from
the WSDL description in the UDDI server. The UDDI server that is being used in
our system is Apache JUDDI, which is an open source UDDI server. It uses MySql
as database. Note that SoCo framework includes one MySql server shared by the
UDDI server and other components.

Service Composer This module receives the request from PHP /Java Bridge for
services composition. It gets the JSON string describing the name and logic of the
composed service introduced by the end user (as described above). This module is
in charge of parsing the JSON string received from the bridge. During the parsing,
it gets the services that have to be composed and the relation between those services
i.e., what service is linked to which other service or which service to execute when
another service execution is done. It sets out the required information/parameters
that are to be used in the generation of WSDL and BPEL files. Once WSDL, BPEL
files are created and deployed, the service composer invokes the composed service
with the user’s inputs.

Mashups-Services Translator This module is responsible for translating the
user’s request to a real composed service. For every composed service description
built by the service composer based on user’s composition logic description, the

Chapter 5. Social Composer: An Augmented Mashup Creation
84 Environment

Mashups-Services Translator launches three file generators because Apache ODE
needs these files in order to execute the process i.e., WSDL, BPEL and deployment
script.

WSDL Generator This module is responsible for generating the new composed
service WSDL file. Besides generating the WSDL it also handles partner services
WSDL files. This module downloads the WSDLs and corresponding XSDs of part-
ner services locally. A modified WSDL4J API is used to parse the WSDLs. An
important part in this module is to identify the XSDs related to WSDLs. This
module also parses the XSD that is imported or embedded as <types> tags. It gets
the required elements from XSD that are related to a particular <wsdl:message>,
which is further related to the operation that a user wants this service to invoke.
According to the JSON string received from the GUI, this model creates the new
WSDL. It sets the inputs of the first service as the inputs of new WSDL, in addition
to this, the new service’s input also contains any other input of any service that is
not wired/linked to the other service’s output as shown in the example below. Any
error/exception during the generation operation would stop the further flow and
would return an error message to the user.

BPEL Generator After generating the WSDL in the previous module, the con-
trol comes to the BPEL generator. The previous module passes the required in-
formation to this module i.e., new WSDL definition and information about other
services. The important information for this module is the links between the services
i.e., how the services are connected to each other, their order and what terminal of
one service is connected to the terminal of the other service as shown in Figure 5.5
(‘return’ is connected to ’text’). This module, also, uses a similar kind of APIs as
WSDLA4J, but it does not fully support the BPEL specification because it has been
locally developed just for the purpose of this prototype.

Deployment The deployment of the BPEL process in Apache ODE is quite simple
as compared to other BPEL engines. It needs a deployment script that has infor-
mation about the partner services. BPEL generation module sends all the required
information to this module after generating a BPEL process. Besides generating
the deployment script for the process, this is also responsible for deploying all the
files to the execution environment of the ODE as well.

Apache Tomcat/ODE Environment This is the environment where the BPEL
process gets deployed and executed. The ODE environment is actually in the Tomcat
running environment.

Process Execution The service created as a result of composing the different
services is a Web service invokable through a SOAP request. At runtime, the com-
posite service is supposed to be up and running. Triggered by SoCo, the Process

5.3. SoCo application design and implementation 85

soco WeatherSenliER

Mnarre

return f‘

Figure 5.5: Simple example of SoCo composed service schema

Execution module is responsible for sending a SOAP request to the ODE engine
that exposes the required process as another Web service. In order to send the
SOAP request, another open source API is used: SAAJ (the SOAP with Attach-
ments APT for Java). The system gets the required input values from parsed JSON
string (done by service composer) and sends the request to the server, on getting
the result response in case the service is invoked successfully. Otherwise an error
has occurred.

5.3.4 Illustrative class diagram and sequence diagram

Figure 5.6 presents the class diagram of important classes, whereas Figure 5.7 shows
a sequence diagram of a main use case.

5.3.5 A running example

The example of a simple service composition is shown below. It includes Weather,
Translator, SMS, and Email services. The sequence of the services is quite visible
i.e., first Weather service would be called, then its results are translated through
Translator service. After that SMS and Email services would be called to send
the translated weather information to the filled in email address. Note that all the
services have been simplified for the purpose of illustration.

Figure 5.9:

1. This is the request that is being sent to the process in a SOAP envelope with
all possible input values from the user. This request is generated from the
Process Execution module.

2. This is the response that the process receives from the Weather service.

Chapter 5. Social Composer: An Augmented Mashup Creation

86 Environment
s e
3 WadiGarerator v e
= e ——
& o Liopger
wotwser PrudFw o0 Logom
bt WD o Varstie
© sermeatonsl Sirg ot aiabls
v Clarare @ widlonst: Stig WRynreps Mapelirng freflmaneTipes
G dsonbtarsit © trocetsConet Streg s Mo Serig Frotfieenard T pes
& Wil Migpasieig et s sestothgnds. MagGiveng Eresetet g
L R, °m"""‘ ot
3 Mag<Stiing EnclBenert Tipe> [Epeoens oz
o mancsrg voa " & v
 exeueTOCETSINGE Tt ST e @ gere bockean
L i & setfeAMancr SFingh | F autiander
 regitterSennceModSenaces) vod & wrdcerersan) actity
ool y ' - " 3 * selATmgroutiModus BPEL Process Variabie] Actity
 geMoouses Gt Meshis et T(Datrban Mockée) sk . Aty
o petCosiaee(Ctisct) Contim o 146 1 et ~-He Srrgl g
 eFmidsiCtiect) Fief] PpESF P IS e sage M) it geiCommspondegesiList e Modie Slreg) e
o et Typei Otgocty Mgt Typs . " G etk defitytan g Meeage | Mose
- etV shanCiect] Vo ettt Mok Enaienatyoe Srmgi vod = sz et BPELPocRss) Aven
& geRConieiCbmcty Conlgraton .] i . C ent
 gePres(TRct) Wres . e voel & tromaCopy(Sting S Coy
o petlentarall Cosecl) Teemtinal - voud [] 5 | sz
o . ' @ getimportFoousled Detrbon Strog Strng) pont o vetiveheinoke, \ it W artie Mode)
. et L 1 o
@ petipmtatonDefiron Stng Sivg) (perabon " 1
@ potpeatordList» Opacation» Stngh Operatin o getiper sborDebnbon Stringl Operabon
© qetPonTypeetrdion St PTipn . ikt
L] Lo o vetimportsDetrdon SEELProcens | vod
@ vetbs Al e Detnon Matsagn) ol & nary Strgli) vost.
o tthesircEimneni Pt List-Sleent Typer] visd T
& ertReoteReaTRrRon M S ListSig
o setiess mpetiresiDelilion Dnralioh | el
- o okl .
. - P
. ot @0 i
. =
o vt Biprtrailed Type(Portype). woat e Lagper
1 etbewBortTE g sorRisgretsy g Port | v Wiamespace Mapiineg Stengs
o ettt Ty Oparatuon SonTypat & gethocumenti) Document.
R] @ sen 1 ol
- e
o meSredl) vt
Figure 5.6: Class diagram of important classes
corm.al foco mbt jsen
vioid

Figure 5.7: Sequence diagram of a main use case

5.3. SoCo application design and implementation

87

SoCo - Social Composer O tew |5 Loag | 3 Save | @ Detee | 0 tolp

Services Directory
Suggestions (ISG)

Basic Services

soco-InverseSenvice.

saco-TranslateSenvice soco WeatherSeniEll

soce-SublractSSenice toblumber
name

soco-AddService fromNumber

i return | | :
soco-WeatherSenice - | categors [Dome =
i B
s0c0-SMSService - - | Minimap
soe-ValidateWsSemce |

soco-EmailSerace ’

retum

Suggestions (ESG) +
Suggestions (L) + email
|
subject
|
message
The page at http:/ /localhost:9090 says: 5|
return
y (new String(*SENT:-Emaikhcdh, "Today |
ipxglis: 24C" + from 'en’ to ‘xggbs™})

Figure 5.8: Simple example of SoCo composed service schema

& Run

2B

Figure 5.9: Simple example of SoCo composed service schema

Chapter 5. Social Composer: An Augmented Mashup Creation
88 Environment

3. This is the response from the Translator service.
4. Response from the SMS service and,
5. The response from the Email service.

6. This is the SOAP response of the request that was sent initially. This response
is being received by the Process Execution module.

5.4 Conclusion

In order to implement the proposed algorithms and techniques, we developed a
Mashup creation framework, called Social Composer (SoCo). This framework, ded-
icated to end users, initially implements the requirements established in the state
of the art that any Mashup editor should provide in terms of level of abstraction
and usability through the user interface. As well, it implements all the mechanisms
needed to deploy a composed service starting from an abstract description entered
by the user. We have selected BPEL as an orchestration language after comparing
it with other existing language. In addition, SoCo provides capabilities to enrich
the services directory by integrating external ones. Furthermore, SoCo has been
augmented by including a dynamic recommendation functionality. This feature was
notably demonstrated during the conference CSCW’2010. To measure the recom-
mendation completion quality from the end-user perspective, an experiment study
has to be conducted.

CHAPTER 6

Conclusion

Service composition shines out the need of making information systems more flexible
and open. This concept has become the reference architecture model for applications
carried by the impetus of the Internet (Web). Information systems are able to
expose interfaces through the Web or Web services which has increased the number
of available services on a daily basis. Furthermore driven by the Web, but this
time by the Web 2.0, service composition has evolved to Web users characterized
by their limited technical skills. Those end-users, named Y generation, participate,
create, share, and comment content through the Web. This service composition
evolution is incarnated in the Mashup concept and realized through Mashup editors
such as Yahoo Pipes!. Thanks to the Mashup paradigm, service composition has
been well established within the end users community enabling their creativity to
flourish. For example, creating new applications without manually coding them
constitutes a significant advancement. Web 2.0 has added its social dimension to
the paradigm, allowing users to interact, either directly through the online social
networks or indirectly through sharing, modifying content, or adding metadata.

In this specific context, this thesis is a directed effort towards the evolution of the
service composition concept. The introduction of the social dimension within the
process of composing services represents the main contribution of this thesis. The
consideration of the social dimension is by itself an original path that hasn’t been
addressed in the literature before. Mainly, the concept of social dimension considers
the activity of composing services (creating a Mashup) as a social activity. The
exercise of this activity reveals social links between users based on their similarity
in selecting and combining services. These links could be viewed as interesting
dissemination means of expertise that is accumulated by users when composing
services. In other terms, based on frequent composition patterns, and similarity
between users, when a user is editing a Mashup, dynamic recommendations are
proposed. Recommendations that aim at completing the initial part of a Mashup
when it is being created.

The work in this thesis has launched a new direction of research and a unique
view on the problem of end-users service composition through the introduction of a
social dimension in the process of composition. The considered social dimension is
closer to what is known in social network through the consideration of the user as the
main actor of the system to socialize. The interest of this work is starting to be seen
since several initiatives are continuing to flourish around this area [Maamar 2011,
Zhang 2010].

Modeling, robustness, and response-time sensitivity were the main factors that

90 Chapter 6. Conclusion

were taken into account during the development of the completion strategy. Inter-
active systems requirements dictated the response time restriction. The end result
shows a reasonably acceptable response time within the context of large and com-
plex datasets as reported in Chapter 5. Whereas a composite service is considered
as a sequence of basic services, finding similarities between users in terms of service
composition behavior comes first to find frequent patterns (subsequences). Com-
pared to existing frequent pattern mining algorithms, the novelty of the proposed
FESMA algorithm, is the use of an appropriate data structure to represent the fre-
quent patterns. The FESMA algorithm meets the requirements of robustness and
speed based on the FSTree data structure. As a result of the use of a tree-based data
structure, the recommendation action is reduced to a simple traversal of a tree. The
recommendation algorithm has shown significant improvements compared to the
prior art. It particularly outperforms the work cited in [Greenshpan 2009] in term
of response time.

Recommendation algorithm drawbacks such as cold start and newcomer services
have also been studied. Possible solutions have been proposed to address both issues
using the community approach combined with some diversification techniques.

Moreover, to implement the proposed algorithms and methods, we have devel-
oped a Mashup creation framework, called Social Composer (SoCo). This frame-
work, dedicated to end users, initially implements the requirements established in
the state of the art that any Mashup editor should provide in terms of level of ab-
straction and usability through the user interface. As well, it implements all the
mechanisms needed to deploy a composed service starting from an abstract descrip-
tion entered by the user. In addition, it provides capabilities to enrich the services
directory by integrating external ones. Furthermore, SoCo has been augmented
by including a dynamic recommendation functionality. This feature was notably
demonstrated during the conference CSCW’2010. To measure the recommendation
completion quality from the end-user perspective, an experiment study has to be
conducted.

During the elaboration of our approach, we were led to start from simplified
definitions of the entities handled in order to formally constraint the model. One of
these definitions is restricting the expressiveness of a composition of services to an
ordered sequence of basic services. One future direction is to extend the proposed
algorithms and methods to use a more complex service representation model. Actu-
ally, it would certainly be interesting to consider the activity of workflow creation,
in an enterprise context, for defining business processes. In this case, a workflow
is represented as a composite service. Our approach, when extended, would ease
the creation of new workflows by letting the recommendation system dynamically
suggest relevant completions. This will require mining of frequent complex patterns.

Another direction to explore in the field of service composition which is to in-
troduce non-functional properties in the recommendation feature when composing
services. These properties are mainly related to quality of service and service level
agreement. The way these properties can influence the recommendation system is
of particular interest.

Bibliography

[Adomavicius 2005] G. Adomavicius and A. Tuzhilin. Toward the next generation
of recommender systems: A survey of the state-of-the-art and possible exten-
sions. IEEE transactions on knowledge and data engineering, vol. 17, no. 6,
pages 734-749, 2005. 51

[Agrawal 1993] R. Agrawal, T. Imieliniski and A. Swami. Mining association rules
between sets of items in large databases. ACM SIGMOD Record, vol. 22,
no. 2, pages 207-216, 1993. 62

[Agrawal 1995] R. Agrawal and R. Srikant. Mining sequential patterns. pages 3 —14,
mar. 1995. 62

[B. 2005] Ferenc B. Trie-based APRIORI Implementation for Mining Frequent Item-
sequences. In Bart Goethals, Siegfried Nijssen and Mohammed J. Zaki, edi-
teurs, ACM SIGKDD IW on OSDM’05, pages 56-65, Chicago, IL, USA,
August 2005. 63, 71

[Balbiani 2006] P. Balbiani and F. Cheikh. Computational analysis of interactiong
Web services: a logical approach, 2006. 3, 23, 24

[Bond 2006] G.W. Bond. An introduction to ECharts: The concise user manual.
Transition, vol. 4, page 2, 2006. 16

[Bosca 2005] A. Bosca, A. Ferrato, F. Corno, I. Congiu and G. Valetto. Composing
Web services on the basis of natural language requests. In Web Services, 2005.
ICWS 2005. Proceedings. 2005 IEEE International Conference on, pages 2
vol. (xxxiii+856), 2005. 30

[Box 2000] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H.F.
Nielsen, S. Thatte and D. Winder. Simple object access protocol. URL:
http://www. w3. org/TR/SOAP/, 2000. 17

[Broy 1991] Manfred Broy. Towards a Formal Foundation of the Specification and
Description Language SDL. Formal Aspects of Computing, vol. 3, pages
21-57, 1991. 16

[Chaudhuri 2009] S. Chaudhuri and R. Kaushik. Extending autocompletion to tol-
erate errors. In SIGMOD 09, pages 707-718, New York, NY, USA, 2009.
ACM. 62

[Chen 2003| L. Chen, N.R. Shadbolt, C. Goble, F. Tao, S.J. Cox, C. Puleston and
PR Smart. Towards a knowledge-based approach to semantic service compo-
sition. Lecture Notes in Computer Science, pages 319-334, 2003. 26

92 Bibliography

[Christensen 2001] E. Christensen, F. Curbera, G. Meredith and S. Weerawarana.
Web services description language (WSDL) 1.1, 2001. 17

[Clarke 1999] Edmund M. (Jr.) Clarke, O. Grumberg and D.A. Peled. Model check-
ing. MIT, 1999. 15

[Curbera 2002| F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi and S. Weer-
awarana. Unraveling the Web services web: an introduction to SOAP, WSDL,
and UDDI. Internet Computing, IEEE, vol. 6, no. 2, pages 86 —93, 2002. 17

[Davison 1998] B.D. Davison and H. Hirsh. Predicting sequences of user actions. In
AAAI/ICML 1998 Workshop on PF AI ATSA, 1998. 62

[Diaz 2007] O. Diaz, S. Pérez and 1. Paz. Providing personalized mashups within the
context of existing web applications. Web Information Systems Engineering—
WISE 2007, pages 493-502, 2007. 27

[DiBernardo 2008] M. DiBernardo, R. Pottinger and M. Wilkinson. Semi-automatic
web service composition for the life sciences using the BioMoby semantic web
framework. Journal of Biomedical Informatics, vol. 41, no. 5, pages 837847,
2008. 26

[Dimitrov 2007] M. Dimitrov, A. Simov, V. Momtchev and M. Konstanti-
nov. WSMO Studio-A Semantic Web Services Modelling Environment for
WSMO. The Semantic Web: Research and Applications, pages 749-758,
2007. 22

[Dong 2007] G. Dong and J. Pei. Sequence data mining. Springer-Verlag New York
Inc, 2007. 62

[Elenius 2005] D. Elenius, G. Denker, D. Martin, F. Gilham, J. Khouri, S. Sadaati
and R. Senanayake. The OWL-S editor—a development tool for semantic web

services. The Semantic Web: Research and Applications, pages 78-92, 2005.
21

[Ennals 2007a] Rob Ennals and David Gay. User-friendly functional programming
for web mashups. SIGPLAN Not., vol. 42, no. 9, pages 223-234, 2007. 4, 27,
37

[Ennals 2007b|] Robert Ennals and Minos N. Garofalakis. MashMaker: mashups for
the masses. In SIGMOD Conference, pages 1116-1118, 2007. 27

[Erl 2005] Thomas Erl. Service-oriented architecture: Concepts, technology, and
design. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2005. 9

|[Erlewine | M.Y. Erlewine. Ubiquity: Designing a Multilingual Natural Language
Interface. In Proceedings of the SIGIR 2009 Workshop on Information Access
in a Multilingual World, Boston, July 23, 2009, pp 45-48. 32, 46

Bibliography 93

|[Fernandez 1997| J.C. Fernandez, C. Jard, T. Jéron and C. Viho. An experiment in
automatic generation of test suites for protocols with verification technology™

1. Science of Computer Programming, vol. 29, no. 1-2, pages 123-146, 1997.
16

|[Filipowska 2007 A. Filipowska, A. Haller, M. Kaczmarek, T. van Lessen,
J. Nitzsche and B. Norton. Process ontology language and operational se-

mantics for semantic business processes. Deliverable 1.3. Project IST 026850
SUPER, 2007. 22

|[Floyd 2007| Ingbert R. Floyd, M. Cameron Jones, Dinesh Rathi and Michael B.
Twidale. Web Mash-ups and Patchwork Prototyping: User-driven techno-
logical innovation with Web 2.0 and Open Source Software. In HICSS 07,
page 86, Washington, DC, USA, 2007. IEEE Computer Society. 34

|Goethals 2003] B. Goethals and M.J. Zaki. FIMI03: Workshop on frequent itemset
mining implementations. In Third IEEE ICDM FIMI Workshop, pages 1-13.
Citeseer, 2003. 59, 63

[Gordon 2000] M. Gordon. From LCF to HOL: a short history. Proof, language,
and interaction: essays in honour of Robin Milner, pages 169-185, 2000. 15

[Grammel 2008| L. Grammel and M.A. Storey. An End User Perspective on Mashup
Makers. University of Victoria, Tech. Rep. DCS-324-1R, September 2008. 4,
33

|Greenshpan 2009] Ohad Greenshpan, Tova Milo and Neoklis Polyzotis. Autocom-
pletion for mashups. Proc. VLDB Endow., vol. 2, no. 1, pages 538-549, 2009.
23, 37, 46, 59, 62, 74, 75, 90

[Guillaume 2004] J.L. Guillaume and M. Latapy. Bipartite structure of all complex
networks. Information processing letters, vol. 90, no. 5, pages 215-221, 2004.
46, 68

[Han 2000] Jiawei Han, Jian Pei and Yiwen Yin. Mining frequent patterns without
candidate generation. SIGMOD Rec., vol. 29, no. 2, pages 1-12, 2000. 63

[Hassine 2006] A.B. Hassine, S. Matsubara and T. Ishida. A Constraint-Based Ap-
proach to Horizontal Web Service Composition. Proc. ISWC, Athens, GA,
USA, 2006. 22

[Hoyer 2008] V. Hoyer and M. Fischer. Market Overview of Enterprise Mashup
Tools. In Proceedings of the 6th International Conference on Service-Oriented
Computing, pages 708-721. Springer, 2008. 33

[Ilyas 2008] Thab F. Ilyas, George Beskales and Mohamed A. Soliman. A survey
of top-k query processing techniques in relational database systems. ACM
Comput. Surv., vol. 40, no. 4, pages 1-58, 2008. 49

94 Bibliography

[Jones 2009] M. Cameron Jones and Elizabeth F. Churchill. Conversations in de-
veloper communities: a preliminary analysis of the yahoo! pipes community.
In CCT ’09, pages 195-204, New York, NY, USA, 2009. ACM. 34

[Kirda 2001] E. Kirda. Engineering of Web services with XML and XSL. In Proceed-
ings of the 8th Furopean software engineering conference held jointly with
9th ACM SIGSOFT international symposium on Foundations of software
engineering, pages 318-319. ACM, 2001. 8

[Koop 2008] D. Koop. Viscomplete: Automating suggestions for visualization
pipelines. | IEEE Transactions on Visualization and Computer Graphics,
pages 1691-1698, 2008. 46

|[Kotler 1984 P. Kotler and R.E. Turner. Marketing management: Analysis, plan-
ning, and control. 1984. 7

[Lausen 2005 H. Lausen, J. de Bruijn, A. Polleres and D. Fensel. Wsml-a language
framework for semantic web services. In W3C Rules Workshop, Washington
DC, USA, 2005. 21

[Law 2007] T. Law. Social Scripting for the Web. Computer, vol. 40, no. 6, pages
96-98, 2007. 25

[Lécué 2008] F. Lécué, E. Silva and L.F. Pires. A framework for dynamic web
services composition. Emerging Web Services Technology, Volume II, pages
59-75, 2008. 24

[Leskovec 2007] Jure Leskovec, Jon Kleinberg and Christos Faloutsos. Graph evo-
lution: Densification and shrinking diameters. ACM Trans. Knowl. Discov.
Data, vol. 1, no. 1, page 2, 2007. 49

[Liu 2007] X. Liu, Y. Hui, W. Sun and H. Liang. Towards service composition based
on mashup. In Services, 2007 IEEE Congress on, pages 332-339. IEEE, 2007.
4, 25

[Lord 2005| P. Lord, P. Alper, C. Wroe and C. Goble. Feta: A light-weight ar-
chitecture for user oriented semantic service discovery. The Semantic Web:
Research and Applications, pages 17-31, 2005. 25

[Maamar 2007] Z. Maamar, M. Lahkim, D. Benslimane, P. Thiran and S. Sat-
tanathan. Web Services Communities-Concepts € Operations. In Proceed-
ings of The 3rd International Conference on Web Information Systems and
Technologies (WEBIST’2007), Barcelona, Spain, 2007. 23

[Maamar 2009] Z. Maamar, L.K. Wives, Y. Badr and S. Elnaffar. Fven Web Ser-
vices Can Socialize: A New Service-Oriented Social Networking Model. In
INCOS’09, pages 24-30, 2009. 35

Bibliography 95

[Maamar 2011] Z. Maamar, H. Hacid and M.N. Huhns. Why Web Services Need
Social Networks. Internet Computing, IEEE, vol. 15, no. 2, pages 90-94,
2011. 89

[Maaradji 2010a] Abderrahmane Maaradji, Hakim Hacid, Johann Daigremont and
Noél Crespi. Social Composer: A Social-Aware Mashup Creation Environ-
ment. In ACM CSCW 10 (Demos session), 2010. 54

[Maaradji 2010b] Abderrahmane Maaradji, Hakim Hacid, Johann Daigremont and
Noél Crespi. Towards a Social Network Based Approach for Services Com-
position. In IEEE ICC’10., may 2010. 45, 67

[Martin 2004] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIl-
raith, S. Narayanan, M. Paolucci, B. Parsia, T. Payneet al. OWL-S: Semantic
markup for web services. W3C Member Submission, vol. 22, pages 2007-04,
2004. 20

[McCreight 1976] Edward M. McCreight. A Space-Economical Suffix Tree Construc-
tion Algorithm. J. ACM, vol. 23, no. 2, pages 262-272, 1976. 62

[Milanovic 2004] N. Milanovic and M. Malek. Current solutions for Web service
composition. Internet Computing, IEEE, vol. 8, no. 6, pages 51 — 59, 2004.
20, 24

[Nielsen 2006] J. Nielsen. Participation inequality: Encouraging more users to con-
tribute. Jakob Nielsens Alertbox, vol. 9, page 2006, 2006. 43

[P. 2001 Jian P. and al. PrefizSpan: Mining Sequential Patterns Efficiently by
Prefiz-Projected Pattern Growth. Data Engineering, International Confer-
ence on, vol. 0, page 0215, 2001. 62, 63

[Palfrey 2010] J. Palfrey and U. Gasser. Born digital: Understanding the first gen-
eration of digital natives. Basic Books, 2010. 3

|[Paolucci 2004] M. Paolucci, N. Srinivasan and K. Sycara. Ezpressing wsmo medi-
ators in owl-s. In Proceedings of the workshop on Semantic Web Services:
Preparing to Meet the World of Business Applications held at the 3rd Inter-
national Semantic Web Conference (ISWC 2004), Hiroshima, Japan. Cite-
seer, 2004. 22

[Papazoglou 2003] Mike P. Papazoglou. Service -Oriented Computing: Concepts,
Characteristics and Directions. Web Information Systems Engineering, In-
ternational Conference on, vol. 0, page 3, 2003. 8, 11

[Peltz 2003] C. Peltz. Web services orchestration and choreography. Computer,
vol. 36, no. 10, pages 46 — 52, 2003. 14

96 Bibliography

[Pistore 2004] M. Pistore, F. Barbon, P. Bertoli, D. Shaparau and P. Traverso.
Planning and monitoring web service composition. Artificial Intelligence:
Methodology, Systems, and Applications, pages 106-115, 2004. 14

[Roman 2005] D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stoll-
berg, A. Polleres, C. Feier, C. Bussler and D. Fensel. Web service modeling
ontology. Applied Ontology, vol. 1, no. 1, pages 77-106, 2005. 21

[Scicluna 2004] J. Scicluna, C. Abela and M. Montebello. Visual modeling of
owl-s services. In Proceedings of the TADIS International Conference
WWW /Internet. Citeseer, 2004. 21

[Shiaa 2008] M. Shiaa, P. Falcarin, A. Pastor, F. Lécué, EM Goncalves da Silva,
F. Pireset al. Towards the automation of the service composition process:
case study and prototype implementations. Proc. of the ICT Mobile and
Wireless Communications Summit, Stockholm, Sweden, 2008. 31, 46

[Shneiderman 1984 Ben Shneiderman. Response time and display rate in human
performance with computers. ACM Comput. Surv., vol. 16, pages 265-285,
September 1984. 39

[Soriano 2007] J. Soriano, D. Lizcano, M.A. Canas, M. Reyes and J.J. Hierro. Fos-
tering innovation in a mashup-oriented enterprise 2.0 collaboration environ-
ment. UK, sai: sisn, vol. 24, pages 62—68, 2007. 27

[Soriano 2008| Javier Soriano, David Lizcano, Juan J. Hierro, Marcos Reyes,
Christoph Schroth and Till Janner. FEnhancing User-Service Interaction
through a Global User-Centric Approach to SOA. In ICNS ’08, pages 194—
203, Washington, DC, USA, 2008. IEEE Computer Society. 35

[Spohrer 2007] Jim Spohrer, Paul P. Maglio, John Bailey and Daniel Gruhl. Steps
Toward a Science of Service Systems. Computer, vol. 40, pages 71-77, 2007.
7

[Srikant 1996] R. Srikant and R. Agrawal. Mining sequential patterns: Generaliza-
tions and performance improvements. EDBT’96, pages 1-17, 1996. 62

[ter Beek 2007] Maurice H. ter Beek, Antonio Bucchiarone and Stefania Gnesi.
Web Service Composition Approaches: From Industrial Standards to Formal
Methods. In ICIW, pages 15-20, 2007. 3

[Turner 2005 K. Turner. Formalising web services. Formal Techniques for Net-
worked and Distributed Systems-FORTE 2005, pages 473-488, 2005. 19

[Wasserman 1994| S. Wasserman and K. Faust. Social network analysis: Methods
and applications. Cambridge Univ Pr, 1994. 35

Bibliography 97

[Wong 2007] J. Wong and J.I. Hong. Making mashups with marmite: towards end-
user programming for the web. In Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 1435-1444. ACM, 2007. 27, 29

[Yelmo 2008] J.C. Yelmo, J.M. del Alamo, R. Trapero, P. Falcarm, Jian Yi, B. Cairo
and C. Baladron’. A wuser-centric service creation approach for Next Gener-
ation Networks. pages 211-218, May 2008. 11

[Yu 2007] J. Yu, B. Benatallah, R. Saint-Paul, F. Casati, F. Daniel and M. Matera.
A framework for rapid integration of presentation components. In Proceed-
ings of the 16th international conference on World Wide Web, pages 923-932.
ACM, 2007. 27

[Yu 2008] J. Yu, B. Benatallah, F. Casati and F. Daniel. Understanding Mashup
Development. IEEE Internet Computing, vol. 12, no. 5, pages 44-52, 2008.
4, 32

[Yu 2009a] Cong Yu, Laks V. S. Lakshmanan and Sihem Amer-Yahia. Recommen-
dation Diversification Using Explanations. In ICDE *09: Proceedings of the
2009 IEEE International Conference on Data Engineering, pages 1299-1302,
Washington, DC, USA, 2009. IEEE Computer Society. 53

[Yu 2009b| Shuli Yu and C. Jason Woodard. Innovation in the Programmable Web:
Characterizing the Mashup Ecosystem. pages 136-147, 2009. 27, 35, 56, 70

[Yuan 2007] Y. Yuan, J.J. Wen, W. Li and B.B. Zhang. A Comparison of Three
Programming Models for Telecom Service Composition. In AICT. IEEE Com-
puter Society Washington, DC, USA, 2007. 3, 11

[Zaki 2000| M.J. Zakiet al. Scalable algorithms for association mining. IEEE TKDE,
vol. 12, no. 3, pages 372-390, 2000. 62

[Zaki 2001] M.J. Zaki. SPADE: An efficient algorithm for mining frequent se-
quences. Machine Learning, vol. 42, no. 1, pages 31-60, 2001. 62

[Zeithaml 1996] V.A. Zeithaml, M.J. Bitner and D.D. Gremler. Services marketing.
McGraw-Hill New York, 1996. 7

[Zhang 2003] R. Zhang, I.B. Arpinar and B. Aleman-Meza. Automatic composition
of semantic web services. In 1st International Conference on Web Services,
pages 38—41. Citeseer, 2003. 24

[Zhang 2010| H. Zhang, Z. Zhao, S. Sivasothy, C. Huang and N. Crespi. Quality-
assured and sociality-enriched multimedia mobile mashup. EURASIP Journal
on Wireless Communications and Networking, vol. 2010, page 11, 2010. 89

[Zhao 2006| X. Zhao, H. Yang and Z. Qiu. Towards the formal model and verification
of web service choreography description language. Proc. of WS-FM 2006,
2006. 16

98 Bibliography

[Zhovtobryukh 2006] D. Zhovtobryukh. Context-aware web service composition.
University of Jyvaskyla, 2006. 24

RESUME DU RAPPORT DE THESE

Le paradigme de service dans les nouvelles technologies de
I'information et de communication est omniprésent, si bien qu’on parle
de science des services. Le W3C définit le service Web comme un systeme
logiciel qui permet l'interaction entre machines sur le réseau a travers
des interfaces. Les services Web sont définis dans le cadre des
architectures orientées services (SOA) qui permet de distinguer le
fournisseur de service, le répertoire de services, et enfin le
consommateur du service (le client). Cette distinction a donné des
opportunités a opérer des compositions de services qui consistent a
créer de nouveaux services en réutilisant des services déja existants.
Cependant, la composition de services est principalement bénéfique aux
utilisateurs expérimentés comme les développeurs de logiciels car elle
requiert un niveau technique élevé. Par opposition, la tendance actuelle
traduite par I'émergence du Web2.0, vise a permettre aux utilisateurs du
Web de créer leurs propres services a travers les environnements de
Mashup, ou de collaborer et de capitaliser des connaissances a travers les
réseaux et les médias sociaux. Nous croyons qu’il existe un grand
potentiel pour “démocratiser” la composition de services dans de tels
contextes. L’émergence du Web 2.0, exprimée dans les paradigmes qui le
définissent tels que le contenu généré par 'utilisateur (UGC, Mashups) et
le web social, constitue, de notre point de vue, une opportunité
intéressante pour améliorer la productivité de services de I'utilisateur
final et accélérer son processus créatif en capitalisant les connaissances
générées par tous les utilisateurs.

Dans ce contexte, cette theése vise a soutenir 1'évolution du concept
de composition de services par le biais de contributions significatives. La
principale contribution de cette thése est en effet l'introduction de la
dimension sociale dans le processus de construction d'un service
composite a travers les environnements dédiés aux utilisateurs finaux.
Ce concept de la dimension sociale considere l'activité de composition de
services (création d'un Mashup) comme une activité sociale. Cette
activité révele les liens sociaux entre les utilisateurs en fonction de leur
similitude dans le choix et la combinaison des services. Ces liens sont un
moyen intéressant de diffusion d'expertise de composition de services.
En d'autres termes, sur la base des schémas fréquents de composition, et
la similitude entre les utilisateurs, quand un utilisateur est en train
d’éditer un Mashup, des recommandations dynamiques sont proposées.
Ces recommandations visent a compléter la premiére partie de Mashup

déja mis en place par I'utilisateur. Ce concept a été exploré a travers (i) la
complétion de Mashup étape par étape en recommandant a chaque étape
un service unique, et (ii) la complétion totale de Mashup en
recommandant la séquence complete de services qui pourraient le
compléter.

Au-dela de l'introduction de la dimension sociale dans le processus
de composition de services, cette thése a adressé une contrainte
particuliere du systéme de recommandation liée aux exigences des
systémes interactifs en termes de temps de réponse. A cet égard, nous
avons développé des algorithmes robustes et adaptées aux spécificités de
notre probleme. Alors qu'un service composite est considéré comme une
séquence de service, la recherche de similarités entre les utilisateurs
revient d'abord a trouver des modeles fréquents (séquences), puis de les
représenter dans une structure de données avantageuse pour
l'algorithme de recommandation. L'algorithme proposé FESMA répond a
ces exigences en se basant sur la structure FSTREE et offrant des
résultats intéressants par rapport a I'art antérieur.

Enfin, pour mettre en ceuvre les algorithmes et les méthodes
proposées, nous avons développé un environnement de création de
Mashup, appelé ‘Social Composer’ (SoCo). Cet environnement, dédié aux
utilisateurs finaux, respecte les criteres d'utilisation en se basant sur le
workflow graphique. En outre, il met en ceuvre tous les mécanismes
nécessaires pour déployer le service composé a partir d'une description
abstraite introduite par l'utilisateur. De plus, SoCo a été augmentée en y
incluant la fonctionnalité de recommandation dynamique, démontrant la
faisabilité de ce concept.

1. La composition semi-automatique de services
etle Web 2.0

La composition de services consiste a créer des services a valeurs
ajoutées en réutilisant des services existants. Elle constitue un sujet de
recherche qui a été largement étudié aussi bien du point vue académique
qu’'industriel. En créant des services par composition, il est possible de
réduire les couts de développement, la durée de production et répondre
de cette facon a la demande croissante des applications. Initialement, les
techniques de composition de services sont employées par les
utilisateurs expérimentés comme les développeurs. Il existe trois
approches de composition de services : la composition manuelle, semi-
automatique ou automatique.

La premiere approche reste a portée limitée car elle requiert un
niveau technique tres élevé. La deuxiéme approche permet de construire
automatiquement des services composés en réponse a une requéte
donnée. Cette requéte peut correspondre a une demande explicite de
l'utilisateur ou construite a partir de données traitées automatiquement
(contexte de l'utilisateur). Cependant, cette approche trouve ses limites
dans les problemes d’indécision dus aux requétes incompletes. La
derniere approche, qui est la composition semi-automatique, a pour but
de fournir a l'utilisateur final un environnement de création de services
composés. Cet environnement offre un support pour l'utilisateur par
I'automatisation de certaines parties de la composition. Dans notre
travail, nous nous intéressons en particulier a ce type de composition.
Ainsi, I'approche semi-automatique a l'avantage principal de faire
participer l'utilisateur au processus de composition en exploitant, par
exemple, les informations générées par lutilisateur ou de sa
communauté.

La composition semi-automatique de services Web a évolué au fil du
temps allant de simples outils graphiques pour arriver jusqu’a des outils
sémantiques sophistiqués. Une étape importante dans cette évolution,
qui s’inscrit dans le cadre du Web 2.0, est ce qui est aujourd’hui
communément appelé les Mashups. Cela a contribué a I'émergence d’'une
multitude de méthodes pour la composition semi-automatique de
services Web que nous avons classifiés en trois grandes catégories :

Composition orientée utilisateur final: Cette approche vise a
construire un profil de l'utilisateur afin d’assister le processus de
composition, en particulier dans les situations d’arbitrage du processus
de sélection de services de base. Cette approche vise aussi a fournir des
outils et des interfaces pour faciliter la composition des applications (des
outils basés sur BPEL, Mashups, etc.).

Composition orientée communautés: Cette approche vise a
considérer les connaissances produites dans une communauté, un
domaine spécifique ou dans une entreprise. L’extraction des
connaissances du domaine ou de la communauté permet la définition
d’'un ensemble de regles et de construire un systeme de recommandation
dans le processus de composition.

La composition orientée réseaux: Nous avons identifié une
troisieme approche qui est basée sur les réseaux sociaux. Un réseau
social ne peut étre pris en compte dans I'approche communautaire (le
paragraphe ci-dessus), car il décrit une structure relationnelle spécifique.

La différence majeure est que la communauté désigne un regroupement
d’'individus autour d'un théme d'intérét commun, générant des
communautés spécialisées dans des domaines particuliers (ce qui justifie
cette approche), alors que le réseau social décrit les réseaux d'“amis”
construit sur la base d’'intéréts spécifiques pour chaque relation dans le
réseau. Par conséquent, les connaissances générées dans un réseau social
ne peuvent pas étre traitées par les mémes méthodes que celles des
communautés.

Durant les quatre dernieres années, le Web2.0, nourri par des
plateformes sociales (Myspace, Facebook, etc.), est devenu une source
intéressante de connaissance pour la communauté de recherche de la
composition de services. Ainsi, plusieurs travaux ont été lancés autour de
cette opportunité a exploiter la connaissance de la masse afin d’améliorer
le processus de composition en examinant les environnements
collaboratifs. Plusieurs acteurs majeurs du Web offrent des
environnements en ligne pour la création Mashups tels que : Microsoft
Popfly, Yahoo pipes, et Open Mashups Studio. Les Mashups représentent
aussi un nouveau paradigme pour la composition de services. Il est décrit
dans la littérature les aspects techniques des environnements de création
de Mashup du point de vue des fournisseurs de services. Aussi , il est
décrit les approches et les points a considérer pour un systeme de
création de Mashup. Il faut souligner aussi la nécessité de considérer les
aspects internes (modeles de données) et externes (présentations) pour
I'intégration des données.

Du point de vue de l'utilisateur, un Mashup est défini comme une
combinaison de données et fonctionnalité Web construit par l'utilisateur
final. Cette analyse souligne aussi la nécessité considérer les
communautés dans la spécification des environnements de création de
Mashups. Aprés une analyse détaillée de ces propriétés, il est intéressant
de noter qu’aucun environnement actuel de création de Mashups n’offre
une dimension de réseau social dans le processus de composition. Le
travail que nous présentons dans la section suivante tente de répondre a
ce besoin en utilisant les réseaux sociaux afin de faciliter la composition
de services. Notre objectif a ce stade est de montrer quelles sont les
informations qui peuvent étre extraites a partir de réseaux sociaux afin
d’étre exploitable dans le processus de composition.

2. Vers la composition orientée réseaux sociaux

La problématique a laquelle nous essayons de répondre est:
comment tirer profit des interactions sociales pour faciliter la création de

services composés? . En vue des éléments présentés dans la section 2, et
de la problématique posée ci-dessus, nous proposons une approche,
concrétisée par un Framework, pour la composition de services basée sur
les connaissances extraites des réseaux sociaux. Pour notre approche, un
réseau social que nous considérons a ce stade est une structure implicite
construite a partir des intéréts pour les services quune paire
d’utilisateurs pourraient avoir en commun. Notre Framework est appelé
SoCo (pour Social Composer) et sera introduit dans le reste de cet article.
La Figure Erreur ! Source du renvoi introuvable. illustre I'architecture
générale du Framework SoCo. Afin d’aider I'utilisateur dans le processus
de composition, SoCo comprend deux volets principaux: (i) 'extraction
et modélisation de connaissances sociales et (ii) un systeme de
recommandations dynamique de services.

2.1 Extraction et modélisation de la connaissance
sociale

D’'une maniere générale, nous considérons deux approches
différentes pour construire des relations sociales dans ce contexte:
explicite ou implicite. Pour le cas explicite, I'utilisateur se voit offrir la
possibilité de déclarer, par lui-méme, une relation avec un autre
utilisateur spécifique (a I'image des réseaux sociaux sur le Web). Pour le
cas implicite, une relation sociale est déduite en fonction des activités des
différents utilisateurs. Par exemple une relation particuliére est déduite
si une personne utilise un grand nombre des services créés par une autre
personne. Dans les deux cas, explicite et implicite, nous construisons un
graphe reliant les utilisateurs en fonction de leur intérét traduit par leurs
activités de composition.

Concretement dans notre Framework, les phases d’extraction et
d’analyse fournissent en sortie deux types de données: (i) le profil de
I'utilisateur qui contient des informations qui décrivent les intéréts
particuliers et les préférences, I'historique de ses interactions avec le
systéme. Typiquement, il s’agit de statistiques sur l'utilisation des
services (consommation et composition). Par exemple, le nombre de
services utilisés dans la composition et les schémas de composition des
services créés qui nous permettent d’apprendre d’avantage sur
I'expertise d’'une personne donnée dans un domaine particulier de
services, et donc la pertinence des services utilisés par cette personne.
(ii) La description des liens qui définissent le réseau social lui-méme. Ces
liens sont utilisés pour calculer la proximité sociale entre deux personnes
selon un contexte particulier. Ce deuxieme type d’information nous
permet de calculer, par exemple, la recommandation d’'un service par

rapport a la confiance entre deux individus et leurs intéréts communs
respectifs.

2.2 Recommandation dynamique de services

L’idée principale de cette phase est de capitaliser sur I'information et
la connaissance calculée dans la phase d’analyse. Il s’agit de la
modélisation du réseau social pour construire un systéme de
recommandation dynamique de services qui sera intégré dans un
environnement global pour la composition de services. Ce systeme de
recommandation vise a aider I'utilisateur du Framework SoCo lors de la
création d’un service en proposant des services pour la composition en
fonction de I'état actuel du processus de composition de services. Ainsi,
ce systtme de recommandation intervient dans le processus de
composition en sélectionnant les services les plus pertinents en fonction
d’'un schéma de composition donné. Plus concrétement, quand il s’agit de
la création d'un service, c’est a dire un service composé, dans
I'environnement de création de services SoCo, un utilisateur est
généralement indécis sur le choix d’'un service successeur d'un service
donné dans le diagramme de composition. Dans cette situation, le
systéme de recommandations proposera une liste de services ordonnée
sur la base des informations fournies par 'analyse du réseau social. Ainsi,
la mesure de I'importance de la recommandation d'un service donné est
proportionnelle a son utilisation antérieure et a la proximité sociale vis-
a-vis des membres qui I'ont utilisé.

3. Applications a la complétion des Mashup

Dans ce qui suit, nous abordons le probleme de la complétion totale
des Mashups qui consiste a prédire l'ensemble le plus pertinent de
combinaison des services en fonction d’'une composition de services
initialement fourni par l'utilisateur final. Le Mashup résultant ainsi
composé devrait réponde au mieux a 'objectif de I'utilisateur final. Nous
modélisons le probleme de la complétion totale des Mashups comme un
probléme d’analyse des séquences fréquentes et nous montrons
comment les algorithmes existants peuvent étre appliqués dans ce
contexte. Pour surmonter certaines limitations des algorithmes
fréquentes miniéres séquence, par exemple, 'efficacité et la granularité
recommandation, nous proposons FESMA, un algorithme nouveau et
efficace pour le calcul de séquences fréquentes de services et de
recommander des finitions. FESMA integre également une dimension
sociale, extrait de la transformation des interactions utilisateur-service
en interactions utilisateur-utilisateur, la construction d'un graphe

implicite qui permet de mieux prédire les achevements de services d'une
maniére adaptée a des utilisateurs individuels.

3.1 Description de I'approche proposée

La composition Mashup semi-automatique aidera a créer des
Mashups d'une maniere plus rapide et facile a utiliser. En général, deux
mécanismes de complétion de Machups peuvent étre distinguées: (i) la
complétion étape par étape, ou une liste de services uniques est proposée
a l'utilisateur sur la base du service actuellement sélectionné, ainsi de
proche en proche l'utilisateur pourra construire un Mashup complet, et
(ii) la complétion totale, ou un liste de schémas de composition est
recommandé a l'utilisateur, chaque schéma recommandé est susceptible
de compléter la partie déja introduite par l'utilisateur. Dans cette section
nous détaillerons en particulier la complétion totale des Mashups.
L’approche proposée vise a fournir une réponse a ce probleme grace a
I'extraction de séquence fréquentes, leur modélisation, et la suggestion
de la combinaison la plus intéressante de services qui devraient suivre
une séquence de services. Les principaux challenges de cette approche
est d'améliorer le temps de création Mashups et leur qualité tout en
faisant face aux défis suivants:

° L’évolutivité: le nombre de candidats potentiels a une
complétion complete est plus grand (et de maniére
combinatoire) que le nombre de services candidats dans
I'approche de complétion étape-par-étape. Cela a une
incidence directe sur évolutivité du systéme.

° La condition de terminaison en suggérant une complétion
totale n'a pas de taille limite précise puisque le nombre de
services requis pour compléter le Mashup n'est pas connu a
priori. Par conséquent, la recommandation de services
implique un parameétre inconnu qui augmente la complexité.

° La granularité au niveau de la recommandation compte tenu
de la grande variété de services et des ressources différentes
qui sont disponibles pour le systéme de suggestion.

Le probleme que nous attaquons peut étre résumé comme suit:
Compte tenu d'un utilisateur en cours de création d’'un Mashup au sein
d'une plateforme de création de Mashup, comment la plate-forme peut
suggérer le Mashup compléter qui répond au mieux a ses intentions, dans
un laps de temps raisonnable Notre travail aborde ce probléme en
identifiant des combinaisons fréquentes de services et en capturant les
interactions dites sociales entre les utilisateurs. Cette approche est
utilisée pour prédire et proposer les services suivants qui complétent un

Mashup par l'exploitation de la fréquence de cooccurrence et des
interactions sociales sur les services précédemment composés. Plus
précisément, une stratégie de complétion de Mashups comprend les
étapes suivantes:

° Modéliser le probleme de complétion sur la base d’exploration
des séquences fréquentes. Ainsi, nous montrons que des
techniques d’exploration de séquences fréquentes pourraient
étre mises a profit pour apporter une solution a ce probleme.

° Traiter les problemes d'évolutivité liés aux algorithmes
d’exploration de séquences fréquentes. Ceci est réalisé via
I'introduction d'un nouvel algorithme de séquence fréquente
I'exploitation miniére, appelé FESMA. FESMA offre des
performances élevées en termes de temps de calcul surpassant
les algorithmes existants dans notre contexte.

° Les complétions personnalisées réalisées grace a
I'introduction d'une dimension sociale dans le processus. La
dimension sociale est essentielle pour ce travail car, dans le
Web 2.0, les utilisateurs peuvent créer, utiliser et partager des
services. Nous supposons que les environnements Mashups
refletent les comportements sociaux des utilisateurs et donc,
les structures sociales peuvent étre extraites a partir des
interactions entre les utilisateurs et les services (et entre les
utilisateurs). Ces interactions peuvent étre analysés et
injectées en tant qu’information sociale dans le processus de
complétion de composition de service.

L'approche proposée est intégrée et mis en ceuvre dans un
Framework de composition ‘sociale’ nommé Social Composer (SoCo).

3.2 Unnouvel algorithme pour I'’exploration rapide des
séquences fréquentes

L'algorithme que nous proposons est appelé FESMA pour Fast and
Efficient Sequence Mining Algorithm. Tout comme I'algorithme FP-
Growth, FESMA ne géneére pas de candidats et utilise une représentation
compacte en arbre pour stocker toutes les séquences (c.-a-d. sous-
Mashups) qui existent au sein de la base de données des transactions (c.-
a-tous les Mashups créés). Contrairement a d'autres algorithmes
d'exploration de la séquence, FESMA scanne la base de données qu'une
seule fois. Au cours de cette analyse, et pour chaque opération, les
séquences sont ajoutés a la représentation de I'arbre en mettant a jour le
support associé a chaque séquence et les supports spécifiques a chaque
|'utilisateur. Nous avons nommé la structure en arbre stockant toutes les

séquences fréquentes avec leur support FSTree pour Frequent Sequences
Tree.

De la définition d'algorithme FESMA, nous pouvons voir que 1'on a
besoin d'exactement d'un seule balayage (scan) de la base de données
pour analyser les Mashups existants (c.-a-d. les transactions). Le cofit de
I'analyse de la base de données est O (m), ou m est la taille de la base de
données. Afin de mettre a jour l'arbre de séquence FSTree, chaque
transaction est analysée une fois. Le colit de l'insertion d'une séquence
dans l'arbre dépend de la longueur de la séquence (profondeur de
l'arborescence). Dans le pire des cas, cela colite de O(k?*) avec k
correspondant a la taille de la plus longue séquence. En résumé, la

complexité globale de l'algorithme dans le pire des cas est O(m*k?).

3.3 Une nouvelle approche pour la complétion a
granularité fine

A ce stade, nous avons réussi a adapter le calcul de séquences
fréquentes et la rendre plus efficace par l'intermédiaire d'un calcul plus
rapide et des analyses de bases de données a moindre colit. Dans cette
section, nous nous concentrons sur l'utilisation de la représentation
générée et les séquences calculées. Intuitivement, lors du traitement de
I'ensemble des séquences a 1'aide FESMA ou autre, la seule information
que nous avons est la fréquence des séquences, offrant un point de vue
seulement globale pour les stratégies de complétions possibles. En
d'autres termes, puisque les cooccurrences sont calculées en fonction de
leurs apparences pour toutes les séquences existantes, ce processus ne
considere que l'agrégation des comportements de tous les utilisateurs
existants, et qui en somme donne les séquences les plus populaires. Ainsi,
la complétion ne peut fonctionner qu’a un niveau ‘gros grains’, c'est a dire
la communauté, sans aucune personnalisation des complétions.

Dans ce qui suit, nous décrivons une meilleure stratégie a base
communautaire pour classer les listes de complétions. Ensuite, nous
introduisons et motivons une stratégie a grain fin basée sur les réseaux
sociaux implicitement extraites de l'analyse des interactions entre les
entités du systéme.

Approche communautaire

Cette fonctionnalité peut étre obtenue en utilisant un algorithme
d’exploration de séquences fréquentes. A ce stade, il est nécessaire de
garder a l'esprit que nous visons a offrir un soutien aux utilisateurs
finaux (par exemple, sous la forme de recommandations) pour faciliter la

construction de son Mashup. En appliquant les algorithmes d’exploration
de séquences fréquentes nous obtiendrons un ensemble de séquences
avec leurs fréquences. Selon I'algorithme utilisé, cette sortie pourrait étre
représentée et indexée comme un arbre. A partir du schéma de
composition introduit par l'utilisateur, une requéte est envoyée au
systéme sous la forme d'un service ou une séquence de services (c.-a-d.
construite a partir d'une combinaison initiale de services). Le systeme
sélectionne des séquences candidates ayant comme préfixe la séquence
requéte ou une partie de celle-ci, ou le suffixe restant de la séquence
candidate représente la complétion a proposer. Toutes les séquences
sélectionnées représentent les réponses potentiellement intéressantes
pour la complétion. A ce stade, selon une stratégie prédéfinie, les
séquences récupérées sont classés selon leur pertinence et seuls les
meilleurs B k séquences sont proposées a l'utilisateur.

Par définition, le colit de complétion de l'algorithme est fonction de
la longueur de la séquence de requéte. En fait, pour chaque suffixe de la
séquence requéte, l'algorithme extrait les complétions de la liste des
séquences fréquentes. Cela rend I'utilisation de 1'algorithme traditionnel
d’exploration des séquences fréquentes inadaptée dans ce contexte.
Notre approche alternative utilise la représentation FSTree qui peut étre
parcouru avec un calcul plus efficace en réduisant le temps d'accés. Une
fois I'acces a la branche d’un des suffixe de la requéte séquence est réalisé
(parcours d’arbre), on a juste besoin de parcourir cette branche pour
accéder aux séquences les plus fréquentes.

Approche basée sur les réseaux sociaux

Nous considérons les interactions qui impliquent les utilisateurs
finaux comme des interactions sociales. Cependant, les algorithmes
d’explorations des séquences fréquentes, méme FESMA, ne considerent
pas un niveau de granularité a grains fins puisque (i) ils opérent
principalement au niveau global et (ii) ils raisonnent sur un seul type
d'entité, c.-a-d. les services. Ainsi, ils doivent étre adaptés non seulement
au niveau de l'information sociale, mais aussi pour soutenir le nombre
élevé de combinaisons possibles en raison de l'introduction de
l'utilisateur dans le processus. Un réseau social dans ce contexte est alors
défini comme une abstraction des interactions qui se produisent entre
des personnes et des services dans des environnements de composition
de services. Le réseau social permet de représenter les affinités de
comportement des entités sociales sous la forme d'un graphe social. Cette
structure peut étre déduite ou extraite directement a partir des intéréts
communs entre les utilisateurs de la plate-forme de composition. Le

10

principe est basé sur la transformation des interactions a un réseau
social.

Avec cette nouvelle contrainte, l'algorithme FESMA doit non
seulement énumérer et compter les séquences fréquentes, mais aussi le
support (fréquence) spécifique des séquences par rapport a chaque
utilisateur. En d'autres termes, chaque nceud est lié a des utilisateurs qui
ont utilisé la séquence qu'il représente.

Afin d’introduire cette dimension sociale, nous réutilisons le méme
modele décrit précédemment basé sur (i) l'extraction de l'information
locale, (ii) I'extraction d'information semi-globale, et (iii) 1'extraction de
l'information globale. La stratégie de recommandation des séquences de
complétion tiens compte des usages de l'utilisateur intrinseque de la
fréquence (informations locales), l'intérét spécifique entre deux
utilisateurs (semi-globale de l'information), et le graphe implicite (intérét
mondial entre les utilisateurs). La confiance recommandation RC est la
meétrique qui indique I'importance de chaque complétion par rapport a
un utilisateur cible. Concrétement, lorsque l'utilisateur est en train
d’éditer une nouvelle composition de services, et a introduit un
commencement de Mashup, une liste des complétions de Mashup est
proposée dans I'ordre décroissant de RC confiance recommandation.

En termes de complexité de 1'algorithme, en ajoutant les fréquences
des séquences spécifique a chaque utilisateur a 1'algorithme FESMA, les
impacts ne se limitent pas seulement aux ressources de calcul (temps
d’exécution), mais se répondent sur 'occupation de 1'espace mémaoire.

3.4 Etude expérimentale
Comparaison de FESMA aux autres algorithmes

Nous avons effectué principalement deux types d'évaluation: (i) une
comparaison l'algorithme FESMA et les autres algorithmes d’exploration
des séquences fréquentes, et (ii) une évaluation des propriétés
particulieres de FESMA pour mesurer la charge générée par la prise en
compte de la dimension sociale. Pour cela nous avons utilisé le
générateur de données de synthese de “IBM quest data generator”, avec
lequel il est possible de générer une base de données (T10k-15) qui
contient 10.000 transactions (qui représentent des Mashups dans notre
cas) ou la longueur moyenne des séquences est égale a 5.

De maniere générale, les principaux critéres de performance utilisés
pour évaluer ce genre d’algorithme sont les suivantes: (i) le temps
d'exécution et (ii) I'espace mémoire nécessaire pour chaque algorithme

11

pour trouver des séquences fréquentes dans un dataset. Il convient de
noter que dans le cas de FESMA, ce temps comprend la lecture de
I'ensemble de données a partir d'un fichier d'entrée et 1'écriture des
résultats dans un fichier de sortie (des opérations coliteuses en termes
de temps). FESMA est implémenté en utilisant la librairie standard C++.
Enfin, tous les tests sont effectués sur un processeur Intel Core 2 Duo
T9600 cadencé a 2,8 GHz avec de processeur et de 3 Go de RAM.

Les résultats obtenus montent un écart évident entre les résultats
obtenus par AprioriSeq et FESMA avec une meilleure performance pour
FESMA sur toutes les datasets sélectionnés . Une autre observation
intéressante concernant FESMA est sa capacité a gérer des datasets
constitués essentiellement de trés courtes séquences, une propriété aussi
observés sur les portails recensant les Mashups. Enfin, il peut étre
facilement observé que FESMA est stable par rapport au minimum
support et ceci pour des configurations différentes des datasets. Cela
signifie que le minimum support n'influence pas les performances de
I'algorithme FESMA contrairement aux autres algorithmes existantes.

Calcul du cotiit d'intégration de la dimension sociale

Pour la seconde expérience, nous avons voulu mesurer la surcharge
générée par l'intégration de la dimension sociale au sein de FESMA. Pour
I'évaluer, nous avons modifié un jeu de données, en associant a chaque
séquence un identifiant d'utilisateur qui est censé étre le créateur de
cette séquence (Mashup). Nous avons généré I'association User-Mashups
en respectant la propriété importante de la distribution d'activité selon le
phénomeéne de la longue queue. Cette propriété fait valoir que certains
utilisateurs (Web-utilisateurs) sont beaucoup plus actifs que d'autres en
termes de contenu généré (Mashups).

Le résultat montre clairement que les réponses d'exécution de
I'algorithme conserver le méme comportement avec une moyenne de
25% de surcharge pour l'intégration la dimension sociale. Dans le méme
temps, méme avec la surcharge engendrée par la dimension sociale, les
résultats sont plus intéressants que tous les algorithmes existants sans la
prise en compte de la dimension sociale.

Evaluation du temps de réponse

A ce stade, nous avons voulu mesurer le temps de réponse de du
systeme de recommandation (complétion). En effet, la stratégie de
complétion doit satisfaire les exigences d'applications interactives ou les
recommandations doivent étre calculées en temps réel (en moins d’'une

12

seconde). Comme mentionné précédemment, 1'algorithme utilise I'arbre
des séquences fréquentes FSTree généré par FESMA afin de récupérer la
partie restante d'une séquence introduite par l'utilisateur (la
complétion).

Pour effectuer cette évaluation, nous construisons des séquences, en
variant la taille de 1 a 10 services, comme requétes afin de recueillir les
complétions suggérées et nous calculons le temps nécessaire par rapport
a chaque taille de séquence. Les résultats illustrent l'efficacité de la
stratégie de complétion avec des temps de réponses moins de 0,1
seconde. Notez que dans un contexte réaliste, la latence du réseau doit
étre considérée.

13

