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Abstract

This thesis targets the appearance-based re-identification of humans in images and
videos. Human re-identification is defined as a requirement to determine whether a
given individual has already appeared over a network of cameras. This problem is
particularly hard by significant appearance changes across different camera views,
where variations in viewing angle, illumination and object pose, make the problem
challenging.

We focus on developing robust appearance models that are able to match human
appearances registered in disjoint camera views. As encoding of image regions is
fundamental for appearance matching, we study different kinds of image descrip-
tors. These different descriptors imply different strategies for appearance matching,
bringing different models for the human appearance representation. By applying ma-
chine learning techniques, we generate descriptive and discriminative models, which
enhance distinctive characteristics of extracted features, improving re-identification
accuracy.

This thesis makes the following contributions. We propose six techniques for human
re-identification. The first two belong to single-shot approaches, in which a single
image is sufficient to extract a robust human signature. These approaches divide
the human body into the predefined body parts and then extract image features.
This allows to establish the corresponding body parts, while comparing signatures.
The remaining four methods address the re-identification problem using signatures
computed from multiple images (multiple-shot case). We propose two techniques
which learn online the human appearance model using a boosting scheme. The
boosting approaches improve recognition accuracy at the expense of time consump-
tion. The last two approaches either assume the predefined model, or learn offline
a model, to meet time requirements. We find that covariance feature is in general
the best descriptor for matching appearances across disjoint camera views. As a
distance operator of this descriptor is computationally intensive, we also propose a
new GPU-based implementation which significantly speeds up computations. Our
experiments suggest that mean Riemannian covariance computed from multiple im-
ages improves state of the art performance of human re-identification techniques.
Finally, we extract two new image sets of individuals for evaluating the multiple-shot
scenario.





Résumé

Ce manuscrit de thèse à pour sujet la ré-identification de personne basée sur leur
apparence à partir d’images et de vidéos. La ré-identification de personne consiste
à déterminer si un individu donné est déjà apparu sur un réseau de caméras. Ce
problème est particulièrement difficile car l’apparence change significativement entre
les différentes vues de caméra, où les variations de points de vue, d’illumination et
de position de l’objet, rendent le problème difficile.

Nous nous concentrons sur le développement de modèles d’apparence robustes qui
sont en mesure de faire correspondre les apparences humaines enregistrées dans des
vues de caméra disjointes. Comme la représentation de régions d’image est fon-
damentale pour la mise en correspondance d’apparence, nous étudions différents
types de descripteurs d’images. Ces différents descripteurs impliquent des stratégies
différentes pour la mise en correspondance d’apparence, impliquant des modèles
différents pour la représentation des apparences de personne. En appliquant des
techniques d’apprentissage automatique, nous générons des modèles descriptifs et
discriminatoires, qui améliorent la distinction des caractéristiques extraites, amélio-
rant ainsi la précision de la ré-identification.

Cette thèse à les contributions suivantes. Nous proposons six techniques de ré-
identification humaine. Les deux premières appartiennent aux approches single-
shot, dans lesquelles une seule image est suffisante pour extraire une signature fiable
de personne. Ces approches divisent le corps humain en différentes parties de corps
prédéfinies, puis extraient les caractéristiques de l’image. Cela permet de mettre
en correspondance les différentes parties du corps en comparant les signatures. Les
quatre autres méthodes abordent le problème de ré-identification à l’aide de signa-
tures calculées à partir de plusieurs images (multiple-shot). Nous proposons deux
techniques qui apprennent en ligne le modèle d’apparence humaine en utilisant un
schéma de boosting. Les approches de boosting améliorent la précision de la recon-
naissance, au détriment du temps de calcul. Les deux dernières approches assument
un modèle prédéfini, ou un apprentissage hors ligne des modèles, pour réduire le
temps de calcul. Nous constatons que le descripteur de covariance est en général le
meilleur descripteur pour la mise en correspondance des apparences dans des vues
de caméras disjointes. Comme l’opérateur de distance de ce descripteur nécessite
un calcul intensif, nous proposons également une nouvelle implémentation utilisant
le GPU qui accélère considérablement les temps de calcul. Nos expériences sug-
gèrent que la moyenne Riemannienne des covariances calculée à partir de plusieurs
images améliore les performances par rapport aux techniques de ré-identification de
personne de l’état de l’art. Enfin, nous proposons deux nouvelles bases d’images
d’individus pour évaluer le scénario multiple-shot.
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Chapter 1

Introduction

“Computing is not about computers any more. It is about living.”
(Nicholas Negroponte)

Computers, tablets and smartphones have taken possession of our lives. It is hard to
even imagine a world without them. They extend our possibilities to communicate,
to share information, and to entertain. Computers can perform repetitive, data
intensive and computational tasks, much more efficiently and more accurately than
humans.

However, there is a lot of high-level tasks that we humans perform automatically,
subconsciously, and with so much ease that we do not realize how sophisticated
processes have place in our brains. Video analysis is one of many tasks, in which
computers cannot take full advantage of information given by camera sensors. Such
tasks as object recognition, object detection or object tracking are straightforward
for humans but extremely difficult for computers.

In the result, the main goal of studies in computer vision is to improve computer
abilities to perform more intelligent tasks such as visual analysis and interpretation
of images or videos. One of the primary tasks is the recognition of humans using
information extracted from camera. Human recognition is of particular interest not
only for people behavior analysis in large area networks but also in security applica-
tions for people tracking. The capability of recognizing humans would allow a video
analysis system to associate an identity with a desired person and her/his occurrence
in place and time. Determining whether a given person of interest has already been
observed over a network of cameras is referred to as human re-identification.

This chapter introduces the problem of human re-identification in images and videos.
Section 1.1 gives a formal definition of the problem and presents the key applica-
tion of human re-identification. We discuss the involved challenges in section 1.2,
illustrating the main difficulties. We conclude with a list of major contributions in
section 1.3. The structure of the dissertation is presented in section 1.4.
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Figure 1.1: Human re-identification in a network of 5 CCTV cameras: the system
should be able to associate all appearances of the same person with a single identity
across disjoint camera views (e.g . the lady in red dress appears in two cameras).
This video footage is distributed by the UK’s government as the image Library for
Intelligent Detection Systems (i-LIDS).

1.1 Motivation and problem statement

Recently, cameras spread out across various domains that range from personal com-
puters, video games, home surveillance applications, to large camera networks which
facility access to sports venue, monitored environments, such as airports, metro sta-
tions or car parks. A natural consequence of such situation is a need for an auto-
mated extraction of high-level semantic information from extremely large volumes
of recorded video data.

In many surveillance systems, detection and tracking of moving objects constitute
the main problem. The number of targets and occlusions produce ambiguities which
introduce a requirement for reacquiring objects which have been lost during track-
ing. However, the ultimate goal of any surveillance system is not to track and
reacquire targets, but to understand a scene and to establish an identity of the
desired object.

Human re-identification can be defined as a determination whether a given person of
interest has already been observed over a network of cameras (see figure 1.1). This
issue is also known as the person re-identification problem. Person re-identification
can be considered at different levels depending on information cues, which are cur-
rently available in the system. Biometrics such as iris, face or gait can be used
to recognize identities. However, in most video surveillance scenarios such detailed
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Figure 1.2: The results of the query. The first image on the left is the query image.
The true match is on the first position in the list.

information might not be available, e.g . due to sensor scarce resolution or low frame
rate. Therefore a robust modeling of a global appearance of an individual is neces-
sary to re-identify a given person of interest. These identification techniques rely on
clothing assuming that individuals wear the same clothes between different sight-
ings. These approaches are referred to as appearance-based re-identification, which
is the main topic of this dissertation.

It is worth noting that in these appearance-based approaches, the re-identification
term stands for matching similar appearances over a network of cameras. These
techniques cannot be so accurate as iris recognition or face recognition because the
clothing is not distinctive enough. However, a robust appearance model can provide
an effective interface to the operator to search the camera network for a person of
interest. The search results are presented to the operator using the list of the most
similar appearances to the appearance of interest (see figure 1.2).

Recognizing humans in a network of cameras and providing an efficient interface to
the operator is the key application of human re-identification. However, matching
appearances of the same object between different cameras is of primary importance
not only in video analysis systems but also in video broadcasting applications (e.g .
live broadcasting of sports events), while a set of cameras may need to track in
parallel the object of interest (e.g . player tracking).

Human re-identification problem

We lay the problem as the following. We generate a human signature for each person
detected and tracked in a video surveillance system. Let us denote a signature as
sci , where i encodes the person’s identity and c denotes the camera. The task is to
find for each signature its corresponding signature in another camera. It is realized
by querying the database of signatures sc

′
j , where c 6= c′ with signature of interest

sci . The results of the query is the list of the most similar signatures ordered by
increasing dissimilarity (figure 1.2). The position in the list of the true match is
called the rank score. The main objective is to maximize recognition accuracy by
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Figure 1.3: Color changes: each pair of images shows the same person captured
from different cameras in different environments. These images highlight color dis-
similarities of the same object acquired under different conditions.

minimizing the rank of the true match (see section 7.1 for details on evaluation
metrics).

1.2 Research challenges

Appearance matching of the same person registered in disjoint camera views is
one of the most challenging issues in every video analysis system. The underlying
challenge of the human re-identification problem arises from significant appearance
changes, caused by variations in viewing angle, illumination and object pose. Dif-
ferent color responses, different camera viewpoints and different camera parameters
impede establishing correspondence between parts of the human body, while match-
ing appearances.

Color changes

The same object acquired by different cameras shows color dissimilarities (see figure
1.3). Even identical cameras which have the same optical properties and work under
the same lighting conditions may not match in their color responses. Besides, inter-
camera variations in lighting conditions and differences in illumination significantly
change the appearance of a person.

Pose changes

Moreover, the pose variations due to camera and viewpoint change as well as the
articulation of the human body lead to significant differences in appearances of the
same individual observed from different cameras (see figure 1.4). The first pair shows
upright and bending poses. In this case, if we would have a good matching algorithm
most of features from the first image could be found in the second image (only the
spatial position of features has changed). However, in the rest of the examples, the
first image contains visual features which do not appear in the second image.
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Figure 1.4: Pose changes: each pair of images presents how the appearance of the
person can change due to pose changes. Note that in some cases there are visual
features which are present in one camera, while they are not visible in the second
one (the last pair: in the first image we can notice white t-shirt, which is not visible
in the second image).

Figure 1.5: Occlusions: examples extracted from a real video surveillance system.

Finding corresponding body parts is referred to as the correspondence problem. This
step is of particular interest as it has a significant influence on recognition accuracy,
while matching appearances.

Occlusions

Further, self-occlusions (caused by body parts) and occlusions caused by other peo-
ple or objects of the scene make the appearance matching task extremely difficult
(see figure 1.5).

Detections

In order to recognize individuals in a real video surveillance system, we need to detect
human silhouettes automatically. This brings a new challenge which comes from the
preprocessing step and is not directly related to the re-identification problem but
has a large influence on recognition accuracy.

Human detection is supposed to detect image regions where a human is present.
Unfortunately, existing algorithms very often return noisy human detections (de-
tected bounding boxes are not accurately centred around the people, only part of
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Figure 1.6: Noisy human detection results: right image in a pair shows noisy detec-
tion. Note that the size of appearance differs significantly when camera changes.

the people are detected). In most video analysis systems, tracking of objects is used
to select the most informative appearance (called the key frame). However, the
selection of the best candidate is still an open issue.

Noisy detections make the re-identification problem more challenging, especially
when the full body is detected in the first camera and is not detected in the second
one (e.g . only upper body is detected, see figure 1.6). Similarly as in pose variations,
it can often happen that features which describe an appearance extracted from the
first camera are not visible in an appearance extracted from the second camera.
Moreover, in this case scale and resolution changes appear (person in the first image
is much smaller than in the second).

Discriminative features

Inspired by human memory [Bjork 1996] and in particular - recognition memory, we
can infer that not all cues provided by images should be used in the same manner.
Recognition memory is the ability to recognize previously encountered events, ob-
jects, or people, involving processes of discriminative learning. Learning in humans
is performed by stimuli which are probably an input into sensory memory even when
a person tries to ignore them at the time they are presented. In the result, we, hu-
mans learn continuously to deal with the factors of associability and discriminability,
while computers do not possess such capability. Thus, it raises numerous questions
how to teach computers to match (associate) human appearances and how to focus
on distinctive cues (features), providing within-group discriminations.

1.3 Main contributions

This thesis studies the question of feature sets for human re-identification in non-
overlapping camera views. We employ different kinds of image descriptors to ex-
amine their invariance to camera changes and we investigate different strategies to
enhance discriminative properties of these feature descriptors. We find covariance
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matrix to be the best descriptor for matching appearances registered in disjoint
camera views. The thesis makes the following contributions:

• We formulate the appearance matching problem as the task of learning a model
that selects the most descriptive features for a specific class of objects (e.g .
humans). The main idea of the proposed approach is that different regions of
the object appearance ought to be matched using different strategies to obtain
a distinctive representation. This work has been submitted for publication
[Bak 2012a] and is detailed in chapter 6.

• We offer a novel kind of feature, i.e. the mean Riemannian covariance grid
(MRCG). Our idea is to combine efficiently the mean Riemannian covariance
descriptor with a spatial information carried out by a dense grid structure.
The matching accuracy is improved by our efficient discriminative method.
This work was published in [Bak 2011b] and further developed in [Bak 2012b,
Corvee 2012]. Detailed description can be found in chapter 6.

• We investigate discriminative approaches by boosting human appearances in
one-against-all learning scheme. We employ Haar-wavelets and covariance
descriptors as the features for describing image regions. In these approaches
we enhance distinctive characteristics of a specific appearance by using in-
formation from appearances of other individuals. Boosting approaches were
published in [Bak 2010a, Bak 2011a] and are discussed in detail in chapter 5.

• We develop two approaches which extract human appearance from a single
image using body-part detection methods. Localization of body parts is based
either on an asymmetry of the human body or on learned characteristics using
histogram of oriented gradients (HOG). These approaches were published in
[Bak 2010a, Bak 2010b] and are the main focus of chapter 4.

• We design a new GPU-based re-identification framework, offering a new im-
plementation of the covariance distance operator. This implementation sig-
nificantly speeds up computation with comparison to the optimal CPU im-
plementation of Jacobi algorithm [Jacobi 1846]. The speed-up grows with a
number of matrices, reaching its maximum (66) from about 1500 matrices.
This work was published in [Bak 2011c] and is described in chapter 8.

• We extract two new image sets of individuals from i-LIDS data to study more
carefully advantages of using multiple images in generating human signature.
These two publicly available datasets fully satisfy requirements of multiple-
shot person re-identification. These datasets were introduced in [Bak 2011a].
We present specifications of these datasets in chapter 7.

• We perform an extensive evaluation of our descriptors on various datasets.
Performance comparison to state of the art approaches and detailed analysis
can be found in chapter 7.
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1.4 Thesis structure

Chapter 1 introduces the human re-identification problem describing its key appli-
cation. The overall goals together with the research challenges and our main con-
tributions are summarized. The remaining chapters are organised as follows:

• Chapter 2 introduces the reader to state of the art methods for human re-
identification, focusing particularly on appearance-based approaches. The first
part describes re-identification by biometrics, showing constraints of these
approaches due to sensor scarce resolution or low frame-rate. The remaining
part focuses on models for appearance matching, considering feature-oriented
and learning techniques. It also presents our motivation for contributing to
both, feature-oriented and learning approaches.

• Chapter 3 describes an overview of the re-identification framework. A short
discussion on different appearance models for detection and tracking is pre-
sented as these steps are common requirements in most video analysis systems.
We also indicate steps in the processing chain, which are the main focus of
this dissertation.

• Chapter 4 presents two single-shot approaches for human re-identification.
These proposed techniques extract human characteristics using a single im-
age. Both approaches belong to feature-oriented methods which use a priori
information on structure of the human body parts. The chapter examines
two kinds of image descriptors: (1) dominant color descriptor; and (2) covari-
ance matrix. We investigate their invariance to appearance changes in disjoint
camera views.

• Chapter 5 contains two techniques for generating a human signature by boost-
ing - a meta machine learning algorithm. Both approaches employ multiple
images of many humans, using one-against-all learning scheme to extract a
discriminative representation of the human appearance. Distinctive character-
istics of a specific individual are enhanced by confronting its appearance with
the appearances of other individuals.

• Chapter 6 proposes two approaches based on mean Riemannian covariance
matrices. The first method avoids time consuming boosting algorithm by defin-
ing appearance representation as a dense grid of features and by using a simple
discriminative method for improving signature matching accuracy. The sec-
ond technique consists in offline learning which learns the best features to
match appearances between two camera views. We propose to formulate the
appearance matching problem as the task of learning a model that selects the
most descriptive features for a specific class of objects. Learning is performed
in a covariance metric space using an entropy-driven criterion.
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• Chapter 7 presents a detailed performance analysis of proposed descriptors
for re-identification and shows a performance comparison of these approaches
with state of the art techniques. We describe evaluation metrics and publicly
available datasets. New sets of individuals from i-LIDS data are proposed
for evaluating single-shot and multiple-shot scenarios. We evaluate our ap-
proaches on publicly available datasets with varying difficulties, investigating
descriptor limitations.

• Chapter 8 describes an extension of our re-identification framework to large
scale systems. This chapter focuses on a distance operator between signa-
tures to perform an efficient signature retrieval, especially once the real-time
response is expected from the system. Our best descriptors are based on
covariance matrix which distance operator requires solving the generalized
eigenvalue problem. This problem is computationally intensive and must be
repeated constantly in the re-identification system during the browsing signa-
tures of interest. In the result, we perform detailed analysis of the algorithm
complexity and we explore for possibilities of parallelization. We find that
some parts of the distance operator algorithm can be easily parallelized. Con-
sequently, we take advantage of new high performance architectures to obtain
the required high efficiency. We propose a new GPU-based implementation
for solving the generalized eigenvalues problem. In the result, we significantly
accelerate the distance computation, reaching 66 speedup in comparison with
the CPU implementation.

• Chapter 9 summaries our approaches and our key results, providing a discus-
sion of the advantages and limitations of the work. It also suggests directions
for future research in this area, presenting short-term and long-term perspec-
tives.





Chapter 2

State of the art

“All men by nature desire knowledge.” (Aristotle)

In this chapter, the state of the art methods for human re-identification are pre-
sented. Identification techniques can be considered on different levels depending on
information cues which are currently available in a video surveillance system. We
take into account only approaches which use camera to acquire information cues.
These approaches can be categorized into the two main families:

• biometrics,

• global appearance.

Biometrics belongs to the most effective approaches as they use biological charac-
teristics to verify an identity. Iris (section 2.1.1), face (section 2.1.2) or gait (section
2.1.3) has proven to own one of the most discriminative information which can be
used for recognizing individuals.

Unfortunately, in most video surveillance scenarios such detailed information might
not be available due to sensor scarce resolution, low frame rate or difficult back-
ground subtraction (crowded environments, e.g . airports, metro stations). There-
fore only a robust modeling of an individual’s appearance (section 2.2) can provide
cues for re-identifying a given person of interest. These identification techniques
rely on clothing assuming that individuals wear the same clothes between different
sightings. In state of the art these recognition methods are referred to as appearance-
based re-identification, which is also the main topic of this dissertation. For the sake
of clarity, before focusing on appearance-based methods, we present a brief overview
of biometrics.

2.1 Human re-identification by biometrics

Biometrics is a term which marries two roots: bio, indicating a connection to living
organisms; and metric, indicating a measurement. In general, biometrics refers to
the statistical study of biological phenomena, where a measurement of biological
characteristics is used to verify an individual’s identity.

Biometrics consists of metrics which take into account physical as well as behavioural
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Figure 2.1: Example of an iris pattern, imaged in near infrared at a distance of
about 35 cm. The outline overlay shows the results of iris, pupil, and eyelid lo-
calization steps, and the bit stream in the corner depicts the computed IrisCode
[Daugman 2002].

characteristics. Physical characteristics refer to such techniques as fingerprint,
face recognition, DNA, iris recognition, retina scan and scent. Behavioural char-
acteristics are related to methods which examine how an individual behaves e.g .
keystroke/typing dynamics, handwritten signature, gait and voice.

In this section we consider only these biometrics which can be acquired covertly by
camera sensors. Thus, at least theoretically, biometrics recognition can be performed
without subject’s knowledge. The feasibility of this type of recognition receives
increasing attention and is of particular interest for forensic and security purposes,
such as the pursuit of criminals and terrorists.

We describe the following biometrics:

• iris - a physical characteristic of an individual’s eye (section 2.1.1),

• face - a physical characteristic of an individual’s face (section 2.1.2),

• gait - a behavioural characteristic of an individual’s motion (section 2.1.3).

2.1.1 Iris recognition

Iris recognition is one of the most accurate techniques for identification of human be-
ings which has ever been developed. Moreover, iris recognition supports non-invasive
and covert data acquisition which makes this biometrics very desirable for security
purposes. Although small (11 mm) and sometimes problematic to image, the iris
has the great mathematical advantage that its pattern variability among different
persons is enormous. In addition, as a planar object its image is relatively insensi-
tive to illumination changes. Further, variations in viewing angle effect only affine
transformations. Also the non-affine pattern distortion caused by pupillary dilation
is readily reversible. The striated mesh of elastic pectinate ligament creates the pre-
dominant texture under visible light, whereas in the near infrared (NIR, 700-900 nm)
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Figure 2.2: Illustration of standoff (Z), capture volume, and residence time. The
recognition device is at the far right of the illustration. The capture volume is
represented as a box around the subject’s head [Matey 2008].

wavelengths, at close acquisition distance, deeper and somewhat more slowly mod-
ulated stromal features dominate the iris pattern. This pattern can be represented
by IrisCode (see figure 2.1) which is extracted using bandpass filtering operations
to take advantage of multiscale information [Daugman 2002, Wildes 1997].

NIR wavelengths reduce specular reflection from the convex cornea causing that
even darkly pigmented irises reveal rich and complex features. However, the NIR
wavelength is particularly risky because the eye does not instinctively respond with
its natural mechanism (aversion, blinking and pupil contraction). Thus, there are
also studies performing in visible light [Proenca 2010], to extract iris. Though, the
use of visible light can decrease the quality of the captured data increasing the
challenges in recognition.

Unfortunately, iris recognition systems impose significant constraints on the sub-
ject. The key constraints in current systems are standoff distance, capture volume,
residence time, subject motion, subject gaze direction, and ambient environment
[Matey 2008].

As we can see in figure 2.2, standoff is the distance between the subject and the iris
image acquisition device. In some cases, the illumination components are located
separately from the camera sensor. Then, we have to take into account both an illu-
mination standoff and a camera standoff. The volume in which we expect sufficient
quality of an iris image is called the capture volume. The capture volume is shown
as a box around the subject’s head in figure 2.2.

Residence time corresponds to the length of time in which the subject must remain
within the capture volume to acquire the iris image. Moreover, in some systems there
is a requirement forbidding movement of the subject (the subject should remain
stationary) to minimize motion blur. Even if the system allows subject motion,
there are limits on the subject velocity.
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As the most of iris recognition systems assume that iris/sclera boundaries are circular
(the subject should look approximately straight into the camera) the recognition
performance decrease rapidly when gaze direction of the subject deviates from the
optic axis of the camera by more than ≈ 15 degrees.

Finally, the ambient environment is disturbed by ambient light. The ambient light
can affect the iris acquisition in ways that are unpredictable. There are two primary
ways to reduce the effect of ambient light on the image: (1) temporal domain strob-
ing/gating and (2) wavelength domain filtering. The former way of reducing the
effect of ambient light is to shutter the camera with a gate that is shorter than the
frame time and to strobe the controlled illumination synchronously with the gate.
The latter way can be realized by usage of narrowband sources of illumination such
as LEDs or lasers. In this case the bandpass optical filters at the camera can be
used to block all wavelengths other than the ones of interest.

Even if iris recognition is one of the most accurate techniques for identification of
human beings, above mentioned constraints show difficulties which appear during
acquisition process. Another biometrics which can be used in less constrained en-
vironments is face recognition. The accuracy of face recognition is minor to iris
recognition, as the face is a changeable social organ displaying a variety of expres-
sions, being at the same time active 3D object whose image varies with viewing
angle, pose, illumination, and age.

2.1.2 Face recognition

Face recognition, as one of the most important topics in computer vision, has already
been investigated from at least three decades. The earliest successful approach of
face recognition is the Eigenface method [Kirby 1990, Sirovich 1987]. This technique
is based on linear projection of an image space to a low dimensional feature space.
The Eigenface method uses principal components analysis (PCA) for dimensionality
reduction which yields projection directions to maximize the total scatter across all
classes, i.e., across all images of all faces. Finally, each face can be considered as a
combination of vectors (called eigenfaces) which correspond to a set of eigenvectors
extracted from a training dataset. This eigenvectors (see figure 2.3) represent vari-
ations which can appear in the face appearance. This approach has been improved
by applying Fisher’s linear discriminant analysis [Fisher 1936] to work in the pres-
ence of lighting variations [Belhumeur 1997]. These approaches perform remarkably
well only if pose variations are not significant. In [Bauml 2010, Lee 2003], we find
approaches which struggle with pose variations and show promising results. How-
ever, even if face recognition approaches have no such strong constraints as iris,
they still demand high resolution images to extract significant features from the
face. Essentially, such features as eyes, nose, mount, has to be visible. Otherwise
face pose alignment is difficult (alignment is necessary to perform matching between
face appearances). In case when such features are not accessible (camera low res-
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Figure 2.3: An example of the first 25 eigenfaces which represent variations of faces
in a dataset.

olution, large distance from the object) gait recognition can be used to extract an
identity.

2.1.3 Gait recognition

Gait recognition addresses the problem of human identification at a distance. It
aims to discriminate individuals by the way they walk. Each person seems to have
a distinctive and idiosyncratic way of walking. Human ambulation consists of syn-
chronized integrated movements of hundreds of muscles and joints. Although these
basic patterns of bipedal locomotion are similar for humans, gaits vary from one
person to another in certain details such as their relative timing and magnitudes.
The attractiveness of gait as a biometrics arises from the fact that is non-intrusive,
can be measured from a great distance and can perform in a low resolution.

Gait approaches are mostly based on a silhouette estimated by background sub-
traction (see figure 2.4) and perform recognition by temporal correlation of silhou-
ettes. Thus, background subtraction (extraction of a silhouette) is the main phase
in gait recognition. After background subtraction, the detected silhouette can be
represented by a distance signal [Wang 2003] obtained by a normalized distance of
boundary pixels on the contour from the reference point (e.g . the centroid can be
chosen as the reference point). The outer contour, unwrapped in counter-clockwise
way, represents the original 2D silhouette shape in the 1D space (see figure 2.5).
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Figure 2.4: Examples of moving silhouette extraction and tracking [Wang 2003]: (a)
a background image; (b) an original image; (c) an extracted silhouette from (b), and
(d)-(k) temporal changes of moving silhouettes in a gait pattern.

Figure 2.5: Silhouette representation [Wang 2003]: (a) illustration of boundary ex-
traction and counter-clockwise unwrapping and (b) the normalized distance signal
consisting of all distances between the centroid and the pixels on the boundary.

Compared with other widely used biometric features such as iris or face, gait recog-
nition is relatively new area for computer vision researchers and still meets a lot
of constraints. Most of the gait perception approaches assume a side-view of the
person to extract distinctive motion templates. Moreover, silhouette extraction
(background modelling) is still an open issue. Apparently, there are number of lim-
itations in the use of gait in uncontrolled environments, e.g . outdoors under various
lighting conditions [Chellappa 2007].

Unfortunately, in most video surveillance scenarios due to difficult background sub-
traction (crowded environments, e.g . airports, metro stations), gait still can not be
used for identification. Therefore, a robust modelling of a global appearance of an
individual is necessary to identify a given person of interest. In these identifica-
tion techniques (named appearance-based approaches) clothing is the most reliable
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Figure 2.6: Appearance models [Doretto 2011]: (A) histogram representation (e.g .
intensity value); (B) more sophisticated histograms, based on vector-quantization
according to an appearance dictionary; (C) aggregation strategies take into account
spatial correlations; (D) part based methods divide the body into parts and the
description of corresponding parts determines the matching.

information on an identity of an individual (there is an assumption that individu-
als wear the same clothes between different sightings). Obviously, the appearance
model can not be such distinctive as biometrics but can provide an effective interface
to the operator, which could be able to search the camera network for a person of
interest.

2.2 Human re-identification by appearance model

Recently, the person re-identification problem became one of the most important
tasks in video surveillance applications. A natural consequence of an invention of
robust human detection algorithms is to extend approaches for recognition pur-
poses.

As human re-identification concerns a large set of individuals acquired from different
cameras, it is necessary to provide a distinctive and invariant to camera changes
signature. It has to be based on discriminative features to allow browsing the most
similar signatures over a network of cameras. It can be achieved by signature match-
ing which has to handle difference in illumination, pose and camera parameters.
Note that, inter-camera variations in lighting conditions, difference in illumination,
different camera parameters, changes in object orientation and object pose make
this task extremely difficult. Besides, occlusions (caused by other people or objects
of the scene) and self-occlusions (caused by body parts) form the re-identification
problem as one of the hardest tasks in the video surveillance applications.

In appearance-based re-identification approaches, a human appearance is represented
by a set of features extracted from a human image. The main issue appears in ag-
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gregating these features into discriminative representation which should yield cor-
rect matching of the same individual seen from different cameras. The simplest
approaches do not take into account a spatial correlation between image features,
applying a histogram representation. More sophisticated techniques embed a spa-
tial information inside the feature vector to cope with the correspondence problem.
Finally, the human body part detectors can be used to extract features from corre-
sponding body parts to perform correct matching (see figure 2.6).

Further, person re-identification approaches concentrate either on learning aspects
or on feature modeling. Learning approaches use training data of different indi-
viduals to search for strategies that combine given features maximizing inter-class
variation whilst minimizing intra-class variation. These approaches focus either on
metric learning for matching appearances regardless of the representation choice
[Dikmen 2010, Zheng 2011], or on discriminative methods which enhance discrimi-
native features of a specific individual [Lin 2008, Schwartz 2009]. Instead, feature-
oriented approaches concentrate on designing an invariant feature, which should
handle viewpoint and camera changes [Bazzani 2010, Farenzena 2010].

Appearance-based approaches rely on modeling a human signature using tracking
and detection results. As the tracking can provide multiple images of the same
individual, classification of appearance-based techniques distinguishes two main
groups:

• single-shot approaches,

• multiple-shot approaches.

The former class exploits appearance information using only a singe image of an
individual, while the latter employs multiple images of the same person as training
data to obtain a reliable and distinctive representation.

2.2.1 Single-shot approaches

Single-shot approaches extract a human signature using only a single image. It is
worth noting, that feature-oriented single-shot approaches exploit the least informa-
tion among all appearance-based re-identification techniques. For each individual,
they use a single image, whose features are independently matched against thou-
sands of candidates. In contrary, learning approaches concentrate either on learning
a metric regardless the representation choice (usually training phase is offline), or
on enhancing discriminative features presented in an image (usually discriminative
method is online).
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2.2.1.1 Feature-oriented approaches

Feature-oriented (FO) approaches concentrate on feature representation which
should be invariant to pose and camera changes. These approaches usually assume
a priori an appearance model, focusing on designing novel features for capturing
the most distinctive aspects of an individual.

In [Park 2006] clothing color histograms taken over shirt and pants regions together
with the approximated height of a person are used as primitive features to discrimi-
nate appearances. Head, shirt and pants regions are obtained by dividing a detected
blob into three parts from the top to the bottom (at 1/5th and 3/5th of the blob’s
height). Only shirt and pants regions are taken into account to extract color appear-
ance of a person. Dividing a blob into two parts helps to keep spatial correlation of
feature distributions. Histograms are computed in HSV color space, based mostly
on hue component (the authors assumed that hue is the most invariant component
to illumination changes). Histograms with 10 bins (red, brown, yellow, green, blue,
violet, pink, white, black and gray) are constructed from every pixel in the object
segmentation. Then, final color is decided as the bin with the largest count.

Similarly, in [Gallagher 2008] clothing segmentation together with facial features
is employed to recognize individuals. The clothing segmentation is obtained using
graph cuts and clothing mask. The global clothing mask is learned automatically
based on mutual information extracted from the set of images with the same quali-
tative appearance. Face is detected using [Viola 2003] approach. Then, each face is
projected onto a set of Fisherfaces [Belhumeur 1997] to obtain 37-dimensional vec-
tor representing its appearance. Clothing regions are represented by 5-dimensional
feature vectors. The first three elements in the vector are obtained by a linear
transformation of RGB color values. The remaining two features describe texture
as the responses to a horizontal and vertical edge detector. Finally, the appear-
ance is represented by the segmented image (the set of histograms over each of
the 5 features) or by visual world representation. This work shows that clothing
can provide a significant improvement in face recognition accuracy for large image
collections.

The human signature represented by color patches extracted from an appearance
along edges is proposed in [Cai 2008]. The edges are detected by Canny edge de-
tection algorithm [Canny 1986]. Then, square regions are selected around edges as
shown in figure 2.7(a). The appearance of each region is characterized by dominant
colors and their frequencies of occurrence in this region. The similarity of patches
together with their geometric constraints are encoded in matching function. The
geometric constraints are defined as a spatial correlation between a reference point
and candidate points on the edges. The reference point is chosen as the top of the
head. The spatial correlation of the candidate point is represented by its distance D
from the reference point (the top of the head) and θ angle (see figure 2.7(b)). The
distance between the head point and candidate point is normalized by the height of
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(a) (b)

Figure 2.7: Human appearance [Cai 2008]: (a) From left: original image, results of
Canny edge detection, region signatures on the edges; (b) geometric constraints.

the silhouette.

Similarly, in [Yu 2007] path-length features of the pixels inside the silhouette of a
person are used to construct an appearance model. Path-length, the length of the
shortest path from a distinguished point (in this work also the top of the head is
chosen) to a point constrained to lie entirely within the body, captures the structural
information of the appearance. The top of the head is relatively stable to the
movement. Compared with the centroid of the silhouette, it can discriminate the
features of the upper body and the lower body because they have different path-
lengths and do not produce mixed distributions. Moreover, the top of the head is less
sensitive to noise than the foot point, which can be hard to detect due to shadows.
Path-length together with color of a pixel stands for the final feature extracted from
the appearance. Given all the pixels of a snapshot of a person, the distribution of
the feature vector is estimated. Then the similarity between the model distributions
is measured by the Kullback-Leibler distance [Kullback 1978]. The authors also
propose to match video sequences (multiple-shot case), where the simple threshold-
based algorithm is applied to select key frames. Given video sequence with detected
human appearance, the first frame is selected as the first key frame. Then, the
following key frames are selected using the Kullback-Leibler distance and a threshold
which specify if the new key frame should be selected. The final matching of video
sequences is obtained by using the median of the closest distances between the key
frames.

In [Kang 2004], a translation invariant model is proposed. The appearance is ex-
tracted using the smallest circle containing the blob (results of the segmentation
algorithm). This circle is uniformly sampled into a set of control points, from which
a set of concentric circles of various radii are used for defining bins of the appearance
model. Inside each bin, a Gaussian color model is computed for modelling the color
properties of the overlapping pixels of the detected blob (see figure 2.8). The final
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Figure 2.8: Computation of the color based appearance model [Kang 2004].

appearance model is represented by the normalized combination of the distributions
obtained from each control point. Such representation guarantee rotation invari-
ance as a rotation of the blob in the 2D image is equivalent to a permutation of the
control points.

Shape and appearance context model is proposed in [Wang 2007]. A pedestrian im-
age is segmented into regions and their color spatial information is registered into a
co-occurrence matrix. A region appearance is represented by histogram of oriented
gradients (HOG) in the Log-RGB color space [Funt 2002]. The gradient of the Log-
RGB space works similar to the homomorphic filtering and makes the descriptor
robust to illumination changes. The spatial correlation is handled by L-shaped re-
gions of the image. Parts identification is done by modified shape context algorithm
[Belongie 2002], which uses a shape dictionary learnt a priori. The context of the
appearance and shape is handled by using occurrence/co-occurrence function which
describes probability distributions and their correlations over the image region. This
method works well if the system considers only a frontal viewpoint.

2.2.1.2 Learning approaches

Learning approaches use training data to search for strategies that improve appear-
ance matching accuracy. These approaches concentrate either on metric learning
(ML) regardless of the representation choice, or on discriminative methods (DM)
which enhance discriminative features of an individual (e.g . by applying one-against-
all learning scheme).

Usually learning a metric involves offline phase, in which training data is given as
positive pairs (two images with the same person registered by different cameras) and
negative pairs (two images with different person registered by different cameras) of
images.

In contrary, applying one-against-all scheme, the discriminative approaches enhance
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Figure 2.9: The filters used in the appearance model [Gray 2008] to describe texture
features: rotationally symmetric Schmid filters and horizontal and vertical Gabor
filters .

distinctive characteristics of a specific individual by using information from appear-
ances of other individuals. In discriminative methods, learning is performed online,
which makes these approaches difficult to apply in real-time systems.

Metric learning (ML)

In [Gray 2008], the ensemble of localized features (ELF ) has been proposed. In-
stead of designing a specific feature for characterizing people appearance, a machine
learning algorithm constructs a model that provides maximum discriminability by
filtering a set of simple features. This simple features are extracted from a set of
strips which span the entire horizontal dimension of the image. Each feature con-
sists of three elements: a feature channel, a region and a histogram bin. A feature
channel is any single channel transformation of the original image. In this work,
different color channels (RGB/YCbCr/HSV) are used as well as texture channels.
Texture channels are obtained by the result of convolution with a texture filter and
the luminance channel. The authors use two families of texture filters: Schmid
[Schmid 2001] and Gabor [Fogel 1989] (see figure 2.9). The similarity function be-
tween two appearances is learnt using AdaBoost algorithm. The model is extracted
from pairs of pedestrian images. Positive sample is represented by a pair of images
of the same person and negative sample is represented by a pair of images with
different individuals. Thus, if there are N individuals imaged from two different
cameras (one image from each camera), then there are N positive training examples
and N × (N − 1) negative training examples. Classifiers are based on the absolute
differences between two instances of the same feature. Finally, from the feature
space (which is the product of the number of possible channels, regions and bins),
the AdaBoost algorithm builds a model of the human appearance used for person
re-identification.
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The person re-identification problem is reformulated as a ranking problem in
[Prosser 2010]. The authors present extensive evaluation of learning approaches
and show that a ranking relevance based model can improve the reliability and
accuracy in person re-identification under challenging viewing conditions. The pre-
sented idea is very similar to ELF [Gray 2008]: machine learning extracts a general
representation of a human appearance. Also features used for region appearance
representation are the same as in [Gray 2008]. The whole appearance is represented
by six equally sized horizontal strips in order to roughly capture the head, upper
and lower torso and upper and lower legs. The significant difference between these
two approaches comes from a learning scheme. The novelty of this work is that
the person re-identification problem is presented as a ranking problem. Here, the
ranking algorithms learn a subspace where the potential true match is given by
highest ranking rather than any direct distance measure. This work presents an ex-
tensive evaluation of different ranking algorithms such as RankBoost [Freund 2003]
or RankSVM [Joachims 2002]. The proposed approach shows a significant improve-
ment of SVM-based ranking approaches over Boosting-based ranking models where
the weak rankers are constructed from individual features.

Distance learning is also the main topic in [Zheng 2011]. A probabilistic model
maximizes the probability of true match pair having a smaller distance than that
of a wrong match pair. This approach focuses on maximizing matching accuracy
regardless of the representation choice. However, in order to benefit from different
and complementary information captured by different features, the authors start
with a mixture of color and texture histogram features similar to those used in
[Gray 2008] and let the probabilistic model automatically discover an optimal fea-
ture distance.

[Dikmen 2010] also use a metric learning framework to obtain a robust metric for
pedestrian recognition. The authors propose a novel cost function similar to the
large margin nearest neighbor (LMNN [Weinberger 2009]), introducing the rejection
condition (i.e. classifier returns no matches if all neighbors are beyond a certain
distance). This method is referred to as LMNN-R. Further, this technique shows
that color correction improves the matching accuracy when Euclidean distance is
used to compare images (i.e. no learning). It is not the case for learned metrics
of LMNN and of LMNN-R, which suggests that a learned metric is more robust in
handling illumination changes using original images than using corrected images.
The authors propose letting the learning algorithm to handle the color corrections
issues.

Discriminative methods (DM)

Enhancement of discriminative power of each individual signature with respect to
the others is the main issue in [Lin 2008]. Here, the appearance is encoded by
4-dimensional vectors, containing 3 color components and the height coordinate.
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Only the heigh coordinate instead of using 2D spatial coordinates is used to han-
dle viewpoint and pose variations. Features are aggregated using the probability
density function (PDF). The distance between two appearances is established using
pairwise dissimilarity profiles which are learned beforehand. The nearest neighbour
classification is adapted to perform re-identification.

Similarly, in [Schwartz 2009], a rich set of feature descriptors based on color, tex-
tures and edges is used to reduce the amount of ambiguity among human class.
Features are extracted from overlapping blocks constructing a high-dimensional fea-
ture vector. The high-dimensional signature is transformed into a low-dimensional
discriminant latent space using a statistical tool called Partial Least Squares (PLS)
in one-against-all scheme (the discriminative appearance of person is learned us-
ing information about the appearances of other persons). For the one-against-all
scheme, PLS gives higher weights to features located in regions containing discrim-
inative characteristics.

However, discriminative approaches such as [Lin 2008, Schwartz 2009] are often ac-
cused of non-scalability. In these approaches an extensive learning phase is necessary
to extract discriminative signatures every time when a new person is added to the
set of existing signatures. This makes these approaches very difficult to apply in
real scenario where in every new minute new people appear.

2.2.1.3 Group context approaches

Approaches which potentially open a new direction, use information from a con-
text environment to improve recognition accuracy. Visual information coming from
surrounding people have been used in [Zheng 2009] to reduce ambiguity in person
identification. This method shows that group association between two or more peo-
ple can give valuable information about identity of an individual. It is shown that
person re-identification method is improved by utilising associated group of people
as visual context. Here, the appearance of group is represented by visual words.
SIFT [Lowe 2004] features for each RGB channel are extracted and concatenated
for each pixel representation. Then, this concatenated vectors are quantized into n
clusters by k-means and a code book of n visual words is built. Finally, to represent
the spatial distribution of visual words in an image, a center rectangular ring ratio-
occurrence descriptor (CRRRO) is proposed. CRRRO aims to describe the ratio
information of visual words within and between different rectangular ring regions.
It is assumed that the distribution of constituent patches of each person in each
ring is likely to be more stable against changes in relative positions between the two
people over different viewpoints or scaling (see figure 2.10).

Similarly, in [Cai 2010] group context information handled by covariance descrip-
tor [Tuzel 2006] improves the performance of person re-identification. It is shown
that contextual cues coming from group of people around a person of interest can



2.2. Human re-identification by appearance model 25

Figure 2.10: Rectangular ring regions used for group association [Zheng 2009]

significantly improve matching accuracy. In this paper, the appearance of a per-
son as well as the appearance of a group have been represented using covariance
descriptor which is able to capture statistical properties of features inside an image
region.

2.2.1.4 Space-time approaches

In the state of the art approaches we can find that not only visual features can
be used to associate appearances between disjoint camera views. In [Javed 2003]
a Bayesian framework is proposed to fuse a camera topology and a simple color
histogram representation to perform person re-identification. Camera topology is
learned using space-time cues including inter-camera time intervals, location of ex-
its/entrances between cameras and directions of movement. The tracking system
begins with some prior knowledge gained from an initial training phase. The learned
parameters are continuously updated to keep up with the changing motion and ap-
pearance patterns throughout the life-time of the system. Given the Bayesian frame-
work, we are able to compute probability of an object entering a certain camera at
a certain time using the location, time and velocity of its exit from other cameras.
The change in appearance of a person between certain cameras is modelled using a
Gaussian distribution of distances between their appearances. As the appearance
is represented by color histograms the modified Bhattacharyya distance is applied
as a metric to distinguish different appearances. Nevertheless, the assumption that
all the colors change similarly is not always true. In order to handle this problem
in [Javed 2005] is shown that the inter-camera brightness transfer function (BTF)
lies in a low-dimensional subspace, and can be learnt using a set of corresponding
calibration objects. However, finding pixel to pixel correspondences from appear-
ances of the same person in two different cameras is not possible due to pose changes
and self-occlusion. Hence, normalized histograms of person brightness values were
used to compute BTF. The low-dimensional subspace is learnt using probabilistic
Principal Component Analysis [Tipping 1999] on BTFs obtained from the training
data and used for the appearance matching.
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2.2.2 Multiple-shot approaches

Multiple-shot approaches employ multiple images of the same person to obtain a
more informative signature. These approaches can also be divided into two classes:
feature-oriented approaches and learning approaches. Having several images of the
same person enables to apply different kinds of statistics on feature distribution to
obtain a reliable signature even in the case of feature-oriented approaches. Moreover,
using multiple images per individual, we can apply tools like SVM [Cortes 1995] or
Fisher discriminant analysis [Fisher 1936] for separating a specific individual from
the rest of people in a given feature space. In multiple-shot approaches, we can also
find dimensionality reduction methods which are used to speed up processing and
minimize influence of noise for recognition task.

2.2.2.1 Feature-oriented approaches

In the multiple-shot case, the ability of acquiring more than one image for generating
signature, allows to apply different kinds of statistics for extracting reliable features.
Such techniques as clustering, Bayesian or even PageRank, were investigated to
obtain the most reliable and distinctive features.

In [Madden 2007b] an illumination-tolerant histogram represents an appearance of a
person. An extended histogram equalization (named controlled equalization) is ap-
plied to a foreground image to obtain color representation invariant to illumination
changes. Then, k-means color clustering algorithm extracts the major colors com-
bined into the histogram. The final appearance representation is computed over N
frames by incrementally augmenting color clusters. Similarity between histograms
is determined by a modified Kolmogorov distance.

[Gheissari 2006] proposes the spatiotemporal graph which uses multiple images to
group spatiotemporally similar regions. The spatiotemporal segmentation is applied
to reject edge information which is temporally unstable. Only edges which are
interior to the foreground are considered. Then, a triangulated person model is
used to handle a correspondence between different body parts. The person model is
represented by a decomposable triangulated graph as a method for model fitting to
people. A dynamic programming algorithm is used to fit the model to the image of
the person (see figure 2.11). Image regions are compared using color and structural
information. The color information is represented by normalized histograms based
on hue and saturation. The structural appearance is captured using edge detector
(orientation as well as the ratios between RGB color components of the two regions
on either side of the edge determine structural qualities).

In [Huang 2009], the appearance of a person is segmented into three parts with
height ratios of 2:4:4, and the features are extracted from the lower two parts by
ignoring the head (top) part (see figure 2.12 (c)). Then, a color sampling strategy
is applied to obtain a tree structure containing medians of colors. In this structure
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(a) Spatiotemporal Segmentation (b) Triangulated Model (c) Model fitting

Figure 2.11: Spatiotemporal appearance [Gheissari 2006]. (a) Upper row: segmen-
tation for single frames. Lower row: A) original image, B) frequency image, C) final
segmentation after graph partitioning, D) median image for final segmentation; (b)
left: an example of a decomposable triangulated graph used as a person model. The
blue edges correspond to the boundary of the person while the red edges are interior
edges. Right: partitioning of the person into body parts. (c) Left: foreground mask.
Right: fitting results.

child histograms are computed by separation of a parent histogram using its median
value. The feature vector is obtained by merging median vectors acquired from
RGB channels. Finally, a Bayesian-based tracker combines a set of features using a
multivariate normal distribution.

In [Hamdoun 2008] re-identification is performed using optimized implementation
of SURF [Bay 2008] interest points collected during short video sequences. A signa-
ture is built for each detected and tracked person. The accumulated interest point
descriptors represent the final signature. The interest points are stored in KD-tree
to speed-up the query processing time. The association of the models is obtained by
a voting approach: every interest point extracted from the query is compared to all
models points stored in the KD-tree, and a vote is added for each model containing
the nearest descriptor. Finally the re-identification is performed with the highest
vote for the model.

It is worth of noting that interest point descriptors like SIFT [Lowe 2004] or SURF,
which are extensively used in computer vision, have not found so much interest
in re-identification community. [Gheissari 2006] shows that interest-point-based ap-
proach performs significantly worse than color- and region-based descriptor. Interest
point descriptors are good at handling serious blurring and handling image rotation
but unfortunately they are poor at handling significant changes in viewpoint and
illumination.

In [Farenzena 2010], the authors propose to select salient parts of the body by
adopting perceptual principles of symmetry and asymmetry. Two horizontal axes
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(a) (b) (c)

Figure 2.12: Segmented parts of the human body: (a) original image; (b) 10 hor-
izontal strips [Bird 2005]; (c) The tree structure extracted from upper and lower
body [Huang 2009].

of asymmetry are used to isolate three main body regions, usually corresponding to
head, torso and legs. On the last two, a vertical axis of appearance symmetry is
estimated (see figure 2.13). Then, the appearance of each body region is represented
by combination of three features: (1) chromatic content (HSV histogram); (2) maxi-
mally stable color regions (MSCR) [Forssén 2007] and (3) recurrent highly structured
patches (RHSP). The extracted features are weighted by the distance with respect
to the vertical axis to minimize effects of pose variations. The authors name this
approach symmetry-driven accumulation of local features (SDALF).

Recurrent patches were also proposed in [Bazzani 2010]. The authors use epitome
analysis to extract highly informative patches from a set of images. The epitome of
an image is its miniature containing the essence of the textural and shape properties
of the image [Jojic 2003]. The human appearance is represented by a combination
of three features: (1) HSV histogram; (2) local epitome; (3) global epitome. The
last two analyze the presence of recurrent patterns in the appearance. In order
to discard redundant information from the set of images, for each individual the
appearance model is built on images which has been selected using unsupervised
Gaussian clustering based on HSV histograms. The matching distance between
appearances is represented by a function which combines distances on particular
features using different weights.

[Oreifej 2010] performs re-identification in aerial images. Here, the PageRank algo-
rithm is applied to extract the most informative regions to distinguish individuals.
PageRank originally was invented to grade websites based on a random walk algo-
rithm which not only gives higher scores to the websites that have more incoming
links but also to the pages that are referred to from prominent webpages. There-
fore, in a graph of connected webpages, the most informative pages are associated
with higher ranks. Here, the same idea is used to seek the most informative image
regions from the set of all images. Thus, the multiple images are integrated using
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Figure 2.13: Sketch of SDALF approach [Farenzena 2010]: From left in columns:
1) two instances of the same person; 2) x- and y-axes of asymmetry and symmetry,
respectively; 3) weighted histogram back-projection (brighter pixels mean a more
important color), 4) Maximally Stable Color Regions; 5) Recurrent Highly Struc-
tured Patches.

(a) Blobs and their weights (b) Graph for five images

Figure 2.14: The PageRank Weighting [Oreifej 2010]: (a) The first row shows blobs
extracted from five images. The second row shows the region weights assigned by
PageRank. (b) Outer circles represent images. Inner circles represent regions, where
the circle size corresponds to the region weight.

undirected graph and then PageRank assigns higher weights to prominent regions
and degrades noisy regions by assigning them lower weights (see figure 2.14).

In [Cheng 2011], the authors show that features are not so important as precise body
part detection, looking for part-to-part correspondences. Body parts are detected
using pictorial structures (PS) [Andriluka 2009], which search for the appearance of
body parts by using densely sampled shape context descriptors and discriminatively
trained AdaBoost classifiers. In this work a body is composed by 6 parts (chest,
head, thighs and legs as in figure 2.15 (a)). After fitting PS, the appearance of
each body part is described by HSV histogram and MSCR [Forssén 2007]. Using
multiple images for each subject, each body part occurs more times, thus PS fitting
can be improved by exploring variety of detections. The authors proposed iterative
process (called Custom PS - CPS), which alternates between estimating the body
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Figure 2.15: CPS method: iterative searching for body part localization
[Cheng 2011].

configuration and updating the appearance model. Processing N images (see figure
2.15 (b)), a Gaussian distribution is estimated for all pixels, taking into account
their spatial neighbors with similar color (figure 2.15 (c)). PS fitting together with
these Gaussian scores form the final body part localization.

2.2.2.2 Learning approaches

In multiple-shot approaches, the underlying assumption is that the knowledge ex-
tracted from a training dataset of different individuals could generalize to unseen
examples. These approaches employ very often dimensionality reduction methods,
Fisher discriminants or SVM classifiers to discriminate between different individuals.
We can also find re-identification methods which combine generative and discrimina-
tive models. These techniques focus on both aspects - design of descriptive features
and enhancement of their discriminative properties [Hu 2008, Hirzer 2011].

Discriminative methods (DM)

In [Hu 2008] a generative and discriminative models are combined together with on-
line learning strategy to perform re-identification. The human appearance is repre-
sented by histograms computed over upper body, lower body and full body segment.
The histograms are composed of color features, autocorrelograms [Huang 1997] and
a bag of features based on SIFT [Lowe 2004] descriptor. Discriminative and gener-
ative models are handled by Naive Bayes classifier. For each individual, both the
generative models and the discriminative models make decisions about its identity.
This classification is performed independently. Then, the final decision is based
on the decision fusion module which works in an adaptive weighted voting scheme.
The classifier’s weights are adjusted accordingly to the correct/wrong decision. True
labels of the appearances are obtained by tracking a person and by so called iden-
tity mutual exclusiveness: if multiple individuals exist in the same scene and if we
are sure about ones identity (e.g . because of tracking), without loss of generality,
we can definitively be sure that other appearances must not be our known iden-



2.2. Human re-identification by appearance model 31

tity. This property allows to acquire negative samples which can be used to update
discriminative models.

In [Nakajima 2003], a human appearance is represented by a holistic approach based
on histograms of different features. The authors propose to use histograms based
on color, normalized color, shape features and local shape patterns. All these rep-
resentations are used to learn multi-class SVMs to estimate pose and to recognize
individuals. Each appearance is separated from the rest by one SVM classifier or by
a multi-class SVM based on the tree/graph structure of pairwise SVMs. The best
performance is obtained using two dimensional normalized color histograms, where
d1 = R/(R+G+B) and d2 = G/(R+G+B) build two dimensional space (every
dimension is represented by 32 bins).

In [Truong Cong 2009], a color feature is considered as the main cue for the identity
management. A graph-based approach for a non-linear dimensionality reduction is
applied to extract the most informative color representation. Dimensionality reduc-
tion is often used for processing of the data, such as classification, visualization and
compression. A representation of the data in lower dimension speeds up processing
and minimizes influence of noise for classification task. In this work a comparison
of color normalization techniques together with different histogram representations
is presented. Three color normalization techniques of the RGB color space are com-
pared:

• Gray normalization obtained by dividing the pixel value by the average of the
image (or the segmented image - corresponding to the moving object). For
each channel we have:

I∗k =
Ik

mean(Ik)
(2.1)

where Ik is the color value of the channel k.

• Histogram equalization [Hordley 2005] based on the assumption that the rank
ordering of sensor responses is preserved across a change in imaging illumina-
tions.

• Affine normalization, defined as

I∗k =
Ik −mean(Ik)

std(Ik)
(2.2)

Finally, human appearances are represented by a set of points in a low-dimensional
space. Every point is obtained by projecting histogram representation into the
new coordinate system computed by the dimensionality reduction method. Since
each person is represented by a set of images (sets of points), the dissimilarity
between signatures is computed using the distance between centroids of these sets
corresponding to signatures of interest. The best performance is obtained using the
histogram equalization technique.
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(a) (b) (c)

Figure 2.16: Color-position histogram [Truong Cong 2010]: (a) original image; (b)
localization of the silhouette; (c) color distribution in the silhouette.

In [Truong Cong 2010], an extension of [Truong Cong 2009] is proposed. A new de-
scriptor for static images called the color-position histogram is introduced (see figure
2.16). The silhouette is vertically divided into n equal parts and the mean color is
computed to characterize each part. Compared to the classical color histogram,
it leads to better results (thanks to the spatial information) and uses less memory.
Moreover, a new dissimilarity measure between two sets of points in low-dimensional
space is presented. The authors use the optimal margin and the miss-classification
error obtained by SVM to compute distance between signatures which can not be
separated by a linear model (note that previously, in [Truong Cong 2009], dissimi-
larity did not take into account separability of points; distance was computed using
only position of centroids).

In [Bird 2005] the re-identification is performed to detect loitering individuals in
public transportation areas. If a person is present for a long time, it is suspected
as a drug dealer. The pedestrian appearance is segmented into 10 equally spaced
horizontal strips (see figure 2.12 (b)). Then, the median HSL colour of the fore-
ground pixels of each of these ten strips is used as the feature vector defining a
signature. The lightness component is scaled by 0.5 to minimize variance to light-
ing variations. Then, Fisher linear discriminant analysis is applied to enhance the
differences between signatures of the different individuals in the Fisher space.

Bag of features based on SIFT [Lowe 2004] descriptor together with online learning
is proposed in [Teixeira 2009] to improve matching accuracy. SIFT vectors are
quantized into visual words using the vocabulary tree to define the final space of
descriptor. In this work a large vocabulary is a key factor as spatial information of
the geometric layout of visual words is not taken into account.

In [Hirzer 2011], every individual is represented by two models: descriptive and
discriminative. The discriminative model is learned using the descriptive model as
an assistance. The descriptive model is represented by N = 7 horizontal stripes and
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single-shot multiple-shot

feature-oriented

[Park 2006,
Gallagher 2008,
Cai 2008,
Yu 2007,
Kang 2004,
Wang 2007]

[Madden 2007b,
Gheissari 2006,
Huang 2009,
Hamdoun 2008,
Farenzena 2010,
Bazzani 2010,
Oreifej 2010,
Cheng 2011]

learning

[Gray 2008,
Prosser 2010,
Zheng 2011,
Dikmen 2010,
Lin 2008,
Schwartz 2009]

[Hu 2008,
Nakajima 2003,
Truong Cong 2009,
Truong Cong 2010,
Bird 2005,
Teixeira 2009,
Hirzer 2011]

Table 2.1: Taxonomy of appearance-based re-identification methods.

within each stripe the covariance descriptor [Tuzel 2006] is computed. Employing
covariance descriptor, the authors generate an initial ranked list of person images.
Images from the end of this list are used as negative samples to learn a discriminative
model. Learning is based on boosting, where weak classifiers are built using Haar
like features and covariance descriptors. Boosting selects discriminative features,
while producing the final ranking list.

2.3 Summary

In this chapter, the previous work on the human re-identification problem has been
presented. We show that human re-identification can be considered on different
levels depending on information cues which are available in a video analysis system.
This dissertation focuses on appearance-based approaches, which are the least ac-
curate among discussed techniques but they are also the least constraint concerning
an acquisition environment. Our objective is to perform re-identification on low-
resolution data (in most video surveillance scenarios, iris, face or gait characteristics
are difficult to acquire). Thus, the main cue for recognition task is obtained by a
global appearance, in which clothing provides the most reliable information about
an identity.

Global appearance can be modeled by features which has been obtained from only
a single image (single-shot approaches) or from multiple images (multiple-shot ap-
proaches). These features should compose invariant representation to human ap-
pearance changes across different camera views. The appearance representation can
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Figure 2.17: State of the art appearance-based re-identification techniques as a rela-
tionship between information provided for computing signature and time complexity.

be extracted using feature-oriented procedures or by learning approaches (see table
2.1).

Appearance-based re-identification techniques can also be considered in the context
of information used for generating a signature representation and time complexity
(see figure 2.17). We classify feature-oriented approaches that use only a single
image as techniques which use the least information among all appearance-based
re-identification techniques. These approaches are based only on expertise of a de-
signer and a single image. We rank metric learning class higher than discriminative
approaches (more information is needed to generate a signature), because for learn-
ing a metric we need knowledge given by images of the same human registered in
different cameras, while for discriminative approaches training data can be obtain
automatically by applying spatiotemporal constraints. Concerning time complexity
of metric learning approaches, we did not take into account offline learning phase,
while plotting the graph.

In this thesis, we propose several methods, investigating different levels of informa-
tion. We propose single-shot as well as multiple-shot approaches, exploring different
discriminative techniques. However, before explaining details of the proposed tech-
niques, in the next chapter we present an overview of the framework for human
re-identification.



Chapter 3

Human re-identification
framework overview

“A journey of a thousand miles must begin with a single step.” (Lao Tzu)

A typical way of extracting an appearance model in an automatic surveillance sys-
tem is by first detecting an object in an image, and then by tracking it using dif-
ferent strategies. In this chapter, we describe a general framework for a human
re-identification system, indicating the steps in the processing chain, which are the
main focus of this dissertation. We also present a short discussion on different
appearance models for detection and tracking, as these steps are essential to auto-
matically extract a human appearance from a video content.

3.1 Human re-identification framework

This section describes a general framework for a human re-identification system.
In figure 3.1, we illustrate the main components which are necessary for a human
operator to use a re-identification system. Usually, a video surveillance system
consists of number of cameras which are distributed over an area of interest (e.g .
airport, metro stations, car parks, etc.). The data from such network of cameras can
be processed in parallel or by a central unit depending on the hardware architecture
of the system.

In every video analysis system, the first task is to determine whether the moving
regions in an image belong to a predefined object class (e.g . a human) in the scene.
This task is called object detection and it plays a very important role. The results
of this step have a significant influence on the next stages in the processing chain.
In this thesis we are only interested in objects which are humans.

Human detection (section 3.2) is the first module in our re-identification framework.
Then, human tracking can be applied (section 3.3) to obtain a set of image regions
corresponding to the tracked object. In a single-shot case, tracking is optional as
only a single image is used to create a human signature. However, in most video
analysis systems, even if the whole trajectory is not used for signature computation,
the object is usually tracked to obtain the most informative appearance (called key
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(a) the processing chain of an automatic human signature generation

(b) an interaction of a human operator with a database of signatures

Figure 3.1: The re-identification framework. We highlight the main interest of
dissertation by red color.

frame). The key frames are supposed to contain all useful information of a video
sequence.

After detection and tracking of a person, the system computes a human signature.
Computed signatures are stored in a database. This provides an effective interface
for a human operator to search the most similar signatures to a signature of interest
(figure 3.1(b)). In this dissertation, we mainly focus on the signature computation
step (chapter 4, chapter 5 and chapter 6) and also we propose a solution for efficient
storage of signatures in a database (chapter 8).

Human detection and human tracking are fundamental for computing human signa-
tures. As recognition accuracy of re-identification algorithms is dependent on these
two steps, in the next two sections we shortly overview state of the art methods for
detecting and tracking humans.

3.2 Human detection

Detecting different categories of objects in an image or in a video content is one of
the fundamental tasks in computer vision. Two main steps can be distinguished in a
typical object detection algorithm. The first task is feature extraction, in which the
most informative object descriptors regarding the detection process are obtained
from the visual content. The second task is classification, in which the obtained
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(a) CAVIAR data (b) ETHZ data

(c) i-LIDS data (d) TSP data

Figure 3.2: Examples of human detection results. 2D bounding rectangles indicate
image regions which have been classified as positive samples.

object descriptors are used to classify the object of interest.

Human detection is considered among the hardest examples of object detection
problems. The articulated structure and variable appearance of the human body,
combined with illumination and pose variations, contribute to the complexity of
the problem. Most of the leading approaches in human detection are discriminative
methods, which use machine learning techniques such as support vector machines
(SVMs) [Cortes 1995] or boosting [Freund 1997], to differentiate a human appear-
ance from the rest of the world. These methods have become increasingly popular
since they can cope with high-dimensional spaces and they are able to select rel-
evant descriptors among a large set. The feature extraction methods for human
detection mostly focus on dense representations, where descriptors are obtained in-
side a detection window. The image is scanned densely at different scales and a
learned classifier of a human model is evaluated. The exemplary results of a human
detector performed on different datasets are illustrated in figure 3.2.
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(a) (b) (c)

Figure 3.3: The three types of 2-dimensional non-standard Haar wavelets: (a) ver-
tical; (b) horizontal; (c) diagonal.

Human detection approaches

One of the first robust representations of human class is based on Haar wavelet
transform [Papageorgiou 2000]. Images are mapped from the space of pixels to an
over-complete dictionary of Haar wavelet features. Haar wavelet based descriptors
encode intensity differences between two adjacent regions, providing a rich descrip-
tion of the pattern (see figure 3.3). Such patterns are scaled and moved over a
detection window to generate the over-complete dictionary of Haar wavelet fea-
tures. This coding of local intensity differences at several scales provides a flexible
and expressive representation that can characterize a human class (see figure 3.4(a)).
Instead of using the over-complete dictionary, a small set of important features can
be chosen via a greedy selection method using AdaBoost [Viola 2001].

Integral image (a new image representation introduced by [Viola 2001], see sec-
tion 4.2.3) together with cascade structure of boosting, allow to process images ex-
tremely fast with a high detection rate. Haar wavelet features have become increas-
ingly popular due to this efficient computation. Further, this work was extended in
[Viola 2005] to extract Haar wavelets from video content (space-time differences in
video) to integrate intensity information with motion information. Patterns of mo-
tion and appearance were extracted to build a robust model of walking humans. The
results have shown that combination of both sources can outperform the original
Haar wavelet descriptor.

In [Dalal 2005], an effective human detector is described. SVM classifier together
with a densely sampled histogram of oriented gradient (HOG) inside the detection
window has improved the state of the art performance. Even though, this approach
is computationally more complex than Haar wavelets, it has obtained significantly
outperforming results. The method is based on evaluating well-normalized local
histograms of image gradient orientations in a dense overlapping grid. The main
idea is to characterize an object appearance and a shape by the distribution of local
intensity gradients or edge directions. The image window is divided into small spatial
regions (called cells). For each cell, 1-D histogram of gradient directions or edge
orientations is accumulated. Histograms extracted from all cells are merged into the
feature vector which stands for the appearance representation. These vectors are
used to learn SVM classifier to create a human detector. The descriptors weighted
by the positive SVM weights are illustrated in figure 3.4(b).
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(a) Haar (b) HOG (c) Covariance (d) Granules

Figure 3.4: Human detection approaches:(a) Haar wavelets [Papageorgiou 2000];
(b) HOG descriptor weighted by the positive SVM weights [Dalal 2005]; (c) three
possible covariance descriptor sub-windows [Tuzel 2008]; (d) granules comparing
gradient orientations [Duan 2009].

Robust human detection algorithm using covariance matrices as object descriptors is
presented in [Tuzel 2008]. Here, a dense model of covariance features extracted
inside a detection window is proposed. Covariance descriptor is computed from
sub-windows with different sizes sampled from different locations (see figure 3.4(c)).
Then, a boosting mechanism selects the best regions characterizing a human sil-
houette. Unfortunately, it is not trivial to build a classifier working in the space
of covariance matrices (see section 5.2.1). Using covariance matrices, we also in-
fluence significantly computational complexity. The classification step involves the
eigenvalue decomposition to compute the logarithm of a symmetric matrix which
requires O(d3) arithmetic operations, where d is the size of covariance matrix (e.g .
the processing of a 320× 240 image requires 3 seconds).

Recently, [Duan 2009] proposed a novel approach to boost a set of associated pair-
ing comparison features (APCFs) called granules, which are represented by square
window patches (see figure 3.4(d)). The main idea is to take advantage of comparing
features from different locations to search meaningful correlations. The Granular
space increases enormously when granules with different sizes are compared in differ-
ent locations and at different scales. Even if we use simple features to characterize a
square patch [Huang 2010], the size of granular space is so tremendous that conven-
tional exhaustive search methods used for Haar-wavelets, HOG, or covariance fea-
tures are inapplicable to select discriminative granular features. Thus, to alleviate
this issue, heuristic approaches have to be applied to speed up the feature selection
process. In spite of significant computational complexity during the learning phase,
the classification step is not so time consuming (detection can be almost as fast as
using Haar wavelets) and the accuracy outperforms existing approaches.

In our re-identification framework, we have decided to use HOG-based detector. The
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Figure 3.5: Mean human image with corresponding edge magnitudes and the 15

most dominant cells. From the left: the first image shows the mean human image
calculated over all positive samples in the database; the second image shows the
corresponding mean edge magnitude response; the third image shows this later
image superposed with the 15 most dominant cells of size 8 × 8 pixels. The cell
bounding boxes are drawn with a color set by their most dominant edge orientation
with the scheme defined in the last image.

Figure 3.6: The tree of human appearances.

choice of HOG features is a compromise between time complexity and descriptive
power. Our HOG technique is adapted from a face detection method [Corvee 2009]
to detect human silhouette. The detection algorithm extracts histograms of ori-
ented gradients, using Sobel convolution kernel, in a multi-resolution framework.
The technique was originally designed to detect faces using the assumption that
facial features remain approximatively at the same location. However, locations of
human silhouette features do not remain constant through out the time with varying
poses (e.g . knees are constantly changing position when walking; a shoulder changes
position from walking to slightly bending when pushing a trolley). Hence, we have
modified the algorithm to detect humans using cells located at specific locations
around the human silhouette as shown in figure 3.5. These most dominant cells are
the cells having the closest HOG vector to the mean HOG vector calculated over
the vectors (of the corresponding cell) from a human database.

We integrate these dominant cells using decision tree learning [Corvee 2010] based
on hierarchical classification. Figure 3.6 shows an example of tree, where each
image is the average of the training samples of corresponding people with similar
features. Finer level of granularity of human posture is reached as we go down the
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(a) (b) (c) (d) (e) (f)

Figure 3.7: Human detection issues: (a)-(e) false positives, appearances which are
very similar to a human silhouette; (f) numerous candidates of detected humans.

tree of features. The first node (root) corresponds to the most dominant cell among
all possible cells accumulated by using the whole training dataset Two sub nodes
are initiated by splitting the database in two according to the distribution of cell
orientation error. We do not go into details concerning learning as it is not the main
topic of this thesis. The interested reader is referred to [Corvee 2010].

Human detection issues

As we have already mentioned, the articulated structure of the human body, illumi-
nation changes and pose variations make the human detection problem one of the
most challenging examples of object detection. In real scenario, a human detection
algorithm has to handle partial occlusions, shadows and scale changes. Moreover,
often classifier fails on the appearance which is very similar to a human silhouette
(see figure 3.7 (a)-(e)). Finally, classifier can provide a lot of detections (rectangles
around the desired object, see figure 3.7 (f)) from which the best candidate has to be
chosen. In our detection framework, we select the best candidate using confidence
level returned by classifier. Having a set of overlapping detections, we compute
weighted average using confidences as weights of rectangles, producing the final de-
tection (yellow rectangles in figure 3.7 (f)). The selection of the best candidate is
significant as it has an influence on the next step in the processing chain: human
tracking.

3.3 Human tracking

Tracking of objects in complex real world scenes involves dealing with multi tar-
gets, complicated occlusions, and cluttered or moving backgrounds. In complex
and dense scenarios, many objects may have similar appearance. Occlusions, such
as object self-occlusion, occlusion between multiple objects, and occlusion by other
static scene objects happen very often. As significant improvement in human de-
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tection algorithms has been achieved, detection-based tracking methods gain more
and more attentions. Especially for complex environments, where detection-based
approaches are more flexible and robust (automatic initialization, no issues with
camera movements).

Unfortunately, even if the object detectors can perform in such conditions rela-
tively well, the tracking of particular objects still remains challenging. Detection
performance is usually a trade off between the detection rate and the false alarm
rate. False alarms, missed detections and inaccurate responses of the detector (de-
tected bounding boxes are not accurately centred around the desired object, only
part of the object is detected) happen frequently in the detection procedure which
provides misleading information to tracking algorithms. Detection-based human
tracking must overcome these failures of the human detector. Moreover, the diffi-
culties caused by occlusions and similar appearance among multiple humans do not
facilitate the task.

Human tracking approaches

In [Xing 2009], a detection-based tracking algorithm is presented. This approach
aims at overcoming the limitations of human detector to track multiple objects
through occlusions. The tracking performs in two-stage mode (local and global). In
the local stage, the tracking is improved by: (1) a human partition method which fo-
cuses on the upper human body at three different levels (head-shoulder, head-torso,
full body); (2) a particle filter which is used to deal with partial object occlusions for
generating reliable tracklets. In the global stage, the detection and tracking results
are collected from a temporal sliding window to deal with ambiguity caused by full
object occlusion. The tracklets generated in the local stage, guided by the potential
tracklets generated within the temporal sliding window are associated by Hungar-
ian algorithm [Kuhn 1955]. In order to calculate the association cost matrix, the
likelihood between two tracklets is extracted using appearance, shape and motion
attributes of the tracklet. The appearance is represented by color histogram, the
shape is described by the object height and the motion model is characterized by
its velocity. The idea of two-stage approach allows to seek both, the local optimum
trajectory for each object and the global optimum trajectories for all the tracked
objects.

Occlusion can also be treated as a scenario in which an object leaves and re-enters
the scene. In this case [Snidaro 2008] approach can be applied. The method is
based on the on-line boosting framework which learns a specific model for each
individual. The model is used to locate a target in the next frame and then the
observed positive sample is used to update the model by on-line learning. The
negative samples are obtained using randomly selected background regions. The
specific model for each instance of the class allows at the same time robust tracking
and recognition of the particular instance as it leaves and re-enters the scene. The



3.3. Human tracking 43

Figure 3.8: The overview of the process of obtaining on-line training samples. From
the left: the detection responses in t frames; the result of reliable tracklets based on
spatiotemporal correlations; positive training samples; negative training samples,
[Kuo 2010].

Figure 3.9: Example of tracking results on CAVIAR (top row) and i-LIDS (bottom
row) dataset [Kuo 2010].

human model is represented by Haar wavelet features and Local Binary Patterns
(LBP) [Ojala 2002]. Haar features encode the generic shape of the object and LBP
features capture texture details. Both classifiers are employed, exploiting the on-
line boosting approach. The Haar-based classifier is mainly used to detect a generic
target class of objects, while the boosted LBP features are used to discriminate
the texture of the single instance. The boosting uses just background images as
the negative examples, which means that both classifiers are mostly focused on
discriminating between the target and the background.

On-line learning of discriminative appearance model for robust multi-target track-
ing is also the main topic in [Kuo 2010]. The proposed human model is designed
to distinguish different targets from each other, rather than from the background.
The general model of human class is learned using training samples collected on-line
from tracklets within a time sliding window. Positive samples are represented by
pairs of detection responses within the same tracklet (tracklets are collected using
spatiotemporal relationships). Negative samples are collected by extracting pairs
of detection responses from tracklets which do not belong to the same target (see
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figure 3.8). The similarity between two appearances (pair of detection responses)
is computed using color histograms, covariance matrices and HOG descriptors ex-
tracted from image patches at different locations and different scales. The distances
between these patches are used by Adaboost algorithm to learn a strong classifier
to discriminate different appearances. Examples of tracking results are illustrated
in figure 3.9.

3.4 Conclusion

This chapter has described a general framework for human re-identification. We have
presented the processing chain of an automatic video analysis system, discussing the
main steps for extracting a human appearance from a video content. We have also
highlighted components in the processing chain, which are the main focus in this
dissertation.

Further, we have presented different models for human detection and tracking, as
these tasks are fundamental for computing automatically a human signature. We
have also showed that these tasks are related to each other and they have to cope
with the articulated structure of the human body, complicated occlusions, illumi-
nation changes and pose variations. All these issues make human detection, human
tracking and human re-identification extremely challenging tasks in a video analysis
system.

In the following chapters we focus on extracting a human appearance from cropped
images provided by detection and tracking components. We assume that each im-
age is a region of interest centered on the human body. The next chapter presents
single-shot approaches which extract human characteristics using only a single im-
age.



Chapter 4

Single-shot human
re-identification

“All models are wrong; some models are useful ” (George Box)

Appearance-based re-identification techniques that focus on associating pairs of
images, each containing one instance of an individual, are named single-shot ap-
proaches. These methods extract human characteristics from a single image to
perform human re-identification. It is worth noting that these approaches can also
be applied to multi-shot case, by extending the signature matching to many-to-many
scenario. In this chapter, we propose two single-shot approaches: DCD and SCR.
The former method is based on dominant color descriptor (DCD) extracted from the
upper and the lower body parts detected by using an asymmetry-driven approach.
While the latter employs covariance matrix descriptor together with a new spatial
pyramid scheme to characterize the human body parts detected by histogram of
oriented gradients (HOG). This method is referred to as spatial covariance regions
(SCR).

4.1 DCD signature

In this section we present a human appearance model based on dominant color
descriptor (DCD). Figure 4.1 illustrates phases of our approach. As an input we
take cropped image obtained by a human detector. Then, a background subtraction
technique (section 4.1.1) is applied to extract image regions corresponding to an
object of interest (foreground). Afterwards, we normalize color (section 4.1.2) to
obtain color invariant representation. Finally, we extract our DCD signature as a
human appearance descriptor (section 4.1.4).

4.1.1 Background subtraction

Background subtraction is the most fundamental image processing operation in
video analysis application. In video surveillance, the camera mostly focuses on
objects of interest (foreground objects), like people, vehicles, abandoned luggages.
So far, many different methods have been proposed to isolate objects from the rest
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Figure 4.1: Extraction of DCD signature.

of the image. When we work on video content the very simplest background sub-
traction method is to subtract the current frame from the previously learned model
of the background. This model may correspond to a reference image (background
image given before processing) or can be extracted by learning methods, such as
mixture of Gaussians, kernel density estimation or bag of words. These models
might also be based on motion detection (frame differencing) so that, when an ob-
ject moves an algorithm is able to identify both, object regions and background
regions, and update a model respectively.

Unfortunately, aforementioned approaches do not perform very well in crowded en-
vironments, such as airports or metro stations, where an object appearance can be
altered by shadows and significant illumination changes. Besides, in many contexts,
we wish to be able to extract a foreground without having a separate background
image (e.g . foreground/background segmentation in still images). In this particular
case, we can apply segmentation tools which use either texture (color) information or
edge information to separate foreground and background regions. In [Boykov 2001]
an approach based on optimization by graph-cut has been developed which suc-
cessfully combines both types of information. This approach has been extended by
GrabCut algorithm [Rother 2004].

GrabCut is based on foundation of graph cut, which is an optimization technique
using a graph theory for solving energy minimization problems. Energy minimiza-
tion problems can be reduced to instances of the maximum flow problem in a graph,
which corresponds to finding a minimal cut of the graph.

The graph cut algorithm formulates foreground extraction as a binary labeling prob-
lem, which assigns to each node in a graph, i.e. pixel, a unique label (foreground or
background). The solution is obtained by minimizing a energy (cost) function

E(A) = λ
∑
p∈P

R(Ap) +
∑
{p,q}∈N

B(Ap, Aq), (4.1)

where A = (A1, . . . , Ap, . . . , A|P |) is a binary vector whose components Ap specify
label assignments to pixels p in P . Each Ap can be either foreground or background.
Coefficient λ encodes a relative importance of the region properties term R(Ap) vs.
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Figure 4.2: Graph cut: a simple 2D segmentation example. The seeds B (back-
ground pixel) and F (foreground pixel) are necessary for initialization step. These
cues can be provided by a user or by automatic foreground detectors. The cost of
each edge is reflected by the edge’s thickness. The edges between pixels corresponds
to B(Ap, Aq) term, and the edges connected to foreground and to background are
defined by R(Ap).

(a) input (b) output

Figure 4.3: GrabCut: the red rectangle can be given either by a user or by a human
detector.

the boundary properties term B(Ap, Aq). R(Ap) is a likelihood that pixel p belongs
to foreground or background. The likelihood is estimated as the color similarity of
the pixel’s color to the color distribution of the areas marked by a user as foreground
or background. B(Ap, Aq) is a penalty term when adjacent nodes are assigned
to different labels. The more similar the colors of the two nodes are, the larger
B(Ap, Aq), and thus the less likely the edge is on the object boundary. Figure 4.2
illustrates a graph cut based segmentation. The user has to initialize segmentation
by indicating some certain pixels of foreground and background regions.

GrabCut, optimized version of graph cut, allows to initialize segmentation without
specifying foreground regions. GrabCut is based on iterative minimization algo-
rithm, which deals with missing foreground pixels by putting provisional labels on
some pixels (in the foreground) which can subsequently be retraced. Only back-
ground regions, which are specified by the user, are taken to be firm - guaranteed
not to be retraced later. In GrabCut, background regions are determined by the
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(a) (b)

Figure 4.4: Optical illusion: (a) square A appears darker than square B, when in
fact they are both exactly the same color; (b) prove: a rectangle of the same color
has been drawn connecting square A and B. In this example, humans perceive the
squares as having different reflectance, and interpret the colors as different.

user as a strip of pixels around the outside of the marked rectangle (marked in red
in figure 4.3).

In our case, we can provide such rectangle using the output of a human detection
algorithm. Applying GrabCut, we extract foreground regions of a human silhouette.
Then, we represent a human appearance by color feature.

4.1.2 Color feature

Color is the visual perceptual property related to a phenomenon that takes place in a
human eye. Human perception of color derives from the spectrum of light interacting
with cone cells in the retina eye and depends on spectral sensitivity of these cells.
We associate color with objects, materials and light sources, based on their physical
properties such as light absorption, reflection, or emission spectrum. Consequently,
light conditions and physical characteristics of object, have a significant influence
on color perception. Moreover, color perception is relative to the context in which
it is viewed and depends on subjective color experience (see figure 4.4).

Concerning acquisition devices like cameras, characteristics of color sensors are often
far from characteristics of receptors in a human eye. Additionally, even identical
cameras which have the same optical properties and are working under the same
lighting conditions may not match in their color responses (slight differences in
spectral sensitivity). Different physical characteristics of cameras, different lighting
conditions and different environments cause significant color dissimilarities in ap-
pearances of the same object acquired by different cameras. This issue is one of
the most challenging problems using color as a feature while two appearances from
different cameras are compared. Fortunately, we can reduce color dissimilarities by
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(a) (b)

Figure 4.5: BTF [Porikli 2003]: (a) minimum cost path for the same histograms;
(b) minimum cost path for the different histograms.

applying either color calibration [Javed 2005, Porikli 2003] or color normalization
[Buchsbaum 1980, Gevers 2004, Madden 2007a, Hordley 2005] techniques.

Color calibration

In order to minimize a significant differences in illumination of the same object ac-
quired by different cameras, color calibration techniques search a brightness transfer
function (BTF) that maps color distributions from one camera to another. One
possible solution to this problem is proposed by [Porikli 2003]. The method is based
on correlation matrix analysis and dynamic programming. The authors assume that
images of the same object are available for different cameras. Then, the correlation
matrix is computed from a pair of 1-D color histograms. BTF is obtained from this
matrix by finding a minimum cost path during bins mapping. Correlation matrix
C between two histograms h1[m] and h2[n], where m = 1 . . .M and n = 1 . . . N

correspond to bins, is defined as:

CM×N = h1 ⊗ h2 =


c1,1 c1,2 · · · c1,N

c2,1 c2,2 · · · c2,N
...

...
. . .

...
cM,1 cM,2 · · · cM,N

 (4.2)

where each element cm,n is the distance between the corresponding histogram bins.
The minimum cost path from the c1,1 to cM,N is found by dynamic programming.
The sum of the matrix elements on the path gives the minimum score among all
possible routes (note that this mapping may not be one-to one). Finally, this path
is converted to the inter-camera model function (see figure 4.5).

Unfortunately, this mapping is not unique and it varies from frame to frame de-
pending on a large number of parameters that include illumination, scene geometry,
exposure time, focal length, and aperture size of each camera. It is worth noting,
that color dissimilarities already appear during tracking a person in a single camera.
Thus, BTF function should also take into account spatial position of the appearance
during color mapping. Additionally, as BTF maps color spaces from one camera to
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another, we need to compute such mapping for each pair of cameras in the net-
work. In large camera networks, this operation is impracticable, therefore in our
approaches we propose to use color normalization technique.

Color normalization

In contrast to calibration techniques, color normalization is focused on an invari-
ant color description. Normalization approaches seek transformations of the im-
age data into the illuminant and device independent representation. This topic
has been investigated in the last few decades bringing many invariant color rep-
resentations (Greyworld normalization [Buchsbaum 1980], kernel density estima-
tion [Gevers 2004], controlled equalization [Madden 2007a]). In our approaches,
a technique called histogram equalization [Hordley 2005] leads to the best perfor-
mance.

Histogram equalization (HE) is based on the assumption that the rank ordering
of sensor responses is preserved across a change in imaging conditions (lighting
or device). Histogram equalisation is an image enhancement technique originally
developed for a single channel image. The aim was to increase the overall contrast by
brighting dark areas of the image, emphasizing details in those regions. Histogram
equalization achieves this aim by stretching range of histogram to be as close as
possible to a uniform histogram (see figure 4.6). Cumulative distribution function
is used to spread out distribution values. The approach is based on the idea that
amongst all possible histograms, a uniformly distributed histogram has maximum
entropy [Gonzalez 2001]. Maximizing the entropy of a distribution we maximize its
information and thus histogram equalization maximizes the information content of
the output image. We apply the histogram equalization to each color channel (RGB)
to maximize the entropy in each channel and to obtain the invariant image. Figure
4.6 illustrates the effect of applying the histogram equalization to: (1) images of the
same individual captured by different cameras; (2) Gaussian distribution. These
images highlight the fact that a change in illumination leads to a significant change
in the colors captured by the camera. Normalized images are much more similar
than the two original images.

4.1.3 Dominant color descriptor

Dominant color descriptor (DCD) was proposed by MPEG-7 for image retrieval
[Deng 2001, Yang 2008]. The main idea of this descriptor is based on the obser-
vation that a small number of colors is usually sufficient to characterize the color
information in an image region. DCD is defined as:

F = {{ci, pi}, i = 1, . . . , N}, (4.3)
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Figure 4.6: Histogram equalization: two images and Gaussian distribution equalized
using the cumulative density function.

where N is the total number of dominant colors in the image, ci is a 3-D color
vector, pi is its percentage, and

∑
i pi = 1 (see figure 4.7). Given N , DCD divides

color space of an image into N clusters. As DCD is quite sensitive to the number
of clusters N , we evaluate this descriptor using different settings (see section 7.3.1).

Distance between two dominant color descriptors F1 and F2 is defined using the
improved dissimilarity measure [Yang 2008]:

D2(F1, F2) = 1−
N1∑
i=1

N2∑
j=1

aijSij , (4.4)

where Sij = [1− |pi − pj |] ∗min(pi, pj) and

aij =

{
1− dij/dmax, dij ≤ Td
0, dij > Td

(4.5)

where dij is the Euclidean distance between two colors. Threshold Td is the maxi-
mum distance for two colors to be considered as similar (i.e. threshold Td is the maxi-
mum distance used to judge whether two color clusters are similar), and dmax = αTd.
Let α = 1, and consider the case when the Euclidean distance of two color clusters
is slightly smaller than maximum distance. From equation (4.5), the similarity co-
efficient aij between the two color clusters will be very close to zero; therefore, it
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Figure 4.7: Example of an artificial image with the dominant colors and their per-
centage values.

cannot clearly distinguish between the colors exceeding the maximum distance. In
order to properly reflect similarity coefficient between two color clusters, we set
parameter α = 2 and Td = 25 (the same values of parameters were assumed in
[Yang 2008]).

4.1.4 Asymmetry-driven human body separation

In our approach we use dominant colors to create a human signature. The main lim-
itation of dominant color descriptor is that it does not handle a spatial relationship
between regions in an image. We overcome this issue by dividing a person silhouette
into the two main body parts: the upper body part and the lower body part. The
body separation is obtained by our asymmetry-driven approach. A straightforward
way would be to simply use fixed partitions based on the bounding box. However,
as human detection does not always return accurately centred bounding box, we
propose to use a search strategy to refine the separation line.

We assume that the human body can be often characterized by asymmetry appear-
ance (in most cases colors corresponding to the upper body are different than colors
corresponding to the lower body). As this assumption is not always true, we con-
strain the search of an asymmetry axis ψ to vertical extension [m− ε,m+ ε], where
m corresponds to the horizontal axis which separates the extracted silhouette into
the two equal areas defined on each side of the border (see figure 4.8).

The separation quality is evaluated using the dissimilarity measure between two
dominant color descriptors extracted from regions obtained by this separation. We
choose the axis which maximize this dissimilarity. Finally, the human signature
is represented by two dominant color descriptors corresponding to the upper body
part (U) and the lower body part (L). Defining the similarity between two human
signatures sA and sB, we compute a sum of dissimilarities obtained by comparing
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Figure 4.8: Asymmetry-driven DCD signature. The top row presents all phases of
our appearance extraction method. The bottom rows illustrate examples of DCD-
based signatures extracted from i-LIDS-40 images.

corresponding body parts

S(sA, sB) =
1

D2(UA, UB) +D2(LA, LB)
. (4.6)

4.2 SCR signature

This section describes a human appearance model based on spatial covariance regions
(SCR) extracted from human body parts. We present the sketch of our approach in
figure 4.9. Having a cropped image, we detect human body parts using HOG-based
detector (section 4.2.1). These body parts are used to address the correspondence
problem between appearances registered in different cameras. Once the body parts
are detected, the next step is to handle color dissimilarities caused by camera and
illumination differences. Thus, we applied histogram equalization to obtain invari-
ant color representation. Then, on such normalized image, the covariance regions
(see section 4.2.2) of body parts are computed at different grid cell resolutions to
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Figure 4.9: Extraction of SCR signature.

Figure 4.10: Illustration of human detection and body part detection results. De-
tections are indicated by 2D bounding boxes. Colors correspond to different body
parts: the full body (yellow), the top (dark blue), the torso (green), legs (violet),
the left arm (light blue) and the right arm (red). Every column shows two instances
of the same person acquired by different camera.

generate a human signature. Furthermore, the dissimilarities between these regions
corresponding to different images are combined using an idea derived from the spa-
tial pyramid match kernels (section 4.2.4).

4.2.1 Body part detection

In order to detect body parts of a person we have applied a hierarchical tree of
histogram of oriented gradients [Corvee 2010]. We have used the same HOG de-
tector as described in section 3.2, where it was specialized for the full human body
detection. In the case of body parts, we have trained independently classifiers on
various areas of a person, corresponding to five body parts: top, torso, legs, left and
right arm (see figure 4.10).
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Having these five body part detectors we are able to localize corresponding body
parts during matching appearances acquired from different cameras. We represent
an appearance of the body part using covariance matrix descriptor.

4.2.2 Covariance matrix descriptor

In [Tuzel 2006] covariance of d-features has been proposed to characterize a region
of interest. The descriptor encodes information of the variances of defined features
inside the region, their correlations with each other and a spatial layout.

Covariance matrix can be computed from any type of image such as a one dimen-
sional intensity image, three channel color image or even other types of images, e.g .
infrared. Let I be an image and F be a d-dimensional feature image extracted from
I

F (x, y) = φ(I, x, y), (4.7)

where function φ can be any mapping, such as color, intensity, gradients, filter
responses, etc. For a given rectangular region Reg ⊂ F , let {fk}k=1...n be the d-
dimensional feature points inside Reg. Each feature point fk is characterized by
function φ. We represent region Reg by the d× d covariance matrix of the feature
points

CReg =
1

n− 1

n∑
k=1

(fk − µ)(fk − µ)T , (4.8)

where µ is the mean of the points.

Such defined a positive definite and symmetric matrix can be seen as a tensor. The
main problem is that such defined tensor space is a manifold that is not a vector
space with the usual additive structure (do not lie on Euclidean space). Hence, many
usual operations, such as mean or distance, need a special treatment. Therefore, our
covariance manifold is specified as Riemannian to determine a powerful framework
using tools from differential geometry [Pennec 2006].

We use the distance definition proposed by [Förstner 1999] to compute the dissimi-
larity between two covariance matrices Ci and Cj

ρ(Ci, Cj) =

√√√√ d∑
k=1

ln2 λk(Ci, Cj), (4.9)

where λk(Ci, Cj)k=1...d are the generalized eigenvalues of Ci and Cj , determined
by

λkCixk − Cjxk = 0, k = 1 . . . d (4.10)

and xk 6= 0 are the generalized eigenvectors.
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4.2.3 Integral image and fast covariance computation

Integral image is an intermediate image representation proposed in [Viola 2001].
This representation allows to compute the sum of features inside any rectangular
region in constant time (O(1)), significantly speeding up the feature extraction pro-
cess.

The integral image I of the image I contains at location x, y the sum of the pixels
above and to the left of x, y, inclusive:

I(x, y) =
∑

x′≤x,y′≤y
I(x′, y′). (4.11)

We can also use this representation for fast calculation of covariance features
[Tuzel 2006]. Let us write (i, j)-th element of the covariance matrix defined in
equation (4.8) as

CReg(i, j) =
1

n− 1

n∑
k=1

(fk(i)− µ(i))(fk(j)− µ(j)). (4.12)

Expanding the mean and rearranging the terms we can write

CReg(i, j) =
1

n− 1

[ n∑
k=1

fk(i)fk(j)−
1

n

n∑
k=1

fk(i)

n∑
k=1

fk(j)

]
. (4.13)

Using integral images we are able to compute the sum terms in constant time,
thus computation of the covariance matrix in region Reg takes also constant time.
However, to perform such computation, we have to pre-compute the sum of each
feature dimension f(i)i=1...n, as well as the sum of the multiplication of any two
feature dimensions, f(i)f(j)i,j=1...n. Hence, we need to construct d integral images
for each feature dimension f(i) and d2+d

2 integral images for each multiplication.
Factor 2 comes from commutative property of multiplication operation (fk(i)fk(j) =

fk(j)fk(i)). In total we need

d+
d2 + d

2
=
d(d+ 3)

2
(4.14)

integral images to perform fast covariance computation. As integral image can be
computed in one pass over the original image [Viola 2001], the time and memory
complexity of constructing the integral images is O(d2WH).

4.2.4 Spatial pyramid matching

This section describes how the human signature is computed and how the dissimi-
larity between two signatures is obtained. First, we introduce the notion of pyramid
match kernel. Then, the signature levels are described. Finally, the dissimilarity
functions between two signatures at each level are defined.
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Pyramid match kernel

The original formulation of pyramid matching has been proposed in [Grauman 2005].
The pyramid matching allows for precise matching of two collections of features in
a high dimensional appearance space. Unfortunately, it discards all spatial informa-
tion. Hence, in [Lazebnik 2006] an orthogonal approach (pyramid matching in the
two-dimennsional image space) has been proposed.

Let us assume that X and Y are two sets of vectors in a d-dimensional feature
space. The pyramid matching finds an approximate correspondence between these
two sets. We construct a sequence of grids at resolutions 0, . . . , L. The grid at level
l has 2l cells along each dimension, for a total of D = 2dl cells.

Informally, pyramid matching works by placing a sequence of increasingly coarser
grids over the feature space and taking a weighted sum of the number of matches
that occur at each level of resolution. Intuitively, we penalize matches found in
larger cells because they involve increasingly dissimilar features. Matches found at
finer resolutions are weighted more highly than matches found at coarser resolu-
tions.

The pyramid match kernel is defined as

κL(X,Y ) = IL +
L−1∑
l=0

1

2L−l
(I l − I l+1) (4.15)

=
1

2L
I0 +

L∑
l=1

1

2L−l+1
I l, (4.16)

where I l is the matching function at level l (in original formulation the matching
function was represented by histogram intersection).

Spatial matching scheme

In our approach the matching function is based on a similarity defined using the
covariance matrix distance. In figure 4.11 grid levels are presented. Level 0 cor-
responds to the full body. Level 1 consist of detected body parts: top, torso, left
arm, right arm and legs. Finally, level 2 is described by grid cells inside detected
body parts. The human signature is represented by the set of covariance matrices
computed at all levels.

The matching function at level 0 is defined as

I0 =
1

ρ(Ci, Cj)
, (4.17)

where Ci and Cj are covariance matrices computed on regions corresponding to the
full body of individual i and individual j, respectively.
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Figure 4.11: Example of constructing a three-level pyramid. Level 0 corresponds
to the full body. Level 1 and level 2 correspond to the rest of detected body parts
and grids inside body parts, respectively. Finally, we weight each level according to
equation (4.16).

Concerning following levels, we define the matching function as

I l =
1

Dl
, (4.18)

where Dl is a dissimilarity function at level l between two sets of covariance matri-
ces Ci and Cj computed inside regions of interest. Let us assume that Mz is the
set of z largest ρ distances between corresponding covariance matrices. Then, the
dissimilarity functions is defined as

Dl =

∑n(l)
k=1 ρ(Cik, C

j
k)−

∑
m∈Mz

ρm

n(l)− z
, (4.19)

where i and j correspond to individuals and n(l) is the number of compared co-
variance matrices. The introduction of Mz increases robustness towards outliers
coming from possible occlusions. In experimental evaluation we set z = n(l)

2 .

Finally, the similarity between two signatures extracted from images Ii and Ij , is
defined as

S(Ii, Ij) =
1

κL(Ii, Ij)
. (4.20)

4.3 Conclusion

This chapter introduced two single-shot approaches for re-identificaiton: DCD sig-
nature and SCR signature.
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The former method extracts a human silhouette from a still image using a graph
cut based approach. Applying histogram equalization, we obtain color representation
invariant to camera changes. The foreground region is divided into the upper and
the lower body parts, by using an asymmetry-driven approach. Both body parts
are then represented by dominant color descriptor.

The latter method employs the human body part detector for solving the correspon-
dence problem during matching two appearances from different cameras. Again,
we apply histogram equalization to handle color dissimilarities caused by camera
and illumination differences. Appearances of body parts are represented by covari-
ance descriptor to enhance invariant representation. Such extracted and normalized
human appearances are matched using the spatial pyramid matching.

Both aforementioned techniques belong to feature-oriented methods, which usually
assume a priori appearance model and focus on designing novel features for cap-
turing the most distinguishing aspects of an individual. The presented approaches
are dependent on body part detection accuracy where inaccurate detections can
significantly deteriorate recognition performance.

In the next chapter we propose more general techniques which learn an appearance
model using training data of multiple people. Applying machine learning techniques,
we can obtain an appearance representation, which is not constraint to the fixed
and predefined model but it is chosen during the training process. Further, using
a discriminative learning, our models focus only on discriminative features of an
individual providing higher recognition accuracy.





Chapter 5

Human re-identification by
boosting

“The only source of knowledge is experience.” (Albert Einstein)

We, humans learn continuously to deal with the factors of associability and discrim-
inability, for recognizing people. Inspired by human memory, the re-identification
system should learn how to associate human appearances and how to focus on
distinctive cues (features) of a specific individual, providing within-group discrimi-
nations. Defining machine learning, we can say that: “A computer program is said
to learn from experience E with respect to some class of tasks T and performance
measure P , if its performance at tasks in T , as measured by P , improves with expe-
rience E” [Mitchell 1997]. Following the idea of learning to distinguish people, this
chapter offers two discriminative approaches. The proposed techniques generate a
human signature by employing multiple images of many humans. Both methods
use one-against-all learning scheme to extract a discriminative representation of the
human appearance. It means that distinctive characteristics of a specific individ-
ual are enhanced by using information from images of other individuals. Learning
is performed by boosting - a meta machine learning algorithm. We employ Haar-
wavelets (section 5.1) and covariance descriptors (section 5.2) as the features for
describing image regions.

5.1 Binary classification in Haar-like feature space

This section presents the human re-identification approach based on Haar-like fea-
tures. Figure 5.3 shows the key steps of our technique. This approach belongs to the
multiple-shot case, where multiple images of the same person are used to compute
a signature. Given a set of images corresponding to the same individual obtained
by tracking (section 3.3), we extract foreground regions using background subtrac-
tion technique (section 4.1.1). These foreground regions serve as positive samples
in one-against-all learning scheme. Negative samples are formed by the rest of
humans acquired in the same camera. By using Haar-like features (section 5.1.1)
and AdaBoost (section 5.1.2), we learn a signature for a specific individual. The
result signature is represented by a strong classifier given by AdaBoost. Similarity



62 Chapter 5. Human re-identification by boosting

Figure 5.1: Extraction of Haar signature.

measures for comparing signatures are investigated in section 5.1.3.

5.1.1 Haar-like features

Haar-like features inspired by [Papageorgiou 1998] compose rectangular patterns
based on the weighted sums of pixels. We use an extended set of Haar-like features
[Lienhart 2002], which significantly enrich the basic set proposed by Viola and Jones
[Viola 2001]. Figure 5.2 illustrates feature prototypes, which are scaled and shifted
independently in vertical and horizontal direction in order to generate an over-
complete set of features. This set of features is called as over-complete because it
has much more elements than a basis window size, e.g . given the base resolution
of 20× 40 pixels, the tremendous number of Haar-like features (435, 750) has to be
considered.

Let us define a Haar-like feature as

fR =
∑
r∈R

ωrs(r), (5.1)

where weights ωr ∈ {−1,+1} and s(r) is the pixel intensity sum of rectangular
region r, R is the set of rectangular regions describing the feature prototype. This
Haar-like feature encodes intensity difference between adjacent regions, providing a
flexible and expressive representation that is able to describe the pattern. Instead
of using the over-complete dictionary, a learning algorithm can select a small set of
important features to characterize an object class.
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Figure 5.2: Feature prototypes of simple Haar-like and center-surround fea-
tures. Dark areas have negative weights while bright areas have positive weights
[Lienhart 2002].

A 

A  B 

D C 
a  b 

c  d 

Figure 5.3: Calculation of the pixel sum of rectangle D. This can be done with four
array references: a, b, c, d are the values of the integral image at given positions.
Thus, a = s(A), b = s(A) + s(B), c = s(A) + s(C), d = s(A) + s(B) + s(C) + s(D).
The sum within D can be computed as s(D) = d+ a− b− c.

5.1.1.1 Fast feature computation

In section 4.2.3, we have already introduced an intermediate image representation
called integral image. This representation allows to compute the sum of features
inside any rectangular region in constant time (O(1)).

The integral image I of the image I contains at location x, y the sum of the pixels
above and to the left of x, y, inclusive:

I(x, y) =
∑

x′≤x,y′≤y
I(x′, y′). (5.2)

By using the integral image, we can compute any rectangular sum in four array
references (see figure 5.3). The difference between two rectangular sums can be
computed in eight references. Since the edge features involve adjacent rectangular
sums they can be computed in six array references, eight in the case of the line
features, and nine for the special diagonal line features (see figure 5.2).
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Figure 5.4: Haar signature: cascade of k strong classifiers. At each stage a new
strong classifier is trained to eliminate additional negatives, requiring additional
computation.

5.1.2 Learning a signature

We learn a signature of a specific individual using one-against-all learning scheme.
Figure 5.4 presents the sketch of the learning phase.

5.1.2.1 Training data

Given a set of images corresponding to the same individual tracked in a video se-
quence, we generate positive samples for a learning algorithm. Positive samples are
obtained by cropped images of the tracked individual and their mirror counterparts.
Mirror images bring a larger set of positive samples and enable to create pose-
invariant signature. Negative samples are formed by cropped images corresponding
to the rest of humans tracked in the same camera.

5.1.2.2 Haar-like feature set reduction

We scale every image into a fixed size of 20× 40 pixels. Given this base resolution,
the tremendous number of Haar-like features needs to be considered (435, 750).
Even though Haar-like features can be calculated efficiently using an integral image,
this number of features makes the learning phase time consuming. By employing
Haar-like features only for foreground regions, we speed up significantly the learning
process. We filter out meaningless Haar-like features and decrease the features set
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Figure 5.5: Illustration of Haar-based signatures.

from 435, 750 to around 20, 000 features depending on the size of foreground region.
This huge decrease of the feature set is obtained by ignoring all patterns which
intersect the background area, and at the same time by considering only features
which are inside the foreground area.

5.1.2.3 AdaBoost

Given a feature set and a training set of positive and negative samples, any number
of machine learning approaches could be used to learn a signature. Similarly to
[Viola 2001], we develop AdaBoost to select a small set of relevant features and
to train the signature, as this technique has successfully been applied to human
detection.

AdaBoost refers to adaptive boosting, which is a machine learning algorithm, intro-
duced by [Freund 1995]. In its original form, the AdaBoost is used to boost the
classification performance of a simple learning algorithm (often called weak classi-
fier). AdaBoost maintains a discrete distribution (set of weights) over the training
examples, and selects a weak classifier via the weak learning algorithm at each itera-
tion. AdaBoost is adaptive in the sense that training examples that are misclassified
by the weak classifier at the current iteration, receive higher weights at the follow-
ing iteration. Thus, the subsequent classifiers which are built, focus on instances
misclassified by previous classifiers. The accuracy of weak classifiers have to be only
better than random guessing (e.g . in the case of binary classification, an error has
to be less than 0.5), to allow the AdaBoost to improve the accuracy, by producing
a final linear combination of weak classifiers (often called strong classifier). This
strong classifier works similar to majority voting strategy, where the final classifi-
cation decision depends on a weighted majority hypothesis in which the weight of
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• Given example images (x1, y1), . . . , (xn, yn), where yi ∈ Y = {−1,+1}, for
negative and positive examples respectively.
• Initialize weights w1,i = 1

2m and w1,j = 1
2l for yi = −1 and yj = +1, where

m and l are the number of negatives and positives respectively.
• For t = 1, . . . , Ts:

1. Normalize the weights,

wt,i =
wt,i∑n
j=1wt,j

, (5.3)

so that wt is a probability distribution.
2. Train each weak classifier hj using distribution wt.
3. Calculate the error of hj : εj = Pri∼wt [hj(xi) 6= yi].
4. Choose the classifier ht with the lowest error εt.
5. Set αt = 1

2 ln
(

1−εt
εt

)
6. Update the weights

wt+1,i = wt,i exp(−αtyiht(xi)) (5.4)

• The final strong classifier is

H(x) = sign
( T∑
t=1

αtht(x)

)
. (5.5)

Figure 5.6: The adaptive boosting algorithm (AdaBoost).

each weak classifier is a function of its accuracy.

Figure 5.6 presents the boosting algorithm. We adapt this boosting scheme to our
signature learning, by defining a weak classifier as a threshold function based on a
Haar-wavelet response. Term Ts stands for stop criterion, by which AdaBoost stops
adding weak classifiers to the final strong classifier (figure 5.5 visualizes learned
Haar-based signatures).

5.1.2.4 Weak classifier

Our weak classifier hj(x) consists of feature fj , threshold θj and parity pj indicating
the direction of the inequality sign

hj(x) =

{
+1, if pjfj(x) < pjθj

−1, otherwise
(5.6)

Feature fj corresponds to a single Haar-like feature. In contrary to Tieu and Viola
[Tieu 2004], we do not use Gaussian models to compute the threshold of the weak
classifier. In our approach the threshold computation is based on the concept of
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information entropy used as a heuristic to produce the smallest set of features. This
idea is originated from Quinlan [Quinlan 1986]. The threshold separates the training
data, while maximizing the information gain (mutual information).

5.1.2.5 Cascade of strong classifiers

Similarly to [Viola 2001], we develop a cascade of classifiers generated by a boosting
scheme. Combining increasingly more complex classifiers into a cascade structure,
we reduce radically computation time. The key idea is that smaller, and therefore
more efficient, boosted classifiers can be constructed which disregard many of the
negative individuals while accepting almost all positive instances (i.e. the stop cri-
terion Ts of a boosted classifier can be adjusted so that the false negative rate is
close to zero). Simpler classifiers are used to reject the majority of individuals before
more complex classifiers are called upon to achieve low false positive rates.

Cascade is a degenerated decision tree (the list), in which a positive result from one
classifier triggers the evaluation of the following one (see figure 5.4). A negative
outcome at any strong classifier leads to the immediate negative classification of an
image.

Stages in the cascade are constructed by training classifiers using AdaBoost and
by adjusting the stop criterion Ts to minimize false negatives. Subsequent strong
classifiers are trained using those samples which pass through all the previous stages.
As a result, the successive classifiers face a more difficult task than the preceding
classifiers. Consequently, it appears that the deeper classifier, the more complex it
is. The strong classifiers are added to the cascade until the overall target for false
positive and false negative rate is met (stopping criterion Tc). The final cascade of
strong classifiers stands for a human signature.

5.1.2.6 Stop criteria

Having a boosting classifier, we always have to define term Ts, which stands for
stop criterion of adding weak classifiers to the strong classifier. Moreover as we use
the cascade of strong classifiers, we also have to provide stopping criterion Tc of
adding new stages in the cascade. Both criteria are based on classification accuracy
obtained on training data.

Given training data X = {(x1, y1), . . . , (xn, yn), we split it into two parts: X ′ =

{(x1, y1), . . . , (x2n/3, y2n/3)} and X ′′ = {(x2n/3+1, y2n/3+1), . . . , (xn, yn)}. X ′ is used
to learn classifiers and X ′′ is used to stop boosting algorithm. Testing our classifier
on these dataset, we can obtain TP , TN ,FP , FN , which correspond to true positive,
true negative, false positive and false negative samples. We build Haar signature
(classifier) by applying the following two stopping criteria:



68 Chapter 5. Human re-identification by boosting

• Ts: the boosting stops adding new weak classifiers to the strong classifiers if

(TP ′′t < TP ′′t−1) ∧ (TN ′′t < TN ′′t−1), (5.7)

where t corresponds to the iteration step in the boosting algorithm (classifiers
loose performance) or if:

(TP ′′/|X ′′yi=1| > p) ∧ (TN ′′/|X ′′yi=−1| > 0.5), (5.8)

classifiers eliminates more than 50% of negatives and classifies correctly p ×
100% of positive samples (in our experiments we set p ∈ {0.9, 0.95, 0.99}).

• Tc: we stop adding new stages in the cascade if

(TPt < TPt−1) ∧ (TNt < TNt−1), (5.9)

which means that classifiers loose performance. We also finish training when
the number of stages is greater than k.

Different values of parameters p and k are evaluated in experiments.

It is worth noting that if we assume p = 0.99 and k = 20, while eliminating 50%

negatives at each stage, we can expect false positives rate about 0.520 ≈ 9.5 ∗ 10−7

and a true positives rate about 0.9920 ≈ 0.8.

5.1.3 Haar similarity

Given a human signature we can find out whether a person of interest appeared in
a video sequence. This can be determined by applying the given cascade of strong
classifiers (signature) to all frames of the video sequence. In this case, the signature
can be used as a detector of a specific individual. Unfortunately, such solution is
not efficient. Each time when we search for a person of interest, we would need to
process all frames from a video sequence.

As we have already mentioned in section 3.1, we can optimize re-identification by
applying pre-processing steps. The first step consists in detecting general class of
objects (i.e. humans). Then, cropped images with detected humans are used to
build signatures. These signatures should be stored in a database to provide the
most efficient way for browsing the video content restricted to detected objects.
Having a database of signatures we need to be able to compare different signatures.
As Haar-based signature is represented by a classifier, there is not straightforward
way to compute similarity between two signatures. Consequently, we propose two
ways for comparing Haar-based signatures.

5.1.3.1 Volume-based similarity

Let us scale every cropped image into a fixed size of W ×H pixels (in experiments
we assume 20× 40 window). This gives us n = W ×H (20× 40 = 800) dimensional
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xi xj xk
xl xm xn

Figure 5.7: Illustration of a Haar-like feature. The sum of the white pixels is
subtracted from the sum of the grey pixels.

space. If we assume that a pixel value x ∈ Ψ and |Ψ| = τ (in general a range of
intensity is τ = 256), then the size of our image space is τn.

According to equations (5.1) and (5.6), the weak classifier corresponding to the Haar-
like feature (line feature) illustrated in figure 5.7 can be expressed as inequality

pz(ωa(xi + xl) + ωb(xj + xm) + ωc(xk + xn)) < pzθz, (5.10)

where parity pz indicates the direction of the inequality sign, coefficients ωa, ωb
and ωc are chosen arbitrarily, θz is the threshold and x represents a pixel value.
In general, each Haar-like classifier can be written in the similar way. Therefore a
strong classifier as well as a cascade of them can be represented by a set of linear
inequalities like equation (5.10). Each such equation can be seen as a hyperplane,
which separates the image space for the images which meet inequality and the images
which do not. As the Haar-based signatures consists of a set of strong classifiers,
which are composed of a set of weak classifiers, the final signature can be seen as
a set of weak classifiers. The set of weak classifiers gives us the set of inequalities,
which can be seen as the set of hyperplanes. In addition, 2n default hyperplanes:
x = min(Ψ) and x = max(Ψ) for each of the n dimensions are given (constraints
of the image space). This hyperplanes together with the hyperplanes given by the
weak classifiers, cut a hypercube in the image space. Therefore, let us assume that
each signature is such hypercube.

Let VsA be the volume of the hypercube generated by weak classifiers of signature
sA. We define similarity S between two signatures sA and sB as

S(sA, sB) =
VsAsB

min(VsA ,VsB )
, (5.11)

where VsAsA is the volume of the hypercube produced by merging weak classifiers
of signature sA with weak classifiers of signature sB.

Computing the volume of hypercube, we need to store 2n vertices. In our approach
we use 20 × 40 pixel sub-window which leads to n = 800 dimensions, bringing an
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Figure 5.8: The volume-based similarity computation: the signatures (hypercubes)
are illustrated as the meshes; the sparse space is given by images. Images which
satisfy weak classifiers of sA and weak classifiers of sA are highlighted using ellipses
and triangles, respectively.

unattainable memory and time requirement. For that reason our volume computa-
tion does not consider the whole space τn.

We compute the volume based only on a sparse space of images. This sparse space
corresponds to all cropped images registered in a network of cameras. Thus, we
define volume VsA as the number of images which satisfy inequalities given by weak
classifiers of sA, along all cropped images process by the system. Figure 5.8 illus-
trates volumes and the similarity computation.

5.1.3.2 Margin-based similarity

We propose a similarity which is based on a concept of margin [Schapire 1998,
Rudin 2007]. The margin theory is related to the phenomenon that AdaBoost often
does not seem to suffer from overfitting, in the sense that the test error does not go
up even after a large number of iterations T . The margin of a boosted classifier on a
particular example can be interpreted as a measure of the classifier’s confidence on
this particular example. The margin theory states that AdaBoost tends to increase
the margins of the training examples, and in the result, the increase in the margins
implies better generalization performance.

The margin of example (xi, yi) with respect to classifier H is defined as

Mi
H =

yi
∑T

t=1 αtht(xi)∑T
t=1 αt

. (5.12)

This number is between −1 and +1. It is positive if and only if H correctly classifies
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the example.

Let us represent a signature by the cascade of strong classifiers and the positive
training samples on which this classifiers has been learned

sA = {(HAz ) : z = 1 . . . kA; (xA,i, yA,i) : i = 1 . . . lA, yA,i = +1}, (5.13)

where kA is the number of strong classifiers in the cascade and lA is the number of
positive training examples which has been classified correctly by the cascade during
the training process.

Given two signatures sA and sB, we define the similarity S as

S(sA, sB) = MA,B + MB,A, (5.14)

where

MA,B =
1

lB

lB∑
i=1

min
z

(
MB,i
HA

z

)
ln(e+

z

kA
). (5.15)

The key insight of this formula is that we evaluate examples, which were used to
learn signature sB, using the strong classifiers of signature sA. As the margins give
us the confidence of classification, we use them to establish how similar are the
signatures (classifiers). We compute the minimum margin over the strong classifiers
to obtain the confidence of the whole cascade. By logarithm in equation (5.15),
we put greater weight if the minimum margin is extracted at deeper stage in the
cascade. Figure 5.9 shows the sketch of the margin-based similarity computation.

5.1.4 Discussion

The main disadvantage of Haar-based signatures is that we need to keep learning
examples to compute the similarity between two signatures. Computing either the
volume-based similarity or the margin based similarity, we always test our signatures
on a set of images. Computing the volume-based similarity we need to execute
signature classifiers on continuously growing sparse space of images. Using the
margin-based similarity, it is necessary to test each signature from a database on
images, which were used for computing a query signature. Both solutions are not
computationally tractable, bringing slow search time, while browsing the database
of signatures.

The necessity of keeping training examples comes from a design of Haar-like features,
which can be seen as filters separating positive and negative samples. Generating
signature, the boosting selects only a few features (from the over-complete set) per
signature, making the distance computation more sophisticated (difficulties with
comparing two different Haar-like patterns, which also can correspond to different
spatial locations).
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1  2  kA …  1  2  kB … 

A,B  B,A 

Figure 5.9: The margin-based similarity computation: each signature is represented
by a cascade of strong classifiers and the positive training examples.

In the next section, we propose an approach which creates an appearance represen-
tation, which does not require to keep training data. This approach use boosting to
select discriminative features, which are used for matching signatures.

5.2 Binary classification using Riemannian mani-
folds

In this section we present a human appearance model based on Mean Riemannian
Covariance (MRC) (section 5.2.2) extracted from tracks of a particular individual.
Figure 5.10 illustrates the key insight of the approach. Similarly to the Haar-based
approach (section 5.1), this approach uses multiple images of the same person to gen-
erate a signature. The input of our approach is a set of cropped images corresponding
to human detection and tracking results, normalized by the histogram equalization
applied to each color channel (RGB) (see section 4.1.2). From such normalized
images we extract MRC patches (section 5.2.3). We investigate the significance of
MRC patches based on their reliability extracted during tracking (section 5.2.4) and
their discriminative power obtained by a boosting scheme ( section 5.2.5.3). These
two alternative ways for feature selection has been evaluated to discuss the utility
of a discriminative learning. The proposed selection method based only on relia-
bility of patches is referred to as Reliable Covariance Patches (RCP) method and
the method based on a boosting scheme is denoted as Learned Covariance Patches
(LCP) method. However, before explaining details of the proposed MRC patches,
we present a short introduction to Riemannian geometry, which provides tools for
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Figure 5.10: Extraction of the signature based on MRC patches.

using covariance matrix descriptor.

5.2.1 Riemannian geometry

Covariance matrix as a positive definite and symmetric matrix can be seen as a
tensor. The main problem is that such defined tensor space is a manifold that is
not a vector space with the usual additive structure. A manifold is a topological
space which is locally similar to an Euclidean space. It means that every point on
the m-dimensional manifold has a neighbourhood homeomorphic to an open subset
of the m-dimensional space <m. Performing operations on the manifold involves
choosing a metric.

Specifying manifold as Riemannian gives us Riemannian metric. This automatically
determines a powerful framework to work on the manifold by using tools from differ-
ential geometry [Pennec 2006]. Riemannian manifoldM is a differentiable manifold
in which each tangent space has an inner product which varies smoothly from point
to point. Since covariance matrices can be represented as a connected Riemannian
manifold, we apply operations such as distance and mean computation using this
differential geometry.

Figure 5.11 shows an example of a two-dimensional manifold, a smooth surface
living in <3. Tangent space TxM at x is the vector space that contains the tangent
vectors to all 1-D curves onM passing through x. Riemannian metric on manifold
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Figure 5.11: An example of a two-dimensional manifold. We show the tangent plane
at xi, together with the exponential and logarithm mappings related to xi and xj
[Goh 2008b].

M associates to each point x ∈ M, a differentiable varying inner product 〈·, ·〉x on
tangent space TxM at x. This induces a norm of tangent vector v ∈ TxM such that
‖v‖2x = 〈v, v〉x. The minimum length curve over all possible smooth curves (γv(t))
on the manifold between xi and xj is called geodesic, and the length of this curve
stands for geodesic distance ρ(xi, xj).

Before defining geodesic distance, let us introduce the exponential and the logarithm
functions, which take as an argument a square matrix. The exponential of any
matrix can be defined as the series

exp(W ) =

∞∑
k=0

W k

k!
. (5.16)

In the case of symmetric matrices, we can apply simplification. Let W = U D UT

be a diagonalization, where U is an orthogonal matrix, and D = DIAG(di) is the
diagonal matrix of the eigenvalues. We can write any power of W in the same way
W k = U Dk UT . Thus

exp(W ) = U DIAG(exp(di)) U
T , (5.17)

and similarly the logarithm is given by

log(W ) = U DIAG(log(di)) U
T . (5.18)

According to a general property of Riemannian manifolds, geodesics realize a local
diffeomorphism from the tangent space at a given point of the manifold to the
manifold. It means that there is the mapping which associates to each tangent
vector v ∈ TxM a point of the manifold. This mapping is called the exponential
map, because it corresponds to the usual exponential in some matrix groups.

The exponential and logarithmical mappings have the following expressions
[Pennec 2006]:

expΣ(W ) = Σ
1
2 exp(Σ−

1
2WΣ−

1
2 )Σ

1
2 , (5.19)



5.2. Binary classification using Riemannian manifolds 75

logΣ(W ) = Σ
1
2 log(Σ−

1
2WΣ−

1
2 )Σ

1
2 , (5.20)

where
Σ

1
2 = exp

(
1

2
(log(Σ))

)
. (5.21)

Given tangent vector v ∈ TxM, there exists a unique geodesic γv(t) starting at x
(see figure 5.11). The exponential map expx : TxM → M maps tangent vector v
to the point on the manifold that is reached by this geodesic. The inverse map-
ping is given by logarithm map denoted by logx : M → TxM. For two points xi
and xj on manifold M, the tangent vector to the geodesic curve from xi to xj is
defined as v = −−→xixj = logxi(xj), where the exponential map takes v to the point
xj = expxi(logxi(xj)). The Riemannian distance between xi and xj is defined as
ρ(xi, xj) = ‖ logxi(xj)‖xi .

5.2.2 Mean Riemannian covariance (MRC)

Let C1, . . . , CN be a set of covariance matrices. The Karcher or Fréchet mean is the
set of tensors minimizing the sum of squared distances. In the case of tensors, the
manifold has a non-positive curvature, so there is a unique mean value µ:

µ = arg min
C∈M

N∑
i=1

ρ2(C,Ci), (5.22)

where ρ is the covariance matrix distance (equation 4.9).

Since covariance matrices lay on a Riemannian manifold we use the intrinsic Newton
gradient descent algorithm to compute the approximation mean covariance at step
t+ 1:

µt+1 = expµt

[
1

N

N∑
i=1

logµt(Ci)

]
, (5.23)

where expµt and logµt are specific operators (mapping functions) uniquely defined on
a Riemannian manifold (see section 5.2.1). This iterative gradient descent algorithm
usually converges very fast (in experiments 5 iterations were sufficient, which is
similar to [Pennec 2006]).

5.2.2.1 Mean Riemannian covariance vs. volume covariance

Covariance matrix could be directly computed from a video by merging feature vec-
tors from many frames into a single content (similarly to 3D descriptors, i.e. 3D
HOG). Then, this covariance could be seen as mean covariance, describing charac-
teristics of the video. Unfortunately, such solution disturbs time dependencies (time
order of features is lost). Further, context of the features might be lost and at the
same time some features will not appear in the covariance.
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Figure 5.12: Difference between covariance computed directly from the video con-
tent (volume covariance) and MRC. Volume covariance looses information on edge
features and can not distinguish two given cases - two edge features (first row) from
two homogeneous regions (second row). MRC holds information on the edges, being
able to differentiate both cases.

Figure 5.12 illustrates the case, in which edge features are lost during computation
of the volume covariance. This is a consequence of loosing information that the
feature appeared in specific time. Computing volume covariance, order of the feature
appearances and their spatial correlations can be lost by merging feature distribution
in time. MRC holds much more information than covariance computed directly from
the volume.

There have already been proposed some other statistics on covariance functions
which take into account spatial and temporal changes [Cressie 1999, Fuentes 2006].
However, these approaches assume that covariance function is a stationary (or
weakly stationary) process in space and time. Unfortunately in our case we can
not make such strong assumptions as visual features mostly do not meet this re-
quirement in a video sequence (mean function of features is not constant over time).
Moreover, noisy human detections and gaps in tracking prevent the covariance func-
tions to be separable in space and time. As it is hard to apply these statistic methods
to our covariance matrices, we have decided to use the mean covariance computed
on a Riemannian manifold as a descriptor of a region in a video sequence.

5.2.3 MRC patches

In this section we define Mean Riemannian Covariance (MRC) patches and explain
their merits. Once a human has been detected and color has been normalized, we
scale every cropped image into a fixed size W × H. MRC patch corresponds to a
square region (of size W

4 ×
W
4 or W

2 ×
W
2 ). We assume that such MRC patches can
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Figure 5.13: MRC Patches. Green patch corresponds to the single square region
(the top). Blue patch is an example of combination (small - big) of two patches
with different size (the middle). Red patch illustrates combination (small - small)
of patches with the same size (the bottom).

form patch combinations (see figure 5.13). In our approach we only consider patch
combinations built using maximally two MRC patches. The choice of the number of
patches per patch combination and of the square regions with fixed size is a compro-
mise between time complexity and descriptive power. The patch combination may
consist of two patches with the same size as well as with different size. Different
patterns of a human appearance are captured from a window W ×H. We extract
patches of size W

4 ×
W
4 shifted horizontally and vertically by W

8 and patches of size
W
2 ×

W
2 shifted horizontally and vertically by W

4 , producing a dense representation.
The position of MRC patch on the fixed size window and the spatial correlation
between patches is essential to carry out discriminative power of rectangular pat-
terns.

Let Cp1 , . . . , C
p
N be a set of covariance matrices extracted during tracking ofN frames

corresponding to image square regions at position of patch p. We define MRC patch
as the mean covariance of these covariance matrices (see section 5.2.2) computed
using a Riemannian space (see figure 5.14). The mean covariance matrix as an
intrinsic average blends all extracted matrices. This mean covariance matrix not
only keeps information on feature distribution but also carries out essential cues on
temporal changes of the appearance related to the position of patch p. Moreover,
as we normalize covariance matrix, rotation and illumination changes are absorbed.
MRC patch (the mean covariance matrix together with its position) is fundamental
in our approach. Further, patch combinations are able to catch different patterns and
spatial correlations of MRC patches. Now we introduce a new reliability measure,
which describes an invariance of a patch.
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μ1 μ2 
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M

Figure 5.14: Computation of three MRC patches. Covariances gathered from track-
ing results are used to compute the mean covariance using Riemannian manifold
space (depicted with the surface of the sphere). The mean covariance forms MRC
patch.

5.2.4 Reliability-based MRC patch selection (RCP)

5.2.4.1 Patch reliability

Let rp1, . . . , r
p
N be a set of image square regions extracted during tracking of N frames

at position of patch p. For each such region we extract covariance matrix Cpi which
encodes information of the variances of defined features f inside the region and their
correlations.

Together with the mean covariance matrix we define the reliability measure R which
describes stability of the tracked image region

R = 1− σ

maxσ
, σ =

1

N − 1

N∑
k=1

(f̄k − Γ̄)2, Γ̄ =
1

N

N∑
k=1

f̄k (5.24)

where Γ̄ is the mean feature vector along N tracking regions and f̄k is the mean
feature vector corresponding to region k, maxσ corresponds to the maximal value
of σ for the specific individual. As we assume that only partial occlusions may
occur, the reliability works similarly to background subtraction. Here, our idea
is to remove most variable features because we assume that these features are the
noisiest (containing background). Figure 5.16 (b) illustrates that the most unreliable
features correspond to legs and background.

5.2.4.2 Patch selection

We select the most reliable patches with the highest reliability among others. If the
patch combination is considered, the reliability is an average of reliabilities of both
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patches. This selection method allows us to create the human signature without
any discriminative learning phase.

5.2.5 Boosted MRC patch selection (LCP)

Similarly to Haar-based approach (section 5.1), we learn a signature of a specific
individual using one-against-all learning scheme. We again lay the re-identification
problem as classification where we separate the specific individual class from the
rest of humans. Assuming that discriminative features of an individual extracted
from one camera correspond to discriminative features of the same individual ex-
tracted from another camera, we define similarity measure based on the output of
the improved boosting algorithm.

In contrast to Haar-based signature, we do not structure our classifier into the
cascade. Instead, we use an improved boosting algorithm to select discriminative
features of an individual. The main advantage of using this algorithm is that it
generates the confidence scores of selected classifiers. We use these scores as weights
of selected features, while matching signatures.

5.2.5.1 Training data

Given a set of cropped images corresponding to the same individual tracked in
a video sequence, we generate positive samples for a learning algorithm. Each
signature has an associated set of relevant observations (tracking results of human
j in N frames from camera c) represented by a set of images I+c

j = {Icj,1, . . . Icj,N}.
This set is used as positive samples in a learning phase. Negative samples are
obtained from images extracted from the same camera during tracking the rest of
humans: I−cj = {Ici,k}i 6=j .

5.2.5.2 Improved boosting algorithm using confidence-rated predic-
tions

Improved boosting algorithm is an extended boosting framework in which each weak
classifier generates not only predicted classification, but also self-rated confidence
score which estimates the confidence of its prediction [Schapire 1999]. We use this
confidence value to define the similarity measure between two signatures (section
5.2.6).

Boosting based on confidence-rated predictions differs from the general AdaBoost in
design of weak classifier. The weak classifier takes into account a detailed analysis
of its performance on the training dataset. The output of hypotheses ht is derived
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Figure 5.15: MRC Classifier. The manifold is depicted with the surface of the
sphere, and the planes are the tangent spaces of the mean covariances. The samples
Xiare projected to tangent space Tµiat means via logµ operation.

with respect to the given distribution wt over training samples, minimizing

Z =

n∑
i=1

wte
−yiht(xi). (5.25)

Let split equation (5.25) into a sum over negative and positive samples

Z =
∑

i:y=+1

wte
−ht(xi) +

∑
i:y=−1

wte
ht(xi) (5.26)

=
∑

i:y=+1
ht(xi)=yi

wte
−αt +

∑
i:y=+1

ht(xi)6=yi

wte
−βt +

∑
i:y=−1

ht(xi)6=yi

wte
αt +

∑
i:y=−1

ht(xi)=yi

wte
βt (5.27)

= W+
+ e
−αt +W−+ e

−βt +W+
− e

αt +W−− e
βt , (5.28)

where W+
+ , W+

− , W
−
+ , W−− correspond to weighted sums of true positive, false

positive, false negative and true negative samples, respectively. Using standard
calculus, we see that this is minimized when

αt =
1

2
ln
(W+

+

W+
−

)
and βt =

1

2
ln
(W−+
W−−

)
. (5.29)

These equations are used to define a weak classifier.

5.2.5.3 Weak classifier

We define a weak classifier as function h based on distance computation on Rieman-
nian manifold space (see figure 5.15). Image I is classified by a weak classifier built
on patch p using a threshold function defined as

h(p, I) =


α = 1

2 ln(
W+

+

W+
−

) if
∑

j wjρ(µj , Cj) ≤ θp

β = 1
2 ln(

W−+
W−−

), otherwise
(5.30)
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(a) I (b) R (c) α

Figure 5.16: Illustration of patch significance: (a) one of many frames obtained
during tracking; (b) reliability map obtained by the first method; (c) confidence
map obtained by boosting. Colours correspond to significance of patches (for clarity
only W

4 ×
W
4 patches, shifted by W

8 pixels are illustrated, red indicates the highest
significance, blue the lowest).

where W+
+ , W+

− , W
−
+ , W−− correspond to weighted sums of true positive, false

positive, false negative and true negative samples, respectively. Threshold θp and
weights wj are obtained by minimizing error of weak classifier during learning; µj is
the mean covariance of MRC patch classifier and covariance Cj corresponds to the
image region of I.

Each MRC patch and MRC patch combination extracted during tracking forms
a weak classifier. From the set of weak classifiers, boosting algorithm selects the
ones which together form a strong classifier. Details of boosting algorithm using
confidence-rated predictions can be found in [Schapire 1999].

We use the selected weak classifiers in MRC patch matching. In figure 5.16 we
present reliability and confidence maps, based on reliability R and confidence α,
respectively.

5.2.5.4 Stop criterion

Using either reliability-based selection method or boosting, we select a set of MRC
patches for generating a single signature. In both cases we constraint size of this
set to predefined value z which sensitivity is evaluated in experiments (see section
7.4.2).

5.2.6 MRC patch matching

Given extracted human signatures, we introduce a way to effectively distinguish
individuals. The human signature is represented by a set of relevant MRC patches,



82 Chapter 5. Human re-identification by boosting

A B 

Figure 5.17: The similarity between two human signatures. Every signature is a set
of MRC patches. Signature A is shifted left/right/up and down to find out the best
corresponding patches in signature B (position of a patch determines matching).
Connections in the figure represent corresponding patches. Some connections are
suppressed for clarity.

extracted using one of the aforementioned selection methods. MRC patch consists
of the mean covariance with its position. The position of the patch is essential
to keep discriminative power of the human signature. In general, the matching
of two signatures sA and sB is carried out by maximizing the similarity measure.
We shift one signature over another one to reduce body alignment issues. When
shifting signature (see figure 5.17) we preserve relative position between patches to
avoid wasting of discriminative property of the patch position, while maximizing
the similarity. In experiments we evaluate the influence of the shifting operation
on matching accuracy. The similarity between two human signatures sA and sB is
defined as

S(sA, sB) =
1

|K|
∑
i∈K

γAi + γBi

ρ(µAi , µBi)
, (5.31)

where K stands for the set of corresponding patches i in signature sA and signature
sB; ρ is the covariance matrix distance; γ is a reliability (R) or a confidence (α)
value of the corresponding patches depending on selection method. Here, we take
advantages of the patch selection method which is able to choose the most informa-
tive patch combinations. The efficiency of patch combination is handled indirectly
by γ coefficients.

5.2.7 Discussion

Discriminative approaches such as [Lin 2008, Schwartz 2009] are often accused of
non-scalability. It is true that in these approaches (in our as well) an extensive
learning phase is necessary to extract discriminative signatures. These approaches
are difficult to apply to real scenarios where new people appear continuously. First,
the learning phase prevents to generate signatures in real-time. Second, every time
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when a new signature is created we have to update all signatures in the database
(one-against-all learning scheme). For example, in PLS [Schwartz 2009] there is
a requirement to have all the gallery signatures beforehand, in order to estimate
weights on the appearance model. When one pedestrian is added, weights must
be recomputed which makes the approach not-suitable for video surveillance sys-
tems.

As a solution to scalability issues we can propose to extract a reference dataset
which can be used as negative samples for learning a discriminative signature. This
reference dataset can be chosen offline to be the most representative. Neverthe-
less, in this case, a time consumption issue still remains. As in the system, there
is no constraints for a real-time signature generation, there already exist learning
approaches which can operate in reasonable time. Moreover, recently, driven by
the insatiable market demand for real-time, the programmable Graphic Processor
Unit (GPU) has evolved into a highly parallel, multithreaded, manycore processor
with tremendous computational power and very high memory bandwidth. These
new hardware architectures such as NVIDIA [Lindholm 2008] are investigated to
speed up the computation of pattern recognition problems. Currently, step by step,
well known learning algorithms [Catanzaro 2008] or time consuming descriptors (see
chapter 8) are ported to such specialized architectures. As image and media pro-
cessing demand a lot of computation power, this direction seems to fit perfectly for
more sophisticated approaches. We claim that the usage of high-performance com-
puting can be a solution to make discriminative learning approaches more suitable
for video-surveillance systems.

5.3 Conclusion

This chapter employed boosting scheme for extracting discriminative representation
of a human appearance. We proposed two discriminative techniques to generate
human signature using multiple images of many humans. Both methods apply
one-against-all learning scheme to enhance distinctive characteristics of a specific
appearance using information from appearances of other individuals.

The first method is based on Haar-like features. The main disadvantage of this
technique is that we need to keep learning examples to compute the similarity be-
tween signatures. The necessity of keeping training examples comes from a design
of Haar-like features, which can be seen as filters separating positive and negative
samples.

The second technique uses covariance matrix as the feature for describing image
region. We proposed to use mean Riemannian covariance (MRC) as the final de-
scriptor which holds statistic information on temporal changes of the appearance.
We offer two alternative ways for feature selection which performance is evaluated
in section 7.4.2.
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Although these discriminative approaches are inspired by human memory and they
show promising results (see section 7.4), boosting approaches are computationally
intensive which is unfavorable in practice. In the next chapter we propose less
computationally expensive solutions which use information on the appearance of
other individuals either by introducing a simple and efficient discriminative method
or by applying an offline learning stage.



Chapter 6

Efficient human re-identification
using Riemannian manifolds

“Everything should be made as simple as possible, but not simpler.”
(Albert Einstein)

Re-identification approaches based on discriminative learning are often computa-
tionally heavy and non-scalable. In this chapter, we propose two multiple-shot
approaches, which are less computationally expensive than previously presented
boosting-based methods, while enhancing discriminative and descriptive features.
Although, we again employ mean Riemannian covariance as the feature for charac-
terizing image regions, we reinforce MRC’s properties using new appearance models.
The first method assumes a predefined appearance model (section 6.1), while the
second technique learns an appearance representation during an offline stage, guided
by an entropy-driven criterion (section 6.2).

6.1 MRCG signature

This section describes a new appearance model combining information from multiple
images to obtain highly discriminative human signature, called mean Riemannian
covariance grid (MRCG). Figure 6.1 illustrates the sketch of our technique. The
input of the approach is a set of cropped images corresponding to human detection
and tracking results. We handle color dissimilarities caused by camera illumination
difference by applying the histogram equalization to each color channel (RGB) (see
section 4.1.2). The normalized image is scaled and divided into a grid structure of
overlapping cells (section 6.1.1). Each cell is characterized by MRC descriptor and
by its distinctiveness (the relevance of the feature) computed using discriminative
method (section 6.1.2). The full grid of overlapping cells characterized by MRC-s
and their distinctiveness, stands for the final appearance representation.

6.1.1 Mean Riemannian covariance grid (MRCG)

In this section we define the novel mean Riemannian covariance grid (MRCG) and
explain its merits. The proposed human signature has been designed to deal with low
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Figure 6.1: Extraction of MRCG signature.

resolution images and crowded environment where more specialized techniques (e.g .
based on body part detectors) might fail. We combine dense descriptors philosophy
[Dalal 2005] with the effectiveness of the MRC descriptor.

Once color has been normalized, we scale every human image into a fixed size of
W×H pixels. Then, an image is divided into a dense grid structure with overlapping
spatial square regions (cells). First, such dense representation makes the signature
robust to partial occlusions. Second, as the grid structure, it contains relevant
information on spatial correlations between MRC cells, which is essential to carry out
discriminative power of the signature. Moreover, as we use covariance matrices to
describe characteristic of the cells, this technique enables to fuse efficiently different
types of features and their modalities.

MRC cell describes statistics of an image square region corresponding to the specific
position in the grid structure. In contrary to MRC patch (section 5.2.3), MRC
cell is computed from the fixed size square region (in experiments we set cells as
16 × 16 square regions) and we do not consider different MRC combinations. The
appearance model is fixed as a grid structure.

Let Cp1 , . . . , C
p
N be a set of covariance matrices extracted during tracking of N

frames corresponding to image square regions at position of the cell p. We define
the MRC as the mean covariance of these covariance matrices (see section 5.2.2)
computed using Riemannian space (see figure 6.2). As an intrinsic average, the
mean covariance matrix blends appearance information from multiple images. This
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Figure 6.2: Computation of the MRCG. Covariances gathered from tracking results
are used to compute the MRC using Riemannian manifold space (depicted with the
surface of the sphere).

mean covariance matrix not only keeps information on feature distribution but also
gives essential cues on temporal changes of the appearance related to the position of
cell p. All MRC cells compose a full grid, named as mean Riemannian covariance
grid (MRCG).

6.1.2 MRC discriminants

The goal of using discriminants, is to identify the relevance of MRC cells. We
present an efficient way to enhance discriminative features, improving matching
accuracy. Similar to boosting-based approach, this method allows us to highlight
features which are distinctive for a particular individual. The main advantage of
this method is its efficiency. Using simple statistics on Riemannian manifold we are
able to enhance distinctive features, without applying any time consuming training
process.

Given a set of signatures Sc = {sci}ni=1 where sci is signature i from camera c, each
signature is represented by MRCG: sci = {µci,1, µci,2, . . . , µci,m}, where µci,j stands for
MRC cell and m is the number of cells in the grid. For each µci,j we compute the
variance between the human signatures from camera c defined as

σci,j =
1

n− 1

n∑
k=1;k 6=i

ρ2(µci,j , µ
c
k,j). (6.1)

Hence for each human signature sci we obtain the vector of discriminants related to
our MRC cells, dci = {σci,1, σci,2, . . . , σci,m}. This idea is similar to methods derived
from text retrieval where a frequency of terms is used to weight relevance of a word.
As we do not want to quantize covariance space, we use σci,j of MRC cell to extract
its relevance. The MRC is assumed to be more significant when its variance is larger
in the class of humans. Here, it is a kind of "killing two birds with one stone" : (1) it



88
Chapter 6. Efficient human re-identification using Riemannian

manifolds

is obvious that the most common patterns belong to the background (the variance
is small); (2) the patterns which are far from the rest are at the same time the most
discriminative (the variance is large).

We thought about normalizing the σci,j by the variance within the class (similarly
to Fisher’s linear discriminants). However, the results have shown that such nor-
malization does not improve matching accuracy. We think this is a consequence
that the given number of frames per individual is not enough to obtain the reliable
variance of MRC within the class.

6.1.2.1 Scalability

Discriminative approaches (e.g . [Lin 2008, Schwartz 2009]) are often accused of non-
scalability. It is true that in these approaches an extensive learning phase is neces-
sary to extract discriminative signatures. This makes these approaches very difficult
to apply in real scenario where in every new minute new people appear.

Fortunately, our approach by using very simple discriminative method is able to
perform in a real system. It is true that every time when a new signature is created
we have to update all signatures in the database. However, for 10, 000 signatures,
our update takes less than 30 seconds. Moreover, we do not expect more than
such amount of signatures into database as the re-identification approaches are con-
straint to one day period (the strong assumption about the same clothes). Further,
one alternative solution might be to use a reference dataset as it has already been
mentioned in section 5.2.7.

6.1.3 Grid matching

Given the extracted human signatures, we introduce a way to effectively distinguish
individuals. As already mentioned the human signatures consist of a set of MRC
cells structured into a dense grid. In general the matching of two signatures sA and
sB is carried out by maximizing the similarity measure. We shift one signature over
another in x and y-direction to reduce body alignment issues (see figure 6.3). When
shifting signature we preserve relative position between MRC cells to avoid wasting
of discriminative property. In our experiments we evaluate the influence of shifting
operation on matching accuracy. The similarity between two human signatures sA
and sB is defined as

S(sA, sB) =
1

|K|
∑
i∈K

σA,i + σB,i
ρ(µA,i, µB,i)

(6.2)

where K stands for the set of cells in signature sA which have corresponding cells
in signature sB; ρ is the covariance distance; σA,i and σB,i are the discriminants of
the corresponding MRC-s.
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K cells 

Figure 6.3: The similarity between two MRCG signatures. Every signature is a grid
of MRC cells. One signature is shifted over another in x and y direction to reduce
body alignment issues and maximize the similarity measure.

6.2 COSMATI signature

In this section, we propose to formulate the appearance matching problem as the
task of learning a model that selects the most descriptive features for a specific
class of objects. Even if we focus on human class, the proposed technique allows
to learn a model for other classes of objects (e.g . animals, bikes, etc.). Our main
idea is that different regions of the object appearance ought to be matched using
different strategies to obtain a distinctive representation. We refer to this approach
as COrrelation-based Selection of covariance MATrIces (COSMATI).

In contrast to the previous approach, we do not assume fixed appearance model,
but we learn offline the best representation for a specific object class (e.g . class of
humans). While learning a model (see figure 6.4), we use pairs of images registered
in different cameras as training data. The relevant pairs (images of the same object
captured in different cameras) are employed as positive samples, while irrelevant
pairs (images of different objects captured in different cameras) correspond to neg-
ative samples. Learning is performed in a covariance metric space (section 6.2.2)
using an entropy-driven criterion (section 6.2.2.2).

Having the learned model, we generate signatures using two operations (figure 6.5).
The fist stage overcomes color dissimilarities caused by variations in lighting con-
ditions. We again apply the histogram equalization [Hordley 2005] technique to the
color channels (RGB) to maximize the entropy in each of these channels and to
obtain camera-independent color representation. The second step is responsible for
appearance extraction (section 6.2.3) using a general model learned for a specific
class of objects (e.g . humans). The following sections describe our feature space and
the learning, by which the appearance model for matching is generated.
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Figure 6.4: Learning a model: correlation-based feature selection (CFS) method
selects the best subset of features for appearance matching.

6.2.1 Feature space

Our object appearance is again characterized using the covariance descriptor
[Tuzel 2006]. We recall that this descriptor encodes information on feature vari-
ances inside an image region, their correlations with each other and their spatial
layout. The performance of the covariance features is found to be superior to other
methods, as rotation and illumination changes are absorbed by the covariance ma-
trix.

In contrast to [Hirzer 2011, Tuzel 2006] and our previously presented approaches,
this time we do not limit our covariance descriptor to a single feature vector. Instead
of defining a priori feature vector, we use a machine learning technique to select
covariances that provide the most descriptive representation of the appearance of
an object.

Let L = {R,G,B, I,∇I , θI , . . . } be a set of feature layers, in which each layer is a
mapping such as color, intensity, gradients and filter responses (texture filters, i.e.
Gabor, Laplacian or Gaussian). Instead of using covariance between all of these
layers, which would be computationally expensive, we compute covariance matrices
of a few relevant feature layers. These relevant layers are selected depending on the
region of an object (see section 6.2.2).

In addition, let layer D be a distance between the center of an object and the pixel
location. Covariance of the distance layer D and three other layers l (l ∈ L) form our
descriptor, which is represented by a 4× 4 covariance matrix. By using distance D
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Figure 6.5: Extraction of signature using the previously learned model.

in every covariance, we keep a spatial layout of feature variances, which is rotation
invariant. State of the art techniques very often use pixel location (x, y) instead
of distance D, yielding better description of an image region. Conversely, among
our detailed experimentation, using D rather than (x, y), we did not decrease the
recognition accuracy in the general case, while decreasing the number of features
in covariance matrix. This discrepancy may be due to the fact that we hold spa-
tial information twofold, (1) by D in covariance matrix and (2) by location of a
rectangular sub-region from which the covariance is extracted. We constraint our
covariances to 4×4 matrices, ensuring computational efficiency. Also, bigger covari-
ance matrices tend to include superfluous features which can clutter the appearance
matching. 4 × 4 matrices provide sufficiently descriptive correlations while keep-
ing low computational time needed for calculating generalized eigenvalues during
distance computation.

Different combinations of three feature layers produce different types of covariance
descriptor. By using different covariance descriptors, assigned to different locations
in an object, we are able to select the most discriminative covariances according
to their positions. The idea is to characterize different regions of an object by ex-
tracting different kinds of features (e.g . when comparing human appearances, edges
coming from shapes of arms and legs are not discriminative enough in most cases
as every instance possess similar features). Taking into account this phenomenon,
we minimize redundancy in an appearance representation by an entropy-driven se-
lection method.

Let us define a meta covariance feature space as

C = {
(
P, cov(D, li, lj , lk)

)
: li, lj , lk ∈ L;P ∈ P}, (6.3)

where P is a set of rectangular sub-regions of the object; cov is the covariance of
features; li, lj , lk are color/intensity/filter layers. Figure 6.6 shows different feature
layers and examples of three different types of covariance descriptor. The dimension
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Figure 6.6: A meta covariance feature space. Example of three different covariance
features. Every covariance is extracted from distance layer (D) and three channel
functions (e.g . bottom covariance feature is extracted from region P3 using layers:
D, I-intensity, ∇I -gradient magnitude and θI -gradient orientation).

n of our meta covariance feature space is the product of the number of possible
rectangular regions and the number of different types of our covariance descriptor.

6.2.2 Learning by correlations in a covariance metric space

Let aci = {aci,1,aci,2, . . .aci,m} be a set of relevant observations of an object i in camera
c, where acij is a n-dimensional vector composed of different covariance features
extracted from image j of object i using n-dimensional meta covariance feature space
C. We define the distance vector between two samples aci,j and ac

′
k,l as follows

δ(aci,j ,a
c′
k,l) =

[
ρ(aci,j [z],a

c′
k,l[z])

]T
z=1...n

, (6.4)

where ρ is a geodesic distance between covariance matrices [Förstner 1999], and
aci,j [z], a

c′
k,l[z] are the corresponding covariance matrices (the same region P and the

same combination of layers). The index z is an iterator of C.

We cast the appearance matching problem into the following distance learning prob-
lem. Let δ+ be the distance vectors computed using pairs of relevant samples (of the
same people captured with different cameras, i = k, c 6= c′) and let δ− be distance
vectors computed between pairs of related irrelevant samples (i 6= k, c 6= c′). Pair-
wise elements δ+ and δ− are distance vectors, which stand for positive and negative
samples, respectively. These distance vectors define covariance metric space. Given
δ+ and δ− as training data, our task is to find a general model of appearance to
maximize matching accuracy by selecting relevant covariances and thus defining a
distance.
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6.2.2.1 Riemannian geometry

Covariance descriptors as positive definite symmetric matrices lie on a manifold that
is not a vector space (they do not lie on Euclidean space). We have already men-
tioned that specifying the covariance manifold as Riemannian we can apply differen-
tial geometry [Pennec 2006] to perform usual operations such as mean or distance.
However, learning on a manifold space is a difficult and unsolved challenge. Most
of methods (e.g . [Tuzel 2008] and also our boosting-based method) perform classi-
fication by regression over the mappings of the training data on a suitable tangent
plane. Defining tangent plane over the Karcher mean of the positive training data
points, we can preserve a local structure of the points. Unfortunately, the models
extracted using means of the positive training data points tend to be overfitted.
These models concentrate on tangent planes obtained from training data and do
not have generalization properties. In section 5.2, we did not require generalized
properties as we were learning the model for a particular individual (learning was
used for selecting discriminative features). The present work addresses the problem
of learning a general model for matching a specific class of objects (e.g . humans).
Thus, we need a method which will not be based on planes created using fixed tan-
gent planes dependent on particular humans. In [Hirzer 2011], authors avoid this
problem by casting covariance matrices into Sigma Points that lie on approximated
covariance space.

Neither using tangent planes over the Karcher means extracted from training data,
nor casting covariances into Sigma Points satisfy our matching model. As we want
to take full advantage of covariance manifold space, we propose to extract a general
model for appearance matching by identifying the most salient features. Based on
the hypothesis: “A good feature subset is one that contains features highly correlated
with (predictive of) the class, yet uncorrelated with (not predictive of) each other”
[Hall 1999], we extract our appearance model using covariance features fz (fz ∈ C)
selected by correlation-based feature selection technique.

6.2.2.2 Correlation-based feature selection (CFS)

Correlation-based feature selection (CFS) [Hall 1999] is a filter algorithm that ranks
feature subsets according to a correlation-based evaluation function. This evaluation
function favors feature subsets which contain features highly correlated with the
class and uncorrelated with each other. In our distance learning problem, we define
positive and negative class by δ+ and δ−, as relevant and irrelevant pairs of samples.
Further, feature fz ∈ C is characterized by a distribution of the zth elements in
distance vectors δ+ and δ−. The feature-class correlation and the feature-feature
inter-correlation is measured using a symmetrical uncertainty model [Hall 1999]. As
this model requires nominal valued features, we discretize fz using the method of
Fayyad and Irani [Fayyad 1993]. Let X be a nominal valued feature obtained by
discretization of fz.
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Figure 6.7: Correlation-based feature selection.

We assume that a probabilistic model of X can be formed by estimating the proba-
bilities of the values x ∈ X from the training data. The uncertainty can be measured
by entropy defined as

H(X) = −
∑
x∈X

p(x) log2 p(x). (6.5)

A relationship between features X and Y can be given by

H(X | Y ) = −
∑
y∈Y

p(y)
∑
x∈X

p(x | y) log2 p(x | y). (6.6)

The amount by which the entropy of X decreases reflects additional information on
X provided by Y and is called the information gain (mutual information)

Gain = H(X)−H(X | Y ) (6.7)

= H(Y )−H(Y | X)

= H(X) +H(Y )−H(X,Y ).

Even if the information gain is a symmetrical measure, it is biased in favor of
features with more discrete values. Thus, the symmetrical uncertainty rXY is used
to overcome this problem

rXY = 2×
[

Gain

H(X) +H(Y )

]
. (6.8)

Having the correlation measure, subset of features S is evaluated using function
M(S) defined as

M(S) =
k rcf√

k + k (k + 1) rff
, (6.9)

where k is the number of features in subset S, rcf is the average feature-class
correlation and rff is the average feature-feature inter-correlation

rcf =
1

k

∑
fz∈S

rcfz , rff =
2

k (k − 1)

∑
fi,fj∈S
i<j

rfifj , (6.10)
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Figure 6.8: Extraction of the appearance using the model (the set of features se-
lected by CFS). Different colors and shapes in the model refer to different kinds of
covariance features.

where c is the class, or relevance feature, which is +1 on δ+ and −1 on δ−. The
numerator in equation (6.9) indicates predictive ability of subset S and the denom-
inator stands for redundancy among the features.

Equation (6.9) is the core of CFS, which ranks feature subsets in the search space
of all possible feature subsets. Since exhaustive enumeration of all possible fea-
ture subsets is prohibitive in most cases, a heuristic search strategy has to be ap-
plied. We have investigated different search strategies, among which best first search
[Rich 1991] performs the best.

Best first search is an AI search strategy that allows backtracking along the search
path. Our best first starts with no feature and progresses forward through the search
space adding single features. The search terminates if T consecutive subsets show
no improvement over the current best subset (we set T = 5 in experiments). By
using this stopping criterion we prevent the best first search from exploring the
entire feature subset search space. Figure 6.7 illustrates CFS method. Let Π be the
output of CFS that is the feature subset of C. This feature subset Π forms a model
that is used for appearance extraction and matching.

6.2.3 Appearance extraction

Having the general model Π for a specific object class (e.g . humans), we compute
the appearance representation using a set of frames (see figure 6.8). Our method
belongs to the group of multiple-shot approaches, where multiple images of the same
person are used to extract a compact representation. This representation can be
seen as a signature of the multiple instances.

Using our model Π, a more straightforward way to extract appearance would be to
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compute covariance matrices of a video volume directly for every fz ∈ Π. However,
using volume covariance we loose information on real feature distribution (time
feature characteristics are merged - see section 5.2.2). Thus, we compute MRC using
a Riemannian manifold using covariance features presented in a general model. The
mean covariance matrix as an intrinsic average blends appearance information from
multiple images. For every feature fz ∈ Π we compute the mean covariance matrix.
The set of mean covariance matrices stands for an appearance representation of an
object (signature).

6.2.4 Appearance matching

Let A and B be the object signatures. The signature consists of mean covariance
matrices extracted using set Π. The similarity between two signatures A and B is
defined as

S(A,B) =
1

|Π|
∑
i∈Π

1

ρ(µA,i, µB,i)
, (6.11)

where ρ is a geodesic distances [Förstner 1999], µA,i and µB,i are mean covariance
matrices extracted using covariance feature i ∈ Π. Using the average of similarities
computed on feature set Π the appearance matching becomes robust to noise.

6.3 Conclusion

This chapter presented two efficient methods for human re-identification. These
mulitple-shot approaches are less computationally expensive than boosting-based
methods. We again employ mean Riemannian covariance as the feature for char-
acterizing images regions. The first method (MRCG) is based on predefined ap-
pearance model (dense grid), while the second technique (COSMATI) learns an
appearance representation during an offline stage.

MRCG is one alternative to the boosting scheme, giving an efficient way to take
advantage of information from the appearance of other individuals. Nonetheless, as
it was highlighted in section 5.2.7, we might need to extract a reference dataset to
provide the scalable solution. Data selection needed for the discriminative analysis,
a size of the reference dataset etc. raise numerous questions, producing new open
issues.

COSMATI is designed to be faster than MRCG. It is based on small covariance
matrices which are selected using an entropy-driven criterion. The disadvantage of
this approach is that it requires the offline learning phase, which is based on training
data from each camera to obtain the distinctive representation. We also underline
that COSMATI can be combined with MRC discriminants, providing the descriptor
which use the most information for generating human signature.
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In section 6.2.2.1 we have discussed problem related to learning on a manifold, where
model is usually created using tangent planes over the Karcher means of the positive
training data which can lead to the overfitted classifier. In the result, we use CFS
method to find the most descriptive features for a specific class of objects. However,
we have to stress that such selection methods are usually used as pre-processing
steps for machine learning algorithms. Although learning on a manifold is still an
open issue, there are already approaches which explore a manifold space either by
clustering methods [Goh 2008a] or by control points [Sen 2008]. Further studies
should look for machine learning methods which could prosper in finding subspaces
on a manifold determining the metric for appearance matching.





Chapter 7

Experimental results

“It is the weight, not numbers of experiments that is to be regarded.”
(Isaac Newton)

This chapter demonstrates an extensive evaluation of our techniques. Studying
different descriptor parameters and analyzing recognition performance on various
datasets, targeting different challenges, we show the main limitations of the proposed
approaches. We firstly describe evaluation metrics for re-identification (section 7.1).
Then, in section 7.2, we present publicly available state of the art datasets and
introduce new data for exploring the multiple-shot case. We carry out detailed
experiments of proposed methods, investigating their pros and cons in sections 7.3,
7.4 and 7.5. Finally, in section 7.6, the reader can find comparison to state of the
art methods on various datasets.

7.1 Evaluation metrics for re-identification

The performance of appearance-based re-identification system can be difficult to
quantify because re-identification performance is dependent upon the size of the
dataset. Let us consider the performance of random guessing. On a dataset of size 50

pedestrians the performance is 2%. However, on a dataset of size 1000 pedestrians,
the same algorithm performs 0.1%. If a human operator has an algorithm with a
10% re-identification rate, it would be useless on the first dataset, but very practical
on the later. The problem is relatively easy for very small datasets. Nonetheless,
it becomes challenging as the number of possible matches grows. Given a single
human signature, the chance of choosing the correct match is inversely proportional
to the number of considered signatures.

7.1.1 Cumulative matching characteristic (CMC) curve

In [Gray 2007], re-identification is considered as a ranking problem. In this frame-
work a ranking is induced on the elements of the dataset and the probability that
the correct match has a rank equal to or less than the rank score value is plotted
over the size of the test set. This performance evaluation metric is known as the
cumulative matching characteristic (CMC) curve. The CMC curve represents the



100 Chapter 7. Experimental results

2 4 6 8 10 12 14 16 18 20
20

30

40

50

60

70

80

90

100

Rank score

R
e
c
o
g
n
it
io

n
 P

e
rc

e
n
ta

g
e

Cumulative Matching Characteristic (CMC) Curve

 

 

Re!identification algorithm (95.24)

FIRST RANK (50%) 

FIFTH RANK (92%) 

NAUC 

Figure 7.1: Example of CMC curve with computed nAUC value.

Figure 7.2: Example of the person re-identification on i-LIDS-MA. The left-most
image is the probe image. The remaining images are the top 20 matched gallery
images. The red boxes highlight the correct matches in the list.

expectation of finding the correct match in the top n matches. In figure 7.1, an
example of the CMC curve is illustrated. The first rank describes the percentage of
the queries in which the correct match is found on the first position in the list of the
most similar signatures (see figure 7.2). The fifth rank represents the percentage
of the queries in which the correct match is found in the first five positions in the
list.

7.1.2 Normalized area under curve (nAUC)

We also employ a quantitative scalar appraisal of CMC curve by computing the
normalized area under curve (nAUC) value (see figure 7.1).



7.2. Datasets 101

7.1.3 Evaluation scheme

We generate a human signature for each person detected and tracked in a video
analysis system. Let us denote a signature as sci , where i encodes the person identity
and c denotes the camera. The task is to find for each signature its corresponding
signature in another camera. It is realized by querying the database of signatures
sc
′
j , where c 6= c′ with signature of interest sci . The results of the query is the list of
the most similar signatures ordered by increasing dissimilarity (see figure 7.2). The
position in the list of the true match is called the rank score. The performance is
plotted into the CMC curve to present the re-identification accuracy. This evaluation
scheme is analogous to a standard surveillance scenario where an operator queries
a system with images of the same individual captured over a short period of time
from a particular camera to find him/her in a network of cameras.

7.2 Datasets

In this section we present the most used state of the art datasets for person re-
identification, highlighting their challenging aspects. We also report the best results
that have been published so far on these data. Further, we introduce two new sets of
individuals from i-LIDS data, focusing on evaluation of the multiple-shot case.

7.2.1 CAVIAR

This dataset comes from the EC Funded CAVIAR project1. Video clips were
recorded from two different points of view in a shopping center in Lisbon. The
first one shows a view of the corridor, while the second shows a frontal view of the
scene. The resolution is half-resolution PAL standard (384 × 288 pixels, 25 frames
per second). Small appearances and a low resolution in one of the two cameras make
the data very challenging (see figure 7.3).

CAVIAR4REID

In [Cheng 2011], the authors used a ground truth provided by CAVIAR project to
extract human appearances. Of the 72 different individuals identified (with images
varying from 17 × 39 to 72 × 144), 50 are captured by both views and 22 from
only one camera. For each pedestrian captured by both cameras, 10 images were
selected by maximizing the variance with respect to resolution changes, light con-
ditions, occlusions, and pose changes. In the result, this dataset is very challenging
due to significant differences in human appearance registered in disjoint camera
views. Table 7.1 summarizes current state-of-the-art results on the CAVIAR4REID

1CAVIAR webpage: http://homepages.inf.ed.ac.uk/rbf/CAVIAR
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Figure 7.3: The sample images from CAVIAR dataset. Pairs of images highlight
appearance changes due to different camera resolution and illumination changes.

dataset. It is worth noting, that even in the case of relatively small dataset (only 50
individuals), the recognition accuracy in the first rank is very low (less than 20%).
This shows that appearance-based re-identification may be extremely difficult due
to significant camera changes.

Reference Method Accuracy (1st - 5th rank)
[Cheng 2011] PS - single-shot 9% - 31%
[Farenzena 2010] SDALF - single-shot 7% - 25%
[Cheng 2011] CPS - multiple-shot 17% - 47.8%
[Farenzena 2010] SDALF - multiple-shot 9% - 39%

Table 7.1: State of the art results on CAVIAR4REID dataset. The first and the
fifth ranks are reported.

7.2.2 ETHZ

ETHZ dataset was originally used for evaluation of human detection algorithms
[Ess 2007]. The video sequences are captured from moving cameras with a resolu-
tion of 640 × 480 pixels, providing a range of variations in people appearances. In
[Schwartz 2009] this dataset has been adjusted for re-identification purposes2. The
modified dataset consists of three sequences:

• SEQ. #1 contains 83 pedestrians,

• SEQ. #2 contains 35 pedestrians,

• SEQ. #3 contains 28 pedestrians.

2ETHZ dataset for appearance-based modeling, William Robson Schwartz webpage.
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Figure 7.4: The sample images from ETHZ dataset (SEQ. #1). Top and bottom
lines correspond to images from the beginning and from the end of the sequence,
respectively.

Unfortunately, even if the video sequences are acquired from moving camera and
the data contain changing appearances, all pedestrians are extracted from the same
camera. In our belief, despite such challenging aspects as illumination changes and
occlusions, the ETHZ dataset is not challenging enough to evaluate re-identification
approaches. One of the most challenging issues in the re-identification problem is
due to different camera settings, different color responses, different camera view
points and different environments, which is not the case for this dataset. Thus,
the performance accuracy obtained on this dataset is much higher than on the rest
of considered datasets. However, as this dataset is popular for appearance-based
model evaluation, we have also included the ETHZ in our testing database. Figure
7.4 illustrates a few examples of images from ETHZ dataset and table 7.2 presents
state of the art results.

7.2.3 i-LIDS

The image library for intelligent detection systems (i-LIDS) is the Home Office
benchmark for Video Analytics (VA) systems developed in partnership with the
Centre for the Protection of National Infrastructure (CPNI). The i-LIDS video li-
brary contains different scenarios each representing real world CCTV footage (e.g.
abandoned baggage, parked vehicle or multiple camera tracking scenario). The
most valuable data for detection and re-identification problems can be found in the
Multiple Camera Tracking Scenario (MCTS) dataset with five camera views. The
MCTS dataset contains approximately 50 hours of footage. The following sets of
individuals are extracted from the mentioned MCTS data.
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Reference Method Sequence Accuracy (1st - 5th rank)
[Cheng 2011] CPS SEQ. # 1 98% - 100%

SEQ. # 2 95.5% - 100%
SEQ. # 3 99% - 100%

[Farenzena 2010] SDALF SEQ. # 1 90% - 93%
SEQ. # 2 91% - 98%
SEQ. # 3 94% - 97%

[Bazzani 2010] HPE SEQ. # 1 85% - 93%
SEQ. # 2 81% - 93%
SEQ. # 3 87% - 96%

[Schwartz 2009] PLS SEQ. # 1 80% - 87%
SEQ. # 2 75% - 84%
SEQ. # 3 76.5% - 85%

Table 7.2: State of the art results on ETHZ dataset. The first and the fifth ranks
are reported.

i-LIDS-119

This evaluation dataset has been extracted automatically by [Zheng 2009]. It con-
tains 476 images with 119 individuals (see figure 7.5) registered by two different
cameras. This dataset is very challenging since there are many occlusions and of-
ten only the top part of the person is visible. Table 7.3 presents state of the art
performance on this dataset.

Reference Method Accuracy (1st - 5th rank)
[Cheng 2011] PS - single-shot 30% - 51%
[Farenzena 2010] SDALF - single-shot 28% - 48%
[Zheng 2009] Group context - single-shot 24% - 44%
[Bazzani 2010] HPE - multiple-shot 22% - 45%
[Cheng 2011] CPS - multiple-shot 47% - 73%
[Farenzena 2010] SDALF - multiple-shot 50% - 70%

Table 7.3: State of the art results on i-LIDS-119 dataset. The first and the fifth
ranks are reported.

i-LIDS-119 has been prepared for single-shot case where the number of images per in-
dividual is not significant (only one image is necessary). Unfortunately, for multiple-
shot case, this dataset does not fit very well because the number of images per indi-
vidual is too low (in average 4). Therefore we have extracted two new sets of indi-
viduals from i-LIDS data (i-LIDS-MA and i-LIDS-AA) to investigate more precisely
the advantage of using tracking results in building the human signatures. These
datasets finally satisfy all requirements of multiple-shot person re-identification (at
least 2 non-overlapping cameras and at least 10 images per individual extracted
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Figure 7.5: The sample images from i-LIDS-119 dataset. Top and bottom lines
correspond to images from different cameras. Columns illustrate the same person.

Figure 7.6: The sample images from i-LIDS-MA dataset. Top and bottom lines
correspond to images from different cameras. Columns illustrate the same person.

from each camera).

i-LIDS-MA (Manually Annotated)

This dataset contains 40 individuals extracted from two cameras. For each individual
46 frames have been annotated manually from both cameras. Therefore we have
40 × 2 × 46 = 3680 annotated images. Figure 7.6 illustrates sample images from
i-LIDS-MA.

i-LIDS-AA (Automatically Annotated)

The manually annotated dataset (i-LIDS-MA) does not reflect real video surveillance
scenario where humans are detected and tracked automatically. Consequently, we
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Figure 7.7: The sample images from i-LIDS-AA dataset. Top and bottom lines
correspond to images from different cameras. Columns illustrate the same person.

have applied HOG-based human detector and tracker to obtain multiple images of
individuals seen from both cameras. In this case, detection and tracking results
are noisy which makes the dataset more challenging. This dataset contains 100

individuals. For each individual we have extracted automatically a different number
of frames depending on tracking difficulties. In total, the dataset contains 10754

images. Figure 7.7 illustrates sample images from i-LIDS-AA.

Both datasets i-LIDS-MA and i-LIDS-AA have been extracted for studying more
carefully advantages of using multiple images in generating human signature. We
have already shared these datasets with at least 10 research laboratories.

7.2.4 TSP

Figure 7.8: The acquisition framework of TSP data [Corvee 2012].
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Figure 7.9: The sample images from TSP dataset: (1) the first row corresponds to
the frontal view registered by camera 1, (2) the second and the third row correspond
to the back view and the frontal view registered by camera 2, respectively, (2) the
last row corresponds to the back view registered by camera 1.

TSP dataset was extracted in VIDEO-ID project3 in TELECOM Sud Paris (TSP).
This data was proposed for evaluation of human detection, face recognition and
person re-identification algorithms [Corvee 2012]. People are detected and tracked in
two cameras by employing LBP detector . This new database was created from two-
camera network with non-overlapping views. Figure 7.8 illustrates an acquisition
setup. The dataset contains 23 individuals which are changing clothing during
acquisition process. In total we can distinguish 36 different subjects. Each subject
is registered three times: (1) the frontal view while entering the scene registered by
camera 1, (2) the back view and the frontal view registered while tracking a person in
camera 2, (3) the back view while existing the scene registered by camera 1 (see figure
7.9). Concerning evaluation of person re-identification, the main challenging aspects
of this dataset are significant illumination changes, inaccurate people detections and
pose variations (frontal and back views).

3VIDEO-ID webpage: http://www-sop.inria.fr/pulsar/projects/videoid/
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Figure 7.10: The sample images from VIPER dataset. Top and bottom lines corre-
spond to images from different cameras. Columns illustrate the same person.

7.2.5 VIPER

VIPER [Gray 2007] dataset contains two views of 632 pedestrians. Each image
is cropped and scaled to be 128 × 48 pixels. Images of the same pedestrian have
been taken from different cameras, under different viewpoints, poses and lighting
conditions. The primary motivation of [Gray 2007] was to propose a dataset which
can be used for learning and evaluation of the viewpoint invariant approaches. Thus,
the dataset contains pairs which viewpoint angle changes from 45 up to 180 degrees.
The quality of the images varies. The video was compressed before processing and
as a result, the images have spatially sub sampled chrominance channels, as well
as some minor interlacing and compression artifacts. It is the most challenging
dataset currently available for the single-shot human re-identification (see figure
7.10). Table 7.4 presents state of the art performance on 316 pairs randomly selected
from VIPER dataset. Unfortunately, this dataset does not correspond to a video
surveillance scenario, in which many images of the same person are available to
generate a signature (multiple-shot case).

Reference Method Accuracy (1st - 5th rank)
[Cheng 2011] PS 21% - 45%
[Zheng 2011] PRDC 15% - 38%
[Hirzer 2011] Des+Dis 19% - 39%
[Dikmen 2010] LMNN-R 21% - 49%
[Farenzena 2010] SDALF 20% - 39%
[Prosser 2010] PRSVM 13% - 37%
[Gray 2008] ELF 12% - 31%

Table 7.4: State of the art results on VIPER dataset. The first and the fifth ranks
are reported.
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7.3 Single-shot approaches

This section presents a detailed performance analysis of dominant color descriptor
based (DCD) signature and of spatial covariance region based (SCR) signature.
Both signatures are evaluated using i-LIDS-MA dataset (section 7.2.3). We study
different steps of our methods, investigating the sensitivity of parameters and their
impact on the recognition accuracy. The parameters can have a significant influence
on performance so proper evaluation is necessary.

7.3.1 DCD signature

Similarly to [Yang 2008], we set parameter α = 2 and Td = 25 (see section 4.1.3).
Colors are represented in the perceptually uniform CIE LUV color space. From
every human image, foreground regions are extracted using background subtraction
algorithm (section 4.1.1). Then, we normalize color by using histogram equalization
(section 4.1.2). We investigate different numbers of dominant colors for the upper
and the lower body representation. Then, the influence of background subtraction
and histogram equalization is evaluated.

Number of dominant colors: Representing a human appearance, we have to
provide the maximum number of dominant colors for each body part. Figure 7.11(a
- d) illustrates different combinations for selecting the maximum number of dominant
colors to represent the upper and the lower body part. Our results show that the
best performance is obtained for the number of dominant colors around 4− 5. This
result confirms the evaluation presented in [Yang 2008].

Background subtraction and histogram equalization: Figure 7.11(e) shows
the impact of background subtraction and histogram equalization on recognition rate.
We can notice that the background subtraction step is the crucial part, while ex-
tracting DCD signature. The results clearly show that background regions can
significantly disturb our descriptor.

Histogram equalization also improves the recognition accuracy. However, we would
expect more significant improvement after histogram equalization (especially in the
first ranks), what is not confirmed by the evaluation. This discrepancy might be due
to the fact, that histogram equalization disturbs an initial color space, deteriorating
the clustering step. Histogram equalization is independently applied to each color
channel, which in the result produce color artifacts slightly contaminating color
space.
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(b) 4× (2, 3, 4, 5)
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(c) 3× (2, 3, 4, 5)
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(d) 2× (2, 3, 4, 5)

2 4 6 8 10 12 14 16 18 20

10

20

30

40

50

60

70

80

90

100

Rank score

R
ec

og
ni

tio
n 

P
er

ce
nt

ag
e

i−LIDS−MA

 

 

DCD_5x4_HE_BS (82.65)
DCD_5x4_NHE_BS (77.53)
DCD_5x4_HE_NBS (72.12)
DCD_5x4_NHE_NBS (70.46)

(e) (HE,NHE)× (BS,NBS)

Figure 7.11: CMC curves obtained on i-LIDS-MA dataset using DCD signature:
(a),(b),(c),(d) show different combinations of the maximum dominant color numbers
for the upper and the lower body part (upper × lower); (e) the performance of DCD
signature applied on images with and without background subtraction step (BS vs.
NBS), and with and without histogram equalization (HE vs. NHE).
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7.3.2 SCR signature

Feature vector: We evaluate our SCR signature using different feature combina-
tions for covariance descriptor (section 4.2.2). We select the following five feature
vectors:

F1 =

[
x, y,Rxy, Gxy, Bxy,∇Rxy, θRxy,∇Gxy, θGxy,∇Bxy, θBxy

]
, (7.1)

F2 =

[
D, Rxy, Gxy, Bxy,∇Rxy, θRxy,∇Gxy, θGxy,∇Bxy, θBxy

]
, (7.2)

F3 =

[
Rxy, Gxy, Bxy,∇Rxy, θRxy,∇Gxy, θGxy,∇Bxy, θBxy

]
, (7.3)

F4 =

[
x, y, Ixy,∇Ixy, θIxy

]
, (7.4)

F5 =

[
x, y,Rxy, Gxy, Bxy

]
, (7.5)

where x and y are pixel location, D is a distance (L2 norm) between the center of
an object and the pixel location, Rxy, Gxy, Bxy, Ixy are RGB and intensity channel
values. ∇ and θ corresponds to gradient magnitude and orientation in each chan-
nel, respectively. While using feature vector Fi, we represent an image region by
covariance matrix Ci.

Feature vectors are manually selected to minimize redundancy and maximize infor-
mation of the covariance descriptor. Defining F1 and F2, we compare the usage of
spatial features (x, y) vs D. Then, F3 illustrates the feature performance while not
keeping spatial correlations inside the covariance descriptor. Finally, F4 investigates
the usage of only simple texture features (intensity + gradients) and F5 represents
only color statistics.

Figure 7.12(a) presents the performance of SCR using different types of covariance
descriptor. It is apparent that the best performance is obtained by the feature vector
which contains the largest number of features (F1). Surprisingly, the recognition
accuracy of feature vector F4 is also very high. It means that the most discriminative
information is given by texture features. The worst performance is obtained by
feature vector F3, in which there is no information on pixel location (no spatial
correlations). It clearly shows that information on spatial correlation of features
(texture) has significant impact on recognition accuracy.

Levels of spatial pyramid: In section 4.2.4, we have described the spatial pyramid
matching, which compares two objects by computing the similarity on decreasingly
finer cells. Matches found at smaller cells are weighted more highly than matches
found at larger cells.

Investigating the impact of different number of levels, we carry out experiments
using L = 0, 1, 2, 3, while applying the pyramid match kernel (see equation 4.16).
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(a) covariance descriptor Ci
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(b) number of spatial levels Li
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SCR_NEQ_L1 (67.31)
SCR_EQ_L1 (75.31)
SCR_NEQ_L3 (80.18)
SCR_EQ_L3 (87.40)

(c) histogram equalization

Figure 7.12: CMC curves obtained on i-LIDS-MA dataset using SCR signature:
(a) performance comparison of different covariance descriptors; (b) analysis of the
level’s depth: L1 corresponds to the matching using only one level (level 0 refers
to the full body, see figure 4.11), L2 corresponds to the matching using two levels
(level 0 and level 1), etc.; (c) the performance of SCR signature with and without
histogram equalization (HE vs. NHE).

Figure 7.12(b) illustrates the performance changes depending on the level’s depth.
The best recognition rate is achieved using a three-level pyramid (L3 refers to the
pyramid matching at level 0,1 and 2). It appears that a four-level pyramid per-
forms worse than a three-level pyramid. This is due to the fact that at level 3,
image regions contain only few pixels, from which it is difficult to extract additional
information.

Histogram equalization: Figure 7.12(c) shows the impact of histogram equaliza-
tion step. We can notice the significant increase in performance, while applying
both, the spatial pyramid matching and histogram equalization.
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7.4 Boosting approaches

In this section, we evaluate our boosting approaches on i-LIDS-MA dataset (sec-
tion 7.2.3). We study different stopping criteria while learning signatures and also
investigate the matching performance w.r.t. the number of learning frames. We
show that our methods based on MRC patches (RCP/LCP signature) significantly
improve performance over already presented methods.

7.4.1 Haar signature

We present a performance of Haar-based signatures investigating different stopping
criteria while employing two signature matching strategies: volume-based similarity
(section 5.1.3.1) and margin-based similarity (section 5.1.3.2).

Stop criteria: We evaluate our Haar signature using different values of parameters
p (the minimum rate of true positives on a boosting stage), and k (the maximum
number of stages in a cascade of classifiers), which determine learning of the Haar
classifier. In experiments we assume p ∈ {0.9, 0.95, 0.99} and k ∈ {5, 10, 20} (see
section 5.1.2.6 for details).

Figure 7.13(a) illustrates the impact of parameter p. We could expect that the
greater p, the higher probability of generating the overfitted classifier (especially in
our case, where we compute similarity between signatures, testing the classifier on
images from different cameras). However, the results show that the performance
of our Haar signature does not decrease, while increasing p. This confirms the
phenomenon that AdaBoost does not suffer from overfitting (the margin theory
states that AdaBoost tends to increase the margins of the training examples, and
in the result, the increase in the margins implies better generalization performance
[Schapire 1998, Rudin 2007]).

We also analyze the size of the cascade k, while learning signatures. From figure
7.13(b), we can deduce that volume-based similarity depends more on parameter k
than margin-based similarity. It appears that the margin-based similarity, which is
based on the real-value classification (the margin) provides more useful information
than the volume-based similarity, which is based on the binary classification. The
results show that k = 10 gives relatively good performance.

Number of positive frame samples: We carry out experiments to show the
evolution of the performance with the number of given frames (positive images)
for training per individual. We learn signatures using N ∈ {5, 10, 20, 46} positive
samples. From figure 7.13(c) it is apparent that the larger number of frames, the
better performance is achieved. It is worth noting that N ≈ 50 is usually afford-
able in practice as it corresponds to only 2 seconds of a standard 25 frame rate
camera.
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(a) parameter p
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(b) parameter k
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HAAR_V N=10 (83.50)

HAAR_V N=20 (85.71)

HAAR_V N=46 (88.84)

HAAR_M N=5 (79.75)
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HAAR_M N=20 (87.12)

HAAR_M N=46 (90.15)

(c) number of frames N

Figure 7.13: CMC curves obtained on i-LIDS-MA dataset using Haar signatures.
HAAR_V and HAAR_M labels correspond to volume-based and margin-based sim-
ilarity, respectively: (a) the minimum rate of true positives - parameter p; (b) the
maximum number of stages in a cascade - parameter k; (c) number of frames N
required for learning signatures.

Volume-based similarity vs. margin-based similarity: In all experiments
margin-based similarity performed slightly better than volume-based similarity (fig-
ure 7.13). We again believe that this is due to the fact that margin-based similarity
provides the confidence of classification (the margin), while classifying an image,
which is not the case for volume-based similarity (the volume-based similarity is
only based on binary response of a classifier).

7.4.2 RCP/LCP signature

Experimental setup: Every human image is scaled into a fixed size of 64 × 192

pixels. We generate MRC patches of 16× 16 pixels with 8 pixels step (it gives 161

patches). We generate MRC patches of 32 × 32 pixels with 16 pixels step (it gives
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33 patches). Then, we generate combinations of MRC patches (small - small, small
- big, big - big, we limit space of patches to those which are situated with the 16

pixels step). Finally, in total we have 3401 MRC weak classifiers.

Stop criterion: We evaluate our RCP and LCP signature using different values
of parameter z, which determines the number of MRC patches used for generating
signature. We set z ∈ {90, 100, . . . , 160}. Analyzing the performance at figure
7.14(b), we should not expect any confirmation of boosting properties related to
overfitting issues, as our similarity function is not directly based on the classification
function. Parameter z determines the density of MRC patches. We can note that for
RCP, the larger number of patches, the better performance is achieved, which is not
the case for LCP method. LCP method significantly outperforms RCP (especially in
the first ranks), which bears out advantages of using discriminative learning.

Signature matching: While matching, we shift one signature over another to
reduce body alignment issues. Shifting is performed horizontally and vertically by
fixed amount of pixels, maximizing the similarity measure (see section 5.2.6). From
figure 7.14(d), we can deduce that shifting improves performance, especially in the
first ranks.
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(a) parameter z for RCP
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(b) parameter z for LCP
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(c) matching for RCP
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(d) matching for LCP
Figure 7.14: CMC curves obtained on i-LIDS-MA dataset using LCP/RCP signa-
tures: (a,b) stop criterion; (c,d) signature matching (shifting parameters: sW ×H
corresponds to vertical and horizontal shift).
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(a) covariance descriptor Ci for MRCG
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MRCG+ C5 (97.93)

(b) covariance descriptor Ci for MRCG+

Figure 7.15: CMC curves obtained on i-LIDS-MA dataset using MRCG signatures:
performance analysis of different covariance descriptors: (a) without using discrim-
inative method, (b) with using discriminative method.

7.5 Efficient re-identification

This section explores recognition performance of methods described in chapter 6.
Again, i-LIDS-MA dataset (section 7.2.3) is employed to evaluate different settings
of parameters.

7.5.1 MRCG signature

Experimental setup: Every human image is scaled into fixed size of 64 × 192

pixels (size of the grid). We extract MRC cells of W × H pixels, on a fixed grid
of w × h pixel step (w × h corresponds to the overlap between each cell in the
dense grid). In experiments we refer to Mean Riemannianc Covariance Grid with-
out using discriminant method as MRCG and with using discriminant method as
MRCG+.

Feature vector: We carry out experiments using different features inside the mean
Riemannian covariance. Similarly as in section 7.3.2, we use the same five feature
vectors (Fi), computing covariance matrices (Ci). From figure 7.15, it is clear that
again the best performance is obtained by the feature vector which contains the
largest number of features (F1). We can also note that discriminative method sig-
nificantly improves recognition rate, especially in the first ranks (figure 7.15(b)).

Grid layout: We perform experiments investigating different structures of the grid.
Figure 7.16(a,b) shows performance of MRCG using different size of cells (W ×H)
with different density step (w×h). The dense grid slightly increases the recognition
performance. We expect that a dense structure will have more relevant impact on
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(a) grid layout for MRCG
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(b) grid layout for MRCG+
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(c) matching for MRCG
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(d) matching for MRCG+

Figure 7.16: CMC curves obtained on i-LIDS-MA dataset using MRCG signatures:
(a,b) performance analysis of grid layout (W ×H×w×h); (c,d) signature matching
(shifting parameters: sW ×H corresponds to vertical and horizontal shift).

recognition accuracy in the case of many occlusions.

Signature matching: While matching, we shift one signature over another to
reduce body alignment issues. Shifting is performed horizontally and vertically
by fixed amount of pixels, maximizing the similarity measure (see section 5.2.6).
From figure 7.16(c,d), we can deduce that shifting slightly improves performance.
We notice that improvement is more significant when human detections are less
accurate (e.g . for i-LIDS-AA dataset).

Number of frames: We carry out experiments to show the evolution of the per-
formance with the number of given frames per individual (figure 7.17). The results
indicate that the larger number of frames, the better performance is achieved. It
clearly shows that averaging covariance matrices on Riemannian manifold using
multiple shots leads to a much better recognition accuracy.
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(a) number of frames for MRCG
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MRCG+, N=46 (97.84)

(b) number of frames for MRCG+

Figure 7.17: CMC curves obtained on i-LIDS-MA dataset using MRCG signatures:
performance evolution w.r.t. the number of given frames.

TSP

Using TSP dataset (section 7.2.4) we evaluate two common video surveillance sce-
narios: (1) person re-identification in a single camera and (2) multiple-appearance
recognition employing two cameras. Person appearances are registered automati-
cally by applying LBP-based detector [Corvee 2012].

In TSP dataset, we distinguish three types of appearance comparison (see figure
7.18(b)):

• type A - people wearing the same clothes in recording sessions,

• type B - people slightly change their appearances from one recording session
to the other (e.g . someone unzipping his/her jacket or someone taking his/her
scarf off),

• type C - people with great change of appearance (e.g . person adding a coat
with a hat).

We analyze our MRCG descriptor comparing appearances registered in a single
camera. The tracked people appearance signatures are recorded in a database during
the first session. During the second session, the appearance signatures of all the
tracked people are compared with the database. In figure 7.18(a), we plot the
appearance matching distances between the same person appearances for type A, B
and C. The results show that people type A and B are successfully retrieved with
rank 1, except for 1 person with rank 2, when matching distances are below 2.1.
People of type C (i.e. strong change of appearance) are not re-identified. However,
a uncertainty zone exists for a matching distance between 1.75 and 2.1.
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(a) distance evaluation in a single camera (b) types
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(c) re-identification in different cameras

Figure 7.18: Evaluation of MRCG descriptor using TSP data: (a) distance compar-
ison for type A, B and C; (b) example images of types; (c) CMC curves for queering
a database using signatures corresponding to frontal and back view, respectively.

We have also performed an evaluation using two cameras. As we have already
mentioned (section 7.2.4), we have extracted three trajectories (1) the frontal view
by camera 1, (2) the back view and the frontal view by camera 2 and (3) the back
view by camera 1. We evaluate re-identification in the following way:

• mono appearance mode - frontal and back view of people tracked in camera 1

have their appearance signatures extracted separately,

• multiple appearance mode - both frontal and back view of people tracked in
camera 2 have their appearance signatures extracted (we could differentiate
two views based on the direction of the trajectory). Both signatures are merged
into a single signature stored in a database (we create signature which contains
two MRCG descriptors).
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Every signature from camera 1 is used as a query to our database (multiple-
appearance signatures extracted from camera 2). The CMC curves for back and
frontal view signatures are presented in figure 7.18(c). The results show that de-
spite automatic inaccurate people detection and the different lighting conditions
of the two cameras, the system shows promising people appearance based re-
identification.

7.5.2 COSMATI signature

Feature space: We scale every human image into a fixed size window of 64× 192

pixels. The set of rectangular sub-regions P is produced by shifting 32×8 and 16×16

pixel regions with 8 pixels step (up and down). It gives |P| = 281 rectangular sub-
regions. We set L = {(l,∇l, θl)l=I,R,G,B, Gi=1...4,N ,L}, where I,R,G,B refer to
intensity, red, green and blue channel, respectively; ∇ is the gradient magnitude;
θ corresponds to the gradient orientation; Gi are Gabor’s filters with parameters
γ, θ, λ, σ2 set to (0.4, 0, 8, 2), (0.4, π2 , 8, 2), (0.8, π4 , 8, 2) and (0.8, 3π

2 , 8, 2), respec-
tively; N is a gaussian and L is a laplacian filter. A learning process involving all pos-
sible combinations of three layers would not be computationally tractable (229296

covariances to consider in section 6.2.2.2). Thus instead, we experimented with dif-
ferent subsets of combinations and selected a reasonably efficient one. Among all
possible combinations of the three layers, we choose 10 combinations (Ci=1...10) to en-
sure inexpensive computation. We set Ci to (R,G,B), (∇R,∇G,∇B), (θR, θG, θB),
(I,∇I , θI), (I,G3, G4), (I,G2,L), (I,G2,N ), (I,G1,N ), (I,G1,L), (I,G1, G2), re-
spectively, separating color and texture features. Similar idea was already proposed
in [Gray 2008]. Note that we add to every combination Ci layer D, thus generating
our final 4×4 covariance descriptors. The dimension of our meta covariance feature
space is n = |C| = 10× |P| = 2810.

Learning and testing: Let us assume that we have (h+ q) individuals seen from
two different cameras. For every individual, m images from each camera are given.
We take q individuals for learning our model, while h individuals are used to setup
the gallery set. We generate positive training examples by comparing m images
of the same individual from one camera with m images from the second camera.
Thus, we produce |δ+| = q × m2 positive samples. Pairs of images coming from
different individuals stand for negative training examples, thus producing |δ−| =

q × (q − 1)×m2.

For each individual we randomly select m = 10 images. Then, we randomly select
q = 10 individuals to learn a model. The evaluation is performed on remaining
h = 30 individuals. Every signature is used as a query to the gallery set of signatures
from different camera. This procedure is repeated 10 times to obtain averaged CMC
curves.

COSMATI vs. Ci: We first evaluate the improvement in using different types of
covariance descriptors for the appearance matching. We compare models based on a
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(a) h=30 individuals
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COSMATI, N=1 (89.36)
COSMATI, N=3 (89.41)
COSMATI, N=5 (89.68)
COSMATI, N=10 (92.77)
COSMATI, N=20 (93.58)
COSMATI, N=46 (96.33)

(b) h=30 individuals

Figure 7.19: Performance comparison: (a) with models based on a single type of
covariance descriptor; (b) w.r.t. the number of given frames

single type of covariance with the model, which employs different kinds of covariance
features. From figure 7.19(a) it is apparent that combination of different kinds of
covariance features improves matching accuracy.

COSMATI w.r.t. the number of shots: We carry out experiments to show
the evolution of the performance with the number of given frames per individual
(figure 7.19(b)). The results indicate that the larger number of frames, the better
performance is achieved. It clearly shows that averaging covariance matrices on Rie-
mannian manifold using multiple shots leads to a much better recognition accuracy.
We again highlight that N ≈ 50 is usually affordable in practice as it corresponds
to only 2 seconds of a standard 25 frame rate camera.

Computation complexity: In our experiments, for q = 10 and m = 10 we
generate |δ+| = 1000 and |δ−| = 9000 training samples. Learning on 10.000 sam-
ples takes around 20 minutes on Intel quad-core 2.4GHz. The model in average is
composed of 150 covariance features. The calculation of generalized eigenvalues of
4×4 covariance matrices (distance computation) takes ∼ 2µs without applying any
hardware-depended optimization routines (e.g . LAPACK library can perform faster
using block operations optimized for architecture).
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7.6 Competitive evaluation

This section presents a comparative evaluation of our descriptors. We carry out
experiments on various datasets, presenting the comparison to state of the art tech-
niques. We discuss the results and explore the main limitations of our descrip-
tors.

7.6.1 i-LIDS-MA

We have already used i-LIDS-MA dataset (section 7.2.3) to study different param-
eters of our methods in previous sections. Now, we select the best parameters per
each method and present the comparison in figure 7.20(a,b). As COSMATI requires
learning samples from both cameras, we also carry out experiments comparing COS-
MATI vs. MRCG and LCP, selecting q = 10 individuals for learning and h = 30

individuals for testing (the detailed evaluation procedure is described in section
7.5.2).

The best performance is achieved by COSMATI+. We remind that COSMATI is
the fastest method among techniques presented in figure 7.20(b), as it uses small
covariance matrices (4 × 4). The experiment bears out that a fusion of the strong
covariance descriptor with an efficient selection method produces descriptive models
for the appearance matching problem. In the result, in combination with our dis-
criminative method (COSMATI+), we achieve the best recognition accuracy. The
disadvantage of COSMATI is the offline learning phase which requires training data
from each camera to obtain the distinctive representation. It is also worth noting
that Haar-like features are not so discriminative as covariance descriptors. We have
expected such results as Haar-like features are just based on simple rectangular in-
tensity patterns, while covariance matrices keep information on feature distribution
with their spatial layout.

Considering our single-shot approaches, SCR signature significantly outperforms
DCD signature. We strongly believe that it is due to the fact that covariance matrix
holds texture information which is not the case for dominant color descriptor.

In figure 7.21, we illustrate differences in performance of covariance-based, color-
based and Haar-based signature. The covariance-based descriptor (MRCG) keeps
texture information (query A) in contrast to DCD and HAAR signatures. How-
ever, its performance slightly decreases when image regions are homogeneous (small
amount of edge features - query B, D). Although edges can also mislead the algo-
rithm (query C), we find covariance feature as the best descriptor in general case for
matching appearances across disjoint camera views. We also show that covariance-
based descriptor can be outperformed by DCD (query B) or by Haar-like features
(query C). Moreover, DCD can also outperform Haar-like features (query B) and
vice versa (query C). It opens new directions in further studies e.g . looking for the
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(a) h = 40 individuals
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COSMATI (96.33)
COSMATI+ (97.95)
MRCG (93.90)
MRCG+ (97.72)
LCP (97.77)

(b) h = 30 individuals

Figure 7.20: Performance comparison: ’+’ indicates the cases in which we have
applied our discriminative method (section 6.1.2); (a) all methods except COSMATI;
(b) COSMATI vs. MRCG and LCP.

combination of different features or selecting the best kind of feature depending on
content of an image/video.

7.6.2 i-LIDS-AA

This dataset contains 100 individuals automatically detected and tracked in two
cameras. Cropped images are noisy, which makes the dataset more challenging (e.g .
detected bounding boxes are not accurately centered around the people, only a part
of the people is detected due to occlusion).

The performance on this dataset is shown in figure 7.22. The results show again
that descriptors which average covariances on Riemannian manifold outperform sig-
nificantly single-shot approach. Unfortunately, achieved recognition rate is not very
high in comparison with the results obtained on i-LIDS-MA. It shows one of the main
limitations of the approaches - performance directly depends on human detection
accuracy.

We also evaluate the proposed techniques using hierarchical matching (we extract
human signatures on different resolutions and then during feature matching we
maximize similarity through all extracted resolutions). Unfortunately, performance
do not change significantly (1% - 2% improvement in the first rank has been noticed)
with a great increase of time consumption. Moreover, using hierarchical matching
(giving more flexibility to the appearance) we lose discriminative properties of the
spatial correlation (e.g . we might match noise).
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Figure 7.21: The query results of different algorithms: the first row corresponds to
the query image and the remaining rows correspond to the first ranks returned by
MRCG, DCD and HAAR_M algorithms, respectively. True matches are highlighted
with green color.

7.6.3 i-LIDS-119

This dataset is extensively used in the literature for testing the person re-
identification approaches. The dataset is very challenging since there are many
occlusions and often only the top part of the person is visible. i-LIDS-119 has been
prepared for single-shot case, thus it does not fit very well for evaluating multiple-
shot case, because the number of images per individual is very low (in average 4).
Moreover, for 22 individuals there are only 2 images given (one from each camera).
Hence, in evaluation of multiple-shot signatures, we apply simple affine transforma-
tion on given images (coordination of transformation matrix are changed by 5% and
rotation angle is in range of [−6◦; 6◦]) to obtain multiple images. As every trans-
formation of an original image is allowed we claim that this solution is fair with the
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SCR (84.95)
RCP (87.93)
LCP (89.31)
MRCG+ (92.87)
COSMATI (90.82)

Figure 7.22: Performance comparison of covariance-based descriptors on i-LIDS-AA.
Evaluation of COSMATI is performed using the models learned on i-LIDS-MA.

state of the art. In total, we use maximally N = 2 original images to create human
signatures.

Single-shot approaches: We compare our SCR descriptor with current state of
the art approaches: PS [Cheng 2011], SDALF [Farenzena 2010] and Group-Context
[Zheng 2009]. Our descriptor outperforms all state of the art descriptors, achieving
32% in the first rank (figure 7.23). It is worth mentioning that the performance is not
very high because the person images from the i-LIDS data are very challenging since
they are captured from non-overlapping multiple camera views subject to significant
occlusions, noisy body part detections and large variations in both view angle and
illumination. PS achieves comparable results to our descriptor (both descriptors,
SCR and PS are based on body part detections), while SDALF is slightly worse. It
may be due to the fact that assumptions of SDALF descriptor (perceptual principles
of symmetry and asymmetry of the human body) are not met in this dataset because
of many occlusions.

Multiple-shot approaches: We carry out experiments using our covariance-
based multiple-shot signatures. We compare with CPS [Cheng 2011], SDALF
[Farenzena 2010] and HPE [Bazzani 2010]. In case of COSMATI, we have used
models learned on i-LIDS-MA to evaluate our approach on the full dataset of 119
individuals. Our CMC curves are generated by averaged CMC over 10 trials. Results
are presented in figure 7.23(b). COSMATI performs the best among all considered
methods. We believe that it is due to the informative appearance representation ob-
tained by CFS technique (section 6.2.2.2). It clearly shows that a combination of the
strong covariance descriptor with the efficient selection method produces distinctive
models for the appearance matching problem.

COSMATI vs. PRDC [Zheng 2011]: Additionally, we compare our approach with
PRDC method. This method also requires offline learning, thus we can compare
with state of the art approach, while learning models on i-LIDS-119. PRDC focuses
on distance learning that can maximize matching accuracy regardless of the rep-
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MRCG+, N = 2
LCP
CPS, N = 2
SDALF, N = 2
HPE, N = 2

(b) multiple-shot

Figure 7.23: Comparison with state of the art approaches on i-LIDS-119: (a) with
PS [Cheng 2011], SDALF [Farenzena 2010] and Context [Zheng 2009]; (b) with CPS
[Cheng 2011], SDALF [Farenzena 2010] and HPE [Bazzani 2010].

resentation choice. We reproduce the same experimental settings as [Zheng 2011].
All images of h randomly selected individuals are used to set up the test set. The
remaining images form the training data. Each test set is composed of a gallery set
and a probe set. Unlike [Zheng 2011], we use multiple images (maximally N = 2) to
create the gallery and the probe set. The procedure is repeated 10 times to obtain
reliable statistics. Our results (figure 7.24(a,b)) show clearly that COSMATI outper-
forms PRDC. The results indicate that using strong descriptors, we can significantly
increase matching accuracy.

COSMATI - model analysis: The strength of our approach is the combination
of many different kinds of features into one similarity function. Table 7.5 shows
the percentage of different kinds of covariance features embedded in all our models,
which were used during the evaluation. Unlike [Gray 2008], our method concen-
trates more on texture filters than on color features. It appears that the higher the
resolution of images, the more frequent the usage of texture filters is. Figure 7.25
illustrates that models extracted on higher resolution employ more texture features.

C1(R,G,B) C2(∇R,∇G,∇B) C3(θR, θG, θB) C4(I,∇I , θI) C5(I,G3, G4)

9.61 % 5.30% 4.62% 4.37% 5.47%
C6(I,G2,L) C7(I,G2,N ) C8(I,G1,N ) C9(I,G1,L) C10(I,G1, G2)

12.70 % 14.29% 17.35% 12.12% 14.16 %

Table 7.5: A table showing the percentage of different covariance features embedded
in models (choice of covariance layers Ci is detailed in section 7.5.2).

Background subtraction step: Using multiple images, a straightforward way
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Figure 7.24: COSMATI vs. PRDC [Zheng 2011]: h is the size of the gallery set
(larger h means smaller training set).

(a) (b) (c) (d)

Figure 7.25: Extracted models: (a,b) example image from i-LIDS-119 (lower resolu-
tion) and from i-LIDS-MA (higher resolution); (c,d) models extracted using images
from i-LIDS-119 and i-LIDS-MA respectively; red indicates color features which
turn out to be more prominent in (c).

for appearance extraction would be to use a background subtraction algorithm for
obtaining foreground regions. Unfortunately in many real scenarios, consecutive
frames are not available due to gaps in tracking results. Having a still image, we
could apply the extended graph-cut approach: GrabCut [Rother 2004] (see section
4.1.1) to obtain a human silhouette. This approach can be driven by cues coming
from detection results (a rectangle around the desired object). Surprisingly, Grab-
Cut does not increase matching accuracy in our framework for all covariance-based
techniques. The main reason of this result is that GrabCut often mis-segments
significant parts of foreground regions. In our approaches we overcome the back-
ground issue either by learning a model which focuses on features corresponding
to foreground (COSMATI), or by applying discriminative method (e.g . LCP by
boosting and MRCG by discriminants).
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(a) h = 83 individuals
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(b) h = 35 individuals
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(c) h = 28 individuals

Figure 7.26: CMC curves obtained on ETHZ dataset: (a) sequence SEQ. #1;
(b) sequence SEQ. #2; (c) sequence SEQ. #3. We compare our methods with
PLS [Schwartz 2009], HPE [Bazzani 2010], SDALF [Farenzena 2010] and CPS
[Cheng 2011].

We analyze performance of our algorithms on ETHZ dataset. As mentioned previ-
ously, this dataset contains video sequences extracted only from a single camera. In
the results, the performance accuracy obtained on this data is much higher than on
the rest of considered datasets. The challenging aspects of ETHZ are illumination
changes and occlusions.

Figure 7.26 illustrates performance comparison with state of the art techniques. Our
approaches perform slightly worse than CPS [Cheng 2011], but significantly better
than PLS [Schwartz 2009], HPE [Bazzani 2010] and SDALF [Farenzena 2010] . As
CPS is based on densely sampled shape context descriptors - pictorial structures
(PS), which provide precise body part detections, we believe that this is the main
reason of outperforming our descriptors.
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The evaluation on this dataset bears out that re-identification techniques can easily
be used for object re-acquisition, while tracking in a single camera (e.g . when object
is lost due to occlusion). High recognition rate indicates that appearance matching
in a single camera is much easier task than appearance matching across disjoint
camera views.

7.6.5 CAVIAR

The experiments are performed on CAVIAR4REID dataset. The main challenge of
this data comes from significant illumination changes and extremely low resolution
in one of the two cameras.

Figure 7.27 shows performance comparison of our descriptors with state of the art
methods, considering both, single-shot and multiple-shot techniques. Surprisingly,
our DCD signature performs slightly better than SCR and than SDALF in the
single-shot mode. It appears that in low resolution, dominant color descriptor out-
performs covariance matrix. In fact, covariance matrix holds information on feature
distribution taking into account their spatial layout (texture). In very low resolu-
tion, we can expect that texture features do not appear. Until now, the resolution
problem has been ignored as we assumed that texture information is often present
in an image. This experiment raises several questions for appearance matching,
including resolution-dependent re-identification (different descriptors for different
resolutions) or looking for the optimal descriptor which performs the best in all res-
olutions. We also highlight a limitation of our covariance-based descriptors which
perform relatively poor in case of very low resolution images. The best performance
in multiple-shot case is achieved by CPS [Cheng 2011], which besides employing
precise body part detector, it represents the appearance of each body part by HSV
histogram and MSCR [Forssén 2007] descriptor. We also note that even in the case
of relatively small dataset (only 50 individuals), the recognition accuracy in the first
rank is very low for all state of the art techniques (less than 20%).

7.6.6 VIPER

Recently, we have also tested our single-shot covariance-based descriptor on VIPER
dataset. VIPER data is dedicated for evaluation of viewpoint invariant approaches.
Unfortunately, our SCR descriptor performs significantly worse than state of the art
techniques. This discrepancy may be due to the fact that our body part detector
performs very poorly on this data because of blurred images and numerous compres-
sion artifacts. Moreover, significant pose changes, different quality of images and
also compression artifacts deteriorate covariance features. The best performance
on this dataset is achieved by metric learning methods (LMNN-R [Dikmen 2010],
PRDC [Zheng 2011]) and body-part based method (PS [Cheng 2011]). It is worth
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(a) single-shot
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(b) multiple-shot

Figure 7.27: Performance comparison on CAVIAR4REID dataset: (a) single-shot
descriptors vs. PS [Cheng 2011] and SDALF [Farenzena 2010]; (b) multiple-shot
descriptors vs. CPS [Cheng 2011] and SDALF [Farenzena 2010].

noting that all of these methods use color histograms as a feature representation.
Figure 7.28 illustrates state of the art results on this dataset.

7.7 Conclusion

This chapter focuses on performance analysis of proposed techniques. We described
metrics and publicly available datasets for evaluation of human re-identification. We
demonstrated an extensive evaluation of our methods, investigating their pros and
cons. Our techniques are explored in comparison with state of the art approaches
on various datasets, showing competitive performance.

The best performance of our methods is achieved by COSMATI+ which in fact
requires the most information, which must be provided for generating signatures
(see figure 7.29(b)). However, we want to highlight that approaches which are
based on training data requiring positive pairs (two images with the same person
registered in different cameras), may have difficulties while employed in real systems.

Annotations of training data from c cameras and training
( c

2

)
= c!

2!(c−2)! models,

can be unaffordable in practice in case of large c.

Discriminative approaches (e.g . HAAR, LCP) also show promising performance,
however they are often accused on non-scalability (extensive online learning phase
is necessary to extract discriminative signatures every time when a new person is
added to the database of signatures). Some solutions for this issue are discussed
in section 5.2.7, suggesting the usage of new GPU architectures and a reference
dataset. Moreover, our MRCG+ is one alternative which provides an efficient
descriptor. Nonetheless, selection of training samples needed for discriminative
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Figure 7.28: Performance comparison on VIPER dataset with: PS [Cheng 2011],
SDALF [Farenzena 2010], PRDC [Zheng 2011], ELF [Gray 2008], LMNN-R
[Dikmen 2010].

method, size of the reference dataset etc. raise numerous questions, producing new
open issues.

Our feature-oriented descriptors which do not use any discriminative method show
worse performance. Such conclusion was expected as these methods use less infor-
mation to build signature representation. Moreover, both single-shot approaches
(DCD and SCR) are dependent on body part detections, which can have significant
impact on recognition accuracy.

All experiments confirm that signatures generated in the multiple-shot mode outper-
form the single-shot case. Using multiple images, we can provide more information,
which can be managed in more reliable way.

We found that the mean Riemannian covariance in general case is the best descriptor
for matching appearances across disjoint camera views. Nonetheless, performance
of covariance matrix goes down while matching low resolution images (20 × 40).
It appears that simple features can perform better than covariance descriptors in
the case of low resolution images. One direction in further studies might be to use
content-dependent signature generation. It means that the appearance representa-
tion could be dependent on cues available in an image/video (e.g . different kinds of
features could be used depending on image resolution).

In figure 7.29, we illustrate taxonomy of state of the art approaches compared to our
proposed techniques. As most of our approaches are based on covariance descriptor,
which is computationally intensive, we classify these methods as partially feature-
oriented. We can note that metric learning approaches which are based on strong
descriptors may open new directions for future research in this field.
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Chapter 8

Human re-identification on highly
parallel GPU architecture

“It’s not the size of the dog in the fight, it’s the size of the fight in the dog.”
(Mark Twain)

This chapter discusses the application of re-identification techniques to the real-
time video analysis systems. These systems demand for effective processing, i.e.
they should perform low-cost, low-power and high-speed operations. Our best de-
scriptors are based on covariance matrix which distance operator requires solving
the generalized eigenvalue problem. This problem is computationally intensive and
must be repeated constantly in the re-identification system during the browsing
signatures of interest. In the result, we perform detailed analysis of the algorithm
complexity and we explore for possibilities of parallelization. We find that some
parts of the distance operator algorithm can be easily parallelized. Consequently,
we take advantage of new high performance architectures to obtain the required
high efficiency. We design a new GPU-based re-identification framework (section
8.1). GPU has evolved into a highly parallel computing architecture applied not
only in 3D graphics but also for problems which can be expressed as data-parallel
computations (section 8.1.1). We propose a new implementation of the distance
operator for querying the example database of signatures stored on GPU (section
8.2). In the result, we significantly accelerate the distance computation, reaching
66 speedup in comparison with the CPU implementation (section 8.3).

8.1 GPU-based re-identification framework

In section 3.1 we have already presented the re-identification framework. Now, we
explore the component which has not been investigated in the previous chapters: a
database of signatures (see figure 8.1). Providing an effective interface for a human
operator, we propose a solution which significantly speeds up response time of a
database.

Given a query signature, the database should response with the list of the most
similar signatures stored in the database. We assume that space-time models like
[Javed 2007] should be applied before the searching process starts. The time con-
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Figure 8.1: The GPU-based re-identification framework. The loupe highlights a
GPU-based architecture of a database for storing human signatures.

straints extracted from the topology of cameras can significantly prune the candi-
date set to be matched. Further, the browsing of the most similar signatures can be
optimized in the two following ways:

• by applying the searching strategies,

• by using a new highly parallel architectures.

The first solution refers to strategies which take advantage of a metric space. If
signature similarity is a metric, then the searching procedure can be transposed to
the nearest neighbor search (NNS) problem. As the nearest neighbor search problem
arises in numerous fields of application, various solutions have already been proposed
in the literature [Mico 1992, Yianilos 1993]. Further, there are numerous variants of
the NNS problem, while the two most well-known are the k-nearest neighbor search
and the ε-approximate nearest neighbor search.

The second solution takes advantages of novel architectures which enable the high
performance computing (HPC). In November 2006, NVIDIA’s Tesla architecture was
introduced in the GeForce 8800 GPU. This modern 3D graphics processing unit has
evolved from a fixed-function graphics pipeline to a programmable parallel processor
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with computing power exceeding multicore CPUs. Together with this architecture,
NVIDIA enables high-performance parallel computing applications written in the C
language to use the compute unified device architecture (CUDA) parallel program-
ming model and development tools.

In the thesis, the most of the proposed appearance models do not meet metric
requirements. In the result, we explore the second solution making the following
contributions.

• We propose to store the database of signatures on a GPU unit (section 8.1.2).

• We offer a new GPU-based implementation of the distance operator between
covariance matrices (section 8.2).

Concerning the former contribution, it is worth noting that we can easily store
on GPU all of our appearance models except Haar-based signature. Haar-based
signature needs to keep training examples for computing the similarity between sig-
natures, which may result in unreachable storage requirement (see section 5.1.4).
The latter contribution is derived from the fact that our best descriptors are based
on covariance matrix, which distance operator algorithm consists of parts that can
be easily parallelized. Before going into details of the proposed GPU-based imple-
mentation, we present a short description of a general-purpose parallel computing
architecture.

8.1.1 GPU: a general-purpose parallel computing architec-
ture

‘Driven by the insatiable market demand for real-time, high-definition 3D graphics,
the programmable Graphic Processor Unit or GPU has evolved into a highly parallel,
multi-threaded, many-core processor with tremendous computational horsepower and
very high memory bandwidth’ [NVIDIA 2011], as illustrated in figure 8.2.

GPU is specialized for intensive and highly parallel computation, driven by require-
ments of graphics rendering. It was designed as a high performance computing unit
in which the emphasis is put on the computing units instead of data caching and
control flow units in contrast with CPU (see figure 8.3). The memory is not cached,
so to obtain the maximum performance it is crucial that the programmer ensures
the coalesced memory accesses.

GPU is especially well-suited to address problems that can be expressed as data-
parallel computations. The same program is executed on many data elements in
parallel with high arithmetic intensity (the ratio of arithmetic operations to memory
operations). As the same program is executed for each data element, there is a lower
requirement for sophisticated flow control. In the result, it is executed on many data
elements and has high arithmetic intensity, hiding the memory access latency with
calculations instead of big data caches.
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(a) Floating-Point Operations (b) Memory Bandwidth

Figure 8.2: Floating-Point Operations per Second and Memory Bandwidth for CPU
and GPU [NVIDIA 2011].

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal pro-
cessing or physics simulation to computational finance or computational biology.
Actually, as GPU fits very well to biologically-inspired approaches [Pinto 2011], it is
a fundamental component in brain-inspired computing.

8.1.1.1 A scalable programming model

The CUDA parallel programming model is designed to transparently scale the ap-
plication software using the increasing number of processor cores. The scaling is
provided at the abstraction level, requiring minimum knowledge about parallel pro-
gramming from programmers familiar with standard programming languages such
as C/C++. Three key abstractions: (1) a hierarchy of thread groups, (2) shared
memories and (3) barrier synchronization, are simply exposed to the programmer
as a minimal set of language extensions.

These abstractions guide the programmer to divide the problem into coarse sub-
problems that can be solved independently in parallel by blocks of threads. Further,
each sub-problem is divided into finer pieces that can be solved cooperatively in
parallel by all threads within the block.
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Figure 8.3: GPU devotes more transistors to data processing rather than to data
caching and to flow control [NVIDIA 2011].

This decomposition enables automatic scalability and preserves language expressiv-
ity by allowing threads to cooperate while solving each sub-problem. Indeed, each
block of threads can be scheduled on any of the available processor cores, in any
order, concurrently or sequentially, so that a compiled CUDA program can execute
on any number of processor cores as illustrated by figure 8.4, and only the runtime
system needs to know the number of physical processors.

8.1.1.2 Thread and memory hierarchy

Threads can form a one-dimensional, two-dimensional, or three-dimensional thread
block. There is a limit to the number of threads per block, since all threads of a
block are expected to reside on the same processor core and must share the limited
memory resources of that core. On current GPUs, a thread block may contain up
to 1024 threads. Blocks are organized into a one-dimensional, two-dimensional, or
three-dimensional grid of thread blocks. The number of thread blocks in a grid is
usually dictated by the size of the data being processed or the number of processors
in the system, which it can greatly exceed.

Threads work in a SIMD model (Single Instruction Multiple Data). All threads of
a block reside on the same processor core. Threads within one block are split into
basic scheduling units called warps, consisting of 32 threads. A warp executes one
common instruction at a time, so full efficiency is realized when all 32 threads of a
warp agree on their execution path.

CUDA threads may access data from multiple memory spaces during their execution
as illustrated by figure 8.5. Each thread has private local memory. Each thread block
has shared memory visible to all threads of the block and with the same lifetime
as the block. Shared memory is organized in banks, and if the data is accessed
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Figure 8.4: Automatic scalability: a multithreaded program is partitioned into
blocks of threads that execute independently from each other, so that a GPU with
more cores will automatically execute the program in less time than a GPU with
fewer cores [NVIDIA 2011].

so that each thread of a block accesses a different bank (the addresses must meet
alignment criteria), shared memory is as fast as registers. All threads have access
to the same global memory. Global memory is a slow off-chip memory, which can
be accessed by both CPU and GPU. It is also used to synchronize data between
threads in different blocks. In order to have a low latency, it should be accessed
in a coalesced fashion (consecutive threads in a warp must read memory in their
order). Coalescing memory requests boost performance significantly over separate
requests. The large thread count, together with support for many load requests,
helps to cover load-to-use latency for local and global memory.

8.1.2 GPU database of signatures

We suggest storing signatures directly in GPU’s global memory. This solution of-
floads CPU and minimize processing time during searching the most similar signa-
tures (when the distance between signatures is calculated, the data is already stored
on a proper unit).



8.1. GPU-based re-identification framework 139

Figure 8.5: Memory hierarchy [NVIDIA 2011].

In our experimental setup, we use a Tesla S1070 with four GPU units. Each GPU
unit has available 4GB of global memory. Taking into account the free space needed
for calculations of a query to a database, we are able to store more than 2.000.000

covariance matrices. In the result, depending on the size of signature, 20.000 - 80.000

signatures can be stored in the database on a single GPU unit, which is sufficient for
the purpose of the re-identification system (we do not expect more than such amount
of signatures into the database as the re-identification approaches are constraint to
the one day period: the strong assumption about the same clothes).
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1. Calculate the Cholesky decomposition

B = LLT . (8.4)

2. Calculate forward and backward substitution to get

C = L−1AL−T . (8.5)

3. Tridiagonalize the symmetric matrix C to prepare for solving the eigenvalue
problem.

4. Use the bisection algorithm to find the eigenvalues of a symmetric tridiagonal
matrix C.

Figure 8.6: The algorithm for solving a generalized eigenvalues problem.

8.2 Generalized eigenvalue problem on GPU

To compute the distance between two covariance matrices, it is necessary to solve
a generalized eigenvalue problem. This problem is computationally heavy, making
the signature distance computation time consuming. The generalized eigenvalue
problem corresponds to finding vector x that obeys

Ax = λBx, (8.1)

where A and B are matrices. In our case, A and B are positive definite symmetric
matrices. λ denotes a vector of eigenvalues and x is the eigenvector. This equation
can be decomposed to equation

(L−1AL−T )(LTx) = λ(LTx) (8.2)

where L is a lower triangular matrix calculated as B = LLT . We can notice that
the decomposed equation (8.2) already corresponds to the original eigenvalue prob-
lem:

Cv = λv. (8.3)

To find eigenvalue vector λ, we solve a generalized eigenvalue problem. Our algo-
rithm is presented in figure 8.6.

Let us note that there are many methods to calculate the eigenvalues of a symmetric
matrix. On CPU we use a Jacobi algorithm, which does not need to perform the
tridiagonalization first, however this algorithm is not easy to parallelize. For the
GPU implementation we first tridiagonalize the matrix and then we use the bisection
algorithm, which can be parallelized much more efficiently.
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8.2.1 Porting the algorithm to GPU architecture

To compute the similarity of two signatures, we need to solve a generalized eigenvalue
problem for a set of pairs of covariance matrices (distance computation). This can
be naturally processed in parallel, providing the first source of parallelism in our
algorithm. The second source involves the parallelism extracted from each step of
the algorithm (figure 8.6) performed on a given pair of covariance matrices. We will
now briefly describe how we use the parallelism of each procedure to efficiently port
it to the GPU architecture.

8.2.1.1 Cholesky decomposition

In Cholesky decomposition, the formula to calculate each element of lower triangular
matrix L is given as

Lj,j =

√√√√Bj,j −
j−1∑
k=1

L2
j,k, (8.6)

Li,j =
1

Lj,j
(Ai,j −

j−1∑
k=1

Li,kLj,k) for i > j. (8.7)

Matrix B is loaded from the global memory to the shared memory in a coalesced
way. After the calculations, matrix L is loaded back to the global memory, also
assuring coalescence.

For the calculations we use the Cholesky-Crout algorithm, which starts from the
upper left corner of matrix L and proceeds to calculate the matrix column by column,
as processing data in column order ensures the memory coalescence. To calculate
an element of a column, only the elements from the columns to the left are needed.
So, all the elements in one column can be processed in parallel.

For matrices of size d×d, we can therefore use d threads to calculate each column in
parallel, using d iterations to calculate the whole matrix. The natural decomposition
of a problem would be to assign one matrix to a block. However, d threads can be
much less than the size of a warp (32), which is the smallest scheduling unit. In
the result, assigning b32

d c matrices to a block, we enable to process b32
d c matrices

without the increase of processing time, as b32
d c×d threads still form only one warp

scheduled in one operation.
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8.2.1.2 Forward and backward substitution

Using forward and backward substitution we can compute matrix C in the following
way:

backward : Y LT = A ⇒ Y = AL−T , (8.8)

and

forward : LC = Y ⇒ C = L−1Y = L−1AL−T , (8.9)

without inverting matrices. Both substitutions are processed together to avoid copy-
ing intermediate data to the global memory.

In forward substitution, for each column k in matrix C, we can assign a system of
linear equations:

l1,1c1,k = y1,k

l2,1c1,k + l2,2c2,k = y2,k

...
...

. . .
...

lm,1c1,k + lm,2c2,k + · · ·+ lm,mcm,k = ym,k,

where l, c, y represent corresponding matrix elements.

The resulting formulas are:

c1,k =
y1,k
l1,1

,

c2,k =
y2,k−l2,1c1,k

l2,2
,

...

cm,k = ym,k−
∑m−1

i=1 lm,ici,k
lm,m

All columns of C can be calculated independently and in parallel. However, elements
in each column (c1,k, c2,k, . . . , cm,k) are calculated sequentially.

Analogously, for backward substitution, we follow the same scheme, applied for com-
puting rows in parallel. In this case, as we have upper triangular matrix LT , we first
compute yk,m row element, and then substitute that back into the previous equation
for solving yk,m−1, and repeating till yk,1.

Similarly to Cholesky decomposition, we use d threads to calculate matrices, and we
assign b32

d c matrices to a block.



8.3. Experimental results 143

8.2.1.3 Tridiagonalization

Tridiagonalization is the part of the generalized eigenvalue algorithm which
has the lowest level of parallelism. We use the Householder transformation
[Householder 1958] to tridiagonalize the symmetric matrix. In this algorithm, d− 2

iterations need to be performed sequentially; in each iteration the appropriate el-
ements in the kth row and column are zeroed. In one iteration some of the com-
putations, such as matrix multiplication and vector-vector multiplications can be
parallelized. To do this, we use d× d threads for each matrix. We have also tested
the version in which there are only d threads, each calculating one column of the
multiplied matrices, but it was less efficient. As d× d threads is more than a size of
a warp, we can assign one matrix per block without loosing the efficiency.

8.2.1.4 Bisection algorithm

Bisection algorithm is used to calculate the eigenvalues of a symmetric tridiagonal
matrix C with a given approximation (for details see e.g . [Demmel 1997]).

The core function of this algorithm is the Count() procedure returning the number
of eigenvalues present in a given interval. The algorithm starts with the initial
interval constructed using Gerschgorin’s theorem. Then, it is divided in two and
Count() procedure returns a number of eigenvalues in each subset. If it returns zero,
the node is abandoned, otherwise it is further subdivided into two subsets, until the
size of a subset is not bigger than the assumed approximation. For our purposes it
is enough to use the approximation equal to 10e-6.

The main source of parallelism comes from the fact that the Count() function in
each node can be calculated independently. As only d eigenvalues can be found,
there are only up to d nodes containing at least one eigenvalue on each level of the
binary tree. We therefore use d threads to calculate one matrix. Again, we assign
b32
d c × d threads to a block, calculating b32

d c matrices. Gerschgorin’s procedure
cannot be parallelized, so we process it sequentially, but a parallelism is obtained
by calculating all the procedures for different matrices in parallel.

8.3 Experimental results

Experimental setup

In our experimental setup we use the NVIDIA Tesla S1070 with 4 graphic cards,
each consisting of 30 SMs (Streaming Multiprocessors) with 8 scalar processors
(4 × 30 × 8). The price of NVIDIA Tesla S1070 is around 7, 000$ but NVIDIA
Tesla C1060, which contains only a single graphic card with 240 cores costs around
2, 000$.
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(a) Speedup - CPU vs GPU

(b) Time of Bisection algorithm

Figure 8.7: Speedup for finding generalized eigenvalues and time of Bisection algo-
rithm.

We perform comparison with CPU using only one graphic card, thus the total num-
ber of available processors is therefore equal to 240 cores.

We calculated the performance for matrices number ranging from 10 to 3000. Each
matrix was of size 11 × 11, reflecting covariance C1 (see section 7.3.2). As we
have described in section 8.1.2, we assume that the database of signatures is stored
directly on GPU. In our time estimation, we do not take into account the time of the
data transfer, because the reference signatures already reside in the device memory,
and the time of transferring the query signature is negligible.

Results

Below we present the speedup obtained with comparison to the optimal version on
CPU, i.e. a version with Jacobi algorithm (implementation from LTI library), as on
CPU this version is faster than the calculation of tridiagonalization and then the
bisection algorithm.

The results are presented in figure 8.7 (a). We can easily notice that the speedup
grows with the number of matrices, and reaches its maximum (66) from about 1500

matrices. Distributing the database of signatures between 4 GPU cards of Tesla,
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N Cholesky Forward.S Tridiag. Bisect. Total.GPU Total.CPU
200 0.037 0.035 0.140 0.147 0.359 16
400 0.049 0.071 0.272 0.187 0.579 32
600 0.082 0.078 0.389 0.325 0.874 48
800 0.093 0.112 0.522 0.352 1.08 64
1000 0.126 0.120 0.657 0.505 1.41 80

Table 8.1: Time[ms] of component procedures.

and performing the calculations for a query signature on all cards in parallel, would
result in further speedup improvement.

Table 8.1 presents the time of the component procedures for different number of
matrices (N). The Cholesky and forward/backward substitution times are the low-
est, while the biggest impact on the total time comes from the tridiagonalization
procedure, as it has the lowest degree of parallelism.

In figure 8.7 (a) we can notice the ‘stairs’ (drop of speedup) which occur in regular
intervals every 480 matrices. This is a result of a similar effect observed in com-
ponent functions (see e.g . bisection algorithm in figure 8.7 (b)) and is correlated
to the number of processors. The architecture is the most efficiently used when all
processors (240 for Tesla S1070) have blocks assigned, i.e. when k × 480 matrices
are processed (each block calculates two matrices). The worst case is for k×480 + 1

matrices - then, the time is almost equal to processing (k+ 1)×480 matrices, which
results in sudden drop of speedup in these points.

8.4 Conclusion

Recently, GPU has become popular tool not only for graphics application but also
in physics simulation, computational finance, biology and image processing. Driven
by demand of a large data processing for real-time, GPU has evolved into a high
performance computing.

As human re-identification requires large data processing and fast response from a
database of signatures, we have employed GPU in developing re-identification sys-
tem. We have focussed on porting the generalized eigenvalue problem to the GPU
architecture as this problem is computationally intensive and must be repeated con-
stantly in our re-identification system during the browsing of signatures of interest.
We have also proposed to store the database of signatures in the GPU memory,
offloading CPU and minimizing data transfer while browsing signatures. In the re-
sult we have reached 66 speed-up with comparison to CPU implementation using a
single GPU card in Tesla S1070.
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Conclusions and perspectives

“A conclusion is simply the place where someone got tired of thinking.”
(Arthur Block)

This thesis presented and evaluated several novel methods for appearance-based
human re-identification. We have demonstrated that the proposed methods gain
state of the art performance. We conclude our work pointing out the key contri-
butions (section 9.1) and their limitations (section 9.2). Finally, we discuss future
perspectives (section 9.3), indicating interesting directions for future research in this
field.

9.1 Key contributions

Dense grid of mean Riemannian covariance features

We proposed a novel representation of a human appearance for re-identification.
Our idea is to combine efficiently mean Riemannian covariance features with a
spatial information carried out by a dense grid structure. We have found that mean
Riemannian covariance is in general the best descriptor for matching appearances
across disjoint camera views. The performance of the covariance features is found to
be superior to other methods, as rotation and illumination changes are absorbed by
the covariance matrix. Among the advantages of our solutions, the following ones
are noteworthy:

• Covariance descriptor together with applying histogram equalization produce
color invariant representation to camera changes.

• Averaging covariances, we blend appearance information from multiple images,
providing partially pose invariant representation.

• Designing signature as a dense grid structure of features we are able to handle
partial occlusions.

• Driven by the idea that different regions of the object appearance ought to
be matched using different strategies, we formulate the appearance matching
problem as the task of learning a model that selects the most descriptive
features for a specific class of objects (e.g . humans).
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Discriminative approaches

We investigated discriminative approaches by boosting human appearances in one-
against-all learning scheme and by introducing discriminant analysis. In these ap-
proaches we enhance distinctive characteristics of a specific appearance by using
information from the appearance of other individuals.

Body part driven re-identification

We developed two approaches which extract human appearance from a single image
using body-part detection methods. Detecting body parts we overcome issues related
to pose changes. Localization of body parts is based either on an asymmetry of
a human body or on learned characteristics using histogram of oriented gradients
(HOG).

Efficient implementation

Covariance matrix is a computationally intensive descriptor. Thus, we proposed an
efficient and distinctive representation of the object appearance by using a combina-
tion of small covariance matrices (4× 4) between a few relevant features. Moreover,
we design and implement covariance distance operator on GPU architecture. Our
implementation significantly speeds up computation with comparison to the optimal
CPU implementation of Jacobi algorithm (we reached 66 speed-up).

Datasets

We extracted two new image sets of individuals from i-LIDS data to study more
carefully advantages of using multiple images in generating human signature. These
two publicly available datasets fully satisfy requirements of multiple-shot person
re-identification.

9.2 Limitations of our approaches

The proposed approaches have still a number of limitations. A few of them could be
investigated as possible extensions in the near future, while others still are open is-
sues. This section presents the limitations and the next section provides a discussion
of the future work, suggesting short-term and long-term perspectives.

Pose alignment

Although the proposed approaches give good results for many datasets, they are still
basically a 2D template matching approaches that encode object appearance using
image position. While matching appearance, we require a geometrically well aligned
poses (in multiple-shot case, we believe that a sufficiently large number of training
images can overcome this issue but it is still dependent on training data). As upright
people are well structured objects, a fixed matching model can perform relatively
well. However, significant pose changes (e.g . matching upright person with bending
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person) are still difficult to match (the correspondence problem), especially when
body part detectors return inaccurate results.

Human detection and body part localization

As shown in section 7.6.3, our approaches are directly dependent on human detection
accuracy. In the case of inaccurate detections, recognition performance significantly
goes down.

Low resolution images

In section 7.6.5, we have also found that covariance descriptor does not handle low
resolution images. In the result, performance of covariance matrix is relatively low
comparing to simple color-based descriptors.

Time complexity

Despite covariance matrix can be computed very fast using integral images, it is still
the computationally heavy part of our framework. Moreover, a distance operator
between covariance matrices requires solving the generalized eigenvalues problem,
which is also an intensive task. Although we propose two solutions for this problem
(GPU-based implementation or/and the usage of small covariance matrices), the
run-time is still significantly higher than a similar framework using simple color
histograms.

9.3 Future Work

9.3.1 Short-Term Perspectives

Learning on a manifold

In section 6.2.2.1 we discuss problem related to learning on a manifold, where model
is usually created using tangent planes over the Karcher means of the positive train-
ing data which can lead to the overfitted classifier. In the result, we have decided
to use a selection method to find the most descriptive features for a specific class of
objects. However, we have to stress that selection methods are usually used as pre-
processing steps for machine learning algorithms. Although learning on a manifold
is still an open issue, there are already approaches which explore a manifold space
either by clustering methods [Goh 2008a] or by control points [Sen 2008]. Further
studies should look for machine learning methods which could prosper in finding
subspaces on a manifold determining the metric for appearance matching.

Human detection and body part localization

As we have already mentioned, inaccurate detections can significantly deteriorate
recognition performance. Thus, future study should consider either improving accu-
racy of detection results or filtering methods which could ensure correctness of the
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data. Unfortunately, we did not take full advantage of silhouette of a person due to
inaccurate results of the background subtraction algorithm. However, currently the
market provides new kinds of sensors which are able to extract depth information
(e.g . Kinect sensor) and could be used to extract only the features which surely
belong to foreground regions.

Motion and shape information

As our background subtraction algorithm does not provide accurate extraction of a
silhouette, shape descriptors could not be applied. However, thanks to such sensors
as Kinect, currently we are able to extract depth information enabling extraction of
shape and motion of an object. Shape characteristics might be used for pruning set
of candidates by gender classification. Moreover, integrating the notion of motion
in the recognition framework, we would allow to distinguish individuals using their
behavioral characteristics (e.g . gait features).

9.3.2 Long-Term Perspectives

Context information

It would be interesting to explore top-down approaches, where the challenging issue
is the exploitation of the general context. This general context could be related to
different objects surrounding a person of interest. In section 2.2.1.3, we have already
presented few approaches which employ visual information coming from surround-
ing people to reduce ambiguity in person re-identification [Zheng 2009, Cai 2010].
One alternative in further studies might be to use specialized object detectors (e.g .
luggage detectors in airports) to determine presence of particular objects in close
neighborhood of an individual and then to take advantage of this information to
generate distinctive description of a person of interest.

Content-dependent signature

We expected that covariance matrix would be the best descriptor for appearance
matching across disjoint camera views for every image/video. However, the experi-
mental results on CAVIAR dataset indicate that it is not always correct assumption.
It appears that simple features can perform better than covariance descriptors in
the case of low resolution images. One direction in further studies might be to
use content-dependent signature generation. Appearance representation could be
extracted dependent on cues available in an image/video (e.g . different kinds of
features could be used depending on image resolution). For that we would need
a smart module which could decide which features should be extract w.r.t. to an
image/video, to ensure the highest recognition accuracy. Different combinations of
different kinds of features should also be considered in future research.
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Camera invariant features

Although we have proposed techniques which cope with variations due to cam-
era changes, further research should consider different descriptor representations.
Currently, we can observe tendency of looking for metrics which handle camera
variations. However, these approaches focus on learning a function which transfers
features space from the first camera to the second one, introducing requirement of

training
( c

2

)
= c!

2!(c−2)! models for c cameras. It is worth investigating if it is pos-

sible to learn a single model which could handle variations in all cameras. This also
opens directions for exploring novel descriptors which would be invariant to camera
changes.
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