J. O. Aguilar, T. R. Bautista-quirano, and F. Aviles, Influence of carbon nanotube clustering on the electrical conductivity of polymer composite films, Express Polymer Letters, vol.4, issue.5, pp.292-299, 2010.
DOI : 10.3144/expresspolymlett.2010.37

A. Aguilar-esguezabal, W. Antunez, G. Alonso, F. Paraguay-delgado, F. Espinosa et al., Study of carbon nanotubes synthesis by spray pyrolysis and model of growth, Diamond and Related Materials, vol.15, issue.9, pp.1329-1335, 2006.
DOI : 10.1016/j.diamond.2005.10.011

P. B. Amama, C. L. Pint, L. Mcjilton, S. M. Kim, E. A. Stach et al., Role of Water in Super Growth of Single-Walled Carbon Nanotube Carpets, Nano Letters, vol.9, issue.1, pp.44-49, 2009.
DOI : 10.1021/nl801876h

H. Amara, C. Bichara, and F. Ducastelle, Understanding the Nucleation Mechanisms of Carbon Nanotubes in Catalytic Chemical Vapor Deposition, Physical Review Letters, vol.100, issue.5, p.56105, 2008.
DOI : 10.1103/PhysRevLett.100.056105

URL : https://hal.archives-ouvertes.fr/hal-00303796

R. T. Baker, Catalytic growth of carbon filaments, Carbon, vol.27, issue.3, p.315, 1989.
DOI : 10.1016/0008-6223(89)90062-6

M. J. Behr, E. A. Gaulding, K. A. Mkhoyan, and E. S. , Effect of hydrogen on catalyst nanoparticles in carbon nanotube growth, Journal of Applied Physics, vol.108, issue.5, pp.53301-53304, 2010.
DOI : 10.1063/1.3467971

M. J. Behr, E. A. Gaulding, K. A. Mkhoyan, and E. S. , Hydrogen etching and cutting of multiwall carbon nanotubes Catalyst rotation, twisting, and bending during multiwall carbon nanotube growth, Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures Carbon, vol.28, issue.48, pp.1187-11943840, 2010.

M. J. Behr, K. A. Mkhoyan, and E. S. , Orientation and Morphological Evolution of Catalyst Nanoparticles During Carbon Nanotube Growth, ACS Nano, vol.4, issue.9, pp.5087-5094, 2010.
DOI : 10.1021/nn100944n

S. W. Benson and R. Shaw, Kinetics and Mechanism of Hydrogenolyses. The Addition of Hydrogen Atoms to Propylene, Toluene, and Xylene, The Journal of Chemical Physics, vol.47, issue.10, pp.4052-4055, 1967.
DOI : 10.1063/1.1701575

E. Bergamaschi, O. Bussolati, A. Magrini, M. Bottoni, L. Migliore et al., Nanomaterials and lung toxicity: interactions with airways cells and relevance for occupational health risk assessment, International Journal of Immunopathology and Pharmacology, vol.19, pp.3-10, 2006.

D. S. Bethune, C. H. Kiang, M. S. De-vries, G. Gorman, and R. Savoy, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature, vol.363, issue.6430, pp.605-607, 1993.
DOI : 10.1038/363605a0

H. Bladh, J. Johnsson, J. Rissler, H. Abdulhamid, N. Olofsson et al., Influence of soot particle aggregation on time-resolved laser-induced incandescence signals, Applied Physics B, vol.33, issue.2, pp.331-341, 2011.
DOI : 10.1007/s00340-011-4470-y

S. N. Bondi, W. J. Lackey, R. W. Johnson, X. Wang, and Z. L. Wang, Laser assisted chemical vapor deposition synthesis of carbon nanotubes and their characterization, Carbon, vol.44, issue.8, pp.1393-1403, 2006.
DOI : 10.1016/j.carbon.2005.11.023

A. Borjesson and K. Bolton, First Principles Studies of the Effect of Ostwald Ripening on Carbon Nanotube Chirality Distributions, ACS Nano, vol.5, issue.2, pp.771-779, 2011.
DOI : 10.1021/nn101214v

M. Bozlar, D. He, J. Bai, Y. Chalopin, N. Mingo et al., Carbon Nanotube Microarchitectures for Enhanced Thermal Conduction at Ultralow Mass Fraction in Polymer Composites, Advanced Materials, vol.41, issue.14, pp.1654-1658, 2010.
DOI : 10.1002/adma.200901955

J. Brubach, J. Janicka, and A. Dreizler, An algorithm for the characterisation of multi-exponential decay curves, Optics and Lasers in Engineering, vol.47, issue.1, pp.75-79, 2009.
DOI : 10.1016/j.optlaseng.2008.07.015

D. W. Chae and B. C. Kim, Physical Properties of Isotactic Poly(propylene)/Silver Nanocomposites: Dynamic Crystallization Behavior and Resultant Morphology, Macromolecular Materials and Engineering, vol.43, issue.12, pp.1149-1156, 2005.
DOI : 10.1002/mame.200500277

C. H. Cheung, A. Kurtz, H. Park, and C. M. Lieber, Diameter-Controlled Synthesis of Carbon Nanotubes, The Journal of Physical Chemistry B, vol.106, issue.10, pp.2429-2433, 2002.
DOI : 10.1021/jp0142278

W. Chiang and R. M. Sankaran, Microplasma synthesis of metal nanoparticles for gas-phase studies of catalyzed carbon nanotube growth, Applied Physics Letters, vol.91, issue.12, pp.1215031-1215034, 2007.
DOI : 10.1063/1.2786835

W. Chiang and R. M. Sankaran, Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning NixFe1???x nanoparticles, Nature Materials, vol.301, issue.11, pp.882-886, 2009.
DOI : 10.1038/nmat2531

W. Chiang and R. M. Sankaran, Relating carbon nanotube growth parameters to the size and composition of nanocatalysts, Diamond and Related Materials, vol.18, issue.5-8, pp.946-952, 2009.
DOI : 10.1016/j.diamond.2009.01.010

L. Ci and J. Bai, Novel Micro/Nanoscale Hybrid Reinforcement: Multiwalled Carbon Nanotubes on SiC Particles, Advanced Materials, vol.48, issue.22, pp.2021-2024, 2004.
DOI : 10.1002/adma.200400379

URL : https://hal.archives-ouvertes.fr/hal-00018912

L. Ci, B. Wei, C. Xu, J. Liang, D. Wu et al., Crystallization behavior of the amorphous carbon nanotubes prepared by the CVD method, Journal of Crystal Growth, vol.233, issue.4, pp.823-828, 2001.
DOI : 10.1016/S0022-0248(01)01606-2

L. J. Dahlben and J. A. Isaacs, Life cycle inventories for nanomanufactured carbon nanotube products, 2008 IEEE International Symposium on Electronics and the Environment, pp.1-4, 2008.
DOI : 10.1109/ISEE.2008.4562848

S. Dankers, S. Schraml, S. Will, A. Leipertz, R. G. De-villoria et al., Application of Laser-Induced Incandescence for the Determination of Primary Particle Sizes of Nanoparticles Demonstrated Using Carbon Blacks, Chemical Engineering & Technology, vol.25, issue.12, pp.1160-11644850, 2002.
DOI : 10.1002/1521-4125(20021210)25:12<1160::AID-CEAT1160>3.0.CO;2-1

C. P. Deck and K. Vecchio, Growth mechanism of vapor phase CVD-grown multi-walled carbon nanotubes, Carbon, vol.43, issue.12, pp.2608-2617, 2005.
DOI : 10.1016/j.carbon.2005.05.012

I. Denysenko and K. Ostrikov, Ion-assisted precursor dissociation and surface diffusion: Enabling rapid, low-temperature growth of carbon nanofibers, Applied Physics Letters, vol.90, issue.25, pp.251501-251504, 2007.
DOI : 10.1063/1.2750392

S. Diamond and C. Wert, The diffusion of carbon in nickel above and below the curie temperature, Transactions of the Metallurgical Society of AIME, vol.239, pp.705-710, 1967.

A. Dichiara and J. Bai, The growth of carbon nanotube multilayers on ceramic ??-particles by catalytic chemical vapour deposition, Diamond and Related Materials, vol.29, pp.52-58, 2012.
DOI : 10.1016/j.diamond.2012.07.010

URL : https://hal.archives-ouvertes.fr/hal-00725351

A. Dichiara, J. Yuan, S. Yao, A. Sylvestre, and J. Bai, Chemical vapor deposition synthesis of carbon nanotubegraphene nanosheet hybrids and their application in polymer composites, Journal of Nanoscience and Nanotechnology, vol.8, pp.6935-6940, 2012.

F. Ding, K. Bolton, and A. Rosen, Structure and thermal properties of supported catalyst clusters for single-walled carbon nanotube growth, Applied Surface Science, vol.252, issue.15, pp.5254-5258, 2006.
DOI : 10.1016/j.apsusc.2005.12.022

F. Ding, A. R. Harutyunyan, and B. I. Yakobson, Dislocation theory of chirality-controlled nanotube growth, Proceedings of the National Academy of Sciences of the USA, p.2506, 2009.
DOI : 10.1073/pnas.0811946106

G. J. Dormans, OMCVD of transition metals and their silicides using metallocenes and (di) silane or silicon tetra-bromide, Journal of Crystal Growth, vol.108, issue.3-4, pp.806-816, 1991.
DOI : 10.1016/0022-0248(91)90261-3

G. Du, S. Feng, J. Zhao, C. Song, S. Bai et al., Particle???Wire???Tube Mechanism for Carbon Nanotube Evolution, Journal of the American Chemical Society, vol.128, issue.48, pp.15405-15414, 2006.
DOI : 10.1021/ja064151z

C. Ducati, I. Alexandrou, M. Chhowalla, G. A. Amaratunga, and J. Robertson, Temperature selective growth of carbon nanotubes by chemical vapor deposition, Journal of Applied Physics, vol.92, issue.6, pp.1499746-1499751, 2002.
DOI : 10.1063/1.1499746

A. Dudragne and A. , Time-resolved laser-induced breakdown spectroscopy: Application for qualitative and quantitative detection of f, cl, s, and c in air, Applied Spectroscopy, vol.52, pp.1321-1327, 1998.

G. S. Duesberg, A. P. Graham, M. Liebau, R. Seidel, E. Unger et al., Growth of Isolated Carbon Nanotubes with Lithographically Defined Diameter and Location, Nano Letters, vol.3, issue.2, pp.257-259, 2003.
DOI : 10.1021/nl025906c

H. Dumortier, S. Lacotte, G. Pastorin, R. Marega, W. Wu et al., Functionalized Carbon Nanotubes Are Non-Cytotoxic and Preserve the Functionality of Primary Immune Cells, Nano Letters, vol.6, issue.7, pp.1522-1528, 2006.
DOI : 10.1021/nl061160x

A. C. Eckbreth, Effects of laser???modulated particulate incandescence on Raman scattering diagnostics, Journal of Applied Physics, vol.48, issue.11, pp.4473-4479, 1977.
DOI : 10.1063/1.323458

K. Elihn and K. Larsson, A theoretical study of the thermal fragmentation of ferrocene, Thin Solid Films, vol.458, issue.1-2, pp.325-329, 2004.
DOI : 10.1016/j.tsf.2003.12.058

Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning et al., Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density, Advanced Functional Materials, vol.48, issue.12, p.2366, 2011.
DOI : 10.1002/adfm.201100058

H. Feng, J. Ma, and Z. Hu, Six-Membered-Ring-Based Radical Mechanism for Catalytic Growth of Carbon Nanotubes with Benzene Precursor, The Journal of Physical Chemistry C, vol.113, issue.37, pp.16495-16502, 2009.
DOI : 10.1021/jp906824n

P. Ferioli and . Buckley, Laser-Induced Breakdown Spectroscopy for On-Line Engine Equivalence Ratio Measurements, Applied Spectroscopy, vol.57, issue.9, pp.1183-1189, 2003.
DOI : 10.1366/00037020360696071

A. V. Filippov, M. W. Markus, and P. Roth, In-situ characterization of ultrafine particles by laser-induced incandescence, Journal of Aerosol Science, vol.30, issue.1, pp.71-87, 1999.
DOI : 10.1016/S0021-8502(98)00021-4

E. O. Fischer, On the way to carbene and carbyne complexes Advances in Organometallic Chemistry, pp.1-32, 1976.

L. Gao, E. T. Thostenson, Z. Zhang, and T. W. Chou, Sensing of Damage Mechanisms in Fiber-Reinforced Composites under Cyclic Loading using Carbon Nanotubes, Advanced Functional Materials, vol.68, issue.1, pp.123-130, 2009.
DOI : 10.1002/adfm.200800865

Y. Gefen, A. Aharony, and S. Alexander, Anomalous Diffusion on Percolating Clusters, Physical Review Letters, vol.50, issue.1, p.77, 1983.
DOI : 10.1103/PhysRevLett.50.77

D. B. Geohegan, A. A. Puretzky, I. N. Ivanov, S. Jesse, G. Eres et al., growth rate measurements and length control during chemical vapor deposition of vertically aligned multiwall carbon nanotubes, Applied Physics Letters, vol.83, issue.9, pp.1851-1853, 2003.
DOI : 10.1063/1.1605793

D. A. Gomez-gualdron and P. B. Balbuena, Growth of chiral single-walled carbon nanotube caps in the presence of a cobalt cluster, Nanotechnology, vol.20, issue.21, p.215601, 2009.
DOI : 10.1088/0957-4484/20/21/215601

D. A. Gomez-gualdron, G. D. Mckenzie, J. F. Alvarado, and P. B. Balbuena, Dynamic Evolution of Supported Metal Nanocatalyst/Carbon Structure during Single-Walled Carbon Nanotube Growth, ACS Nano, vol.6, issue.1, pp.720-735, 2012.
DOI : 10.1021/nn204215c

T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D. T. Colbert et al., Self-Assembly of Tubular Fullerenes, The Journal of Physical Chemistry, vol.99, issue.27, pp.10694-10697, 1995.
DOI : 10.1021/j100027a002

J. H. Hafner, M. J. Bronikowski, B. R. Azamian, P. Nikolaev, A. G. Rinzler et al., Catalytic growth of single-wall carbon nanotubes from metal particles, Chemical Physics Letters, vol.296, issue.1-2, pp.195-202, 1998.
DOI : 10.1016/S0009-2614(98)01024-0

S. Han, X. Liu, and C. Zhou, Template-Free Directional Growth of Single-Walled Carbon Nanotubes on a- and r-Plane Sapphire, Journal of the American Chemical Society, vol.127, issue.15, pp.5294-5295, 2005.
DOI : 10.1021/ja042544x

K. Hasegawa and S. Noda, Diameter Increase in Millimeter-Tall Vertically Aligned Single-Walled Carbon Nanotubes during Growth, Applied Physics Express, vol.3, issue.4, pp.45103-45104, 2010.
DOI : 10.1143/APEX.3.045103

K. Hasegawa and S. Noda, Millimeter-Tall Single-Walled Carbon Nanotubes Rapidly Grown with and without Water, ACS Nano, vol.5, issue.2, pp.975-984, 2011.
DOI : 10.1021/nn102380j

K. Hata, D. N. Futuba, K. Mizuno, T. Namai, M. Yumura et al., Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes, Science, vol.306, issue.5700, pp.1273-1276, 2004.
DOI : 10.1126/science.1104962

D. He and J. Bai, Acetylene-Enhanced Growth of Carbon Nanotubes on Ceramic Microparticles for Multi-Scale Hybrid Structures, Chemical Vapor Deposition, vol.46, issue.4-6, pp.98-106, 2011.
DOI : 10.1002/cvde.201006878

URL : https://hal.archives-ouvertes.fr/hal-00598645

D. He, M. Bozlar, M. Genestoux, and J. Bai, Diameter- and length-dependent self-organizations of multi-walled carbon nanotubes on spherical alumina microparticles, Carbon, vol.48, issue.4, pp.1159-1170, 2010.
DOI : 10.1016/j.carbon.2009.11.039

D. He, H. Li, and J. Bai, Experimental and numerical investigation of the position-dependent growth of carbon nanotube???alumina microparticle hybrid structures in a horizontal CVD reactor, Carbon, vol.49, issue.15, pp.5359-5372, 2011.
DOI : 10.1016/j.carbon.2011.08.003

URL : https://hal.archives-ouvertes.fr/hal-00626579

D. He, H. Li, P. Li, P. Haghi-ashtiani, J. Lejay et al., Growth of carbon nanotubes in six orthogonal directions on spherical alumina microparticles, Carbon, vol.49, issue.7, pp.2273-2286, 2011.
DOI : 10.1016/j.carbon.2011.01.060

URL : https://hal.archives-ouvertes.fr/hal-00577998

S. Helveg, C. Lopez-cartes, J. Sehested, P. L. Hansen, B. S. Clausen et al., Atomic-scale imaging of carbon nanofibre growth, Nature, vol.427, issue.6973, pp.426-429, 2004.
DOI : 10.1038/nature02278

S. Hofmann, R. Sharma, G. Du, C. Mattevi, C. Cepek et al., In situ Observations of Catalyst Dynamics during Surface-Bound Carbon Nanotube Nucleation, Nano Letters, vol.7, issue.3, pp.602-608, 2007.
DOI : 10.1021/nl0624824

W. K. Hsu, M. Terrones, J. P. Hare, H. Terrones, H. W. Kroto et al., Electrolytic formation of carbon nanostructures, Chemical Physics Letters, vol.262, issue.1-2, pp.161-166, 1996.
DOI : 10.1016/0009-2614(96)01041-X

J. Hu, Z. Wang, W. Zhang, Z. Xu, Y. Hu et al., Nanowires with a carbon nanotube core and silicon oxide sheath, Carbon, vol.44, issue.8, pp.1581-1583, 2006.
DOI : 10.1016/j.carbon.2006.01.028

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, pp.56-58, 1991.
DOI : 10.1038/354056a0

S. Iijima and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, vol.363, issue.6430, pp.603-605, 1993.
DOI : 10.1038/363603a0

K. Imasaka, Y. Kanatake, Y. Ohshiro, J. Suehiro, and M. Hara, Production of carbon nanoonions and nanotubes using an intermittent arc discharge in water, Thin Solid Films, vol.506, issue.507, pp.250-254, 2006.
DOI : 10.1016/j.tsf.2005.08.024

M. I. Ionescu, Y. Zhang, R. Li, X. Sun, H. Abou-rachid et al., Hydrogen-free spray pyrolysis chemical vapor deposition method for the carbon nanotube growth: Parametric studies, Applied Surface Science, vol.257, issue.15, pp.2576843-6849, 2011.
DOI : 10.1016/j.apsusc.2011.03.011

S. Irle, Y. Ohta, Y. Okamoto, A. J. Page, Y. Wang et al., Milestones in molecular dynamics simulations of single-walled carbon nanotube formation: A brief critical review, Nano Research, vol.128, issue.10, pp.755-767, 2009.
DOI : 10.1007/s12274-009-9078-8

J. Jeong, A. Yamazaki, S. Suzuki, Y. Koboyashi, and Y. Homma, Behavior of catalytic nanoparticles during chemical vapor deposition for carbon nanotube growth, Chemical Physics Letters, vol.422, issue.1-3, pp.83-88, 2006.
DOI : 10.1016/j.cplett.2006.02.030

J. Jeong, S. Suzuki, Y. Koboyashi, A. Yamazaki, H. Yoshimura et al., Size control of catalytic nanoparticles by thermal treatment and its application to diameter control of single-walled carbon nanotubes, Applied Physics Letters, vol.90, issue.4, p.903, 2007.
DOI : 10.1063/1.2433024

C. Jin, K. Suenaga, and S. Iijima, Investigation on the Cap Evolution, ACS Nano, vol.2, issue.6, pp.1275-1279, 2008.
DOI : 10.1021/nn800121v

Y. Kajikawa, T. Tsuchiya, S. Noda, and H. Komiyama, Incubation Time during Chemical Vapor Deposition of Si onto SiO2 from Silane, Chemical Vapor Deposition, vol.10, issue.3, pp.128-133, 2004.
DOI : 10.1002/cvde.200304165

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation, 1996.

V. O. Khavrus, E. M. Ibrahim, A. Leonhardt, S. Hample, S. Oswald et al., Conditions of Simultaneous Growth and Separation of Single- and Multiwalled Carbon Nanotubes, The Journal of Physical Chemistry C, vol.114, issue.2, pp.843-848, 2010.
DOI : 10.1021/jp909279g

D. Y. Kim, H. Sugime, K. Hasegawa, T. Osawa, and S. Noda, Sub-millimeter-long carbon nanotubes repeatedly grown on and separated from ceramic beads in a single fluidized bed reactor, Carbon, vol.49, issue.6, pp.1972-1979, 2011.
DOI : 10.1016/j.carbon.2011.01.022

H. Kim and W. Sigmund, Iron particles in carbon nanotubes, Carbon, vol.43, issue.8, pp.1743-1748, 2005.
DOI : 10.1016/j.carbon.2005.02.019

K. J. Kim, W. R. Yu, J. S. Lee, L. Gao, E. T. Thostenson et al., Damage characterization of 3D braided composites using carbon nanotube-based in situ sensing, Composites Part A: Applied Science and Manufacturing, vol.41, issue.10, pp.1531-1537, 2010.
DOI : 10.1016/j.compositesa.2010.06.016

S. H. Kim and M. R. Zachariah, In-flight size classification of carbon nanotubes by gas phase electrophoresis, Nanotechnology, vol.16, issue.10, pp.2149-2155, 2005.
DOI : 10.1088/0957-4484/16/10/030

B. F. Kock, C. Kayan, J. Knipping, H. R. Orthner, and P. Roth, Comparison of lii and tem sizing during synthesis of REFERENCES iron particle chains, Proceedings of the Combustion Institute, pp.1689-1697, 2005.

H. W. Kroto, J. R. Heath, S. C. O-'brien, R. F. Curl, and R. E. Smalley, C60: Buckminsterfullerene, Nature, vol.196, issue.6042, pp.162-163, 1985.
DOI : 10.1038/318162a0

M. Kumar and Y. Ando, Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production, Journal of Nanoscience and Nanotechnology, vol.10, issue.6, pp.3739-3758, 2010.
DOI : 10.1166/jnn.2010.2939

D. Kuo and M. Su, The effects of hydrogen and temperature on the growth and microstructure of carbon nanotubes obtained by the Fe(CO)5 gas-phase-catalytic chemical vapor deposition, Surface and Coatings Technology, vol.201, issue.22-23, pp.9172-9178, 2007.
DOI : 10.1016/j.surfcoat.2007.04.083

K. Kuwana and K. Saito, Modeling CVD synthesis of carbon nanotubes: Nanoparticle formation from ferrocene, Carbon, vol.43, issue.10, pp.2088-2095, 2005.
DOI : 10.1016/j.carbon.2005.03.016

K. Kuwana and K. Saito, Modeling ferrocene reactions and iron nanoparticle formation: Application to CVD synthesis of carbon nanotubes, Proceedings of the Combustion Institute, pp.2965-2972, 2007.
DOI : 10.1016/j.proci.2006.07.097

P. Landois, S. Rouziere, M. Pinault, D. Porterat, C. Mocuta et al., Growth of aligned multi-walled carbon nanotubes: First in situ and time-resolved X-ray diffraction analysis, physica status solidi (b), vol.7, issue.11, pp.2449-2453, 2011.
DOI : 10.1002/pssb.201100201

URL : https://hal.archives-ouvertes.fr/hal-00658809

D. Laplaze, L. Alvarez, T. Guillard, J. M. Badie, and G. Flamant, Carbon nanotubes: dynamics of synthesis processes, Carbon, vol.40, issue.10, pp.1621-1634, 2002.
DOI : 10.1016/S0008-6223(02)00005-2

G. Lee, S. Han, J. Yu, and J. Ihm, Catalytic decomposition of acetylene on Fe(001): A first-principles study, Physical Review B, vol.66, issue.8, p.81403, 2002.
DOI : 10.1103/PhysRevB.66.081403

S. J. Lee, H. K. Baik, J. Yoo, and J. H. Han, Large scale synthesis of carbon nanotubes by plasma rotating arc discharge technique, Diamond & Related Materials, vol.11, pp.914-917, 2002.

Y. H. Lee, S. G. Kim, and D. Tomanek, Study, Physical Review Letters, vol.78, issue.12, pp.2393-2396, 1997.
DOI : 10.1103/PhysRevLett.78.2393

URL : https://hal.archives-ouvertes.fr/in2p3-00017561

K. Levenberg, A method for the solution of certain non-linear problems in least squares, Quarterly of Applied Mathematics, vol.2, issue.2, pp.164-168, 1944.
DOI : 10.1090/qam/10666

C. Li, E. T. Thostenson, and T. W. Chou, Sensors and actuators based on carbon nanotubes and their composites: A review, Composites Science and Technology, vol.68, issue.6, pp.1227-1249, 2008.
DOI : 10.1016/j.compscitech.2008.01.006

W. Li, J. Yuan, A. Dichiara, Y. Lin, and J. Bai, The use of vertically aligned carbon nanotubes grown on SiC for in situ sensing of elastic and plastic deformation in electrically percolative epoxy composites, Carbon, vol.50, issue.11, pp.4298-4301, 2012.
DOI : 10.1016/j.carbon.2012.05.011

URL : https://hal.archives-ouvertes.fr/hal-00709641

X. Li, W. Cai, L. Colombo, and R. S. Ruoff, Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling, Nano Letters, vol.9, issue.12, pp.4268-4272, 2009.
DOI : 10.1021/nl902515k

Y. S. Lim, H. S. Kim, M. S. Kim, N. H. Cho, and S. Nahm, Chemical and micro-structural changes in glass-like carbon during high temperature heat treatment, Macromolecular Research, vol.32, issue.2, pp.122-127, 2003.
DOI : 10.1007/BF03218341

M. Lin, J. Tan, C. Boothroyd, K. P. Loh, E. S. Tok et al., Direct Observation of Single-Walled Carbon Nanotube Growth at the Atomistic Scale, Nano Letters, vol.6, issue.3, pp.449-452, 2006.
DOI : 10.1021/nl052356k

H. Liu, D. Takagi, Y. Ohno, S. Chiashi, T. Chokan et al., Growth of Single-Walled Carbon Nanotubes from Ceramic Particles by Alcohol Chemical Vapor Deposition, Applied Physics Express, vol.1, issue.1, pp.14001-14004, 2008.
DOI : 10.1143/APEX.1.014001

K. Liu, K. Jiang, C. Feng, Z. Chen, and S. Fan, A growth mark method for studying growth mechanism of carbon nanotube arrays, Carbon, vol.43, issue.14, pp.2850-2856, 2005.
DOI : 10.1016/j.carbon.2005.06.002

Q. Liu, Z. G. Chen, B. Liu, W. Ren, F. Li et al., Synthesis of different magnetic carbon nanostructures by the pyrolysis of ferrocene at different sublimation temperatures Diameter-selective growth of singlewalled carbon nanotubes with high quality by floating catalyst method, Carbon ACS Nano, vol.46, issue.28, pp.1892-19021722, 2008.

O. A. Louchev, Y. Sato, and H. Kanda, Growth mechanism of carbon nanotube forests by chemical vapor deposition, Applied Physics Letters, vol.80, issue.15, pp.2752-2754, 2002.
DOI : 10.1063/1.1468266

A. Magrez, S. Kasas, V. Salicio, N. Pasquier, J. W. Seo et al., Cellular Toxicity of Carbon-Based Nanomaterials, Nano Letters, vol.6, issue.6, pp.1121-1125, 2006.
DOI : 10.1021/nl060162e

M. Marchand, C. Journet, D. Guillot, J. Benoit, B. I. Yakobson et al., Growing a Carbon Nanotube Atom by Atom: ???And Yet It Does Turn???, Nano Letters, vol.9, issue.8, pp.2961-2966, 2009.
DOI : 10.1021/nl901380u

M. Maret, K. Hostache, M. C. Schouler, B. Marcus, F. Roussel-dherbey et al., Oriented growth of single-walled carbon nanotubes on a mgo(0 0 1) surface. Carbon, pp.180-187, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00333301

D. W. Marquardt, An Algorithm for Least-Squares Estimation of Nonlinear Parameters, Journal of the Society for Industrial and Applied Mathematics, vol.11, issue.2, pp.431-441, 1963.
DOI : 10.1137/0111030

. Martin, . Wullshleger, and P. Garten, Laser-induced breakdown spectroscopy for the environmental determination of total carbon and nitrogen in soils, Applied Optics, vol.42, issue.12, pp.2072-2077, 2003.
DOI : 10.1364/AO.42.002072

C. Mattevi, C. T. Wirth, S. Hofmann, R. Blume, M. Cantoro et al., Insitu x-ray photoelectron spectroscopy study of catalystsupport interactions and growth of carbon nanotube forests, Journal of Physical Chemistry C, issue.32, pp.11212207-12213, 2008.

L. A. Melton, Soot diagnostics based on laser heating, Applied Optics, vol.23, issue.13, pp.2201-2208, 1984.
DOI : 10.1364/AO.23.002201

W. Merchan-merchan, A. V. Saveiliev, L. Kennedy, and W. C. Jimenez, Combustion synthesis of carbon nanotubes and related REFERENCES nanostructures, Progress in Energy and Combustion Science, pp.696-727, 2010.

E. R. Meshot, D. L. Plata, S. Tawfick, Y. Zhang, E. A. Verploegen et al., Engineering Vertically Aligned Carbon Nanotube Growth by Decoupled Thermal Treatment of Precursor and Catalyst, ACS Nano, vol.3, issue.9, pp.2477-2486, 2009.
DOI : 10.1021/nn900446a

H. Michelsen, P. O. Witze, D. Kayes, and S. Hochgreb, Time-resolved laser-induced incandescence of soot: the influence of experimental factors and microphysical mechanisms, Applied Optics, vol.42, issue.27, pp.5577-5590, 2003.
DOI : 10.1364/AO.42.005577

H. Michelsen, F. Liu, B. F. Kock, H. Bladh, A. Boiarciuc et al., Modeling laser-induced incandescence of soot: a summary and comparison of LII models, Applied Physics B, vol.37, issue.3, pp.503-521, 2007.
DOI : 10.1007/s00340-007-2619-5

URL : https://hal.archives-ouvertes.fr/hal-00618142

H. Michelsen, M. A. Linne, B. F. Kock, M. Hofmann, B. Tribalet et al., Modeling laser-induced incandescence of soot: enthalpy changes during sublimation, conduction, and oxidation, Applied Physics B, vol.37, issue.2-3, pp.645-656, 2008.
DOI : 10.1007/s00340-008-3181-5

A. Moisala, A. G. Nasibulin, and E. I. Kaupinnen, The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes???a review, Journal of Physics: Condensed Matter, vol.15, issue.42, p.3011, 2003.
DOI : 10.1088/0953-8984/15/42/003

J. F. Mojica and L. L. Levenson, Bulk-to-surface precipitation and surface diffusion of carbon on polycrystalline nickel, Surface Science, vol.59, issue.2, pp.447-460, 1976.
DOI : 10.1016/0039-6028(76)90028-5

M. Monthioux and V. L. Kuznetsov, Who should be given the credit for the discovery of carbon nanotubes?, Carbon, vol.44, issue.9, pp.1621-1625, 2006.
DOI : 10.1016/j.carbon.2006.03.019

M. Moors, H. Amara, T. Visart-de-bocarme, C. Bichara, F. Ducastelle et al., Early Stages in the Nucleation Process of Carbon Nanotubes, ACS Nano, vol.3, issue.3, pp.511-516, 2009.
DOI : 10.1021/nn800769w

URL : https://hal.archives-ouvertes.fr/hal-00372419

L. E. Murr and K. F. Soto, A TEM study of soot, carbon nanotubes, and related fullerene nanopolyhedra in common fuel-gas combustion sources, Materials Characterization, vol.55, issue.1, pp.50-65, 2005.
DOI : 10.1016/j.matchar.2005.02.008

K. Nakaso, B. Han, K. H. Ahn, M. Choi, and K. Okuyama, Synthesis of non-agglomerated nanoparticles by an electrospray assisted chemical vapor deposition (ES-CVD) method, Journal of Aerosol Science, vol.34, issue.7, pp.869-881, 2003.
DOI : 10.1016/S0021-8502(03)00053-3

R. Negishi, H. Hirano, Y. Ohno, K. Maehashi, K. Matsumoto et al., Layer-by-layer growth of graphene layers on graphene substrates by chemical vapor deposition, Thin Solid Films, vol.519, issue.19, pp.6447-6452, 2011.
DOI : 10.1016/j.tsf.2011.04.229

G. D. Nessim, A. J. Hart, J. S. Kim, D. Acquaviva, J. Oh et al., Tuning of Vertically-Aligned Carbon Nanotube Diameter and Areal Density through Catalyst Pre-Treatment, Nano Letters, vol.8, issue.11, pp.3587-3593, 2008.
DOI : 10.1021/nl801437c

P. E. Nolan, M. J. Schabel, and D. C. Lynch, Hydrogen control of carbon deposit morphology, Carbon, vol.33, issue.1, pp.79-85, 1995.
DOI : 10.1016/0008-6223(94)00122-G

K. Norinaga and O. Deutschmann, Detailed Kinetic Modeling of Gas-Phase Reactions in the Chemical Vapor Deposition of Carbon from Light Hydrocarbons, Industrial & Engineering Chemistry Research, vol.46, issue.11, pp.3547-3557, 2007.
DOI : 10.1021/ie061207p

A. Oberlin, M. Endo, and T. Koyama, Filamentous growth of carbon through benzene decomposition, Journal of Crystal Growth, vol.32, issue.3, pp.335-349, 1976.
DOI : 10.1016/0022-0248(76)90115-9

Y. Ohta, Y. Okamoto, S. Irle, and K. Morokuma, Density-functional tight-binding molecular dynamics simulations of SWCNT growth by surface carbon diffusion on an iron cluster, Carbon, vol.47, issue.5, pp.1270-1275, 2009.
DOI : 10.1016/j.carbon.2009.01.003

K. Okuyama and I. W. Lenggoro, Preparation of nanoparticles via spray route, Chemical Engineering Science, vol.58, issue.3-6, pp.537-547, 2003.
DOI : 10.1016/S0009-2509(02)00578-X

A. J. Page, Y. Ohta, Y. Okamoto, S. Irle, and K. Morokuma, Mechanisms of Single-Walled Carbon Nanotube Nucleation, Growth, and Healing Determined Using QM/MD Methods, Accounts of Chemical Research, vol.43, issue.10, pp.1375-1385, 2010.
DOI : 10.1021/ar100064g

M. Park, H. Kim, and J. P. Youngblood, Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films, Nanotechnology, vol.19, issue.5, p.55705, 2008.
DOI : 10.1088/0957-4484/19/05/055705

K. Pastorkova, K. Jesenak, M. Kadlecikova, J. Breza, M. Kolmacka et al., The growth of multi-walled carbon nanotubes on natural clay minerals (kaolinite, nontronite and sepiolite), Applied Surface Science, vol.258, issue.7, pp.2661-2666, 2012.
DOI : 10.1016/j.apsusc.2011.10.114

M. Pinault, V. Pichot, H. Khodja, P. Launois, C. Reynaud et al., Evidence of Sequential Lift in Growth of Aligned Multiwalled Carbon Nanotube Multilayers, Nano Letters, vol.5, issue.12, pp.2394-2398, 2005.
DOI : 10.1021/nl051472k

URL : https://hal.archives-ouvertes.fr/hal-00084691

S. Pisana, A. Jungen, C. Zhang, A. M. Blackburn, R. Sharma et al., Flying and Crawling Modes during Surface-Bound Single Wall Carbon Nanotube Growth, The Journal of Physical Chemistry C, vol.111, issue.46, pp.17249-17253, 2007.
DOI : 10.1021/jp075237x

C. A. Poland, R. Duffin, I. A. Kinloch, A. Maynard, W. A. Wallace et al., Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study, Nature Nanotechnology, vol.67, issue.7, pp.423-428, 2008.
DOI : 10.1038/nnano.2008.111

A. E. Porter, M. Gass, K. Muller, J. N. Skepper, P. A. Midgley et al., Direct imaging of single-walled carbon nanotubes in cells, Nature Nanotechnology, vol.71, issue.11, pp.713-717, 2007.
DOI : 10.1038/nnano.2007.347

L. V. Radushkevich, V. M. Lukyanovich, G. E. Ramirez-caballero, J. C. Burgos, and P. B. Balbuena, O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte. Zurn Fisic Chim, Growth of carbon structures on stepped (211) cobalt surfaces, pp.88-9515658, 1952.

R. Rao, D. Liptak, T. Cherukuri, B. I. Yakobson, and B. Maruyama, In situ evidence for chirality-dependent growth rates of individual carbon nanotubes, Nature Materials, vol.105, issue.3, pp.213-216, 2012.
DOI : 10.1038/nmat3231

S. Reich, L. Li, and J. Robertson, Control the chirality of carbon nanotubes by epitaxial growth, Chemical Physics Letters, vol.421, issue.4-6, pp.469-472, 2006.
DOI : 10.1016/j.cplett.2006.01.110

J. A. Rodriguez-manzo, M. Terrones, H. Terrones, H. W. Kroto, L. Sun et al., In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles, Nature Nanotechnology, vol.73, issue.5, pp.307-311, 2007.
DOI : 10.1038/nnano.2007.107

J. A. Rodriguez-manzo, I. Janowska, C. Pham-huu, A. Tolvanen, A. V. Krasheninnikov et al., Growth of Single-Walled Carbon Nanotubes from Sharp Metal Tips, Small, vol.85, issue.23, pp.2710-2715, 2009.
DOI : 10.1002/smll.200900590

R. Ryser, T. Gerber, and T. Dreier, Soot particle sizing during high-pressure Diesel spray combustion via time-resolved laser-induced incandescence, Combustion and Flame, vol.156, issue.1, pp.120-129, 2009.
DOI : 10.1016/j.combustflame.2008.08.005

S. Sakurai, H. Nishino, D. N. Futuba, S. Yasuda, T. Yamada et al., Role of Subsurface Diffusion and Ostwald Ripening in Catalyst Formation for Single-Walled Carbon Nanotube Forest Growth, Journal of the American Chemical Society, vol.134, issue.4, pp.2148-2153, 2012.
DOI : 10.1021/ja208706c

R. J. Santoro, H. G. Semerjian, and R. A. Dobbins, Soot particle measurements in diffusion flames, Combustion and Flame, vol.51, pp.203-218, 1983.
DOI : 10.1016/0010-2180(83)90099-8

C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will et al., Laser-induced incandescence: recent trends and current questions, Applied Physics B, vol.94, issue.3, pp.333-354, 2006.
DOI : 10.1007/s00340-006-2260-8

R. Seidel, G. S. Duesberg, E. Unger, A. P. Graham, M. Liebau et al., Chemical Vapor Deposition Growth of Single-Walled Carbon Nanotubes at 600 ??C and a Simple Growth Model, The Journal of Physical Chemistry B, vol.108, issue.6, pp.1888-1893, 2004.
DOI : 10.1021/jp037063z

S. P. Sharma and S. C. Lakkad, Morphology study of carbon nanospecies grown on carbon fibers by thermal CVD technique, Surface and Coatings Technology, vol.203, issue.10-11, pp.1329-1335, 2009.
DOI : 10.1016/j.surfcoat.2008.10.043

Z. Shi, Y. Lian, F. Liao, X. Zhou, Z. Gu et al., Purification of single-wall carbon nanotubes, Solid State Communications, vol.112, issue.1, pp.35-37, 1999.
DOI : 10.1016/S0038-1098(99)00278-1

Y. Shibuta and S. Maruyama, Molecular dynamics simulation of formation process of single-walled carbon nanotubes by CCVD method, Chemical Physics Letters, vol.382, issue.3-4, pp.381-386, 2003.
DOI : 10.1016/j.cplett.2003.10.080

C. G. Silcocks, The Kinetics of the Thermal Polymerization of Acetylene, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.242, issue.1231, pp.411-429, 1957.
DOI : 10.1098/rspa.1957.0185

C. Singh, M. S. Shaffer, K. K. Koziol, I. A. Kinloch, and A. H. Windle, Towards the production of large-scale aligned carbon nanotubes, Chemical Physics Letters, vol.372, issue.5-6, pp.860-865, 2003.
DOI : 10.1016/S0009-2614(03)00531-1

R. P. Smith, The diffusivity of carbon in gamma iron-cobalt alloys. Transactions of the Metallurgical Society of AIME, pp.476-481, 1964.

C. Som, M. Berges, Q. Chaudhry, M. Dusinska, T. F. Fernandes et al., The importance of life cycle concepts for the development of safe nanoproducts, Toxicology, vol.269, issue.2-3, pp.160-169, 2010.
DOI : 10.1016/j.tox.2009.12.012

L. I. Stiel and G. Thodos, The thermal conductivity of nonpolar substances in the dense gaseous and liquid regions, AIChE Journal, vol.10, issue.1, pp.26-30, 1964.
DOI : 10.1002/aic.690100114

P. Sturm, N. M. Su, Y. Li, B. Maynor, A. Buldum et al., Steel Analysis with Laser-Induced Breakdown Spectrometry in the Vacuum Ultraviolet, Applied Spectroscopy, vol.54, issue.9, pp.1275-12786505, 2000.
DOI : 10.1366/0003702001951183

K. Suenaga, H. Wakabayashi, M. Koshino, Y. Sato, K. Urita et al., Imaging active topological defects in carbon nanotubes, Nature Nanotechnology, vol.7, issue.6, pp.358-360, 2007.
DOI : 10.1038/nnano.2007.141

Y. C. Sui, B. Z. Cui, R. Guardian, D. R. Acosta, L. Martinez et al., Growth of carbon nanotubes and nanofibres in porous anodic alumina film, Carbon, vol.40, issue.7, pp.1011-1016, 2002.
DOI : 10.1016/S0008-6223(01)00230-5

G. Taguchi, Y. Yokoyama, and Y. Wu, Taguchi Methods/Design of Experiments, 1993.

D. Takagi, H. Hibino, S. Suzuki, Y. Koboyashi, and Y. Homma, Carbon Nanotube Growth from Semiconductor Nanoparticles, Nano Letters, vol.7, issue.8, pp.2272-2275, 2007.
DOI : 10.1021/nl0708011

E. T. Thostenson and T. W. Chou, sensing of damage evolution in advanced fiber composites using carbon nanotube networks, Nanotechnology, vol.19, issue.21, p.215713, 2008.
DOI : 10.1088/0957-4484/19/21/215713

S. C. Tjong and S. C. Bao, Preparation and nonisothermal crystallization behavior of polyamide 6/montmorillonite nanocomposites, Journal of Polymer Science Part B: Polymer Physics, vol.29, issue.15, pp.2878-2891, 2004.
DOI : 10.1002/polb.20161

A. M. Valiente, P. N. Lopez, I. R. Ramos, A. G. Ruiz, C. Li et al., In situ study of carbon nanotube formation by C2H2 decomposition on an iron-based catalyst, Carbon, vol.38, issue.14, pp.2003-2006, 2000.
DOI : 10.1016/S0008-6223(00)00049-X

R. L. Vander-wal, T. M. Ticich, and A. B. Stephens, Can soot primary particle size be determined using laser-induced incandescence?, Combustion and Flame, vol.116, issue.1-2, pp.291-296, 1999.
DOI : 10.1016/S0010-2180(98)00040-6

R. L. Vander, L. J. Wall, and . Hall, Flame synthesis of Fe catalyzed single-walled carbon nanotubes and Ni catalyzed nanofibers: growth mechanisms and consequences, Chemical Physics Letters, vol.349, issue.3-4, pp.178-184, 2001.
DOI : 10.1016/S0009-2614(01)01198-8

R. L. Vander, T. M. Wall, and . Ticich, Comparative flame and furnace synthesis of single-walled carbon nanotubes, Chemical Physics Letters, vol.336, issue.1-2, pp.24-32, 2001.
DOI : 10.1016/S0009-2614(01)00114-2

R. L. Vander, K. J. Wall, and . Weiland, Laser-induced incandescence: Development and characterization towards a measurement of soot-volume fraction, Applied Physics B, vol.91, issue.4, pp.445-452, 1994.
DOI : 10.1007/BF01081067

R. L. Vander, M. Wall, M. T. Gordon, and D. P. Thomas, Application of laser-induced incandescence to the detection of carbon nanotubes and carbon nanofibers, Applied Optics, vol.41, issue.27, pp.5678-5690, 2002.
DOI : 10.1364/AO.41.005678

Y. Wang, Z. Luo, B. Li, P. S. Ho, Z. Yao et al., Comparison study of catalyst nanoparticle formation and carbon nanotube growth: Support effect, Journal of Applied Physics, vol.101, issue.12, pp.1243101-1243109, 2007.
DOI : 10.1063/1.2749412

R. W. Weeks and W. W. Duley, laser pulses, Journal of Applied Physics, vol.45, issue.10, pp.4661-4662, 1974.
DOI : 10.1063/1.1663111

C. T. Wirth, S. Hofmann, and J. Robertson, State of the catalyst during carbon nanotube growth, Diamond and Related Materials, vol.18, issue.5-8, pp.940-945, 2009.
DOI : 10.1016/j.diamond.2009.01.030

R. Xiang, G. Luo, W. Qian, Q. Zhang, Y. Wang et al., Encapsulation, Compensation, and Substitution of Catalyst Particles during Continuous Growth of Carbon Nanotubes, Advanced Materials, vol.39, issue.17, pp.2360-2363, 2007.
DOI : 10.1002/adma.200602468

R. Xiang, Z. Yang, Q. Zhang, G. Luo, W. Qian et al., Growth Deceleration of Vertically Aligned Carbon Nanotube Arrays:??? Catalyst Deactivation or Feedstock Diffusion Controlled?, The Journal of Physical Chemistry C, vol.112, issue.13, pp.4892-4896, 2008.
DOI : 10.1021/jp710730x

R. Xiang, G. Luo, Z. Yang, Q. Zhang, W. Qian et al., Large area growth of aligned CNT arrays on spheres: Cost performance and product control, Materials Letters, vol.63, issue.1, pp.84-8795, 2009.
DOI : 10.1016/j.matlet.2008.09.015

Y. Xu, G. Ray, and B. , Thermal behavior of single-walled carbon nanotube polymer???matrix composites, Composites Part A: Applied Science and Manufacturing, vol.37, issue.1, pp.114-121, 2006.
DOI : 10.1016/j.compositesa.2005.04.009

T. Yamada, A. Maigne, M. Yudasaka, K. Mizuno, D. N. Futuba et al., Revealing the Secret of Water-Assisted Carbon Nanotube Synthesis by Microscopic Observation of the Interaction of Water on the Catalysts, Nano Letters, vol.8, issue.12, pp.4288-4292, 2008.
DOI : 10.1021/nl801981m

K. L. Yang and R. T. Yang, The accelerating and retarding effects of hydrogen on carbon deposition on metal surfaces, Carbon, vol.24, issue.6, pp.687-693, 1986.
DOI : 10.1016/0008-6223(86)90176-4

Y. Yao, C. Feng, J. Zhang, and Z. Liu, ???Cloning??? of Single-Walled Carbon Nanotubes via Open-End Growth Mechanism, Nano Letters, vol.9, issue.4, pp.1673-1677, 2009.
DOI : 10.1021/nl900207v

O. V. Yazyev and A. Pasquarello, Effect of Metal Elements in Catalytic Growth of Carbon Nanotubes, Physical Review Letters, vol.100, issue.15, pp.156102-156108, 2008.
DOI : 10.1103/PhysRevLett.100.156102

J. Yuan, W. Li, S. Yao, Y. Lin, A. Sylvestre et al., High dielectric permittivity and low percolation threshold in polymer composites based on SiC-carbon nanotubes micro/nano hybrid, Applied Physics Letters, vol.98, issue.3, pp.32901-32902, 2011.
DOI : 10.1063/1.3544942

URL : https://hal.archives-ouvertes.fr/hal-00574778

J. Yuan, S. Yao, A. Sylvestre, and J. Bai, Biphasic Polymer Blends Containing Carbon Nanotubes: Heterogeneous Nanotube Distribution and Its Influence on the Dielectric Properties, The Journal of Physical Chemistry C, vol.116, issue.2, p.2051, 2012.
DOI : 10.1021/jp210872w

URL : https://hal.archives-ouvertes.fr/hal-00662768

E. A. Zaragoza-contreras, C. A. Hernandez-escobar, A. Navarrete-fontes, and S. G. Flores-gallardo, Synthesis of carbon black/polystyrene conductive nanocomposite. Pickering emulsion effect characterized by TEM, Micron, vol.42, issue.3, pp.263-270, 2011.
DOI : 10.1016/j.micron.2010.10.005

X. Zhang, A. Cao, B. Wei, Y. Li, J. Wei et al., Rapid growth of well-aligned carbon nanotube arrays, Chemical Physics Letters, vol.362, issue.3-4, pp.285-290, 2002.
DOI : 10.1016/S0009-2614(02)01025-4

N. Zhao, C. He, Z. Jiang, J. Li, and Y. Li, Fabrication and growth mechanism of carbon nanotubes by catalytic chemical vapor deposition, Materials Letters, vol.60, issue.2, pp.159-163, 2006.
DOI : 10.1016/j.matlet.2005.08.009

H. Zhu, K. Suenaga, A. Hashimoto, K. Urita, K. Hata et al., Atomic-Resolution Imaging of the Nucleation Points of Single-Walled Carbon Nanotubes, Small, vol.1, issue.12, pp.1180-1183, 2005.
DOI : 10.1002/smll.200500200

H. Zhu, K. Suenaga, J. Wei, K. Wang, and D. Wu, A strategy to control the chirality of single-walled carbon nanotubes, Journal of Crystal Growth, vol.310, issue.24, pp.5473-5476, 2008.
DOI : 10.1016/j.jcrysgro.2008.09.174

T. Zoberdier, T. W. Chamberlain, J. Biskupek, N. Kuganathan, S. Eyhusen et al., Interactions and reactions of transition metal clusters with the interior of single-walled carbon nanotubes imaged at the atomic scale REFERENCES The data of the present thesis have been partially published or are in preparation: Peer-reviewed journals The use of vertically aligned carbon nanotubes grown on SiC for in situ sensing of elastic and plastic deformation in electrically percolative epoxy composites, Journal of American Chemical Society Carbon, vol.15, issue.50, pp.3073-30794298, 2012.

?. Anthony-dichiara, J. Yuan, S. Yao, A. Sylvestre, and J. Bai, Chemical Vapor Deposition Synthesis of Carbon Nanotube-Graphene Nanosheet Hybrids and Their Application in Polymer Composites, Journal of Nanoscience and Nanotechnology, vol.12, issue.9, pp.6935-6940, 2012.
DOI : 10.1166/jnn.2012.6573

?. Anthony-dichiara and J. Bai, The growth of carbon nanotube multilayers on ceramic ??-particles by catalytic chemical vapour deposition, Diamond and Related Materials, vol.29, pp.52-58, 2012.
DOI : 10.1016/j.diamond.2012.07.010

?. Anthony-dichiara, Y. Lin, D. He, P. Haghi-ashtiani, and J. Bai, Uniform diameter multi-walled carbon nanotubes with a controlled wall number obtained by a simple chemical vapor deposition method, Chemical Physics Letters, 2012.

?. Wei-kang-li, A. Dichiara, and J. Bai, Carbon nanotube-graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites, Composites Science & Technology, 2012.

?. Anthony-dichiara, J. Yuan, L. Zimmer, and J. Bai, Evidence of a synergistic effect by mixing Al 2 O 3 and SiC REFERENCES micro-particles on the growth of carbon nanotube by chemical vapor deposition Under review, Nanoscale, 2012.

?. Anthony-dichiara, L. Zimmer, and J. Bai, In situ monitoring of the suspended nanoparticle size by time-resolved laser-induced incandescence during floating CVD: influence on the CNT growth Under review, Journal of Nanoparticle Research, 2012.

?. Book-chapter, J. Anthony-dichiara, J. Shen, and . Bai, Growth mechanism of carbon nanotubes by CVD: a review of catalysts' features and roles

?. Anthony-dichiara, D. He, and J. Bai, Thermal decomposition of xylene: experimental and computational study. Xylenes: Synthesis, Characterization and Physicochemical Properties Under process, 2012.

?. Patents, A. Bai, J. Dichiara, and . Yuan, Carbon nanotube growth process on a mixture of particles or fibers containing at least one O atom with particles or fibers of a material which contains at least one Si atom, Ref, pp.212198-212198, 2011.

?. Jinbo-bai, Y. Lin, and A. Dichiara, Improvements of the adhesion between carbon nanotubes and their support by the deposition of a carbon nanolayer, Ref, pp.212199-212199, 2012.

R. Bai, A. Dichiara, and Y. Lin, Monitoring of the CNT layer number by the deposition of graphene. Ref, pp.212199-212200, 2012.

?. Jinbo-bai, Y. Magga, J. Zhang, and A. Dichiara, Delong He. Improvements of the interface between the reinforcements and the matrix in a composite material, Ref, pp.214428-214428, 2012.