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Résumé

Dans cette thèse, nous étudions la géométrie analytique p-adique et la cohomologie `-
adique de certains espaces de Rapoport-Zink, en utilisant la théorie des filtrations de Harder-
Narasimhan des schémas en groupes finis et plats élaborée par Fargues dans [26] et [27].

Cette thèse se compose de trois parties. La première partie traite de certains espaces de
Rapoport-Zink non-basiques, qui satisfont à la condition que leur polygone de Newton et poly-
gone de Hodge ont un point de contact non-trivial, qui est un point de rupture pour le polygone
de Newton. Sous cette hypothèse, nous prouvons que ces espaces de Rapoport-Zink peuvent
être décomposés en une somme directe d’espaces de modules des types de Rapoport-Zink asso-
ciés à certains sous-groupes paraboliques appropriés , donc leurs cohomologie `-adique sont des
induites paraboliques et en particulier ne contiennent pas de représentations supercuspidales.
Nous prouvons ces faits en démontrant d’abord un théorème sur la filtration de Hodge-Newton
pour les groupes p-divisibles avec des structures additionelles sur des anneaux de valuation
complets de rang un et de caractéristique mixte (0, p).

Dans la deuxième partie, nous considérons les espaces de Rapoport-Zink basiques de sig-
nature (1, n− 1) pour les groupes unitaires associés à l’extension quadratique non ramifiée de
Qp. On étudie l’action de Hecke sur ces espaces en détails. En utilisant la théorie des filtrations
de Harder-Narasimhan des schémas en groupes finis et plats, et la stratification de Bruhat-Tits
de la fibre spéciale réduite Mred étudié dans [81], on trouve un certain domaine analytique
compact DK telle que ses itérés dans le groupe G(Qp)× Jb(Qp) forme un recouvrement locale-
ment fini de tout l’espaceMK . Nous appelons un tel phénomène une décomposition cellulaire
localement finie.

Dans la troisième partie, nous démontrons une formule de Lefschetz pour ces espaces pour
l’action des éléments semi-simples réguliers elliptiques, en tenant compte de l’action de ces
éléments sur les cellules et en appliquant le théorème principal de Mieda dans [60]. De la même
manière, nous pouvons aussi reprouver la formule de Lefschetz pour les espaces de Lubin-Tate
précédemment obtenue par Strauch dans [77] et Mieda dans [60]. Cette formule de Lefschetz
devrait caractériser la réalisation de correspondances de Jacquet-Langlands locales pour les
groupes unitaires dans la cohomologie `-adique de ces espaces de Rapoport-Zink, dès que cer-
tains problèmes correspondants de théorie des représentations auront été résolus.

Mots-clefs : groupes p-divisibles, espaces de Rapoport-Zink, filtration de Hodge-Newton, dé-
composition cellulaire, formule de Lefschetz.

Hodge-Newton filtrations, cell decomposition and cohomology of
certain p-adic moduli spaces

Abstract

In this thesis we study p-adic analytic geometry and `-adic cohomology of some Rapoport-
Zink spaces, using the theory of Harder-Narasimhan filtration of finite flat group schemes
developed by Fargues in [26] and [27].

This thesis consists of three parts. The first part deals with some non-basic Rapoport-Zink
spaces, which satisfy the condition that their Newton polygon and Hodge polygon have a non-
trivial contact point, which is a breakpoint for the Newton polygon. Under this hypothesis,
we prove these Rapoport-Zink spaces can be decomposed as a direct sum of smaller Rapoport-
Zink spaces associated to some suitable parabolic subgroups, thus their `-adic cohomology is
parabolically induced and in particular contain no supercuspidal representations. We prove
these facts by first proving a theorem about the Hodge-Newton filtration for p-divisible groups
with additional structures over complete valuation rings of rank one and mixed characteristic
(0, p).



In the second part, we consider the basic Rapoport-Zink spaces with signature (1, n − 1)
for the unitary groups associated to the unramified quadratic extension of Qp. We study the
Hecke action on these spaces in details. By using the theory of Harder-Narasimhan filtrations
of finite flat group schemes, and the Bruhat-Tits stratification of the reduced special fiberMred

studied in [81], we find some compact analytic domain DK such that its translates under the
group G(Qp) × Jb(Qp) form a locally finite cover of the whole space MK . We call such a
phenomenon a locally finite cell decomposition.

In the third part we prove a Lefschetz trace formula for these spaces for the action of
regular semi-simple elliptic elements, by considering the action of these elements on the cells
and applying Mieda’s main theorem in [60]. In the same way we can also reprove the Lefschetz
trace formula for Lubin-Tate spaces as previously obtained by Strauch in [77] and Mieda in [60].
This Lefschetz trace formula should characterize the realization of local Jacquet-Langlands cor-
respondences for unitary groups in the `-adic cohomology of these Rapoport-Zink spaces, as
soon as some corresponding representation theoretic problems are solved.

Keywords : p-divisible groups, Rapoport-Zink spaces, Hodge-Newton filtration, cell decom-
position, Lefschetz trace formula.
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Introduction générale

Motivation

Cette thèse est consacrée à l’étude de la géométrie analytique p-adique de certains
espaces de Rapoport-Zink à l’aide de la théorie des filtrations de Harder-Narasimhan
des schémas en groupes finis et plats développée par Fargues dans [26] et [27], et en
déduire des résultats sur la cohomologie de ces espaces. Elle se compose des articles
[72],[73] et [74]. En particulier, nous obtenons par des méthodes locales des résultats
sur la cohomologie de ces espaces compatibles avec les conjectures de Harris et de Kot-
twitz (Conjecture 5.2 dans [34], Conjecture 5.1 dans [70]). Afin de donner une exposition
simplifiée, nous examinons dans cette introduction certaines variétés de Shimura partic-
ulières étudiées par Harris et Taylor dans [36] qui donnent tous les problèmes de modules
locaux que nous allons étudier.

Soient k un corps quadratique imaginaire et D une algèbre à division centrale sur
k de dimension n2, munie d’une involution ∗ de seconde espèce. Soit h0 : C → DR un
homomorphisme de R-algèbres, de telle sorte que h0(z)∗ = h0(z), et l’involution x 7→
h0(i)−1x∗h0(i) est positive. Ces données définissent un groupe réductif de similitudes
unitaires G sur Q dont les points à valeur dans la Q-algèbre R sont

G(R) = {g ∈ (D ⊗Q R)×|g∗g ∈ R×},

et un homomorphisme
h : ResC|RGm → GR.

Cela définit une donnée de Shimura. Pour tout sous-groupe ouvert compact K ⊂ G(Af )
suffisamment petit, on obtient une variété de Shimura ShK propre et lisse sur k associée
à ces données. Nous supposons que le morphisme h est tel que GR = GU(1, n − 1).
Considérons un nombre premier impaire p qui est non ramifé dans k. Supposons que D
est non ramifiée en p. Alors, pour tout premier p de k au-dessus de p, K est compact
hyperspécial en p, il y a modèles entiers propres et lisses de ces variétés sur l’anneau des
entiers Okp définis par Kottwitz (cf. [51]). Ce sont des espaces de modules de variétés
abéliennes avec des structures additionnelles. La géométrie locale en p de ces variétés
de Shimura est assez différente pour les deux cas : p décomposé ou inerte dans k.

Cas p décomposé dans k. Dans ce cas, kp = Qp, GQp ' GLn×Gm, et les polygones
de Newton associés à la réduction en p, correspondent à des nombres entiers 0, . . . , n−1.
Pour chaque entier 0 ≤ h ≤ n−1, le polygone concave associé consiste en la droite reliant
le point (0, 0) et (n−h, 1), et celle reliant (n−h, 1) et (n, 1). Le groupe p-divisible associé
à un point dans la strate ShhK , admet la suite locale-étale : 0 → H0 → H → H ét → 0

avec htH ét = h. Toutes les strates de Newton sont non vides : la dimension de ShhK est h.
À chaque strate ShhK , on peut associer à un espace de Rapoport-ZinkMn−h,h, où, pour
la strate supersingulière h = 0, c’est l’espace de Rapoport-Zink associé à l’espace de
Lubin-TateMn

LT pour GLn/Qp. On peut considérer le cas avec niveau Kp en p. Parmi
d’autres faits, ce que nous savons au sujet de ces espaces sont les faits suivants :

– Pour chaque strate non basique,Mn−h,h est une induite parabolique. Ce fait est
facile à voir, par la décomposition local-étale du groupe p-divisible. On est donc
réduit à étudier les espaces de Lubin-Tate. On voit en particulier, la cohomologie de
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ces strates non basiques ne contient pas de représentation supercuspidale (« astuce
de Boyer », cf. [9], [36]).

– PourMn
LT , il existe une décomposition cellulaire localement finie avec des cellules

compacte. Il s’agit d’un cas particulier du théorème principal de [27]. (Voir aussi
le premier chapitre de [25] pour une décomposition variante pour le tour de ces
espaces.)

– Pour Mn
LT,Kp

, Kp suffisamment petit, il existe une formule de Lefschetz pour
les éléments semi-simples réguliers elliptiques agissant sur la cohomologie de ces
espaces. Il s’agit d’un résultat principal de [77], où Strauch a utilisé cette formule
pour prouver la réalisation de la correspondances Jacqut-Langlands locale dans la
cohomologie de ces espaces. Ceci est bien sûr impliqué par les résultats de Harris-
Taylor, mais ici la méthode est locale et il n’est pas nécessaire d’utiliser les variétés
de Shimura ci-dessus.

Cas p inerte dans k. Dans ce cas, kp ' Qp2 , GQp est le groupe des similitudes uni-
taires quasi-déployé associé à l’extension Qp2|Qp. L’ensemble des polygones de Newton
est décrit explicitement dans [10] 3.1. Ils correspondent à des nombres entiers 0 ≤ r ≤ n

2
.

En particulier, r = 0 correspond au polygone basique, r = 1 correspond au polygone
de Hodge (généralisé), et chaque polygone non basique a un segment central de pente 1

2

(peut-être de longueur 0) coïncidant avec une partie dans le polygone de Hodge. Toutes
les strates de Newton sont non vides : la dimension de la strate non basique correspond
à r est n − r, tandis que la strate basique est de dimension [n−1

2
]. Comme dans le cas

ci-dessus, les strates non basiques sont en fait des feuilles au sens de [55], c’est à dire les
groupes p-divisibles sont uniquement déterminées par leur p-torsion. La géométrie de
la strate basique est plus compliquée que dans le cas p-décomposé ci-dessus. Cela a été
étudié par Valloord et Wedhorn dans [81]. On peut associer à toutes les strates de New-
ton un espace de Rapoport-Zink, et on essaye d’étudier ces espaces. En particulier on
se demande si nous avons des résultats analogues comme le cas p-décomposé ci-dessus :

– Pour les espaces non basiques, sont-ils des induites paraboliques à partir d’espaces
de Rapoport-Zink plus petits ?

– Pour l’espace basique, existe-t-il une décomposition cellulaire localement finie avec
des cellules compacts ?

– Pour l’espace basique, existe-t-il une formule de Lefschetz pour les éléments semi-
simples réguliers elliptiques agissant sur la cohomologie ?

Dans cette thèse, nous allons donner des réponses positives à toutes les questions
ci-dessus. En fait, on peut commencer directement avec quelques données locales, qui
donnent espaces de Rapoport-Zink, et on n’a pas besoin de commencer avec les variétés
de Shimura.

Espaces de Rapoport-Zink

Les espaces de Rapoport-Zink sont définis dans [66], comme des espaces de modules
de groupes p-divisibles généralisant les espaces de Lubin-Tate et de Drinfeld. Ils sont
des analogues locaux des variétés de Shimura. En fait, il existe des liens entre eux. Les
données pour la définition d’une variété de Shimura de type PEL donnent des données
locales en p qui définissent des espaces de Rapoport-Zink pour chaque strate de Newton
(comme on l’a vu précedemment dans un cas particulier), et Rapoport et Zink ont
montré que ces espaces permettent d’uniformiser certains sous-espaces ouvertes rigides
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analytiques de la variété de Shimura rigide analytique associée.

On se restreint aux espaces de Rapoport-Zink non ramifés de type EL et PEL uni-
taires ou symplectiques. Une donnée non ramifée simple locale de type EL ou PEL
(unitaires ou symplectiques) définit un groupe réductif non ramifié G sur Qp, qui est
soit une restriction de scalaires d’un groupe linéaire, soit un groupe de similitudes uni-
taires ou symplectiques. Notons W = W (Fp), L = WQ. Soient b ∈ B(G) = G(L)/ ∼
(classes de σ-conjugaison), et µ : Gm,Qp → GQp un cocaractère minuscule à conjugaison
près, telles que b ∈ B(G, µ) (l’ensemble de Kottwitz, cf. [52]). À partir des donnés lo-
cales, on peut construire un espace de Rapoport-Zink formel M̂ sur SpfW : l’ensemble
des points à valeur dans S ∈ NilpW (la catégorie des schémas S au-dessus de W tels
que p soit localement nilpotent sur S) est M̂(S) = {(H, ρ)}/ ', où

– H est un groupe p-divisible avec des structures additionnelles (en un certain sens
précis déterminé par les données locales),

– ρ : HS → HS est une quasi-isogénie compatible avec les structures additionelles
(H est le groupe p-divisible standard sur Fp à isogénie près associé, et S est le sous
schéma fermé de S défini par p).

Dans les cas unitaires ce que nous considérons ici, µ(z) = (diag(z, . . . , z︸ ︷︷ ︸
n−1

, 1), z) pour

l’isomorphisme GQp ' GLn ×Gm, M̂(S) = {(H, ι, λ, ρ)}/ ', où
– ι : Zp2 → End(H) est un morphisme d’algèbres, tel que dans la décomposition

induite LieH = (LieH)0 ⊕ (LieH)1, rg(LieH)0 = 1, rg(LieH)1 = n− 1 (dans ces
cas htH = n), avec (LieH)0 (resp. (LieH)1) est le sous module à quel Zp2 agit par
le plongement Zp2 ↪→ W triviale (resp. non triviale).

– λ : (H, ι)→ (HD, ι ◦ ∗) est une polarisation (principale) (i.e. un isomorphisme tel
que λD = −λ).

L’élément b définit un polygone de Newton, tandis que µ définit un polygone de Hodge.
Les groupes p-divisibles associés aux points de M̂ ont leur polygone de Newton et
polygone de Hodge définis par b et µ respectivement. Le groupe Jb des quasi-isogénies de
H, qui est une forme intérieure d’un sous groupe de Levi de G, agit sur M̂ naturellement.
L’espace M̂ est muni d’une donnée de descente de L à E, le corps reflex qui est le corps
de définition de µ. Bien que non effective, cette donnée de descente est suffisante pour
définir une action de Frobenius sur la cohomologie de ces espaces.

Fixons un modèle entier réductif de G et soit G(Zp) le sous-groupe compact hyper-
spécial associé dans G(Qp). On considère la fibre générique analytiqueM := (M̂)an de
M̂. Il existe plusieurs versions de la géométrie analytique p-adique. Nous allons prin-
cipalement travailler avec la version de Berkovich. Alors il existe une tour d’espaces
analytiques (MK)K , où K parcourant les sous groupes ouverts de G(Zp). Le groupe
Jb(Qp) agit sur chaqueMK pour tout K naturellement. De plus, G(Qp) agit par corre-
spondances de Hecke sur la tour (MK)K : ∀g ∈ G(Qp),

MgKg−1∩K
g

'
//

yy

MK∩g−1Kg

&&
MK MK ,

qui ne dépend que de la double classe KgK. Cette action de G(Qp) commute à celle de
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Jb(Qp). Fixons un premier l 6= p. La cohomologie `-adique à support compact deMK

H i
c(MK × Cp,Ql)

est bien définie (cf. [23]) pour chaque entier i ≥ 0. On obtient ainsi uneQl- représentation

lim−→
K

H i
c(MK × Cp,Ql)

du groupe G(Qp) × Jb(Qp) ×WE pour chaque i ≥ 0. Losque b est basique, Jb est une
forme intérieure de G, et dans ce cas la conjecture de Kottwitz décrirt la partie de
la représentation virtuelle

∑
i≥0(−1)i lim−→K

H i
c(MK × Cp,Ql) associée aux paramètres

discrets de Langlands (cf. [70], Conjecture 5.1). Cette conjecture est un analogue locale
non-archimédean de la conjecture correspondante pour la cohomologie des variétés de
Shimura (cf. [50]).

Les points x ∈ MK sont de la forme (Hx/OH(x), ιx, λx, ρx, ηx) (cas PEL), où H(x)
est le corps résiduel complet du point x, et OH(x) est son anneau de valuation (qui est
de rang un). Nous allons utiliser la théorie des filtrations de Harder-Narasimhan des
schémas en groupes finis et plats développée par Fargues dans [26] et [27] pour étudier
ces espaces de Rapoport-Zink.

Filtration de Harder-Narasimhan des schémas en groupes finis et
plats

Soient K maintenant un corps valué de caractéristque 0 pour une valuation v à
valeurs dans R étendant la valuation p-adique, OK son anneau d’entiers. Dans [26],
Fargues a démontré la catégorie C des schémas en groupes finis et plats d’ordre une
puissance de p admet une filtration de type de Harder-Narasimhan. Plus précisément,
il y a deux fonctions additives

ht, deg : C → R,

où pour un groupe G ∈ C, htG est la hauteur, et deg(G) =
∑

i v(ai) si le faisceau
conormal ωG ' ⊕iOK/aiOK . La fonction deg satisfait certaines propriétés utiles. On
pose

µ =
deg

ht
.

On appelle un groupe G ∈ C semi-stable, si pour touts 0 6= G′ ⊂ G,G′ ∈ C, µ(G′) ≤
µ(G). Fargues a démontré que, pour tout groupe G ∈ C non nul, il possède une unique
filtration par des sous groupes fermés finis et plats

0 = G0 ( G1 ( · · · ( Gk = G

telle que :

1. pour tout i, Gi+1/Gi est semi-stable.

2. Si i ≥ 1, µ(Gi/Gi−1) > µ(Gi+1/Gi).

On peut définir un polygone concave HN(G) de G à partir sa filtration de Harder-
Narasimhan : c’est le polygone débutant en (0, 0) et terminant en (htG, degG) tel que si
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la filtration est comme ci-dessus, alors ses pentes sont les (µ(Gi/Gi−1))1≤i≤k avec multi-
plicité ht(Gi/Gi−1) pour la pente µ(Gi/Gi−1). On peut prouver HN(G) est l’enveloppe
concave des points (htG′, degG′) lorsque G′ parcourt les sous groupes de G.

Il y a beaucoup de propriétés utiles pour cette filtration, pour plus de détails voir
[26]. Mentionnons qu’elle est compatible avec les structures additionnelles. On considère
(G, ι, λ) un schéma en groupes finis et plats avec structures additionnelles, où ι : OF →
End(G) pour une extension F |Qp fini non ramifée avec OF son anneau d’entiers, λ : G→
GD est une polarisation. Alors, la filtration de Harder-Narasimhan de G est invariant
sous l’action de ι et le polygone HN(G) est symétrique. On peut définir un nouveau
polygone

HN(G, ι, λ) :=
1

d
HN(G)(d·),

où d = [F : Qp] et on a considérée HN(G) comme une fonction sur [0, htG]. Dans [26],
Fargues défini également un polygone de Hodge Hdg(G) de G, et a prouvé que l’on a
l’inégalité

HN(G) ≤ Hdg(G).

Dans la première section de cette thèse, nous allons définire un polygone de Hodge
Hdg(G, ι, λ) de (G, ι, λ), qui contient des informations des structures additionnelles, et
si (G, ι, λ) = (H, ι, λ)[p] provient de la p-torsion d’un groupe p-divisible avec structures
additionnelles, alors ce polygone coïncide avec le polygone de Hodge de la fibre spéciale
de (H, ι, λ) défini par Kottwitz. Nous avons également une preuve d’une inégalité (cf.
Proposition 1.3.10)

HN(G, ι, λ) ≤ Hdg(G, ι, λ),

qui raffine le cas sans structures additionnelles. Cette inégalité sera nécessaire pour
prouver l’existence de la filtration de Hodge-Newton dans la suite.

Polygone de Harder-Narasimhan des groupes p-divisibles

Soient K comme avant, H un groupe p-divisible sur OK . On peut donc étudier les
groupes H[pn] pour n ≥ 1. Noterons h = htH, d = dimH. Alors On a htH[pn] =
nh, degH[pn] = nd. Le polygone de Harder-Narasimhan de H[pn] est donc une fonction
[0, nh]→ [0, nd]. Dans [27], Fargues a démontré que la limite

lim
n→∞

1

n
HN(H[pn])(n·)

existe, est égale à infn
1
n
HN(H[pn])(n·) et définit une fonction

HN(H) : [0, h]→ [0, d]

telle que HN(H)(0) = 0, HN(H)(h) = d. On appelle HN(H) le polygone de Harder-
Narsimhan de H, puisque on peut prouver que c’est bien un polygone. Dans le cas où OK

est de valuation discrète et son corps résiduel k est parfait, on peut l’expliquer comme
le polygone de Harder-Narasimhan de la représentation cristalline associée à H ou bien
le polygone de Harder-Narasimhan du ϕ-module filtré associé, pour certaines fonctions
de pente appropriées sur ces catégories. Dans le cas général, on peut utiliser le module
de Hodge-Tate associée à H, cf. [27] pour plus de détails. On a

HN(H) ≤ 1

n
HN(H[pn])(n·),∀n ≥ 1.
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D’autre part, si on note Newt(Hk) et Hdg(Hk) le polygone de Newton et polygone de
Hodge de Hk respectivement, et si OK est de valuation discrète, il est facile de prouver
que nous avons l’inégalité

HN(H) ≤ Newt(Hk).

(Rappelons que on a toujours l’inégalité de Mazur Newt(Hk) ≤ Hdg(Hk)). Dans le cas
général, avec une certaine hypothèse technique sur H (qui est toujours satisfaite pour les
groupes p-divisibles proviennent des points des espaces de Rapoport-Zink), un résultat
principal de [27] dit que nous avons encore l’inégalité HN(H) ≤ Newt(Hk). En résumé,
on a des inégalités

HN(H) ≤ Newt(Hk) ≤ Hdg(Hk),

HN(H) ≤ 1

n
HN(H[pn])(n·) ≤ HN(H[p]) ≤ Hdg(H[p]) = Hdg(Hk).

Passons au cas avec structures additionnelles. Soit F |Qp une extension finie non
ramifée. Notons d = [F : Qp]. Soit (H, ι, λ) un groupe p-divisibles avec des structures
additionnelles (de type PEL) : ι : OF → End(H) est une action de OF et λ : H → HD

est une polarisation. Comme dans le cas des schémas en groupes finis et plats, on peut
définir

HN(H, ι, λ) =
1

d
HN(H)(d·).

Alors on a des inégalités

HN(H, ι, λ) ≤ Newt(Hk, ι, λ) ≤ Hdg(Hk, ι, λ),

HN(H, ι, λ) ≤ 1

n
HN(H[pn], ι, λ)(n·) ≤ HN(H[p], ι, λ) ≤ Hdg(H[p], ι, λ) = Hdg(Hk, ι, λ).

Ici Newt(Hk, ι, λ) ≤ Hdg(Hk, ι, λ) est l’inégalité généralisée de Mazur (cf. [65]).

Filtration de Hodge-Newton et induite parabolique

Soit (H, ι, λ) un groupe p-divisibles avec des structures additionnelles (de type PEL)
comme avant. Faisons l’hypothèse suivante : Newt(Hk, ι, λ) et Hdg(Hk, ι, λ) possé-
dent un point x de contact non trivial, qui est un point de rupture de Newt(Hk, ι, λ).
Par symétrie, le point x̂ symétrique de x satisfait la même hypothèse. Nous sup-
posons que x se trouve devant x̂. Sous cette hypothèse, par l’inégalités HN(H, ι, λ) ≤
Newt(Hk, ι, λ) ≤ Hdg(Hk, ι, λ) et la théorie des ϕ-modules filtrés admissibles, on peut
prouver que HN(H, ι, λ) passe aussi par les points x et x̂. En utilisant l’inégalités

HN(H, ι, λ) ≤ 1

n
HN(H[pn], ι, λ)(n·) ≤ HN(H[p], ι, λ) ≤ Hdg(H[p], ι, λ) = Hdg(Hk, ι, λ),

on peut trouver des crans dans les filtration de Harder-Narasimhan de H[pn] correspon-
dant aux points x et x̂ pour les n >> 0. On peut prouver qu’ils sont compatibles et
donc définissent des groupes p-divisibles.

Théorème 0.0.1. Les notations sont comme ci-dessus. Il existe une unique filtration
de groupes p-divisibles avec des structures additionnelles sur OK

(H1, ι) ⊂ (H2, ι) ⊂ (H, ι),

telle que :
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1. λ induit les isomorphismes

(H1, ι) ' ((H/H2)D, ι′),

(H2, ι) ' ((H/H1)D, ι′),

où ι′ est l’action induite par ι.
2. Si k est parfait la filtration induite

(H1k, ι) ⊂ (H2k, ι) ⊂ (Hk, ι)

est scindée.
3. les polygones de Newton (resp. Harder-Narasimhan,

resp. Hodge) de (H1, ι), (H2/H1, ι) et (H/H2, ι) sont les parties du polygone de
Newton (resp. Harder-Narasimhan, resp. Hodge) de (H, ι, λ) avant x, entre x et
x̂, et après x̂ respectivement.

Ce théorème généralise les résultats de l’article [57]. Mais notre démonstration est
différente.

Soit maintenant (MK)K une tour d’espaces de Rapoport-Zink non ramifée simple,
telle que le polygone de Newton Pb associé à b et le polygone de Hodge Pµ associé à
µ satisfont l’hypothèse ci-dessus. C’est à dire que ils possédent un point x de contact
non triviale, qui est un point de rupture de Pb. On peut trouver alors un sous groupe
parabolique P et un sous groupe de Levi M ⊂ P correspondants à x et x̂. Mantovan a
introduit dans [56] deux autres tours d’espaces analytiques (PK)K⊂M(Zp), (FK)K⊂P (Zp)

pour les groupesM,P respectivement. La tour (PK)K⊂M(Zp) est en fait la tour d’espaces
de Rapoport-Zink pour le groupeM avec les b′, µ′ induites. Ils sont l’espaces des modules
des paires de groupes p-divisibles avec structures additionnelles. La tour (FK)K⊂P (Zp)

est une tour d’espaces des modules de groupes p-divisibles filtrés avec structures ad-
ditionnelles. De plus, pour tout sous groupe ouvert compact K ⊂ G(Zp) si on note
FK := FK∩P (Zp),PK := PK∩M(Zp), alors il y a un diagramme de morphismes d’espaces
analytiques

FK

π1K}}
π2K ""

PK

sK
33

MK ,

où sK est une immersion fermé correspondant à l’extension triviale, et π1K induit un
isomorphisme au niveau de la cohomologie l-adique à support compact. Le théorème
d’existence et d’unicité de la filtration de Hodge-Newton implique que

MK 'MK ×M F '
∐

K\G(Qp)/P (Qp)

FK∩P (Qp).

Passons à la cohomologie, on a le théorème suivante.

Théorème 0.0.2. Les notations sont comme ci-dessus. On a une égalité de représen-
tations virtuelles de G(Qp)×WE

H(M∞)ρ = Ind
G(Qp)

P (Qp)H(P∞)ρ,
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où pour une Ql-représentation lisse ρ de Jb(Qp),

H(M∞)ρ =
∑
i,j≥0

(−1)i+j lim−→
K

ExtjJb(Qp)(H
i
c(MK × Cp,Ql(DM)), ρ)

DM = dimM et la définition de H(P∞)ρ est identique.

Cette formule a été précédemment conjecturée par Harris dans [34] (Conjecture 5.2).

Corollaire 0.0.3. Pour les variétés de Shimura introduites au début dans le cas p inerte
dans k, pour tous les strates non basiques, considérons les représentations virtuelles de
G(Af )×WE

Hc(Sh
(b)

∞ × Fp, RΨη(Ql)) :=
∑
i,j≥0

(−1)i+j lim−→
Kp×Kp

H i
c(Sh

(b)

Kp×Kp × Fp, RjΨη(Ql)).

Alors Hc(Sh
(b)

∞ ×Fp, RΨη(Ql)) peuvent être écrites comme certains induites paraboliques
adaptées, donc en particulier ne contiennent pas de représentations supercuspidales de
G(Qp).

Remarquons que ces variétés de Shimura ne sont pas contenues dans les cas étudiés
dans l’article [56]. Dans le cas p décomposé dans k, ce résultat a été obtenu par Harris et
Taylor en utilisant l’astuce de Boyer pour ce cas particulier. Dans [23], Fargues a prové
des résultats similaires dans des cas généraux en comparant les formules de Lefschetz
pour la fibre spéciale et la fibre généric.

L’algorithme de descente pour les groupes p-divisibles basiques
et correspondences de Hecke

Nous suivons les idées de [27]. Soit K|Qp une extension valuée complète pour une
valuation à valeurs dans R étendant la valuation p-adique. Soit H un groupe p-divisible
sur OK . On dit que H est un groupe semi-stable, si H[p] l’est. Il est équivalent que
pour tout entier n ≥ 1, H[pn] est semi-stable, ou encore pour tout sous schéma en
groupes fini et plat G de H, µ(G) ≤ µ(H) := dimH

htH
. Il y a une notion supplémentaire

de groupe p-divisible de type HN qui généralise la notion de groupe p-divisible semi-
stable. Mais on se restreint à ce dernier cas afin d’obtenir un résultat complet. Donc on
suppose H est basique, c’est à dire que Newt(Hk) est la droite qui relie les points (0, 0)
et (htH, dimH). Cela implique que HN(H) = Newt(Hk) est la droite ci-dessous par
l’inégalité de Fargues. Dans ce cas, l’algorithme de Fargues pour H est comme suivant
pour produire des groupes p-divisibles qui sont de plus en plus proches d’un groupe
semi-stable. On pose pour un entier k ≥ 1

Gk = le premier cran de la filtration de Harder-Narasimhan de H[pk].

Alors la suite (Gk)k≥1 forme une suite croissante de groupes semi-stables de même pente.
On pose

FH = lim−→
k≥1

Gk ⊂ H,
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comme un sous faisceau fppf de H. Sous notre hypothèse que H est basique, on
peut prouver que il existe k0 ≥ 1 tel que FH = Gk0 (cf. lemme 3,4, [27]). On note
µmax(H) = µmax(H[p]), la pente maximale dans la filtration de Harder-Narsimhan de
H[p]. L’algorithme est

H1 = H,H2 = H1/FH1 , . . . , si Hi 6= 0, on pose Hi+1 = Hi/FHi , . . . .
On a donc une suite de groupes p-divisibles (Hi)i≥1 munie de morphismes φi : Hi → Hi+1

qui sont des isogénies avec comme noyaux kerφi = FHi des sous groupes finis et plats.
De plus, si Hi+1 6= 0 on a

µmax(Hi+1) < µmax(Hi).

On dit que l’algorithme s’arrête en temps fini, si Hi = 0 pour i >> 0. Dans ce cas, si
r ≥ 1 est l’entier tel que Hr 6= 0, Hr+1 = 0, alors on a une suite d’isogénies

H = H1
φ1 //

φ

&&
H2

φ2 // · · · φr−1 // Hr,

avec H1, . . . , Hr−1 ne sont pas semi-stables, tandis que Hr est semi-stable. On peut trou-
ver le noyau kerφ dans la filtration de Harder-Narasimhan de H[pN ] pour N >> 0. Un
théorème relativement facile dit que si la valuation sur K est discrète alors l’algorithme
s’arrête en temps fini. Le thèorème principal de [27] dit que lorsque la dimension et la
hauteur de H sont premières entre elles alors l’algorithme s’arrête toujours en temps
fini.

SoitM l’espace de Rapoport-Zink basique pour GLh/Qp avec signature (d, h − d).
Le paragraphe ci-dessus a une explication en termes de correspondences de Hecke sur
M. Soit Mss le lieu semi-stable, qui est un domaine analytique fermé dans M. Alors
l’algorithme s’arrête en temps fini pour les points rigides (les points dansMrig) implique
que comme ensemble

Mrig =
⋃

T∈GLh(Zp)\GLh(Qp)/GLh(Zp)

T.Mss,rig.

Nous avons la décompositionM =
∐

i∈ZMi donnée par la hauteur de la quasi-isogénie
universelle. Supposons (d, h) = 1. Sous cette hypothèse Jb = D×, où D est l’algèbre
à divison centrale sur Qp d’invariant d

h
. On notera Π un uniformisante de D. Posons

D = Mss
⋂
M0. Alors Mss =

∐
i∈Z Π−iD. Le théorème principal de [27] est qu’il y a

un recouvrement localement fini par des domaines analytiques fermés

M =
⋃

T∈GLh(Zp)\GLh(Qp)/GLh(Zp)
0≤i≤h−1

T.Π−iD.

Nous appelons ce phénomène une décomposition cellulaire localement finie de M. On
remarque que lorsque d = 1, c’est à dire dans le cas de Lubin-Tate, le domaine D (donc
tous les domaines T.Π−iD) est compact.

Décomposition cellulaire localement finie des espaces de
Rapoport-Zink pour les groupes unitaires

Soit maintenantM l’espace de Rapoport-Zink basique avec signature (1, n−1) pour
le groupe unitaire associé à une extension quadratique non ramifiée de Qp. C’est l’espace
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basique du début de cette introduction. Nous essayons de prouver que M admet une
décomposition cellulaire localement fini. Mais il y a quelques difficultés pour généraliser
la méthode ci-dessus dans ce cas. La première difficulté est que l’algorithme n’est pas
bien compatible avec les correspondances de Hecke dans les cas avec des structures
additionnelles. Plus précisément, si (H, ι, λ) est un groupe p-divisible avec structures
additionnelles provenant d’un point x ∈ M, l’action de Hecke sur x signifie que on
prend les quotients pour sous-groupes totalements isotropes dans H[pm] pour certains
m, avec les structures induites et modifie la quasi-isogénie. Bien que la filtration de
Harder-Narasimhan soit compatible avec les structures additionnelles, nous ne pouvons
pas garantir que le groupe FH produit par l’algorithme est un sous-groupe totalement
isotrope. Notre idée est de continuer l’algorithme en quelque sorte (d’une façon non
canonique) pour obtenir des sous-groupes totalement isotropes. Plus précisément, sup-
posons que H n’est pas semi-stable et l’algorithme pour H s’arrête en temps fini, par
exemple qui est le cas si x ∈Mrig. On a donc la suite

H = H1
φ1 //

φ

&&
H2

φ2 // · · · φr−1 // Hr,

avec H1, . . . , Hr−1 ne sont par semi-stables, tandis que Hr est semi-stable. Notons N le
plus petit entier tel que kerφ ⊂ H[pN ] mais kerφ * H[pN−1]. Alors on peut trouver la
filtration de Harder-Narasimhan de H[pN ] à partir de celle de kerφ (qui peut être lue par
l’algorithme). On a deux possibilité : kerφ = (kerφ)⊥ ou (kerφ)⊥/kerφ est un groupe
non nul semi-stable de pente 1

2
. Le premier cas est bon. Pour le deuxième cas, dans

la section 2.5 de cette thèse, on va trouver des sous groupe totalement isotropes dans
(kerφ)⊥/kerφ (à une extension finie de H(x) près). En prenant l’image réciproque, on
trouve des sous groupe totalement isotropes dans H[pN ]. Motivés par cette construction,
nous définissons un sous-espace C ⊂ M :

C ={x ∈M | ∃H semi-stable et une isogénie f : Hx → Hsur OK , K|H(x) fini, telle que
p(kerf) = 0}.

On peut prouver que c’est un domaine analytique fermé qui contient le lieu semi-stable
Mss (cf. Proposition 2.6.2). On peut penser que C est le lieu «presque semi-stable». Par
construction, on a comme ensemble

Mrig =
⋃

T∈G(Zp)\G(Qp)/G(Zp)

T.Crig.

Dans ce cas on a aussi une décomposition donnée par la hauteur de la quasi-isogénie
universelle

M =
∐

i∈Z, in paire

Mi.

L’element p−1 ∈ Jb(Qp) agir sur M de telle manière qu’il induit un isomorphisme
p−1 :Mi ∼→Mi+2. Pour les groupes locaux de similitudes unitaires, nous avons G ' Jb
si n est impaire. Si n est paire, Jb est la forme intérieure non quasi-déployée de G. Dans
ce dernir cas, on choisit un element g1 ∈ Jb(Qp) tel que vp(detg1) = n

2
pour la valuation

vp. Donc g1 induit un isormorphisme g1 :M0 →M1. On pose Ci := C
⋂
Mi, C ′ = C0 si

n paire et C ′ = C0
∐
C1 si n impaire. Alors

Mrig =
⋃

T∈G(Zp)\G(Qp)/G(Zp)

T.(C ′)rig.
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La deuxième difficulté dans notre cas unitaire est que, contrairement au cas d’espace de
Rapoport-Zink basique pour GLh/Qp avec signature (d, h − d) et d et h sont premier
entre eux, l’espace M0 est très large. En fait, on peut considérer le morphisme de
spécialisation sp : M0 → M0

red. L’espace M0
red est quasi compact dans le cas sans

structures additionnelles et (d, h) = 1, tandis que dans notre cas M0
red admet une

stratification indexée par les sommets dans l’immeuble B(Jderb ,Qp). D’après Vollaard et
Wedhorn [81], à chaque sommet Λ, on peut associé un sous schéma ferméMΛ ⊂M0

red,
qui est projectif et lisse (une variété de Deligne-Lusztig généralisée). Les composantes
irréductibles deM0

red sont lesMΛ avec t(Λ) (la fonction de type) maximale. En outre,
l’action de Jderb (Qp) sur ces sous schémas est compatible avec son action sur l’immeuble.
Nous nous référons à [81] pour plus de détails concernant la géométrie de M0

red. Les
tubes au-dessus des composantes irréductibles nous donne un recouvrement localement
fini par ouverts

M0 =
⋃

Λ,t(Λ)=tmax

sp−1(MΛ).

On choisit un sommet Λ avec t(Λ) = tmax, et pose

D = C0
⋂

sp−1(MΛ),

qui est un domaine analytique localement fermé.

Théorème 0.0.4. Les notations sont comme ci-dessus. Le domaine analytique D est
relativement compact. De plus, on a recouvrements localement finis

M =
⋃

T∈G(Zp)\G(Qp)/G(Zp)

g∈Jderb (Qp)/Stab(Λ)

T.gD

si n est impaire, et
M =

⋃
T∈G(Zp)\G(Qp)/G(Zp)

j=0,1
g∈Jderb (Qp)/Stab(Λ)

T.gj1gD

si n est paire.

Le point clé est de prouver la finitude localement. C’est pourquoi nous avons besoin
d’introduire D, mais nous ne travaillons pas avec C ′. Dans la preuve nous verrons que
nous pouvons élargir D un peu pour obtenir un domaine fondamental compact.

Ce théorème admet des corollaires concernant les domaines de périodes p-adiques et
variétés de Shimura.

Corollaire 0.0.5. Soit π :M→ F l’application période p-adique de Rapoport-Zink (cf.
[66] chapter 5). Notons Fa l’image de π, un ouvert de F . Alors on a recouvrements
localement finis

Fa =
⋃

g∈Jderb (Qp)/Stab(Λ)

gπ(D)

si n est impaire, et
Fa =

⋃
j=0,1

g∈Jderb (Qp)/Stab(Λ)

gj1gπ(D)

si n est paire.
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Corollaire 0.0.6. Soit Ŝh
b0

Kp le tube au-dessus la strate basique dans la variété de
Shimura introduite au début. Écrivons l’uniformisation de Rapoport-Zink (cf. [66] chap-
ter 6)

Ŝh
b0

Kp = I(Q) \M×G(Ap
f )/K

p =
∐

i∈I(Q)\G(Apf )/Kp

Γi \M,

l’images de C ′ dan Γi \M comme E ′i, et enfin E ′ =
∐

i E ′i. Alors on a un recouvrement

Ŝh
b0

Kp =
⋃

T∈G(Zp)\G(Qp)/G(Zp)

T.E ′.

Décomposition cellulaire et formule de Lefschetz

Soient G etM comme ci-dessous. Soient K ⊂ G(Zp) un sous group ouvert compact,
et DK l’image réciproque de D sous la projection MK → M. On voit facilement que
KhK.DK ne dépend que l’image de KgK dans la projection K \G(Qp)/K → G(Zp) \
G(Qp)/K. Donc dans le niveau K, on a les décomposition cellulaire

MK =
⋃

T∈G(Zp)\G(Qp)/K

g∈Jderb (Qp)/Stab(Λ)

T.gDK

si n impaire, et
MK =

⋃
T∈G(Zp)\G(Qp)/K

j=0,1
g∈Jderb (Qp)/Stab(Λ)

T.gj1gDK

si n est paire.

Pour mieux comprendre les actions des groupes sur les cellules, nous devons intro-
duire un ensemble de paramètres plus naturel. Considérons

IK = (G(Zp) \G(Qp)/K × Jb(Qp)/Stab(Λ))/Q×p ,

où le quotient par Q×p est par son action via le plongement Q×p → G(Qp)× Jb(Qp), z 7→
(z, z−1). ( En vertu de notre convention, (z, z−1) agir trivialement surMK .) Il y a une
application

ϕ : IK −→ Z

[T, g′] 7→ − 2

n
(vp(detT ) + vp(detg

′)),

avec l’image Z si n paire et 2Z si n impaire. Notons I iK = ϕ−1(i). Pour chaque [T, g′] ∈
IK , le cellule

D[T,g′],K := T.g′DK
est bien défini. Le théorème ci-dessus implique

MK =
⋃

[T,g′]∈IK

D[T,g′],K ,
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Mi
K =

⋃
[T,g′]∈IiK

D[T,g′],K .

De plus, c’est sont des recouvrements localement finis. Plus important encore, il y a
une métrique d sur l’ensemble IK induite par la métrique sur le quotient par K de
l’immeuble quotient B = B(G× Jb,Qp)/Q×p . La finitude localement signifie que il existe
un constant c > 0 tel que pour tout [T, g′] ∈ IK ,

{[T ′, g′′] ∈ IK | D[T ′,g′′],K

⋂
D[T,g′],K 6= ∅} ⊂ {[T ′, g′′] ∈ IK | d([T, g′], [T ′, g′′]) ≤ c},

où l’ensemble dernier est fini. Si γ = (h, g) ∈ G(Qp)× Jb(Qp) tel que hKh−1 = K, alors
il agir sur IK par [T, g′] 7→ [Th, gg′]. L’action de γ sur MK est compatible avec son
action sur IK :

γ(D[T,g′],K) = D[Th,gg′],K .

Si de plus vp(deth) + vp(detg) = 0, les actions de γ surMK et IK stablesM0
K et I0

K .
Nous supposons encore de plus h, g sont semi-simples, réguliers, elliptiques. Sous ces
hypothèse, en étudiant l’action de γ sur l’immeuble, nous pouvons trouver une chaïne
croissante de sous-ensembles finis stable par γ, (Aρ)ρ, qui épuise l’ensemble I0

K . On pose

Uρ =M0
K −

⋃
[T,g′]∈I0

K−Aρ

D[T,g′],K .

Grâce à la finititude localement du recouvrement et la compacité duDK , Uρ est un ouvert
relativement compact. En particulier, ses groupes de cohomologie sont de dimension finis.

Théorème 0.0.7. Les notations sont comme ci-dessus. Il existe un nombre réel ρ0 > 0
et un sous groupe ouvert compact K ′ de G(Zp), telle que pour tout ρ ≥ ρ0 et tout sous
groupe overt compact K ⊂ K ′ normalisé par h, on a la formule suivante

Tr(γ|H∗c (Uρ × Cp,Ql)) = #Fix(γ|M0
K × Cp).

Nous notons en particulier le côté droit est indépendante de ρ quand ρ >> 0. La
preuve est que par étudier l’action de γ sur les cellules on vérifie les conditions du
théorème 3.13 de [60] détient. La méthode de la preuve fonctionne également pour le
cas de Lubin-Tate, qui est plus simple. Ainsi, nous pouvons reprouver la formule de
Lefschetz dans ce cas (cf. sous-section 3.3).

Si nous ne supposons que 2
n
(vp(deth) + vp(detg)) est paire dans le cas n paire. Alors

l’ensemble des points fixés de γ surMK/p
Z est non vide. Si g ∈ Jb(Qp) est un élément

régulier elliptique, pour tout x ∈ Fa(Cp), on peut trouver un élément hg,x ∈ G(Qp)
conjugué stablement à g par l’isomorphisme de comparison. On a une bonne formule
des points fixés.

Corollaire 0.0.8. Après le choix de certaines des mesures de Haar appropriées, on a

Tr(γ|H∗c ((MK/p
Z)× Cp,Ql)) =

∑
x∈Fix(g|Fa(Cp))

V ol(Ghg,x/p
Z)Ohg,x(

1h−1K

V ol(K)
).

Soit π une représentation supercuspidale de G(Qp), on a un élément bien défini dans
GrothQl(Jb(Qp)) :

H(π) =
∑
j≥0

(−1)jHomG(Qp)(lim−→
K

Hj
c (MK × Cp,Ql), π).
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Corollaire 0.0.9. Soit g ∈ Jb(Qp) un élément semi-simple régulier elliptique. Supposons
que π est de la forme c-IndG(Qp)

Kπ
λ, où Kπ est un sous-groupe ouvert de G(Qp) compact

modulo le centre et λ est une représentation de dimension finie de Kπ. On a une formule

trH(π)(g) =
∑

x∈Fix(g|Fa(Cp))

trπ(hg,x).

Cette formule devrait confirmer la conjecture de Kottwitz, une fois les problèmes de
classification des L-paquets pour les groupes des similitudes unitaires sont résolus.



1.1 - Introduction 23

1 Hodge-Newton filtration for p-divisible groups with
additional structures

1.1 Introduction

The motivation of this section is to study the cohomology of some unitary group
Shimura varieties, namely those introduced in [10],[81]. The fixed prime p is assumed to
be inert in the quadratic field in the PEL data, so the local reductive groups at p are
the quasi-split unitary similitude groups. The generic fibers of these Shimura varieties
are the same with those of some special cases studied by Harris-Taylor in [36], where
they proved the local Langlands correspondence for GLn. The geometry of the special
fibers of Harris-Taylor’s Shimura varieties is simpler, since in fact one is reduced to the
study of one dimensional p-divisible groups. For any non-basic Newton polygon strata,
the one dimensional p-divisible group attached to any point in it admits the splitting
local-étale exact sequence. This simple fact plus the theory of Katz-Mazur’s “full set
of sections” lead to the geometric fact that, any non-basic strata in Drinfeld levels is
decomposed as some disjoint union of Igusa varieties of first kind defined there. Thus the
cohomology of any non-basic strata can be written as a parabolic induction. This reduces
the construction of local Langlands correspondence to the study of the basic strata and
the corresponding Lubin-Tate spaces. There they got such a conclusion inspired by
Boyer’s trick in [9] originally for function fields case. Note in Harris-Taylor’s case any
non-basic Newton polygon has a nontrivial étale part, contained in the (generalized)
Hodge polygon. For general PEL type Shimura varieties, there are also Newton polygon
stratifications. Consider those Shimura varieties which satisfy the condition that, there
is some non-basic Newton polygon admitting a nontrivial contact point with the Hodge
polygon, and assume this contact point is a break point of the Newton polygon. Under
this condition, we will wonder that, whether the cohomology of this non-basic strata
contains no supercuspidal representations of the associated local reductive group, or even
whether the cohomology is some parabolic induction. The methods of Harris-Taylor will
hardly work, since in general one knows very little of the geometry of their special fibers
in Drinfeld levels. In our cases above, one can draw the pictures of all Newton polygons
as in [10], and find that any non-basic polygon has some nontrivial break contact points
with the Hodge polygon.

In this section we will give a positive answer of the above consideration. The idea is
proving the existence of a canonical filtration under the above condition, the so called
“Hodge-Newton filtration”(see below), for p-divisible groups with additional structures,
and then passing to their moduli–Rapoport-Zink spaces. This idea is due to Mantovan.
In [56] Mantovan considered this question under the stronger condition that, the Newton
polygon coincide with Hodge polygon up to or from on the nontrivial break contact point.
Under this stronger condition, Mantovan and Viehmann had proven in [57] the existence
of the Hodge-Newton filtration over characteristic 0 by lifting the corresponding one
from characteristic p. Note both [57] and [56] restricted themselves in just the EL and
PEL symplectic cases. In this section we generalize their results under the more natural
condition as above, that is, the Newton polygon admits a nontrivial contact point with
the Hodge polygon, and assume this contact point is a break point of the Newton
polygon. We will consider also the PEL unitary case. In particular we can prove the
desired results for the Shimura varieties in [10] and [81] mentioned above.
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The notions of Hodge-Newton decomposition and Hodge-Newton filtration for F -
crystals was first introduced by Katz in [46], where under the hypothesis that the Newton
polygon and the Hodge polygon of a F -crystal possess a non-trivial contact point which
is a break point of the Newton polygon, he proved that the F -crystal over a perfect field
of characteristic p admits a decomposition, such that the two parts of the Newton (resp.
Hodge) polygon divided by the point correspond to the Newton (resp. Hodge) polygon
of the two sub-F -crystals. This can be viewed as a generalization of the multiplicative-
bilocal-étale filtration for p-divisible groups. Katz also proved the existence of Hodge-
Newton filtration for F -crystals over certain algebras over characteristic p.

In [57], Mantovan and Viehmann considered the case of F -crystals and p-divisible
groups with actions of the integer ring of an unramified finite extension of Qp. They
proved that under the stronger condition that the Newton and Hodge polygon coincide
up to or from on the contact point, one can lift the Hodge-Newton filtration for p-
divisible groups from characteristic p to characteristic 0. See theorem 10 of [57] for the
precise statement. In [56], Mantovan used this result to prove that, the cohomology
of the Rapoport-Zink spaces whose Newton and Hodge polygons satisfy this stronger
condition contains no supercuspidal representation of the underlying reductive group
defined by the local EL/PEL data.

We consider p-divisible groups with additional structures over complete valuation
rings of rank one of mixed characteristic (0, p), i.e. which are complete extensions of
Zp for a valuation with values in R. Here additional structures means an action of OF ,
the integer ring of an unramified finite extension F |Qp, and a polarization compatible
with this action. For precise definition see definition 1.3.1 in subsection 1.3. A typical
such p-divisible group comes from a K-valued point of the simple unramified EL/PEL
Rapoport-Zink spaces introduced in [23], chapter 2, where K is a complete extension of
Qp for a rank one valuation. The first main result of this paper is the following. Here to
simplify the exposition, we just state the theorem for the PEL cases.

Theorem 1.1.1. Let K|Qp be a complete discrete valuation field with residue field k
perfect, (H, ι, λ) be a p-divisible group with additional structures over OK. Assume the
(HN) condition : the Newton polygon Newt(Hk, ι, λ) and Hodge polygon Hdg(Hk, ι, λ)
possess a contact point x outside their extremal points, which is a break point for the
polygon Newt(Hk, ι, λ). Denote by x̂ the symmetric point of x, and assume x lies before
x̂, i.e. the horizontal coordinate of x is smaller than that of x̂. Then there are unique
subgroups

(H1, ι) ⊂ (H2, ι) ⊂ (H, ι)

of (H, ι) as p-divisible groups with additional structures over OK, such that

1. λ induces isomorphisms
(H1, ι) ' ((H/H2)D, ι′),

(H2, ι) ' ((H/H1)D, ι′).

Here (H/Hi)
D is the Cartier-Serre dual of H/Hi, and ι′ is the action naturally

induced by ι on (H/Hi)
D, for i = 1, 2 ;

2. the induced filtration of the p-divisible group with additional structures (Hk, ι) over
k

(H1k, ι) ⊂ (H2k, ι) ⊂ (Hk, ι)

is split ;
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3. the Newton(resp. Harder-Narasimhan, resp. Hodge) polygons of (H1, ι), (H2/H1, ι),
and (H/H2, ι) are the parts of the Newton(resp. Harder-Narasimhan, resp. Hodge)
polygon of (H, ι, λ) up to x, between x and x̂, and from x̂ on respectively.

When x = x̂, then H1 and H2 coincide.

In fact, the above theorem holds for more general complete valuation rings of rank
one (not necessary discrete) which are extensions of Zp, with some technical restriction
to the so called “modular” p-divisible groups, see definition 1.5.6 and theorem 1.5.7 in
section 1.5.

The proof of this theorem is quite different from that of Mantovan-Viehmann in
[57]. Our ideas are that, firstly using explanation in terms of filtered isocrystals we get
a Hodge-Newton filtration for p-divisible groups up to isogeny ; then using the theory of
Harder-Narasimhan filtration for finite flat group schemes over OK developed in [26],[27],
we prove the existence and uniqueness of such a filtration for p-divisible groups. More
precisely, we define Harder-Narasimhan polygons HN(H, ι, λ) for the p-divisible groups
and finite flat group schemes with (PEL) additional structures studied here, by adapting
the case without additional structures studied in loc. cit.. Then the crucial points are
the following inequalities :

HN(H, ι, λ) ≤ Newt(Hk, ι, λ) ≤ Hdg(Hk, ι, λ),

and

HN(H, ι, λ) ≤ 1

m
HN(H[pm], ι, λ)(m·) ≤ HN(H[p], ι, λ)

≤ Hdg(H[p], ι, λ) = Hdg(Hk, ι, λ).

Here Newt(Hk, ι, λ) and Hdg(Hk, ι, λ) are the Newton and Hodge polygons of
the p-divisible group with additional structures (Hk, ι, λ) over k, and the inequal-
ity Newt(Hk, ι, λ) ≤ Hdg(Hk, ι, λ) is the generalized Mazur’s inequality, see [65] ;
Hdg(H[p], ι, λ) is the Hodge polygon for the finite flat group scheme (H[p], ι, λ) over
OK , defined in subsection 1.3 by adapting the Hodge polygon for the case without ad-
ditional structures defined in [26], 8.2 to our situations. By using the explanation of
the polygons for p-divisible groups in terms of the associated filtered isocrystals, from
the above first line of inequalities we deduce that the Harder-Narasimhan polygon also
passes the point x̂, thus it is necessarily a break point for this polygon. Then by the
second line of inequalities one can find a subgroup in the Harder-Narasimhan filtration
of H[pn] for every n large enough. We will show these finite flat group schemes are com-
patible. Thus they define a p-divisible group H2, with its filtered isocrystal as the sub
filtered isocrystal corresponding the point x̂ of that of H. Similarly there is a p-divisible
group H1 corresponding to the point x. One can then check that the statements in the
theorem hold.

This theorem generalizes theorem 10 in [57]. With this generalization we can study
the cohomology of some non-basic Rapoport-Zink spaces (MK) exactly as Mantovan
did in [56], but here we can deal with a larger class of Rapoport-Zink spaces due to our
weaker condition. Mantovan’s method is to introduce two other towers of moduli spaces
(PK), (FK) of p-divisible groups with additional structures, corresponding to the levi
subgroup M and parabolic subgroup P respectively associated to the nontrivial break
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contact point x. Here (PK) are in fact Rapoport-Zink spaces for the levi subgroupM , and
(FK) are deformation spaces of filtered p-divisible group by quasi-isogenies analogous
to Rapoport-Zink’s definition. Fix a prime l 6= p. By studying some geometric aspects
between the towers (PK) and (FK), one finds

H(P∞)ρ = H(F∞)ρ,

where ρ is an admissible smooth Ql-representation of Jb(Qp),

H(P∞)ρ =
∑
i,j≥0

(−1)i+j lim−→
K

ExtjJb(Qp)(H
i
c(PK × Cp,Ql(DP)), ρ)

(DP is the dimension of PK), and similarly one has H(F∞)ρ, H(M∞)ρ. Here the reason
that we consider the formula of cohomology in this type is to apply Mantovan’s formula
in [55]. On the other hand, under our condition (HN), thanks to the existence of Hodge-
Newton filtration one has

MK =
∐

K\G(Qp)/P (Qp)

FK∩P (Qp).

This decomposition has the following application to monodromy representations.

In [15], Chen has constructed some determinant morphisms for the towers of sim-
ple unramified Rapoport-Zink spaces. Under the condition that there is no non-trivial
contact point of the Newton and Hodge polygons, and assume the conjecture that

π0(M̂) ' Imκ

for the morphism κ : M̂ → 4 constructed in [66] 3.52, Chen proved that the associated
monodromy representation under this condition is maximal, and thus the geometric
fibers of her determinant morphisms are exactly the geometric connected components,
see théorème 5.1.2.1.,and 5.1.3.1. of loc. cit..

Under our condition (HN), the existence of Hodge-Newton filtration implies also
that, the monodromy representations associated to the local systems defined by Tate
modules of p-divisible groups, factor through the parabolic subgroup.

Corollary 1.1.2. Under the above notations, let x be a geometric point of the Rapoport-
Zink spaceM, and y be its image under the p-adic period morphism π :M→ Fa. Then
the monodromy representations

ρx : π1(M, x) −→ G(Zp)

and
ρy : π1(Fa, y) −→ G(Qp)

factor through P (Zp) and P (Qp) respectively.

This confirms that the condition “there is no non-trivial contact point of the Newton
and Hodge polygons” in the chapter 5 of [15] is necessary, see the remark in 5.1.5 of loc.
cit..

We have the following theorem considering the cohomological application.
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Theorem 1.1.3. Assume the Newton polygon and the Hodge polygon associated to the
simple unramified EL/PEL Rapoport-Zink space M possess a contact point x outside
their extremal points which is a break point for the Newton polygon. Then we have
equality of virtual representations of G(Qp)×WE :

H(M∞)ρ = Ind
G(Qp)

P (Qp)H(P∞)ρ.

In particular, there is no supercuspidal representations of G(Qp) appear in the virtual
representation H(M∞)ρ.

The proof is by adapting the corresponding construction and strategy in [56] to our
cases. In particular, by combining with the main formula of the cohomology of Newton
stratas of PEL-type Shimura varieties in [55], we have the following corollary.

Corollary 1.1.4. For the Shimura varieties studied by [10],[81], the cohomology of
any non-basic strata Hc(Sh

(b)

∞ × Fp, RΨη(Ql)) can be written as some suitable parabolic
induction of virtual representation of some parabolic subgroup of G(Qp), thus it contains
no supercuspidal representations of G(Qp).

This confirms Harris’s conjecture 5.2 in [34] in our case, although the parabolic
subgroup may be not the same as that defined in loc. cit. for the non-basic strata.
Note these Shimura varieties are out of the cases studied in [56], corollary 42. On the
other hand, as said above, the similar conclusion for the Shimura varieties with the
same generic fibers as that studied in [10],[81], but with p splits in the quadratic field,
whose non-basic stratas satisfy the stronger condition in [56], was obtained previously by
Harris-Taylor in [36]. There the Hodge-Newton filtration is just the local-étale filtration
of the p-divisible groups. The conclusion in the above corollary that any non-basic strata
contains no supercuspidal representations, was once obtained by Fargues in [23] by using
more complicated Lefschetz trace formula methods, initially proposed by Harris in [34].
Here our result is more precise and the proof is more natural. With a recent preprint
[47], we remark that we can also apply our main result to the study of cohomology of
non-proper Shimura varieties over characteristic 0, and to the geometric realization of
local Langlands correspondences.

1.2 Harder-Narasimhan filtration of finite flat group schemes I

In this subsection we recall briefly the theory of Harder-Narasimhan filtration of
finite flat group schemes which is presented in detail in [26], but see also [27].

Let K|Qp be a complete rank one valuation field extension, OK be the integer ring
of K, and C be the exact category of commutative finite flat group schemes with order
some power of p over SpecOK . For G ∈ C, recall there is an operation of scheme theo-
retic closure which is the inverse of taking generic fibers, and which induces a bijection
between the following two finite sets

{closed subgroups ofGK}
∼−→ {finite flat subgroups of G overOK}.

There are two additive functions

ht : C → N
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deg : C → R≥0,

where htG is the height of G ∈ C, and degG is the valuation of the discriminant of G
which is defined as

degG =
∑

ai, if ωG =
⊕

OK/p
aiOK .

We will use the following properties of the function deg.

Proposition 1.2.1 ([26], Corollaire 3). 1. Let f : G → G′ be a morphism of finite
flat group schemes over OK such that it induces an isomorphism on their generic
fibers. Then we have

degG ≤ degG′.

Moreover, f is an isomorphism if and only if degG = degG′.

2. If
0→ G′

u→ G
v→ G′′

is a sequence of finite flat group schemes, such that u is a closed immersion,
v ◦ u = 0, and the induced morphism G/G′ → G′′ is an isomorphism on their
generic fibers. Then we have

degG ≤ degG′ + degG′′,

with the equality holds if and only if v is a fppf epimorphism, i.e. flat. In this case
we have an exact sequence

0→ G′
u→ G

v→ G′′ → 0.

See loc. cit. section 3 for more properties of the function deg.

For a group scheme 0 6= G ∈ C, we set

µ(G) :=
degG

htG
,

and call it the slope of G. The basic properties of the slope function are as follow.
– One always has µ(G) ∈ [0, 1], with µ(G) = 0 if and only if G is étale and µ(G) = 1

if and only if G is multiplicative.
– If GD is the Cartier dual of G then µ(GD) = 1− µ(G).
– For a p-divisible group H of dimension d and height h over OK , then for all n ≥ 1

one has µ(H[pn]) = d
h
.

– If
0→ G′ → G→ G′′ → 0

is an exact sequence of non trivial groups in C, then we have inf{µ(G′), µ(G′′)} ≤
µ(G) ≤ sup{µ(G′), µ(G′′)}, and if µ(G′) 6= µ(G′′) we have in fact
inf{µ(G′), µ(G′′)} < µ(G) < sup{µ(G′), µ(G′′)}.

– If f : G→ G′ is a morphism which induces an isomorphism between their generic
fibers, then we have µ(G) ≤ µ(G′), with equality holds if and only if f is an
isomorphism.
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– If
0 −→ G′

u−→ G
v−→ G′′

is a sequence of non trivial groups such that u is a closed immersion, u ◦ v = 0,
and the morphism induced by v

G/G′ → G′′

is an isomorphism in generic fibers, then we have
– µ(G) ≤ sup{µ(G′), µ(G′′)} ;
– if µ(G′) 6= µ(G′′) then µ(G) < sup{µ(G′), µ(G′′)} ;
– if µ(G) = sup{µ(G′), µ(G′′)} then µ(G) = µ(G′) = µ(G′′) and the sequence

0→ G′ → G→ G′′ → 0 is exact.
For a group 0 6= G ∈ C, we call G semi-stable if for all 0 ( G′ ⊂ G we have

µ(G′) ≤ µ(G). In [26], Fargues proved the following theorem.

Theorem 1.2.2 ([26], Théorème 2). There exists a Harder-Narasimhan type filtration
for all 0 6= G ∈ C, that is a chain of finite flat subgroups in C

0 = G0 ( G1 ( · · · ( Gr = G,

with the group schemes Gi+1/Gi are semi-stable for all i = 0, . . . , r − 1, and

µ(G1/G0) > µ(G2/G1) > · · · > µ(Gr/Gr−1).

Such a filtration is then uniquely characterized by these properties.

So G is semi-stable if and only if its Harder-Narasimhan filtration is 0 ( G. We can
define a concave polygon HN(G) of any 0 6= G ∈ C by its Harder-Narasimhan filtration,
and call it the Harder-Narasimhan polygon of G. It is defined as function

HN(G) : [0, htG]→ [0, degG],

such that
HN(G)(x) = degGi + µ(Gi+1/Gi)(x− htGi)

if x ∈ [htGi, htGi+1]. We will also identify HN(G) with its graph, that is a polygon with
starting point (0, 0), terminal point (htG, degG), and over each interval [htGi, htGi+1] it
is a line of slope µ(Gi+1/Gi). An important property of this polygon is that (proposition
7 in loc. cit.), for all finite flat subgroups G′ ⊂ G, the point (htG′, degG′) is on or below
the polygon HN(G), that is HN(G) is the concave envelop of the points (htG′, degG′)
for all G′ ⊂ G. We denote by µmax(G) the maximal slope of HN(G), and µmin(G) the
minimal slope of HN(G).

We recall some useful facts.

Proposition 1.2.3 ([26], Proposition 8). Let G1 and G2 be two finite flat group schemes
over OK. Suppose that µmin(G1) > µmax(G2). Then we have

Hom(G1, G2) = 0.
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Proposition 1.2.4 ([26], Proposition 10). Let 0 → G′ → G
v→ G′′ → 0 be an exact

sequence of finite flat group schemes in C. Suppose µmin(G′) ≥ µmax(G
′′). If 0 = G′0 (

G′1 ( · · · ( G′r′ = G′ is the Harder-Narasimhan filtration of G′ and 0 = G′′0 ( G′′1 (
· · · ( G′′r′′ = G′′ that of G′′, then the Harder-Narasimhan filtration of G is

0 = G′0 ( G′1 ( · · · ( G′r′ = G′ ( v−1(G′′0) ( v−1(G′′1) ( · · · ( v−1(G′′r′′) = G

if µmin(G′) > µmax(G
′′), and

0 = G′0 ( G′1 ( · · · ( G′r′−1 ( v−1(G′′1) ( · · · ( v−1(G′′r′′) = G

if µmin(G′) = µmax(G
′′). In particular the extension of two semi-stable groups of the

same slope µ is semi-stable of slope µ.

The Harder-Narasimhan filtration of finite flat group schemes is compatible with
additional structures. Firstly, the Harder-Narasimhan filtration of 0 6= G ∈ C is stable
under End(G). So if ι : R → End(G) is some action of an OK-algebra R, then every
subgroup Gi in the Harder-Narasimhan filtration of G is a R-subgroup via ι. Secondly,
if the Harder-Narasimhan filtration of G is

0 = G0 ( G1 ( · · · ( Gr = G

with slopes µ1 > · · · > µr, then the Harder-Narasimhan filtration of the Cartier dual
GD of G is

0 = (G/Gr)
D ( (G/Gr−1)D ( · · · ( (G/G1)D ( GD

with slopes 1 − µr > · · · > 1 − µ1. In particular, if λ : G
∼→ GD is a polarization, then

it induces isomorphisms
Gi ' (G/Gr−i)

D, i = 1, . . . , r

and thus µi + µr+1−i = 1, i = 1, . . . , r.

1.3 Polygons and inequalities

We start by defining the reductive groups which we will work with. They are defined
by the simple unramified EL/PEL data for defining some special Rapoport-Zink spaces
as the chapter 2 of [23].

More precisely, let F |Qp be a finite unramified extension of degree d, V be a finite
dimensional F -vector space. In the EL case, let G = ResF |QpGL(V ), the Weil scalar
restriction of the automorphism group of V as a F -vector space. In the PEL symplectic
case, we assume further there is a hermitien symplectic pairing 〈, 〉 : V × V → Qp,
which is such that there exists an autodual lattice Λ for 〈, 〉 in V . In the PEL unitary
case, besides the above 〈, 〉 and Λ, we assume there is a non trivial involution ∗ on F ,
compatible with 〈, 〉, which means that 〈bu, v〉 = 〈u, b∗v〉 for all b ∈ F, u, v ∈ V . We
define a reductive group G over Qp for these PEL cases, such that for all Qp-algebra R,

G(R) = {g ∈ EndF⊗R(VR)|gg# ∈ R×},

here # is the involution on EndF (V ) induced by 〈, 〉. Then we have G ⊂
ResF |QpGSp(V, 〈, 〉′) (symplectic case) or G ⊂ ResF0|QpGU(V, 〈, 〉′) (unitary case), where
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F0 = F ∗=1 and 〈, 〉′ : V × V → F ∗=1 is a suitable pairing coming from 〈, 〉 in the PEL
cases (∗ may be trivial). The rational Tate module of a p-divisible group with addi-
tional structures (see definition 1.3.1 in the following) will naturally give arise such an
EL data (F, V ) or a PEL data (F, ∗, V, 〈, 〉) (∗ may be trivial). Note these reductive
groups G are unramified over Qp, and for the PEL cases there is a similitude morphism
c : G→ Gm, g 7→ gg#.

Let D be the pro-algebraic torus with character group Q. We will be interested in
the set

N(G) = (IntG(L) \HomL(D, G))〈σ〉,

where L = FracW (Fp), σ is the Frobenious of L over Qp. This set generalizes the classical
notation of Newton polygon associated to an F -isocrystal, see the introduction of [12]
or [65], section 1. Since the group G is unramified, we can choose a maximal torus
T contained in a Borel subgroup B of G defined over Qp. Let A ⊂ T be the maximal
splitting torus contained in T ,W (resp.W0) be the absolute (resp. relative) Weyl group,
then we have

N(G) = (X∗(T )Q/W )Gal(Qp/Qp)

= (C ∩X∗(T )Q)Gal(Qp/Qp)

= X∗(A)Q/W0

=: CQ,

where C ⊂ X∗(T )R is the Weyl chamber associated to B. Recall there is an order in
N(G), cf. [65] section 2, such that for all x, x′ ∈ CQ,

x ≤ x′ ⇔ x′ − x =
∑
α∈∆B

nαα
∨, nα ∈ Q≥0.

Here ∆B denotes the set of simple roots determined by B, α∨ denotes the co-root
corresponding to α. Note N(·) is in fact an ordered set-valued functor on the category
of connected reductive algebraic groups.

We want to make the elements in the above cone N(G) “visible”, i.e. as polygons
defined over some suitable interval. Let n = dimFV , then in the EL case after choosing
a base of the F -vector space V , we have ResF |QpGL(V ) = ResF |QpGLn, and for this case
we can explicitly calculate

N(G) = {(xi) ∈ Qn|x1 ≥ x2 ≥ · · · ≥ xn} := Qn
+,

which we will identify with the set of concave polygons with rational slopes over the
interval [0, n], see [23] 2.1. For PEL symplectic case,

G ⊂ ResF |QpGSp(V, 〈, 〉′) ⊂ ResF |QpGLn,

since N(·) is a functor on the category of connected reductive algebraic groups, we have
an order preserving map

N(G) −→ N(ResF |QpGLn),

which is injective, and the image corresponds to symmetric polygons, cf. [82]. For PEL
unitary case,

G ⊂ ResF0|QpGU(V, 〈, 〉′) ⊂ ResF0|QpResF |F0GL(V ) = ResF |QpGLn,
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similarly we have an order preserving map

N(G) −→ N(ResF |QpGLn),

which is also injective, and the image also corresponds to symmetric polygons, cf. loc.
cit..

After the preliminary on the reductive groups G, we define p-divisible groups with
additional structures. Since p-divisible groups are closely related to finite flat group
schemes, we will also consider the related notions for these group schemes.

Definition 1.3.1. Let S be a formal scheme and F |Qp be a finite unramified extension.
By a p-divisible group with additional structures over S, we mean

– in the EL case, a pair (H, ι), where H is a p-divisible group over S, and ι : OF →
End(H) is a homomorphism of algebras ;

– in the PEL symplectic case, a triplet (H, ι, λ), where H is a p-divisible group
over S, ι : OF → End(H) is homomorphism of algebras, λ : (H, ι) → (HD, ιD)
is a polarization, i.e. an OF -equivariant isomorphism of p-divisible groups. Here
HD is the Cartier-Serre dual of the p-divisible group H, ιD : OF → End(HD) =
End(H)opp is induced by ι, such that λD = −λ, under the identification H = HDD ;

– in the PEL unitary case, a triplet (H, ι, λ), where H, ι is similar as the symplectic
case, λ : (H, ι)→ (HD, ιD ◦ ∗) is a polarization, ∗ is a nontrivial involution on F .
Here ιD is as above, but such that λD = λ, under the identification H = HDD.

Similarly, one can define finite locally free (=flat, in the case S is noetherian or the spec
of a local ring) group schemes with additional structures in the same way.

If (H, ι, λ) is a p-divisible group with additional structures in the PEL cases, then
for all n ≥ 1, (H[pn], ι, λ) is a finite locally free group scheme with the naturally induced
additional structures. Similar remark holds for the EL case.

In the rest of this subsection, let K|Qp be a complete field extension for a rank
one valuation, OK be the ring of integers of K, k be the residue field, and F |Qp be a
finite unramified extension of degree d. For the PEL (unitary) case we also assume there
is an involution ∗ on F . We shall mostly be interested only in p-divisible groups and
finite flat group schemes with additional structures for F |Qp over OK , k, and k, a fixed
algebraic closure of k. Let H/OK denote a p-divisible group with additional structures
over OK for the EL case (H = (H, ι)) or PEL cases (H = (H, ι, λ)), then Hk (resp. Hk)
is a p-divisible group with additional structures over k (resp. k). Kottwitz defined the
Newton polygon Newt(Hk) and the Hodge polygon Hdg(Hk) as elements in N(G), see
[49],[52]. Here the reductive group G is defined by the rational Tate module of H with
the induced additional structures as in the beginning of this section. Assume htH = dn,
then via the injection

N(G) ↪→ N(ResF |QpGLn),

one can explain them as polygons as following :

Newt(Hk) : [0, n] −→ [0, dimH/d]

x 7→ 1

d
Newt(Hk)(dx).

Here Newt(Hk) is the concave Newton polygon of Hk defined by the Dieudonné-Manin
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decomposition of its isocrystal. The Hodge polygon is

Hdg(Hk) =
1

d

∑
i∈Z/dZ

Hdgi(Hk),

where
Hdgi(Hk) : [0, n]→ [0, dimH/d]

is the polygon defined by the relative position of (Mi, V (Mi+1)) in MiQ. Here M is the
covariant Dieudonné module, V is the Verschiebung. Under the action of OF , we have

M =
⊕
i∈Z/dZ

Mi,Mi = {m ∈M |a ·m = σi(a)m,∀a ∈ OF},∀ i ∈ Z/dZ.

Note Gal(F/Qp) = {σi|i ∈ Z/dZ}. One can check that these two polygon don’t depend
on the choice of the algebraic closure. Thus we can define the Newton (resp. Hodge)
polygon of Hk by Newt(Hk) := Newt(Hk) (resp. Hdg(Hk) := Hdg(Hk)).

Let H/OK be a p-divisible group with additional structures as above. We are going
to define the Harder-Narasimhan polygon of H/OK , and compare this polygon with the
above polygons. We first consider the case of finite flat group schemes with additional
structures with order some power of p. We now use H to denote such a finite flat group
scheme with additional structures. Recall the underlying finite flat group scheme H/OK

admits a unique Harder-Narasimhan filtration. Let

HN(H) : [0, htH]→ [0, degH]

be the concave polygon associated to this filtration.

Definition 1.3.2. Consider

HN(H, ι) : [0, htH/d] −→ [0, degH/d]

x 7→ 1

d
HN(H)(dx)

in the EL case, and HN(H, ι, λ) := HN(H, ι) in the PEL cases, which is symmetric.
HN(H, ι) and HN(H, ι, λ) are called the Harder-Narasimhan polygons of the finite flat
group schemes H/OK with additional structures.

Now we define the Harder-Narasimhan polygon for p-divisible groups with additional
structures. To be more concrete on notations, assume we are in the PEL cases, although
all the following works for the EL case, which is simpler. Let (H, ι, λ)/OK be a p-divisible
group with additional structures, then we get a family of finite flat group schemes with
additional structures (H[pm], ι, λ)/OK .

Proposition 1.3.3. The sequence of functions

[0, htH/d]→ [0, dimH/d]

x 7→ 1

m
HN(H[pm], ι, λ)(mx)

uniformly converge when m→∞ to a concave continuous ascending function

HN(H, ι, λ) : [0, htH/d]→ [0, dimH/d],
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which is equal to

inf
m≥1

1

m
HN(H[pm], ι, λ)(mx)

and moreover, HN(H, ι, λ)(0) = 0, HN(H, ι, λ)(htH/d) = dimH/d.

Proof. Essentially the same with the proof of théorème 2 in [27], or one can easily deduce
this from the results there, since by definition HN(H[pm], ι, λ) = 1

d
HN(H[pm], ι, λ)(d·).

Definition 1.3.4. We call the function HN(H, ι, λ) or its graph which we denote by
the same symbol, the Harder-Narasimhan polygon of the p-divisible group with PEL
additional structures (H, ι, λ) over OK. Similarly we can define the Harder-Narasimhan
polygon of p-divisible groups with EL structures.

In fact, we have the following inequality which can be also easily deduced from the
corresponding result in [27] : for all i ≥ 1, x ∈ [0, ihtH

d
], and all m ≥ 1,

1

m
HN(H[pim], ι, λ)(mx) ≤ HN(H[pi], ι, λ)(x).

For the p-divisible group with additional structures (Hk, ι, λ) over k, we have the
Newton and Hodge polygons Newt(Hk, ι, λ), Hdg(Hk, ι, λ) respectively defined by Kot-
twitz. By Rapoport-Richartz, we have the generalized Mazur’s inequality (see [65]) :

Newt(Hk, ι, λ) ≤ Hdg(Hk, ι, λ).

We assume H/OK is a “modular” p-divisible group in the sense of définition 25 in [27],
see also definition 1.5.6 in section 1.5. The following theorem is one of the main theorems
of [27], see also the introduction of section 2.

Theorem 1.3.5 ([27], Théorème 21). Let K be as above and H/OK be a p-divisible
group over OK. When the valuation ring OK is not discrete we assume that H/OK is
“modular”, we have the following inequality

HN(H) ≤ Newt(Hk).

Thus one gets from their definitions the following generalization.

Proposition 1.3.6. Let (H, ι, λ) be a p-divisible group with additional structures over
OK. When OK is not discrete we assume that H/OK is “modular”. Then we have the
following inequality

HN(H, ι, λ) ≤ Newt(Hk, ι, λ).

Combined with the generalized Mazur’s inequality we get the following corollary.

Corollary 1.3.7. Under the above assumption, we have inequalities

HN(H, ι, λ) ≤ Newt(Hk, ι, λ) ≤ Hdg(Hk, ι, λ).



1.3 - Polygons and inequalities 35

Now we return to the case of finite flat group schemes with additional structures
(H, ι) or (H, ι, λ). Fargues defined the Hodge polygon of H from ωH , see [26] 8.2. We
would like to generalize his definition to define a Hodge polygon of H, which contains
the information of the additional structures. First, assume F admits an imbedding in
K, then we have also the decomposition

ωH =
⊕

τ :F ↪→K

ωH,τ , ωH,τ = {m ∈ ωH |a ·m = τ(a)m,∀a ∈ OF},∀τ : F ↪→ K.

Definition 1.3.8. Under the above assumption,
1.

Hdgτ : [0, htH/d]→ [0, degH/d]

is the polygon such that

Hdgτ (i) = deg(ωH,τ )− ν(FittiωH,τ ), 0 ≤ i ≤ htH/d,

where ν is the valuation on K such that ν(p) = 1 and FittiM means the i-th
Fitting ideal of an OK-module M . In particular, degM = ν(Fitt0M).

2. In the EL case, the Hodge polygon of (H, ι) is

Hdg(H, ι) =
1

d

∑
τ :F ↪→K

Hdgτ : [0, htH/d]→ [0, degH/d].

In the PEL cases, the Hodge polygon of (H, ι, λ) is Hdg(H, ι, λ) := Hdg(H, ι),
which is then symmetric.

For the general case, choose a complete field K ′ ⊃ K, such that F ↪→ K ′, we define
Hdg(H) := Hdg(HOK′

). One can check this definition doesn’t depend on the choice of
K ′.

Remark 1.3.9. The above definition is compatible with the Hodge polygon defined by
Kottwitz, in the sense that if H/OK is a p-divisible group with additional structures,
then Hdg(H[p]) = Hdg(Hk).

Proposition 1.3.10. Let H/OK be a finite flat group scheme with additional structures
of order a power of p. Assume there is a p-divisible group with additional structures
G/OK such that H admits an imbedding H ↪→ G. Then we have

HN(H) ≤ Hdg(H).

Proof. We may assume we are in the EL case : G = (G, ι), H = (H, ι). We may also
assume F ↪→ K. Then ∀τ : F ↪→ K, we have an exact sequence of covariant Dieudonné
modules :

0→ D(Gk)τ → D((G/H)k)τ → D(Hk)τ → 0.

To simplify notation, let M = D(Gk),M ′ = D((G/H)k). Then the length of the W (k)-
module D(Hk)τ is the index [M ′

τ : Mτ ] of Mτ in M ′
τ . Consider the Lie algebras Lie(Gk)

and Lie((G/H)k) of Gk and (G/H)k respectively, then we have also the decompositions
induced by the OF action :

Lie(Gk =
⊕
τ

Lie(Gk)τ , Lie((G/H)k =
⊕
τ

Lie((G/H)k)τ .
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By Diedonné theory we get the identities

Lie(Gk)τ = Mτ/VMστ , Lie((G/H)k)τ = M ′
τ/VM

′
στ .

Here σ is the Frobenious for the extension F |Qp, and V is the Verschiebung onM . Then
the isogeny G → G/H induces

rank(Lie(Gk)τ ) = rank(Lie((G/H)k)τ ),

which can be rewritten as

[Mτ : VMστ ] = [M ′
τ : VM ′

στ ].

Consider the following commutative diagram

0 //Mτ
//M ′

τ
// D(Hk)τ

// 0

0 //Mστ
//

V

OO

M ′
στ

//

V

OO

D(Hk)στ
//

V

OO

0,

then

[M ′
τ : VMστ ] = [M ′

τ : Mτ ][Mτ : VMστ ]

= [M ′
τ : VM ′

στ ][VM
′
στ : VMστ ].

Thus
[M ′

τ : Mτ ] = [VM ′
στ : VMστ ] = [M ′

στ : Mστ ],

i.e. the lengths of these W (k)-modules D(Hk)τ for any τ are the same. We can then
conclude that D(Hk)τ is generated by htOFH = htH/d elements. So

ωHk,τ = (D(Hk)τ/V D(Hk)στ )
∗ = ωH,τ ⊗ k

is generated by htH/d elements, where M∗ = Hom(M,W (k)) for a W (k)-module M .
By Nakayama lemma, ωH,τ is generated by htH/d elements.

Now for any subgroup (H ′, ι) ⊂ (H, ι), we have an exact sequence

0→ ωH/H′,τ → ωH,τ → ωH′,τ → 0.

By the basic properties of Fitting ideals,

FitthtOFH′ωH′,τFitt0ωH/H′,τ ⊂ FitthtOFH′ωH,τ .

But
FitthtOFH′ωH′,τ = OK

by the above paragraph, thus

ν(Fitt0ωH/H′,τ ) = degωH/H′,τ

= degωH,τ − degωH′,τ
≥ ν(FitthtOFH′ωH,τ ),
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and
Hdgτ (htOFH

′) = degωH,τ − ν(FitthtOFH′ωH,τ ) ≥ degωH′,τ .

We sum the above inequality over τ : F ↪→ K, then divide by d to get

1

d

∑
τ :F ↪→K

Hdgτ (htOFH
′) ≥ 1

d
degωH′ .

But the left hand side is by definition Hdg(H, ι)(htH
′

d
), and since HN(H, ι) is the convex

hull (htH
′

d
, degH

′

d
) as (H ′, ι) varies as a subgroup of (H, ι) ([26], proposition 7), we therefore

get
Hdg(H, ι) ≥ HN(H, ι).

Combined with proposition 1.3.3, the remark below definition 1.3.4, proposition
1.3.10 and remark 1.3.9, we get

Corollary 1.3.11. Let (H, ι, λ) be a p-divisible group with additional structures over
OK. Then for all x ∈ [0, htH/d],

HN(H, ι, λ)(x) ≤ 1

m
HN(H[pm], ι, λ)(mx) ≤ HN(H[p], ι, λ)(x)

≤ Hdg(H[p], ι, λ)(x) = Hdg(Hk, ι, λ)(x).

1.4 Admissible filtered isocrystals

In this section, let K|Qp be a complete field extension for a discrete valuation, with
residue field k of OK perfect, and K0 = FracW (k). We will explain the inequalities in
corollary 1.3.7 for the discrete valuation base case in terms of filtered isocrystals with
additional structures.

First, we review the classical case, i.e. G = GLn, there is no additional structures.
Consider the category FilIsocK|K0 of filtered isocrystals over K. The objects are in the
form of triplets (V, ϕ,Fil•VK), where

– (V, ϕ) is an isocrystal over k ;
– Fil•VK is a filtration of V ⊗K0 K such that FiliVK = 0 for i >> 0 and FiliVK = VK

for i << 0.
Recall we have three functions on this category :

ht, tN , tH : FilIsocK|K0 −→ Z,

where for an object (V, ϕ,Fil•VK) ∈ FilIsocK|K0 ,

ht(V, ϕ,Fil•VK) = dimK0V,

tN(V, ϕ,Fil•VK) = tN(V, ϕ) =
∑
λ∈Q

λdimK0Vλ

= the (vertical coordinate of the) terminal point of the Newton polygon of(V, ϕ),
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here V =
⊕

λ∈Q Vλ is the Dieudonné-Manin decomposition of V into isocline subspaces
Vλ of slope λ,

tH(V, ϕ,Fil•VK) = tH(VK ,Fil•VK) =
∑
i∈Z

idimK(griFil•VK)

= the (vertical coordinate of the) terminal point of the Hodge polygon of(VK ,Fil•VK).

Consider the functions

deg1 = tH − tN : FilIsocK|K0 −→ Z

and µ1 = deg1

ht
, then the objects in FilIsocK|K0 admit the Harder-Narasimhan filtration

relative to the slope function µ1, see [27] 9.3. The abelian category of (weakly) admissible
filtered isocrystals in the sense of Fontaine is then

FilIsocadK|K0
= FilIsocµ1−ss,0

K|K0
,

which is equivalent to the category of crystalline representations of the Galois group
Gal(K/K).

On this abelian category of (weakly) admissible filtered isocrystals, we have two
functions :

ht,−tN(= −tH) : FilIsocadK|K0
−→ Z.

Let µ = −tN
ht

, then the objects in FilIsocadK|K0
admit the Harder-Narasimhan filtration

relative to the slope function µ. In section 9 of loc. cit. Fargues introduced a Harder-
Narasimhan filtration of crystalline representations, by considering the larger category
of Hodge-Tate representations and its link with categories of filtered vector spaces. For
a p-divisible group H over OK one has the equality of polygons HN(H) = HN(Vp(H)),
where Vp(H) is the rational Tate module. Recall the equivalence functors

FilIsocadK|K0

Vcris−→
←−
Dcris

RepcrisQp (Gal(K/K))

defined by
Vcris(N,ϕ, F il

•NK) = Fil0(N ⊗K0 Bcris)
ϕ=id

and
Dcris(V ) = (V ⊗Qp Bcris)

Gal(K/K).

We have the fact that, the Harder-Narasimhan filtrations in RepcrisQp (Gal(K/K)) intro-
duced by Fargues and in FilIsocadK|K0

defined above coincide, cf. 9.4 of loc. cit..

If we denote the category of isocrytals over k by Isoc(k), and use deg = −tN , ht =
dim, µ = −tN

dim
to develop the formulism of Harder-Narasimhan filtration, then since the

functor of forgetting the filtration

FilIsocadK|K0
−→ Isoc(k)

(V, ϕ,Fil•VK) 7→ (V, ϕ)

is exact, and preserves the functions of ht and −tN on these two categories, we have the
following inequality between concave Harder-Narasimhan polygons :

HN(V, ϕ,Fil•VK) ≤ HN(V, ϕ) =: Newt(V, ϕ).
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On the other hand, if we denote the category of filtered vector spaces over K by
FilVectK|K , which admits the Harder-Narasimhan filtration for the functions

ht(V,Fil•V ) = dimKV, deg(V,Fil•V ) = −
∑
i∈Z

i.dimK(griFil•V )

and µ = deg
ht
. We have an exact functor

FilIsocadK|K0
−→ FilVectK|K

defined by composition of the forgetting functor and tensor product with K

FilIsocadK|K0
→ FilVectK|K0 → FilVectK|K .

This functor preserves the height and degree functions, thus we have the inequality
between concave Harder-Narasimhan polygons

HN(V, ϕ,Fil•VK) ≤ HN(VK ,Fil•VK) =: Hdg(VK ,Fil•VK).

In fact since (V, ϕ,Fil•VK) is admissible, we have the inequality by definition

Newt(V, ϕ) ≤ Hdg(VK ,Fil•VK).

To summarize, we get the following inequalities of concave polygons associated to an
admissible filtered isocrystal (V, ϕ,Fil•VK) :

HN(V, ϕ,Fil•VK) ≤ Newt(V, ϕ) ≤ Hdg(VK ,Fil•VK).

In particular, if H/OK is a p-divisible group over OK , we have the filtered isocrystal
(N, p−1ϕ,Fil•NK) ∈ FilIsocad,[−1,0]

K|K0
associated to it, and the exact sequence of K-vector

spaces
0→ ωHD,K → NK → Lie(H)K → 0.

Here Fil0NK = ωHD,K = Hom(Lie(HD)K , K), FilIsocad,[−1,0]
K|K0

is the full subcategory of
FilIsocadK|K0

, consisting of objects (V, ϕ,Fil•VK) of the form that Fil−1VK = VK ,Fil0VK ⊂
VK ,Fil1VK = 0. We use the covariant isocrystal (N,ϕ) of Hk here, thus ϕ = D(V )⊗K0

for the Verschiebung V of Hk. Under the covariant functor Vcris of Fontaine

Vcris : FilIsocadK|K0
→ RepcrisQp (Gal(K/K)),

we have the equality Vcris(N, p−1ϕ,Fil•NK) = Vp(H) for the rational Tate module Vp(H).
Then we can identify the following various polygons :

HN(H) = HN(N, p−1ϕ,Fil•NK)

Newt(Hk) = Newt(N, p−1ϕ)

Hdg(Hk) = Hdg(NK ,Fil•NK).

Here the Hodge polygons in the two sides of the last equality are both the polygon which
is the line of slope 1 between the points (0,0) and (d, d), and the line of slope 0 between
the points (d, d) and (h, d) (assume dimH = d, htH = h). Thus the above inequalities
become the following

HN(H) ≤ Newt(Hk) ≤ Hdg(Hk).
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Now we consider the cases with additional structures. Let G be a reductive group
introduced at the beginning of section 1.3. Let k be an algebraically closed field of
characteristic p, L = FracW (k). Then a pair (b, µ) is said to be admissible filtered
isocrystal with G-structures, where b ∈ G(L) and µ : GmK → GK is a co-character
defined over a finite extension K of L, if for all (V, ρ) ∈ RepQpG, (V ⊗ L, bσ,Fil•µVK)
is an admissible filtered isocrystal in FilIsocK|L. Note to check that (b, µ) is admissible,
it suffices to check for a faithful representation (V, ρ), (V ⊗ L, bσ,Fil•µVK) is admissible.
Since the tensor product of two semi-stable admissible filtered isocrystal is semi-stable
(see [27], section 9), for an admissible pair (b, µ), we can define its Harder-Narasimhan
polygon νb,µ ∈ N(G), such that for any (V, ρ) ∈ RepQpG, ρ∗(νb,µ) ∈ N(GL(V )) is the
Harder-Narasimhan polygon of (V ⊗ L, bσ,Fil•µVK) we have just defined, as in [16],[30].
Similarly, we can define its Hodge polygon νµ ∈ N(G) such that for any (V, ρ) ∈ RepQpG,
ρ∗(νµ) ∈ N(GL(V )) is the Hodge polygon of (VK ,Fil•µVK). This was already done in the
book [16]. On the other hand, Kottwitz has defined the Newton polygon νb ∈ N(G)
such that for any (V, ρ) ∈ RepQpG, ρ∗(νb) ∈ N(GL(V )) is the Newton polygon of (V, ϕ).
Thus we have the following inequalities

νb,µ ≤ νb ≤ νµ

as elements in the ordered sets N(G). Via the injection N(G) ↪→ N(ResF |QpGLn), we
can view these inequalities as inequalities between polygons over [0, n].

To fix notation, we will work in the PEL cases. The EL case can be treated in the
same way, which is simpler. So let (H, ι, λ)/OK be a p-divisible group with additional
structures, then its associated filtered isocrystal (N, p−1ϕ,Fil•NK) admits induced addi-
tional structures, which means that we have an action ι : F → End(N,ϕ) and a perfect
pairing 〈, 〉 : N ×N → Qp(1) such that Fil0NK is F -invariant and totally isotropic un-
der the induced pairing 〈, 〉 on NK . We denote it as (N, p−1ϕ,Fil•NK , ι, 〈, 〉) considering
its additional structures. This will then determine an admissible filtered isocrystal with
additional structures (b, µ) for G, as in [65]. The inequalities

νb,µ ≤ νb ≤ νµ

now translate as

HN(N, p−1ϕ,Fil•NK , ι, 〈, 〉) ≤ Newt(N, p−1ϕ, ι, 〈, 〉)
≤ Hdg(NK ,Fil•NK , ι, 〈, 〉),

where

HN(N, p−1ϕ,Fil•NK , ι, 〈, 〉) = HN(N, p−1ϕ,Fil•NK , ι)

=
1

d
HN(N, p−1ϕ,Fil•NK)(d·)

Newt(N, p−1ϕ, ι, 〈, 〉) =
1

d
Newt(N, p−1ϕ)(d·)

Hdg(NK ,Fil•NK , ι, 〈, 〉) =
1

d

∑
i∈Z/dZ

σi(Hdg(N1K ,Fil•N1K))

via the injection N(G) ↪→ N(ResF |QpGLn). Here under the action ι on NK , we have the
decomposition as K-vector spaces

NK =
⊕
i∈Z/dZ

NiK , NiK = {x ∈ NK |a · x = σi(a)x},∀i ∈ Z/dZ,
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Fil•NiK = Fil•NK ∩NiK ,

Note the action of σ on the set of polygons {Hdg(NiK ,Fil•NiK)}i∈Z/dZ is

σ(Hdg(NiK ,Fil•NiK)) = Hdg(Ni+1K ,Fil•Ni+1K).

By definitions we have the following identities between various polygons

HN(H, ι, λ) = HN(N, p−1ϕ,Fil•NK , ι, 〈, 〉)
Newt(Hk, ι, λ) = Newt(N, p−1ϕ, ι, 〈, 〉)
Hdg(Hk, ι, λ) = Hdg(NK ,Fil•NK , ι, 〈, 〉).

Thus the above inequalities explain these ones obtained in corollary 1.3.7 :

HN(H, ι, λ) ≤ Newt(Hk, ι, λ) ≤ Hdg(Hk, ι, λ).

1.5 Hodge-Newton filtration for p-divisible groups with addi-
tional structures

We restrict ourselves to the PEL cases, the EL case can be treated in the same way,
which is simpler. Let K|Qp be a complete discrete valuation field with residue field k
perfect. Let (H, ι, λ) be a p-divisible group with additional structures over OK . We make
the following basic assumption :

(HN) : Newt(Hk, ι, λ) and Hdg(Hk, ι, λ) possess a contact point x outside their ex-
tremal points which is a break point for the polygon Newt(Hk, ι, λ) .

Since these two polygons are symmetric, the symmetric point x̂ of x satisfies the
same assumption. Denote the coordinate of x by (x1, x2). Without loss of generality, we
may assume x1 ≤ htH

2d
, and note the equality holds if and only if x = x̂.

We now use the explanation of the various polygons in terms of the filtered isocrystal
with additional structures (N, p−1ϕ,Fil•NK , ι, 〈, 〉) attached to (H, ι, λ) :

HN(H, ι, λ) = HN(N, p−1ϕ,Fil•NK , ι, 〈, 〉)
Newt(Hk, ι, λ) = Newt(N, p−1ϕ, ι, 〈, 〉)
Hdg(Hk, ι, λ) = Hdg(NK ,Fil•NK , ι, 〈, 〉).

Then the break points x and x̂ correspond to decompositions of isocystal with additional
structures

(N, p−1ϕ, ι) = (N1, p
−1ϕ, ι)⊕ (N ′1, p

−1ϕ, ι),

(N, p−1ϕ, ι) = (N2, p
−1ϕ, ι)⊕ (N ′2, p

−1ϕ, ι),

where the Newton polygon of (N1, p
−1ϕ, ι) (resp. (N2, p

−1ϕ, ι)) corresponds to the
part in the polygon of (N, p−1ϕ, ι, 〈, 〉) before x (resp. x̂), and the Newton poly-
gon of (N ′1, p

−1ϕ, ι) (resp. (N ′2, p
−1ϕ, ι)) corresponds to the part in the polygon of

(N, p−1ϕ, ι, 〈, 〉) after x (resp. x̂). We consider the induced filtered isocrystal with addi-
tional structures (N1, p

−1ϕ,Fil•N1K , ι), where Fil•N1K = Fil•NK ∩N1K .
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Proposition 1.5.1. The underlying filtered isocrystal of (N1, p
−1ϕ,Fil•N1K , ι) is ad-

missible.

Proof. We just need to show the equality

tN(N1, p
−1ϕ) = tH(N1K ,Fil•N1K).

First, the admissibility of (N, p−1ϕ,Fil•NK) implies that

tH(N1K ,Fil•N1K) ≤ tN(N1, p
−1ϕ).

So we just need to show the inequality

tH(N1K ,Fil•N1K) ≥ tN(N1, p
−1ϕ).

We denote by

N =
d⊕
i=1

N i, N1 =
d⊕
i=1

N i
1

for the decomposition of N and N1 by the action of F . Then each subspaces N i
K and

N i
1K admit the induced filtration Fil•N i

K = Fil•NK ∩ N i
K , Fil

•N i
1K = Fil•N1K ∩ N i

1K .
By the property of Harder-Narasimhan polygons, we have for all i = 1, . . . , d

deg(N i
1K ,Fil

•N i
1K) = dimKN

i
1K − dimKFil0N i

1K ≤ Hdg(N i
K ,Fil

•N i
K)(

dimKN1K

d
).

Thus

deg(N1K ,Fil•N1K) = −tH(N1K ,Fil•N1K)

= dimKN1K − dimKFil0N1K

≤
d∑
i=1

(dimKN
i
1K − dimKFil0N i

1K)

≤
d∑
i=1

Hdg(N i
K ,Fil

•N i
K)(

dimKN1K

d
)

= −tN(N1, p
−1ϕ).

Here the last equality comes from our assumption (HN) and the definition of
Newt(N, p−1ϕ, ι, 〈, 〉) and Hdg(NK ,Fil•NK , ι, 〈, 〉).

Corollary 1.5.2. With the above notation, the Hodge polygon Hdg(N1K ,Fil•N1K , ι)
equals to the part before the point x of the Hodge polygon Hdg(NK ,Fil•NK , ι).

Proof. Indeed, in the proof of proposition 1.5.1, we get for all i = 1, . . . , d

dimKN
i
1K − dimKFil0N i

1K = Hdg(N i
K ,Fil

•N i
K)(

dimKN1K

d
).

Thus for all i = 1, . . . , d, Hdg(N i
1K ,Fil

•N i
1K) is the part before the point

(dimKN1K

d
, dimKN

i
1K − dimKFil0N i

1K) in the polygon Hdg(N i
K ,Fil

•N i
K). Then by def-

inition we get the corollary.



1.5 - Hodge-Newton filtration for p-divisible groups with additional structures 43

Similarly for the point x̂ we have an admissible filtered isocrystal (N2, p
−1ϕ,Fil•N2K).

Since (N1, p
−1ϕ,Fil•N1K) is admissible,

deg(N1, p
−1ϕ,Fil•N1K , ι) = −1

d
tN(N1, p

−1ϕ) = Newt(N, p−1ϕ, ι, 〈, 〉)(dimKN1K

d
)

≤ HN(N, p−1ϕ,Fil•NK , ι, 〈, 〉)(
dimKN1K

d
) ≤ Newt(N, p−1ϕ, ι, 〈, 〉)(dimKN1K

d
),

thus all the inequalities above are in fact equalities. One has similar equalities for
(N2, p

−1ϕ,Fil•N2K). We get the following important corollary.

Corollary 1.5.3. The Harder-Narasimhan polygon of (H, ι, λ) also passes the
points x and x̂, which are thus also break points of HN(H, ι, λ). Moreover,
for i = 1, 2, (Ni, p

−1ϕ,Fil•NiK) appear in the Harder-Narasimhan filtration of
(N, p−1ϕ,Fil•NK).

Theorem 1.5.4. Let K|Qp be a complete discrete valuation field with residue field k
perfect, (H, ι, λ) be a p-divisible group with additional structures over OK. Under the
basic assumption (HN), there are unique subgroups

(H1, ι) ⊂ (H2, ι) ⊂ (H, ι)

of (H, ι) as p-divisible groups with additional structures over OK, such that

1. λ induces isomorphisms
(H1, ι) ' ((H/H2)D, ι′),

(H2, ι) ' ((H/H1)D, ι′);

2. the induced filtration of the p-divisible group with additional structures (Hk, ι) over
k

(H1k, ι) ⊂ (H2k, ι) ⊂ (Hk, ι)

is split ;
3. the Newton(resp. Harder-Narasimhan, resp. Hodge) polygons of (H1, ι), (H2/H1, ι),

and (H/H2, ι) are the parts of the Newton(resp. Harder-Narasimhan, resp. Hodge)
polygon of (H, ι, λ) up to x, between x and x̂, and from x̂ on respectively.

When x = x̂, then H1 and H2 coincide.

Proof. We use the formula

HN(H, ι, λ) = inf
n≥1

1

n
HN(H[pn], ι, λ)(n·)

and the following inequalities

HN(H, ι, λ) ≤ 1

n
HN(H[pn], ι, λ)(n·) ≤ HN(H[p], ι, λ) ≤ Hdg(Hk, ι, λ)

to deduce that, for n >> 0 large enough, x̂ is a break point of the polygons
1
n
HN(H[pn], ι, λ)(n·). We fix such a n. Thus there exists a sub-group

Hn ⊂ H[pn],
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which appears in the Harder-Narasimhan filtration of H[pn], and admits an induced
action by ι. We denote it as (Hn, ι). Consider the family of finite flat group schemes
with additional structures

(H2kn, ι)k≥0 ⊂ (H[p2kn], ι)k≥0.

Since
1

2
HN(H[p2k+1n], ι, λ)(2·) ≤ HN(H[p2kn], ι, λ),

we have
µmax(H[p2k+1n]/H2k+1n) ≤ µmax(H[p2kn]/H2kn) < µmin(H2kn),

thus
Hom(H2kn, H[p2k+1n]/H2k+1n) = 0

by proposition 1.2.3. In particular, the composition of

H2kn ↪→ H[p2kn] ↪→ H[p2k+1n]→ H[p2k+1n]/H2k+1n

is 0, i.e.
H2kn ⊂ H2k+1n.

Similarly, since

µmin(H2k+1n) ≥ µmin(H2kn) > µmax(H[p2kn]/H2kn),

thus
Hom(H2k+1n, H[p2kn]/H2kn) = 0.

In particular, the composition of

H2k+1n ↪→ H[p2k+1n]
×p2kn

−→ H[p2kn]→ H[p2kn]/H2kn

is 0, i.e.
p2kn(H2k+1n) ⊂ H2kn.

Let C be the scheme theoretic closure in H[p2kn] of

ker(H2k+1n,K
p2kn

−→ H2kn,K),

and D be the scheme theoretic closure in H[p2kn] of

im(H2k+1n,K
p2kn

−→ H2kn,K).

Then H2kn ⊂ C, and we have a sequence

0→ C → H2k+1n → D → 0,

and
degH2k+1n ≤ degC + degD

with the equality holds if and only if the above sequence is exact, cf. proposition 1.2.1.
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Note
degH2k+1n = 2degH2kn

htH2k+1n = 2htH2kn.

Let a = htH2kn ≤ htC, since htC + htD = htH2k+1n = 2a, we have htD ≤ a.

Consider the non-normalized Harder-Narasimhan polygon HN(H[p2kn]) of H[p2kn],
we have

degC ≤ HN(H[p2kn])(htC)

degD ≤ HN(H[p2kn])(htD),

thus

degC + degD ≤ HN(H[p2kn])(htC) +HN(H[p2kn])(htD)

≤ 2HN(H[p2kn])(
htC + htD

2
)

= 2HN(H[p2kn])(htH2kn)

= 2degH2kn

= degH2k+1n.

Thus we have
degH2k+1n = degC + degD

and
0→ C → H2k+1n → D → 0

is exact. We claim that
C = H2kn.

In fact, if C ) H2kn, we have D ( H2kn. Then

degC + degD < 2degH2kn,

a contradiction ! Thus C = H2kn. Similarly D = H2kn. Therefore we have an exact
sequence

0→ H2kn → H2k+1n
p2kn

−→ H2kn → 0.

Now consider
H2 = lim−→

k≥0

H2kn

as a fppf sheaf over OK . It is of p-torsion by definition. It is also p-divisible, i.e.H2
p−→ H2

is an epimorphism, since H2
p2kn

−→ H2 is. As H2[p] = H2kn[p], and H2kn
p2kn−1

−→ H2kn[p] is
an epimorphism, H2kn is flat over OK , we can deduce that H2kn[p] is a finite flat group
scheme (see [28]). Therefore, H2 is a p-divisible group over OK . By construction, it
naturally admits the induced additional structures ι, and its filtered isocrystal is exactly
(N2, p

−1ϕ,Fil•N2K , ι). Thus we get a sub p-divisible group with additional structures
(H2, ι) of (H, ι). Over k, the exact sequence

0→ H2k → Hk → (H/H2)k → 0
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splits since H2k ⊂ Hk is a part of the slope filtration of Hk, and the Newton (resp.
Harder-Narasimhan, resp. Hodge) polygons of (H2, ι) and (H/H2, ι) are the parts of the
Newton (resp. Harder-Narasimhan, resp. Hodge) polygon of (H, ι, λ) up to x̂ and from
x̂ on respectively.

Similarly, for the point x, we can construct a sub p-divisible group with addi-
tional structures (H1, ι) of (H2, ι), and the Newton (resp. Harder-Narasimhan, resp.
Hodge) polygons of (H1, ι) and (H2/H1, ι) are the parts of the Newton (resp. Harder-
Narasimhan, resp. Hodge) polygon of (H, ι, λ) up to x and between x and x̂ respectively.
The polarization λ : H

∼→ HD then induces the isomorphisms

(H1, ι) ' ((H/H2)D, ι′),

(H2, ι) ' ((H/H1)D, ι′).

Remark 1.5.5. 1. For all n ≥ 1, we know that the polygon 1
n
HN(H[pn], ι, λ)(n·)

passes x̂. From the proof of the above theorem, x̂ is a break point of this polygon
for all n large enough (i.e. there exists n0 >> 0, for all n ≥ n0 x̂ is a break point
of 1

n
HN(H[pn], ι, λ)(n·)), and H2[pn] is a subgroup in the Harder-Narasimhan fil-

tration of H[pn]. In fact by [26] lemme 7 and [27] lemme 3, we get that x̂ is a
break point of 1

n
HN(H[pn], ι, λ)(n·) for all n ≥ 1, and H2[pn] is the subgroup in

the Harder-Narasimhan filtration of H[pn] corresponding to x̂ for all n ≥ 1. Sim-
ilarly x is also a break point of 1

n
HN(H[pn], ι, λ)(n·) for all n ≥ 1, and H1[pn] is

the subgroup in the Harder-Narasimhan filtration of H[pn] corresponding to x for
all n ≥ 1.

2. In the above proof, we just need the fact that the polygon HN(H, ι, λ) also passes
the points x and x̂, then based on this we can use the theory of Harder-Narasimhan
filtration of finite flat group schemes to find H1 and H2. Thus we can prove the
theorem over a general complete rank one valuation ring OK |Zp, once we can prove
that under our assumption (HN) HN(H, ι, λ) also passes the points x and x̂, see
the following.

For the application to the cohomology of Rapoport-Zink spaces as in the next sec-
tion, we will need a stronger version of the above theorem, namely the case K|Qp is a
complete field extension for a general rank one valuation, not necessarily discrete. For
some technical reason we introduce some “reasonable” class of p-divisible groups over
such bases.

Definition 1.5.6 ([27], Définition 25). Let K|Qp be a complete field extension for a rank
one valuation, OK be the ring of integers. Suppose the residue field k of OK is perfect.
Let α : k ↪→ OK/pOK be the Teichmüller section of the projection OK/pOK → k. Let H
be a p-divisible group over OK, Hk = H⊗OK k be its special fiber. We say H is modular,
if the identity map Hk → Hk lifts to a quasi-isogeny (not necessarily unique)

Hk ⊗k,α OK/pOK → H ⊗OK OK/pOK .

When the residue field k is not necessarily perfect, a p-divisible group H over OK is
called modular, if for some algebraic closure K of K, H ⊗ O

K̂
is modular in the above

sense.
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We refer the reader to the various lists of equivalent formulations in proposition 22
of loc. cit.. In particular, any p-divisible group over a complete discrete valuation ring
is modular.

Theorem 1.5.7. Let K|Qp be a complete field extension for a rank one valuation, OK be
the ring of integers. Let (H, ι, λ) be a p-divisible group with additional (PEL) structures
over OK, with the underlying p-divisible group H modular. Assume (H, ι, λ) satisfies
the assumption (HN), then the same conclusions as theorem 1.5.4 (1) and (3) hold for
(H, ι, λ), and if the residue filed k of OK is perfect, then the conclusion (2) of theorem
1.5.4 also holds for (H, ι, λ).

Proof. In fact, we just need to show under the above conditions, the Harder-Narasimhan
polygonHN(H, ι, λ) also passes the contact point x of Newt(Hk, ι, λ) andHdg(Hk, ι, λ).
Then the other arguments in the proof of the above theorem work in the same way in
this case, see the remark 1.5.5 (2).

To show HN(H, ι, λ) also passes the contact point x, we use the tool of Rapoport-
Zink spaces, see the next subsection for some review of these spaces. We may assume
k = k̄ is algebraical closed. Consider the Rapoport-Zink space of EL type defined as the
quasi-isogeny deformation space of (Hk, ι). We useM to denote the Berkovich analytic
space over K0 = FracW (k). Then (H, ι) defines a K-valued point ofM. For any finite
extension K ′|K0, the valuation on K ′ is discrete, and the p-divisible groups (H ′, ι) over
OK′ associated to the points ofM(K ′) satisfy the assumption (HN). Thus the Harder-
Narasimhan polygons HN(H ′, ι) pass the point x. As the rigid points Mrig = {y ∈
M|[H(y) : K0] <∞} are dense inM, and the function of Harder-Narasimhan polygon
is semi-continuous overM ([27] 13.3), we deduce that the Harder-Narsimhan polygons
of the p-divisible groups associated any points y ∈ M pass x. In particular this holds
for HN(H, ι, λ) = HN(H, ι).

1.6 Application to the geometry and cohomology of some non-
basic Rapoport-Zink spaces

The existence and uniqueness of Hodge-Newton filtration can be used to deduce that,
the cohomology of simple unramified EL/PEL Rapoport-Zink spaces which satisfy the
assumption (HN) contains no supercuspidal representations, as Mantovan did in [56],
where her assumption was stronger and her results were just stated for the EL case and
PEL symplectic case.

Let (F, V, b, µ)/(F, ∗, V, 〈, 〉, b, µ) be a simple EL/PEL data with [F : Qp] =
d, dimFV = n, where (F, V )/(F, ∗, V, 〈, 〉) are as in the section 1.3 used to define the
reductive group G. The remaining data (b, µ) consists of

– an element b ∈ G(L) up to σ-conjugacy (thus we can view b ∈ B(G), here B(G)
is the set of σ-conjugacy classes in G(L)), such that the associated isocrystal
(V ⊗ L, bσ) has slopes in [0,1], thus coming from a p-divisible group Σ up to
isogeny. Here L = FracW (Fp) ;

– a minscule co-character µ : GmQp → GQp , up to G(Qp)-conjugacy, such that
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1. b ∈ B(G, µ) as an element in B(G), thus the pair (b, µ) is admissible ([30]).
Here B(G, µ) is the set defined by Kottwitz ([52]) ;

2. in the PEL case, c ◦ µ = id, vp(c(b)) = 1, here vp is the standard valuation
on L and c : G→ Gm, c(x) = x#x ∈ R× for any Qp-algebra R and x ∈ G(R)
(see section 1.3).

We can make the form of µ more explicitly. Recall we assume n = dimFV . Fix an
F -base of V and denote IF := HomQp(F,Qp). In the EL case, G = ResF |QpGLn and
thus µ is given by a collection of pairs of integer (pτ , qτ ) such that pτ + qτ = n for all
τ ∈ IF :

µ : GmQp → GQp '
∏
τ∈IF

GLnQp

z 7→
∏
τ∈IF

diag(z, · · · , z︸ ︷︷ ︸
pτ

, 1, · · · , 1︸ ︷︷ ︸
qτ

).

In the PEL unitary case, let Φ ⊂ IF be a CM-type, i.e. Φ
∐

Φ∗ = IF where Φ∗ =
{τ ◦ ∗|τ ∈ Φ}. By definition the group G is such that

GQp ' (
∏
τ∈Φ

GLnQp)×GmQp ⊂ (
∏
τ∈IF

GLnQp)×GmQp .

The µ is given by a collection of pairs of integer (pτ , qτ )τ∈IF such that pτ∗ = qτ , qτ∗ = pτ ,
and pτ + qτ = n for all τ ∈ IF :

µ : GmQp → GQp ⊂ (
∏
τ∈IF

GLnQp)×GmQp

z 7→
∏
τ∈IF

(z, · · · , z︸ ︷︷ ︸
pτ

, 1, · · · , 1︸ ︷︷ ︸
qτ

)× (z).

For the PEL symplectic case, the group G is such that

GQp = G(
∏
τ∈IF

GSpn),

where G(
∏

τ∈IF GSpn) ⊂
∏

τ∈IF GSpn is the subgroup which consists of elements in the
product group with the same similitude for all τ ∈ IF . In this case the µ can be given
by the following :

µ : GmQp → GQp = G(
∏
τ∈IF

GSpn)

z 7→
∏
τ∈IF

diag(z, · · · , z︸ ︷︷ ︸
n
2

, 1, · · · , 1︸ ︷︷ ︸
n
2

).

The element b ∈ G(L) defines an isocrystal with additional structures Nb :
RepQpG → Isoc(Fp) (cf. [16],[65]), in particular for the natural faithful representa-
tion V of G, Nb(V ) = (V ⊗ L, bσ) is a usual isocrystal, whose Newton polygon after
normalization by the action of F is just the image of the element νb ∈ N(G) defined by
Kottwitz in N(ResF |QpGLFV ), under the natural injection N(G) ↪→ N(ResF |QpGLFV ).
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Here the normalization of a polygon P over [0, dn] (n = dimFV, d = [F : Qp]), we mean
a polygon P ′ over [0, n] such that P ′(x) = 1

d
P(dx), for all x ∈ [0, n]. On the other hand,

the conjugate class of µ defines a Hodge polygon (cf. [52],[65])

νµ := µ̄ =
1

|Γ : Γµ|
∑

σ∈Γ/Γµ

σ(µ) ∈ N(G).

We will view νb and µ̄ as polygons over [0, n] by the natural injection N(G) ↪→
N(ResF |QpGLFV ). Note the above data defines a p-divisible group with additional struc-
tures Σ over Fp up to isogeny. The polygons νb and µ̄ will be the Newton and Hodge
polygons respectively of Σ. They are also the corresponding polygons of the p-divisible
groups with additional structures classified by the Rapoport-Zink spaces associated to
the above EL/PEL data which we review in the following.

The Rapoport-Zink spaces M̂ associated to the simple unramified EL/PEL data
(F, V, b, µ)/(F, ∗, V, 〈, 〉, b, µ) are formal schemes locally formally of finite type over
SpfW (Fp), as deformation spaces of p-divisible groups with additional structures by
quasi-isogenies. More precisely, let NilpW (Fp) be the category of schemes over W (Fp)
over which p is locally nilpotent, then for any scheme S ∈ NilpW (Fp), in the EL case
M̂(S) = {(H, ι, β)}/ ∼ ; and in the PEL cases M̂(S) = {(H, ι, λ, β)}/ ∼, where

– H/S is a p-divisible group ;
– ι : OF → End(H) is an action such that

detOS(a, Lie(H)) = det(a, V0),∀a ∈ OF ,

here V0 is the weight 0 subspace of VQp defined by µ ;
– β : ΣS → HS is an OF -equivariant quasi-isogeny, here S ⊂ S is the closed sub-

scheme defined by killing p ;
– in the PEL cases, λ : H → HD is a polarization, compatible with the action ι,

and whose pullback via β is the polarization on Σ up to a p power scalar multiple.
Here as before HD is the Cartier-Serre dual of H.

– ∼ is the relation defined by isomorphisms of p-divisible groups with additional
structures.

Let Jb(Qp) be the group of self-quasi-isogenies of Σ as p-divisible group with additional
structures over Fp, which is in fact the Qp-valued points of a reductive group Jb defined
over Qp. Then there is an action of Jb(Qp) on M̂ defined by γ ∈ Jb(Qp),

γ : M̂ → M̂, (H, β) 7→ (H, β ◦ γ−1).

Let E be the definition field of the conjugate class of µ, the so called reflex field, then
there is a non-effective descent datum on M̂ over OE, for details see [66].

LetM = M̂an be the Berkovich analytic fiber of M̂ over L. Then the local system
T over M defined by the p-adic Tate module of the universal p-divisible group on M̂
gives us a tower of Berkovich analytic spaces (MK)K⊂G(Zp), where for any open compact
subgroup K of G(Zp),MK is the finite étale covering ofM parameterizing the K-level
structures, i.e. the classes modulo K of OF -linear trivialization of T by Λ. In particular
M = MG(Zp). The action of Jb(Qp) on M then extends to each rigid analytic space
MK , and the group G(Qp) acts on the tower (MK)K⊂G(Zp) by Hecke correspondences.
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We will be interested in the cohomology of the tower (MK)K⊂G(Zp) of Berkovich
analytic spaces. Let l 6= p be a prime number, Cp be the completion of an algebraic
closure of L, for any open compact subgroup K ⊂ G(Zp), the l-adic cohomology with
compact support

H i
c(MK × Cp,Ql(DM)) = lim−→

U

H i
c(U × Cp,Ql(DM))

was defined, for details see 4.2 of [23]. Here

DM = dimMK =


∑

τ∈IF pτqτ EL case
1
2

∑
τ∈IF pτqτ PEL unitary case

dn
2
(n

2
+ 1)/2 PEL symplectic case.

Following Mantovan, we will consider the following groups

H i,j(M∞)ρ := lim−→
K

ExtjJb(Qp)(H
i
c(MK × Cp,Ql(DM)), ρ),

for any admissible Ql-representation ρ of Jb(Qp). By [55], these groups vanish for almost
all i, j ≥ 0, and there is a natural action of G(Qp) × WE on them. Moreover, as a
representation of G(Qp)×WE, H i,j(M∞)ρ is admissible/continous. For any admissible
Ql-representation ρ of Jb(Qp), we define a virtual representation of G(Qp)×WE :

H(M∞)ρ =
∑
i,j≥0

(−1)i+jH i,j(M∞)ρ.

To apply our results on the Hodge-Newton filtration, we make as before the following
basic assumption :

(HN) : νb and µ̄ possess a contact point x outside their extremal points which is a
break point for the polygon νb.

Thus in the PEL cases, we have a symmetric point x̂ of x, which satisfies also the
above condition. In these cases, if x = (x1, x2), we may assume x1 ≤ n/2.

By the assumption, we can choose decompositions V = V 1 ⊕ V 2 (EL case) or V =
V 1 ⊕ V 2 ⊕ V 3 (PEL cases), such that Nb(V ) = Nb(V

1)⊕Nb(V
2) or Nb(V ) = Nb(V

1)⊕
Nb(V

2)⊕Nb(V
3) is the decomposition of the isocystals corresponding to the break point

x or x and x̂. In the PEL cases, when x = x̂ then V 2 is trivial. Let Λ be a fixed lattice
in V for the EL case and an auto-dual lattice for the PEL cases. Then we can choose
decompositions Λ = Λ1⊕Λ2 (EL case) or Λ = Λ1⊕Λ2⊕Λ3 (PEL cases), such that they
induce the above decompositions for V .

Associated to the decompositions V = ⊕ti=1V
i, t = 2 or 3, we have a Levi subgroup

M of G over Qp, such that for all Qp-algebra R,

M(R) = {g ∈ G(R)|g stabilizesV i
R,∀1 ≤ i ≤ t}.

Similarly, if we consider the filtrations 0 ⊂ V1 ⊂ · · · ⊂ Vt = V , t = 2 or 3, where
Vi = ⊕1≤j≤iV

j,∀1 ≤ i ≤ t, we can define a parabolic subgroup P of G over Qp, such
that for all Qp-algebra R,

P (R) = {g ∈ G(R)|g stabilizesViR,∀1 ≤ i ≤ t}.
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Clearly, M ⊂ P . We denote by P = MN the Levi decomposition of P , here N is
the unipotent radical of P . By definition, we have b ∈ M(L) ⊂ P (L) ⊂ G(L) up to
σ-conjugacy. There is an element ωb in the absolute Weyl group of G, such that ωbµ
factors through M and up to σ-conjugacy b ∈ B(M.ωbµ), see [56] or [34]. The above
choices of decompositions of lattices imply M,P are unramified.

Mantovan in [56] constructed two other type Rapoport-Zink spaces P̂ and F̂ for the
data (M, b, ωbµ) and (P, b, ωbµ) respectively. We briefly recall the definition of these
spaces. Both are formal schemes of formally locally of finite type over SpfW (Fp),
and classify some type of p-divisible groups with additional structures. More pre-
cisely, for any S ∈ NilpW (Fp), P̂(S) = {(H i, ιi, βi)1≤i≤t}/ ∼ in the EL case, and
P̂(S) = {(H i, ιi, λi, βi)1≤i≤t}/ ∼ in the PEL cases, where

– H i/S are p-divisible groups ;
– ιi : OF → End(H i) are actions of OF on H i ;
– βi : Σi

S
→ H i

S
are quasi-isogenies, commuting with the action of OF ;

– in the PEL cases, λi : H i → (Hj)D, i + j = t + 1, are isomorphisms and (λi)D =
−λj ; such that
1. detOS(a, Lie(H i)) = det(a, V i

0 ),∀a ∈ OF , 1 ≤ i ≤ t ;
2. in the PEL cases, there exists c ∈ Q×p such that λi = c(βjD)−1 ◦ φi ◦ (βi)−1

for all i, j such that i+ j = t+ 1. Here φi : Σi → (Σj)D are the isomorphisms
induced by the polarization φ : Σ→ ΣD.

– ∼ is the relation defined by isomorphisms.
As the case of the tower of Rapoport-Zink spaces (MK)K⊂G(Zp), we may consider the
Berkovich analytic fiber P = P̂an of P̂ , and use the local system provided by the uni-
versal Tate module on P to construct a tower of Berkovich analytic spaces (PK)K⊂M(Zp)

indexed by open compact subgroups K ⊂ M(Zp). These spaces in fact can be decom-
posed as product of some smaller Rapoport-Zink spaces defined by the EL/PEL data
(F, V i, bi, (ωbµ)i)/(F, ∗, V i, 〈, 〉, bi, (ωbµ)i), for more details see section 3 of [56]. There
are natural actions of Jb(Qp) on each spaces PK , and the group M(Qp) acts on the
tower (PK)K⊂M(Zp) as Hecke correspondences. Similarly, there is a non-effective descent
datum on each of these spaces over E.

The filtration 0 ⊂ Nb(V1) ⊂ · · · ⊂ Nb(Vt) = Nb(V ) induce a filtration of p-divisible
groups with additional structures over Fp :

0 ⊂ Σ1 ⊂ · · · ⊂ Σt = Σ.

For any S ∈ NilpW (Fp), F̂(S) = {(H, ι,H•, β)}/ ∼ in the EL case, and F̂(S) =
{(H, ι, λ,H•, β)}/ ∼ in the PEL cases, where

– H/S is a p-divisible group ;
– ι : OF → End(H) is an action of OF on H ;
– in the PEL cases, λ : H → HD is an isomorphism compatible with the action of
OF ;

– H• = (0 ⊂ H1 ⊂ · · · ⊂ Ht = H) is an increasing filtration of H by OF -sub-
p-divisible groups over S, such that in the PEL cases λ induces isomorphisms
Hi ' (H/Hj)

D for i+ j = t+ 1 ;
– β : ΣS → HS is a quasi-isogeny of p-divisible groups with additional structures, and

compatible with the filtration, i.e. β(ΣjS) ⊂ HjS for any j = 1, · · · , t ; satisfying
the following conditions
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1. the restrictions of β to the p-divisible subgroups defining the filtration

βj : ΣjS → HjS

are quasi-isogenies ;
2.

detOS(a, Lie(Hj)) = det(a, V0j), ∀a ∈ OF , j = 1, · · · , t.

– ∼ is the relation defined by isomorphisms.

As usual, we consider the Berkovich analytic fiber F = F̂an of F over L, and we can
construct a tower of Berkovich analytic spaces (FK)K⊂P (Zp) indexed by open compact
subgroups K ⊂ P (Zp), see [56] definition 10. There are then natural actions of Jb(Qp)
on each spaces FK , and the group P (Qp) acts on the tower (FK)K⊂P (Zp) as Hecke
correspondences. Moreover, there is a non-effective descent datum of FK over E.

As the case of Rapoport-Zink spaces, we will consider the groups

H i,j(P∞)ρ := lim−→
K

ExtjJb(Qp)(H
i
c(PK × Cp,Ql(DP)), ρ)

H i,j(F∞)ρ := lim−→
K

ExtjJb(Qp)(H
i
c(FK × Cp,Ql(DF)), ρ)

for any admissible Ql-representation ρ of Jb(Qp). Here DP (resp. DF) is the dimension
of P (resp. F). These groups vanish for almost all i, j ≥ 0, and as M(Qp) ×WE and
P (Qp) × WE representations respectively they are both admissible/continous, cf. [56]
theorem 12. We consider the virtual representations

H(P∞)ρ =
∑
i,j≥0

(−1)i+jH i,j(P∞)ρ

H(F∞)ρ =
∑
i,j≥0

(−1)i+jH i,j(F∞)ρ.

We would like to compare these representations with

H(M∞)ρ =
∑
i,j≥0

(−1)i+jH i,j(M∞)ρ.

This is achieved by considering the relations between the three towers of Berkovich
analytic spaces : (MK)K⊂G(Zp), (FK)K⊂P (Zp), (PK)K⊂M(Zp). More precisely, we have the
following diagram of morphisms of Berkovich analytic spaces :

F

π1~~ π2   
P

s
22

M
where in the PEL cases

s : (H i, ιi, λi, βi)1≤i≤t 7→ (⊕ti=1H
i,⊕ti=1ι

i,⊕ti=1λ
i, H•,⊕ti=1β

i)

π1 : (H, ι, λ,H•, β) 7→ (griH, ιi, λi, βi)1≤i≤t

π2 : (H, ι, λ,H•, β) 7→ (H, ι, λ, β),
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here the filtration H• in the right hand side of the first arrow is the natural one, the
ιi, λi, βi in the right hand side of the second arrow are induced by ι, λ, β on the graded
pieces, for i = 1, . . . , t.

By construction, we have the following facts.

Proposition 1.6.1 ([56], Prop. 14, 28, Theorem 36 (3)). 1. s is a closed immer-
sion ;

2. π1 is a fibration in balls ;
3. π2 is a local isomorphism onto its image.

In fact, to find the relation between the cohomology groups H(P∞)ρ and H(F∞)ρ,
one has to consider the geometry between FK and PK := PK∩M(Qp) for any open compact
subgroup K ⊂ P (Zp). We extend the action of M(Qp) on the tower (PK)K⊂M(Zp) to an
action of P (Qp) on this tower with the unipotent radical of P (Qp) acts trivially. In this
case, there are Jb(Qp)× P (Qp)-equivariant closed immersions

sK : PK −→ FK

commute with the descent data, for K ⊂ P (Zp) varies. Moreover, there are Jb(Qp) ×
P (Qp)-equivariant morphisms of analytic spaces

π1K : FK −→ PK

commute with the descent data, for K ⊂ P (Zp) varies, such that

π1K ◦ sK = idPK .

For K ( P (Zp), π1K are not necessarily fibrations in balls and their fibers may change.
Mantovan’s solution of this problem is that for each integer m ≥ 1, she introduces a
formal scheme jm : F̂m → F̂ over F̂ , such that for any morphism of formal schemes
f : S → F̂ , the pm-torsion subgroup f ∗H[pm] is split if and only if f factors through
jm. Here H is the universal p-divisible group over F̂ . By definition, one has a formal
model π̂1 : F̂ → P̂ of π1. Then one has the fact that formal schemes F̂m and F̂ are
isomorphic when considered as formal schemes over P̂ , via π̂1 ◦ jm and π̂1 respectively,
cf. [56] proposition 30 (2). Thus the formal schemes F̂m can be viewed as some twisted
version of F̂ . Let K = Km := ker(P (Zp) → P (Zp/pmZp)) for the natural projection
P (Zp)→ P (Zp/pmZp), and Fm be the analytic generic fiber of F̂m, then one can define
a cover fmK : FmK → Fm by the pullback of FK → F , i.e.

FmK = FK ×F ,jmη Fm.

Let jmK : FmK → FK be the natural projection, we have the following cartesian diagram

FmK
fmK //

jmK
��

Fm
jmη
��

FK // F .

On the other hand one can also define a cover f ′mK : F ′mK → Fm by the pullback of
PK → P via π1 ◦ jmη : Fm → P , which is the same with π1 : Fm → P , i.e.

F ′mK = PK ×P,π1 Fm.
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Let π1mK be the natural projection F ′mK → PK , we have the following cartesian diagram

F ′mK
f ′mK //

π1mK

��

Fm
π1

��
PK // P .

There are morphisms φK : FmK → F ′mK and ϕK : F ′mK → FmK such that φK ◦ ϕK =
idF ′mK and π1mK ◦ φK = π1K ◦ jmK . Since π1 is a fibration in balls, by the base change
theorem for the cohomology with compact support of analytic spaces and proposition
1.6.1 (2), one has a quasi-isomorphism of cohomological complex

RΓc(F ′mK × Cp,Ql) ' RΓc(PK × Cp,Ql(−d))[−2d], d = DF −DP .

In proposition 32 in loc. cit. Mantovan studied the relation between FK ,FmK and F ′mK ,
from which she can deduce a quasi-isomorphism

RΓc(FK × Cp,Ql) ' RΓc(F ′mK × Cp,Ql).

Thus one has the following proposition.

Proposition 1.6.2 ([56], Theorem 26). For any admissible Ql-representation ρ of
Jb(Qp), we have an equality of virtural representations of P (Qp)×WE :

H(P∞)ρ = H(F∞)ρ.

To find the relation between H(M∞)ρ and H(P∞)ρ, we use our main result on the
Hodge-Newton filtration. Under our basic assumption, which is weaker than that in [56],
the results of last subsection on the existence and uniqueness of Hodge-Newton filtration
tell us

Proposition 1.6.3. π2 is bijective, thus it is an isomorphism of Berkovich analytic
spaces.

Proof. This is a direct consequence of theorem 1.5.4, 1.5.7, and proposition 1.6.1 (3).

For an open compact subgroup K ⊂ G(Zp), denote FK := FK∩P (Qp), then we have a
natural morphism π2K : FK →MK such that π2G(Zp) = π2 which is defined above. Let
PK := PK∩M(Qp), we have also natural generalizations sK , π1K of s and π1 respectively.
Moreover, we have the following diagram in level K

FK

π1K}} π2K ##
PK

sK
22

MK .

Corollary 1.6.4. With the above notation, π2K is a closed immersion, and we have
isomorphisms

MK 'MK ×M F '
∐

K\G(Qp)/P (Qp)

FK∩P (Qp).
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Proof. One argues exactly as [56] 8.2.

Before passing to cohomological conclusion, we consider some application to the p-
adic period morphism and monodromy representations. Recall that in [66] chapter 5
Rapoport-Zink had defined a p-adic period morphism

π :M−→ Fa := F(G, µ)a ⊂ F(G, µ)an,

which is G(Qp)-invariant and Jb(Qp)-equivariant. Here Fa is the image of π, which is
an open subspace of F(G, µ)an, the associated Berkovich analytic space of F(G, µ) :=
GL/PµL. Here Pµ is the parabolic subgroup defined by µ over the reflex field E, and PµL
is its base change over L. The definition of π for rigid points is as follow. Associated to a
rigid point x ∈M(K) (K|L is thus a finite extension) there is the p-divisible group with
additional structures (H, ι, λ) over OK and the quasi-isogeny ρ : ΣOK/pOK → HOK/pOK ,
which defines an isomorphism

ρ∗ : (VL, bσ)
∼−→ (D(Hk)L, ϕ).

Let
Filπ(x)VK = ρ−1

∗ (ωHD,K) ⊂ VK

for the Hodge filtration sequence

0→ ωHD,K → D(Hk)K → Lie(H)K → 0.

Then by definition π(x) = Filπ(x)VK ∈ Fa(K).

In our situation, we have also the p-adic period morphism which is still denoted by
π by abuse of notation

π : P −→ F(M,ωbµ)a ⊂ F(M,ωbµ)an,

for the Rapoport-Zink P . Let

π : F −→ F(G, µ)an

be the composition of π2 : F → M and π : M → F(G, µ)an, and Fa(P, ωbµ) be its
image, which is contained in the p-adic Schubert cell Fan(P, ωbµ) = (PLωbPµL/PµL)an ⊂
Fan(G, µ). We have the following enlarged diagram :

F
π1

vv

π2

((

����

P

����

M

����

Fa(P, ωbµ)
π′1

ww

π′2

''
Fa(M,ωbµ) Fa(G, µ).

Here ωb is the element in the absolute Weyl group of G as above, which is contained in a
double coset : ωb ∈ WP \W/WPµ , Pµ is the parabolic subgroup of GE defining F(G, µ).
We have
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1. π′1 is a fibration in affine analytic spaces ;
2. π′2 is the identity, i.e. Fa(G, µ) is contained in the p-adic Schubert cell

(PLωbPµL/PµL)an.
Let T be the Zp-local system over M defined by the Tate module of the universal

p-divisible group over M̂, then it descends to a Qp-local system over the p-adic period
domain Fa. Let x be a geometric point of M and y be its image under the p-adic
period morphism π : M → Fa. Then by [18] theorem 4.2, these local systems define
monodromy representations

ρx : π1(M, x) −→ G(Zp)

and
ρy : π1(Fa, y) −→ G(Qp)

respectively. Here π1(X, x) is the fundamental group defined by de Jong in loc. cit. for
a Berkovich analytic space X and a geometric point x of X. Then under our basic
assumption (HN) and the notations above, the existence of Hodge-Newton filtration
implies the following.

Corollary 1.6.5. The monodromy representations ρx and ρy factor through P (Zp) and
P (Qp) respectively.

In [15], M. Chen has constructed some determinant morphisms for the towers of
simple unramified Rapoport-Zink spaces. Under the condition that there is no non-
trivial contact point of the Newton and Hodge polygons, and assume the conjecture
that

π0(M̂) ' Imκ

for the morphism κ : M̂ → 4 constructed in [66] 3.52, Chen proved that the associated
monodromy representation under this condition is maximal, and thus the geometric
fibers of her determinant morphisms are exactly the geometric connected components,
see théorème 5.1.2.1 and 5.1.3.1 of loc. cit.. Our result confirms that the condition
that “there is no non-trivial contact point of the Newton and Hodge polygons” is thus
necessary, see the remark in 5.1.5 of loc. cit.. In the split cases considered in [57] and
[56], their results already confirmed that the above condition is necessary.

Now we look at the cohomological consequence of the existence of Hodge-Newton
filtration. Proposition 1.6.2 and corollary 1.6.4 together imply that

H(M∞)ρ = Ind
G(Qp)

P (Qp)H(F∞)ρ

= Ind
G(Qp)

P (Qp)H(P∞)ρ.

We summarize as the following theorem.

Theorem 1.6.6. Under the assumption (HN), we have an equality of virtual represen-
tations of G(Qp)×WE :

H(M∞)ρ = Ind
G(Qp)

P (Qp)H(P∞)ρ.

In particular, there is no supercuspidal representations of G(Qp) appear in the virtual
representation H(M∞)ρ.
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1.7 Application to the cohomology of some Shimura varieties

The above theorem generalizes the main result of [56]. As there, we can consider
further the application to the cohomology of Newton strata of some more general PEL-
type Shimura varieties. We will not pursue the full generalities here, but concentrate on
the Shimura varieties studied in [10] and [81], since studying these varieties was one of
the motivation of this thesis as said in the introduction. They are closely related to the
Shimura varieties studied by Harris and Taylor, but the local reductive groups involved
are unitary groups. Note also they are not in the class of Shimura varieties studied in
section 11 of [56].

More precisely, let ShG(Zp)×Kp/OEν be a smooth PEL-type Shimura variety over the
integer ring of Eν as in [10] or [81], the local reflex field which is a quadratic unramified
extension of Qp if n 6= 2 and Qp if n = 2. Let ShG(Zp)×Kp be its special fiber, then we
have the Newton polygon stratification

ShG(Zp)×Kp =
∐

b∈B(G,µ)

Sh
(b)

G(Zp)×Kp .

Here in this special case, GQp is isomorphic to a simple PEL unitary group in our notions
by the Morita equivalence, and B(G, µ) is in bijection with the set of polygons defined
in [81] (3.1), in particular, any non basic element b satisfy our assumption (HN).

Let RjΨη(Ql), j ≥ 0 denote the l-adic nearby cycles of some fixed integral models of
the Shimura varieties ShKp×Kp with some level structuresKp at p, defined for example as
in [55] for Drinfeld level structures, or the book [66] for parahoric level structures. Then
we have also the Newton polygon stratification for the special fibers with level structures
at p, and for each b ∈ B(G, µ), we have the virtual representation of G(Af )×WEν

Hc(Sh
(b)

∞ × Fp, RΨη(Ql)) :=
∑
i,j≥0

(−1)i+j lim−→
Kp×Kp

H i
c(Sh

(b)

Kp×Kp × Fp, RjΨη(Ql)).

Let ŜhG(Zp)×Kp be the p-adic completion of ShG(Zp)×Kp , Ŝh
an

G(Zp)×Kp be the Berkovich
analytic fiber of this formal scheme. For any open compact subgroup Kp ⊂ G(Zp), let
Ŝh

an

Kp×Kp be the étale covering of Ŝh
an

G(Zp)×Kp defined by trivializing the Tate module in
the usual way. When Kp is a Drinfeld level structure subgroup or a parahoric subgroup,
Ŝh

an

Kp×Kp has a formal model : the p-adic completion ŜhKp×Kp of ShKp×Kp . Then the
theory of formal vanishing cycles tells us we have the equality of cohomology

RΓ(ShKp×Kp × Fp, RΨη(Ql)) = RΓ(Ŝh
an

Kp×Kp × Cp,Ql).

Thus we have the equality of virtual representations∑
i,j≥0

(−1)i+j lim−→
Kp×Kp

H i(ShKp×Kp×Fp, RjΨη(Ql)) =
∑
i≥0

(−1)i lim−→
Kp×Kp

H i(Ŝh
an

Kp×Kp×Cp,Ql).

If ShG(Zp)×Kp is proper, (for example if B = V as the notations in [10] and [81], these
Shimura varieties have the same generic fibers as that of the Shimura varieties of some
special cases studied by [36],) then we have

Ŝh
an

Kp×Kp = ShanKp×Kp ,
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where the later is the associated Berkovich analytic space of the Shimura varieties
ShKp×Kp over Eν . Thus we have the equality of virtual representations∑

i≥0

(−1)iH i(Sh∞ × Eν ,Ql) : =
∑
i≥0

(−1)i lim−→
K

H i(ShK × Eν ,Ql)

=
∑
i≥0

(−1)i lim−→
K

H i(ShanK × Cp,Ql)

=
∑
i,j≥0

(−1)i+j lim−→
Kp×Kp

H i(ShKp×Kp × Fp, RjΨη(Ql))

=
∑

b∈B(G,µ)

Hc(Sh
(b)

∞ × Fp, RΨη(Ql)).

The main results of [55] tell us the cohomology of each Newton polygon strata can be
computed in terms of the l-adic cohomology of the corresponding Rapoport-Zink spaces
and Igusa varieties. More precisely, we have the formula

Hc(Sh
(b)

∞ × Fp, RΨη(Ql))

=
∑
i,j,k≥0

(−1)i+j+k lim−→
Kp

ExtiJb(Qp)(H
j
c (MKp × Cp,Ql(DM)), Hk

c (Igb,Ql)),

see [55] for the precise definition of the Igusa varieties and their cohomology. Thus the
main results of this section imply in particular

Corollary 1.7.1. For the Shimura varieties studied by [10],[81], for any non-basic
strata, the cohomology group Hc(Sh

(b)

∞ × Fp, RΨη(Ql)) can be written as some suitable
parabolic induction of virtual representations, and thus contains no supercuspidal repre-
sentations of G(Qp).

Finally note that in a recent preprint [47], Imai and Mieda have proven that, for
non-proper Shimura varieties the supercuspidal parts (see [23] définition 7.1.4, 8.1.2 for
example) of the compactly supported (or intersection) cohomology and nearby cycle
cohomology are the same :

H i
c(Sh∞ × Eν ,Ql)cusp = H i

c(Sh∞ × Fp, RΨη(Ql))cusp.

Since one has the equality of virtual representations∑
i≥0

(−1)iH i
c(Sh∞ × Fp, RΨη(Ql)) =

∑
b∈B(G,µ)

Hc(Sh
(b)

∞ × Fp, RΨη(Ql)),

combined with Mantovan’s formula above we find that, once a non-basic Newton polygon
has a nontrivial contact point to the Hodge polygon, which is a break point for the
Newton polygon, then there is no contribution of the cohomology of this non-basic
strata to the supercuspidal part of the cohomology (of whichever kind) of the non-
proper Shimura varieties. For example, this is the case for the two non-basic stratas for
the Shimura varieties associated to GSp4.
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2 Cell decomposition of some unitary group
Rapoport-Zink spaces

2.1 Introduction

The motivation of this section is the realization of local Langlands correspondences
in the cohomology of Rapoport-Zink spaces, see [70] and [34]. We have seen these spaces
in section 1.6. These spaces are local analogues of PEL type Shimura varieties, and they
uniformize some parts of these type Shimura varieties when passing to formal completion
and p-adic analyticfication.

The most well known Rapoport-Zink spaces are the Lubin-Tate spaces and Drinfeld
spaces. In [11], it is conjectured the cohomology of Lubin-Tate spaces realizes the local
Langlands and Jaquet-Langlands correspondences for GLn. This has been essentially
proved by Harris-Taylor in [36], and completed by many other authors. In [21] and [25],
Faltings and Fargues has established an isomorphism between the Lubin-Tate tower
and the Drinfeld tower, and deduced also an isomorphism of the cohomology of the
two towers. Thus the cohomology of the tower of Drinfeld spaces also realizes the local
Langlands and Jaquet-Langlands correspondences for GLn, as predicted originally by
Drinfeld and partly realized by Harris [33].

The description of the cohomology of some other Rapoport-Zink spaces in terms of
irreducible smooth representations of the underlying p-adic reductive groups, has been
done successfully by Fargues in [23] and Shin in [75]. Both of them use global methods
as that of Harris-Taylor, although their approaches are quite different : the former uses
heavily rigid analytic geometry while the later is based on the stable trace formula. Their
results are both about Rapoport-Zink spaces of EL type, and Fargues has also obtained
results of the Rapoport-Zink spaces for GU(3), based on the complete classfication of
automorphic representations for unitary groups in three variables in [69]. It would be
nice if one can prove these local results by local methods. This will require a careful study
of the geometry of Rapoport-Zink spaces, and then pass to cohomological applications.
Some works in this direction are as [20], [77], [84].

In [25], the first step of the construction of an isomorphism between the towers of
Lubin-Tate and Drinfeld, is by “p-adicfy” the Lubin-Tate tower. This p-adicfy procedure
is to glue some formal models of Gross-Hopkins’s fundamental domain.

To be precise, let M̂LT be the formal Lubin-Tate space over SpfW (Fp) for GLn/Qp

for simple in this introduction. Recall that for a scheme S ∈NilpW , a S-valued point of
M̂LT is given by a pair (H, ρ), with H a one dimensional formal p-divisible group over S,
and ρ : HS → HS is a quasi-isogeny. HereW = W (Fp), NilpW is the category of schemes
S over SpecW such that p is locally nilpotent over S, S is the closed subscheme of S
defined by p, and H is the unique one dimensional formal p-divisible group of height n
over Fp. This space decomposes as a disjoint union of open and closed formal subschemes
according the height of quasi-isogeny. The associated p-adic Lubin-Tate space (in the
sense of Berkovich) MLT =

∐
i∈ZMi

LT admits an action by GLn(Qp) × D×, here D
is the division algebra of invariant 1

n
over Qp. The action of D× is just changing the

quasi-isogeny, while the action of GLn(Qp) is a little complicated : it is defined by the
Hecke correspondences, see [66] or section 2 of this article for details.
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There is a p-adic period mapping

π :MLT → Pn−1,an

of p-adic analytic spaces over L := W (Fp)Q, and the fibers of this mapping is exact the
Hecke orbits onMLT . This reveals the very difference of the theories of uniformization
of Shimura varieties between the complex and p-adic situation. Moreover, since by de
Jong [18] π is an étale covering of p-adic analytic spaces, its fibers, i.e. the p-adic Hecke
orbits, are thus discrete. This is also quite different to the situation over positive charac-
teristic for non basic Newton polygon strata and the prime to p Hecke orbits on Shimura
varieties, see [13] and [14] for example.

The fundamental domain of Gross-Hopkins is then given by

D := π−1(C)
⋂
M0

LT ,

where C ⊂ Pn−1,an is the closed subspace defined by

C = {x = (x0, . . . , xn−1)|vx(
xi
x0

) ≥ 1− i

n
∀i},

vx is the valuation on the complete residue field of x. Let Π ∈ D× be an uniformizer such
that it induces an isomorphism between the components Π−1 :Mi

LT
∼→Mi+1

LT , then the
domain D is such that we have a locally finite covering of the Lubin-Tate space

MLT =
⋃

T∈GLn(Zp)\GLn(Qp)/GLn(Zp)
i=0,...,n−1

T.Π−iD.

Note D is closed, and more importantly (and non trivially) its underling topological
space is compact. The locally finiteness means that we can start from D and its trans-
lations T.Π−iD to glue a Berkovich space, which is isomorphism our Lubin-Tate space
MLT . We may call suchMLT admits a cell decomposition, as an analogue of the clas-
sical situation. In next section we will use this locally finite cell decomposition and
the compactness of D, to deduce a Lefschetz trace formula for Lubin-Tate spaces, by
applying Mieda’s theorem 3.13 in [60].

In [26] Fargues has developed a theory of Harder-Narasimhan filtration for finite
flat group schemes, and applied to the study of p-divisible groups in [27]. For details
of Harder-Narasimhan filtration see [26] or subsection 2.2 in the following for a review.
In particular we have notions of semi-stable finite flat group schemes and p-divisible
groups over a complete rank one valuation ring OK |Zp. The basic observation is that,
the π−1(C) is exactly the semi-stable locus Mss

LT ⊂ MLT , that is the locus where the
associated p-divisible groups are semi-stable. And Gross-Hopkins’s fundamental domain
is the semi-stable locus in the connected component M0

LT . Motivated by this fact,
Fargues has studied fundamental domains in the Rapoport-Zink spaces for GLh/Qp

with signature (d, h−d), in particular there is no additional structures for the p-divisible
groups considered.

There are two main ingredients in the article [27]. The first is an algorithm based
the theory of Harder-Narasimhan filtrations of finite flat group schemes, which starts
from any p-divisible groups over an OK as above and produce new ones which are
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more and more tend to be of HN-type, that is semi-stable for formal p-divisible groups
whose special fiber is supersingular, see loc. cit. for the precise definition of p-divisible
groups of HN-type. When the valuation K is discrete, the algorithm stops after finite
times. Passing to the Shimura varieties which give locally the Rapoport-Zink spaces for
GLh/Qp with signature (d, h − d), one can define a Hecke-equivarient stratification of
the underling topological space of these p-adic analytic Shimura varieties by Harder-
Narasimhan polygons. The algorithm stops after finite times over complete discrete
valuation rings means that, the Hecke orbits of the rigid points in the HN-type locus in
each Harder-Narasimhan polygon strata, cover all the rigid points in the strata. For the
basic polygon Pss that is the line between the point (0, 0) and (h, d) (d is the dimension
of p-divisible groups in the Rapoport-Zink spaces), the HN-type locus is exactly the
semi-stable locus, and one has the statement as above.

The second main ingredient of [27] is the inequality

HN(H) ≤ Newt(Hk)

between the concave Harder-Narasimhan and Newton polygons, here k is the residue
field of K. The proof of this inequality for the case the valuation of K is discrete is easy,
while for the general case it is quite involved : Fargues has used the notions of Hodge-
Tate modules and Banch-Colmez spaces in p-adic Hodge theory, and in fact one has also
to pose a mild condition on H in this case, which is naturally satisfied when H coming
from a point in Rapoport-Zink spaces. The moduli consequences of this inequality are
that, the basic Newton polygon strata of the p-adic Shimura varieties is contained in
their basic Harder-Narasimhan polygon strata, and the Hecke orbit of the semi-stable
locus in the basic Rapoport-Zink space cover at least all the rigid points.

For the case h and d are co-prime to each other, Fargues can prove that the Hecke
orbit of the semi-stable locus in the basic Rapoport-Zink covers all the space. More
precisely, the main theorem of [27] is the following.

Theorem 2.1.1 (Fargues, [27]). Let Mss ⊂ M be the semi-stable locus in the basic
p-adic Rapoport-Zink space M =

∐
i∈ZMi for GLh/Qp with signature (d, h − d), and

D := Mss
⋂
M0. Assume (h, d) = 1. Let Π ∈ D× be a uniformizer in Jb(Qp) = D×,

where D is the division algebra of invariant d
h
over Qp, such that Π induces isomorphisms

Π−1 :Mi →Mi+1. Then there is a locally finite covering ofM

M =
⋃

T∈GLh(Zp)\GLh(Qp)/GLh(Zp)
i=0,...,h−1

T.Π−iD.

For the case d = 1 we recover the cell decomposition of Lubin-Tate space.

The purpose of this section is to prove a similar result of cell decomposition for some
unitary group Rapoport-Zink spaces.

More precisely, let p > 2 be a fixed prime number, Qp2 be the unramified extension of
Qp of degree 2, and G is the quasi-split unitary similitude group defined a n-dimensional
Qp2 hermitian space. The basic formal Rapoport-Zink space M̂ for G with signature
(1, n − 1) is the formal scheme formally locally of finite type over SpfW . A S-valued
point of M̂ for a S ∈NilpW is given by (H, ι, λ, ρ), where H is a p-divisible group
over S, ι : Zp2 → End(H) is an action of Zp2 on H satisfying certain Kottwitz type
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determinant conditions, λ : H → HD is a polarization compatible with the action ι, and
ρ : HS → HS is a quasi-isogeny. For more details see the following section 2. One has
a decomposition M̂ =

∐
i∈Z,in oven M̂i, where M̂i is the locus where the height of the

quasi-isogenies is in.

The geometry of the reduced special fiber Mred has been completely described by
Vollaard-Wedhorn in [81]. It turns out each connected componentMi

red admits a Bruhat-
Tits stratification

Mi
red =

∐
Λ∈B(Jderb ,Qp)0

M0
Λ,

where B(Jderb ,Qp)
0 is the set of vertices in the Bruhat-Tits building of the derived

subgroup Jderb of Jb over Qp, and M0
Λ is a locally closed subscheme. Recall Jb is the

inner form of G associated to the local data to define the Rapoport-Zink space, and
when n is odd we have in fact an isomorphism G ' Jb. There is a type function t :
B(Jderb ,Qp)

0 → [1, n], which takes values on all the odd integers between 1 and n, and
the fibers of t are exactly the Jder(Qp)-orbits in B(Jderb ,Qp)

0. Let tmax = n if n is odd
and tmax = n − 1 if n is even. Then the irreducible components of Mi

red are exactly
theseMΛ, the schematic closure ofM0

Λ, with t(Λ) = tmax.

Let g1 ∈ Jb(Qp) be an element such that it induces isomorphisms g1 : M̂i ∼→ M̂i+1

for n even and g1 : M̂i ∼→ M̂i+2 for n odd. The element p−1 ∈ Jb(Qp) induces always
isomorphisms p−1 : M̂i → M̂i+2. We fix a choice of g1 compatible with p−1. Consider
the connected component for i = 0 and fix a choice of Λ such that t(Λ) = tmax, and
let Stab(Λ) be the stabilizer group of Λ in Jder(Qp). Let M =

∐
i∈Z,in evenMi be the

associated Berkovich analytic space of M̂, and sp : M → Mred be the specialization
map.

Theorem 2.1.2. There is a closed analytic domain C ⊂ M, which contains the semi-
stable locusMss, such that if we set

D := C
⋂

sp−1(MΛ),

then D is relatively compact. Moreover, we have a locally finite covering ofM

M =
⋃

T∈G(Zp)\G(Qp)/G(Zp)

g∈Jderb (Qp)/Stab(Λ)

T.gD

if n is odd, and
M =

⋃
T∈G(Zp)\G(Qp)/G(Zp)

j=0,1
g∈Jderb (Qp)/Stab(Λ)

T.gj1gD

if n is even.

Let π : M → Fa be the p-adic period mapping (see section 2.2), K ⊂ G(Zp)
be an open compact subgroup, MK be the Rapoport-Zink space with level K and
πK :MK →M be the natural projection, then we have the following corollaries.
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Corollary 2.1.3. We have a locally finite covering of Fa

Fa =
⋃

g∈Jderb (Qp)/Stab(Λ)

gπ(D)

if n is odd, and
Fa =

⋃
j=0,1

g∈Jderb (Qp)/Stab(Λ)

gj1gπ(D)

if n is even.

Corollary 2.1.4. We have a locally finite covering of the analytic spaceMK

MK =
⋃

T∈G(Zp)\G(Qp)/K

g∈Jderb (Qp)/Stab(Λ)

T.gDK

if n is odd, and
MK =

⋃
T∈G(Zp)\G(Qp)/K

j=0,1
g∈Jderb (Qp)/Stab(Λ)

T.gj1gDK

if n is even.

Finally we have a corollary for Shimura varieties.

Corollary 2.1.5. Let ShKp be as the Shimura variety introduced in section 2.9, Ŝh
an

Kp be
the generic analytic fiber of its p-adic completion ŜhKp, and Ŝh

an,b0

Kp be the tube in Ŝh
an

Kp

over the basic strata Sh
b0
Kp, which is an open subspace. Let Ŝh

an

Kp×Kp → Ŝh
an

Kp be the

covering in level Kp ⊂ G(Zp) (an open compact subgroup), and Ŝh
an,b0

Kp×Kp be the inverse

image of Ŝh
an,b0

Kp . Denote Ci = C
⋂
Mi for each i ∈ Z such that in is even, C ′ = C0 if

n is odd and C ′ = C0
∐
C1 if n is even, C ′Kp the inverse image of C ′ in MKp, E ′Kp the

image of C ′Kp under the p-adic uniformization

I(Q) \MKp ×G(Ap
f )/K

p '
∐

i∈I(Q)\G(Apf )/Kp

MKp/Γi ' Ŝh
an,b0

Kp×Kp .

1. Let Γ = Γi be one of the above discrete, torsion free, cocompact modulo center
subgroups of Jb(Qp), and Γder = Γ ∩ Jderb (Qp), DKp = DiKp be the image of DKp
under the morphismMKp →MKp/Γ, then we have a covering

MKp/Γ =
⋃

T∈G(Zp)\G(Qp)/Kp
g∈Γder\Jderb (Qp)/Stab(Λ)

T.gDKp

if n is odd, and
MKp/Γ =

⋃
T∈G(Zp)\G(Qp)/Kp

j=0,1
g∈Γder\Jderb (Qp)/Stab(Λ)

T.gj1gDKp

if n is even.
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2. Under the above notation, we have a covering

E ′Kp =
∐

i∈I(Q)\G(Apf )/Kp

⋃
g∈Γder\Jderb (Qp)/Stab(Λ)

gDiKp

if n is odd, and

E ′Kp =
∐

i∈I(Q)\G(Apf )/Kp

⋃
j=0,1

g∈Γder\Jderb (Qp)/Stab(Λ)

gj1gDiKp

if n is even. We have a covering

Ŝh
an,b0

Kp×Kp =
⋃

T∈G(Zp)\G(Qp)/Kp

T.E ′Kp .

As one has seen, the first difficulty in our unitary group case is that, the geometry
of the reduced special fiber of Rapoport-Zink space is more complicated than that for
the case of GLh/Qp with signature (d, h − d), since for the case (h, d) = 1 considered
above each connected component of the special fiber is already irreducible, see [78].
This is why we have to take the intersection of C with the tube over a fixed irreducible
component to have a locally finite cell decomposition. The second difficulty is that, the
algorithm above when applied to the PEL type Rapoport-Zink spaces, for example the
unitary group case considered here, is not well compatible with the action of Hecke
correspondences. One has to modify it. This is why the semi-stable locus may be not
enough and we find a closed domain C ⊃ Mss.

On the other hand, the inequality

HN(H, ι, λ) ≤ Newt(Hk, ι, λ)

between the Harder-Narasimhan and Newton polygons for p-divisible groups with addi-
tional structures still holds. In fact this can be easily deduced from Fargues’s inequality
HN(H) ≤ Newt(Hk), since the former polygons are just defined respectively by nor-
malization of the later polygons.

The general strategy to prove the above theorem, is that using the modified algorithm
and the above inequality to deduce first the equalities in the theorem hold for rigid
points. For the rest points, by the equivalence of suitable categories between Berkovich
spaces and rigid analytic spaces, it suffices to prove these coverings are locally finite,
thus admissible. This last argument is different from that in [27] section 16.

In our unitary case, we have in fact that the underling topological space of D is
locally compact, like the case of Lubin-Tate space. These two facts both come from
the special phenomenon that, all the non basic Newton polygon has contacted points
with the Hodge polygon, and thus one can deduce the Harder-Narasimhan polygon
stratification and the Newton polygon stratification of the associated p-adic Shimura
varieties coincide.

At this point we should note that, the Rapoport-Zink spaces for GSp4 is quite similar
with our unitary case. See [54] section 4 for a similar geometric description of the reduced
special fiber. And the two non basic Newton polygons have contacted points with the
Hodge polygon. In particular our method here will enable us to prove an analogue result
of cell decomposition for the basic p-adic GSp4 Rapoport-Zink spaces.
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2.2 The unitary group Rapoport-Zink spaces and Hecke action

We consider here a special case of PEL type Rapoport-Zink spaces.

Let p > 2 be a fixed prime number. Let Qp2 be the unramified extension of Qp of
degree 2 and denote by ∗ the nontrivial Galois automorphism of Qp2 over Qp. Let V be
a finite dimensional Qp2-vector space with dimQp2 (V ) = n. Let 〈, 〉 : V × V → Qp be a
Qp-valued skew-hermitian form, and G be the associated reductive group, i.e.,

G(R) = {g ∈ GLQp2⊗R(VR)|∃c ∈ R× : 〈gv, gw〉 = c〈v, w〉,∀v, w ∈ VR := V ⊗R}

for all Qp-algebra R. We remark that there exists a unique skew-hermitian form 〈, 〉′ :
V × V → Qp2 such that 〈, 〉 = TrQp2/Qp ◦ 〈, 〉

′. Moreover, if δ ∈ Q×p2 with δ∗ = −δ, then
(, ) := δ〈, 〉′ is a hermitian form, and G is just the unitary similitude group GU(V, (, ))
of the hermitian space (V, (, )). Let Zp2 be the ring of integers of Qp2 . We assume that
there exists a Zp2-lattice Λ such that 〈, 〉 induces a perfect Zp-pairing on Λ. This implies
that G is unramified over Qp and has a reductive model over Zp.

Let Qp be an algebraic closure of Qp. Then there is a canonical imbedding

GQp ⊂ (ResQp2/QpGLQp2 (V ))Qp = GL(V ⊗Qp2 ,id Qp)×GL(V ⊗Qp2 ,∗ Qp),

and we have an isomorphism

GQp ' GL(V ⊗Qp2 ,id Qp)×Gm.

Via this isomorphism, we fix a G(Qp)-conjugate class of cocharacter

µ : GmQp −→ GQp

z 7→ (diag(z, . . . , z, 1), z).

Let L = W (Fp)Q, σ be the Frobenius relative the field extension L/Qp. Consider the set
B(G) = G(L)/ ∼ of σ-conjugate classes in G(L), and the Kottwitz set B(G, µ) ⊂ B(G)
([52]). In our special case we can have an explicit description of the set B(G, µ) as a set
of polygons, see [10] 3.1. We consider the basic element b = b0 ∈ B(G, µ), and let Jb be
the reductive group of automorphisms of the unitary isocrystal (VL, bσ, ι, 〈, 〉), which is
then an inner form of G over Qp.

Associated to the above data (Qp2 , ∗, V, 〈, 〉, b, µ), we have the Rapoport-Zink space
M̂ which is a formal scheme locally formally of finite type over SpfOL. It is a moduli
space of p-divisible groups with additional structures of the following type : for each S ∈
NilpOL, M̂(S) = {(H, ι, λ, ρ)}/ ', where

– H is a p-divisible group over S ;
– ι : Zp2 → End(H) is an action of Zp2 on H satisfying locally

Lie(H) = Lie(H)0 ⊕ Lie(H)1, rankOSLie(H)0 = 1, rankOSLie(H)1 = n− 1

where

Lie(H)0 = {x ∈ Lie(H)|ι(a)x = ax}, Lie(H)1 = {x ∈ Lie(H)|ι(a)x = a∗x};
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– λ : H → HD is a principal Zp2-linear polarization, here HD is the dual p-divisible
group endowed with the Zp2-action ιHD(a) = (ι(a∗))D ;

– ρ : HS → HS is a quasi-isogeny, such that ρD ◦ λ ◦ ρ is a Q×p -multiple of λ, here
S = S ⊗Zp2 Fp2 ;

– (H1, ι1, λ1, ρ1) ' (H2, ι2, λ2, ρ2) if there exists a Zp2-linear isomorphism α : H1 →
H2 such that ρ2 = ρ1 ◦ α, αD ◦ λ2 ◦ α is a Z×p -multiple of λ1.

We call such a p-divisible group with additional structures H = (H, ι, λ) a unitary
p-divisible group. For such a unitary p-divisible group H, we have

rankOSLie(H) = n, height(H) = 2n.

The height of ρ is a multiple of n by [80] 1.7 or [15] and we obtain a decomposition

M̂ =
∐
i∈Z

M̂i,

where M̂i is the open and closed formal subscheme of M̂ where ρ has height in. More-
over, we have in fact

M̂i 6= ∅ ⇔ in is even,

and in this case there is an isomorphism M̂i ∼= M̂0 induced the action of Jb(Qp), see
[80] or the section 2.6 below.

The standard p-divisible group H = (H, ι, λ) is definable over Fp2 . We let

(M,F,V,M = M0 ⊕M1, 〈, 〉)

denote its covariant Diéudonne module over W (Fp2) = Zp2 , where 〈, 〉 : M×M → Zp2

is a perfect alternating Zp2-bilinear pairing satisfying

〈Fx, y〉 = 〈x,Vy〉σ, 〈ax, y〉 = 〈x, a∗y〉

for all x, y ∈M, a ∈ Zp2 , here σ = ∗ is the Frobenius on W (Fp2) = Zp2 ; the decomposi-
tionM = M0 ⊕M1 is induced by the decomposition Zp2⊗ZpW (Fp2) ' W (Fp2)×W (Fp2)
and the Zp2-action on M. The F and V are homogeneous of degree 1 with respect to
the above decomposition and M0 and M1 are totally isotropic with respect to 〈, 〉. The
signature condition on the Lie algebra then imply

dimFp2 (M0/VM1) = 1, dimFp2 (M1/VM0) = n− 1.

We denote by (N,F) = (M,F) ⊗ Qp2 the isocrystal of H. We can assume that H is
superspecial and that the isocystal (N,F) is generated by the elements x such that
F2x = px, see [81]. As F2 is Qp2-linear, we have F2 = pidN and therefore F = V. For
i = 1, 2, let Ni = Mi⊗Qp2 , then N = N0⊕N1 and with respect to this decomposition F
is of degree 1. We fix an element δ ∈ Z×p2 such that δ∗ = −δ and define a nondegenerate
hermitian form on the Qp2-vector space N0 by

{x, y} := δ〈x,Fy〉.

Recall the reductive group Jb over Qp defined by the automorphisms of the unitary
isocrystal (N,F,N = N0 ⊕N1, 〈, 〉), which is an inner form of G. We have then an
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isomorphism of Jb with the unitary similitude group GU(N0, {, }) of the hermitian space
(N0, {, }). Thus for n odd, we have in fact an isomorphism

G ∼= Jb;

while for n even, Jb is the non quasi-split inner form of G.

We now describe the group actions on the Rapoport-Zink space M̂. First, we have
a left action of Jb(Qp) on M̂ : ∀g ∈ Jb(Qp),

g : M̂ −→ M̂

(H, ι, λ, ρ) 7→ (H, ι, λ, ρ ◦ g−1),

since Jb can be viewed as the group of self quasi-isogenies of (H, ι, λ).

To consider the action of G(Qp) on M̂, we would rather to consider the associated
Berkovich analytic spaceM = M̂an of M̂. As always, by trivializing the Tate module of
the universal p-divisible group overM, we can define a tower of Berkovich analytic spaces
(MK)K⊂G(Zp). These spaces are separated smooth good Berkovich analytic spaces over
L. A point x ∈MK is given by (H, ι, λ, ρ, ηK), where η : V

∼→ Vp(H) is the rigidification
isomorphism such that η(Λ) = Tp(H). Then Jb(Qp) also acts on each spaceMK in the
natural way. Moreover, G(Qp) acts on this tower : for g ∈ G(Qp) and K ⊂ G(Zp) such
that g−1Kg ⊂ G(Zp), we have an isomorphism

g :MK →Mg−1Kg,

(H, ι, λ, ρ, ηK) 7→ (H ′, ι′, λ′, ρ′, η′(g−1Kg)),

here (H ′, ι′, λ′, ρ′, η′) is defined as following. Assume first g−1 ∈ Mn(Zp2). Then Λ ⊃
g−1(Λ). Since η(Λ) = Tp(H) for the rigidification η, η(Λ/g−1(Λ)) defines a finite flat
subgroup of H. We take H ′ := H/η(Λ/g−1(Λ)) with the naturally induced additional
structures (ι′, λ′) on H ′, and ρ′ = π(mod p) ◦ ρ for the natural projection π : H → H ′.
Finally there is a rigidification η′ = η ◦ g : V → Vp(H

′) such that the following diagram
commutes :

V
η //

g

��

Vp(H)

��
V

η // Vp(H
′).

For the general case, one can always find an integer r ∈ Z such that prg−1 ∈ Mn(Zp2),
then we can define (H ′′, ι′′, λ′′, ρ′′, η′′) as above for p−rg. We set H ′ = H ′′, ι′ = ι′′, λ′ =
λ′′, ρ′ = p−rρ′′, η′′ = η′.

For any open compact subgroups K ′ ⊂ K ⊂ G(Zp), we denote πK′,K : MK′ →
MK the natural projection of forgetting levels, which is a finite étale morphism of
degree K/K ′. In particular, for K ⊂ G(Zp) fixed, each g ∈ G(Zp) defines a Hecke
correspondence onMK by the following diagram :

MgKg−1∩K
g

'
//

πgKg−1∩K,K

yy

MK∩g−1Kg
πK∩g−1Kg,K

&&
MK MK ,
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and this Hecke correspondence depends only on the double coset KgK. Thus we get an
“action" of K \G(Qp)/K onMK , which commutes with the (left) action of Jb(Qp).

Definition 2.2.1. Let K ⊂ G(Zp) be an open compact subgroup. For any subset A ⊂
|MK | of the underling topological space |MK |, and any Hecke correspondence T defined
by a coset KgK as above, we define the image of A under T by the set

T.A = πK∩g−1Kg,Kgπ
−1
gKg−1∩K,K(A).

We call the set
Hecke(A) :=

⋃
T∈K\G(Qp)/K

T.A

the Hecke orbit of A.

Remark 2.2.2. 1. By the above, the Hecke action of G(Qp) on the tower
(MK)K⊂G(Zp) is in fact a right action. So maybe we should better write the image
of A under T as A.T . On the other hand, there is in general no composition law
for the action of Hecke correspondences on MK, since the product (in the usual
way) of double cosets KgK ·KhK is in general not a single double coset. There-
fore, we will write T on the left as T.A, and for two Hecke correspondences T1, T2,
T2.(T1.A) should always be understood as the image of T1.A under T2.

2. More precisely, we have

Kh2K.(Kh1K.A) =
⋃

KhK⊂Kh1Kh2K

KhK.A,

where the right hand side is the finite union over all the double cosets in Kh1Kh2K.
In particular, A ⊂ KhK.(Kh−1K.A) and Hecke(A) = Hecke(T.A) for any T ∈
K \G(Qp)/K.

3. Note that if A is an analytic domain, then so is T.A for any T ∈ K \G(Qp)/K.

In the following we will mainly focus on the Hecke action on the spaceM. We would
like to describe the images of a point x ∈M under the action of G(Zp) \G(Qp)/G(Zp)
on M explicitly. To this end we first recall the Cartan decomposition to describe the
set G(Zp) \G(Qp)/G(Zp) explicitly. Let A ⊂ G be a maximal Qp-split torus such that

A(Qp) = {

 d1

. . .
dn

 |d1d
∗
n = d2d

∗
n−1 = · · · = constant ∈ Q×p }.

Then the cocharacter group

X∗(A) = {(a1, · · · , an) ∈ Zn|a1 + an = a2 + an−1 = · · · = constant ∈ Z},

and we denote the dominant coweights by

X∗(A)+ = {(a1, · · · , an) ∈ X∗(A)|a1 ≥ · · · ≥ an}.

The Cartan decomposition says that the following map is a bijection :

X∗(A)+ −→ G(Zp) \G(Qp)/G(Zp)

(a1, · · · , an) 7→ G(Zp)

 pa1

. . .
pan

G(Zp).



2.2 - The unitary group Rapoport-Zink spaces and Hecke action 69

A point x ∈M corresponds to a tuple (H/OK=H(x), ι, λ, ρ), as an element ofM(K) =

M̂(OK). For

T = G(Zp)

 pa1

. . .
pan

G(Zp) ∈ G(Zp) \G(Qp)/G(Zp),

we now give a moduli description of the finite set T.x. First assume a1 ≤ 0. By the
definition of the Hecke correspondence T , we have

T.x = {y ∈M|(Hy, ιy, λy, ρy)⊗OH(y)
OK ' (H/Gy, ι

′, λ′, π ◦ ρ),

whereGy ⊂ H is a finite flat subgroup scheme, such that its
geometric generic fiberGyK ' Zp2/p−a1Zp2 ⊕ · · · ⊕ Zp2/p−anZp2 ,

ι′, λ′are the naturally induced additional structures,
π : HOK/pOK → (H/Gy)OK/pOK is the natural projection.}

For the general T , note the action of an element z ∈ Q×p ⊂ G(Qp), is the same as the
action of z ∈ Q×p ⊂ Jb(Qp), see [66] lemma 5.36. Since

T.x = pa1(p−a1T ).x,

here the first scalar pa1 is considered as an element of G(Qp), we have the description
of the set (p−a1T ).x as in the above way. Then we consider pa1 as an element of Jb(Qp)
which just changes the quasi-isogeny. So we can describe the set T.x explicitly in all
cases.

We examine the effect of the group actions on connected components. First recall
Rapoport-Zink (cf. [66],3.52) have defined generally a locally constant mapping

κ : M̂ → 4,

where 4 = HomZ(X∗Qp(G),Z) and X∗Qp(G) is the group of Qp-rational characters of G.
This mapping satisfies that

κ(gx) = ωJ(g) + κ(x)

for all g ∈ Jb(Qp), x ∈ M̂. Here ωJ : Jb(Qp) → 4 is defined by < ωJ(x), χ >=
vp(i(χ)(x)) where i : X∗Qp(G) → X∗Qp(Jb) is the natural morphism between the two
groups of Qp-rational characters. In our unitary group case, the similitude morphism
c : G→ Gm defines the identification 4 = Z. The mapping

κ : M̂ −→ Z

(H, ι, λ, ρ) 7→ −htρ
n
.

The image of κ is then Z if n is even, and 2Z if n is odd. In section 2.7 we will review
the geometry of the reduced special fiber Mred of M̂. In particular we find M0

red is
connected and π0(M̂) = imκ. Since one has the equalities of the sets of connected
components

π0(M̂) = π0(Mred) = π0(M) = π0(M× Cp),
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thus each analytic spaceMi for i ∈ Z such that in is even is connected, which is in fact
geometrically connected, cf. [15] lemme 5.1.2.1.

Let D = G/Gder = Jb/J
der
b be the co-center group. More explicitly, we have

D = {(x, c) ∈ (ResQp2 |QpGm)×Gm|NQp2 |Qp(x) = cn},

where NQp2 |Qp : ResQp2 |QpGm → Gm is the norm morphism. We have the determinant
morphisms

det :G −→ D

g 7→ (detQp2 (g), c(g)),

and similarly for det : Jb → D. In her doctoral thesis [15], Chen has associated to
the torus D and the cocharacter detµ̃ (µ̃ is a variant of µ), a tower of analytic spaces
(M(D, detµ̃)K)K⊂D(Zp) with mappings κD,µ̃ :M(D, detµ̃)K →4. The geometric points
areM(D, detµ̃)K(L) = D(Qp)/K. By construction there is an action of D(Qp)×D(Qp)
on each space (M(D, detµ̃)K) such that on geometric points the action is just the left
multiplication :

(a, b).xK = abxK, ∀(a, b) ∈ D(Qp)×D(Qp), xK ∈ D(Qp)/K.

Moreover, via the morphism (det, det) : G(Qp) × Jb(Qp) → D(Qp) × D(Qp), she has
constructed a G(Qp) × Jb(Qp)-equivariant determinant morphism of towers of analytic
spaces

(MK)K −→ (M(D, det µ̃)detK)detK

for K varies as open compact subgroup of G(Zp), which is compatible with the map-
pings κ and κD,µ̃. The main results of loc. cit. imply that the geometric fibers of the
determinant morphism

MK −→M(D, det µ̃)detK

are exactly the geometric connected components ofMK .

For the case we are interested, K = G(Zp), detK = D(Zp), the set of geometric
components of M is the same with the set of its connected components, which is in
bijection withM(D, µ̃)(L) = D(Qp)/D(Zp). Via the mappings κ and κD,µ̃ they are in
turn bijection with imκ = imκD,µ̃, which is thus Z if n is even, and 2Z if n is odd.
Now the effect of the actions of G(Qp) and Jb(Qp) on the connected components ofM
translates on the last set is as following. First for g ∈ Jb(Qp), we have ωJ(g) = vp(c(g))
and

g :M0 ∼−→M−vp(c(g)).

For

T = G(Zp)

 pa1

. . .
pan

G(Zp) ∈ G(Zp) \G(Qp)/G(Zp),

let g = diag(pa1 , · · · , pan), then

det(g) = (pa1+···+an , c(g)) ∈ D(Qp), c(g)n = p2(a1+···+an)

and
vp(c(g)) = a1 + an = vp(c(g

′)) := vp(c(T )), ∀g′ ∈ T.
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We have
T.M0 ⊂M−vp(c(T ))

and in fact this is an equality T.M0 =M−vp(c(T )). Let G̃ = {g ∈ G(Qp)|c(g) ∈ Z×p }, Un =

{g ∈ G(Qp)|c(g) = 1}, then Gder(Qp) ⊂ Un ⊂ G̃, and the Hecke correspondences
associated to elements in G̃ stablizeM0.

We consider the p-adic period mapping

π :M→ Fa ⊂ Fwa ⊂ F ,

where F = (GL/PµL)an ' Pn−1,an is the p-adic projective space over L = W (Fp)Q, Fwa
is the weakly admissible locus and Fa is the image of π, see [38] for some discussion of
these objects. We recall the definition of π in the following. The universal quasi-isogeny
ρ induces an isomorphism

VL ⊗OL OM ' LieE(H)an,

here E(H) is the universal vector extension of HM over M̂, M ⊂ M̂ is the closed
subscheme defined by p. For a p-divisible group H/OK , recall we have the exact sequence

0→ ωHD,K → LieE(H)K → Lie(H)K → 0.

If (H, ι, λ, ρ) is associated to a point x ∈M, then ρ induces an isomorphism

ρ∗ : M⊗K ∼→ LieE(H)K ,

whereK = H(x) is the complete residue field associated to x, the filtration ρ−1
∗ (ωHD,K) ⊂

VK = M ⊗ K defines a point is the Grassmannin F = (GL/PµL)an ' Pn−1,an, this is
the image π(x) of x ∈ M. There is an action of Jb(Qp) on Fa and the mapping π is
Jb(Qp)-equivariant. In fact π is G(Qp)-invariant for the Hecke action on M, see the
following proposition 2.2.3. Under the p-adic period mapping π : M → Fa, we have
π(Mi) = Fa for each i ∈ Z such that in is even, and Fa is connected, cf. [15] lemme
5.1.1.1.

When x ∈ M is a rigid point, i.e. K is a finite extension of L thus in par-
ticular discrete with perfect residue field Fp, we have the unitary filtered isocrystal
(VL, bσ,Fil•VK , ι, 〈, 〉) associated to (H, ι, λ, ρ). Here the filtration on VK is defined by

Fil−1VK = VK ,Fil0VK = ρ−1
∗ (ωHD,K),FiliVK = 0, ∀i 6= −1, 0.

The filtered isocrystal (VL, bσ,Fil•VK , ι, 〈, 〉) determines the isogeny class of (H, ι, λ, ρ).
We have the following description of the Hecke orbit of a point x ∈M.

Proposition 2.2.3. The Hecke orbit of a point x ∈M is exactly the fiber π−1(π(x)) of
its image under the p-adic period mapping π.

Proof. Let x, y ∈ M be two points, and (H1/OH(x), ι1, λ1, ρ1), (H2/OH(y), ι2, λ2, ρ2) be
the unitary p-divisible groups associated to x and y respectively. Then x, y in the same
Hecke orbit if and only if there exists a finite extension K of both ⊃ H(x) and H(y),
and a (unique) quasi-isogeny ϕ : H1 → H2 over OK lifting

ρ2 ◦ ρ−1
1 : H1OK/pOK

ρ−1
1−→ HOK/pOK

ρ2−→ H2OK/pOK .
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Let M = D(H)W (Fp)→Fp be the value on W (Fp) → Fp of the covariant cystal D(H).
Then since

SpecOK/pOK

��

� � // SpecOK

��

SpecFp �
� // SpecW (Fp)

is a PD-morphism, we have

D(H⊗OK/pOK)OK�OK/pOK = D(H)OK�OK/pOK = M⊗OK .

The quasi-isogenies ρ1, ρ2 then induce isomorphisms

ρi∗ : M⊗K ∼→ LieE(Hi)K , i = 1, 2.

The images of x, y under the p-adic period mapping π :M→ Fa by definition are

ρ−1
i∗ (FilHi) := Fili ⊂M⊗K, i = 1, 2.

ρ2 ◦ ρ−1
1 can be lifted to a quasi-isogeny ˜ρ2 ◦ ρ−1

1 : H1 → H2, by the theory of
Grothendieck-Messing, if and only if the homomorphism

D(ρ2 ◦ ρ−1
1 )OK�OK/pOK : D(H1)OK�OK/pOK [

1

p
]
∼→ D(H2)OK�OK/pOK [

1

p
]

send the Hodge filtration FilH1 to FilH2 . But this is equivalent to say Fil1 = Fil2, i.e.
π(x) = π(y). Thus the proposition holds.

Thus a point y ∈ M is in the Hecke orbit of x ∈ M, if and only if there exist a
finite extension K of both H(x) and Hy, and an unique quasi-isogeny Hy → Hx over
OK lifting the quasi-isogeny ρx ◦ρ−1

y over OK/pOK . Note the last condition is equivalent
to there exists an isogeny Hy → Hx. If x ∈ Mrig is a rigid point, then one find easily
that its Hecke orbit consist all of rigid points, i.e. Hecke(x) ⊂ Mrig. In this case the
Hecke orbit is determined by the filtered isocrystal (VL, bσ,Fil•π(x)VK , ι, 〈, 〉).

For a geometric point x ∈ M(K), K = K, the geometric fiber π−1(π(x)) is then
bijective to the set of cosets G(Qp)/G(Zp), see [66] proposition 5.37. By [18] and [15],
π :M→ Fa is an étale covering map in the sense that, ∀y ∈ Fa, there exists an open
neighborhood U ⊂ Fa such that π−1(U) is a disjoint union of spaces Vi, each restriction
map π|Vi : Vi → U is finite étale. In particular, the Hecke orbit π−1(π(x)) is a discrete
subspace ofM. Thus it makes sense to talk “fundamental domain” for the Hecke action
of G(Qp) onM. In the following section, we will consider the action of G(Qp)× Jb(Qp)
onM and find some “fundamental domain” for this action.

We explain how is the Hecke action of G(Qp) on a Hecke orbit π−1(π(x)). We first
look at the geometric Hecke orbits. Fix a geometric pint x over x and denote their images
under the π by y and y respectively, let π1(Fa, y) be the étale fundamental group of
Fa defined by de Jong in [18]. Then by definition there is an action of π1(Fa, y) on the
geometric Hecke orbit π−1(y). Let us fix a point in this orbit, say x, then we have an
identification π−1(y) = G(Qp)/G(Zp). Thus π1(Fa, y) acts on G(Qp)/G(Zp). On this
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set G(Qp)/G(Zp) we have two other group actions, namely the group G(Qp) and the
Galois group Gal(H(y)/H(y)). The relation between these actions is as follow. Recall
the Zp-local system T defined by the universal étable unitary p-divisible group on the
p-adic analytic spaceM, it descends to a Qp-local system on Fa, which we still denote
by T . Since Fa is connected, by de Jong [18] theorem 4.2. we have the equivalence of
categories

Qp − LocFa
∼−→ RepQp(π1(Fa, y))

E 7→ Ey

by the monodromy representation functor. Here Qp − LocX is the category of Qp-local
systems over a Berkovich space X introduced in loc. cit. definition 4.1. One can trans-
late the above equivalence to the case with additional structures by using Tannakian
language. In particular the Qp-local system T over Fa defines a representation of the
fundamental group :

ρ : π1(Fa, y)→ G(Qp).

Then the above action of π1(Fa, y) on G(Qp)/G(Zp) is compatible with the natural
action of G(Qp) on the quotient set, through the morphism ρ. On the other hand, there
is the natural action of the Galois group Gal(H(y)/H(y)) on the geometric Hecke orbit
π−1(y), and the quotient set is the Hecke orbit of x

π−1(π(x)) = π−1(y) ' π−1(y)/Gal(H(y)/H(y)).

The point y in Fa defines a morphism of fundamental groups

π1(y, y) = Gal(H(y)/H(y))→ π1(Fa, y),

and the action of Gal(H(y)/H(y)) and π1(Fa, y) is compatible on π−1(y) through the
above morphism. Thus the three group π1(Fa, y), G(Qp) and Gal(H(y)/H(y)) act com-
patibly on G(Qp)/G(Zp) via the morphisms

Gal(H(y)/H(y))→ π1(Fa, y)→ G(Qp).

Here although we will not need it in the following, we remark that the monodromy
representations of geometric fundamental groups π1(M × Cp, x) and π1(Fa × Cp, y)
factor through Gder(Zp) and Gder(Qp) respectively :

π1(M× Cp, x) −→ Gder(Zp)

π1(Fa × Cp, y) −→ Gder(Qp).

Moreover these monodromy representations are maximal in the sense that both images
are dense in the targets respectively, cf. [15] théorème 5.1.2.1. Let Γ be the image of the
later. Note that π1(Fa×Cp, y) also acts on G(Qp)/G(Zp) compatibly with the action of
G(Qp). By de Jong’s description ofM in term of lattice in the Qp-local system T over
Fa, one have the bijection

π0(M) ' Γ \G(Qp)/G(Zp).

The action of the Hecke correspondences on the geometric orbit is then quite easy :
with the fixed point x in π−1(y) and the identification π−1(y) = G(Qp)/G(Zp), a corre-
spondence G(Zp)gG(Zp) sends a coset hG(Zp) to the set of cosets {h′G(Zp)|h′G(Zp) ⊂
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G(Zp)ghG(Zp)}. Thus the Hecke action is compatible with the natural action of
G(Qp) on G(Qp)/G(Zp), and thus compatible with the action of the Galois group
Gal(H(y)/H(y)). The Hecke action on π−1(y)/Gal(H(y)/H(y)) then induces the Hecke
action on the orbit π−1(π(x)).

2.3 Harder-Narasimhan filtration of finite flat group schemes II

In order to study the Rapoport-Zink space M, from this subsection to the end of
subsection 2.5, we will turn to the study of finite flat group schemes and p-divisible
groups over complete valuation rings following the ideas in [26] and [27]. In this subsec-
tion we recall some further propositions in the theory of Harder-Narasimhan filtration
of finite flat group schemes which we will need.

Let the notations be as in subsection 1.2. We recall some useful facts.

Proposition 2.3.1 ([26], Corollaire 6). For µ ∈ [0, 1] fixed, the category of semi-stable
finite flat group schemes of slope µ and the trivial group 0 is a sub abelian category of
the category of fppf sheaves over SpecOK.

Proposition 2.3.2 ([26], Corollaire 7). For a semi-stable group G, the kernel of multi-
plication by pn is flat and semi-stable of slope µ(G[pn]) = µ(G). If pnG 6= 0 then pnG is
also semi-stable of slope µ(pnG) = µ(G).

Finally we have the semi-continuity of the function HN for a family of finite flat
group schemes.

Theorem 2.3.3 ([26], Théorème 3). Let K|Qp be a complete discrete valuation field
extension, and X be a formal scheme of formally locally of finite type over SpfOK. Let G
be a locally free finite group scheme over X of constant height h = ht(G). Then the map
x 7→ HN(Gx) from the underling topological space of the associated Berkovich analytic
space X an to the space of Harder-Narasimhan polygons is continuous. Moreover, it is
semi-continuous for the G-topology on X an defined by analytic domains in the following
sense. If P : [0, h] → R is a fixed polygon such that the abscissas its break points are
integers. Then

{x ∈ |X an||HN(Gx) ≥ P}

is a closed analytic domain in X an, whose associated rigid space is an admissible open
in X rig. In particular if the degree function x 7→ degGx is constant on X an, then the
semi-stable locus

{x ∈ |X an||Gx is semi-stable}

is a closed analytic domain of X an.

2.4 Harder-Narasimhan polygon of p-divisible groups

One can then use the theory of Harder-Narasimhan filtration of finite flat group
schemes to study p-divisible groups, p-adic analytic Rapoport-Zink spaces and Shimura
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varieties. Let H/OK be a p-divisible group of dimension d and height h, where OK as
above. Then for any n ≥ 1, we have a functionHN(H[pn]). We normalize it as a function

1

n
HN(H[pn])(n·) : [0, h] −→ [0, d]

x 7→ 1

n
HN(H[pn])(nx).

In [27], Fargues proved as n → ∞ these functions uniformly convergent to a continue
function, which we call the (normalized) Harder-Narasimhan polygon of H

HN(H) : [0, h]→ [0, d],

and in fact
HN(H)(x) = inf

n≥1

1

n
HN(H[pn])(nx)

for all x ∈ [0, h]. Moreover, this function is invariant when H varies in its isogeny class :
HN(H) = HN(H ′) for any p-divisible group H ′ isogenous to H. A not evident fact is
that HN(H) is in fact the polygon attached to a Harder-Narasimhan type filtration of
the rational Hodge-Tate module, so it is really a polygon ! In the case the valuation on
K is discrete, then it is the Harder-Narasimhan polygon of the crystalline representation
defined by the rational Tate module Vp(H) for suitably defined slope function, which in
turn can also be formulated in the associated admissible filtered isocrystals, see section
1.4 and [27] sections 8, 10.

As mentioned in the introduction, one of the main results in [27] is the following
inequality between the Harder-Narasimhan and Newton polygons (see Theorem 1.3.5)

HN(H) ≤ Newt(Hk).

In fact when the base valuation ring OK is not necessary discrete, one has to assume H
is “modular” in the sense of définition 25 in loc. cit., see also definition 1.5.6, which is
naturally satisfied for p-divisible groups coming from points in the Berkovich analytic
Rapoport-Zink spaces. The proof of the above theorem for p-divisible groups over com-
plete rank one discrete valuation OK |Zp with perfect residue field is easy. It comes from
the fact that the reduction functor between the two categories of p-divisible groups up
to isogenies

pdivOK ⊗Q −→ pdivk ⊗Q
is exact and preserving the height and dimension functions. One can also rewrite these
polygons in terms of the associated filtered isocystal and explain the inequality by
the theory of filtered isocystals. For the non-discrete case, Fargues has used heavily p-
adic Hodge theory and studied the Harder-Narasimhan filtration of the Banach-Colmez
spaces. For more details see section 10, 11 of [27].

In the section 1.3 we have introduced Harder-Narasimhan polygons for p-divisible
groups with additional structures, which include our unitary p-divisible groups in section
2.2 as a special case. Let F |Qp be a finite unramified extension of degree d, (H, ι, λ) (resp.
(H, ι)) be a p-divisible group with PEL (resp. EL) additional structures for F |Qp over
a complete rank one valuation ring OK |Zp. Recall we define the Harder-Narasimhan
polygon of (H, ι, λ) (resp. (H, ι))) as the normalization of HN(H)

HN(H, ι, λ)(resp. (H, ι)) =
1

d
HN(H)(d·)



76 Cell decomposition of some unitary group Rapoport-Zink spaces

as a function [0, htH/d] → [0, dimH/d], which we will also identify with its graph as a
polygon in [0, htH/d]× [0, dimH/d]. Under the above notations, and when OK is not of
discrete valuation we assume in addition that H is modular in the sense of definition 25
in [25], recall we have the basic inequality (see Proposition 1.3.6)

HN(H, ι, λ) ≤ Newt(Hk, ι, λ).

Similarly conclusion holds for the EL case.

Finally we have also the semi-continuity of the function HN for a family of p-
divisible groups. Fix a finite unramified extension F |Qp of degree d, and we consider
p-divisible groups with additional structures for F |Qp. The following proposition can be
deduced directly from the case without additional structures, see [27] proposition 4. To
fix notations we just state it for the PEL cases.

Proposition 2.4.1. Let K|Qp be a complete discrete valuation field, and X be a for-
mal scheme locally formally of finite type over SpfOK. Let (H, ι, λ) be a p-divisible
group with additional structures over X of dimension dn

2
and height dn constant.

Then the normalized Harder-Narasimhan function on the underlying topological space
of X an is semi-continuous : if P : [0, n] → [0, n/2] is a concave function such that
P(0) = 0,P(n) = n/2, then the subset

{x ∈ |X an||HN(Hx, ι, λ) ≥ P}

is closed.

In particular, with the above notation this proposition permit us to define a strat-
ification of the underlying topological space of X. More precisely let Poly denotes the
set of concave polygons starting from the point (0,0) to the point (n, n/2), such that
the abscissas of its break points are integers. Then we have a stratification by Harder-
Narasimhan polygons

X =
∐
P∈Poly

XHN=P ,

where
XHN=P = {x ∈ |X||HN(Hx, ι, λ) = P}

which is a locally closed subset of X by proposition 2.4.1. On the other hand there is a
stratification by Newton polygons

X =
∐
P∈Poly

XNewt=P ,

where
XNewt=P = {x ∈ |X||Newt(Hxk(x), ι, λ) = P} = sp−1(XNewt=P

red )

which is a locally closed analytic domain of X. Here k(x) is the residue field of the
complete valuation OH(x) associated to x, Xred is the reduced special fiber of the formal
scheme X , XNewt=P

red is the Newton polygon strata of Xred for the polygon P , and sp :
X → Xred is the specialization map, which is anti-continuous in the sense that sp−1(Y )
is an open (resp. a closed) subset of X if Y is a Zariski closed (resp. open) subset of Xred.
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Let Pss ∈Poly denote the line of slope 1
2
between (0,0) and (n, n

2
). Then proposition 1.3.6

tells us we have the inclusion

XNewt=Pss ⊂ XHN=Pss .

Now we look at the unitary Rapoport-Zink space M̂ introduced in section 2.2. Since
it is basic, we have

M =MNewt=Pss .

Thus there is just one Harder-Narasimhan strata, i.e. the whole space

M =MHN=Pss .

In section 2.9 we will look at the Harder-Narasimhan stratification for some unitary
p-adic Shimura varieties.

2.5 An algorithm for p-divisible groups with additional struc-
tures

In [27], Fargues introduced an algorithm for p-divisible groups over complete valua-
tion rings of rank one which is an extension of Zp, to produce p-divisible groups more
close to those of HN-type, see loc. cit. for the definition of p-divisible groups of HN-
type. For the case which we are interested, it suffices to consider the formal p-divisible
groups with special fibers supersingular and semi-stable p-divisible groups. Let K|Qp be
a complete field extension for a rank one valuation, and OK be its ring of integer. Let H
be a p-divisible group over OK . Recall the following definition of Fargues ([27], lemme
2, définition 4) :

Definition 2.5.1. H is called semi-stable if it satisfies one of the following three equiv-
alent conditions :

– H[p] is semi-stable ;
– for all n ≥ 1, H[pn] is semi-stable ;
– for all finite flat subgroup scheme G ⊂ H, µ(G) ≤ µH := dimH

htH
(= µ(H[pn]), ∀n ≥

1).

For a finite flat group scheme G over OK , let µmax(G) be the maximal slope of the
Harder-Narasimhan polygon HN(G) of G, then it is semi-stable if and only if µmax(G) =
µG. Thus for the p-divisible group H, it is semi-stable if and only if one of the following
two another conditions holds :

– µmax(H[p]) = µH ;
– for all n ≥ 1, µmax(H[pn]) = µH .
For the p-divisible group H over OK , for all k ≥ 1, we set

Gk = the first scran of the Harder-Narasimhan filtration of H[pk].

Then one has for all i ≥ j ≥ 1

Gj = Gi[p
j] ⊂ Gi, p

i−jGi ⊂ Gj,
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see [27] lemme 3 and the remark below there. In particular, the slopes µ(Gk) =
µmax(H[pk]) do not change when k ≥ 1 varies. We denote µmax(H) := µmax(H[pk])
for any k ≥ 1, and one can find that

µmax(H) = sup{µ(G)|G ⊂ H} = sup{µ(G)|G ⊂ H[p]}.

We have thus always µmax(H) ≥ µH , and the equality holds if and only if H is semi-
stable.

We set
FH = lim−→

k≥1

Gk ⊂ H,

considered as a sub-fppf sheaf of H. Then we have for all k ≥ 1, FH [pk] = Gk is a finite
flat group scheme over OK , and FH = H if and only if H is semi-stable.

Suppose H is not semi-stable. Then lemme 4 of loc. cit. tells us there are two possi-
bilities :

– FH is a finite flat group scheme over OK , that is there exists some k0 ≥ 1 such
that FH = FH [pk0 ] ;

– there exists some integer k0 ≥ 1 such that FH/FH [pk0 ] is a semi-stable sub-p-
divisible group of H/FH [pk0 ] with µFH/FH [pk0 ] = µmax(H) > µH .

As said above, we will only be interested in formal p-divisible groups over OK , such
that their special fibers are supersingular. We call such a formal p-divisible group basic.
From now on we will suppose that H is a basic modular (see definition 1.5.6) p-divisible
group over OK . Then we have only the first possibility for FH , i.e. it is a finite flat
subgroup scheme of H. This comes from the facts HN(H) ≤ Newt(Hk) thus both of
them are the line between (0, 0) and (h, d), and one can read off the Harder-Narasimhan
polygon of H from the algorithm below.

The algorithm of Fargues for such a p-divisible group H, defines a sequence of p-
divisible groups (Hi)i≥1 by induction, with an isogeny φi : Hi → Hi+1 for each i ≥ 1.
For i = 1, we set H1 = H, and if Hi 6= 0, we set

Hi+1 = Hi/FHi ,

and φi : Hi → Hi+1 is the natural projection ; if Hi = 0 we set Hi+1 = 0 and φi the
trivial morphism. Then by construction,

µmax(Hi+1) < µmax(Hi) = µ(FHi)

if Hi+1 6= 0. Note µH = µHi+1
≤ µmax(Hi+1) if Hi+1 6= 0. The section 8 of [27] tells us

that if the valuation on K is discrete, then the algorithm stops after finite times, i.e.
Hi = 0 for i large enough. For the general valuation case, the main theorem of loc. cit.
says if (dimH, htH) = 1, then Hi = 0 for i >> 0.

Until the end paragraph of this section we assume the valuation on K is discrete.
Then by the above discussion, for a basic formal p-divisible group H over OK , if it is
not semi-stable, we have a sequence of p-divisible groups with each arrow between them
an isogeny :

H = H1
φ1 //

φ

''
H2

φ2 // · · · φr // Hr+1,
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with H1, · · · , Hr not semi-stable and Hr+1 semi-stable of slope µ = d
h
, and for each

i = 1, · · · , r, the kernel of the isogeny ker(φi) is the first scran of the Harder-Narasimhan
filtration of Hi[p

ni ] for some ni >> 0. There exists some N >> 0 such that the kernel
kerφ of the composition of these isogenies φ is contained in H[pN ]. By construction,
kerφ is in fact a scran in the Harder-Narasimhan filtration of H[pN ] and these kerφi’s
are exactly the sub-quotient factors of the Harder-Narasimhan filtration of kerφ. If we
denote µi = µ(kerφi), then

µ1 > µ2 > · · · > µr >
d

h
.

Now we consider p-divisible groups with additional structures. First, the above con-
struction works totally in the EL case, that is p-divisible groups with actions of the
integer ring OF of some finite unramified extension F |Qp, since the Harder-Narasimhan
filtration is of OF -invariant, cf. subsection 1.2. Next, we consider PEL cases, that is a
p-divisible group H over OK , with action ι : OF → End(H) of the integer ring OF of
some finite unramified extension F |Qp, and a polarization λ : H → HD, such that ι and
λ are compatible in the sense of definition 2.4.2. In particular, we can apply the unitary
p-divisible groups studied above to this situation. So let (H, ι, λ) be a p-divisible group
with (PEL) additional structures, such that H is basic. Assume H is not semi-stable,
then we have a sequence of OF -linear isogenies of p-divisible groups with actions of OF :

H = H1
φ1 //

φ

''
H2

φ2 // · · · φr // Hr+1,

with H1, · · · , Hr not semi-stable and Hr+1 semi-stable of slope µ = 1
2
, and there exists

some N >> 0 such that E := kerφ ⊂ H[pN ] and E * H[pN−1]. Then E is a scran in
the Harder-Narasimhan filtration of H[pN ]. Let

0 = E0 ( E1 ( · · · ( Er = E

be the Harder-Narasimhan filtration of E, then we have

Ei/Ei−1 ' kerφi

µ1 > · · · > µr >
1

2
,

where µi := µ(kerφi) for i = 1, · · · , r. The polarization λ on H now induces a polariza-
tion on H[pN ] : λ : H[pN ]

∼→ H[pN ]D. Thus there is a perfect pairing

H[pN ]×H[pN ]→ µp2nN .

Let E⊥i be the orthogonal subgroup ofH[pN ] under this pairing, for i = 1, · · · , r. Since Ei
is a scran of the Harder-Narasimhan filtration of H[pN ], so is E⊥i by the compatibility
of Harder-Narasimhan filtration with polarizations. Moreover, we have the following
inclusions :

0 ( E1 ( · · · ( Er−1 ( Er = E ⊂ E⊥ = E⊥r ( E⊥r−1 ( · · · ( E⊥1 ( H[pN ],
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and the equalities
µi + µ(E⊥i−1/E

⊥
i ) = 1,

for i = 1, · · · , r. Recall that we have

µ1 > µ2 > · · · > µr >
1

2
.

For all k ≥ N , the finite flat group schemes E1, · · · , Er ⊂ H[pk] are the same and do not
depend on k, but their orthogonal groups E⊥1 , · · · , E⊥r do depend the group H[pk]. Thus
for k ≥ N varies, just the height of ht(E⊥/E) varies and ht(Ei/Ei−1) = ht(E⊥i−1/E

⊥
i )

do not change for i = 1, . . . , r − 1.

There are two different cases : E = E⊥ or E ( E⊥.
1. E = E⊥, i.e. there is no slope of 1

2
in the Harder-Narasimhan filtration of H[pN ].

This case is good, since the polarization λ on H then induces a polarization λ′ :
H/E → (H/E)D, such that π ◦ λ′ ◦ πD = pNλ, where π : H → H/E is the natural
projection, i.e. we have the following commutative diagram :

H
pNλ //

π
��

HD

H/E λ′ // (H/E)D.

πD

OO

Thus in this case we get a p-divisible group with naturally induced additional
structures (H/E, ι′, λ′).

2. E ( E⊥, i.e. E⊥/E is a factor in the Harder-Narasimhan filtration of H[pN ] of
slope 1

2
. Note there is a natural perfect pairing

(E⊥/E)× (E⊥/E)→ µ
pht(E

⊥/E) .

Let C := E⊥/E. We make the following claim :
Claim 2.5.2. there is a filtration of sub-semi-stable groups of slope 1

2

0 ( C1 ( · · · ( Ck ⊂ C⊥k ( · · · ( C⊥1 ( C,

such that p(C⊥k /Ck) = 0.
In fact, if we let m be the minimal integer such that pmC = 0, if m = 1 we are
done ; so assume m ≥ 2 now. Consider 0 6= pm−1C ( C, which is also semi-stable
of slope 1

2
. Then we have a filtration of semi-stable groups of slope 1

2

0 6= pm−1C ( (pm−1C)⊥ = C[pm−1] ( C.

Now
ht((pm−1C)⊥/pm−1C) < htC,

and set C ′ = (pm−1C)⊥/pm−1C, by induction we thus have the above claim.
Now we can translate the above filtration to a filtration of subgroups of E⊥ ⊂
H[pN ], that is there exists a filtration

E ( E1 ( · · · ( Ek ⊂ Ek⊥ ( · · · ( E⊥,

such that Ei/E = Ci ⊂ E⊥/E = C. Let E ′ := Ek, then since E ′/E is semi-stable,
H/E ′ is semi-stable. We still have two cases.



2.6 - The analytic domain C 81

(a) If Ck = C⊥k that is E ′ = E
′⊥, this is still good in this case : we have the

semi-stable p-divisible group with additional structures (H/E ′, ι′, λ′).
(b) If E ′ ( E

′⊥, we have the following proposition.
Proposition 2.5.3. Let the notation be as above, and (H, ι, λ) be a p-divisible
group with additional structures. Assume that E ′ ( E

′⊥. Then after changing
N to N + 1 if N is odd in the PEL unitary case, there exists some finite
extension K ′|K and a totally isotrope subgroup E ′′ = (E ′′)⊥ of H[pN ] over
OK′.

Proof. Let V := (E
′⊥/E ′)(K), since p(E ′⊥/E ′) = 0, it is a Fp-vector space

equipped with an action of the Galois group Gal(K/K). Moreover, there is
an induced Fpd-action ι : Fpd → End(V )(d = [F : Qp], ι : OF → End(H)),
so we can view V as a Fpd-vector space via ι. The pairing 〈, 〉 on E

′⊥/E ′

induces a hermitian form V × V → Fpd . By assumption dimF
pd
V = 2m for

some integer m ≥ 1. Thus there exists a maximal totally isotrope subspace
W ⊂ V,W = W⊥, and a finite extension K ′|K such that W is stable by
Gal(K/K ′). Then the schematic closure ofW in E ′⊥/E ′ over OK′ corresponds
to a totally isotrope subgroup E ′′ = (E ′′)⊥ of H[pN ] over OK′ .

Let K ′|K, and E ′′ ⊂ H[pN ] be as above. Then the p-divisible group
H/E ′′ over OK′ admits naturally induced additional structures : ι′ : OF →
End(H/E ′′), λ′ : H/E ′′ → (H/E ′′)D such that the following diagram com-
mutes :

H
pNλ //

π
��

HD

H/E ′′
λ′ // (H/E ′′)D.

πD

OO

Recall H/E ′ is a semi-stable p-divisible group. Thus we have an isogeny
f : H/E ′′ → H/E ′ of p-divisible groups over OK′ such that p(kerf) = 0.

Now for the case that the valuation ring OK is not discrete, let (H, ι, λ) be a basic
p-divisible group with additional structures over OK . Assume H is not semi-stable. We
still have Fargues’s algorithm

H = H1
φ1→ H2 → · · ·

φi−1→ Hi
φi→ · · · ,

with
FH = kerφ1, FH2 = kerφ2, · · · .

If the algorithm stops after finite times, i.e. there exists some r such that Hr 6= 0 and
Hi = 0 for all i ≥ r+1. In this case Hr is semi-stable, and we can continue our procedure
as above to find the E, E ′ and E ′′. Thus once the algorithm stops after finite times,
we can continue as above and get a modified algorithm for the case with additional
structures.

2.6 The analytic domain C

We return to the study of the p-adic analytic unitary group Rapoport-Zink spaceM
we introduced in subsection 2.2. Let K|L = W (Fp)Q be a complete discrete valuation
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field, then for any K-valued point x ∈ M(K), by the algorithm of last section, we can
associate to it an another point x′ ∈M(K ′), where K ′|K is a finite extension, such that
if (Hx, ι, λ) (resp. (Hx′ , ι

′, λ′)) is the p-divisible group associated to x (resp. x′), then we
have an isogeny φ : Hx → Hx′ of p-divisible groups over OK′ , satisfying the following
commutative diagram :

Hx
pNλ //

φ

��

HD
x

Hx′
λ′ // (Hx′)

D,

φD

OO

for some integer N , and there is a finite flat subgroup scheme G ⊂ Hx′ [p], such that
Hx′/G is semi-stable. Motivated by this, we introduce a subspace C ⊂ M as follow.

Definition 2.6.1. We define a subspace C ⊂ M as

C = {x ∈M|∃ finite extensionK ′|H(x), and a finite flat subgroupG ⊂ Hx[p] overOK′ ,

such thatHx/G is semi-stable overOK′}.

LetMss ⊂M be the semi-stable locus, that is

Mss = {x ∈M|Hx is semi-stable}.

Then we have the inclusion
Mss ⊂ C.

Proposition 2.6.2. The subsetMss and C are closed analytic domains ofM.

Proof. The fact that Mss ⊂ M is a closed analytic domain is an easy consequence of
Theorem 2.3.3. So we concentrate here to prove that C ⊂ M is a closed analytic domain.

Let N be the basic Rapoport-Zink analytic space for ResQp2 |QpGLn obtained by
forgetting the polarization fromM. Then there is a natural closed immersionM⊂ N .
We fix such an imbedding. We have the inclusions G(Qp) ⊂ GLn(Qp2), and G(Zp) \
G(Qp)/G(Zp) ↪→ GLn(Zp2) \GLn(Qp2)/GLn(Zp2). We have in fact a G(Qp)-equivariant
imbedding of tower of analytic spaces MK∩G(Zp) ⊂ NK for open compact subgroups
K ⊂ GLn(Qp2). We have Mss = N ss

⋂
M. By definition, the subset C is exactly the

intersection withM of some Hecke translations of the semi-stable locus N ss ⊂ N :

C = (
⋃
a

Ta.N ss)
⋂
M,

where the index set is all a = (a1, . . . , an) ∈ {(a1, . . . , an)|a1 ≥ · · · ≥ an, and ai ∈ {0, 1}},
and

Ta = GLn(Zp2)

 pa1

. . .
pan

GLn(Zp2) ∈ GLn(Zp2) \GLn(Qp2)/GLn(Zp2).

Now since N ss ⊂ N is a closed analytic domain, so is C ⊂ M by the definition of Hecke
correspondences.
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We observe the characterization of points in C as follow.

Proposition 2.6.3. A point x ∈M is in C if and only if the algorithm for the p-divisible
group Hx associated to x stops after finite times, and Nx = 1 , where Nx is the smallest
integer such that kerφx ⊂ Hx[p

Nx ], φx is the composition of the isogenies when applying
the algorithm to Hx.

Proof. If the algorithm for Hx stops after finite times and Nx = 1, then by definition
x ∈ C. To prove the other direction, we have the following general lemma.

Lemma 2.6.4. Let H/OK be a basic p-divisible group over a complete rank one valuation
ring OK |Zp, and G ⊂ H be a finite flat subgroup scheme. If H/G is semi-stable, then
FH ⊂ G. In particular, if the sequence of isogenies of p-divisible groups

H = H1
φ1 //

φ

''
H2

φ2 // · · · φr // Hr+1

is such that H1, . . . , Hr are not semi-stable (Hr+1 may be semi-stable or may be not),
then kerφ ⊂ G.

Proof. Let 0 6= G′ ⊂ H,G′ * G be a finite flat subgroup not contained in G. Consider
the morphism ϕ : G′ → H[pN ]/G for N >> 0. Then it is non zero. Let G′′′ (resp. G′′) be
the flattening schematic image (resp. kernel) of ϕ, then we have the following sequence
which is exact in generic fiber :

0→ G′′ → G′ → G′′′ → 0.

Since H/G is semi-stable, and G′′′ ⊂ H/G is a finite flat subgroup, by definition

µ(G′′′) ≤ µH/G = µH .

On the other hand we have G′′ ⊂ G. If G′′ = 0, then µ(G′) ≤ µ(G′′′) ≤ µH . If G′′ 6= 0,
µ(G′) ≤ sup{µ(G′′), µ(G′′′)} ≤ sup{µmax(G), µH}. We have two cases :

1. if µmax(G) ≤ µH , then since µ(G′) ≤ µH for any 0 6= G′ * G, we have H is
semi-stable. In particular FH = 0 ⊂ G.

2. if µmax(G) > µH , then since µ(G′) < µmax(G), we have µmax(H) = µmax(G), and
FH ⊂ G is the first scran of the Harder-Narasimhan filtration of G.

Thus the lemma holds.

With the lemma above, we can now easily deduce the proposition. If x ∈ C, then by
the definition of C, there exists a finite extension K ′|K = H(x) and a finite flat subgroup
G ⊂ H[p] over OK′ , such that H/G is semi-stable over OK′ . The algorithm for H over
OK′ is just the base change of that over OK . By the lemma, kerφ ⊂ G ⊂ H[p]. Thus
the algorithm stops after finite times and Nx = 1.
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Example 2.6.5. For n = 1 the Rapoport-Zink space M is trivial : each connected
component Mi is just a point. Thus in this case C = M. For n ≥ 2, it is unluckily
difficult to describe the domain C explicitly. Here we calculate C for the case n = 2. In
this case each reduced special fiber Mi

red is just a point, while the analytic space Mi

is of dimension 1. Let N be the basic Rapoport-Zink analytic space for ResQp2 |QpGL2

obtained by forgetting the polarization fromM. We have

C = (
⋃
a

Ta.N ss)
⋂
M.

There are 3 possibilities for the index a = (a1, a2) : (0,0),(0,-1),(-1,-1). Let (H, ι) be the
p-divisible group associated to a point x ∈ N ss. The Hecke correspondences T(0,0) is the
identity, and T(−1,−1).x is the quotient of H by H[p] with its additional structure, thus
T(−1,−1).x ∈ N ss. For the Hecke correspondence T(0,−1), a point y ∈ T(0,−1).x corresponds
to a height 2 finite flat subgroup G ⊂ H[p], and the p-divisible group associated to y is
the quotient (H/G, ι′). Since H is semi-stable, we have µ(G) ≤ 1

2
, i.e. degG ≤ 1. The

arbitrary possibility of the choices of G will make T(0,−1).N ss * N ss. Thus the inclusion
Mss ⊂ C is strict.

Similarly we have a characterization of the points in the Hecke orbit of C.

Proposition 2.6.6. A point x ∈ M is in
⋃
T∈G(Zp)\G(Qp)/G(Zp) T.C if and only if the

algorithm above for the p-divisible group Hx associated to x stops after finite times.

For a Hausdorff paracompact strictly Berkovich analytic space X over a non-
archmidean field, we denote by Xrig the associated rigid analytic space in the sense
of Tate. As a set, Xrig ⊂ X is the subset of rigid analytic points. Then the Hecke orbit
of Crig coversMrig.

Proposition 2.6.7. We have the following equality of sets

Mrig =
⋃

T∈G(Zp)\G(Qp)/G(Zp)

T.Crig.

Proof. By the inequality

HN(H, ι, λ) ≤ Newt(Hk, ι, λ),

there is just one Harder-Narasimhan strata, i.e. the whole space M = MHN=Pss . By
the algorithm, we have the equalityMHN=Pss,rig =

⋃
T∈G(Zp)\G(Qp)/G(Zp) T.Crig.

We want some locally finite covering ofM. One may wonder whether the family of
analytic domains (T.C)T∈G(Zp)\G(Qp)/G(Zp) is such a locally finite covering ofM. Unfor-
tunately, the analytic domain C is so big that the union

⋃
T∈G(Zp)\G(Qp)/G(Zp) T.C is far

from locally finite. We have to refine this family. Nevertheless, this family is indeed a
covering of M, although it is not locally finite. In the next subsection, we will review
some basic facts about the geometry of reduced special fiberMred over Fp obtained by
Vollaard-Wedhorn in [80] and [81]. Then we will define some smaller analytic domain
D ⊂ C such that under the Hecke action and the action of Jb(Qp), we can get some
locally finite covering ofMrig. Finally by some gluing arguments, and the equivalence
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between the categories of Berkovich anayltic spaces and rigid analytic spaces satisfying
certain conditions, we can get an equality for all analytic points

M =
⋃

T∈G(Zp)\G(Qp)/G(Zp)

T.C.

That is, for all x ∈M, the algorithm for Hx stops after finite times.

2.7 Bruhat-Tits stratification of Mred

We recall some of basic results of Vollaard-Wedhorn in [80] and [81]. First we remark
that the descent data onMred is effective, i.e., there is a modelM′

red over Fp2 ofMred.
The results of Vollaard-Wedhorn are rather about the schemeM′

red, but we just state
them forMred here. Recall that the formal Rapoport-Zink space M̂ has a decomposition
according the height of the universal quasi-isogeny :

M̂ =
∐

i∈Z,in even

M̂i,

where M̂i is the open and closed formal subscheme of M̂ such that for any scheme S ∈
NilpOL, a S-valued point of M̂ (H, ι, λ, ρ) ∈ M̂i(S) if htρ = in, which is not empty if
and only if in is even. LetMi = (M̂i)an, andMi

red be its reduced special fiber for such
an i, we have decompositions

M =
∐

i∈Z,in even

Mi,Mred =
∐

i∈Z,in even

Mi
red.

By Theorem 4.2.(1) of [81],Mi
red is connected of pure dimension [n−1

2
]. ThusMi is

an connected analytic space of dimension n − 1. For each i ∈ Z such that in is even,
there is a g ∈ Jb(Qp) such that g(M̂i) = M̂0, in particular M̂i is isomorphic to M̂0, and
so are their analytic fibers Mi,M0 and reduced special fibers Mi

red,M0
red. So we just

need consider theM0 andM0
red. It turns out the geometry ofM0

red over Fp is controlled
by the Bruhat-Tits building B(Jderb ,Qp) of the derived subgroup Jderb of Jb over Qp.

More precisely, for each i ∈ Z such that in is even, let

Li := {Λ ⊂ N0 is aZp2-lattice | pi+1Λ∨ ( Λ ⊂ piΛ∨},

where Λ∨ = {x ∈ N0| {x,Λ} ⊂ Zp2}. One can construct an abstract simplicial complex
Bi from Li : an m-simplex of Bi is a subset S ⊂ Li of m+ 1 elements which satisfies the
following condition. There exists an ordering Λ0, . . . ,Λm of the elements of S such that

pi+1Λm ( Λ0 ( Λ1 ( · · · ( Λm.

There is an obvious action of Jderb (Qp) on Li. By Theorem 3.6 of [80], for each fixed i,
we have a natural Jderb (Qp)-equivariant isomorphism of Bi with the associated simplicial
complex of the Bruhat-Tits building B(Jderb ,Qp). Thus we can identify Li with the set
of vertices of B(Jderb ,Qp). For Λ ∈ Li the index t(Λ) := [Λ : pi+1Λ∨] of pi+1Λ∨ in Λ is
always an odd number with 1 ≤ t(Λ) ≤ n, and for any odd number d with 1 ≤ d ≤ n
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there exists a Λ ∈ Li such that t(Λ) = d. Moreover two lattices Λ1,Λ2 ∈ Li are in
the same Jderb (Qp)-orbit if and only if t(Λ1) = t(Λ2). And the neighborhood vertices of
Λ ∈ Li in the building is exactly the set

{Λ′ ∈ Li|Λ′ ⊂ Λ, orΛ ⊂ Λ′}.

If n is even, we choose and fix a g1 ∈ Jb(Qp) such that g1 : M̂0 ∼→ M̂1. We fix a bijection

ϕi : L0 → Li
once for all, such that

ϕi(Λ) =

{
p
i+1
2 g1Λ i odd

p
i
2 Λ i even.

Now for each i ∈ Z such that in is even and each Λ ∈ Li, we define a subschemeMΛ

ofMi
red. First we associate two p-divisible groups HΛ− and HΛ+ over Fp2 with Zp2-linear

polarizations λΛ+ and λΛ− respectively. To this end, set

Λ+
0 := Λ

Λ+
1 := V−1(Λ+

0 )

Λ+ := Λ+
0 ⊕ Λ+

1

Λ− := pi(Λ+)∨.

Since F = V the Λ± are Dieudonné submodules of the isocrystal N, and the pairing
p−i〈, 〉 on N induces a perfect Zp2-pairing on Λ±. Thus Λ± define unitary p-divisible
groups HΛ± , with the Zp2-linear polarizations λΛ± and p−i〈, 〉 induces an isomorphism

HΛ+
∼→ HD

Λ− .

Moreover, we have Zp2-linear quasi-isogenies

ρΛ± : HΛ± → H

which are compatible with the polarizations on the two sides. We have the following
commutative diagram :

HΛ+
∼ //

ρΛ+

��

HD
Λ−

H
ρ //HD.

ρD
Λ−

OO

By construction we have always Λ− ⊂ Λ+, which corresponds to the composition of
quasi-isogenies

HΛ−
ρΛ−−→ H

ρ−1

Λ+−→ HΛ+ .

We a fixed vertex Λ ∈ Li. For any Fp-scheme S and a S-valued point (H, ι, λ, ρ) ∈
Mi

red(S) we define quasi-isogenies

ρH,Λ+ : H
ρ−1

−→ HS

(ρΛ+ )−1
S−→ (HΛ+)S,

ρΛ−,H : (HΛ−)S
(ρΛ− )S−→ HS

ρ−→ H.

Then one has that
ht(ρH,Λ+) = ht(ρΛ−,H) = t(Λ)

and that ρH,Λ+ is an isogeny if and only if ρΛ−,H is an isogeny.
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Definition 2.7.1. We define the subfunctorMΛ ⊂Mi
red as

MΛ(S) = {(H, ι, λ, ρ) ∈Mi
red(S)|ρΛ−,H is an isogeny}

for any Fp-scheme S.

Then the main theorems of [81] tell us the following facts.

Theorem 2.7.2. 1. MΛ is represented by a smooth projective closed subscheme of
dimension 1

2
(t(Λ) − 1) of Mi

red, which we will also denote by MΛ. It is in fact a
generalized Deligne-Lusztig variety for the maximal reductive quotient Jder,redΛ over
Fp of the special fiber of the Bruhat-Tits group scheme JderΛ attached to the vertex
Λ ∈ B(Jderb ,Qp).

2. for two lattices Λ1,Λ2 ∈ Li, MΛ1 ⊂ MΛ2 if and only if Λ1 ⊂ Λ2. In this case
t(Λ1) ≤ t(Λ2), and the equality holds if and only if Λ1 = Λ2.

3. for two lattices Λ1,Λ2 ∈ Li, the following assertions are equivalent :
– Λ1 ∩ Λ2 ∈ Li ;
– Λ1 ∩ Λ3 contains a lattice of Li ;
– MΛ1 ∩MΛ2 6= ∅.
If these conditions are satisfied we have

MΛ1 ∩MΛ2 =MΛ1∩Λ2 ,

whereMΛ1 ∩MΛ2 is the scheme-theoretic intersection inMi
red.

4. for two lattices Λ1,Λ2 ∈ Li, the following assertions are equivalent :
– Λ1 + Λ2 ∈ Li ;
– Λ1 + Λ2 is contained in a lattice of Li ;
– MΛ1 andMΛ2 are both contained inMΛ for some Λ ∈ Li.
If these conditions are satisfied, MΛ1+Λ2 is the smallest subscheme of the form
MΛ that containsMΛ1 andMΛ2.

5. let tmax = n if n is odd, and tmax = n − 1 if n is even, then the irreducible
components ofMi

red are exactly the subschemesMΛ with t(Λ) = tmax.
6. let

LΛ := {Λ′ ∈ Li|Λ′ ( Λ},

M0
Λ :=MΛ \

⋃
Λ′∈LΛ

MΛ′ ,

thenM0
Λ is open and dense inMΛ, and we have a stratification ofMi

red :

Mi
red =

∐
Λ∈Li

M0
Λ.

Proof. These are the contents of lemma 3.2, theorem 3.10, corollary 3.11, theorem 4.1,
4.2, and proposition 4.3 of [81].

Note that the stratificationMi
red =

∐
Λ∈LiM

0
Λ is Jderb (Qp)-equivariant in the sense

that we have
gM0

Λ =M0
gΛ,
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for any g ∈ Jderb (Qp) and Λ ∈ Li. For an algebraically field k|Fp2 and a k-valued point
x ∈Mi

red(k), if we denote M the corresponding unitary Dieudonné module viewed as a
lattice in N via the quasi-isogeny ρ−1

x : Hx → H, then we have the following equivalent
assertions

– x ∈MΛ(k) ;
– M ⊂ (Λ+)k ;
– M0 ⊂ (Λ)k ;
– (Λ−)k ⊂M .

2.8 The analytic domain D

Recall that we have defined some closed analytic domainsMss ⊂ C ⊂M, where for
any complete valuation field extension K|L = W (Fp)Q,

Mss(K) ={(H, ι, λ, ρ) ∈M(K)|H is semi-stable}
C(K) ={(H, ι, λ, ρ) ∈M(K)| ∃ finite extensionK ′|K, and a finite flat subgroup

G ⊂ H[p] overOK′ , such thatH/G is semi-stable}.

Now since we have the decomposition

M =
∐

i∈Z,in even

Mi,

we set
Ci := C ∩Mi,

which is still a closed analytic domain inMi andM, and we have an induced decom-
position of analytic spaces

C =
∐

i∈Z,in even

Ci.

We choose an element g1 ∈ Jb(Qp) such that the action by g1 onM induces isomor-
phisms :

g1 :M0 ∼→

{
M1 n even

M2 n odd.

For example let
g1 = diag(p−1, · · · , p−1︸ ︷︷ ︸

n
2

, 1, · · · , 1︸ ︷︷ ︸
n
2

)

if n is even and g1 = p−1 ∈ Jb(Qp) if n is odd. We have then

Ci =


g
i
2
1 C0 n even, i even

p
−i+1

2 g1C0 n even, i odd

g
i
2
1 C0 n odd.

Note the element p−1 ∈ Jb(Qp) induces an isomorphism p−1 : M0 ∼→ M2. We denote

by g2 := p−1g−1
1 if n is even, i.e. the above g1 is such that p−1 =

{
g1g2 n even

g1 n odd.
Set
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C ′ =

{
C0

∐
g1C0 n even

C0 n odd,
then we have

C =
∐
i∈Z

p−iC ′, and π(C) = π(C ′),

where π : M → Fa ⊂ Pn−1,an is the p-adic period mapping over L. Thus the Hecke
orbits of the two analytic domains are the same :⋃

T∈G(Zp)\G(Qp)/G(Zp)

T.C =
⋃

T∈G(Zp)\G(Qp)/G(Zp)

T.C ′.

Using the geometric description of the reduced special fiberMred in last section, we
have the following covering ofM0 by open subsets :

M0 =
⋃

Λ∈L0,t(Λ)=tmax

sp−1(MΛ),

where sp : M0 → M0
red is the specialization map. We have equally the Bruhat-Tits

stratification ofM0 by locally closed analytic subspaces

M0 =
∐

Λ∈L0

sp−1(M0
Λ).

By definition, a point x ∈ sp−1(MΛ) if and only if the composition

(HΛ−)OK/pOK
ρΛ−−→ HOK/pOK

ρ−→ HxOK/pOK

is an isogeny, and x ∈ sp−1(M0
Λ) if and only if the above composition is an isogeny and

it does not factor through HΛ′ for any Λ′ ( Λ. Recall that there is a natural isogeny
ιΛ,Λ′ : HΛ− → HΛ′− corresponding the inclusion Λ′ ⊂ Λ, and we have the compatibility
ρΛ− = ρΛ′− ◦ ιΛ,Λ′ .

We fix a choice Λ = Λ0 ∈ L0 with t(Λ) = tmax.

Definition 2.8.1. We define an analytic domain inM0

D := C ∩ sp−1(MΛ) = C0 ∩ sp−1(MΛ),

which is locally closed.

2.9 Some unitary group Shimura varieties and the relatively
compactness of D

In the following we prove that the underlying topological space |D| of D is relatively
compact, that is the topological closure |D| in |M0| (or |C0|) is compact. For this, we
will use some unitary group Shimura varieties (those studied in [10] and [81]) and the
theory of p-adic uniformization. The PEL data (B, ∗,V, 〈, 〉, h, OB,Λ) for defining these
Shimura varieties are as following.
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– B is a simple Q-algebra such that B ⊗Q R ' Mm(C) and B ⊗Q Qp ' Mm(Qp2),
for some integer m.

– ∗ is a positive involution on B.
– V is a non-trivial finitely generated left B-module such that n = dimQ(V)/2m.
– 〈, 〉 : V × V → Q is a nondegenerate skew-hermitian Q-valued form. Let G :=
GUB(V, 〈, 〉) denote the reductive algebraic group over Q of B-linear symplectic
similitudes of (V, 〈, 〉).

– h : ResC|RGm → GR is a homomorphism of real algebraic groups such that it
defines a Hodge structure of type {(−1, 0), (0,−1)} on V and 〈·, h(

√
−1)·〉 : VR ×

VR → R is symmetric and positive definite.
– OB is a ∗-invariant Z(p)-order of B such that OB ⊗ Zp is a maximal order of BQp .

We can and we do fix an isomorphism BQp ' Mm(Qp2) such that OB ⊗ Zp is
identified with Mm(Zp2).

– Λ is an OB-invariant Zp-lattice of VQp such that the alternating form on Λ induced
by 〈, 〉 is a perfect Zp-form.

The first condition implies that the center K of B is a quadratic imaginary extension
of Q and p is inert in K. The derived subgroup Gder is an inner form of the quasi-split
special unitary group SU(n) for the extension K|Q. The assumption B ⊗Q R 'Mm(C)
implies GR is isomorphic to the group of unitary similitudes GU(r, s) of an hermitian
form of signature for some nonnegative integers r and s such that r + s = n. We will
assume r = 1, s = n − 1. The reflex field E will be K if 1 6= n − 1 i.e. n 6= 2 and Q
if n = 2. Up to Morita equivalence, the localization of the above PEL data at p then
induces the local PEL data for defining the Rapoport-Zink space M̂.

For a sufficient small open compact subgroup Kp ⊂ G(Ap
f ), the associated Shimura

variety ShKp over the integer ring OEp of the local field Ep (p is inert in E) is the
moduli space of abelian varieties with additional structures in the following sense. For
any OEp-scheme S, ShKp(S) = {(A, ι, λ, η)}/ ' where

– A is an abelian scheme over S of relative dimension equal to dimKV.
– ι : OB ⊗ Zp → End(A) ⊗ Z(p) is a nonzero homomorphism of Z(p)-algebras, such

that the induced action of OB on the Lie algebra Lie(A) satisfies rankOSLie(A)1 =
m, rankOSLie(A)2 = (n − 1)m, where Lie(A)1 (resp. Lie(A)2) is the subsheaf of
Lie(A) that OKp acts via the the natural inclusion OKp ⊂ OB⊗Zp (the composition
of the nontrivial automorphism ∗ and the natural inclusion).

– λ : A→ AD is a principal OB ⊗ Zp-linear polarization, such that the involution ∗
on B is compatible with the Rosati involution on End(A)Q induced by λ, under
the homomorphism B → End(A)⊗Q.

– η : V⊗ Ap
f

∼→ H1(A,Ap
f ) mod Kp is a Kp-level structure.

– (A1, ι1, λ1, η1) ' (A2, ι2, λ2, η2), if there exists an OB-linear isogeny φ : A1 → A2

of degree prime to p such that φ∗(λ2) = aλ1, φ ◦ η1 = η2 for some a ∈ Q×.
Note n is divisible by m and in fact the rank of V as a B-module is n

m
. In particular if

n = m, the Shimura varieties ShKp for Kp varies are all proper over OEp .

Now let S ∈NilpZp2 . To any S-valued point (A, ι, λ, η) ∈ ShKp(S), we attach to it
a unitary p-divisible group of signature (1, n − 1) as follow. Let H ′ = A[p∞] be the
p-divisible group of A. Then OB ⊗ Zp = Mm(Qp2) acts on H ′. By Morita equivalence,
the functors H ′ 7→ Om

Zp2
⊗Mm(Qp2 ) H

′ and H 7→ Om
Zp2
⊗Zp2 H are mutually quasi-inverse

between the category of p-divisible groups H ′ over S with a leftMm(Qp2)-action and the
category of p-divisible groups with a Zp2-action over S. We setH := Om

Zp2
⊗Mm(Qp2 )A[p∞],
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and denote its Zp2-action still by ι. The principal polarization λ on A then induces a
Zp2-linear principal polarization on H which we still denote by λ.

To sate the link with the Rapoport-Zink space M̂, we take the base change to
SpecOL (L = W (Fp)Q, OL = W (Fp)) of the Shimura variety, which we still denote by
ShKp by abuse of notation. The special fiber ShKp of ShKp over Fp then admits the
Newton polygon stratification.

ShKp =
∐

b∈B(G,µ)

Sh
b

Kp .

The Kottwitz set B(G, µ) of all Newton polygons can be written down explicitly as in
[10] 3.1. In particular, one finds that every non-basic polygon has contacted points with
the µ-ordinary polygon. This key special phenomenon will at last lead to the relatively
compactness of our analytic domain D in the p-adic analytic Rapoport-Zink spaceM.
As shown in [10], each strata ShbKp is non-empty, and any non-basic strata is in fact a
leaf in the sense of [55]. The basic strata, which we denote by Shb0Kp , was studied in [80]
and [81], by studying the reduced special fiberMred of the Rapoport-Zink space M̂ and
the uniformization of Shb0Kp byMred.

Let Ŝh
b0

Kp be the completion of ShKp along Shb0Kp , then the chapter 6 of [66] tell us
there is an isomorphism of formal schemes over SpfOL :

Ŝh
b0

Kp ' I(Q) \ M̂ ×G(Ap
f )/K

p '
∐

i∈I(Q)\G(Apf )/Kp

M̂/Γi.

Note the group G satisfies Hasse principal : ker1(Q, G) = 1 (cf. [81]). Here I is an inner
form of G over Q, which is anisotropic modulo center and such that IQp = Jb, IApf = GApf .
Note the index set I(Q) \ G(Ap

f )/K
p is finite, and if g1, . . . , gk ∈ G(Ap

f ) is a set of
representatives, then Γi = I(Q) ∩ giKpg−1

i for i = 1, . . . , k. The subgroups Γi ⊂ Jb(Qp)
are discrete and cocompact modulo center. Since Kp is sufficiently small, Γi is torsion
free for all i.

We can describe the isomorphism

I(Q) \ M̂ ×G(Ap
f )/K

p → Ŝh
b0

Kp

as follows. Let (A, ι, λ, η) be a Fp-valued point in Shb0Kp , and the isomorphism we con-
struct will depend on such a choice. Let (H, ι, λ) be the unitary p-divisible group associ-
ated to this abelian variety as above. We take (H, ι, λ) as the standard unitary p-divisible
group for defining M̂. For any S ∈NilpOL, there is a map

M̂(S)×G(Ap
f )/K

p → ShKp(S)

((H, ι, λ, ρ), gKp) 7→ (A, ι′, λ′, ηg−1Kp),

such that there is an unique quasi-isogeny AS → AS compatible with additional struc-
tures inducing ρ when taking p-divisible groups. This map factor though the action of
I(Q) and functorially for S. It induces an closed immersion of formal algebraic spaces

I(Q) \ M̂ ×G(Ap
f )/K

p → ŜhKp ,
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and one can prove that the left hand side is in fact a formal scheme and the image is
Ŝh

b0

Kp . Thus there is an isomorphism of formal schemes.

We denote Ŝh
an,b

Kp := (Ŝh
b

Kp)an the Berkovich analytic space associated to the formal
scheme Ŝh

b

Kp , the completion of ShKp along the strata ShbKp , which is also the tube
sp−1(Sh

b

Kp) of ShbKp in Ŝh
an

Kp ⊂ ShanKp . Here sp : Ŝh
an

Kp → ShKp is the specialization
map, and ShanKp is the p-adic analyticfication of the generic fiber ShKp×L = ShG(Zp)×Kp

over L, the last ⊂ is a closed immersion. It is an isomorphism if and only if ShKp is
proper over SpecOL. We have the Newton polygon stratification of Ŝh

an

Kp by locally
closed subspaces :

Ŝh
an

Kp =
∐

b∈B(G,µ)

Ŝh
an,b

Kp .

Analogous to the case of Rapoport-Zink spaces, there is a tower of analytic spaces
(Ŝh

an

Kp×Kp)Kp⊂G(Zp) indexed by open compact subgroups Kp ⊂ G(Qp), together with
a family of closed immersions (Ŝh

an

Kp×Kp)Kp ⊂ (ShanKp×Kp)Kp , such that Ŝh
an

G(Zp)×Kp =

Ŝh
an

Kp . Then G(Qp) acts on this tower and this gives the p-adic Hecke correspondence on
each Ŝh

an

Kp×Kp . The family of closed immersions (Ŝh
an

Kp×Kp)Kp ⊂ (ShanKp×Kp)Kp is Hecke-
equivariant, here the G(Qp) action on the right hand side is the p-adic analyticfication of
the Hecke action of G(Qp) on (ShanKp×Kp)Kp⊂G(Zp). By taking the inverse images under the

natural projection Ŝh
an

Kp×Kp → Ŝh
an

Kp , we can defined subspaces Ŝh
an,b

Kp×Kp ⊂ Ŝh
an

Kp×Kp ,
which are Hecke-invariant, thus we have G(Qp)-equivariant stratifications

Ŝh
an

Kp×Kp =
∐

b∈B(G,µ)

Ŝh
an,b

Kp×Kp .

Now pass to the p-adic analytic side, we have a family of isomorphisms of analytic
spaces

I(Q) \MKp ×G(Ap
f )/K

p '
∐

i∈I(Q)\G(Apf )/Kp

MKp/Γi ' Ŝh
an,b0

Kp×Kp .

These isomorphisms are Hecke-equivariant for the action of G(Qp) on the two sides. If
we let Kp varies, then they are Hecke-equivariant for the action of G(Af ) on the two
sides.

We now look at the Harder-Narasimhan stratification of Ŝh
an

Kp×Kp , see section 2.4.
For a unitary p-divisible group (H, ι, λ) over a complete valuation ring OK |Zp of rank
one, recall we have the Harder-Narasimhan polygon

HN(H, ι, λ) :=
1

2
HN(H)(2·) = lim

k→∞

1

2k
HN(H[pk])(2k·)

as a function [0, n] → [0, n/2], which we also identify with its graph. For a point x ∈
Ŝh

an

Kp×Kp , denote by (Ax, ιx, λx, ηpx×ηpx) the abelian scheme over OK := OH(x) associated
to x, let (Hx = Om

Zp2
⊗Mm(Qp2 )Ax[p

∞], ιx, λx) be as above the unitary p-divisible group ob-
tained after Mrita equivalence from (Ax, ιx, λx, ηpx×ηpx). Let HN(x) := HN(Hx, ιx, λx).
Thus we have defined a function

HN : Ŝh
an

Kp×Kp → Poly,
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here Poly denotes the set of concave polygons in [0, n] × [0, n/2] bounded by the µ-
ordinary Hodge polygon. We identify the set B(G, µ) with a finite subset of Poly by
associating each b ∈ B(G, µ) its polygon. By proposition 2.4.1, this function HN is
semi-continuous.

Definition 2.9.1. For each P ∈ Poly, we define the subset

Ŝh
an,HN=P
Kp×Kp := HN−1(P) = {x ∈ Ŝh

an

Kp×Kp |HN(x) = P},

which is then a locally closed subset.

We thus obtain a Harder-Narasimhan stratification of the underlying topological
space |Ŝh

an

Kp×Kp| by locally closed subset

|Ŝh
an

Kp×Kp | =
∐
P∈Poly

Ŝh
an,HN=P
Kp×Kp .

Let Pss be the basic element in Poly, then the strata Ŝh
an,HN=Pss
Kp×Kp is an open subset,

thus there is an analytic structure on it so that the inclusion Ŝh
an,HN=Pss
Kp×Kp ⊂ Ŝh

an

Kp×Kp

is an open immersion. For general Harder-Narasimhan strata, there is in general no
obvious analytic structure on it. But, fortunately, in our case we have the following
strong conclusion.

Proposition 2.9.2. The Harder-Narasimhan stratification and the Newton polygon
stratification for Ŝh

an

Kp×Kp coincide.

Proof. This comes from the fact that, for a unitary p-divisible group (H, ι, λ) over OK ,
we have the inequalities

HN(H, ι, λ) ≤ Newt(Hk, ι, λ) ≤ Hodge(Hk, ι, λ),

and if there is a contact point x of the Newton polygon Newt(Hk, ι, λ) and the Hodge
polygon Hodge(Hk, ι, λ), then the Harder-Narasimhan polygon HN(H, ι, λ) also passes
at x, see corollary 1.5.3. If one draw all the possible Newton polygons in our cases, then
one finds immediately the proposition holds.

The underling topological space of Ŝh
an

Kp is compact. We now consider the image E
of the subspace C ⊂ M under the p-adic uniformization morphism

k∐
i=1

M/Γi ' Ŝh
an,b0

Kp = Ŝh
an,HN=Pss
Kp ⊂ Ŝh

an

Kp .

Since C is Jb(Qp)-stable, we have E '
∐k

i=1 C/Γi.

Proposition 2.9.3. The subset E is a closed analytic domain in Ŝh
an

Kp, thus it is com-
pact.
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Proof. Let H/ŜhKp be the p-divisible group associated to the universal Abelian scheme
A after applying the Morita equivalence. Then we can describe the locus E ⊂ Ŝh

an

Kp by

E = {x ∈ Ŝh
an

Kp | ∃ finite extensionK ′|H(x), and a finite flat group G ⊂ Hx[p]

over OK′ , such that Hx/G is semi-stable overOK′ .}

For simplifying notation, we denote X = ŜhKp and X = Ŝh
an

Kp . By forgetting the
polarization, we can construct a tower of analytic spaces (XK)K⊂GLn(Zp2 ) with X =

XGLn(Zp2 ), and an action of GLn(Zp2) (not GLn(Qp2) !) on this tower. Let π : Y =
XId+pMn(Zp2 ) → X be the natural finite étale morphism. Then Y classifies the level
structures η : (Z/pZ)2n ∼→ π∗Han[p]. After a possible admissible formal blow-up we can
find a p-adic admissible formal model Y of Y , and a morphism f : Y → X such that
fan = π. Consider the finite flat formal group scheme f ∗H[p] over Y . Then for any
subgroup M ⊂ (Z/pZ)2n, there exists a finite flat formal subgroup scheme GM ⊂ f ∗H[p]
such that GanM = η(M). Let HM := f ∗H/GM be the p-divisible group over Y , then the
following finite union

F :=
⋃
M

{y ∈ Y |HM,y/OH(y)is semi-stable}

is a closed analytic domain of Y since each one on the right hand side is. Now the subset
E ⊂ X is exactly the image π(F ) of F under the finite étale morphism π : Y → X, so
it is a closed analytic domain.

Corollary 2.9.4. The underlying topological space |D| of D is relatively compact.

Proof. Since E is a finite disjoint union of the form C/Γ, therefore each C/Γ is compact
by the above proposition. Since MΛ is an irreducible component of Mred, and D =
C∩sp−1(MΛ) ⊂ sp−1(MΛ), we may chose Kp sufficiently small such that one associated
Γ satisfies that ∀id 6= γ ∈ Γ, γD ∩D = ∅. So we have a topological imbedding

D ↪→ C/Γ,

since the right hand side is compact, we can conclude.

2.10 Locally finite cell decompositions

We will construct a locally finite covering of the unitary Rapoport-Zink space M
from the locally closed analytic domain D. Recall we have fixed a choice Λ ∈ L0 with
t(Λ) = tmax. Let Stab(Λ) ⊂ Jderb (Qp) be the stabilizer subgroup of Λ in Jderb (Qp).
Then by our definition, D is stable under the action of Stab(Λ). Recall in section 8 we
introduced the analytic domains C ′, C0. We have the following covering of C0

C0 =
⋃

g∈Jderb (Qp)/Stab(Λ)

gD,

which is locally finite, i.e. for any g ∈ Jderb (Qp)/Stab(Λ), there are finite
g′Jderb (Qp)/Stab(Λ) such that gD

⋂
g′D 6= ∅, since

M0
red =

⋃
g∈Jderb (Qp)/Stab(Λ)

gMΛ
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is a locally finite union of its irreducible components.

We thus have the following equalities⋃
T∈G(Zp)\G(Qp)/G(Zp)

T.C =
⋃

T∈G(Zp)\G(Qp)/G(Zp)

T.C ′

If n is odd, this equals to

=
⋃

T∈G(Zp)\G(Qp)/G(Zp)

T.C0 =
⋃

T∈G(Zp)\G(Qp)/G(Zp)

g∈Jderb (Qp)/Stab(Λ)

T.gD;

if n is even, the above equals to

=
⋃

T∈G(Zp)\G(Qp)/G(Zp)
j=0,1

T.gj1C0 =
⋃

T∈G(Zp)\G(Qp)/G(Zp)
j=0,1

g∈Jderb (Qp)/Stab(Λ)

T.gj1gD.

We would like to prove the last unions in the above two cases are locally finite. For this,
it suffices to prove the following union ⋃

T∈Gder(Zp)\Gder(Qp)/Gder(Zp)

g∈Jderb (Qp)/Stab(Λ)

T.gD

is locally finite. To this end, we just need to prove the following holds

#{(T, g) ∈ Gder(Zp) \Gder(Qp)/G
der(Zp)× Jderb (Qp)/Stab(Λ)|T.gD ∩D 6= ∅} <∞.

This comes from the following several propositions.

Proposition 2.10.1. The Bruhat-Tits stratification of the analytic space

M0 =
∐

Λ∈L0

sp−1(M0
Λ)

by locally closed spaces is invariant under the Hecke action of Gder(Qp), i.e., for each
tube sp−1(M0

Λ), we have
T.sp−1(M0

Λ) ⊂ sp−1(M0
Λ)

for any T ∈ Gder(Zp) \Gder(Qp)/G
der(Zp).

Proof. We just check that T.sp−1(MΛ) ⊂ sp−1(MΛ), for any T ∈ Gder(Zp) \
Gder(Qp)/G

der(Zp),Λ ∈ L0. The case for sp−1(M0
Λ) is similar. Assume that

T = Gder(Zp)

 pa1

. . .
pan

Gder(Zp) ∈ Gder(Zp) \Gder(Qp)/G
der(Zp),

a1 ≥ · · · ≥ an, a1 + an = a2 + an−1 = · · · = 0,
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then a1 ≥ 0, an − a1 = −2a1 ≤ 0, and we consider the Hecke correspondence

p−a1T = Gder(Zp)


1

pa2−a1

. . .
pan−a1

Gder(Zp).

We just need to check that

p−a1T.sp−1(MΛ) ⊂ p−a1sp−1(MΛ),

here the p−a1 on the right hand side is considered as an element of Jb(Qp) : it induces
an isomorphism

p−a1 :M0 →M2a1 ,

under which the image p−a1sp−1(MΛ) of sp−1(MΛ) is sp−1(Mpa1Λ). Assume x ∈
sp−1(MΛ), the associated unitary p-divisible group (H, ι, λ, ρ : HOK/pOK → HOK/pOK )
is such that the composition

(HΛ−)OK/pOK
ρΛ−−→ HOK/pOK

ρ−→ HOK/pOK

is an isogeny. Let y ∈ p−a1T.x be a any point such that the associated unitary p-divisible
group is (H/E, ι, λ,HOK/pOK

ρ→ HOK/pOK

π→ (H/E)OK/pOK ), where E ⊂ H is a finite
flat subgroup scheme such that its geometric generic fiber

Eη ' Zp2/pa1−a2Zp2 ⊕ · · · ⊕ Zp2/pa1−anZp2 .

Since
(pa1Λ)+ = pa1Λ+

(pa1Λ)− = p2a1(pa1Λ+)∨ = pa1Λ−,

and the quasi-isogeny ρpa1Λ− : Hpa1Λ− → H is given by the composition ρΛ− ◦ φ :

Hpa1Λ−
φ→ HΛ−

ρΛ−−→ H,

where the first is the isogeny induced by the natural inclusion pa1Λ− ⊂ Λ−, thus its
composition π ◦ ρ ◦ ρΛ− ◦ φ with

π ◦ ρ : HOK/pOK

ρ→ HOK/pOK

π→ (H/E)OK/pOK

is an isogeny. That is y ∈ sp−1(Mpa1Λ) ⊂M2a1 . So we have

p−a1T.sp−1(MΛ) ⊂ p−a1sp−1(MΛ) = sp−1(Mpa1Λ).

Recall we have the description

D = (
⋃
a

Ta.N ss)
⋂

sp−1(MΛ),

for our fixed Λ ∈ L0 with t(Λ) = tmax and the closed immersionM⊂ N . We prove the
following proposition, then it will be clear that the locally finiteness holds forM.
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Proposition 2.10.2. Let J̃b be the associated inner form of ResQp2 |QpGLn for N , and
U ⊂ Nred be an open compact subset such that J̃b(Qp)U = Nred, cf. [23] 2.4. Let Z = Q×p2

be the center of GLn(Qp2) and J̃b(Qp). Set

D′ := N ss
⋂

sp−1(U),

then we have

#{[T ] ∈ (GLn(Zp2) \GLn(Qp2)/GLn(Zp2))/Z|[T ].D′/Z ∩ D′/Z 6= ∅} <∞.

Proof. Recall that the criterion of quasi-compactness of an open subset U ⊂ Nred
([23] critère de quasicompacité 2.4.14) : U is quasi-compact if and only if there exist a
Diedonné lattice M ∈ Nred(k) and an integer N , such that

U(k) ⊂ {M ′ ∈ Nred(k)|pNM ⊂M ′ ⊂ p−NM},

or equivalently, there exists an integer N , such that the universal quasi-isogeny ρuniv

satisfies that pNρuniv and pN(ρuniv)−1 are isogenies. The formal Rapoport-Zink space N̂
decomposes as disjoint union according the height of the universal quasi-isogeny :

N̂ =
∐
i∈Z

N̂ i,

where the height of the universal quasi-isogeny is 2i over N̂ i. Let ˜̂N :=
∐n−1

i=0 N̂ i, which
is in bijection with the quotient N̂ /Z. Let us denote by Ñ and Ñred the analytic generic
fiber and reduced special fiber respectively of ˜̂N . Then there is a metric function

d : Ñred(k)× Ñred(k)→ N

defined as
d((H1, ι1, ρ1), (H2, ι2, ρ2)) = q(ρ−1

1 ◦ ρ2) + q(ρ−1
2 ◦ ρ1),

here q(ρ) = htpn(ρ)ρ and n(ρ) is the smallest integer such that pn(ρ)ρ is an isogeny for
a quasi-isogeny ρ. Then an open subset U ⊂ Ñred is quasi-compact if and only if there
exist an integer N , such that d(x, y) ≤ N for all points x, y ∈ U .

To prove the proposition we may assume U ⊂ Ñred. Let (H1, ι1, ρ1), (H2, ι2, ρ2) be
the p-divisible groups associated to two points x1, x2 ∈ U . Let M1 = ρ−1

1∗ (D(H1k)),M2 =
ρ−1

2∗ (D(H2k)), and inv(M1,M2) = (a1, . . . , an) ∈ Zn+ be their relative invariant. Then one
check that easily

d((H1, ι1, ρ1), (H2, ι2, ρ2)) = a1 − an.

So it is bounded by some fixed integer N dependent only by U .

Now D′ ⊂ Ñ ⊂ N , and the Hecke correspondences on N induce an action of
the set (GLn(Zp2) \ GLn(Qp2)/GLn(Zp2))/Z on Ñ . let x ∈ D′, y ∈ D′ ∩ [T ].x for some
[T ] ∈ (GLn(Zp2)\GLn(Qp2)/GLn(Zp2))/Z, T.D′∩D′ 6= ∅. Since by Cartan decomposition
we have the bijection

GLn(Zp2) \GLn(Qp2)/GLn(Zp2)
∼−→ Zn+.
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If T = GLn(Zp2)

 pa1

. . .
pan

GLn(Zp2) , then

zT = GLn(Zp2)

 pa1+vp(z)

. . .
pan+vp(z)

GLn(Zp2).

Thus [T ] corresponds to a class [(a1, . . . , an)] ∈ Zn+/Z where the action of Z on Zn+ is
the natural translation. Let (H/OK , ι, ρ) be the p-divisible group associated to x over
OK=H(x). Then the p-divisible group associated to y over OK is (H/G, ι′, p−a1π ◦ ρ),
here G ⊂ H is a finite flat group scheme such that GK ' Z/pa1−a2Z⊕ · · · ⊕ Z/pa1−anZ.
Moreover, since both H and H/G are semi-stable, G is therefore semi-stable, [27] lemme
11. By the following lemma, the covariant Dieudonné module

D(Gk) ' W/pa1−a2W ⊕ · · · ⊕W/pa1−anW.

The relative invariant of D(Hk) and D((H/G)k) is then just (0, a2 − a1, . . . , an − a1),
and by the above a1 − an ≤ N . This plus the fact that a1 ≥ · · · ≥ an, ai ∈ Z, i =
1, . . . , n with some easy combination argument imply that there are finite possibili-
ties of the class [(a1, . . . , an)] ∈ Zn+/Z, thus finite possibilities of [T ] ∈ (GLn(Zp2) \
GLn(Qp2)/GLn(Zp2))/Z. This finishes the proof.

Lemma 2.10.3. Let G be a semi-stable finite flat group scheme over OK. Suppose that
GK ' Z/pa1Z⊕ · · · ⊕ Z/panZ, then we have

D(Gk) = W/pa1W ⊕ · · · ⊕W/panW,

here D(Gk) is the covariant Dieudonné module of Gk.

Proof. If pG = 0 then the above is evident. We assume that p2G = 0 here, the general
case follows by induction. Under this assumption, there exists a 1 ≤ k ≤ n such that
a1 = · · · = ak = 2, ak+1 = · · · = an = 1, and GK ' (Z/p2Z)k ⊕ (Z/pZ)n−k. Since G is
semi-stable, the following sequence

0 −→ G[p] −→ G
p−→ pG −→ 0

is exact. So we get an exact sequence

0 −→ G[p]k −→ Gk −→ (pG)k −→ 0,

and passing to (covariant) Dieudonné module we get an exact sequence

0 −→ D(G[p]k) −→ D(Gk) −→ D((pG)k) −→ 0.

We have htG[p] = n, ht(pG) = k, htG = n + k. Assume that D(Gk) ' (W/p2W )k
′ ⊕

(W/pW )n−k
′ for some 1 ≤ k′ ≤ n. Then we have dimFpD(G[p]k) = n, dimFpD((pG)k) =

k′. Since
htG[p] = dimFpD(G[p]k), ht(pG) = dimFpD((pG)k),

i.e. k = k′, the lemma follows.
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Remark 2.10.4. The above proposition and its proof hold generally for all EL Rapoport-
Zink spaces.

Proposition 2.10.5. The union ⋃
T∈Gder(Zp)\Gder(Qp)/Gder(Zp)

T.D

is locally finite.

Proof. Since C = (
⋃
a Ta.N ss)

⋂
M and D = C

⋂
sp−1(MΛ), we can choose some open

compact subset U ⊃ MΛ in Nred such that J̃b(Qp)U = Nred. Then D ⊂
⋃
a Ta.D′

for D′ := N ss
⋂
sp−1(U). Denote D′′ =

⋃
a Ta.D′, which is a finite union of closed

analytic domains. By the above proposition we know that there are only finite T ∈
Gder(Zp) \ Gder(Qp)/G

der(Zp) such that T.D′
⋂
D′ 6= ∅. Therefore, there are also only

finite T ∈ Gder(Zp) \ Gder(Qp)/G
der(Zp) such that T.D′′

⋂
D′′ 6= ∅. This implies the

number of T ∈ Gder(Zp) \Gder(Qp)/G
der(Zp) such that T.D

⋂
D 6= ∅ is finite.

Corollary 2.10.6. The unions ⋃
T∈G(Zp)\G(Qp)/G(Zp)

g∈Jderb (Qp)/Stab(Λ)

T.gD

for n odd and ⋃
T∈G(Zp)\G(Qp)/G(Zp)

j=0,1
g∈Jderb (Qp)/Stab(Λ)

T.gj1gD

for n even are both locally finite.

Remark 2.10.7. By the proofs of the above two propositions, we see that if

T = G(Zp)

 pa1

. . .
pan

G(Zp)

corresponds to the point
(a1, · · · , an) ∈ X∗(A)+ ⊂ Zn+

by the Cartan decomposition (see section 2.2), then the set

{T ′ ∈ G(Zp) \G(Qp)/G(Zp)|T.D
⋂

T.′D 6= ∅}

corresponds to the set of points in some neighborhood of (a1, · · · , an) ∈ X∗(A)+ ⊂ Zn+
(for the natural topology).
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With the notations above, we now can state the main theorem of this section. The
proof is based on some gluing arguments, and the following basic observation : let Y ⊂ X
be two Hausdorff paracompact strictly analytic spaces over a complete non-archimedean
field k, such that the inclusion of Y as a subspace of X induces the identity of their
associating rigid analytic spaces Y rig = Xrig, then we have Y = X. Here we require that
the analytic Grothendieck topologies are the same. Note if one just has the equality of
the underlying sets |Y rig| = |Xrig|, one can not deduce Y = X and in fact there are
many counter examples.

Theorem 2.10.8. We have a locally finite covering of the Berkovich analytic spaceM :

M =
⋃

T∈G(Zp)\G(Qp)/G(Zp)

g∈Jderb (Qp)/Stab(Λ)

T.gD

if n is odd, and
M =

⋃
T∈G(Zp)\G(Qp)/G(Zp)

j=0,1
g∈Jderb (Qp)/Stab(Λ)

T.gj1gD

if n is even.

Proof. Take an open quasi-compact subset U ⊂ M0
red such that U ∩ MΛ 6= ∅ and

Jb(Qp).U = Mred. Since U is quasi-compact, it intersects with only finite number ir-
reducible components MΛi , Λi ∈ L0, t(Λi) = tmax, i = 1, . . . , k with Λ = Λ1. Let
gi ∈ Jder(Qp)/Stab(Λ) be such that gi(Λ) = Λi. Then we have the inclusion

D′ := C
⋂

sp−1(U) ⊂
k⋃
i=1

giD.

Note that D′ is a closed analytic domain of M. It is compact since D is relatively
compact. So we have equalities of locally finite coverings⋃

T∈G(Zp)\G(Qp)/G(Zp)

g∈Jderb (Qp)/Stab(Λ)

T.gD =
⋃

T∈G(Zp)\G(Qp)/G(Zp)

g∈Jderb (Qp)/Stab(Λ)

T.gD′

if n is odd ; and ⋃
T∈G(Zp)\G(Qp)/G(Zp)

j=0,1
g∈Jderb (Qp)/Stab(Λ)

T.gj1gD =
⋃

T∈G(Zp)\G(Qp)/G(Zp)
j=0,1

g∈Jderb (Qp)/Stab(Λ)

T.gj1gD′

if n is even. SinceD′ is closed, and the above analytic covering (T.gD′)T,g or (T.gj1gD′)j,T,g
obtained by translations of D′ is locally finite, by [2] we can glue them into a sub-analytic
spaceM′ ⊂M, such that the underlying set ofM′ is given by the union as above. On
the other hand, the rigid covering (T.gD′rig)T,g or (T.gj1gD

′rig)j,T,g ofMrig by admissible
open subsets can always be glued as a rigid space M′

0, which is the associated rigid
space ofM′ :M′rig =M′

0. Then these rigid coverings are admissible since the analytic
coverings are locally finite, so from the equalities as sets

Mrig =
⋃

T∈G(Zp)\G(Qp)/G(Zp)

g∈Jderb (Qp)/Stab(Λ)

T.gD′rig
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if n is odd ; and
Mrig =

⋃
T∈G(Zp)\G(Qp)/G(Zp)

j=0,1
g∈Jderb (Qp)/Stab(Λ)

T.gj1gD
′rig

if n is even, we have the equality of M′
0 = Mrig as rigid spaces. By the equivalence

of the category of Hausdorff paracompact strictly analytic Berkovich spaces and the
category of quasi-separated quasi-paracompact rigid analytic spaces, we must have the
equalityM′ =M.

Remark 2.10.9. The above argument also works for theorem 27 in [27].

We have the following corollary when applying the theorem to the p-adic period
domain Fa.

Corollary 2.10.10. Let π :M→ Fa ⊂ Pn−1,an be the p-adic period mapping, then we
have a locally finite covering

Fa =
⋃

g∈Jderb (Qp)/Stab(Λ)

gπ(D)

if n is odd, and
Fa =

⋃
j=0,1

g∈Jderb (Qp)/Stab(Λ)

gj1gπ(D)

if n is even.

We look at the cases with level structures. Let K ⊂ G(Zp) be an open compact
subgroup and πK :MK →M be the natural projection, which is a Jb(Qp)-equivariant
finite étale surjection and also compatible with the Hecke actions. Denote DK = π−1

K (D),
then gDK = π−1

K (gD) for all g ∈ Jb(Qp), and

Kh1K.gDK = Kh2K.gDK

for Kh1K,Kh2K ∈ K \G(Qp)/K having the same image under the projection

K \G(Qp)/K → G(Zp) \G(Qp)/K.

The last equality holds since any h ∈ G(Zp) acts trivially on M, therefore
Khh1K.π

−1
K (gD) = Kh1K.π

−1
K (gD).

Corollary 2.10.11. We have a locally finite covering of the analytic spaceMK

MK =
⋃

T∈G(Zp)\G(Qp)/K

g∈Jderb (Qp)/Stab(Λ)

T.gDK

if n is odd, and
MK =

⋃
T∈G(Zp)\G(Qp)/K

j=0,1
g∈Jderb (Qp)/Stab(Λ)

T.gj1gDK

if n is even.
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We will consider some cohomological application of this corollary in the next section.

Finally we have a corollary for Shimura varieties.

Corollary 2.10.12. Let ShKp be as the Shimura variety introduced in subsection 2.9,
Ŝh

an

Kp be the generic analytic fiber of its p-adic completion ŜhKp, and Ŝh
an,b0

Kp be the tube
in Ŝh

an

Kp over the basic strata Sh
b0
Kp, which is an open subspace. Let Ŝh

an

Kp×Kp → Ŝh
an

Kp

be the covering in level Kp ⊂ G(Zp) (an open compact subgroup), and Ŝh
an,b0

Kp×Kp be the

inverse image of Ŝh
an,b0

Kp . Denote C ′Kp the inverse image of C ′ inMKp, E ′Kp the image of
C ′Kp under the p-adic uniformization

I(Q) \MKp ×G(Ap
f )/K

p '
∐

i∈I(Q)\G(Apf )/Kp

MKp/Γi ' Ŝh
an,b0

Kp×Kp .

1. Let Γ = Γi be one of the above discrete, torsion free, cocompact modulo center
subgroups of Jb(Qp), and Γder = Γ ∩ Jderb (Qp), DKp = DiKp be the image of DKp
under the morphismMKp →MKp/Γ, then we have a covering

MKp/Γ =
⋃

T∈G(Zp)\G(Qp)/Kp
g∈Γder\Jderb (Qp)/Stab(Λ)

T.gDKp

if n is odd, and
MKp/Γ =

⋃
T∈G(Zp)\G(Qp)/Kp

j=0,1
g∈Γder\Jderb (Qp)/Stab(Λ)

T.gj1gDKp

if n is even.
2. Under the above notation, we have a covering

E ′Kp =
∐

i∈I(Q)\G(Apf )/Kp

⋃
g∈Γder\Jderb (Qp)/Stab(Λ)

gDiKp

if n is odd, and

E ′Kp =
∐

i∈I(Q)\G(Apf )/Kp

⋃
j=0,1

g∈Γder\Jderb (Qp)/Stab(Λ)

gj1gDiKp

if n is even. We have a covering

Ŝh
an,b0

Kp×Kp =
⋃

T∈G(Zp)\G(Qp)/Kp

T.E ′Kp .
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3 Cell decomposition and Lefschetz trace formula

3.1 Introduction

In this section we would like to find some cohomological application of our locally
finite cell decomposition for the unitary group Rapoport-Zink spaces MK . By study-
ing the action of regular semi-simple elliptic elements on the cells, we will verify the
conditions of theorem 3.13 in [60] hold, thus deduce a Lefschetz trace formula. In the
same way we can also reprove (in a rather different way) the Lefschtez trace formula
for Lubin-Tate spaces which was proved previously by Strauch ([77], theorem 3.3.1) and
Mieda ([60], example 4.21). To motivate the idea, we treat first the Lubin-Tate case,
which is simpler.

Let p be a prime number, F be a finite extension of Qp, O be the ring of integers of
F , and π ∈ O be a uniformizer in O. We denote F̂ nr as the completion of the maximal
unramified extension of F , and Ônr its ring of integers. For any integer n ≥ 1, we
consider the general linear group GLn as well as its inner form D× over F , where D
is the central division algebra over F with invariant 1

n
and D× is the reductive group

defined by inverse elements in D. Recall a formal O-module is a p-divisible group with
an O-action over a base over O, such that the induced action on its Lie algebra is the
canonical action of O. We consider the formal Lubin-Tate space M̂ =

∐
i∈Z M̂i over

Ônr : for any scheme S ∈ NilpÔnr, M̂(S) = {(H, ρ)}/ ', where
– H is a formal O-module over S,
– ρ : HS → HS is a quasi-isogeny.

Here NilÔnr is the category of schemes over Ônr on which π is locally nilpotent, H is
the unique (up to isomorphism) formal O-module over Fp with O-height n, and S is the
closed subscheme defined by π of S ∈ NilpÔnr. For i ∈ Z, M̂i is the open and closed
subspace of M̂ such that the quasi-isogenies ρ have O-height i. There is a natural (left)
action of D× on M̂ by ∀b ∈ D×, b : M̂ → M̂, (H, ρ) 7→ (H, ρ◦b−1). This action induces
non-canonical isomorphisms

M̂i ' M̂0,

while one knows that there is a non-canonical isomorphism

M̂0 ' Spf(Ônr[[x1, . . . , xn−1]]).

LetM = M̂an =
∐

i∈ZMi be the Berkovich analytic fiber of M̂. By trivializing the
local system overM defined by the Tate module of p-divisible group, we have the Lubin-
Tate tower (MK)K⊂GLn(O) over F̂ nr, and the group GLn(F ) acts (on right) on this tower
through Hecke correspondences. When K = Km := ker(GLn(O) → GLn(O/πmO)) for
some integer m ≥ 0, there is a regular model M̂m of MKm by introducing Drinfeld
structures on O-modules. We will not use these models and we will work always on
the Berkovich spaces MK . Note there are natural actions of D× on each MK , which
commute with the Hecke action.

Fix a prime l 6= p, let Ql (resp. Qp) be a fixed algebraic closure of Ql (resp. Qp), and
Cp be the completion of Qp. For each i ≥ 0, we consider the cohomology with compact
support

H i
c(MK × Cp,Ql) = lim−→

U

lim←−
n

H i
c(U × Cp,Z/lnZ)⊗Ql,
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where the injective limit is taken over all relatively compact open subsets U ⊂MK , see
[23] section 4 and [42]. We have

H i
c(MK × Cp,Ql) =

⊕
j∈Z

H i
c(M

j
K × Cp,Ql),

where
dimQlH

i
c(M

j
K × Cp,Ql) <∞

by theorem 3.3 in [42]. In fact we have also the usual l-adic cohomology groupsH i(Mj
K×

Cp,Ql) which are Poincaré dual to those H i
c(M

j
K × Cp,Ql), and (cf. [77] lemma 2.5.1)

H i
c(M

j
K × Cp,Ql) 6= 0⇔ n− 1 ≤ i ≤ 2(n− 1),

H i(Mj
K × Cp,Ql) 6= 0⇔ 0 ≤ i ≤ n− 1.

The groups
lim−→
K

H i
c(MK × Cp,Ql)

are natural smooth representations of GLn(F ) × D× ×WF (WF is the Weil group of
F ), and the local Langlands and Jacquet-Langlands correspondences between the three
groups were proved realized in these groups, see [11] and [36].

In [77] Strauch had proven a Lefschetz trace formula for regular elliptic elements
action on the Lubin-Tate spaces. More precisely, we consider

H∗c (Mj
K × Cp,Ql) =

∑
i

(−1)iH i
c(M

j
K × Cp,Ql).

Let γ = (g, b) ∈ GLn(F )×D× such that g, b are both regular elliptic elements, gKg−1 =
K, vp(detg)+vp(Nrdb) = 0 (Nrd : D× → F× is the reduced norm and vp is the valuation
on F ), then we have an automorphism

γ :Mj
K →M

j
K ,

which induces morphism on cohomology groups

γ : H i
c(M

j
K × Cp,Ql)→ H i

c(M
j
K × Cp,Ql).

We define

Tr(γ|H∗c (Mj
K × Cp,Ql)) :=

∑
i

(−1)iTr(γ|H i
c(M

j
K × Cp,Ql)).

Strauch proved the following trace formula

Theorem 3.1.1 ([77], Theorem 3.3.1). Under the above assumptions and notations, we
have

Tr(γ|H∗c (Mj
K × Cp,Ql)) = #Fix(γ|Mj

K × Cp).

By applying the p-adic period mapping

M→ Pn−1,an,
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Strauch obtained a nice fixed points number formula for the quotient space MK/π
Z

(theorem 2.6.8 in loc. cit.)

#Fix(γ|(MK/π
Z)(Cp)) = n#{h ∈ GLn(F )/πZK|h−1gbh = g−1},

which can be rewritten as some suitable orbit integral, see [60] proposition 3.3. This
Lefschetz trace formula enable Strauch to prove the Jacquet-Langlands correspondence
between smooth representations of GLn(F ) and D× is realized the cohomology of the
tower (MK)K , not involving with Shimura varieties as in [36], see section 4 of [77].

There are two main ingredients in Strauch’s proof of the above theorem. The first
is some careful approximation theorems of Artin in this special (affine) case and the
second is Fujiwara’s theorem of specialization of local terms ([31] proposition 1.7.1).
In general case one has no sufficient approximation theorems, thus his method can be
hardly generalized. In [59] Mieda proved a general Lefschetz trace formula for some
open smooth adic spaces by totally working in rigid analytic geometry, and verified his
conditions in the special case of Lubin-Tate spaces hold, thus he can reprove the above
Lefschetz trace formula. Both Strauch and Mieda worked in the category of adic spaces,
and study the action of γ on the boundary strata (outside the corresponding Berkovich
space) of the analytic generic fiber of M̂m. Their boundary stratas are at last linked to
the theory of generalized canonical subgroups (cf. [24] section 7), thus their approach
can hardly be generalized.

In this section we work directly in Berkovich spaces. We will consider Fargues’s
locally finite cell decomposition of Lubin-Tate spaces, cf. [25] chapter 1 and [26], and
the locally finite cell decomposition of the unitary group Rapoport-Zink spaces which
we obtained in the last section. By studying the action of γ on the cells, we verify
the conditions in Mieda’s theorem of Lefschetz trace formula hold, by the dictionary
between the equivalent categories of Hausdorff strictly Berkovich k-analytic spaces and
adic spaces which are taut and locally of finite type over Spa(k, k0). (k is a complete
non-archimedean field and k0 is its ring of integers.) Thus we can reprove the above
theorem, by different method. The advantage of our method is that, once we know there
exists a locally finite cell decomposition, with the fundamental domain compact, then
by studying the action on the cells we will easily verify Mieda’s theorem applies.

In the following until the end of this introduction, let the notations be as in section
2. For the definition of the subspaces Uρ ⊂MK , see subsection 3.4.

Theorem 3.1.2. For the fixed γ = (h, g) ∈ G(Zp) × Stab(Λ) with h, g both regular,
elliptic, and vp(deth)+vp(detg) = 0, there exist a sufficient small open compact subgroup
K ′ ⊂ G(Zp) and a sufficient large number ρ0 >> 0, such that for all open compact
normal subgroups K ⊂ G(Zp) contained in K ′ and all ρ ≥ ρ0, we have the Lefschetz
trace formula

Tr(γ|H∗c (Uρ × Cp,Ql)) = #Fix(γ|M0
K × Cp),

which is well defined and finite. Since the right hand side is independent of ρ, we can
define

Tr(γ|H∗c (M0
K × Cp,Ql)) := Tr(γ|H∗c (Uρ × Cp,Ql))

for ρ >> 0, and thus

Tr(γ|H∗c (M0
K × Cp,Ql)) = #Fix(γ|M0

K × Cp).
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We have a nice fixed points number formula for the quotient spaceMK/p
Z. Note if

g ∈ Jb(Qp) is a regular elliptic semi-simple element, for any x ∈ Fix(g|Fa(Cp)), there
is an element hg,x ∈ G(Qp) which is conjugate to g over Qp defined by the comparison
isomorphism

Vp(Hy)⊗Qp BdR
∼−→ VL ⊗L BdR,

where y ∈ π−1(x) is any point in the fiber of the p-adic period mapping π :M→ Fa.

Corollary 3.1.3. Let the notations be as in the above theorem. If n is even we assume
that 2

n
(vp(deth) + vp(detg)) is even. Fix compatible Haar measures on G(Qp) and the

centralizer of hg,x, Ghg,x := {h′ ∈ G(Qp)|h′hg,xh′−1 = hg,x}. Denote the characteristic
function of h−1K by 1h−1K and the volume of K under the fixed Haar measure by V ol(K).
Then we have the following formula

Tr(γ|H∗c ((MK/p
Z)× Cp,Ql)) =

∑
x∈Fix(g|Fa(Cp))

V ol(Ghg,x/p
Z)Ohg,x(

1h−1K

V ol(K)
),

where V ol(Ghg,x/p
Z) is the volume of Ghg,x/p

Z by the induced Haar measure on
G(Qp)/p

Z,

Ohg,x(
1h−1K

V ol(K)
) =

∫
G(Qp)/Ghg,x

1h−1K

V ol(K)
(z−1hg,xz)dz

is the orbit integral of 1h−1K

V ol(K)
over the conjugate class of hg,x.

Assume π is a supercuspidal representation of G(Qp), we consider

H(π) =
∑
j≥0

(−1)jHomG(Qp)(lim−→
K

Hj
c (MK × Cp,Ql), π).

Assume that HomG(Qp)(lim−→K
Hj
c (MK × Cp,Ql), π) is of finite length, which should be

always the case, then H(π) is a well defined element in GrothQl(Jb(Qp)).

Corollary 3.1.4. Let g ∈ Jb(Qp) be a regular elliptic semi-simple element. Assume that
π is of the form π = c − IndG(Qp)

Kπ
λ, for some open compact modulo center subgroup

Kπ ⊂ G(Qp) and some finite dimensional representation λ of Kπ. Then we have

trH(π)(g) =
∑

x∈Fix(g|Fa(Cp))

trπ(hg,x).

As remarked in the introduction 2.1 and the above, we should also prove an analogous
Lefschetz trace formula for basic Rapoport-Zink spaces for GSp4, by their corresponding
locally finite cell decomposition and the compactness of the fundamental domain. The
Lefschetz trace formula for these Rapoport-Zink spaces for unitary groups or GSp4,
and (for n even in the unitary case) should enable us to prove the realization of local
Jaquet-Langlands correspondence between irreducible smooth representations of G(Qp)
and Jb(Qp) in the cohomology of these Rapoport-Zink spaces. These will be the contents
of our future works. On the other hand, for the non-basic Rapoport-Zink spaces in these
cases, our previous results in section 1 say that their cohomology is essentially a parabolic
induction.
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3.2 The locally finite cell decomposition of Lubin-Tate spaces

In [25] and [27] Fargues found some locally finite cell decompositions of MK . The
parameter set of cells in [25] is the set of vertices of some Bruhat-Tits building, and
these cells for K varies form in fact a cell decomposition of the tower (MK)K but not
for a fixed spaceMK . Therefore we will mainly follow the construction in [27], where the
parameter set is essentially some set of Hecke correspondences. To consider the group
actions on these cells, we will relate the parameter set with a Bruhat-Tits building by
borrowing some ideas from [25].

First consider the case without level structures. Fix a uniformizer Π ∈ D×, then

Π−1 :Mi ∼−→Mi+1.

Let Mss be the semi-stable locus in M, i.e. the locus where the associated p-divisible
groups are semi-stable in the sense of [27] definition 4, see also definition 2.5.1, which is
a closed analytic domain inM. Let D =Mss,0 :=Mss

⋂
M0, thenMss =

∐
i∈Z Π−iD

and D is the compact fundamental domain of Gross-Hopkins, see [25] 1.5. The main
results of [27] for our special case say that we have a locally finite covering

M =
⋃

GLn(O)\GLn(F )/GLn(O)
i=0,...,n−1

T.Π−iD,

where T.A is the image under the Hecke correspondence T for a subset A, which is an
analytic domain if A is. In the following we shall actually work with one component
M0, so we consider its induced cell decomposition

M0 =
⋃

T∈GLn(O)\GLn(F )/GLn(O)
i=0,...,n−1

((T.Π−iD)
⋂
M0).

For T ∈ GLn(O) \GLn(F )/GLn(O), i = 0, . . . , n− 1,

(T.Π−iD)
⋂
M0 6= ∅ ⇔ −vp(detT ) + i = 0,

in which case
T.Π−iD ⊂M0.

Here (vp : F× → Z is the valuation of F× such that vp(π) = 1) the composition
vp ◦ det : GLn(F )→ Z factors through GLn(O) \GLn(F )/GLn(O)→ Z. Thus we have

M0 =
⋃

T∈GLn(O)\GLn(F )/GLn(O)
i=0,...,n−1

−vp(detT )+i=0

T.Π−iD.

Let K ⊂ GLn(O) be an open compact subgroup, πK : MK → M be the natural
projection. We set

DK = π−1
K (D),

which is a compact analytic domain inM0
K . Since the group GLn(O) acts trivially on

M, any element in this group will stabilize DK . Thus for two Hecke correspondences



108 Cell decomposition and Lefschetz trace formula

T1, T2 ∈ K \GLn(F )/K having the same image under the projection K \GLn(F )/K →
GLn(O) \ GLn(F )/K, we have T1Π−iDK = T2Π−iDK (Π−iDK = π−1

K (Π−iD) since πK
is D×-equivariant). Therefore, we have the following locally finite cell decomposition in
level K

MK =
⋃

T∈GLn(O)\GLn(F )/K
i=0,...,n−1

T.Π−iDK .

We will denote the cells T.Π−iDK by

DT,i,K ,

which are compact analytic domains. For any T ∈ GLn(O)\GLn(F )/K, i ∈ Z, we denote
also DT,i,K = T.Π−iDK . Since the action of F× onMK through F× → GLn(F ), z 7→ z is
the same as the action of it onMK through F× → D×, z 7→ z, (z, z−1) ∈ GLn(F )×D×
acts trivially onMK . We have

DT,i,K = DTz,i+nvp(z),K .

If g ∈ GLn(F ) is an element such that gKg−1 = K, and b ∈ D× is an arbitrary element,
set

γ := (g, b).

Then automorphism γ :MK →MK naturally induces an action of γ on the set of cells
ofMK :

γ(DT,i,K) = DTg,i−vp(Nrdb),K .

Here Nrd : D× → F× is the reduced norm.

For the componentM0
K , for T ∈ GLn(O) \GLn(F )/K, i = 0, . . . , n− 1,

(T.Π−iDK)
⋂
M0

K 6= ∅ ⇔ −vp(detT ) + i = 0,

in which case
T.Π−iDK ⊂M0

K .

Thus we have a locally finite cell decomposition

M0
K =

⋃
T∈GLn(O)\GLn(F )/K

i=0,...,n−1

((T.Π−iDK)
⋂
M0

K)

=
⋃

T∈GLn(O)\GLn(F )/K
i=0,...,n−1

−vp(detT )+i=0

DT,i,K .

In fact for any i ∈ Z, T ∈ GLn(O) \ GLn(F )/K such that −vp(detT ) + i = 0, we have
DT,i,K ⊂M0

K with the convention above. However one can always by multiplying with
some z ∈ F× to reduce to the cases 0 ≤ i ≤ n − 1. Let γ = (g, b) ∈ GLn(F ) ×D× be
such that gKg−1 = K, vp(detg) + vp(Nrdb) = 0, then the action of γ on MK induces
γ : M0

K → M0
K . In this case γ acts on the set of cells of M0

K as in the same way as
above.

To understand better the parameter set of cells of M0
K , we look at some ideas

from [25]. Consider the embedding Gm → GLn ×D×, z 7→ (z, z−1) of algebraic groups
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over F . Let B(GLn × D×, F ) be the (extended) Bruhat-Tits building of GLn × D×,
and B = B(GLn × D×, F )/F× be its quotient by the action of F× through the above
embedding. The set B0 of vertices of B, which we define by the quotient of vertices in
B(GLn ×D×, F ), can be described as the set of equivalent classes

{(Λ,M)|Λ ⊂ F n is an O-lattice ,M ⊂ D is an O×D-lattice}/ ∼,

where
(Λ1,M1) ∼ (Λ2,M2)⇔ ∃i ∈ Z,Λ2 = Λ1π

i,M2 = π−iM1,

see [25] 1.5. We can understand B in this way : the (extended) Bruhat-Tits building of
GLn over F is the product B(PGLn, F )×R, while the (extended) Bruhat-Tits building
of D× over F is B(D×, F ) ' R, then by construction

B = B(GLn ×D×, F )/F× ' (B(PGLn, F )× R× R)/ ∼,

where (x, s, t) ∼ (x′, s′, t′) ⇔ x = x′, s − s′ = t′ − t = nr for some r ∈ Z. Thus any
point [x, s, t] in B can be written uniquely in the form [x, s′, t′] for x ∈ B(PGLn, F ), s′ ∈
R, t′ ∈ [0, n). The elements (g, b) ∈ GLn(F )×D× act on B by ∀[x, s, t] ∈ B,

(g, b)[x, s, t] = [g−1x, s+ vp(detg), t+ vp(Nrdb)].

If we consider the right action of GLn(F ) on B(PGLn, F ) by xg := g−1x, then we can
also write (g, b)[x, s, t] = [xg, s+ vp(detg), t+ vp(Nrdb)].

On the other hand, consider the action of F× on GLn(O) \ GLn(F ) × D×/O×D by
z(GLn(O)g, dO×D) = (GLn(O)gz, z−1dO×D), ∀z ∈ F×, then the quotient set

(GLn(O) \GLn(F )×D×/O×D)/F×

is naturally identified with the set B0 after fixing the vertex [On, OD] ∈ B0.
For an element [GLn(O)g, dO×D], the associated point in B0 can be written as
[GLn(O)F×g, vp(detg), vp(detd)]. Here GLn(O)F×g ∈ B(PGLn, F ) by fixing the ho-
mothety class of On. Now let K ⊂ GLn(O) be an open compact subgroup, then the
set

IK := (GLn(O) \GLn(F )/K ×D×/O×D)/F×

can be identified with the image B0/K of B0 in the quotient space B/K. If γ = (g, b) ∈
GLn(F ) × D× such that gKg−1 = K, then γ acts on the set IK by [T, d] 7→ [Tg, bd].
There are two natural projection maps IK → (GLn(O) \ GLn(F )/K)/F× and IK →
(D×/O×D)/F× ' Z/nZ. There is as well as a map

GLn(O) \GLn(F )/K ×D×/O×D −→ Z
(T, d) 7→ −vp(detT )− vp(Nrdd).

Let (GLn(O)\GLn(F )/K×D×/O×D)0 be the inverse image of 0 under this map. Since the
action of F× does not change the values of the above map, it factors through IK → Z.
In fact there is a well defined continuous map

ϕ : B −→ R
[x, s, t] 7→ −s− t,
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with each fiber stable under the action of K. The above map is induced by ϕ. For the
γ as above with further condition that vp(detg) + vp(Nrdb) = 0, it stabilizes the subset

I0
K := (GLn(O) \GLn(F )/K ×D×/O×D)0/F×

for the above action. For the map ϕ above, we see that I0
K is identified with the quotient

set ϕ−1(0)0/K of vertices in ϕ−1(0).

For any element [T, d] ∈ IK , the cell [T, d]DK is well defined, which is what we
denoted by DT,−vp(Nrdd),K above. As before we denote [T, d]DK as

D[T,d],K .

Then we can rewrite the cell decompositions as

MK =
⋃

[T,d]∈IK

D[T,d],K ,

M0
K =

⋃
[T,d]∈I0

K

D[T,d],K .

For γ = (g, b) ∈ GLn(F )×D× as above, it acts on the cells in the way compatible with
its action on IK :

γ(D[T,d],K) = D[Tg,bd],K .

Recall there is a metric d(·, ·) on B, so that (GLn(F ) × D×)/F× acts on it by
isometries. If d′(·, ·) is the metric on B(PGLn, F ), then for two points [x, s, t], [x′, s′, t′]
with x, x′ ∈ B(PGLn, F ), s, s′ ∈ R, t, t′ ∈ [0, n) we have

d([x, s, t], [x′, s′, t′]) =
√
d′(x, x′)2 + (s− s′)2 + (t− t′)2.

The group K acts on B through the natural morphisms K → GLn(F ) × D× →
(GLn(F )×D×)/F×. There is an induced metric d(·, ·) on the quotient space B/K :

d(xK, yK) := inf
k,k′∈K

d(xk, yk′) = inf
k∈K

d(xk, y) = inf
k∈K

d(x, yk), ∀ xK, yK ∈ B/K,

the last two equalities come from d(xk, yk′) = d(xk(k′)−1, y) = d(x, yk′k−1). Since K
is compact, one checks it easily that this is indeed a metric on B/K. With this metric,
IK , I0

K are both infinity discrete subset of B/K, and any closed ball in B/K contains
only finitely many elements of IK and I0

K . We will directly work with the induced metric
space

IK = B0/K.

For γ = (g, b) ∈ GLn(F )×D× with gKg−1 = K, one can check by definition of d that
the above action of γ on IK is isometric :

d(γx, γx) = d(x, x), ∀x ∈ IK .

Note that for [T1, d1], [T2, d2] ∈ IK , D[T1,d1],K

⋂
D[T2,d2],K 6= ∅ implies that vp(detT1) +

vp(Nrdd1) = vp(detT2) + vp(Nrdd2). If we write [T1, d1] = [x1K, s1, t1], [T2, d2] =
[x2K, s2, t2] with x1, x2 ∈ B(PGLn, F ), s1, s2 ∈ Z ⊂ R, t1, t2 ∈ [0, n)

⋂
Z (i.e. ∃r1, r2 ∈
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Z, s.t. vp(detTi) = si+nri, vp(Nrddi) = ti+nri, i = 1, 2), then s1 + t1 = s2 + t2, s1−s2 =
t2 − t1 ∈ [1− n, n− 1], the distance

d([T1, d1], [T2, d2]) = inf
k∈K

√
d′(x1, x2k)2 + 2(s1 − s2)2

just depends on d′(x1K, x2K) for the induced metric d′ on B(PGLn, F ) defined in the
same way as d. By the construction of the locally finite sell decomposition ofMK , we
have the following proposition.

Proposition 3.2.1. There exists a constant c > 0, such that for any [T1, d1], [T2, d2] ∈
IK with d([T1, d1], [T2, d2]) > c, we have

D[T1,d1],K

⋂
D[T2,d2],K = ∅.

Proof. We need to prove that, there exists a constant c > 0, such that for any [T, d] ∈ IK ,
and any [T ′, d′] ∈ {[T ′, d′] ∈ IK |D[T ′,d′],K

⋂
D[T,d],K 6= ∅}, we have d([T, d], [T ′, d′]) ≤ c.

This just comes from the construction of the above locally finite cell decomposition of
MK , and the definition of d. We just indicate some key points. First, for any fixed choice
of fundamental domain VK in B for the action of K, by definition ∀x, y ∈ VK , d(x, y) ≥
d(xK, yK). Next, By the proof of proposition 24 of [27], and the Cartan decomposition
GLn(O)\GLn(F )/GLn(O) ' Zn+ = {(a1, . . . , an) ∈ Zn|a1 ≥ · · · ≥ an}, for any fixed the
Hecke correspondence T ∈ GLn(O) \GLn(F )/GLn(O), i ∈ Z, the finite set

A[T,i] := {[T ′, j] ∈ (GLn(O) \GLn(F )/GLn(O)× Z)/F×|T.Π−iD
⋂

T ′.Π−jD 6= ∅}

is such that ∀[T ′, j] ∈ A[T,i] we have vp(detT ′) + j = vp(detT ) + i ; and if T corre-
sponds to the point (a1, . . . , an) ∈ Zn+, then for j ∈ Z/nZ fixed, the set T ′ ∈ GLn(O) \
GLn(F )/GLn(O) with [T ′, j] ∈ A[T,i], correspond to the points (a′1, . . . , a

′
n) ∈ Zn+ such

that
∑n

k=1 a
′
k =

∑n
k=1 ak + i− j (mod nZ), |ak − a′k| ≤ C for all k = 1, . . . , n, and C > 0

is a constant doesn’t depend on [T, i]. From these two points one can easily deduce the
proposition for K = GLn(O), and the general case will be obtained as soon as the case
K = GLn(O) holds.

We remark that, in [24] Fargues defined an OD×-invariant continuous map of topo-
logical spaces

M0 −→ B(PGLn, F )/GLn(O),

and identified the image of D under this map. However, this map depends quite on our
special case, and in general there is no such a map from Rapoport-Zink spaces to Bruhat-
Tits buildings. For any open compact subgroup K ⊂ GLn(O), there is also a continuous
mapM0 → B(PGLn, F )/K, and we have a commutative diagram of continuous maps
between topological spaces

M0
K

//

��

B(PGLn, F )/K

��
M0 // B(PGLn, F )/GLn(O).

These maps are Hecke equivariant, thus compatible with the cell decomposition ofM0
K .
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3.3 Lefschetz trace formula for Lubin-Tate spaces

In this subsection γ = (g, b) ∈ GLn(F )×D× is an element such that both g and b are
regular elliptic semi-simple, gKg−1 = K and vp(detg)+vp(Nrdb) = 0. Since γ is regular
elliptic, the set of γ-fixed vertices (B0)γ is non empty, cf. [71]. Let ô be a fixed choice of
point in (B0)γ, and o ∈ IK be its image in the quotient space. One can take the above
choice of ô so that ô ∈ ϕ−1(0)0, o ∈ I0

K . Then γ(o) = o by the action γ : I0
K → I0

K . For
any real number ρ > 0, we consider the subset of I0

K

Aρ = {x ∈ I0
K | d(o, x) ≤ ρ},

which is a finite set for any fixed ρ. Moreover since γ(o) = o and d is γ-isometric, we
have γ(Aρ) = Aρ.

Definition 3.3.1. For any finite set A ⊂ I0
K, we define two subspaces ofM0

K

VA =
⋃

[T,d]∈A

D[T,d],K ,

UA =M0
K −

⋃
[T,d]/∈A

D[T,d],K .

Proposition 3.3.2. UA is an open subspace of M0
K, while VA is a compact analytic

domain, and UA ⊂ VA.

Proof. SinceM0
K−UA =

⋃
[T,d]/∈AD[T,d],K , which is a locally finite union of closed subsets,

therefore it is closed, and UA is open. VA is a finite union of compact analytic domains
thus so is itself. The inclusion simply comes from the factM0

K = VA
⋃

(M0
K −UA).

When ρ → ∞, the finite sets Aρ exhaust I0
K . For any ρ ≥ 0, we denote Uρ =

UAρ , Vρ = VAρ . Since Uρ is relatively compact, we can compute the cohomology ofM0
K

as
H i
c(M0

K × Cp,Ql) = lim−→
ρ

H i
c(Uρ × Cp,Ql).

Moreover, for ρ >> 0 large enough, the cohomology groups H i
c(Uρ×Cp,Ql) is constant

and bijective to H i
c(M0

K × Cp,Ql), see proposition 3.3.5.

For the γ above, we consider the action γ :M0
K →M0

K . Since γ(Aρ) = Aρ,

γ(Uρ) = Uρ, γ(Vρ) = Vρ.

γ thus acts also on the cells contained in Vρ : γ(D[T,d],K) = D[Tg,bd],K . Passing to coho-
mology, γ induces an automorphism

γ : H i
c(Uρ × Cp,Ql)→ H i

c(Uρ × Cp,Ql).

Consider
H∗c (Uρ × Cp,Ql) =

∑
i

(−1)iH i
c(Uρ × Cp,Ql)

as an element in some suitable Grothendieck group, and the trace of γ

Tr(γ|H∗c (Uρ × Cp,Ql)) =
∑
i

(−1)iTr(γ|H i
c(Uρ × Cp,Ql)).
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Let Fix(γ|M0
K ×Cp) be the set of fixed points of γ onM0

K ×Cp, then each fixed point
is simple since the p-adic period mapping is étale (cf. [77] theorem 2.6.8).

We will use the cell decomposition of M0
K , to verify that the action of γ satisfies

the conditions of Mieda’s theorem 3.13 [59], thus deduce a Lefschetz trace formula. In
fact we will use a Berkovich version of loc. cit. Recall that, if k is a complete non-
archimedean field and k0 is its ring of integers, then the category of Hausdorff strictly
k-analytic spaces is equivalent to the category of adic spaces which are taut and locally
of finite type over spa(k, k0), see [41] chapter 8. If X is a Hausdorff strictly k-analytic
space, we denote by Xad the associated adic space, which is taut and locally of finite
type over spa(k, k0).

Theorem 3.3.3. Let the notations and assumptions be as above. There exist an open
compact subgroup K ′ ⊂ GLn(O) and a real number ρ0, such that for all open compact
subgroup K ⊂ K ′ which is normalized by g and all ρ ≥ ρ0, we have

Tr(γ|H∗c (Uρ × Cp,Ql)) = #Fix(γ|M0
K × Cp).

For ρ sufficiently large, the left hand side is just Tr(γ|H∗c (M0
K × Cp,Ql)).

Proof. Since g ∈ GLn(F ) is elliptic, we first note the following fact : for any sufficiently
small open compact subgroup K ⊂ GLn(O) such that gKg−1 = K, we have

d(x, γx)→∞, when x ∈ I0
K , d(o, x)→∞.

In fact, since o, x ∈ I0
K , write o = [o′K,−s, s], x = [x′K,−t, t] with o′, x′ ∈

B(PGLn, F )0, then γ(x) = [x′gK, vp(detg) − t, vp(Nrdb) + t] = [x′gK,−t′, t′]. If we
denote the metric on B′ = B(PGLn, F ) by d′(·, ·) and the induced metric on B′/K by
d′ as before, then we just need to prove that

d′(x′K, x′gK)→∞, when x′K ∈ (B′)0/K, d′(o′K, x′K)→∞.

To prove this statement, we first work with B′ itself by not the quotient. Since g is
elliptic, the fixed points set (B′)g is nonempty and compact. Moreover, for K sufficiently
small, (B′)g = (B′)g′ for any g′ ∈ gK (cf. the proof of lemma 12 in [71]). For o′ ∈ (B′)g
fixed, a simple triangle inequality shows that d′(x′, (B′)g) → ∞ when d′(x′, o′) → ∞,
since (B′)g is compact. On the other hand, for any automorphism σ of B′ with (B′)σ 6= ∅,
there exists a constant 0 < θ ≤ π which just depends on B′ and σ, such that

d′(x′, σx′) ≥ 2d′(x′, (B′)σ) sin(
θ

2
),

see [70] proposition 2.3. In particular, d′(x′, x′g′) → ∞ when d′(o′, x′) → ∞ for any
g′ ∈ gK. As K is compact this deduces the above statement.

For ρ sufficiently large,

M0
K − Uρ =

⋃
[T,d]∈I0

K−Aρ

D[T,d],K

Vρ − Uρ =
⋃

[T,d]∈Aρ−Aρ−c

F[T,d],
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where for [T, d] ∈ Aρ,
F[T,d] = D[T,d],K

⋂
(M0

K − Uρ),

which is nonempty if and only if [T, d] ∈ Aρ − Aρ−c by the above proposition, in which
case F[T,d] is a compact analytic domain in D[T,d],K ⊂ Vρ. For K sufficiently small, ρ
sufficiently large and [T, d] ∈ I0

K − Aρ−c, by the lemma d([T, d], γ([T, d])) > c, thus

D[T,d],K

⋂
γ(D[T,d],K) = ∅, F[T,d]

⋂
γ(F[T,d]) = ∅ (for [T, d] ∈ Aρ − Aρ−c).

To apply Mieda’s theorem, we pass to adic spaces. We have the locally finite cell
decomposition of the adic space (M0

K)ad :

(M0
K)ad =

⋃
[T,d]∈I0

K

Dad[T,d],K

where each cell Dad[T,d],K is an open quasi-compact subspace, Dad[T1,d1],K

⋂
Dad[T2,d2],K 6= ∅ ⇔

D[T1,d1],K

⋂
D[T2,d2],K 6= ∅, and the action of γ on (M0

K)ad induces an action on the
cells in the same way as the case of Berkovich analytic spaces. By [41] 8.2, Uad

ρ is an
open subspace of (M0

K)ad, which is separated, smooth, partially proper. On the other
hand, V ad

ρ =
⋃

[T,d]∈Aρ D
ad
[T,d],K is a quasi-compact open subspace. Consider the closure

V ad
ρ =

⋃
[T,d]∈Aρ D

ad
[T,d],K of V ad

ρ in (M0
K)ad, which is a proper pseudo-adic space. We

know that V ad
ρ (resp. Dad[T,d],K) is the set of all specializations of the points in V ad

ρ (resp.
Dad[T,d],K). Moreover γ induce automorphisms γ : V ad

ρ → V ad
ρ , V ad

ρ → V ad
ρ , Uad

ρ → Uad
ρ .

Since V ad
ρ−c ⊂ Uad

ρ ⊂ V ad
ρ , we have V ad

ρ − V ad
ρ =

⋃
[T,d]∈Aρ−Aρ−c(D

ad
[T,d],K −Dad[T,d],K). Note

Dad[T1,d1],K

⋂
Dad[T2,d2],K 6= ∅ ⇔ Dad[T1,d1],K

⋂
Dad[T2,d2],K 6= ∅.

For [T, d] ∈ Aρ − Aρ−c, let W[T,d] = Dad[T,d],K − Dad[T,d],K . By the paragraph above, for
ρ >> 0 we have γ(W[T,d])

⋂
W[T,d] = ∅. One sees the conditions of theorem 3.13 of [59]

hold for V ad
ρ and its compactification V ad

ρ , i.e.

Tr(γ|H∗c (V ad
ρ × Cp,Ql)) = #Fix(γ|V ad

ρ × Cp) = #Fix(γ|Vρ × Cp).

Here and in the following V ad
ρ × Cp := V ad

ρ × spa(Cp, OCp), and similar notations for
other adic spaces. By [42] proposition 2.6 (i) and lemma 3.4, we have

Tr(γ|H∗c (V ad
ρ × Cp,Ql)) = Tr(γ|H∗c (Uad

ρ × Cp,Ql)) + Tr(γ|H∗c ((V ad
ρ − Uad

ρ )× Cp,Ql)).

By the paragraph above one can see it easily by the induction argument of the proof of
proposition 4.10 in [59] that Tr(γ|H∗c ((V ad

ρ −Uad
ρ )×Cp,Ql)) = 0. Thus we can conclude

by Huber’s comparison theorem on compactly support cohomology of Berkovich spaces
and adic spaces,

Tr(γ|H∗c (Uρ×Cp,Ql)) = Tr(γ|H∗c (Uad
ρ ×Cp,Ql)) = Tr(γ|H∗c (V ad

ρ ×Cp,Ql)) = #Fix(γ|Vρ×Cp).

But as reason above for ρ >> 0 there is no fixed points of γ outside Vρ × Cp,

#Fix(γ|Vρ × Cp) = #Fix(γ|M0
K × Cp).

The last statement in the theorem comes from the following proposition 3.3.5.
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Remark 3.3.4. In fact we can use Vρ to compute the cohomology ofM0
K directly when

passing to adic spaces :

H i
c(M0

K × Cp,Ql) ' H i
c((M0

K)ad × Cp,Ql) = lim−→
ρ

H i
c(V

ad
ρ × Cp,Ql), ∀ i ≥ 0,

here the second equality comes from proposition 2.1 (iv) of [42]. Here we prefer to transfer
back the results to Berkovich spaces, so we insist on working with the open subspaces Uρ.

In fact, the formal models M̂0
K are algebraizable : they are the formal completion

at closed points of some Shimura varieties as in [36], or one can find the algebraization
directly as in theorem 2.3.1 in [77]. So we have for all integer i ≥ 0

H i
c(M0

K × Cp,Ql) ' (lim←−
r

H i
c(M0

K × Cp,Z/lrZ))⊗Zl Ql,

and similarly for the cohomology without compact support. We have the following propo-
sition.
Proposition 3.3.5. Let the notations be as above. Then for ρ >> 0 and all integer
i ≥ 0, we have bijections

H i
c(M0

K × Cp,Ql) ' H i
c(V

ad
ρ × Cp,Ql) ' H i

c(Uρ × Cp,Ql).

Proof. This comes from the description of Vρ and Huber’s theorem 2.9 in [43]. Recall the
fundamental domainD ⊂M0 is associated to an admissible open subsetDrig ⊂ (M0)rig.
On the rigid analytic space (M0)rig there is a natural coordinate x1, . . . , xn−1, such that
for x = (x1, . . . , xn−1) ∈ (M0)rig, the Newton polygon of multiplication by π on the
formal group law associated to π-divisible group Hx is the convex envelope of the points
(qi, v(xi))0≤i≤n, where x0 = 0, xn = 1, q = #O/π, cf. [25] 1.1.5. Under this coordinate

Drig = {x = (x1, . . . , xn−1) ∈ (M0)rig|v(xi) ≥ 1− i

n
, i = 1, . . . , n− 1},

cf. loc. cit. 1.4. Thus after base change to Cp it is isomorphic to a closed ball. In [24]
section 5 Fargues had described the Newton polygons of the points in a Hecke orbit.
In particular at level K = GLn(O) the admissible open subsets V rig

ρ × Cp are locally
described by closed balls. Then this is also the case for any level K. Now pass to adic
spaces, V ad

ρ × Cp are quasi-compact open subsets and locally described by Bερ = {z ∈
(M0)ad × Cp||xi(z)| ≤ ερ}. Since Uad

ρ × Cp, (M0)ad × Cp can be described as unions of
ascending chains of quasi-compact open subsets locally in the above forms, by theorem
2.9 of [43] and the comparison theorem 8.3.5 of [41] one can conclude.

Let γ = (g, b) ∈ GLn(F )×D×, with g, b both regular elliptic and gKg−1 = K. For
the quotient spaceMK/π

Z we have a nice fixed points formula by considering the p-adic
period mapping, which is non zero if and only if vp(degg) + vp(Nrdb) is divisible by n.
Fix compatible Haar measures on GLn(F ) and Ggb (see below), we can also write it as
some suitable orbit integral ([77] theorem 2.6.8, [59] proposition 3.3).

#Fix(γ|(MK/π
Z)× Cp) = n#{h ∈ GLn(F )/πZK|h−1gbh = g−1}

= nV ol(Ggb/π
Z)

∫
GLn(F )/Ggb

1g−1K

V ol(K)
(z−1gbz)dz,

where gb ∈ GLn(F ) is an element stably conjugate to b ∈ D×, Ggb) is the centralizer
of gb in GLn(F ), V ol(K) (resp. V ol(Ggb/π

Z)) is the volume of K (resp. Ggb/π
Z for the

induced Haar measure), and 1g−1K is the characteristic function of g−1K.
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3.4 Lefschetz trace formula for the unitary group Rapoport-
Zink spaces

In this subsection we study some cohomological applications of the locally finite cell
decomposition of the tower (MK)K⊂G(Zp) studied in section 2, as in the same way for
Lubin-Tate spaces.

We first review some basic facts. Fix a prime l 6= p. Let Ql (resp. Qp) be a fixed
algebraic closure of Ql (resp. Qp), and Cp be the completion of Qp for its valuation which
extends that of Qp. For any open compact subgroup K ⊂ G(Zp) and integer j ≥ 0, the
j-th cohomology with compact support ofMK × Cp with coefficient in Ql is

Hj
c (MK × Cp,Ql) = lim−→

U

lim←−
n

Hj
c (U × Cp,Z/lnZ)⊗Ql,

where the injective limit is taken over all relatively compact open subsets U ⊂MK , see
[23] section 4. Recall in section 2.2 we introduced the group 4 = Hom(X∗Qp(G),Z) ' Z
and there is a mapping

κ : M̂ → Z,

with the image 4′ is Z if n is even and 2Z if n if odd. This mapping satisfies that

κ(gx) = ωJ(g) + κ(x)

for all g ∈ Jb(Qp), x ∈ M̂. Here ωJ : Jb(Qp) → 4 is defined by < ωJ(x), χ >=
vp(i(χ)(x)) where i : X∗Qp(G) → X∗Qp(Jb) is the natural morphism between the two
groups of Qp-rational characters. We denote

J1
b =

⋂
χ∈X∗Qp (G)

ker|i(χ)|,

which we consider as a subgroup of Jb(Qp). Here

|i(χ)| :Jb −→ Z
x 7→ vp(i(χ)(x)).

We have a decomposition
MK =

∐
i∈Z, in even

Mi
K

as the case ofM by considering the height of quasi-isogenies, and in factMi
K = π−1

K (Mi)
for the projection πK :MK →M. The group Jb(Qp) acts transitively on 4′ andM0

K is
stable under the group J1

b for the action of Jb(Qp). We have the equalities for cohomology
groups

Hj
c (MK × Cp,Ql) =

⊕
i∈Z, in even

Hj
c (Mi

K × Cp,Ql) = c-IndJb(Qp)

J1
b

Hj
c (M0

K × Cp,Ql),

for the last equality see lemme 4.4.10 of [23]. In fact there are also actions of G(Qp)
and WE on 4′, where E is the reflex local field. Let (G(Qp) × Jb(Qp) ×WE)1 be the
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subgroup of G(Qp) × Jb(Qp) × WE which acts trivially on 4′. Let K varies as open
compact subgroup of G(Zp), we have equalities of G(Qp)×Jb(Qp)×WE-representations

lim−→
K

Hj
c (MK × Cp,Ql) =

⊕
i∈Z, in even

lim−→
K

Hj
c (Mi

K × Cp,Ql)

= c-IndG(Qp)×Jb(Qp)×WE

(G(Qp)×Jb(Qp)×WE)1 lim−→
K

Hj
c (M0

K × Cp,Ql),

see remarque 4.4.11 of loc. cit. In the following we will forget the action of WE and just
consider the cohomology groups as G(Qp)× Jb(Qp)-representations.

The dimension of Hj
c (M0

K × Cp,Ql) as Ql-vector space is infinite. However, as J1
b -

representation, it is of finite type, see loc. cit. proposition 4.4.13. As in section 2.10,
we fix a Λ ∈ L0 such that t(Λ) = tmax. Recall the subscheme MΛ ⊂ M0

red, which is
an irreducible component of M0

red, and the set of all irreducible components of M0
red

is exactly {gMΛ = MgΛ|g ∈ Jderb (Qp)/Stab(Λ)}. We have a locally finite covering by
open subsets

M0 =
⋃

g∈Jderb (Qp)/Stab(Λ)

gsp−1(MΛ).

We have Jderb (Qp) ⊂ J1
b , and the action of Jderb (Qp) on L0 naturally extends to an

action of J1
b , and we still denote by Stab(Λ) the stabilizer of Λ in J1

b . We set U :=
π−1
K (sp−1(MΛ)) ⊂M0

K , then by theorem 3.3 (ii) of [41]

dimQlH
j
c (U × Cp,Ql) <∞.

We have a J1
b -equivariant spectral sequence

Ep,q
1 =

⊕
α⊂J1

b /Stab(Λ)
#α=−p+1

Hq
c (U(α)× Cp,Ql)⇒ Hp+q

c (M0
K × Cp,Ql),

where p ≤ 0, 0 ≤ q ≤ n− 1, U(α) =
⋂
g∈α gU . The J

1
b action on Ep,q

1 is

∀h ∈ J1
b , h : Hq

c (U(α)× Cp,Ql)
∼→ Hq

c (hU(α)× Cp,Ql).

Denote Kα =
⋂
g∈α gStab(Λ)g−1, then Hq

c (U(α)×Cp,Ql) is a smooth Ql-representation
of Kα, and Ep,q

1 can be rewritten as

Ep,q
1 =

⊕
[α]∈J1

b \(J
1
b /K)−p+1

c-IndJ
1
b
Kα
Hq
c (U(α)× Cp,Ql).

Since (gU)g∈J1
b /Stab(Λ) is a locally finite covering ofMK ,

#{[α] ∈ J1
b \ (J1

b /Stab(Λ))−p+1|U(α) 6= ∅} <∞,

i.e. the above direct sum has just finitely many non zero terms.

Let γ = (h, g) ∈ G(Qp) × Jb(Qp) be a fixed element with both h and g regular
elliptic. Then there is a fundamental system of neighborhoods of 1 in G(Qp) consisting
of open compact subgroups K ⊂ G(Zp) which are normalized by h. From now on let
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K ⊂ G(Zp) be a sufficiently small open compact subgroup such that hKh−1 = K.
Consider the locally finite cell decomposition ofM0

K

M0
K =

⋃
T∈G(Zp)\G(Qp)/K

g′∈Jderb (Qp)/Stab(Λ)

((T.g′DK)
⋂
M0

K)

if n is odd, and
M0

K =
⋃

T∈G(Zp)\G(Qp)/K
j=0,1

g′∈Jderb (Qp)/Stab(Λ)

((T.gj1g
′DK)

⋂
M0

K)

if n is even. Here by replacing D by D′ in the proof of theorem 2.10.8 we can assume D
is compact. Thus the notation D in this section is a little different from that in previous
sections. If n is odd, for any g′ ∈ Jderb (Qp)/Stab(Λ), T ∈ G(Zp) \G(Qp)/K,

(T.g′DK)
⋂
M0

K 6= ∅ ⇔ vp(detT ) = 0,

in which case we have
T.g′DK ⊂M0

K .

If n is even, for any g′ ∈ Jderb (Qp)/Stab(Λ), j = 0, 1, T ∈ G(Zp) \G(Qp)/K,

(T.gj1g
′DK)

⋂
M0

K 6= ∅ ⇔ −
2

n
vp(detT ) + j = 0,

in which case we have
T.gj1g

′DK ⊂M0
K .

Thus we can rewrite the locally finite cell decomposition ofM0
K as

M0
K =

⋃
T∈G(Zp)\G(Qp)/K

vp(detT )=0

g′∈Jderb (Qp)/Stab(Λ)

T.g′DK

if n is odd, and
M0

K =
⋃

T∈G(Zp)\G(Qp)/K

j=0,1,− 2
n
vp(detT )+j=0

g′∈Jderb (Qp)/Stab(Λ)

T.gj1g
′DK

if n is even. We will write the cells T.g′DK and T.gj1g
′DK as DT,g′,K and DT,j,g′,K re-

spectively. If n is odd, for any T ∈ G(Zp) \ G(Qp)/K, j ∈ 2Z, g′ ∈ Jderb (Qp) such that
− 2
n
vp(detT ) + j = 0, we denote also

∅ 6= DT,j,g′,K := T.p
−j
2 g′DK ⊂M0

K .

If n is even, for any T ∈ G(Zp) \ G(Qp)/K, j ∈ Z, g′ ∈ Jderb (Qp)/Stab(Λ) such that
vp(detT ) + j = 0, we denote also

∅ 6= DT,j,g′,K :=

{
T.p

−j
2 g′DK (j even)

T.p
1−j

2 g1g
′DK (j odd),
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which is a compact analytic domain in M0
K . Since (z, z−1) ∈ G(Qp) × Jb(Qp) acts

trivially onMK for any z ∈ Q×p , with these notations we have

DT,g′,K = DTz,z−1g′,K , DT,j,g′,K = DTz,j+2vp(z),g′,K , ∀z ∈ Q×p

For the γ = (h, g) above we suppose further vp(deth) + vp(detg) = 0. Then γ(M0
K) =

M0
K . To describe the action of γ on the cells, we have to introduce some more natural

parameter set of cells.

Consider the product G×Jb as reductive group over Qp, then Gm acts on it through
the imbedding z 7→ (z, z). Let B(G× Jb,Qp) be the (extended) Bruhat-Tits building of
G× Jb over Qp, and B = B(G× Jb,Qp)/Q×p be its quotient by the action of Q×p through
the embedding above. More precisely, if B(Gad,Qp) (resp. B(Jadb ,Qp)) is the Bruhat-
Tits building of the adjoint group Gad (resp. Jadb ) over Qp, which is isomorphic to the
Bruhat-Tits building of the derived group Gder (resp. Jderb ) over Qp, then the (extended)
Bruhat-Tits building of G (resp. Jb) over Qp is B(Gad,Qp) × R (resp. B(Jadb ,Qp)) over
Qp. The quotient building B is

B ' (B(Gad,Qp)× R× R× B(Jadb ,Qp))/ ∼,

where
(x, s, t, y) ∼ (x′, s′, t′, y′)⇔

x = x′, y = y′, s− s′ = t′ − t = r( n odd) or 2r( n even), for some r ∈ Z.

Any point of B can be written in the form [x, s, t, y] = [x, s′, t′, y] where s′ ∈ R, t′ ∈
[0, 1)(n odd)or [0, 2)(n even) are uniquely determined. The action of G(Qp)× Jb(Qp) on
B is given by

∀(h, g)×G(Qp)× Jb(Qp), (h, g)[x, s, t, y] = [h−1x, s+
2

n
vp(deth), t+

2

n
vp(detg), gy].

If we consider the right action of G(Qp) on B(Gad,Qp) by xh := h−1x, we can write
(h, g)[x, s, t, y] = [xh, s+ 2

n
vp(deth), t+ 2

n
vp(detg), gy]. The sets of vertices of B(Gad,Qp)

and B(Jadb ,Qp) can be described as in section 2.7, as certain sets of lattices in Qn
p2 . By

fixing a choice (Znp2 ,Λ) with t(Λ) = tmax, we can identify the following set

(G(Zp) \G(Qp)× Jb(Qp)/StabJderb (Qp)(Λ))/Q×p

with a subset of the set of vertices B0 (the quotient by Q×p of vertices in B(G×Jb,Qp)),
such that the projections to B(Gad,Qp)

0 and B(Jadb ,Qp)
0 are vertices of types determined

by Znp2 ,Λ respectively. In the following we will simply denote StabJderb (Qp)(Λ) by Stab(Λ)

as in section 2.10. For any open compact subgroup K ⊂ G(Zp), we can identify

IK := (G(Zp) \G(Qp)/K × Jb(Qp)/Stab(Λ))/Q×p

with a subset of B0/K ⊂ B/K. We can write an element of IK in the form [T, g′] =
[x, 2

n
vp(detT ), 2

n
vp(detg

′), y] for some x ∈ B(Gad,Qp)
0, y ∈ B(Jadb ,Qp)

0 uniquely deter-
mined by T and g′. There is a map

G(Zp) \G(Qp)/K × Jb(Qp)/Stab(Λ) −→ Z

(T, g′) 7→ − 2

n
(vp(detT ) + vp(detg

′)),
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with image Z if n is even and 2Z if n is odd. Let (G(Zp) \G(Qp)/K×Jb(Qp)/Stab(Λ))0

be the inverse image of 0, then Q×p acts on this subset. We denote

I0
K := (G(Zp) \G(Qp)/K × Jb(Qp)/Stab(Λ))0/Q×p .

In fact there is a well defined map

ϕ : B −→ R
[x, s, t, y] 7→ −s− t,

with each fiber stable for the action of K. Then we have I0
K ⊂ ϕ−1(0)0/K.

Now for any [T, g′] ∈ IK , the subset

D[T,g′],K := T.g′DK ⊂MK

is well defined, which is a compact analytic domain. If [T, g′] ∈ I0
K ,

D[T,g′],K ⊂M0
K .

We can rewrite the cell decomposition ofMK andM0
K as

MK =
⋃

[T,g′]∈IK

D[T,g′],K ,

M0
K =

⋃
[T,g′]∈I0

K

D[T,g′],K .

For γ = (h, g) ∈ G(Qp)× Jb(Qp) such that hKh−1 = K, it induces an action on IK by
[T, g′] 7→ [Th, gg′]. On the other hand the automorphism γ : MK → MK induces an
action of γ on the cells compatible with its action on the parameter set above :

γ(D[T,g′],K) = D[Th,gg′],K .

If we assume as above vp(deth) + vp(detg) = 0 then γ acts on I0
K by [T, g′] 7→ [Th, gg′],

and the automorphism γ : M0
K → M0

K induces a compatible action on the cells as
above.

Recall there is a metric d on the building B. If we denote the metrics on
B(Gad,Qp) and B(Jadb ,Qp) by d1, d2 respectively, for [x, s, t, y], [x′, s′, t′, y′] ∈ B with
t, t′ ∈ [0, 1)(n odd) or [0, 2)(n even), we have

d([x, s, t, y], [x′, s′, t′, y′]) =
√
d1(x, x′)2 + d2(y, y′)2 + (s− s′)2 + (t− t′)2.

It induces a metric d on the quotient space B/K :

d(xK, yK) = inf
k,k′∈K

d(xk, yk′) = inf
k∈K

d(xk, y) = inf
k∈K

d(x, yk).

Since K ⊂ G(Zp) is compact, one checks it easily this is indeed a metric. For any
fixed ρ > 0 and o ∈ B0/K, the closed ball B(o, ρ) of B/K contains only finitely many
points of the discrete subsets B0/K, IK , I0

K . For the γ = (h, g) ∈ G(Qp) × Jb(Qp) with
hKh−1 = K, the action of γ on the parameter set IK is isometric :

d(γx, γx) = d(x, x), ∀x ∈ IK .
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Note for any [T1, g1], [T2, g2] ∈ IK , D[T1,g1],K

⋂
D[T2,g2],K 6= ∅ implies that vp(detT1) +

vp(detg1) = vp(detT2) + vp(detg2). If we write

[T1, g1] = [x1K, s1, t1, y1], [T2, g2] = [x2K, s2, t2, y2]

with

x1, x2 ∈ B(Gad,Qp), y1, y2 ∈ B(Jadb ,Qp), s1, s2 ∈ Z ⊂ R, t1, t2 ∈ {0}(n odd) or{0, 1}(n even),

(i.e. ∃r1, r2 ∈ Z, s.t. 2
n
vp(detTi) = si + nri, vp(detgi) = ti + nri, i = 1, 2,) then s1 + t1 =

s2 + t2, s1 − s2 = t2 − t1 ∈ [−1, 1], the distance

d([T1, g1], [T2, g2]) = inf
k∈K

√
d1(x1, x2k)2 + d2(y1, y2)2 + 2(s1 − s2)2

just depends on d1(x1K, x2K) and d2(y1, y2) : for the induced metric d1 on B(Gad,Qp)/K
defined in the same way as d, and the metric d2 on B(Jadb ,Qp).
Proposition 3.4.1. There exists a constant c > 0, which depends only on the lo-
cally finite cell decomposition of MK, such that for any [T1, g1], [T2, g2] ∈ IK, if
d([T1, g1], [T2, g2]) > c then we have

D[T1,g1],K

⋂
D[T2,g2],K = ∅.

Proof. We need to prove that, there exists a constant c > 0, such that for any [T, g] ∈ IK ,
and any [T ′, g′] ∈ {[T ′, g′] ∈ IK |D[T ′,g′],K

⋂
D[T,g],K 6= ∅}, we have d([T, g], [T ′, g′]) ≤ c.

This proposition is in fact implicitly contained in last section. We just indicate some
key points here. First, if VK ⊂ B is any fixed fundamental domain for the action of
K, then ∀x, y ∈ VK by definition we have d(xK, yK) ≤ d(x, y). Next, in the proof of
proposition 2.10.2 (and also in remark 2.10.7), we see the T ∈ G(Zp) \ G(Qp)/G(Zp)
such that D

⋂
T.D 6= ∅ corresponds to elements (a1, . . . , an) ∈ X∗(A)+ ⊂ Zn+ such

that ai ≤ C for i = 1, . . . , n and C is a constant independent of T . Also by results of
Vollaard-Wedhorn which we reviewed in section 2.7, the vertices Λ′ = g′Λ ∈ B(Jderb ,Qp)

0

such that D
⋂
g′D 6= ∅ satisfy Λ′

⋂
Λ 6= ∅, i.e. they share some common neighborhood,

therefore there exists some constant C ′ independent of Λ,Λ′ such that d(Λ,Λ′) ≤ C ′ for
the metric d on B(Jderb ,Qp). Then one can easily deduce the proposition for the case
K = G(Zp), and the general case will follow as soon as this case holds.

From now on we assume γ = (h, g) ∈ G(Qp) × Jb(Qp) such that both h and g are
regular elliptic semi-simple, hKh−1 = K and vp(deth) + vp(detg) = 0. Recall the γ-fixed
vertices (B0)γ is non empty (cf. [71]), we fix a choice of γ-fixed vertex ô, and let o be
its image in B0/K. We can take a choice ô ∈ ϕ−1(0)0 so that o ∈ ϕ−1(0)0/K (see the
above ϕ). Then γ(o) = o for the induced action γ : B0/K → B0/K. For any ρ > 0, we
consider the subset in I0

K defined by intersection of I0
K with the closed balls of radius ρ

with center o in B0/K :

Aρ = {x ∈ B0/K| d(o, x) ≤ ρ}
⋂
I0
K ,

which is a finite set, and γ(Aρ) = Aρ since γ(o) = o, d is γ-isometric, and γ(I0
K) = I0

K .
For any finite set A ⊂ I0

K , we consider

VA =
⋃

[T,g′]∈A

D[T,g′],K ,

UA =M0
K −

⋃
[T,g′]/∈A

D[T,g′],K .
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Proposition 3.4.2. With notations as above, UA is an open subspace of M0
K, VA is a

compact analytic domain ofM0
K, and we have UA ⊂ VA.

Proof. By our assumption in this section, DK is compact, thus it is clear that VA as
a finite union of compact analytic domains, is still a compact analytic domain. Since
the union of closed subsets

⋃
[T,g′]/∈AD[T,g],K is locally finite, one can check easily it is

closed in M0
K . Thus UA is open. Finally the inclusion UA ⊂ VA holds since M0

K =
(M0

K − UA)
⋃
VA by the cell decomposition ofM0

K .

For any ρ > 0, denote
Uρ = UAρ , Vρ = VAρ .

Then
γ(Uρ) = Uρ, γ(Vρ) = Vρ

since γ(Aρ) = Aρ. By the above proposition, each Uρ is a locally compact open subspace
ofM0

K . We have
Hj
c (M0

K × Cp,Ql) = lim−→
ρ

Hj
c (Uρ × Cp,Ql),

with
dimQlH

j
c (Uρ × Cp,Ql) <∞.

We have an induced action of γ on cohomology of Uρ

γ : Hj
c (Uρ × Cp,Ql)→ Hj

c (Uρ × Cp,Ql).

Denote
H∗c (Uρ × Cp,Ql) =

∑
j≥0

(−1)jHj
c (Uρ × Cp,Ql),

as an element in some suitable Grothendieck group. We consider the trace of γ on this
Euler-Poincaré characteristic

Tr(γ|H∗c (Uρ × Cp,Ql)) =
∑
j≥0

(−1)jTr(γ|Hj
c (Uρ × Cp,Ql)).

We consider also

H∗c (M0
K × Cp,Ql) =

∑
j≥0

(−1)jHj
c (M0

K × Cp,Ql),

as an element in the Grothendieck group of smooth representations of (G(Qp)×Jb(Qp))
1.

Let Fix(γ|M0
K ×Cp) be the set of fixed points of γ onM0

K ×Cp, then each fixed point
is simple since the p-adic period mappingM0

K → Fa is étale, and the fixed points of g
on Fa are all simple.

As last subsection, we will use our result of cell decomposition of M0
K , to verify

that the action of γ satisfies the conditions of Mieda’s theorem 3.13 [60], thus deduce a
Lefschetz trace formula for these unitary Rapoport-Zink spaces.
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Theorem 3.4.3. For the fixed γ = (h, g) ∈ G(Qp) × Jb(Qp) such that both h and g
are regular elliptic, vp(deth) + vp(detg) = 0, there exist a sufficient small open compact
subgroup K ′ ⊂ G(Zp) and a sufficient large number ρ0 >> 0, such that for all open
compact subgroup K ⊂ K ′ which is normalized by h and all ρ ≥ ρ0, we have the Lefschetz
trace formula

Tr(γ|H∗c (Uρ × Cp,Ql)) = #Fix(γ|M0
K × Cp),

which is well defined and finite. Since the right hand side is independent of ρ, we can
define

Tr(γ|H∗c (M0
K × Cp,Ql)) := Tr(γ|H∗c (Uρ × Cp,Ql))

for ρ >> 0, and thus

Tr(γ|H∗c (M0
K × Cp,Ql)) = #Fix(γ|M0

K × Cp).

Proof. Since h is elliptic, for sufficiently small open compact normal subgroup K ⊂
G(Zp),

d(x, γx)→∞, when x ∈ I0
K , d(o, x)→∞.

In fact, since o, x ∈ ϕ−1(0)0/K, write o = [o1K,−s, s, o2], x = [x1K,−t, t, x2] with
o1, x1 ∈ B(Gad,Qp), o2, x2 ∈ B(Jadb ,Qp), s, t ∈ {0}(n odd) or {0, 1}(n even), then

γ(x) = [x1hK,
2

n
vp(deth)− t, 2

n
vp(detg) + t, gx2] = [x1hK,−t′, t′, gx2]

with t′ ∈ {0}(n odd) or {0, 1}(n even),

d(x, γx) = inf
k∈K

√
d1(x1, x1hk)2 + d2(x2, gx2)2 + 2(t− t′)2,

d(o, x) = inf
k∈K

√
d1(x1k, o1)2 + d2(x2, o2)2 + 2(t− s)2.

To prove the above statement, we first work with B′ := B(Gad,Qp)×B(Jadb ,Qp). Denote
the metric on B′ by d′. Since h, g are elliptic, the fixed points set (B′)γ is nonempty
and compact. Moreover, for K sufficiently small, (B′)(h,g) = (B′)(h′,g) for any h′ ∈ hK
(cf. the proof of lemma 12 in [71]). For o′ = (o1, o2) ∈ (B′)(h,g) fixed, a simple tri-
angle inequality shows that d′(x′, (B′)(h,g)) → ∞ when x′ = (x1, x2) ∈ B′, d′(o′, x′) =√
d1(x1, o1)2 + d2(x2, o2)2 → ∞, since (B′)(h,g) is compact. On the other hand, for any

automorphism σ of B′ with (B′)σ 6= ∅, there exists a constant 0 < θ ≤ π which just
depends on B′ and σ, such that

d′(x′, σx′) ≥ 2d′(x′, (B′)σ) sin(
θ

2
),

see [70] proposition 2.3. In particular, d′(x′, γ′x′) → ∞ when d′(o′, x′) → ∞ for any
h′ ∈ hK, γ′ = (h′, g). As K is compact this deduces the above statement.

We have

M0
K − Uρ =

⋃
[T,g′]∈I0

K−Aρ

D[T,g′],K

Vρ − Uρ =
⋃

[T,g′]∈Aρ−Aρ−c

FT,g′ ,
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where for any [T, g′] ∈ Aρ,

FT,g′ = D[T,g′],K

⋂
(M0

K − Uρ),

which is nonempty if and only if [T, g′] ∈ Aρ −Aρ−c by proposition 3.4.1, in which case
FT,g′ is a compact analytic domain in D[T,g′],K ⊂ Vρ. By the above lemma, there exists
a sufficiently large ρ0 >> 0, such that for any ρ ≥ ρ0, [T, g

′] ∈ I0
K − Aρ−c, we have

d([T, g′], γ([T, g′])) > c, and thus by proposition 3.4.1

D[T,g′],K

⋂
γ(D[T,g′],K) = ∅, FT,g′

⋂
γ(FT,g′) = ∅ (for [T, g′] ∈ Aρ − Aρ−c).

To apply Mieda’s theorem, we pass to adic spaces. We have the locally finite cell
decomposition

(M0
K)ad =

⋃
[T,g′]∈I0

K

Dad[T,g′],K ,

where each cell Dad[T,g′],K is a quasi-compact open subspace
of (M0

K)ad, Dad[T1,g1],K

⋂
Dad[T2,g2],K 6= ∅ ⇔ D[T1,g1],K

⋂
D[T2,g2],K 6= ∅, and the action of

γ on (M0
K)ad induces the action of the cells in the same way as the case of Berkovich

spaces. By [41] 8.2, Uad
ρ is an open subspace of (M0

K)ad, which is separated, smooth,
and partially proper. On the other hand V ad

ρ =
⋃

[T,g′]∈Aρ D
ad
[T,g′],K is a quasi-compact

open subspace. Consider the closure V ad
ρ =

⋃
[T,g′]∈Aρ D

ad
[T,g′],K of V ad

ρ in (M0
K)ad, which

is a proper pseudo-adic space and contained in the quasi-compact space V ad
ρ . We know

that V ad
ρ (resp. Dad[T,g′],K) is the set of all the specializations of the points in V ad

ρ (resp.
Dad[T,g′],K). Moreover, γ induces automorphisms γ : V ad

ρ → V ad
ρ , V ad

ρ → V ad
ρ , Uad

ρ → Uad
ρ .

Since V ad
ρ−c ⊂ Uad

ρ ⊂ V ad
ρ , we have V ad

ρ − V ad
ρ =

⋃
[T,g′]∈Aρ−Aρ−c(D

ad
[T,g′],K −Dad[T,g′],K). Note

Dad[T1,g1],K

⋂
Dad[T2,g2],K 6= ∅ ⇔ Dad[T1,g1],K

⋂
Dad[T2,g2],K 6= ∅.

For [T, g′] ∈ Aρ − Aρ−c, let WT,g′ = Dad[T,g′],K − Dad[T,g′],K . By the paragraph above, for
ρ >> 0 we have γ(WT,g′)

⋂
WT,g′ = ∅. One sees the conditions of theorem 3.13 in [60]

for V ad
ρ and its compactification V ad

ρ hold, i.e.

Tr(γ|H∗c (V ad
ρ × Cp,Ql)) = #Fix(γ|V ad

ρ × Cp) = #Fix(γ|Vρ × Cp).

By [42] proposition 2.6 (i) and lemma 3.4, we have

Tr(γ|H∗c (V ρad ×Cp,Ql)) = Tr(γ|H∗c (Uad
ρ ×Cp,Ql)) + Tr(γ|H∗c ((V ad

ρ −Uad
ρ )×Cp,Ql)).

By the paragraph above and the induction argument as the proof of proposition 4.10
in [59], one has Tr(γ|H∗c ((V ad

ρ − Uad
ρ ) × Cp,Ql)) = 0. By the comparison theorem on

compactly support cohomology of Berkovich spaces and adic spaces, we can conclude

Tr(γ|H∗c (Uρ×Cp,Ql)) = Tr(γ|H∗c (Uad
ρ ×Cp,Ql)) = Tr(γ|H∗c (V ad

ρ ×Cp,Ql)) = #Fix(γ|Vρ×Cp).

As the reason above, for ρ >> 0, γ permutes the cells D[T,g′],K for [T, g′] /∈ Aρ, we have

Fix(γ|Vρ × Cp) = Fix(γ|M0
K × Cp).

The theorem is thus proved.
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Similarly we have a remark as the case of Lubin-Tate that

H i
c(M0

K × Cp,Ql) ' H i
c((M0

K)ad × Cp,Ql) = lim−→
ρ

H i
c(V

ad
ρ × Cp,Ql), ∀ i ≥ 0,

and we can work totally in the framework of adic spaces when considering cohomology.
But here we have chosen to transfer back the result to Berkovich spaces, so we insist on
working with the open subspaces Uρ.

We have a nice fixed points number formula for the quotient spaceMK/p
Z. Note if

g ∈ Jb(Qp) is a regular elliptic semi-simple element, for any x ∈ Fix(g|Fa(Cp)), there
is a element hg,x ∈ G(Qp) which is conjugate to g over Qp defined by the comparison
isomorphism

Vp(Hy)⊗Qp BdR
∼−→ VL ⊗L BdR,

where y ∈ π−1(x) is any point in the fiber of the p-adic period mapping π :M→ Fa.

Corollary 3.4.4. Let the notations be as in the above theorem. If n is even we assume
that 2

n
(vp(deth) + vp(detg)) is even. Fix compatible Haar measures on G(Qp) and the

centralizer of hg,x, Ghg,x := {h′ ∈ G(Qp)|h′hg,xh′−1 = hg,x}. Denote the characteristic
function of h−1K by 1h−1K and the volume of K under the fixed Haar measure by V ol(K).
Then we have the following formula

Tr(γ|H∗c ((MK/p
Z)× Cp,Ql)) =

∑
x∈Fix(g|Fa(Cp))

V ol(Ghg,x/p
Z)Ohg,x(

1h−1K

V ol(K)
),

where V ol(Ghg,x/p
Z) is the volume of Ghg,x/p

Z by the induced Haar measure on
G(Qp)/p

Z,

Ohg,x(
1h−1K

V ol(K)
) =

∫
G(Qp)/Ghg,x

1h−1K

V ol(K)
(z−1hg,xz)dz

is the orbit integral of 1h−1K

V ol(K)
over the conjugate class of hg,x.

Proof. We just need count the number of the fixed geometric points set
Fix(γ|(MK/p

Z)× Cp). This can be done by considering the map

MK/p
Z → Fa ⊂ Pn−1,an

induced the p-adic period mapping, as in theorem 2.6.8 of [77] and [62]. In particular
we have

#Fix(γ|(MK/p
Z)× Cp) =

∑
x∈Fix(g|Fa(Cp))

#{h′ ∈ G(Qp)/p
ZK|h′−1hg,xh

′ = h−1}.

One can then write this number easily in the form as in the corollary.

For any irreducible smooth representation π of Jb(Qp), and any integers i, j ≥ 0,
although the Ql-vector space

Hj
c (MK × Cp,Ql)

is of infinity dimension, we have (cf. [23] corollarie 4.3.11)

dimQlExt
i
Jb(Qp)(H

j
c (MK × Cp,Ql), π) <∞,
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and there are finitely many i, j for which ExtiJb(Qp)(H
j
c (MK × Cp,Ql), π) 6= 0. Thus we

can consider the element

J(π) :=
∑
i,j≥0

(−1)i+j lim−→
K

ExtiJb(Qp)(H
j
c (MK × Cp,Ql), π) ∈ GrothQl(G(Qp)),

where GrothQl(G(Qp)) is the Grothendieck group of smoothQl-representations ofG(Qp).
We can thus define a morphism

J : GrothQl(Jb(Qp))→ GrothQl(G(Qp))

by linearly extension of the above map. If π is supercuspidal, lim−→K
ExtiJb(Qp)(H

j
c (MK ×

Cp,Ql), π) = 0 unless j = 0, in which case it is

J(π) = lim−→
K

HomJb(Qp)(H
∗
c (MK × Cp,Ql), π),

for
H∗c (MK × Cp,Ql) =

∑
j≥0

(−1)jHj
c (MK × Cp,Ql).

In the following we will work in the operate direction, that is assume π is now a super-
cuspidal representation of G(Qp), and consider

H(π) =
∑
j≥0

(−1)jHomG(Qp)(lim−→
K

Hj
c (MK × Cp,Ql), π).

Assume that HomG(Qp)(lim−→K
Hj
c (MK × Cp,Ql), π) is of finite length, which should be

always the case, then H(π) is a well defined element in GrothQl(Jb(Qp)).

Corollary 3.4.5. Let π be a supercuspidal representation of G(Qp), g ∈ Jb(Qp) be a
regular elliptic semi-simple element. Assume that π is of the form π = c− IndG(Qp)

Kπ
λ, for

some open compact modulo center subgroup Kπ ⊂ G(Qp) and some finite dimensional
representation λ of Kπ. Then we have

trH(π)(g) =
∑

x∈Fix(g|Fa(Cp))

trπ(hg,x).

Proof. One computes exactly as in [62] or the proof of theorem 4.1.3 in [77], using
theorem 3.4.3 and corollary 3.4.4. Here we just indicate a point when using the method
of [62]. As the notations there, let T = pZ considered as a subgroup of G(Qp), and
K0 C Kπ be an open compact normal subgroup such that λ is trivial on TK0. Let
Ξπ = Kπ/TK0 and Ξe

π be the subset of classes which contain an elliptic representative.
We have a natural bijection H∗c ((MK0/T ) × Cp,Ql) ' H∗c (M0

K0
× Cp,Ql) if n is odd,

and H∗c ((MK0/T )× Cp,Ql) ' ⊕i=0,1H
∗
c (Mi

K0
× Cp,Ql) if n is even. Then

trH(π)(g) = tr(g|HomKπ(H∗c ((MK0/T )× Cp,Ql), λ))

=
1

#Ξπ

∑
h∈Ξeπ

tr((h, g)|H∗c (Uρh × Cp,Ql))tr(h
−1|λ)
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if n is odd, and

=
1

#Ξπ

∑
h∈Ξeπ

tr((h, g)| ⊕i=0,1 H
∗
c (U i

ρh
× Cp,Ql))tr(h

−1|λ)

if n is even. The remaining computations are just using theorem 3.4.3 and corollary
3.4.4.

As [77] and [62], we will hope to use the above corollary to prove the realization of
the local Jacquet-Langlands correspondence for smooth representations of G(Qp) and
Jb(Qp) (for n even) in the cohomology of our Rapoport-Zink spaces. By the methods
of loc. cit., we are just reduced to problems of classification of L-packets of G(Qp) and
Jb(Qp), and characterization of the local Jacquet-Langlands correspondence between
smooth representations of them. Considering the recent progress on classification of L-
packets (global and local) for unitary groups, for example see [63] for the local case
which concerns us, it seems that these can be achieved soon.
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