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Note to international readers

This is a translation of my PhD thesis originally published in 2010 in French under the title
“La surveillance maritime en imagerie radar bistatique: théorie, simulation, contribution à
la détection automatique du sillage des navires”. This translation has no official value, with
respect to the university where this thesis was defended. French policy is that dissertations
must be published in French1. Naturally, I feel that some elements, not published in the
journal papers associated to this thesis, are interesting enough to be shared with the
international community where English is the de facto scientific language. The document
should be of interest especially for newcomers to the field of Radar imaging: indeed I
tried to write this dissertation in such a way that it is as self-sufficient as possible when
demonstrating the base equations.
I undertook this translation project between June 2022 and February 2024, meaning

that things have since more or less evolved since 2010. However, most of the time, I chose
the translation to faithfully match how the thesis was originally written, meaning there are
no significant updates in the state of the art. Due to the size of the document, and because
writing is not the only thing I do in my life, I admit to having used machine translation
extensively to cut on translation time. Automated translation has today reached a point
where it is fairly efficient, especially for technical publications. I only revised the translation
here and there to correct very specific, technical translations or very clumsy expressions,
where I noticed them. I apologize in advance if you spot a few inconsistencies left; there
surely are some. As for the style, which might be somewhat old-fashioned and very formal
for an English reader, it is a rather faithful reflection of the original style, due in part
to the French academic way of writing, and my own idiosyncrasies. This is an editing
choice! I tried to avoid, however, the use of the royal “we”, a very French thing, while still
acknowledging the input of my advisors (who are also, indirectly, addressed by the use of
the “we” pronoun!).

–Andreas Arnold

1This is increasingly changing. However, at the time when I wrote my thesis, it was still enforced
extensively.
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Glossary and acronyms

Acronyms used throughout this dissertation are listed in the following table, with the
French translation whenever available.

BiSAR Bistatic Synthetic Aperture Radar Radar à synthèse d’ouverture bistatique
BSA Backscattering Alignment Convention d’alignement “rétrodiffu-

sion”
CPU Central Processing Unit Processeur
DORIS Doppler Orbitography and Radioposi-

tioning Integrated by Satellite
Détermination d’Orbite et Radioposi-
tionnement Intégré par Satellite

PSD Power Spectral Density Densité spectrale de puissance
DTMB David Taylor Model Basin (a proper name, a U.S. hull testing

basin)
EBCM Extended Boundary Condition Method A method to compute the RCS of a

rough surface (Franceschetti et al. [71,
70])

Envisat Environmental Satellite (Proper name, an European remote
sensing satellite)

ERS European Radar Satellite (Proper name, an European remote
sensing satellite)

ESA European Space Agency Agence spatiale européenne
FFBP Fast Factorised Back Projection (A synthetic aperture focusing algo-

rithm, Ulander et al. [178])
FFSW Far Field Ship Wave (A ship wake elevation prediction code,

Keramidas et al. [101])
FFT Fast Fourier Transform Transformée de Fourier rapide
FFTW Fastest Fourier Transform in the West (A fast Fourier transform computer li-

brary, [75])
FPGA Field-Programmable Gate Array Réseau logique programmable
FSA Forward Scattering Alignment Convention d’alignement “diffusion

avant”
FT Fourier Transform Transformée de Fourier
GLONASS GLObal’naya NAvigatsionnaya Sput-

nikovaya Sistema
Russian global navigation system using
satellites

GLSL Graphics Library Shading Language A shader programming language asso-
ciated with the OpenGL library

GNSS Global Navigation System using Satel-
lites

Système de positionnement mondial
par satellite
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Glossary and acronyms

GPU Graphical Processing Unit
GRT Generalized Radon Transform Transformée de Radon Généralisée
GSM Global System for Mobile Communica-

tions
A global wireless phone standard ini-
tiated by the French “Groupe Spécial
Mobile” normalization group

HLSL High Level Shading Language (A shader programming language asso-
ciated to Microsoft’s DirectX library)

H-TSM Hybrid Two-Scales Model Modèle des deux échelles hybride
IEEE Institute of Electrical and Electronics

Engineers
(An U.S. learned society)

ISAR Inverse Synthetic Aperture Radar Radar à ouverture synthétique inverse
JONSWAP Joint North Sea Wave Analysis Project Projet conjoint d’analyse des vagues et

de l’atmosphère en mer du Nord
KA Kirchhoff Approximation Approximation de Kirchhoff
LFM Linear Frequency Modulation Modulation linéaire en fréquence
MaRS Marine Radar Simulator (Proper noun; a radar simulator pro-

gram, presented in this dissertation)
MTI Moving Target Indicator Caractérisation des cibles mobiles
NASA National Air and Space Administration (An U.S. space agency)
NOAA National Oceanic and Atmospheric Ad-

ministration
(An U.S. agency)

OpenGL Open Graphics Languge (A standard 3D programming library)
NATO North Atlantic Treaty Organization Organisation du Traité de l’Atlantique

Nord
PRF Pulse Repetition Frequency Période de répétition des impulsions
RAM Random Access Memory Mémoire vive
RAR Real Aperture Radar Radar à ouverture réelle
RCS Radar Cross-Section Surface Équivalente Radar
ROC Receiver Operating Characteristic Caractéristique Opérationnelle du Ré-

cepteur
RT Radon Transform Transformée de Radon
SAR Synthetic Aperture Radar Radar à ouverture synthétique
shader (Small computer program executed by

a GPU at rendering time.)
SIR Space Imaging Radar (U.S. space radar missions: SIR-A,

SIR-B and SIR-C)
SMF Stochastic Matched Filter Filtrage Adapté Stochastique
SPECAN SPEctral ANalysis (Algorithme d’intégration en antenne

syntétique par analyse spectrale, Vidal
et al. [181])

SPM Small Perturbations Method Méthode des petites perturbations
SPOT Satellite Pour l’Observation de la Terre (Proper noun meaning “Satellite for the

Observation of Earth”, a French family
of optical remote sensing satellites)

SSA Small Slopes Approximation Approximation des faibles pentes
SWPE Sea Wave Pattern Evaluation
HT Hough Transform Transformée de Hough
TSM Two-Scales Model Modèle des deux échelles
psu Practical Salinity Unit Unité pratique de salinité
USGS United States Geological Survey (Agence gouvernementale américaine

consacrée aux sciences de la Terre)
WiFi Wireless Fidelity “Haute fidélité sans fil” (wireless com-

puter data transmission as defined in
norm IEEE 802.11 and extensions).

xii



Glossary and acronyms

xiii



Glossary and acronyms

xiv



Nomenclature

These are the main notations as used in the different chapters of this document. Associated
frames are described in appendix A.

General conventions

• Frames are written in calligraphic style (exemple: R). The only exception to this
convention is for spectra: the swell power spectral density S, and swell energy spectral
density E . Frames are defined in A.

• Points are written in capital roman letters: A. Distance to point A to point B is
denoted by ‖ AB ‖.

• Scalars are denoted in italics. If a scalar and a vector share the same notation,
except for absence or presence of bold, then we consider the vector (when written
in boldface) and the norm of this vector (absence of boldface). The only exception
concerns powers and energies, denoted in sans serif fonts (for example, P), as well
as the couple H/H (magnetic field vector / height of a wave) and B/B (magnetic
induction field / sea state).

• Vectors are written in bold: v. Unit vectors have a circumflex accent: v̂. The
coordinates of vector v in coordinate system R are denoted by {v}R; this is a triplet
of scalar coordinates on which one can perform a matrix operation (which only makes
sense once these coordinates are specified).

• Matrices are written in “typewriter” font: M.

• Tensors are written in blackboard boldface: T

• ∠(a,b) is the oriented angle formed by vectors a and b. Notation ǎ is an alge-
braic rotation angle around vector a. In particular, if a frame R(O, â, b̂, ĉ) is being
considered, then č denotes the bearing and b̌ the elevation of a point relatively to R.

Notations

These are the notations used in this dissertation. Vectors defining the frames are given in
appendix A.
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Nomenclature

Scalars

Lower case letters

a1, a2, a3, a4 Generic constants (“local variables”)
b1, b2, b3, b4 Generic constants (“local variables”)
c0 Celerity of light in void, equal to

299 792 458 m/s
[m/s]

c(K) Phase velocity of a wave having wave number
K

[m/s]

cg(K) Group velocity of a wave having wave number
K

[m/s]

cm Phase velocity of a wave having wave number
Km

[m/s]

cp Phase velocity of a wave having wave number
Kp

[m/s]

cij Coefficients of Cox and Munk’s probability
function

cAnis. Control function (for anisotropic filtering)
d Depth of the ocean channel [m]
dFFT Dimension of a FFT
dy, dz Dimensions of an antenna [m]
dSARy Length of the equivalent synthetic aperture

antenna
[m]

dr Range resolution [m]
drsol Range resolution on ground [m]
draz. Azimuth (cross-range) resolution [m]
dtX Time difference of propagation time due to

Doppler effect for a signal transmitted at tX
[s]

drele, draz Resolution on the elevation and azimuthal
axis

[m]

f0 Transmitted signal carrier frequency [Hz]
f(t) Instantaneous frequency [Hz]
fCM Cox et Munk’s asymetry function
fRAR(tX , s) RAR raw image [V]
fSAR(tX , s) SAR image [V]
fD Doppler frequency [Hz]
g0 Acceleration of gravity [m/s2]
gVb,θb(Kx,Ky) Fonction describing the support of a wake’s

spectrum
h Height of the transmitting antenna, relatively

to the ground
[m]

i, j Generic notation for array indices in image
matrices: i is the row index, j is the column
index (usual Fortran conventions)

kk Von Kármán’s constant, circa 0,4
m Number of pulses
m0,m1 Parameters for the Filon integration of P and

Q (chapter 3)
n Number of pixels in an image [pixels]
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Nomenclature

nx × ny Number of pixels in an image, for rows and
columne

[pixels]

m Number of pixels in a window [pixels]
nρ × nθ Number of pixels in a Radon transofrm [pixels]
nt Number of time iterations (anisotropic filter-

ing)
p Water pressure [Pa]
pFL Exponent of Fung and Lee’s capillary spec-

trum, pFL = 3− logU0 with U0 in m/s
p0 Atmospheric pressure [Pa]
r0 Transmitter-to-target distance at distance of

closest approach
[m]

r′0 Receiver-to-target distance at distance of
closest approach

[m]

rJ Exponent for the JONSWAP spectrum
rmin Minimum transmitter-target-receiver dis-

tance
[m]

s Time corresponding to an arrival time on the
range axis in radar imaging (“short time”)

[s]

sd Detection threshold
sL Exponent of the Longuet-Higgins directional

spectrum
t Generic time [s]
tX Time at which a pulse atom starts being

transmitted
[s]

tP Time at which the pulse atom reaches the tar-
get

[s]

tR Time at which the pulse atom is received [s]

Capital letters

A Area of the sea surface [m2]
Ac(z) Solution of the continuity equation [m2/s]
AVb,Y (θ) Kochin’s function for a ship of hull Y going

at speed Vb
[m]

B Beaufort sea state
Bl, Bh Low and high frequency components of

Elfouhaily’s spectrum
Bb Ship beam [m]
Cr “Wavelet correlation” of Kuo and Chen
D Fictious antenna displacement length [m]
Db Ship draft [m]
Dx, Dr Scalar directivity for antennas, at transmis-

sion and reception
Dx, max. Hertz. Maximum directivity for a Hertz dipole
Dpb Ship displacement [kT]
Dh
j , D

v
j et Dd

j Horizontal, vertical, diagonal detail images at
scale j of a wavelets decomposition
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E0 Amplitude of transmitted signal [V]
En(t) Noise at reception (additive, white, gaussian) [V]
En′(t) Noise at reception (additive, white, gaussian)

after pulse compression
[V]

ER Generic received signal [V]
EX Generic transmitted signal [V]
Esin, f0 Truncated sine signal, transmitted at fre-

quency f0

[V]

Echirp, f0,∆f Linear chirped transmitted signal of carrier f0

of bandwidth ∆f
[V]

Ec’, f0,∆f Linear chirped transmitted signal of carrier
f0 of bandwidth ∆f , with infinite pulse rep-
etition rate.

[V]

EX Average energy of transmitted signal [J]
ER Average energy of received signal [J]
Eswell Mechanical energy of swell [J]
E Spectrum of the mechanical energy of swell [J/rad/m] or [J/rad/s]
F (x, θ) Integral appearing in Kochin’s function
FJ Fetch [m]
Fp, Fm Components of Elfouhaily’s spectrum
Fr Froude number: Fr=Vb/

√
(g0Lb)

G Green function of the Helmholtz equation
H Height of a wave, can be dependent on the

wave number K: H(K)
[m]

H1/3, Hm0 Two definitions of the significant wave height [m]
Hflou Modulation transfer function, between an

ideal Radon transform, and a blurred Radon
transform

HMTF Modulation transfer function, between the
wave elevation map and the image as ob-
served by a radar or optical sensor

I Generic image of size nx × ny
K̄ Ratio between the wave number K of a wave,

with the wave number at gravity-capillarity
transition Km

Kb Wave number of the Kelvin wake in the ship’s
direction of travel

[rad/m]

Kp Wave number at the maximum of a gravity
wave spectrum

[rad/m]

Km Wave number at gravity-capillarity transi-
tion: Km = 363 rad/m

[rad/m]

Kmax Maximum indicative value of the wave num-
bers K when generating a discrete sea surface
map

[rad/m]

K-3 dB, 1,K-3 dB, 1 Limits of the bandwidth of a gravity wave
spectrum

[rad/m]

L Width of an imaged sea surface area [m]
Lb Length of a ship [m]
Lmin Minimum width of a surface area to generate

so as to properly capture the wave energy
[m]
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Nomenclature

LPM Pierson-Moskowitz spectrum
Lij Legth of the i−th ship of class j [m]
M Image blurred by local averaging (low pass

filtering)
Mj Module of the three detail images of a wavelet

decomposition at scale j
Mw(x, y) Mask, between 0 et 1, to attenuate the spec-

trum of a synthetic Kelvin wake
P Generic point in space (the target)
P’ Generic point at the surface of the antenna
N Noise image
Nx Number of points in direction x when dis-

cretizing ship hull Y
Nz Number of points in direction z when dis-

cretizing ship hull Y
Nθ Number of points in direction θ when dis-

cretizing Kochin’s integral
P (θ) Integral appearing when computing Kochin’s

function
P Generic power [W]
PX Instantaneous power of transmitted signal [W]
PR Instantaneous power of received signal [W]
Ptotale, 1d Total power of a 1D sea spectrum [m2/rad/m] or [m2/rad/s]
Q(θ) Integral appearing when computing Kochin’s

function
R Position of the receiver
R A Radon-transformed image: R = RI
R′ Ideal Radon transform image where spikes are

Dirac functions
Rf Total reflectance function
Ra Reflectance function, ambient component
Rd Reflectance function, diffuse component
Rs Reflectance function, specular component
R̂′ Estimate of an ideal Radon transform

through Wiener filtering
S, S′ Generic surface, and, abusing the notation,

its area
[m2]

Sw, Snl, St et Sv Source terms when computing the dead-water
wake

[J/rad/m/s]

SX Surface of the transmitting antenna, and,
abusing the notation, its area

[m2]

Sx0,y0 Sine function of equation x0 cos θ+ y0 sin θ =
ρ

[S] Salinity [g/kg] or [ppm] ou [pss]
[Cl] Chlorinity [g/kg]
S Generic notation for a sea spectrum [m2/rad/m]
S1d Generic notation for a 1D sea spectrum [m2/rad/m] or [m2/rad/s]
S2d Generic notation for a 2D sea spectrum [m2/rad/m] or [m2/rad/s]
Somni Generic notation for an omnidirectional sea

spectrum
[m2/rad/m] or [m2/rad/s]
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Nomenclature

T Surface temperature of water [◦C]
TI Pulse repetition interval [s]
TX Pulse duration [s]
T ′X Pulse duration after pulse compression [s]
U0 Wind friction speed [m/s]
Umn Polarimetric coefficients of the Kirchhoff ap-

proximation
Uref Reference wind speed [m/s]
Uz Wind speed at altitude z counted in centime-

tres.
[m/s]

Ur Ursell number: Ur=HΛ2/d3

X Position of the transmitter (“X-mitter ”)
Vb Speed of a ship [m/s]
V i
j Speed of the i−th ship of class j [m/s]
Y (x, z) Function describing the shape of a ship’s hull [m]
V i
j Hull of the i−th ship of class j
Zu, Zc Slope of the sea surface in the upwind and

crosswind directions

Lowercase Greek letters

αc Half angle at the top of the dead water wake [rad]
αFL Philips constant of the Fung and Lee spec-

trum, 2,810−3

αJ Philips constant of the JONSWAP spectrum:
5/4

αm Philips-Kitaigorodskii generalized equilib-
rium parameter

αpq Polarimetric coefficients of the small pertur-
bation model

αPM Philips constant of the Pierson-Moskowitz
spectrum, 8,110−3

β Half angle at the generic vertex with respect
to the axis of the nacire and counted from its
bow (chapter 3)

[rad]

βc Half angle at the top of the cone of the Kelvin
wake: βc = arcsin 1/3 ≈ 19,471◦at sea of in-
finite depth

[rad]

βD Donelan directional spectrum shape parame-
ter

βFL Fung and Lee spectrum parameter: 0.74
βJ JONSWAP spectrum parameter
βPM Pierson-Moskowitz spectrum parameter: 0.74
γb Angle between the local normal of a facet,

and the bisector (∆b) of the angle X̂PR
[deg]

γc Dimension parameter characterizing the
value of βc

γs Shininess term (Phong model)
γJ JONSWAP Improvement Factor Parameter
ε Arbitrarily small positive quantity
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Nomenclature

ε0 Dielectric constant of vacuum: ε0 =
8,85410−12 F/m

[F/m]

εr Relative dielectric constant of water [F/m]
εrinf High frequency limit of εs, approximately 4.9

F/m
[F/m]

εs Static permittivity of seawater [F/m]
εEM Generic Permittivity [F/m]
ζ(x, y, t) Sea surface elevation function [m]
ζt(x, y) Sea surface elevation function for date t [m]
ζt(x, y, t) Surface elevation function for an elementary

wave
[m]

ζw(x, y) Wake elevation function [m]
η0 Vacuum Impedance: η0 = 119.9169832F ≈

376.7303 Ω
[Ω]

η, ξ By definition: η = Zu/σu and ξ = Zc/σc
θ Direction of propagation of a wake wave

(chapter 3)
[rad]

λ0 Electromagnetic wavelength corresponding to
the carrier

[m]

λi Own value associated with the i-th stochastic
adapted filter

λAnis. Scattering constant (anisotropic filtering)
κ Transmission loss term
κ1 Weighting term when calculating the Kochin

integral (Chapter 3): κ1 is between about
0.025 and 0.1

κFFT Attenuation constant of the FFT used during
the generation of the sea surface

κp, κm Polarization and wind dependency terms in
Ward andWicks’ form factor of speckle model

ν 1) Bearing angle of target (SAR integration);
2) form factor of the K distribution

1) [rad], 2) [-]

ξel, ξaz Angular aperture terms (elevation, azimuth)
at -3 dB, such as Φel = ξel and Φaz = ξaz

ρ Seawater density [kg/m3]
ρ0 Air density [kg/m3]
ρa Ambient reflectivity parameter
ρd Diffuse reflectivity parameter
ρs Specular reflectivity parameter
ρDoppler ”Doppler” compression ratio
ρEM Generic electric charge density [C/m3]
ρEM,m Generic magnetic charge density
ρEM,ms Generic surface magnetic charge density
σ(r̂x,−r̂r) ”Radar cross section” function [m2]
σ Standard deviation of an image (chapters 6

and 7)
σJ JONSWPAP spectrum parameter
σn Standard deviation of n(t)
σ′n Standard deviation of n′(t)
σs Static conductivity of seawater [S.m−1]
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Nomenclature

σu, σc Standard deviation of sea slopes in upwind
and crosswind directions

[m]

σx, σr ”Equivalent area” function of transmitting
and receiving antenna

[m2]

σζ Standard deviation of function ζ [m]
θ1, θ2 Angles giving a stationary phase when calcu-

lating the Kochin integral
[rad]

θ!+ Special value of the angle θ when calculating
the Kochin integral

[rad]

θi Generic angle of incidence [rad]
θs Generic angle of emergence [rad]
θli Local angle of incidence in P [rad]
θls Local emergence angle in P [rad]
θvi Angle of incidence in the wind frame relative

to mean sea level
[rad]

θvs Angle of emergence in the wind frame relative
to mean sea level

[rad]

σx, σr Normalized ”equivalent area” function of the
transmitting and receiving antenna: σx =
Sxσx

[m2]

τ Period of a wave [s]
τr Surface relaxation time [s]
τs Water Surface Tension [N/m]
φ(θ) Kochin function phase [rad]
φs Generic angle formed by the direction of the

radio wave reflected by the surface, with the
x-axis of the current coordinate system

[rad]

φls Same meaning as φs, relative to the local facet
coordinate system

[rad]

φvs Same meaning as φs, relative to the global
wind frame relative to mean sea level)

[rad]

φrb Radar trajectory to ship’s trajectory angle [rad]
φSAR(t) Phase history of a point during SAR integra-

tion
[rad]

ψ Direction of a wave relative to the direction
of the wind

[rad]

ψ0 Wind direction relative to the x axis in the
world frame

[rad]

ψ′ Direction of a wave relative to the x axis in
the world frame

[rad]

ω Pulsation of electromagnetic wave [rad/s]
ω0 Pulsation of electromagnetic carrier [rad/s]
ωi, i = 0..Nz Weight for Filon quadrature when computing

F (chapter 3)
ω′i, i = 0..Nx Poids for Filon quadrature when computing

P and Q (chapter 3)

Uppercase Greek letters
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∆ Asymmetry ratio ”upwind/crosswind ” of
Elfouhaily et al.

(∆b) Bisector of angle X̂PR
∆daz. Antenna width in azimuth at target [s]
∆f Transmitted signal bandwidth [Hz]
∆fD Doppler frequency shift such as ∆fD = fD −

f0

[Hz]

∆K Discretization step of wavenumbers [rad/m]
∆t Transceiver-target time of flight [s]
∆tillum. Duration of illumination of a target [s]
∆T Temperature difference [◦c]
∆x Discretization step of an image in width [pixels]
∆y Discretization step of an image in height [pixels]
∆θd Discretization step of a Radon transform for

angles
[rad]

∆ρd Discretization step of a Radon transform for
distance

[pixel]

Zw Fourier transform of ζw
Λ Wavelength of an ocean wave [m]
Λ′ Wavelength of an ocean wave at Bragg reso-

nance length
[m]

Λb Wavelength of a ship wake wave on the ship
longitudinal axis

[m]

Φ Pressure potential function for swell [m2/s]
Φe Elementary pressure potential function for a

2D wave
[m2/s]

Φaz, Φel Angular aperture in azimuth, elevation [rad]
Ω Pulsation of a wave [rad/s]
Ωp Peak pulsation for a wave spectrum [rad/s]
Ωwa Inverse wave age

Vectors

Lowercase letters

f Generic force [N]
hi i-th stochastic matched filter, associated with

eigenvalue λi
j Electric current density [A/m2]
jm Magnetic current density [V/m2]
js Surface electric current density [A/m2]
jms Surface electric current density [A/m2]
d̂ Specular direction given by Snell-Descartes’

law
l̂ Vector from the target pointing to the light

source
n̂ Normal to a surface
p̂x = (0, p̂y, p̂z) Polarimetric vector of the transmitting an-

tenna
p̂r Polarimetric vector of the receiving antenna
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q Vector parallel to the bisector of the angle
formed by the incident radio wave at the
surface and the reflected wave; components
{[qu, qc, qζ ]}V

r Transmitter-target vector; r = ||r|| is the
origin-target distance of the surface (in Chap-
ter 3); r is the origin-target vector (appendix
C)

[m]

r Target-receptor vector (general case); vector
origin-target point of the surface (appendix
C)

[m]

s Hydrodynamic current vector [m/s]
v̂ Vector starting from the target and pointing

to the camera
w Fenêtre de signal
z Observation vector
ω = [ωx, ωx] Pulsation vector of an electromagnetic wave,

or an arbitrary signal (depending on the con-
text)

[rad/s]

Capital letters

B Total magnetic induction field vector [Wb/m2]
D Total magnetic induction field vector [C/m2]
E Total electric field vector [V/m]
Ei Incident electric field vector [V/m]
Er Reflected electric field vector [V/m]
EX Electric field vector on the surface of the

transmitting antenna
[V/m]

ER Electric field vector on the surface of the re-
ceiving antenna

[V/m]

FE Diffracted electric field vector [V/m]
H Total magnetic field vector [A/m2]
K = [Kx,Ky] Wave vector of a wave [rad/m]
K′ Wave vector of a wave at the Bragg frequency [rad/m]
V Velocity vector of a particle of water, of com-

ponents [u(x, y, z, t), v(x, y, z, t), z(x, y, z, t)]
[m/s]

VX, VR Transmitter and receiver speed (bistatic case) [m/s]

Matrices, tensors

B Matrix to go from forward scattering conven-
tion to backscattering convention

Dx, Dr Polarimetric directivities of transmitting and
receiving antennas

N Complex Gaussian white noise matrix of zero
mean and unit standard deviation, dimension
n× n

P Signal variance-covariance matrix
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Px Polarimetric matrix of the transmitting an-
tenna

Pr Polarimetric matrix of the receiving antenna
Q Noise variance-covariance matrix
Rθd Rotation matrix of angle θd
S = [spq] Normalized amplitude polarimetric scatter-

ing matrix (complex)
[m2]

S2d Matrix of dimension n × n containing the
spectrum of the simulated surface

S0 = [s0
pq] Normalized amplitude polarimetric scatter-

ing matrix (complex)
Σ = [σpq] Non-normalized polarimetric radar cross sec-

tion matrix (complex)
[m2]

Σ0 = [σ0
pq] Normalized polarimetric radar cross section

matrix (complex)
V Intrinsic matrix of a camera
zt=0 Matrix representing the sea surface at t = 0,

size n× n, surface width: L meters
Zt=0 Fourier transform of the matrix representing

the elevations, zt=0, at t =0.
T Viscous stress tensor [N.m]
O Zero tensor [N.m]

Functions, operators and miscellaneous symbols

 Imaginary number: 2 = −1
? Hermitian operator (transpose conjugate)
x 7→ sinc Cardinal sine (sinc(x) = sin(x)/x)
t 7→ ∧(t) Triangle function (defined at eq. 1.5)
〈•, •〉 Cross-correlation operator
amb(•,•) Ambiguity function
F [•] Fourier transform operator
H[•] Hough transform operator
R[•] Radon transform operator
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Introduction

Behold, the sea itself,
And on its limitless, heaving breast, the ships;
See, where their white sails, bellying in the wind,

speckle the green and blue,
See, the steamers coming and going, steaming in

or out of port,
See, dusky and undulating, the long pennants of

smoke.
Behold, the sea itself,
And on its limitless, heaving breast, the ships.

– Walt Whitman

This thesis was started in 2004. That year marked the hundredth anniversary of the
direct ancestor of the current radar, the Telemobiloskop, invented in the German Empire
by Christian Hülsmeyer [65]. However, like any invention, radar is not the brain child of a
single person: it follows from a long chain of discoveries that is impossible to summarize
in a few pages but for which it is still necessary to give a brief outline. It is possible to
place –somewhat arbitrarily– the formal beginning of the work on electromagnetic waves in
1861, when James Clerk Maxwell published his seminal article On Physical Lines of Force
where the laws of electricity and magnetism discovered previously by Gauss, Ampère and
Faraday were unified; and which were later put in their final vector form, by Heaviside, in
1884 [20].
Then began the long series of technical innovations, often made up of trial and error and

fortuitous discoveries, which marked the beginning of the history of radar and radio.
It was therefore in 1904 that Hülsmeyer filed a patent for his telemobiloskop, a device

designed to, on the first hand, detect the presence of ships in absence of visibility by using
the reflection of electromagnetic waves on metallic surfaces and to second, to give an indi-
cation of the direction of arrival by adjusting the orientation of the radio antenna. It was
a relatively rustic device, since it did not measure the distance. The signal was a burst
generated using a spark; and this signal was transmitted using a primitive antenna resem-
bling what is today called a Yagi antenna. Prospects were lukewarm, and Hülsemeyer’s
invention ended with commercial failure.
The potential of such an instrument for aerial surveillance was not yet perceived, prob-
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ably because it was not yet developed. During the First World War and the post-war
period, anti-aircraft early warning was essentially based on a network of human lookouts,
and it was only fortuitously that it was discovered, in various parts of the world, that the
passage of an aircraft in the direct travel line between a radio transmitter and a receiver
could disrupt the transmission. These phenomena were then studied, then exploited for the
purpose of detection, by crisscrossing the land with a mesh of transmitters and receivers,
emitting in continuous wave, and detecting the passage of an aircraft by the beats caused
by interference of the emitted wave with the reflected wave [29]; these are the so-called
radio fences, a technology still used today for some anti-intrusion applications.
It was during the 1930s that radar began to acquire its final form, with work carried

out in particular in the United States, France, the United Kingdom, Japan and Germany
[29, 83, 190]. Thus, it was just on the eve of the Second World War that radar was born.
The war made it possible to carry out its first operational use, to refine the doctrine of
use, and to observe some defects and some new unexpected uses.
In the aftermath of the war, radar found new civilian uses, from air traffic control to

meteorology, imagery of the Earth’s surface and that of other planets. It also regained the
first function for which it had been developed: maritime surveillance. It was also during
the 1950s that the concept of synthetic aperture imaging was formulated: indeed, it was
in 1951 that Carl Wiley, an engineer at Goodyear, formulated its theory [80]. The first
experimental tests were carried out as early as 1952 using optical techniques to perform
the Fourier transform, because the computing power needed to carry out the algorithms
numerically was not available at the time. It was also necessary to wait for the rediscovery
of the fast Fourier transform algorithm by Cooley and Tukey in 1965 [45] to be able to
envisage a digital application in real time. Indeed this algorithm plays an essential role for
signal processing.
It was in 1978 that Seasat made its flight. This satellite was the first to be put into

orbit with a synthetic aperture radar on board. In addition, it was specifically designed
to image the sea. The mission was a success: it highlighted the high visibility of ocean
waves on the radar, but also of the wakes of ships or internal waves generated by what
appeared to be submarines [166], thus opening the possibility of maritime surveillance
applications from space. This unexpected result –because the visibility of the wake is
significantly lower in traditional coastal radar or on-board radar configurations, due to
the lower shaving angle– has prompted ambivalent comments from the Pentagon. The
satellite stopped working after three months, officially due to a failure [206]; but in fact,
many proponents of the “conspiracy theory” suggest that this breakdown was only a cover-
up story mounted by the US intelligence services to prevent the publication of the images
[33]. Since then, the mastery of high-resolution radar systems in orbit has been a jealously
guarded technology, which offers great possibilities for maritime surveillance, for civilian
or military purposes. The major interest of a radar in orbit comes in particular from their
great swath, which makes it possible to scan a large area quickly: of the order of several
hundred kilometers. In addition, unlike optical sensors, the radar makes it possible to see
through clouds. The disadvantages of a such a system are however a very important cost
as well as the short revisit period above a point on the globe, preventing for example from
imaging the same ship on two successive passes and to follow its trajectory as finely as a
coastal radar would. To compensate for the small revist period, it is possible to use satellite
constellations, which has an impact on costs. Still, satellite radar is a very fashionable field
in the scientific literature, judging by the impressive number of publications in this field
alone.
With the rise of unmanned aircraft (drones) since the late 1990s, we can however design

an interesting alternative to satellites in the form of a group of drones monitoring a surface
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using optical sensors, infra-red or radar. The advantage of such systems is that their cost
is much weaker than a satellite, as they require constraints weaker techniques and can
make use of components available off the shelf. Even more economical alternatives in the
form of airships have also been considered (e.g. by the United States, with the JLENS
cruise missile defense program – Joint Land Attack Cruise Missile Defense Elevated Netted
Sensor System). An advantage of airborne systems is that they are of better resolution
than a radar mounted on a satellite: their sensors therefore make it possible to see things
that would be impossible to discern from space. In addition, an aircraft is much more
responsive and less expensive to reposition on a specific area, than a satellite.

Bistatic and monostatic systems

There are two types of radar configurations (Skolnik [158]): on the one hand, monostatic
configurations, where the transmitter and receiver are located in the same place, often
sharing the same antenna; and on the other hand bistatic systems, where the transmit-
ter and receiver are located in different locations. The vast majority of radars today are
monostatic, but bistatic systems were historically used first, before this technique was
abandoned. Back then, the technology did not allow to use the same antenna in transmis-
sion and reception: it was necessary to wait for the invention of the duplexer to allow to
switch the radar in two modes, one capable of transmitting at high power, and the other
capable of processing the incoming low power signals; on the other hand, the technology of
continuous wave “radio fences” was fundamentally bistatic. Nevertheless, the principle of
bistatic radar has since experienced several resurgences [193] (pp. 35-57): the first one was
in the 1950s, when the first missiles were developed. Indeed, the technology did not allow
to put a radar transmitter on board a missile; the missile was only equipped with a re-
ceiving antenna, and processed the radar signals emitted by the aircraft that had launched
the missile and which reflected on the opposing target. The last resurgence began in the
1980s and continues to this day. It is partly explained by the democratization of powerful
computing means (FPGA, “software-defined radio”) and on the other hand by the need to
improve the performance of current radars, especially against stealth or very small targets.

The context of marine surveillance

Function The function of a maritime surveillance radar is to detect targets on the surface
of the water: ships, submarine on the surface; or to image the sea in search of man-
made manifestations: ship wakes, oil trails left following illegal degassing at sea or oil
spills, etc. Historically, maritime surveillance has always been aimed at securing transit
areas with high traffic, such as the Ushant (Ouessant) rail in France, but also to prevent
overexploitation of fishing zones, to monitor the exclusive economic zone of States. The
current geopolitical context means that maritime surveillance is also becoming crucial to
limit illegal immigration, as well as piracy. In this context, it is generally small fast boats
(”go-fast crafts”) that must be detected [204], or even semi-submersibles, a technology that
is currently beginning to be used by cartels for drug trafficking [26].

Means In maritime surveillance, commonly used sensors are mainly coastal radars (typi-
cally mounted on semaphores) or mounted on patrol ships. The advantage of such systems
is the cost of operation, relatively small (for coastal stations), coverage excellent schedule,
and good availability. The spatial coverage is by against reduced to an area of a few tens
of kilometers radius, which does not changes not over time, and that is strongly related
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to the local geography. Indeed, the coast can partially hide certain areas and the altitude
of the radar influences its maximum range. Optical and infrared monitoring also plays an
important role in the military field. Earth observation satellites are set to play an increas-
ing role in maritime surveillance, provided they have a processing chain ranging from an
adequate sensor, to a field response team, appropriate algorithms and a chain of command
and transmission. The journalist Nicolas-Jean Brehon, in an article in Le Monde (6 June
2000), summed up the importance of this channel by recounting the following facts: an il-
legal degassing by an oil tanker sailing outside an authorized area was spotted by ERS-1 as
early as 1991 (the year of its launch), but: "due to lack of coordination and responsiveness,
the image of the double offence was not exploited ”. Fortunately, the situation has changed
a little by the time Brehon wrote his paper, without being perfect yet: “In 1996, ERS 1
acquired an image showing an illegal degassing. Local authorities reacted, took samples in
the sea and in the ship tank. Penalties exceeded one million dollars and thirteen months of
jail time.”

Operational requirements Here I break down ten major objectives to be achieved for a
surveillance system; these can be thought of as the “ten commandments” to abide by, to
make it a useful system from an operational point of view:

1. maximizing spatial coverage, expressed in square kilometres: the largest possible
area should be monitored;

2. maximize hourly coverage: the same area should ideally be monitored constantly,
which is not possible with an airborne system or satellite, which is mobile by design.
In this case we then want to maximize the recurrence period, the length of time that
separates two passages of the vector, within the range of the point to be monitored;

3. maximize availability: as a complementary concept of hourly coverage, availability
expresses the ability of the system to function at all times and not to be, by example,
weather-dependent (due to, for instance, bad weather preventing an aircraft to fly,
or clouds masking the scene for an optical sensor), or dependent upon technical
constraints preventing the system to work: breakdowns, refueling, maintenance.

4. have a good detection rate: the system should as far as possible avoid missing a
target in the area to be monitored;

5. have a low false alarms rate: ideally, we do not want to provide false detections,
which would have the effect of overload operators or actors who have to decide on
an intervention following a detection;

6. have a low reaction time: in case the vessels are fast, it is important that the delay
between the acquisition of the signal by the sensor, the processing of this signal, as
well as the reaction of an intervention team be as small as possible. This period may
vary depending on the type of target to be detected. For a large cargo-type vessel,
the speed of is of the order of twenty knots and the heading is nearly constant, which
means that if the time between acquisition and reaction is of the order of half an
hour, the ship will have moved 39 km with an easily predictable trajectory and it
will be possible to reacquire the target, for example by redirecting a patrol ship or
aircraft equipped with radar. In the case of a small, fast target, the delay should
be decreased sharply or the information would become outdated. The need for an
adequate processing chain is especially crucial for the use of satellite signals.
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7. have a low cost, both during design and installation (launch costs for a satellite,
for example) but also for the operation (carrier fuel, staff salary, etc.) and for main-
tenance. Here we touch on the notions of total cost of ownership, which is often
neglected. Pedersen et al. [140] claim that the average implementation costs per
square kilometre being monitored, for a satellite or an aircraft, are more or less the
same (about 0.08 euros), but it should also be mentioned that the choice ought also to
be made on the complementarity of the two solutions. In addition, mass production
also makes it possible to significantly reduce costs; thus satellite ERS-2, based essen-
tially on the same elements as ERS-1, was developed at a cost 60% less than ERS-1
[61], which was itself based on the SPOT platform. The average annual operating
cost is estimated at 5.4 million euros [50]6 while the overall cost of the ENVISAT
programme, the successor to ERS, is estimated at 2.9 billion euros (same source,
after inflation correction).

8. have a long service life: the guaranteed service life is usually the order of only
a few years for a satellite, the duration of additional operation is not contractually
guaranteed. For example, the effective lifespan of the ERS-1 satellite was almost
nine years, for a three-year contractual life; ERS-2, launched in 1995, is still in flight,
although increasingly affected by failures.

9. be discreet (in military applications). It is easily shown that the decrease in the
power received, in an active monostatic configuration, is in 1/r4 (where r is the radar-
target distance). In a passive (“listening”) situation, the attenuation is in 1/r2 only,
which means that at the same received power level, the radar is detected from much
further by the target than the radar detection range. Solutions have been proposed to
limit the probability of radar emission detection, such as frequency agility techniques.

10. have a low vulnerability (in military applications). Vulnerability is inversely
proportional to discretion. Two kinds of vulnerabilities can be distinguished. The
first is a “hard” vulnerability that results in the possibility of the destruction of the
radar by an anti-radar missile that guides itself on its emissions. A bistatic radar
is less subject to this kind of threat. The second vulnerability is of the “soft” kind,
it is related to the sensitivity to interference. For a bistatic radar, the receiver can
optionally be repositioned to limit the influence of a jammer. For a monostatic
system, it is not necessarily possible to reposition the sensor, but it is sometimes
possible to dynamically reconfigure the antenna diagram, in the case of an active
antenna, so as to limit the influence of the jammer.

As part of this thesis, I shall try to keep these ten requirements in mind. While it goes
without saying that I will try to optimize the rate of good detections and minimize the
rate of false alarms, I will as much as possible transfer the constraint of reaction time onto
the calculation time, which must be low and ideally achievable on an embedded platform.
Similarly, the coverage and cost requirements will be used to determine a configuration
that can be used in a practical way, in the last chapter.

Objectives, approach and contributions of my work

The objective of my work is to see if it is possible to contribute to the improvement
of maritime surveillance through the use of bistatic systems. Among all the detectable

6After conversion into euros of the 30 million francs (year 2000) given in the report and correction of
inflation (17.9 %) between June 2000 and December 2009.
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elements in the image, I was interested in the wakes generated by ships: I intentionally
ignored the problem of detecting the ship itself, because this problem is already very
widely covered in the literature. Crisp [49] summarizes the reasons why ship detection is
now preferred to wake detection: on the one hand, the ship’s reflectivity is independent of
the sea state, on the other hand, stationary ships do not have a wake; the wake is often
not very visible at wide angles of incidence; and finally, wake detection is computationally
intensive. Nevertheless, several arguments can go in favor of wake detection. On the
one hand, the wakes are often visible over great distances, several tens of kilometers. On
the other hand, a wake provides a large amount of information about a ship: first of all
its heading and an indication of presence, but also its speed, as well as potentially its
dimensions and the shape of its hull. Finally, if it is possible for a ship to have a “stealth”
shape, it will be more difficult for it to hide its wake7.
In my work, I have taken a two-step approach. The first step concerns a modeling of

the received signal depending on the physical parameters describing the scene: the ship,
and its environment. The second step aims to explore the possibility of going back from
the received signal to the scene, namely to detect the wake and to retrieve the parameters
describing the motion of the ship (ship velocity and heading). It is therefore quite natural
that the dissertation was divided into two parts. The approach I have implemented is
illustrated in the figure 1.

Figure 1: The two-steps approach of this dissertation

First part I start by modeling the entire radar acquisition chain, the elements of which
are shown in figure 2. The chain as a whole is discussed in chapter 1, then I focused on
the modeling of the maritime surface in the chapter 2, the wake (chapter 3) as well as
the reflection of radar waves on the sea surface (chapter 4). In the chapter 5, the various
elements described in the previous chapters are unified as part of the presentation of a
simulator of raw bistatic radar signals. With this simulator, I have obtained what seems
to us to be the first series of bistatic synthetic antenna radar images in the maritime
environment, since no similar image has yet been published in the literature to the best
of my knowledge. I then validated this simulation against experimental data gleaned from
the literature in the monostatic case, especially from the point of view of speckle noise.
Since the scene is represented by a map of wave heights cut into facets, I also discussed the
problem of choosing good discretization steps: this is a recurring problem in the context,
but often treated only very lightly in the literature.

7However, when designing a ship, resistance to advancement is optimized, which has the collateral effect
of limiting the amplitude of wake waves. The optimization of the ship can only be done for a small range
of precise speeds, so there are still speeds where the ship has a more visible wake. That said, the nominal
cruising speed –the one that the ship will use the most– is that where resistance, and ship wake amplitude,
is smallest...
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Figure 2: The bistatic radar acquisition chain described, modeled and simulated in the first
part. (1) linear model only, (2) straight line propagation without atmospheric absorption.
The green boxes represent the parameters, the yellow ellipses represent the phenomena, and
the red arrows represent the dependency relationships.

Second part In the second part of the dissertation, I try to find the information of
the presence of a ship in a radar image from its wake, as well as its heading and speed, if
possible. Initially (chapter 6), I was interested in the detection of the so-called “dead water”
wake in satellite radar images. This wake presents itself as a dark line in the images. After a
state of the art, I implemented and tested four typical algorithms on synthetic data in order
to evaluate them comparatively. In a second step (chapter 7), I considered the problem
of detecting Kelvin wakes in high-resolution images. I started by identifying a number
of criteria for choosing the best imaging configuration a priori ; this configuration being
possibly bistatic. Then, I proposed an algorithm for detecting and analyzing the wake of
Kelvin, to find the direction of movement of the ship, as well as its speed. This algorithm is
based on the location properties of the wake spectrum in the Fourier transform of images.
It also makes use of a relatively recent8 extension of the notion of matched filtering: the
stochastic matched filtering (Cavassilas and Xerri [37], Courmontagne [47]). The algorithm
also works for spatial images acquired in the optical field and it is on such images that a
first validation was done.

8Note at translation time (2022): I recently found that these methods are actually dating back to (at
least) the early 1970s and are known under various names depending on the scientific community; this is
discussed in the appendix dedicated to Stochastic Matched Filtering.
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Chapter

1
Modeling the acquisition chain
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In this chapter, the various elements of the bistatic radar acquisition chain are reviewed,
following the figure 2 of the Introduction. This figure naturally serves as a guide for the
outline of this chapter, and more generally for the first part of this work.
In order, I consider the transmitted signals (section 1.1), with a discussion on the choice

of frequency bands, as well as an introduction to the notion of pulse compression. Then
antennas are briefly discussed (section 1.2), describing the shape of the field emitted by
an antenna as part of polarimetric radar, as well as the case of reception. We discuss
in a third step (section 1.3) the interaction of the emitted wave with the atmosphere as
well as the imaged surface. Since this discussion requires modeling the surface, as well as
discussing electromagnetic models, this part serves only as an introduction to the problem,
and will be further developed in chapters 2, 3 and 4. Once these points 1.1, 1.2 and 1.3
are covered, they are unified in the equation of the polarimetric bistatic radar, established
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1.1 The transmitted signal

in the section 1.4. This equation is the mathematical counterpart of the figure 2 of the
introduction. Finally, in section 1.7, I conclude by explaining the concept of synthetic
aperture, which I briefly present in the monostatic case as well as in the bistatic case, with
an application in a simple bistatic case. The calculation code used in this demonstration is
the one that was developed as part of this work to process the signals simulated in chapter
5. It corresponds to the “post-processing” box in figure 2.
Some of the elements presented in this chapter were published in the journal paper

"Bistatic radar imaging of the marine environment. Part I: theoretical background” [9].

1.1 The transmitted signal

Depending on the application, the transmitted signal can vary significantly. These sig-
nals are generally modulated over a fairly narrow bandwidth ∆f centered around carrier
frequency f0, which corresponding wave length is denoted by λ0.

1.1.1 Choosing the carrier frequency

Several considerations have an influence on the choice of the carrier frequency. Here are
listed the most important factors coming into play:

Target visibility The target is visible from the moment where the wavelength is signifi-
cantly smaller than the typical size of the structures of the target. If, on the contrary, the
wavelength is much larger than the structures of the target, then the scattering of the wave
by the target is done through the Rayleigh scattering mechanism. The reflectivity of the
target, in the Rayleigh zone, is in λ−4

0 and is rapidly decreasing towards zero. Concretely
this means that the structures much smaller than the wavelength are invisible (transpar-
ent). For instance, a very long-wave airborne radar used to image a forest will only see the
surface of the ground and not the trees; at intermediate frequencies, it will see the trunks
and branches, but not the leaves; while at very high frequencies, it will only see the canopy.

Size of the transmitter and receiver To be effective, antennas must have a size that is
at least of the order of magnitude of the wavelength of the signal to be transmitted. If the
antenna must be small, it will have to use small wavelengths. Mechanical considerations
(like resistance to wind, maximum torque for the motor rotating the antenna) can also
affect the size of the antenna.

Maximum range of the radar Generally speaking, a large wavelength (HF bands) will
allow to take advantage of propagation and reflection on the ionosphere, which makes it
possible to have ranges reaching thousands of kilometers (over-the-horizon radars). The
high frequencies are more sensitive to atmospheric absorption, which limit the range.

Law The use of radio frequency bands is subject to approval by States, which in turn
are subject to deliberations within the International Telecommunication Union. Thus it is
impossible to choose an arbitrary frequency and very hard to have access to a frequency
near the “ideal” frequency needed for a pratical application, due to the pressure of com-
petition and lobbying. Appendix B, which presents the characteristics of several current
radars, clearly shows that frequencies and transmission bands are standardised. In this
work, I will therefore use these frequencies in the simulations.
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1.1 The transmitted signal

1.1.2 Common frequency bands

The frequency bands follow a conventional classification set up during World War II by the
Allies to categorize their own systems and those of the Germans. This classification has
since been used by the IEEE learned society (IEEE 521-1984 standard) and the Interna-
tional Telecommunication Union. Table 1.1 shows some of these bands, as commonly used
in radar. Higher and lower frequency bands do exist, but they are not mentioned because
they are not needed in this work.

Band f0 λ0 Comment
HF 3-30 MHz 10-100 m High frequency. Used by over-the-horizon radars
P <300 MHz >1 m For “Previous”, used a posteriori to name the early

English radars of the Chain Home system.
VHF 50-330 MHz 0,9-6 m Very High frequency. Very long range radars, or

ground penetrating radars.
UHF 300-1000 MHz 0,3-1 m Ultra High frequency. Long range radars, used also for

ground penetration or to see through foliage.
L 1-2 GHz 15-30 cm For “Long” wavelengths. Used for Seasat, and for

GNSS, WiFi, cell phones.
S 2-4 GHz 7,5-15 cm For “Short” wavelengths.
C 4-8 GHz 3,75-7,5 cm For “Compromise”, a compromise between S and X

bands for satellite transponders and weather radars;
also used experimentally for marine radar imaging.

X 8-12 GHz 1,67 2,5 cm During World War II, used for anti-aircraft artillery (X
for “crosshair ”). The band most often used for marine
radars.

Ku 12-18 GHz 1,67-2,5 cm Band under K-band (subscript “u” meaning under), for
high resolution imaging, satellite downlinks.

K 18-27 GHz 1,11-1,67 cm From German “Kurz ”, short. Often used for weather
radars since it is sensitive to droplets of water sus-
pended in clouds.

Ka 27-40 GHz 0,75-1,11 cm Band above K-band (subscript “a” meaning above).
Used for short range speed measurement “radar guns”,
and automobile collision avoidance radars.

Table 1.1: Conventional naming of radio and radar bands. In this work we use L-band to
K-band, with a focus on X-band, which is very used for marine surveillance.

1.1.3 The shape of the transmitted signal

We denote by EX(t), the signal emitted as a function of time. First of all, let us distinguish
between continuous wave radars and pulse radars.

Continuous wave radars These radars typically work by emitting a carrier frequency
signal f0 frequency modulated by a sinusoidal signal over a band ∆f . This emitted signal
is superimposed on the signal reflected by the target. The period of the beat between
the transmitted signal and the received signal then makes it possible to go back to the
distance. This principle is used on most radio altimeters as well as on some radars guns
used by the police to monitor traffic.

Pulse radars They make up the majority of radar systems. They periodically transmit
pulses separated by a period of silence. Each pulse has a duration TX and is transmitted
at pulse repetition rate TI , which inverse is known as the pulse repetition frequency (PRF).
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1.1 The transmitted signal

The simplest signal a pulse radar can transmit is arguably a sinusoidal pulse of carrier
frequency f0 and amplitude E0:

Esin, f0

X (t) =

{
E0e

2πf0t if kTI ≤ t < kTI + TX , k ∈ N
0else (1.1)

However today, other waveforms are used, that offer better performance.

1.1.4 Resolution and pulse compression

This paragraph explains why other waveforms are preferred today1. For every transmitted
signal EX(t), the received signal can always be written:

ER(t) = κEX(t−∆t) + En(t) (1.2)

where ∆t is the transmitter-target-receiver time of flight2 and κ is an attenuation fac-
tor. The received signal is corrupted by an additive noise En(t) considered as white and
Gaussian, with standard deviation σn and zero mean. This noise is for instance thermal
noise in the transmitting and receiving chain. It can be shown3 that the filter maximizing
the signal-to-noise ratio at reception is the matched filter, obtained by intercorrelating the
received signal with the transmitted signal or, equivalently, by convoluting the conjugate
and time-reversed transmitted signal with the received signal:

〈EX , ER〉(t) =

∫ +∞

t=0
E?X(t′)ER(t+ t′)dt′ (1.3)

This can be done using either a digital or an analog (optical) computer4.

Matched filtering for truncated sine pulses Assuming the pulse repetition frequency
is infinite (which does not change the end result but simplifies the equations greatly), it
comes:

〈Esin, f0

X , Esin, f0

R 〉(t) = κE2
0 ∧

(
t−∆t

TX

)
e2πf0(t−∆t) + En′(t) (1.4)

In this expression, ∧ is the triangle function:

∧ (x) =


0 if x ∈]−∞,−1/2[∪]− 1/2,+∞[
1 + x/2 if x ∈ [−1/2, 0]
1− x/2 if x ∈]0, 1/2]

(1.5)

andEn′(t) is a centered additive white Gaussian noise of standard deviation σn′ = σnE0

√
TX .

1This paragraph is very close to the “Pulse compression” article in Wikipdia, for which I contributed
the initial version on December 14, 2006 and which I still regularly curate.

2See paragraph 1.5.2 for the computation of ∆t.
3In appendix D, in a more general case.
4Note added when translating: intercorrelation can be done in the Fourier plane. Yet, it is possible

to perform the Fourier transform using a lens: if a transmissive object illuminated by coherent light is
placed one focal length in front of a convergent lens, then its Fourier transform is formed one focal length
behind the lens. Optical correlation is done using several kinds of optical setups, the earliest being known
as the Vander-Lugt correlator (1963). The data is printed or etched onto a translucent medium (like
photographic film), known as a spatial light modulator (SLM) where the amplitude and sometimes the
phase is controlled; the SLM is then lighted by a laser, the image fed into the correlator, and the result
captured by a camera. Today, there exist computer-controlled SLMs behaving as small screens with HDMI
input. This can be used also to design computer-controlled optical “phased arrays” or holographic systems.
There are still technical challenges to solve before these become mainstream devices.
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1.1 The transmitted signal

If two pulses come back (nearly) at the same time, the intercorrelation is equal to the
sum of the intercorrelations of the two elementary signals. To distinguish one “triangular”
envelope from that of the other pulse, it is clearly visible that the times of arrival of the
two pulses must be separated by at least TX so that the maxima of both pulses can be
separated. If this condition is not met, both triangles will be mixed together and impossible
to separate. The logical conclusion is that, to increase the resolution, it is necessary to
decrease the duration of the pulse.
The instantaneous transmitted power is:

PX(t) =
1

2η0
|EX |2(t) (1.6)

This power is written in Watts, and η0 is the impedance of void. The average transmitted
energy is:

EX =

∫ T

0
PX(t)dt =

1

2η0
E2

0TX (1.7)

Similarly the energy of the received signal is ER = κ 1
2η0
E2

0TX . The signal-to-noise ratio at
reception is then:

ρ′sin =
E2
r

1
2η0
σ2
n′

=
κ2E2

0TX
σ2
n

(1.8)

The signal-to-noise ratio increases with the length of the pulse (all other parameters
being equal). For the signal to remain exploitable, the pulse must therefore stay long
enough, which is the opposite of what is needed for resolution.

Matched filtering with a linearly frequency-modulated signal The idea is to get to
transmit a signal combining the two following properties: on the one hand having a long
duration to minimize the peak power; on the other hand having an autocorrelation function
that is as narrow as possible (at the -3 db cutoff frequencies) so as to have the best resolution
as possible.
One type of signal allowing this, is the linear frequency modulation (LFM) or chirp).

This is a signal which instantaneous frequency varies between f0−∆f/2 and f0 +∆f/2 on
the duration of the pulse. Instantaneous frequency is related to the instantaneous phase φ
by the relationship:

f(t) =
1

2π

[
dφ

dt

]
t

(1.9)

For a LFM ramp transmitted between t = 0 and t = TX it comes that:

f(t) = f0 −
∆f

2
+

∆f

TX
t (1.10)

The instantaneous phase is obtained by integrating over t:

φ(t) = 2π

[(
f0 −

∆f

2

)
t+

∆f

2TX
t2
]

(1.11)

A chirp transmitted periodically is then written thusly:

Echirp, f0,∆f
X (t) =

{
E0e

2π
[
(f0−∆f

2 )t+ ∆f
2TX

t2
]

if kTI ≤ t < k/TI + TX , k ∈ N
0 else

(1.12)

It is of course possible to use descending ramps instead of rising ramps. Writting the
formulas is immediate and the properties exposed below will remain the same.
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1.1 The transmitted signal

As with the "truncated sinusoidal" pulse, let us now calculate the intercorrelation func-
tion between the emitted signal and the received signal. To simplify the calculation, we
also consider the chirp is written not as above, but in the following simplified form (the
final result will remain the same), also considering that the PRF zero:

Ec’
X(t) =

{
E0e

2π
(
f0+ ∆f

2TX
t
)
t if − TX/2 ≤ t < TX/2

0 else
(1.13)

Given that this autocorrelation is equal (barring a translation and a constant attenuation
factor κ) to the autocorrelation of Ec’

X , we use the latter:

〈Ec’
X , E

c’
X〉(t) =

∫ +∞

−∞
sc’ ?(−t′)Ec’

X(t− t′)dt′ (1.14)

It can be show [92]5 that the autocorrelation function of Ec’
X is:

〈Ec’
X , E

c’
X〉(t) = TXΛ

(
t

TX

)
sinc

(
π∆ftΛ

(
t

TX

))
ei2πf0t (1.15)

The maximum of the autocorrelation function Ec’
X is reached at 0 and around this point,

this function varies as the cardinal sine term. The temporal width of this cardinal sine at
-3 dB cutoff is close to T ′X = 1

∆f . Everything happens as if after pulse compression, we had
the resolution of a truncated sinusoidal pulse of duration T ′X which, for common choices of
∆f , is smaller than TX , hence the name “pulse compression‘”. The range resolution after
pulse compression is therefore:

dr =
c0

2∆f
(1.16)

There is also a gain on the signal-to-noise ratio after pulse compression compared to what
we had before compression. Indeed, the signal maximum after compression is TXκE0 and
the new standard deviation of the noise after compression is:

ρ′chirp = T

(
κE0

σn

)2

(1.17)

By injecting relation 1.8 in the case of the sinusoidal signal, taking for the duration of the
sinusoidal signal the equivalent duration T ′X

1
∆f , we observe that:

ρ′chirp =
TX
T ′X

ρ′sin = ∆fTXρ
′
sin (1.18)

This means that, compared to a truncated sinusoidal signal of duration TX , a chirp of the
same duration TX but modulated on a band ∆f will give a signal-to-noise ratio ∆fTX
times higher, after pulse compression. This gain ∆fTX can be factored into the radio link
budget: everything happens as if the transmitter had an even higher transmission power.
We have seen that the compressed signal, in the case of an chirp, gives a signal strongly

resembling a cardinal sine. To the extent that the cardinal sine may have secondary lobes
with a rather large amplitude, it is customary to apodize the signal by convoluting the
result of the matched filtering with an apodizing window, such as a Chebychev, Hamming

5Pages 38 to 44. A very rigorous demonstration of the autocorrelation of a chirp signal and its properties.
The authors work with a real-valued signal, meaning their result is divided by a factor 2 compared to what
we have here in the complex-valued case.
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1.2 Antennas

or Hann6 function; in practice, this step can be done at the same time as the matched
filtering by multiplying the reference chirp by the apodizing window before correlation.
Apodization results in a small widening of the main peak of correlation, thus a small loss
of resolution; but in return the secondary lobes are much more attenuated, which improves
the image quality overall.

Generalization The results obtained here with a linear frequency-modulated signal gen-
eralize to any signal of duration TX occupying a bandwidth of width ∆f . In equation
1.18, it should be noted that the special case of the classical truncated complex sinusoidal
pulse is consistent with this generalization. Indeed, it can be shown that the amplitude
spectrum of a truncated sinusoidal signal of duration TX and carrier frequency ∆f , is a
cardinal sine centered at f0 with a bandwidth at -3 dB, equal to ∆f = 1/TX . Thus,
apart from linear chirp, other modulations are commonly used in radar: Barker codes [88],
chirps hyperbolic, discrete frequency hopping emission, etc.. In our work, we only used
linear frequency modulated (LFM) chirps.

1.2 Antennas

1.2.1 General considerations

An antenna is a transducer: it transforms an electrical signal, into a radio-electric wave,
composed of a magnetic field and an electric field E propagating in space. The radiated
power per unit area is equal to:

dP

dS
=

1

2η0
|E(P, t)|2 [W/m2] (1.19)

The transformation can also be done in the opposite direction when the antenna is operat-
ing in reception mode: the radio-electric wave is transformed into an electrical signal. The
radar antennas commonly used today in maritime surveillance often use the slotted arrays
technology, in the form of a waveguide pierced with regularly spaced slits to directly trans-
mit or receive the waves. Another technology currently in use is that of patch antenna,
consisting of a conductive surface, affixed to one side of a dielectric smooth surface; on
the other side is a conductive reflector: this antenna therefore resembles a printed circuit
board, thus lending itself to easy industrial production and the use over curved surfaces,
that is, flush to the surface of another object (the side of an aircraft, for example). Other
older types of antennas consist of networks of wired strands, such as the Yagi-Uda antenna
(the classical “TV aerial”), or aperture antenna, which are made of a typically parabolic
reflector, lighted by a waveguide ending in a horn.
The operation of an antenna is generally governed by the laws of electromagnetism, in

particular the Stratton and Chu equation, a proof of which is given in appendix C. The
mechanisms involved are those of diffraction and are qualitatively the same as in Optics.
The choice of an antenna is linked to several considerations. First of all, there is the

size: a large antenna offers a greater resistance to wind (an important consideration for
radars mounted on a ship) or weighs heavier (another important parameter, especially if
the antenna is mechanically steered). A second important parameter is the yield, typically
between 0.6 or 0.7, which is taken here equal to one to simplify. A third parameter that
is sometimes important is the cost of manufacturing. And finally, the last parameter, and
the most important for performance, is its directivity. Indeed, as we will see below, the

6Note at translation time: many texts mistakenly spell that as the “Hanning” window (as “Hamming”);
but the name is actually that of Austrian meteorologist Julius von Hann (1839-1921).
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1.2 Antennas

dimensions of the antenna influence its gain and angular resolution, that is to say its ability
to transmit or receive in a privileged direction.

1.2.2 The simple case of the aperture antenna

In order to understand the physical phenomena at work for an antenna, we consider the
canonical case of the aperture antenna. On this type of antenna, the electromagnetic wave
generated by the magnetron or the klystron is led to the antenna via a waveguide. This
waveguide ends with a horn that illuminates the surface of a plate or wire mesh of large
dimensions that act as a reflector. The electric field EX that forms on the surface of the
reflector in turn gives birth to an electromagnetic wave that will propagate in space. Note
that this EX field has no reason for being constant over the entire reflective surface.
Often the reflector has a parabolic shape on one or more of its dimensions, with the horn

at the focal point of this parabola. This arrangement allows to reflect the waves towards
infinity by minimizing the angular dispersion of the waves, in the same way as headlights
on a car. However, unlike a headlight, this phenomenon of angular dispersion cannot be so
well minimized. Indeed, the Radar antenna reflector size is relatively small in front the size
of the radio wavelength, and one cannot neglect diffraction. Each point P′ of the surface7

of the antenna SX will then radiate as a punctual source, and the total scattered field at
one point P of the space is the coherent sum of all infinitesimal fields created by the points
P′ of SX . The way this works is, with minimal differences, how other types of antenna
work, which makes it possible to generalize the concepts developed in this paragraph. Let
us now calculate the electric field generated by an idealized plane antenna at any point P
of space.

1.2.2.1 Frames and hypotheses

We start in the transmitting antenna frame X (X, x̂x, ŷx, ẑx). Point X is on the surface
of the antenna and is taken, if possible, at the center of symmetry of the surface. In the
remainder of this section, the following assumptions are taken:

1. The reflector is considered to be flat, with dimensions dy and dz and area SX . This
simplifies equations; on the other hand, for a non-planar reflector, it is always pos-
sible to consider a virtual flat surface as a reference, even if it means changing the
distribution of the electric field on this surface.

2. The reflector is assumed to be perfectly conductive.

3. We also consider that we are in the far field of so that Fraunhofer conditions hold
(see appendix C, page 239):

r >
2 max(dy, dz)

2

λ0
(1.20)

where r is the XP distance and λ0 is the electromagnetic wavelength.

4. Finally, we consider that the electric field on the surface of the antenna is constant
in space. The surface field at one point P′ of SX can then be written:

EX(P′, t) = EX(t)p̂x (1.21)

Vector p̂x is the polarization vector of the transmitting antenna. Coordinates for p̂x
in the X frame are denoted (0, p̂y, p̂z)

t. If p̂z = 0 the antenna is said to be polarized
horizontally, and if p̂z =1, it is vertically polarized.

Figure 1.1 illustrates the notations that have been introduced here.
7In the following, SX will denote both the physical surface of the antenna and the area of that surface.
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1.2 Antennas

Figure 1.1: Geometric configration to compute the radiated field at a point P.

1.2.2.2 Radiated field at a point P

The expression of the electric field Ei(P, t) generated by the antenna at a point P of space8,
is given by the vector expression of the Fraunhofer diffraction ([1], see also in appendix for
a demonstration of the result, stated in the equation C.84 of the appendix C):

Ei(P, t) =
k0e

−k0r

2πr
(n̂× FE)× r̂x (1.22)

where9:
FE(P, t) =

∫∫
SX

EX(XP′, t)ejk0XP.XP′dS′ (1.23)

with:

• n̂ = x̂x, a unit vector normal to the surface SX of the antenna;

• P’ is a point on the surface of SX that contributes to the integral;

• EX(P′) is the field on the surface of the antenna.

Under these conditions, and using the assumption that the electric field is constant at the
antenna surface, we can evaluate FE and we can make the following simplification:

FE(P, t) = EX(t)σx(r̂x)p̂ (1.24)

The magnitude σx, homogeneous to a surface – we shall see later why – makes it possible to
obtain the amplitude of the wave diffracted by the aperture in direction r̂x, parameterized
in elevation by ∠yx and in azimuth by angle ∠zx in the antenna coordinate system.
We now introduce Êi = (n̂× p̂)×r̂x; given we assume to be in the far field, Êi is (almost)

in a plan. In the coordinate system associated with the emitted wave Px(P, v̂x, ĥx, r̂x),
Êi is entirely defined by both components Êih and Êiv while the third is always zero.
Also there is a linear relationship between the two non-zero coordinates of p̂x in the X
coordinate system: (p̂y, p̂z), and the two non-zero coordinates of Êi in Px. This relationship
is written10 using the following matrix equation:[

Êiv
Êih

]
Px

= EX(t)σx(r̂x)
k0e

−k0r

2πr

[
− cos žx 0

sin y̌x sin žx cos y̌x

]
︸ ︷︷ ︸

Px

[
p̂z
p̂y

]
X

(1.25)

8The notation Ei corresponds to the incident electric field on the surface illuminated by the antenna.
9The meaning of the “prime” notation in the integral is explained at page 236.
10The fact of putting the Êiv component first is customary in the community.
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1.2 Antennas

The matrix Px is therefore used to describe the polarization of the wave emitted in P,
given the polarization vector p̂x of the wave on the antenna. In the end, the signal emitted
at a point P can be calculated as follows:

{
Ei
}
PX

(t) = EX(t)σx(žr, y̌r)
k0e

−k0r

2πr
Px {p̂x}X (1.26)

1.2.2.3 Antenna directivity and gain

Definition It can be seen from the equation 1.24 that this is the function σx which
differs from one antenna to another since it alone depends on its shape. It is this function
that characterizes the antenna. In fact, we usually use an expression derived from σx to
characterize the antenna: this is directivity. We define as the directivity of the transmitting
antenna Dx(r̂x), the ratio of the power density emitted by the antenna in a given direction,
on the average power radiated per unit area on a sphere of radius 4πr2. We also consider
the gain Gx(r̂x), which is the product of directivity by yield. We assume here that the
yield is worth one, so we will sometimes confuse the two notions.

Calculation The total power emitted at the antenna is given by the flux of the square
of the Poynting vector through the antenna surface SX :

Pitot =

∫∫
SX

1

2η0
||Ei(P′, t)||2dS′ (1.27)

with P’ on the antenna surface. The radiated power in a given direction is given by the
relation (1.19), which gives after injecting the equation 1.22:

dPi

dS
(P, t) =

1

2η0r2λ2
0

||
(

n̂×
∫∫

SX

E(XP′)e−k0XP.XP′dS′
)
× r̂x||2 (1.28)

Given the definition above:

Dx(r̂x) =
dPi

dS

Ptot/(4πr2)
(1.29)

which yields

Dx(êr) =
4π

λ2
0

‖
(
n̂×

∫∫
SX

EX(P′, t)e−k0.XP′dS′
)
× r̂x ‖2∫∫

SX
‖ EX(P′) ‖2 dS′

(1.30)

Maximum directivity The maximum radiation is obtained when all points on the antenna
surface radiate in phase. In the case where the surface is perfectly flat, the maximum
radiation is reached in the normal direction on the surface. The maximum gain of the
antenna is calculated using this information (which translates mathematically to r̂ = n̂)
which simplifies the expression of the electric field in the normal direction. We have indeed:

dPi

dS
(P, t) =

1

2η0λ2
0

||Ei(P, t)||2 (1.31)

=
1

2η0λ2
0

|| (n̂× FE)× r̂x||2 (1.32)

dPi

dS
(rx) =

1

2ηλ2
||FE||2 (1.33)
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wher FE simplifies in:

FE =

∫∫
SX

EX(P′)dS′ (1.34)

given the phase term, exp(r′ .̂r) is equal to one (as per our hypothesis). The maximum
directivity is then:

Dx, max =
4π

λ2
0

||
∫∫
SX

EX(P′)dS′||2∫∫
SX
||EX(P′)||2dS′

(1.35)

Normalization of directivity We often consider an imaginary antenna that would have
a constant directivity equal to 1 in all directions. Yet:

∀r̂x, Dx(r̂x) = 1⇒
||
(
n̂×

∫∫
SX

EX(P′)ek0.XP′dS′
)
× r̂x||2∫∫

SX
||EX(P ′)||2dS′︸ ︷︷ ︸

homogeneous to an area

=
λ2

0

4π
(1.36)

This term is homogeneous to an area, which is assimilated to the area of the isotropic
antenna. We can therefore see the antenna gain as a ratio of areas. Everything happens
as if the power radiated by the actual antenna in the direction r̂x was the one emitted a
isotropic antenna whose surface area would have been multiplied by the directivity:

Dx(r̂x) =
4π

λ2
0

surface(r̂x) (1.37)

The isotropic antenna being a view of mind, directivity is sometimes normalized with
respect to the Hertzian dipole. The Hertzian dipole consists of a wire of length very
small in front of the electromagnetic wavelength, and a simple calculation shows that the
theoretical maximum directivity that can be expected of such an antenna is:

Dx, max. Hertz. =
4π

λ2
0

3

8π
λ2

0 =
3

2
(1.38)

So there is a difference of a factor of 3/2 between the two normalizations, about +1.76 dB.
This is the “isotropic antenna” convention that is usually taken in the radar community.

Vector form Directivity and gain can be considered in a vector form when polarization
is involved:

Dx = Dx(r̂x)Px (1.39)
Gx = Gx(r̂x)Px (1.40)

1.2.2.4 Directivity and angular apertures of usual antennas

For a real antenna, the directivity is most often determined experimentally11, using a
suitably calibrated receiver placed away from the antenna whose directivity is to be deter-
mined. It is, however, possible to make an exact calculation for common simple antennas:
rectangular and elliptical, which we have used in our work.

11Note at translation time: it can also be determined beforehand using finite element methods where
the Maxwell equations are solved numerically.
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1.2 Antennas

Antenna directivity for a rectangular aperture Consider a rectangular antenna of size
dy in the ŷx direction and dz in the ẑx direction. It is easy to show that function σx is of
the form σx = SXσx with SX = dy × dz and:

σx(žx, y̌x) = sinc
(
π
dy
λ0

sin žx cos y̌x

)
sinc

(
π
dz
λ0

sin y̌x

)
(1.41)

where sinc(x) = sin(x)/x. The directivity of such an antenna is then:

Dx, rect(žx, y̌x) =
4π

λ2
0

||
∫∫
SX

EX(P′)dS′||2∫∫
SX
||EX(P′)||2dS′

=
4π

λ2
0

(SX)2σ2
x(žx, y̌x)

SX
=

4π

λ2
0

SXσx(žx, y̌x).2

(1.42)

Antenna directivity for elliptical aperture If the aperture is elliptic, of major axis dy in
direction ŷx and minor axis dz in direction ẑx, then the integral of the diffraction is solved
with the Bessel function of the first kind of order 1, denoted by J1 [103]. Area SX is worth
2πab and function σx is:

σx(žx, y̌x) =
J1(arg)

arg
(1.43)

The arg argument of the Bessel function is:

arg = k0dy

√
(cos y̌x sin žx)2 +

(
dz
dy

sin y̌x

)2

(1.44)

This formula easily adapts to the case of a circular antenna.

Notion of angular aperture Angular aperture is used to characterize the dimensions of
the cone in which the antenna radiates or receives the best. It is characterized either by
the angular domain where the directivity loss is less than -3 dB relative to the maximum
directivity, or by the angular sector separating the first minima around the maximum.
Of the two definitions, the first is the most common. In general, the angular aperture
is calculated at elevation Φsite (for a zero azimuth), and the azimuthal aperture at angle
Φazimuth (for a zero elevation). The angular aperture in the horizontal plane (azimuth) is:

Φaz = 2ž0
x such that Dx(ž0

x, 0) =
1

2
Dx(žx = 0, y̌x = 0) (1.45)

And similarly, the angular aperture in the vertical (elevation) plane is:

Φel = 2y̌0
x such that Dx(0, y̌0

x) =
1

2
Dx(žx = 0, y̌x = 0) (1.46)

In general, the value of the Φel,Φaz terms can only be found by a numerical approach.
For a rectangular antenna, assuming for instance y̌x = 0, we have:

σx(žx, 0) = sinc
(
π
dy
λ0

sin žx

)
(1.47)

and solving numerically for žx when:

σx(žx, 0) =
1√
2

(1.48)

yields Φel ≈ 0.886λ0/dz. For similar considerations, Φaz ≈ 0.886λ0/dy. For the circular
antenna, we will find an aperture of respectively 1.02λ0/dy and 1.02λ0/dz, in the vertical
plane (elevation) and in the horizontal plane (azimuth).
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1.2 Antennas

It should be noted that for these formulas, we made the assumption that apertures are
small, so that simplifying approximations can be made, such as a limited development.
The notion of antenna aperture is important, because it is it that makes it possible to
determine the ability of the antenna to discriminate the direction of arrival of radio waves,
In both cases, it appears that to decrease the angular aperture, it is necessary either to

increase the size of the antenna, or decrease the wavelength λ0. This result is valid for any
antenna, regardless of its technology. Figure 1.2 shows the gain diagram for a rectangular
and elliptical antenna of the same dimensions; this diagram shows the characteristic pattern
composed of a main lobe (for a zero elevation and azimuth) and secondary lobes. The
appendix B gives some antenna dimensions as found from the open literature. Since the
dimensions of the antenna of the figure 1.2 are not realistic for a radar, we show in the figure
1.3 the main lobe of a rectangular antenna of length dy =1.22 m and width dz =0.38 cm. It
can be noted that the lobe is much narrower, which is due to the fact that dimensions are
larger; similarly, the lobe is much more narrow in azimuth than in elevation, which is due
to the fact that the antenna is wider in the horizontal direction. A narrow lobe in azimuth
is a desirable thing, insofar as it allows to reduce angular ambiguity about the location of
the target. In counterpart, having a wider lobe allows, when the antenna is mounted on
the mast of a boat, to have a certain robustness on ship pitch variations, regardless of the
state of the sea (which allows to avoid a servo system to keep the antenna aimed at the
horizon).
The length taken for the figure 1.3 corresponds to the length of a Furuno FAR 2855

on-board radar antenna (4 feet); the width at 3 dB of the lobe is here about 1.32◦in
azimuth. The datasheet announces an azimuthal aperture of 1.8◦in X-band, which gives
a good agreement between theory and reality despite the fact that the real antenna is not
rectangular but a slotted array.

1.2.3 Receiving antennas

Because of the reciprocity of the Stratton and Chu equations, it is possible to calculate
the field created on the surface of the antenna from the field originating from a point P
of space. This field is obtained by a relationship similar to that of the emission case. The
components of the received electric field ER at the antenna are written in a form analogous
to equation 1.26:

{ER}R (t) = k0
e−k0r′

2πr′
σr(r̂

′) {p̂r}tR Pr {Es}PR (1.49)

where σr is the analog of σx but for reception (same form), r′ the distance || RP||, p̂r is
the polarization vector of the receiving antenna, and Pr the matrix equivalent to Px but
written in the coordinate system R described in figure 1.4. It is possible to reuse all the
concepts developed for the antennas used for transmission (angular aperture, gain, etc.).

1.2.3.1 Antenna lobe footprint on the ground

When imaging a somewhat flat surface (such as the sea surface), it is interesting to know
the dimensions of the area on the sea surface, that is illuminated by the antenna lobe.
These dimensions have a double interest:

• the illuminated area will directly influence the link budget given by the radar equa-
tion, which we will see later in the 1.4 section;

• the parameters of this area will also have some importance when considering the
mechanism of integration into synthetic antenna, because we will see that the larger
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(a) Rectangular antenna

(b) Elliptic antenna

Figure 1.2: Gain matrix Gx(r̂x) at a 10 GHz frequency, for an antenna of 18 cm (length)
by 14 cm (width), far a rectangular aperture (a) and elliptic aperture (b).
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1.2 Antennas

Figure 1.3: σx function (in dB), λ = 3.10−2 m, dz = 3, 8 cm, dy = 1, 22 m (4 ft).

Figure 1.4: Geometric configuration used to compute the received electromagnetic field on
an antenna.

the illuminated surface, the longer this integration will be (see section 1.7, and more
particularly paragraph 1.7.3.2).

In emission, this size corresponds more or less to the total illuminated surface. In
reception, it is the points on the surface located on the footprint of the receiving antenna
lobe that contribute to the received signal. The notations we use are those given in figure
1.5. We want to determine the lengths ∆d (swath on the ground) and ∆daz (width of the
footprint, in azimuth). We work here with the transmitting antenna placed in X but we
can make an analogous calculation in reception. It is assumed that the antenna is aimed
at point C on the mean surface of the sea, with an incidence angle θi. An arbitrary point
M of the mean surface of the sea is being considered. In the world coordinate system
W = (O, x̂, ŷ, ŷ), points X, C and M have the following coordinates:

{X}W = [0, 0, h]t (1.50)
{C}W = [h tan θi, 0, 0]t (1.51)
{M}W = [xM , yM , 0]t (1.52)

Point M has coordinates, in the antenna frame X :

{M}X =

 sin θi 0 − cos θi
0 1 0

cos θi 0 sini θ

 xM
yM
0

−
 0

0
h

 =

 xM sin θi + h cos θi
yM

xM cos θi − h sin θi

 (1.53)

25



1.2 Antennas

Figure 1.5: Acquisition geometry.

The elevation and bearing of M in the antenna frame is thus:

žx = atan
yM

xM sin θi + h cos θi
(1.54)

y̌x = atan
xM cos θi − h sin θ√

(xM sin θi + h cos θi)2 + y2
M

(1.55)

Consider the size of the footprint of the portion of the antenna lobe where the gain is
greater than the maximum gain removed of 3 dB. The scalar gain function of the antenna
is assumed to be known; it is usually expressed as a function of the azimuth and elevation
angle as described above. It is therefore sufficient to determine the angle for which the
gain loss is less than 3 dB. For a rectangular antenna of dimensions dy × dz:

σx(αy, αz) = SXsinc
(
π
dz
λ0
ky

)
sinc

(
π
dy
λ0
kz

)
(1.56)

avec:

kx = cos y̌x cos žx (1.57)
ky = cos y̌x sin žx (1.58)
kz = cos y̌x sin žx (1.59)

In a given direction (bearing or elevation), we saw that the gain drops by 3 dB as soon as
the argument x0 of the cardinal sine is such that x0 = 0.442946471π = ±ξπ. In azimuth,
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we have:

xa0 = π
dy
λ0

sin y̌x (1.60)

while on the elevation axis:

xs0 = π
dz
λ0

cos y̌x sin žx (1.61)

By calculating the corresponding values for y̌x and žx, and injecting them into 1.55, we
can find that:

∆d = 2hξλ0

√
d2
y − λ2

0ξ
2

(dy cos θi)2 − λ2
0ξ

2
(1.62)

and:

∆daz = 2hξλ0

√
1 + tan θ2

i

d2
z − ξ2λ2

(1.63)

1.3 Target and clutter: wave/environment interactions

Generally speaking, the waves produced by the transmitting module can reach the receiver
either through a direct path that does not meet any targets, or by being reflected by
elements of the scene: the atmosphere, the sea, or a ship. For a solid target, we generally
use the notion of radar cross section (RCS), denoted σ. The RCS can be defined as the
apparent surface that would be needed for a target, to reflect a power P′ in the direction
−r̂r, while it is subjected to an incident wave propagating in the direction rx with a surface
power density given by equation 1.19:

P′(−r̂x) =
dP

dS
(r̂x)× σ(r̂x,−r̂r) (1.64)

It is important to see that the RCS is not the physical surface of the object, but an apparent
surface that fluctuates according to the direction rx of arrival of the incident wave and the
direction −r̂r of the reflected wave.
The notion of RCS can be put in vector form, in order to represent the polarization

effects: we then consider matrix Σ = [σpq] where p and q are the polarizations at transmis-
sion and reception, respectively. We then consider the incident field Ei, and the reflected
field Es; to be able to make sense of the Σ matrix, these vectors must be expressed in
specific coordinate systems; we therefore use the “incident wave” polarimetric coordinate
system PI and the “reflected wave” polarimetric coordinate system in the so-called forward
scattering alignment convention PFS (see figure 1.6 or appendix A for the definition of these
frames:

{Es}PFS = Σ
{
Ei
}
PI

(1.65)

In the case of an infinite surface, the normalized radar cross section Σ0 = [σ0
pq] is used,

which involves the actual illuminated surface A, and the surface of the wavefront 4πr2:

Σ0 =
4πr2

A
Σ (1.66)

We can also consider an amplitude scattering matrix, S = [Spq], such that σpq = SpqS
∗
pq.

In the case of the atmosphere, we do not consider a RCS but rather volume attenuation
and scattering.
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1.3 Target and clutter: wave/environment interactions

Figure 1.6: Frames used to express the incident field and the reflected field on the surface.
The incident wave coordinate system is PI(P, v̂i, ĥi, r̂x) while the reflected wave coordinate
system in forward scattering alignment convention is PFS (P, v̂fs , ĥ

f
s , r̂

f
s ).

1.3.1 Atmospheric interactions with radio waves

1.3.1.1 Absorption and scattering

The interaction between the radio wave and the air molecules, or the elements that are sus-
pended in the atmosphere (water droplets, dust, ...) can be described by two phenomena:
absorption and scattering.
Absorption is characterized by the excitation of electrons of atoms in the path of the radio

wave, these electrons gaining an energy equal to that of the photon absorbed according
to the laws of quantum mechanics. Absorption increases with the density of atoms in the
medium in which the radio waves travel. Assuming that the atoms are evenly distributed,
it can be considered that a certain fraction a.dz of the photons are absorbed in a slice of
thickness dz of medium crossed; thus the intensity of the wave loses a quantity dP = −aPdz
when crossing this slice, which makes it possible to arrive at the differential equation:

dP

dz
= −aP (1.67)

whose solution is of the form P0 exp (−az): the wave therefore undergoes an exponential
decay. This decay or attenuation is especially present in case of rain or fog and reaches a
few decibels per kilometer in X band. In optics, attenuation is the cause of a decrease in
contrast for sources located far from the emitter, typically visible on foggy days for objects
on the horizon: the visibility range decreases. This phenomenon is also true in radar.
The scattering of radio waves in the atmosphere is characterized by the random deviation

dθ of the waves (assumed to be planar), according to its initial direction of propagation
θ, which we assume to be zero to simplify. The probability density of the deviation angle
is called the scattering function. This function is theoretically parameterized according
to two angles (analogous to a bearing and elevation) but since it generally presents an
axial symmetry related to the isotropy of the medium it is possible to parameter the
function using only one angle. The typical shape of a scattering function is shown in figure
1.7: propagation is maximum around the initial direction of propagation, but there is a
possibility for the wave to be deviated around a direction θ. Two cases occur: if dθ < π/2
then the wave continues to propagate forward, this is called forward scattering ; or the
deviation dθ is greater than π/2, in which case the wave goes back to the transmitter:
this is called backscattering. By abuse of language, we also speak of a “forward scattering”
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1.3 Target and clutter: wave/environment interactions

configuration when the transmitter and receiver point in the same direction but in the
opposite direction, as well as a ”backscattering” configuration when the transmitter and
receiver point in the same direction. In Optics, forward scattering explains why the image
of punctual sources located far from the receiver are blurred in a misty environment. The
width of the point spread function increases with the distance between the source and the
receiver. Still in Optics, if the receiver “looks” in the same direction as the source, then
backscattering will be at the origin of a so-called “glow veil” superimposed over the image
of the scene. This is caused by the light reflected by the diffusing medium. A typical
example is when a car is driven in the fog: the driver sees the fog reflect the light from
the headlights of their car. The same phenomena are valid in radar, although it goes
without saying that the shape of the scattering function varies with the frequency and the
characteristing of the scattering medial.
Scattering is caused by the interaction between the radio wave and particles which size is

less than or equal to the wavelength (as an order of magnitude). Depending on the regime,
we then speak of Rayleigh scattering or Mie difusion (whose modern formulation is provided
by Stratton [167], 9.25, p. 564). Semi-empirical scatterering functions have been created
to better model the scattering of a wave in a medium, such as the Henyey-Greenstein
function [94] (which is configurable and generic); others are purely experimental. As a
rule, the veiling and blurring effect caused by scattering impairs the correct imaging of a
point target and decreases the effective range of a system using electromagnetic waves; this
is true both in the optical field, as for example in underwater optics where these phenomena
are particularly troublesome [60] or in the field of radar imaging. In a context other than
weather radar, the signal returned from the atmosphere is undesirable and considered as
noise masking the scene; this noise is named clutter.

Figure 1.7: Shape of a typical scattering function. The probability of scattering Pr in direc-
tion dθ is proportional to the radial distance r from the surface of the scattering function
to the origin; the volume enclosed by this surface is one to normalize the total probability.
The shape has an axial symmetry around the initial direction of propagation.

1.3.1.2 Atomspheric propagation ducts (ducts). Ionospheric interactions.

The variation of the refractive index in the atmosphere, depending on the point where one
is, can cause the rays to deviate, which means that they no longer propagate in a straight
line. In the optical field, this phenomenon is known as mirage. The index variation is
related to pressure, temperature and the presence of water vapour [159]. In our case,
however, we will hypothesize straight-line propagation, which makes sense for relatively
short range X-band airborne applications.
On the other hand, the ionosphere, divided into several layers of variable index, can
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1.4 Target and clutter: wave/environment interactions

reflect radio waves towards the ground. These reflected waves can in turn reflect off the
ground to return to the ionosphere, and so on, allowing for long-range propagation. Nev-
ertheless, the influence of the ionosphere is especially important at low frequencies (HF
bands) and negligible for centimeter waves, which is the field in which we work.

1.3.2 Surface interaction

To simplify our point, we call here “surface interaction”, any interaction between the radio
wave and something other than the atmosphere. The modeling of the reflection of a radio
wave by a surface being a complex field, we will not seek in this chapter to make a complete
state of the art but only to present the main phenomena. Specific aspects of wave scattering
on the sea surface will be discussed later, in chapter 4.

1.3.2.1 Complex wave/target interaction

The interaction of a wave with a complex target is difficult to model analytically. The
determination of the RCS can be done experimentally on a model, using an anechoic
chamber; or numerically, using approximate methods (approximation by geometric optics,
by the general theory of diffraction, by solving Maxwell’s equations by the method of
finite differences, etc.). Each method has a different degree of realism, simplicity and
computation time.
To get an idea of the RCS of a ship, there are empirical formulas. Skolnik [158] gives such

a formula, valid for non-stealth targets, in monostatic configuration, for resolutions larger
than the ship, and for small grazing angles, with unspecified polarization. This empirical
formula is as follows:

σ = 52f
1/2
0 Dp3/2

b (1.68)

where f0 is the radar frequency in MHz and Dpb the ship’s displacement in thousands
of tons. The formula has been validated for λ0 wavelengths of 3.25, 10.7 and 23 cm and
displacements of 2 to 17 kilotons. The radar cross section is of the order of 104 m2 for a
freighter. For resolutions smaller than the ship, finer models should be used: this is what
happens for this dissertation.

1.3.2.2 Interaction with an infinite rough surface

Since this point deserves more development than mere generalities, it is dealt with in more
detail in chapter 4 in the context of a maritime surface. Qualitatively, an infinite rough
surface will also reflect the wave. Two types of reflection are possible. If the surface is
very weakly rough compared to the wavelength, that is, if the variations in height of the
surface are small in front of this wavelength, then the reflection will tend to be specular:
the surface behaves like a mirror by reflecting the wave (mainly) in the direction respecting
the Snell-Descartes law of reflection. If, on the contrary, the variations in height are no
longer negligible in relation to the wavelength, then there will also be diffuse reflection,
meaning the waves will also be reflected in directions other than the specular direction.
This reflected energy will be able to return to the radar. It is, in particular, diffuse reflection
that allows a monostatic radar to build an image of the maritime surface. In the context of
maritime surveillance where the ship is considered to be the target, the energy contributed
by the ocean surface is perceived as undesirable noise that is also called clutter.
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1.5 Writing the bistatic radar equation

1.4 Writing the bistatic radar equation

The bistatic polarimetric radar equation in amplitude, is obtained by putting together all
the elements of the acquisition chain, in order to obtain an expression of the electric field
at the receiving antenna, as a function of the electric field on the transmitting antenna.
For this we use equations 1.26 at emission, 1.65 for the surface, and 1.49 at reception.
However, care must be taken to properly address the sequence of frame changes between
the transmitting antenna and the receiving antenna, as illustrated in figure A.2, page 223,
in Annex A. We end up with [1, 104, 13, 9]:

{ER}R (R, t) = C. {p̂r}′R PrRPBS→PR
BΣRPX→PIPx {p̂x}X (1.69)

with:

C = −k2
0

e−k0(r+r′)

4π2rr′
σr(žr, y̌r)σx(žx, y̌x)EX(t) (1.70)

This equation shows rotation matrices RPX→PI and RPBS→PR
, as well as the frame change

matrix from the front scattering alignment convention to the backscattering alignment
convention:

B =

[
1 ∗ 0

0 ∗ −1

]
(1.71)

This backscattering alignment convention makes it possible to use in reception, the same
coordinate system as the transmitting antenna, in the specific case of monostatic configu-
ration.

1.5 Received signal and the Doppler effect

1.5.1 Expression of the received signal, in the narrowband approximation

Starting from expression of the scalar signal from equation 1.2 of the paragraph 1.1.4,
assuming that there is no noise:

ER(t) = κEX(t−∆t) (1.72)

Using the narrowband approximation, it is further assumed that:

EX(t) = µ(t)e2πf0t (1.73)

where µ(t) is a (possibly complex), frequency modulating function ∆f that has a small
amplitude in front of the carrier frequency f0. The received signal is then ([88], page 27):

ER(t) = κµ(t−∆t)e2πf0(t−∆t) (1.74)

1.5.2 Computing the total time of flight ∆t

Given the previous equation, it is therefore necessary to know the total time of flight ∆t
on the path between the transmitter, the target and the receiver. This is equivalent to
calculating the total distance r + r′ traveled by the electromagnetic wave between the
transmitter, target, and receiver, since ∆t = (r + r′)/c0. This distance r + r′ intervenes
both in the calculation of attenuation losses and for the Doppler effect. It varies over time
due to the movement of objects.
Following Airiau and Khenchaf [1] and Arnold-Bos, Khenchaf and Martin [9], we assume

straight line propagation, and also assume to know the respective position of the transmit-
ter, target, and receiver at a reference time t0: T(t0), P(t0) and R(t0) and their (assumed
constant) speed vectors VX, VP and VR.
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1.5 Received signal and the Doppler effect

We are now interested in a small signal “atom” emitted between dates tX and tX + dtX ,
where tX is not necessarily equal to t0. Our problem is to know tR(tX), the date of arrival
of the signal and travel time ∆t = tR − tX . This travel time is a function tX , the position
of the objects and their speed. If we note tP , the date when the signal atom reaches the
target, then:

r = c0 × (tP − tX) (1.75)
r = ||P(tP )−X(tX)|| (1.76)

= ||XP(tX) + VP(tP − tX)|| (1.77)

with:
XP(tX) = XP(t0) + (VP −VX)(tX − t0) (1.78)

By equating (1.75) and (1.77), squaring the result, and solving for tP − tX , it comes:

tP − tX =
XP(tX).VP +

√
∆1

c2
0 − V 2

P

(1.79)

where
∆1 = ||XP(tX).VP||2 + (c2

0 − V 2
P )||XP(tX)||2 (1.80)

Similarly:

r′ = c0 × (tR − tP ) (1.81)
r′ = ||R(tR)−P(tP )|| (1.82)

= ||PR(tP ) + (tR − tP )VX|| (1.83)

which yields:

tR − tP =
PR(tP ).VR +

√
∆2

c2
0 − V 2

R

(1.84)

with
∆2 = ||PR(tP ).VR||2 + (c2

0 − V 2
R)||PR(tP )||2 (1.85)

and:
PR(tP ) = PR(tX) + (VR −VP)(tP − tX) (1.86)

1.5.3 The Doppler effect

The Doppler effect, named after its main discoverer Christian Doppler (1803-1853), is
characterized by the frequency shift of a signal emitted or reflected by a moving object,
relatively to the frequency of the signal which would have been obtained were said object
non-moving.

1.5.3.1 The Doppler effect at the first order

The time of flight ∆t between X, P and R changes with the date of emission tX due to the
movement of the objects. We can evaluate the derivative of the travel time ∆t at t = tX
as: [

d∆t

dt

]
t=tX

=
1

c0

{[
dr

dt

]
t=tX

+

[
dr′

dt

]
t=tX

}
(1.87)

In the monostatic case, we simply have:[
d∆t

dt

]
t=tX

= 2
VP.XP

c0
(1.88)
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This term is negative if the target approaches the radar. At reception, the variation of the
time of flight will have a double effect. On the one hand, a pulse train emitted regularly
will arrive at increasingly closer intervals (if the target gets closer) and reciprocally. On the
other hand, there will be a “compression” of the duration of the received pulse, if the time
of flight decreases; conversely there is a temporal expansion if the time of flight increases.
Indeed:

• The time of flight of a signal atom transmitted at tX is ∆t(tX)

• The time of flight of a signal atom transmitted at tX + dtX is ∆t(tX + dtX) =
∆t(tX) + dtX

[
d∆t
dt

]
tX

• the time of flight difference is therefore: dtX
[
d∆t
dt

]
tX
, which is a local compres-

sion/expansion of the pulse duration being proportional to:

ρDoppler(tX) ≈ 1 +

[
d∆t

dt

]
t=tX

(1.89)

This term ρDoppler(tX) can be thought of as the “Doppler compression coefficient”. If
velocities are constant over the duration of the transmitted pulse, this coefficient will be
constant at the first order: ρDoppler(tX) = constant = ρDoppler(tX). It is also possible to
compute ρ−1

Doppler, and after Taylor expansion at the first order:

ρ−1
Doppler(tX) ≈ 1−

[
d∆t

dt

]
t=tX

(1.90)

The received signal will have a duration ρDopplerTX . It will be centered around frequency
f0/ρDoppler = f0 + fD where fD is the Doppler shift. The received pulse will have a
bandwidth ∆f/ρDoppler. Figure 1.8 illustrates this point.

Figure 1.8: Doppler effect using the notations introduced in this chapter. The transmitted
signal is shown in red, the received signal in blue, distance r + r′ is assumed to decrease.
Compression effects are visually exagerated.

1.5.3.2 Influence of the Doppler effect on the received signal in the narrowband
hypothesis

The equations written above are general. We are now working in the case of narrowband
and short-duration signals. In this case, the compression/dilatation of the pulse by Doppler
effect is not appreciable because, when the received signal is sampled (usually after a
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1.6 Received signal and the Doppler effect

baseband frequency shift), the variation in pulse duration is generally much less than the
temporal or spatial sampling step on the range axis, meaning the “pixels” (range bins)
occuped by the pulse will be the same whatever the Doppler shift. Similarly, if we consider
the echoes of several consecutive pulses for the same moving target, the distance variation
over time is often too small to result in an appreciable shift at the range bins. However the
Doppler effect can still be perceived by a phase shift of the sampled signal. All this is due
to the fact that the factor ρDoppler is very close to one. To illustrate this point, consider
this toy problem. A stationary monostatic radar with a 10 GHz carrier, transmitting on a
60 MHz band and a target approaching 800 km/h. We have:[

d∆t

dt

]
t=tX

≈ 3, 710−7 (1.91)

meaning the Doppler shift (for the carrier frequency) is 3,7 kHz, the bandwidth augmenting
by 22 Hz! This, in practice, in the narrow band hypothesis, it can be assumed that in
modulation function µ (t−∆t(t)), term ∆t is constant ([88], page 28). Then:

ER(t) = κµ(t−∆t(tX))e2πf0(t−∆t(t)) (1.92)
= κµ(t−∆t(tX))e2π(f0+fD)t−2π∆t(tX) (1.93)

so, in the end:

ER(t) = κEX(t−∆t(tX))e2πfDt−2π∆t(tX) (1.94)

This means that the signal received with Doppler effect simply undergoes a carrier shift
equal to fD, the other effects being negligible. Term 2π∆t(tX) is a phase difference that
one would have had anyway, with or without Doppler effect. Under the same assumptions,
and if we want to get rid of the formalism of the Doppler frequency, we can adapt the
initial definition of the received signal (from the equation 1.74):

ER(t) = κEX(t−∆t(tX))e−2πf0∆t(t) (1.95)

1.5.3.3 The ambiguity function

The ambiguity function describes the result of the matched filtering (or pulse compression)
of the received signal shifted in Doppler frequency, relative to the signal that was emitted
(Le Chevalier [116], pp. 53-59). This is a generalization of the function given to the
equation 1.3, which is now written (under the narrowband hypothesis):

amb(EX , ER)(t, fD) =

∫ +∞

t=0
E?X(t′)EX(t+ t′) exp2πfDt dt′ (1.96)

Figure 1.9 shows the ambiguity function in the case of a LFM chirp signal. We see that
the support of this function is a straight line. This result is explained by the fact that in the
case of the LFM chirp function, the correlation of said LFM chirp with its Doppler-shifted
version, is the original LFM chirp, shifted in time compared to the non-Doppler shifted
chirp. For other functions, the ambiguity function may differ significantly.
The ambiguity function proves important when writing synthetic aperture radar inte-

gration equations, at the end of this chapter. We shall come back to that later on.
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1.6 Bistatic geometrical configuration and ground resolution

Figure 1.9: Ambiguity function for a LFM chirp de porteuse f0 = 0 Hz, de durée T = 1 s,
modulé sur ∆f = 80 Hz.

1.6 Bistatic geometrical configuration and ground resolution

1.6.1 The Fresnel ellipsoid

The locus of points P such that the sum of distances r = ||XP|| and r′ = ||PR|| is equal to a
given constant r0, is by definition an ellipsoid, called the Fresnel ellipsoid. The transmitter
and receiver are the foci of this ellipsoid. In the monostatic case, this ellipsoid obviously
becomes a sphere. The intersection of the Fresnel ellipsoid with a plane is either the empty
set, a point, or an ellipse. The geometric characteristics of this ellipse are provided in
appendix A, paragraph A.4. By an abuse of language, we will call this ellipse, if it exists,
the fresnel ellipse.

1.6.2 Slant range and ground range resolution

There are two types of resolution that can be considered: on the one hand, the physical
resolution of the instrument, i.e. the ability to distinguish a point reflector from another,
neighbor, for a given parameter (distance or angle); on the other hand the sampling res-
olution. The first is related only to the instrument; the second is related to the recorded
signal, regardless of the hardware. Increasing the sampling resolution infinitely will never
allow to distinguish between two point reflectors, if they have been imaged with too low
an instrumental resolution. We are interested here in the first kind of resolution, namely
instrumental resolution.

Slant range resolution Slant range resolution is the radial range betwen the target and
the radar12. This is the resolution on the “total path length”, which is linked to the total

12The “slant range” name comes from the fact that this is the length of the hypotenuse of the radar-
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time of flight tX + tR. After pulse compression, the typical time width of the pulse is 1/∆f
where ∆f is the bandwidth over which the pulse has been modulated13. Resolution on the
range axis is then given by ([82], p. 54):

dr =
1/∆f

||grad ∆t||
=

c0

∆f ||̂rx(P) + r̂r(P)||
(1.97)

which can be rewritten as:

dr =
c0√

2∆f
√

1 + cos2 ϑ(P)
(1.98)

with ϑ(P) the angle X̂PR. In the monostatic case, we come back to the relationship already
established at equation 1.16:

dr =
c0

2∆f
(1.99)

It is worth noting that the monostatic configuration will always give a better slant range
configuration, compared to all other (bistatic) configuration.

Range resolution on the ground
Assume the radar to image a plane surface of equation z = 0. The ground range

resolution is obtained by projecting vectors r̂x and r̂r on the ground plane, meaning only
their x and y components are kept. Denoting by r̂sx and r̂sr the projections of r̂x et r̂r, we
get [82]:

dr =
1/∆f

||grad ∆t||
=

c0

∆f ||̂rsx(P) + r̂sr(P)||
(1.100)

In the monostatic case, the range resolution on the ground can be easily and explicitely
written as:

drsol =
c0

2∆f sin θi(P)
(1.101)

where θi(P) is the incident angle at target point P. The ground range resolution has no
meaning when θi = 0, when the wavefront is parallel to the surface (at nadir). There is
a notion of bistatic nadir which is dependent upon point P; the direction of the bistatic
nadir is obtained when r̂x(P) + r̂r(P) is zero, or said otherwise, when vector r̂x(P) + r̂r(P)
is orthogonal to plane z = 0.

1.7 Synthetic aperture imaging

1.7.1 Overall view

Synthetic aperture radar (SAR) is a technique to increase the resolution of a target in the
azimuth axis on the sole condition that the radar-target distance varies over time. In other
words, it is assumed that the Doppler frequency of the target varies over time. The idea
is then to coherently sum the signal corresponding to the target over several successive
pulses, so as to increase the resolution of the image along the azimuthal direction.
In monostatic radar imaging, two configurations are possible: either the radar is in

motion, most often in a straight line, and the target is immobile: this is called synthetic
antenna imaging; if, on the other hand, the radar is fixed and the target is mobile, we
speak of reverse synthetic antenna imaging (but the approach implemented is the same).
Several sub-configurations may exist in the case of SAR imaging:

target-nadir triangle in the monostatic case, assuming the target to be on the ground, and assuming the
ground to be flat.

13Doppler shift is typically totally negligible at this point.
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1. strip mode: the antenna is oriented in a direction that is essentially orthogonal to its
trajectory, which is essentially a straight line;

2. squint mode: the antenna is oriented at an angle different from π/2 with respected
to the trajectory, which is essentially a straight line as in the strip mode;

3. spotbeam/spotlight mode: the antenna is continously steered at the position of a
specific object of the scene, so that it remains in the line of sight, which allows to
gain in azimuth resolution, at the cost of smaller imaged region;

4. scanSAR mode, where the elevation pattern of the array is steered electronically very
quickly in order to increase the swath, at the cost of a lower temporal coverage of
each object, i.e. of a degraded resolution.

In bistatic radar imaging, there are several additional degrees of freedom: the target can
be mobile and both antennas stationary; one of the antennas can be mobile, or both can
be mobile. In addition, the trajectory of the transmitter and receiver is not necessarily in
the same direction.

1.7.2 Monostatic SAR imaging

1.7.2.1 Configuration

The monostatic case is here considered in strip map mode, as shown in figure 1.10(a).
Suppose the antenna is aimed at a P point of (xP .yP .0) coordinates. The radar R follows
a straight trajectory, so that R(t) = [0.VXt.h]′. We now write r(t) = ||PR(t)||. Then:

r(t) =
√
x2
P + (yP − VXt)2 + h2 (1.102)

It is always possible to write r(t) in the following manner:

r(t) =
√

(VXt)2 + r2
0 (1.103)

where r0 is the distance between P and point R0 which minimizes r(t) (called point of
closest approach, PCA), i.e. the orthogonal projection of P on the trajectory of R. The
distance of closest approach is written r0). It is also assumed, for simplicity, that the origin
of times is taken when R is at R0.

1.7.2.2 Expressing the received signal

Assume the radar to emit a pulse every TI seconds. Note tX = nTI , the date when the
n-th pulse is transmitted. It is always possible to write t = tX + s. It is now assumed
that the durations TI , t, s are small, or that VXtX �1, which is perfectly true in practice.
Now let us write the signal received for the n-th pulse emitted. We start from the equation
1.95, which allows us to write:

ER(tX + s) = κEX(tX + s−∆t(tX)) exp

{
−4π

λ0
r(tX)

}
(1.104)

By performing a Taylor development of order 2 of the term r(tX) for tX around zero, we
find:

r(tX) = r0 +
1

2

V 2
Xt

2
X

r0
+ o(t2X) (1.105)
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(a) Notations of aragraphs 1.7.2.1,
1.7.2.2, and 1.7.2.3.

(b) Notations of pararaphs 1.7.2.4.

Figure 1.10: Geometric configuration of a scene observed by a monostatic synthetic antenna
radar in strip map mode.

Under this approximation, the signal received for the n-th pulse is of the form:

ER(tX + s) = κEX(tX + s− 2r(tX)/c0) exp

{
−
(

2π

λ0

V 2
Xt

2
X

r0
− 4π

λ0
r0

)}
(1.106)

Since we have a time-range relationship r0 = 2c0s, it is possible to write:

ER(tX + s) = κEX(tX + s− 2c0r(tX)) exp

{
−2π

λ0

V 2
Xt

2
X

2c0s
− 8π

λ0
c0s

}
(1.107)

We write:

φSAR(t) =
2π

λ0

V 2
Xt

2
X

2c0s
(1.108)

Figure 1.11 graphically shows the evolution of φSAR(t) over time, as well as the form of
exp {−φSAR(t)}, in the case of monostatic SAR. We see that the beats follow a LFM
chirp.

Figure 1.11: Time evolution of φSAR(t) and cos−φSAR(t) during synthetic aperture radar
integration (adapted from [95]).
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1.7 Synthetic aperture imaging

1.7.2.3 SAR integration in practice

The received radar signal given by equation 1.107 can be written not as a one-dimensional
function of tX + s, but as a two-dimensional function of tX and s:

fRAR(tX , s) = κEX(tX + s− 2c0r(tX)) exp

{
−2π

λ0

V 2
Xt

2
X

2c0s
− 8π

λ0
c0s

}
(1.109)

A graphical representation of fRAR can be found in figure 1.12. The tX axis is commonly
called the azimuthal axis: this name is due to the fact that fixed radars with mechanical
scanning are generally rotating, each pulse being emitted in a different direction. The s
axis is called the (slant) range axis; thus, fRAR(tX , s) contains the signal received on a
date s after the emission of the n-th pulse, at tX .

Negligible range migration If during the illumination time of point P, the difference
in the times of flight for each pulse is less than the resolution 1/∆f of the signal on the
time axis, we can consider that the migration in distance of the point P is negligible. This
means that all received pulses for the target start and end at the same range bin on the
sampled range axis, whatever the pulse. In this case, the processing of the SAR signal
is done according to two steps that we will detail: distance compression, and azimuthal
compression.
Range compression is done by matched filtering on fRAR(tX , s), at a fixed tX , as de-

scribed in paragraph 1.1.4. Once this processing is done, the signal undergoes another
matched filtering in the azimuthal direction to increase the resolution of the signal: this is
azimuth compression. If the scene contains only one point P whose distance to the radar
trajectory is r0, the synthetic antenna integration consists in summing coherently, for all
tX where the signal received from the point P is not negligible, the signal received by
compensating the phase. Assuming here that P is permanently visible:

fSAR(tX , s) =

∫ +∞

−∞
f(u, s)eφSAR(u)du (1.110)

If we now generalize the integration for a scene with several points, we must realize the
integration for all the points having a distance of minimum approach r0. In general,
the distance r0 is not reached at t =0. The formula 1.110 therefore generalizes as the
intercorrelation of fRAR(tX , s), with exp φSAR(t) (for a fixed s parameter):

fSAR(tX , s) =

∫ +∞

−∞
fRAR(tX + u, s)eφSAR(u)du (1.111)

Staying in line with paragraph 1.1.4, this can be construed as an azimuth pulse compression.
This pulse compression can be effiently performed in the Fourer plane, as is done for range
compression.

General case: non negligible range migration In the more general case where the
range migration is no longer negligible, it is then necessary to use an algorithm that
explicitly takes into account this migration. Various approaches exist to perform the SAR
integration operation in all its generality. The best known algorithm is the Range-Doppler
algorithm (for example, we can refer to [92] for an introduction to most SAR integration
algorithms, including this one). The method we have just described above in case of
negligible range migration is none other than the Range-Doppler algorithm without a step
known as range cell migration correction). The migration correction is done simply, before
azimuth compression. We work in Fourier space in the azimuthal direction, that is to say in
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1.7 Synthetic aperture imaging

the space of Doppler frequencies, while remaining in the space of time or distances for the
axial direction of the antenna; this is what is at the origin of the name of the method. The
distance-Doppler signal is then reinterpunted so that the place of the Doppler spectrum of
the points associated with a reference distance r0, is brought back to a line located entirely
on the Axis of Doppler frequencies, as shown in figure 1.12. Azimuthal compression can
then be performed directly in the Fourier domain (see figure 1.12). Indeed, an interesting
property of the signal is that, for a pulse emitted at tX , the contribution received from
two distinct and fixed points P1 and P2 will differ in the Doppler component, even if the
signal of the two points arrives at the same time. Also the algorithm used to integrate the
image for a single point is the same for a scene composed of many points. Indeed, it can
be shown that the location of the spectral components of the contributions of all points
having the same minimum distance to the radar r0, is the same.

Figure 1.12: Received signal space fRAR(tX , s) and range-Doppler space. The locus of the
contribution of all the points having the same closest point of approach, is the same for all
these points.

Other algorithms are also used. The Chirp Scaling Algorithm [148, 52] gets rid of the
interpolation step by modifying directly the azimutal chirp to compensate the range mi-
gration. The ω − k algorithm allows doing the pulse compression in both the range and
azimuth axes by using the Stolt method [192]. The Fast Factorised Back Projection (FFBP)
[178], and the SPECtral ANalysis (SPECAN) algorithms [181] are fast approaches for SAR
integration. In this thesis, only the Range-Doppler algorithm was used.

Note on the hypotheses we used We also note that during the integration a hypothesis
is made on the trajectory of the vehicle (as well as the target). In reality, the trajectory
of the vehicle is only imperfectly known. Also it is important to have robust algorithms
and an approximation of the trajectory at an accuracy greater than the wavelength of the
signal, which is often difficult! For this purpose, specific instruments can be used:

• for airborne SAR, an excellent inertial navigation system, which is a significant ad-
ditional cost – several tens of thousands of euros;

• for spaceborne SAR, a precise orbitography, for example carried out with the French
DORIS system (Determination of Orbit and Integrated Radiopositioning by Satel-
lite), which makes it possible to know the position of a satellite with centimetric
precision;

It is also possible (for airborne SAR) for the aircraft to fly high (possibly out of the
troposphere), to try and limit turbulence – which also increases the swath. Finally, we can
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1.7 Synthetic aperture imaging

try to use the signal received by radar to try to estimate the trajectory, hybridizating the
estimation with inertial means: for example a correlation of the received signal over two
consecutive pulses provides an indication of the transverse displacement [27]. In practice,
however, in radar, these precision problems are somewhat less felt than in the case of
synthetic antenna sonar, where these hybridization techniques are used.
When targets are moving, we refer to the ambiguity function of the emitted signal. In

the case of a linear frequency ramp, we saw above that the Doppler effect would shift
the measured arrival moment of the signal coming from a moving target after pulse com-
pression. This results in a translation in the image. This result remains relevant in SAR
imaging: if the target is mobile, then its image will be perfectly focused, but not where it
should be if it were immobile. For instance, the image of a car would not necessarily be
over the image of the road. The measurement of this offset makes it possible to go back to
the target-radar relative speed. This is a process called Moving Target Indication (MTI).

1.7.2.4 Azimuthal resolution after SAR integration

In practice, a coherent sum cannot be computed for tX ∈]−∞,+∞[], unless the antenna
rotates so as to always aim at target P. Otherwise, point P will only be illuminated for a
limited duration ∆tillum. depending on the speed VX of the radar carrier, and the width
∆daz(P) of the antenna lobe in azimuth at point P (this width can be calculated according
to the formulas in paragraph 1.2.3.1):

∆tillum. = ∆daz/VX (1.112)

(strictly speaking, the amplitude of the received signal also varies with the variation in
reflectivity due to the variation of viewing direction, but this variation is small if the
width of the transmitting antenna lobe is large). Similarly, since function t 7→ exp φ(t) is
discretized at times tX , it will be necessary to ensure that the inverse of the pulse repetition
period TI is greater than the maximum frequency reached by the azimuthal chirp azimutal
during the illumination time of the target. This is nothing else than a Shannon-Nyquist
condition.
The following development owes largely to Hovanessian [95] (pp. 18-19 et p. 22). Res-

olution after azimuthal integration is linked to the bandwidth of the azimuthal chirp. Let
us consider a point P’ of coordinates [xP , yP + D/2, 0]t. Parametrizing the points as a
function of angle ν, as shown in figure 1.10(b), the Doppler frequency at points P and P’
can be computed as follows:

fD(P ) =
2VX cos ν

λ0
(1.113)

fD(P ′) =
2VX cos(ν + ∆ν)

λ0
(1.114)

Assuming ∆t� 1 it comes:

∆fD = fD(P ′)− fD(P ) =
2VX
λ0

∆ν sin ν (1.115)

Angle ∆ν can be approximated by D/2r0, yielding:

∆fD =
VXD

λr0
sin ν (1.116)

Hence the azimuth resolution:

draz. =
D

2
=
λ0r0∆fD
2VX sin θ

(1.117)
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This equation is special: it does not depend on the antenna aperture, contrarily to the
resolution for a real aperture radar (paragraph 1.2.2.4). Recall that synthetic aperture
integration is a specific case of pulse compression for a chirp; the duration of illumination
∆tillum. must then be equal to 1/∆fD, meaning the carrier flies over a distance dSARy =
VX∆tillum.. Then:

dSARy = VX∆tillum. =
VX

∆fD
=

λ0r0

D sin ν
(1.118)

By manipulating the equations it comes that:

draz. =
λ0r0

2dSARy sin ν
(1.119)

This is an equivalent equation for the azimuth resolution at a range r0 for an array of length
dy. Quantity dSARy can be seen as the length of the synthetic aperture radar antenna, as
necessary to get resolution draz.. The real antenna length can be used to get a lower
bound for resolution draz.. Assuming that the target is illuminated during a time greather
than 1/∆fD, since the illumination time is linked to the real aperture, itself linked to the
physical length of the transmitting array dy:

r0λ

dy
≥ dSARy =

λ0r0

D sin ν
(1.120)

Noting that ν ≈ π/2 (maximum illumination), then the resolution is equal toD/2, meaning
that:

draz. ≥
dy
2

(1.121)

This value is a theoretical limit used to judge the quality of the integration. Indeed as
the duration of illumination increases, we substantially meet the hypothesis u ≈ π/2 and
then the resolution goes towards the maximum limit. This shows an interesting effect: the
azimuthal resolution will then no longer depend on the distance to the antenna.

1.7.3 Generalizing to the bistatic case

1.7.3.1 The general case

In the bistatic case, the principles for synthetic aperture integration are the same as in
the monostatic case. First a pulse compression is carried out on the range axis. Then
an azimuthal synthetic aperture integration is performed; this reduces to a pseudo pulse
compression on the azimuth axis. We consider the notations in figure 1.13, which only
generalize those of the monostatic case. We take the origin of time when the distance
r(t) + r′(t) is minimal and denoted by rmin. Note that the instant t = 0 is not necessarily
when the distance is r0 + r′0. In fact, this distance is not necessarily reached because of the
speeds of the transmitter and the receiver do not necessarily match. As in the monostatic
case, the signal received for the n-th transmitted pulse takes the form:

ER(tX + s) = EX(tX + s−∆t(tX))e
−
(
φSAR(t)− 2π

λ0
rmin

)
(1.122)

with:
φSAR(t) =

2π

λ0
[r(t) + r′(t)− rmin] (1.123)

Following [44], and being inspired by the monostatic case, a Taylor development at the
second order of r(t) et r′(t) around t = 0, yields:

φSAR(t) = −2π

λ0

(
V 2
Xt

2

2r0
+
V 2
Rt

2

2r′0

)
(1.124)
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It is this term that is used to make the synthetic aperture integration: instead of a chirp
in the form of a linear frequency ramp, we have a chirp whose instantaneous frequency is
given by the derivative of φSAR(t). The rest of the processing is then essentially the same
as in monostatic. And in fact, monostatic algorithms have mostly been adapted to the
bistatic case (see Ben Kassem [25] for a simple parallel case addressed by the Range-Doppler
method and by integration into the time domain; see Yew et al. [198] for a generalization
of the Range-Doppler algorithm, and Wong et al. for a generalization of the Chirp Scaling
Algorithm [194]).

Figure 1.13: Configuration and notations for bistatic synthetic aperture imaging

1.7.3.2 Parallel BiSAR configuration where the carriers have the same constant ve-
locity vector

Equation 1.124 has a limitation: there is no explicit dependency between the parameters
of φ(t) and the time s used on the range axis. Indeed, we have:

s =
rmin

c0
(1.125)

but the denominators of the terms of fD are r0 and r′0. In practice, it is necessary to
use a “trick” to come back to parameterization depending on s. For this a hypothesis is
needed concerning the location of the points for which one calculates the phase history.
To illustrate this point, we consider here the special case where the transmitter and the
receiver have the same velocity vector: VX = VR. This configuration is shown in 1.14.
The advantage of this configuration is that the phase history of the points associated with
a minimum approach distance rmin, will not change over time. We can therefore calculate,
for each rmin, this story, and perform the pulse compression for the whole dataset at the
same time using the same equation; this is very efficiently done using a Fourier transform
as is done in the monostatic case.
However, for a given bistatic configuration, one of the antennas must be steered so that

it aims at the same point T of plane z = 0, as the other antenna. This makes it possible
to ensure an optimal power budget since the antenna lobes will overlap; if they do not, the
budget would be poor. Synchronizing the antennas between two carriers so that they aim
at the same point is a complex issue in practice.
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1.7 Synthetic aperture imaging

Figure 1.14: Parallel BiSAR configration. The two carriers do not necessarily fly at the
same altitude; their antenna is not necessarily pointing 90◦sideways.).

To perform the azimuthal pulse compression, it is necessary to calculate the history of
the phases around the date when a given target is illuminated at best. It is important to
note that this date is not necessarily when the transmitter-target-receiver range is shortest.
This does not change the formulas but only the time window where the function φ(t) is
calculated: it is no longer centered at t = 0. This is nothing but the bistatic counterpart
of the monostatic “squint” mode.
To find this date when a given target is illuminated at best, we have to make a hypothesis

on the position of the target on the Fresnel ellipse. To do this, we consider the history of
the points located on the half-line [CT), where C is the center of the Fresnel ellipses and T
the point where the two antennas aim at. These points are indeed well lit by the antennas.
We could have taken any other half-line, as long as the points on that half-line would be
well lit.
The approach is then as follows:

1. In a fixed coordinate system with respect to the transmitter and receiver, for a given
distance rmin (or a date s = rmin/c0), calculate the parameters of the Fresnel ellipse
intersecting the ground and associated with this distance rmin;

2. Determine the coordinates of the point P belonging to both this ellipse, and the
half-line [CT);

3. Assuming a fixed target P and mobile antennas, calculate the distance r(t) + r′(t)
for t ranging from −∆tillum./2 to +∆tillum./2;

4. Calculate the minimum distance of approach rmin, this is done numerically using an
optimization algorithm (dichotomy, gradient descent, etc.);

5. The phase function associated with s is then φSAR(t) = 2π/λ0(r(t) + r′(t)− rmin)

Once the phase function is known, integration over the azimuth axis is done exactly as in
the monostatic case.

1.7.3.3 Illustrations of a specific “parallel track” BiSAR case

Given a configuration (see the table 1.2) for a simulated radar, an example of bistatic syn-
thetic aperture integration is shown in figure 1.15. At the beginning of the simulation, the
transmitter is at X(0) = [−6000; 0; 3000] while the receiver is at R(0) = [−3000; 0; 3000];
this configuration will be repeated in chapter 5 and is illustrated in figure 5.4(d). The
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Variable Valeur
True (ground) speed of the aircraft VX = 222 m/s (800 km/h)
Carrier frequency f0 = 10,0 GHz (λ0 ≈ 3 cm)
Modulation ∆f = 60 MHz (linear frequency ramp, rising)
PRF 222 Hz
Pulse duration TX = 0,333 µs
Peak power 1 W
Losses none
Antennas rectangular, uniformly lit, 4 m× 5 cm

Table 1.2: Parameters of the simulated bistatic radar

transmitter aims at the ground with an incidence of 45 degrees, and the receiver with an
incidence of 63.4 degrees. The configuration of the diffusers is given in figure 1.15(a); they
are ideal isotropic diffusers of SER unit. The range history r(t) + r′(t) is shown in figure
1.15(c). Figure 1.15(b) shows the baseband received signal; we can clearly see the phase
beats caused by the range variation history. Figure 1.15(d) shows the result of pulse com-
pression on the range axis. Figure 1.15(f) shows the image after compression over the range
and azimuth axis. Finally, the azimuth cross-section of the integrated signal for the target
located at (0.0) is given in the figure 1.15(e). We measure a resolution of 2.25 m, which is
close to the ideal 2 m that would be obtained in the equivalent monostatic configuration
(given that the antenna is 4 m long). The simulation presented here has the advantage
of providing a first validation of the bistatic syntethic aperture integration algorithm in a
non-trivial geometric configuration. This configuration is the same as one implemented in
chapter 5, dedicated to the simulation of radar images in the marine environment.

1.8 Conclusion of this chapter

This chapter is essentially a detailed treatment of the bistatic radar equation. It thus
made it possible to process the different components of the radar acquisition chain: the
transmitted and received signal, the antennas, the target. It also included a treatment
of the Doppler effect in bistatic configuration. This development was followed by a brief
introduction to the problem of monostatic and bistatic synthetic aperture integration.
This problem is not the main contribution of our work so it has been dealt with quickly,
nevertheless trying to illustrate the problem in a simple bistatic case. This is rarely done
in the literature, as it focuses mainly on the monostatic case.
The next three chapters of this manuscript will essentially be a deepening of the modeling

of the reflection of a radar wave on a rough surface, in this case the ocean surface with
wakes. Chapter 5 will follow very closely the framework of chapter 1, since it will deal with
the implementation of the various components of the chain exposed in this chapter. The
goal being a raw radar signal simulation, it will show the results obtained on these signals
after bistatic synthetic aperture integration.
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Figure 1.15: BiSAR integration using the Range-Doppler method (without range migration
compensation) for a set of point targets with unit RCS.
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Chapter

2 Describing and modelling the marine sur-
face
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This chapter does not pretend to replace a good text on oceanography. However, the
simulation of the radar signal reflected by the sea requires to know a number of models
with their area of validity as well as their limits. In a first part (section 2.1), we will first
explore some of the physical characteristics of the sea, such as temperature and salinity.
These two parameters have an influence on the electrical permittivity of the surface. In a
second part (2.2), we focus on the geometric characteristics of the surface, which will also
have an influence on the aspect of the sea in radar images. These geometric features can
be described in several ways; we present three main families of approaches. We start by
studying the Navier-Stokes equations (section 2.2.2) and their solutions at several levels
of approximation, with a particular focus on the linear approximation. This study will
also be an opportunity to demonstrate a number of relationships that will be fundamental
in the rest of the manuscript (including the wave dispersion relationship, the phase and
group speed of the wave components, etc.). A second approach considers the sea as a
statistical 2D signal (section 2.2.4) whose probability density of heights can be studied
from a spectral point of view, depending on the various parameters influencing the creation
of waves: mainly the direction and speed of the wind. The last approach, probabilistic
(section 2.2.6), models the probability of wave slopes as a function of wind. The last two
approaches outlined above are those used in the electromagnetic models, as exposed in
chapter 4.
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2.1 Physical characteristics of the marine environment

2.1.1 Temperature

The temperature of the sea varies according to the season, the position on the globe, and
depth. As part of the radar signal modeling, only surface temperature matters really.
Indeed, it influences the dielectric constant of water on the surface, as we will see in
paragraph 2.1.3.2. Temperature maps can be obtained either by buoys, or by remote
sensing. The figure 2.1 gives the average sea surface temperature for year 2005. In the
following, the temperature will be noted T and will be expressed in degrees Celsius.

2.1.2 Salinity

Since seawater is a good solvent, it is an environment in which a large number of substances
can dissolve and enter into relationship. The sea contains an average of 34.7 g of salts per
kilogram of water sea. However, salinity varies according to the seas. Historically, salinity
[S] was deducted from chlorinity [Cl], that is, the quantity in g/kg or parts per million of
chlorine, bromine and iodine present in seawater and precipitated by silver nitrate titration
[8]. This relationship between [S] and [Cl] is linear:

[S] = 0.03 + 1.805[Cl] [g/kg] or [ppm] (2.1)

Since 1978, the salinity of the ocean has been defined by the conductivity of seawater, which
directly depends on the amount of dissolved salts in the water. The practical salinity scale
is used; it is defined in practical salinity units (psu). This unit is totally dimensionless
because it is defined as a function of the ratio Ks between the electrical conductivity of
the water of sea at 15◦ C and 1013.15 hPa, and that of a standard solution (at the same
pressure and temperature conditions) of potassium chloride wherein the mass fraction of
potassium chloride is 0.0324356. The equation of the practical salinity then connects Ks

to [S] using this relation [8]:

[S] = 0.0080−0.1692K1/2
s +25.3851Ks+14.0941K3/2

s −7.0261K2
s +2.7081K5/2

s [psu] (2.2)

The practical salinity scale is defined in such a way that [S] = 35 ups when ratio Ks is 1,
so that similar (but not identical) values to to the former scale are obtained. Figure 2.2 is
a global map of average salinity in ocean waters. The usual value for salinity in the rest
of the dissertation is taken to be [S] = 35 psu≈ 35 ppm.

2.1.3 Electromagnetic characteristics of seawater

2.1.3.1 General considerations

From the electromagnetic point of view, the sea can be described by two quantities: the
relative electrical permittivity and the relative magnetic permeability. Since seawater is a
non-magnetic medium, its magnetic permeability is close to one: µ ≈ 1, and so we will
take it equal to one. Seawater is therefore only described by its constant dielectric. The
relative dielectric constant εr is the ratio of the dielectric constant of the medium εd to the
dielectric constant of the vacuum ε0. It is a complex number which real part and imaginary
part are without units.

2.1.3.2 Model for the relative dielectric constant of sea water

In the case of seawater, the relative dielectric constant εr depends on the salinity, temper-
ature, and the frequency of the incident radio wave. A number of semi-empirical consider-
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Figure 2.1: Average surface temperatures in year 2005 (data courtesy of NOAA/National
Oceanographic Data Center, [120]).

Figure 2.2: Average surface salinity (PSU) in 2005 (data courtesy of NOAA/National
Oceanographic Data Center, [7]).
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ations yield the following model, which is only one among many [107, 51]:

εr = εr inf +
εs − εr inf

1 + (ωτr)2
− 
[

(εs − εr inf)ωτr
1 + (ωτr)2

+
σs
ωε0

]
(2.3)

where:

• ε0 = 8.854× 10−12 F/m is the vacuum permittivity;

• ω = 2πf is the pulsation of the incoming radio wave rad/s;

• εs is the static dielectric constant in F/m; it is obtained thanks to this semi-empirical
equation:

εs = (87.134− 1.94910−1T − 1.27610−2T 2 + 2.49110−4T 3) . . .

×(1 + 1.61310−5T [S]− 3.65610−3[S] + 3.21010−5[S]2 − 4.23210−7[S]3)(2.4)

• σs is the static conductivity of salt water, which is given by:

σs = σ0
s exp(−g(T )) (2.5)

σ0
s = 0.18252[S]− 1.461910−3[S]2 + 2.09310−5[S]3 − 1.28210−7[S]4 (2.6)

g(T ) = 2.03310−2∆T + 1.26610−4∆T 2 + 2.46410−6∆T 3 . . .

−(1.84910−5 − 2.55110−7∆T + 2.55110−8∆T 2)[S]∆T (2.7)
∆T = 25− T (2.8)

• τr is the relaxation time of the surface in seconds; physically, if an excess of free
charges is added in a conductive medium, this excess will decay exponentially with
a time constant τr. For seawater, the time of relaxation is obtained by this semi-
empirical relation:

τr = f ×
(
1.110910−10 − 3.82410−12T + 6.93810−14T 2 − 5.09610−16T 3

)
×
(

1 + 2.28210−5T [S]− 7.63810−4[S]− 7.76010−6[S]2 + 1.10510−8[S]3
)
(2.9)

• εr inf is the high frequency limit of εs; it is generally equal to 4,9.

2.1.3.3 Limits of the model

The model was validated for a certain range of salinities and temperatures. It is necessary
to use realistic temperatures (between 1 and 40 degrees Celsius); the salinity can go from
4 g/kg up to 35 g/kg, or even 37 g/kg.

2.1.4 Wind

Wind is the primary cause of swell. As the shape of the swell will directly influence the
roughness of the sea and therefore the reflected radar signal, the wind is a very important
parameter in the modeling of the radio signal reflected by the sea surface. Low altitude
tropospheric winds are of specific interest, since they are the ones who interact directly
with the surface of the sea. Boundary layer phenomena in the vicinity of the surface will
slow down the air speed so that, at the limit where the altitude z tends towards zero, the
wind speed is only of the order of a few centimeters per second: this is the friction speed
which will be denoted by U0. The wind speed increases rapidly with altitude and reaches
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Figure 2.3: Wind speed in m/s as a function of the friction speed, for several altitudes z
(in centimeters).

an asymptotic limit denoted by U . This limit is of course a simplification. In the following,
we will note Uz the wind speed in m/s at altitude z, expressed in centimeters.
A commonly used speed/altitude model for wind in the maritime environment, is the

following [78]:
Uz = (U0/kk)ln(z/z0) [m/s] (2.10)

with kk the Von Kármán constant (about 0.4); z is in centimeters, U0 in m/s and:

z0 = 6.8410−3/U0 + 4.2810−1U2
0 − 0.0443 [cm] (2.11)

This model has been experimentally validated for friction speeds over 0.12 m/s. The abacus
given at figure 2.3 can be used to get the wind speed Uz in m/s from the friction velocity
U0 for several standard altitudes z in centimeters.
The force of the wind can be characterized by the Beaufort scale, which describes by a

number B (integer), a range of wind speeds and typical effects on the sea and on the ground.
The formulation of this scale has evolved over the years; the one presented here is used
internationally since 1946 (resolution 9 of the International Meteorological Committee, in
Paris). The Beaufort scale is related to wind speed by the empirical formula [24]:

U1000 = 0, 836B3/2 [m/s] (2.12)

Table 2.1 describes the Beaufort scale in more detail. The sea state is characterized by
another scale, the Douglas scale, also standardized by the World Meteorological Organi-
zation ([3], table 3700). This scale is given in table 2.2. The Douglas scale, in the case of
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2.2 Geometrical characteristics of the ocean: sea waves

a fully developed, offshore sea, is conceptually equivalent to the Beaufort scale, because it
involves the height of the swell, which can be linked to the force of the wind as we shall
see in the paragraph 2.2.4. In the remainder of the manuscript, the Beaufort scale is used.

2.2 Geometrical characteristics of the ocean: sea waves

This section addresses the geometry of the sea surface and its temporal evolution. Modeling
of the maritime surface has historically been one of the great applications of hydrodynam-
ics, insofar as the knowledge of the shape of waves and wake has many applications in
naval architecture and offshore engineering: prediction of the amplitude of waves to size
a structure, calculation of forces, resistance to advance, etc. In general, the simplest cat-
egorization of waves can be done from their wavelength Λ (see figure 2.5). Depending on
the wavelengths, the physical mechanisms at the origin of the waves are not the same.
For our application, three regimes are of interest: i) very small wavelengths, the domain
of capillary waves dominated by surface tension forces, ii) gravity waves, dominated by
inertial forces, and iii) waves of intermediate wavelength. These are the regimes that are
observable with radar. Figure 2.4 gives a classification of the different types of waves that
can be observed according to the forces at work, their origin, and their wavelength.

Figure 2.4: Classification of waves depending on their period and the forces creating them;
adapted from Kinsman [105].

Modeling these waves can be done within the most general framework possible, namely
the Navier-Stokes equations, but the direct resolution of these equations is usually impos-
sible. Approximations are generally used, depending on the type of phenomenon to model:
the swell or the capillary waves. Here we begin by presenting the Navier-Stokes equations,
as well as three approximate models common to solve these equations in an approximate
way: the Airy model, Gerstner’s model, and Stokes’ model. Airy’s model and Gerstner’s
are treated in more detail because they are the basis of many of the results used in the rest
of this manuscript; we will only mention the most important results of Stokes’ theory. We
will not deal with the other more specific models of ocean waves (cnoidal theory, Boussinesq
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2.2 Geometrical characteristics of the ocean: sea waves

B Name U1000 Hm0
1 Descriptionkt km/h m/s

0 Calm 0 0 0 0-0,2 See like a mirror.

1 Light air 1-3 1-6 0,3-1,5 0,1 Ripples with appearance of scales are

formed, without foam crests.

2 Light breeze 4-6 7-11 1,6-3,3 0,2 Small wavelets still short but more pro-

nounced; crests have a glassy appearance

but do not break.

3 Gentle breeze 7-10 12-19 3,4-5,4 0,6 Large wavelets; crests begin to break; foam

of glassy appearance; perhaps scattered

white horses.

4 Moderate breeze 11-15 20-29 5,5-7,9 1 Small waves becoming longer; fairly fre-

quent white horses.

5 Fresh breeze 16-21 30-39 8,0-10,7 2 Moderate waves (l=1,2 m) taking a more

pronounced long form; many white horses

are formed, chance of some spray.

6 Strong breeze 22-27 40-50 10,8-13,8 3 Large waves begin to form; the white foam

crests are more extensive everywhere; prob-

ably some spray.

7 High wind 28-33 51-62 13,9-17,1 4 Sea heaps up and white foam from breaking

waves begins to be blown in streaks along

the direction of the wind; spindrift begins

to be seen.

8 Gale 34-40 63-75 17,2-20,7 5,5 Moderately high waves of greater length;

edges of crests break into spindrift; foam

is blown in well-marked streaks along the

direction of the wind

9 Strong gale 41-47 76-87 20,8-24,4 7 High waves; dense streaks of foam along the

direction of the wind; sea begins to roll;

spray affects visibility.

10 Storm 48-55 88-102 24,5-28,4 9 Very high waves with long overhanging

crests; resulting foam in great patches is

blown in dense white streaks along the di-

rection of the wind; on the whole the sur-

face of the sea takes on a white appearance;

rolling of the sea becomes heavy; visibility

affected.

11 Violent storm 56-63 103-117 28,5-32,6 11,5 Exceptionally high waves; small- and

medium-sized ships might be for a long

time lost to view behind the waves; sea is

covered with long white patches of foam;

everywhere the edges of the wave crests are

blown into foam; visibility affected.

12 Hurricane >64 >117 >32,7 >14 The air is filled with foam and spray; sea is

completely white with driving spray; visi-

bility very seriously affected.

Table 2.1: Wind force according to the Beaufort scale ([154], page 415). (1): Hm0 is the
significant wave height in meters, offshore, see page 77, equation 2.111.
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2.2 Geometrical characteristics of the ocean: sea waves

Force Hm0
[m] Description

0 0 Calm (glassy)
1 0 - 0,1 Calm (rippled)
2 0,1 - 0,5 Smooth
3 0,5 - 1,25 Slight
4 1,25 - 2,5 Moderate
5 2,5 - 4 Rough
6 4 - 6 Very rough
7 6 - 9 High
8 9 - 14 Very high
9 >14 Phenomenal

Table 2.2: Douglas sea state.

theory, Korteweg-De Vries theory, etc.), nor with the theory of solitons: we are interested
only in the “nominal” case in deep waters. Similarly, the results related to capillary waves
will only be summarized. Last but not least, breaking waves are not detailed here, we refer
the reader elsewhere (for example, some elements can be found in [125]).
D’autres approches complémentaires existent pour modéliser la surface de l’eau. Plus

empiriques, elles modélisent l’apparence de la surface sans chercher nécessairement à la
relier à des bilans mécaniques. Ces approches sont: i) l’approche probabiliste, où l’on
modélise la probabilité d’apparition d’une vague de hauteur H, ii) l’approche spectrale, qui
est complémentaire de l’approche probabiliste, et iii) une seconde approche probabiliste,
qui cherche à déterminer la densité de probabilité de l’apparition d’une pente donnée à la
surface de l’eau. Ces trois approches, complémentaires de celles découlant des équations de
Navier-Stokes, servent également lors de la modélisation des interactions d’une onde radio
avec la surface de la mer.
Other complementary approaches exist to model the water surface. These empirically

model the appearance of the surface without necessarily trying to link it to mechanical
forces at play. These approaches are: i) the probabilistic approach, where the probability
of occurrence of a wave of height H is modeled, ii) the spectral approach, which is com-
plementary to the probabilistic approach, and iii) a second probabilistic approach, which
seeks to determine the probability density of the appearance of a given slope on the surface
of the water. These three approaches, which are complementary to those derived from the
Navier-Stokes equations, are also used when modeling the interactions of a radio wave with
the sea surface.

2.2.1 Geometrical configuration of a 1D sea surface

The space is provided with a direct orthogonal coordinate system: W(O, x̂, ŷ, ẑ), such as
the mean plane of the sea surface is described by the plane of equation z = 0 (z is positive
uwpards). The sea bottom is assumed flat; it is at a depth d. The wind direction is given
by the unit vector û that is collinear to the mean plane of the sea. In this framework, we
describes the sea as a surface ζ, which is a function with two spatial variables x and y and
a time variable t. This description assumes that the sea is a “2D1/2” surface, i.e. that
there is no roller waves. Function ζt, depending on x and y, is the surface described by the
sea at the instant t; it is a snapshot, that is to say it is only described by spatial variables.
Similarly, the notation ζx,y corresponds to the elevation, as a function of time, at a point
of coordinates (x, y). The configuration is shown in figure 2.5.
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2.2 Geometrical characteristics of the ocean: sea waves

Figure 2.5: Geometrical configuration and notations used in this paragraph.

2.2.2 Navier-Stokes equations

Navier-Stokes equations are named after Henri Navier (1785-1836) and Sir George Gabriel
Stokes (1819-1903). They describe the movement of fluid substances such as liquids and
gases in the continuum mechanics approximation. They describe the fact that variations in
the momentum of infinitesimal volumes of fluids are the result of the action of dissipating
viscous forces (similar to friction), pressure changes, as well as other internal or external
forces (such as gravity). There are several forms for these equations; here is given a useful
form adapted to a simplified model of the ocean. Since the equations of Navier-Stokes
are differential, these only make sense in a well-defined domain with precise boundary
conditions.
The Navier-Stokes equation describes the conservation of momentum. It corresponds

to the application of Newton’s second law to the volume of fluid in a Galilean reference
frame. This principle can be written for a small water volume element centered in (x, y, z),
of density ρ, and dimensions dx, dy, dz (Stewart [165], section 7.6):

ρ
DV

Dt
= f (2.13)

where V(x, y, z, t) = [u(t), v(t), w(t)]t is the velocity vector of a small vector volume, D/Dt
is the total derivative, and f is the resulting force from all volumic forces having an effect
on this infinitesimal volume. This total derivative can be explicited:

ρ
DV

Dt
= f (2.14)

⇔ ρ

(
∂V

∂t
+
∂V

∂x

dx

dt
+
∂V

∂y

dy

dt
+
∂V

∂z

dz

dt

)
= f (2.15)

⇔ ρ

(
∂V

∂t
+ u

∂V

∂x
+ v

∂V

∂y
+ w

∂V

∂z

)
= f (2.16)

⇔ ρ

(
∂V

∂t
+ V · grad V

)
= f (2.17)

For most of the problems, the resulting force from all volumic forces can be written:

f = −grad p+ divT− ρg0ẑ + f ′ (2.18)
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where:

• grad p is the pressure gradient;

• T is the viscous constraint tensor;

• −ρg0ẑ is the volumic weight;

• f ′ corresponds to other forces.

The Navier-Stokes equation alone does not describe the fluid on its own. It must be
added a certain number of conservation equations: conservation of mass, conservation of
energy, or an equation of state (Stewart [165], section 7.1). The equation of conservation
of mass is almost always necessary; it is also sufficient in our case, modulo a number of
additional hypotheses. This equation corresponds to the fact that the mass variation in
volume dxdydz during dt, caused by a flow of liquid particles moving at the speed V, is
equal to the mass of fluid entering the volume, from which is subtracted the outgoing mass:

∂ρ

∂t
+ div(ρV) = 0 (2.19)

where ρ is the volumic density of the water

2.2.2.1 Writing the Navier-Stokes equations for ocean waves

2.2.2.1.1 Hypotheses

To model the waves, five additional hypotheses can be added, as a first approximation:

2D motion hypothesis Movement is considered to be in the x − z plan only. This
hypothesis makes it possible to simplify the equations. The generalization to the 3D case
is immediate by rotation around the z axis.

Incompressible water Sea water is assumed to be incompressible (it is really of about 4
% for every 1000 bar), and that density is invariant in space and time2: ρ is written as a
constant. The mass conservation equation 2.19 then becomes:

divV = 0 (2.20)

No additional forces All other forces than gravity and pressure are neglected:

f = −grad p− ρg0ẑ = −grad (p+ ρg0z) (2.21)

With this hypothesis, Coriolis forces and surface tensions are discarded, which simplifies
our model.

Non-viscous fluid The fluid is assumed to be non-viscous, that is, that its viscous con-
straints tensor is null: T = O. In particular, surface tensions are null. This is valid for
swell but not for capillary waves, having a smaller wavelength.

Irrotational fluid The fluid is assumed to be irrotational: (rot V = 0). Physically, this
means that the local angular velocity of the fluid is zero; this goes hand in hand with the

2In reality, ρ depends on pressure, temperature and salinity, which in turn vary with depth, position,
and seasons.

56



2.2 Geometrical characteristics of the ocean: sea waves

absence of viscosity. This means that the velocity vector field comes from a scalar potential
Φ:

V = grad Φ (2.22)

So equation 2.20 becomes:
∆Φ = 0 (2.23)

The momentum conservation equation becomes:

grad
(
∂Φ

∂t
+

1

2
(grad Φ)2

)
= f (2.24)

Given that variable Φ is for the moment an unknown, nothing prevents us by swapping the
variable for another one: Φ ← Φ/ρ. With the way f was previously written in equation
2.21, we get:

grad
(
∂Φ

∂t
+

1

2
(grad Φ)2 +

p

ρ
+ g0z

)
= 0 (2.25)

thus:
∂Φ

∂t
+

1

2
(grad Φ)2 +

p

ρ
+ g0z = C(t) (2.26)

where C(t) is only a function of time. Since Φ is only defined up to a constant, this constant
being only a function of time, it is possible to choose this constant as the atmospheric
pressure p0, so that 2.26 becomes:

p = (p0 − ρg0z)︸ ︷︷ ︸
(1)

− ρ
(
∂Φ

∂t
+

1

2
(grad Φ)2

)
︸ ︷︷ ︸

(2)

(2.27)

where term (1) is the hydrostatic pressure (with p0 the atmospheric pressure) and term
(2) is the so-called dynamic pressure.

2.2.2.1.2 Boundary conditions

So that the problem may be solved, it is necessary to add a definition domain and also
boundary conditions to equations 2.23 and 2.27 (Dean et Dalrymple [53] section 3.2.2).

Definition domain Consider the fluid between z = ζ and z = −d, for −∞ < x < +∞.

Kinematic condition at the free surface The velocity of the fluid at z = ζ is equal to
the velocity of the free surface, that is, the water-air interface:

Dζ

Dt
=
∂ζ

∂t
+ u

∂ζ

∂x︸ ︷︷ ︸
velocity of the free surface

≈ w =
∂Φ

∂z︸ ︷︷ ︸
velocity of the fluid

(2.28)

hence: [
∂ζ

∂t
+
∂Φ

∂x

∂ζ

∂x
− ∂Φ

∂z

]
z=ζ

= 0 (2.29)

Dynamic condition at the free surface The forces acting on the fluid at free surface
should be in equilibrium, i.e. the momentum is conserved at the free surface. The pressure
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at the free surface must match the atmospheric pressure p0. Equation 2.27 giving the
motion at the surface, becomes:[

∂Φ

∂t
+

1

2

((
∂Φ

∂x

)2

+

(
∂Φ

∂z

)2
)

+ g0ζ

]
z=ζ

= 0 (2.30)

Free surface relation Derivating 2.30 with respect to time, gives the derivative of ζ with
respect to t, which can be injected into 2.29:[

∂2Φ

∂t2
+ g0

∂Φ

∂z

]
z=ζ

=

[
−1

2

∂

∂t

((
∂Φ

∂x

)2

+

(
∂Φ

∂z

)2
)

+ g0
∂Φ

∂x

ζ

∂x

]
z=ζ

(2.31)

Kinematic condition at the sea bottom The sea bottom is impermeable, so at a depth
−d the vertical component of the velocity must be zero:[

∂Φ

∂z

]
z=−d

= 0 (2.32)

2.2.2.2 Solving the equations

The problem to solve is made of the following equations: 2.23, 2.27, 2.29, 2.30, 2.31 and
2.32. This is a system of equations where potential Φ is the unknown.

2.2.2.2.1 Airy’s linear model

Airy proposed in 1845 an approximate solution to this system by linearizing the equations.
This means that V2 is negligible with respect to the other components. As we shall see,
this corresponds to small amplitude waves.
Airy began by noting that ζ is unknown; the definition domain of the equations is thus

unknown. Assuming as a first approximation that ζ is very small compared to the channel
depth d and wavelength Λ. The potential function is thus defined for −d < z < 0. The
dynamic condition at z = 0 (eq. 2.30) becomes:[

g0ζ +
∂Φ

∂t

]
z=0

= 0 (2.33)

The free surface relation 2.31 is also simplified and becomes the so-called Poisson’s relation:[
∂Φ2

∂t2
+ g0

∂Φ

∂z

]
z=0

= 0 (2.34)

Elementary solution Using the variable separation method (Dean et Dalrymple [53]
section 3.4.1 or Le Méhauté [125], 16-2.1.3) assuming that an elementary solution Φe is of
the form:

Φe(x, z, t) = Ac(z) cos(Kx− Ωt) = <
(
Ac(z)e

Kx−Ωt) (2.35)

With this solution3, K is the wavenumber and Ω is the time pulsation. By inserting this
expression for Φ in the equations, it comes:

3It is also possible to use a sine instead of a cosine, and the general form of the equation does not
change.
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Continuity equation 2.23 → −K2Ac(z) + d2Ac
dz2 = 0

Non-penetration condition at sea bottom 2.32 →
[
dAc
dz

]
z=−d = 0

Poisson’s relation 2.34 → −Ω2Ac(z = 0) = −g0

[
∂Ac
∂z

]
z=0

The possible solutions for the continuity equation are of the form:

Ac(z) = a1e
Kz + b1e

−Kz (2.36)

or, equivalently:
Ac(z) = a2 cosh(Kz) + b2 sinh(Kz) (2.37)

In these equations, a1, b1, a2, b2 are arbitrary conditions. The second form, once inserted
into the other equations, gives the following system:{

−a2K sinh(Kd) + b2K cosh(Kd) = 0
−a2Ω2 + b2g0K = 0

(2.38)

So that this system may be solved for a2 and b2, its determinant must be zero. Then:

Ω2 = g0K tanh(Kd) (2.39)

This is the dispersion relation because it links the spatial wavenumber to the temporal
pulsation. This is a fundamental equation which is used many times in the rest of this
dissertation. Now if d→∞, the dispersion relation becomes:

Ω2 = g0K (2.40)

Similarly, the phase and group velocity for the ocean waves may be computed. We recall
that the phase velocity is the velocity of a wavefront of a monochromatic wave, while the
group velocity is the velocity of the envelope of a group of at least two monochromatic
waves of close wavelength (this is also the propagation speed of the energy of a wave
packet). Phase velocity c is by definition:

c(K) =
Ω

K
=

√
g0

K
tanhKd (2.41)

while group velocity is by definition:

cg(K) =
dΩ

dK
=

dg0

K sech(Kd)2 − g0

K2 tanh(Kd)

2
√

g0

K tanh(Kd)
(2.42)

When the channel depth becomes infinite, then the group velocity of ocean waves becomes
half the phase velocity:

cg(K) =
1

2

√
g0

K
=

1

2
c(K) (2.43)

This result will be useful in the next chapter (section 3.1.1.1) to explain the shape of the
Kelvin wake of a ship.
Knowing the dispersion relation, constant Ac becomes:

Ac(z) = γ
cosh (K(z + d))

cosh(Kd)
(2.44)

with γ an arbitrary constant. The potential equation Φ is then:

Φ(x, z, t) = γ
cosh (K(z + d))

cosh(Kd)
cos(Kx− Ωt) (2.45)
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To get the elevation function ζe coming from Φe, we use the dynamic condition at the free
surface 2.33:

ζe(x, t) = −γΩ sin(Kx− Ωt) (2.46)

If H is the total height (crest-to-through) of the wave, we get:

ζe(x, t) = −H
2

sin(Kx− Ωt) (2.47)

The 3D elementary solution is a sinusoidal wave propagating in the direction given by a
wave vector K = [Kx,Ky]

t:

ζe(x, y, t) = −H
2

sin (K.x− Ωt) (2.48)

with x = [x, y]t.

General solution The general 2D solution (Le Méhauté [125], 16-3) is obtained using
the fact that the differential equations are linear, and that the conditions put on Φ could
have been obtained using a sine instead of a cosine in equation 2.35. The general solution
has the form:

ζ(x, t) =

∫
K∈R
−H(K)

2
sin (K.x− Ω(K)t+ φ0(K)) dK (2.49)

where φ0(K) is the phase at origin and H is the wave height, which is a function of K.
Pulsation Ω is always linked with K using 2.39. The general 3D solution is obtained by
summing independent 2D waves each propagating in their own vertical plane; it is thus:

ζ(x, t) =

∫∫
Kx,Ky∈R2

−H(K)

2
sin (K.x− Ω(K)t+ φ0(K)) dK (2.50)

The idea behind this solution is illustrated by figure 2.6.

Velocity of water particles under the Airy model The local velocity vector is obtained
by taking the gradient of the potential 2.22 (Dean et Dalrymple [53] section 4.1, Le Méhauté
[125], 16-3.3, Gelpi et Norris [81]): {

u = ∂Φ
∂x

w = ∂Φ
∂z

(2.51)

Using the expression obtained at 2.45, it comes, for the 2D wave:{
u(x, z, t) = −H

2
g0K

Ω
cosh(K(z+d))

cosh(Kd) sin(Kx− Ωt)

w(x, z, t) = H
2
g0K

Ω
sinh(K(z+d))

sinh(Kd) cos(Kx− Ωt)
(2.52)

If the water is deep, meaning Kd > π, then the hyperbolic terms converge to one. Also,
using the deep water dispersion relation 2.40, the equations can be rewritten further,
yielding: {

u(x, t) = −H
2 Ω sin(Kx− Ωt)

w(x, t) = H
2 Ω cos(Kx− Ωt)

(2.53)

In 3D, considering the elementary solution 2.50, the velocity of an elementary monochro-
matic wave is given by:

Ve(x, y, t) =
H

2
Ω

(
− sin(Kx− Ωt)

K

K
+ cos(Kx− Ωt)ẑ

)
(2.54)
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Figure 2.6: Decomposing the sea surface elevation as a sum of individual sinusoidal waves,
after [79].

Given the linearity of equation 2.22, the 3D velocity field associated to 2.50 is:

V(x, y, t) = −K

K
×

∫∫
Kx,Ky∈R2

H(K)

2
Ω(K) sin(K.x− Ω(K)t+ φ0(K))dK (2.55)

. . .+ ẑ ×
∫∫

Kx,Ky∈R2

H(K)

2
Ω(K) cos(K.x− Ω(K)t+ φ0(K))dK(2.56)

This expression for the velocity vector of water particles is useful when computing the
Doppler shift of radio waves hitting the sea surface (Gelpi et Norris [81]); to do this, use
the equations in chapter 1, paragraph 1.5.3. A possible justification that it is the water
particles that are responsible for the Doppler shift, and not the free surface of the ocean,
is provided at chapter 5, when commenting figure 5.12(b) (page 143).

Trajectory of elementary water particles in the Airy approximation Consider the
elementary 2D solution 2.47 and write xe(x, z, t) and ze(x, z, t) the position of a water
particle at time t. We have: u = dxe/dt and v = dye/dt. The position of an elementary
particle is obtained, up to an additive constant, by integrating the velocity vector with
respect to time. Using the expressions of u and w found at 2.52, it is immediate to see
that the relation for xe(t) and ye(t) (Le Méhauté [125], 16-4.2.2) is:

xe(t)
2

r2
a

+
ye(t)

2

r2
b

= 1 (2.57)

with:

ra =

(
H

2

)
cosh(K(z + d))

sinh(kd)
(2.58)

rb =

(
H

2

)
sinh(K(z + d))

sinh(kd)
(2.59)
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This means that the trajectory of the particles is a closed ellipse. For deep waters (dK > π),
sinh(Kd) ≈ cosh(Kd) ≈ exp(Kd/2) and similarly: sinh (K(z + d)) ≈ cosh (K(z + d)) ≈
exp (K(z + d)/2). It comes:

ra = rb =

(
H

2

)
e
Kz
2 (2.60)

The motion is then circular. The radius of the circules decreases exponentially with z.
A similar study can be made for shallow waters. In the general case, the trajectory of
a particle is a linear combination of circular trajectories with varying amplitudes and
pulsations.

2.2.2.2.2 Gerstner’s trochoidal model

Airy’s theory establishes the trajectory of a small volume of water dxdydz centered on a
fixed point (Euler approach). But, it is also possible to use a Lagrangian approach, where
a single particle is followed through time, so that the motion of the free surface may be
reconstructed. Gerstner’s theory is an example of this approach, where it is assumed, on
an a priori basis, that the motion of all particles is circular (Le Méhauté [125], 17-1.4):
this is equivalent to following Airy’s result and to go back to the original surface.
For a monochromatic wave, in the 2D case, at a date t and for a particle P (x, t) considered

at date t and rotating around a point of abscissa x and zero elevation, Gerstner’s hypotheses
yield coordinates: {

xP (x, t) = x+ H
2 sin(Kx− Ωt− φ0)

zP (x, t) = −H
2 cos(Kx− Ωt− φ0)

(2.61)

où:

• H/2 is the radius of the circular motion;

• K et Ω are linked by the ad hoc dispersion relation, for instance 2.40;

• φ0 is an arbitrary phase term.

Figure 2.7 illustrates the space-time evolution of such a wave and compares it to Airy’s
sinusoidal wave.

Agreement condition between Gerstner’s and Airy’s models If H � 1, then, at order
2, equations 2.61 give: {

xP (x, t) = x

zP (x, t) = −HK
2 −

H
2

(Kx−Ωt−φ0)2

2

(2.62)

This development at order 2 is the same as the following parametric curve:{
xP (x, t) = x

zP (x, t) = −H
2 cos(Kx− Ωt− φ0)

(2.63)

This corresponds to a sinusoidal free surface, as in Airy’s model. Thus, ifH � 1, Gerstner’s
waves and Airy’s wave are the same up to order 2 and are rigorously equal only at the
limit where H goes toward 0. This configuration is illustrated at figure 2.8(a).

Studying Gerstner’s waves at a fixed time t Curve ζt which is the graphical represen-
tation of x → P (x, t) at a fixed time t, is parametrized by abscissa x. This is a trochoid.
It is easy4 to see that, if:

4For instance, by studying the derivatives.
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• HK/2 < 1: the curve never crosses itself. The surface is physically acceptable but its
throughs have a larger radius of curvature than the sinusoidal wave, and the crests
are more peaky (cf. fig. 2.8(b));

• HK/2 = 1: the curve has cusp points at x = 2kπ, k ∈ Z, this is the limit where the
surface becomes physically acceptable (cf. fig. 2.8(c));

• HK/2 > 1: the curve crosses itself, which is not physically acceptable (cf. fig.
2.8(d)). In reality, the waves would have broken long before this situation.
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Figure 2.7: Simulation of the evolution of a Gerstner wave with a single wavenumber (K =

4 rad/m et H = 0, 3 m). The blue points represent a water particle; the green lines link the water
particles to their rotation center; the red curve corresponds to a sinusoidal wave of amplitude H
and wavenumber K. The particles turn clockwise if the wave propagates to the right, as is the case
here.

General case for Gerstner’s waves The general situation is obtained with particles
following a trajectory that is a linear combination of circular motions.

Why Gerstner’s model is interesting As we have seen, Gerstner’s approach goes in the
opposite direction to that of Airy since we have a Lagrangian and not Eulerian approach.
This is very useful, because it is understood that it would be desirable that both approaches
give the same result. Under Airy’s assumptions, and after solving the Navier-Stokes equa-
tions, we found that the particles have a circular motion in the vicinity of the surface, this
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(a) Case H � 1: Gerstner’s and Airy’s models give the same result (here
K = 4 rad/m and H = 0, 02 m; beware that scales are not the same x and
z-wise).
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(b) Case HK/2 < 1: the wave is realistic-looking but more peaky than a
sinusoidal wave (here K = 4 rad/m and H = 0, 30 m).
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(c) Case HK/2 = 1: the wave is nearly breaking, the curve is a cycloid (here
K = 4 rad/m and H = 0, 50 m).
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(d) Case HK/2 > 1: the curve crosses itself and is thus not physical (here
K = 4 rad/m and H = 0, 80 m).

Figure 2.8: Some remarkable configurations for Gerstner’s waves, using the same notations
as fig. 2.7.
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which is the starting point of Gerstner’s model. We can use Gerstner’s model to test the
extent to which Airy’s assumptions on wave amplitude must be verified and what type of
error is made if these assumptions are not not respected.
Airy’s assumptions established that the ζ elevation of the surface of the water had to be

very small in front of the depth and the wavelength of waves. The development of equation
2.62 shows that this amplitude must above all be small in front of the unit length so that
the model of Airy and that of Gerstner coincide. If this is not the case, there is a difference
between Airy’s model, giving sinusoidal waves, and Gerstner’s model, giving trochoidal
waves. This has an influence on the shape of the free surface elevation, as we have seen
above (the trochoid is more peaky than the sinusoid). This mainly has an influence on the
calculation of the velocity vector field. Indeed:

1. Les équations 2.53 donnent le vecteur vitesse d’une particule d’eau en un point
d’abscisse x. Ce point est supposé être sur la surface d’Airy, qui est sinusoïdale.
En intégrant par rapport au temps, on trouve une trajectoire circulaire par rapport
à un centre fixe au cours du temps, comme indiqué à l’équation 2.57 modifiée pour
une mer de grande profondeur.

2. The equations 2.53 give the velocity vector of a particle of water at a point of abscissa
x. This point is supposed to be on Airy’s surface, which is sinusoidal. Integrating
with respect to time, this gives a circular trajectory with a fixed centre in time, as
shown by equation 2.57 modified for a sea of large depth.

3. Or si l’on applique l’hypothèse des centres de rotation fixes au cours du temps, on
aboutit naturellement au modèle de Gerstner. On constate que sauf pour le cas limite
H → 0, la surface de Gerstner et la surface d’Airy ne coïncident pas.

4. Or if we apply the assumption of fixed centers of rotation to the over time, we
naturally arrive at Gerstner’s model. One finds that except for the limit case H → 0,
the shape of Gerstner and Airy’s surface do not coincide.

So we also commit a positioning error equal to ∆x on the velocity vector field. This
positioning error of is periodic and bounded by H/2. This error is present when, in the
simulations, we shall try to estimate the local field of Doppler velocities of water particles.

2.2.2.2.3 Stoke’s model

Contraily to Airy’s model, Stokes’ model accounts for non-linear components (Le Méhauté
[125], 17-2). The approach uses a limited development series parameterized by ε, which is
small. Parameter ε depends on the curvature of the waves: ε = HK/(2π). So:

Φ = εΦ1 + ε2Φ2 + . . .+ εnΦn + . . . (2.64)
ζ = εζ1 + ε2ζ2 + . . .+ εnζn + . . . (2.65)

The terms Φi and ζi in the development can be isolated. They can be separatedly inserted
into the Navier-Stokes equations and solved as if terms of lesser order j 6= i were zero.
Since the analytical results of the Stokes waves have not been used in the thesis, only

qualitative results are given here. Some of them are worth noting. First of all, we can show
that if we truncate the development of Stokes to order one, we find the solutions of the
Airy model. The higher-order terms are those that introduce nonlinearities; In particular,
the trajectory of the particles will no longer be closed, and when the order becomes higher,
the shape of the surface will tend to resemble a cycloid (without really being one), insofar
as the waves are no longer symmetrical with respect to the level ζ = 0. However, we keep
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a symmetry with respect to the vertical line passing through the crest of the waves. In
general, the higher orders of development are used for shallow seas, especially at order five;
Demirbilek and Vincent state in the Coastal Engineers Manual ([54], page II-1-32) that
this development remains fast enough to calculate and contains asymptotic expressions for
both the “deep sea” and “shallow sea” domains that give results that correspond better to
observations than many other models.
A final important result is a limit beyond which the wave must break. This paragraph

is a summary of elements from the Coastal Engineers Manual ([54], page II-1-35): Stokes
predicted that, theoretically, the wave can only remain stable if the velocity of the water
particles at the crest of the waves is less than the speed of the wave or phase velocity;
this criterion then limits the angle of the waves at the crest to 120 degrees (figure 2.9).
Michell gave a criterion according to which the amplitude to wavelength ratio cannot exceed
(H/Λ)max = 1/7 in deep water, i.e. at this limit the height of the wave is 14 % of the
wavelength. Miche in 1944 generalized this relationship to waters of varying depth, by the
relation: (

H

Λ

)
max

=
1

7
tanh

(
2πd

Λ

)
(2.66)

On peut comparer ce résultat à celui obtenu pour la houle de Gerstner (figure 2.8), qui
donne une limite HK/2 = 1 soit (H/Λ)max = 1/π: la cambrure maximale autorisée par
le modèle de Gerstner est beaucoup plus importante que dans le modèle de Stokes, et
physiquement irréaliste. Cependant, le critère de Stokes généralisé par Miche semble lui
aussi surévaluer la limite de déferlement, puisque expériementalement, on a observé en
laboratoire du déferlement, en condition d’eau profonde, lorsque la hauteur n’était que de
6 % de la longueur d’onde [189].
This result can be compared to that obtained for Gerstner’s waves (figure 2.8), which

gives a limit HK/2 = 1 or (H/Λ)max = 1/π. However, the Stokes criterion generalized by
Miche also seems to overestimate the breaking wave limit. Indeed, experimentally, it was
observed in a laboratory setting, that for deep waters, waves break as soon as the height
exceeds only 6% of the wavelength [189].

120°
maximum

Figure 2.9: Typical shape of a Stokes wave for a high order at the limit of breaking, in a
sea of infinite depth.

2.2.2.3 Validity domain for the various models

Since the linear model is particularly interesting, it is important to know the limits of the
model’s applicability. Ursell [179] proposed in 1953 a dimensionless number, the Ursell
number denoted Ur, which makes it possible to quantify the degree of nonlinearity of the

66



2.2 Geometrical characteristics of the ocean: sea waves

theory necessary to model a wave:

Ur =
HΛ2

d3
(2.67)

Le Méhauté ([125], p. 204) considers that the linear theory is valid for waves having a small
Ursell number Ur� 1 with long wavelengths (Λ� d). This author continues with a more
general categorization of the various theories, based on the value of the two dimensionless
numbers d/(g0τ

2) and H/(g0τ
2), where τ is the wave period. This categorization is made

in the form of an abacus shown at figure 2.10. The term H/d ≈ 0.8 is a breaking wave
limit. We do not address breaking waves in this thesis. Nevertheless, the interested reader
may wish to consult the work of Tulin and Landrini [175] for an introduction to the topic
of breaking waves for the sea alone and in the presence of a ship.

Figure 2.10: Categorizing various theories for wave modeling, after Le Méhauté [125].

2.2.3 Modeling capillary waves

Capillary waves are waves present on the surface of the water, whose dynamics are domi-
nated by surface tensions that we have neglected when previously solving the Navier-Stokes
equations. These waves are of smaller wavelength, on the order of a centimeter. There are
so-called gravity-capillary waves whose dynamics are also influenced by gravity, and whose
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wavelength is intermediate between those of pure capillary waves, and that of swell. The
modeling of capillary waves has been known at least since the work of Sir Horace Lamb
(1849-1934) [115]. The description of these waves requires more detailed modeling of the
interface between water and air. We start with an energy balance, which involves three
potential energies:

• the potential energy of gravity, the value of which is obtained by integrating the
potential energy density due to gravity; for this purpose, the assumption of incom-
pressibility used for the wave, with regard to water, as well as the invariability of the
acceleration of gravity is retained;

• the energy related to the surface tension τs; to facilitate the calculation of surface
tension, it is assumed, as for the wave, that the variations in the height of the surface
are small;

• the kinetic energy, for which we consider that the velocity results from a potential
(irrotational fluid hypothesis, which was also made for the swell).

We then arrive at an equation on the potential which is the Laplace equation, which
we solve with the relevant boundary conditions: the velocity becomes zero far from the
water/air interface, and the vertical component of the velocity at the interface corresponds
to the movement of the interface. It is also shown that the regime is dispersive, with the
following dispersion relation:

Ω2 = ||K||
(
ρ− ρ0

ρ+ ρ0
g0 +

τs
ρ+ ρ0

K2

)
(2.68)

where ρ is the sea water density, ρ0 that of air, and τs the surface tension.

2.2.4 Spectral modelling of the sea surface

2.2.4.1 Definitions and properties

Let ζt(x, y) denote the elevation function giving the height of the sea at the point of position
(x, y) represented in the world coordinate system W(O, x̂, ŷ, ẑ) (cf. Annex §A.2.1). For a
given sea surface, it is possible to regard this function as a particular realization of a 2D
random signal. This random signal is characterized by its power spectral density function
(PSD), a term to be taken in the sense of "Fourier transform of the autocorrelation function
of ζt" and not in the sense of mechanical power density. By abuse of language, we call a
wave spectrum or sea spectrum, the DSP of a sea surface.

Spectrum for a 1D sea surface Assume the wind blows in the direction of increasing
x values. Recall that the PSD of a random signal is the expected value of the Fourier
transform of the autocorrelation of the signal. Assuming hypotheses of stationarity and
ergodicity are valid, the autocorrelation of the elevation function is defined as:

〈ζt, ζt〉(u) = lim
u→∞

1

u

∫ +u/2

−u/2
ζt(x+ u)ζ?t (x)dx (2.69)

The autocorrelation is an even function, since the elevations are real values. The PSD is
the Fourier transform of this expression 5:

S1d(K) =
1

2π

∫
u∈R
〈ζt, ζt〉(u)e−Kudu (2.70)

5The Fourier transform is here with respect to the wave number K; the transform is scaled by a factor
1/2π, and the inverse transform is done without scaling the integral by 1/2π. See chapter 5, paragraph
5.2.1.
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Figure 2.11: Frames used in paragraphs 2.2.4 et 2.2.6, see also appendix A. The green
arrow gives the direction in which the wind blows.

An alternative, but equivalent definition of the spectrum allows working directly with
surfaces ζt [2]:

S1d(K) = lim
u→∞

1

2π
E

1

u

∣∣∣∣∣
∫ +u/2

−u/2
ζt(x)e−Kxdx

∣∣∣∣∣
2
 (2.71)

where E is the expectation operator, over all possible ζt realizations of the sea eleva-
tions.The PSD is expressed in [m2/(rad.m−1)]. This is the amount of power6 (proportional
to a squared amplitude), in the wave number interval dK (expressed in rad.m−1). The
total power expressed by all the waves is then:

Ptotale, 1d =

∫ +∞

o
S1d(K)dK (2.72)

It is possible to re-write this spectrum as a function of the time pulsation of the waves; the
spectrum is then written S1d,Ω. To do that, express the fact that the spectrum, expressed
as a function of K and the spectrum, expressed as a function of Ω, must conserve the total
power of the sea, Ptotale, 1d, after a change of variables [78, 63]. It comes:

S1d,Ω(Ω)dΩ = S1d(K)dK (2.73)

or equivalently:

S1d,Ω(Ω) = S1d(K)
dK

dΩ
(2.74)

6This expression should be construed in the “signal processing” meaning of the term, and not the
“mechanical” meaning. The mechanical energy density, given below at equation 2.113, is proportional to
S1d(K).
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and reciprocally. The derivative dK/dΩ can be computed using the adequate dispersion
relation, for instance equation 2.40 for the swell. Expressed that way, the PSD has units
[m2/(rad.s−1)]. The spectrum is then the PSD of the ζx(t) function for a fixed x abscissa.
The correspondance between the two variables (pulsation and wave number) is crucial.
Indeed, ζx(t) can be easily measured at a single point using a buoy equipped with a posi-
tioning system (such as a GNSS receiver) and an accelerometer to measure the variations
of height through time. This has long been the most used system to derive experimental
spectra.

Spectrum for a 2D sea surface It is possible to generalize the equations to a 2D surface.
Still assuming that the stationarity and ergodicity hypotheses hold, the autocorrelation
becomes:

〈ζt, ζt〉(u, v) = lim
u,v→∞

1

uv

∫ +u/2

−u/2

∫ +v/2

−v/2
ζt(x+ u, y + v)ζt(x, y)dxdy (2.75)

and the 2D power spectral density:

S2d(Kx,Ky) =
1

4π2

∫
u,v∈R

〈ζt, ζt〉(u, v)e−(Kxu+Kyv)dudv (2.76)

whereK =
√
K2
x +K2

y is the wave number of a wave propagating in a direction ψ′ ∈]−π, π]

relatively to the x axis, that is:

Kx = K cosψ′ (2.77)
Ky = K sinψ′ (2.78)

The two-dimensional power spectral density has the two following properties:

1. ∀ψ′ ∈]− π, π],S2d(K,ψ
′) = S2d(K,ψ

′ + π): the function is even, because ζt has real
values;

2. ∀ψ′ ∈]− π, π],S2d(K,ψ0 − ψ′) = S2d(K,ψ0 + ψ′): symmetry with respect to a priv-
iliedged direction ψ0 which is the direction into which the wind blows; this is imposed
by experimental conditions. Variable ψ = ψ′−ψ0 is now used throughout the chapter.

An important notion, is that of an omnidirectional sea spectrum, that is, a power spectral
density that is only a function of K and which is expressed in [m2/(rad.m−1)]:

Somni(K) =

∫ +π

−π
S2d(K,ψ

′)Kdψ′ (2.79)

The 2D spectrum can then be decomposed into a radial part and an angular part under
the following form [63]:

S2d(K,ψ′) =
1

K
Somni(K)Sdir(ψ′, . . .) (2.80)

Term Somni corresponds to a 1D spectrum as defined previously. Term Sdir is the angular
repartition function or the so-called directional wave spectrum . The additional 1/K factor
allows to re-create the energy diminution of the 2D sea spectrum over all directions, as
circles of radii K have a perimeter increasing with K. Depending on the models, Sdir
depends on other parameters than ψ0. This function has the same properties as S2d (it
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is even and has a central symmetry). Besides, it is normalized such that its integral over
ψ′ ∈]− π, π] is 1.

Which spectrum is the best? There is plenty of literature about sea spectra and it is
probably impossible to list all the spectra proposed to date. In general, spectra are derived
from experimental data (time series, radar measurements) on which semi-empirical models
are adapted. It was found that there is no universal semi-empirical model, in the sense
that there is no particular spectrum that can characterize any sea or ocean in the world,
because of local specificities concerning the weather, currents, and bathymetry. However,
some spectra are more commonly used than others. In the following, we will present some
usual omnidirectional and directional spectra. A review of some common spectra can be
found in an article by Elfouhaily and Chapron [62].

2.2.4.2 Some omnidirectional spectra

2.2.4.2.1 Pierson and Moskowitz

Assuming the wind blew over the same area with a constant speed for a sufficiently long
time on a sufficiently large surface, it can be assumed that the waves will enter into sta-
tistical equilibrium with the wind: we arrive at the idealized concept of a fully developed
sea. Pierson and Moskowitz proposed in 1964 [143] an idealized spectrum for such a sea:

S1d, PM, Ωp(Ω) =
αPMg

2
0

Ω5
exp

[
−βPM

(
Ωp

Ω

)4
]

(2.81)

où:

• αPM is the Philips’ constant (dimensionless) taken as 8,110−3 for the Pierson and
Moskowitz spectrum;

• βPM is a dimensionless constant taken experimentally as 0,74 for the Pierson and
Moskowitz spectrum;

• Ωp = g0/U1950 is the peak pulsation (that is the pulsation where the spectrum is
maximum).

Expressed using wave numbers using equation 2.74 with dispersion relation 2.40, this spec-
trum becomes:

S1d, PM(Ω) =
αPM/2

K3
exp

[
−βPM

(
K2
p

K2

)]
(2.82)

with Kp the wave number associated to pulsation Ωp:

Kp = Ω2
p/g0 = g0/U

2
1950 (2.83)

The Pierson and Moskowitz spectrum is adequate for swell only. Other spectra are needed
for smaller, capillary waves.

2.2.4.2.2 The JONSWAP spectrum

The JONSWAP (Joint North Sea Wave Project) spectrum was developed in 1973 to di-
mension the resistance of North Sea oil rigs (Hasselmann et al. [90]). Observing their
experimental data, et al. understood that the fully developed sea hypothesis is rarely
verified in practice. In reality, the fully developed sea formation process is realized by
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complex non-linear interactions over a large distance. To model this, Hasselmann et al.
incorporated the notion of fetch into their model. Fetch FJ corresponds the distance, in
meters, over which the wind blew with a constant direction and speed. It is then possible
to modify the Pierson-Moskowitz spectrum by adding a factor γrJJ modifying the shape of
the spectrum depending on the fetch:

S1d, J, Ωp(Ω) =
αJg

2
0

Ω5
exp

[
−βJ

(
Ωp

Ω

)4
]
γrJJ (2.84)

The exponent rJ is chosen as follows

rJ = exp

[
−(Ω− Ωp)

2

2σ2
JΩ2

p

]
(2.85)

For γJ = 1, a similar equation to Pierson-Moskowitz is obtained. But in reality, the
experimental JONSWAP data led to the following constants ([165], section 16.4):

• αJ = 0, 076
(
U2

1000
FJg0

)0,22

• βJ = 5/4

• Ωp = 22
(

g0

U10000FJ

)1/3

• γJ = 3, 3

• σJ =

{
0, 07 if Ω ≤ Ωp

0, 09 if Ω > Ωp

where the fetch FJ is in meters, the wind speed at an altitude of 10 metres U1000 is in m/s
and the pulsation Ω is in radians per seconds.

2.2.4.2.3 The Fung and Lee spectrum

Fung et Lee [78] defined an unified spectrum allowing to represent gravity waves and
capillary waves. The spectrum is defined over two intervals:

S1d, FL =

{
S1d, FL, gravity(K) if K ≤ 4 rad/m
S1d, FL, capillary(K) if K > 4 rad/m (2.86)

where:

• S1d, FL, gravity is a gravity wave spectrum inspired by the Pierson-Moskowitz spec-
trum:

S1d, FL, gravity(K) =
αFL/2

K3
exp

[
−βFL

K2
p

K2

]
(2.87)

with a Philips’ constant αFL = 2, 810−3 and βFL = 0, 74, and Kp defined by equation
2.83;

• S1d, FL, capillary is a modified Philips spectrum for capillary waves:

S1d, FL, capillary(K) = a0(1 + 3K̄2)
[
K(1 + K̄2)

]−(pFL+1)/2 (2.88)

with K in radians/metres, a0 = 0, 87510−4(2π)pFL−1g
(1−pFL)/2
0 ; pFL = 3− log10(U0)

with U0 in m/s; and K̄ = K/Km avec K in radians/metres. Constant Km is equal
to
√
g0ρ/τ , where ρ is the density of sea water and τs the surface tension; Km is the

so-called “gravity-capillary peak”, its computed value is 363 rad/m.
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2.2.4.2.4 Spectre d’Elfouhaily

The Elfouhaily spectrum [63] is one of the most recent spectra. It generalizes the JON-
SWAP model and, once incorporated into electromagnetic wave scattering models (cf.
chapter 4), it is reputed to give results having a good consistency with experimental elec-
tromagnetic measurements. Unlike the JONSWAP spectrum, the Elfouhaily spectrum is
provided in 2D, so there is an omnidirectional spectrum and a directional spectrum, itself
being dependent on the wavelength of the waves (cf. paragraph 2.2.4.3.4). Like the Fung
and Lee spectrum, one of the main interests of the Elfouhaily spectrum is to unify two
spectra adapted respectively to low and high frequencies, within the same model:

S1d, Elf., Ωwa(K) =
(Bl +Bh)

K3
(2.89)

where l and h correspond respectively to low and high frequencies. These two spectra are
parameterized by Ωwa, the non-dimensional inverse wave age, which is an input, under
the constraint: 0, 84 ≤ Ωwa ≤ 5, value 0.84 corresponding to a fully developed sea. The
two components Bl et Bh are given below.

Low frequency part The low frequency part is given by equation:

Bl =
1

2
αp

cp
c(K)

Fp (2.90)

where:

• αp is the generalized Philips-Kitaigorodskii equilibrium parameter, chosen as 6, 010−3
√

Ωwa;

• c(K) is the phase velocity of a wave of wave number K:

c(K) =

√√√√g0

K

(
1 +

(
K

Km

)2
)

(2.91)

• Km = 363 rad/m is the “gravity-capillary” peak wave number, as for the Fung and
Lee spectrum;

• cp = c(Kp) = U1000/Ωwa is the phase velocity of waves having a wave number Kp

corresponding to the maximum of the spectrum:

Kp =
g0

U2
1000

Ω2
wa (2.92)

• Fp is a function describing gravity waves:

Fp = LPMγ
rJ
J exp

{
−Ωwa√

10

(√
K

KP
− 1

)}
(2.93)

• LPM is a spectrum following the form of the Pierson-Moskowitz spectrum:

LPM = exp

(
−5

4

K2
p

K2

)
(2.94)

• γrJJ is the amelioration factor proposed by Hasselmann et al. in the JONSWAP
spectrum but with a modified value:
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• γJ = 1, 7 if 0, 84 < Ωwa < 1 or γJ = 1, 7 + 6 log Ωwa if 1 ≤ Ωwa < 5;

• rJ = exp

{
−
(√

K
Kp
−1
)2

2σ2
J

}

• σJ = 0, 08(1 + 4Ω−3
wa)

High frequency part The high frequency part is given by relation:

Bh =
1

2
αm

cm
c
Fm (2.95)

where:

• αm is the generalized Philips-Kitaigorodskii equilibrium parameter, chosen as 0, 14U0/cm
(linear model) or [1 + a ln(U0/cm)]10−2, with a = 1 if U0 < cm and 3 otherwise (non-
linear model, which is the one used in this thesis);

• cm is the phase velocity of the gravity-capillary peak waves, with wave number Km:
cm =

√
2g0/Km, that is 0,23 m/s;

• Fm is a function describing capillary waves:

Fm = exp

{
−1

4

(
K

Km
− 1

)2
}

(2.96)

2.2.4.2.5 Comparaison of the spectra

The figure 2.12 provides a comparison between the Fung and Lee spectrum for its gravity
part: S1d, FL, gravity, that is the one taken from the Pierson spectrum ((figure 2.12, left); the
complete Fung and Lee spectrum S1d, FL (figure 2.12, center), and the Elfouhaily spectrum
S1d, Elf. with the age of the inverse waves corresponding to a fully developed sea so that the
comparison is valid with the spectrum of Fung and Lee (figure 2.12, right). These spectra
are the ones we actually used in our work.
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Figure 2.12: Comparaison of the Pierson-Moskowitz spectrum (gravity waves part), with
the Fung and Lee spectrum, and the Elfouhaily spectrum

It can be noted that the spectrum of Fung and Lee provides more energy for the cap-
illarity spectrum, but also that the decay is faster, compared to the gravity part of the
Pierson spectrum. The spectrum of Elfouhaily has the same appearance, with an even
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faster decay, and even more energy in the capillarity part. For all these spectra, as the
wind increases, the spectrum becomes wider (in non-logarithmic units), which is why the
waves become higher. It is also interesting to observe, for the purely gravity part of the
Fung and Lee spectrum, that if the wind increases, the curve of the spectrum is simply
translated along an asymptote (in the logarithmic domain): the curves retain an identi-
cal shape regardless of the wind speed. This is a phenomenon of self-similarity noted by
Kitaigorodskii [106], and which we will exploit in the chapter 5 when determining how to
best discretize a spectrum to perform oceanic radar image simulation.

2.2.4.3 Some directional spectra

Since the 2D spectrum must have symmetry with respect to the wind propagation axis,
the Fourier series decomposition of the directional spectrum can only have even terms [86].
It is therefore of the form:

Sdir(K, ψ) =
1

2π

[
1 +

+∞∑
n=1

a2n cos(2nψ)

]
(2.97)

Elfouhaily, Chapron and Katsaros [63] further proposed a categorization of directional
spectra based on an asymmetry ratio ”updwind/crosswind ”, which is equal to the coefficient
of the second term of the Fourier series:

∆(K) = a2 =
Sdir(K, 0)− Sdir(K, π2 )

Sdir(K, 0) + Sdir(K, π2 )
(2.98)

Elfouhaily et al. then showed that for most directional spectra, the ratio ∆(K) was in the
form:

∆(K) = tanh f(Kp/K) (2.99)

With f , a ad hoc function. Here we follow the work of Elfouhaily, Chapron and Katsaros
in [63] to present some usual directional spectra.

2.2.4.3.1 The Longuet-Higgins directional spectrum

The simplest directional spectrum used to model a large class of rough surfaces, including
the sea, was proposed by Longuet-Higgins et al. in 1963 [124]:

Sdir, LH(K, ψ) =

(
2sL−1

π

)
Γ2(sL + 1)

Γ(2sL + 1)
cos2sL

(
ψ

2

)
(2.100)

where Γ is Euler’s gamma function and sL ≥ 2 is an integer parameter. The dependence
is therefore in cosine, the multiplicative factor being used only for normalization purposes.
The ratio ∆(K) is in the form:

∆(K) = tanh

(
ln 2

2
sL

)
(2.101)

We see that in this spectrum, there is no dependence on the wavelength of the waves.
This is what makes this model so simple, and explains its success, despite its simplified
description of reality.
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2.2.4.3.2 The Mitsuyasu directional spectrum

In their paper, Mitsuyasu et al. [130] took up and modify the Longuet-Higgins spectrum
to introduce a wavenumber dependence in the exponent sL:

sL = 11.5

(
c(K)

U1000

)2.5

, K > Kp (2.102)

which gives:

∆(K) = tanh

((
3, 98

c(K)

U1000

)2.5
)

(2.103)

2.2.4.3.3 The Donelan directional spectrum

Donelan et al. found that a hyperbolic secant directional spectrum described even bet-
ter the data obtained during tests conducted on Lake Ontario [56, 108], and therefore
proposed7:

Sdir, Donelan, Ω(K, ψ) =
KβD(K)

2

2
sech (β(K)ψ) (2.104)

with:

βD(K) =


2, 61(K/Kp)

2.6 if
√

0.56 < (K/Kp) <
√

0.95

2, 28(K/Kp)
−2.6 if

√
0.95 < (K/Kp) <

√
1.6

1.24 otherwise
(2.105)

The ratio ∆K of Elfouhaily is then equal to:

∆(K) =
1− sech2

(
βD(K)π2 )

)
1 + sech2

(
βD(K)π2 )

) (2.106)

2.2.4.3.4 The Elfouhaily directional spectrum

As mentioned above, the paper by Elfouhaily et al. [63] also provides a directional spec-
trum, which has the particularity of depending on the wavelength of the waves. The
spectrum is defined as:

Sdir, Elf.(K,ψ) =
1

2π
(1 + ∆(K) cos(2ψ)) (2.107)

where ∆(K) is the ratio ”updwind/crosswind ” introduced above, which re-uses the param-
eters introduced in the low and high frequency omnidirectional Elfouhaily spectra:

∆(K) = tanh
(
a0 + ap(c/cp)

2.5 + am(c/cm)2.5
)

; (2.108)

Here, a0 is a constant equal to (ln 2)/4, ap is 4; am is 0.13U0/cm, and cp, cm are as defined
above in equation 2.95. The figure 2.14 shows the behavior of the spectrum; it is possible
to see that the distribution at Kp (peak wave number) does not depend upon the wind
speed, whereas it depends on said wind speeds for other wave numbers.

7Once made the transformation for a wavenumber spectrum, the original being given in pulsation.
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2.2.5 Probability of wave heights. Energy density spectrum.

Experimental observations widely represented in the literature have shown that the wave
height distribution follows a Rayleigh distribution quite closely. This becomes especially
true when wave energy is concentrated in a small frequency band. Then the distribution
follows the form ([54], p. II-1-74):

Pr(H) =
2H

σ2
ζ

exp

(
−H

2

2σ2
ζ

)
(2.109)

The standard deviation σζ of the heights of the surface generated over the entire spectrum,
is:

σζ =

√∫ +∞

0
S1d(K)dK (2.110)

An alternative definition, which is that of the significant wave height, denoted by Hm0 .
This significant wave height is:

Hm0 = 4σζ (2.111)

Note that in older texts, another definition of significant height is used: it corresponds to
the mean wave height (trough to crest) of the highest third of the waves. This definition
was proposed by Sverdrup and Munk in 1947 following studies that were initially used to
prepare for the Allied landing in Normandy during World War II; It corresponds quite
well to the empirical observations made by sailors. This significant height was noted H1/3.
Qualitatively, H1/3 is close to Hm0 . Indeed, it is shown that the probability density of sea
wave heights is close to a Rayleigh distribution; yet, for such a distribution, H1/3 is exactly
equal to Hm0 [54].
The graph in the figure 2.13 shows the plot of Hm0 as a function of Beaufort Sea state

(or, alternatively, wind speed U1950). The values of Hm0 are calculated by integration on
logarithmic steps between 10−4 and 104 (8192 samples) from the spectrum of Elfouhaily,
Fung and Lee, or the "gravity" part of the spectrum of Fung and Lee given by Pierson.
The descriptive sea heights associated with the Beaufort scale (given in the table 2.1)
are added for reference. On the one hand, Fung and Lee’s spectrum seems to slightly
underestimate the height of the waves, compared to other spectra. More importantly,
there is a divergence of the curves corresponding to the predictions obtained through the
spectra, with the descriptive heights, as soon as the sea states become high (about B > 5).
This divergence is explained by a different asymptotic behaviour between the theoretical
curves given by spectrum integration, and the experimental reference data. Physically,
this difference can be interpreted by the failure to take breaking waves into account in the
spectral approach, or by the fact that the model has not been adapted by regression to
high sea states. In any case, it seems that the spectral approach gives a wrong description
of the surface since B >5; This remark will be important in chapter 5 when it comes to
simulating radar signals reflected by an oceanic surface.

Energy of a wave For a sinusoidal wave of small height H, the mechanical energy is
equal to:

Eswell =
1

8
ρg0H(K)2 (2.112)

We can also define the average energy density by introducing Hm0 : it is Ēswell = ρg0σ
2
ζ or

1/16ρg0H
2
m0

. It is then possible to define a spectrum of energy density, in the form:

E(K) = ρg0S1d(K) (2.113)
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Figure 2.13: Significant height in meters depending on Beaufort condition B (or wind speed
at 19.5 m altitude), for several sea spectra. Crosses correspond to the heights of the table
2.1.

2.2.6 Wave slope probability: the model of Cox and Munk

Apart from the spectral approach, another approach to characterizing the water surface is
to determine the probability density function of the slopes of the waves of the water surface.
Cox and Munk [48] determined in 1954 such a statistic, empirical, from aerial photographs
to visualize the reflection specular of the sun. The slopes Zu and Zc correspond respectively
to the slope from the elevation function ζ in the opposite direction to that of the wind
(i.e. −û if the wind blows in the direction given by the vector û: this is the direction
called upwind in the Anglo-Saxon literature) and to the slope in the direction orthogonal
to the wind (direction crosswind, according to −û⊥). Please refer to the figure 2.11 for an
illustration of these concepts.
As a first approximation, the slope distribution is roughly Gaussian; however, because

of the asymmetry of the swell, that the front of the wave is steeper than the back. This
asymmetry is accentuated for high winds. The slope distribution is therefore also asym-
metrical. Therefore, Cox and Munk suggested using a Gram-Charlier distribution, which
corresponds to a normal distribution distorted by a function fCM to introduce non-zero
higher order moments. They thus set ξ = Zc/σc and η = Zu/σu, and then:

PrCox & Munk(ξ, η) =
1

2π
√
σuσc

exp

{
−1

2
(ξ2 + η2)

}
fCM (ξ, η) (2.114)

In this equation, σu and σc are the standard deviations of slopes in the two main direc-
tions upwind and crosswind ; they are linearly dependent on measured wind speed U1250

expressed in m/s at an altitude of 41 feet (about 1250 cm). The deformation function fCM
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is of the form [48]:

fCM (ξ, η) = 1− c21

2
(ξ2 − 1)η − c03

6
(η3 − 3η) +

c40

24
(ξ4 − 6ξ2 + 3) (2.115)

+
c22

4
(ξ2 − 1)(η2 − 1) +

c04

24
(η4 − 6η2 + 3) (2.116)

Two measurement campaigns were carried out by Cox and Munk’s team: the first was
carried out on a “clean” sea, i.e. a natural unpolluted sea (clean sea), while the second was
carried out on a slick sea where oil was intentionally spilt over the sea to mitigate capillary
waves and keep only the gravity waves. Figure 2.15 shows the distribution of slopes for
a “clean” sea. Note that the maximum density is not located at zero, but is shifted for
negative Zu, corresponding to the front of the wave. The wind blows from right to left.
There is no asymmetry in the crosswind direction.
After regression on experimental data, the coefficients cij for the clean sea were deter-

mined as follows [48]:

σ2
u = 0, 000 + 3, 1610−3 × U1250 ± 0, 002 (2.117)
σ2
c = 0, 003 + 1, 9210−3 × U1250 ± 0, 004 (2.118)

σ2
u + σ2

c = 0, 003 + 5, 1210−3 × U1250 ± 0, 004 (2.119)
c21 = 0, 01− 0, 0086U1250 ± 0, 03 (2.120)
c03 = 0, 04− 0, 033U1250 ± 0, 12 (2.121)
c40 = 0, 40± 0, 23 (2.122)
c22 = 0, 12± 0, 06 (2.123)
c04 = 0, 23± 0, 41 (2.124)

while, for the slick sea, they are [48]:

σ2
u = 0, 005 + 0, 7810−3 × U1250 ± 0, 002 (2.125)
σ2
c = 0, 003 + 0, 8410−3 × U1250 ± 0, 002 (2.126)

σ2
u + σ2

c = 0, 008 + 1, 5610−3 × U1250 ± 0, 004 (2.127)
c21 = 0, 00± 0, 02 (2.128)
c03 = 0, 02± 0, 05 (2.129)
c40 = 0, 36± 0, 24 (2.130)
c22 = 0, 10± 0, 05 (2.131)
c04 = 0, 26± 0, 31 (2.132)

The mathematical form of the Cox and Munk probability distribution is such that the
probability of having significant slopes can only increase with sea state. This means that
the effects of wave breaking are not taken into account by Cox and Munk’s model.

2.3 Conclusion of this chapter

This chapter highlighted a number of parameters and models that can be used for modeling
the sea in View of the simulation of its radar image. The input parameters of these models
are temperature, salinity, and wind speed, respectively. The temperature and salinity have
a direct influence on the dielectric constant of seawater (relation 2.3). Wind speed directly
affects the shape of the surface.
A large part of the chapter has been devoted to the study of this surface. This highlighted

a dual modeling approach for the wave heights: either analytical – by a model resulting
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from the approximate resolution of the Navier-Stokes equations – or probabilistic, which is
divided into three sub-approaches: height probabilities, power spectral density approach,
and slope probabilities. This chapter mainly illustrated the linear framework, most notably
by using the Airy and Gerstner swell model. Those are at the heart of the electromagnetic
models used in the following chapters of this thesis. By reasoning on the correspondance
between wave heights as obtained through spectra, and those obtained in practice, it is
possible to give a limit stating that the sea state must not go beyond Beaufort state 5,
unless the wave heights be overrated as compared to reality. Now, the only thing remaining
is how to model ship wakes: this is the topic of the next chapter.
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Chapter

3
Ship wakes: models and phenomenology
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In a sufficiently resolved radar image, ship wakes are among the most visible signs of
the presence of a vessel. Since wakes can persist for several hours, they can extend for
kilometers. The radar echo of the wake is often more prominent (on the surface) than that
of the boat itself and can frequently be seen from space. Moreover, the wake is also visible
in radar or optical images acquired from an airborne platform.
In this chapter, we focus on the appearance of the wake in radar. It can be demonstrated

that the wake can be decomposed into several components: the Kelvin wake, related to non-
viscous hydrodynamic phenomena, the turbulent wake, originating from viscosity forces,
and the dead water wake that can extend over several tens of kilometers. Other phenomena
related to the wake are also visible on radar. They are associated with the presence of
internal waves in environments where the volume of water is stratified into layers of different
density.
The main goal of the chapter is to model the map of water surface heights in the presence

of a wake and to relate this map to the physical parameters responsible for the wake: the
shape of the boat’s hull and its speed. Throughout the chapter, a fundamental assumption
is made that the drift is zero, so the ship’s course and heading are identical. We will initially
consider the wake in its generality to briefly categorize the various phenomena known under
the very general term “wake,” and then explore how these phenomena manifest in a radar
image. Subsequently, we delve into the modeling and simulation of the Kelvin wake height
map.

3.1 Ship wakes and their radar image: general overview

Figure 3.1 is a high-resolution optical image of a ship off the coast of Boston. This image
well illustrates various phenomena referred to as wakes. Firstly, there is a V-shaped struc-
ture formed by a set of divergent and transverse waves propagating within a cone, with its
apex at the front of the ship and symmetric with respect to the ship’s axis. This is the
Kelvin wake. Immediately behind the ship, as well as along the hull, the white foam is a
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manifestation of turbulent phenomena near the vessel. There is also a dark trail behind
the ship: this trail has a width close to that of the ship and is aligned with the trajectory.
This is the dead water wake, which appears approximately one ship length behind the
vessel and extends over a considerable distance: several tens of kilometers.

Figure 3.1: Divergent Kelvin waves (in green) and transverse waves (in red) existing within
the Kelvin cone (in blue). The turbulent wake is in yellow, and the dead water wake is in
orange. Image from USGS, in the public domain.

3.1.1 Kelvin wakes

We begin this section by focusing on the Kelvin wake. The theoretical study of the non-
turbulent wake started with the foundational work of William Thomson, Baron Kelvin, in
the late 19th century. These contributions had a significant impact on naval architecture
as the forces required to displace water in the wake are directly related to the resistance
forces against the ship’s movement. The Kelvin wake was later examined in more detail by
Ursell, Wehausen, Laitone, and numerous other authors throughout the 20th century. The
equations of the Kelvin wake can be derived within the framework of the Navier-Stokes
equations, under the assumptions of non-viscosity, allowing the velocity field of water to be
derived from a potential, and modeling the hull as a set of source terms (a demonstration
of these equations can be found, for example, in [137]).

3.1.1.1 Geometric characterization of the Kelvin wake

Independent of the derivation of the Navier-Stokes equations for the wake problem, nu-
merous properties of the Kelvin wake can be deduced from purely geometric and straight-
forward considerations. The geometric interpretation presented here has been known since
at least the work of Lighthill [119] (p. 273). We start by assuming working in the far field,
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ensuring that wave fronts are straight lines. We then assert that the wake wave fronts
do not move in the ship’s reference frame, a observation drawn from empirical evidence.
Consider a wake wave propagating in the direction θ with the ship’s axis of symmetry.
Referring to Figure 3.2, let A be the position of the ship at a given time t0, and B(t) be the
position of the ship at a time t0 + t. Define C(t) as the position of the common wavefront
to B(t), such that B̂AC = θ, making (AC) the direction of wave propagation. If C(t) is on
the same wavefront as B(t), necessarily (AC) is perpendicular to (BC). The fact that the
wake is stationary means that, concerning the axis (AB), the phase velocity of the wave
must be equal to the speed Vb of the ship. This also implies that the ship’s speed projected
onto (AC) is equal to the phase velocity of the wake wave propagating in the direction
(AC):

c(K) = Vb cos θ (3.1)

Assuming an infinitely deep sea, we have (see Equation 2.41 in Chapter 2):√
g0

K
= Vb cos θ (3.2)

which leads to:

K =
g0

V 2
b cos2 θ

= Kb sec2 θ (3.3)

where Kb = g0/V
2
b is the wave number associated with the ship or the wake waves

traveling in the direction of the ship’s route, and secx = 1/ cosx (secant function). This
relation characterizes the spectral locus of the wake.
Now consider a second wake wave propagating in a direction θ + dθ. It is also assumed

to be emitted at A and will also follow the relation 3.3. Let K + dK be the wave vector of
this second wave in its propagation direction θ + dθ; its norm is:

K + dK =
Kb

cos2(θ + dθ)
≈ K (3.4)

Then, the norm of the projection of K+dK onto the direction θ of the first wave will also
be very close to K. The energy of the signal propagating in the direction θ is then carried
by a packet of waves interfering with each other, with a wavelength close toK = Kb/ cos2 θ.
This energy propagates at the group velocity cg(K). Recall that the group velocity is twice
the phase velocity (still in an infinitely deep sea), as shown in Equation 2.42 of Chapter
2. It follows that the energy of the wave packet propagating in the direction (AC) is
mostly located between A and D(t), a point such that AD(t) = 1

2AC(t). Considering all
possible positions of D as a function of θ, it is observed that D lies on a circle of radius
r = 1/4||AB||. The maximum deviation of D from (AB) is equal to the radius r of this
circle. Denote Dmax(t) as this position. One can then calculate the angle βc = ̂DmaxBA,
corresponding to the opening of the cone. It is given by:

βc = arcsin
( r

3r

)
= arcsin

1

3
≈ 19.471 (3.5)

This relation holds regardless of the duration t of the ship’s movement. Therefore,
it is concluded that the envelope of Kelvin waves is a cone with an opening angle of 2βc,
approximately 39 degrees. The crucial result to remember is that this cone depends neither
on the ship’s speed nor the shape of its hull but only on the depth of the ocean, assumed
to be infinite here.
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3.1 Ship wakes and their radar image: general overview

A similar reasoning can be made by considering the finite-depth dispersion relation d
provided in Chapter 2. It can be rigorously shown that the depth dependence is defined
by the dimensionless factor γc, such that:

γ2
c =

V 2
b

g0d
(3.6)

For example, in [144], where γc is calculated analytically, it is shown that if γ2
c < 0.2,

then one can consider being in “infinite depth,” and the angle of the wake βc is indeed
19.471 degrees. If, on the other hand, γ2

c is 1, then βc is 90 degrees, and beyond this, the
system of transverse waves disappears, leaving only divergent waves with a specific form.

Figure 3.2: Geometric principle for calculating parameters of the Kelvin wake. Only a
single monochromatic wave, traveling in the direction θ, is considered here.

3.1.1.2 The Kelvin wake in radar observations

The Kelvin wake has been observed using synthetic aperture radar (SAR). The study of
such wakes observed by radar began after the Seasat flight in 1978. Seasat, the first satellite
equipped with synthetic aperture radar (in L-band), was also the first to demonstrate that
ship wakes, including the Kelvin wake, could be observed by radar. On monostatic radar
satellite images, the Kelvin wake is characterized by one or two bright lines with an opening
angle of βc, as shown in Figure 3.3. The system of divergent and transverse waves is rarely
visible in radar images because it requires a wavelength of wake waves compatible with
the radar resolution and a very calm sea (such conditions exist but are rare, as seen in
Figure 5.12(b) on page 144 in Chapter 5, acquired by Seasat). However, the observation
frequency of the Kelvin wake by spaceborne radar is much lower than that of observing
the dead water wake. Melsheimer et al. reported in [128] that, out of 400 ERS 1 and 2
images showing a wake, only 17
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3.1 Ship wakes and their radar image: general overview

In practice, the visibility of the Kelvin wake arms depends significantly on the orien-
tation of the satellite’s orbit relative to the ship’s direction. It is essential to note that
caution is needed when comparing Seasat measurements with measurements from ERS
satellites because Seasat operated in HH polarization, while ERS data are in VV polar-
ization. Generally, turbulent wakes are more visible in VV images, whereas Kelvin wakes
are more visible in HH polarization [93, 98]. This is why statements in the literature often
claim that the wake is “more visible in VV than in HH polarization” (see, for example,
[84, 49]) without specifying that it refers only to the dead water wake. Most articles focus
on the visibility of the wake in satellite imagery, especially ERS-1/2, where only the dead
water wake is of major interest.

3.1.2 Phenomena caused by viscosity

The turbulent wake has multiple origins [149]: firstly, there are viscosity effects that give
rise to turbulent currents along the hull, the vortices generated by ship propellers, or the
waves created by the ship’s bow and stern, which, in practice, may break even though
it is not considered in the Kelvin elevation model. The turbulent wake is practically the
primary cause of the disturbed area near the ship, which is manifested, for example, by
the presence of visible foam or bubbles. In practice, near-field turbulence is extremely
challenging to model, especially since these turbulences exist not only on the surface but
also within the volume of water.
However, based on radar images and high-resolution optical images taken from space

or an aircraft, it has been observed that there are large-scale phenomena in the far field,
with an extension of several tens or even a hundred kilometers. These phenomena are
characterized by systems of dark or bright lines existing inside the Kelvin cone, and their
origin has long been debated.

3.1.2.1 Dead water wakes

The dead water wake is characterized on monostatic radar by a dark streak directly in the
ship’s axis, at a sufficient distance for the foam from near-field turbulent wake to disappear.
The dark color indicates low roughness due to the absence of gravity waves in this area,
which does not favor radar wave backscattering on the water surface. This dark band can
be seen, for example, in the images in Figure 5.12 in Chapter 5. This band is also visible
in optical bands.

Origin of the Dead Water Wake The origin of this streak was the subject of debates
during the 1980s. The initial hypothesis was that the vortices generated by ship propellers
break the dynamics of gravity waves. Swean in 1987 [168] (cited by Griffin et al. [85]
and Reed et al. [149]) conducted studies on a numerical model of a destroyer with two
propellers and showed that the lifetime of these vortices is not long enough to explain the
dead water wake alone. Griffin, reported in [85], a plausible hypothesis supported by real-
world experiments: the persistence of the dead water wake is caused by a redistribution,
due to the passage of the boat, of the surfactants naturally present on the water surface.
The effect of surfactants is enhanced in case of human-induced pollution, namely various
hydrocarbons.

3.1.2.2 Width of the dead water wake

It has been shown semi-empirically that the width of the turbulent and dead water wakes,
as a function of the distance x from the stern, follows a law of x1/a, with a being a constant
whose value ranges from 4 [34] to 5 [28] (Chapter 14). Ziloh and Milman [202] proposed
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3.1 Ship wakes and their radar image: general overview

Figure 3.3: Ship off the coast of the Malacca Strait (ERS-1 image, acquired on May 4,
1996, at 15:59 UTC). The wake extends for about 12 kilometers (source: ESA).
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in 2004 an empirical formula based on the compilation of several previous studies, giving
the width of the dead water wake by specifying the hidden constants:

W (x) =
w̄0(

x̄0Lb
Bb

)1/a
Ba−1
b x1/a (3.7)

where Bb is the width of the ship, Lb is its length, x̄0 ≈ 4, and w̄0 ≈ 4. As mentioned
above, theoretically a is 5, but in practice, it varies from 4 to 5 in equation 3.7.

Characteristics of the Dead Water Surface Equation 3.7 only describes the location of
the dead water wake but not its surface characteristics, for example, in terms of the wave
spectrum. For this, other models exist. One can refer to Reed and Milgram [149], who
provide a generic formulation of the energy balance on sea surface waves in the dead water
wake region. They start from the equation relating the spectral energy density of waves
E (defined in Equation 2.113 in Chapter 2) to the wave vector K and time t, with cg(K)
being the group velocity (defined in Equation 2.42):

∂E(K)

∂t
+ cg(K)grad E(K) = 0 (3.8)

They then modify this equation 3.8 by introducing source terms:

∂E(K)

∂t
+ cg(K)grad E(K) = Sw(K) + Snl(K)− St(K)− Sv(K) (3.9)

The equation consists of terms with the following meanings:

• Sw is a source term for short-wavelength waves, related to the wind;

• Snl is a source term related to non-linear interactions between capillary waves and
gravity waves;

• St is the attenuation term for short-wavelength waves due to turbulence;

• Sv is the viscous attenuation term.

This differential equation needs to be integrated to find the value of the spectrum modi-
fied by the wake for each wave K, depending on time. Reed and Milgram propose the initial
condition E(K) = 0 at the beginning of the dead water wake, i.e., a ship length behind the
stern. They work in the ship’s reference frame, so time can be related to position using
the relationship x = Vbt, where Vb is the ship’s speed. Reed and Milgram then provide a
formulation for these source terms, some of which depend on experimental measurements
that we will not replicate here, as we have not implemented the method.
Griffin et al. [85] propose a method assuming that at the center of the wake, there is a

current that, in a first approximation, in the far field and in the turbulent wake, takes the
form s(x, y, z) = s(y)x̂b (see Figure 3.4). Starting from the modified Equation 3.8 to bring
out the current s:

∂E(K)

∂t
+ (s + cg(K))grad E(K) = 0 (3.10)

they show that the spectrum of the dead water wake S(K,ψ) can be written in terms of
the spectrum of the unmodified ocean S∞(K∞, ψ∞) through the relationship:

S(K,ψ) =

1−
√

1− 4s
√
K/g0 sin θ∞

2

3

S∞(K∞, ψ∞) (3.11)
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3.1 Ship wakes and their radar image: general overview

In this equation, the spectrum of the dead water wake for a wave with wavenumber K and
direction ψ relative to the wind is considered. It is related to the wake at infinity for a
wave initially arriving with direction ψ∞ and wavenumber direction K∞, being linked by
the relation K sinψ = K∞ sinψ∞.

Figure 3.4: Surface current in the dead water region (Griffin et al. hypothesis [85]); diagram
inspired by Oumansour [137].

3.1.2.3 The “Bright V” wakes

The term “Bright V wake” refers to a set of bright lines forming a V or semi-V cone, whose
opening angle is not consistent with the Kelvin wake angle βc. This type of bright lines is
common in many radar images. In Seasat images, the opening angle typically ranges from
14 to 17 degrees and can extend to a range of 1 to 7 degrees [85]. Various hypotheses have
been proposed to explain this phenomenon. All these hypotheses are based on the same
mechanism concerning the radar-scene interaction: the scattering of electromagnetic waves
in diffuse regime is created by Bragg scattering [180] (also see Chapter 4, page 109): waves
with approximately the same wavelength as the incident radio wave will diffract the wave,
causing constructive interference in the direction of the receiver, leading to an increase in
received energy and, consequently, bright lines.

Interrupted Kelvin Wake (IKW) Hypothesis The Interrupted Kelvin Wake (IKW)
hypothesis is based solely on the Kelvin wake and does not involve a “turbulent” mechanism.
It starts from the observation that the wavenumber of Kelvin wake waves, as given in
Equation 3.3, increases towards infinity as one approaches the direction orthogonal to that
of the ship. In this case, these are divergent waves. This means a contrario that the
wavelength of these divergent waves tends to zero, passing through the Bragg wavelength.
It can be assumed that the bright V wake is caused by Kelvin wake waves in Bragg
configuration. This hypothesis was first proposed by Lyden et al. in 1985. Supporting
elements were provided by Munk in 1987 [133], after analyzing SIR-B radar data from a
space shuttle Challenger mission. By taking the wavenumber K ′ of the Bragg waves as
input, which depends on the acquisition geometry (see Chapter 4, Equation 4.4), and using
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Figure 3.5: Bright V wake observed by Seasat [149].

considerations from Section 3.1.1.1, especially the phase velocity for K ′, the theoretical
half-angle αc of the bright V wake can be determined (in monostatic configuration) as
[123]:

αc = arctan
(
cg(K

′)

Vb
cosφrb

)
(3.12)

where φrb is the radar trajectory angle relative to the ship trajectory, and Vb is the ship’s
speed. Zilman and Miloh [201, 200] conducted a theoretical study in 1996 on the appear-
ance of the “Bright V” under the assumption of the interrupted Kelvin wake by calculating
the Kelvin wake for a simple hull and introducing the influence of surfactants, which also
seems to corroborate data published earlier by Shemdin in 1990 [155].

Modified Kelvin Wake by Surface Current Hypothesis This hypothesis is a continu-
ation of the approach by Griffin et al. mentioned above [85]. It posits that, in the far
field, at the center of the wake, a current s(y) (see Figure 3.4) disrupts Kelvin wake waves.
Griffin et al. modify the developed model to integrate the refraction of wake waves inside
the current zone. They then show that the constant phase lines of the Kelvin wake, as
well as the wavelengths and potentially the slopes, are modified near the dead water wake
zone.

Influence of Internal Waves The mechanism of internal waves is a separate phenomenon.
In all circumstances, the ship generates wake waves not only on the surface but throughout
the entire volume of water. These waves normally have little effect on the surface. However,
in the presence of strongly stratified water in salinity or density (which is equivalent), these
internal waves can modulate the surface waves in a way that makes a bright wake appear
if the surface waves are at the Bragg frequency (see the example in Figure 3.6). In 1997,
Stapleton [164] conducted a study on series of SAR images at several frequencies and for
boats of various sizes (three fishing vessels and a larger high-sea tug, the Olmeda, see
Figure 3.7). He observed that the theoretical angle predicted by the IKW theory did not
correspond to the observed angle for Olmeda, but it matched well for the wakes of smaller
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vessels. This suggests that the internal wave mechanism predominates for bright V wakes
created by larger ships, without being able to draw definitive conclusions due to the small
experimental basis.

Other Hypotheses Stapleton [164] notes that the hypotheses listed above work well for
low wind speeds, less than 5 m/s for the IKW hypothesis, also noting that turbulent wakes
are not very visible beyond 10 m/s. Therefore, there are other mechanisms to study to
explain the visibility of turbulent wakes for slightly higher wind speeds.

3.2 Calculation of wave amplitudes in the Kelvin wake

We now focus on the analytical calculation of the elevation map of a Kelvin wake. Through-
out this section, we work in the ship coordinate system B described in Appendix A (see
also Figure 3.8), oriented such that the x-axis is positive in the direction of the stern.
Thus, if θ is positive, the wave moves towards the port side.

3.2.1 Ship modeling

To model the Kelvin wake, we assume that the ship’s hull can be described by an equation
of the form y = Y (x, z) in the ship frame, as shown in Figure 3.8. Note that a completely
wet body can be perfectly modeled by this representation, assuming y is zero wherever the
hull “does not exist.” Analytic representations for the hull can be obtained in simple cases,
such as the Wigley hull, cosine-sine hull, etc. (see, for example, Wu [197], p. 83-84):

Wigley Hull The Wigley hull is given by the following equation:

Y (x, y) =
Bb
2

(
1−

(
2x

Lb

)2
)(

1−
(
z

Db

)2
)
x ∈ [−Lb/2, Lb/2], z = [−Db, 0] (3.13)

where Bb is the beam of the ship, Lb is its length, and Db is its draft.

Cosine-Sine Hull This hull is given by the following equation:

Y (x, y) =
Bb
2

(
1 + cos

(
2πz

Lb

))(
1 + sin

(
πx

2Db

))
x ∈ [−Lb/2, Lb/2], z = [−Db, 0]

(3.14)

General Case In a real case, representing the ship’s hull analytically is impractical. A
discretized representation of the surface is used instead. In our approach, we use a series of
Nx×Nz points Y (xi, zi), where {xi} and {zi} are sampled at a constant step size ∆x and
∆z, respectively, yielding Nx segments (or nx + 1 points) in x and Nz segments in depth.
It is understood that only the wet (immersed) part of the hull needs being discretized. The
origin of the coordinates is arbitrary, but since we assume that the hull has a symmetry
plane, it is convenient to place the origin of the frame on the ship’s symmetry axis.

3.2.2 Obtaining surface heights: the Kochin integral

Within the framework of linear theory of inviscid fluids, it can be shown that the distur-
bance generated by a hull is a sum of sinusoidal waves, each propagating in a direction θ
with a given amplitude and wave number following the relation 3.3. In a simplified manner,
we proceed by calculating the Kelvin wake system generated by a single pressure point on
the water surface, and we generalize it to an entire hull by considering that the wake system
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Figure 3.6: Internal wake observed by ERS 1 in C-band off the coast of Sweden in 1991.
The wake extends over nearly 40 km (Image: ESA/EURIMAGE/Spacetec, from [66]).
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Figure 3.7: Bright V wakes observed at several frequencies (hence the color composite
image) by Stapleton [164].

Figure 3.8: Notations used for the “wet body” frame, in this case, the DTMB 5415 hull.

for a single point is the Green’s function of the differential problem describing the wake.
One can refer to K. Oumansour’s thesis [137] for a more comprehensive presentation of the
calculation of this Green’s function from the Navier-Stokes equations. Nevertheless, after
using the Green’s function, an integral representation of the elevation map is obtained,
called the Kochin Integral :

ζw(x, y) = R

∫ +π
2

−π
2

AVb,Y (θ)e−φ(θ)dθ (3.15)

where:
φ(θ) = K(θ)[x cos θ + y sin θ] (3.16)

and K(θ) is given by Equation 3.3. In this integral, AVb,Y (θ) is a function solely of θ and
parameterized by the hull shape Y and the ship speed Vb, both provided as input. We will
call AVb,Y the amplitude function; it is also known as the Kochin function. It is a closed
analytical form that can be used to calculate the elevation map as well as the resistance
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3.2 Calculation of wave amplitudes in the Kelvin wake

to the advancement of the hull. Indeed, it is for this latter problem, more critical in naval
architecture than the height of the wake waves, that the theory was developed.
Moreover, the components of the fluid velocity vector [u(x, y, z), v(x, y, z), w(x, y, z)] in

the B frame are given by [174]:

u(x, y, z) = −g0

Vb
R

∫ +π
2

−π
2

AVb,Y (θ)eKbz sec2 θe−φ(θ)dθ (3.17)

v(x, y, z) = −g0

Vb
R

∫ +π
2

−π
2

AVb,Y (θ)eKbz sec2 θe−φ(θ) tan θdθ (3.18)

w(x, y, z) = −g0

Vb
R

∫ +π
2

−π
2

AVb,Y (θ)eKbz sec2 θe−φ(θ) sec θdθ (3.19)

Depending on the approximations made, several more or less approximate forms of AVb,Y
can be obtained for a given hull shape. In the following paragraph 3.2, up to section
3.2.3.4 (not included), we will describe a technique proposed by Tuck, Lazauskas, and
Scullen from the University of Adelaide in a series of seven technical reports describing
their computational code Sea Wave Pattern Evaluation (SWPE). We will specifically focus
on their first report [174], as well as an earlier reference by Tuck [173]. The approach
followed by Tuck, Lazauskas, and Scullen was to formulate the Kochin integral within the
framework of Michell’s slender ship theory (proposed in 1898: [129]), which assumes that
the ship’s beam Bb is small compared to its length or, more precisely, that the derivative
of the function Y with respect to x is small. Indeed, this assumption greatly simplifies the
calculations. This choice was reinforced by the fact that, over time, it has been observed
in the community that the Michell approximation, despite the significant simplifications it
introduces, often yields results of similar order of magnitude to much more complex and
sophisticated computational codes, at a much lower computational cost [172].
Tuck, Lazauskas, and Scullen then simplified the amplitude function AVb,Y resulting

from the Michell approximation using several simplifying assumptions, which have also
been lifted in the later reports of the series. However, in the implementation used in this
manuscript, these assumptions have been retained. They are as follows:

1. The assumption of an infinitely deep sea;

2. The far-field assumption: wave elevations are only calculated for points (x, y) located
at least two ship lengths away;

3. There is no transom stern: that is, the function Y : (x, z) 7→ Y (x, z) decreases
continuously to 0 at the front and rear of the ship;

4. The assumption of a hull admitting a symmetry plane: this simplifies calculations;
moreover, this assumption is not very restrictive in practice because most ships are
symmetric anyway.

Under these assumptions, the amplitude function can be written as:

AVb,Y (θ) = −2

π
K2
b sec4(θ)[P (θ) + Q(θ)] (3.20)

with:
P (θ) =

∫
F (xb, θ) cos(Kbxb sec θ)dxb (3.21)

The integral Q is similar to P , but uses a sin() function instead of cos(). The function F
itself is an integral:

F (x, θ) =

∫
Y (x, zb) exp(Kbzb sec2 θ)dzb (3.22)
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3.2 Calculation of wave amplitudes in the Kelvin wake

3.2.3 Integration scheme for the Kochin integral

In the literature, the calculation of the above integrals is often done in the case of hulls
defined by a mathematical formula, as described in paragraph 3.2.1, for which analytical
formulas can be found. However, in the general case, such formulas do not exist, and
numerical integration is necessary. However, the choice of the integration scheme is very
delicate due to the nature of the integrals, as the integrand can oscillate rapidly due to
terms like exp( sec θ). Standard integration schemes cannot be used. Tuck et al. propose
clever integration schemes for each sub-integral that are well-suited to the problem, derived
from Tuck’s earlier work.

3.2.3.1 Calculation of F

To calculate F , Tuck et al. suggest using an integration method inspired by the Filon
scheme, which handles integrands that oscillate rapidly and provides precision equivalent
to a trapezoidal rule integration scheme:

F (x, θ) =

Nx∑
j=0

ωjY (x, zj) exp(Kbzj sec2 θ)∆z (3.23)

The weights ωi are given by the following equations:

ω0 = (em0 − 1−m0)/m0
2 (3.24)

ωNz = (e−m0 − 1 +m0)/m0
2 (3.25)

(3.26)

For other values of j:
ωj = (em0 + e−m0 − 2)/m0

2 (3.27)

where m0 = Kb sec2 θ∆z. Here too, if m0 tends to zero, it is important to hard-code the
limit values of ωj to avoid numerical divergence:

lim
m0→0

ω0 = 1/2 (3.28)

lim
m0→0

ωj = 1 if j 6= 0, Nz (3.29)

lim
m0→0

ωNz = 1/2 (3.30)

3.2.3.2 Calculation of P and Q

The calculation of integrals P and Q (equation 3.21) is done simultaneously to consolidate
the computation of F (x, θ). Here too, a Filon scheme is used, this time exact. By assuming
that Y tends to zero at the ends of the hull, the scheme can be written as:

P (θ) ≈
i=Nx−1∑
i=1

ω′iF (x, θ) cos(Kbxi sec θ)∆x (3.31)

Where we define the weights ω′i for i different from 0 and Nx − 1. In the case where i is
even, the weight is given by:

ω′i = (3m1 +m1 cos 2m1 − 2 sin 2m1)/m3
1 (3.32)

And, if i is odd:
ω′i = 4(sinm1 −m1 sinm1)/m3

1 (3.33)
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3.2 Calculation of wave amplitudes in the Kelvin wake

With m1 = Kb sec θ∆x. Different weights are assigned for i = Nx if there is a transom
stern; however, in our case, we assume this is not the case, so the weights at the ends
are zero. Note that if m1 tends to zero, care must be taken: in implementation, the limit
transition for ω′i cannot be straightforward. Therefore, the limit values of ωi need to be
hard-coded as soon as m1 is below a threshold ε (for example, 10−5). These limits are 2/3
and 4/3 for even and odd i, respectively. It is observed that these weights then correspond
to the standard Simpson’s integration method. Once P and Q are calculated, the value of
AVb, Y (θ) can be obtained immediately.

3.2.3.3 Calculation of the Kochin integral

The calculation of the Kochin integral is much more delicate. As mentioned earlier, the is-
sue arises due to the presence of secant terms in θ, a term whose oscillation frequency tends
to infinity as |θ| approaches π/2. Tuck, Collins, and Wells propose, in [173], an approach
inspired by the method of stationary phase. The stationary phase method is commonly
used in analysis to evaluate an integral where the integrand is a rapidly oscillating term
around zero, and its envelope varies slowly. It is then possible to consider that where the
integral oscillates rapidly, positive terms are compensated by negative terms, resulting in a
net integral of zero. The only contribution to the integral comes from intervals where the
integrand oscillates slowly, in other words, where the phase φ(θ) (whose expression is given
by equation 3.16) evolves very gently or where the derivative of the phase vanishes. The
integral is then approximated by the sum of the function values at these points where the
phase has a vanishing derivative. A first approximation of the wave height can be obtained
by considering only the contribution of points where the phase is stationary (Oumansour
[137]). However, it is not possible to calculate the height outside the Kelvin cone, even if
small amplitude waves do indeed exist in this area.
In the method proposed by Tuck in the article [173], which predates the reports describ-

ing SWPE, not only are the points of stationary phase used, but also intervals centered
around these points with appropriately calculated widths. More importantly, the func-
tion is attenuated at the edges of the intervals around the points of stationary phase by
weighting it with a half-Gaussian. This allows working outside the Kelvin cone.
It is shown [173, 137] that the number of points where the phase is stationary in the

Kochin integral depends on the position relative to the Kelvin wake cone defined in section
3.1.1.1. The position of the point (x, y) where the wake height is to be calculated is defined
by the following polar coordinates, relative to the front of the ship:

r =
√
x2 + y2 (3.34)

β = arctan
(y
x

)
(3.35)

Which are then compared to the critical angle βc defining the opening of the cone, itself
defined earlier.

Integration strictly within the cone When |β| < βc, there is no particular problem.
The integrand has two stationary points obtained when dφ/dθ = 0, which are given by the
relations:

θ2,1 = arctan

[
−1±

√
1− 8 tan2 β

4 tanβ

]
(3.36)

Integration is carried out around these points by weighting the values of the integrand
with a Gaussian factor that depends on the frequency of oscillations. More specifically,
denoting ∆θ as the discrete integration step:
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3.2 Calculation of wave amplitudes in the Kelvin wake

1. Start from one of the stationary points θi and either increase or decrease θ by ±∆θ.
Here, we assume that θ increases.

2. As long as φ(θ)− φ(θi) < 0.6, count the integrand with a unit weighting (this value
of 0.6 has been empirically chosen by Tuck et al.).

3. If, for a given θ, denoted θ+
i , such that φ(θ+

i )−φ(θi) ≤ 0.6, and φ(θ+
i −∆θ)−φ(θi) <

0.6, then for all θ ≤ θ+
i , weight the integrand by a factor νw calculated as follows:

νw(θ) = exp
[
−κ1(φ(θ)− φ(θ+

i ))2
]

(3.37)

where κ1 is between 0.025 and 0.10, with the exact value not having much influence
on the integral.

A similar result is obtained in the other direction by starting the integration at θ−i . How-
ever, it should be noted that there may be a problem in the region θ1 < θ < θ2. Indeed, if
the phase variation between θ1 and θ2 is not excessive, a unit weighting will be maintained
in this region. Otherwise, attenuation will be applied. Tuck et al. propose conducting a
test at the value θf = (3θ1 + θ2)/4, an approximate value of the inflection point of φ(θ)
inside the cone. If |φ(θ2) − φ(θf )| < π/2, a unit weighting is applied between θ1 and θ2.
Otherwise, a Gaussian weighting is used as indicated above.

Figure 3.9: Shape of the integrand of the function ζw (eq. 3.15) inside the Kelvin cone
(inspired by [173]).

Integration outside the cone When outside the cone, there are no stationary points. In
this case, the elevation tends exponentially toward zero as r approaches infinity. However,
the heights are not entirely zero when close to the cone boundary. Tuck et al. observe that
these non-zero heights contribute during integration in the intervals where the integrand
of the Kochin integral oscillates at the lowest frequencies, i.e., at the inflection point where
d2φ/dθ2 is zero. This point is given by:

− tanβ =
1 + sin2 θ

(tan θ)(5 + sin2 θ)
(3.38)

Since the equation giving θ cannot be solved analytically, it must be solved numerically
without requiring too much precision.
We have adopted a different approach. Noting that the absolute value of the frequency

only increases, we integrate as long as the instantaneous frequency of the integrand is
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compatible with the Shannon-Nyquist frequency defined by the value 1/(2∆θ). In practice,
we use unit weighting as long as the instantaneous frequency is far from the Shannon
frequency, and then we weight it with a decreasing exponential so that the weighting is 0
when the integrand oscillates at the Shannon-Nyquist frequency.

3.2.3.4 Improving calculation robustness

To ensure better calculation robustness, we have taken the following additional measures
compared to the elements provided in [174] and [173]. On the one hand, we know that the
wake waves have zero height for angles β � βc and for x < 0. To guarantee this result
and guard against the ever-present numerical noise, we multiply the numerical result of
the integral ζw(x, y) by the following mask function Mw:

Mw(x, y) =


exp−κ2(β − βc)2 if |β| > βc, x ≤ 0
1 if |β| ≤ βc, x ≤ 0
0 if x < 0

(3.39)

This mask function imposes a square exponential decay when the absolute value of the angle
β is significantly greater than βc. This result may not be absolutely physical but allows
preserving the orders of magnitude, which is most important. We have chosen κ2 = 1/9
(for β measured in degrees), corresponding to a standard deviation of approximately 2.12
degrees. This choice is empirical.
On the other hand, we observed another numerical noise resembling a spectrum folding

issue: by directly implementing the scheme proposed by Tuck, Lazauskas, and Scullen, the
wake map ζw(x, y), once transformed into the 2D Fourier domain, exhibits spectrum repli-
cas that corrupt the signal by introducing waves with unrealistic directions. Furthermore,
these replicas disturb the wave height value. To address this problem, the adopted solution
was to apply a mask around the location of the theoretical frequencies of the spectrum,
as provided by Equation 3.3. This binary mask, with a width of one pixel around the
theoretical location, is then weighted by a Gaussian with a typical width of three pixels to
minimize the Gibbs phenomenon before performing the filtering itself.
In the simulations presented in this manuscript, we often used the standard DTMB 5415

hull, which has the significant advantage of being extensively studied in the literature (see,
for example, [149]), and its numerical model is freely available on the Internet (see Figure
3.10). The calculation is performed by scaling the hull, so that its overall length is one
hundred meters; thus, its width is 13.25 meters.
Figure 3.11 illustrates the distribution of wake waves generated by the hull at two typical

speeds. For the lower speed, the divergent waves tend to be more visible than at the higher
speed. This behavior is typical.

3.2.4 Validation and limits of the computation

We now turn our attention to the validation of these wave height maps. In the literature,
the hull length used may not necessarily match that in our calculation code. This is not
an issue because the characteristic equations of the wake exhibit a fundamental property,
which is a scaling relation with respect to the Froude number. The Froude number is a
dimensionless characteristic number of the flow, indicating the relative importance of forces
related to velocity and gravitational force. It is defined as follows:

Fr =
Vb√
g0Lb

(3.40)
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Figure 3.10: The David Taylor Model Basin (DTMB) 5415 hull.

Here, Vb is the ship’s speed, and Lb is its length. It is then shown that the characteristics
of the wake (the amplitudes, the wavelengths) are homothetic by a factor of Lb when the
flow occurs at equal Froude numbers. This property is used here and will play a crucial
role in Chapter 7.
We perform the first series of comparisons on measurements conducted in a basin and

reported in [149], reproduced in Figure 3.12, alongside the results obtained with our im-
plementation of SWPE. The measurements are taken around the hull, indicating that the
operating regime is that of the near field. However, as mentioned earlier, the formulas
we implemented are only valid at large distances from the ship (at least two ship lengths
behind it) and for ships without a transom stern. The formulas exist in the general case,
but their calculation requires more computation time, which is not justified in our case.
Nevertheless, it is observed that the shape of the waves remains close to the experimentally
obtained one. Only the amplitude is somewhat different. However, the obtained heights
remain acceptable in terms of order of magnitude, even if they are not rigorously exact.
The second comparison is made in the far field between our results and those reported

in a paper by Griffin et al. [85], for a simulation performed with another calculation code
using slender ship theory: the FFSW code developed by Keramidas et al. [101]. Figure
3.13 reproduces the results from [85] and shows our results in the same configuration, using
the same units to facilitate comparison. It is observed that the general shape of the waves is
reproduced (though divergent waves are challenging to observe in Griffin et al.’s published
figure, even though they are present). More importantly, good agreement is found in terms
of the maximum wave height. Specifically, the maximum height calculated by FFSW is
6.41 feet, while our SWPE implementation yields a height of 6.61 feet, representing a
difference on the order of 3

3.3 Conclusions of this chapter

This chapter provided an overview of various phenomena collectively referred to as “wake,”
while discussing how these phenomena are perceived by a synthetic aperture radar (SAR)
system. Two categories of phenomena were defined. On the one hand, there are non-
viscous phenomena, resulting in the Kelvin wake, which is deterministic and relatively
well-known. The second category corresponds to phenomena originating from turbulence.
These phenomena interact with the Kelvin wake in a complex and still poorly understood
way, thus generating typical signatures like the “bright V” characteristic of a ship’s wake.
Finally, wave interactions in the water volume are also responsible for phenomena visible
to radar.
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The last part of the chapter explained a relatively fast numerical evaluation technique
to obtain an elevation map and a velocity field map for the Kelvin wake. This technique
was based on the description of the SWPE calculation code proposed by Tuck, Lazauskas,
and Scullen [174]. Although the calculation code is published in the form of an executable
(Michlet), we re-implemented the code ourselves for several reasons: a better understand-
ing of the phenomena, the fact that only an executable is available without the source code,
limiting flexibility in use and modification, etc. The results obtained with our implemen-
tation were compared with some data available in the open literature, showing satisfactory
agreement. We limited the implementation to the far field and the case of ships without a
transom stern. Leo Lazauskas, in a personal communication, emphasized that these sim-
plifying assumptions cannot ensure, if attempted, correct inversion of the Kochin integral
to retrieve hull parameters, and that the complete formulation in the near field is then
indispensable1. This inversion is indeed a possible perspective of our work, which is also in
line with a previous thesis [197], but this point should be taken into account if one wishes
to attempt it.
The results of this second part will then be reused in Chapter 5 dedicated to ship wake

simulation. The theoretical elevation model will also be important in Chapter 7, dedicated
to the detection of the Kelvin wake in a radar image or an optical image.

1Email from Leo Lazauskas (December 2007, excerpt): “There is also a very subtle mathematical matter
to do with Fourier inversion of the ship-wave integral that was the subject of much heated debate back in the
1960’s and 1970’s. (Apparently. I’m old, but not old enough to have been an eye witness!) Mathematically,
the correct inverse can only be obtained by including the near-field as well as the far-field. This is probably
not a problem for your work, but you should be aware of it if you want to investigate the subtle maths
involved in the process”.

101



3.3 Conclusions of this chapter

Figure 3.11: Wake waves generated by the DTMB 5415 hull, scaled to a length of 100 m;
the ship speed is 4.5 m/s (8.7 knots, Fr = 0.143) in the first case and 9 m/s (17.5 knots,
Fr = 0.287) in the second case.. All dimensions are given in meters.
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(a) Experimental basin measurements. Dashed lines: negative levels; full lines:
positive values.

(b) Our SWPE implementation

Figure 3.12: Comparison between the calculated height map with our SWPE implementation
and basin measurements (from [149]) for a DTMB 5415 hull at Fr = 0.2755. Scale for the
x, y axis in ship lengths Lb. Contour lines: 0.002Lb. Color scale: one unit corresponds to
0.01Lb.
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(a) Far-field simulation with the FFSW calculation code [101], according to Griffin
et al. [85]

(b) Our SWPE Implementation – heights between -6.66 feet and 6.61 feet

Figure 3.13: Comparison between the calculated height map with our SWPE implementation
and the result of the FFSW far-field wake calculation code (according to [85]) for a DTMB
5415 hull with length Lb = 465.9 feet (142 m) at 20 knots (12.28 m/s). Heights are in feet.
The Froude number is identical to that in Figure 3.12.
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4 Reflection of Electromagnetic Waves on the
Maritime Surface

Contents
4.1 Obtaining the electromagnetic scattering matrix of an ocean surface . . . . . . . 106

4.1.1 General overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.1.2 The Kirchhoff approximation . . . . . . . . . . . . . . . . . . . . 107
4.1.3 The Small-Perturbations Method . . . . . . . . . . . . . . . . . . 108
4.1.4 Composite models . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.2 A novel approximation of the scattering matrix using a hybrid Model . . . . . . . 111
4.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.2.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.2.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.3 Conclusion of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Chapter 1 established the radar equation, which governs the link budget between the
transmitter, the target, and the receiver. In particular, in Section 1.3 of Chapter 1, we
introduced the concept of the radar cross-section, which is involved in the calculation of
the reflectivity of an object to radio waves. In this chapter, we will further develop these
concepts, focusing on the particular case where the object is the sea surface. We consider
the power-normalized polarimetric scattering matrix Σ0 = [σ0

pq] for an infinite rough surface.
This matrix describes how an incident wave Ei emitted from a source located at a distance
r from a surface is reflected by that surface, forming a reflected wave Es.
In this chapter, after a brief literature review, we explain the approach taken to calcu-

late the power-normalized polarimetric scattering matrix in the case where the considered
surface is the sea. These explanations will be followed by cross-validation with other
models and real data published in the literature, particularly in the case of a monostatic
configuration.
In general, calculating the power-normalized scattering matrix requires going back to the

Maxwell equations, which must be solved, taking into account the boundary conditions spe-
cific to the surface. There are methods that numerically integrate these equations: notable
examples include the method of moments (one recent implementation, among others, can
be found in Soriano and Saillard [161, 162]). These approaches are generally numerically
accurate and theoretically tend toward the exact solution of the integral electromagnetic
equations derived from Maxwell’s equations, but they are slow and memory-intensive. It
is also worth noting that these methods work on a deterministic surface, perfectly known;
this surface can also be a given and fixed realization of a stochastic process. The major
drawback of these methods for our application is the slowness of the calculation, so we
will prefer asymptotic, approximate solutions, which are generally faster. In this chapter,
we develop several such asymptotic methods suitable for calculating the power-normalized
polarimetric scattering matrix for a rough surface, particularly the sea surface. These
methods do not require a deterministic sea surface as input but only a statistical descrip-
tion of the surface: spectral density, slope probability density, etc. These asymptotic
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4.1 Obtaining the electromagnetic scattering matrix of an ocean surface

methods return the average radar cross-section. After a brief literature review, we will
focus more specifically on the development of two methods: the Kirchhoff approximation
and the Small Perturbations method. Most of this chapter was published in the paper
“Bistatic Radar Imaging of the Marine Environment. Part I: theoretical background” [9].

4.1 Obtaining the electromagnetic scattering matrix of an
ocean surface

4.1.1 General overview

In general, as explained in Chapter 1, there are two categories of reflection phenomena to
consider and simulate: specular reflection and diffuse reflection [180]. Specular reflection
is the way in which an electromagnetic wave reflects off a very smooth surface: at the
extreme limit where this surface is perfectly smooth, it behaves like a mirror, hence the
name “specular.” On the sea, specular reflection is caused by waves of large wavelength.
Waves that are not in a specular configuration are also visible but reflect less energy,
following a mechanism called “diffuse reflection.” On the water, diffuse reflection is caused
by ripples, which, having roughly the same wavelength as the incident radio wave, will
diffract the wave by making it interfere constructively in the direction of the receiver: this
is the Bragg diffraction phenomenon, which we will revisit in Section 4.1.3. Figure 4.1
visually illustrates the concepts of specular reflection and diffuse reflection in the case of
an optical link over the sea.

(a) Optical image in forward scattering con-
figuration (φi = φs = 0).

(b) Paths of light rays: direct path in white,
atmospheric diffusion in red, specular reflec-
tion on the sea in yellow, diffuse reflection
on the sea in gray, non-illuminated areas in
black. The image was manually segmented.

Figure 4.1: Optical vision is a typical case of bistatic configuration. This sunrise behind
the island of Porquerolles (Var, France) clearly illustrates the various paths of light from
the source to the camera lens and its interactions with the environment (photo by Andreas
Arnold, 2008).

The calculation of the scattering matrix requires taking both phenomena into account.
This can be done either by calculating their contributions separately and then attempt-
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ing to combine them, or by considering them simultaneously. Before describing the im-
plemented method, we will establish a brief state of the art regarding the methods for
evaluating the scattering matrix of waves on rough surfaces. The adopted geometric con-
figuration and notations are described in Figure 4.2.

Figure 4.2: Wind frame V (in green) versus local frame L. The “wind” frame is defined with
respect to the mean sea level and its vertical, and the wind direction, by vectors û (downwind
direction), û⊥, ẑg, and the “global bistatic angles” (θvi , θ

v
s , φ

v
i , φ

v
s). A “local frame” is defined

by vectors x̂l, ŷl, ẑl, and the bistatic angles (θi, θs, φi, φs). The local frame coincides with
the wind frame if the facet coincides with the mean sea level. The transmitter is placed at
X and the receiver at R. The line (∆b) is the bisector of the angle X̂PR. Inside the red
cone, reflection is specular.

4.1.2 The Kirchhoff approximation

The Kirchhoff Approximation (KA) is a commonly used approach to calculate the contri-
bution of specular reflection. This method was proposed by Brekovskikh in 1952 [31, 32],
described in general terms, for example, in the work of Beckmann and Spizzichino [23],
Ulaby [177], also in an article by Fung [77], and adapted to the bistatic case by Barrick
[21].
The Kirchhoff Approximation involves making a simplifying assumption to facilitate this
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evaluation. Specifically, it is assumed that the curvature radius of the sea waves is much
larger than the wavelength of the electromagnetic waves, so that the surface can be locally
approximated by its tangent plane. For high electromagnetic frequencies, geometric optics
approximations can be used. The validity of the Kirchhoff Approximation increases as
the working frequency increases and becomes reasonable above the gigahertz range for the
water surface. This means that we do not consider frequencies below gigahertz in the
scope of the work presented here. In any case, the Kirchhoff approximation amounts to
considering that only the specular points on the sea surface will contribute to the reflected
signal. One can also work in the framework of physical optics [177]. In this case, surfaces
with slightly greater curvature relative to the electromagnetic wavelength are tolerated;
however, only the first approach has been implemented in our work, so only that one will
be developed.
In the framework of geometric optics, in the far-field, it is observed that the diffusion

coefficients are then proportional to the probability of finding such specular points given
the transmitter-receiver configuration:

σpq =
πk2

0||q||2

q4
ζ

|Umn|2Pr(Zu, Zc) (4.1)

where q = k0(r̂fs−r̂x), a vector whose coordinates in the wind frame V (defined in Appendix
A) are given by the triplet [qu, qc, qζ ]; and Pr(Zu, Zc) is the probability of determining a
slope Zu = −∂ζ/∂x = −qu/qζ and Zc = −∂ζ/∂y = −qc/qζ on the sea surface, in the
upwind and crosswind directions, respectively1. One can use the probability density of
slopes given by Cox and Munk [48], as described in Chapter 2, section 2.2.6. Finally, Umn
is a polarimetric coefficient that depends on the bistatic angles (θvi , φ

v
i , θ

v
s , φ

v
s) determined in

the wind frame V and the Fresnel coefficients [177]. The complete calculation of coefficients
in the bistatic case is presented in Appendix C, page 243.
The AK approach is suitable for calculating the average specular contribution of gravity

waves on an infinite sea surface. Gravity waves are those satisfying the large curvature
radius criterion. It has been found that the method gives good agreement with experimen-
tal results when close to the specular direction, i.e., that given by Snell’s law; however,
it underestimates reflection in other directions. Numerically, the difference begins to be
noticeable beyond ±20 degrees from the specular direction.

4.1.3 The Small-Perturbations Method

The Small-Perturbations Method (SPM) is well suited for describing the diffuse component.
It was first described for radio waves by Rice [151]. The method is also well developed
theoretically in Ishimaru’s work [97]. In the case of water, it has been shown that the
method is in agreement with experiments conducted in a pool and outdoors [196, 195].
The derivation of the Small-Perturbations Method equations begins with the fact that

the total electric field E in the vicinity of the surface can be written as the sum of the
electric field of the incident wave, the electric field of the reflected wave (specular and
diffuse), and the transmitted field. A boundary condition is then introduced. In the case
where the surface is perfectly conductive, this condition is that the tangential component
of the electric field is zero at the surface. This tangential component can be written as:

Et = E− (E.ẑl)ẑl (4.2)

where ẑl is the local normal to the surface. This vector ẑl is then expressed as a power
series of a small quantity ε, such as the height of the surface or the local slope. Indeed, for

1Here the function ζ is assumed to be given in the wind frame V.
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4.1 Obtaining the electromagnetic scattering matrix of an ocean surface

the development to make sense, both quantities must be small, meaning that the surface
is almost flat.
This power series, injected into the equation above, also allows expressing the incident,

transmitted, and reflected electromagnetic waves as a power series of ε. At zero order, the
reflected wave simply corresponds to the specular component reflected by a flat surface.
The Small-Perturbations Method corresponds, in the literature, to what is obtained by
truncating the development at the first order (as in our work), second order (as proposed,
for example, by Tsang and Kong [171]), or higher: this introduces a certain amount of
diffusion. It goes without saying that the higher the order, the longer the calculation time.
Let’s go back to ε. Since this quantity is small, it amounts to assuming that the typical

height of the waves is also small compared to the wavelength of the electromagnetic waves.
If one wishes to work with a maritime surface, it will, therefore, be possible to represent
only a somewhat unrealistic sea, composed of capillary waves and otherwise flat on a large
scale.
It can then be shown that the waves on the surface contributing to the majority of the

reflected radioelectric energy, at the first order of the surface power series, are the waves
that diffract the incident waves in such a way that these waves interfere constructively.
This is a mechanism called “Bragg scattering”, so named by analogy with the phenomenon
of the same name discovered in the field of crystallography by Bragg father and son in 1915
(Valenzuela [180]). In the monostatic case, this relationship can be found through simple
geometric considerations, as shown in Figure 4.3. Consider a monochromatic surface with
a wavelength Λ. Two points P and P′ separated by Λ can reflect an incident wave with a
wavelength λ0 arriving at the angle of incidence θi if the path difference of the reflected
ray at point P and the reflected ray at point P′ satisfies the relation:

Λ = Λ′ (4.3)

where the Bragg wavelength Λ′ is defined by:

Λ′ =
nλ0

2 sin θi
(4.4)

where n is a non-zero integer.

Figure 4.3: Principle of the calculation of the Bragg configuration criterion in a monostatic
configuration (θi = θs, φi = 0, φs = π).

In this case, the amplitude of the reflected electric wave at λ0 is proportional to the
amplitude of the waves with wavelength Λ′ as well as the Fresnel coefficients. There is
often an abuse of language referring to Bragg waves for the waves responsible for Bragg

109



4.1 Obtaining the electromagnetic scattering matrix of an ocean surface

diffraction in the considered radar configuration. In the bistatic case, the above criterion
is generalized. The components of the scattering matrix are given by:

σmn = 8k4
0 cos2(θi) cos2(θs)|αpq|2S(||K′||,∠(K′, û)) (4.5)

where αpq is a polarimetric coefficient depending on the bistatic angles and the permittivity
of the sea [97, 40], provided in the bistatic case in Appendix C, page 246; and û is the
vector defining the wind direction. The wave vector K′ corresponds to the Bragg bistatic
configuration, and it is defined as follows:

K′ =

[
k0 sin(θs) cos(φs − φi)− k0 sin(θi)
k0 sin(θs) sin(φs − φi)

]
(4.6)

This relation generalizes Equation 4.4 in the bistatic case. The bistatic angles are taken for
a flat average surface; depending on the intended use of the method, either (θi, φi, θs, φs)
will be equal to (θvi , φ

v
s , θ

v
s , φ

v
s) or (θli, φ

l
i, θ

l
s, φ

l
s). Numerically, it can be observed that

this method is suitable for estimating the diffuse component but is invalid in the specular
region, where it diverges and yields values that are much too high in certain configura-
tions. The key takeaway regarding the Bragg diffraction phenomenon modeled by the
Small-Perturbations Method, whether in monostatic or bistatic configuration, is that the
wavelength order of the waves in the Bragg configuration is the same as that of the elec-
tromagnetic wave λ0. The validity domain of the method is achieved for angles γb greater
than 20 degrees (roughly outside the specular region) and less than 60 or 70 degrees be-
cause beyond that, shadowing phenomena must be considered, and the observed returns
are lower than those predicted by the small-perturbation model.

4.1.4 Composite models

4.1.4.1 Two Scales Model

The Two Scales Model (TSM) was proposed later as an evolution of the Small-Perturbations
Model (see, for example, Bass and Fuks [22]) and applied to maritime surfaces by Valen-
zuela [180] or Chan and Fung [38]. The Two Scales Model has been recently extended to
both bistatic and maritime surface cases by Khenchaf and Airiau [104, 102]. This model
postulates that the sea can be seen as the superposition of two categories of waves: gravity
waves with a large radius of curvature and capillary waves. In reality, of course, the transi-
tion between gravity waves and capillary waves is continuous, and this assumption is only
a first approximation. In fact, there are studies showing that a three-scale model would
probably be more appropriate; see, for example, [184]. However, this would complicate the
models and make them slower in their evaluation. One argument in favor of the two-scale
model is to increase the validity domain of the results compared to the Small-Perturbations
Model. The idea behind the Two Scales Model is that the waves contributing to the Bragg
diffraction process are locally tilted by the waves with a larger wavelength. The scattering
coefficients are then calculated using the SPM approach for all possible combinations of
“local” bistatic angles (θli, θ

l
s, φ

l
i, φ

l
s). A weighted average of all these coefficients is then per-

formed to obtain the estimate of the sea scattering coefficient. The weighting is obtained
through the slope distribution.
Interestingly, the few combinations of local bistatic angles that are rather specular in

nature do not corrupt the weighted average because the associated weighting tends to
be small. This also means that the Two Scales Model tends to underestimate specular
reflection. This problem can be addressed simply by adding coefficients obtained from the
AK model [180]. This is the context in which one can speak of a composite model.
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4.1.4.2 Other methods

There are other methods that attempt to unify diffuse reflection and specular reflection
into a single theory. Elfouhaily and Guérin published a relatively exhaustive categorization
of these methods in [64]. One of these methods is the Small-Slope Approximation (SSA),
presented by Voronovich. Like the SPM approach, the SSA approach proceeds with a
series expansion of the reflected wave and can be written at several orders. Interested
readers can refer to (for example) [182] for the first-order approximation (SSA-1) and [183]
for the second-order approximation (SSA-2), which is slightly more accurate. SSA-1 has
been recently compared to the Two Scales Model in the bistatic case by Awada [15]; the
conclusions of this article are that the Two Scales Model gives results close to SSA-1, while
being more robust because SSA-1 mathematically degenerates in certain specific bistatic
configurations where the Two Scales Model performs well. Additionally, SSA is a slower
method to compute than the Two Scales Model. One can assume that SSA at the second
order probably gives more accurate results but at a necessarily higher computational cost.
In the following, we compare our own results to results obtained with SSA in a monostatic
configuration. Other methods have been proposed. For instance, the Extended Boundary
Condition Method (EBCM) has been proposed and implemented by Franceschetti et al.
[71, 70]; it has been tried, in particular, in the case of the sea by Guo and Wu [87].
These authors have shown that the EBCM approach gives results similar to the methods
mentioned above, but it does not make assumptions about a division of the wave spectrum
as, for example, the Two Scales Model. However, this method has been tried in the case
of a fractal model of the sea surface. The drawback of fractal methods is that there is
no simple link between the model parameters and physical parameters such as wind speed
and direction. Finally, another composite method called Weighted Curve Approximation
has been proposed by Elfouhaily et al., but we will not discuss it here.

4.2 A novel approximation of the scattering matrix using a
hybrid Model

4.2.1 Motivation

All the methods mentioned above are approximations, i.e., statistical. The surface is
described by its roughness, that is, by quantities such as the standard deviation of surface
heights or slopes, the power spectral density, or the probability density of slopes. In the case
of the sea, these quantities depend on the speed and direction of the wind. To perform the
calculation, bistatic angles are given with respect to the mean sea level: (θvi , θ

v
s , φ

v
i , φ

v
s),

as shown in Figure 4.2. These angles have been referred to as “global” bistatic angles
in our work. Once the configuration is defined, the polarimetric scattering coefficients
obtained by these methods, which we call “approximate,” are an average over an infinite
sea surface of the true scattering coefficient (which is actually of a local nature). This
average takes into account both gravity waves and capillary waves. The advantage is that
the sea does not need to be described locally, meaning that no height map is needed. These
approximate methods are therefore particularly well-suited for quickly calculating a link
budget. However, they have several major disadvantages. On the one hand, even if the
average sea backscattering cross-section (SER) is known, we know nothing about how this
SER fluctuates around its mean when the point on the sea where one is located varies. On
the other hand, when deterministic and/or local structures are present on the sea surface
(e.g., wakes or oil slicks), it is evident that the SER will change at that location. Moreover,
the phenomenon of glint is not taken into account by this approach.
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To simulate such scenes, a detailed description of the sea taking into account local
variations is required. For this purpose, it is more appropriate to use a description by
height map and segmentation of the surface into small facets (which allows local variation
of surface parameters). This approach is recurrent in the simulation field; the next chapter
provides an extended state of the art on this subject. The sea surface is represented as a
sheet of triangles, each vertex of the triangle being a point on the sea whose altitude is
read from a matrix of dimensions n × n. The triangles have equal ground area, with the
value denoted as dS. The sheet is discretized so that gravity waves are well represented,
and subpixel-sized structures are considered statistically using an approximate model. The
electromagnetic signature of each triangle is then calculated using an approximate diffusion
model suitable for low roughness waves (small-perturbations model, SSA, etc.), using local
bistatic angles at the facet (recall that it is inclined relative to the mean sea level). As
these models presuppose an infinite sea, the scattering coefficient is brought back to the
surface dS. Thus, we proceed by emulating the two-scales model, using not a probabilistic
slope model (for gravity waves) but the specific realization of the sea that was used to
build the elevation map.
In simulations using this approach, the focus is often on diffuse reflection [73, 72, 138, 43].

This can be understood, as these articles consider monostatic side-looking radars with
intermediate incidences – a classic case for satellite-based radars. In these configurations,
diffuse reflection largely dominates. In essence, the approach implemented in these articles
consists of emulating the two-scales method. An elevation map of the sea is generated,
with the sea surface divided into sufficiently small facets to represent gravity waves. The
reflection is then calculated for each facet with the small-perturbations model, bringing the
contribution to the surface of this facet, and using local bistatic angles at this facet. The
problem is that the way these authors handle the few facets in specular configuration is
very unclear from our point of view. In [138] and [43], only diffuse reflection is treated using
the small-perturbations model; in [73] and [72], we understand that the same approach has
been used. However, in more “exotic” configurations, such as those encountered in bistatic
radar, local specular reflections can have a greater influence.
From here on, we will focus on describing in more detail an approach based on facets

but taking specular reflections into account. We then compare this method with other
numerical approaches and experimental data collected in the literature to validate it.

4.2.2 Description

First, we generate a height map of the sea surface. This map is represented as a matrix of
size n×n. The ground projection of the facets represented by this matrix all have a ground
area dS. We obtain the scattering coefficients for each point on the surface by calculating
the local bistatic angles with respect to the local normals. We then use the AK model
and the small perturbations method assuming that the facets are, in fact, of infinite size.
We then obtain, for each facet, a scattering matrix Σ0 (corresponding to this infinite sea),
which is multiplied by the surface dS to obtain the actual contribution of the facet.
This approach is somewhat similar to the two-scales method, with one significant dif-

ference. Here, as a small sea surface is generated, the proportion of points in specular
configuration can be significant enough that the false but very high values given by the
SPM approach in these configurations can significantly distort the average contribution of
the surfaces. Indeed, the coefficients provided by the SPM approach are sometimes of the
same order of magnitude as those provided by the AK model (around +10 dB), sometimes
even much higher (+90 dB!). The conclusion is as follows: one can simply add the con-
tribution of the AK model to those provided by the two-scales model, but one cannot add
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the contributions of the AK model to those of the small perturbations model.
Therefore, it is necessary to choose only the coefficients of the AK model in nearly

specular directions and choose those given by the SPM model in directions corresponding
to diffuse reflections. The specular zone is approximately located in a cone with a 20°
opening around the local normal ẑl. More formally, if P is a facet, and γb is the angle
formed by the bisector of the angle X̂PR and the local normal to the surface ẑl at P, the
reflection is specular when γb is approximately less than 20° (see Figure 4.2).
That being said, the transition between the specular and diffuse zones must be smooth.

Drawing inspiration from the approach proposed at the Applied Physics Laboratory by
Jackson to model the reflection of acoustic waves on the seabed [205], we chose to calculate,
for each possible configuration, a weighted average of the coefficients obtained by the AK
approach and the SPM approach. The weights we used are as follows:

• for co-polarizations:

σnn = (1− w1)δSPσnn, SP + w1δAKσnn, K (4.7)

• for cross-polarizations:

σnm = (1− w2)δSPσnm, SP + w2δAKσnm, K (4.8)

with:

log10w1(γb) = −
( γb

6π

)8
(4.9)

log10w2(γb) = −
( γb

20π

)1.5
(4.10)

The weighting functions w1 and w2 were chosen semi-empirically. They are polynomial
in the logarithmic space, allowing for relatively easy manual adjustment. The selected
coefficients were chosen by hand to try to minimize any abrupt changes in the slope of the
curves at the specular/diffuse transition. Good results are observed for all combinations
of local bistatic angles (θli, θ

l
s, φ

l
i, φ

l
s).

Figure 4.4 shows the value of the diffusion coefficients for fixed values of θli, θ
l
s, φli, and

varying φs. As stated earlier, it is clear that the AK model underestimates diffuse reflection
(which occurs here when φs is between 20 and 160°), compared to the values obtained with
the small perturbations model. Conversely, the SPM model does not perform well in the
specular zone. The weighted average yields better results.
In equations (4.7) and (4.8), two factors appear: δSP and δAK. These are boolean visibility

factors. Their meanings are as follows:

• δAK is a “macroscopic” visibility factor that affects specular reflection. For a given
facet, δAK = 1 if and only if the facet is visible to both the transmitter and the
receiver without being occluded by another facet. This visibility factor is calculated
using a standard ray-tracing or Z-buffer procedure.

• Diffuse reflection has a local nature, and the occlusion of one facet by another does
not play a significant role. However, it may happen that the inclination of certain
facets, in the bistatic configuration, causes the radio wave to “penetrate” the facet
to reach the receiver. This behavior is not physical. Only facets such that n̂li.ẑ

l < 0
and n̂ls.ẑ

l > 0 can contribute to the diffuse reflection process. This condition is
represented by the boolean δSP, which is a “local” visibility factor.
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!

"

Figure 4.4: Normalized local reflection coefficients for θli = 20, θls = 30, φli = 0, and
various φls. U1950 = 4.53m/s, f0=10 GHz. Top: Kirchhoff approximation, middle: Small
Perturbations, bottom: weighted average of AK and SPM by an angle-dependent function
γb.
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Visibility factors do not play the same role everywhere. When the angles θvi and θvs are
not excessive (say below 65), all facets are visible, and the macroscopic visibility factor
is 1 everywhere. Therefore, its calculation can be skipped. Conversely, if θvi and θvs are
close to 90°, as in coastal radar conditions, then the macroscopic visibility factor is zero
everywhere, and its calculation can also be skipped. However, in the critical zone ranging
from approximately 65 to 85 for the incidence angle, some facets may be visible, and others
may not; in this interval, it is imperative to calculate the macroscopic visibility factor.

4.2.3 Validation

If we place the transmitter and receiver very far from the surface (here, 105 m) and average
the contribution of facets over a large sea surface, we should intuitively retrieve the results
of conventional approximate methods (two-scale method, SSA model, etc.). Here, we
consider a surface of 512×512 facets with a resolution of one meter (experimentally, the
average does not depend much on the discretization step). We find an excellent agreement
between our results and those obtained by Voronovich and Zavorotni [183] in an article
where they compared the use of SSA-2 with experimental data reproduced here (see Figure
4.5). For graphs established at a wind speed of 15 m/s, we are at a Beaufort sea state
equal to 5, just at the limit stated in Chapter 2; nevertheless, we still maintain good
agreement between the model and reality. The choice of the sea spectrum may have a
small influence on the SER, as seen here. The use of the Fung and Lee spectrum gives
lower reflectivity than that of the Elfouhaily spectrum. This can be explained by the fact
that the energy of the capillary spectrum is lower in the case of the Fung and Lee spectrum,
as noted in Chapter 2. Figure 4.6 shows the dependence of the diffusion coefficient on the
wind direction and reproduces experimental measurements published by Moore and Fung
[131] under the same conditions. The agreement is less evident but still acceptable, as it
is known that the SER can fluctuate rapidly and significantly around its average. Long
[121] (Chapter 6, p. 353) reminds us that in the context of radar imaging of the sea, the
average radar cross-section of the sea can vary by an amplitude of up to 10 dB within
a one-minute interval2. Keeping this in mind, one may legitimately wonder if the choice
of the spectrum has such a great importance concerning the calculation of the sea SER.
However, the spectrum plays a fundamental role in the texture of the surface; it is, in fact,
the directional spectrum that plays the most significant role in this aspect. The influence
of the wind direction is reflected in Figure 4.6: there is a difference in reflectivity between
the upwind and crosswind directions (0 and 180) since real waves tend to have steeper
slopes on the front. The linear superposition model of waves cannot model this, which
explains why the electromagnetic model predicts identical returns in both directions.
Finally, our method yields very similar results to those obtained with the two-scale model

and SSA-1 under more general bistatic conditions as presented in [15], but we omit them
here for brevity.

4.3 Conclusion of this chapter

This chapter presented several methods for calculating the components of the polarimetric
scattering matrix (in power). All existing methods have been categorized into three groups:
exact methods, approximate methods, and hybrid methods; these methods are compared
in Table 4.1.
The last approach was chosen for radar image simulation, as it provides a good compro-

mise between computation speed and representativity of the obtained coefficients. Most
2Original quote: “The ’average’ radar cross-section can change as much as 10 dB in a 1-minute interval.”
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Figure 4.5: Comparison between the hybrid two-scale method presented here (Fung and
Lee spectrum [78] and Elfouhaily spectrum [63]) and SSA-2 (values cited from Voronovich
[183]), where the Elfouhaily spectrum was used. Experimental data from the same article
[183] are also represented. Wind speed is indicated at z =10 m, and the working frequency is
14 GHz. The left column is in VV polarization, and the right column is in HH polarization.
H-TSM: our hybrid two-scale approach.
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Figure 4.6: Comparison between our hybrid two-scale method (H-TSM) using the Fung
and Lee spectrum [78] or the Elfouhaily spectrum [63] and experimental values published
in [131] at 13.9 GHz. Wind speed is given at z =1950 cm. H-TSM: our hybrid two-scale
approach.
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Methods Example methods Advantages Disadvantages
Exact Method of Moments (Quasi-)exact for Very slow

Finite Difference Method the surface (deterministic) Memory-intensive
considered Complex

Approximate Specular reflection: AK Very fast (AK, SPM) Only average coefficient
(asymptotic) Diffuse reflection: SPM, TSM Fast (other methods) for an infinite

Composite methods: SSA, WCA Relatively simple surface
AK+SPM, AK+TSM. . .

Approximate Weighting AK/SPM in a Quite fast Not rigorously exact
with large-scale surface local coordinate system associated with

deterministic a facet

Table 4.1: Comparison of existing methods for calculating the radar cross-section of a rough
surface.

existing radar simulators only use diffuse reflection coefficients, which we demonstrated
is not viable in general bistatic configurations. The method we used is based on a facet
approach: the diffusion coefficient associated with this facet is the weighted average be-
tween the coefficient derived from the Kirchhoff Approximation and the coefficient derived
from the Small Perturbation Method, taken in the local frame of the facet. This approach
allows us to account for both specular and diffuse reflection. While this method is not new,
to our knowledge, no convincing validation has been proposed in the literature. There-
fore, we demonstrated that our hybrid approach yields similar results to the small slope
approximation and real data when considering the average diffusion coefficient for a large
surface. This validation was done in the monostatic case, the only case where data is
readily available in the literature.
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Simulators for radars in maritime environments are already a well-established trend in
the literature. These tools are useful for validating radar imaging models. Since writ-
ing a simulator requires prior knowledge of the phenomenon’s modeling, simulation allows
for model validation by comparing results with real data. There are other potential uses
for a simulator. For instance, a raw radar data simulator can test beamforming, focus-
ing, and synthetic aperture integration algorithms with perfect knowledge of the scene: a
pseudo-ground truth. With such pseudo-truth, one can also test inversion algorithms to
retrieve scene parameters (wind speed and direction, wave height maps, etc.) and verify
the accuracy of the obtained results.
Given the current interest in bistatic radars, there is a need for simulators adapted to

such configurations. To our knowledge, while there are numerous simulators for monostatic
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radars, none are known for bistatic radar, especially in the maritime environment, except
for the work of Wang et al. [185] proposed in 2007. However, these works simulate radar
images, not radar signals, as we will distinguish between these two elements shortly.
To develop such a tool, it is essential to understand the theory that models each element

of the acquisition chain in the bistatic case. These various elements have been developed
in the previous chapters, and we reuse them here to describe the implementation of a
bistatic polarimetric radar simulator operating in the maritime environment, including the
modeling of the ocean and wakes. This simulator has been named “MaRS” for Marine
Radar Simulator. This chapter is structured as follows. First, we provide a state-of-the-
art overview of radar image simulation, justifying the choices made. Next, we describe
the overall operation of the simulation. Section 5.2 covers in detail aspects related to
the terrain elevation map. In particular, considerations about the choice of the scene
discretization step are presented in subsection 5.2.5. The last part is dedicated to the
analysis of simulation results and algorithmic complexity costs. Most of this chapter served
as the basis for the journal paper “Bistatic radar imaging of the marine environment. Part
2: simulations and results analysis” [12] and the conference paper "Investigating Possible
Bistatic Configurations For Ship Wake Imaging Through Simulation" [10].

5.1 A brief typology of radar signal simulators

In a very general sense, various categories of simulators can be distinguished (for an initial
review and comparison, one can refer to [203]).

5.1.1 Clutter maps

Firstly, there are tools for simulating clutter in a radar image. These are primarily advanced
statistical models of speckle noise [6], with the scene generally considered flat. However,
since we know that a scene is spatially correlated, there will inevitably be spatial correlation
in the speckle noise that needs to be considered and simulated [145]. In the end, a 2D
image is obtained, where each pixel is a particular realization of the adopted speckle noise
statistic (potentially with spatial correlation ad hoc). These maps are useful, for example,
in developing detection and tracking algorithms in a noisy environment, but they are not
strictly radar simulators since they only seek to statistically model the appearance of the
final image.

5.1.2 Facet-based radar image modeling with a transfer function

Many publications focus on modeling radar images, especially those from side-looking
radar, often with synthetic aperture antennas. The images captured by such radars are
often of high resolution and cover a large area, making them operationally important for
detecting ship wakes, oil slicks resulting from an oil spill, or detecting illegal discharges [150,
113, 46]. Since the goal is to simulate large-area images at a low algorithmic cost, these tools
do not necessarily emulate all the steps of the acquisition chain. Here again, various levels of
complexity can be adopted. The canonical approach for such simulations was presented by
Franceschetti [74]. Here’s what he proposes: first, model the scene as a set of triangular or
quadrangular facets. Calculate the reflectivity for each of these facets for the incident angle
under which they are located, taking into account shadows and, for more advanced models,
multiple reflections. Convolve the reflectivity map with a transfer function modulation that
considers the antenna gain (possibly synthetic). Introduce random phase shifts of the wave
at the level of each facet to simulate speckle noise. Convolution can be efficiently done in
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the frequency domain using the Fourier transform. The case of the marine environment
has also been explored by Franceschetti and his team, either for a non-polluted sea [73] or
with oil [72].
In the maritime case, the situation is more complicated because the scene, i.e., the water

surface, is in motion. However, there is an explicit expression for the transfer function
linking the water height function to the "radar image" function, which is not the case with
an arbitrary surface [5, 91]. This transfer function is divided into several parts. The first,
which dominates, simulates the modulation of the radar cross-section by the variation in
wave slopes. The second is used to model non-linear hydrodynamic interactions, while the
third, the so-called velocity bunching process, only occurs in SAR imaging.

• The velocity bunching mechanism exclusively manifests itself in synthetic aperture
radar (SAR) imaging: it results in the formation of patterns similar to waves in the
radar image even in the absence of reflectivity variation caused by a slope change
(this phenomenon is known as tilt modulation in the Anglo-Saxon literature). This
phenomenon occurs because SAR positions a reflector on the range axis through the
Doppler effect, and the orbital motion of particles will modify this positioning. Waves
moving in the direction orthogonal to the radar trajectory (in monostatic configu-
ration) will move across the SAR image. As water particles have different orbital
velocities, but spatially slightly correlated, these movements will differ, shifting the
position of reflectors in a wave-like pattern.

• The non-linear hydrodynamic interaction mechanism is caused by a local variation in
the balance of forces acting on capillary waves when they are driven by the movement
of gravity waves. In particular, the centrifugal acceleration created by the orbital mo-
tion of particles must be taken into account. Since this acceleration does not have
the same direction everywhere, it will cause a periodic modulation of the wavelength
of capillary waves [4]. This effect is visible in radar (with real or synthetic aper-
ture) because, through modulation, the wavelength of capillary waves may locally
correspond to the Bragg wavelength, making the wave very visible to the radar.

Nevertheless, the transfer function approach is very effective in simulation because it links
the spectrum of the radar image to simulate to the sea spectrum through a simple Fourier
transform, which is very fast to compute. Moreover, the transfer function model raises the
hope of model inversion to recover the water height from the radar image. The issue is
that, most often, a perfect movement of the radar antenna is considered (a straight line),
but atmospheric turbulence can cause the aircraft to move and thus defocus the image. It
is challenging to introduce such movements into the "transfer function"-based approach.
However, a solution has recently been proposed by Franceschetti and his team for ground
imaging with weakly disturbed motion [68, 69].
It is essential to note that, in all cases, this approach is an image radar simulation but

not a radar simulator since the lower-level steps (pulse compression, SAR image formation,
etc.) are not actually performed; only their effects are emulated.

5.1.3 Simplified facet-based approach

In this approach, similar to the previous one, the scene is initially modeled as a set of
triangles. The visibility and reflectivity for these triangles are calculated, considering local
angles of incidence and possibly secondary reflections. However, it is assumed that we are
working at radar resolution, and the antenna’s directivity function is a Dirac delta function
(no secondary lobes). Additionally, speckle noise is simulated by term-wise multiplication
of the reflectivities of different facets, with a specific realization of the speckle noise law
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(assuming the multiplicative law). Timo Balz demonstrated in his 2007 thesis [18] that it
is now possible to simulate all these steps directly on graphics cards by programming in
the shading language of the graphics library used (GLSL for OpenGL, HLSL for DirectX).
The graphics card can calculate shadows and reflectivity, and speckle noise law realizations
are loaded into the card through an image texture matrix. This approach allows for near
real-time simulation of radar images. Balz notably incorporated multiple reflections and
bistatic configurations. In a less recent study, Tunaley [176] (1991) addressed ship wakes by
considering purely diffuse reflection in the monostatic case on a realistic Kelvin wake and
a simulated sea with a Pierson-Moskowitz spectrum. The simulation also accounted for
turbulent wakes and velocity bunching phenomena resulting from the Doppler effect of the
radio wave interacting with water particles in orbital motion. Oumansour [138] conducted
a similar study in his thesis, simplifying the Kelvin wake by limiting its contribution to
the bow and stern of the boat, not integrating over the entire hull, and assuming the
wake is zero outside the Kelvin cone, introducing a discontinuity at the cone’s boundary.
Additionally, the scene was assumed to be stationary.

5.1.4 Radar signal simulators in the time domain

This category aims to emulate all elements of the acquisition chain explicitly, yielding a
"raw" signal as obtained by a real synthetic aperture radar (SAR) after baseband demod-
ulation. This simulated signal can then be processed as if it were acquired by an actual
radar. The advantage of such simulation is that the sensor’s position can freely evolve over
time, allowing, for example, the simulation of the abrupt yaw effect of an aircraft due to
turbulence. The periodic transmission of the impulse is simulated, with the impulse shape
being a system parameter. The scene is described as a list of facets, and the position of
these facets is updated each time an impulse is emitted. For each facet, the radar equation
is solved; then, the contribution of each facet (a suitably attenuated, phased, and Doppler-
shifted chirp) is added to a buffer representing the received raw signal. This is why it is
referred to as a radar signal simulator in the time domain. The major drawback of a raw
radar simulator is the computational time cost, which explains why it has only recently
gained attention [132]. Nevertheless, these calculations are highly parallelizable, and by
utilizing the capabilities of computer clusters, multi-core processors, and adding the power
of graphics cards, significant performance gains can be achieved in the context of raw radar
signal simulation [100].
In our case, we aim to simulate bistatic configurations, where the transmitter and receiver

are not necessarily in the same location. Unlike monostatic radars, bistatic radars can be
used in much more diverse configurations. One can imagine a scenario where a coastal radar
illuminates a scene, and the receiver is on board an aircraft. Alternatively, the transmitter
could be on board a satellite, and the receiver on board an aircraft. Another scenario
might involve two aircraft, one with the transmitter and the other with the receiver, flying
on parallel trajectories [44]. In fact, the possible configurations are too numerous to be
enumerated. This diversity contradicts efficiency. Simulators using an optimized approach
based on transfer functions in certain bistatic cases could be envisioned, and this approach
was indeed proposed in 2007 by Wang et al. [185]. A radar simulator in the time domain is
very general and can handle all possible configurations, additionally providing the ability
to test algorithms working on raw signals, which image radar simulators do not allow.
Therefore, this is the approach we have adopted. In the end, we demonstrate that it is
entirely feasible to simulate acquisitions on well-resolved scenes (on the order of meters
in resolution) and sufficiently large (500× 500 m) for these pseudo-acquisitions to serve a
useful purpose.
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5.1.5 General description of the simulation

The main elements interacting in the image formation process are illustrated in Figure 5.1.
Note the presence of ship wakes, as they are prominent in SAR images [164, 149]. However,
we will not cover the simulation of the radar image of a ship or sea-vessel interactions. The
main steps of the simulation are presented in Table 5.1. Next to each step, we indicate the
chapters and paragraphs where we discuss the steps in more detail.

Figure 5.1: Simulated configuration. Red arrows indicate dependency relationships (some
omitted for clarity). (1): partially simulated, nonlinear interactions not considered, first
approximation only for turbulent wake; (2) not simulated. Green elements are input pa-
rameters, blue elements are outputs, yellow elements are phenomena to be modeled.

As can be seen, the simulation closely follows the main steps of the acquisition chain as
presented in Chapter 1 (sections 1.1 to 1.5), with various modules developed in Chapters
2, 3, and 4. Notably, the elevation map is introduced, a crucial aspect of the simulation as
it allows local influence on the scene’s representation to incorporate a wake. Introducing
a wake requires a map if we want to approach the problem realistically. The antennas
are modeled either analytically for canonical apertures (rectangular, circular, elliptical) or
numerically by reading from a disk file.

5.2 Generating the height map

Describing the scene as a height map raises several questions, such as i) how to generate
this surface, ii) how to evolve it over time, and iii) more crucially, how to choose the
discretization steps and the size of the scene, a recurring but rarely addressed question in
the literature. This last point is very important because too large a discretization step will
yield results that are not representative of reality; on the other hand, a too fine mesh will
increase computational costs. We particularly show that the minimum size of the scene
evolves as a function of the square of the wind speed.

123



5.2 Generating the height map

Initialization
· initialize the transmitter and receiver
· choose discretization steps paragraph 5.2.5,
· generate the wave height map at t = 0 paragraph 5.2.1,
· generate the Kelvin wake height map at t = 0 chapter 3
· save maps for future reuse

Simulation
for each t from t0 to tfin step 1/PRF:

update wave map paragraph 5.2.3
translate wake map by interpolation paragraph 5.2.2
surface map ← wave map + Kelvin wake map paragraph 5.2.2
change spectrum in turbulent wake zone paragraph 5.2.2
move transmitter and receiver
for each facet of surface map:

calculate gains & losses, chapter 1
...especially antenna gains paragraph 1.2
...and scattering coefficients chapter 4
calculate propagation time paragraph 1.5.3
add received signal to reception buffer paragraph 5.2.4

end for
save reception buffer to disk

end for

Post-processing (outside simulation)
· Synthetic Aperture Radar (SAR) processing (if desired), detection, etc.

Table 5.1: Simulation steps in pseudo-code form.
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5.2.1 Sea surface generation

At the beginning of the simulation (t = 0), a random surface is generated based on a
sea spectrum, as described in Chapter 2. The approach followed is classical and well-
established in the literature, at least since Mastin et al. in 1987 [127]. Here’s how it works.
We know the 2D power spectral density (PSD) of the sea surface (denoted S); it is a
function of the 2D wave vector K and physical parameters like wind speed and direction.
A common practice is then to generate a map of wave heights for t = 0 by filtering white
noise [127, 176, 170]. The algorithm is as follows. First, we generate a matrix N of size
n × n of complex numbers where the real and imaginary parts are distributed according
to a normal distribution with zero mean and unit variance; the size of the matrix is equal
to the dimension of the map. We then construct a matrix S2d containing the values of the
spectrum S for wave wave vectors K, such that the amplitudes of K range from −πn/L to
+πn/L with a step ∆K = 2π/L; L represents the physical width of the surface in meters.
The rules for correctly choosing ∆K and n will be discussed in paragraph 5.2.5. Once S2d

is calculated, we multiply its square root term by term by N:

Zt=0 =
√
S2dN (5.1)

After inverse Fourier transform, we obtain the height map at t = 0:

zt=0(x, y) = κFFTF−1 [Zt=0] (x, y) (5.2)

The constant κFFT is a normalization factor depending on the implementation of the fast
Fourier transform1. For example, with the FFTW library [75], κFFT =

√
(∆KdFFT) where

∆K is the spatial wave number discretization for the sea, and dFFT is the dimension of the
transform (for example, dFFT = 2 for a 2D sea). Nonlinearities are left out of the model
here, but approaches based on Fourier transform that take into account certain nonlinear
phenomena have been proposed, for example, by Toporkov [170] and Saillard et al. [153].

5.2.2 Generating the wake

Kelvin’s Wake It is generated following the procedure described in Chapter 3, paragraph
3.2. This calculation provides a map of heights as well as a map of the velocity field of
the wake waves. The first is used for reflectivity calculations, and the second is used for
Doppler calculations. We work in the linear domain, and therefore the map of the “sea +
wake” surfaces is simply obtained by adding the components taken separately; the same
goes for the velocity field. If the illumination time is long enough, care should be taken to
translate the wake. Rather than regenerating the map, which is time-consuming – between
forty seconds and a minute, typically – it is better to reinterpolate the map from known
points in a reference Kelvin wake map. This is possible because, as a reminder, the wake
is stationary in the ship’s frame.

Simulation of Dead Water Wake Since turbulence has the effect of attenuating capillary
waves at the back of the ship, it is necessary to decrease the energy put into the capillary
part of the spectrum. We used a simple and qualitative way to achieve this by acting
as if the wind was blowing less in the area of the map corresponding to the dead water
wake. In other words, without changing the height map, we calculated the reflectivity of

1Some implementations often multiply the value of the harmonics by the surface in pixels of the signal
matrix, which speeds up the calculation; therefore, this additional factor needs to be taken into account,
but it is not a general case.
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points in the dead water wake in the same way as presented earlier, using the Kirchhoff
approximation (for the specular part, with a slope probability corresponding to a smooth
sea, such as that provided by Cox and Munk), and the small perturbation model for the
diffuse part. It is then assumed that the wake is taking a lower wind speed, for example
by halving it, compared to the rest of the map. This approach is certainly only a first
approximation, but it is robust and provides visually convincing results, as shown in the
simulated radar images provided in Section 5.3. Strictly speaking, it would be necessary to
calculate the spectrum more precisely, for example, using one of the energy formulations
presented in Chapter 3, in paragraph 3.1.2.1, which still involves integrating a differential
equation and redefining a spectrum for every point in the dead water wake. An alternative
and much more suitable approach for simulation would be to develop a semi-empirical
model of the spectrum in the dead water zone, depending on the wind speed, ship speed,
distance to the ship, and possibly surface tension. However, such a spectrum has not yet
been published in explicit form in the literature to our knowledge.

Simulation of the bright V-Wake The mechanism of the bright V-wake as described in
Chapter 3 has not been simulated. Looking ahead a bit to the rest of the chapter, we see
that the discretization step of the height map does not go below a meter. Therefore, waves
with shorter wavelengths will not be represented by this height map. They will need to be
statistically modeled through a spectral approach. For the Kelvin wake, the wavelength of
the dominant waves depends on where we are relative to the ship and the median axis of
the wake. The bright V-wake is caused by waves at the Bragg frequency (relative to the
emitter-receiver configuration), so it would be necessary to find the location of these waves
in order to then calculate their height and thus find the reflected intensity. For this, two
theoretically possible approaches would be:

1. determine, for each point inside the Kelvin cone, the wave vector corresponding to the
Bragg configuration, and look for the amplitude of the Kelvin wake waves associated
with that wavelength. For this, it is ideal to have an explicit analytical formula for
the wake elevation function ζw. Such formulas exist for simple hulls, and expressions
can be found, for example, in the case of a Wigley hull or a parabolic hull in Wu
[197], p. 83-85.

2. calculate, a priori, what the opening of the bright V-wake is using the generalized
relationship 3.12 (page 91) in the bistatic case; then determine the amplitude of the
components only on these points.

The drawback of the first method is to be slower than the second; but in return, the second
method in a way imposes a priori the image that one wants to receive, which eliminates
any predictive use of the simulator.

5.2.3 Temporal evolution of the elevation map

Once the map zt=0 is known, the map at any date t can be deduced from zt=0 by element-
wise multiplying its Fourier transform Zt=0 by a phase factor exp(−jΩt). Assuming the sea
depth is infinite, the temporal pulsation Ω of an individual wave is related to the spatial
wave vector’s magnitude K by the following dispersion relation ([169], see also Chapter 2,
equation 2.40):

Ω2 = g0K (5.3)

The table containing the Ω values only needs to be calculated once, as well as the transform
Zt=0.
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5.2.4 Writing the received signal in the "received signal" buffer. Managing
the Doppler effect.

Assuming the pulse is emitted at tX , the received signal function ER(t), which for a
polarimetric radar is a two-dimensional vector (horizontal channel and vertical channel),
is stored in a table ER. For simplicity, in the rest of the paragraph, we assume that the
radar is not polarimetric. The table ER is dimensioned to store samples arriving for dates
between tX + smin and tX + smax. The chosen discretization step δt obeys the Shannon-
Nyquist criterion2, corresponding to the bandwidth of the emitted signal modulation. In
fact, we work in baseband, omitting any reference to the carrier frequency outside the
Doppler coefficient calculation ρDoppler(tX) as given in Chapter 1 in Section 1.5.3. This
significantly reduces the discretization step, saving on the size of the table and speeding
up the calculation time. Thus, the i-th entry of ER corresponds to the arrival time interval
[smin + iδt, smin + (i+ 1)δt].
The table ER is initially filled with zeros. The following work is done for each facet of

the scene. For the n-th facet, we perform the link budget, introducing a gain factor Kn,
calculate the travel time ∆t(tX) between the emitter, the facet, and the receiver for the
signal “atom” emitted at the beginning of the pulse (at date tX), as well as the calculation
of ρDoppler(tX). This last calculation requires knowledge of the facet’s speed, or more
precisely, the orbital speed of water particles within these facets, as it is this speed that
causes the Doppler effect (Gelpi and Norris [81]). These orbital speeds can be efficiently
calculated by Fourier transform using the relation 2.52 demonstrated in Chapter 2 (for sea
alone) or by using the ad hoc relation for the Kelvin wake, provided in Chapter 3 (equations
3.17, 3.18, and 3.19). The total speed of the particles is then the sum of the components
of the sea-alone waves and the wake waves. To be more rigorous, it would be necessary
to take into account the effects of non-linearity of the ocean surface in the calculation of
the Doppler frequency. A reasoning in the 1D case taking into account these nonlinearities
was proposed by Gelpi and Norris in 2003 [81]. Having all the elements in hand, we now
write the signal into s, using the considerations from paragraph 1.5.3.2 of Chapter 1.

5.2.5 Choosing surface sampling steps

Let L be the width of the sea surface we are simulating and n the number of facets per side
(for simplicity, we consider only square surfaces). The choice of these parameters is crucial.
A large number of facets will increase the simulation duration, and randomly chosen values
for L and n can lead to non-physical results. The sampling of the elevation map is directly
related to the sampling of the sea spectrum by the relations

∆K =
2π

L
(5.4)

Kmax = π
n

L
(5.5)

where ∆K is the sampling step of spatial wave numbers, and Kmax is the maximum wave
number represented in the frequency domain: for wave numbers higher than Kmax, the
map is represented statistically and non-deterministically. In this part, we will determine
indicative values for the minimal value of L (denoted as Lmin) and the value of Kmax.

2It is worth noting that since the received signal is complex, the sampling frequency can go down to
the maximum frequency of the baseband signal and does not have to be at least twice as high, as is the
case for a real signal.
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5.2.5.1 Minimal sampling step ∆K of the Spectrum

The low-frequency peak corresponding to the dominant wave frequency extends over a
small range of wave numbers. The energy in this range must be sufficiently well “captured”
when generating the sea map; otherwise, the resulting elevation map would not correspond
to a sufficiently rough sea. There are several possibilities to achieve this:

• Use a fixed step ∆K with an approximation of the power spectral density (PSD) by
steps (i.e., when generating the sea, capture the energy of the spectrum by simple
rectangle integration). This approach is easy, but the size of the rectangles must be
adapted to the spectrum variations, or else a large portion of the energy would be
lost.

• Use variable-step integration while keeping rectangle interpolation. Implementing
this with a fast Fourier transform is more challenging.

• Use a constant sampling step but allocate, for each frequency interval, the average
value of the spectrum in that interval. Numerically integrating the spectrum is
required for this. However, if the sea sampling step is too small, it will result in an
almost monochromatic sea, which may not be acceptable depending on the simulation
goals.

The first solution is often usable if ∆K is chosen carefully, as we will demonstrate. In-
deed, in Chapter 2 (paragraph 2.2.4.2), we have shown that most gravity spectra (Pierson,
JONSWAP, Elfouhaily) have the form

f(K,U) =
a1/2

K3
exp

(
− b1g

2
0

K2U4

)
(5.6)

where a3 and a4 are scalars whose exact values depend on the considered spectrum. The
function f has the following property:

∀a,K,U > 0, f(Ka2, U) = f(K, aU)/a6 (5.7)

which means that if the wind speed changes, the bandwidth in the logarithmic scale of the
spectrum does not change. If the wind speed U is multiplied by a factor a, the logarithmic
curve of the spectrum is simply translated along its asymptote at +∞ by a vector with
coordinates [−2 log a; 6 log a]. This result is a manifestation of the self-similarity theory of
the spectrum noticed by Kitaigorodskii [106]. This self-similarity can be observed in Figure
2.12 in Chapter 2. It can also be seen in Figure 5.2, which also shows the notations used
here. Suppose we know the -3 dB bandwidth [K-3 dB,1(Uref),K-3 dB,2(Uref)] for a reference
wind speed Uref. A consequence of self-similarity is that we can then deduce the -3 dB
bandwidth [K-3 dB,1(U),K-3 dB,2(U)] for any wind speed U :

K-3 dB,1(U) = K-3 dB,1(Uref)
Kp(U)

Kp(Uref)
(5.8)

K-3 dB,2(U) = K-3 dB,2(Uref)
Kp(U)

Kp(Uref)
(5.9)

where Kp(U) is the wave number corresponding to the maximum of the spectrum. To
capture the energy contained in the low-frequency peak, the sampling step ∆K can be
chosen to be smaller than, say, α percent of the -3 dB bandwidth of the spectrum:

∆K = α× (K-3 dB,2(U)−K-3 dB,1(U)) (5.10)

128



5.2 Generating the height map

Then, using, for example, Equation (5.4) and injecting the value of ∆K given in Equation
5.10, we obtain:

Lmin = α
2π

K-3 dB,2(Uref)−K-3 dB,1(Uref)

(
U

Uref

)2

(5.11)

The interpretation of Equation 5.11 is as follows: the width Lmin of the surface to be
generated follows only a dependence on the wind speed U , and this dependence is quadratic.
In particular, the width Lmin does not directly depend on the number of facets n per side
of the discretized surface. To get an idea of the order of magnitude of Lmin, we use the
gravity spectrum of Fung and Lee (see paragraph 2.2.4.2.3 in Chapter 2); this choice is
explained by the fact that we will also use the capillary spectrum of Fung and Lee a little
later. By numerical resolution (zeroing the derivative), we find that the peak of the Fung
and Lee spectrum is at:

Kp(U) = 0.702g0/U
2 [rad/m] (5.12)

If we arbitrarily take the reference speed Uref at 10.0 m/s, we find numerically:

K-3 dB,1(10) = 4.5510−2 rad/m (5.13)
K-3 dB,2(10) = 1.2210−1 rad/m (5.14)

Finally, if α = 25.0% (which is a good compromise), we have:

Lmin = 3.28U2 (5.15)

This gives values of 82.1, 328, and 739 meters for Lmin with wind speeds equal to 5, 10, and
15 m/s (at 19.5 m altitude), respectively. A similar numerical result should be obtained
with the other spectra. These dimensions are perfectly acceptable in terms of computation
time for most configurations, except perhaps for the highest wind speeds where, in any
case, the linear model reaches its limits. It is important to note that these values for Lmin
are indicative, not mandatory.

5.2.5.2 Maximum wave number Kmax

The maximum value of the wave number Kmax directly influences the facet density, n/L.
Ideally, we would like to perform a coherent sum of the contributions from each facet
because it would be more rigorous. For this to be possible, the statistically represented
structures (capillary waves) must have a typical height H such that the phase difference
of the waves reflected by two points on the surface is small compared to 2π. If we use the
Rayleigh criterion, we accept a maximum phase difference of π/2, which means that:

H <
λ0

8 cos θgi
(5.16)

...where θvi is the angle of incidence relative to the mean plane of the surface. We write this
relation in the monostatic case because it is not necessary to consider more here. We note
HRayleigh = λ/8. Using the definition of the significant wave height, which is one definition
among others, the typical height developed by waves with a wave number greater than K
is:

H>K(K) = 4

√∫ +∞

K
S1d(K ′).dK ′ (5.17)

It is possible to invert this relation analytically or numerically, that is, to obtain a relation
that allows obtaining K from H>K(K) and in particular KRayleigh from h(KRayleigh). So,

129



5.2 Generating the height map

Gravity spectrum at

Translation of the gravity spectrum

Capillary spectrum

Gravity spectrum at U

Figure 5.2: Notations and parameters used in this section for wave numbers. The Fung
and Lee spectrum is shown with its asymptotes.

if waves with a wave number smaller than KRayleigh are to be represented deterministically
in the height map, Equation (5.5) can be used to obtain the facet density in facets/meter.
Here, any spectrum could be used, but since we only need an order of magnitude, we

choose an analytical approach with a simple spectrum for capillary waves, namely the
Phillips spectrum modified by Fung and Lee (Equation 2.88 in Chapter 2), which we recall
here:

S1d, FL, capillarity(K) = a0(1 + 3K̄2)
[
K(1 + K̄2)

]−(pFL+1)/2 (5.18)

where a0 = 0.87510−4(2π)pFL−1g
(1−pFL)/2
0 , K in radians per meter, K̄ = K/Km, Km = 363

[rad/m], and pFL = 3− log10(U0), with U0 being the wind friction speed in m/s. It is not
trivial to integrate this function analytically according to Equation (5.17). However, it is
easy to see that in the logarithmic domain, this function is practically piecewise linear. It
can be shown that:

S1d(K) ≈ a0K
−
pFL+1

2 if K < Kc (5.19)

S1d(K) ≈ 3a0K
pFL−1
m K

1−3pFL
2 if K ≥ Kc (5.20)

where Kc is the wave number where the two approximating straight lines will intersect in
the logarithmic domain:

Kc = Km × 3
1

pFL−1 (5.21)

It is much easier to integrate this approximation, and, aside from the difference between

130



5.2 Generating the height map

the true spectrum and the approximation (which is negligible), we obtain after integration:

H>K(K) = 4

√√√√ 2a0

pFL − 1

(
K

1−pFL
2 − 2

√
3

9
K

1−pFL
2

m

)
if K < Kc (5.22)

H>K(K) = 4

√
2a0

pFL − 1
K
pFL−1
m K

3
2

(1−pFL) if K ≥ Kc (5.23)

If K = Kc, then the height is equal to:

H>K(Kc) = 4

√
2
√

3

9

a0

pFL − 1
K

1−pFL
2

m (5.24)

If we equate these expressions to HRayleigh, we then obtain:

KRayleigh =

(
(pFL − 1)H2

Rayleigh

32a0K
pFL−1
m

) 2
3(1−pFL)

if HRayleigh ≤ H>K(Kc) (5.25)

KRayleigh =

(
(pFL − 1)H2

Rayleigh

32a0
+

2

9

√
3K

1−pFL
2

m

) 2
1−pFL

otherwise (5.26)

Numerically, we obtain the results given in Figure 5.3, where the Rayleigh height is obtained
at zero incidence angle3:
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Figure 5.3: Facet density [facets/m] as a function of the carrier frequency f0 [Hz] of the
radar, such that waves with a wavelength smaller than a facet develop a height lower than
HRayleigh, for various wind speeds at 19.5 m altitude. The asymptotic form of the Fung and
Lee spectrum [78] is used.

In the case of sea spectra, it appears that the typical width of a facet such that the
Rayleigh criterion is satisfied is of the same order of magnitude as the carrier wavelength.

3This is the lower bound of all possible Rayleigh heights with constant wavelength λ0.
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It is therefore highly doubtful that using the small perturbation model on a small facet
would give a very physical result (quid, for example, of diffraction?), since this method was
developed for infinitely large surfaces, or at least very large compared to the electromagnetic
wavelength.
For this reason, it is preferable to use lower facet densities and to use incoherent summa-

tion. Using the notations of Equation (1.69), the complex amplitude scattering matrix S is
approximated by taking the square root term by term of the power scattering matrix Σ0.
Then, since the sum is incoherent, a random phase φ(x, y), uniformly distributed between
0 and 2π, is added to the signal reflected by the facet at (x, y). Note that the sum is
spatially incoherent, but there is necessarily some degree of temporal coherence, at least
over short durations, otherwise it would not be possible to perform the integration of the
signal in synthetic aperture radar over the sea. In our simulation, we assumed φ(x, y) to
be constant in time since the typical illumination duration of a facet is less than 0.5 s.
Nevertheless, φ(x, y) has no a priori reason not to depend on time.
However, one cannot increase the size of the facets arbitrarily. In order to observe the

local variation in reflectivity due to the inclination of the waves, the facet density must
be higher than the final image resolution (which may eventually result from synthetic
aperture integration). This resolution depends on the choice of radar parameters; in the
case of synthetic aperture radar, it is the resolution of the synthetic aperture that matters.
Furthermore, the facet density will influence the nature of speckle noise: a sufficient number
of facets per resolution cell is needed for the speckle noise to begin to develop. It is easy to
verify that if the complex signals from six scatterers with the same average amplitude but
with random phase are summed, then the amplitude of the resulting signal already follows
the Rayleigh distribution. This is a good indicative value for the facet density one should
have. Tunaley [176], however, went up to 16 facets per resolution cell.

5.3 Simulations and results

In this section, we will first show some monostatic and bistatic images simulated by MaRS
and then integrated into synthetic aperture by the algorithm described in Section 1.7 of
Chapter 1. We then compare the speckle noise of the images synthesized by MaRS with
models and experimental data obtained in configurations that we have simulated (Section
5.3.2); this comparison allows us to discuss the validity of the appearance of the images from
a quantitative point of view. In Section 5.3.3, we qualitatively compare the appearance
of the wake in the simulated images with that of some real images gathered from the
literature.

5.3.1 Monostatic and bistatic SAR images

5.3.1.1 Configurations

In this section, we present four of the configurations that we have simulated (see Figure
5.4). These are two airborne monostatic configurations, one with an incidence angle of 45
and the other with 63.4; and two bistatic synthetic aperture radar (BiSAR) configurations.
The first bistatic configuration is a compromise between the two monostatic configurations
mentioned earlier, with two carriers flying in concert on a parallel trajectory. This type of
configuration was experimented with during a joint experiment between ONERA and DLR
(Deutsches Zentrum für Luft- und Raumfahrt) in 2004 [58], with slightly different radars
than those in our simulation and over land only. The second bistatic configuration is a
coordination between an airborne radar and a coastal-type radar: the airborne carrier flies
in a straight line with a side-looking radar, and the ground radar points in the direction
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where the airborne antenna points so that the antenna lobes are always overlapped as best
as possible. This latter configuration is at the limits of the validity of the simulation because
the reflection at low grazing angles is not modeled rigorously accurately; nevertheless, it
will highlight many qualitative aspects.

Figure 5.4: Configurations simulated in this section. 1) Monostatic SAR, θi = 45, 2)
Monostatic SAR, θi = 63.4, 3) “ONERA-DLR”-like Bistatic BiSAR, 4) “airborne-coastal”
Bistatic BiSAR

The characteristics used to simulate the sensors and the environment are summarized
in Tables 5.2 and 5.3; it is noted that for the radar, the parameters presented in the first
chapter are reused. In this case, the radar characteristics were more or less inspired by the
Furuno FAR 28x7 series of coastal radars with the short-range setting (except for the pulse
repetition frequency). The wake is created by the hull of a fast destroyer type DTMB 5415
scaled so that its length is one hundred meters; the ship travels at a speed of 4.5 m/s to
create clearly visible transverse waves. The elevation map obtained at t = 0 is shown in
Figure 5.5.

5.3.1.2 Results of the simulation

Figure 5.6 shows the contribution of each facet of the map to the bistatic radar equation
as defined in the bistatic radar equation (1.69) of Chapter 1. Since the transmitter has
a very low grazing angle, many facets are hidden and do not contribute to the reflection.
The superposition of the lobes of the transmitting antenna with the receiving antenna is
clearly visible here, as well as the sidelobes, which do not overlap perfectly since the two
antennas are separated. Once the signal is obtained, it is transmitted to a post-processing
chain to obtain a synthetic aperture integrated image. Given the configuration we have
here, a simple Range-Doppler algorithm is sufficient for synthetic aperture integration, as
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Variable Value
True airspeed V = 222 m/s (800 km/h)
Carrier frequency f0 = 10.0 GHz (λ0 ≈ 3 cm)
Modulation ∆f = 60 MHz (linear up-ramp)
PRF 222 Hz
Pulse duration TX = 0.333 µs
Peak power 1 W
Losses none
Antennas rectangular, uniformly illuminated, 4 m × 5 cm

Table 5.2: Characteristics of the simulated bistatic radar equipment

Variable Value
Temperature 20◦C
Salinity 35 ups
Ocean depth d =∞
Wind speed U0 = 36 cm/s, U1950 ≈ 10 m/s (5 Beaufort)
Wind direction ψ0 = 30◦

Spectrum: Elfouhaily, Ωwa = 0.84 (omnidirectional)
and Fung & Lee (directional)

Table 5.3: Simulated characteristics for the environment

we saw in Chapter 1 (Section 1.7.3.3). The integration was done for targets considered
as fixed. The histogram of the image intensities was then truncated so that the intensity
corresponding to the 98th percentile becomes the new maximum.
The images obtained in the monostatic configurations are shown in Figures 5.7(a) and

5.7(b). The appearance of the wake in these images is compared to real images in Section
5.3.3 in the HH case; as for images in HV and VH polarization, a comparison is impossible:
most sensors being co-polarized, images of wakes in cross-polarization are very rare and
to our knowledge, not found in the literature. The simulation suggests that excellent
contrast can be obtained with images acquired in cross-polarization, but this remains to
be compared with real measurements when they become available. Moreover, since the
reflectivity in the diffuse region is most significant in VV polarization, this configuration is
probably the worst for imaging Kelvin wakes: the returns from the wake waves are lost in
those from the rest of the sea, leaving only the reduced reflectivity of the turbulent wake
to make it visible in the VV configuration. Judging by other simulations not presented
here, we found that these conclusions are generally valid for any configuration (bistatic or
monostatic), any carrier frequency, and any sea state.
The image obtained in configuration 3 is shown in Figure 5.8(a) and does not differ too

qualitatively from the images obtained in monostatic configurations 1 and 2. In fact, in
a sense, configuration 3 is only weakly bistatic since the transmitter and receiver are not
very far apart. The received image is therefore a compromise between the two monostatic
images and does not provide additional information about the scene. On the other hand,
configuration 4 can be considered as being “truly” bistatic. The use of the coastal radar
implies that the reflection is completely diffuse (since the angle of incidence is large for the
airborne receiver). Unlike configurations 1, 2, and 3, the back of the waves is not visible
from the transmitter, making them less reflective. The contrast thus obtained between the
front and back of the waves makes them much more visible, regardless of polarization. In
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Figure 5.5: Elevation map (in meters) used in the simulations (512×512 facets with a width
of 1 m). The ship has a length of 100 m and a slow speed (4.5 m/s or 8.7 knots). The ship
itself is not simulated.
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Figure 5.6: Elementary contribution of the scatterers in the bistatic radar equation (power
equation 1.69 of Chapter 1) for configuration 4, when the two antennas are in the same
vertical plane. Antenna lobes and hidden facets are clearly visible.
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fact, this fourth configuration shows one of the theoretical advantages of bistatic radar:
using an airplane to retrieve the signal allows bistatic synthetic aperture integration and
therefore increases the image resolution compared to what would have been obtained with
only the coastal radar (about 2.25 m at the center of the image compared to 27.5 m). At the
same time, the excellent contrast obtained at low grazing angles is preserved. The drawback
is that the antenna of the coastal radar must be slaved to the antenna of the plane, which is
a highly non-trivial technological problem that also excludes, at least initially, applications
where the plane does not cooperate with the ground receiver.

5.3.2 Analysis of speckle noise

5.3.2.1 Speckle noise distributions

It is interesting to analyze the characteristics of the speckle noise obtained in the simulated
images to test the limits of the simulation. Traditional models of speckle noise in marine
radar images traditionally include the Rayleigh distribution, the Weibull distribution, and
the K distribution [186]; a good review of these models can be found in the reference work
by Ward, Tough, and Watts [188], as well as in [6] and [57]. Of these laws, only the
Rayleigh and K laws have a “physical” basis. The first results from the coherent sum of
waves reflected by a large number of independent scatterers in the same resolution cell,
each wave having the same average amplitude as the others but a random phase. The K
law results from the composition of a gamma-type law, which reflects low-frequency spatio-
temporal variations in reflectivity directly related to gravity waves, and a rapidly varying
component modeled by a Rayleigh distribution. This model is particularly well-suited to
the marine environment and has therefore received a lot of attention in the community.
The probability density distribution of the amplitude z of a pixel under the assumption of
the K law is given by:

Pr(z) =
2b

Γ(ν)

(
bz

2

)ν
Kν−1(bz) (5.27)

where b is a scale factor, ν controls the shape of the distribution, and Kν−1 is the modified
Bessel function of the second kind of order ν − 1. When ν is large (>10), the law quickly
converges to a Rayleigh distribution; when, on the contrary, ν is small (<2), the distribution
becomes much sharper, meaning that the image has almost uniform amplitude, except for
a few very bright pixels.

5.3.2.2 Comparison with theoretical speckle distributions, at high incidences

To conclude, let’s make a very important remark: the model for electromagnetic wave
scattering used in the simulator has not been formally validated for high angles of incidence,
so we should be cautious about drawing too hasty conclusions. Nevertheless, we will show
that the major trends known in the literature are reflected in the simulation.
We calculated the histogram of the amplitude distribution of images in the absence of

a wake, and for each reference distribution (Rayleigh, K, or Weibull), we estimated the
parameters of that distribution using a 2-d optimization algorithm that seeks to minimize
the mean squared difference between the measured histogram and the reference law. Then,
we test whether the law is acceptable using the Kolmogorov-Smirnov test. It turned out
that the K law was the most appropriate model for modeling speckle noise in simulated
images, as it consistently passes the test with an error probability less than 10−5. For each
simulation, the shape parameter ν is systematically smaller for HH polarization and larger
for VV polarization, meaning that HH radar images are more “spiky” than VV images.
This observation is consistent with the literature [6, 57].
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(a) Configuration 1: Monostatic SAR, θi = 45
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(b) Configuration 2: Monostatic SAR, θi = 63,4

Figure 5.7: Simulation results for configurations 1 and 2 defined in Figure 5.4
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(a) Configuration 3: Bistatic SAR, parallel trajectory of carriers,
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(b) Configuration 4: Bistatic SAR with coastal/airborne antenna cooperation. Note the
high contrast and resolution, two advantages of this configuration.

Figure 5.8: Simulation results for configurations 3 and 4 defined in Figure 5.4
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Figure 5.9: Shape parameter of the K distribution “ν” as a function of wind direction for a
grazing angle of one degree (monostatic case). The regression to a cosine curve was done
by least squares.

We show in Figure 5.9 the values of ν calculated for surfaces of 500×1500 pixels (ground
resolution of 1 m in azimuth and 0.75 m in range) at 10 GHz, and an incidence angle θgi
of 89, which emulates the working conditions of a coastal radar (we use a hypothetical
SAR-like configuration here only to have a uniform line of sight over a large surface, which
is not the case for a coastal radar that rotates on itself). There is an average of 3.1 facets
per resolution cell after synthetic aperture integration, and it has been verified that the
results do not change significantly for higher facet densities. The environmental conditions
are still those in Table 5.3.
This configuration was chosen to compare our results with the empirical model developed

by Ward, Baker, and Watts [187] for monostatic configurations:

log ν =
2

3
log(90− θgi ) +

5

8
log

(
draz.dr

4.2
− κm − κp

)
(5.28)

where θgi is the incidence angle in degrees (from 80 to 89.1), dr and draz. are the range and
azimuthal resolutions (in meters), κp = 1 for VV polarization and 1.7 for HH polarization;
κm is a wind-dependent term that Watts and Wicks [191] modeled with a sine wave based
on their measurements:

κm =
1

3
cos(2ψ) (5.29)

where ψ is the wind direction relative to the radar line of sight (0 is the downwind direction,
180 is the upwind direction). The average level of ν is slightly higher than predicted by
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the model (ν = 0,0657 ± 0,0423 in HH, ν = 0,1324 ± 0,0851 in VV); this means that the
sea clutter is slightly more like a Rayleigh distribution than expected, especially in VV
polarization. The difference between the simulation and the experiment is probably due
to one of the approximations made in the simulation (linearity of the model, no breaking
waves, no foam) or the limit of one of the approaches (poor modeling of reflectivity at
the considered incidences, possible challenge to the simulation of speckle noise by the sum
of terms with random phase, etc.). However, the evolution of the term ν with respect
to the wind direction is consistent with the model proposed by Watts and Wicks. It is
interesting to relate this evolution to that of the sea reflectivity with the wind direction,
as this evolution also follows a sinusoidal law in the linear framework, see, for example,
Figure 4.6 in Chapter 4. In general, the wind dependence remains the same for smaller
incidence angles, clutter in the VV channel increasingly following a Rayleigh law as the
incidence angle decreases.

5.3.2.3 Comparison with real data in the monostatic case – Average Incidences

The behaviors mentioned in the previous paragraph seem to be found also in field exper-
iments. We compared results from an experiment conducted in Australia (Stacy et al.
[163]). In this experiment, data were acquired with an airborne radar (the Ingara plat-
form) that imaged the sea surface at constant incidence while rotating around the same
point. Data were acquired at a resolution of 1 m at a frequency of 10 GHz for several
polarizations. Data were acquired over several days, and measured wind speeds varied
between 6.1 m/s and 13.2 m/s. Figure 5.10 reproduces results published by Stacy et al.
(wind speed is not specified in [163], we assume it is approximately 10 m/s).
As before, we simulated a series of synthetic aperture radar images (one image per wind

direction) at a meter-scale ground resolution and a carrier frequency of 10 GHz, with wind
set at 10 m/s, which is a good average of the observed speeds during the field experiment.
The results are shown in Figure 5.11. We also present results obtained for other carrier
frequencies.
It is noted that the predicted shape factor at an incidence of 60 degrees is very large and

tends to infinity in VV, which means that the simulation predicts a Rayleigh-type clutter
at these incidences, while the experiment tends to suggest that the clutter remains more
like a K distribution. There is also a discrepancy in the clutter shape in cross-polarization,
as its shape factor is generally the lowest in the simulator, while it should be the highest
according to the experiments. However, it should be noted that the validation was done
with experimental data where the sea state was already very high, enough to question the
validity of the models used.
However, we also observe that the relationship between ν and the wind direction is

correlated with the reflectivity/wind direction dependence, meaning that reflectivity is
highest when looking in the direction from which the wind is coming. In simulations under
conditions equivalent to those of Stacy et al., the shape factor for simulations is once again
overestimated compared to experimental data, and when ν was too large, it is better to use
the Weibull model on these simulated data. However, we still find the dependence of the
shape factor on incidence: speckle noise becomes more “Rayleigh” or “Weibull” type as the
incidence decreases or the wind speed increases. So, even if the numerical result is slightly
different between simulation and reality, we qualitatively find the expected behavior.
Comparing simulation and experiments in bistatic cases is very difficult, as few exper-

imental measurements have been published in the literature. However, some trends can
already be seen in the two bistatic configurations mentioned above. In Configuration 3
(BiSAR with parallel trajectories), the speckle noise characteristics are numerically and
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Figure 5.10: Shape factor of the K distribution obtained during the Stacy et al. experiment
[163] over the sea (incidences 55 to 65 degrees, f0 = 10 GHz).

qualitatively comparable to the results obtained in monostatic Configurations 1 and 2.
Configuration 4 (Hybrid Coastal/Airborne BiSAR) has characteristics that are numeri-
cally comparable to those obtained with a monostatic coastal radar configuration, which
is in line with intuition.

5.3.3 Appearance of the Kelvin wake in simulated radar images

Let’s now discuss the appearance of the Kelvin wake in simulated images. For comparison,
we refer to data available in the literature, which unfortunately are not widely distributed.
The two images in Figure 5.12 are among the few radar images published in the literature
where the Kelvin wake is seen in its entirety, showing the system of transverse and divergent
waves rather than just the “bright” and “dark” lines typically visible in satellite radar
images.
The scarcity of such images is probably explained by several factors. Firstly, it is under-

standable that, for most ships, visibility of the Kelvin wake requires high resolution, which
is currently only available aboard airborne synthetic aperture radars (SARs). See Chapter
7, Section 7.1 for a discussion on these requirements. Unfortunately, data from airborne
radars are less widely distributed than data from satellite radars. Satellite radar data,
with a recognized role in environmental study and protection, are widely disseminated to
many government agencies and research institutes worldwide at a low cost. In contrast,
airborne radar data, primarily intended for military applications, are not systematically
made available to the scientific public but only during trial campaigns. There is a clear
bias in favor of studying wakes in satellite images rather than airborne images [49].
The image in Figure 5.12(a) was acquired during a 1985 trial campaign using an L-band
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Figure 5.11: Shape factor of the K distribution obtained with MaRS for different frequencies
and several incidences.
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synthetic aperture radar (likely in HH polarization to obtain Seasat-like images). The ship
involved was cooperative and well-known, the USS Quapaw, a high-sea tug with a hull
length of 59.4 m. At the time of imaging, the ship was operating at 16.5 knots (Fr =
0.352) [149]. The divergent system is clearly visible in this image as an alternation of light
and dark lines. The turbulent wake is also clearly visible, forming a dark line dividing the
wake into two nearly symmetrical parts. The Kelvin wake is visible in its entirety, with
the “canonical” cone of 39 degrees opening.
The second image in Figure 5.12(b) was acquired by the Seasat satellite. It is interesting

because it clearly shows a shift between the ship’s echo and the Kelvin wake. This phe-
nomenon can occur in synthetic aperture radar images. This image is interesting because it
shows that even though the Kelvin wake is fixed in the ship’s reference frame, it is not the
surface front responsible for the Doppler shift of the radio wave, but each water particle.
Indeed, if the surface were the source of the Doppler shift, then the image of the Kelvin
wake would be “glued” to the ship’s echo because the wake travels at the same speed as
the ship in the longitudinal direction. However, this is not the case. Water particles in
motion, interacting with the radio wave, move at the orbital speed of the waves, which
is significantly slower than the ship’s speed. For example, for a ship traveling at 4.5 m/s
(or 8.7 knots), the maximum orbital speed of the wake waves is 1.53 m/s. It is evident
that this shift can be used as a means of estimating the ship’s speed, and this technique is
widely used in the literature.
The images obtained through simulation (Figures 5.7(a), 5.7(b), 5.8(a), 5.8(b)) were

generated in the X-band. Simulated images in the L-band, which are not presented here,
share a significant resemblance in appearance with the simulated X-band images; hence,
we have excluded them. One might argue that simulated images in HH polarization bear
a resemblance to the images in Figure 5.12, but the reverse is also plausible. Here, the
absence of real data is acutely felt, preventing definitive conclusions due to insufficient data
for statistical observations.

5.4 Implementing the simulator

The question of the simulator’s implementation is, strictly speaking, beyond the diagram
presented in Figure 5.1 at the beginning of this chapter. Nevertheless, delving into it is
interesting as various considerations, such as computational speed, influence the choice
of a simulation method similar to what we have developed. In this section, we discuss
potential future directions for creating a simulator akin to MaRS with an even more efficient
implementation.

5.4.1 Implementation constraints and architecture

Computational time is a significant concern when designing a simulator, and there is typi-
cally a trade-off between computation time and the accuracy of models used. To optimize
performance, the primary functions of MaRS have been coded in C++. However, they
are invoked by a scripting language (a Lua language interpreter is included in the soft-
ware). Using a scripting language imparts crucial modularity to MaRS, facilitating the
writing of unit tests and regression tests. Additionally, simulation parameter files are di-
rectly scripted in Lua and dynamically loaded by the interpreter, offering a considerable
advantage in terms of time efficiency.
The notable modularity of the MaRS implementation is worth emphasizing. The ap-

plication accommodates various spectra, surface characteristics (permittivity, roughness,
etc.), and scattering matrix calculation models. MaRS fully utilizes the object-oriented
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(a) Image 1, from Lyden et al. [123].

(b) Image 2, from Case et al., [36]

Figure 5.12: Kelvin wake images seen in high-resolution synthetic aperture radar..
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approach provided by the C++ language: the surface designated for simulation is divided
into facets, with each facet associated with an abstract class for reflectivity calculation.
Implementations of these classes are provided for various models (Kirchhoff’s Approxima-
tion, Small Perturbation methods, weighted average of the two previous approaches). This
allows the immediate use of different models for each facet, meaning that, for example,
within the wake, a different electromagnetic calculation model could be applied compared
to the rest of the sea. The same flexibility applies to surface properties (roughness, permit-
tivity, salinity, temperature, etc.), which can also vary from one facet to another. Other
types of simulations beyond those envisioned here can be imagined, such as locally polluted
maritime surfaces with oil, provided the appropriate models and permittivities are avail-
able (see, for example, [16] for such models). In any case, this object-oriented approach
combined with the use of a scripting language makes the simulator highly adaptable to
various applications.

5.4.2 Portability

The code is portable to all environments compatible with the POSIX standard. It has been
successfully tested on Windows 2000 and XP (using the Cygwin environment), GNU/Linux
(ENSIETA computing cluster), DEC ULTRIX (IFREMER’s “Nymphéa4” computing clus-
ter), and MacOS X.

5.4.3 Computational time considerations

The computation times are well below what was initially envisioned at the project’s outset,
although they are not negligible. In this paragraph, we first aim to determine the theo-
retical algorithmic complexity of various calculation steps and then provide the observed
computation times in practice. We then discuss potential avenues for improvement.

5.4.3.1 Theoretical algorithmic complexity and practical results

For a typical session, the following steps are executed. Firstly, we generate a surface map
for a matrix of n facets; the complexity of the calculation is theoretically dominated by that
of the fast Fourier transform, which is O(n log n). However, it turned out that the hidden
constant behind the n calls to the function calculating the spectrum also plays a significant
role in practice. We then calculate an elevation map for the wake following the procedure
described in Chapter 3. Reusing the notations from this chapter, the internal integrals P
and Q of the elevation function (equation 3.21 from Chapter 3) are precalculated on the
ship’s hull, which is discretized into Nx × Nz points. The integrals are calculated for Nθ

values of θ between 0 and π/2.0. Then the elevation is evaluated for the n facets of the
map. This process is essentially O(Nθ) and remains quite fast (approximately 40s to 45s).
The elevation map of the wake is calculated only once since it is static relative to its origin.
However, it will need to be reinterpolated to simulate the ship’s movement in the world
reference frame, which is also a linear process. Finally, as many impulses as necessary are
emitted on the surface. For each of them emitted impulses, the contribution of the n facets
must be calculated. This is typically the step that requires significant optimization, as it
is where the majority of the computation time is spent. It was found that trigonometric
functions accounted for approximately 30% of the computation time, and tabulating them
resulted in an optimization factor of 8 for the innermost calculation loop in the simulator.
The computation times for a single CPU are summarized in Table 5.4.

4“Water lily”, in French.
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Operation Complexity
Generation of the sea map O(n log n)
Spatial phase shifting of the sea map O(n log n)
Wake map: P & Q for all θ O(NθNxNz)
Wake map: elevation calculation O(nNθ)
Sending an impulse O(n)

Operation Time (s) Values
Generation of the sea map 5 n2 = 512× 512
Spatial phase shifting of the sea map 0.13 n2 = 512× 512
Wake map: P & Q for all θ 0.2 Nθ = 300, Nx = 50, Nz ≤ 28
Wake map: elevation calculation 45 n2 = 512× 512, Nθ = 300
Sending an impulse 6.6 n2 = 512× 512

TOTAL for m impulses 3497 m = 500

Table 5.4: Algorithmic complexities (in array access) and typical computation times on a
3 GHz single-core Pentium 4, under Cygwin, measurements using the gprof utility. The
code is written in C++.

5.4.3.2 Further ways to improve the computation time

It is clear that if the width of the map increases by a factor a, the computation time
increases by a factor a2, making simulations in the time domain unsuitable for calculations
on very large surfaces. In the context of our work, the approaches used to make the calcula-
tion faster were as follows: firstly, precalculating data as much as possible, especially with
function tables; secondly, weak parallelization of calculations (simultaneous calculation of
multiple configurations and/or polarizations on a computing cluster).
However, there are several strategies to decrease the computation time of a radar signal

simulator: parallelization and the use of graphics cards. These two strategies of paral-
lelization and the use of graphics cards are in line with current trends in the evolution
of computer hardware. Moreover, the state of the art conducted at the beginning of this
chapter shows that they are also very well suited to the radar domain, as demonstrated by
the works of Kalkuhl et al. [100] and Balz [18] (respectively for parallelization and the use
of graphics cards).
Indeed, the problem of simulating raw radar signals is highly separable, both in time

and space. In other words, the calculation result corresponding to the surface at a date
t+ ∆t does not depend on the calculation done at date t since the linear model allows for
calculating the positions and characteristics of the two scenes directly from the elements at
date t = 0. It is possible to parallelize the calculations corresponding to separate instants
on two distinct processors. Furthermore, the signal returned by one facet does not depend
on the signal returned by a neighboring facet. It is therefore possible to partition the
space of the scene at a given instant into small zones that can be simulated by different
processors; in this case, only access to the memory where the received signal is stored needs
to be shared. Programming on a parallel architecture is well-known and standardized; it
can be done, for example, either by directly using the POSIX standard or using other
open standards to distribute the computational load among several nodes in a computing
cluster (MPI5 standard from Stanford), or several cores of the same processor (OpenMP6

standard or Apple’s open-source Grand Central dispatch technology).

5MPI: Message Passing Interface
6OpenMP: Open Multi-Processing
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Regarding recent developments in computer hardware, it appears that Moore’s Law7

seems to be reaching its limits for generic processors8. This explains why the improvement
of computational performance is currently achieved by increasing the number of processors
(so-called “multi-core” architectures). However, the performance of graphics processors
–called Graphics Processing Unit (GPU)– is currently experiencing less stagnation than
that of general-purpose processors (Figure 5.13), as they are more specialized processors
and therefore more easily optimizable. Moreover, the video game industry provides an
extremely important incentive for performance improvement. A GPU performs highly
vectorized operations that can be repurposed for other applications, with high perfor-
mance gains in the case of calculations that lend themselves well to parallelization (like
our problem): this is known as General Purpose programming on Graphics Processing
Units (GPGPU), a term that, according to gpgpu.org, was first proposed by Mark Harris
in 2002 during his doctoral thesis work on real-time cloud simulation [89]. In the case of
simulating radar signals, there is also a great similarity with the simulation of 3D optical
images in the operations to be performed, such as calculating normals, reflection angles,
etc.

5.4.4 Limitations of the GPGPU approach

There is a limitation to this approach, which is related to the fact that the discipline of
GPGPU is relatively new and so far, no standard has been genuinely available. Also,
scientific computation on a graphics card was, until now, a “craft” activity due to the
lack of standardization of programming interfaces or graphics card architectures. This
situation is expected to change in the near future, for example, with the CUDA (Compute
Unified Device Architecture) standard from NVIDIA (whose first implementation was made
public in February 2007), or with the emergence of the OpenCL standard, proposed by
an industrial consortium including Apple, NVIDIA, and Intel. This standard should allow
for the rapid and simple development of very general-purpose computing applications with
an abstraction of the hardware layer, seamlessly supporting multi-core architectures and
graphics cards. The first implementation of OpenCL is available on OS X 10.6 “Snow
Leopard,” released on August 28, 2009. Nevertheless, this field remains highly specialized
and not necessarily accessible to the entire scientific community.

5.5 Conclusion of this chapter

The simulation techniques implemented are not new: as indicated in the introduction, the
most similar approach to ours was already proposed in 1991 by Tunaley [176]. However,
the simulation presented here has the merit of showing what is probably the first series
of simulated images in a maritime environment with bistatic configurations. The simu-
lation also takes into account specular reflection, allowing for work in arbitrary bistatic
configurations. Additionally, the chapter provides an in-depth discussion of the problem
of discretizing surfaces in the case of a radar image simulation based on facets.

5.5.1 Towards an answer to the discretization problem

The problem of discretization is recurrent and arises for most simulation approaches feasible
in our problem (and not just for the chosen approach). However, it turns out that in the

7Moore’s Law is a conjecture stating that the average number of transistors in processors available on
the market doubles every eighteen months.

8By “generic processor,” we mean a processor not specialized in any particular computation, i.e., the
Central Processing Unit (CPU).
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Figure 5.13: Evolution of computing power in billions of floating-point operations per second
(GFLOPS) for some GPUs, compared to that of the Intel Pentium 4 processor (adapted
from Luebke [122]).

literature, this point is often ignored. The conclusion that can be drawn from the discussion
is as follows: the dimensions of the surface to be simulated must increase quadratically
with the wind speed, and the density of facets must increase with the working frequency
(which is intuitive) but also with the wind speed, following an analytical relationship that
we have outlined in a simplified case just enough to provide an easily usable form for the
relationship.

5.5.2 Simulation possibilities

Recent advances in computer processing speeds now make it possible to simulate raw
radar signals in a time frame that is becoming acceptable for various applications. This
enables control over every parameter in the acquisition chain with fewer approximations.
The simulated signal can then be transmitted to post-processing chains, such as synthetic
aperture radar (SAR) integration algorithms or data exploitation chains (detection and
localization of targets, for example). The simulator can be easily specialized to represent
coastal, airborne, or satellite-based radars, or a combination of these configurations. The
consideration of specular effects has allowed for the implementation of simulation in the
specific case of transmitting a GPS signal received near the sea surface (Coatanhay, Arnold-
Bos, and Khenchaf [42, 41]). The simulation has demonstrated a clear dependence between
the impulse response of the maritime surface and sea state (Figure 5.14), offering the
possibility of studying inversion schemes to retrieve wind speed (as proposed by Zavorotny
et al. [199]) using controlled simulation. This simulation would not have been possible
with a SAR image simulator or a raw data simulator considering only diffuse reflections, as
the configuration used is highly specular (refer to Chapter 4, Section 4.2 for a discussion
on this point).
However, even if simulation is feasible in terms of computation time, it is by no means

instantaneous and cannot be used to quickly generate a large image database. Thus,
simulation remains more of a study tool (for configurations, acquisition strategies) than an
image production tool, for example, to serve as a learning base for a recognition algorithm.
There remains a clear niche for fast image simulators, either based on the modulation
transfer function linking the height map and radar image or relying on harnessing the
computing power of graphics cards. The latter approach is probably the most convincing
today and seems promising for the future. Unfortunately, there is still a marked boundary
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2

cerning the GNSS signals in maritime environments is ded-
icated to airborne or satellite GNSS reveiver systems. The
observers are hardly ever supposed to be in the vicinity of
the ocean surface. In these conditions, the electromagnetic
interactions with the ocean surface can be modeled using an
asymptotic approach, for intance the Kirchhoff approximation,
and the ocean is then only described by stationary statistical
properties (slope probability density function,...). Anyway, this
kind of approach is not really adapted to the sea transport and
common maritime activity.

III. CURRENT RESEARCH

Very recently, we develop a reliable algorithm to estimate
the signal scattered (in bistatic configurations) by a determin-
istic sea surface generated from a realistic sea spectrum (see
figure 4) [5].
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Fig. 4. Deterministic sea surface obtained by a numerical simulation based
on the Elfouhaily sea spectrum.

Using this approach, we can simulate the GNSS signals
where the observer is a few dozen meters above the ocean
surface. With these assumptions, the roughness of the ocean
surface cannot be reduced to a simple statistical model and
the actual movement of the sea must be taken into account,
see figures 5 and 6.

Fig. 5. Scattering of a GPS signal by the deterministic sea surface at 10 m
height.
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Fig. 6. Simulation of a GPS signal received at 10 m aboce the deterministic
sea surface.

Our numerical results point out the influence of the sea
movement upon the scattered GNSS signals quite near above
the surface. And, our algorithm could be of a great interest to
evaluate the reliability of GNSS (GPS and GALILEO) receiver
systems in a maritime environment with various sea states and
wind conditions.

IV. CHALLENGES AND PROSPECTS

Anyway, modeling and simulating GNSS signal for sea
transport and maritime environment remains a challenging
issue for our research laboratory. Indeed, for small ship
(fishing, sailing,...) or for search and rescue, the GNSS receiver
cannot be supposed a dozen meters above the ocean surface.
So, in many cases, modelling the GNSS signal still requires
new theoretical approaches to estimate the influence of the sea
very near the surface.

In the same way, coastal or shore environments (with
portainer cranes for example) could lead to very complex
scattering problems that require specific developments.

As a conclusion, we must mention that our laboratory is an
active member of the “GALILEOCEAN” project. This project,
recognized by the “Pôle de compétitivité mer Bretagne”, is
dedicated to the evaluatation of the future european positioning
system (GALILEO) in maritime environment.
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(a) Shape of elementary contributions from
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ward at an incidence of 45 degrees. Specular
reflection clearly dominates (in red).
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I. INTRODUCTION

In maritime environments, the GNSS systems (GPS,
GALILEO,...) are well known to be increasingly important
for military and commercial ship positionning. As a matter
of fact, the main challenge consists in providing a precise,
accurate and reliable positioning system for real time sea
traffic surveillance, for shipping containers management, for
maritime safety (avoiding shipwreck system), for search and
rescue,... However, due the multiple electromagnetic reflection
from the sea surface, the maritime environement is very hostile
to signal propagation and the GNSS signal received above
the sea surface could be significantly perturbated with the
electromagnetic contributions from the sea, see figures 1 and
2.

Fig. 1. Influence of the GNSS signal from the sea surface upon sea transport.

sea surface
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Fig. 2. Different delay associated to each contribution from the sea surface.

II. STATE OF ART

For several years, the influence of the ocean surface upon the
GNSS signals has been profusely studied by various scientific
teams in the world [1], [2], [3], [4]. Actually, these scientific
publications highlight the fact that the GNSS signal scattered
from the sea, which is considered as a random rough surface,
is greatly influenced by the state of the sea and the wind
direction, see figure 3. In a way, a GNSS receiver could be
considered as a remote sensing device for ocean monitoring.
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(b) Amplitude distribution (summation of elementary contri-
bution with random phase)

Fig. 3. Numerical simulation of the GPS signal (impulse response) received
above sea surface at 5km height.

Nevertheless, the most part of the scientific literature con-

(b) Envelope of the impulse response, depending
on sea state

Figure 5.14: Reflection of a GPS wave above a maritime surface (excerpt from Coatanhay,
Arnold-Bos, and Khenchaf [42]).

between the radar-related scientific community, i.e., qualified in the field of Physics, and
the 3D programming community, mainly associated with the video game industry. GPGPU
is a highly specialized and rapidly evolving discipline for which scientists are not trained.
One could imagine recruiting expert personnel more capable of creating such code, or
outsourcing, with a double problem: firstly, the issue of vocabulary, which may not be
exactly the same between the two communities, and secondly, the problem of human
resources, meaning low remuneration in the scientific field, making it difficult to attract
graphics programming experts, who are primarily drawn to the video game industry. In
the end, one could envision a situation where only a few laboratories worldwide will be able
to produce fast and efficient calculation code using these technologies. This could lead to
a monopolistic situation that would be problematic if the code were not distributed within
the community.

5.5.3 Validation and limits of the simulation

Regarding the realism of the simulation, validation was conducted at three points. First,
there was the validation of the different stages of the simulation taken separately, in the
early chapters. The main validation concerns that of the reflection model on the rough
surface. The test conducted in Chapter 4, Section 4.2.3, showed that the average reflection
on a discretized surface corresponds well to the average predicted by classical statistical
models. This leads to the validation of the average power link budget. The actual validation
of the simulation was done on the speckle noise shape parameter and also on the visual
aspect.
Speckle noise corresponds to power fluctuations around the mean. The behavior of

speckle noise could not be exactly matched with a model or experimental data. Only the
general sinusoidal shape of the wind direction dependence function of the speckle noise
shape parameter was found, but quantitative numerical agreement was not achieved. The
disagreement could be explained either by the absence of accounting for nonlinearities or
the breaking of waves or the presence of foam, or perhaps because the validation was
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performed for incidences and sea states at the limit of the simulation’s validity.
The last validation, finally, concerned the visual aspect of the images compared to real

wake data. This last point is not satisfactory since few wake images under equivalent
conditions (high-resolution radar images) with a well-visible Kelvin wake are available for
comparison. The lack of data also arises in bistatic configurations, whether the wake is
present or not: there simply are no available data to validate the visual aspect of the
simulation. The inability to fully validate this visual aspect, coupled with difficulties in
obtaining convincing speckle noise, casts doubt on the predictive capability of the simula-
tion proposed in this chapter. Thus, there is a need to improve the models and simulation
approaches for radar signals reflected by the ocean surface. There are also other aspects to
improve in the simulation presented here, including the simulation of turbulent wakes or
the “V-shaped” bright spot, as well as the consideration of nonlinearities in the sea surface
model. Aside from its importance in obtaining reliable data, this dual effort to improve
models and validate them can also open up major prospects concerning inversion, namely,
the ability to retrieve the physical parameters of the scene from the radar image.
The theoretical limits of the simulator result from the concatenation of the limits of

various implemented models. In strict terms, the simulated maritime surface can range
from state 1 to state 2 because the linear model must be valid, and there should be no
foam on the sea surface; however, the transition between “validity” and “non-validity” is not
abrupt, and by violating the model, it is possible to obtain images that remain reasonably
accurate up to sea states 3 to 4. The incidences were formally validated up to 60 degrees in
Chapter 4, but we considered facet masking, which allows us to extend the validity of the
model to around 70 to 80 degrees; nevertheless, in this chapter, we presented results in very
shallow configurations to compare them with a theoretical speckle noise model. Regarding
the carrier frequency, the low-frequency limit is given by the validity of the Kirchhoff
approximation, which is reasonably true only from the gigahertz range. The very high-
frequency limit of the models has not been formally studied; therefore, we estimate that
the diffusion model should remain reasonably valid up to 20 or 30 gigahertz.

5.5.4 The final word

In any case, MaRS is a first step towards answering two major questions concerning bistatic
radar.
The first question concerns the operational benefits brought by bistatic configurations.

The fact that the receiver is passive is already interesting in itself, but other arguments in
favor of bistatic configurations have been put forward, such as their reduced cost (provided
the transmitter is not provided), potentially better images in certain cases, although the
meaning of “better” and “in certain cases” remains sketchy, subjective, and highly dependent
on applications at best. The answer to these questions requires at the very least some
images to form an intuition and, at best, metrics that can only be truly developed when
ground truth is available (or a pseudo-ground truth provided by a simulator). In both cases,
configurations where bistatic radar is not interesting should quickly become apparent, and
vice versa.
The second question concerns the operational requirements and technical problems to be

solved when bistatic imaging is performed. Simulation allows us to see which parameters
are important and what orders of magnitude are acceptable or not. To illustrate, the kinds
of questions that could be asked are:

• How would the image be affected if continuous waves were used instead of well-
controlled pulses?
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• What is the influence of the accuracy of sensor localization on the quality of the final
image?

• How to improve image quality in cases of poor localization?

• etc.

These uncertainties and limits can now be simulated and help designers devise viable
configurations and develop algorithms that attempt to push the boundaries of these con-
figurations.
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Introduction

In the systems currently proposed in the literature or even operational ones, few seek to
detect the wake, and none rely exclusively on the wake to detect ships. This absence is not
due to the laziness of designers! The wake is a radar-visible phenomenon, but its visibility
is not guaranteed and, in any case, much lower than that of the ships. Moreover, ship
detection uses constant false alarm rate detection schemes, which are fast and robust in
implementation, making them suitable for the analysis of a large amount of data, such
as a raw satellite image with a size routinely reaching 4000×4000 pixels. However, as we
will see, wake detection is much more algorithmically complex, requiring heavy compu-
tational power. Currently, to our knowledge, the only company offering wake detection
in satellite radar maritime surveillance products is Kongsberg Satellite Services, with a
useful processing time (one hour from acquisition to alert) but using a computing farm for
processing.
Generally, wake detection occurs in a small image surrounding a ship detected by a

dedicated algorithm. If at that moment the wake is detected, then one can consider using
the additional information for information fusion. This additional information is obtained
occasionally, with high uncertainties, which has led experts in the field, like Tunaley, to
label it as "low grade."
Despite these preliminary remarks, it remains that the wake provides a significant

amount of additional information that would be a shame not to consider when possi-
ble. If the wake is detected, it provides valuable additional information about the ship
that caused it. Here are the kinds of information theoretically derivable from the wake:

1. Confirmation of the presence of a ship: A ship does not always create a visible
wake, but if it does, the probability of a ship being present is stronger.

2. Ship heading: The direction of the wake provides information about the ship’s
heading, which can be provided to a target tracking chain.

3. Ship width: Zilman and Miloh [202] showed that the width of the dark wake at a
given distance from the ship’s stern is a direct function of the ship’s width (equation
3.7 in Chapter 3). Therefore, if it is possible to segment the wake and find the width
of the dark wake, it is theoretically possible to estimate the ship’s width.

4. Ship speed: The Kelvin wake spectrum provides information about the ship’s speed.
If it can be analyzed (i.e., if it is visible in the image, requiring sufficient resolution),
it is possible to deduce the ship’s speed and also obtain confirmation of the heading.
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Zilman’s method mentioned in the previous point also allows the retrieval of the
speed, theoretically. Additionally, the offset of the ship’s position to the wake in the
radar image (due to Doppler shift) also allows for estimating its speed.

5. Ship location: The wake consists of waves with low speed and practically no
Doppler shift in the image (unlike the ship). Therefore, the wake’s tip provides
a better indication of the ship’s position.

6. Identification of the hull: Through a more in-depth analysis of the Kelvin wake,
it is theoretically possible to identify the ship’s hull [197].

Another interesting aspect concerns the dead water wake –the dark trail behind the ship–
which is visible from space using synthetic aperture radar. Indeed, besides detecting the
ship and providing its heading, there is also the fact that its radar image is strongly similar
to what is observed when a ship leaves an oil or petroleum trail in its wake, for example
due to illegal degassing. Therefore, detecting a dark wake or detecting illegal degassing is
more or less using the same algorithms, which should be optimized.
Formally, one can consider that the second part of this manuscript is dedicated to the

inverse operation of the one described in the first part. Indeed, the first part was dedicated
to the modeling and simulation of a wake radar image in polarimetric (possibly bistatic)
radar imaging from the characteristics of an input scene. This second part, on the other
hand, focuses on the issue of retrieving the parameters of the scene (i.e., the ship) from a
radar image.
Apart from simply being interested in wake detection, there is also the visibility issue

of the wake that needs to be solved: the wake is used sparingly because, until now, its
visibility is more due to "luck" than a real intention to image it. Therefore, it is conceivable
that optimizing the wake visibility should be prioritized before using it in a detection
application. This optimization should allow evaluating the best acquisition geometry, the
best frequency, the best antenna, in short, all the elements of the acquisition chain described
in Chapter 1. The process of finding a good configuration is actually an optimization
process, which requires a metric consistent with the intended use of the wake: detection.
It is entirely possible to consider using elements such as the detection probability (to
maximize) or the false alarm probability (to minimize) as elements of the desired metric.
In summary, a three-step work program is established:

1. Develop a good wake detection and characterization algorithm; "good" is to be un-
derstood in the sense of the ten "commandments" detailed in the general introduction
of the manuscript and can be broken down into specific sub-goals. This step can be
broken down into two sub-steps:

(a) Design one or more algorithms.

(b) Test on a restricted basis to evaluate the algorithm and choose the best.

2. Apply this detector in several configurations (typically simulated) to find the con-
figuration for which it could work best: in this step, the detector is considered fixed
and perfect, and the configuration is optimized.

3. Once the best configuration is found, validate it under experimental conditions if it
is deemed sufficiently valuable.

This approach justifies the attempt made in this second part, which covers only the
first step of the program and attempts to partially address the second through theoretical

156



5.5 Introduction to Part Two

reflection and not through tests. These limitations (search for the best configuration,
testing on bases) arise from the limitations of the simulation tool developed during the
first part. Indeed, on the one hand, the validation of the model could only be done in
specific configurations that are just a subset of the exploratory configurations; there is
therefore a veil of doubt cast on its "prediction" capacity, which in any case can hardly
replace experience. On the other hand, the computation time for a single image is still
very long in practice, even if the times obtained were better than those initially predicted:
this prevents generating a vast image database. Additionally, all wake-related phenomena
have not been taken into account (especially turbulent wake, limiting the application of the
simulation to high-resolution configurations where this wake is not predominant). Finally,
the parameter space characterizing an acquisition configuration is too large to explore.
The third step of the work program (experimental validation) is beyond the scope of this
manuscript.
To summarize, the second part of this manuscript is entirely dedicated to the problem

of wake detection and analysis. It is subdivided into two chapters: Chapter 6 and Chapter
7. The first chapter is devoted to the study of turbulent wake detection in satellite radar
images. It provides a brief overview of the domain and presents a theoretical and numer-
ical comparison (using simulated data) of four classical wake detection algorithms. The
following chapter is dedicated to the characterization of the Kelvin wake in high-resolution
images, including optical and radar images. It begins with a brief reflection on the optimal
geometric configuration to better detect the Kelvin wake in high-resolution radar images.
Subsequently, it presents a method for analyzing the Kelvin wake to retrieve the ship’s
speed and heading.
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Chapter

6 Detection of Dead Water Wake in Satellite
Radar Images
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In Chapter 3, we observed that in relatively low-resolution radar images, such as those
acquired by a satellite, the dead water wake appears as a dark line possibly attached to a
bright line corresponding to the “bright V,” which itself is the region where Kelvin waves
are at the Bragg frequency of the radar’s radio wave. The rest of the Kelvin system is
not visible, except possibly for the edge of the cone, which appears as another bright line.
Nevertheless, it is then possible to use line detection algorithms to highlight these elements.
In better-resolved images, the dead water wake takes on the appearance of a wider dark
band. However, in this chapter, we will only consider the case of low-resolution satellite
radar imagery. The wake detection process follows a generic pattern that is common to
most computer vision detection problems. This pattern is described in Figure 6.1.
For the detection of dead water wake, the content of each “box” in Figure 6.1 is as follows:

Preprocessing: This step aims to reduce the amount of speckle noise while preserving,
or even improving, the visibility of the wake. This step is optional if the following steps
are sufficient to discriminate the wake from the noise.

Simplification: Secondly, we perform an image transformation to reduce the dimension
of the problem. We choose another parameterization to represent a line: instead of de-
scribing it as a collection of pixels, we prefer an analytical representation. Lines are then
represented by the reduced equation: ρd = x cos θd + y sin θd, where ρd ∈ R is the distance
from the line to the origin of the image and θd ∈ [0;π[ is the angle between the normal to
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Figure 6.1: General principle of a computer vision detection system

the line and the x-axis. The line is thus represented by a pair (ρd, θd), namely, a unique
point in an angle-distance space, and not as a collection of pixels. It should be noted that
in practice, the angle-distance plane will be discretized with a step of ∆θd × ∆ρd. The
problem is then to find a method to switch from the original Cartesian plane (x, y) to the
representation in the angle-distance plane (ρd, θd). Two methods are commonly used: the
Radon transform (RT) and the Hough transform (HT) .

Thresholding: Whether using one or the other of the transforms, the angle-distance
plane will then need to be thresholded to isolate the few points (ρ, θ) that actually corre-
spond to a line in the original image. These points result in a peak. If the signal-to-noise
ratio is not good, then several false alarms may be detected in the image. To increase
the signal-to-noise ratio in the transform, the thresholding is often preceded by another
denoising step. One can also use a clustering algorithm to merge the peaks in the image
that are too close together.
At the end of the day, the algorithm outputs the equation of the wake line. This line

equation provides the ship’s direction (through the parameter θ). However, this direction
results in two possible headings: θb = θ + π/2 or θb + θ + 3π/2. The wake is generally
a straight line segment starting from the ship. It is possible to detect the ship and/or
the interruption of the segment. However, the wake will also be interrupted when the
waves have dissipated the turbulent zone, at a great distance from the ship. Therefore, the
interruption of the segment is a risky criterion. If we rely on ship detection by its echo, it
is possible that it is absent from the image or sub-image we are processing. To simplify,
we will consider that we are only looking for the direction of the ship’s movement and not
the heading.
In this chapter, we will provide an overview of existing methods for each of the detailed

steps mentioned above, corresponding naturally to three paragraphs (6.1: dimensionality
reduction, 6.2: preprocessing, and 6.3: thresholding). Dimensionality reduction is pre-
sented first because ideally it can do without preprocessing and because it is at the heart
of the problem. We will then focus (section 6.4) on four processing chains in particular, as
these approaches are highly representative of the overall methods available to date, which
we will compare theoretically as well as with numerical results. The chapter will conclude
on the possibility of using these methods in an operational maritime surveillance context.
An outline of this chapter was published at the Caractérisation du Milieu Marin 2006
conference [11].

160



6.1 Dimensionality reduction

6.1 Dimensionality reduction

6.1.1 Radon transform

6.1.1.1 Definition and basic properties

It was in 1917 that Johann Radon proposed the transform that bears his name [146, 147],
a transform that is now fundamentally used, especially in the field of medical imaging [99].
In general, the Radon transform of a real 2D function I : (x, y) 7→ I(x, y) is defined in such
a way that the value of the transform at (ρd, θd) is equal to the integral of the function I
along the line with the equation ρd = x cos θd + y sin θd. In this case, ρd is the distance
from the line to the origin of the (x = 0, y = 0) coordinate system, and θd is the angle
between the x-axis and a normal to the line. Mathematically, this can be written in the
form:

R[I](ρd, θd) =

∫∫
x,y
I(x, y)δ0(x cos θd + y sin θd − ρd)dxdy (6.1)

The rigorous hypotheses guaranteeing the existence of this integral are provided in Radon’s
articles [146, 147]:

• The function I is continuous at every point.

• The integral
∫∫
|I(x, y)|/

√
x2 + y2dxdy taken over the entire plane converges.

• For every point P(x,y) and every ρ ≥ 0, the function ĪP (ρ) = 1
2π

∫ 2π
0 I(x+ρcosθ, y+

ρ sin θ)dθ is such that limρ→∞ ĪP (ρ) = 0.

In this case, R[I] exists almost everywhere. In practice, in image processing, these as-
sumptions are violated - for example, in the presence of contours, I is discontinuous - but
the results stated in this paragraph remain usable in practice.

Linearity The linearity of integral 6.1 also implies the linearity of the Radon transform,
i.e., that:

R[aI1 + bI2] = aR[I1] + bR[I2] (6.2)

for any functions I1 and I2 (from R to R) and any real constants a and b.

Naive Calculation Algorithm in the Discrete Case The Radon transform can also
be seen in another way, which allows us to deduce a first computer implementation of
the algorithm. Assume that the function is zero everywhere except at one point with
coordinates (x0, y0), where it is equal to 1. An infinite number of lines pass through this
point, which will have the equation:

Sx0,y0(ρ, θ) : x0 cos θ + y0 sin θ = ρ (6.3)

The integral over the function I along each of these lines will necessarily be 1, meaning
that the Radon transform of a Dirac spike δ(x0, y0) is the sinusoid Sx0,y0 with equation
(6.3). The linearity of the transform allows us to deduce that the Radon transform is the
superposition (by linear combination) of all the sinusoids Sx,y for all couples (x, y), with
each sinusoid weighted by the value of the function I at the point (x, y). The reciprocal
of the transform can also be deduced. If x and y are fixed, the integral along the sinusoid
Sx,y(ρ, θ) in the angle-distance plane, divided by the length of that sinusoid, allows us to
retrieve the value of the function I at the point (x, y).
The remark made in the previous paragraph allows us to describe a first algorithm for

numerical computation of the Radon transform. Suppose that the function I is discretized
on nx × ny elements (on a grid with steps ∆x×∆y).
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1. Initialization Create a matrix T of dimensions nρ × nθ initially filled with zeros,
representing the discretized angle-distance plane with a step of ∆θ×∆ρ. This matrix
is necessarily of finite size since the angles are in [0; 2π[ and the distances from the
lines to the origin are bounded by the length of the image diagonal.

2. Calculation For each point with discrete coordinates (i, j), i ∈ [1..ny], j ∈ [1..nx]
of the function to transform, increment the matrix T by a value of I(i, j) for all the
cells on the (discretized) sinusoid Si,j . The coordinates of these cells are calculated
by sweeping the interval [0, π[ with a step ∆θ for the variable θ.

3. Result In the end, T will contain the discretized Radon transform of the function I.

Invertibility It is possible to invert the Radon transform, i.e., to retrieve a function equal
to I from R[I]. This possibility was also proven by Radon [146, 147]. Numerically, the
naive inverse transform algorithm is similar to the direct transform. In both cases, the
algorithm’s complexity in terms of array access is O(nxnynθ), which is very costly. It
should be noted that the periodicity of trigonometric functions implies that the Radon
transform is periodic (with a period of 2π) for the angular variable. Moreover, it is trivial
to show that a rotation by an angle θd of I around the origin results in a translation of θd
in the Radon transform in the angle-distance plane.

6.1.1.2 Link between the Radon transform and the Fourier transform

Let’s consider the Fourier transform of a function I with two variables x = (x, y)t:

F [I](ν)) =

∞∫∫
−∞

I(x)e−2πx
t.ν dx (6.4)

with ν = (νx, νy) the spatial frequency vector.

Rotation of the Fourier Plane Suppose we consider I ′, the function obtained after
rotating the plane of variables by an angle θd around the origin. This rotation can be
represented by the matrix:

Rθd =

[
cos θd sin θd
− sin θd cos θd

]
(6.5)

such that x′ = Rθdx, where x′ represents the variables of I ′. Rtθd denotes the transpose of
Rθd , which is also its inverse. The very definition of I ′ states that:

I ′(x′) = I(x) = I(Rtθdx
′) (6.6)

The Fourier transform of I ′ is:

F [I ′](ν ′)) =

∞∫∫
−∞

I ′(x′)e−2πx
′t.ν′ dx′ (6.7)

The phase term here is:
x′
t
.ν ′ = (Rθdx)t.ν ′ = xt.Rtθd .ν

′ (6.8)

and thus, it follows:
F [I ′](ν ′) = F [I](Rtθd .ν

′) (6.9)
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This means that “the Fourier transform of I ′ is derived from that of I by rotating the
frequency pulsations around the origin.”

The “Fourier Slice Theorem” Let’s now consider the Fourier transform along the line
with equation νy = 0. We have:

F [I](νx, 0) =

∞∫
−∞

∞∫
−∞

I(x, y)e−2πxνx dx dy (6.10)

As the phase term no longer depends on y, it is possible to write:

F [I](νx, 0) =

∞∫
−∞

 ∞∫
−∞

I(x, y) dy

 e−2πxνx dx (6.11)

The Radon transform of the image I corresponding to the set of lines with equations:

x cos 0 + y sin 0 = ρ⇔ x = ρ = cte (6.12)

is given by:

R[I](ρ, 0) =

∞∫
−∞

I(x, y) dy (6.13)

and we have:

F [I](νx, 0) =

∞∫
−∞

R[I](ρ, 0) e−2πxνx dx (6.14)

In other words, the 2-D Fourier transform of I along the νy = 0 axis is the 1-D Fourier
transform of the Radon transform of I for the set of lines parameterized by θ = 0.
By applying the preliminary remark on the rotation of the Fourier plane, it is possible

to generalize this result to lines parameterized by a non-zero angle θd. The result becomes:
the 1-D Fourier transform, along the line θ = θd, of the Radon transform of I, is the 2-D
Fourier transform of I read along the line passing through the origin of frequencies and
with slope θd :

F [I](νx, νy) =

∞∫
−∞

R[I](ρ, θ) e−2π(xνx+yνy) dx dy (6.15)

with: {
νx = ρ cos θd
νy = ρ sin θd

(6.16)

This property is known in the Anglo-Saxon world as the “Fourier Slice Theorem”. Refer
to Kak and Slaney [99] (Chapter 4, p. 56) for an explanation similar to ours of this
property. The Fourier Slice Theorem is important because it provides a fast method for
calculating the Radon transform:

1. Compute the 2D Fast Fourier Transform of the function (complexity in O(n log n)
where n is the typical width or height of the image).

2. Retrieve the value of the 2D Fourier transform along n lines in frequency space,
passing through the origin of frequencies, with the i-th line forming an angle θ = πi/n
with the νx axis (number of array accesses proportional to the number of pixels in
the image).
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3. Perform the inverse Fourier transform along each of these lines.

In the end, the algorithmic complexity of calculating the Radon transform is of the same
order as that of the fast Fourier transform, which is an important result when consider-
ing computation speed. We will reuse this result later when we discuss the algorithmic
complexity of our algorithms.

6.1.1.3 Using the Radon Transform for wake detection

The Radon transform is well suited for detecting wake lines because they are either very
bright or very dark. Intuitively, if all the pixels in a given line are bright, and the others
have low values, then the Radon transform of the image will give a significant sum for the
parameter set (ρ, θ) corresponding to the line, and moderate values elsewhere. In other
words, a peak appears in the Radon transform for parameter sets corresponding to the
lines to be detected in the image. Similarly, a very dark line will give a strong negative
peak. On the contrary, due to the summation process, speckle noise becomes Gaussian,
by applying the law of large numbers, although this is true only for (ρ, θ) corresponding
to lines of sufficient length in the image.

6.1.2 The Hough transform

The Hough transform was patented in 1962 by Paul Hough (U.S. Patent 3,069,654) and
also uses a parametric representation of lines. In his patent, Hough suggested using the
representation y = ax+b, which poses an obvious problem when the line is vertical because
a becomes infinite. Duda and Hart [59] suggested using the same representation as the
Radon transform, and this is how the Hough transform is most commonly known today.
The Hough transform can be generalized to any curve that can be expressed in the form
of an implicit equation f(u) = 0, where u is a parameter vector of dimension n to be
estimated [17].
The calculation of the Hough transform generally begins with the use of a contour

detection algorithm on the image, which can be seen as a specific case of preprocessing
if one wishes to stay within the framework outlined at the beginning of the section since
contour detection is already a useful signal filtering process. After this step, a binary image
is obtained: a pixel with coordinates (x0, y0) has a value of one if it is on a contour, and
zero everywhere else.
This pixel (x0, y0) can belong to an infinite number of lines with an equation of the

form: ρ = x0 cos θ + y0 sin θ, which is a sine wave in the ρ − θ space. As with the Radon
transform, the ρ− θ space is represented by a discretized array with steps ∆ρ×∆θ. Each
cell in the array (initially zero) that intersects the sine wave is incremented by one during a
process known as “voting.” In practice, it is often possible to obtain the orientation θ′ of a
local contour with a certain precision ∆θ from the direction of the local gradient (which is
orthogonal to the contour). Therefore, voting only needs to be performed on the portion of
the sine wave between [θ′−∆θ/2; θ′+ ∆θ/2], which significantly speeds up the calculation
time and increases the signal-to-noise ratio in the final transform (O’Gorman and Clowes
[135]). In the end, if many pixels are located in the image space on a line with equation
ρd = x cos θd + y sin θd, the cell corresponding to (ρd, θd) will have a large number of votes
compared to other cells. After a thresholding process, it is possible to identify this cell and
obtain the parameters of the line from its coordinates. Unlike the Radon transform, the
Hough transform is clearly not invertible.
The algorithmic complexity of the naive calculation, in practice, does not result in pro-

hibitive computation time. O’Gorman and Clowes’ method reduces calculation time by
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restricting the interval of votes through the estimation of the local contour direction using
the gradient. In practice, the gradient estimation is not very accurate, and cells also need
to be incremented in a certain neighborhood (typically ±20 degrees around the estimated
angle). In the case of maritime radar images, care must be taken because the presence of
noise strongly disrupts the estimation of the gradient direction. O’Gorman and Clowes’
variant has not been used for this reason in our work.

6.2 Image preprocessing before transformation

The presence of speckle noise makes radar images more challenging to process because the
wake signature can be hidden in noise. If one wishes to use the Hough transform or the
Radon transform, noise elimination is even more critical as contours must be particularly
well detectable, and noise should not be considered as noise. For this reason, this section
provides a brief overview of existing methods for preprocessing a radar image for contour
detection. This overview is relatively general, presenting methods actually used in the
literature for wake detection as well as methods that may not have been specifically im-
plemented for this application but have been proposed in the literature for globally similar
preprocessing problems, and we consider them representative. In the context of wake de-
tection, preprocessing depends on the subsequent processing: Radon transform or Hough
transform.
In the case of the Radon transform, the input signal is a grayscale image. Although

the Radon transform has some robustness to noise due to its inherent design (summing
pixels along lines to reduce the influence of noise through averaging), this robustness is
not perfect. Noise removal before the Radon transform can be beneficial. The goal is to
reduce the influence of speckle noise and increase the visibility of the useful signal, which
is achieved through filtering.
Now consider the case of the Hough transform. The input to this algorithm is a binary

image resulting from thresholding (typically, the output of a contour detector). This
contour detection should reveal the contours of the signal and try, as much as possible, to
eliminate spurious contours due to noise. One can conceptualize this contour detection in
two ways: either denoise the image as for the Radon transform before applying a contour
detector, or design a contour detector with an “integrated robustness” to noise, explicitly
taking noise into account. Alternatively, one can perform contour detection followed by
filtering of the output of the contour detector.

6.2.1 Linear edge detection filters

Classic edge detectors focus on detecting points in the image where the local intensity
gradient is strong, as this visually translates to the presence of an edge. The simplest filters
(Prewitt, Sobel) only calculate the gradient, while more advanced filters, such as the Canny-
Deriche filter [55] or the Shen and Castan filter [156], perform image smoothing by applying
a filter close to a Gaussian in the direction orthogonal to which the gradient is calculated.
This simultaneous smoothing and edge detection aim to denoise the image. However,
since these filters are based on linear filtering, they uniformly apply the same amount of
smoothing across the entire image. A contour, like wake lines, is locally characterized
by a strong intensity gradient compared to the background, which corresponds to the sea.
Applying smoothing tends to attenuate this gradient, preventing the proper detection of the
wake. Therefore, pushing the smoothing too far would erase the useful signal. Conversely,
if the noise is too strong, insufficient cleaning of the image will continue to hide the wake
amidst the noise. Filtering can be performed in the spatial or frequency domain; in the
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former case, the complexity is O(nm) where n is the number of points in the signal, and m
is the size of the window used for the linear filter. In the frequency domain, the calculation
complexity is dominated by the Fourier transform (thus being O(n log n)), which is better
than computing in the spatial domain when m is large (typically m > 64 today).

6.2.2 Anisotropic filtering using partial differential equations

The anisotropic filtering approach by solving partial differential equations was introduced
by Perona and Malik [141] to address the drawbacks of isotropic linear filtering, particularly
its non-preservation of the signal in areas of strong variations. It is based on the following
principle: we know that the solution at time t of the heat equation on a distribution of
known sources at t0 = 0 is the convolution of the initial distribution of sources with a
Gaussian whose width is proportional to |t− t0| (meaning the Gaussian functions are the
Green’s functions for the heat equation partial derivative equation). In image processing,
each pixel of the raw image can be seen as a source term at t0, and we can effectively
obtain the result of a 2D Gaussian blur by solving the 2D heat equation. However, it is
possible to intervene on the diffusion constant to make it zero where the gradient is strong
(i.e., where edges are present) or, conversely, strong in areas of weak gradient, where the
image is nearly uniform, and only noise is present. This can be achieved using a control
function cAnis. (with values between 0 and 1) multiplying the diffusion constant λAnis.:{

∂I
∂t = λAnis. div

(
cAnis.(|grad I|2)grad I

)
I(t = 0, x, y) = I0(x, y)

(6.17)

In this equation, I0 represents the original noisy image, and I(t) is the image at iteration
t. Smoothing increases with time t and the diffusion constant λAnis.. Various forms have
been proposed for the control function cAnis.. We tested the function proposed by Sochen,
Kimmel, and Malladi [160] because it optimizes the compromise between weak diffusion in
the gradient direction and good diffusion in the tangential direction:

cAnis.(|grad I|) =
1√

1 + |grad I|2
(6.18)

Filtering is performed by iteratively solving the differential equation using a finite difference
scheme over time. If the parameters are well-tuned, the convergence of these methods is
fast. The downside of the method is adapting the number of iterations (and thus the
amount of filtering) and the parameter λAnis.. This adaptation is done through trial and
error. The result on speckle noise images may not be the best compared to other methods.
The computation time is O(n× nt), where n is the number of points in the image, and nt
is the number of temporal iterations.

6.2.3 Classic anisotropic speckle noise filters

Several speckle noise filters have been developed over the years, roughly around the time
when synthetic aperture radar signals became available, and computer processing power
began to be sufficient. Among the well-known filters are the Lee filter [117], the Frost
filter et al. [76], and the Kuan filter et al. [112]. These filters are described in the spatial
domain by their impulse response, which varies depending on the position of the filtered
pixel. This implies that these filters are nonlinear. Let:

• (x, y) be the coordinates of the pixel to be filtered in the image,

• (x′, y′) be the coordinates of pixels in a coordinate system centered on the pixel to
be filtered (x, y),
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6.2 Image preprocessing before transformation

• I(x, y) be the intensity at (x, y),

• Mw(x, y) be the mean of pixels in the window w centered at (x, y),

• Σw(x, y) be the standard deviation of pixels in the window,

• If (x, y) be the intensity of the pixel after filtering.

In SAR images, it is generally assumed that the noise is multiplicative. In the case of
developed speckle noise, the distribution of amplitudes follows a Rayleigh distribution. If,
furthermore, all pixels in the window are independently drawn according to a Rayleigh
distribution with the same parameter, then Mw and Σw are related by the following
equation:

Mw = Σw

√
π

2
(6.19)

If, on the other hand, the central pixel of the window has a significantly different reflectivity,
because it is a bright point, then ηAnis. = Σw/Mw will be larger. This ratio will also tend
to be larger in areas where the image has rapid transitions (echoes/shadows or edges) that
one wishes to preserve. Thus, if the ratio ηAnis. is large, the impulse response of the filter
must approach a Dirac peak.

Lee Filter This is a simplified initial approach to the problem that approximates the
linear model. Then the criterion of minimizing the mean square error between the filtered
signal and the true signal is applied, resulting in an expression where the filtered pixel is
a weighted average between the original pixel and the mean of intensities in the window
Mw(x, y):

If (x, y) = λLee(x, y)I(x, y) + (1− λLee(x, y))Mw(x, y) (6.20)

The weight λLee(x, y) depends on the number of views Nv used to construct the image to
be denoised and the ratio ηAnis.(x, y):

λLee(x, y) = 1−
[
νAnis.
ηAnis.

]2

(6.21)

with νAnis. =
√

1
Nv

. If ηAnis.(x, y) is large, λLee(x, y) tends to 1, and I(x, y) is favored.
Similarly, if the number of views Nv is significant, the image will naturally tend to be
smoothed, and areas of rapid variations will be more meaningful, i.e., the presence of
rapidly varying signal, not noise.

Frost Filter This filter has a 2D impulse response fFrostx,y (x′, y′) that is a 2D exponential,
equal to 1 at (x′, y′) and decreasing as one moves away from this point. The typical
attenuation distance varies depending on the ratio between the mean Mw(x′, y′) of pixels
in the filter window and the standard deviation Σw(x′, y′) of intensities in the window.

fFrostx,y (x′, y′) = exp

(
−
√
x′2 + y′2

s(x, y)2/m(x, y)2

τFrost

)
(6.22)

In equation 6.22, τFrost is an attenuation constant typically adjusted through trial and
error. Here also, the larger ηAnis. is, the smaller the filter width becomes, making it similar
to a Dirac peak.

Kuan Filter This filter can be seen as a variant of the Lee filter, as it also performs a
weighted average between the central pixel and the window mean following 6.20. However,
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the weight formulation is different as it results from a local additive model, i.e., it depends
on the signal. In Kuan’s formulation, the weight becomes:

λKuan =
1− ν2

Anis./η
2
Anis.

1 + ν2
Anis.

(6.23)

6.2.4 Wavelet-based methods

Another category of adaptive filters is based on the application of wavelet theory, which is
now classic in image processing, and which we will not elaborate on. However, there are
several possible approaches involving wavelets at one point or another in the algorithm.

6.2.4.1 Wavelet filters for speckle noise filtering

The principle of these methods is to apply a wavelet transform to the image, then threshold
the transform coefficients before reconstructing the image. Approaches based on wavelets
have also been tried on images with speckle noise. Depending on the chosen wavelet, the
results are more or less better, with some wavelets performing better in certain circum-
stances and less well in others. A recently proposed approach is to perform a simultaneous
decomposition on multiple bases and locally choose the best of these bases: this is the
principle of the Discrete Wavelet Transform with Enriched Diversity (DWEDWT), which
gives good results on sonar images [96]. Once the image is denoised, a linear derivative
filter

6.2.4.2 Intra-scale wavelet correlation

Kuo and Chen [113] proposed a criterion based on what they call “intra-scale correlation”
of an orthogonal wavelet decomposition of the image to improve the visibility of linear
elements present in radar wake images before applying a Radon transform. The idea is to
compute a discrete wavelet transform of the image at n scales, typically using the Mallat
algorithm, providing four sub-images per scale: an approximation image Aj and three
detail images Dh

j , D
v
j , and D

d
j (horizontal, vertical, and diagonal details). The side effect

is that the dimension of sub-images at scale j is reduced by a factor of 2−j compared to
the initial size of the image. Then, the module of the detail image Mj is calculated at each
scale j (operations are element-wise):

Mj =
√
|Dh

j |2 + |Dv
j |2 + |Dd

j |2 (6.24)

The “wavelet correlation” r at position (x, y) is calculated by multiplying, over all scales,
all the modules Mj calculated from wavelet decomposition coefficients for which the point
at coordinates (x, y) has contributed. This requires resampling the module sub-imagesMj ,
j > 1, so that they have the same size as M1 (this operation is symbolized by the operator
[↑ 2x]):

r =

n∏
j=1

[↑ 2j−1]Mj (6.25)

This intra-scale correlation can then be (in theory) thresholded on high values to reveal
only the wake contours. Figure 6.3 shows the result of Kuo and Chen’s processing on an
ERS-1 image, while Figure 6.2 shows a result on a high-resolution SAR image, closer to the
configuration illustrated in their article, where only the high-resolution case was addressed.
It can be observed that in the satellite case, the dead water wake is not highlighted, unlike
the ship, which is well distinguished from the background. Therefore, the method is more
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6.3 Thresholding in the ρ− θ space

of a “ship detector” than a “wake detector”! This behavior can be explained by the fact
that wavelets are a theory originally developed for the one-dimensional case to detect
singularities in the signal (discontinuities, etc.). Once “immersed” in 2D space, wavelets
will not be able to detect all 2D singularities (lines and contours) and will be effective only
on points [35]. Hence, better ship detection. In the case of the simulated high-resolution
image, the entire Kelvin system is highlighted as a set of “remarkable points,” but the dead
water wake is not highlighted, even though the Kelvin wake/Dead water wake contrast is
significant and could have suggested good detection. The use of a Radon transform is not
improved after Kuo and Chen’s processing.

6.2.4.3 Other approaches using adapted wavelets

Other approaches adapting wavelets and specifically dedicated to 2D image processing
have been proposed in the literature, such as the ridgelets –from ridge (“mountain ridge”)
and wavelet– introduced by Candès and Donoho [35]. The calculation of ridgelets is done
very simply by applying the Radon transform to images and then applying a 1D wavelet
transform along the axes θ = constant. This way, the wavelets are applied not to lines in
the image but to the peaks corresponding to these lines in the Radon transform, which
constitute point singularities where wavelets are effective in detection. The potential in-
terest of methods based on ridgelets and curvelets is twofold. Firstly, they aim to preserve
lines, which are one of the “signatures” of wakes in low-resolution spatial radar images.
Secondly, they are applied after calculating a Radon transform, an operation we already
use.

6.3 Thresholding in the ρ− θ space

After applying the Radon or Hough transform, it is necessary to detect the peaks corre-
sponding to wake lines. This can be done in various ways; we enumerate some of them
here. We will focus more specifically on the Radon transform, but it is easy to adapt the
methods to the Hough transform.

6.3.1 k × σ thresholding

This very simple approach is the most commonly used for detecting dead water wakes in
a satellite image (Rey et al. [150]). The local average M of the Radon transform1 R is
calculated over a typical window size of 3×3, before subtracting it from R. In other words,
a high-pass filtering is performed. This highlights the peaks and eliminates variations in
the mean level of the transform. Then, the standard deviation σ of the image R −M
is calculated. Each pixel in R −M with a magnitude greater than k × σ (k ≈ 3 − 4) is
considered to be a peak and corresponds to a line in the original image.

6.3.2 Wiener Filter thresholding

Given that i) the Radon transform is calculated, in practice, on a discretized space with
step ∆ρ ×∆θ, and ii) wake lines have a width that is not necessarily infinitely thin, the
peak corresponding to a wake line is not necessarily a Dirac peak: it can spill over into
neighboring cells. Rey et al. [150] suggest imagining that the Radon transform (whose
Fourier transform is denoted by F [R] and the average power spectral density by |F [R̄]|2)
is a blurred version of an ideal Radon transform (with Fourier transform F [R′]) where the

1Or the Hough transform...

169



6.3 Thresholding in the ρ− θ space

(a) Simulated SAR image with MaRS, resolution ≈ 2× 2 m, sea state 2

(b) Result of wavelet correlation on five scales.

Figure 6.2: Multi-scale wavelet correlation on a high-resolution SAR image. Darker areas
indicate stronger correlation.
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6.3 Thresholding in the ρ− θ space

(a) ERS-1 Image (Strait of Messina). An oil tanker leaves an oil slick in its
wake (© ESA).

(b) Multi-scale Daubechies wavelet correlation on four scales. Darker areas
indicate stronger correlation. Only the ship is highlighted by the processing
(bottom, right).

Figure 6.3: Multi-scale wavelet correlation on a satellite SAR image.
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peaks corresponding to the wake are Dirac peaks. The blur is created by convolving the
ideal Radon transform with a transfer function that is modeled a priori (Fourier transform:
F [Hblur]). The rest of the Radon transform, i.e., the part not corresponding to the peaks,
is modeled as noise (Fourier transform denoted by F [N ], average power spectral density
denoted by |F [N̄ |2]). Thus, we have:

F [R] = F [Hblur]F [R′] + F [N ] (6.26)

Under this assumption, Rey et al. [150] use Wiener deconvolution to recover the estimate of
the original peak. The interest of Wiener deconvolution, compared to naive deconvolution,
is as follows. Naive deconvolution works by inversion:

F [R̂′] =
F [R]

F [Hblur]
(6.27)

where F [R̂] represents the Fourier transform of the estimate of R′ and where the operations
are to be performed term by term in the frequency domain. However, it can be seen that
this filter is equivalent to:

F [R̂′] = F [R′] +
F [N ]

F [Hblur]
(6.28)

... so that in frequencies where F [Hblur] tends to zero, the noise will be amplified. The
use of the Wiener filter aims to reverse the blur process without (too much) increasing the
noise level during inversion by attenuating frequencies where the noise predominates. The
obtained expression, optimal in terms of least squares, is as follows ([152], eq. 6.13, page
383; a good introduction to Wiener theory can also be found in [114], Chapter VIII):

F [R̂′] =
1

F [Hblur]

(F [Hblur])
?

|F [Hblur]|2 + |F [N̄ ]|2
|F [R̄]|2

F [R] (6.29)

where ? denotes the conjugate transpose. It can be observed that the denominator intro-
duces the inverse of the mean signal-to-noise ratio2 |F [R̄]|2/|F [N̄ ]|2. When this signal-to-
noise ratio tends to zero, Equation 6.29 is equivalent to Equation 6.27. Conversely, if this
signal-to-noise ratio increases, R̂′ tends toward R, so that the noise is not amplified.
Concretely, in our situation, the filter Hblur is taken as a Gaussian with a standard

deviation similar to that of the observed peak in the Radon transform (we took 0.5 pixels,
with the filter support taken over 5 pixels; Rey et al. used 7 pixels). In Rey’s original
article, Wiener filtering was only applied to windows centered around peaks of R passing
a wake k × σ with k equal to 4.5

6.4 A comparison of four methods

We implemented four distinct chains, as shown in Figure 6.4, utilizing the methods de-
veloped above in a consistent and representative manner. However, it should be kept in
mind that some steps can be exchanged between two algorithms, which would increase
the number of algorithms to be tested. For this reason, we limit ourselves to four chains.
Section 6.4.1 provides a more detailed description of the algorithms, illustrating them on
a real image (Figure 3.3 from Chapter 3, showing a wake off the Strait of Malacca). The
following paragraphs summarize various points of comparison of the algorithms and the
results on simulated data.

2In practice, this signal-to-noise ratio is often assumed to be constant over the entire spectrum, which
is correct if the noise is white. The exact value of the signal-to-noise ratio is often determined empirically,
i.e., based on a visual criterion.
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Edge detection:
* Wavelet Correlator
* Phase Symmetry

Radon Transform

Gaussian blur

WienerHough Transform

Threshold > μ+k.σ 

 Image
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Clipping / Normalization

Threshold > μ+k.σ Threshold > μ+k.σ SMF
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Mean 3 x 3

Pre-processing

Transform
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Figure 6.4: Flowchart of the four chains {1, 2, 3, 4} presented here.

6.4.1 Description of the four reference chains

6.4.1.1 Chain 1: Hough Transform (TH)

This chain aims to test the Hough transform. It starts with the calculation of the phase
symmetry indicator as described by Kovesi in [109]. This indicator is followed by a mor-
phological operation (a top-hat with a circular structuring element of radius 2, adjustable
parameter). This treatment maximizes the visibility of the wake and minimizes noise. The
result is then thresholded (not shown in the diagram), taking the top 10% of the high-
est values; the choice of this percentage can be adjusted. The thresholded image is then
processed by another morphological operation, an opening with a structuring element of
one-pixel radius, to fill in continuity gaps in the wake line caused by thresholding. Then,
a classic Hough transform is applied with the parametrization (ρ, θ) by Duda and Hart.
The peak in the Hough transform is then detected by “k×σ” thresholding, where only the
values above k times the standard deviation × of the data is kept. Figure 6.5 shows the
Hough transform of the reference image, the final result, and the pre-processing result.

6.4.1.2 Chain 2: Classic Radon Transform (TR)

This chain aims to test the Radon transform. It is the simplest and most classical approach,
without post-processing of the Radon transform. It starts with a histogram processing to
make the best use of the available dynamic range (truncation of the highest percentiles of
the original histogram, stretching). At this stage, it is possible to consider a histogram
transformation to bring speckle noise to a reference distribution, such as the Rayleigh
distribution. Then, the Radon transform is performed, followed by a high-pass filtering,
calculated by subtracting the local mean over a 3 × 3 window (for example) from the
Radon transform. This high-pass filtering allows keeping only the variations around the
local mean of the Radon transform, which strongly depends on the length of the straight
segment on which the image sum was performed. This highlights the peaks corresponding
to the wake. The chain ends with “k × σ” thresholding. This method is directly inspired
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by the description given by Rey et al. [150]. Figure 6.6 shows the Radon transform of the
reference image, with the thresholding result leading to wake detection.

6.4.1.3 Chain 3: Radon Transform + Wiener Filter

This third chain is derived from the second and adds post-processing of the Radon trans-
form by a Wiener filter, following the proposal of Rey et al. [150] to improve the classical
approach (Chain 2). Figure 6.7 shows the result of deconvolution on a small window
centered around the peak of the Radon transform obtained at the end of Chain 2.

6.4.1.4 Chain 4: Radon Transform + Stochastic Matched Filtering (SMF)

The fourth chain substitutes the Wiener filter with a stochastic matched filter, following
Courmontagne [46] (see Appendix D). As indicated in this article, the result of the stochas-
tic adaptive filtering can then be thresholded, taking into account the likelihood ratio of
the two hypotheses {presence of noise alone, presence of signal and noise}. This operation
is described in Appendix D, Section D.6. To compare the result of this chain with that of
the other chains, we will simply perform “k × σ” thresholding. In the tests we conducted,
we assumed that the peak corresponding to the wake had a size of 9 × 9. The stochastic
adaptive filter has not been tested on real images.

6.4.2 Algorithmic complexity of the four processing chains

All filtering operations are performed using fast Fourier transform (FFT). Therefore, the
complexity of the Fourier transform dominates. For an image of size N ×N , this results
in an array access complexity of O(N logN). However, this metric leaves out the “hidden
constant” that allows us to compare algorithms among themselves.
The phase symmetry is calculated by a Gabor wavelet decomposition, and this decom-

position is done using as many Fourier transforms as the product of the number of scales
and the number of orientations (typically 6× 6).
The Hough transform cannot be calculated by FFT, giving it a complexity of O(N2M)

(M : the number of intervals used to discretize the set of angles). However, since a small
number of image points actually belong to a contour, the hidden constant is low, making
the algorithm fast and equivalent in computation time to the optimized Radon transform.
That said, the Hough transform requires a preprocessing step, which, as we have just seen,
is very costly, unlike the chains using the Radon transform.
A particular case is the stochastic adaptive filtering (FAS). Using the notations from

Appendix D, it is noted that even though the FAS is calculated using a series of fast
Fourier transforms (one for each filter hi), the preparation phase itself takes more time. In
the applied examples below, the filter is applied to a 9×9 window, requiring the calculation
of two correlation matrices of size 92 × 92. For these matrices to be representative, it is
necessary to simulate the appearance of a large number of line signatures in the Radon
plane, requiring as many Radon transforms (in our case, at least more than 92 = 81,
because otherwise, the covariance matrix would be nearly singular, and some eigenvalues
would tend towards zero or an undefined value from a computational perspective).

6.4.3 Computation time

The computation times of the algorithms themselves were determined using Matlab, with
an Intel Core Duo processor at 2 GHz, without specific optimization. They are given in
Table 6.1. The computation time of Algorithm 1 based on the Hough transform is the
longest and by far. However, the majority of the computation time is spent on calculating
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Absolute value of the Hough Transform
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(a) Hough Transform, the maximum is indicated by the red circle
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(c) Input image and detected line

Figure 6.5: Test of Chain 1: Hough Transform

175



6.4 A comparison of four methods

Absolute value of the Radon Transform
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(a) Absolute value of the Radon transform
after 3×3 high-pass filtering. The maximum
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Figure 6.6: Test of Chain 2: Radon Transform
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Figure 6.7: Zoomed-in view of the Wiener filtering result (Chain 3) after deconvolution
with a Gaussian filter of standard deviation 0.5 pixels. The input image is the same as for
the other chains.

Algorithm Average Computation Time (s)
1 34.77
2 3.68
3 5.75
4 3.92

Table 6.1: Computation times for the four dead water wake detection algorithms (measured
on an Intel Core Duo computer, MacOS X 10.5 + Matlab 7.5).

the phase symmetry (32.35 seconds on average). This time includes the calculation of
the 36 Gabor wavelets (6 orientations, 6 scales), which can be precalculated in practice.
Algorithm 4 (Radon transform and stochastic adaptive filtering with a filter) is not much
longer than the basic filtering because the stochastic adaptive filter is calculated offline.
The computation time of the stochastic adaptive filter is directly related to the quantity
of reference images that are simulated. The computation times of the signal and noise
covariance matrices used to obtain the filters are negligible. The calculation of matrix P

takes about 1500 s for 1000 trials (and as many Radon transforms). The calculation of
matrix Q takes only one to two minutes because only one Radon transform is calculated,
namely that of the image to be filtered, from which the noise information is extracted.
However, it is clear that the processing time (about three seconds per image at best)

remains very significant. In practice, a large image, several thousand pixels wide, needs
to be scanned. Scanning cannot be done with a sliding window for obvious reasons of
computation time. Therefore, we work on blocks of sub-images, but it will be necessary to
take into account a certain overlap between blocks to handle the case where a wake falls
between two blocks. It is also realized that another solution could consist of a preliminary
detection of the ship, followed by wake detection in a window centered around the boat’s
position.

6.4.4 Comparison on simulated images

In addition to the comparison on real images, a more in-depth comparison was carried out
on synthetic wake images that were generated to provide the necessary a priori data to
construct the stochastic adaptive filter used in reference chain 4. The noise is assumed
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to be multiplicative, following the Rayleigh distribution, generated by taking the norm
of a complex Gaussian noise with unit standard deviation. It is assumed that the dead
water wake appears as a line a few pixels wide, adjacent to a bright line, randomly placed
immediately to the left or right (equiprobable). The wake is assumed to be always present
in the image. For each set of parameters, a large number nbt of images (nbt = 1000 in our
case) are generated by randomly varying the noise, as well as the position and orientation
of the wake. The parameters used are summarized in Table 6.2.

(a) Parameters not varying across the test databases

Parameter Meaning Value
ac Clutter amplitude 1
Ws Width of the dark line (in pixels) 3
Wb Width of the bright line (in pixels) 2

(b) Parameters varying for each test database

Parameter Meaning Value
N Side of the image (square) in pixels 128 or 256
ρmax Maximum value of ρ bN/2c
Cb Bright wake/clutter contrast (dB) 0.5 dB; 1 dB; 2 dB; 3 dB; 6 dB
ab Amplitude of the bright line without noise ab = 10

Cb
20

Cs Dark line contrast on clutter (dB) Cs = Cb

as Amplitude of the dark line without noise as = 10
Cs
20

(c) Parameters varying for each of the nbt images in a test database. The variables u1 and u2 are
independent random variables whose realization changes for each image and are drawn from a uniform
distribution between 0 and 1.
Parameter Meaning Value

θ Angle of the x-axis to the wake normal u1 × π
ρ Distance from the line to the origin of the coordinate system u2 × ρmax

Table 6.2: Parameters used for generating synthetic images.

The four reference chains are then tested by varying the signal-to-noise ratio, i.e., the
contrast of the wake lines compared to the clutter level, at four levels: 0.5 dB, 1 dB, 2 dB,
3 dB, and 6 dB. The size N of the image is also varied, testing two sizes (128 and 256 pixels
wide, respectively). This allows testing the influence of the length of the wake lines on
the integration performed during the Radon transform and, to some extent, in the Hough
transform. To conduct the test, a certain number of statistics are compiled in terms of
detection or false alarms.
Here’s how detections are counted. At the end of each chain, the processing is completed

with a thresholding by setting the threshold to sd = k× σ. We consider sd as a parameter
that can be varied. For a given value of sd, we only keep the value pairs (ρ, θ) passing the
thresholding. We then determine whether each of these value pairs is correctly detected or
not. A detection is considered good if:

• a wake is visible in the image (an always true assumption in our case);

• the detected line is sufficiently close to the actual line, as indicated in the test image
database for the considered image. For this, a tolerance margin of 10 pixels for ρ and
3 degrees for θ is considered. The tolerance for θ is taken modulo π.
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0 1

1

Figure 6.8: Interpretation of a ROC curve: the operating point D moves along a curve,
the curvilinear abscissa depending on the threshold s. We want to maximize the detection
probability Prd while minimizing the false alarm probability Prfa, i.e., finding a threshold s
such that D is as far as possible from the optimal operating point B, i.e., in the light green
area.

On the contrary, a detection is counted as false if:

• it is returned when no wake is present in the image;

• the parameters (ρ, θ) are outside the allowed tolerance range for the parameters of
the wake actually present in the image.

We then compile, for a given value of sd of the threshold, the number of good detections and
the number of false detections for all images in the database, which allows us to calculate
the wake detection probability Prd and the false alarm probability Prfa as functions of the
threshold k × σ:

Prd(sd) =
nbd(sd)

nbt(sd)
(6.30)

Prfa(sd) =
nfa(sd)

ndet(sd)
(6.31)

where nbd is the number of good detections counted on the test database, nfa is the number
of false alarms, and ndet is the total number of wakes detected (rightly or wrongly). The
Receiver Operating Characteristic (ROC) curves of each algorithm are then represented,
allowing them to be compared. Figure 6.8 recalls how to interpret such a curve. The actual
ROC curves are given for the four algorithms as a function of the wake contrast, for an
image size of 256 pixels (Figures 6.9 to 6.13) and 128 pixels (Figures 6.14 to 6.18).
The clear ranking of algorithms that emerges from the comparison of ROC curves is as

follows:

1. Chain 4: Radon Transform + Stochastic Matched Filtering

2. Chain 2: Radon Transform alone

3. Chain 1: Hough Transform
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4. Chain 3: Radon Transform + Wiener Filtering

It is observed that stochastic matched filtering slightly improves robustness compared to
the classical algorithm where only the Radon Transform is performed. However, for a
contrast below 2 dB, it becomes challenging to achieve a good trade-off between detection
probability and false alarm probability, even for Chain 4. Beyond 3 dB, the trade-off
becomes excellent. One notably observes the poor performance of Wiener filtering in
enhancing the visibility of the wake. In fact, if the filter is poorly adapted, it will also
amplify the noise. This adaptation is very challenging because, in the Radon plane after
high-pass filtering, the noise also consists of significant peaks, which will also be made
stronger by deconvolution (one can start to convince oneself by comparing Figure 6.6(b)
with Figure 6.7). If there is a perfect adaptation of the deconvolution filter (i.e., using a
filter closer to reality rather than a Gaussian), it tends towards the concept of a matched
filter. This explains the superiority of Chain 4 over Chain 3. Finally, it should be noted
that the image size has some influence on the detection rate, as rates at equivalent contrast
levels are better for 256× 256 images; however, for the strongest contrasts, the difference
in terms of detection probability remains minimal.

6.5 Conclusion of this chapter

This chapter has provided an overview of wake detection methods, followed by a comparison
of four reference chains implementing several classical approaches. It has also presented
an overview of filtering methods, allowing the removal of speckle noise in a radar image
and improving wake visibility.
The result of our comparison reveals that stochastic matched filtering is the most promis-

ing detection algorithm among those tested, but the detection improvement comes at a
cost: the signal must be modeled a priori through simulation. However, this can be done
offline before the actual detection, at the expense of modeling the wake and determining
representative signal parameters. In our evaluation, the most commonly used wake detec-
tion algorithm (Algorithm 2) takes the second place; it has the merit of being simple and
fast. The Hough transform is unsuitable for wake detection as it requires a preprocessing
step that is too costly to be truly interesting, even if it works for sufficiently large contrasts.
A comparison has also been made from the perspective of algorithmic complexity, placing
the classic chain number two in the first place, while stochastic matched filtering takes
the second place (for online processing, assuming the filters are precomputed). However,
the computation time remains too high to perform processing on a sliding window. It is
imperative to work on image blocks with careful overlap management to avoid working on
a truncated wake. It should be noted that the a priori provided by ship detection (not
addressed here) can make a big difference: detecting the wake in a window centered on the
ship detection is often sufficient.
One point to improve is the evaluation of algorithms. Only an initial evaluation has been

conducted here on a battery of simulated images. It would be beneficial to complement
this evaluation with tests on real data (assuming it can be acquired). In this situation,
the algorithms would be evaluated against the result of manual segmentation. Two points
should be noted: firstly, we do not have such an image bank, and secondly, there is a need
for a metric to compare automatic results with manual segmentation. A possible approach
for this task was proposed by Martin, Laanya, and Arnold-Bos [126]; it involves manually
annotating images by human operators, then merging the annotations, taking into account
the level of detail or uncertainty of the annotations, to arrive at a reference annotation
that can be compared to the outputs of the algorithms to be tested.
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Figure 6.9: Results for images of size 256×256, contrast equal to 6 dB
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Figure 6.10: Result for images of size 256×256, contrast equal to 3 dB

182



6.5 Conclusion of this chapter

10−3 10−2 10−1 100
10−3

10−2

10−1

100

Pfa

P d

(a) Algorithm 1

10−3 10−2 10−1 100
10−3

10−2

10−1

100

Pfa

P d

(b) Algorithm 2

10−3 10−2 10−1 100
10−3

10−2

10−1

100

Pfa

P d

(c) Algorithm 3

10−3 10−2 10−1 100
10−3

10−2

10−1

100

Pfa

P d

(d) Algorithm 4

Figure 6.11: Result for images of size 256×256, contrast equal to 2 dB
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Figure 6.12: Result for images of size 256×256, contrast equal to 1 dB
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Figure 6.13: Result for images of size 256×256, contrast equal to 0,5 dB
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Figure 6.14: Result for images of size 128×128, contrast equal to 6 dB
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Figure 6.15: Result for images of size 128×128, contrast equal to 3 dB
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Figure 6.16: Result for images of size 128×128, contrast equal to 2 dB
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Figure 6.17: Result for images of size 128×128, contrast equal to 1 dB
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Figure 6.18: Result for images of size 128×128, contrast equal to 0,5 dB
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Chapter

7 Detection of Kelvin Wake in High-
Resolution Radar and Optical Images
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As discussed in Chapter 3, wakes are highly visible elements in radar images. In low-
resolution radar images obtained by observation satellites, it is possible to see wakes ex-
tending over several kilometers behind the ship. This wake appears as straight lines.
Initially, a dark line is observed in the direction of the ship’s travel, possibly framed by
one or two bright lines: this is the turbulent wake. One can also see one, sometimes two
bright lines extending on either side of the turbulent wake to form a cone typically with
a 39 opening, with its apex at the stern of the ship: this is the radar image of the Kelvin
wake. The previous chapter shows that line detection algorithms, supported by appropri-
ate preprocessing and post-processing, can detect these lines, providing information about
the presence of a ship, as well as its position and heading.
However, in low-resolution images, the Kelvin wake wave system inside the cone is not

visible. These waves are only visible with higher-resolution side-looking radars, typically
airborne. Detecting internal waves is interesting because it allows retrieving the wake
spectrum, which is known to depend only on the ship’s speed. The ship’s speed is an
additional element that can potentially be used to estimate the parameters of the ship’s
motion model to predict its trajectory.
In this chapter, which follows the previous one, we attempt to answer the question of

detecting and analyzing the Kelvin wake waves in high-resolution radar images (as well as
in high-resolution optical images since the method presented in this chapter is also valid
for these data). Initially, we focus on the acquisition conditions of images to maximize the
visibility of these waves (Section 7.1); the reflections presented in this section were pub-
lished in our article “Investigating Possible Bistatic Configurations For Ship Wake Imaging
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Through Simulation” [10] during the IEE Radar 2007 conference. Subsequently (Sections
7.2 to 7.4), we present an algorithm to recover the ship’s speed parameters from raw radar
or optical images. This algorithm uses a preprocessing step based on the generalized Radon
transform of the wake, which is then thresholded using stochastic matched filtering. This
algorithm was proposed in “Obtaining a Ship’s Speed and Direction From Its Kelvin Wake
Spectrum Using Stochastic Matched Filtering” [12], which we presented at the IGARSS
2007 conference. Additional reflections on this work are provided at the end of the chapter.

7.1 Choice of a priori design to enhance Kelvin wake visibility
in radar imagery

The size of the variable space influencing the quality of the received image is very large,
and we will not go into detail, as these elements are explained in the early chapters of this
manuscript. It is, therefore, extremely difficult, if not unrealistic, to choose the “brutal”
approach of testing each parameter individually. It is better to start with some simple
a priori considerations to select certain configurations, then validate these configurations
through more detailed simulation and sea trials, if possible. The rest of this section details
the important parameters that will influence the quality of the final image.

7.1.1 Radar design choices

There are radar hardware design choices that will directly affect the visibility of desirable
elements in the image, such as carrier frequency, polarization, modulation, and antenna
(which influence resolution), etc. These elements are fixed before measurements are taken,
i.e., during the design of the equipment, and do not depend on the platform or acquisition
geometry. When imaging the sea, the ability to directly measure heights by a variation
in the distance traveled by the wave is often of lesser importance compared to the ability
to distinguish waves using shadows and/or contrast differences between one side and the
other of the waves. Indeed, these contrast differences create a visible periodicity effect, for
example, in a Fourier transform. For this reason, we propose contrast as the first criterion
to optimize. The choice of parameters is made based on this criterion.

7.1.1.1 Polarization

Some polarizations are better than others in maritime surface imaging. For monostatic
radars, as discussed in Chapter 3 (Section 3.1.1.2), the HH polarization is considered better
for imaging the Kelvin wake than the VV polarization, as HH polarization provides better
contrast between the specular and diffuse zones, or between steeper and more moderate
slopes. This allows for a better view of Kelvin wake waves. In fact, specular returns will
tend to be comparatively more significant than diffuse returns. HH polarization also favors
the visibility of ships. In contrast, VV polarization is considered better for the visibility
of dead water wakes and hydrocarbon slicks. Cross-polarization is not yet widely used in
consumer radars, although it is beginning to be available in satellite products as it provides
even better contrast for medium incidence angles. The MaRS simulator confirms this in
the monostatic case and suggests that bistatic cases yield similar results.

7.1.1.2 Frequency

The X-band is the most frequently used frequency band in maritime radar. Still, it has
been shown that the L-band, with lower frequencies, can highlight several elements of the
Kelvin wake, in the form of bright lines forming a cone of about 12 degrees around the
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ship’s direction of motion (see Chapter 3). This is because at these frequencies, the waves
from that part of the wake resonate with radio waves. Additionally, this band is also
used by positioning satellites (GPS, Galileo, etc.), even though the resolution of a bistatic
radar using these opportunistic transmitters will be very low since the emission has a low
bandwidth (about one megahertz), much less than a dedicated radar system. Another
advantage is that diffuse reflection tends to decrease with frequency, further maximizing
the contrast between the specular and diffuse zones.

7.1.1.3 Resolution requirement

Depending on what you want to observe, resolution requirements differ. With the res-
olutions currently available with radar satellites (about 30 m, as multiview imagery is
generally used to reduce speckle noise), turbulent wakes and the transition between the
wake and the undisturbed area in front of the Kelvin cone can be seen well, although less
frequently than the turbulent wake. However, Kelvin wake waves, i.e., those “inside” the
cone, are not visible. To have a chance of seeing these waves, the ground resolution must
be compatible with the wavelength of the Kelvin wake. For example, a ship traveling at a
speed Vb = 10 knots generates transverse waves in the ship’s direction with a wavelength
equal to 2πV 2

b /g0 = 17.2 m, which means that the ground resolution must be at least 8.5
to 9 m for the image to be sampled respecting the Shannon-Nyquist criterion. This ground
resolution criterion will affect both the distance axis resolution (and signal modulation)
and the azimuth modulation (and antenna size).

7.1.2 Operational choices

Operational choices are those that will influence the observation configuration, i.e., both
the position of the transmitter and the receiver, the angle of incidence, the distance to the
target, etc., to maximize the visibility of the elements one wishes to observe.

7.1.2.1 Resolution

In monostatic configuration, the ground resolution in distance increases with the incidence
angle θ according to the well-known relationship:

drsol =
dr

sin θ
(7.1)

where dr is the resolution on the distal axis (in the bistatic case, the expression is given in
Chapter 1, Section 1.6.2). This suggests, at least in monostatic configuration, the use of
large incidence angles (or, in other words, shallow grazing angles) to maximize resolution.
Moreover, the slope of the waves will influence their reflectivity. This slope will vary with
the wind speed (for the sea in general) and the shape of the ship’s hull in the wake zone. If
one wishes to maximize wave contrast, a very shallow incidence is also desirable because the
backs of the waves will tend to appear darker while the visible faces will be brighter. Once
this contrast is maximized, it will allow for a better estimation of the spatial frequency of
the waves.

7.1.2.2 Platform altitude

A low grazing angle is more easily obtained for a platform flying at low altitude. However,
in the case of an aircraft, atmospheric turbulence in the troposphere must be taken into
account, which could blur the images due to sudden movements in the pointing direction
of the antenna. In the case of a satellite, flying at a low altitude (e.g., 200 km) is costly
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because residual atmospheric friction tends to slow down the satellite: a significant amount
of fuel will be needed to keep the satellite in place. This results in a shorter lifespan than a
satellite flying at a higher altitude. Additionally, to power the radar system, it is preferable
to use solar panels continuously rather than a battery, imposing a heliosynchronous orbit
at an altitude of approximately 800 km. Annex B shows that most Earth observation radar
satellites use a heliosynchronous polar orbit.

7.1.2.3 Minimizing sea clutter based on position

The last point to address concerns the limitation of sea clutter. Simulations in Chapter 5
and experimental data show a strong dependence between the sea clutter shape and the
incidence angle (on the one hand) and the angle between the radar’s line of sight and the
wind direction (on the other hand). As seen in Section 5.3.2.2, sea clutter tends more
toward a Rayleigh distribution as the incidence decreases, and as the radar looks in the
direction of wave propagation, resulting in much less dispersion of pixel intensity in the
image.

7.1.2.4 Swath and time on target

For a practical application, one wants to maximize the observed area. The largest swath
is obtained either for orbiting radars (up to 500 kilometers, but with low resolution –
typically 100 meters) or for trans-horizon radars emitting in the HF band (but again,
with low resolution). Since the resolution requirement is strongest for wake detection
applications, one will have to settle for a limited swath.
Nevertheless, it is possible to find a good compromise between swath and resolution on

an airborne SAR system at high altitude. To give an idea with a current system, the
American high-altitude, long-endurance drone RQ-4A Global Hawk is reportedly capable
of covering 40,000 square nautical miles per day, around 137,000 km2, roughly a quarter
of metropolitan France, at a resolution of 6×6 meters in scanning mode, and even more in
spotlight mode (see Annex B for more detailed characteristics). The balance is therefore
not so negative.
As for current radar satellites, flying in a heliosynchronous orbit also has an impact on

the time spent over the target area. The heliosynchronous polar orbit allows imaging the
entire Earth: with each orbit, which lasts about 100 minutes, the Earth will have rotated
a bit on itself (about 2800 km at the equator), and the satellite’s ground track will be
different. The satellite will pass directly above the same point after a cycle whose order
of magnitude is about 30 days and will return to the vicinity (within a few kilometers) of
that point after a sub-cycle of about three days. This granularity is very low and does not
allow imaging the same area continuously with a single satellite. Moreover, the date and
time of passage of these satellites over a zone are well known, allowing for a reaction in
case one seeks to avoid detection by these satellites.

7.1.2.5 Operational requirements for bistatic cases

Bistatic configurations could be chosen for two reasons: firstly, to optimize wake visibility,
and secondly, for cost reasons – in the hope of using only an opportunistic transmitter –
or for reasons of discretion.

Use of Opportunistic Transmitters If an opportunistic transmitter is used, well-known
and continuously available emissions should be favored to maximize the bistatic system’s
usage time. One could think of GPS emissions or public radio, television, or GSM relay
stations. Moreover, these emissions are usually omnidirectional, allowing the receiver to be
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placed anywhere as long as the link budget remains good. Unfortunately, these emissions
are often of very narrow bandwidth, for spectrum congestion minimization reasons:

• GPS: the band is of the order of megahertz, giving a ground resolution of less than
150 m after compression;

• terrestrial digital television: the European standard DVB-T allows emissions on chan-
nels of 5, 6, 7, or 8 MHz wide, i.e., less than 30 m to 18.75 m in distance resolution.

• GSM stations: 25 MHz of bandwidth, subdivided into 125 channels of 200 kHz;

• FM radio stations: about 200 kHz of bandwidth at best;

The fact that these modulations are often continuous complicates things. Moreover, it
should be remembered that these emissions are only available close to the coast (except for
GPS). In the end, bistatic experiments using these opportunistic sources have had mixed
results in applications with a strong resolution requirement.

Use of Cooperative Transmitters in the Atmospheric Domain The use of cooperative
sources significantly simplifies the implementation of the bistatic radar system. To choose
the ideal configuration, one can start by studying resolution. In bistatic configuration,
resolution degrades with the angle between the pointing axes of the transmitter and the
receiver antennas (see Chapter 1, Section 1.6). This observation tends to favor, in the
bistatic case, configurations where the pointing axes of the antennas are in the same plane
(configurations 3 and 4 in Chapter 5). Non-parallel BiSAR configurations (such as the
one illustrated in Figure 1.13 in Chapter 1) assume that the antennas of the transmitter
and the receiver are steered to illuminate the same spot, which is a challenging technical
problem. This type of configuration also favors working in spotlight mode (both antennas
point to a fixed point in the scene), which improves resolution and flexibility but limits
the swath.
Moreover, in the case where two carriers fly in parallel, the obtained images are qualita-

tively similar to the monostatic case, as shown in Chapter 5 when comparing Configuration
3 with SAR Configurations 1 and 2. Since, in general, it will not be feasible to fly two
aircraft in concert to image an area, it seems logical to settle for the monostatic SAR
configuration to do the job.

Use of Spaceborne Transmitters The availability time of the satellite on the ground
for bistatic applications is related to the orbits of the satellites. In heliosynchronous polar
orbit, this time is of short duration with low time repetitiveness (every three days). How-
ever, this repetitiveness increases with the number of satellites in orbit. It is also possible
to imagine placing transmitters in geostationary orbit to illuminate a larger area, but the
power budget will be lower. Only a small number of such transmitters, three or four, is
needed to illuminate most of the Earth (except at the poles), as the Earth is seen at an an-
gle of about 17 degrees from geostationary orbit, allowing 42% of the planet to be visible.
Dedicated radar satellites (i.e., emitting a wideband pulsed signal) are not currently in
orbit. However, BiSAR applications with geostationary relay satellites have been recently
tested [118].

Conclusion In the context of Kelvin wake imaging, airborne SAR imaging seems ideal
from an operational standpoint. If one wishes to use a bistatic system, the only bistatic
configuration that seems to have some operational interest for wake imaging at first glance
is Configuration 4 in Chapter 5: a ground-based transmitter, an airborne receiver, or vice
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versa. This configuration also has the advantage of clearly highlighting the wake waves
through the alternation of well-illuminated and non-illuminated slopes, making it easy to
detect them and calculate their period. On the downside, antenna steering is required,
necessitating a dedicated communication link between the transmitter and the receiver.
This link does not exist today. Indeed, given the implementation difficulties, the gain
provided by a bistatic configuration seems to be extremely marginal for a Kelvin wake
imaging application.

7.2 The problem of Kelvin wake detection and analysis

In the following, it is assumed that one wishes to detect and analyze the Kelvin wake of
a ship in a sufficiently well-resolved image, acquired by radar or an optical sensor. The
principle of the method we are going to develop is, with a few adaptations, the same in
the case of radar imaging (possibly bistatic) and in the optical case.

7.2.1 Kelvin wake height map in the world coordinate system

Theory shows that the elevation function ζw of the sea surface at point (x, y) can be
described as the superposition of sinusoidal waves, each with a certain direction θ, a certain
amplitude, and a certain phase φ(θ). In the case of a perfectly flat sea in the presence
of only the Kelvin wake, Chapter 3, page 94, equation 3.15 established that in the ship’s
frame of reference B:

ζw(xb, yb) = R

∫ +π
2

−π
2

AVb,Y (θ)e−φ(θ)dθ (7.2)

with:

φ(θ) =
g0

(Vb cos θ)2
[xb cos θ + yb sin θ] (7.3)

where AVb,Y is the Kochin function, parametrized by the ship speed Vb and the hull shape
function Y . In the world frame W, calling θb the ship heading, we can always write:{

ζw(x, y) = R
∫ π/2
−π/2AVb,Y (θ) exp(−φ(θ))dθ

φ(θ) = KV,θb(θ)[x cos(θ − θb) + y sin(θ − θb)]
(7.4)

Here, KVb,θb(θ) is the wave number of the waves traveling in the direction θ in the ship
frame:

KVb,θb(θ) =
Kb

cos(θ − θb)2
(7.5)

where Kb = g0/V
2
b is the wave number associated with the ship and g0 is the acceleration

due to gravity. It is useful to consider the analytic representation ζ̃w of ζw:

ζ̃w(x, y) = ζw(x, y) + ζ̌w(x, y) (7.6)

where ζ̌w is obtained by the Hilbert transform of ζw [197]. Then we have:

ζ̃w(x, y) =

∫ π/2

−π/2
A?Vb,Y (θ) exp(−φ(θ))dθ (7.7)
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7.2 The problem of Kelvin wake detection and analysis

where ? denotes the conjugate. It is then shown that the Fourier transform Z̃w of ζw, using
(Kx,Ky) as coordinates in the Fourier plane, is:

Z̃w(Kx,Ky) =

∫ +π/2

−π/2
A?Vb,Y (θ)δ(gVb,θb(Kx,Ky))dθ (7.8)

where δ is the Dirac distribution and the function gV,θb defines the locus (k, θ) of the wake
spectrum; this function must satisfy the equation (7.5), thus:

gVb,θb(Kx,Ky) = 0
4⇔
√
K2
x +K2

y −
Kb

cos2(arctan(Ky/Kx)− θb)
= 0 (7.9)

This spectrum lives in the half-plane defined by the inequality:

Kx cos θb +Ky sin θb ≥ 0 (7.10)

It is then possible to go back to the Fourier transform Zw of ζw. Indeed both transforms
are linked by a key property of the Hilbert transform: for any function s of analytic
representation s̃ = s+ š, its Fourier transform is:

S̃ = S + Š (7.11)

where:

S̃(f) = [1 + sgn(f)]S(f) (7.12)
Š(f) = − sgn(f)S(f) (7.13)

This relation (7.11) can be extended to 2D using the following set of equations [197]:

• for Kx, Ky such that Kx cos θb +Ky sin θb > 0:

Žw(Kx,Ky) = −Zw(Kx,Ky) (7.14)
Z̃w(Kx,Ky) = 2Zw(Kx,Ky) (7.15)

Zw(Kx,Ky) =
1

2
Zw(Kx,Ky) (7.16)

• for Kx, Ky such that Kx cos θb +Ky sin θb > 0:

Žw(Kx,Ky) = 0 (7.17)
Z̃w(Kx,Ky) = Zw(Kx,Ky) (7.18)

• for Kx, Ky such that Kx cos θb +Ky sin θb < 0:

Žw(Kx,Ky) = Zw(−Kx,−Ky) (7.19)
Z̃w(Kx,Ky) = 0 (7.20)

Zw(Kx,Ky) =
1

2
Zw(−Kx,−Ky) (7.21)

Figure 7.1(b) illustrates this result by showing the Fourier transform of Figure 7.1(a), with
the locus of the spectrum satisfying equation (7.9).
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7.3 An algorithm for Kelvin wake detection in optical and radar images

7.2.2 Modulation transfer function linking the height map to the received
image

In remote sensing, only an image I(i, j) of the surface defined by z = ζ(x, y) is known; this
image is acquired by a camera or radar. The coordinates i, j are pixel coordinates in the
image at the acquisition resolution. The Kelvin wake height map ζw(x, y) is not known.
In SAR imaging, however, it is possible to relate the spectrum of I to the spectrum of
ζw through a modulation transfer function F [HMTF] [5, 91]; the same can be done with
optical images. In all cases, we have:

F [I] (κi, κj) = F [HMTF](Kx,Ky)F [ζ] (Kx,Ky) (7.22)

In equation 7.22, the left term is a Fourier transform in the spatial frequency plane of
the image κi and κj ; and the right term is a Fourier transform in the frequency plane of
the elevation map.
To illustrate the concept of the modulation transfer function, we have mainly developed

the theory in the context of Optics. The functions involved in Optics are simpler than
in Radar, making it easier to grasp the ideas, while knowing that the results we need
in the following are qualitatively the same in both domains. However, to stay focused
on our main exposition, this work is relegated to Appendix E. Moreover, the problem
of the transfer function has probably been more extensively studied in the literature in
the Radar domain than in the Optics domain. Interested readers can refer, for example,
to Hasselmann and Hasselmann [91] or Krogstad [110, 111] for the modulation transfer
function theory in monostatic radar, and to Wang et al. [185] for computational aspects
in the bistatic case. One of the advantages of this digression into the Optics domain is to
show that the work presented in the rest of this chapter can be used for both optical and
radar images. Another advantage is that it is also very easy to obtain a large quantity of
real optical images to validate our approach, which is not the case for radar images.

7.3 An algorithm for Kelvin wake detection in optical and
radar images

7.3.1 Problem

If we assume that the modulation transfer function F [HMTF] is nearly linear – which is
the case in both Optics and Radar – then the locus of the wake spectrum in the Fourier
spectrum of the image I is generally the same as in Zw. There may be a trivial distortion
if the image does not have the same resolution on both sides, but we will assume later on
that the resolutions are identical.
The problem of detecting the Kelvin wake in the image is then equivalent to detecting the

wake spectrum in the spectrum of the image. However, it is crucial to do this in a robust
way since the wake spectrum will be embedded in the spectral components coming from
other waves. The only approach we know so far, using the spectral approach, was proposed
by Wu et al. [197]; to our knowledge, it is also the only document closely examining the
exploitation of the Kelvin wake in high-resolution data. Wu’s approach involves detecting
pairs of points (P1i, P2i) present on the wake spectrum locus, by thresholding this spectrum,
and then using these points to determine an estimate (Vi, θ

i
0) of the ship’s speed and

heading. The final estimate of Vb and θb is obtained by averaging the Vi and θib. We
believe that this method is not very robust since only a small number of points detected in
the wrong place are enough to corrupt the average. Even if a RANSAC1-like scheme [67]

1RANSAC stands for “Random Search And Consensus”.
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is used to reject bad points, it is better to try to go back to the basics of the method by
improving wake detection.

7.3.2 The algorithm

In the following paragraphs, we will detail the steps implemented in the algorithm we
propose to improve the detection of the wake spectrum. The input to the algorithm is
an optical or radar image denoted I with geometric characteristics similar to those of a
surface image seen from a “top-down” point of view (which may require correcting the
perspective in optics and switching to ground resolution for radar). The algorithm itself is
divided into three steps. First, a preprocessing step on the Fourier transform of the image
is performed. Then, we perform a Generalized Radon Transform (GRT) on this Fourier
transform. Finally, we threshold this transform to detect a peak corresponding to a wake.
The output of the algorithm is information about the presence or absence of the wake, and
in case of presence, it provides the speed and direction of the ship’s trajectory.

7.3.2.1 Preprocessing

We start by computing the amplitude of the 2D Fourier transform of I. We then at-
tenuate the low frequencies in the Fourier transform to limit false alarms later (in our
implementation, the cutoff frequency was set to 10 cycles2). The contrast of the Fourier
transform is then enhanced using a high-pass filter. We denote F (Kx,Ky) the result of
this preprocessing.

7.3.2.2 Generalized Radon Transform

To detect the wake, two things are desirable: first, we want to improve the signal-to-noise
ratio of the spectral signature of the wake; then we want to reduce the spatial extent of
this signature to detect it more easily. The general idea is to concentrate all the energy
of the wake spectrum in as concentrated a peak as possible so that this peak can stand
out from the rest of the spectral components, which are seen as noise. To do this, we will
calculate the sum of the spectrum of F for all its possible locations, or for all possible
pairs (Vb, θb), as these two parameters uniquely define a wake. If a wake is truly present in
the image, then the sum will be very significant for the particular value of Vb and θb that
corresponds to this wake, and low for all other values of Vb and θb. It is nothing more than
the Generalized Radon Transform (GRT) of the image for a family of curve parameters
(Vb, θb) with gVb,θb(Kx,Ky) = 0 as an implicit equation. The transform R of F for a wake
with parameters (Vb, θb) will be:

R(KVb , θb) =

∫∫ +∞

−∞
F (Kx,Ky)δ (gVb,θb(Kx,Ky)) dKxdKy (7.23)

where δ is the Dirac distribution. Alternatively, we can note that a particular point of
F located at coordinates (Kx,Ky) can intercept a whole family of wake locations with
parameters (V, θb), or (K0

b , θb), defined by the equation

Kb(θb) =
√
K2
x +K2

y cos2 (arctan(Ky/Kx)− θb) (7.24)

These curves are sinusoids in the plane of axes (Kb, θb). After calculating the GRT of F ,
the local mean is subtracted from the result R to give a function R′, which improves the
visibility of the peak that is present if a wake is in the image.

2For an image whose width n corresponds to one unit of length.
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(a) Original optical image, side length L=800 m

(b) 2D Fourier transform magnitude

(c) Spectrum locus in the transform

Figure 7.1: An optical image of a Kelvin wake (source: USGS) and the locus of the spectrum
in the Fourier plane. We measure about 50 cycles over 800 m, corresponding to a wavelength
of about 15 meters, as found in the original image a).
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7.3.2.3 Thresholding

The thresholding problem of the Radon transform is exactly the same as in the previous
chapter. The position (Kb, θb) in the GRT of a detected peak gives the speed and direction
of the ship. Therefore, we will not revisit the state of the art and the discussion that
was conducted regarding thresholding in the previous chapter. However, as this is one of
the most important steps of the algorithm, we will dedicate the following paragraph to
improving the visibility of the peak through stochastic matched filtering. In the end, the
algorithm follows the chain presented in Figure 7.2.

Elevation map

Generalized Radon
transform

High pass filter

Preprocessed image

Information: ship speed and direction

1 - 2D Fourier Transform
2 - Masking low spatial frequencies
3 - High pass filter

Transformed iamge

Transfer function

Raw input image

Filtered image

Stochastic Matched Filtering

Filtered image

thresholding

Radar or optical system

Figure 7.2: Block diagram summarizing the acquisition and processing chain with our
Kelvin wake detection and analysis algorithm. Note that we acquire not the height map
but the raw image after the transfer function HMTF.

7.4 Improving thresholding with Stochastic Matched Filtering

We find ourselves, at the paragraph 7.3.2.3, in a situation very similar to that of chain 4
in Chapter 6, and within the theoretical framework defined in Appendix D, from which
we take the notations. Here, the noise corresponds to the GRT of the wave spectrum in
the image, while the signal corresponds to the signature of ship wakes, appearing as a
peak whose shape can vary. Indeed, the shape of the signal fluctuates not only due to its
position in the transform but also and especially due to the diversity in the shape of ship
hulls, as well as the speed of the boats in the scene.
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7.4.1 Construction of Stochastic Matched Filters

The construction of the battery of stochastic matched filters requires the estimation of
the variance-covariance matrix of the signal and noise. This estimation can be done for
a fixed-size window adapted to the size of the signal to be detected. We use simulation
tools as well as real images for this. This process can be time-consuming (one day, in our
case), but it can be done offline. Following Appendix D, we will denote P and Q as the
variance-covariance matrices of the signal and noise, respectively.
First, it is necessary to estimate the typical size of the window adapted to the signal.

This can be done through trial and error; in our case, we chose a square window of nine
pixels wide (i.e., n = 9 × 9 = 81 entries). The window must capture the essential energy
of the signal without being too large, so as not to demand too many samples for the
estimation of the variance-covariance matrix. There must be at least n realizations of
a signal window and noise window because for a smaller size, the estimated variance-
covariance matrices would become singular. We can then calculate the stochastic matched
filters {hi} associated with the eigenvalues of the problem, {λi}, these eigenvalues allowing
the thresholding of the signal (see Appendix D, paragraph D.6).

7.4.1.1 Estimation of Q

We apply the entire chain of preprocessing and Generalized Radon Transform to a set
of real images that do not contain wakes. The images were taken in various sea condi-
tions, different observation directions, and potentially with features such as the presence
of internal waves or streak zones, locally disturbing the shape of the surface.
We worked with 64 optical images without wakes, sized 600× 400 and with a resolution

of 1 m (Figures 7.7 and 7.7), randomly taking several windows in the R′ plane per image to
sample the noise in the R′ plane; in the end, we have 1000 pure noise windows. Note that
the number of samples taken to generate pure signal and pure noise windows is relatively
arbitrary; the essential thing is to find a compromise between diversity and a reasonable
computation time.
For each image, we then chose a certain number of sub-windows in which we are cer-

tain that there is no noise. We then calculate the variance-covariance matrix Cn. This
matrix has a dominant diagonal, showing that noise in the Radon transform is spatially
uncorrelated.

7.4.1.2 Estimation of P

To estimate the signal, we must work in the absence of noise, forcing us to work with a
model. We therefore considered nine classes Ci, i ∈ [1..9] of “representative” hulls: plea-
sure sailboat, cruise ship, coastal patrol boat, frigate/destroyer, tanker, periscopic attack
submarine, and Wigley-type parabolic hulls with different length/width ratios (4, 5, and
6). For each class Ci, we have a prototype hull model Y i

0 ; for example, for the attack
submarine class, it is a Los Angeles-class submarine (SSN 688); for the frigate/destroyer
class, the chosen hull is the DTMB 5415; for the other classes, generic 3D models were
used. Other ships Y i

j , j ≥ 1 are scaled versions of Y i
0 , with a length Lij and a speed V i

j .
Here is how ships of each class are generated. We aim to vary the length and speed

parameters (assuming that the width parameter is proportional to the length parameter,
with the proportionality factor related to the class i; this is a somewhat arbitrary but
significantly simplifying choice). The speeds Vb are chosen so that the associated wave
numbers Kb = g0/V

2
b evolve with a step of one meter per second between 1 m/s and

13 m/s. For each speed, we generate (arbitrarily) 50 ships, making a total of 650 ships.
The length of these ships is drawn from a normal distribution, with the mean being the
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length of the class prototype, and the standard deviation σLbi a parameter of the class
chosen to be representative of the typical size of ships in that class. Similarly, the speed
range for a class of ships is defined as a Gaussian centered at zero with standard deviation
σVbi (for negative speeds, a new value is drawn). Figure 7.3 shows the distribution of ships
used here.
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Paquebot générique
Corvette
Frégate DTMB 5415
Cargo / Pétrolier générique
SNA classe 688
Coque Wigley, L/B=4, 5 et 6

Figure 7.3: Distribution of the 650 ships used to generate a bank of pure signals. The
legend indicates the class of the ships.

For each reference model Y i
0 , we can calculate the wake wave amplitude functionAY i0 (Vb, θ)

(cf. 7.4) for all angles θ and a wide range of speeds Vb very finely sampled. We do this
by integrating over the ship hull as explained in Chapter 3. This operation takes some
time (about 40 s in our case), so we only do it for the class prototypes. Figure 7.4(a)
shows the prototype of the periscopic attack submarine class, while Figure 7.4(b) shows
the magnitude of its Kochin function |AY i0 (Vb, θ)|, with θ ∈ [−π/2,+π/2] and Vb between
0.3 and 12.8 m/s.
We can deduce the amplitude function AY ij

(Vb, θ) for the ship Y i
j from that of the

class prototype Y i
0 . Indeed, two ships differing only in their scale and sharing the same

Froude number Fr = Vb/
√
g0Lb will have the same wake with waves whose amplitude is

proportional to the length of the ship. Therefore, if we have the input speed V i
j , the length

Lij of the i-th ship in the class j, and we know the length of the class prototype Li0, we
can calculate the corresponding speed for the prototype V i

0 using the equality of Froude
numbers, and the amplitude function of the ship hull Y i

j becomes:

AY ij
(V i
j , θ) =

Lij
Li0
AY i0

(√
Lij

Lj0
V i

0 , θ

)
(7.25)

By knowing the amplitude functionAY ij (V i
j , θ) and the location of the spectrum gV ij

(Kx,Ky),
we can simulate an image F as it would be obtained by the preprocessing obtained in para-
graph 7.3.2.1; then we can calculate the generalized Radon transform R′ of F ; and then we
can extract a window containing the peak of R′ corresponding to the wake. We can then
add this window to the set of noiseless signals that will be used to calculate the covariance
matrix of the pure signal P. Figure 7.5 shows an example of such an ideal signal.
The amplitude function AY ij (V i

j , θ) alone is not sufficient to define the received image,
as seen earlier; it is necessary to apply the transfer function specific to the sensor (cf.
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paragraph 7.2). This also requires considering the incidence angle and the direction of the
sensor (in optics) or the radar system (possibly bistatic) as random variables. Since we
analytically have the Fourier transform of the wake, and it is located on a curve in complex
space, it is much more advantageous to work with the “transfer function” approach, rather
than generating a wake map ζw and working in natural space. We therefore directly
generate the Fourier transform of the observed image without generating a wake map or
calculating the rendering of that map.
Once these pure signals are obtained, we can also directly apply the processing of our

detection chain in the Fourier plane, then calculate the generalized Radon transform, in
order to ultimately obtain the signal in the R′ plane. This signal forms a peak, of variable
size and shape, but living in a low-dimensional space: a window W of 9×9 pixels at most.
Figure 7.5 illustrates these ideas by showing the appearance of the generalized Radon
transform of such a wake in the absence of noise.

7.4.2 Experiments on real optical images: protocol

Used Data We have two databases: one containing images of sea without wake (Figures
7.7 and 7.8), the other containing wake images (Figures 7.9 and 7.10). These images were
obtained from terraserver-usa.com3, and are of the same size and resolution: 600× 400
pixels at 1 m resolution. There are 64 images in each database.

A limitation of the stochastic matched filtering test on real data Real images have the
immense advantage of not being a simplified model. However, one does not always have
all the desirable information, especially when working with data not explicitly acquired for
testing purposes. In this case, there is a significant problem related to the overall gain of the
signal simulation chain. On simulated data, calculating this gain is possible. On real data,
such as those gathered on the Internet –the only ones easily available in quantity– a major
drawback is that gain information is not available. The images are typically represented on
8 bits or 3×8 bits in color, and adjusted to be correctly exposed, with possibly a truncated
histogram for extreme values (clamping or histogram clipping). This adjustment, or gain,
is different from one image to another, and unknown. One cannot go back to the level of
intrinsic signal or noise, i.e., that obtained in an idealized acquisition without gain.
If the level of intrinsic noise were constant from one image to another, one could imagine

normalizing the received images by the noise power, which is easy to estimate, and thus
eliminate the gain (but not the histogram truncation). Indeed, globally the signal is made
up of noise. The quantity of pixels corresponding to the signal is proportionally very
small. Therefore, calculating a quantity such as the standard deviation will not be much
biased by the presence of the signal and will correspond quite well to the threshold noise
standard deviation. However, the level of intrinsic noise varies (with the sea state), while
the signal level does not vary with the sea state: this asymmetric dependence on the sea
state means that if one were to normalize the noise level, one would transfer the unknown
to the signal level, which is not desirable. Overall, therefore, on real images acquired in
an uncontrolled manner, we must work with an unknown gain in the end. This will not
change the expression of the stochastic matched filters or the actual signal-to-noise ratio
obtained, but only that of the predicted signal-to-noise ratio based on the eigenvalues {λi},
which no longer means anything.
Concretely, therefore, if such real data is used, one has only to calculate the filters {hi}

and try them out, keeping empirically only those that indeed improve the signal-to-noise
3As the images come from the U.S. Geographical Service, they are in the public domain.
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ratio. We have therefore carried out this test by calculating the covariance matrix of the
noise on our test base of 64 real images (Figures 7.7 and 7.8), by randomly taking several
windows in the R′ plane per image to sample the noise in the R′ plane; we end up with a
total of 1000 windows of pure noise. Note that the number of samples taken to generate
the windows of pure signal and pure noise is relatively arbitrary, the main thing being to
reach a compromise between diversity and reasonable computation time.

7.4.3 Result of tests on real optical images

Figure 7.6 presents the result of the processing on the image shown in Figure 7.1(a). The
images are scaled so that the noise standard deviation is unity. It can be seen that the
contrast in the image is better after using the stochastic matched filtering, and the spike
corresponding to the ship wake is more visible. The signal-to-noise ratio is improved by
3.28 dB on this image, after using the stochastic matched filtering.

7.4.3.1 Processing time

The observed average processing time for 128 images, using Matlab4, was 1.27 seconds for
the entire processing, with 1.06 seconds in the Generalized Radon Transform (GRT). The
input images had a size of 600×400 pixels; the output images were calculated for 180 angles
with a one-degree step, and 360 pixels for the velocities, which is half the diagonal of the
input image. The GRT was implemented in the C language using the naive algorithm5,
while taking care to precalculate elements as much as possible in the outermost loops,
especially by tabulating trigonometric functions. This simple optimization gained us an 8x
factor in computation time. The algorithmic complexity of the operation is O(n2) where
n is the size of the image side; this is the complexity of the Generalized Radon Transform,
which cannot be computed by a Fourier transform like the Radon transform for lines. The
complexity of the GRT dominates that of the Fourier transform in O(n log n). It should
be noted here that quadratic complexity becomes a concern for real-time applications.

7.5 Conclusion of this chapter

This chapter presented several considerations regarding the detection of Kelvin wake in
high-resolution images, acquired either by radar or optical imaging.
In the first part, we briefly listed a number of parameters influencing the visibility of

the Kelvin wake, which need to be optimized. The conclusions drawn from this analysis
are as follows. First, it is desirable to have a sufficiently large incidence angle to increase
the visibility of Kelvin wave patterns through shadows and minimize clutter. The use of
HH polarization or cross-polarization is recommended. Finally, the ground resolution also
influences the visibility of slow-moving ships: the higher the resolution, the more visible
slow ships will be. The resolution requirement, along with the cost of the system, seems
to favor airborne monostatic SAR systems or airborne BiSAR configurations with one of
the two components (transmitter or receiver) on the ground, to the exclusion of any other
bistatic configuration. However, the chosen bistatic configuration requires a cooperative
transmitter, resulting in only marginal operational gain.
In the second part, we presented a new algorithm for Kelvin wake detection, designed

to retrieve the speed and direction of the ship (i.e., the heading with a π ambiguity). This
4Machine equipped with an Intel Core Duo processor, dual-core, clocked at 2.0 GHz, running MacOS

X 10.5, 2 GB of RAM, with standard CPU load.
5It is not possible to optimize the GRT as in the linear case, where the Fourier slice theorem can be

used, cf. the previous chapter.
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algorithm is based on exploiting the locus of the wake spectrum, which depends only on
the heading and speed, but not on the hull shape. The energy contained in the spectrum
is then “compressed” into a peak in the plan of a generalized Radon transform adapted to
the wake. We then tested the possibility of improving the visibility of this peak by using
stochastic matched filtering. The construction of this stochastic matched filter involves
building a reference wake database. To simplify the construction of this database, we work
directly in the Fourier transform of the height map. We use a scheme that quickly generates
a large number of different ship types from a small number of reference ship classes, whose
wake amplitude function is known as a function of speed, using a parameterization by
Froude number. We then show the influence of the transfer function to switch from the
space of the height map to the received signal space. A transfer function in the optical
case is presented, which is a generalization of the Kube and Pentland model modified by
Chantler et al., incorporating specular reflection (see Appendix E). The case of the radar
transfer function is addressed by referring to the literature.
Regarding the validation of this method, we proposed an initial test on a real optical

image database, showing the potential improvement brought by stochastic matched filter-
ing. However, one can criticize the scope of this test, as the images used are not labeled in
terms of ship type, sea state, or sensor configuration. Furthermore, it has been explained
that it is not possible to use the by-product of stochastic matched filtering, which is the
prediction of signal-to-noise ratio improvement. We are therefore reduced to setting the
thresholds manually by trial and error. To test the algorithm more thoroughly, simulation
is required. Similarly, we have not addressed an important question, which is to determine
the minimum ratio between the amplitude of Kelvin wake waves and the amplitude of sea
waves, allowing the detection of the Kelvin wake. This question is crucial as it determines
up to what sea state and speed, for a given ship, it is possible to detect the wake.
We also discussed the computational time of the method, estimated at quadratic com-

plexity in the number of pixels on the image side, for a computation time slightly over one
second for a 600× 400 pixel image (using Matlab). It should be noted that in theory, the
application of the filtering scheme presented here should be applied to a sliding window,
or at least to a large raw image partitioned into small images with overlap management in
case the wake is at the edge of the image. All of this can make the computation time sig-
nificant on a large image, but since the small images would be processed independently, it
nevertheless opens the door to parallel processing. One could also imagine using the Kelvin
wake analysis only after detecting a ship, which would likely be more robust. Finally, one
could imagine using the filtering proposed here as a tool left to a human operator: the
operator would draw a frame around a contact where the Kelvin wake is clearly visible,
and the speed and heading information would be automatically calculated.
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(a) Submarine in a situation in the MaRS graphical interface.

(b) Magnitude of the Kochin function |AY i
0

(Vb, θ)| of the submarine.

Figure 7.4: Prototype of the periscopic attack submarine class 688 (length Lb = 110 m,
width Bb = 9.75 m) and its amplitude function. The angle θ is taken in the ship’s frame
of reference B.
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Figure 7.5: Generalized Radon transform of a typical wake

Figure 7.6: Generalized Radon Transform of the elevation image shown in figure 7.1(a)
(above) and result of the filtering by the best stochastic matched filter (below). Images are
scaled so that the standard deviations be unit. The signal-to-noise ratio is improved by
3.28 dB on this image, after using the stochastic matched filtering. Along the ship’s axis,
the wake has a wavelength Λb = 15 m which is coherent with the measures in the original
optical image: this corresponds to a realistic speed of 9.4 knots.
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Figure 7.7: The database of optical images of ocean surfaces without wakes
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Figure 7.8: The database of optical images of ocean surfaces without wakes (continued)
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Figure 7.9: The database of optical images of ocean surfaces with Kelvin wakes

211



7.5 Conclusion of this chapter

0 1 2 3

32

36

40

44

48

52

56

60

Figure 7.10: The database of optical images of ocean surfaces with Kelvin wakes (continued)
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Conclusion of this thesis

Hardin remained silent for a short while. Then he said, ‘When did
Lameth write his book?’
‘Oh – I should say about eight hundwed yeahs ago. Of cohse, he has
based it lahgely on the pwevious wuhk of Gleen.’
‘Then why rely on him? Why not go to Arcturus and study the re-
mains for yourself?’
Lord Dorwin raised his eyebrows and took a pinch of snuff hurriedly.
‘Why, whatevah foah, my deah fellow?’
‘To get the information firsthand, of course.’
‘But wheahs the necessity? It seems an uncommonly woundabout
and jopelessly wigmawolish method of getting anywheahs. Look heah
now, I’ve dot the wuhks of the mastahs – the gweat ahchaeologists of
the past. I wigh them against each othah – balance of the disagwee-
ments – analyze the conflicting statements – decide which is pwobably
cowwect – and come to a conclusion. That is the scientific method.
At least’ – patronizingly – ‘as I see it. How insuffewably cwude it
would be to go to Ahctuwus, oah to Sol, foah instance, and blundah
about, when the old mastahs have covahed the gwound so much moah
effectually than we could possibly hope to.’

– Isaac Asimov, Foundation 2, IVa.

aNote at translation time: this dissertation was purely the-
oretical and simulation-based. Since I had no opportunity for
experimental work. I had to rely on the observations made by
others. This has always been a sore point for me.

In our work, we focused on the possibility of using the wake as a tool to assist maritime
surveillance, in addition to ship detection. We also considered the case of bistatic imagery.
These are two themes slightly on the sidelines of conventional maritime surveillance ap-
proaches. We found that the wake is merely a complement to ship detection, although it
can provide very useful information when correctly detected. Moreover, maritime surveil-
lance radars are, with few exceptions, all monostatic. Hence, it is interesting to explore
what a discussion combining these two elements could bring.
The approach we used can be considered dual: the first part of the manuscript presented

a direct path, starting from modeling the environment to deducing the received signal using
a simulator. The second part is the indirect path, where we attempt to retrieve the ship’s
heading and speed parameters from radar data.
We began by individually presenting all the models and phenomena involved in the

bistatic radar acquisition chain. This discussion was divided into four chapters. The first
dealt with the radar system and data processing (e.g., for synthetic aperture integration)
from a "signal processing" perspective. The second discussed the modeling of the sea sur-
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face, particularly fluid mechanics models. The third addressed the wake and its modeling.
The fourth finally addressed the reflection of radar signals from an electromagnetic point
of view. This discussion, from our point of view, was necessary to understand the inter-
dependence of various phenomena. It was also important to achieve the "unification" of
these diverse domains within a single application, which we presented in the fifth chapter
dedicated to the simulation of raw radar signals. We also believe that this "unification"
has a certain didactic value.
The results of our simulation work are as follows. We demonstrated that the computation

time for a raw signal simulator for a 500×500-meter scene is currently on the order of half
an hour. As it stands, this computation time is very usable for a one-time simulation, which
was not the case just a few years ago. However, this time is still too long for building a
database of signals and exhaustive search for an optimal configuration. That said, the
simulation mechanism is highly parallelizable. Parallelization and intensive use of graphics
cards as co-processors are two avenues that must be explored to improve computation
times. Moreover, if simulation has not been used intensively to build a database, it has
nevertheless allowed the display of simulated radar images of the maritime surface in
bistatic polarimetric SAR configuration, which has not yet been proposed to our knowledge.
Our simulation is not limited to radar applications; for example, it has also been used to
study the reflection of GPS-type signals on the sea surface (Coatanhay, Arnold-Bos, and
Khenchaf [42, 41]).
The models (electromagnetic, fluid mechanics, etc.) we used were individually validated,

ensuring that the simulated signal is correct from the standpoint of the average link budget.
We also compared images with models and real data in the monostatic case, in terms
of speckle noise characteristics. The result of this comparison is that we can recover
the qualitative behavior of speckle noise models, especially the evolution of the shape of
the speckle noise distribution with incidence, wind speed, and wind angle. However, we
did not find perfect numerical agreement. We conjecture that this discrepancy could be
explained either by not taking into account the non-linearities of the sea surface, or by
the limitations of statistical models used when the simulated surface consists of very small
facets. We emphasize the importance of comparing simulated data with real measurements
and the need to investigate further the origin of the observed differences in the context
of a "physical" simulation based on facetization. Simulation alone cannot replace field
experience! Another important result of our study is the explicit consideration of specular
reflection. In the literature, the emphasis is on diffuse reflection, which is correct for side-
looking radar applications. However, in the general bistatic case, specular reflection cannot
be ignored. Finally, we also paid special attention to the study of the discretization steps
of the maritime surface used in the simulation. We believe that this discretization is a
point often neglected in the literature.
As for the detection of the wake in radar images, here are the conclusions of our work.

We started by comparing four typical reference chains for dead water wake detection. The
result of this comparison is that the classical method of using a Radon transform (Rey et
al. [150]) provides a very good balance between computation speed and results compared
to other methods proposed later in the literature. It is possible to significantly increase the
rate of good detections by improving the thresholding of the Radon transform. For this,
the stochastic matched filtering method as proposed by Courmontagne [46] is an interesting
alternative that does not significantly slow down the execution time compared to the basic
method. However, it requires training on a base of real or simulated images. This training
can be cumbersome to set up, but it can be done once and for all, offline. In any case, wake
detection remains a computationally expensive operation. To limit computation time, it
seems interesting to subordinate wake detection to ship detection in the image, i.e., to
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trigger the use of the wake detection algorithm only upon detecting a ship. Finally, note
that the issue of dark wake detection is similar to that of wild oil spill detection, opening
up other interesting perspectives.
In the last chapter of the manuscript, we discussed the detectability of the Kelvin wake

in high-resolution radar and optical images.
Firstly, we discussed the elements to consider for a a priori choice of a configuration to

image the Kelvin wake in SAR (possibly bistatic). It emerged from this analysis that today,
two types of configurations can be considered. One, already available, is that of airborne
SAR, with good resolution (around a meter), in HH or cross-polarization. The other is a
bistatic configuration with an airborne antenna and another placed at ground level. This
configuration would use dedicated radar signals to achieve good resolution, excluding the
use of opportunistic sources. Our simulator seems to suggest that this configuration allows
reconciling the advantages of the low grazing angle configuration and synthetic aperture
imaging, namely superior contrast and good resolution. However, both the transmitter
and receiver must cooperate to synchronize the antenna directions. From our perspective,
operational considerations should, however, take precedence over theoretical considera-
tions. Therefore, considering the constraints it imposes, the contribution of this bistatic
configuration seems extremely marginal in the context of maritime surveillance. It could,
however, be interesting occasionally in the scientific context for wake studies, which could
have repercussions in naval architecture. In such an experimental context, it is not certain
that other systems6 would not allow for such a study with even better performance and at
a lower cost. However, these various systems would likely be complementary rather than
redundant. Thus, radar still has its place in the field, despite implementation challenges.
Secondly, we proposed an algorithm for detecting Kelvin wakes, allowing for obtaining

the direction of the ship’s trajectory and its speed. The algorithm is based on utilizing
the properties of the wake’s spectrum locus in the Fourier transform of the received image,
introducing a generalized Radon transform adapted to the wake. We also proposed to
improve the visibility of this wake by using stochastic matched filtering. The proposed
algorithm theoretically works on SAR, BiSAR, and optical spatial imagery. Initial tests
on real optical images seem to confirm the feasibility of the method. As a perspective,
we suggest further exploring the tests, at least in the optical domain, where images are
easier to simulate. This would help determine the method’s application domains (ship size
and speed ranges, sea state, etc.). Also, note that the method we propose still requires
significant computation time. Therefore, using it on a sliding window in an image is not
feasible, and it is better to subordinate its use to ship detection. This algorithm can also
be used as a tool provided to a human operator, who would manually select an area where
a wake is present.

6Telemetry lidar, acoustic systems with a transducer array fixed at the bottom of the water targeting
the surface, or optical imaging, could be considered.
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Appendix

A
Frames and geometry

A.1 Transformations between frames

Considering two coordinate systemsR1(O1, x̂1, ŷ1, ẑ1 andR2(O2, x̂2, ŷ2, ẑ2), a frame change
between these coordinates is defined as follows:

{O1A}R2
= R1→2 × {O1A−O1O2}R1

(A.1)

Rotation matrix R1→2 is defined as follows:

R1→2 =

 1 0 0
0 cos x̌1 sin x̌1

0 − sin x̌1 cos x̌1

 cos y̌1 0 sin y̌1

0 1 0
− sin y̌1 0 cos y̌1

 cos ž1 sin ž1 0
− sin ž1 cos ž1 0

0 0 1


(A.2)

Angles x̌1, y̌1, ž1 are the angles parametrizing the frame change. Thus, x̌1 is a first rotation
around vector x̂1, the other angles being zero, etc.

A.2 Frames used in this dissertation

All frames used in the dissertation are orthonormal and direct. An illustration of most of
the frames used in the thesis is given at figure A.2, page 223.

A.2.1 Global frame W(O, x̂, ŷ, ẑ)

The origin O is placed at the mean sea level. Vector ẑ points to the sky. Vector x̂ points
to the East, the vector ŷ to the North.

A.2.2 Wind frame V(O, û, û⊥, ẑ)

Point O denotes a point on the average sea surface taken as reference. Vector û points
in the direction to which the wind blows (downwind). Vector û⊥ points in the crosswind
direction (crosswind). The third vector is the same as for the world frame. The wind
direction is defined by angle ψ0 = (x̂, û).

A.2.3 Local frame L(P, x̂l, ŷl, ẑl)

The origin is a point P of the sea surface. Vector ẑl is along the local normal at the sea
surface at P and points upwards to the sky. Vector x̂l is directed in the downwind direction,
that is, (x̂l − ẑ.x̂l)/||x̂l − ẑ.x̂l|| = ẑ (assuming that the local surface is not vertical, which
does not happen for non-breaking sea waves).
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A.2.4 Transmitting antenna frame X (X, x̂x, ŷx, ẑx)

The origin of the coordinate system is a reference point of the antenna, usually its center
of symmetry if there is one. Vector x̂x gives the looking direction of the antenna. Vector
ŷx is oriented to the largest dimension of the antenna.

A.2.5 Polarimetric frame of the transmitting antenna PX(P, v̂x, ĥx, r̂x)

This frame is defined with respect to an aribtrary point P of the space, which, relatively to
the transmitting antenna frame X , is located at a bearing angle žx and an elevation angle
y̌x. Vector r̂x is equal to XP/||XP||. Vector v̂x is in the plane defined by r̂x and ẑx; it is
equal to −ẑx if y̌x = 0. Vector ĥx is such that Px is direct and orthonormal.

A.2.6 Polarimetric frame of the incident radio wave PI(P, v̂i, ĥi, r̂x)

This frame has origin a point P of space, vector ĥi being equal to r̂x × ẑl, and vector v̂i
being normal to the two other vectors of the frame.

A.2.7 Polarimetric frame of the reflected radio wave, “forward scattering
alignment” convention, PFS (P, v̂fs , ĥ

f
s , r̂

f
s )

Vector r̂fs is equal to PR/||PR|| where R is the origin of the polarimetric frame of the
receiving antenna. Vector ĥfs is equal to ẑl × r̂fs . Vector v̂fs is normal to the two other
vectors.

A.2.8 Polarimetric frame of the reflected radio wave, “backscattering align-
ment” convention, PBS (P, v̂bs, ĥ

b
s, r̂r)

Vector r̂r is equal to −r̂fs . Vector ĥbs is equal to ẑl × r̂r. Vector v̂bs is normal to the two
other vectors. The reason for this second frame, is that when X = R, then PX and PBR are
the same, which is easier to use in the monostatic case.

A.2.9 Polarimetric frame of the receiving antenna PR(P, v̂r, ĥr, r̂r)

This frame is defined for a point P of space, which, relatively to frame R, has a bearing
angle žr and an elevation angle y̌r. Vector r̂br is equal to RP/||RP||. Vector v̂x is in
the plane given by n̂r and ẑr; it is equal to −ẑr if y̌r = 0. Vector ĥr is such that Pr is
orthonormal and direct.

A.2.10 Receiving antenna frame R(R, x̂r, ŷr, ẑr)

The receiving antenna frame has its origin at point R, in general at its center of symmetry
if it exists. Vector x̂r is the looking direction of the antenna. Vector ŷr is along the largest
dimension of the antenna, and so that if the receiving antenna were co-located with the
transmitting antenna (same position and looking direction), then ŷr would have the same
direction as ŷx.

A.2.11 Ship frame B(B, x̂b, ŷb, ẑb)

The origin of the frame is at the fore, on the symmetry plane of the ship, at the waterline.
Vector x̂b is along the longitudinal axis of the ship, on the symmetry plane and points at
the aft. Vector ŷb pointe at starboard. Vector ẑb is the same as ẑ. The ship frame is
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illustrated at figure A.1. An elementary wake wave would propagate in direction θ which
is measured in the mean sea level plane with reference to x̂b.

Figure A.1: Definition of the ship frame B.

A.3 Bistatic angles

A.3.1 Généralités

Bistatic angles are used to define the geometry of the scattering. There are two series of
bistatic angles: global and local. The global angles are defined with respect to the wind
frame V which has for vertical vector ẑ and which is defined with respect to the mean sea
level. We are therefore talking about global bistatic angles (θvi , φ

v
i , θ

v
s , φ

v
s). This series of

angles is used for all statistical models such as the Kirchhoff approximation or the two-scale
method. The other set of angles is defined relative to the local frame at a point, it is the
one that is used for the small perturbations model. We are therefore talking about local
bistatic angles (θli, φ

l
i, θ

l
s, φ

l
s). Note that the two series of bistatic angles are equal if ẑl = z

and P is at the intersection of the “looking directions” of the two antennas. The reader is
referred to the figure 4.2 of chapter 4, page 107, for a graphical illustration of both frames,
and to figure A.2 for an illustration of local bistatic angles.

A.3.2 Définition

The global bistatic angles are defined by the direction of the antenna frames with respect
to frame V:

• θvi is the incidence angle, meaning the angle going from ẑ to x̂x (note that sometimes
the grazing angle π/2− θvi is considered);

• φvi is the looking direction of the transmitter, meaning the angle from −x̂ to the
projection x̂x − x̂x.ẑ of x̂x on the x-y plane of V;

• θvs is the emergence angle, meaning the angle from ẑ to −x̂r;
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• φvs is the direction of the receiver, meaning the angle from x̂ to the projection x̂r−x̂r.ẑ
of x̂r on the x-y plane of V.

For local bitatic angles, one considers an arbitrary P which is not necessarily located at
the intersection of the looking directions of the transmitting and receiving antennas, as
well as the local frame L(P) at P which the locally tangent to the sea surface:

• θli is the local incidence angle, meaning the angle going from ẑl à r̂x(P ) (the local
grazing angle is π/2− θli);

• φli is the local looking direction of the transmitter, meaning the angle from −x̂l to
the projection r̂x(P)− r̂x(P).ẑ of r̂x(P) on the x-y plane of V;

• θls is the local emergence angle, meaning the angle from ẑl to −r̂r(P);

• φls gives the direction of the receiver from P, meaning the angle going from x̂l to
projection r̂r(P)− r̂r(P).ẑl of r̂r(P) on the x-y plane of L(P).

A.3.3 Abuse of language

When demonstrating formulas relating to scattering with respect to the wind frame (using
global bistatic angles), it will happen that we use the polarimetric frames for the incident
radio wave and reflected radio wave although these are normally defined with respect to
any point P of the surface. In this very specific case, the point being considered is the
origin O of the wind frame.
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A.4 Intersection of the Fresnel ellipsoid with a plane

This part provides the parameters of the equidistance (Fresnel) ellipse, which is the inter-
section of the Fresnel ellipsoid with a plane. The notations are those of figure A.3, below.
The interested reader may wish to turn to Norton and Omberg’s article [134], which uses
a different but nevertheless equivalent wording1.

Figure A.3: Fresnel ellipsoid for a distance r and its intersection with the plane such that
z = 0.

A.4.1 Problem statement

Let P be the plane of equation z = 0 in the world frame W(x̂, ŷ, ẑ). In this frame, the
transmitter X has coordinates (xX , yX , zX) and the receiver R has coordinates (xR, yR, zR).
The problem is to find the intersection of P with the Fresnel ellispoid associated to the
total path length r, defined as the set of points P ∈ P such that:

XP + PR = r (A.3)

A.4.2 Solution

It is known that the intersection of a plane with an ellipsoid, if it exists, is an ellipse,
possibly degenerated into a point. The major axis of this ellipse is on the same line, as the
projection of the major axis of Fresnel’s ellipsoid. This ellipse is entirely defined by:

1. θ, between the x axis of the world frame and the major axis of the ellipse;

2. ra and rb, respectively the semi major and the semi minor axis length of the ellipse;

3. xC and yC , the coordinates of the center of the ellipse in W

In the following paragraph, X’ (resp. R’), denotes the projection of X (resp. R) onto the
plane z = 0. First, let us perform a frame change from the world frame to an intermediate
frame I(X′, x̂i, ŷi, ẑi), with:

• x̂i = X′R′/X ′R′

1Note at translation time: see also P. Klein, “On the Ellipsoid and Plane Intersection Equation,” Applied
Mathematics, Vol. 3 No. 11, 2012, pp. 1634-1640
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• ŷi = ẑ× x̂i;

• ẑi = ẑ;

The center of the ellipse is on segment [X’R’]; its coordinates are (x′C , 0, 0) in I and
(xC , yC , 0) in W. We have:

θ = ∠(x̂, x̂i) = arctan
yR − yX
xR − xX

(A.4)

In frame I:

{
X ′
}
I =

 x′X
y′X
z′X

 =

 0
0
0


{
R′
}
I =

 x′R
y′R
z′R

 =

 (xR − xX) cos θ + (yR − yX) sin θ
−(xR − xX) sin θ + (yR − yX) cos θ

0


Let us introduce r0, the length of the smallest path starting from X, hitting the z = 0
plane, then reaching R:

r0 =
√

(x′X − x′R)2 + (y′X − y′R)2 + (z′X + z′R)2 (A.5)

Three cases may occur:

Cas 1: r < r0: In this case, there is no intersection with the plane.

Cas 2: r = r0: The intersection is a point. This point is the specular reflection point,
according to the Snell-Descartes law of reflection.

Cas 3: r > r0: The intersection is an ellipse. In the intermediate frame I, the equation
of the ellipse is given by equation:

ax2 + y2 + cx = f (A.6)

defined by:

a = 1−
(
x′X − x′R

r

)2

c = x′R

(
1 +
−x′2R + z2

X − z2
R

r2

)
f =

r4 − 2
(
x′2R + z2

X + z2
R

)
r2 +

(
−x′2R + z2

X − z2
R

)2
4r2

Equation A.6 can be put in the following form:(
x− c

2a

)2√(
f+ c2

4a

)
a

2 +
y2(√

f + c2

4a

)2 = 1 (A.7)

where:
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• ra =

√(
f+ c2

4a

)
a , is the semi major axis length;

• rb =
√
f + c2/(4a), is the semi minor axis length;

• x′C = c/(2a), is the abscissa of the center of the ellipse in I.

In the world frame W, the centre of the ellipse has coordinates:

xC = xX +
c

2a
cos θ

yC = yX +
c

2a
sin θ

zC = 0 (A.8)

226



Appendix

B
Characteristics of Common Radars

This appendix presents a selection of representative radar systems along with their main
characteristics. These systems are all designed for maritime applications and, for the
majority of them (except for the Seasat satellite), are currently in use. This selection
provides an overview of the performance of current maritime surveillance radar systems,
particularly in terms of antenna directivities, frequencies, and available bandwidths. It is
worth noting that no bistatic radar is included in the list; as far as we know, such systems
have never been implemented in the maritime domain and are therefore not commercially
available.

B.1 Coastal maritime surveillance radars

B.1.1 FIKA

• Source: www.mil.fi (Finnish Defense Department);

• Peak power: 200 kW [sic];

• X-band;

• Antenna: 5 m × 0.8 m;

• Effective range: 50-70 km;

• Adjustable polarization.

B.1.2 Hyperion

• Manufacturer: Singapore Technologies Electronics (Satcom & Sensors Systems), www.
stee.stengg.com;

• Peak power: 25 kW;

• Carrier frequency f0 = 9.410 GHz, bandwidth B = 60 MHz;

• Range: 96 nautical miles / 178 km;

• Antenna: 6 to 12 feet long depending on versions;

• Accuracy: 10 in range, 0.3 degrees in azimuth.
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Shipborne Radars

B.1.3 Scanter 2001

• Manufacturer: Terma A/S, www.terma.com;

• Peak power: 25 kW (X-band), 30 kW (S-band);

• Carrier frequency f0:

– X-band: 9.170 or 9.375 or 9.410 or 9.438 or 9.4900 GHz

– S-band: 3050 MHz

• Range: 96 nautical miles / 178 km;

• Antennas:

– 7 feet: Φazimuth = 1.2 degrees, Φelevation = 19 degrees

– 12 feet: Φazimuth = 0.6 degrees, Φelevation = 19 degrees

– 18 feet: Φazimuth = 0.41 degrees, Φelevation = 11 degrees

• Pulse Repetition Frequency (PRF): 80 to 8000 Hz

• Bandwidth Modulation (B): 3, 8, or 20 MHz

B.2 Shipborne Radars

B.2.1 Furuno 1623: Entry-level Pleasure Boat Radar

• Manufacturer: Furuno, www.furuno.com;

• Maximum range: 16 nautical miles;

• Microstrip technology antenna in 388 mm diameter radome;

• Beamwidths Φazimuth = 6.2 degrees, Φelevation = 25 degrees;

• Carrier frequency f0 = 9.410 GHz, bandwidth 60 MHz;

• T/PRF pairs: (0.08 µs, 3000 Hz), (0.3 µs, 1200 Hz), (0.8 µs, 600 Hz),

• Peak power: 2.2 kW

B.2.2 Furuno 1912 Mk 2: Mid-range Shipborne Radar

• Manufacturer: Furuno, www.furuno.com;

• 4-foot slotted antenna;

• Beamwidths Φazimuth = 1.9 degrees, Φelevation = 22 degrees;

• Carrier frequency f0 = 9.410 GHz, bandwidth 60 MHz;

• T/PRF pairs: (0.08 µs, 2100 Hz), (0.3 µs, 1200 Hz), (0.8 µs, 600 Hz),

• Peak power: 6 kW
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Airborne Maritime Surveillance Radars

B.2.3 Furuno FAR2167DS: Shipborne Radar for Heavy Vessels

• Manufacturer: Furuno, www.furuno.com;

• Antennas:

– X-band: 10 feet, Φazimuth = 0.75 degrees, Φelevation = 20 degrees;
– S-band: 12 feet, Φazimuth = 1.8 degrees, Φelevation = 25 degrees;

• Carrier frequencies f0 = 9.410 GHz, B = 60 MHz (X-band) or f0 = 3.050 GHz
B = 60 MHz (S-band);

• T/PRF pairs: (0.08 µs, 1900 Hz) to (1.2 µs, 500 Hz),

• Peak power: 60 kW

B.3 Airborne Maritime Surveillance Radars

B.3.1 AN/APS 134, Also Known as "SeaVue"

• Manufacturer: Raytheon, www.raytheon.com;

• Antenna: dimensions 124×65 cm (likely overall dimensions)

• X-band;

• Peak power: 8 kW, 15 kW, or 50 kW;

• SAR, ISAR, MTI (Moving Target Indicator) capabilities, chirp or more complex
waveform emissions, with frequency agility

• Detection ranges: life raft 67 nautical miles; patrol ship: 119 nautical miles; cargo
ship: 230 nautical miles.

• 360-degree scanning

B.3.2 Ocean Master

• Manufacturer: Thales Airborne Systems1, www.thalesgroup.com;

• Antenna: bandwidth of 600 MHz, HH polarization;

• Precision: 0.5 degrees in azimuth, 100 m in range after Kalman tracking (200 possible
tracks);

• X-band, modulation up to 70 MHz, adjustable carrier up to 1 GHz;

• Pulse Repetition Frequency (PRF) up to 60 kHz;

• Peak power: 8 kW, 15 kW, or 50 kW;

• SAR, ISAR, MTI capabilities, emission in chirp or more complex waveforms, with
frequency agility;

• Maximum range: 200 nautical miles for significant targets, 60 nautical miles for small
targets (periscopes, etc.);

• 360-degree scanning.
1Note at translation: now Thales DMS France.
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Radar-equipped satellites

B.3.3 High-Altitude, Long-Endurance Drone RQ-4A Global Hawk + HISAR
Radar

• Manufacturer: Northrop Grumman (drone), Raytheon (radar)2;

• Coverage: 37 km up to a range of 110 km;

• Resolution: 6×6 m in scanning SAR mode, 1.8×1.8 m in spotlight mode (imaged
area in spotlight: 2.5 km2);

• Altitude: 65,000 feet (20 km);

• Patrol speed: 343 knots (true speed);

• Endurance: 42 hours, 24 on-site with a transit of 3000 nautical miles.

• Covered area: 40,000 nautical square miles per day;

B.4 Radar-equipped satellites

Notes The orbital period is the time to complete one orbit. The cycle is the time for
the satellite to pass exactly over the same point on Earth. The sub-cycle is the time for
the satellite to pass closest to a considered point (within a few kilometers). As the orbit
is heliosynchronous, a satellite will always be seen from the ground at the same local solar
time.

B.4.1 Seasat (1978)

• Source: http://southport.jpl.nasa.gov/scienceapps/seasat.html

• Polarization: HH;

• Resolution: 30 m;

• Swath: 100 km;

• Antenna: 10.74×2.16 m

• Carrier frequency: 1.275 GHz (L-band);

• Peak power: 1 kW

• Pulse duration: 33.4 µs

• PRF: 1463-1640 Hz

• Heliosynchronous polar orbit, altitude approximately 800 km, inclination 108 degrees;

• Incidence angle at the Earth’s surface: 23 degrees (±3 degrees).

Only 42 hours of data were recorded before the system failure.
2Data source: http://www.airforce-technology.com/projects/global/specs.html and http://

www.global-defence.com/1997/HughesHISAR.html. The accuracy of the values should be taken with
caution and as rough estimates only.
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B.4.2 ERS 1 and 2 (1992-2000 and 1995-2011)

• Source: Attema [14]

• Polarization: VV;

• Resolution: 30 m;

• Swath: 100 km;

• Carrier frequency: 5.3 GHz (C-band);

• Pulse duration: 37.1 µs

• PRF: 98 Hz and 115 Hz, depending on incidence angle (multiple antennas)

• Incidence angles: 20-26 degrees;

• Heliosynchronous polar orbit, altitude 782 to 785 km, inclination 98.52 degrees, pe-
riod 100 min, cycle 35 days, sub-cycle 3 days.

B.4.3 Radarsat 1 and 2 (1995-2013; 2007-present)

• Polarization: HH, VV, VH, HV;

• Antenna: 15 m by 1.5 m (Radarsat 2), with electronic scanning;

• Maximum resolution: 8 m at 100 m (Radarsat 1), 3 m (Radarsat 2); finest resolution
is achieved in spotlight mode, normal scanning mode is at 50 or 100 m resolution.

• Swath: 50-500 km;

• Carrier frequency: 5.3 GHz (C-band);

• Incidence angles: 10 to 59 degrees (not necessarily the entire range simultaneously);

• Heliosynchronous polar orbit, altitude 791 to 793 km, inclination 98.6 degrees, period
approximately 100 min, cycle 24 days, sub-cycle 3 days.

• Modulation: 11.6 MHz, 17.5 MHz, 30 MHz, 50 MHz, 100 MHz;

• PRF: 1257 Hz;
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Appendix

C Some fundamental equations of electro-
magnetism

This appendix presents Maxwell’s equations and, based on these, provides a demonstration
of Kirchhoff’s and Stratton and Chu’s equations. These are fundamental equations used to
calculate the field radiated by an antenna or the field scattered by any surface, especially the
sea surface. The writing of all demonstrations owes much to Sophocles J. Orfanidis’s work,
Electromagnetic Waves and Antennas, available exclusively online1, particularly Chapter 1
for sections C.1.1, C.1.2, and Chapter 17 for the rest. However, some demonstrations left as
exercises to the reader in Orfanidis’s work are detailed here, especially the transition from
Kirchhoff’s equation to Stratton and Chu’s equation. Once Stratton and Chu’s equations
are demonstrated, the Kirchhoff approximation equations are established for the case of a
maritime surface; these are the equations used in Chapter 4. The appendix concludes with
the parameters of the small perturbation model for the maritime surface.

C.1 Maxwell’s equations

C.1.1 General form

All classical electromagnetic phenomena are determined by the four Maxwell’s equations,
to which a certain number of boundary conditions are added to determine the behavior of
the quantities when passing from one medium to another. Since these equations involve a
time dependence, they are only valid for non-relativistic mechanics, which will, however,
correspond to the use that will be made of them. These four equations are as follows:

divH = 0 (Conservation of flux) (C.1)

rot H = j +
∂D

∂t
(Maxwell-Ampère) (C.2)

divD = ρEM (Maxwell-Gauss) (C.3)

rot E = −∂B

∂t
(Maxwell-Faraday) (C.4)

where:

E [Volts/m] electric field
H [Amperes/m] magnetic field
D [Coulombs/m2] electric induction field
B [Webers/m2] magnetic induction field
ρEM [Coulombs/m3] electric charge density
j [Amperes/m3] electric current density

1At the time of translating this manuscript (2024), the document is available at http://www.ece.
rutgers.edu/~orfanidi/ewa/.
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Maxwell’s equations

The fields can be related to the induction fields by the relations:

D = εEME (C.5)
B = µEMH (C.6)

where εEM and µEM are respectively the permittivity (in Faradays/m) and permeability
(in Henrys/m) of the considered medium.

divB = 0 (C.7)

rot B = µEM j + µEM εEM
∂E

∂t
(C.8)

divE =
ρEM
εEM

(C.9)

rot E = −∂B

∂t
(C.10)

C.1.2 Boundary conditions

The boundary conditions for electromagnetic fields crossing the boundary between two
media are given below:

E1t −E2t = 0 (C.11)
H1t −H2t = js × n̂ (C.12)

E1n −E2n =
ρEM,s

εEM
(C.13)

H1n −H2n = 0 (C.14)

The indices t and n denote respectively the tangential and normal components to the
surface of the interface between medium 1 and medium 2. ρEM,s and js are respectively
the charge density and current density at the interface between the two media.

C.1.3 Duality theorem

The duality theorem is a mathematical artifice that makes Maxwell’s equations invariant
under a change of variables between electric and magnetic terms. To make Maxwell’s
equations symmetrical, it is possible to add purely fictitious (i.e., zero) magnetic source
terms: ρEM,m and jm, called magnetic charge densities and magnetic current densities,
respectively. The generalized form of Maxwell’s equations is then as follows:

divH =
ρEM,m

µEM
(C.15)

rot H = j + εEM
∂E

∂t
(C.16)

divE =
ρEM
εEM

(C.17)

rot E = −jm − µEM
∂H

∂t
(C.18)
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Wave equation

Now, it is easy to see that the equations are invariant under the following change of
variables:

E→ H H→ −E (C.19)
j→ jm jm → −j (C.20)

εEM → µEM µEM → εEM (C.21)
ρEM,m → −ρEM ρEM → ρEM,m (C.22)

Indeed, after this change of variables, the first two Maxwell’s equations are transformed
into the other two, and vice versa. Similarly, any result obtained after manipulating the
first version of the equations remains valid after the formal substitution of terms as given
above. This important result is called the duality theorem of Maxwell’s equations. This
substitution allows, for example, to easily obtain relationships for H from relationships
established for E, and vice versa.

C.2 Wave equation

Taking the curl of the Maxwell-Faraday equation and applying the relation rot rot V =
grad divV −∆V (valid for any vector V, the vector Laplacian ∆V being obtained by
calculating the scalar Laplacian on each component of V), we get:

∆E− εEMµEM
∂2E

∂t2
= µEM

∂j

∂t
+

1

εEM
grad ρEM + rot jm (C.23)

∆H− εEMµEM
∂2H

∂t2
= εEM

∂jm
∂t

+
1

µEM
grad ρEM,m − rot j (C.24)

If we assume that the quantities vary in time with a frequency ω, we obtain (using
complex notation) the following equation:

∆E + εEMµEMω
2E = µEM ωj +

1

εEM
grad ρEM + rot jm (C.25)

∆H + εEMµEMω
2H = εEM ωjm +

1

µEM
grad ρEM,m − rot j (C.26)

This is a inhomogeneous wave equation (or Helmholtz equation). This equation repre-
sents the field created at a point in space, produced by the current source j and the charge
distribution ρEM .
Before solving the equation for an arbitrary source distribution, let’s solve it in general

for a point source:

∆G+ k2G = −δ3(r− r′) (C.27)

where k = εEMµEMω
2, G is a scalar function, and δ3 is the 3D Dirac distribution (equal

to 1 if all three components of the argument are zero, 0 otherwise). This solution has
several solutions. One, deterministic, is taken in the form:

G(r− r′) =
eωt−k|r−r

′|

4π|r− r′|
(C.28)
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The solution physically reflects the disturbance occurring at point r, created by a point
charge at r′. The disturbance varies at the same frequency, but with a phase shift k|r− r′|
(related to the wave travel time) and with a variation in amplitude inversely proportional
to the distance traveled by the wave. The wave propagates isotropically, so we have a
spherical wave. From now on, however, we will omit the carrier term ωt in the exponential
to lighten the notations.

C.3 Kirchhoff and Stratton-Chu equations

Now we want to find the radiated field at a point in space for a more complex source
distribution. It is possible to obtain several equivalent integral representations, all giving
the electric (or magnetic, but this is equivalent, according to the duality principle stated
above) field as a function of the source terms. We can then simplify these equations
depending on the configuration of the problem to be solved.

C.3.1 Derivation of the equation

The derivation of these integral forms is done somewhat artificially by posing the following
integral:

I(r) =

∫
V

[
G(r− r′)∆′E(r′)−E(r′)∆′G(r− r′)

]
dV ′ (C.29)

The integral is taken over an absolutely arbitrary volume V . In this integral, the integra-
tion variable is the vector r′, and the prime symbol means that the operator (Laplacian,
gradient, etc.) is taken with respect to the integration variables. To simplify the writing
of the integral, we will denote G = G(r − r′), E = E(r′), etc. (except for G, all other
quantities are evaluated at r′ only). By adding and subtracting the term k2G(r− r′)E(r′),
we get:

I =

∫
V

[
G
(
∆′E + k2E

)
−E

(
∆′G+ k2G

)]
dV ′ (C.30)

If we use equation C.28, the second term in the integrand reduces to:

−
∫
V

E
(
∆′G+ k2G

)
dV ′ =

∫
V

Eδ(r− r′)dV ′ = E(r) (C.31)

hence:

I =

∫
V
G
(
∆′E + k2E

)
dV ′ + E(r) (C.32)

Now, starting from the original integral C.29, let’s apply the second Green’s theorem to
it:

I = −
∮
S+S∞

[
E
∂G

∂n′
(r′)−G∂E

∂n′
(r′)

]
dS′ (C.33)

where the notation ∂/∂n′ is actually a shortcut for the notation n′.grad′ , that is, the
derivative in the direction n′; we also note the presence of the minus sign, due to the fact
that the normal points into the integration volume. The surfaces S and S∞ are the outer
envelopes of the considered volume. The notation S∞ denotes a surface located infinitely
far from the source terms. Since the field amplitude decreases as 1/r, we can neglect the
integral over S∞; this term will not appear in the equation later.

236



Kirchhoff and Stratton-Chu equations

By equating the two right-hand sides of C.32 and C.33, and then injecting C.25, we get in
fine:

E(r) = −
∫
V

[
µEM ωGj +

1

εEM
Ggrad′ ρEM −G rot′ jm

]
dV ′ (C.34)

+

∮
S

[
E
∂G

∂n′
−G∂E

∂n′

]
dS′ (C.35)

This equation is called the Kirchhoff diffraction equation. The name of this equation will
be justified a little later. This equation is interesting but not very informative. We will
need to make a little more effort to arrive at a more elegant form, known as the Stratton-
Chu formula.

We have the vector identities:

∫
V
rot AdV =

∮
S

= n̂×AdS′ (C.36)∫
V
grad ψdV =

∮
S
ψn̂dS′ (C.37)

grad (φψ) = φgrad ψ + ψ grad φ (C.38)

By applying these identities to the first integral of C.35, we get:

∫
V

[
µEM ωGj +

1

εEM
Ggrad′ ρEM +G rot′ jm

]
dV ′ (C.39)

=

∫
V

[
µEM ωGj− ρEM

εEM
grad′ G+ jm × grad′ G

]
(C.40)

−
∮
S

[
ρEM
εEM

Gn̂ + n̂× jmG

]
dS′ (C.41)

We then use the following identity (actually valid for any function G and any vector field
E):

∮
S

[
G
∂E

n
−E

∂G

∂n

]
dS′ (C.42)

=

∮
S

[
n̂Gdiv′ E− (n̂×E)× grad′ G−Gn̂× rot′ E− (n̂E)grad′ G

]
dS′(C.43)

If we then apply the following relations, which come directly from the Maxwell’s equa-
tions:

ρEM/εEM = div′ E (C.44)

and:
rot′ E + jm = −µEM ωH (C.45)

...we ultimately obtain the following result, first obtained by Stratton and Chu:

E(r) =

∫
V

[
−µEM ωGj +

ρEM
εEM

grad′ G− jm × grad′ G
]
dV ′ (C.46)

+

∮
S

[
−µEM ωG(n̂×H)− (n̂.E)grad′ G+ (n̂×E)× grad′ G

]
dS′(C.47)
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If we recall the duality principle stated above, we directly obtain:

H(r) =

∫
V

[
−µEM ωGjm +

ρEM,m

µEM
grad′ G+ j× grad′ G

]
dV ′ (C.48)

+

∮
S

[
µEM ωG(n̂×E) + (n̂.H)grad′ G+ (n̂×H)× grad′ G

]
dS′ (C.49)

C.3.2 Modification of Stratton-Chu equations for open surfaces

In fact, the equivalence between the Kirchhoff and Stratton-Chu equations is only true
when the surface is closed (for example, the surface of a sphere). If, on the contrary, the
surface is open, i.e., bounded by a contour C, or if the charge distribution is nonzero only
on a portion of the surface, it is necessary to add a line integral over C to the Stratton-Chu
equations to maintain this equivalence. We obtain, for the electric field:

E(r) =

∫
V

[
−µEM ωGj +

ρEM
εEM

grad′ G− jm × grad′ G
]
dV ′ (C.50)

+

∫
S

[
−µEM ωG(n̂×H) + (n̂.E)grad′ G+ (n̂×E)× grad′ G

]
dS′(C.51)

− 1

ωεEM

∮
C

(grad′ G)(H.dl) (C.52)

...and for the magnetic field:

H(r) =

∫
V

[
−µEM ωGjm +

ρEM,m

µEM
grad′ G+ j× grad′ G

]
dV ′ (C.53)

+

∮
S

[
µEM ωG(n̂×E) + (n̂.H)grad′ G+ (n̂×H)× grad′ G

]
dS′ (C.54)

+
1

ωµEM

∮
C

(grad′ G)(E.dl) (C.55)

In practice, it turns out that the modification brought by this integral term is most often
negligible, and it can therefore be ignored, unless it helps simplify the equations, as we will
see later.

C.3.3 Interpretation of the Stratton-Chu equation

By identifying term by term the terms of the volume integral and the surface integral, we
can note:

js = n̂×H (C.56)
jms = −n̂×E (C.57)

ρEM,s = εEM (n̂.E) (C.58)
ρEM,ms = µEM (n̂.H) (C.59)

where js and jms are on one hand the surface electric current density and the surface
magnetic current density, and ρEM,s, ρEM,ms are the surface electric and magnetic charge
densities. We then arrive at a very elegant form that effectively highlights the equivalent
role played by each term in the integral.
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E(r) =

∫
V

[
−µEM ωGj +

ρEM
εEM

grad′ G− jm × grad′ G
]
dV ′ (C.60)

+

∮
S

[
−µEM ωGjs +

ρEM,s

εEM
grad′ G− jms × grad′ G

]
dS′ (C.61)

H(r) =

∫
V

[
−µEM ωGjm +

ρEM
µEM

grad′ G+ j× grad′ G
]
dV ′ (C.62)

+

∮
S

[
−µEM ωGjms +

ρEM,ms

µEM
grad′ G+ js × grad′ G

]
dS′ (C.63)

At this point, let’s recap the steps we’ve taken. We started with Maxwell’s equations,
and the only assumption we made is that the intensity of the source terms varies temporally
with an angular frequency ω; thus, we consider a harmonic regime. Under this assump-
tion, it is possible to relate the electric or magnetic field at a point r to the source terms
(electric or magnetic) present in the considered space. These sources can be described by
volume densities or surface densities, hence the presence of a volume integral and a surface
integral. It is noteworthy, however, that each term in the integral plays an equivalent role.

In practice, one would choose V judiciously to simplify the equations. One can choose,
in particular, to describe the entire space as the union of two volumes V ∪ V1 (these two
volumes are not necessarily connected), with V1 being the volume occupied by the sources,
and V being the volume devoid of sources. In this case, if we work on volume V , only
surface sources distributed on the surface S forming the interface between V and V1 would
remain (see Figure C.1). The volume integral can then be eliminated, and the Stratton-Chu
equations become:

E(r) =

∮
S

[
−µEM ωGjs +

ρEM,s

εEM
grad′ G− jms × grad′ G

]
dS′ (C.64)

H(r) =

∮
S

[
−µEM ωGjms +

ρEM,ms

µEM
grad′ G+ js × grad′ G

]
dS′ (C.65)

Figure C.2 shows some possibilities for choosing surfaces S and integration contours C.
When working under such conditions, the implicit choice of the integration volume is either
the source-free space (cases a, c, and d) or the source-free half-space (case b, where the
integration volume is the atmosphere, not the water volume).

C.3.4 Stratton-Chu equation in the far field regime

To simplify the Stratton and Chu equations, the far-field approximation is often employed,
which assumes that the wave is plane. This leads to a form first proposed by Silver [157]
(p. 161, eq. 103).

C.3.4.1 Fraunhofer zone

The spherical wave is approximated by a plane progressive wave following the Taylor
expansion (with r̂ = r/r):

|r− r′| = r ×

[
1− r̂.r′

r
+
r′2

2r2
− 1

8

(
2r̂.r′

r

)2

+ . . .

]
(C.66)
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Figure C.1: Description of the integration volumes. Electromagnetic sources are distributed
in volume V1 (which may not be connected), with an outer surface S. The volume V is
source-free. Surface S∞ is extended to infinity.

...where terms up to order 2 are retained. Quadratic terms can be neglected as long as
they do not contribute to a phase much greater than π/2 (some works use a limit of 2π).
If the coordinate system’s origin is placed at the center of the electromagnetic sources’
distribution, and the diameter of this distribution is assumed to be D, then the phase shift
induced by the quadratic part of the Taylor expansion can be considered equal to:

∆φ = kr

[
r′2

2r2
− 1

8

(
2r̂.r′

r

)2
]
∼ kr

′2

2r
(C.67)

with k = 2π/λ being the electromagnetic wave number. Then:

∆φ� π

2
⇒ r � D2

2λ
(C.68)

and, with the other convention:

∆φ� 2π ⇒ r � D2

8λ
(C.69)

In the following, we will adhere to the first convention. Three working zones are then
distinguished:

• Rayleigh zone, or near-field, if r < D2

2λ . In this zone, an exact treatment taking into
account edge effects will be required;

• Fresnel zone, or intermediate zone, if D
2

2λ < r < 2D2

λ ;

• Fraunhofer zone, or far-field, if 2D2

λ < r

In the Fraunhofer zone, it is possible to approximate the electromagnetic wave by a pro-
gressive plane wave, i.e.,:

G(r− r′) =
e−k|r−r

′|

4π|r− r′|
∼ e−kr

4πr
ekr̂.r

′
(C.70)
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Figure C.2: Some possible surfaces for integration. a) Finite open surface b) Infinite open
surface ( e.g., the sea), c) Finite surface with an outer contour C, d) Infinite surface with
an inner contour C. In reality, surfaces are not necessarily connected or flat.

Under this approximation, we have:

grad′ G(r− r′) = kG(r− r′) =
jke−kr

4πr
ekr̂r

′
(C.71)

...with k = kr̂. It can also be shown that the curl operator can be approximated by a
cross product:

rot V ' −jk× V (C.72)

C.3.4.2 Simplification of Stratton-Chu Equations

Applying the two approximations above to equation C.47, we obtain:

E(r) =
e−kr

4πr

∮
S

[(n̂×E)× k− ωµEM (n̂×H) + (n̂.E)k] ejk.r
′
dS′ (C.73)

If the surface is open, meaning it is bounded by a contour C, the line integral must be
taken into account. Although this term can be practically neglected, retaining it is judicious
as it leads to a simplification of the equation. Indeed, by applying Stokes’ theorem:∮

C
(grad′ G)(H.dl) =

ke−kr

4πr

∫
S

[
rot′ (Hekr

′
)
]
n̂dS′ (C.74)

=
ke−kr

4πr

∫
S

[
(grad′ ek.r

′
)×H + ekr

′
rot′ H

]
n̂dS′(C.75)

=
ke−kr

4πr

∫
S

[jk×H + ωεEME] ekr
′
n̂dS′ (C.76)

(C.77)
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...the transition from the penultimate equation to the last is done using the Maxwell-
Ampère equation in the absence of source terms. In the end, the line integral becomes:

− 1

ωεEM

∮
C

(grad′ G)(H.dl) =
je−kr

4πr

∫
S

[
((k×H)n̂)k

ωεEM
+ (n̂E)k

]
ek.r

′
dS′ (C.78)

and the Stratton-Chu equation in the far field for an open surface becomes2:

E(r) =
e−kr

4πr

∫
S

[
(n̂×E)× k− ωµEM (n̂×H) +

((k×H)n̂)k

ωεEM

]
ek.r

′
dS′(C.79)

=
ke−kr

4πr

[∫
S

[(n̂×E)− ηr̂× (n̂×H)] ek.r
′
dS′
]
× r̂ (C.80)

In the particular case where the surface is flat, i.e., where n̂ does not depend on r′, this
equation can also be written in the form:

E(r) =
ke−kr

4πr
[n̂× FE − ηr̂× (n̂× FH)]× r̂ (C.81)

which reveals the terms:

FE =

∫
S

E(r′)ek.r
′
dS′ (C.82)

FH =

∫
S

H(r′)ek.r
′
dS′ (C.83)

Note that these two integrals are nothing but Fourier transforms.

C.3.4.3 Fraunhofer diffraction

In the case where the surface is electrically perfectly conductive, the electric field is obtained
by removing the term FH and doubling the term in FE (for energy conservation reasons):

E(r) =
ke−kr

2πr
(n̂× FE)× r̂ (C.84)

The opposite is done in the case of a magnetically perfectly conductive surface:

E(r) = −ke
−kr

2πr
[ηr̂× (n̂× FH)]× r̂ (C.85)

In the first case, if we take the magnitude of E, we find the classic formula giving the
diffracted field at infinity by a surface of considerable size compared to the wavelength,
by applying the Huygens-Fresnel principle (according to which any point on S can be
considered as a point source having the phase and amplitude of the field on surface S):

||E(k)||2 ∝ I0

∫
S
||E(r′)||2 exp[k.r′]dS′ (C.86)

2The transition from equation C.79 to C.80 is done using a definition of the wave number: k = c/ω
where c is the wave velocity in the medium, with c = 1√

µEM εEM
; and on the other hand, using the fact that

η =
√
µEM/εEM is the impedance of the considered medium. We then have ωµEM = ηk and 1

ωη
= η/k.

The vector relationship is then used: A × (B ×C) = B(A.C) −C(A.B), valid for any vectors A, B, C,
setting here A = k, B = r̂ = k/k, and C = n×H.
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C.4 The Kirchhoff Approximation

We start by writing the incident wave on a surface, which is considered to be a plane wave:

Ei(r) = E0ê
i exp (ωt− ki.r) (C.87)

where E0 is the amplitude of the incident wave near the surface, ω is its angular frequency,
ki is the incident wave vector, defined as ki = k0r̂x where k0 is the wave number of the
signal carrier (see also the definition of reference frames in Appendix A), r is the vector
giving the position of the point where we evaluate the incident field, and êi is the vector
giving the polarization of the electric field (êi is orthogonal to ki). The incident wave
creates surface currents at the surface, generating a scattered wave denoted Es, propagating
in the direction ks = k0r̂

f
s . It is possible to use the Stratton and Chu equation to evaluate

the field Es generated by these surface currents. We take these equations in their far-field
form by adapting Equation C.80. We then have:

Es(r) =
ke−kr

4πr

[∫
S

[(n̂×E)− ηr̂× (n̂×H)] eks.r
′
dS′
]
× r̂ (C.88)

The total electric field E(r) near and just above the surface (i.e., in the air) is the sum of
the incident field and the scattered field:

E(r) = Ei(r) + Es(r). (C.89)

It is this total field, at the water surface, that is used in the integral of Equation C.88. To
evaluate this integral, we need to evaluate the components n̂×E and n̂×H.
With this assumption, we can consider a local frame at the water surface L(P, x̂l, ŷl, ẑl)

(see Appendix A). We assume that locally everything happens as if the surface were flat,
i.e., approximated by its tangent plane. We can then write the scattered field in terms of
the incident field. To do this, we decompose the vector Es into its polarization components
in the polarization frame of the incident wave PI(P, v̂i, ĥi, r̂x), namely the projection of
Ei onto ĥi and v̂i:

Ei(r) = E0e
ki.r(êi.ĥi + êi.v̂i) (C.90)

Similarly, for the reflected field, which involves the Fresnel coefficients Rh and Rv (see, for
example, [136], Chapter 7, Eq. 7.4.4), written here in the case where the first medium is
air and the second has a relative dielectric constant εr (defined in Chapter 2, Equation
2.3):

Es(r) = E0e
kr.r(Rh(êi.ĥi)ĥi −Rv(êi.v̂i)v̂i) (C.91)

with:

Rh =
cosθli −

√
εr − sin2 θli

cosθli +
√
εr − sin2 θli

(C.92)

Rv =
εr cos θli −

√
εr − sin2 θli

εr cos θli +
√
εr − sin2 θli

(C.93)

We then have:

E(r)× n̂ = E0e
ki.r((1 +Rh)(êi.ĥi)n̂× ĥi − (1−Rv)(n̂.̂rx)(êi.v̂i)ĥi) (C.94)
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Similarly, it can be shown that:

ηn̂×H(r) = −E0e
ki.r((1−Rh)(êi.ĥi)(n̂.̂rx)ĥi + (1 +Rv)(ê

i.v̂i)n̂× ĥi) (C.95)

Setting the Stratton-Chu equation C.88 in the direction of diffusion (r ← rs = rr̂fs ), and
setting E(r) = Ē(r)e−ki.r, H(r) = H̄(r)e−ki.r, we have:

Es(r) =
k0e

−k0r

4πr

[∫
S

[
(n̂× Ē)− ηr̂s × (n̂× H̄)

]
e(ks−ki).r

′
dS′
]
× r̂fs (C.96)

At this point, several treatments are then possible. The first one follows from geometric
optics. For this, we consider the phase term:

Q = (ks − ki).r
′ (C.97)

Where the phase Q evolves rapidly, the positive terms of the sum cancel out with the
negative terms, and only points where this phase evolves slowly contribute to the sum: this
is the stationary phase approximation. Physically, points where the phase evolves slowly
are those that are specular with respect to the bistatic configuration considered. The
second possible treatment comes from physical optics, which involves expanding Equation
C.96 in a series around zero slope terms, a series that is truncated to the desired order. The
result obtained has a slightly wider validity range, allowing for smaller radii of curvature
compared to those supported by geometric optics [177]. In our work, only the first approach
has been implemented, so it will be briefly detailed. In the wind frame V:

Q = qxx
′ + qyy

′ + qζζ(x′, y′) (C.98)

with {r′}V = [x′, y′, z′], {ks − ki}V = [qx, qy, qζ ], and ζ(x′, y′) the sea surface elevation
function in the wind frame. The phase is stationary if:{

∂Q
∂x = 0 = qx + qζ

∂ζ
∂x = qx − qζZu

∂Q
∂y = 0 = qy + qζ

∂ζ
∂y = qy − qζZc

(C.99)

Note that the slope Zu and Zc have a negative sign; this is to facilitate the connection
with the probabilistic slope model in Chapter 2, where the slopes are taken with respect
to the upwind direction. With this stationarity assumption, the unit vectors n̂, ĥi, and v̂i
no longer depend on r but only on the specular direction; and therefore:

n̂ =
k|qζ |
q2qζ

(r̂i − r̂fs )

ĥi =
|qζ |
Dqζ

(r̂i × r̂fs )

v̂i =
|qζ |
Dqζ

(
(r̂i .̂r

f
s )− r̂fs

) (C.100)

with q being the norm of Q and D =

√
(r̂i.v̂

f
s )2 + (r̂i.ĥ

f
s )2. We then have:

Es(r) =
k0e

−k0r

4πr
[(n̂×E)− ηr̂s × (n̂×H)]× r̂fs

∫
S
eQdS′ (C.101)

Expanding these equations, it can be shown that there is a relationship between the incident
field, expressed in the “incident wave” polarimetric frame, and the scattered field, expressed
in the “scattered wave” polarimetric frame in the so-called “forward scattering alignment”
convention PFS (P, v̂fr , ĥ

f
r , r̂

f
s ):[

Es
v.v̂i

Es
h.ĥi

]
=
k0e

−k0r

4πr
IE0

(
Uvv Uvh
Uhv Uhh

)
︸ ︷︷ ︸

polarimetric scattering matrix S

[
Es
v.v̂

f
s

Es
h.ĥ

f
s

]
(C.102)
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with:
I =

q

|qζ |

∫
S

exp
{

(ks − ki).r
′} dS′ (C.103)

and:

Uhh =
q × sgn(qζ)

{
Rv(ĥ

f
s .̂rx)(ĥi .̂r

f
s ) +Rh(v̂fs .̂rx)(v̂i .̂r

f
s )
}

kD2
(C.104)

Uvh =
q × sgn(qζ)

{
Rv(v̂

f
s .̂rx)(ĥi .̂r

f
s )−Rh(v̂fs .̂rx)(v̂i .̂r

f
s )
}

kD2
(C.105)

Uhv =
q × sgn(qζ)

{
Rv(v̂

f
s .̂rx)(v̂i .̂r

f
s ) +Rh(v̂fs .̂rx)(ĥi .̂r

f
s )
}

kD2
(C.106)

Uvv =
q × sgn(qζ)

{
Rv(ĥ

f
s .̂rx)(v̂i .̂r

f
s )−Rh(v̂fs .̂rx)(ĥi .̂r

f
s )
}

kD2
(C.107)

We now calculate the average coefficients of the polarimetric scattering matrix in power
Σ0. By definition:

σpq =
4πr2

r

A

〈EspqEs?pq〉
EiqE

i?
q

(C.108)

where ? is the conjugation operator. We are thus led to calculate the mathematical expec-
tation of |I|2:

〈|I|2〉 =
q2

q2
ζ

∫∫
S
e(qx(x′−x′′)+qy(y′−y′′))〈e(ζ(x′,y′)−ζ(x′′,y′′))〉dS′dS′′ (C.109)

To proceed with the calculation, an assumption about the shape of the surface is needed.
Historically (see, for example, Fung and Chan [77], cited by Khenchaf [103], p. 105), it is
assumed that the surface follows a Gaussian process, i.e., ζ(x, y) is a Gaussian variable
drawn from a distribution with zero mean, a variance of σ2, and a correlation function
denoted by ρEM . Then:

〈e(ζ(x′,y′)−ζ(x′′,y′′))〉 = e−qζσ
2(1−ρEM (x′−x′′,y′−y′′)) (C.110)

with q2
ζσ

2 = (k0σ)2(cos θvi +cos θvs )2, where this parameter qζσ characterizes the roughness
of the considered surface. Under a certain number of assumptions:

1. stationarity of the process

2. finite size of the surface (area A = 2a× 2a)

3. isotropic surface

4. a sufficiently large value of q2
ζσ

2 so that its contribution is significant only for small
values of x′ − x′′ and x′ − x′′

... it can be shown that:

〈|I|2〉 = 2π
q4
ζm

qζ

2

Ae−
q2x+q2y

2m2 (C.111)

with m = σ
√
|ρ′′EM (0)| being the standard deviation of surface slopes. In the end, we

obtain:

σpq =
k2

0q
2|Upq|2

2q2
ζm

2
e−

q2x+q2y

2m2 (C.112)

245



Polarimetric coefficients of the Small Perturbation Method

By identifying the Gaussian distribution that appears in this expression, we arrive at the
form:

σpq =
πk2

0q
2|Upq|2

q2
ζ

Pr(Zu, Zc) (C.113)

The function Pr is a probability of occurrence of slopes Zu = −∂ζ/∂x = −qx/qζ and
Zc = −∂ζ/∂y = −qy/qζ , for example, the Cox and Munk distribution (Chapter 2, p. 78).
Equation C.113 is then used in Chapter 4.

C.5 Polarimetric coefficients of the Small Perturbation Method

In this section, we provide, without any demonstration, the values of the coefficients αpq
allowing the calculation of the scattered field by the Small Perturbation Method, using
the formula 4.5 from Chapter 4, page 110. Interested readers may refer, for example, to
Khenchaf [1, 103] for a complete demonstration. We first introduce two intermediate terms:

ai =
√
εrµr + sin2 θvi (C.114)

as =

√
εrµr + sin2 θvs (C.115)

For the VV channel, we have:

nvv1 = (εr − 1)(εr sin θvi sin θvs − aias cosφvs) (C.116)
nvv2 = ε2r(µr − 1) cosφvs (C.117)
dvv1 = εr cos θvi + ai (C.118)
dvv2 = εr cos θvs + as (C.119)

αvv =
nvv1 + nvv2

dvv1 d
vv
2

(C.120)

For the VH channel:

nvh1 = (µr − 1)εrai (C.121)
nvh2 = (εr − 1)µras (C.122)
dvh1 = ai + µr cos θvi (C.123)
dvh2 = as + εr cos θvs (C.124)

αvh =
nvh1 + nvh2

dvh1 dvh2

sinφvs (C.125)

For the HV channel:

nhv1 = (εr − 1)µrai (C.126)
nhv2 = (µr − 1)εras (C.127)
dhv1 = ai + εr cos θvi (C.128)
dhv2 = as + µr cos θvs (C.129)

αhv =
nhv1 + nhv2

dhv1 dhv2

sinφvs (C.130)
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Finally, for the HH channel:

nhh1 = (µr − 1)(aias cosφvs − µr sin θvi sin θvs ) (C.131)
nhh2 = µ2

r(εr − 1) cosφvs (C.132)
dhh1 = ai + µr cos θvi (C.133)
dhh2 = as + µr cos θvs (C.134)

αhh = −n
hh
1 + nhh2

dhh1 dhh2

(C.135)

In practice, in the case of interest (water-air interface), the constant µr is taken equal to 1.
It should be noted that the bistatic angles used correspond to a flat surface. Also, when
calculating the coefficients of the small perturbation model, care should be taken to use
the bistatic angles in the local frame L, associated with the facet, and which would only
correspond to the wind frame V if the facet were completely coincident with the average
sea surface.
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Appendix

D
Stochastic Matched Filtering

Stochastic Matched Filtering is a generalization of traditional matched filtering to the case
where the signal to be detected is not deterministic. This appendix provides some basics
regarding Stochastic Matched Filtering. These elements are a synthesis of several articles:
[37], [47], [46], and the course on Stochastic Matched Filtering by Jean-François Cavassilas
published on his personal webpage1. The theory is presented in the context of discrete
signals only.

D.1 Problem statement and preliminary definitions

We consider representing a signal z measured by a sensor (an observation) in the form of
an infinite-size vector:

z = [z0, z1, z2, . . . , zn, . . .] (D.1)

This signal represents the discretized version of a continuous signal z:

zn = z(nT ) (D.2)

where T is the sampling period of the system. It is also assumed that the sampled signal is
quantified on M levels of values v0,..., vM−1 (not necessarily spaced uniformly). For each
sample zn, it is also assumed that one of the following two hypotheses is true:

• Hypothesis H1: The sample contains only noise, i.e., unwanted information: zn =
bn

• Hypothesis H2: The sample contains desired information (signal), but this signal
is corrupted by additive noise: zn = sn + bn

In general, signal measurement is rarely done on a single sample. When a signal enters a
measuring instrument, it has a certain duration that allows it to be measured over several
consecutive samples. In the following, it is considered that the signal typically extends
over N = 2l+1 consecutive samples centered around sample sn. The window w(n) is then
defined as the vector:

w(n) = [zn−l, zn−l+1, . . . , zn, . . . , zn+l−1, zn+l] (D.3)

(the choice of an odd length N and a centered window is just a convenience). It will also
be noted, later in the document:

w(n) = [w0, w1, . . . , wn, . . . , wN−2, wN−1] (D.4)

According to the hypotheses, it can always be written as follows:
1http://cava.univ-tln.fr/
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• Hypothesis H1:

w(n) = b(n) (D.5)

with:
b(n) = [bn−l, bn−l+1, . . . , bn, . . . , bn+l−1, bn+l] (D.6)

• Hypothesis H2:

w(n) = s(n) + b(n) (D.7)

with:
s(n) = [sn−l, sn−l+1, . . . , sn, . . . , sn+l−1, sn+l] (D.8)

It is further assumed that the choice of hypothesis H1 or H2 does not affect the nature of
b.

D.1.1 Various figures associated to windows

The windows w(n) have a length of N . The signal is assumed to be sampled on M
levels. For a given n, there are thus NM different possible configurations of w(n) that
can be observed. Let wi denote the i-th window configuration, with i ∈ 〈1..NM 〉. Each
configuration has a certain probability of occurrence. Let ri be the probability of occurrence
of the i-th configuration (it follows that r0 + r1 + . . . + rNM−1 = 1). The i-th window is
described as follows:

wi = [wi,1, . . . wi,N ] (D.9)

There are also NM possible constructions for s and for b. Let pi be the probability of
occurrence of the i-th configuration si of s and qi its counterpart for b. The following
functions and quantities are defined:

• the “power of wi” function, scalar:

Pw(i) =

j=N∑
j=1

w2
i,j = wt

iwi (D.10)

• the “average of wi” function, scalar:

Mw(i) =
1

N

j=N∑
j=1

wi,j (D.11)

• the “average w vector”:

w̄ =
i=NM∑
i=1

riwi = E(w) (D.12)

where E is the “expectation” operator. This vector has a length of N .

• the variance-covariance matrix of w whose entry (i, j) is:

Σw(i, j) = [ri(wi − w̄)][rj(wj − w̄)]t (D.13)

where ′ denotes the transpose-conjugate. This matrix is symmetric.
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• and finally, the average power of w, scalar:

P̄w =
i=NM∑
i=1

riw
2
i =

i=NM∑
i=1

riPw(i) = E(wwt) (D.14)

The same can be done for s and b. Finally, the signal-to-noise ratio ρ of s over b is defined
as the ratio:

ρ =
P̄s

P̄b
(D.15)

D.2 Stochastic Matched Filtering problem

Let h be a “filter” defined as the vector:

h = [h∗N , . . . , h
∗
1] (D.16)

w can be filtered by h, which is simply a scalar product: htw = wth.

Note: By calling h a filter and using the notion of a scalar product, we are making
a language abuse. Strictly speaking, filtering is expressed by convolving a signal with an
impulse response. However, this convolution is equivalent to the scalar product of the signal
with the complex conjugate reversed response of the filter’s impulse response. Therefore,
h is called a "filter" here, although it is actually the complex conjugate reversed response
of the filter’s impulse response. Keep this abuse in mind when implementing filtering via
the Fourier transform.

Stochastic Matched Filtering Problem The average power of windows w filtered by h
is:

P̄wth =
i=NM∑
i=1

ri(w
t
ih)2 (D.17)

The stochastic matched filtering problem is to find h such that:

ρ′ =
P̄sth

P̄bth

> ρ (D.18)

where P̄sth and P̄bth are defined as in equation D.17 with notation changes.

Lemma: The average power P̄wth of windows wi filtered by h is also equal to:

P̄htw = ht(Σw + w̄tw̄)h (D.19)

Proof:

P̄wth =

i=NM∑
i=1

ri[w
t
ih]2 (D.20)

=

i=NM∑
i=1

rih
twiw

t
ih (D.21)

P̄wth =

i=NM∑
i=1

rih
t(wi − w̄ + w̄)(wi − w̄ + w̄)th (D.22)

After expansion:
P̄wth = T1 + T2 + T3 (D.23)

with:
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• Term T1:

T1 =

i=NM∑
i=1

rih
t(wi − w̄)(wi − w̄)th (D.24)

= ht

i=NM∑
i=1

ri(wi − w̄)(wi − w̄)t

h (D.25)

T1 = htΣwh (D.26)

• Term T2:

T2 =

i=NM∑
i=1

rih
tw̄w̄th (D.27)

=

i=NM∑
i=1

ri

htw̄w̄th (D.28)

T2 = htw̄w̄th (D.29)

• Term T3:

T3 =
i=NM∑
i=1

rih
t(wi − w̄)w̄th + rih

tw̄(wi − w̄)th (D.30)

= 2htw̄

i=NM∑
i=1

riwi

ht − 2(w̄th)2 (D.31)

= 2(w̄th)2 + 2(w̄th)2 − 2(w̄th)2 (D.32)
T3 = 0 (D.33)

By factoring T1 and T2, we have what we set out to prove. �

Therefore, the stochastic matched filtering problem boils down to finding a vector h that
maximizes the ratio:

ρ′ =
ht(Σs + s̄s̄t)h

ht(Σb + b̄b̄t)h
(D.34)

The solution to this problem is straightforward. First, we define:

P = Σs + s̄s̄t (D.35)
Q = Σb + b̄b̄t (D.36)

(the ratio htPh/htQh is a so-called Rayleigh quotient). There is no obstacle to constrain
the denominator to be 1; we will then maximize the numerator. This constraint is written
as:

1− htQh = 0 (D.37)

The problem can be formulated as a Lagrangian:

L(h) = htPh + λ(1− htQh) (D.38)
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Taking the derivative of this Lagrangian with respect to h and finding where it equals zero:

∇L(h) = 2(Ph + λQh) = 0 (D.39)

This leads to a generalized eigenvalue problem:

Ph = λQh (D.40)

and we have:

ρ′ =
htPh

htQh
=
λhtQh

htQh
= λ (D.41)

If Q is invertible (symmetric positive definite), the solutions to the generalized eigenvalue
problem, i.e., the vectors h satisfying:

Q−1Ph = λh
λ > ρ
htQh = 1

(D.42)

areN such vectors since P and Q are symmetric, so is Q−1P, and this matrix is diagonalizable.
Denoting R = Q−1P:

R = HDH−1 (D.43)

The vectors h that are solutions to our problem are the columns of H. Among the N
solution vectors, there is a subset of Nf vectors (Nf ≤ N) h1 . . .hnf associated with
eigenvalues λ1 . . . λNf greater than ρ (under the constraint: htQh = 1). These Nf vectors
will increase the signal-to-noise ratio ρ′ after filtering. These are the stochastic matched
filters for the signal.

D.3 The “classical” matched filtering

Note: this section was much simplified during translation, making the derivation of the
classical matched filter a much more natural sub-case of the stochastic matched filtering.

So far, it has been assumed in general that the signal could take NM appearances s1,
s2 . . ., sNM , each occurring with probability p1, p2, . . ., pNM . If the signal is perfectly
known, meaning that it only takes one appearance, then it is possible to write s = s1,
p1 = 1, and p2, . . . , pNM = 0. We also have s̄ = s. Under these conditions, the matrix P

introduced earlier is: P = sst. Therefore, we seek to maximize the Rayleigh quotient:

ρ′ =
htssth

htQh
(D.44)

We can solve this problem in the same way as before. The matrix sst has a unit rank, so
there will be only one eigenvalue h for Q−1P. This eigenvalue is called the matched filter.
To get this filter, take the first line of equations system D.42, which now reads:

λŵ = (Q−1P )ŵ = (Q−1s̄.s̄h).ŵ = Q−1s̄.(s̄h.ŵ) = Q−1s̄(s · ŵ) (D.45)

Noting that (s̄ · ŵ) = λ is a scalar, so the only admissible eigenvector is ŵ = αQ−1s̄ where
α is an arbitrary coefficient. When normalizing the solution so that htQh = 1 as expected
in the third line of D.42, it comes that:

α =
1√

stQ−1s
(D.46)
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so that the matched filter is:
h =

1√
stQ−1s

Q−1s (D.47)

Special Case of Gaussian White Noise If the noise is Gaussian white noise with variance
σ2
b :

Q−1 =
1

σ2
b

I (D.48)

Furthermore:
stQ−1s =

Ps

σ2
b

(D.49)

The impulse response of the matched filter is, up to a multiplicative constant, proportional
to the conjugate of s:

h =
1

σb
√
Ps

s (D.50)

D.4 Additional properties of Stochastic Matched Filtering

Bases The eigenvectors h1 . . .hNf of the matrix Q−1P are by definition linearly inde-
pendent and thus form a basis. This basis is not necessarily orthogonal (counterexamples
are easily exhibited by taking random numerical values). The vectors ji = Qhi also form
a basis. This property is easily demonstrated by the fact that det H 6= 0 since the hi are
linearly independent. Moreover, Q is assumed to be invertible, so det Q 6= 0. Therefore,
det QH 6= 0 and the ji are linearly independent.

Biorthogonality It can also be shown that the vectors hi and the vectors ji = Qhi satisfy
the property:

htijj = δij (D.51)

where δij is the Kronecker symbol. It is said that the basis of hi and the basis of ji is
biorthogonal. Indeed, we have:

∀i ∈ 〈1..N〉, Q−1Phi = λihi (D.52)

By setting ji = Qhi, we also have:

∀i ∈ 〈1..N〉, PQ−1ji = λiji (D.53)

The matrices P and Q are symmetric: P−1 = P′, Q−1 = qt. We have Rt = (Q−1P)t =
Pt(Q−1)t = PQ−1. Then the relations D.52 and D.53 can be written as:{

∀i ∈ 〈1..N〉, Rhi = λihi
∀i ∈ 〈1..N〉, R′ji = λiji

(D.54)

There is nothing preventing a change of variables in the second line:{
∀i ∈ 〈1..N〉, Rhi = λihi
∀j ∈ 〈1..N〉, R′jj = λjjj

(D.55)

Pre-multiply the first line of the system by jtj and the second by htj :{
jtjRhi = λij

t
jhi

htiR
′jj = λjh

t
ijj

(D.56)
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The left-hand sides of the two lines are equal, so we have, by subtracting the two lines:

∀(i, j) ∈ 〈1..N〉2, (λi − λj)htijj = 0 (D.57)

And therefore:

∀(i, j) ∈ 〈1..N〉2,htijj = δij (D.58)

which completes the demonstration. �

Joint Decomposition of Signal and Noise It is possible to decompose the signal on
the basis of hi and the noise on the basis of ji. A window b containing only noise can be
written as a linear combination of ji, i ∈ 〈1..N〉:

b =
∑

j = 1Nb′jjj (D.59)

The prime notation on the coefficients b′j is used to clearly indicate that the coefficients
correspond to the decomposition in a different basis than the original one. This window
filtered by one of the hi will be written as:

htib = hti

N∑
j=1

b′jjj =
N∑
j=1

b′jh
t
ijj =

N∑
j=1

b′iδij = b′i (D.60)

Hence the coefficients b′i. Similarly, in this basis:

E(b′jb
′
i) = E(htjBB

thi) = htjE(BBt)hi = hjQhi = δi,j (D.61)

This means that the coefficients b′i of the decomposition of b on the basis of ji are uncor-
related random variables with unit power. In other words, the filtered noise is whitened
and has unit power. Finally, a window s containing only signal can also be written as a
linear combination of ji, i ∈ 〈1..N〉:

s =

N∑
j=1

s′jjj (D.62)

The filtered signal is then:

htis = hti

N∑
j=1

s′jjj =

N∑
j=1

s′jh
t
ijj =

N∑
j=1

s′iδij = s′i (D.63)

Hence the coefficients sti. Similarly, in this basis:

E(stjs
t
i) = E(h′jss

thi) = h′jE(sst)hi = hjPhi = λihjQhi = λiδi,j (D.64)

This means that the coefficients sti of the decomposition of s on the basis of ji are also
uncorrelated random variables with power equal to λi. In other words, the filtered signal
is also whitened.
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D.5 Remarks

D.5.1 Concrete implementation of Stochastic Matched Filtering

We have observed that numerically, the eigenvector calculation scheme of the matrix H

(equation D.43) could diverge (i.e., give incorrect solutions) in some cases where the mean
vector of the noise is non-zero; meaning that in equation D.36: b̄b̄t 6= 0. The problem
is resolved when, on the contrary, the mean vector of the noise is zero. In practice, it is
advisable to estimate the stochastic matched filters by taking:

P = Σs + s̄s̄t (D.65)
Q = Σb (D.66)

then by filtering the signal by subtracting the mean vector of the noise first, meaning that
the filtered version of w(n) is ht.(w(n)− b̄). This process has the disadvantage of making
the filtering non-linear, i.e., not computable using a Fourier transform.

D.5.2 Stochastic Matched Filtering on non-scalar signals

The notion of covariance matrix is more intricate for signals living in a space of dimensions
greater than one:

Z = [z0, z1, z2, ..., zn, ...] (D.67)
where zi are of dimension L. In this case, the observed window is a concatenation of
vectors:

W = [zn−l, zn−l+1, ..., zn, ..., zn+l−1, zn+l] (D.68)
For example, if the signal is 2D, the observed window is no longer a vector but a matrix,
of size L × (2l + 1) in the previous case. One possibility to use the results demonstrated
above is to "unfold" the window in order to make it one-dimensional, i.e., concatenate all
the columns of W:

w = [Wn−l,Wn−l+1, ...,Wi, ...,Wn+l−1,Wn+l] (D.69)

with −l ≤ i ≤ l. For example, the following matrix:

W =

 1 4 7
2 5 8
3 6 9

 (D.70)

consists of three vectors Wt
0 = [1, 2, 3], Wt

1 = [4, 5, 6] and Wt
2 = [7, 8, 9], and unfolds as

follows:
w = [1, 2, 3, 4, 5, 6, 7, 8, 9]t (D.71)

Then, one can calculate the filters and perform filtering in one dimension, or return to the
original dimension by "folding" the filters by performing the inverse operation of equation
D.69.

D.6 Use of Stochastic Matched Filtering for detection prob-
lems

Expressed in the basis of ji, the covariance matrix of the noise is the identity matrix:

{Q}j =


1 0

1
. . .

0 1

 (D.72)
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This is a direct consequence of relation D.51. Similarly, in the basis of ji, the covariance
matrix of the signal is expressed as:

{P}j =


λ1 0

λ2

. . .
0 λN

 (D.73)

The covariance matrix of the signal added to the noise is, assuming the two processes are
independent:

{R}j =


1 + λ1 0

1 + λ2

. . .
0 1 + λN

 (D.74)

Given a vector w, we want to determine whether this vector has been drawn under hy-
pothesis (H1) (contains only noise):

w(n) = b(n) (D.75)

or under hypothesis (H2) (contains noise and signal). From here on, we assume that we
approximate the distribution of s and b by a Gaussian distribution. In practice, this
approximation is generally well satisfied. Under hypothesis (H1), the signal then follows
the density function:

f1(W ) =
1

(2π)N/2
exp

(
−1

2
wtw

)
(D.76)

Under hypothesis H2, it will be:

f1(w) =
1

(2π)N/2
√

det R
exp

(
−1

2
wtRw

)
(D.77)

We consider the likelihood ratio:

Λ(w) =
f2(w)

f1(w)
(D.78)

If Λ(w) > 1, we consider that hypothesis 2 is true and that the observation w contains
signal; otherwise, hypothesis 1 is true and the signal contains only noise. It is simpler
to consider the functional log Λ, i.e., the logarithmic domain of the likelihood ratio. It is
easily shown that the criterion “log Λ(w) > 1” is equivalent to:

i=N∑
i=1

w2
i

λi
1 + λi

>

i=N∑
i=1

(1 + λi) (D.79)

To ensure that Λ(w) is much greater than 1 under hypothesis 2, the series is truncated to
order Nf . In this case, the hypothesis test will be on:

i=Nf∑
i=1

w2
i

λi
1 + λi

>

i=Nf∑
i=1

(1 + λi) (D.80)
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D.7 Additional notes

Note: this section was added during translation.

The Stochastic Matched Filtering is nothing but the generalization of the Karhunen-Loève
transform (KLT), as introduced in 1970 by Fukunaga and Koontz [213]. The Fukunaga-
Koontz transform (FKT) and the Stochastic Matched Filtering both proceed to the opti-
mization of a criterion expressed in terms of a Rayleigh quotient of the signal and noise
covariance matrix; both transform result in the same eigenvectors (hence the equivalence).
In the FKT approach, the signal and the noise are decomposed on a bi-orthogonal basis
such that each vector is associated to an eigenvalue between 0 and 1. The eigenvalue is
close to one when the eigenvector is associated to signal and close to zero when it is asso-
ciated to noise. The idea of extending the KLT, but using a SNR maximization approach
was made by Green et al. in 1988 [210], without mentioning the FKT which they probably
did not know of. The result was called the Maximum Noise Fraction (in the original paper)
or, more commonly today, the Minimum Noise Fraction [sic] or MNF. without mentioning
the FKT which they probably did not know of. The application was to find a representa-
tion of multispectral images with an increasing noise fraction: this means that the vectors
are built pixel-by-pixel, and n represents the number of channels per pixel. Each pixel
is independent from the other. In this derivation, the signal and the noise were assumed
to be with a zero average, an assumption which was not made in the original paper, so
the MNF, and its associated properties, make it a strict subset of the FKT. The MNF
was presented by Green et al. as an alternative to Principal Components Analysis (PCA)
and is still known and used that way by the remote sensing community (with numerous
variants). A strong hypothesis is that the images are of zero average, which is a sub-case
of the derivation made in this appendix.
In 1993, independently from previous works, Cavassilas and Xerri [37] proposed the

Stochastic Matched Filter, using an additive noise model with a zero-average signal and
noise. Using a very similar approach, they came to the same conclusions as Green et
al. and Lee et al., but presented their results for signal processing on sliding windows
instead of having dimensionality reduction in mind. In 1992 (with a publication in 1994),
Mahalanobis (then working at Martin Marietta) and Singh published a similar method
[207].
In the context of electro-encephalograms (EEG) processing, Koles et al. [211] presented

in 1990, without naming it, the FKT under the zero-average hypothesis. In the field of EEG
processing, the first paper to give that technique the name of Common Spatial Pattern was
the article by Müeller, Gerkinga et al. [212] in 1999. Many interesting generalizations of the
Common Spatial Pattern have been published in the meantime. For instance, Barachant
et al. [218] showed a link between CSP and Riemannian geometry and showed that CSP
spatial filtering and Log variance features extraction can be resumed as a computation
of a Riemann distance in the space of covariances matrices. Another breakthrough is the
extension of the CSP method to a multi-class situation, that is, more than just signal and
noise, as proposed for instance by Domeghe et al. (2003) [208] and Grosse, Wentrup et al.
[221] in 2008. Lotte et al. proposed a regularized version of the CSP to add robustness
to the filtering scheme (2010) [219]. Finally, Yu et al. [220] proposed a non-parametric
extension of the CSP where the hypothesis of Gaussian distributions for the signal and
noise is relaxed; this method was also extended to a multi-class scenario.
In 2000, Caprari [209] discussed three generalizations of the matched filter:

1. the first filter is a generalization of the linear discriminant analysis framework, seeking
a frame change maximizing the separation of the means of two classes of vectors
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relative to the sum of their dispersions:

max
w

wt(s̄− n̄)((s̄− n̄)w

wt(Σs + Σn)w
(D.81)

2. the second filter is the one maximizing the ratio of the energies of the two classes
of vectors (“signal to noise ratio”), which is the stochastic matched filter mentioned
until here:

max
w

wtPw

wtQw
(D.82)

3. the second filter is the one maximizing the inverse ratio of the energies of the two
classes of vectors (“noise to signal ratio”):

max
w

wtQw

wtPw
(D.83)

Capari noted a similarity between filter 2 (which is the stochastic matched filter discussed
in the appendix) and the FKT, without going as far as proving their equivalence. He also
wrote the quadradtic detector rule in the general case, analogous to equation D.78 and
following.
Specific cases of generalized matched filtering have also been found in the case of beam-

forming or direction-of-arrival (DoA) applications. It is possible2 to identify the classical
Bartlett beamformer [225] with the matched filter in the case of white noise, the Capon
[214] beamformer with the matched filter in the case of coloured noise, and the MUSIC
[217], [215], [216] algorithm conceptually using a similar approach as the original derivation
of the FKT, assuming the noise to be white. There are immediate generalisations when
the noise and/or the signal is coloured by using a minimum noise fraction-like approach.
In the image processing community, the classical correlation, that is, the solution of the

general matched filtering problem when the noise is white (equation D.50), is still heavily
used, with a great deal of derivatives and variants (see e.g. the work by Leonard [222] for
a state of the art). It is only very recently that it came to the attention of some people
in the Image Processing community, even in the Radar field, that it is possible to use the
covariance of the noise to improve the correlation or template matching of a reference image
with an input image. This approach is known as the General Inner Product detector. See
for instance [223] for an eye detection application proposed in 2014 (where the method was
qualified as “novel”) and [224] in 2010 for an application in radar.

2The derivations are made in a Thales internal report. Publication in a proper article or communication
is in project.
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Appendix

E Transfer Function Linking Elevation Map to
Optical Image

This appendix complements Chapter 7, Section 7.2.2. Its purpose is to present the calcu-
lation of the transfer function F [HMTF] linking the Fourier transform of the ocean surface
height map to the Fourier transform of an optical image typically acquired in the context of
high-resolution satellite or airborne imaging. Here, we recall Equation 7.22 from Chapter
7:

F [I] (κi, κj) = F [HMTF](Kx,Ky)F [ζ] (Kx,Ky) (E.1)

where Kx,Ky are the wave numbers of the waves, ζ is the elevation function, I is the
optical image, and κi, κj are the wave numbers of the spectral components of the image.
Before constructing the modulation transfer function F [HMTF], it is necessary to consider
the geometry of the problem and the link budget. The most general optical vision chain
model consists of several steps, which are philosophically similar to what is done in Radar:
it starts with a link budget and ends with a projection that is specific to optical imaging.
The link budget is done rigorously as in Radar since optics is nothing but high-frequency
electromagnetism; but as most cameras do not use polarization, we will work with a scalar
formalism. Also, we will use a simplified reflectivity model. Once the reflectivity model is
constructed, we will linearize it, which will reveal the transfer function F [HMTF].

E.1 Link budget and acquisition geometry in optical imaging

Here are the steps involved in the acquisition chain of the optical image:

1- Calculation of the Illumination Map This involves evaluating the incident luminous
power density at each point on the height map. We will assume that the light source is
located at infinity: in our case, it is the sun, so the assumption is reasonable. Its direction
will be given by the unit vector l̂, pointing towards the source. It is also assumed that the
illumination on the map is constant and equal to I0 in [W/m2].

2- Calculation of the Reflected Intensity The reflected intensity is the product of the
illuminance by the reflectance denoted Rf , which is dimensionless:

Ir(x, y) = I(x, y)Rf (x, y) (E.2)

For this, a simple reflectivity model is used. We have chosen a classic model, the Phong
model modified by Blinn. The Phong model [142], commonly used in real-time 3D com-
puter graphics, is a semi-empirical model that works well for many materials. It breaks
down into three additive components:

Rf (x, y) = Ra(x, y) +Rd(x, y) +Rs(x, y) (E.3)

These components are:
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• The “ambient” component is a constant term independent of the light direction,
supposed to represent the contribution of secondary sources present in the scene and
reflecting on the considered object:

Ra(x, y) = ρa (E.4)

where ρa is a positive term.

• The “diffuse” component is modeled according to Lambert’s law and involves the
local normal to the surface at (x, y), denoted n̂:

Rd(x, y) = ρdn̂(x, y).̂l(x, y)
here
= ρdn̂(x, y).̂l (E.5)

where ρd is a positive term.

• The “specular” component is inspired by Lambert’s law, but with a decrease in cosγs

around the direction d̂ given by Snell’s law, which can be expressed in terms of l̂ and
the local normal n̂:

d̂(x, y) = −̂l(x, y) + 2(̂l(x, y).n̂(x, y))n̂(x, y) (E.6)
here
= −̂l + 2(̂l.n̂(x, y))n̂(x, y) (E.7)

where ρa is a positive term. The specular reflection is, in the pure Phong model:

Rs(x, y) = ρs(d̂(x, y).v̂(x, y))γs (E.8)

with v̂(x, y) the unit vector starting from (x, y, ζ(x, y)) and pointing towards the
camera. The term γs is the shininess term; the larger it is, the closer the specular
reflection is to Snell’s law. In the Blinn-Phong model [30], the specular reflection is
approximated by:

Rs(x, y) ≈ ρs(ĥ.n̂(x, y))γs (E.9)

where the vector ĥ is defined as:

ĥ(x, y) =
l̂ + v̂(x, y)

||̂l + v̂(x, y)||
(E.10)

This representation allows simplifying the calculation while giving very accurate re-
sults; in practice, this is the model that is implemented. Thus, by removing the
constant terms, the Blinn-Phong model can always be written in the form:

Rf (x, y) = ρdn̂(x, y).̂l + ρs(ĥ(x, y).n̂(x, y))γs (E.11)

Camera Model This is where the formalism notably diverges from radar imaging (in
the general case). The main point is that an optical image acquired by a camera is funda-
mentally a projection. A classic model of an ideal optical camera is the pinhole model; it
consists of considering all the light rays passing through the optical center C of the camera
and intercepted by a planar sensor. A reference work in this field is the book Computer
Vision: Algorithms and Applications by Richard Szeliski [19]. Now, consider a light source
located at point P with coordinates [xc, yc, zc] in the camera frame C (see Figure E.1). The

262



Link budget and acquisition geometry in optical imaging

S
ensor plane

Principal axis

Center
of

projection

with

Figure E.1: Notations used to define the camera frame C and the pinhole model’s projective
geometry.

ray starting from P and passing through the camera’s focal point C will hit the pixel with
coordinates (i, j), given by the matrix relation: si

sj
s

 =

 −kif 0 i0 0
0 −kjf j0 0
0 0 1 0


︸ ︷︷ ︸

V


xc
yc
zc
1

 (E.12)

Here, V is the 3×4 matrix of the projection application; it is called the intrinsic matrix
of the camera. The term s is a scale parameter, equal to zc, which is lost by projection.
The term f denotes the focal length of the camera, i.e., the distance from the sensor plane
to the optical center. The terms ki and kj are the pixel densities of the sensor, in pixels per
meter1. Finally, the terms i0 and j0 represent the pixel coordinates of the camera’s optical
center; they are the coordinates of the line passing through the focal point and orthogonal
to the sensor plane. Another camera model can also be used, namely, the affine model.
The projection is in the form: i

j
1

 =

 a11 a12 a13 i0
a21 a22 a23 j0
0 0 0 1




xc
yc
zc
1

 (E.13)

with the aij as camera parameters. The affine model is a good simplification of the pinhole
model valid when the height variations of the observed surface are small compared to the
camera’s distance to the mean plane of the surface. This is typically true in the case of
observing waves from an airplane or a satellite2. Therefore, we will now work with the
affine model.
It is necessary to convert the scene’s coordinates in the world frame W into coordinates

in the camera frame C. For a point P, the change of frame can be represented by the
composition of a rotation and a translation, as follows (see also Appendix A):

{OP}C = RW→C × {OP−OC}W (E.14)
1Order of magnitude: for a 24×36 mm CCD sensor with a total of 20 million pixels (which corresponds

to a current high-end digital single-lens reflex camera): ki = 1.52× 105 pixels/m.
2On a satellite, acquisition is done by a linear sensor, and the scene scrolls under the satellite. But the

final image can still be modeled by the affine model...
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This can be represented in matrix form:

 i
j
1

 {OP}C =

 RW→C −RW→C × {OC}W

0 0 0 1


︸ ︷︷ ︸

E

(
{OP}W

1

)
(E.15)

The matrix E (dimension 4× 4) obtained in this way for changing the frame is called the
extrinsic matrix. Therefore, the entire projection operation can be coded as follows:(

{OP}C
1

)
= {OP}C = VE

(
{OP}W

1

)
(E.16)

Then we can write the received light power at the pixel with coordinates (i, j):

Ir(i, j) =

∫∫
x,y∈S(i,j)

I0Rf (x, y)dxdy [W] (E.17)

where S(i, j) is the set of points in the solid angle originating from the optical center of the
camera and formed by the pixel area (i, j). We add to the assumption of the affine model
the hypothesis that the camera is looking in the vertical direction, in other words, v̂ = ẑ.
In this case, we can see that the ground area of S(i, j) is roughly the same everywhere and
equal to a [m2]. Assuming further that the reflectivity of the surface varies little over the
domain S(i, j), we can finally write:

Ir(i, j) = aI0Rf (xi, yi) (E.18)

where (xi, yi) is the center of S(i, j), its coordinates being obtained from the projection
equation (E.16). In the following, we will additionally assume that the camera axes are
the same as the axes of the world reference frame, which will simplify the treatment of the
problem without losing generality.

E.2 Modulation transfer function in the optical case

Here, we consider an approach initially proposed by Kube and Pentland [139] for Lam-
bertian diffusion, later adapted, simplified, and extended by Chantler et al. [39] (still in
Lambertian diffusion). We modify this approach to incorporate specular reflection, result-
ing in the modulation transfer function corresponding to the Blinn-Phong model.

Diffuse Component We begin with the diffuse reflection framework, presenting the ideas
of Chantler et al. [39] with our notations. From equation E.5, we have:

Rd(x, y) = ρdn̂(x, y).̂l (E.19)

This equation can also be written as:

Rd(x, y) = ρd
−p cosφi sin θi − q sinφi sin θi + cos θi√

p2 + q2 + 1
(E.20)

where:

• p =
[
∂ζ
∂x

]
x,y
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• q =
[
∂ζ
∂y

]
x,y

•
{̂

l
}
W

= [cosφi sin θi, sinφi sin θi, cos θi]
t, using the notations from Chapter 4, assum-

ing that the wind frame V is coincident with the world frame W here.

The partial derivatives are taken with respect to the axes of the world frame. However, we
can consider a “light source” frame L with the abscissa axis parallel to the projection of
l on the surface’s mean plane. With (x′, y′) as coordinates in frame L, we have a simpler
expression:

Rd(x
′, y′) = ρd

−r sin θi + cos θi√
r2 + t2 + 1

(E.21)

with:

• p =
[
∂ζ
∂x′

]
x′,y′

• q =
[
∂ζ
∂y′

]
x′,y′

Using a Taylor expansion, we get:

Rd(x
′, y′) = ρd(−r sin θi + cos θi)

[
1− (r2 + t2)

2!
+

9(r2 + t2)

4!
+ . . .

]
(E.22)

It is then shown that if the slopes are less than 15 degrees on the surface, then r2 and t2

are small compared to unity. Truncating all quadratic terms introduces no more than 3.5

Rd(x
′, y′) ≈ −ρd

[
∂ζ

∂x′

]
x,y

sin θ + cos θ (E.23)

We can calculate this slope in the Fourier domain. The derivative operator is a linear
operator, allowing for a linear modulation transfer function. In frame L, we have:

F
[
∂ζ

∂x′

]
(K ′x,K

′
y) = ρdK

′
xF [ζ] (K ′x,K

′
y) (E.24)

Returning to world frame W, we can continue to represent it in the Fourier domain.
However, to do so, we need to express K ′x in terms of the wavenumbers Kx and Ky in the
Fourier domain associated with the world frame W. We have:

K ′x = Kx cosφi +Ky sinφi =
√
K2
x +K2

y cos(φ− φi) (E.25)

with φ being the generalized arctangent of Ky/Kx. Neglecting the constant term in equa-
tion E.23 and substituting the new Fourier transform, we ultimately have:

F [Rd] (Kx,Ky) ≈ ρd [−Kx cos(φ− φi) sin θi]︸ ︷︷ ︸
Hs(Kx,Ky ,θi,φi)

F [ζ] (Kx,Ky) (E.26)

We conclude by recalling that we decided to take the camera axes parallel to the world
axes. The frequencies in the image domain are then κi = αiKy and κj = αjKx. Also, we
have:

φ = arctan(κi/κj) = arctan
αiKy

αjKx
(E.27)
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Specular Component We now extend the model to specular reflection, which was not
done by Chantler et al. We start with the specular component of Blinn-Phong, given in
equation E.9:

Rs(x, y) ≈ ρs(ĥ(x, y).n̂(x, y))γs (E.28)

where the vector h is ĥ = (̂l + v̂(x, y))/||̂l + n̂(x, y)||, with v̂ pointing towards the camera.
Since the camera is assumed to be at infinity (affine model), l̂ is constant and therefore ĥ
is also! We then write the coordinates ĥ in W as follows: [cosφi sin θi, sinφi sin θi, cos θi]

′.
We can then repeat the entire previous demonstration, writing:

Rs(x
′, y′) = ρs

(
−r sin θis + cos θis√

r2 + t2 + 1

)γs
(E.29)

Expanding the denominator in a Taylor series:

Rs(x
′, y′) = (−r sin θi + cos θi)

γs

[
1− γs(r

2 + t2)

2
+

(γ2
s + 2γs)(r

2 + t2)

8
+ . . .

]
≈ (−r sin θi + cos θi)

γs (E.30)

...which corresponds to the numerator of E.29. We then expand E.30 in a Taylor series:

Rs(x
′, y′) = −ρsγs cosγs−1 θis sin θis

[
∂ζ

∂x′

]
x,y

+ cosγs θis (E.31)

In the Fourier domain, neglecting the constant term, we have:

F [Rs] (κi, κj) ≈ ρs
[
−Kxγs cosγs−1 θis sin θis

]︸ ︷︷ ︸
F [Hs](Kx,Ky ,θis,φis)

F [ζ] (Kx,Ky) (E.32)

To conclude, we note that the Fourier transform of the received image –since it is propor-
tional to the reflectance under our assumptions– can be linked to the Fourier transform
of the elevation map. In the end, we have a relationship through a modulation transfer
function as in equation 7.22, with:

F [HMTF](Kx,Ky) = a[F [Hd](Kx,Ky) + F [Hs](Kx,Ky)] (E.33)

Figure E.2 compares the approach based on the exact Blinn-Phong model with the ren-
dering using the modulation transfer function for a simple mathematical surface and an
oceanic surface. In both cases, the lighting is the same: φi = π/3 and θi = π/4. It is
worth noting that in the second case, we are beyond the recommended 15-degree limit by
Chantler et al. for the use of the modulation transfer function (and similarly, we are at
the limit of wave breaking from a hydrodynamic point of view); however, the rendering
remains correct.
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Marine surveillance with bistatic radar: theory, simulation, contribution to
computer-aided ship wakes detection.

We study the feasability of ship wake detection in monostatic or bistatic radar images to
get parameters such as the ship’s heading and speed. We begin by describing the bistatic
radar acquisition chain in the marine environment, in particular the electromagnetic wave
scattering models applied to ocean surfaces and how to obtain an elevation map of the
Kelvin ship wake. Then we describe a raw radar signal simulator able to tackle bistatic
configurations, and we compare our results with data obtained from literature.
The second part of the thesis is a study on ship wake detectability in radar images. First

we consider the case of the so-called “dead water” wake, by benchmarking four typical
reference chains. Then we study the detectability of Kelvin ship wakes in high resolution
radar images: we discuss the choice of a radar configuration to optimize the visibility of
the wake, and then we present an algorithm able to obtain the ship’s heading and speed
from the images. The algorithm is based on the stochastic matched filtering theory, and
it also operates on high resolution optical images acquired from space.

Keywords: Marine surveillance, bistatic synthetic aperture radar, raw radar signal simula-
tion, Kelvin ship wake, dead water ship wake, stochastic matched filtering, computer-aided
detection.

La surveillance maritime en imagerie radar bistatique: théorie, simulation,
contribution à la détection automatique du sillage de navires.

Nous étudions la faisabilité de la détection du sillage de navires en imagerie radar, éventuelle-
ment bistatique, afin d’obtenir des paramètres tels que le cap et la vitesse du navire. Dans
un premier temps, on décrit la chaîne d’acquisition radar bistatique ainsi que l’environnement
maritime, en particulier les modèles de diffusion des ondes électromagnétiques sur des sur-
faces océaniques et la manière d’obtenir une carte des hauteurs des vagues de sillage de
Kelvin d’un navire. On décrit ensuite un simulateur de signaux radars bruts en configu-
ration bistatique, en validant les résultats obtenus avec des données radar monostatiques
disponibles dans la littérature.
La seconde partie de la thèse est dédiée à l’étude de la détectabilité du sillage de navires.

On traite tout d’abord du cas de la détection du sillage d’eau morte, en réalisant un test
comparatif de quatre chaînes de référence représentatives. On traite ensuite la détectabilité
du sillage de Kelvin dans des images radar de haute résolution, en commençant par discuter
le choix d’une configuration radar optimisant la visibilité du sillage, puis en présentant un
algorithme de détection et de traitement basé sur la théorie du filtrage adapté stochastique.
Cet algorithme fonctionne également sur des données d’imagerie spatiale optiques haute
résolution.

Mots-clés: Surveillance maritime, radar à synthèse d’ouverture bistatique, simulation de
signaux radar bruts, sillage de Kelvin, sillage d’eau morte, filtrage adapté stochastique,
détection assistée par ordinateur.
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