I. Chapitre, Expériences et résultats sur une seconde, la figure IV.15 présente le calcul du sixième niveau de détail par l'intermédiaire de la SWT (d6) ainsi que la détection effectuée par NeuroBetaMed_XL

. Maintenant, amplitude des PAs est plus faible Nous sommes à la 220 ème seconde de notre enregistrement, et l'activité et les cellules commencent à s'épuiser rendant les PAs difficiles à distinguer (figure IV.16.A) Afin de mieux détecter les PAs, nous appliquons un filtre passe-bas logiciel avec un seuil fixé manuellement depuis le début de l'expérience (figure IV, Enfin nous comparons ces résultats avec ceux fournis par notre circuit (figure IV.16.D)

A. Le, PAs sur 8 ont été détectés alors que le seuil est réglé au plus près possible du niveau de bruit Ce réglage a généré de nombreux faux positifs sur l'ensemble de l'expérience Avec NeuroBetaMed_XL, 7 PAs sont détectés. Ce résultat aurait pu être meilleur si nous avions baissé légèrement le gain du seuil durant l'expérience sans engendrer de faux positifs, Au bilan même quand les PAs diminuent d'amplitude, ils sont toujours détectés par notre circuit alors qu'avec un filtrage conventionnel

. Enfin, nous nous avons fait des études statistiques, dont nous montrons un exemple ici sur 5 minutes d'enregistrement (figure IV

. Le, par l'ajout d'une connexion spéciale, pour être utilisé sur des signaux neuronaux mesurés à partir des électrodes fabriquées par l'ESYCOM et provenant de la moelle épinière ex vivo de souris (projet HYRENE) Nous avons pu tester NeuroBetaMed_XL, sans tissu vivant en enregistrant des impulsions électriques envoyées par le biais d'une électrode de stimulation

I. Figure, 14 ? 60 voies d'acquisition du signal d'entrée extrait des cartes SD. L'émoticône avec un pouce baissé correspond aux canaux ne fonctionnant pas et l'émoticône avec un pouce levé

B. Gosselin, S. Hosseini-khayat, A. Quotb, and M. Sawan, Hardware implementation of wavelet transforms for real-time de-tection and compression of biopotentials in neural implants. Current Devel-opment in Theory and Applications of Wavelets, pp.1-34, 2011.

A. Quotb, Y. Bornat, R. , and S. , Wavelet Transform for Real-Time Detection of Action Potentials in Neural Signals, Frontiers in Neuroengineering, vol.4, 2011.
DOI : 10.3389/fneng.2011.00007

URL : https://hal.archives-ouvertes.fr/hal-00609083

A. Quotb, Y. Bornat, M. Raoux, J. Lang, R. et al., NeuroBetaMed: A re-configurable wavelet-based event detection circuit for in vitro biological signals, 2012 IEEE International Symposium on Circuits and Systems, 2012.
DOI : 10.1109/ISCAS.2012.6271542

URL : https://hal.archives-ouvertes.fr/hal-00742324

P. Addison, The illustrated wavelet transform handbook : introductory theory and applications in science, engineering, medicine and finance. Bristol and Philadelphia : Institute of Physics Publishing, p.46, 2002.

A. K. Ahuja, J. D. Dorn, A. Caspi, M. J. Mcmahon, G. Dagnelie et al., Blind subjects implanted with the Argus II retinal prosthesis are able to improve performance in a spatial-motor task, British Journal of Ophthalmology, vol.95, issue.4, pp.539-582, 2010.
DOI : 10.1136/bjo.2010.179622

A. N. Akansu, Wavelets and filter banks. a signal processing perspective. Circuits and Devices Magazine, IEEE, vol.10, issue.6, pp.14-18, 1994.

A. Ani and T. , Introduction aux ondelettes (wavelets). Département Informatique ESIEE- Paris, 1998.

G. Arnaud, Etude et conception d'un asic mixte pour la détection adaptative d'activité de cellules biologiques, p.27, 2011.

S. Barati and A. M. Sodagar, Discrete-time automatic spike detection circuit for neural recording implants, Electronics Letters, vol.47, issue.5, pp.306-307, 2011.
DOI : 10.1049/el.2010.3040

J. F. Beche, S. Bonnet, T. Levi, R. Escola, A. Noca et al., Real-time adaptive discrimination threshold estimation for embedded neural signals detection, 2009 4th International IEEE/EMBS Conference on Neural Engineering, pp.597-600, 2009.
DOI : 10.1109/NER.2009.5109367

URL : https://hal.archives-ouvertes.fr/hal-00514194

A. Benazzouz, Stimulation ?? haute fr??quence du noyau sous-thalamique dans la maladie de Parkinson, m??decine/sciences, vol.20, issue.4, pp.397-405, 2004.
DOI : 10.1051/medsci/2004204397

R. Bertram, L. S. Satin, M. G. Pedersen, D. S. Luciani, and A. Sherman, Interaction of Glycolysis and Mitochondrial Respiration in Metabolic Oscillations of Pancreatic Islets, Biophysical Journal, vol.92, issue.5, pp.921544-55, 2007.
DOI : 10.1529/biophysj.106.097154

L. Best, P. D. Brown, A. Sener, and W. J. Malaisse, Electrical activity in pancreatic islet cells: The VRAC hypothesis, Islets, vol.2, issue.2, pp.59-64, 2010.
DOI : 10.4161/isl.2.2.11171

G. Bontorin, Intelligent multielectrode arrays : improving spatiotemporal performances in hybrid (living-artificial), real-time, closed-loop systems. Électronique et microtechnologie, p.107, 2010.
URL : https://hal.archives-ouvertes.fr/tel-00561026

M. L. Bootin, Deep Brain Stimulation: Overview And Update, Journal of Clinical Monitoring and Computing, vol.90, issue.5, pp.341-347, 2006.
DOI : 10.1007/s10877-006-9031-2

T. Boraud, P. Brown, A. Joshua, J. A. Goldberg, A. M. Graybiel et al., The Basal Ganglia VIII, chapitre OSCILLATIONS IN THE BASAL GANGLIA : The good, the bad, and the unexpected, p.48, 2005.

Y. Bornat, Réseaux de neurones sur silicium : une approche mixte, analogique/numérique , pour l'étude des phénomènes d'adaptation, d'apprentissage et de plasticité, 2006.

Z. H. Chen, T. Li, Z. B. Chen, B. Luo, and R. P. Sun, Prevention of beta cell dysfunction and apoptosis by adenoviral gene transfer of rat insulin-like growth factor 1, Chin Med J (Engl), issue.18 8, pp.1222159-64, 2009.

P. Chung-ching, P. Sabharwal, and R. Bashirullah, An adaptive neural spike detector with threshold-lock loop, Circuits and Systems ISCAS 2009. IEEE International Symposium on, pp.2133-2136, 2009.

R. J. Coffey, Deep Brain Stimulation Devices: A Brief Technical History and Review, Artificial Organs, vol.39, issue.3, pp.208-228, 2009.
DOI : 10.1111/j.1525-1594.2008.00620.x

R. R. Coifman, Y. Meyer, and M. V. Wickerhauser, Wavelet analysis and signal processing. Wavelets and their applications, B. R, p.40, 1992.

I. Daubechies, Ten lectures on wavelets, p.34, 1992.

D. Marinis, Y. Z. Salehi, A. Ward, C. E. Zhang, Q. Abdulkader et al., GLP-1 Inhibits and Adrenaline Stimulates Glucagon Release by Differential Modulation of N- and L-Type Ca2+ Channel-Dependent Exocytosis, Cell Metabolism, vol.11, issue.6, pp.11543-553, 2010.
DOI : 10.1016/j.cmet.2010.04.007

H. Dickhaus, L. Khadra, and J. And-brachmann, Time-frequency analysis of ventricular late potentials, Methods Inf Med, vol.33, issue.2, pp.187-95, 1994.

K. Donghwi, M. Stanacevic, R. Kamoua, and Z. Mainen, A low-power low-datarate neural recording system with adaptive spike detection, Circuits and Systems MWSCAS 2008. 51st Midwest Symposium on, pp.822-825, 2008.

D. L. Donoho, De-noising by soft-thresholding. Information Theory, IEEE Transactions on, vol.41, issue.3, pp.613-627, 1995.
DOI : 10.1109/18.382009

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.161.9704

J. Drolet, H. Semmaoui, and M. Sawan, Low-power energy-based CMOS digital detector for neural recording arrays, 2011 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp.13-16, 2011.
DOI : 10.1109/BioCAS.2011.6107715

C. Dumortier, Transformée en ondelettes discrète pour un dispositif multicanal implantable d'enregistrement de signaux neuronaux, pp.135-176, 2005.

R. T. Edwards and G. Cauwenberghs, Analog vlsi processor implementing the continuous wavelet transform, NIPS'95, pp.692-698, 1995.

Z. Fei, M. Aghagolzadeh, and K. Oweiss, A low-power implantable neuroprocessor on nano-fpga for brain machine interface applications, Acoustics, Speech and Signal Processing (ICASSP) IEEE International Conference on, pp.1593-1596, 2011.

J. Fieres, A. Grubl, S. Philipp, K. Meier, J. Schemmel et al., A platform for parallel operation of vlsi neural network. Brain inspired cognitive systems, 2004.

W. Finn and P. Lopresti, Handbook of neuroprosthetic methods, 2003.
DOI : 10.1201/9781420040876

P. Flandrin, Temps-fréquence. 2 éd, p.33, 1998.

A. Folkers, F. Mosch, T. Malina, and U. G. Hofmann, Realtime bioelectrical data acquisition and processing from 128 channels utilizing the wavelet-transformation, Neurocomputing, vol.52, issue.54, pp.52-54247, 2003.
DOI : 10.1016/S0925-2312(02)00763-4

L. E. Fridlyand, D. A. Jacobson, A. Kuznetsov, and L. H. Philipson, A Model of Action Potentials and Fast Ca2+ Dynamics in Pancreatic ??-Cells, Biophysical Journal, vol.96, issue.8, pp.3126-3139, 2009.
DOI : 10.1016/j.bpj.2009.01.029

D. Gabor, Theory of communication, Journal of the Institution of Electrical Engineers - Part I: General, vol.94, issue.73, pp.429-457, 1946.
DOI : 10.1049/ji-1.1947.0015

W. Gerstner and W. M. Kistler, Spiking neuron models, 2002.
DOI : 10.1017/cbo9780511815706

B. Gosselin, S. Hosseini-khayat, A. Quotb, and M. Sawan, Hardware implementation of wavelet transforms for real-time detection and compression of biopotentials in neural implants, Current Development in Theory and Applications of Wavelets, vol.5, issue.1, pp.1-34, 2011.

B. Gosselin and M. Sawan, An ultra low-power cmos automatic action potential detector. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol.17, issue.4, pp.346-353, 2009.

J. Gromada, B. Brock, O. Schmitz, and P. And-rorsman, Glucagon-Like Peptide-1: Regulation of Insulin Secretion and Therapeutic Potential, Basic <html_ent glyph="@amp;" ascii="&"/> Clinical Pharmacology <html_ent glyph="@amp;" ascii="&"/> Toxicology, vol.24, issue.6, pp.252-62, 2004.
DOI : 10.1038/363356a0

A. Grossmann and J. Morlet, Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape, SIAM Journal on Mathematical Analysis, vol.15, issue.4, pp.723-736, 1984.
DOI : 10.1137/0515056

F. Gullo, A. Maffezzoli, E. Dossi, and E. Wanke, Short-latency cross- and autocorrelation identify clusters of interacting cortical neurons recorded from multi-electrode array, Journal of Neuroscience Methods, vol.181, issue.2, pp.186-98, 2009.
DOI : 10.1016/j.jneumeth.2009.05.003

S. A. Haddad, N. Verwaal, R. Houben, and W. A. Serdijn, Optimized dynamic translinear implementation of the Gaussian wavelet transform, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512), pp.145-148, 2004.
DOI : 10.1109/ISCAS.2004.1328152

M. Hajjhassan, V. Chodavarapu, and S. Musallam, NeuroMEMS: Neural Probe Microtechnologies, Sensors, vol.8, issue.10, pp.6704-6726, 2008.
DOI : 10.3390/s8106704

R. R. Harrison, A low-power integrated circuit for adaptive detection of action potentials in noisy signals, Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439), pp.3325-3328, 2003.
DOI : 10.1109/IEMBS.2003.1280856

R. R. Harrison, Integrated biopotential amplifiers : architecture, performance and testing, Tutorial in Biomedical Circuits and Systems Conference (BioCAS), p.16, 2011.

T. Horiuchi, T. Swindell, D. Sander, and P. Abshier, A low-power CMOS neural amplifier with amplitude measurements for spike sorting, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512), pp.29-32, 2004.
DOI : 10.1109/ISCAS.2004.1328932

E. Hulata, R. Segev, Y. Shapira, M. Benveniste, B. et al., Detection and Sorting of Neural Spikes Using Wavelet Packets, Physical Review Letters, vol.85, issue.21, p.30, 2000.
DOI : 10.1103/PhysRevLett.85.4637

K. Imfeld, A. Maccione, M. Gandolfo, S. Martinoia, P. A. Farine et al., Real-time signal processing for high-density microelectrode array systems, International Journal of Adaptive Control and Signal Processing, vol.52, issue.4, pp.983-998, 2009.
DOI : 10.1002/acs.1077

J. M. Karel, R. L. Peeters, R. L. Westra, K. M. Moermans, S. A. Haddad et al., Optimal discrete wavelet design for cardiac signal processing, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp.2769-2772, 2005.
DOI : 10.1109/IEMBS.2005.1617046

Y. Kato, M. Nishino, I. Saito, T. Suzuki, and K. Mabuchi, Flexible Intracortical Neural Probe with Biodegradable Polymer for Delivering Bioactive Components, 2006 International Conference on Microtechnologies in Medicine and Biology, pp.143-146, 2006.
DOI : 10.1109/MMB.2006.251512

L. Khadra, H. Dickhaus, and A. Lipp, Representations of ECG ??? late potentials in the time treauencv Dlane, Journal of Medical Engineering & Technology, vol.16, issue.6, pp.228-259, 1993.
DOI : 10.3109/03091909309006330

K. H. Kim and S. J. Kim, A wavelet-based method for action potentiel detection from extracellular neural signal recording with low signal-to-noise ratio, IEEE Transaction on Biomedical Engineering, vol.3, pp.277-283, 2003.

F. Kolbl, A. Zbrzeski, E. Syed, S. Renaud, L. et al., In vivo electrical characterization of deep brain electrode and impact on bio-amplifier design, 2010 Biomedical Circuits and Systems Conference (BioCAS), pp.2010-210, 2010.
DOI : 10.1109/BIOCAS.2010.5709608

URL : https://hal.archives-ouvertes.fr/hal-00585051

J. Lee and D. Kipke, Neural Signal Processing using Discrete Wavelet Transform for Neural Interfaces, 2006 International Conference on Microtechnologies in Medicine and Biology, pp.169-172, 2006.
DOI : 10.1109/MMB.2006.251519

M. Lewicki, Bayesian Modeling and Classification of Neural Signals, Neural Computation, vol.12, issue.5, pp.1005-1030, 1994.
DOI : 10.1109/78.120795

A. Maccione, M. Gandolfo, P. Massobrio, A. Novellino, S. Martinoia et al., A novel algorithm for precise identification of spikes in extracellularly recorded neuronal signals, Journal of Neuroscience Methods, vol.177, issue.1, pp.241-250, 2009.
DOI : 10.1016/j.jneumeth.2008.09.026

S. G. Mallat, A wavelet tour of signal processing, p.40, 1999.

A. Manjunath and H. M. Ravikumar, Comparison of discrete wavelet transform (dwt), lifting wavelet transform (lwt) stationary wavelet transform (swt) and s-transform in power quality analysis, European Journal of Scientific Research, vol.39, issue.4, pp.569-576, 2010.

G. Marquie, J. Duhault, J. Espinal, P. Petkov, R. Jablenska et al., S 15261, a novel agent for the treatment of insulin resistance. studies on psammomys obesus. effect on pancreatic islets of insulin resistant animals, Cell Mol Biol, issue.2 8, pp.43243-51, 1997.

Y. Meyer and R. Ryan, Wavelets : Algorithms and Applications, Society for Industrial and Applied Mathematics, vol.34, p.40, 1993.

M. Sung, C. Wentai, L. Sivaprakasam, and M. , Design optimization for integrated neural recording systems. Solid-State Circuits, IEEE Journal, vol.43, issue.9, pp.1931-1939, 2008.

N. Mtetwa and L. S. Smith, Smoothing and thresholding in neuronal spike detection, Neurocomputing, vol.69, issue.10-12, 2006.
DOI : 10.1016/j.neucom.2005.12.108

S. Mukhopadhyay and G. C. Ray, A new interpretation of nonlinear energy operator and its efficacy in spike detection, IEEE Transactions on Biomedical Engineering, vol.45, issue.2, pp.180-187, 1998.
DOI : 10.1109/10.661266

H. Nakatani, T. Watanabe, and H. Hoshimiya, Detection of nerve action potentials under low signal-to-noise ratio condition, IEEE Transactions on Biomedical Engineering, vol.48, issue.8, pp.845-849, 2001.
DOI : 10.1109/10.936360

Y. Nam and B. C. Wheeler, In vitro microelectrode array technology and neural recordings, Crit Rev Biomed Eng, vol.39, issue.1, pp.45-61, 2011.

Z. Nenadic and J. W. Burdick, Spike Detection Using the Continuous Wavelet Transform, IEEE Transactions on Biomedical Engineering, vol.52, issue.1, pp.74-87, 2005.
DOI : 10.1109/TBME.2004.839800

I. Obeid, Comparison of Spike Detectors based on Simultaneous Intracellular and Extracellular Recordings, 2007 3rd International IEEE/EMBS Conference on Neural Engineering, pp.410-413, 2007.
DOI : 10.1109/CNE.2007.369696

M. G. Pedersen, Contributions of Mathematical Modeling of Beta Cells to the Understanding of Beta-Cell Oscillations and Insulin Secretion, Journal of Diabetes Science and Technology, vol.440, issue.1, pp.12-20, 2009.
DOI : 10.1177/193229680900300103

M. G. Pedersen, A Biophysical Model of Electrical Activity in Human ??-Cells, Biophysical Journal, vol.99, issue.10, pp.3200-3207, 2010.
DOI : 10.1016/j.bpj.2010.09.004

Y. Perelman and R. Ginosar, An Integrated System for Multichannel Neuronal Recording With Spike/LFP Separation, Integrated A/D Conversion and Threshold Detection, IEEE Transactions on Biomedical Engineering, vol.54, issue.1, pp.130-137, 2007.
DOI : 10.1109/TBME.2006.883732

R. Q. Quiroga, Z. Nadasdy, and Y. Ben-shaul, Unsupervised Spike Detection and Sorting with Wavelets and Superparamagnetic Clustering, Neural Computation, vol.84, issue.8, pp.1661-1687, 2004.
DOI : 10.1016/0370-2693(89)91563-3

URL : http://authors.library.caltech.edu/13699/1/QUInc04.pdf

A. Quotb, Y. Bornat, R. , and S. , Wavelet Transform for Real-Time Detection of Action Potentials in Neural Signals, Frontiers in Neuroengineering, vol.4, pp.4-27, 2011.
DOI : 10.3389/fneng.2011.00007

URL : https://hal.archives-ouvertes.fr/hal-00609083

G. V. Ranade, K. Ganguly, C. , and J. , LFP beta power predicts cursor stationarity in BMI task, 2009 4th International IEEE/EMBS Conference on Neural Engineering, pp.482-485, 2009.
DOI : 10.1109/NER.2009.5109338

R. Rangayyan, Biomedical Signal Analysis : a case-study approach, 2002.

M. Raoux, Y. Bornat, A. Quotb, B. Catargi, S. Renaud et al., Non-invasive long-term and real-time analysis of endocrine cells on micro-electrode arrays, The Journal of Physiology, vol.8, issue.5, pp.5901085-91, 2012.
DOI : 10.1113/jphysiol.2011.220038

URL : https://hal.archives-ouvertes.fr/hal-00742984

A. Salmanpour, L. J. Brown, and J. K. Shoemaker, Performance analysis of stationary and discrete wavelet transform for action potential detection from sympathetic nerve recordings in humans, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.2932-2935, 2008.
DOI : 10.1109/IEMBS.2008.4649817

V. J. Samar, A. Bopardikar, R. Rao, and K. Swartz, Wavelet Analysis of Neuroelectric Waveforms: A Conceptual Tutorial, Brain and Language, vol.66, issue.1, pp.7-60, 1999.
DOI : 10.1006/brln.1998.2024

M. F. Sarna, P. Gochin, J. Kaltenbach, M. Salganicoff, and G. L. Gerstein, Unsupervised waveform classification for multi-neuron recordings: a real-time, software-based system. II. Performance comparison to other sorters, Journal of Neuroscience Methods, vol.25, issue.3, pp.189-96, 1988.
DOI : 10.1016/0165-0270(88)90133-1

L. Shih-chii and R. Douglas, Temporal coding in a silicon network of integrate-and-fire neurons, IEEE Transactions on Neural Networks, issue.6, 2004.

R. Shulyzki, K. Abdelhalim, A. Bagheri, C. M. Florez, P. L. Carlen et al., 256-site active neural probe and 64-channel responsive cortical stimulator, 2011 IEEE Custom Integrated Circuits Conference (CICC), pp.1-4, 2011.
DOI : 10.1109/CICC.2011.6055371

V. Simard, Transformée en ondelettes pour un système d'acquisition de signaux corticaux implantable, pp.135-174, 2004.

K. Sohee, P. Tathireddy, R. A. Normann, and F. Solzbacher, Thermal Impact of an Active 3-D Microelectrode Array Implanted in the Brain, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.15, issue.4, pp.493-501, 2007.
DOI : 10.1109/TNSRE.2007.908429

S. Speier and M. Rupnik, A novel approach to in situ characterization of pancreatic ??-cells, Pfl??gers Archiv - European Journal of Physiology, vol.18, issue.5, pp.553-558, 2003.
DOI : 10.1007/s00424-003-1097-9

G. Strang and T. Nguyen, Wavelets and filter banks, p.40, 1996.

W. Swendels, The lifting scheme : a construction of second generation wavelets, SIAM Journal on Mathematical Analysis, vol.2, pp.511-546, 1997.

D. Tritsch, D. Chesnoy-marchay, and A. Feltz, Physiologie du neurone. Doin initiatives santé edition, p.5, 1998.

M. Unser and A. Aldroubi, A review of wavelets in biomedical applications, Proceedings of the IEEE, pp.626-638, 1996.
DOI : 10.1109/5.488704

P. T. Watkins, G. Santhanam, K. V. Shenoy, H. , and R. R. , Validation of adaptive threshold spike detector for neural recording, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.4079-4082, 2004.
DOI : 10.1109/IEMBS.2004.1404138

M. V. Wickerhauser, Adapted Wavelet Analysis from Theory to Software. A K Peters, p.30, 1994.

R. W. Williams and K. Herrup, The Control of Neuron Number, Annual Review of Neuroscience, vol.11, issue.1, pp.423-53, 1988.
DOI : 10.1146/annurev.ne.11.030188.002231

Y. Yuning, A. Kamboh, A. , and J. M. , Adaptive threshold spike detection using stationary wavelet transform for neural recording implants, Biomedical Circuits and Systems Conference (BioCAS), pp.9-12, 2010.