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Résumé

Dans cette thése, nous étudions la géométrie analytique p-adique et la cohomologie /-
adique de certains espaces de Rapoport-Zink, en utilisant la théorie des filtrations de Harder-
Narasimhan des schémas en groupes finis et plats élaborée par Fargues dans [20] et [27].

Cette thése se compose de trois parties. La premiére partie traite de certains espaces de
Rapoport-Zink non-basiques, qui satisfont & la condition que leur polygone de Newton et poly-
gone de Hodge ont un point de contact non-trivial, qui est un point de rupture pour le polygone
de Newton. Sous cette hypothése, nous prouvons que ces espaces de Rapoport-Zink peuvent
étre décomposés en une somme directe d’espaces de modules des types de Rapoport-Zink asso-
ciés & certains sous-groupes paraboliques appropriés , donc leurs cohomologie ¢-adique sont des
induites paraboliques et en particulier ne contiennent pas de représentations supercuspidales.
Nous prouvons ces faits en démontrant d’abord un théoréme sur la filtration de Hodge-Newton
pour les groupes p-divisibles avec des structures additionelles sur des anneaux de valuation
complets de rang un et de caractéristique mixte (0, p).

Dans la deuxiéme partie, nous considérons les espaces de Rapoport-Zink basiques de sig-
nature (1,7 — 1) pour les groupes unitaires associés a I'extension quadratique non ramifiée de
Qp- On étudie I'action de Hecke sur ces espaces en détails. En utilisant la théorie des filtrations
de Harder-Narasimhan des schémas en groupes finis et plats, et la stratification de Bruhat-Tits
de la fibre spéciale réduite M4 étudié dans [81], on trouve un certain domaine analytique
compact D telle que ses itérés dans le groupe G(Q)) % Jp(Qp) forme un recouvrement locale-
ment fini de tout 'espace M. Nous appelons un tel phénoméne une décomposition cellulaire
localement finie.

Dans la troisiéme partie, nous démontrons une formule de Lefschetz pour ces espaces pour
I’action des éléments semi-simples réguliers elliptiques, en tenant compte de l'action de ces
éléments sur les cellules et en appliquant le théoréme principal de Mieda dans [60]. De la méme
maniére, nous pouvons aussi reprouver la formule de Lefschetz pour les espaces de Lubin-Tate
précédemment obtenue par Strauch dans [77] et Mieda dans [60]. Cette formule de Lefschetz
devrait caractériser la réalisation de correspondances de Jacquet-Langlands locales pour les
groupes unitaires dans la cohomologie f-adique de ces espaces de Rapoport-Zink, dés que cer-
tains problémes correspondants de théorie des représentations auront été résolus.

Mots-clefs : groupes p-divisibles, espaces de Rapoport-Zink, filtration de Hodge-Newton, dé-
composition cellulaire, formule de Lefschetz.

HODGE-NEWTON FILTRATIONS, CELL DECOMPOSITION AND COHOMOLOGY OF
CERTAIN p-ADIC MODULI SPACES

Abstract

In this thesis we study p-adic analytic geometry and ¢-adic cohomology of some Rapoport-
Zink spaces, using the theory of Harder-Narasimhan filtration of finite flat group schemes
developed by Fargues in [206] and [27].

This thesis consists of three parts. The first part deals with some non-basic Rapoport-Zink
spaces, which satisfy the condition that their Newton polygon and Hodge polygon have a non-
trivial contact point, which is a breakpoint for the Newton polygon. Under this hypothesis,
we prove these Rapoport-Zink spaces can be decomposed as a direct sum of smaller Rapoport-
Zink spaces associated to some suitable parabolic subgroups, thus their ¢-adic cohomology is
parabolically induced and in particular contain no supercuspidal representations. We prove
these facts by first proving a theorem about the Hodge-Newton filtration for p-divisible groups
with additional structures over complete valuation rings of rank one and mixed characteristic

(0,p).



In the second part, we consider the basic Rapoport-Zink spaces with signature (1,n — 1)
for the unitary groups associated to the unramified quadratic extension of QQ,. We study the
Hecke action on these spaces in details. By using the theory of Harder-Narasimhan filtrations
of finite flat group schemes, and the Bruhat-Tits stratification of the reduced special fiber M,..4
studied in [R1], we find some compact analytic domain Dy such that its translates under the
group G(Qp) x Jp(Qp) form a locally finite cover of the whole space Mg. We call such a
phenomenon a locally finite cell decomposition.

In the third part we prove a Lefschetz trace formula for these spaces for the action of
regular semi-simple elliptic elements, by considering the action of these elements on the cells
and applying Mieda’s main theorem in [60]. In the same way we can also reprove the Lefschetz
trace formula for Lubin-Tate spaces as previously obtained by Strauch in [77] and Mieda in [60].
This Lefschetz trace formula should characterize the realization of local Jacquet-Langlands cor-
respondences for unitary groups in the f-adic cohomology of these Rapoport-Zink spaces, as
soon as some corresponding representation theoretic problems are solved.

Keywords : p-divisible groups, Rapoport-Zink spaces, Hodge-Newton filtration, cell decom-
position, Lefschetz trace formula.
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Introduction générale

Motivation

Cette thése est consacrée a ’étude de la géométrie analytique p-adique de certains
espaces de Rapoport-Zink & 'aide de la théorie des filtrations de Harder-Narasimhan
des schémas en groupes finis et plats développée par Fargues dans [20] et [27], et en
déduire des résultats sur la cohomologie de ces espaces. Elle se compose des articles
[72],[73] et [74]. En particulier, nous obtenons par des méthodes locales des résultats
sur la cohomologie de ces espaces compatibles avec les conjectures de Harris et de Kot-
twitz (Conjecture 5.2 dans [34], Conjecture 5.1 dans [70]). Afin de donner une exposition
simplifiée, nous examinons dans cette introduction certaines variétés de Shimura partic-
uliéres étudiées par Harris et Taylor dans [36] qui donnent tous les problémes de modules
locaux que nous allons étudier.

Soient k un corps quadratique imaginaire et D une algébre a division centrale sur
k de dimension n?, munie d’une involution * de seconde espéce. Soit hy : C — Dy un
homomorphisme de R-algébres, de telle sorte que ho(2)* = ho(Z), et 'involution = —
ho(i) *a*ho(i) est positive. Ces données définissent un groupe réductif de similitudes
unitaires GG sur Q dont les points a valeur dans la (Q-algébre R sont

G(R) ={g € (D®q R)"|g*g € R"},

et un homomorphisme

h: RBSQRGm — GR.

Cela définit une donnée de Shimura. Pour tout sous-groupe ouvert compact K C G(Ay)
suffisamment petit, on obtient une variété de Shimura Shg propre et lisse sur k associée
a ces données. Nous supposons que le morphisme h est tel que Gg = GU(1,n — 1).
Considérons un nombre premier impaire p qui est non ramifé dans k. Supposons que D
est non ramifiée en p. Alors, pour tout premier p de k au-dessus de p, K est compact
hyperspécial en p, il y a modeles entiers propres et lisses de ces variétés sur ’anneau des
entiers Oy, définis par Kottwitz (cf. [51]). Ce sont des espaces de modules de variétés
abéliennes avec des structures additionnelles. La géométrie locale en p de ces variétés
de Shimura est assez différente pour les deux cas : p décomposé ou inerte dans k.

Cas p décomposé dans k. Dans ce cas, k, = Q,, Gg, ~ G L, X G,,, et les polygones
de Newton associés a la réduction en p, correspondent & des nombres entiers 0, ..., n—1.
Pour chaque entier 0 < h < n—1, le polygone concave associé consiste en la droite reliant
le point (0,0) et (n—h, 1), et celle reliant (n—h, 1) et (n, 1). Le groupe p-divisible associé
a un point dans la strate %2, admet la suite locale-étale : 0 — H° — H — H® — 0
avec ht Hé = h. Toutes les strates de Newton sont non vides : la dimension de ﬁ; est h.

A chaque strate %2, on peut associer & un espace de Rapoport-Zink M" """ o, pour
la strate supersinguliére h = 0, c’est 'espace de Rapoport-Zink associé a I'espace de
Lubin-Tate M7}, pour GL,/Q,. On peut considérer le cas avec niveau K, en p. Parmi
d’autres faits, ce que nous savons au sujet de ces espaces sont les faits suivants :
— Pour chaque strate non basique, M™ " est une induite parabolique. Ce fait est
facile a voir, par la décomposition local-étale du groupe p-divisible. On est donc
réduit & étudier les espaces de Lubin-Tate. On voit en particulier, la cohomologie de
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ces strates non basiques ne contient pas de représentation supercuspidale (« astuce
de Boyer », cf. [9], [36]).

— Pour M7}, il existe une décomposition cellulaire localement finie avec des cellules
compacte. Il s’agit d’un cas particulier du théoréme principal de [27]. (Voir aussi
le premier chapitre de [25] pour une décomposition variante pour le tour de ces
espaces. )

— Pour M7, K, suffisamment petit, il existe une formule de Lefschetz pour
les éléments semi-simples réguliers elliptiques agissant sur la cohomologie de ces
espaces. Il s’agit d’un résultat principal de [77], ou Strauch a utilisé cette formule
pour prouver la réalisation de la correspondances Jacqut-Langlands locale dans la
cohomologie de ces espaces. Ceci est bien str impliqué par les résultats de Harris-
Taylor, mais ici la méthode est locale et il n’est pas nécessaire d’utiliser les variétés
de Shimura ci-dessus.

Cas p inerte dans k. Dans ce cas, k, ~ Q,2, G, est le groupe des similitudes uni-
taires quasi-déployé associé a l'extension Q,2/Q,. L’ensemble des polygones de Newton
est décrit explicitement dans [10] 3.1. Ils correspondent a des nombres entiers 0 < r < 7.
En particulier, r = 0 correspond au polygone basique, r = 1 correspond au polygone
de Hodge (généralisé), et chaque polygone non basique a un segment central de pente %
(peut-étre de longueur 0) coincidant avec une partie dans le polygone de Hodge. Toutes
les strates de Newton sont non vides : la dimension de la strate non basique correspond
a r est n —r, tandis que la strate basique est de dimension [”T_l] Comme dans le cas
ci-dessus, les strates non basiques sont en fait des feuilles au sens de [55], c’est a dire les
groupes p-divisibles sont uniquement déterminées par leur p-torsion. La géométrie de
la strate basique est plus compliquée que dans le cas p-décomposé ci-dessus. Cela a été
étudié par Valloord et Wedhorn dans [81]. On peut associer a toutes les strates de New-
ton un espace de Rapoport-Zink, et on essaye d’étudier ces espaces. En particulier on
se demande si nous avons des résultats analogues comme le cas p-décomposé ci-dessus :

— Pour les espaces non basiques, sont-ils des induites paraboliques a partir d’espaces
de Rapoport-Zink plus petits ?

— Pour 'espace basique, existe-t-il une décomposition cellulaire localement finie avec
des cellules compacts ?

— Pour 'espace basique, existe-t-il une formule de Lefschetz pour les éléments semi-
simples réguliers elliptiques agissant sur la cohomologie ?

Dans cette thése, nous allons donner des réponses positives a toutes les questions
ci-dessus. En fait, on peut commencer directement avec quelques données locales, qui
donnent espaces de Rapoport-Zink, et on n’a pas besoin de commencer avec les variétés
de Shimura.

Espaces de Rapoport-Zink

Les espaces de Rapoport-Zink sont définis dans [66], comme des espaces de modules
de groupes p-divisibles généralisant les espaces de Lubin-Tate et de Drinfeld. Ils sont
des analogues locaux des variétés de Shimura. En fait, il existe des liens entre eux. Les
données pour la définition d’'une variété de Shimura de type PEL donnent des données
locales en p qui définissent des espaces de Rapoport-Zink pour chaque strate de Newton
(comme on ’a vu précedemment dans un cas particulier), et Rapoport et Zink ont
montré que ces espaces permettent d’uniformiser certains sous-espaces ouvertes rigides
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analytiques de la variété de Shimura rigide analytique associée.

On se restreint aux espaces de Rapoport-Zink non ramifés de type EL et PEL uni-
taires ou symplectiques. Une donnée non ramifée simple locale de type EL ou PEL
(unitaires ou symplectiques) définit un groupe réductif non ramifié G sur Q,, qui est
soit une restriction de scalaires d’'un groupe linéaire, soit un groupe de similitudes uni-
taires ou symplectiques. Notons W = W(F,),L = Wg. Soient b € B(G) = G(L)/ ~
(classes de o-conjugaison), et f : Gm,@p — G@p un cocaractére minuscule a conjugaison

prés, telles que b € B(G, 1) (Pensemble de Kottwitz, cf. [52]). A partir des donnés lo-
cales, on peut construire un espace de Rapoport-Zink formel M sur SpfW : I'ensemble
des points a valeur dans S € NilpW (la catégorie des schémas S au-dessus de W tels
que p soit localement nilpotent sur S) est M\(S) ={(H,p)}/ ~, ou

— H est un groupe p-divisible avec des structures additionnelles (en un certain sens
précis déterminé par les données locales),

— p : Hg — Hg est une quasi-isogénie compatible avec les structures additionelles
(H est le groupe p-divisible standard sur Fp a isogénie prés associé, et S est le sous
schéma fermé de S défini par p).

Dans les cas unitaires ce que nous considérons ici, u(z) = (diag(z,...,z,1),z) pour
nend
lisomorphisme G~ GLp X G, ./Q(S) ={(H,t,\p)}/ ~, ou

~ t: Zy — End(H) est un morphisme d’algébres, tel que dans la décomposition
induite LieH = (LieH ) ® (LieH)q,rg(LieH )y = 1,rg(LieH); = n — 1 (dans ces
cas htH = n), avec (LieH ), (resp. (LieH );) est le sous module & quel Z,2 agit par
le plongement Z,2 < W triviale (resp. non triviale).

— X: (H,t) = (HP, 10 %) est une polarisation (principale) (i.e. un isomorphisme tel
que AP = —)).

L’¢lément b définit un polygone de Newton, tandis que p définit un polygone de Hodge.
Les groupes p-divisibles associés aux points de M ont leur polygone de Newton et
polygone de Hodge définis par b et p respectivement. Le groupe J;, des quasi-isogénies de
H, qui est une forme intérieure d’un sous groupe de Levi de G, agit sur M naturellement.
L’espace M est muni d’une donnée de descente de L & E, le corps reflex qui est le corps
de définition de u. Bien que non effective, cette donnée de descente est suffisante pour
définir une action de Frobenius sur la cohomologie de ces espaces.

Fixons un modéle entier réductif de G et soit G(Z,) le sous-groupe compact hyper-
spécial associé dans G(Q,). On considére la fibre générique analytique M := (M\ )™ de
M. Tl existe plusieurs versions de la géométrie analytique p-adique. Nous allons prin-
cipalement travailler avec la version de Berkovich. Alors il existe une tour d’espaces
analytiques (M), ot K parcourant les sous groupes ouverts de G(Z,). Le groupe
Jy(Q,) agit sur chaque Mg pour tout K naturellement. De plus, G(Q,) agit par corre-
spondances de Hecke sur la tour (Mk)k : Vg € G(Q,),

g9
MgKgflﬁK ﬁg MngflKg

~ N

.MK MK;

qui ne dépend que de la double classe KgK. Cette action de G(Q,) commute & celle de
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J»(Qp). Fixons un premier [ # p. La cohomologie ¢-adique & support compact de Mg
Hé(MK X Cpa@l)
est bien définie (cf. [23]) pour chaque entier i > 0. On obtient ainsi une Q,- représentation

lig HZ(MK X (Cpa @l)
K

du groupe G(Q,) x J4(Q,) x Wg pour chaque i > 0. Losque b est basique, J, est une
forme intérieure de G, et dans ce cas la conjecture de Kottwitz décrirt la partie de
la représentation virtuelle Zizo(_l)ihﬂK Hi( My x C,, Q) associée aux paramétres
discrets de Langlands (cf. [70], Conjecture 5.1). Cette conjecture est un analogue locale

non-archimédean de la conjecture correspondante pour la cohomologie des variétés de
Shimura (cf. [50]).

Les points € My sont de la forme (H,/Ox(s), Lz, Ass Pz, M2) (cas PEL), ot H(x)
est le corps résiduel complet du point x, et Oy, est son anneau de valuation (qui est
de rang un). Nous allons utiliser la théorie des filtrations de Harder-Narasimhan des
schémas en groupes finis et plats développée par Fargues dans [26] et [27] pour étudier
ces espaces de Rapoport-Zink.

Filtration de Harder-Narasimhan des schémas en groupes finis et
plats

Soient K maintenant un corps valué de caractéristque 0 pour une valuation v a
valeurs dans R étendant la valuation p-adique, Ok son anneau d’entiers. Dans [20],
Fargues a démontré la catégorie C des schémas en groupes finis et plats d’ordre une
puissance de p admet une filtration de type de Harder-Narasimhan. Plus précisément,
il y a deux fonctions additives

ht,deg : C — R,

ou pour un groupe G' € C, htG est la hauteur, et deg(G) = >, v(a;) si le faisceau
conormal wg ~ @;0k/a;0k. La fonction deg satisfait certaines propriétés utiles. On

pose
deg

ht
On appelle un groupe G' € C semi-stable, si pour touts 0 # G’ C G,G" € C,u(G") <

w(G). Fargues a démontré que, pour tout groupe G € C non nul, il posséde une unique
filtration par des sous groupes fermés finis et plats

0=GyCG1 & CGp=G

telle que :
1. pour tout i, G;11/G; est semi-stable.

On peut définir un polygone concave HN(G) de G a partir sa filtration de Harder-
Narasimhan : c’est le polygone débutant en (0,0) et terminant en (htG, degG) tel que si
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la filtration est comme ci-dessus, alors ses pentes sont les (u(G;/Gi_1))1<i<k avec multi-
plicité ht(G;/G;_1) pour la pente u(G;/G;_1). On peut prouver HN(G) est 'enveloppe
concave des points (htG’, degG") lorsque G’ parcourt les sous groupes de G.

Il y a beaucoup de propriétés utiles pour cette filtration, pour plus de détails voir
[26]. Mentionnons qu’elle est compatible avec les structures additionnelles. On considére
(G, t, A) un schéma en groupes finis et plats avec structures additionnelles, ot ¢ : Op —
End(G) pour une extension F'|Q, fini non ramifée avec O son anneau d’entiers, A : G —
GP est une polarisation. Alors, la filtration de Harder-Narasimhan de G est invariant
sous l'action de ¢ et le polygone HN(G) est symétrique. On peut définir un nouveau
polygone

HN(G, 1, )) = %HN(G)(d-),
oud=[F:Q,] et on a considérée HN(G) comme une fonction sur [0, htG]. Dans [26],
Fargues défini également un polygone de Hodge Hdg(G) de G, et a prouvé que l'on a
I'inégalité

HN(G) < Hdg(G).

Dans la premiére section de cette thése, nous allons définire un polygone de Hodge
Hdg(G,t,\) de (G, ¢, \), qui contient des informations des structures additionnelles, et
si (G, \) = (H,t, \)[p] provient de la p-torsion d’un groupe p-divisible avec structures
additionnelles, alors ce polygone coincide avec le polygone de Hodge de la fibre spéciale
de (H,t, A) défini par Kottwitz. Nous avons également une preuve d’une inégalité (cf.
Proposition 1.3.10)

HN(G,1,\) < Hdg(G,t, \),

qui raffine le cas sans structures additionnelles. Cette inégalité sera nécessaire pour
prouver l'existence de la filtration de Hodge-Newton dans la suite.

Polygone de Harder-Narasimhan des groupes p-divisibles

Soient K comme avant, H un groupe p-divisible sur O. On peut donc étudier les
groupes H[p"] pour n > 1. Noterons h = htH,d = dimH. Alors On a htH[p"] =
nh,degH [p"] = nd. Le polygone de Harder-Narasimhan de H[p"] est donc une fonction
[0,nh] — [0,nd]. Dans [27|, Fargues a démontré que la limite

lim ~H N (H[p"]) (")

n—oo N,
existe, est égale a inf,, L HN(H|[p"])(n-) et définit une fonction
HN(H) :[0,h] — [0,d]

telle que HN(H)(0) = 0, HN(H)(h) = d. On appelle HN(H) le polygone de Harder-
Narsimhan de H, puisque on peut prouver que c’est bien un polygone. Dans le cas ot Ok
est de valuation discréte et son corps résiduel k£ est parfait, on peut I'expliquer comme
le polygone de Harder-Narasimhan de la représentation cristalline associée & H ou bien
le polygone de Harder-Narasimhan du ¢-module filtré associé, pour certaines fonctions
de pente appropriées sur ces catégories. Dans le cas général, on peut utiliser le module
de Hodge-Tate associée a H, cf. [27] pour plus de détails. On a

HN(H) < SHN(H[p"])(n),¥n > 1.

n
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D’autre part, si on note Newt(Hy) et Hdg(Hy) le polygone de Newton et polygone de
Hodge de Hy respectivement, et si Ok est de valuation discréte, il est facile de prouver
que nous avons l'inégalité

HN(H) < Newt(Hy).

(Rappelons que on a toujours I'inégalité de Mazur Newt(Hy) < Hdg(Hy)). Dans le cas
général, avec une certaine hypothése technique sur H (qui est toujours satisfaite pour les
groupes p-divisibles proviennent des points des espaces de Rapoport-Zink), un résultat
principal de [27] dit que nous avons encore l'inégalité HN(H) < Newt(Hy). En résumé,
on a des inégalités
HN(H) < Newt(Hy) < Hdg(Hyg),
HN(H) <

HN(H[p"])(n-) < HN(H[p]) < Hdg(H[p]) = Hdg(Hy).

SR

Passons au cas avec structures additionnelles. Soit F'|Q, une extension finie non
ramifée. Notons d = [F' : Q,]. Soit (H, ¢, \) un groupe p-divisibles avec des structures
additionnelles (de type PEL) : ¢ : Op — End(H) est une action de Or et A\ : H — HP
est une polarisation. Comme dans le cas des schémas en groupes finis et plats, on peut
définir )

HN(H, i, \) = EHN(H)(d).

Alors on a des inégalités

HN(H,t,\) < Newt(Hy, 1, \) < Hdg(Hy, i, \),

1
HN(H, i, \) < EHN(H[p"],L, AN (n) < HN(H|p|,t,\) < Hdg(H|p],t,\) = Hdg(Hy,t, \).
Ici Newt(Hy,t,\) < Hdg(Hy,t, A) est I'inégalité généralisée de Mazur (cf. [65]).

Filtration de Hodge-Newton et induite parabolique

Soit (H, ¢, A) un groupe p-divisibles avec des structures additionnelles (de type PEL)
comme avant. Faisons l'hypothése suivante : Newt(Hy,t,\) et Hdg(Hg,t,\) possé-
dent un point x de contact non trivial, qui est un point de rupture de Newt(Hy,t,\).
Par symétrie, le point T symétrique de z satisfait la méme hypothése. Nous sup-
posons que x se trouve devant Z. Sous cette hypothése, par l'inégalités HN(H,t, \) <
Newt(Hy,t,\) < Hdg(Hg,t,\) et la théorie des g-modules filtrés admissibles, on peut
prouver que HN(H, 1, \) passe aussi par les points z et Z. En utilisant l'inégalités

HN(H, 1, \) < %HN(H[p”], L A)(n) < HN(H[p|, 0, \) < Hdg(H[p|, 1, \) = Hdg(Hy, 1, \),

on peut trouver des crans dans les filtration de Harder-Narasimhan de H [p"] correspon-
dant aux points x et Z pour les n >> 0. On peut prouver qu’ils sont compatibles et
donc définissent des groupes p-divisibles.

Théoréme 0.0.1. Les notations sont comme ci-dessus. Il existe une unique filtration
de groupes p-divisibles avec des structures additionnelles sur Ok

(Hy,0) C (Ho,t) C (H, 1),

telle que :
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1. X induit les isomorphismes
(Hi,0) = ((H/Hy)". 1),

(Ha,t) = ((H/H)",0),
ot i est l'action induite par t.

2. Si k est parfait la filtration induite
(Hlk,b) C (Hgk,b) C (Hk,L)

est scindée.

3. les polygones de Newton (resp. Harder-Narasimhan,
resp. Hodge) de (Hy,u), (Hy/Hy,t) et (H/Hy, 1) sont les parties du polygone de
Newton (resp. Harder-Narasimhan, resp. Hodge) de (H,t,\) avant x, entre x et
T, et aprés T respectivement.

Ce théoréme généralise les résultats de larticle [57]. Mais notre démonstration est
différente.

Soit maintenant (Mg )k une tour d’espaces de Rapoport-Zink non ramifée simple,
telle que le polygone de Newton P, associ¢ a b et le polygone de Hodge P, associé a
1 satisfont I’hypothése ci-dessus. C’est & dire que ils possédent un point x de contact
non triviale, qui est un point de rupture de P,. On peut trouver alors un sous groupe
parabolique P et un sous groupe de Levi M C P correspondants & x et . Mantovan a
introduit dans [56] deux autres tours d’espaces analytiques (Px)xcnm(z,), (Fr)kcp(z,)
pour les groupes M, P respectivement. La tour (Px)xcar(z,) est en fait la tour d’espaces
de Rapoport-Zink pour le groupe M avec les i/, i/ induites. Ils sont I'espaces des modules
des paires de groupes p-divisibles avec structures additionnelles. La tour (Fg)gc P(Z,)
est une tour d’espaces des modules de groupes p-divisibles filtrés avec structures ad-
ditionnelles. De plus, pour tout sous groupe ouvert compact K C G(Z,) si on note
Fk = Frnpz,) Pk = Prnm(z,), alors il y a un diagramme de morphismes d’espaces

analytiques
SK
A T2K

PK MKa

ol Sk est une immersion fermé correspondant a ’extension triviale, et 7 induit un
isomorphisme au niveau de la cohomologie [-adique a support compact. Le théoréeme
d’existence et d’unicité de la filtration de Hodge-Newton implique que

Mg ~ Mg XM.F’Z H .FKQP(QP).
K\G(Qp)/P(Qp)

Passons a la cohomologie, on a le théoréme suivante.

Théoréme 0.0.2. Les notations sont comme ci-dessus. On a une égalité de représen-
tations virtuelles de G(Q,) x Wg

G(Qp
H(Moo), = Ind0") H(Pxo),
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ot pour une Q,-représentation lisse p de Jy(Q,),

H(Mx), = Z<_1)i+j ligﬂEXt{]b(Qp)(HZ'(-/MK X Cpa@l<DM))7 p)
K

4,520

Dy = dimM et la définition de H(Px), est identique.

Cette formule a été précédemment conjecturée par Harris dans [34] (Conjecture 5.2).

Corollaire 0.0.3. Pour les variétés de Shimura introduites au début dans le cas p inerte
dans k, pour tous les strates non basiques, considérons les représentations virtuelles de

G(Af) X WE

—(b — — i - i (b — . —
H (SR % By RU, (@) = S (=1 lim Hi (SR, oo x By R, (Q)).

i,j>0 KpxKP

Alors Hc(ﬁg x F,, RV, (Q,)) peuvent étre écrites comme certains induites paraboliques
adaptées, donc en particulier ne contiennent pas de représentations supercuspidales de

G(Qp).

Remarquons que ces variétés de Shimura ne sont pas contenues dans les cas étudiés
dans larticle [56]. Dans le cas p décomposé dans k, ce résultat a été obtenu par Harris et
Taylor en utilisant I'astuce de Boyer pour ce cas particulier. Dans 23|, Fargues a prové
des résultats similaires dans des cas généraux en comparant les formules de Lefschetz
pour la fibre spéciale et la fibre généric.

L’algorithme de descente pour les groupes p-divisibles basiques
et correspondences de Hecke

Nous suivons les idées de [27]. Soit K|Q, une extension valuée compléte pour une
valuation a valeurs dans R étendant la valuation p-adique. Soit H un groupe p-divisible
sur Og. On dit que H est un groupe semi-stable, si H[p] l'est. Il est équivalent que
pour tout entier n > 1, H[p"] est semi-stable, ou encore pour tout sous schéma en
groupes fini et plat G de H, u(G) < u(H) = %. Il y a une notion supplémentaire
de groupe p-divisible de type HN qui généralise la notion de groupe p-divisible semi-
stable. Mais on se restreint a ce dernier cas afin d’obtenir un résultat complet. Donc on
suppose H est basique, c’est & dire que Newt(Hy) est la droite qui relie les points (0, 0)
et (htH,dimH). Cela implique que HN(H) = Newt(H},) est la droite ci-dessous par
I'inégalité de Fargues. Dans ce cas, ’algorithme de Fargues pour H est comme suivant
pour produire des groupes p-divisibles qui sont de plus en plus proches d'un groupe

semi-stable. On pose pour un entier £ > 1
G}, = le premier cran de la filtration de Harder-Narasimhan de H[p"].

Alors la suite (G )r>1 forme une suite croissante de groupes semi-stables de méme pente.
On pose
Fu = hﬂ G, CH ,

k>1
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comme un sous faisceau fppf de H. Sous notre hypothése que H est basique, on
peut prouver que il existe kg > 1 tel que Fg = Gy, (cf. lemme 3,4, [27]). On note
tmaz(H) = pimaz(H[p]), la pente maximale dans la filtration de Harder-Narsimhan de
H{p]. L’algorithme est

HIZH,HQZHI/.FHU..., si HZ%O, OIlpOSGHZ'+1:H,‘/in,....

On a donc une suite de groupes p-divisibles (H;);>1 munie de morphismes ¢; : H; — H;1;
qui sont des isogénies avec comme noyaux ker¢; = Fy, des sous groupes finis et plats.
De plus, si H;y1 # 0 on a

H’ma:c(HH-l) < Mmax(Hz>
On dit que I'algorithme s’arréte en temps fini, si H; = 0 pour ¢ >> 0. Dans ce cas, si
r > 1 est I'entier tel que H, # 0, H, 1 = 0, alors on a une suite d’isogénies

¢

m

H=H"+H,

H,

avec Hy, ..., H,_1 ne sont pas semi-stables, tandis que H, est semi-stable. On peut trou-
ver le noyau ker¢ dans la filtration de Harder-Narasimhan de H[p"] pour N >> 0. Un
théoréme relativement facile dit que si la valuation sur K est discréte alors I'algorithme
s’arréte en temps fini. Le théoréme principal de [27] dit que lorsque la dimension et la
hauteur de H sont premiéres entre elles alors ’algorithme s’arréte toujours en temps
fini.

Soit M l'espace de Rapoport-Zink basique pour GL;/Q, avec signature (d,h — d).
Le paragraphe ci-dessus a une explication en termes de correspondences de Hecke sur
M. Soit M?** le lieu semi-stable, qui est un domaine analytique fermé dans M. Alors
I'algorithme s’arréte en temps fini pour les points rigides (les points dans M"™¥) implique
que comme ensemble

Mrig _ U T.MSS’”g.
TeGLy(Zp)\GLn(Qp)/GLi(Zp)
Nous avons la décomposition M = [[.., M donnée par la hauteur de la quasi-isogénie
universelle. Supposons (d,h) = 1. Sous cette hypothése J, = D*, ou D est l'algébre
a divison centrale sur Q, d’invariant %. On notera II un uniformisante de D. Posons
D = M* (M. Alors M* = [[..,II""D. Le théoréme principal de [27] est qu’il y a
un recouvrement localement fini par des domaines analytiques fermés

M= U T.II'D.

TEGL(Zp)\GL1,(Qp)/G L (Zp)
0<i<h—1

Nous appelons ce phénomeéne une décomposition cellulaire localement finie de M. On
remarque que lorsque d = 1, c’est a dire dans le cas de Lubin-Tate, le domaine D (donc
tous les domaines T.I17*D) est compact.

Décomposition cellulaire localement finie des espaces de
Rapoport-Zink pour les groupes unitaires

Soit maintenant M 'espace de Rapoport-Zink basique avec signature (1,n— 1) pour
le groupe unitaire associé a une extension quadratique non ramifiée de Q,,. C’est 'espace
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basique du début de cette introduction. Nous essayons de prouver que M admet une
décomposition cellulaire localement fini. Mais il y a quelques difficultés pour généraliser
la méthode ci-dessus dans ce cas. La premiére difficulté est que ’algorithme n’est pas
bien compatible avec les correspondances de Hecke dans les cas avec des structures
additionnelles. Plus précisément, si (H, ¢, A) est un groupe p-divisible avec structures
additionnelles provenant d’un point x € M, l'action de Hecke sur z signifie que on
prend les quotients pour sous-groupes totalements isotropes dans H[p™] pour certains
m, avec les structures induites et modifie la quasi-isogénie. Bien que la filtration de
Harder-Narasimhan soit compatible avec les structures additionnelles, nous ne pouvons
pas garantir que le groupe Fy produit par 'algorithme est un sous-groupe totalement
isotrope. Notre idée est de continuer 'algorithme en quelque sorte (d’une fagon non
canonique) pour obtenir des sous-groupes totalement isotropes. Plus précisément, sup-
posons que H n’est pas semi-stable et 'algorithme pour H s’arréte en temps fini, par
exemple qui est le cas si z € M™. On a donc la suite

¢
=
avec Hy, ..., H,_1 ne sont par semi-stables, tandis que H, est semi-stable. Notons N le

plus petit entier tel que ker¢ C H|[p"] mais ker¢ ¢ H[p™~']. Alors on peut trouver la
filtration de Harder-Narasimhan de H[p"'] a partir de celle de ker¢ (qui peut étre lue par
'algorithme). On a deux possibilité : kerg = (ker¢)® ou (kerd)*/kere est un groupe
non nul semi-stable de pente % Le premier cas est bon. Pour le deuxiéme cas, dans
la section 2.5 de cette these, on va trouver des sous groupe totalement isotropes dans
(kerg)* /ker¢ (a une extension finie de H(x) prés). En prenant 'image réciproque, on
trouve des sous groupe totalement isotropes dans H[p"]. Motivés par cette construction,
nous définissons un sous-espace C C M :

C ={x € M | 3H semi-stable et une isogénie f : H, — Hsur O, K|H(z) fini, telle que
p(kerf) = 0}.
On peut prouver que c’est un domaine analytique fermé qui contient le lieu semi-stable

M (cf. Proposition 2.6.2). On peut penser que C est le lieu «presque semi-stable». Par
construction, on a comme ensemble

M= ) Tew

TeG(Zp)\G(Qp)/G(Zyp)

Dans ce cas on a aussi une décomposition donnée par la hauteur de la quasi-isogénie

universelle
M= T M
1EZ, in paire

L’element p~! € J,(Q,) agir sur M de telle maniére qu’il induit un isomorphisme
p~t: MP S M2, Pour les groupes locaux de similitudes unitaires, nous avons G ~ J,,
si n est impaire. Si n est paire, J, est la forme intérieure non quasi-déployée de G. Dans
ce dernir cas, on choisit un element g; € J,(Q,) tel que v,(detgy) = § pour la valuation
v,. Donc gy induit un isormorphisme g; : M°® — M. On pose C* := C(\M",C" = C° si
n paire et C' = C° ] C! si n impaire. Alors

Mrig _ U T.(C’)”g.

TeG(Zp)\G(Qp)/G(Zp)
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La deuxiéme difficulté dans notre cas unitaire est que, contrairement au cas d’espace de
Rapoport-Zink basique pour GLj,/Q, avec signature (d,h — d) et d et h sont premier
entre eux, l'espace M est trés large. En fait, on peut considérer le morphisme de
spécialisation sp : M® — M? .. L’espace M?, , est quasi compact dans le cas sans
structures additionnelles et (d,h) = 1, tandis que dans notre cas M?, ;, admet une
stratification indexée par les sommets dans 'immeuble B(.J%", Q,). D’aprées Vollaard et
Wedhorn [81], & chaque sommet A, on peut associé un sous schéma fermé My C M2,
qui est projectif et lisse (une variété de Deligne-Lusztig généralisée). Les composantes
irréductibles de M?_; sont les M avec t(A) (la fonction de type) maximale. En outre,
action de J"(Q,) sur ces sous schémas est compatible avec son action sur 'immeuble.
Nous nous référons a [81] pour plus de détails concernant la géométrie de M2, ;. Les
tubes au-dessus des composantes irréductibles nous donne un recouvrement localement
fini par ouverts
MO = U spH(My).

At(N)=tmaz

On choisit un sommet A avec t(A) = .4z, €t pose

D= Comsp_l(/\/l,\),

qui est un domaine analytique localement fermé.

Théoréme 0.0.4. Les notations sont comme ci-dessus. Le domaine analytique D est
relativement compact. De plus, on a recouvrements localement finis

M= U T.gD
TeG(Zp)\G(Qp)/G(Zp)
geJer(Qp)/Stab(A)
st n est impaire, et
M = U T.g9D
TEG(ZP)]\SO(%p)/G(ZP)
9EJHT(Qp)/Stab(A)

st n est paire.

Le point clé est de prouver la finitude localement. C’est pourquoi nous avons besoin
d’introduire D, mais nous ne travaillons pas avec C’. Dans la preuve nous verrons que
nous pouvons élargir D un peu pour obtenir un domaine fondamental compact.

Ce théoreme admet des corollaires concernant les domaines de périodes p-adiques et
variétés de Shimura.

Corollaire 0.0.5. Soit m : M — F lapplication période p-adique de Rapoport-Zink (cf.
[66] chapter 5). Notons F* limage de m, un ouvert de F. Alors on a recouvrements
localement finis
Fo = U g (D)
9EJJ(Qp)/Stab(A)

st m est impaire, et

Ft= U g197(D)

j=0,1
9EJ(Qp)/Stab(A)

st n est paire.
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—~b
Corollaire 0.0.6. Soit Sh[gp le tube au-dessus la strate basique dans la variété de
Shimura introduite au début. Ecrivons l'uniformisation de Rapoport-Zink (cf. [66] chap-
ter 6)

—~b
Shyer = 1(Q) \ M x G(Ah)/K? = 1T I\ M,
IEIQ\G(AD)/KP
limages de C' dan I'; \ M comme &/, et enfin &' =[], E. Alors on a un recouvrement
—~b
Shyey = U 1.8
TeG(Zp)\G(Qp)/G(Zp)

Décomposition cellulaire et formule de Lefschetz

Soient G et M comme ci-dessous. Soient K C G(Z,) un sous group ouvert compact,
et Dk l'image réciproque de D sous la projection Mg — M. On voit facilement que
KhK.Dg ne dépend que I'image de K¢gK dans la projection K \ G(Q,)/K — G(Z,) \
G(Q,)/K. Donc dans le niveau K, on a les décomposition cellulaire

My = U T.gDk

TeG(Zp)\G(Qp)/ K
gEJ"(Qp)/Stab(A)

si n impaire, et

Mg = U T.qlgDxk
TEG(ZNG(Qy)/ K
7=0,1
9EJFT(Qp)/Stab(A)

si n est paire.

Pour mieux comprendre les actions des groupes sur les cellules, nous devons intro-
duire un ensemble de parameétres plus naturel. Considérons

Tic = (G(Z,) \ G(Q,)/K x J(Qy)/Stab(A))/Q,

ot le quotient par Q) est par son action via le plongement Q) — G(Q,) x J4(Q,), z —
(z,271). ( En vertu de notre convention, (z,27') agir trivialement sur Mg.) Il y a une
application

o:Ix — 7
2
[Ta gl] = ——(Up<d€tT) + Up(d€tg/))7
n
avec l'image Z si n paire et 27 si n impaire. Notons Z% = ¢~1(i). Pour chaque [T, ¢'] €

Tk, le cellule
D[T,g’],K = TgIDK

est bien défini. Le théoréme ci-dessus implique

Mg = U Dirgn.x

[T7g/} €Tk
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Mic= |J Drarx.
(T.9'1€T}
De plus, c’est sont des recouvrements localement finis. Plus important encore, il y a
une métrique d sur U'ensemble Ty induite par la métrique sur le quotient par K de
'immeuble quotient B = B(G x J,,Q,)/Q,’. La finitude localement signifie que il existe
un constant ¢ > 0 tel que pour tout [T, ¢'] € Zg,

([T, 9" € Ix | Dygrgnic (P # 0} {17, 9" € Iic | d([T. 4], [T",9")) < c},

ol I'ensemble dernier est fini. Siy = (h,g) € G(Q,) x J,(Q,) tel que hKh™ = K, alors
il agir sur Zx par [T,¢'] — [Th,gg¢']. L’action de v sur Mg est compatible avec son
action sur Z :
V(D)) = Diwn gy i

Si de plus v,(deth) + v,(detg) = 0, les actions de v sur My et Zx stables MY% et Z9..
Nous supposons encore de plus h,g sont semi-simples, réguliers, elliptiques. Sous ces
hypothése, en étudiant ’action de v sur I'immeuble, nous pouvons trouver une chaine
croissante de sous-ensembles finis stable par v, (4,),, qui épuise I'ensemble ZY.. On pose

U=Mi— U Dryx

[T.9'|€Z? — A,

Grace a la finititude localement du recouvrement et la compacité du Dy, U, est un ouvert
relativement compact. En particulier, ses groupes de cohomologie sont de dimension finis.

Théoréme 0.0.7. Les notations sont comme ci-dessus. Il existe un nombre réel py > 0
et un sous groupe ouvert compact K' de G(Z,), telle que pour tout p > po et tout sous
groupe overt compact K C K' normalisé par h, on a la formule suivante

TT(’V‘H:(UP X Cm@l)) = #F2x<7|M(I)( X (Cp)~

Nous notons en particulier le coté droit est indépendante de p quand p >> 0. La
preuve est que par étudier 'action de ~ sur les cellules on vérifie les conditions du
théoréeme 3.13 de [60] détient. La méthode de la preuve fonctionne également pour le
cas de Lubin-Tate, qui est plus simple. Ainsi, nous pouvons reprouver la formule de
Lefschetz dans ce cas (cf. sous-section 3.3).

Si nous ne supposons que 2(v,(deth) + v,(detg)) est paire dans le cas n paire. Alors
'ensemble des points fixés de v sur M /p” est non vide. Si g € J,(Q,) est un élément
régulier elliptique, pour tout z € F%(C,), on peut trouver un élément h,, € G(Q,)
conjugué stablement & g par 'isomorphisme de comparison. On a une bonne formule
des points fixés.

Corollaire 0.0.8. Aprés le choiz de certaines des mesures de Haar appropriées, on a

B 1
TrOH(Micfp?) < @) = 30 Vol(Ga,o 110 (i)
z€ Fiz(g|F*(Cp))

Soit 7 une représentation supercuspidale de G(Q,), on a un élément bien défini dans
GI‘Oth@l(Jb(@p)) :

H(r) = 3 (~1)Homg(q,)(lim HI (My x C,. @), m).

Jj=0



22

Corollaire 0.0.9. Soit g € J,(Q,) un élément semi-simple régulier elliptique. Supposons

que  est de la forme c—[nd%:@p))\, ot Ky est un sous-groupe ouvert de G(Q,) compact
modulo le centre et \ est une représentation de dimension finie de K. On a une formule

trum(9) = Z tra(hg,z)-

x€Fiz(g|F*(Cp))

Cette formule devrait confirmer la conjecture de Kottwitz, une fois les problémes de
classification des L-paquets pour les groupes des similitudes unitaires sont résolus.
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1 Hodge-Newton filtration for p-divisible groups with
additional structures

1.1 Introduction

The motivation of this section is to study the cohomology of some unitary group
Shimura varieties, namely those introduced in [10],[81]. The fixed prime p is assumed to
be inert in the quadratic field in the PEL data, so the local reductive groups at p are
the quasi-split unitary similitude groups. The generic fibers of these Shimura varieties
are the same with those of some special cases studied by Harris-Taylor in [36], where
they proved the local Langlands correspondence for GL,,. The geometry of the special
fibers of Harris-Taylor’s Shimura varieties is simpler, since in fact one is reduced to the
study of one dimensional p-divisible groups. For any non-basic Newton polygon strata,
the one dimensional p-divisible group attached to any point in it admits the splitting
local-étale exact sequence. This simple fact plus the theory of Katz-Mazur’s “full set
of sections” lead to the geometric fact that, any non-basic strata in Drinfeld levels is
decomposed as some disjoint union of Igusa varieties of first kind defined there. Thus the
cohomology of any non-basic strata can be written as a parabolic induction. This reduces
the construction of local Langlands correspondence to the study of the basic strata and
the corresponding Lubin-Tate spaces. There they got such a conclusion inspired by
Boyer’s trick in [9] originally for function fields case. Note in Harris-Taylor’s case any
non-basic Newton polygon has a nontrivial étale part, contained in the (generalized)
Hodge polygon. For general PEL type Shimura varieties, there are also Newton polygon
stratifications. Consider those Shimura varieties which satisfy the condition that, there
is some non-basic Newton polygon admitting a nontrivial contact point with the Hodge
polygon, and assume this contact point is a break point of the Newton polygon. Under
this condition, we will wonder that, whether the cohomology of this non-basic strata
contains no supercuspidal representations of the associated local reductive group, or even
whether the cohomology is some parabolic induction. The methods of Harris-Taylor will
hardly work, since in general one knows very little of the geometry of their special fibers
in Drinfeld levels. In our cases above, one can draw the pictures of all Newton polygons
as in [10], and find that any non-basic polygon has some nontrivial break contact points
with the Hodge polygon.

In this section we will give a positive answer of the above consideration. The idea is
proving the existence of a canonical filtration under the above condition, the so called
“Hodge-Newton filtration”(see below), for p-divisible groups with additional structures,
and then passing to their moduli-Rapoport-Zink spaces. This idea is due to Mantovan.
In [56] Mantovan considered this question under the stronger condition that, the Newton
polygon coincide with Hodge polygon up to or from on the nontrivial break contact point.
Under this stronger condition, Mantovan and Viehmann had proven in [57] the existence
of the Hodge-Newton filtration over characteristic 0 by lifting the corresponding one
from characteristic p. Note both [57] and [56] restricted themselves in just the EL and
PEL symplectic cases. In this section we generalize their results under the more natural
condition as above, that is, the Newton polygon admits a nontrivial contact point with
the Hodge polygon, and assume this contact point is a break point of the Newton
polygon. We will consider also the PEL unitary case. In particular we can prove the
desired results for the Shimura varieties in [10] and [81] mentioned above.
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The notions of Hodge-Newton decomposition and Hodge-Newton filtration for F-
crystals was first introduced by Katz in [46], where under the hypothesis that the Newton
polygon and the Hodge polygon of a F-crystal possess a non-trivial contact point which
is a break point of the Newton polygon, he proved that the F-crystal over a perfect field
of characteristic p admits a decomposition, such that the two parts of the Newton (resp.
Hodge) polygon divided by the point correspond to the Newton (resp. Hodge) polygon
of the two sub-F-crystals. This can be viewed as a generalization of the multiplicative-
bilocal-étale filtration for p-divisible groups. Katz also proved the existence of Hodge-
Newton filtration for F-crystals over certain algebras over characteristic p.

In [57], Mantovan and Viehmann considered the case of F-crystals and p-divisible
groups with actions of the integer ring of an unramified finite extension of Q,. They
proved that under the stronger condition that the Newton and Hodge polygon coincide
up to or from on the contact point, one can lift the Hodge-Newton filtration for p-
divisible groups from characteristic p to characteristic 0. See theorem 10 of [57] for the
precise statement. In [56], Mantovan used this result to prove that, the cohomology
of the Rapoport-Zink spaces whose Newton and Hodge polygons satisfy this stronger
condition contains no supercuspidal representation of the underlying reductive group
defined by the local EL/PEL data.

We consider p-divisible groups with additional structures over complete valuation
rings of rank one of mixed characteristic (0,p), i.e. which are complete extensions of
Z, for a valuation with values in R. Here additional structures means an action of Op,
the integer ring of an unramified finite extension F|Q,, and a polarization compatible
with this action. For precise definition see definition 1.3.1 in subsection 1.3. A typical
such p-divisible group comes from a K-valued point of the simple unramified EL/PEL
Rapoport-Zink spaces introduced in [23], chapter 2, where K is a complete extension of
Q, for a rank one valuation. The first main result of this paper is the following. Here to
simplify the exposition, we just state the theorem for the PEL cases.

Theorem 1.1.1. Let K|Q, be a complete discrete valuation field with residue field k
perfect, (H,t,\) be a p-divisible group with additional structures over Of. Assume the
(HN) condition : the Newton polygon Newt(Hy,t,\) and Hodge polygon Hdg(Hy, 1, \)
possess a contact point x outside their extremal points, which is a break point for the
polygon Newt(Hy,t,\). Denote by & the symmetric point of x, and assume x lies before
T, i.e. the horizontal coordinate of x is smaller than that of . Then there are unique
subgroups
(Hy,t) C (Hayt) C (H,0)

of (H,t) as p-divisible groups with additional structures over Ok, such that

1. X induces isomorphisms
(Hh L) = ((H/HQ)Dv L/)7
(Hayu) = ((H/H))P, ).
Here (H/H;)" is the Cartier-Serre dual of H/H;, and (' is the action naturally
induced by v on (H/H;)P, fori=1,2;
2. the induced filtration of the p-divisible group with additional structures (Hy, ) over
k

(Hlk,L) C (Hgk,b) C (Hk,L)
18 split ;
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3. the Newton(resp. Harder-Narasimhan, resp. Hodge) polygons of (Hy, 1), (Hy/Hy, 1),
and (H/Hs, 1) are the parts of the Newton(resp. Harder-Narasimhan, resp. Hodge)
polygon of (H,t,\) up to x, between x and Z, and from & on respectively.

When x = &, then Hy and Hy coincide.

In fact, the above theorem holds for more general complete valuation rings of rank
one (not necessary discrete) which are extensions of Z,, with some technical restriction
to the so called “modular” p-divisible groups, see definition 1.5.6 and theorem 1.5.7 in
section 1.5.

The proof of this theorem is quite different from that of Mantovan-Viehmann in
[57]. Our ideas are that, firstly using explanation in terms of filtered isocrystals we get
a Hodge-Newton filtration for p-divisible groups up to isogeny ; then using the theory of
Harder-Narasimhan filtration for finite flat group schemes over Ok developed in [26],[27],
we prove the existence and uniqueness of such a filtration for p-divisible groups. More
precisely, we define Harder-Narasimhan polygons HN (H, ¢, A) for the p-divisible groups
and finite flat group schemes with (PEL) additional structures studied here, by adapting
the case without additional structures studied in loc. cit.. Then the crucial points are
the following inequalities :

HN(H,1,\) < Newt(Hg,t,\) < Hdg(Hy,t, ),
and

HN(H,u,)\) < %HN(H[pm], LA (me) < HN(H[pl, ¢, )
< Hdg(H[p],¢,\) = Hdg(Hg, ¢, A).

Here Newt(Hy,t,\) and Hdg(Hg,t,A) are the Newton and Hodge polygons of
the p-divisible group with additional structures (Hy,t,A) over k, and the inequal-
ity Newt(Hy,t,\) < Hdg(Hy,t,\) is the generalized Mazur’s inequality, see [65];
Hdg(H|p],t, \) is the Hodge polygon for the finite flat group scheme (H|[pl,¢, A) over
Og, defined in subsection 1.3 by adapting the Hodge polygon for the case without ad-
ditional structures defined in [26], 8.2 to our situations. By using the explanation of
the polygons for p-divisible groups in terms of the associated filtered isocrystals, from
the above first line of inequalities we deduce that the Harder-Narasimhan polygon also
passes the point Z, thus it is necessarily a break point for this polygon. Then by the
second line of inequalities one can find a subgroup in the Harder-Narasimhan filtration
of H[p"] for every n large enough. We will show these finite flat group schemes are com-
patible. Thus they define a p-divisible group Hs,, with its filtered isocrystal as the sub
filtered isocrystal corresponding the point Z of that of H. Similarly there is a p-divisible
group H; corresponding to the point x. One can then check that the statements in the
theorem hold.

This theorem generalizes theorem 10 in [57]. With this generalization we can study
the cohomology of some non-basic Rapoport-Zink spaces (M) exactly as Mantovan
did in [56], but here we can deal with a larger class of Rapoport-Zink spaces due to our
weaker condition. Mantovan’s method is to introduce two other towers of moduli spaces
(Pk), (Fk) of p-divisible groups with additional structures, corresponding to the levi
subgroup M and parabolic subgroup P respectively associated to the nontrivial break
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contact point z. Here (Pk) are in fact Rapoport-Zink spaces for the levi subgroup M, and
(Fk) are deformation spaces of filtered p-divisible group by quasi-isogenies analogous
to Rapoport-Zink’s definition. Fix a prime [ # p. By studying some geometric aspects
between the towers (Pg) and (Fk), one finds

where p is an admissible smooth Qj-representation of Jp(Q,),

H(Poo)p = Z (_1)i+j @EXtib(Qp)(Hz(lpK X Cp7@l(DP>)v P)
K

4,520

(Dp is the dimension of P ), and similarly one has H(F),, H(M),. Here the reason
that we consider the formula of cohomology in this type is to apply Mantovan’s formula
in [55]. On the other hand, under our condition (HN), thanks to the existence of Hodge-
Newton filtration one has

My = H FKnP(Qy)-
K\G(Qp)/P(Qp)

This decomposition has the following application to monodromy representations.

In [I5], Chen has constructed some determinant morphisms for the towers of sim-
ple unramified Rapoport-Zink spaces. Under the condition that there is no non-trivial
contact point of the Newton and Hodge polygons, and assume the conjecture that

—

mo(M) >~ Imse

for the morphism s : M — A constructed in [66] 3.52, Chen proved that the associated
monodromy representation under this condition is maximal, and thus the geometric
fibers of her determinant morphisms are exactly the geometric connected components,
see théoréme 5.1.2.1.,and 5.1.3.1. of loc. cit..

Under our condition (HN), the existence of Hodge-Newton filtration implies also
that, the monodromy representations associated to the local systems defined by Tate
modules of p-divisible groups, factor through the parabolic subgroup.

Corollary 1.1.2. Under the above notations, let T be a geometric point of the Rapoport-
Zink space M, and vy be its image under the p-adic period morphism w: M — F*. Then
the monodromy representations

Pz - 7Tl(/\/laf) — G(ZP)
and

py: m(FY) — G(Qp)
factor through P(Z,) and P(Q,) respectively.

This confirms that the condition “there is no non-trivial contact point of the Newton
and Hodge polygons” in the chapter 5 of [I5] is necessary, see the remark in 5.1.5 of loc.
cit..

We have the following theorem considering the cohomological application.
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Theorem 1.1.3. Assume the Newton polygon and the Hodge polygon associated to the
simple unramified EL/PEL Rapoport-Zink space M possess a contact point x outside
their extremal points which is a break point for the Newton polygon. Then we have
equality of virtual representations of G(Q,) x Wg :

G,
H(Mao), = Ind5§") H(Py),.

In particular, there is no supercuspidal representations of G(Q,) appear in the virtual
representation H(Mo),.

The proof is by adapting the corresponding construction and strategy in [56] to our
cases. In particular, by combining with the main formula of the cohomology of Newton
stratas of PEL-type Shimura varieties in [55], we have the following corollary.

Corollary 1.1.4. For the Shimura varieties studied by [10],[81], the cohomology of

any non-basic strata HC(%S} x F,, RV, (Q))) can be written as some suitable parabolic
induction of virtual representation of some parabolic subgroup of G(Q,), thus it contains
no supercuspidal representations of G(Q,).

This confirms Harris’s conjecture 5.2 in [34] in our case, although the parabolic
subgroup may be not the same as that defined in loc. cit. for the non-basic strata.
Note these Shimura varieties are out of the cases studied in [56], corollary 42. On the
other hand, as said above, the similar conclusion for the Shimura varieties with the
same generic fibers as that studied in [I0],[81], but with p splits in the quadratic field,
whose non-basic stratas satisfy the stronger condition in [56|, was obtained previously by
Harris-Taylor in [36]. There the Hodge-Newton filtration is just the local-étale filtration
of the p-divisible groups. The conclusion in the above corollary that any non-basic strata
contains no supercuspidal representations, was once obtained by Fargues in [23] by using
more complicated Lefschetz trace formula methods, initially proposed by Harris in [34].
Here our result is more precise and the proof is more natural. With a recent preprint
[47], we remark that we can also apply our main result to the study of cohomology of
non-proper Shimura varieties over characteristic 0, and to the geometric realization of
local Langlands correspondences.

1.2 Harder-Narasimhan filtration of finite flat group schemes I

In this subsection we recall briefly the theory of Harder-Narasimhan filtration of
finite flat group schemes which is presented in detail in [26], but see also [27].

Let K|Q, be a complete rank one valuation field extension, O be the integer ring
of K, and C be the exact category of commutative finite flat group schemes with order
some power of p over SpecOk. For G € C, recall there is an operation of scheme theo-
retic closure which is the inverse of taking generic fibers, and which induces a bijection
between the following two finite sets

{closed subgroups of G} — {finite flat subgroups of G over Ox}.

There are two additive functions

ht:C —- N
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deg : C — R,

where htG is the height of G € C, and degG is the valuation of the discriminant of G
which is defined as

degG = Zai, if wg = EBOK/p‘”OK.

We will use the following properties of the function deg.

Proposition 1.2.1 ([26], Corollaire 3). 1. Let f : G — G’ be a morphism of finite

flat group schemes over Ok such that it induces an isomorphism on their generic
fibers. Then we have

degG < degG'.

Moreover, f is an isomorphism if and only if degG = degG'.

If
0-+G 5G5G

is a sequence of finite flat group schemes, such that u is a closed immersion,
vou = 0, and the induced morphism G/G" — G" is an isomorphism on their
generic fibers. Then we have

degG < degG' + degG”,

with the equality holds if and only if v is a fppf epimorphism, i.e. flat. In this case
we have an exact sequence

0-G 35G350 —o.

See loc. cit. section 3 for more properties of the function deg.

For a group scheme 0 # G € C, we set

() = degG
= e

and call it the slope of GG. The basic properties of the slope function are as follow.

One always has u(G) € [0, 1], with u(G) = 0 if and only if G is étale and p(G) =1
if and only if G is multiplicative.
If GP is the Cartier dual of G then p(GP) =1 — u(G).
For a p-divisible group H of dimension d and height h over O, then for all n > 1
one has p(H[p"]) = £.
If

0-G —-G—=G"—0

is an exact sequence of non trivial groups in C, then we have inf{u(G"), u(G")} <
w(G) < sup{u(G),u(G")}, and if w(G) # wu(G") we have in fact
inf{u(G), n(G")} < w(G) < sup{u(G'), n(G")}.

If f: G — G’ is a morphism which induces an isomorphism between their generic
fibers, then we have p(G) < wu(G’), with equality holds if and only if f is an
isomorphism.
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— If
0—G 565G
is a sequence of non trivial groups such that v is a closed immersion, u o v = 0,
and the morphism induced by v

G/G — G

is an isomorphism in generic fibers, then we have
= u(G) < sup{u(G"), p(G")}
— if p(G') # p(G") then p(G) < sup{u(G"), u(G")};
— if w(G) = sup{u(G"), n(G")} then p(G) = u(G'") = u(G"”) and the sequence
0—G —G— G — 0 is exact.
For a group 0 # G € C, we call G semi-stable if for all 0 C G’ C G we have
w(G") < pu(G). In [26], Fargues proved the following theorem.

Theorem 1.2.2 (|26], Théoréme 2). There exists a Harder-Narasimhan type filtration
for all 0 #£ G € C, that is a chain of finite flat subgroups in C

O:GogGlggGr:G,
with the group schemes G;.1/G; are semi-stable for alli=0,...,r—1, and
1(G1/Go) > p(G2/Gr) > -+ > (G /Groa).

Such a filtration is then uniquely characterized by these properties.

So G is semi-stable if and only if its Harder-Narasimhan filtration is 0 C G. We can
define a concave polygon HN(G) of any 0 # G € C by its Harder-Narasimhan filtration,
and call it the Harder-Narasimhan polygon of G. It is defined as function

HN(G) : [0, htG] — [0, degG],

such that

if z € [htG;, htGy1]. We will also identify H N (G) with its graph, that is a polygon with
starting point (0,0), terminal point (htG, degG), and over each interval [htG;, htG; 1] it
is a line of slope u(G;11/G;). An important property of this polygon is that (proposition
7 in loc. cit.), for all finite flat subgroups G’ C G, the point (htG’, degG’) is on or below
the polygon HN(G), that is HN(G) is the concave envelop of the points (htG’, degG")
for all G’ C G. We denote by fima,(G) the maximal slope of HN(G), and i, (G) the
minimal slope of HN(G).

We recall some useful facts.

Proposition 1.2.3 (|26], Proposition 8). Let Gy and Go be two finite flat group schemes
over Og. Suppose that min(G1) > tmaez(G2). Then we have

Hom(Gl, Gg) = 0.
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Proposition 1.2.4 ([26], Proposition 10). Let 0 — G’ — G = G" — 0 be an exact
sequence of finite flat group schemes in C. Suppose pimin(G') > timaz(G"). If 0 = G}y C
G, € --- C G, =G is the Harder-Narasimhan filtration of G' and 0 = Gj € G| C
- C G =G" that of G", then the Harder-Narasimhan filtration of G is
0=GCG G GG =G Cv(G) Cv (G & CoT ' (GL) =G

= r

if tmin(G') > ptimae(G”), and

0=G, GG GGG v (G) S Cvi(Gl) =G

if tmin(G') = pimaz(G"). In particular the extension of two semi-stable groups of the
same slope 1 1s semi-stable of slope .

The Harder-Narasimhan filtration of finite flat group schemes is compatible with
additional structures. Firstly, the Harder-Narasimhan filtration of 0 # G € C is stable
under End(G). So if ¢« : R — End(G) is some action of an Og-algebra R, then every
subgroup G; in the Harder-Narasimhan filtration of G is a R-subgroup via ¢. Secondly,
if the Harder-Narasimhan filtration of G is

0=GyCG C-CGr =G

with slopes py > -+ > p,, then the Harder-Narasimhan filtration of the Cartier dual
GP of G is

0=(G/G,)” C(G/G,1)” S - S (G/G1)” €GP
with slopes 1 — g, > -+- > 1 — p;. In particular, if A : G = GP is a polarization, then

it induces isomorphisms

Giﬁ (G/Gr,i)D,i: 1,...,7“
and thus p; + ppr1s=1,0=1,...,7r.

1.3 Polygons and inequalities

We start by defining the reductive groups which we will work with. They are defined
by the simple unramified EL/PEL data for defining some special Rapoport-Zink spaces
as the chapter 2 of [23].

More precisely, let F'|Q, be a finite unramified extension of degree d, V' be a finite
dimensional F-vector space. In the EL case, let G = Respig, GL(V'), the Weil scalar
restriction of the automorphism group of V' as a F-vector space. In the PEL symplectic
case, we assume further there is a hermitien symplectic pairing (,) : V x V. — Q,,
which is such that there exists an autodual lattice A for (,) in V. In the PEL unitary
case, besides the above (,) and A, we assume there is a non trivial involution % on F
compatible with (,), which means that (bu,v) = (u,b*v) for all b € F,u,v € V. We
define a reductive group G over Q, for these PEL cases, such that for all Q,-algebra R,

G(R) = {g € Endpgr(Vg)|gg" € R*},

here # is the involution on Endg(V) induced by (,). Then we have G C
Respig,GSp(V, (,)') (symplectic case) or G C Resp 0, GU(V, (,)") (unitary case), where
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Fy=F='and (,) : V x V — F*7! is a suitable pairing coming from (,) in the PEL
cases (¥ may be trivial). The rational Tate module of a p-divisible group with addi-
tional structures (see definition 1.3.1 in the following) will naturally give arise such an
EL data (F,V) or a PEL data (F,*,V,(,)) (* may be trivial). Note these reductive
groups G are unramified over Q,, and for the PEL cases there is a similitude morphism
c:G— Gy, g gg”.

Let D be the pro-algebraic torus with character group Q. We will be interested in
the set
N(G) = (IntG(L) \ Hom (D, G))""

where L = FracW (F,), o is the Frobenious of L over Q,. This set generalizes the classical
notation of Newton polygon associated to an F-isocrystal, see the introduction of [12]
or [65], section 1. Since the group G is unramified, we can choose a maximal torus
T contained in a Borel subgroup B of G defined over Q,. Let A C T' be the maximal
splitting torus contained in 7', W (resp. W) be the absolute (resp. relative) Weyl group,
then we have

N(G) = (X.(T)g/W)C!(@/2)
(6 ( ) )Gal(@p/@p)
= X.(A)o/Wo

=: Cl,

where C C X, (T)g is the Weyl chamber associated to B. Recall there is an order in
N(G), cf. [65] section 2, such that for all z,z" € Cy,

r<2er-—z= g na’,ne € Qso.
aEAR

Here Ap denotes the set of simple roots determined by B, a denotes the co-root
corresponding to «. Note N(-) is in fact an ordered set-valued functor on the category
of connected reductive algebraic groups.

We want to make the elements in the above cone N(G) “visible”, i.e. as polygons
defined over some suitable interval. Let n = dimgV, then in the EL case after choosing
a base of the F-vector space V', we have Resp|g, GL(V) = Respg, GLy, and for this case
we can explicitly calculate

NG) ={(z;) e Q"1 > 29 > --- > x,} = Q7

which we will identify with the set of concave polygons with rational slopes over the
interval [0, n], see [23] 2.1. For PEL symplectic case,

G C Respip,GSp(V, (,)") C Respig, GLn,

since N(-) is a functor on the category of connected reductive algebraic groups, we have
an order preserving map

N(G) — N(Respg,GLy),

which is injective, and the image corresponds to symmetric polygons, cf. [82]. For PEL
unitary case,

G C Resp0,GU(V, (,)") C Resgyg,Respir, GL(V) = Respig,G Ly,
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similarly we have an order preserving map
N(G) — N(Respig,GLy),

which is also injective, and the image also corresponds to symmetric polygons, cf. loc.
cit..

After the preliminary on the reductive groups G, we define p-divisible groups with
additional structures. Since p-divisible groups are closely related to finite flat group
schemes, we will also consider the related notions for these group schemes.

Definition 1.3.1. Let S be a formal scheme and F|Q, be a finite unramified extension.
By a p-divisible group with additional structures over S, we mean
— in the EL case, a pair (H,.), where H is a p-divisible group over S, and v : Op —
End(H) is a homomorphism of algebras;
—in the PEL symplectic case, a triplet (H,t,\), where H is a p-divisible group
over S, v : Op — End(H) is homomorphism of algebras, X : (H,1) — (HP /")
1 a polarization, i.e. an Op-equivariant isomorphism of p-divisible groups. Here
HP is the Cartier-Serre dual of the p-divisible group H, P : Op — End(HP) =
End(H)°PP is induced by ¢, such that \P = —\, under the identification H = HPP ;
— in the PEL unitary case, a triplet (H, 1, \), where H, 1 is similar as the symplectic
case, A : (H,1) — (HP P o %) is a polarization, * is a nontrivial involution on F.
Here oP is as above, but such that A\ = X, under the identification H = HPP.
Similarly, one can define finite locally free (=flat, in the case S is noetherian or the spec
of a local ring) group schemes with additional structures in the same way.

If (H,:,\) is a p-divisible group with additional structures in the PEL cases, then
for all n > 1, (H[p™], ¢, A) is a finite locally free group scheme with the naturally induced
additional structures. Similar remark holds for the F L case.

In the rest of this subsection, let K|Q, be a complete field extension for a rank
one valuation, Ok be the ring of integers of K, k be the residue field, and F'|Q, be a
finite unramified extension of degree d. For the PEL (unitary) case we also assume there
is an involution * on F. We shall mostly be interested only in p-divisible groups and
finite flat group schemes with additional structures for F|Q, over O, k, and k, a fixed
algebraic closure of k. Let H /O denote a p-divisible group with additional structures
over Ok for the EL case (H = (H,t)) or PEL cases (H = (H,t,\)), then H,, (resp. Hy)
is a p-divisible group with additional structures over k (resp. k). Kottwitz defined the
Newton polygon Newt(H3) and the Hodge polygon Hdg(Hz) as elements in N(G), see
[49],[52]. Here the reductive group G is defined by the rational Tate module of H with
the induced additional structures as in the beginning of this section. Assume htH = dn,
then via the injection

N(G) = N(Respjg,GLy),

one can explain them as polygons as following :
Newt(Hy) : [0,n] — [0,dimH/d]
1
T ENewt(HE)(dx).

Here Newt(Hy,) is the concave Newton polygon of Hy defined by the Dieudonné-Manin
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decomposition of its isocrystal. The Hodge polygon is
1
Hag(Hy) = 5 S Hdgi ().
i€Z/dZ.

where
Hdg;(Hy,) : [0,n] — [0, dimH/d]
is the polygon defined by the relative position of (M;, V(M;11)) in M,qp. Here M is the

covariant Dieudonné module, V' is the Verschiebung. Under the action of Op, we have

M= @ M, M;={me Mla-m=oc'(aym,Ya € Op},Vi € Z/dL.

i€Z/dZ.

Note Gal(F/Q,) = {o'|i € Z/dZ}. One can check that these two polygon don’t depend
on the choice of the algebraic closure. Thus we can define the Newton (resp. Hodge)
polygon of H, by Newt(H,) := Newt(Hy) (resp. Hdg(H,) := Hdg(Hy)).

Let H/Og be a p-divisible group with additional structures as above. We are going
to define the Harder-Narasimhan polygon of H /O, and compare this polygon with the
above polygons. We first consider the case of finite flat group schemes with additional
structures with order some power of p. We now use H to denote such a finite flat group
scheme with additional structures. Recall the underlying finite flat group scheme H/Og
admits a unique Harder-Narasimhan filtration. Let

HN(H) :[0,htH] — [0, degH]
be the concave polygon associated to this filtration.
Definition 1.3.2. Consider
HN(H,:.): [0,htH/d] — [0,degH/d]
v s SHN(H)(dr)
in the EL case, and HN(H,t,\) := HN(H,.) in the PEL cases, which is symmetric.

HN(H,.) and HN(H,t,\) are called the Harder-Narasimhan polygons of the finite flat
group schemes H /Oy with additional structures.

Now we define the Harder-Narasimhan polygon for p-divisible groups with additional
structures. To be more concrete on notations, assume we are in the PEL cases, although
all the following works for the EL case, which is simpler. Let (H, ¢, \) /O be a p-divisible
group with additional structures, then we get a family of finite flat group schemes with
additional structures (H[p™], ¢, A\)/Ok.

Proposition 1.3.3. The sequence of functions
[0, htH/d] — [0, dimH /d]
v s HN(H[p"], 1, \)(me)
uniformly converge when m — oo to a concave continuous ascending function

HN(H,t,\): [0, htH/d] — [0,dimH/d],
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which is equal to

inf lI—IN(H[pm], L, \)(mx)

m>1m

and moreover, HN(H,1,\)(0) =0, HN(H, ¢, \)(htH/d) = dimH/d.

Proof. Essentially the same with the proof of théoréme 2 in [27], or one can easily deduce
this from the results there, since by definition HN (H[p™],1,\) = SHN(H[p™], ¢, \)(d").
O

Definition 1.3.4. We call the function HN(H,t,\) or its graph which we denote by
the same symbol, the Harder-Narasimhan polygon of the p-divisible group with PEL
additional structures (H, 1, \) over Og. Similarly we can define the Harder-Narasimhan
polygon of p-divisible groups with EL structures.

In fact, we have the following inequality which can be also easily deduced from the
corresponding result in [27] : for all i > 1,z € [0,7%7], and all m > 1,

CHN(HI™, 1, \)oma) < HN(H[p'] 1, 0)().

For the p-divisible group with additional structures (Hy, ¢, \) over k, we have the
Newton and Hodge polygons Newt(Hp, ¢, \), Hdg(Hy, ¢, \) respectively defined by Kot-
twitz. By Rapoport-Richartz, we have the generalized Mazur’s inequality (see [65]) :

Newt(Hg, 1, \) < Hdg(Hp, 1, \).

We assume H/Og is a “modular” p-divisible group in the sense of définition 25 in [27],
see also definition 1.5.6 in section 1.5. The following theorem is one of the main theorems
of [27], see also the introduction of section 2.

Theorem 1.3.5 (27|, Théoréme 21). Let K be as above and H/Of be a p-divisible
group over Ok . When the valuation ring O is not discrete we assume that H/Op is
“modular”, we have the following inequality

HN(H) < Newt(Hy).

Thus one gets from their definitions the following generalization.

Proposition 1.3.6. Let (H, 1, \) be a p-divisible group with additional structures over
Ok. When Ok is not discrete we assume that H/Ok is “modular”. Then we have the
following inequality
HN(H,t,\) < Newt(Hy,t, \).
Combined with the generalized Mazur’s inequality we get the following corollary.

Corollary 1.3.7. Under the above assumption, we have inequalities

HN(H,1,\) < Newt(Hg,t,\) < Hdg(Hy,t, \).
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Now we return to the case of finite flat group schemes with additional structures
(H,.) or (H,t,\). Fargues defined the Hodge polygon of H from wy, see [26] 8.2. We
would like to generalize his definition to define a Hodge polygon of H, which contains
the information of the additional structures. First, assume F' admits an imbedding in
K, then we have also the decomposition

wg = @ WH.r War = {m € wyla-m = T1(a)m,Ya € Op}, V7 : F — K.
T F—K
Definition 1.3.8. Under the above assumption,
1.
Hdg, : [0,htH/d] — [0,degH/d|
18 the polygon such that
Hdg, (i) = deg(wp,.) — v(Fittiwn ,),0 < i < htH/d,

where v is the valuation on K such that v(p) = 1 and Fitt;M means the i-th
Fitting ideal of an Og-module M. In particular, degM = v(FittoM).

2. In the EL case, the Hodge polygon of (H,1) is

Hdg(H,L):%l > Hdg, : [0, htH/d] — [0,degH /d).

T F—K

In the PEL cases, the Hodge polygon of (H,t,\) is Hdg(H,t,\) := Hdg(H,1),
which 1s then symmetric.

For the general case, choose a complete field K/ D K, such that F — K’, we define
Hdg(H) := Hdg(H,,,). One can check this definition doesn’t depend on the choice of
K.

Remark 1.3.9. The above definition is compatible with the Hodge polygon defined by
Kottwitz, in the sense that if H/Ok is a p-divisible group with additional structures,
then Hdg(H|[p]) = Hdg(H,,).

Proposition 1.3.10. Let H/Ok be a finite flat group scheme with additional structures
of order a power of p. Assume there is a p-divisible group with additional structures
G/Ok such that H admits an imbedding H — G. Then we have

HN(H) < Hdg(H).

Proof. We may assume we are in the EL case : G = (G,1), H = (H,t). We may also
assume F' — K. Then V7 : F — K, we have an exact sequence of covariant Dieudonné
modules :
0 — D(G5), = D(G/H)z) = D(Hz)- — 0.

To simplify notation, let M = D(G;), M’ = D((G/H)z). Then the length of the W (k)-
module D(Hy), is the index [M! : M| of M, in M!. Consider the Lie algebras Lie(Gy)
and Lie((G/H)z) of G and (G/H )z respectively, then we have also the decompositions
induced by the Op action :

Lie(Gy = P Lie(Gp)r, Lie((G/H) = €D Lie((G/H)p)r-
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By Diedonné theory we get the identities
Lie(G), = M, /V My, Lie((G/H)g), = ML/VM,,.

Here o is the Frobenious for the extension F'|Q,, and V' is the Verschiebung on M. Then
the isogeny G — G/H induces

rank(Lie(Gy),) = rank(Lie((G/H)z)+),
which can be rewritten as
M, : VM| =[M.:VM_].

Consider the following commutative diagram

0 M, M! D(Hy), —=0

O

0 M,, M — = D(Hy)yr —=0,

then

(M} V Mo ] = [M7: My ][M; 2V M,,]
=M. VM VM _ :VM,,].
Thus
(M} M| = [VM,, VM| =[M,, : My,],

i.e. the lengths of these W (k)-modules D(Hy), for any 7 are the same. We can then
conclude that D(Hy), is generated by hto,H = htH/d elements. So

wi, . = (D(Hg), /VD(H)or)" = wis @ k

is generated by htH/d elements, where M* = Hom(M, W (k)) for a W (k)-module M.
By Nakayama lemma, wy . is generated by htH/d elements.

Now for any subgroup (H',t) C (H,t), we have an exact sequence
0= wh/mr = Wy — warr — 0.
By the basic properties of Fitting ideals,
FitthtopH/wH@TFittOwH/H/,T C Fitthtop H'WH -

But
Fittp,, wwn r = Ok

by the above paragraph, thus
v(Fittown/m ») = degwm/m »

= degwy » — degwp -

> I/(FitthtoF H'WH,),
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and
Hdg,(hto,H') = degwp, . — V(Fitth, mwwny) > degwps ;.

We sum the above inequality over 7 : F' — K, then divide by d to get

1 1
y > HdgT(htoFH’)zadeng/.

T F—K

But the left hand side is by definition Hdg(H, L)(htTH/), and since HN(H, ) is the convex

hull (htTH,, deZH/) as (H', ) varies as a subgroup of (H, ¢) (J26], proposition 7), we therefore
get

Hdg(H,.) > HN(H,u).
[l

Combined with proposition 1.3.3, the remark below definition 1.3.4, proposition
1.3.10 and remark 1.3.9, we get

Corollary 1.3.11. Let (H,t,\) be a p-divisible group with additional structures over
Ok. Then for all x € [0, htH/d|,

HN(H, 1, \)(x) < %HN(H[pm],L, A)(mx) < HN(H|[p], ¢, \)(x)
< Hdg(Hlp), »,\)(x) = Hdg(Hy, 1 \) ().

1.4 Admissible filtered isocrystals

In this section, let K|Q, be a complete field extension for a discrete valuation, with
residue field k& of Ok perfect, and Ky = FracW (k). We will explain the inequalities in
corollary 1.3.7 for the discrete valuation base case in terms of filtered isocrystals with
additional structures.

First, we review the classical case, i.e. G = GL,, there is no additional structures.
Consider the category Fillsocg g, of filtered isocrystals over K. The objects are in the
form of triplets (V, ¢, Fil*Vik), where

— (V, ) is an isocrystal over k;

— Fil*V is a filtration of V ®k, K such that Fil'Vi = 0 for i >> 0 and Fil'Vx = Vi

for 1 << 0.
Recall we have three functions on this category :

ht,tN,tH : FﬂISOCK|KO — Z,
where for an object (V, ¢, Fil*Vk) € Fillsocg |k,

ht(V, o, Fil*Vie) = dimy,V,

tn(V,p, Fil'Vie) = tn(V, ) = > Adimug, Vi
A€Q

= the (vertical coordinate of the) terminal point of the Newton polygon of(V, ¢),
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here V =@ e VA is the Dieudonné-Manin decomposition of V' into isocline subspaces
V) of slope A,

tu(V, o, Fil'Vic) =ty (Vi Fil*Vi) = Y idimyc (grie Vic)
i€z
= the (vertical coordinate of the) terminal point of the Hodge polygon of(V, Fil* V).

Consider the functions

d691 =ty —In: FiHSOC}qKO — 7

and p; = d;il, then the objects in Fillsock|k, admit the Harder-Narasimhan filtration

relative to the slope function p, see [27] 9.3. The abelian category of (weakly) admissible
filtered isocrystals in the sense of Fontaine is then

p1—55,0

FiHSOC%KO = FilIsocK‘K0 ,

which is equivalent to the category of crystalline representations of the Galois group

Gal(K/K).

On this abelian category of (weakly) admissible filtered isocrystals, we have two
functions :
ht, —tn(= —tg) : Fillsoc§ ., — Z.

Let p = %ﬁv, then the objects in FilIsoc‘}ﬁ &, admit the Harder-Narasimhan filtration
relative to the slope function p. In section 9 of loc. cit. Fargues introduced a Harder-
Narasimhan filtration of crystalline representations, by considering the larger category
of Hodge-Tate representations and its link with categories of filtered vector spaces. For
a p-divisible group H over Ok one has the equality of polygons HN(H) = HN(V,(H)),

where V,(H) is the rational Tate module. Recall the equivalence functors
Veri

Fillsoci s, « Rep§”(Gal(K/K))

defined by ‘
‘/cris(Na @, FZZ.NK) - FIIO(N ®Ko Bcris)cp:ld
and _
DCMS(V) — (V ®q, ch's)Gal(K/K)-
We have the fact that, the Harder-Narasimhan filtrations in Rep&:s(Gal (K/K)) intro-
duced by Fargues and in FilIsoc%ﬂ x, defined above coincide, cf. 9.4 of loc. cit..

If we denote the category of isocrytals over k by Isoc(k), and use deg = —ty, ht =

dim, p = ;ffnv to develop the formulism of Harder-Narasimhan filtration, then since the

functor of forgetting the filtration

FilIsoc%ﬁKO — Isoc(k)

(V, @, Fil*Vi) = (V. ¢)

is exact, and preserves the functions of At and —ty on these two categories, we have the
following inequality between concave Harder-Narasimhan polygons :

HN(V, o, Fil*Vk) < HN(V, ) =: Newt(V, ¢).
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On the other hand, if we denote the category of filtered vector spaces over K by
FilVect ki, which admits the Harder-Narasimhan filtration for the functions

ht(V,Fil*V) = dimgV, deg(V,Fil*V) = — Zi.dimK(gr%il.V)

i€z
and p = dhif. We have an exact functor
FilIsoc%K0 — FilVect gk
defined by composition of the forgetting functor and tensor product with K
Fillsocy| , — FilVect xx, — FilVect .

This functor preserves the height and degree functions, thus we have the inequality
between concave Harder-Narasimhan polygons

HN(V, 0, Fil'Vi) < HN(Vi, Fil*Vie) =: Hdg(Vi, Fil*V).
In fact since (V, p, Fil*Vi) is admissible, we have the inequality by definition
Newt(V,¢) < Hdg(Vk, Fil* V).

To summarize, we get the following inequalities of concave polygons associated to an
admissible filtered isocrystal (V, ¢, Fil*V) :

HN(V, ¢, Fil*Vk) < Newt(V, p) < Hdg(Vi, Fil*Vi).

In particular, if H/Of is a p-divisible group over Oy, we have the filtered isocrystal
(N,p~tp,Fil*Ng) € FiHSOC?’E} L0 associated to it, and the exact sequence of K-vector
spaces

0 = wyp g — Ng — Lie(H)x — 0.

Here Fil’Nyg = wyp x = Hom(Lie(HP), K), FilIsoc‘;gl’l[(_ol’m is the full subcategory of

FilIsocﬁ(d‘ K, consisting of objects (V, o, Fil*Vi) of the form that Fil 'Vx = Vi, Fil’Vk C
Vi, Fil' Vi = 0. We use the covariant isocrystal (N, ) of Hj, here, thus ¢ = D(V) ® K,
for the Verschiebung V' of Hy. Under the covariant functor Vs of Fontaine

Veris © Fillsocy| , — Repg”* (Gal(K/K)),

we have the equality V,,..s(N,p~ ', Fil* Nk ) = V,(H) for the rational Tate module V,,(H).
Then we can identify the following various polygons :

HN(H) = HN(N, p~'o, Fil* Ny
Newt(Hy) = Newt(N,p ')
Hdg(H,) = Hdg(Nr, Fil* Ni).

Here the Hodge polygons in the two sides of the last equality are both the polygon which
is the line of slope 1 between the points (0,0) and (d, d), and the line of slope 0 between
the points (d,d) and (h,d) (assume dimH = d,htH = h). Thus the above inequalities
become the following

HN(H) < Newt(Hy) < Hdg(Hy).
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Now we consider the cases with additional structures. Let G be a reductive group
introduced at the beginning of section 1.3. Let k be an algebraically closed field of
characteristic p, L = FraclW (k). Then a pair (b,u) is said to be admissible filtered
isocrystal with G-structures, where b € G(L) and p : G,x — Gk is a co-character
defined over a finite extension K of L, if for all (V,p) € Repg, G, (V ® L, bo, Fil}, Vi)
is an admissible filtered isocrystal in Fillsock . Note to check that (b, 41) is admissible,
it suffices to check for a faithful representation (V, p), (V ® L, bo, Fil}, Vi) is admissible.
Since the tensor product of two semi-stable admissible filtered isocrystal is semi-stable
(see |27], section 9), for an admissible pair (b, i), we can define its Harder-Narasimhan
polygon v, € N(G), such that for any (V,p) € Repg, G, p«(v,) € N(GL(V)) is the
Harder-Narasimhan polygon of (V ® L, bo, Fil}, Vi) we have just defined, as in [16],[30].
Similarly, we can define its Hodge polygon v, € N(G) such that for any (V, p) € Repg, G,
p«(vu) € N(GL(V)) is the Hodge polygon of (Vi, Fil} V). This was already done in the
book [16]. On the other hand, Kottwitz has defined the Newton polygon v, € N(G)
such that for any (V, p) € Repg, G, p«(vy) € N(GL(V)) is the Newton polygon of (V ¢).
Thus we have the following inequalities

Vb, S Vp S I

as elements in the ordered sets N(G). Via the injection N(G) — N(Respjg,GL,), we
can view these inequalities as inequalities between polygons over [0, n].

To fix notation, we will work in the PEL cases. The EL case can be treated in the
same way, which is simpler. So let (H,t, A\)/Ok be a p-divisible group with additional
structures, then its associated filtered isocrystal (N, p~'p, Fil* Nk ) admits induced addi-
tional structures, which means that we have an action ¢ : F' — End(N, ¢) and a perfect
pairing (,) : N x N — Q,(1) such that Fil’ Ny is F-invariant and totally isotropic un-
der the induced pairing (,) on Ng. We denote it as (N, p~ ', Fil* Nk, ¢, {,)) considering
its additional structures. This will then determine an admissible filtered isocrystal with
additional structures (b, 1) for G, as in [65]. The inequalities

Vb, S Vp S Uy

now translate as
HN(N,p_lgp, Fil*Ng, ¢, (,)) < Newt(N, plo e, (,))
< Hdg(Ng,Fil*Ng, ¢, (,)),

where

HN(N,p o, Fil*Ng, 1, (,)) = HN(N,p ‘¢, Fil* N, ¢)
1

= EHN(N, p_lgp, Fil*Ng)(d-)

) 1 .
Newt(N,p o1, (,)) = EN@W(N,]? o) (d-)

) 1 i :1e
Hdg(Nic, Fil* Nic, 1, () = - Y o'(Hdg(Nik, Fil*Nix))
i€Z/dzL
via the injection N(G) < N(Resp)g,GLy). Here under the action ¢ on Ng, we have the
decomposition as K-vector spaces

Nk = P Nix,Nix = {z € Ngla -z = o' (a)z},Vi € Z/dZ,
i€Z/dZ
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Fil* N;ix = Fil*Ng N Ny,
Note the action of o on the set of polygons { Hdg(N;x, Fil* Nik ) }iczyaz is

O'(Hdg(NZK, Fll.NlK)) = Hdg(NZ+1K, FII.NZ+1K)

By definitions we have the following identities between various polygons

HN(Ha L, )‘) = HN(Nap_1§07Fﬂ.NK7L7 <7>)
Newt(Hy,t,\) = Newt(N,p ', 1, (,))
Hdg(Hk, L, )\) - Hdg<NK> Fﬂ.NK? Ly <> >)

Thus the above inequalities explain these ones obtained in corollary 1.3.7 :

HN(H,1,\) < Newt(Hg,t,\) < Hdg(Hy,t, \).

1.5 Hodge-Newton filtration for p-divisible groups with addi-
tional structures

We restrict ourselves to the PEL cases, the EL case can be treated in the same way,
which is simpler. Let K|Q, be a complete discrete valuation field with residue field k
perfect. Let (H, ¢, \) be a p-divisible group with additional structures over Ox. We make
the following basic assumption :

(HN) : Newt(Hg,t,A\) and Hdg(Hy,t,\) possess a contact point x outside their ex-
tremal points which is a break point for the polygon Newt(Hy, 1, \) .

Since these two polygons are symmetric, the symmetric point z of x satisfies the
same assumption. Denote the coordinate of x by (z1, z5). Without loss of generality, we

may assume r; < %, and note the equality holds if and only if x = Z.

We now use the explanation of the various polygons in terms of the filtered isocrystal
with additional structures (N, p~'p, Fil* Nk, ¢, (,)) attached to (H,t,\) :

HN(H,1,\) = HN(N,p~'¢,Fil* Nk, 1, (,))
Newt(Hy,t,\) = Newt(N,p ', 1, (,))
Hdg(Hk, L, >\) = Hdg(NKaFll.NKa 2 <7 >)

Then the break points x and Z correspond to decompositions of isocystal with additional
structures

(Nap_1807 l’) = (Nl,p_IQO, L) D (Niap_1807 l’)7
(Nap_lg% [') = (N27p_1<;07 L) S (Néap_lg% L)7

where the Newton polygon of (Ni,p~ty,t) (resp. (No,p~l¢, 1)) corresponds to the
part in the polygon of (N,p~'¢,,(,)) before z (resp. Z), and the Newton poly-
gon of (Nj,p~Yp, 1) (resp. (N}, p~'p,t)) corresponds to the part in the polygon of
(N,p~to,1,(,)) after z (resp. ). We consider the induced filtered isocrystal with addi-
tional structures (Ny, p~'o, Fil* Nig, t), where Fil* Ny = Fil*Ng N N k.
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Proposition 1.5.1. The underlying filtered isocrystal of (Ny,p~ ', Fil’ Ny, 1) is ad-
massible.

Proof. We just need to show the equality

tn(Ny,ptp) = ty(Nig, Fil* Nig).
First, the admissibility of (N, p~l¢, Fil* Ng) implies that

tu(Nig, Fil*Nig) < ty(Ni,p~ o).
So we just need to show the inequality

tu(Nig, Fil*Nig ) > tx(Ny, p~to).

We denote by
d d
N=N, M=
i=1 i=1

for the decomposition of N and N; by the action of F. Then each subspaces N and
Ni admit the induced filtration Fil*Ni = Fil*Ng N Ni., Fil*Ni,. = Fil*Nix N Nip.
By the property of Harder-Narasimhan polygons, we have for alli =1,...,d
dimKNlK

deg(Niy, Fil*N,) = dimg Ni — dimgFil’ N, < Hdg(Nj,, Fil*Nj ) ( y ).
Thus

deg(NlK, Fﬂ.NlK) = _tH(NlK, Fﬂ.NlK)

= dmeNlK — dmeFllONlK

< i(dz’mKNfK — dimgFil’Niy)
=1
d . R— dimKNlK
< ;Hdg(N}oFﬂ Ni) (=)
= —tn(N1,p o).

Here the last equality comes from our assumption (HN) and the definition of
Newt(N,p~tp,1,(,)) and Hdg(Ng,Fil*Ng, ¢, (,)). ]

Corollary 1.5.2. With the above notation, the Hodge polygon Hdg(Nyg, Fil’ N1k, )
equals to the part before the point x of the Hodge polygon Hdg(Ny, Fil* Ng, ).
Proof. Indeed, in the proof of proposition 1.5.1, we get for all i =1,....,d

7 .
Thus for all @ = 1,...,d, Hdg(Nig,Fil®Njy) is the part before the point
(Ymetie dimgeNi e — dimgFil’Ni ) in the polygon Hdg(Nj, Fil*Nj). Then by def-
inition we get the corollary. O]

dimg N — dimgFil°Ni . = Hdg(Ni Fil*Ni)(
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Similarly for the point & we have an admissible filtered isocrystal (No, p~ ', Fil® Nog).
Since (Ny, p~lp, Fil* N k) is admissible,

. 1 _ _ dZm N

deg(Ny,p~ @, Fil' Nige, 1) = —~tn (N1, p~'p) = Newt(N.p~' g, 0, () (—— )
. N ; N

< NN, ™, B N 1, (D) () < Newt (N, by, ) (FRESE)

thus all the inequalities above are in fact equalities. One has similar equalities for
(Ny, p~Lo, Fil* Nog ). We get the following important corollary.

Corollary 1.5.3. The Harder-Narasimhan polygon of (H,t,\) also passes the
points x and &, which are thus also break points of HN(H,t,\). Moreover,
for i = 1,2 (N;,pto, Fil' N;x) appear in the Harder-Narasimhan filtration of
(N,p 1y, Fil’ Ng).

Theorem 1.5.4. Let K|Q, be a complete discrete valuation field with residue field k
perfect, (H,t,\) be a p-divisible group with additional structures over Ok. Under the
basic assumption (HN), there are unique subgroups

(Hy,t) C (Hs,t) C (H,0)
of (H,1) as p-divisible groups with additional structures over O, such that

1. X induces isomorphisms
(Hi,0) = ((H/Hp)". 1),
(Haz,0) =~ ((H/H))",1);

2. the induced filtration of the p-divisible group with additional structures (Hy, 1) over
k

(Hig,t) C (Hog,t) C (Hy,t)
18 split ;
3. the Newton(resp. Harder-Narasimhan, resp. Hodge) polygons of (Hy, ), (Ha/Hy, 1),

and (H/Hs, 1) are the parts of the Newton(resp. Harder-Narasimhan, resp. Hodge)
polygon of (H,t,\) up to x, between x and Z, and from & on respectively.

When x = &, then Hy and Hy coincide.
Proof. We use the formula

HN(H, 1, \) = inf ~HN(H[p"], 1, \)(n-)

n>1ln

and the following inequalities
1
HN(H,1,\) < ~HN(H[p"], 1, \)(n-) < HN(H[pl.1,\) < Hdg(Hy,1, )
n

to deduce that, for n >> 0 large enough, & is a break point of the polygons
LHN(H[p"],t, A)(n-). We fix such a n. Thus there exists a sub-group

H, C H[p"],
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which appears in the Harder-Narasimhan filtration of H[p"|, and admits an induced
action by ¢. We denote it as (H,,t). Consider the family of finite flat group schemes
with additional structures

(Hanu L)kzo - (H[kan]’ L)kzo.

Since .
§HN(H[p2k+1”], LA)(2) < HN(H[P?™, 0, \),
we have
ptmas (H "™ Hye1) < ptonaa(H ")/ Hoe) < pronin (Hope),
thus

Hom(Haep, H[p* "™/ Hyri1,,) = 0
by proposition 1.2.3. In particular, the composition of
Ha, = H[p*™ < H[p*" ") — Hp* ")/ Hypir,,

is 0, i.e.
Han C H2k+1n.

Similarly, since
kn
Mmin(HQk‘Hn) > ,Umln(H%n) > Nmax(H[pz ]/Han)>

thus
k
Hom(Hyxi1,,, H[p* "]/ Hax,,) = 0.

In particular, the composition of

kTL
Hyeorn, < HP? ) 25 B o H[p? ™)) Hop,,

is 0, i.e.
k
p2 n(HQkJrln) C Hgkn.

Let C be the scheme theoretic closure in H[p?"™"] of

an
P
keT(H2k+1n7K —_— Han,K) s

and D be the scheme theoretic closure in H|[p?™] of

an
. p
Zm(H2k+1n’K —_— Han,K)'

Then Hyx,, C C, and we have a sequence
0—C — Hypy1,, > D —0,

and
degHyi+1,, < degC' + degD

with the equality holds if and only if the above sequence is exact, cf. proposition 1.2.1.



1.5 - Hodge-Newton filtration for p-divisible groups with additional structures 45

Note
degHor+1,, = 2degHor,,
ht Hyer1,, = 2ht Hae,,.
Let a = htHyr,, < htC, since htC + htD = ht Hyr+1,, = 2a, we have htD < a.
Consider the non-normalized Harder-Narasimhan polygon HN (H[p* ")) of H[p*™],

we have
degC < HN(H[p*"™])(htC)
degD < HN(H[p*"])(htD),
thus

degC + degD < HN(H[p*""])(htC) + HN(H[p*"])(htD)
htC + htD

— )

= 2HN (H[p* ™)) (htHy,,)
= 2degHyr,,

= degHok+1,,.

< 2HN(H[p*"))(

Thus we have
degHok+1,, = degC' + degD

and
0—>C— Hoprtr, — D —0

is exact. We claim that
C == H2k,n.

In fact, if C D Hgk,, we have D C Hoyx,,. Then
degC' + degD < 2degHor,,,

a contradiction! Thus C' = Hy,. Similarly D = Hgx,. Therefore we have an exact
sequence

2kn
0 — Har,, — Hopsr,, —s Hor,, — 0.

Now consider
H, = liﬂHan
E>0

as a fppf sheaf over Og. It is of p-torsion by definition. It is also p-divisible, i.e. Hy —— H,

k k
is an epimorphism, since Hy ﬂ Hy is. As Hs[p] = Hory[p|, and Hox,, p2—n>1 Hory,[p] is
an epimorphism, Hyx, is flat over Ok, we can deduce that Hax,[p] is a finite flat group
scheme (see [28]). Therefore, Hy is a p-divisible group over Og. By construction, it
naturally admits the induced additional structures ¢, and its filtered isocrystal is exactly
(No,p~ e, Fil* Noge, ). Thus we get a sub p-divisible group with additional structures
(Ha, 1) of (H,t). Over k, the exact sequence

0 — Hoy — Hy — (H/H3)r — 0
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splits since Hs, C Hj is a part of the slope filtration of Hj, and the Newton (resp.
Harder-Narasimhan, resp. Hodge) polygons of (Ha,¢) and (H/H,, ) are the parts of the
Newton (resp. Harder-Narasimhan, resp. Hodge) polygon of (H,¢,\) up to & and from
Z on respectively.

Similarly, for the point x, we can construct a sub p-divisible group with addi-
tional structures (Hy,t) of (Ha,t), and the Newton (resp. Harder-Narasimhan, resp.
Hodge) polygons of (Hi,t) and (Hs/Hi,t) are the parts of the Newton (resp. Harder-
Narasimhan, resp. Hodge) polygon of (H, ¢, A) up to x and between x and Z respectively.
The polarization A : H = HP then induces the isomorphisms

(Hy,0) >~ ((H/Hy)P,0),
(Hy,t) ~ (H/H\)P, ).

]

Remark 1.5.5. 1. For all n > 1, we know that the polygon ~HN(H[p"],¢,\)(n-)
passes T. From the proof of the above theorem, T is a break point of this polygon
for all n large enough (i.e. there exists ng >> 0, for all n > ng & is a break point
of tHN(H[p"], ¢, A\)(n-)), and Ha[p"] is a subgroup in the Harder-Narasimhan fil-
tration of H[p"]. In fact by [26] lemme 7 and [27] lemme 3, we get that & is a
break point of %HN(H[p”], L, \)(n) for allm > 1, and Hy[p"] is the subgroup in
the Harder-Narasimhan filtration of H[p"™| corresponding to & for all n > 1. Sim-
darly x is also a break point of LHN(H[p"],¢,\)(n-) for allm > 1, and H,[p"] is
the subgroup in the Harder-Narasimhan filtration of H[p™| corresponding to = for
alln > 1.

2. In the above proof, we just need the fact that the polygon HN(H, 1, \) also passes
the points x and z, then based on this we can use the theory of Harder-Narasimhan
filtration of finite flat group schemes to find Hy and Hy. Thus we can prove the
theorem over a general complete rank one valuation ring Ok |Z,, once we can prove
that under our assumption (HN) HN(H, i, \) also passes the points x and T, see
the following.

For the application to the cohomology of Rapoport-Zink spaces as in the next sec-
tion, we will need a stronger version of the above theorem, namely the case K|Q, is a
complete field extension for a general rank one valuation, not necessarily discrete. For
some technical reason we introduce some “reasonable” class of p-divisible groups over
such bases.

Definition 1.5.6 ([27], Définition 25). Let K|Q, be a complete field extension for a rank
one valuation, Ok be the ring of integers. Suppose the residue field k of Ok is perfect.
Let a: k — Ok /pOk be the Teichmiiller section of the projection Ok /pOx — k. Let H
be a p-divisible group over O, Hy, = H ®¢,. k be its special fiber. We say H is modular,
if the identity map Hy — Hy lifts to a quasi-isogeny (not necessarily unique)

Hy, ®p.a Ok /pOx = H ®0, Ok [pOk.

When the residue field k is not necessarily zfrfect, a p-divisible group H over O is
called modular, if for some algebraic closure K of K, H ® O% 18 modular in the above
sense.
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We refer the reader to the various lists of equivalent formulations in proposition 22
of loc. cit.. In particular, any p-divisible group over a complete discrete valuation ring
is modular.

Theorem 1.5.7. Let K|Q, be a complete field extension for a rank one valuation, O be
the ring of integers. Let (H,t,\) be a p-divisible group with additional (PEL) structures
over Oy, with the underlying p-divisible group H modular. Assume (H,t,\) satisfies
the assumption (HN), then the same conclusions as theorem 1.5.4 (1) and (3) hold for
(H,t,\), and if the residue filed k of Ok is perfect, then the conclusion (2) of theorem
1.5.4 also holds for (H,t, ).

Proof. In fact, we just need to show under the above conditions, the Harder-Narasimhan
polygon HN (H,t, \) also passes the contact point x of Newt(Hy, ¢, A) and Hdg(Hy, ¢, A).
Then the other arguments in the proof of the above theorem work in the same way in
this case, see the remark 1.5.5 (2).

To show HN(H,t, \) also passes the contact point x, we use the tool of Rapoport-
Zink spaces, see the next subsection for some review of these spaces. We may assume
k = k is algebraical closed. Consider the Rapoport-Zink space of EL type defined as the
quasi-isogeny deformation space of (Hy,t). We use M to denote the Berkovich analytic
space over Koy = FracW (k). Then (H,t) defines a K-valued point of M. For any finite
extension K'|Kj, the valuation on K’ is discrete, and the p-divisible groups (H’,¢) over
Ok associated to the points of M(K") satisfy the assumption (HN). Thus the Harder-
Narasimhan polygons HN(H', 1) pass the point z. As the rigid points M™ = {y €
M|[H(y) : Ko] < oo} are dense in M, and the function of Harder-Narasimhan polygon
is semi-continuous over M (|27] 13.3), we deduce that the Harder-Narsimhan polygons
of the p-divisible groups associated any points y € M pass x. In particular this holds
for HN(H,t,\) = HN(H,1).

]

1.6 Application to the geometry and cohomology of some non-
basic Rapoport-Zink spaces

The existence and uniqueness of Hodge-Newton filtration can be used to deduce that,
the cohomology of simple unramified EL/PEL Rapoport-Zink spaces which satisfy the
assumption (HN) contains no supercuspidal representations, as Mantovan did in [50],
where her assumption was stronger and her results were just stated for the EL case and
PEL symplectic case.

Let (F,V,b,u)/(F,*,V,(,),b,n) be a simple EL/PEL data with [FF : Q,] =
d,dimpV = n, where (F,V)/(F,*,V,(,)) are as in the section 1.3 used to define the
reductive group G. The remaining data (b, i) consists of

— an element b € G(L) up to o-conjugacy (thus we can view b € B(G), here B(G)

is the set of o-conjugacy classes in G(L)), such that the associated isocrystal
(V ® L,bo) has slopes in [0,1], thus coming from a p-divisible group ¥ up to

isogeny. Here L = FracW (F,); B
— a minscule co-character p : Gm@p — G@p, up to G(Q,)-conjugacy, such that
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1. b € B(G, ) as an element in B(G), thus the pair (b, ) is admissible ([30]).
Here B(G, 1) is the set defined by Kottwitz ([52]) ;

2. in the PEL case, c o u = id, v,(c(b)) = 1, here v, is the standard valuation
on L and c¢: G = Gy, c(z) = 2%z € R* for any Q,-algebra R and r € G(R)
(see section 1.3).

We can make the form of y more explicitly. Recall we assume n = dimpV. Fix an
F-base of V' and denote Iy := Homg,(F,Q,). In the EL case, G = Respg,GL, and
thus p is given by a collection of pairs of integer (p;,q,) such that p, + ¢, = n for all
T € ]F .

n:G,g, — Gy =~ [ GLug,

T€lp

2 Hdiag(z,-~~ 2, 1, 1),
—_—— ———

pr qr

In the PEL unitary case, let ® C Ir be a CM-type, i.e. ®[[Px = I where o« =
{7 o |7 € ®}. By definition the group G is such that

Gg, ~ (11 GL,g,) X G,g, C (1] GL,g,) %X Gug,-
TED T€lp

The p is given by a collection of pairs of integer (p;, ¢-)rer such that p.. = ¢, ¢r« = p-,
and p; +q¢- =nforall 7 € I :

For the PEL symplectic case, the group G is such that

G@p = G( H G’Spn)a

TEIF

where G([],¢;, GSPn) C 1 cr, GSPn is the subgroup which consists of elements in the
product group with the same similitude for all 7 € Ir. In this case the p can be given
by the following :

w:G,g = Gg =G(]] GSpn)

Telp

|3

The element b € G(L) defines an isocrystal with additional structures N
Repg,G — Isoc(F,) (cf. [16],]65]), in particular for the natural faithful representa-
tion V of G, Ny(V) = (V ® L,bo) is a usual isocrystal, whose Newton polygon after
normalization by the action of F is just the image of the element v, € N(G) defined by

Kottwitz in N(Respjg,GLrV), under the natural injection N(G) < N(Respjg,GLrV).
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Here the normalization of a polygon P over [0,dn] (n = dimpV,d = [F : Q,]), we mean

a polygon P’ over [0, n] such that P'(z) = +P(dx), for all z € [0,n]. On the other hand,

the conjugate class of u defines a Hodge polygon (cf. [52],[65])

1
T Tl

V,LL::/TL:

> olw) € N(G).

oel’/Ty,

We will view v, and fi as polygons over [0,n] by the natural injection N(G) —
N(Respp,GLFV). Note the above data defines a p-divisible group with additional struc-
tures X over F, up to isogeny. The polygons v, and ji will be the Newton and Hodge
polygons respectively of 3. They are also the corresponding polygons of the p-divisible
groups with additional structures classified by the Rapoport-Zink spaces associated to

the above EL/PEL data which we review in the following.

The Rapoport-Zink spaces M associated to the simple unramified EL/PEL data
(F,Vib, p)/(F,*,V,(,),b,u) are formal schemes locally formally of finite type over
SpfW(F,), as deformation spaces of p-divisible groups with additional structures by

quasi-isogenies. More precisely, let NilpW (F,) be the category of schemes over W (F,)

over which p is locally nilpotent, then for any scheme S € NilpW (F,), in the EL case
M\(S) ={(H,t,0)}/ ~; and in the PEL cases ﬁ/l\(S) ={(H,i,\,B)}/ ~, where

— H/S is a p-divisible group;

—1:Op — End(H) is an action such that

detog(a, Lie(H)) = det(a, Vp),Va € Op,

here Vj is the weight 0 subspace of V@p defined by u;
- 1 ¥g — Hg is an Op-equivariant quasi-isogeny, here S C S is the closed sub-
scheme defined by killing p;
— in the PEL cases, A : H — HP is a polarization, compatible with the action ¢,
and whose pullback via £ is the polarization on ¥ up to a p power scalar multiple.
Here as before H? is the Cartier-Serre dual of H.
— ~ is the relation defined by isomorphisms of p-divisible groups with additional
structures.
Let J,(Q,) be the group of self-quasi-isogenies of ¥ as p-divisible group with additional
structures over F,, which is in fact the Q,-valued points of a reductive group .J, defined
over Q,. Then there is an action of J,(Q,) on M defined by v € J,(Q,),

'y:./T/l\—>/(/l\, (H,pB) — (ﬂ7ﬁo'7_1)-

Let E be the definition field of the conjugate class of u, the so called reflex field, then
there is a non-effective descent datum on M over Og, for details see [66].

Let M = M9 be the Berkovich analytic fiber of M over L. Then the local system
T over M defined by the p-adic Tate module of the universal p-divisible group on M
gives us a tower of Berkovich analytic spaces (M) ca(z,), where for any open compact
subgroup K of G(Z,), M is the finite étale covering of M parameterizing the K-level
structures, i.e. the classes modulo K of Og-linear trivialization of 7 by A. In particular
M = Mg,- The action of J,(Q,) on M then extends to each rigid analytic space
M, and the group G(Q,) acts on the tower (Mg )kca(z,) by Hecke correspondences.
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We will be interested in the cohomology of the tower (Mg)gcqz,) of Berkovich
analytic spaces. Let [ # p be a prime number, C, be the completion of an algebraic
closure of L, for any open compact subgroup K C G(Z,), the l-adic cohomology with
compact support

Hi(Mg x C,,Q(Dpm)) = @HE(U x Cp, QD))
U
was defined, for details see 4.2 of [23]. Here

> rery Drlr EL case
Dy = dimMpg = %ZTGIF p-q¢- PEL unitary case
d%(%3 +1)/2 PEL symplectic case.

Following Mantovan, we will consider the following groups

M)y = i Bt (M % €T D)),

for any admissible Q,-representation p of J,(Q,). By [55], these groups vanish for almost
all 3,7 > 0, and there is a natural action of G(Q,) x Wg on them. Moreover, as a
representation of G(Q,) x Wg, H*(M4,), is admissible/continous. For any admissible
Q-representation p of J,(Q,), we define a virtual representation of G(Q,) x W :

H(Mw)p = Z (_1)i+jHi7j(M00)p'

1,j=0

To apply our results on the Hodge-Newton filtration, we make as before the following
basic assumption :

(HN) : v, and p possess a contact point x outside their extremal points which is a
break point for the polygon vy.

Thus in the PEL cases, we have a symmetric point Z of x, which satisfies also the
above condition. In these cases, if x = (1, z5), we may assume x; < n/2.

By the assumption, we can choose decompositions V = V! @ V2 (EL case) or V =
V1@ V2@ V3 (PEL cases), such that Ny(V) = Ny(V?) @ Ny(V2) or Ny(V) = Ny(VH &
Ny (V%)@ Ny(V3) is the decomposition of the isocystals corresponding to the break point
x or x and 2. In the PEL cases, when o = & then V? is trivial. Let A be a fixed lattice
in V' for the EL case and an auto-dual lattice for the PEL cases. Then we can choose
decompositions A = A' @ A? (EL case) or A = A' ® A?® A? (PEL cases), such that they
induce the above decompositions for V.

Associated to the decompositions V = @!_, V¢ t = 2or 3, we have a Levi subgroup
M of G over Qp, such that for all Q,-algebra R,

M(R) = {g € G(R)|gstabilizes V};, V1 < i < t}.

Similarly, if we consider the filtrations 0 C V; C --- C V;, = V, t = 2o0r3, where
Vi = ®1<j<;V7,V1 < i < t, we can define a parabolic subgroup P of G over Q,, such
that for all Q,-algebra R,

P(R) = {g € G(R)|g stabilizes Vi, V1 < i < t}.
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Clearly, M C P. We denote by P = MN the Levi decomposition of P, here N is
the unipotent radical of P. By definition, we have b € M(L) C P(L) C G(L) up to
o-conjugacy. There is an element w;, in the absolute Weyl group of G, such that wyu
factors through M and up to o-conjugacy b € B(M.wyu), see [56] or [34]. The above
choices of decompositions of lattices imply M, P are unramified.

Mantovan in [56] constructed two other type Rapoport-Zink spaces P and F for the
data (M, b,wpp) and (P, b,wyu) respectively. We briefly recall the definition of these
spaces. Both are formal schemes of formally locally of finite type over SpfW(F,),
and classify some type of p-divisible groups with additional structures. More pre-

cisely, for any S € NilpW(F,), P(S) = {(H', (", 8")1<i<t}/ ~ in the EL case, and
P(S) = {(H', /', X, B)1<i<;}/ ~ in the PEL cases, where
— H'/S are p-divisible groups;
— (': Op — End(H") are actions of Or on H';
- Bt E% — H’g are quasi-isogenies, commuting with the action of Op;
— in the PEL cases, \' : H® — (H7)P i+ j =t + 1, are isomorphisms and (\")? =
— ) ; such that
1. detog(a, Lie(H')) = det(a, Vy),Ya € Op,1 < i < t;
2. in the PEL cases, there exists ¢ € Q such that A" = ¢(577) "1 o ¢' o (57)7!
for all 7, j such that i +j = ¢+ 1. Here ¢ : ¥ — (/)P are the isomorphisms
induced by the polarization ¢ : ¥ — XP.

— ~ is the relation defined by isomorphisms.
As the case of the tower of Rapoport-Zink spaces (Mg )xca(z,), we may consider the

Berkovich analytic fiber P = Pan of ﬁ, and use the local system provided by the uni-
versal Tate module on P to construct a tower of Berkovich analytic spaces (Px)xc(z,)
indexed by open compact subgroups K C M(Z,). These spaces in fact can be decom-
posed as product of some smaller Rapoport-Zink spaces defined by the EL/PEL data
(F, VU (wpp)®) (%, VO (), 0% (wpe)?), for more details see section 3 of [56]. There
are natural actions of J,(Q,) on each spaces Pk, and the group M(Q,) acts on the
tower (Pk)kc Mm(z,) as Hecke correspondences. Similarly, there is a non-effective descent
datum on each of these spaces over E.

The filtration 0 C Ny(V1) C -+ C Ny(Vi) = Np(V) induce a filtration of p-divisible
groups with additional structures over IF), :

0CXC---CYX=2.

For any S € NilpW(F,), F(S) = {(H,t,H.,3)}/ ~ in the EL case, and F(S) =
{(H,t,\, Hq,3)}/ ~ in the PEL cases, where

— H/S is a p-divisible group;

—1:O0p — End(H) is an action of O on H ;

— in the PEL cases, A\ : H — HP is an isomorphism compatible with the action of
Or;

- H,=(0C H C --- C H, = H) is an increasing filtration of H by Opg-sub-
p-divisible groups over S, such that in the PEL cases A\ induces isomorphisms
H;~ (H/H;)P fori+j=1t+1;

— B :¥g — Hgis aquasi-isogeny of p-divisible groups with additional structures, and
compatible with the filtration, i.e. 8(X;5) C Hg for any j = 1,--- ,¢; satisfying
the following conditions
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1. the restrictions of § to the p-divisible subgroups defining the filtration
ﬁj : Ej§ — ng

are quasi-isogenies ;

detog(a, Lie(Hj)) = det(a, Vo;), Va € Op,j =1,--- ,t.
— ~ is the relation defined by isomorphisms.

As usual, we consider the Berkovich analytic fiber F = Fon of F over L, and we can
construct a tower of Berkovich analytic spaces (Fg)gc p(z,) indexed by open compact
subgroups K C P(Z,), see [56] definition 10. There are then natural actions of J,(Q,)
on each spaces Fg, and the group P(Q,) acts on the tower (Fx)xcpz,) as Hecke
correspondences. Moreover, there is a non-effective descent datum of Fx over E.

As the case of Rapoport-Zink spaces, we will consider the groups

H™(Pa), : @Extﬂ J(H (P x C,,Qy(Dp)), p)

HY (Fu), = %Ext?}b(@p)(Hi(fK % Cp, Qu(Dr)), p)

for any admissible Q,-representation p of J,(Q,). Here Dp (resp. Dz) is the dimension
of P (resp. F). These groups vanish for almost all 4,5 > 0, and as M(Q,) x W and
P(Q,) x Wg representations respectively they are both admissible/continous, cf. [50]
theorem 12. We consider the virtual representations

H(POO)p = Z (_1)i+jHi7j (POO)p

i,§>0
H(Fu)p= ) (~1)™WHY(Fy),.
i,§>0
We would like to compare these representations with
H<Moo)p = Z (_1)i+jHi7j(Moo)P'
§,§>0

This is achieved by considering the relations between the three towers of Berkovich
analytic spaces : (Mg)rca,), (Fr)kcpz,), (Px)kcmz,)- More precisely, we have the
following diagram of morphisms of Berkovich analytic spaces :

N

P M
where in the PEL cases
s (H N, B <o = (B0 HY, @12y, @10 N, Ha, @12, 5)
m o (H, N\ H,, B) = (griH, Li,)\iyﬂi)lgigt
7o i (H, 1, \, He, B) — (H, 1, N\, ),
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here the filtration H, in the right hand side of the first arrow is the natural one, the
), X%, 3% in the right hand side of the second arrow are induced by ¢, \, 3 on the graded
pieces, for i = 1,...,t.

By construction, we have the following facts.

Proposition 1.6.1 (|56], Prop. 14, 28, Theorem 36 (3)). 1. s is a closed immer-
ston ;
2. w1 is a fibration in balls ;

3. o 18 a local isomorphism onto its image.

In fact, to find the relation between the cohomology groups H(Ps), and H(Fx),,
one has to consider the geometry between Fy and P := Prna(q,) for any open compact
subgroup K C P(Z,). We extend the action of M(Q,) on the tower (Px)xcnm(z,) to an
action of P(Q,) on this tower with the unipotent radical of P(Q,) acts trivially. In this
case, there are J,(Q,) x P(Q,)-equivariant closed immersions

SKipK—>IK

commute with the descent data, for K C P(Z,) varies. Moreover, there are J,(Q,) x
P(Q,)-equivariant morphisms of analytic spaces

mk  Fx — Pk
commute with the descent data, for K C P(Z,) varies, such that
T1K © S = ide.

For K C P(Z,), mk are not necessarily fibrations in balls and their fibers may change.
Mantovan’s solution of this problem is that for each integer m > 1, she introduces a
formal scheme j,, : f — F over }' such that for any morphism of formal schemes
f: S — F, the p™-torsion subgroup f*H[p™] is spht if and only if f factors through
Jm- Here H is the universal p-divisible group over F. By definition, one has a formal
model 7 : F — P of 7. Then one has the fact that formal schemes f and F are
isomorphic when considered as formal schemes over 72 via 71 o j,, and 7 respectively,
cf. [56] proposition 30 (2). Thus the formal schemes F,,, can be viewed as some twisted
version of F. Let K = K,, := ker(P(Z,) — P(Z,/p™Z,)) for the natural projection
P(Z,) — P(Z,/p"Z,), and F,, be the analytic generic fiber of Fom, then one can define
a cover fox @ Fmxg — Fm by the pullback of Fx — F, ie.

Fmk = Fk X F jmn Fm-

Let jmi : Fmx — Fi be the natural projection, we have the following cartesian diagram

me f mK .Fm

ljm}( ljmn

Fx ——F.
On the other hand one can also define a cover f! . : F, . — F,, by the pullback of
P — P via m 0 jpy : F — P, which is the same with m : F,,, = P, i.e.

!
mK — PK X’p,ﬂ—l fm
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Let 1.,k be the natural projection F, - — Pk, we have the following cartesian diagram

’
K
mi ==

m
lﬂ'l'mK Lﬂ'l

PK—>

There are morphisms ¢ @ Foox — Fo ;o and g @ F o — Fni such that ¢ o o =
id;;nK and T, © Ox = T © Jmk- Since mp is a fibration in balls, by the base change
theorem for the cohomology with compact support of analytic spaces and proposition
1.6.1 (2), one has a quasi-isomorphism of cohomological complex

RU(F) ;e x C,, Q) ~ RT.(Px x C,, Q(—d))[~2d], d = Dr — Dp.

In proposition 32 in loc. cit. Mantovan studied the relation between F, F, ik and F, .,
from which she can deduce a quasi-isomorphism

RU.(Fx x Cp, Q) = RU(F, ;e x C,, Q).
Thus one has the following proposition.

Proposition 1.6.2 (56|, Theorem 26). For any admissible Q,-representation p of
Jp(Qp), we have an equality of virtural representations of P(Q,) x Wg :

To find the relation between H (M), and H(Ps),, we use our main result on the
Hodge-Newton filtration. Under our basic assumption, which is weaker than that in [56],
the results of last subsection on the existence and uniqueness of Hodge-Newton filtration
tell us

Proposition 1.6.3. my is bijective, thus it is an isomorphism of Berkovich analytic
spaces.

Proof. This is a direct consequence of theorem 1.5.4, 1.5.7, and proposition 1.6.1 (3). [

For an open compact subgroup K C G(Z,), denote Fg := Frnp(q,), then we have a
natural morphism myx : Fx — My such that magz,) = m2 which is defined above. Let
Pr := Prnm(q,), we have also natural generalizations sg, m1x of s and m; respectively.
Moreover, we have the following diagram in level K

s K

A T2K

Pk M.

Corollary 1.6.4. With the above notation, mor 1s a closed immersion, and we have
isomorphisms
My = Mg Xp F = H FKNP(Qy)-
K\G(Qp)/P(Qp)
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Proof. One argues exactly as [56] 8.2. ]

Before passing to cohomological conclusion, we consider some application to the p-
adic period morphism and monodromy representations. Recall that in [66] chapter 5
Rapoport-Zink had defined a p-adic period morphism

T M— F:=F(G,p)* C F(G,p)™

which is G(Q,)-invariant and J,(Q,)-equivariant. Here F* is the image of =, which is
an open subspace of F(G, u)*", the associated Berkovich analytic space of F(G, u) =
G1/P,r. Here P, is the parabolic subgroup defined by p over the reflex field E, and P,
is its base change over L. The definition of 7 for rigid points is as follow. Associated to a
rigid point « € M(K) (K|L is thus a finite extension) there is the p-divisible group with
additional structures (H, ¢, ) over Ok and the quasi-isogeny p : Yo, /pox — Hoy /pos
which defines an isomorphism

ps: (Vi,b0) — (D(Hy) L, ).

Let
File()Vic = p, H(wpp k) C Vie

for the Hodge filtration sequence
0 = wyp g — D(Hy)x — Lie(H)x — 0.
Then by definition 7(z) = Fil;(;)Vk € F*(K).

In our situation, we have also the p-adic period morphism which is still denoted by
7 by abuse of notation

7P — F(M,wpp)* C F(M,wpp)™
for the Rapoport-Zink P. Let
m: F — F(G,u)™

be the composition of g : F — M and 7 : M — F(G,p)*", and F*(P,wpu) be its
image, which is contained in the p-adic Schubert cell F*"( P, wypt) = (Prwy P,/ Pur)™ C
F(G, ). We have the following enlarged diagram :

4P, wpt)

/\

F (M, wpp) FG, p).

P M

Here wy, is the element in the absolute Weyl group of GG as above, which is contained in a
double coset : @y € Wp \ W/Wp,, P, is the parabolic subgroup of G defining F(G, ).
We have
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1. « is a fibration in affine analytic spaces;

2. m, is the identity, ie. F%(G,u) is contained in the p-adic Schubert cell
(PrwsPur/Pup)™

Let 7 be the Z,-local system over M defined by the Tate module of the universal

p-divisible group over M, then it descends to a Q,-local system over the p-adic period
domain F*. Let T be a geometric point of M and ¥ be its image under the p-adic
period morphism 7 : M — F®. Then by [18] theorem 4.2, these local systems define
monodromy representations

pz: m(M,T) — G(Z,)

and

py : T(FY) — G(Qp)
respectively. Here 71 (X, T) is the fundamental group defined by de Jong in loc. cit. for
a Berkovich analytic space X and a geometric point ¥ of X. Then under our basic

assumption (HN) and the notations above, the existence of Hodge-Newton filtration
implies the following.

Corollary 1.6.5. The monodromy representations pz and py factor through P(Z,) and
P(Q,) respectively.

In [15], M. Chen has constructed some determinant morphisms for the towers of
simple unramified Rapoport-Zink spaces. Under the condition that there is no non-
trivial contact point of the Newton and Hodge polygons, and assume the conjecture
that .

mo(M) >~ Imse

for the morphism s : M — A constructed in [66] 3.52, Chen proved that the associated
monodromy representation under this condition is maximal, and thus the geometric
fibers of her determinant morphisms are exactly the geometric connected components,
see théoréme 5.1.2.1 and 5.1.3.1 of loc. cit.. Our result confirms that the condition
that “there is no non-trivial contact point of the Newton and Hodge polygons” is thus
necessary, see the remark in 5.1.5 of loc. cit.. In the split cases considered in [57] and
[56], their results already confirmed that the above condition is necessary.

Now we look at the cohomological consequence of the existence of Hodge-Newton
filtration. Proposition 1.6.2 and corollary 1.6.4 together imply that

We summarize as the following theorem.

Theorem 1.6.6. Under the assumption (HN), we have an equality of virtual represen-
tations of G(Qp) x Wg :

G(@,
H(Meoo), = Ind5(g") H(Pyo),

In particular, there is no supercuspidal representations of G(Q,) appear in the virtual
representation H(Max),.
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1.7 Application to the cohomology of some Shimura varieties

The above theorem generalizes the main result of [56]. As there, we can consider
further the application to the cohomology of Newton strata of some more general PEL-
type Shimura varieties. We will not pursue the full generalities here, but concentrate on
the Shimura varieties studied in [I0] and [81], since studying these varieties was one of
the motivation of this thesis as said in the introduction. They are closely related to the
Shimura varieties studied by Harris and Taylor, but the local reductive groups involved
are unitary groups. Note also they are not in the class of Shimura varieties studied in
section 11 of [56].

More precisely, let Shez,)<x»/Op, be a smooth PEL-type Shimura variety over the
integer ring of E,, as in [10] or [81], the local reflex field which is a quadratic unramified
extension of Q, if n # 2 and Q, if n = 2. Let %G(Zp)x Kxr be its special fiber, then we
have the Newton polygon stratification

YN =7 (0)
Shaz,)xxr = | | Shez,)x ke
bEB(G,u)

Here in this special case, Gg, is isomorphic to a simple PEL unitary group in our notions
by the Morita equivalence, and B(G, i) is in bijection with the set of polygons defined
in [81] (3.1), in particular, any non basic element b satisfy our assumption (HN).

Let R/ \Iln(@l), 7 > 0 denote the [-adic nearby cycles of some fixed integral models of
the Shimura varieties Shg, x x» with some level structures K, at p, defined for example as
in [55] for Drinfeld level structures, or the book [66] for parahoric level structures. Then
we have also the Newton polygon stratification for the special fibers with level structures
at p, and for each b € B(G, p), we have the virtual representation of G(Ay) x Wg,

H(ShY) x By RU, (@) = Y (=1 lim Hi(Shi . er x B, R, (Q)).

$,j>0 KpxK»

Let ﬁg(zp)”@ be the p-adic completion of Shg(z,)x kv, ﬁcgzzp)xlﬂ, be the Berkovich
analytic fiber of this formal scheme. For any open compact subgroup K, C G(Z,), let

E%ZX ke De the étale covering of glgzzp)x xr defined by trivializing the Tate module in
the usual way. When K, is a Drinfeld level structure subgroup or a parahoric subgroup,

S hi;;x xr has a formal model : the p-adic completion Sh k,xir Of Shi xkr. Then the
theory of formal vanishing cycles tells us we have the equality of cohomology

RY(Shi,xxr x By, RY,(Q))) = RU(Shy  gr % C,, Q).

Thus we have the equality of virtual representations

ST T H (Shigre xFp, R, (@) = Y (—1) lim  H (Shy 10 X Cp, Q).

,j>0 K, xKP >0 KpxKP

If Shaz,)x ke is proper, (for example if B = V' as the notations in [10] and [81], these
Shimura varieties have the same generic fibers as that of the Shimura varieties of some
special cases studied by [36],) then we have

—~an an

Sthpr = Sthpr,
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where the later is the associated Berkovich analytic space of the Shimura varieties
Shg, ke over E,. Thus we have the equality of virtual representations

Y (V) H(Shee x B, Q) - = Y (~1)'lim H' (Shie x E,. Q)

i>0 i>0

i>0 K
= Z(—l)z—w li Hi(ﬁprKP X E]Oa}%j\ljﬁ(@l))
i,j>0 KpxKP
—— (b —
beB(G,u)

The main results of [55] tell us the cohomology of each Newton polygon strata can be
computed in terms of the [-adic cohomology of the corresponding Rapoport-Zink spaces
and Igusa varieties. More precisely, we have the formula

Ho(Sh » By, RU, (@)
= Z (_1)i+j+khﬂEthzb(Qp)(Hg(MKp X Cp,@l(DM))aHf(IQb,@z))7
Kp

1,5,k=0

see [55] for the precise definition of the Igusa varieties and their cohomology. Thus the
main results of this section imply in particular

Corollary 1.7.1. For the Shimura varieties studied by [10],[81], for any non-basic

strata, the cohomology group Hc(%fj} x F,, RV, (Q,)) can be written as some suitable
parabolic induction of virtual representations, and thus contains no supercuspidal repre-
sentations of G(Qy).

Finally note that in a recent preprint [47], Imai and Mieda have proven that, for
non-proper Shimura varieties the supercuspidal parts (see [23] définition 7.1.4, 8.1.2 for
example) of the compactly supported (or intersection) cohomology and nearby cycle
cohomology are the same :

Hé(Shoo X Euv@l)cusp = Hz(ﬁoo X Fpa Rq]n(@l))(:usp-

Since one has the equality of virtual representations

N (~1)H!(She x Fp, RU,(@)) = > H.(ShY x F,, RY,(Q)),

i>0 beB(G 1)

combined with Mantovan’s formula above we find that, once a non-basic Newton polygon
has a nontrivial contact point to the Hodge polygon, which is a break point for the
Newton polygon, then there is no contribution of the cohomology of this non-basic
strata to the supercuspidal part of the cohomology (of whichever kind) of the non-
proper Shimura varieties. For example, this is the case for the two non-basic stratas for
the Shimura varieties associated to G\Spy.
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2 Cell decomposition of some unitary group
Rapoport-Zink spaces

2.1 Introduction

The motivation of this section is the realization of local Langlands correspondences
in the cohomology of Rapoport-Zink spaces, see [70] and [34]. We have seen these spaces
in section 1.6. These spaces are local analogues of PEL type Shimura varieties, and they
uniformize some parts of these type Shimura varieties when passing to formal completion
and p-adic analyticfication.

The most well known Rapoport-Zink spaces are the Lubin-Tate spaces and Drinfeld
spaces. In [11], it is conjectured the cohomology of Lubin-Tate spaces realizes the local
Langlands and Jaquet-Langlands correspondences for GL,. This has been essentially
proved by Harris-Taylor in [36], and completed by many other authors. In [21] and [25],
Faltings and Fargues has established an isomorphism between the Lubin-Tate tower
and the Drinfeld tower, and deduced also an isomorphism of the cohomology of the
two towers. Thus the cohomology of the tower of Drinfeld spaces also realizes the local
Langlands and Jaquet-Langlands correspondences for GL,,, as predicted originally by
Drinfeld and partly realized by Harris [33].

The description of the cohomology of some other Rapoport-Zink spaces in terms of
irreducible smooth representations of the underlying p-adic reductive groups, has been
done successfully by Fargues in [23] and Shin in [75]. Both of them use global methods
as that of Harris-Taylor, although their approaches are quite different : the former uses
heavily rigid analytic geometry while the later is based on the stable trace formula. Their
results are both about Rapoport-Zink spaces of EL type, and Fargues has also obtained
results of the Rapoport-Zink spaces for GU(3), based on the complete classfication of
automorphic representations for unitary groups in three variables in [69]. It would be
nice if one can prove these local results by local methods. This will require a careful study
of the geometry of Rapoport-Zink spaces, and then pass to cohomological applications.
Some works in this direction are as [20], [77], [84].

In [25], the first step of the construction of an isomorphism between the towers of
Lubin-Tate and Drinfeld, is by “p-adicfy” the Lubin-Tate tower. This p-adicfy procedure
is to glue some formal models of Gross-Hopkins’s fundamental domain.

To be precise, let M7 be the formal Lubin-Tate space over SpfW (F,) for GL,/Q,
for simple in this introduction. Recall that for a scheme S €NilpWW, a S-valued point of
M is given by a pair (H, p), with H a one dimensional formal p-divisible group over S,
and p : Hg — Hgis a quasi-isogeny. Here W = W(Fp), NilpW is the category of schemes
S over SpecW such that p is locally nilpotent over S, S is the closed subscheme of S
defined by p, and H is the unique one dimensional formal p-divisible group of height n
over Fp. This space decomposes as a disjoint union of open and closed formal subschemes
according the height of quasi-isogeny. The associated p-adic Lubin-Tate space (in the
sense of Berkovich) My = [],.; M%; admits an action by GL,(Q,) x D*, here D
is the division algebra of invariant % over Q,. The action of D* is just changing the
quasi-isogeny, while the action of GL,(Q),) is a little complicated : it is defined by the
Hecke correspondences, see [66] or section 2 of this article for details.
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There is a p-adic period mapping

T Mpp — Prban

of p-adic analytic spaces over L := W(F,)q, and the fibers of this mapping is exact the
Hecke orbits on M. This reveals the very difference of the theories of uniformization
of Shimura varieties between the complex and p-adic situation. Moreover, since by de
Jong [I8] 7 is an étale covering of p-adic analytic spaces, its fibers, i.e. the p-adic Hecke
orbits, are thus discrete. This is also quite different to the situation over positive charac-
teristic for non basic Newton polygon strata and the prime to p Hecke orbits on Shimura
varieties, see [I3] and [14] for example.

The fundamental domain of Gross-Hopkins is then given by
D= ﬂ—il(c) ﬂ M%Ta
where C' C P"~ 19" is the closed subspace defined by

C ={z = (2o,... ,xn_1)|vx(x—0) >1-— EVZ},

v, 18 the valuation on the complete residue field of z. Let I € D* be an uniformizer such
i

that it induces an isomorphism between the components 117! : M? . = ./\/lf}l, then the
domain D is such that we have a locally finite covering of the Lubin-Tate space

Mpr = U TII7'D.

TeGLn(Zp)lg:Ln(_;i)/GLn(Zp)

Note D is closed, and more importantly (and non trivially) its underling topological
space is compact. The locally finiteness means that we can start from D and its trans-
lations T.II7*D to glue a Berkovich space, which is isomorphism our Lubin-Tate space
Mir. We may call such My admits a cell decomposition, as an analogue of the clas-
sical situation. In next section we will use this locally finite cell decomposition and
the compactness of D, to deduce a Lefschetz trace formula for Lubin-Tate spaces, by
applying Mieda’s theorem 3.13 in [60].

In [26] Fargues has developed a theory of Harder-Narasimhan filtration for finite
flat group schemes, and applied to the study of p-divisible groups in [27]. For details
of Harder-Narasimhan filtration see [26] or subsection 2.2 in the following for a review.
In particular we have notions of semi-stable finite flat group schemes and p-divisible
groups over a complete rank one valuation ring Ok|Z,. The basic observation is that,
the 771(C') is exactly the semi-stable locus M3 C Mz, that is the locus where the
associated p-divisible groups are semi-stable. And Gross-Hopkins’s fundamental domain
is the semi-stable locus in the connected component M?Y,. Motivated by this fact,
Fargues has studied fundamental domains in the Rapoport-Zink spaces for GL,/Q,
with signature (d, h—d), in particular there is no additional structures for the p-divisible
groups considered.

There are two main ingredients in the article [27]. The first is an algorithm based
the theory of Harder-Narasimhan filtrations of finite flat group schemes, which starts
from any p-divisible groups over an O as above and produce new ones which are
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more and more tend to be of HN-type, that is semi-stable for formal p-divisible groups
whose special fiber is supersingular, see loc. cit. for the precise definition of p-divisible
groups of HN-type. When the valuation K is discrete, the algorithm stops after finite
times. Passing to the Shimura varieties which give locally the Rapoport-Zink spaces for
GLy/Q, with signature (d,h — d), one can define a Hecke-equivarient stratification of
the underling topological space of these p-adic analytic Shimura varieties by Harder-
Narasimhan polygons. The algorithm stops after finite times over complete discrete
valuation rings means that, the Hecke orbits of the rigid points in the HN-type locus in
each Harder-Narasimhan polygon strata, cover all the rigid points in the strata. For the
basic polygon Pss that is the line between the point (0,0) and (h, d) (d is the dimension
of p-divisible groups in the Rapoport-Zink spaces), the HN-type locus is exactly the
semi-stable locus, and one has the statement as above.

The second main ingredient of [27] is the inequality
HN(H) < Newt(Hy)

between the concave Harder-Narasimhan and Newton polygons, here k is the residue
field of K. The proof of this inequality for the case the valuation of K is discrete is easy,
while for the general case it is quite involved : Fargues has used the notions of Hodge-
Tate modules and Banch-Colmez spaces in p-adic Hodge theory, and in fact one has also
to pose a mild condition on H in this case, which is naturally satisfied when H coming
from a point in Rapoport-Zink spaces. The moduli consequences of this inequality are
that, the basic Newton polygon strata of the p-adic Shimura varieties is contained in
their basic Harder-Narasimhan polygon strata, and the Hecke orbit of the semi-stable
locus in the basic Rapoport-Zink space cover at least all the rigid points.

For the case h and d are co-prime to each other, Fargues can prove that the Hecke
orbit of the semi-stable locus in the basic Rapoport-Zink covers all the space. More
precisely, the main theorem of [27] is the following.

Theorem 2.1.1 (Fargues, [27]). Let M** C M be the semi-stable locus in the basic
p-adic Rapoport-Zink space M = [],., M" for GL,/Q, with signature (d,h — d), and
D = M= M°. Assume (h,d) = 1. Let Il € D* be a uniformizer in J,(Q,) = D*,
where D is the division algebra of invariant % over Q,, such that 11 induces isomorphisms
It M? — ML Then there is a locally finite covering of M

M= U T.II'D.

TeGLh(Zp)\GLh(Qpl)/GLh(Zp)

1=0,...,

For the case d = 1 we recover the cell decomposition of Lubin-Tate space.

The purpose of this section is to prove a similar result of cell decomposition for some
unitary group Rapoport-Zink spaces.

More precisely, let p > 2 be a fixed prime number, Q,2 be the unramified extension of
Q, of degree 2, and G is the quasi-split unitary similitude group defined a n-dimensional
Qp2 hermitian space. The basic formal Rapoport-Zink space M for G with signature
(I,n — 1) is the formal scheme formally locally of finite type over SpfW. A S-valued
point of M for a S eNilpW is given by (H,t, A, p), where H is a p-divisible group
over S, ¢ : Zy, — End(H) is an action of Z,» on H satisfying certain Kottwitz type
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determinant conditions, A : H — HP is a polarization compatible with the action ¢, and
p:Hg — Hgis a quasa isogeny. For more detalls see the following section 2. One has
a decomposition M= 1T M, where M is the locus where the height of the

quasi-isogenies is in.

i1€Z,in oven

The geometry of the reduced special fiber M,..; has been completely described by
Vollaard-Wedhorn in [81]. It turns out each connected component M’ _, admits a Bruhat-
Tits stratification

Zred = H M?&?

AeB(JEer,Qp)0

where B(J@,Q,)° is the set of vertices in the Bruhat-Tits building of the derived
subgroup J&" of J, over Q,, and M9 is a locally closed subscheme. Recall J, is the
inner form of G associated to the local data to define the Rapoport-Zink space, and
when n is odd we have in fact an isomorphism G =~ J,. There is a type function ¢ :

B(Jgr Q,)° — [1,n], which takes values on all the odd integers between 1 and n, and
the fibers of ¢ are exactly the J%"(Q,)-orbits in B(J" Q,)°. Let tya: = n if n is odd
and t,,.. = n — 1 if n is even. Then the irreducible components of Mied are exactly
these My, the schematic closure of MY, with t(A) = ¢4z

Let g1 € J,(Q,) be an element such that it induces isomorphisms g¢; : ./(/l\Z = /(/l\“rl
for n even and g : M? 5 M2 for n odd. The element p~! € J,(Q,) induces always
isomorphisms p~! : M? — M?+2. We fix a choice of g; compatible with p~!. Consider
the connected component for ¢ = 0 and fix a choice of A such that ¢(A) = ¢4, and
let Stab(A) be the stabilizer group of A in J%"(Q,). Let M =[] M be the

associated Berkovich analytic space of M\, and sp : M — M,..q be the specialization
map.

i€Z,in even

Theorem 2.1.2. There is a closed analytic domain C C M, which contains the semi-
stable locus M**, such that if we set

D:=¢C ﬂ 3p71<MA)7
then D is relatively compact. Moreover, we have a locally finite covering of M

M = U T.gD

TeG(Zp)\G(Qp)/G(Zyp)
9EJJ(Qp)/Stab(A)

if n is odd, and

M= U T.g9D
TeG(Zp)\G[()?p)/G(Zp)
.7: bl
9T (Qp)/Stab(A)

if n is even.

Let m : M — F® be the p-adic period mapping (see section 2.2), K C G(Z,)
be an open compact subgroup, Mg be the Rapoport-Zink space with level K and
i : Mg — M be the natural projection, then we have the following corollaries.
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Corollary 2.1.3. We have a locally finite covering of F*
Fr= U g7 (D)

gEJF"(Qp)/Stab(A)
if n s odd, and
F = U g197(D)

j=0,1
geJIe(Qp)/Stab(A)

if n 1s even.

Corollary 2.1.4. We have a locally finite covering of the analytic space M

TeG(Zp)\G(Qp)/K
geJier(Qp)/Stab(A)

if n is odd, and
My = U T.919Dxk
TeG(Zp)\G(Qp)/K
7=0,1
geJer(Qyp)/ Stab(A)

if n 1s even.

Finally we have a corollary for Shimura varieties.

Corollary 2.1.5. Let Shir be as the Shimura variety introduced in section 2.9, g?zjfp be

o~ —an,b . —san
the generic analytic fiber of its p-adic completion Shyr, and Shy, * be the tube in Shyp
over the basic strata ﬁl}&,, which is an open subspace. Let Sh(;;;pr — Sh;:p be the

—~an,b
covering in level K, C G(Z,) (an open compact subgroup), and SthXOK,, be the inverse

—~an,b . . . .
image of Shyp °. Denote C' = CO\M: for each i € Z such that in is even, C' = C° if
n is odd and C" = C°T[C" if n is even, Ci the inverse image of C' in Mk, €y the
image of C}(p under the p-adic uniformization

—~an,bg
I(Q) \ Mg, x G(A})/K? ~ IT Mk /T~ Shy ke

i€I(Q\G(A})/KP
1. Let I' = T'; be one of the above discrete, torsion free, cocompact modulo center

subgroups of Jy(Qp), and T%" =T N J¥*(Q,), Dk, = D;k, be the image of Dy,
under the morphism Mg, — Mk, /T', then we have a covering

My, )T = U T.9Dr,

TeG(Zp)\G(Qp)/Kp
gerder\ jder(Qp) /Stab(A)

if n is odd, and
/\/le/F = U T—Q{QDKP
TGG(Z;}):\gng)/Kp
gerder\Jder (Qp)/ Stab(A)

if no1s even.
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2. Under the above notation, we have a covering

}(p - H U gDiKP

i€I(Q)\G(A])/KP gerder\ Jder (Q,)/ Stab(A)

if n is odd, and

€k, = 1T U 719D,
iEI(Q\G(AR)/KP =01
gel e\ Jder (Qp)/Stab(A)

if n is even. We have a covering

—an,bg
SthXKp — U Tg}l:{p
TeG(Zp)\G(Qp)/Kp

As one has seen, the first difficulty in our unitary group case is that, the geometry
of the reduced special fiber of Rapoport-Zink space is more complicated than that for
the case of GL;,/Q, with signature (d, h — d), since for the case (h,d) = 1 considered
above each connected component of the special fiber is already irreducible, see [78].
This is why we have to take the intersection of C with the tube over a fixed irreducible
component to have a locally finite cell decomposition. The second difficulty is that, the
algorithm above when applied to the PEL type Rapoport-Zink spaces, for example the
unitary group case considered here, is not well compatible with the action of Hecke
correspondences. One has to modify it. This is why the semi-stable locus may be not
enough and we find a closed domain C D M?*%.

On the other hand, the inequality
HN(H,1,\) < Newt(Hyg,t,\)

between the Harder-Narasimhan and Newton polygons for p-divisible groups with addi-
tional structures still holds. In fact this can be easily deduced from Fargues’s inequality
HN(H) < Newt(Hy), since the former polygons are just defined respectively by nor-
malization of the later polygons.

The general strategy to prove the above theorem, is that using the modified algorithm
and the above inequality to deduce first the equalities in the theorem hold for rigid
points. For the rest points, by the equivalence of suitable categories between Berkovich
spaces and rigid analytic spaces, it suffices to prove these coverings are locally finite,
thus admissible. This last argument is different from that in [27] section 16.

In our unitary case, we have in fact that the underling topological space of D is
locally compact, like the case of Lubin-Tate space. These two facts both come from
the special phenomenon that, all the non basic Newton polygon has contacted points
with the Hodge polygon, and thus one can deduce the Harder-Narasimhan polygon
stratification and the Newton polygon stratification of the associated p-adic Shimura
varieties coincide.

At this point we should note that, the Rapoport-Zink spaces for GSpy is quite similar
with our unitary case. See [54] section 4 for a similar geometric description of the reduced
special fiber. And the two non basic Newton polygons have contacted points with the
Hodge polygon. In particular our method here will enable us to prove an analogue result
of cell decomposition for the basic p-adic GSps Rapoport-Zink spaces.
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2.2 The unitary group Rapoport-Zink spaces and Hecke action

We consider here a special case of PEL type Rapoport-Zink spaces.

Let p > 2 be a fixed prime number. Let Q,2 be the unramified extension of Q, of
degree 2 and denote by * the nontrivial Galois automorphism of Q2 over Q. Let V' be
a finite dimensional Q,2-vector space with dimg ,(V) =n. Let (,) : V xV — Q, be a
Qp-valued skew-hermitian form, and G be the associated reductive group, i.e.,

G(R)={g € GLQPQ®R(VR)|EIC € R*: (g, gw) = c(v,w),Yv,w € Vg :=V @ R}

for all Q,-algebra R. We remark that there exists a unique skew-hermitian form (,)’ :
V x V' — Qg such that (,) = Trq,/q, © (,)". Moreover, if § € Q, with 0* = —4, then
(,) :=d(,)" is a hermitian form, and G is just the unitary similitude group GU(V; (,))
of the hermitian space (V. (,)). Let Z,2 be the ring of integers of Q,2. We assume that
there exists a Z,-lattice A such that (,) induces a perfect Z,-pairing on A. This implies
that G is unramified over QQ, and has a reductive model over Z,.

Let @p be an algebraic closure of QQ,. Then there is a canonical imbedding
Gg, C (Resg ,/0,GLa,(V))g, = GL(V @q .0 Q) X GL(V &g, . Q,),
and we have an isomorphism

G@p ~ GL(V ®Qp2,id @p) X Gm

Via this isomorphism, we fix a G(Q,)-conjugate class of cocharacter

I Gm@p — G@p
2z (diag(z,...,2,1),2).

Let L = W(F,)q, o be the Frobenius relative the field extension L/Q,. Consider the set
B(G) = G(L)/ ~ of o-conjugate classes in G(L), and the Kottwitz set B(G, 1) C B(G)
(|52]). In our special case we can have an explicit description of the set B(G, i) as a set
of polygons, see [10] 3.1. We consider the basic element b = by € B(G, 1), and let J, be
the reductive group of automorphisms of the unitary isocrystal (V7,,bo, ¢, (,)), which is
then an inner form of G over Q,.

Associated to the above data (Qp2,*, V., (,),b, 1), we have the Rapoport-Zink space

M which is a formal scheme locally formally of finite type over SpfOy. It is a moduli
space of p-divisible groups with additional structures of the following type : for each S €
NilpOp, M(S) = {(H,t,\,p)}/ ~, where

— H is a p-divisible group over 5';

~ t:Zy — End(H) is an action of Z,2 on H satisfying locally

Lie(H) = Lie(H)o @ Lie(H),rankogLie(H)y = 1, ranko Lie(H); =n — 1
where

Lie(H)y = {z € Lie(H)|«(a)x = ax}, Lie(H), = {x € Lie(H)|(a)x = a*z};
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~ X: H — HP is a principal Z,2-linear polarization, here H” is the dual p-divisible
group endowed with the Z,2-action tyyn(a) = (v(a*))?;
— p: Hg — Hg is a quasi-isogeny, such that p” o Ao p is a Q, -multiple of A, here
g =S ®Zp2 FPQ 3
— (Hi, 01, M, p1) = (Ha, L2, Mg, pa) if there exists a Z,2-linear isomorphism o : Hy —
H, such that p, = pjoa,a” o Myoaisa Z;—multiple of A.
We call such a p-divisible group with additional structures H = (H,t,\) a unitary
p-divisible group. For such a unitary p-divisible group H, we have

rankogLie(H) = n, height(H) = 2n.
The height of p is a multiple of n by [80] 1.7 or [15] and we obtain a decomposition

M= [

1EL

where M is the open and closed formal subscheme of M where p has height in. More-
over, we have in fact

M # () & inis even,

and in this case there is an isomorphism M = MO induced the action of Jp(Q,), see
[80] or the section 2.6 below.

The standard p-divisible group H = (H, ¢, A) is definable over F,.. We let
(M,F,V,M =M, ® My, (,))

denote its covariant Diéudonne module over W (F,2) = Z,2, where (,) : M x M — Z,»
is a perfect alternating Z,.-bilinear pairing satisfying

(Fz,y) = (z, Vy)?, (az,y) = (z,a"y)

for all x,y € M, a € Z,, here 0 = * is the Frobenius on W (F,2) = Z,2 ; the decomposi-
tion M = Mg @ M; is induced by the decomposition Z,2 @z, W (F,2) >~ W (F,2) x W (F,2)
and the Z:-action on M. The F and V are homogeneous of degree 1 with respect to
the above decomposition and My and M; are totally isotropic with respect to (,). The
signature condition on the Lie algebra then imply

dim]pp2 (Mo/VMl) = 17 dim]Fp2 (Ml/VMo) =n—1.

We denote by (N,F) = (M,F) ® Q.2 the isocrystal of H. We can assume that H is
superspecial and that the isocystal (N, F) is generated by the elements z such that
F2x = pz, see [81]. As F? is Qp2-linear, we have F? = pidn and therefore F = V. For
i =1,2,let N; = M; ®Q,2, then N = Ny @ N; and with respect to this decomposition F
is of degree 1. We fix an element § € ZZQ such that 6* = —¢ and define a nondegenerate
hermitian form on the Q,2-vector space Ny by

{z,y} = 0(z,Fy).

Recall the reductive group J, over Q, defined by the automorphisms of the unitary
isocrystal (N,F,IN = Ny @& Ny, (,)), which is an inner form of G. We have then an



2.2 - The unitary group Rapoport-Zink spaces and Hecke action 67

isomorphism of .J, with the unitary similitude group GU(Ny, {, }) of the hermitian space
(No,{,}). Thus for n odd, we have in fact an isomorphism

G = Jy;

while for n even, J, is the non quasi-split inner form of G.

We now describe the group actions on the Rapoport-Zink space M. First, we have
a left action of J,(Q,) on M : Vg € J,(Q,),

g:./T/l\—%/T/l\
(H, e, p) = (H,1,\,pog™),

since J, can be viewed as the group of self quasi-isogenies of (H, ¢, A).

To consider the action of G(Q,) on M , we would rather to consider the associated
Berkovich analytic space M = M of M. As always, by trivializing the Tate module of
the universal p-divisible group over M, we can define a tower of Berkovich analytic spaces
(Mk)kca,)- These spaces are separated smooth good Berkovich analytic spaces over
L. A point & € M is given by (H, 1, \, p,nK), where np : V= V,,(H) is the rigidification
isomorphism such that n(A) = 7,(H). Then J,(Q,) also acts on each space M in the
natural way. Moreover, G(Q,) acts on this tower : for g € G(Q,) and K C G(Z,) such
that ¢ ' K¢ C G(Z,), we have an isomorphism

g: MK — Mg_lKg7

(H,t,\, p,nK) — (H',/,N,p'.,n' (97" Kg)),

here (H',/,N,p',n') is defined as following. Assume first g=' € M,,(Z,2). Then A D
g *(A). Since n(A) = T,(H) for the rigidification n, n(A/g~*(A)) defines a finite flat
subgroup of H. We take H' := H/n(A/g'(A)) with the naturally induced additional
structures (', \') on H', and p’ = w(modp) o p for the natural projection 7 : H — H'.
Finally there is a rigidification ¥ =nog:V — V,(H’) such that the following diagram
commutes :

V —=V,(H)

.
V—LV,(H).

For the general case, one can always find an integer r € Z such that p"g~' € M, (Z,2),
then we can define (H”, /", N\, p",n") as above for p~"g. We set H' = H" J/ = /"N =

—r M

Noph=pp" 0" =1

For any open compact subgroups K’ C K C G(Z,), we denote mg/ ¢ : Mg —
My the natural projection of forgetting levels, which is a finite étale morphism of

degree K/K'. In particular, for K C G(Z,) fixed, each g € G(Z,) defines a Hecke
correspondence on M by the following diagram :

g9
MgKgflﬁK ﬁg MngflKg

7rgKg_lﬁ/ TKng—1Kg,K

.MK MK;
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and this Hecke correspondence depends only on the double coset KgK . Thus we get an
“action" of K\ G(Q,)/K on M, which commutes with the (left) action of J,(Q,).

Definition 2.2.1. Let K C G(Z,) be an open compact subgroup. For any subset A C
M| of the underling topological space | M|, and any Hecke correspondence T defined
by a coset KgK as above, we define the image of A under T by the set

_ -1
T.A= 7TKﬂg*17<g,K97TgKgf1mK,K(A)-

We call the set
Hecke(A) == U T.A
TeK\G(Qp)/K
the Hecke orbit of A.

Remark 2.2.2. 1. By the above, the Hecke action of G(Q,) on the tower
(MK)kca,) is in fact a right action. So maybe we should better write the image
of A under T as A.T. On the other hand, there is in general no composition law
for the action of Hecke correspondences on My, since the product (in the usual
way) of double cosets KgK - KhK is in general not a single double coset. There-
fore, we will write T on the left as T. A, and for two Hecke correspondences Ty, T3,
T.(T1.A) should always be understood as the image of Ty.A under T;.

2. More precisely, we have

KhoK.(KhiK.A) = U KhK.A,
KhKCKhi Kha K
where the right hand side is the finite union over all the double cosets in KhiKhoK .
In particular, A C KhK.(Kh™'K.A) and Hecke(A) = Hecke(T.A) for any T €
K\G(Q)/K.
3. Note that if A is an analytic domain, then so is T.A for any T € K\ G(Q,)/K.

In the following we will mainly focus on the Hecke action on the space M. We would
like to describe the images of a point € M under the action of G(Z,) \ G(Q,)/G(Z,)
on M explicitly. To this end we first recall the Cartan decomposition to describe the
set G(Z,) \ G(Q,)/G(Z,) explicitly. Let A C G be a maximal QQ,-split torus such that

dy
AQ,) =1 |did;, = dad;, = -+ = constant € Q' }.
dn
Then the cocharacter group
X.(A) =A{(as,-- ,a,) € Z"|ay + a, = as + a,_1 = - -~ = constant € Z},

and we denote the dominant coweights by
Xo(A)y =A{(ar,--+ ,an) € Xu(A)ar = -+ = an}.
The Cartan decomposition says that the following map is a bijection :
Xi(A)y — G(Zy) \ G(Q)/G(Zy)

™
(a1, an) = G(Zp) G(Zy).
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A point € M corresponds to a tuple (H/Og =), t, A, p), as an element of M(K) =

—

M(Ok). For

T = G(Z,) G(Zy) € G(Zp) \ G(Qy)/G(Zy),
pan

we now give a moduli description of the finite set T.x. First assume a; < 0. By the
definition of the Hecke correspondence T', we have

T.x ={y € M|(Hy,ty, Ny, py) Q044 Ok ~ (H/Gy, /', X, 7o p),
where G, C H is a finite flat subgroup scheme, such that its
geometric generic fiber Gz =~ Zy2 [p™ " L2 © - - © Ly2 [p~ " L2,
¢/, Nare the naturally induced additional structures,

7 Hoy jpore — (H/Gy)ox jpox 1s the natural projection.}

For the general T', note the action of an element z € Q) C G(Q,), is the same as the
action of z € Q) C J,(Q,), see [66] lemma 5.36. Since

T.x=p"(p~“T).z,

here the first scalar p* is considered as an element of G(Q,), we have the description
of the set (p~*T).z as in the above way. Then we consider p* as an element of J,(Q,)
which just changes the quasi-isogeny. So we can describe the set T.x explicitly in all
cases.

We examine the effect of the group actions on connected components. First recall
Rapoport-Zink (cf. [66],3.52) have defined generally a locally constant mapping

%:/T/l\—>A,

where A = Homgz(X§ (G),Z) and Xg (G) is the group of Q,-rational characters of G.
This mapping satisfies that

x#(gx) = wy(g) + (z)

for all ¢ € J,(Q,),z € M. Here wy : Jy(Q,) — A is defined by < wy(x),x >=
up(i(x)(x)) where i : Xz (G) — X§ (Jy) is the natural morphism between the two
groups of Q,-rational characters. In our unitary group case, the similitude morphism
¢ : G — (G, defines the identification A = 7Z. The mapping

%:./\//\l—>Z

(H, 1, A\, p) — —hi.
n
The image of s is then Z if n is even, and 2Z if n is odd. In section 2.7 we will review
the geometry of the reduced special fiber M, of M. In particular we find MY, is
connected and WO(M\) = emsz. Since one has the equalities of the sets of connected
components

—~

7T0<M) = WO(Mred) = 7T0(M) = 7T0(M X (Cp),
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thus each analytic space M? for i € Z such that in is even is connected, which is in fact
geometrically connected, cf. [15] lemme 5.1.2.1.

Let D = G/G%" = J,/J@" be the co-center group. More explicitly, we have
D= {(ac,c) € (RGSQP2\Qme) X Gm|NQp2|Qp(x) = Cn}ﬂ

where Ng ,|q, : Rtesg,10,Gm — G is the norm morphism. We have the determinant
morphisms

det .G — D
g = (detg,(9), c(9)),

and similarly for det : J, — D. In her doctoral thesis [15], Chen has associated to
the torus D and the cocharacter detfi (i is a variant of u), a tower of analytic spaces
(M(D, detfi) k) kcp(z,) with mappings »p; : M(D, detfi)x — A. The geometric points
are M(D, detji)x(L) = D(Q,)/K. By construction there is an action of D(Q,) x D(Q,)
on each space (M(D,detfi)k) such that on geometric points the action is just the left

multiplication :
(a,b).xK = abzK, V(a,b) € D(Q,) x D(Q,), zK € D(Q,)/K.

Moreover, via the morphism (det, det) : G(Q,) x J,(Q,) — D(Q,) x D(Q,), she has
constructed a G(Q,) x J,(Q,)-equivariant determinant morphism of towers of analytic
spaces

(MK)K — (M(Dadet /l)detK)detK

for K varies as open compact subgroup of G(Z,), which is compatible with the map-
pings s and sp ;. The main results of loc. cit. imply that the geometric fibers of the
determinant morphism

MK — M(D, det ,&/)detK
are exactly the geometric connected components of M.

For the case we are interested, K = G(Z,), detK = D(Z,), the set of geometric
components of M is the same with the set of its connected components, which is in

bijection with M(D, i)(L) = D(Q,)/D(Z,). Via the mappings s and s ; they are in
turn bijection with ims = tmsep ;, which is thus Z if n is even, and 2Z if n is odd.
Now the effect of the actions of G(Q,) and J,(Q,) on the connected components of M
translates on the last set is as following. First for g € J,(Q,), we have w;(g) = v,(c(g))
and

g: MO =5 AMueel),
For

T =G(Z,) G(Zy) € G(Zy) \ G(Qy)/G(Zy),

and
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We have

T.M° € Mol
and in fact this is an equality T7.M° = M=) Let G = {g € G(Q,)|c(g) € 7y}, Uy =
{9 € G(Qp)|c(g) = 1}, then G*"(Q,) C U, C G, and the Hecke correspondences
associated to elements in G stablize M.

We consider the p-adic period mapping
T M= F*CFCF,

where F = (Gp,/P,)® ~ P19 is the p-adic projective space over L = W (F,)q, F*°
is the weakly admissible locus and F* is the image of 7, see [38] for some discussion of
these objects. We recall the definition of 7 in the following. The universal quasi-isogeny
p induces an isomorphism

Vi, Koy, Opm =~ LieE(H)an,

here E(#) is the universal vector extension of Hy; over M, M C M is the closed
subscheme defined by p. For a p-divisible group H/Ok, recall we have the exact sequence

0 = wyp x — LieE(H)x — Lie(H)x — 0.
If (H,¢, A, p) is associated to a point x € M, then p induces an isomorphism
ps : M®@ K = LieE(H)g,

where K = H(z) is the complete residue field associated to z, the filtration p, *(wgp x) C
Vik = M ® K defines a point is the Grassmannin F = (G,/P,)"" ~ P" 1" this is
the image m(x) of x € M. There is an action of J,(Q,) on F* and the mapping 7 is
Jp(Qyp)-equivariant. In fact 7 is G(Q,)-invariant for the Hecke action on M, see the
following proposition 2.2.3. Under the p-adic period mapping 7 : M — F*, we have
m(M?) = F* for each i € Z such that in is even, and F* is connected, cf. [I5] lemme
5.1.1.1.

When 2z € M is a rigid point, i.e. K is a finite extension of L thus in par-
ticular discrete with perfect residue field F,, we have the unitary filtered isocrystal
(Vi,bo, Fil*Vi, 1, (,)) associated to (H,t, A, p). Here the filtration on Vi is defined by

Fil 'V = Vi, Fil’Vk = p, ' (wyo k), Fil'Vi = 0, Vi # —1,0.

The filtered isocrystal (Vy,bo, Fil*Vi, ¢, (,)) determines the isogeny class of (H, ¢, \, p).
We have the following description of the Hecke orbit of a point x € M.

Proposition 2.2.3. The Hecke orbit of a point x € M is ezactly the fiber 7= (n(z)) of
its image under the p-adic period mapping .

Proof. Let x,y € M be two points, and (H1/O(z), t1, A1, p1), (Ha /Oy, L2, A2, p2) be
the unitary p-divisible groups associated to x and y respectively. Then z,y in the same
Hecke orbit if and only if there exists a finite extension K of both D H(z) and H(y),
and a (unique) quasi-isogeny ¢ : Hy — Hj over O lifting

—1

-1, P P2
P20 P - HlOK/pOK ‘! HOK/pOK } HQOK/pOK‘
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Then since

be the value on W(F,) — F, of the covariant cystal D(H).

—F,
SpecOy [pOx———s SpecOf

l l

SpecF,~——— SpecW (F,)

is a PD-morphism, we have

DH ® Ok /pOk) ok -0k jpox = DH) 0k -0k /pox = M ® Ok.
The quasi-isogenies p1, p2 then induce isomorphisms
pix - M@K = LieE(H;)g,i=1,2.
The images of x,y under the p-adic period mapping 7 : M — F° by definition are

pil(Filg,) == Fil, CM® K,i = 1,2.
p2 o pi* can be lifted to a quasi-isogeny psop;t : H; — Hy, by the theory of
Grothendieck-Messing, if and only if the homomorphism

_ 1, ~ 1

D(pZ © Py 1>0KH*OK/I)OK : D(Hl)OKﬁ*OK/pOK[E] — D(HQ)OKﬁOK/pOK[];]

send the Hodge filtration Fily, to F'ily,. But this is equivalent to say Fil; = Fils, i.e.
m(x) = 7(y). Thus the proposition holds.

]

Thus a point y € M is in the Hecke orbit of x € M, if and only if there exist a
finite extension K of both H(z) and H,, and an unique quasi-isogeny H, — H, over
O lifting the quasi-isogeny p, 0 p, ' over Ok /pOg. Note the last condition is equivalent
to there exists an isogeny H, — H,. If z € M"™ is a rigid point, then one find easily
that its Hecke orbit consist all of rigid points, i.e. Hecke(x) C M™. In this case the
Hecke orbit is determined by the filtered isocrystal (Vz, bo, Fil}, ) Vi, ¢, (,)).

For a geometric point 7 € M(K), K = K, the geometric fiber 77!(7(Z)) is then
bijective to the set of cosets G(Q,)/G(Z,), see [66] proposition 5.37. By [18] and [I5],
m: M — F?is an étale covering map in the sense that, Vy € F%, there exists an open
neighborhood U C F* such that 7! () is a disjoint union of spaces V;, each restriction
map 7y, : V; — U is finite étale. In particular, the Hecke orbit 7~ !(w(z)) is a discrete
subspace of M. Thus it makes sense to talk “fundamental domain” for the Hecke action
of G(Q,) on M. In the following section, we will consider the action of G(Q,) x J,(Q,)
on M and find some “fundamental domain” for this action.

We explain how is the Hecke action of G(Q,) on a Hecke orbit 7= *(m(z)). We first
look at the geometric Hecke orbits. Fix a geometric pint Z over x and denote their images
under the © by ¥ and y respectively, let m(F*, 7) be the étale fundamental group of
F* defined by de Jong in [I8]. Then by definition there is an action of 71 (F*,7) on the
geometric Hecke orbit m71(7). Let us fix a point in this orbit, say Z, then we have an
identification 7 !(y) = G(Q,)/G(Z,). Thus m (F*,7) acts on G(Q,)/G(Z,). On this
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set G(Q,)/G(Z,) we have two other group actions, namely the group G(Q,) and the
Galois group Gal(H(y)/H(y)). The relation between these actions is as follow. Recall
the Z,-local system 7T defined by the universal étable unitary p-divisible group on the
p-adic analytic space M, it descends to a Q,-local system on F*, which we still denote
by T. Since F* is connected, by de Jong [18] theorem 4.2. we have the equivalence of
categories

@p — £cha = Repr (77-1 (faay»
E— &

by the monodromy representation functor. Here Q, — Locx is the category of Q,-local
systems over a Berkovich space X introduced in loc. cit. definition 4.1. One can trans-
late the above equivalence to the case with additional structures by using Tannakian
language. In particular the @Q,-local system 7 over F* defines a representation of the
fundamental group :

p:m(F7) = G(Q,).
Then the above action of m(F*,7) on G(Q,)/G(Z,) is compatible with the natural
action of G(Q,) on the quotient set, through the morphism p. On the other hand, there
is the natural action of the Galois group Gal(#(y)/H(y)) on the geometric Hecke orbit
7~ 1(¥), and the quotient set is the Hecke orbit of z

m i (m(2) =7 (y) = 7 (7)/Gal(H(y) /H(y))-

The point y in F* defines a morphism of fundamental groups

m(y,7) = Gal(H(y)/H(y)) = m(F*,7),

and the action of Gal(H(y)/H(y)) and 71 (F?,7) is compatible on 7~ !(7) through the

above morphism. Thus the three group m;(F*,7), G(Q,) and Gal(H(y)/H(y)) act com-
patibly on G(Q,)/G(Z,) via the morphisms

Gal(H(y)/H(y)) = m(F*,7) = G(Q,).

Here although we will not need it in the following, we remark that the monodromy
representations of geometric fundamental groups m (M x C,,7) and m(F* x C,,7)
factor through G%"(Z,) and G%"(Q,) respectively :

(M x C,,T) — G'(Z,)
T (F® x Cp, 7) — G(Q,).

Moreover these monodromy representations are maximal in the sense that both images
are dense in the targets respectively, cf. [I5] théoréme 5.1.2.1. Let ' be the image of the
later. Note that 7 (F* x C,, ) also acts on G(Q,)/G(Z,) compatibly with the action of
G(Q,). By de Jong’s description of M in term of lattice in the Q,-local system 7 over
F?, one have the bijection

mo(M) =T\ G(Qy)/G(Zyp).

The action of the Hecke correspondences on the geometric orbit is then quite easy :
with the fixed point T in 7~!(g) and the identification 77!(y) = G(Q,)/G(Z,), a corre-
spondence G(Z,)gG(Z,) sends a coset hG(Z,) to the set of cosets {W'G(Z,)| W G(Z,) C
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G(Z,)ghG(Z,)}. Thus the Hecke action is compatible with the natural action of
G(Q,) on G(Q,)/G(Z,), and thus compatible with the action of the Galois group

Gal(H(y)/H(y)). The Hecke action on 71 (y)/Gal(H(y)/H(y)) then induces the Hecke

action on the orbit 7 !(7(x)).

2.3 Harder-Narasimhan filtration of finite flat group schemes II

In order to study the Rapoport-Zink space M, from this subsection to the end of
subsection 2.5, we will turn to the study of finite flat group schemes and p-divisible
groups over complete valuation rings following the ideas in [26] and [27]. In this subsec-
tion we recall some further propositions in the theory of Harder-Narasimhan filtration
of finite flat group schemes which we will need.

Let the notations be as in subsection 1.2. We recall some useful facts.

Proposition 2.3.1 (|26], Corollaire 6). For u € [0, 1] fized, the category of semi-stable
finite flat group schemes of slope p and the trivial group 0 is a sub abelian category of
the category of fppf sheaves over SpecOk.

Proposition 2.3.2 ([20], Corollaire 7). For a semi-stable group G, the kernel of multi-
plication by p" is flat and semi-stable of slope u(G[p"]) = w(G). If p"G # 0 then p"G is
also semi-stable of slope u(p"G) = u(QG).

Finally we have the semi-continuity of the function HN for a family of finite flat
group schemes.

Theorem 2.3.3 ([26], Théoréme 3). Let K|Q, be a complete discrete valuation field
extension, and X be a formal scheme of formally locally of finite type over SpfOk. Let G
be a locally free finite group scheme over X of constant height h = ht(G). Then the map
x — HN(G,) from the underling topological space of the associated Berkovich analytic
space X to the space of Harder-Narasimhan polygons is continuous. Moreover, it is
semi-continuous for the G-topology on X defined by analytic domains in the following
sense. If P : [0,h] — R is a fized polygon such that the abscissas its break points are
integers. Then

{zr € [X"[[HN(G.) = P}

15 a closed analytic domain in X", whose associated rigid space is an admissible open
in X™. In particular if the degree function x — degG, is constant on X, then the
semi-stable locus

{z € |X™|| G, is semi-stable}

s a closed analytic domain of X",

2.4 Harder-Narasimhan polygon of p-divisible groups

One can then use the theory of Harder-Narasimhan filtration of finite flat group
schemes to study p-divisible groups, p-adic analytic Rapoport-Zink spaces and Shimura
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varieties. Let H/Opg be a p-divisible group of dimension d and height h, where Ok as
above. Then for any n > 1, we have a function H N (H[p"]). We normalize it as a function

%HN(H[JD”])(”') :0,h] — [0,d]

T %HN(H[p”])(nx).

In |27], Fargues proved as n — oo these functions uniformly convergent to a continue
function, which we call the (normalized) Harder-Narasimhan polygon of H

HN(H) : [0, 1] — [0,d],

and in fact )
HN(H)(x) = inf —HN(H[p"])(nz)

n>1ln

for all x € [0, h]. Moreover, this function is invariant when H varies in its isogeny class :
HN(H) = HN(H') for any p-divisible group H’ isogenous to H. A not evident fact is
that HN(H) is in fact the polygon attached to a Harder-Narasimhan type filtration of
the rational Hodge-Tate module, so it is really a polygon! In the case the valuation on
K is discrete, then it is the Harder-Narasimhan polygon of the crystalline representation
defined by the rational Tate module V,,(H) for suitably defined slope function, which in
turn can also be formulated in the associated admissible filtered isocrystals, see section
1.4 and [27] sections 8, 10.

As mentioned in the introduction, one of the main results in [27] is the following
inequality between the Harder-Narasimhan and Newton polygons (see Theorem 1.3.5)

HN(H) < Newt(Hy).

In fact when the base valuation ring Ok is not necessary discrete, one has to assume H
is “modular” in the sense of définition 25 in loc. cit., see also definition 1.5.6, which is
naturally satisfied for p-divisible groups coming from points in the Berkovich analytic
Rapoport-Zink spaces. The proof of the above theorem for p-divisible groups over com-
plete rank one discrete valuation Ok|Z, with perfect residue field is easy. It comes from
the fact that the reduction functor between the two categories of p-divisible groups up
to isogenies
pdivp, ® Q — pdiv, ® Q

is exact and preserving the height and dimension functions. One can also rewrite these
polygons in terms of the associated filtered isocystal and explain the inequality by
the theory of filtered isocystals. For the non-discrete case, Fargues has used heavily p-
adic Hodge theory and studied the Harder-Narasimhan filtration of the Banach-Colmez
spaces. For more details see section 10, 11 of [27].

In the section 1.3 we have introduced Harder-Narasimhan polygons for p-divisible
groups with additional structures, which include our unitary p-divisible groups in section
2.2 as a special case. Let F'|Q, be a finite unramified extension of degree d, (H, ¢, \) (resp.
(H,t)) be a p-divisible group with PEL (resp. EL) additional structures for F'|Q, over
a complete rank one valuation ring Og|Z,. Recall we define the Harder-Narasimhan
polygon of (H,t, \) (resp. (H,¢))) as the normalization of HN(H)

1

HN(H,u,\)(resp. (H, 1)) = EHN(H)(d')



76 CELL DECOMPOSITION OF SOME UNITARY GROUP RAPOPORT-ZINK SPACES

as a function [0, htH/d| — [0,dimH /d], which we will also identify with its graph as a
polygon in [0, htH/d] x [0, dimH/d]. Under the above notations, and when Of is not of
discrete valuation we assume in addition that A is modular in the sense of definition 25
in [25], recall we have the basic inequality (see Proposition 1.3.6)

HN(H,t,\) < Newt(Hy,t, \).

Similarly conclusion holds for the EL case.

Finally we have also the semi-continuity of the function HN for a family of p-
divisible groups. Fix a finite unramified extension F|Q, of degree d, and we consider
p-divisible groups with additional structures for F'|Q,. The following proposition can be
deduced directly from the case without additional structures, see [27] proposition 4. To
fix notations we just state it for the PEL cases.

Proposition 2.4.1. Let K|Q, be a complete discrete valuation field, and X be a for-
mal scheme locally formally of finite type over SpfOy. Let (H,t,\) be a p-divisible

group with additional structures over X of dimension ¢ and height dn constant.

2
Then the normalized Harder-Narasimhan function on the underlying topological space
of X is semi-continuous : if P : [0,n] — [0,n/2] is a concave function such that

P(0) =0,P(n) =n/2, then the subset
{z € |X*||HN(Hg,t,\) > P}

1s closed.

In particular, with the above notation this proposition permit us to define a strat-
ification of the underlying topological space of X. More precisely let Poly denotes the
set of concave polygons starting from the point (0,0) to the point (n,n/2), such that
the abscissas of its break points are integers. Then we have a stratification by Harder-
Narasimhan polygons

X — H XHNZP’

PePoly

where

XUN=P — {4 € |X||HN(H,, 1, \) = P}

which is a locally closed subset of X by proposition 2.4.1. On the other hand there is a
stratification by Newton polygons

X = H AX'Newt:P7

‘PePoly

where
XNewt=P _ {1 ¢ | X||Newt(H,p(z), L, A) = P} = sp~ L (X Newt=P)

red

which is a locally closed analytic domain of X. Here k(x) is the residue field of the
complete valuation Oy ) associated to x, X4 is the reduced special fiber of the formal
scheme X, XNew'=P is the Newton polygon strata of X,.q for the polygon P, and sp :
X — X,q is the specialization map, which is anti-continuous in the sense that sp=!(Y)
is an open (resp. a closed) subset of X if Y is a Zariski closed (resp. open) subset of X,..q.
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Let P,, €Poly denote the line of slope % between (0,0) and (n, §). Then proposition 1.3.6
tells us we have the inclusion

AX'Newt:P55 C XHN:'PSS

Now we look at the unitary Rapoport-Zink space M introduced in section 2.2. Since
it is basic, we have

M — MNewt:Pss

Thus there is just one Harder-Narasimhan strata, i.e. the whole space
M _ MHN:PSS‘

In section 2.9 we will look at the Harder-Narasimhan stratification for some unitary
p-adic Shimura varieties.

2.5 An algorithm for p-divisible groups with additional struc-
tures

In |27], Fargues introduced an algorithm for p-divisible groups over complete valua-
tion rings of rank one which is an extension of Z,, to produce p-divisible groups more
close to those of HN-type, see loc. cit. for the definition of p-divisible groups of HN-
type. For the case which we are interested, it suffices to consider the formal p-divisible
groups with special fibers supersingular and semi-stable p-divisible groups. Let K|Q, be
a complete field extension for a rank one valuation, and O be its ring of integer. Let H
be a p-divisible group over Og. Recall the following definition of Fargues (|27], lemme
2, définition 4) :

Definition 2.5.1. H is called semi-stable if it satisfies one of the following three equiv-
alent conditions :

— Hlp| is semi-stable ;

— for alln > 1, H[p"] is semi-stable ;

— fzr all finite flat subgroup scheme G C H, pu(G) < py = 42 (= ((H[p"]), Vn >
1).

For a finite flat group scheme G over Ok, let fi,4.(G) be the maximal slope of the
Harder-Narasimhan polygon HN(G) of G, then it is semi-stable if and only if fi14.(G) =
fte. Thus for the p-divisible group H, it is semi-stable if and only if one of the following
two another conditions holds :

~ Pmaz(H[p]) = p1m;

— for all n > 1, e (H[p"]) = p.

For the p-divisible group H over O, for all k£ > 1, we set

G = the first scran of the Harder-Narasimhan filtration of H[p"].
Then one has for all ¢ > 57 > 1

Gy =Gilp'] C Gi,p' ™G C Gy,
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see [27] lemme 3 and the remark below there. In particular, the slopes p(Gy) =
tmaz(H[p*]) do not change when k > 1 varies. We denote fimaz(H) = fmaz(H[p"]
for any k£ > 1, and one can find that

fimaa(H) = sup{p(G)|G € H} = sup{p(G)|G C H]p]}.

We have thus always e (H) > pg, and the equality holds if and only if H is semi-
stable.

We set
Fy = hg”l Gy C H,
k>1
considered as a sub-fppf sheaf of H. Then we have for all k > 1, Fy[p*] = G}, is a finite
flat group scheme over Ok, and Fy = H if and only if H is semi-stable.

Suppose H is not semi-stable. Then lemme 4 of loc. cit. tells us there are two possi-
bilities :

— Fp is a finite flat group scheme over O, that is there exists some ky > 1 such

that .FH = .FH[pkO] 5

— there exists some integer kg > 1 such that Fp/Fg[p] is a semi-stable sub-p-

divisible group of H/Fy[p*] with iz, /z, (ko) = Hmae(H) > pi -

As said above, we will only be interested in formal p-divisible groups over Ok, such
that their special fibers are supersingular. We call such a formal p-divisible group basic.
From now on we will suppose that H is a basic modular (see definition 1.5.6) p-divisible
group over Og. Then we have only the first possibility for Fp, i.e. it is a finite flat
subgroup scheme of H. This comes from the facts HN(H) < Newt(Hy) thus both of
them are the line between (0,0) and (h, d), and one can read off the Harder-Narasimhan
polygon of H from the algorithm below.

The algorithm of Fargues for such a p-divisible group H, defines a sequence of p-
divisible groups (H;);>1 by induction, with an isogeny ¢; : H; — H,y for each i > 1.
For i =1, we set Hy = H, and if H; # 0, we set

Hi+1 = HZ/‘FHN

and ¢; : H; — H;,, is the natural projection; if H; = 0 we set H;y; = 0 and ¢; the
trivial morphism. Then by construction,

,umax(Hi—i-l) < Hma:c(Hi> = M(FHZ)

if Hiy1 # 0. Note upy = pp,,, < timae(Hit1) if Hipq # 0. The section 8 of [27] tells us
that if the valuation on K is discrete, then the algorithm stops after finite times, i.e.
H; = 0 for i large enough. For the general valuation case, the main theorem of loc. cit.
says if (dimH,htH) = 1, then H; =0 for i >> 0.

Until the end paragraph of this section we assume the valuation on K is discrete.
Then by the above discussion, for a basic formal p-divisible group H over Ok, if it is
not semi-stable, we have a sequence of p-divisible groups with each arrow between them
an isogeny :

@
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with Hy,---, H, not semi-stable and H,,; semi-stable of slope u = %, and for each

i=1,---,r, the kernel of the isogeny ker(¢;) is the first scran of the Harder-Narasimhan
filtration of H;[p™] for some n; >> 0. There exists some N >> 0 such that the kernel
ker¢ of the composition of these isogenies ¢ is contained in H[p"]. By construction,
ker¢ is in fact a scran in the Harder-Narasimhan filtration of H[p"] and these kerg;’s
are exactly the sub-quotient factors of the Harder-Narasimhan filtration of ker¢. If we
denote p; = p(kerg;), then

M1 > g > s >y >

Now we consider p-divisible groups with additional structures. First, the above con-
struction works totally in the EL case, that is p-divisible groups with actions of the
integer ring Op of some finite unramified extension F'|Q,, since the Harder-Narasimhan
filtration is of Op-invariant, cf. subsection 1.2. Next, we consider PEL cases, that is a
p-divisible group H over Og, with action ¢ : O — End(H) of the integer ring Op of
some finite unramified extension F'|Q,, and a polarization A : H — HP” | such that ¢ and
A are compatible in the sense of definition 2.4.2. In particular, we can apply the unitary
p-divisible groups studied above to this situation. So let (H,¢, A) be a p-divisible group
with (PEL) additional structures, such that H is basic. Assume H is not semi-stable,
then we have a sequence of Op-linear isogenies of p-divisible groups with actions of Op :

¢
H =1, o1 H, $2__ ¢r Hyoo,
with Hy,--- | H, not semi-stable and H,,; semi-stable of slope y = %, and there exists

some N >> 0 such that E := ker¢ C H[p"| and E ¢ H[p"~!]. Then E is a scran in
the Harder-Narasimhan filtration of H[p"]. Let

0=ECEC---CE=E

be the Harder-Narasimhan filtration of F, then we have
Ei/Ei1 =~ kero;
M1>"'>Mr>§a

where p; := p(kerg;) for i = 1,---  r. The polarization A on H now induces a polariza-

tion on H[pN] : X : H[p™N] = H[p"]P. Thus there is a perfect pairing

Hp"] x H[p"] = pryonn.

Let E;- be the orthogonal subgroup of H [p"] under this pairing, fori = 1,--- 7. Since F;
is a scran of the Harder-Narasimhan filtration of H[p"], so is E;- by the compatibility
of Harder-Narasimhan filtration with polarizations. Moreover, we have the following
inclusions :

0CEGC-—CE L WCE=ECE"=E CE_,C---CE CHp"

=
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and the equalities
i+ (B B) = 1,
fori =1,--- ,r. Recall that we have

1
M1>M2>'“>Mr>§~

For all £k > N, the finite flat group schemes Fy, - -- , E, C H[p*] are the same and do not
depend on k, but their orthogonal groups E-, - - , E+ do depend the group H[p*]. Thus
for k > N varies, just the height of ht(E+/E) varies and ht(E;/E;_1) = ht(E-,/Ei)
do not change for i =1,...,r — 1.

There are two different cases : E = E+ or E C E+.

1. E = E*, ie. there is no slope of 3 in the Harder-Narasimhan filtration of H[p"].
This case is good, since the polarization A on H then induces a polarization X\ :
H/E — (H/E)P, such that mo XN on? = pM\, where 7 : H — H/E is the natural
projection, i.e. we have the following commutative diagram :

pNA

big P
L
H/E —2>-(H/E)P.

Thus in this case we get a p-divisible group with naturally induced additional
structures (H/E,J, \).

2. E C Et, ie. E1/E is a factor in the Harder-Narasimhan filtration of H[p"] of
slope % Note there is a natural perfect pairing

(E*/E) x (E*/E) — Hyphi(EL/B) -

Let C := E+/E. We make the following claim :
Claim 2.5.2. there is a filtration of sub-semi-stable groups of slope %

0CCi G- CCCCyr C---CCF CC,

such that p(Ci-/Cy) = 0.

In fact, if we let m be the minimal integer such that p™C' = 0, if m = 1 we are
done; so assume m > 2 now. Consider 0 # p™~!C C C, which is also semi-stable
of slope % Then we have a filtration of semi-stable groups of slope %

0#p"'C (PO =CPpCC

Now

ht((p"~'C)*H p" ) < G,

and set C' = (p™~1C)L/p™~1C, by induction we thus have the above claim.

Now we can translate the above filtration to a filtration of subgroups of E+ C
H([p"], that is there exists a filtration

ECE'C.-.-CE*CcEMC...C Bt

such that F*/E = C" C E+/E = C. Let E' := E*, then since E'/E is semi-stable,
H/E' is semi-stable. We still have two cases.
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(a) If Cp = Cj- that is B/ = E'*, this is still good in this case : we have the
semi-stable p-divisible group with additional structures (H/E', /', X).

(b) If E' C E', we have the following proposition.
Proposition 2.5.3. Let the notation be as above, and (H,t, \) be a p-divisible
group with additional structures. Assume that E' C E'*-. Then after changing
N to N + 1 if N is odd in the PEL unitary case, there exists some finite
extension K'|K and a totally isotrope subgroup E" = (E")* of H[p™] over
OK/.

Proof. Let V := (E'*+/E')(K), since p(E'*/E") = 0, it is a F,-vector space
equipped with an action of the Galois group Gal(K/K). Moreover, there is
an induced Fa-action ¢ : Fpa = End(V)(d = [F : Qy),¢ : Op — End(H)),
so we can view V as a Fa-vector space via . The pairing (,) on E'*/E’
induces a hermitian form V' >V — F,q. By assumption dimg ,V' = 2m for
some integer m > 1. Thus there exists a maximal totally isotrope subspace
W Cc V,W = W+, and a finite extension K’|K such that W is stable by
Gal(K /K'). Then the schematic closure of W in E'*/E’ over Ok corresponds
to a totally isotrope subgroup E” = (E")* of H[p"] over Ok O

Let K'|K, and E” C H[p"] be as above. Then the p-divisible group
H/E" over Ok admits naturally induced additional structures : ¢/ : Op —
End(H/E"),N : H/E" — (H/E")P such that the following diagram com-

mutes :
H— " _pgp
e
H/E//$_(H/E//)D.

Recall H/E'" is a semi-stable p-divisible group. Thus we have an isogeny
f:H/E" — H/E' of p-divisible groups over Ok such that p(kerf) = 0.
Now for the case that the valuation ring O is not discrete, let (H,¢, \) be a basic

p-divisible group with additional structures over Of. Assume H is not semi-stable. We
still have Fargues’s algorithm

¢

H=H 3 H,— ..%5 o, % ...

with
.FH = k€7"¢17 ]:H2 = kergbg,--- .

If the algorithm stops after finite times, i.e. there exists some r such that H, # 0 and
H; =0 forallt > r+1. In this case H, is semi-stable, and we can continue our procedure
as above to find the F, E’ and E”. Thus once the algorithm stops after finite times,
we can continue as above and get a modified algorithm for the case with additional
structures.

2.6 The analytic domain C

We return to the study of the p-adic analytic unitary group Rapoport-Zink space M
we introduced in subsection 2.2. Let K|L = W(F,)g be a complete discrete valuation
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field, then for any K-valued point z € M(K), by the algorithm of last section, we can
associate to it an another point 2’ € M(K"), where K'|K is a finite extension, such that
if (Hy,t,\) (resp. (Hy, ', X)) is the p-divisible group associated to x (resp. z’), then we
have an isogeny ¢ : H, — H, of p-divisible groups over Ok, satisfying the following
commutative diagram :

Hx&HD
b e
Hy —2 (H,)P,

for some integer N, and there is a finite flat subgroup scheme G C H,/[p], such that
H,/ /G is semi-stable. Motivated by this, we introduce a subspace C C M as follow.

Definition 2.6.1. We define a subspace C C M as

C = {z € M| 3 finite extension K'|H(z), and a finite flat subgroup G C H,[p| over Ok,
such that H, /G is semi-stable over Ok }.

Let M?® C M be the semi-stable locus, that is
M?* ={x € M| H, is semi-stable}.

Then we have the inclusion

M CC.
Proposition 2.6.2. The subset M** and C are closed analytic domains of M.

Proof. The fact that M* C M is a closed analytic domain is an easy consequence of
Theorem 2.3.3. So we concentrate here to prove that C C M is a closed analytic domain.

Let N be the basic Rapoport-Zink analytic space for Resg ,|o,GLn obtained by
forgetting the polarization from M. Then there is a natural closed immersion M C A,
We fix such an imbedding. We have the inclusions G(Q,) C GL,(Q,2), and G(Z,) \
G(Q,)/G(Zy) = GL,(Zy2) \ GL,(Qp2)/G Ly (Zy2). We have in fact a G(Q,)-equivariant
imbedding of tower of analytic spaces Mgngz,) C Ny for open compact subgroups
K C GL,(Q,). We have M?®* = N** (| M. By definition, the subset C is exactly the
intersection with M of some Hecke translations of the semi-stable locus N*¢ C N :

¢ =(JrN=) M,

where the index set is all a = (aq,...,a,) € {(a1,...,a,)|a; > -+ > a,,anda; € {0,1}},
and

Tg = GLn(Zp2) GLn(Zp2) € GLn(sz) \ GLn(sz)/GLn(Zp2).
P
Now since N** C N is a closed analytic domain, so is C C M by the definition of Hecke
correspondences.

]
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We observe the characterization of points in C as follow.

Proposition 2.6.3. A pointx € M s in C if and only if the algorithm for the p-divisible
group H, associated to x stops after finite times, and N, = 1 , where N, is the smallest
integer such that ker¢, C H,[p™*], ¢, is the composition of the isogenies when applying
the algorithm to H,.

Proof. 1If the algorithm for H, stops after finite times and N, = 1, then by definition
x € C. To prove the other direction, we have the following general lemma.

Lemma 2.6.4. Let H/Og be a basic p-divisible group over a complete rank one valuation
ring Ok|Z,, and G C H be a finite flat subgroup scheme. If H/G is semi-stable, then
Fu C G. In particular, if the sequence of isogenies of p-divisible groups

¢
H:Hld)l H, 2 ¢r Hyyy
is such that Hy, ..., H, are not semi-stable (H,.1 may be semi-stable or may be not),

then kero C G.

Proof. Let 0 # G’ C H,G" ¢ G be a finite flat subgroup not contained in G. Consider
the morphism ¢ : G’ — H[p"]/G for N >> 0. Then it is non zero. Let G" (resp. G”) be
the flattening schematic image (resp. kernel) of ¢, then we have the following sequence
which is exact in generic fiber :

0—-G" -G —-G"—=o.

Since H/G is semi-stable, and G" C H/G is a finite flat subgroup, by definition

w(G") < pmye = par-

On the other hand we have G” C G. If G” = 0, then pu(G’") < u(G") < py. I G” # 0,
(G < sup{p(G"), u(G")} < sup{pimaz(G), uu}. We have two cases :

L if finaz(G) < pp, then since p(G') < pg for any 0 # G' ¢ G, we have H is
semi-stable. In particular Fy =0 C G.

2. if fyar(G) > pg, then since u(G') < fimaz(G), we have pae(H) = fimae(G), and
Fy C G is the first scran of the Harder-Narasimhan filtration of G.

Thus the lemma holds. O

With the lemma above, we can now easily deduce the proposition. If € C, then by
the definition of C, there exists a finite extension K'|K = H(x) and a finite flat subgroup
G C Hlp] over O, such that H/G is semi-stable over Og-. The algorithm for H over
Ok is just the base change of that over Og. By the lemma, ker¢ C G C H|[p|. Thus
the algorithm stops after finite times and N, = 1.

]
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Example 2.6.5. For n = 1 the Rapoport-Zink space M 1is trivial : each connected
component Mt is just a point. Thus in this case C = M. For n > 2, it is unluckily
difficult to describe the domain C explicitly. Here we calculate C for the case n = 2. In
this case each reduced special fiber M'_, is just a point, while the analytic space M
is of dimension 1. Let N be the basic Rapoport-Zink analytic space for Rest2|QpGL2
obtained by forgetting the polarization from M. We have

= (JZ.N*=) (M.

There are 8 possibilities for the index a = (a1, az2) : (0,0),(0,-1),(-1,-1). Let (H,¢) be the
p-divisible group associated to a point x € N*°. The Hecke correspondences T(o) is the
identity, and T(_1_qy.x is the quotient of H by Hl[p| with its additional structure, thus
T(—1,-1).x € N*°. For the Hecke correspondence T(o_1y, a pointy € T(o_1).x corresponds
to a height 2 finite flat subgroup G C H|[p|, and the p-divisible group associated to y is
the quotient (H/G, ). Since H is semi-stable, we have (G) < 3, i.e. degG < 1. The
arbitrary possibility of the choices of G will make T(o_1).N** & Nss Thus the inclusion
M?* C C is strict.

Similarly we have a characterization of the points in the Hecke orbit of C.

Proposition 2.6.6. A point x € M is in UTGG (Zo\G(Qy)/G(Z )TC if and only if the
algorithm above for the p-divisible group H, associated to x staps after finite times.

For a Hausdorff paracompact strictly Berkovich analytic space X over a non-
archmidean field, we denote by X" the associated rigid analytic space in the sense
of Tate. As a set, X" C X is the subset of rigid analytic points. Then the Hecke orbit
of C™ covers M™9.

Proposition 2.6.7. We have the follouing equality of sets

M9 = U T.C.

TeG(Zp)\G(Qp)/G(Zp)

Proof. By the inequality
HN(H,1,\) < Newt(Hy,t, \),

there is just one Harder-Narasimhan strata, i.e. the whole space M = MHIN=Pss By
the algorithm, we have the equality MHAN=Pssrig — UTeG,(Zp)\G(Qp)/G(Zp) T.Cr9. O

We want some locally finite covering of M. One may wonder whether the family of
analytic domains (7. C)Teg(zp)\g((@p) /G(z,) 1s such a locally finite covering of M. Unfor-
tunately, the analytic domain C is so big that the union TC is far
from locally finite. We have to refine this family. Nevertlrgli,esg Zé]})l\lg(?é})l/lﬁy is indeed a
covering of M, although it is not locally finite. In the next subsection, we will review
some basic facts about the geometry of reduced special fiber M,..4 over Fp obtained by
Vollaard-Wedhorn in [80] and [81]. Then we will define some smaller analytic domain
D C C such that under the Hecke action and the action of J,(Q,), we can get some
locally finite covering of M"9. Finally by some gluing arguments, and the equivalence
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between the categories of Berkovich anayltic spaces and rigid analytic spaces satisfying
certain conditions, we can get an equality for all analytic points

M = U T.C.
TeG(Zp)\G(Qp)/G(Zyp)

That is, for all x € M, the algorithm for H, stops after finite times.

2.7 Bruhat-Tits stratification of M, .4

We recall some of basic results of Vollaard-Wedhorn in [80] and [81]. First we remark
that the descent data on M, is effective, i.e., there is a model M, _, over F,2 of M, 4.
The results of Vollaard-Wedhorn are rather about the scheme M’ _. but we just state
them for M,..4 here. Recall that the formal Rapoport-Zink space M has a decomposition
according the height of the universal quasi-isogeny :

M- [ M

1€ZL,in even

T red

where M’ is the open and closed formal subscheme of M such that for any scheme S €
NilpOy, a S-valued point of M (H,1,Ap) € Mi(8) if htp = in, which is not empty if
and only if in is even. Let M* = (./\/lz)‘m and M’ _, be its reduced special fiber for such
an ¢, we have decompositions

M = H Miy Mred = H Mred

1€ZLin even 1€ZLin even

n—1

By Theorem 4.2.(1) of [81], M:,, is connected of pure dimension [*5+]. Thus M" is
an connected analytic space of dg\nenswn n — 1. For each ¢ € Z such that in is even,
there is a g € J,(Q,) such that g(M?) = MY in particular M is isomorphic to M, and
so are their analytic fibers M*, M® and reduced special fibers M, ;, M} ;. So we just

need consider the M? and M?_,. It turns out the geometry of MC,_, over F,, is controlled
by the Bruhat-Tits building B(J@",Q,) of the derived subgroup J" of Jb over Q.

More precisely, for each ¢ € Z such that in is even, let
L; = {A C Nyis aZy-lattice| p"™'AY C A C p'AV},

where AV = {z € No| {x, A} C Z,2}. One can construct an abstract simplicial complex
B; from L; : an m-simplex of B; is a subset S C L; of m + 1 elements which satisfies the
following condition. There exists an ordering Ay, ..., A,, of the elements of .S such that

PN, CAC A C - C A,

There is an obvious action of J"(Q,) on L;. By Theorem 3.6 of [80], for each fixed i,
we have a natural J@"(Q,)-equivariant isomorphism of B; with the associated simplicial
complex of the Bruhat-Tits building B(J@",Q,). Thus we can identify £; with the set
of vertices of B(J" Q,). For A € £; the index t(A) := [A : p"™AY] of p"™ AV in A is
always an odd number with 1 < ¢(A) < n, and for any odd number d with 1 < d <n
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there exists a A € L; such that ¢(A) = d. Moreover two lattices Ay, Ay € L; are in
the same J@°"(Q,)-orbit if and only if ¢(A;) = t(A3). And the neighborhood vertices of
A € L; in the building is exactly the set

{A' e L;|N CA orACA}.

If n is even, we choose and fix a g; € J,(Q,) such that g, : MO 5 ML We fix a bijection

©; - £0 — El
once for all, such that
i+l .
p=z giN diodd
pi(A) = { i ' .
pzA 1even.

Now for each 7 € Z such that in is even and each A € L;, we define a subscheme M,
of M. First we associate two p-divisible groups Hy- and Hy+ over F,» with Z,2-linear

polar{zeg‘tions Ar+ and Ap- respectively. To this end, set
Af=A
Al = V7THA)
A=A e A
A= pi(AT)Y.

Since F = V the A* are Dieudonné submodules of the isocrystal N, and the pairing
p~%(,) on N induces a perfect Z,2-pairing on A*. Thus A* define unitary p-divisible
groups H+, with the Z-linear polarizations Ay+ and p~(,) induces an isomorphism
Hy+ S HP .
Moreover, we have Z,-linear quasi-isogenies
Pt - Hy+ — H

which are compatible with the polarizations on the two sides. We have the following
commutative diagram :
Hy+ —= HP
LPA-‘r Tpf_
H—"~HP.
By construction we have always A~ C A, which corresponds to the composition of
quasi-isogenies

—1

Hy- 258125 [,
We a fixed vertex A € L;. For any Fp—scheme S and a S-valued point (H, ¢, A, p) €
M:_,(S) we define quasi-isogenies
p71 (PA+)§1
PHA+ : H— Hs — (HA+)Sa
PA-.H - (HA—)S (MS HS L> H.

Then one has that
Wt (pias) = ht(pa- i) = H(A)
and that py a+ is an isogeny if and only if py- g is an isogeny.
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Definition 2.7.1. We define the subfunctor My C M:_, as

M (S) = {(H, 1, ), p) € M;.4(S)|pa- 1 is an isogeny}

red

for any Fp—scheme S.

Then the main theorems of [81] tell us the following facts.

Theorem 2.7.2. 1. My is represented by a smooth projective closed subscheme of
dimension L(t(A) — 1) of M'_,, which we will also denote by My. It is in fact a

2 red’
generalized Deligne-Lusztig variety for the mazimal reductive quotient 7jl\er’md over
F, of the special fiber of the Bruhat-Tits group scheme Ji attached to the vertex
A € B(Jg Q,).
2. for two lattices Ay, Ny € L;, My, C My, if and only if Ay C Ay. In this case
t(A1) < t(Ag), and the equality holds if and only if Ay = As.
3. for two lattices Ay, Ay € L;, the following assertions are equivalent :
- Al N A2 € El 5y
— A1 N A3z contains a lattice of L; ;
- MA1 N MA2 =+ 0.

If these conditions are satisfied we have

Mp, N My, = Ma s,

%

where My, N My, is the scheme-theoretic intersection in M, ;.

4. for two lattices Ay, Ay € L;, the following assertions are equivalent :
- N +AeL; ;
— Ay + Ay is contained in a lattice of L; ;
- My, and My, are both contained in My for some A € L;.
If these conditions are satisfied, My, +a, 1S the smallest subscheme of the form
M that contains My, and My, .

5. let tyae = n if nois odd, and t,ae. = n — 1 if n is even, then the irreducible
components of M'_, are exactly the subschemes My with t(A) =tz

6. let
Ly :={N € LN C A},
MO = MA\ U MA'7
NeELp

%

then MY is open and dense in My, and we have a stratification of M’ _; :

i 0
red — H MA'

AEL;

Proof. These are the contents of lemma 3.2, theorem 3.10, corollary 3.11, theorem 4.1,
4.2, and proposition 4.3 of [81]. O

Note that the stratification M’ ; =[] ., MQ is J"(Qp)-equivariant in the sense
that we have

gMO = MSA’
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for any g € J#"(Q,) and A € L;. For an algebraically field k|F,2 and a k-valued point

x € M:_,(k), if we denote M the corresponding unitary Dieudonné module viewed as a

lattice in N via the quasi-isogeny p,' : H, — H, then we have the following equivalent
assertions

—x e My(k);

- M C (A )

- M, C (A)k,

— (A_)k C M.

2.8 The analytic domain D

Recall that we have defined some closed analytic domains M?** C C C M, where for

any complete valuation field extension K|L = W([F,)q,

M*¥(K) ={(H,,\, p) € M(K)| His semi-stable}
C(K) ={(H,t,\, p) € M(K)|Iinite extension K'|K, and a finite flat subgroup
G C Hlp|over Ok, such that H/G is semi-stable}.

Now since we have the decomposition
M= ][ M,
€L, in even

we set
C'=CnM",
which is still a closed analytic domain in M* and M, and we have an induced decom-
position of analytic spaces
c= ][] c.

€L, in even

We choose an element g; € J,(Q,) such that the action by ¢; on M induces isomor-

phisms :
~ | MY neven
MY S
& {M2 n odd.

For example let
g1 = diag(]?_l? e 7p_1’ 17 ) 1)
——

n
2

|3

if nis even and g; = p~! € J,(Q,) if n is odd. We have then

gZCl neven, i even
) —i+1 .
C'=<p=2 gC° neven, iodd
giCl nodd.

Note the element p~! € J,(Q,) induces an isomorphism p~* : M% = M?2. We denote

neven
9192 et

by go := p~tg; ! if n is even, i.e. the above g; is such that p~! =
g1 n odd.
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then we have

o C'TI1C° neven
e n odd,

c=][prC, andn(C) = =(C),

1€Z

where 7 : M — F¢ C P" 1" ig the p-adic period mapping over L. Thus the Hecke
orbits of the two analytic domains are the same :

U T.C = U T.C'.

TeG(Zp)\G(Qp)/G(Zp) TeG(Zp)\G(Qp)/G(Zp)

Using the geometric description of the reduced special fiber M, .. in last section, we
have the following covering of M° by open subsets :

M = U sp~H(Ma),

AeLy,t(AN)=tmax

where sp : M — MY . is the specialization map. We have equally the Bruhat-Tits

red
stratification of M? by locally closed analytic subspaces

MO =TT sp (M)

AELy

By definition, a point x € sp~!(My,) if and only if the composition

p —
(Ha-) 0w por == Hoy jp0ic — Huos jpox

is an isogeny, and x € sp~'(M3) if and only if the above composition is an isogeny and
it does not factor through H,: for any A’ C A. Recall that there is a natural isogeny
tan - Hy- — Hy— corresponding the inclusion A" C A, and we have the compatibility

PA- = Pp'— O LA
We fix a choice A = Ay € Ly with t(A) = t4.-

Definition 2.8.1. We define an analytic domain in M°
D:=CNsp ' (My)=C"Nsp t(My),

which 1s locally closed.

2.9 Some unitary group Shimura varieties and the relatively
compactness of D

In the following we prove that the underlying topological space |D| of D is relatively
compact, that is the topological closure |D| in |[M°| (or |C°]) is compact. For this, we
will use some unitary group Shimura varieties (those studied in [10] and [8€1I]) and the
theory of p-adic uniformization. The PEL data (B, *,V,(,), h,Opg, A) for defining these
Shimura varieties are as following.
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— B is a simple Q-algebra such that B ®g R ~ M,,(C) and B ®g Q, ~ M,,(Q,2),
for some integer m.

— % is a positive involution on B.

— V is a non-trivial finitely generated left B-module such that n = dimg(V)/2m.

— (,) : VXV — Q is a nondegenerate skew-hermitian Q-valued form. Let G :=
GUg(V,(,)) denote the reductive algebraic group over Q of B-linear symplectic
similitudes of (V, (,)).

— h : RescrG,, — Gr is a homomorphism of real algebraic groups such that it
defines a Hodge structure of type {(—1,0), (0, —1)} on V and (-, h(/=1)-) : Vg x
Vg — R is symmetric and positive definite.

— Op is a *-invariant Zy)-order of B such that Op ® Z,, is a maximal order of Bg,.
We can and we do fix an isomorphism Bg, ~ M,,(Q,2) such that Op ® Z, is
identified with M,,(Z,2).

— Ais an Op-invariant Z,-lattice of Vg, such that the alternating form on A induced
by (,) is a perfect Z,-form.

The first condition implies that the center K of B is a quadratic imaginary extension
of Q and p is inert in K. The derived subgroup G%" is an inner form of the quasi-split
special unitary group SU(n) for the extension K|Q. The assumption B ®¢g R ~ M,,(C)
implies Gy is isomorphic to the group of unitary similitudes GU(r, s) of an hermitian
form of signature for some nonnegative integers r and s such that r +s = n. We will
assume r = 1,5 = n — 1. The reflex field £ will be Kif 1 #n —11ie n # 2 and Q
if n = 2. Up to Morita equivalence, the localization of the above PEL data at p then
induces the local PEL data for defining the Rapoport-Zink space M.

For a sufficient small open compact subgroup K? C G(A?), the associated Shimura
variety Shg» over the integer ring Op, of the local field £, (p is inert in E) is the
moduli space of abelian varieties with additional structures in the following sense. For
any Og,-scheme S, Shg»(S) = {(A,1,\,n)}/ =~ where

— A is an abelian scheme over S of relative dimension equal to dimgV.

~1:0p ®Zy = End(A) ® Z) is a nonzero homomorphism of Z,)-algebras, such

that the induced action of Op on the Lie algebra Lie(A) satisfies rankogLie(A); =
m,rankogLie(A)y = (n — 1)m, where Lie(A); (resp. Lie(A)y) is the subsheaf of
Lie(A) that Ok, acts via the the natural inclusion Og, C Op®Z, (the composition
of the nontrivial automorphism * and the natural inclusion).

~ A: A— AP is a principal Op ® Z,-linear polarization, such that the involution *

on B is compatible with the Rosati involution on End(A)g induced by A, under
the homomorphism B — End(A) ® Q.
~n: VAL S Hi(A AY) mod K” is a K*-level structure.
— (A1, t1, A1,m1) = (Asg, 2, Ay, 1), if there exists an Op-linear isogeny ¢ : Ay — As
of degree prime to p such that ¢*(\g) = a\y, ¢ ony =y for some a € Q*.
Note n is divisible by m and in fact the rank of V as a B-module is 7. In particular if
n = m, the Shimura varieties Shg» for K? varies are all proper over Og, .

Now let S €NilpZ,2. To any S-valued point (A, ¢, A\,n) € Shgr(S), we attach to it
a unitary p-divisible group of signature (1,n — 1) as follow. Let H" = A[p>| be the
p-divisible group of A. Then Op ® Z, = M,,(Q,2) acts on H'. By Morita equivalence,
the functors H' — OZ)Q OM(Q,0) H' and H — O’Z';Q ®z, H are mutually quasi-inverse
between the category of p-divisible groups H' over S with a left M,,(Q,2)-action and the
category of p-divisible groups with a Z,2-action over S. We set H := OZ; ,® Mm(QPQ)A[pOO],
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and denote its Z,2-action still by ¢. The principal polarization A on A then induces a
Zy2-linear principal polarization on H which we still denote by A.

To sate the link with the Rapoport-Zink space /(/l\, we take the base change to

SpecOr, (L = W(F,)q, O = W(F,)) of the Shimura variety, which we still denote by
Shg» by abuse of notation. The special fiber Shg»r of Shi» over F, then admits the
Newton polygon stratification.

The Kottwitz set B(G, p) of all Newton polygons can be written down explicitly as in
[10] 3.1. In particular, one finds that every non-basic polygon has contacted points with
the p-ordinary polygon. This key special phenomenon will at last lead to the relatively
compactness of our analytic domain D in the p-adic analytic Rapoport-Zink space M.

As shown in [I0], each strata ﬁ;’{p is non-empty, and any non-basic strata is in fact a
leaf in the sense of [55)]. The basic strata, which we denote by ﬁl;?,,, was studied in [80]
and [81], by studying the reduced special fiber M,..; of the Rapoport-Zink space M and
the uniformization of %l}ﬁp by Mcq.

—b - P
Let Sh 13,, be the completion of Shy» along S hljﬁp, then the chapter 6 of [66] tell us
there is an isomorphism of formal schemes over SpfOy :

Shyw = IQ\ Mx Gan/E?~ [ M/T.

IEI(Q)\G(AD)/KP

Note the group G satisfies Hasse principal : ker'(Q,G) = 1 (cf. [81]). Here I is an inner
form of G over Q, which is anisotropic modulo center and such that Ip, = Jy, I An = G AT

Note the index set I(Q) \ G(A%)/K? is finite, and if gi,...,gr € G(Af}) is a set of
representatives, then I'; = I(Q) N g;KPg; ! for i = 1,..., k. The subgroups I'; C J,(Q,)
are discrete and cocompact modulo center. Since K? is sufficiently small, I'; is torsion
free for all i.

We can describe the isomorphism
—~ —~b
I(Q)\ M x G(A%)/K? — Shyg,

as follows. Let (A, ¢, \,n) be a F,-valued point in ﬁl;?p, and the isomorphism we con-
struct will depend on such a choice. Let (H, ¢, \) be the unitary p-divisible group associ-
ated to this abelian variety as above. We take (H, ¢, A) as the standard unitary p-divisible

group for defining M. For any S €NilpOy, there is a map
M(S) x G(AR)/K? — Shyen(S)

((H,u, A p), gKP?) = (A, N ,ng ' K?),

such that there is an unique quasi-isogeny Ag — Ag compatible with additional struc-
tures inducing p when taking p-divisible groups. This map factor though the action of
I(Q) and functorially for S. It induces an closed immersion of formal algebraic spaces

[(Q)\ M x G(AD)/K? — Shio,
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and one can prove that the left hand side is in fact a formal scheme and the image is

—~b
Sh Igp. Thus there is an isomorphism of formal schemes.

—~an,b —b . . .
We denote Shy, = (Shg,)®" the Berkovich analytic space associated to the formal
—~b R
scheme Shy,, the completion of Shk» along the strata Shl;(p, which is also the tube
sp_l(ﬁ;p) of ﬁl;(,, in Sh?p C Sh9%,. Here sp : Sh;:p — Shg» is the specialization
map, and Sh3f, is the p-adic analyticfication of the generic fiber Shy» x L = Shgz,)xk»
over L, the last C is a closed immersion. It is an isomorphism if and only if Shgr is
proper over SpecOr. We have the Newton polygon stratification of Shy, by locally
closed subspaces :
—~an —=an, b
Shiv =[] Shir -
beB(G,u)
Analogous to the case of Rapoport-Zink spaces, there is a tower of analytic spaces

—~an

(Sh Ky Kv)K,cG(z,) indexed by open compact subgroups K, C G(Q,), together with
a family of closed immersions (5716;: wir)K, C (ShY . ko)K,, such that @zénz xEp =
Shic, ke 1 Then G(Q,) acts on this tower and this glves the p-adic Hecke correspondence on

each Shy K, xxv- Lhe family of closed immersions (Sh kyxicr) K, C (SR o)1, 1s Hecke-
equwarlant here the G(Q,) action on the right hand side is the p-adic analyticfication of
the Hecke action of G(Qy) on (Sh{ , kv ) k,cc(z,)- By taking the inverse images under the

——=an ——=an /\an,b ——=an
natural projection Shy . xp — Shye, we can defined subspaces Shy . gr C Shyc g,

which are Hecke-invariant, thus we have G(Q,)-equivariant stratifications

—~an /\an,b
Sthpr: H SthxKP'

beB(Gop1)

Now pass to the p-adic analytic side, we have a family of isomorphisms of analytic
spaces
—~an,bg
1(Q) \ My, x G(A)/K? ~ 1T M, /Ti = Shyc v
iE€I(Q\G(AR)/KP
These isomorphisms are Hecke-equivariant for the action of G(Q,) on the two sides. If

we let K? varies, then they are Hecke-equivariant for the action of G(Af) on the two
sides.

We now look at the Harder-Narasimhan stratification of @LZX Kp, see section 2.4.
For a unitary p-divisible group (H, ¢, A) over a complete valuation ring Og|Z, of rank
one, recall we have the Harder-Narasimhan polygon

HN(H, 1, \) = éHN(H)(2 )= lim ﬁHN(H[ ) (2%:)

as a function [0,n] — [0,n/2], which we also identify with its graph. For a point = €
Sh Kyx K> denote by (Az, tz, Az, pz X 1%) the abelian scheme over Ok := Oy, associated
tox, let (H, = OZ ,® Mm(sz)Ax [p>°], tz, Az) be as above the unitary p-divisible group ob-
tained after Mrita equivalence from (A, ty, Ay, Mpe X 7). Let HN () := HN(Hy, 1y, \y).
Thus we have defined a function

HN : @me — Poly,
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here Poly denotes the set of concave polygons in [0,n] x [0,7n/2] bounded by the u-
ordinary Hodge polygon. We identify the set B(G, u) with a finite subset of Poly by
associating each b € B(G, u) its polygon. By proposition 2.4.1, this function HN is
semi-continuous.

Definition 2.9.1. For each P € Poly, we define the subset

—~an,HN=P

Shicvir = HN"Y(P) = {z € Shy, os| HN(z) = P},

which 1s then a locally closed subset.

We thus obtain a Harder-Narasimhan stratification of the underlying topological
space |Shy . x»| by locally closed subset

—~an —~an,HN=P
|Sthpr‘ = H Sthpr :
PePoly
. . /\anyHN:Pss .
Let Py be the basic element in Poly, then the strata Shy . xr is an open subset,
. . . . . —~an,HN=Pss —~an
thus there is an analytic structure on it so that the inclusion Shy . x» C Shg ykr

is an open immersion. For general Harder-Narasimhan strata, there is in general no
obvious analytic structure on it. But, fortunately, in our case we have the following
strong conclusion.

Proposition 2.9.2. The Harder-Narasimhan stratification and the Newton polygon
stratification for Shy . i coincide.

Proof. This comes from the fact that, for a unitary p-divisible group (H, ¢, A) over Oy,
we have the inequalities

HN(H,1,\) < Newt(Hg,t,\) < Hodge(Hg, 1, \),

and if there is a contact point = of the Newton polygon Newt(Hy,t, \) and the Hodge
polygon Hodge(Hy, ¢, A), then the Harder-Narasimhan polygon HN(H, ¢, \) also passes
at x, see corollary 1.5.3. If one draw all the possible Newton polygons in our cases, then
one finds immediately the proposition holds. O

The underling topological space of §7¢}l§, is compact. We now consider the image £
of the subspace C C M under the p-adic uniformization morphism

K —~an,bg —~an,HN=Pss —~an
[T M/Ti =~ Shy,” = Shy, C Shyc.

i=1
Since C is J,(Q,)-stable, we have & ~ [[F_, C/T;.

Proposition 2.9.3. The subset £ is a closed analytic domain in g%?p, thus it is com-
pact.
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Proof. Let H/ §7LKp be the p-divisible group associated to the universal Abelian scheme
A after applying the Morita equivalence. Then we can describe the locus & C Shy, by

£ = {z € Shy,| Ifinite extension K'|H(z), and a finite flat group G C Ha[p]
over Ok, such that H, /G is semi-stable over Og-.}

For simplifying notation, we denote X = §7le and X = 3’71;;3 By forgetting the
polarization, we can construct a tower of analytic spaces (Xk) KCGLA(Z,) with X =
XGLa(z,5), and an action of GLy(Zy2) (not GL,(Qp2)!) on this tower. Let m : ¥ =
X Id+pM,(Z,2) — X be the natural finite étale morphism. Then Y classifies the level
structures n : (Z/pZ)* = 7*H[p]. After a possible admissible formal blow-up we can
find a p-adic admissible formal model ) of Y, and a morphism f : Y — X such that
f* = m. Consider the finite flat formal group scheme f*H[p] over ). Then for any
subgroup M C (Z/pZ)?", there exists a finite flat formal subgroup scheme Gy C f*H|[p]
such that G} = n(M). Let Hy = f*H/Gu be the p-divisible group over ), then the
following finite union

F = U{y € Y| Hary/Osny)is semi-stable}
M

is a closed analytic domain of Y since each one on the right hand side is. Now the subset
€ C X is exactly the image 7(F') of F' under the finite étale morphism 7 : Y — X, so
it is a closed analytic domain. O

Corollary 2.9.4. The underlying topological space |D| of D is relatively compact.

Proof. Since € is a finite disjoint union of the form C/T’, therefore each C/T" is compact
by the above proposition. Since M, is an irreducible component of M,..4, and D =
CNsp~H(My) C sp~H(My), we may chose K sufficiently small such that one associated
I" satisfies that Vid # v € I',yD ND = (). So we have a topological imbedding

D—C/T,

since the right hand side is compact, we can conclude. O

2.10 Locally finite cell decompositions

We will construct a locally finite covering of the unitary Rapoport-Zink space M
from the locally closed analytic domain D. Recall we have fixed a choice A € Ly with
t(A) = tmae Let Stab(A) C J@(Q,) be the stabilizer subgroup of A in J"(Q,).
Then by our definition, D is stable under the action of Stab(A). Recall in section 8 we
introduced the analytic domains C’,C°. We have the following covering of C°

c’ = U gD,
9EJT(Qp)/Stab(A)
which is locally finite, ie. for any g € J*(Q,)/Stab(A), there are finite
g Jir(Q,)/Stab(A) such that gD () g'D # 0, since

Mged = U gMA

gEJLT(Qp)/Stab(A)
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is a locally finite union of its irreducible components.
We thus have the following equalities
U T.C= U T.c
TeG(Zp)\G(Qp)/G(Zp) TeG(Zp)\G(Qp)/G(Zp)
If n is odd, this equals to
— U T.C® = U T.9D:;
TeG(Zp)\G(Qp) /G (Zp) TeG(Zp)\G(Qp)/ G (Zyp)

9EJF(Qp)/Stab(A)

if n is even, the above equals to

= U T.g{CO = U T.g{gD.
TeG(Zp)\G(Qp)/G(Zp) TeG(Zp)\G(Qp)/G(Zyp)
j=0,1 j=0,1
geJgem (Qp)/Stab(A)

We would like to prove the last unions in the above two cases are locally finite. For this,
it suffices to prove the following union

U T.gD

TeG¥r (Lp)\G*" (Qp) /G (Zp)
gETFT (Qp)/Stab(A)
is locally finite. To this end, we just need to prove the following holds
#{(T,9) € G™(Z,) \ G*"(Qy) /G (Z,) x J;(Qy)/Stab(A)| T.gD ND # 0} < oo
This comes from the following several propositions.
Proposition 2.10.1. The Bruhat-Tits stratification of the analytic space

M =TT sp™' (MQ)

AeLy

by locally closed spaces is invariant under the Hecke action of G%"(Q,), i.e., for each
tube sp~H(MY), we have
T.sp™ (M3) C sp™ (M3)

Jor any T € Ger (Zp) \ G (Qp)/Gder(Zp)-

Proof. We just check that T.sp™'(My) C sp~'(M,), for any T € G¥*(Z,) \
G (Q,)/G* (Z,), A € Ly. The case for sp~1(MQY) is similar. Assume that

p™
T = G (Zy) G (Zy) € G¥(Zy) \ G*"(Q,) /G (Zy),

pon

ay > - 2 A, Q1 +ap = a2+ apq =--- =0,
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then a; > 0,a,, — a; = —2a; < 0, and we consider the Hecke correspondence

1

a2—ai

p—alT — Gder (Zp> Gder<Zp).

an—al

We just need to check that
p~Tosp™ (My) Cp~"sp~ (Ma),

here the p~® on the right hand side is considered as an element of J,(Q,) : it induces
an isomorphism

p~ 1 MO = MP

under which the image p~*sp '(My) of sp~H(My) is sp~H(Mpeip). Assume z €
sp~!(M,), the associated unitary p-divisible group (H, ¢, A, p : Hoy jpoc — How jpox)
is such that the composition

Pa- p
(Ha-)ow/pox — Hoy p0x = Hoy /pos

is an isogeny. Let y € p~*'T'.x be a any point such that the associated unitary p-divisible
group is (H/E,1,\,Hoy porc 2 Hoyjpox — (H/E)oy pox ), Where E C H is a finite
flat subgroup scheme such that its geometric generic fiber

By~ Lo [p™ 2 e @ -+ @ Ly /D™ " L.

Since
(p"A)T = p" AT

(palA)f — p2a1 (pa1A+)V _ palA*’
and the quasi-isogeny ppe1a- : Hyepa- — H is given by the composition py- o ¢ :
Hyp- 5 Hy- 25 H,

where the first is the isogeny induced by the natural inclusion p™ A~ C A~, thus its
composition 7o po py- o ¢ with

mTOop: HOK/pOK ﬁ) HOK/pOK l) (H/E)OK/pOK
is an isogeny. That is y € sp™!(Me1p) C M?*. So we have

p 1 T.sp™ (My) Cp ®sp™ (Myp) = sp~ (Myarn).

Recall we have the description

D= (U T, N*) ﬂ sp~H(My),

for our fixed A € Ly with t(A) = ¢4, and the closed immersion M C N. We prove the
following proposition, then it will be clear that the locally finiteness holds for M.
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Proposition 2.10.2. Let J, be the associated inner form of ReSQPﬂQPGLn for N', and
U C N,eq be an open compact subset such that jb(@p)U = Nyea, cf [25] 2.4. Let Z = Q;Q
be the center of GL,(Qy2) and jb(Qp). Set

D = N* ﬂ sp~H(U),
then we have

HT] € (GLn(Zy2) \ GLn(Qp2)/ G Ln(Zy2))/ Z|[T].D'/Z N D' Z # D} < 0.

Proof. Recall that the criterion of quasi-compactness of an open subset U C N,eq
(|23] critere de quasicompacité 2.4.14) : U is quasi-compact if and only if there exist a
Diedonné lattice M € N,.q(k) and an integer N, such that

U(k) C {M' € Nyea(k)|p" M c M' c p™N M},

Univ

or equivalently, there exists an integer N, such that the universal quasi-isogeny p*"*"
satisfies that p» p“™™® and p¥ (p*"*)~! are isogenies. The formal Rapoport-Zink space N
decomposes as disjoint union according the height of the universal quasi-isogeny :

X =TI~

where the height of the universal quasi-isogeny is 2i over Ni. Let N := ]_[;:01 N “ which
is in bijection with the quotient N'/Z. Let us denote by A" and N4 the analytic generic

fiber and reduced special fiber respectively of N. Then there is a metric function

d : Nyea(k) x Nyea(k) — N

defined as
d((Hy, 11, p1), (Ha, 12, p2)) = q(pi" 0 p2) + a(p3 " 0 p1),

here q(p) = htp™®p and n(p) is the smallest integer such that p™?)p is an isogeny for
a quasi-isogeny p. Then an open subset U C N, is quasi-compact if and only if there
exist an integer N, such that d(x,y) < N for all points z,y € U.

To prove the proposition we may assume U C /\~/',,ed. Let (Hy,t1,p1), (Ha,to, pa) be
the p-divisible groups associated to two points z;, 79 € U. Let My = pi'(D(H 7)), My =
por (D(Hyz)), and inv(My, Ma) = (ay, ..., a,) € Z" be their relative invariant. Then one
check that easily

d((Hi,t1,p1), (Hz, L2, p2)) = a1 — ap.

So it is bounded by some fixed integer N dependent only by U.

Now D' ¢ N c NV , and the Hecke correspondences on N induce an action of
the set (GL,(Zy2) \ GL,(Qp2)/GL,(Zy2))/Z on N. let € D',y € D' N [T].x for some
[T] € (GLy(Zy2)\GLy,(Qp2)/GL,(Zy2)) ] Z, T.D'ND’ # . Since by Cartan decomposition
we have the bijection

GLn(Z,2) \ GLn(Qy2)/GLo(Zy2) — T2
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P
If T = GL,(Z,2) GL.(Z,) , then
P
paﬁ-vp(z)
T = GLo(Z,2) - GLo(Z,2).
pan-l-vp(z)
Thus [T corresponds to a class [(a1,...,a,)] € Z /7 where the action of Z on Z is

the natural translation. Let (H/Og,t, p) be the p-divisible group associated to = over
Ok=#(z)- Then the p-divisible group associated to y over O is (H/G,/,p~"m o p),
here G C H is a finite flat group scheme such that G ~ Z/p"~®Z & --- & Z/p™ " Z.
Moreover, since both H and H/G are semi-stable, G is therefore semi-stable, [27] lemme
11. By the following lemma, the covariant Dieudonné module

]D)(GE) ~ W/pal—azw PP W/pal_anW

The relative invariant of D(Hy) and D((H/G)z) is then just (0,a2 — aq,...,a, — a1),
and by the above a; — a, < N. This plus the fact that a; > -+ > a,,qa; € Z,1 =
1,...,n with some easy combination argument imply that there are finite possibili-
ties of the class [(a1,...,a,)] € Z7%/Z, thus finite possibilities of [T] € (GL,(Zy2) \
GL,(Qy2)/GL,(Z,2))/Z. This finishes the proof.

O

Lemma 2.10.3. Let G be a semi-stable finite flat group scheme over Ok . Suppose that
Gr~Z/p"Z & --- B L/p™Z, then we have

D(Gg) = W/p"W & - & W/p™W,

here D(Gy) is the covariant Dieudonné module of G.

Proof. If pG = 0 then the above is evident. We assume that p?G = 0 here, the general
case follows by induction. Under this assumption, there exists a 1 < k < n such that
ay = =ay=2,a41 = - = a, = 1, and Gz =~ (Z/p*Z)* ® (Z/pZ)"*. Since G is
semi-stable, the following sequence

0 — Gp] — G 2 pG — 0
is exact. So we get an exact sequence
0 — Glplg — Gg — (G)g — 0,
and passing to (covariant) Dieudonné module we get an exact sequence
0 — D(Gplz) — D(Gg) — D((pG)z) — 0.

We have htG[p] = n, ht(pG) = k,htG = n + k. Assume that D(Gz) ~ (W/p?W)¥ @
(W/pW)"=* for some 1 < k' < n. Then we have dimz D(Gplz) = n, dimgz,D((pG)z) =
E'. Since

htGp] = dimg,D(Gplg), ht(pG) = dimg, D((pG)x),

i.e. k =K', the lemma follows.

O
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Remark 2.10.4. The above proposition and its proof hold generally for all EL Rapoport-
Zink spaces.

Proposition 2.10.5. The union

U T.D

TeGr (Zp)\G4r (Qp) /G (Zy)

18 locally finite.

Proof. Since C = (U, To-N**) (N M and D = C(\sp~'(Ma), we can choose some open

compact subset U D M, in N,.q such that jb((@p)U = Niea- Then D C |, T, D
for D' := N*(sp~'(U). Denote D" = |J,T,. D', which is a finite union of closed
analytic domains. By the above proposition we know that there are only finite 7' €
G (Z,) \ G*"(Q,)/G%*"(Z,) such that T.D'(\D’ # 0. Therefore, there are also only
finite T € G (Z,) \ G*(Q,)/G¥"(Z,) such that T.D" (D" # (. This implies the
number of T € G¥"(Z,,) \ G*"(Q,)/G%"(Z,) such that T.D(D # ( is finite. O

Corollary 2.10.6. The unions

T.9D

TEG(Zp)\G(Qp)/G(Zp)
geJIem(Qp)/Stab(A)

forn odd and

U T.g{gD
TEG(Zp)\E’((%p)/G(ZP)

gETET(Qyp)/Stab(A)

for n even are both locally finite.

Remark 2.10.7. By the proofs of the above two propositions, we see that if
T =G(Zy) . G(Zy)

corresponds to the point
(ar,---,a,) € Xu(A)y CZT

by the Cartan decomposition (see section 2.2), then the set

{T' € G(Z,) \ G(Q,)/C(Z,)|T.D(T.'D # 0}

corresponds to the set of points in some neighborhood of (a1,--- ,a,) € X, (A)y C Z
(for the natural topology).
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With the notations above, we now can state the main theorem of this section. The
proof is based on some gluing arguments, and the following basic observation : let Y € X
be two Hausdorff paracompact strictly analytic spaces over a complete non-archimedean
field k, such that the inclusion of Y as a subspace of X induces the identity of their
associating rigid analytic spaces Y™ = X" then we have Y = X. Here we require that
the analytic Grothendieck topologies are the same. Note if one just has the equality of
the underlying sets |Y"%9| = | X"|, one can not deduce Y = X and in fact there are
many counter examples.

Theorem 2.10.8. We have a locally finite covering of the Berkovich analytic space M :
M = U T.gD

TeG(Zp)\G(Qp)/G(Zyp)
gE T8 (Qy)/Stab(A)

if n is odd, and
M = U T.ggD
TGG(Zp)j\S(()%p)/G(Zp)
9T (Qp)/Stab(A)

if n is even.

Proof. Take an open quasi-compact subset U C MY, such that U N M, # @ and
Jp(Qp).U = M,q. Since U is quasi-compact, it intersects with only finite number ir-
reducible components My,, A; € Lo, t(A;) = tmaz,t = 1,...,k with A = A;. Let
gi € J¥(Q,)/Stab(A) be such that g;(A) = A;. Then we have the inclusion

k
D= Cﬂsp_l(U) C Ugﬂ).
i=1

Note that D’ is a closed analytic domain of M. It is compact since D is relatively
compact. So we have equalities of locally finite coverings

U T.gD = U T.gD'

TeG(Zp)\G(Qp)/G(Zp) TeG(Zp)\G(Qp)/G(Zp)
9EJHT(Qp)/Stab(A) geJder(Qy)/Stab(A)
if n is odd ; and
U T.glgD = U T.g gD
TeG(Z@J\Sé(%@/G(Z@ TGG(Zp)J\SS‘FDp)/G(Zp)
9eJer(Qp)/Stab(A) geJdem (Qp)/Stab(A)

if n is even. Since D’ is closed, and the above analytic covering (T.gD") 1., or (T.glgD");r
obtained by translations of D’ is locally finite, by [2] we can glue them into a sub-analytic
space M’ C M, such that the underlying set of M’ is given by the union as above. On
the other hand, the rigid covering (T.gD"")r, or (T. glgD'ri9) 1.9 of M by admissible
open subsets can always be glued as a rigid space M, which is the associated rigid
space of M’ : M7 = M}, Then these rigid coverings are admissible since the analytic
coverings are locally finite, so from the equalities as sets

Mrig _ U T‘gD’m'g

TeG(Zp)\G(Qp)/G(Zyp)
gEJLT(Qp)/Stab(A)
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if n is odd ; and
M9 = U T.g{ ng”g
TGG(Zp)\S(()%p)/G(Zp)
9eJem(Qp)/Stab(A)
if n is even, we have the equality of M} = M" as rigid spaces. By the equivalence

of the category of Hausdorff paracompact strictly analytic Berkovich spaces and the
category of quasi-separated quasi-paracompact rigid analytic spaces, we must have the

equality M’ = M.
O
Remark 2.10.9. The above argument also works for theorem 27 in [27].

We have the following corollary when applying the theorem to the p-adic period
domain F*.

Corollary 2.10.10. Let 7 : M — F@ C P* 19" be the p-adic period mapping, then we
have a locally finite covering

Fo = U gm(D)
9EJHT(Qp)/Stab(A)
if n is odd, and
F = U g197(D)

j=0,1
geJIe(Qp)/Stab(A)

if n 1s even.

We look at the cases with level structures. Let K C G(Z,) be an open compact
subgroup and g : My — M be the natural projection, which is a J,(Q,)-equivariant
finite étale surjection and also compatible with the Hecke actions. Denote Dy = WI_{l(D),
then gDy = ' (¢D) for all g € J,(Q,), and

KhK.gDyg = KhyK.gDx
for KWK, Kho K € K \ G(Q,)/K having the same image under the projection

K\ G(@Q)/K — G(Z,) \ G(Qy)/ K.

The last equality holds since any h € G(Z,) acts trivially on M, therefore
Khh K. (¢D) = Khi K.7ti' (gD).

Corollary 2.10.11. We have a locally finite covering of the analytic space My

My = U T.gDx

TeG(Zp)\G(Qp)/K
geJier(Qp)/Stab(A)

if n is odd, and
Mg = U T.g1gDk
TeG(Zp)\G(Qp)/K
7=0,1
geJer(Qp)/Stab(A)

if n1s even.
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We will consider some cohomological application of this corollary in the next section.

Finally we have a corollary for Shimura varieties.

Corollary 2.10.12. Let Shir be as the Shimura variety introduced in subsectz’on 2.9,
Sth be the generic analytic ﬁber of its p-adic completion Sth, and Sth be the tube
in Sth over the basic strata Sth, which is an open subspace. Let ShK <Ks — Sth

be the covering in level K, C G(Z,) (an open compact subgroup), and Sthpr be the

. . —~an,bo . . . .
inverse image of Shy, . Denote C}{p the inverse image of C' in Mg, 5}% the image of
Cy under the p-adic uniformization

p

HQ\ My, x GAD/EP = [ M, /Ti = Sy

i€I(@\G(AL) /K

1. Let I' = T'; be one of the above discrete, torsion free, cocompact modulo center
subgroups of Jy(Q,), and %" = TN Jd”(@p), Dk, = Dik, be the image of Dk,
under the morphism Mg, — Mk, /', then we have a covering

My, )T = U T.gDk,

TeG(Zp)\G(Qp)/Kp
geT®er\ Jder (Qp)/Stab(A)

if n is odd, and

/\/le/F = U T-Q{QDKP
TeG(Zp)\G(Qp)/Kp
‘7: b
ger¥ e\ Jger (Qp)/Stab(A)
if n is even.

2. Under the above notation, we have a covering
}(,, - H U 9Dik,
i€l(Q)\G(AR)/KP gelder\ Jder(Qy)/Stab(A)

if n is odd, and

€k

P - H U g{gDiKP
i€I(Q)\G(A})/KP =01
gET T\ Jer (Qp) / Stab(A)
if n is even. We have a covering
—~an,bg
SthXKp - U Tg}(p
TeG(Zp)\G(Qp)/Kp
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3 Cell decomposition and Lefschetz trace formula

3.1 Introduction

In this section we would like to find some cohomological application of our locally
finite cell decomposition for the unitary group Rapoport-Zink spaces M. By study-
ing the action of regular semi-simple elliptic elements on the cells, we will verify the
conditions of theorem 3.13 in [60] hold, thus deduce a Lefschetz trace formula. In the
same way we can also reprove (in a rather different way) the Lefschtez trace formula
for Lubin-Tate spaces which was proved previously by Strauch (77|, theorem 3.3.1) and
Mieda ([60], example 4.21). To motivate the idea, we treat first the Lubin-Tate case,
which is simpler.

Let p be a prime number, F' be a finite extension of Q,, O be the ring of integers of
F, and m € O be a uniformizer in O. We denote F™ as the completion of the maximal
unramified extension of F, and O™ its ring of integers. For any integer n > 1, we
consider the general linear group GL, as well as its inner form D* over F', where D
is the central division algebra over F' with invariant % and D* is the reductive group
defined by inverse elements in D. Recall a formal O-module is a p-divisible group with
an O-action over a base over O, such that the induced action on its Lie algebra is the
canonical action of O. We consider the formal Lubin-Tate space M = [, ., M" over
O™ : for any scheme S € NilpO™, M\(S) ={(H,p)}/ ~, where

— H is a formal O-module over S,

— p: Hg — Hyg is a quasi-isogeny.
Here NilO™ is the category of schemes over O™ on which 7 is locally nilpotent, H is
the unique (up to isomorphism) formal O-module over F, with O-height n, and S is the
closed subscheme defined by 7 of S € NllpOm’ For i € Z, M is the open and closed
subspace of M such that the quasi-isogenies p have O-height i. There is a natural (left)
action of DX on M by Vb € D*,b: M — M, (H, p) — (H, pob™'). This action induces
non-canonical isomorphisms - .

Mi ~ MO,

while one knows that there is a non-canonical isomorphism

MO ~ Spf(O™[[z1, . .., an1]]).

Let M = M = [1,cz M’ be the Berkovich analytic fiber of M. By trivializing the
local system over M defined by the Tate module of p-divisible group, we have the Lubin-
Tate tower (Mg )kcar, ) over I, and the group GL,(F) acts (on right) on this tower
through Hecke correspondences. When K = K, := ker(GL,(0O) — GL,(O/7™0)) for
some integer m > 0, there is a regular model ./\/lm of Mk, by introducing Drinfeld
structures on O-modules. We will not use these models and we will work always on
the Berkovich spaces M. Note there are natural actions of D* on each M, which
commute with the Hecke action.

Fix a prime [ # p, let Q, (resp. @p) be a fixed algebraic closure of Q; (resp. Q,), and
C, be the completion of @p. For each ¢ > 0, we consider the cohomology with compact
support

H (Mg x C,, Q) = hﬂMHé(U x Cp, Z/I"Z) ® Q,
U n
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where the injective limit is taken over all relatively compact open subsets U C M, see
[23] section 4 and [42]. We have

Hé(-/\/lK X Cp?@l) = @HZ(MJK' X (Cpa@l)7
JEZ

where

dim@ZHci(MJ['( x Cp, Q) < 00

by theorem 3.3 in [42]. In fact we have also the usual [-adic cohomology groups H (M x
C,, Q) which are Poincaré dual to those H:(M%- x C,, Q;), and (cf. [77] lemma 2.5.1)

H(Mi xCp, Q) #0en—1<i<2n—1),

H (M) xC,,Q)#0=0<i<n—1.
The groups ‘ B
lim Hi (Mg x Cp, Q)
K

are natural smooth representations of GL, (F) x D* x Wg (Wg is the Weil group of
F), and the local Langlands and Jacquet-Langlands correspondences between the three
groups were proved realized in these groups, see [I1] and [36].

In [77] Strauch had proven a Lefschetz trace formula for regular elliptic elements
action on the Lubin-Tate spaces. More precisely, we consider

H (M x C,, Q) = Z(—l)zH}ﬁ(M%{ x Cp, Q).

i

Let v = (¢,b) € GL,(F) x D* such that g, b are both regular elliptic elements, gK g~ =
K, vy(detg)+v,(Nrdb) =0 (Nrd : D* — F* is the reduced norm and v, is the valuation
on F), then we have an automorphism

v My = M,
which induces morphism on cohomology groups
v HiMie x Cp, Q) = HiY(Mie x C,, Q).
We define

Tr(y|H; (M x Cp, @) := ) _(=1)'Tr(y|Hi(Mj x C,, Q).

Strauch proved the following trace formula

Theorem 3.1.1 ([77], Theorem 3.3.1). Under the above assumptions and notations, we
have

Tr(y|H} (M x C,, Q))) = # Fin(y| M x C,).

By applying the p-adic period mapping

_17
M — Prten,
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Strauch obtained a nice fixed points number formula for the quotient space Mg /7%
(theorem 2.6.8 in loc. cit.)

#Fix(7|(Mx /7%)(Cp)) = n#t{h € GLu(F) /7 K| guh = g},

which can be rewritten as some suitable orbit integral, see [60] proposition 3.3. This
Lefschetz trace formula enable Strauch to prove the Jacquet-Langlands correspondence
between smooth representations of GL,(F) and D* is realized the cohomology of the
tower (M) g, not involving with Shimura varieties as in [36], see section 4 of [77].

There are two main ingredients in Strauch’s proof of the above theorem. The first
is some careful approximation theorems of Artin in this special (affine) case and the
second is Fujiwara’s theorem of specialization of local terms ([3I] proposition 1.7.1).
In general case one has no sufficient approximation theorems, thus his method can be
hardly generalized. In [59] Mieda proved a general Lefschetz trace formula for some
open smooth adic spaces by totally working in rigid analytic geometry, and verified his
conditions in the special case of Lubin-Tate spaces hold, thus he can reprove the above
Lefschetz trace formula. Both Strauch and Mieda worked in the category of adic spaces,
and study the action of v on the boundary strata (outside the corresponding Berkovich
space) of the analytic generic fiber of M\m Their boundary stratas are at last linked to
the theory of generalized canonical subgroups (cf. [24] section 7), thus their approach
can hardly be generalized.

In this section we work directly in Berkovich spaces. We will consider Fargues’s
locally finite cell decomposition of Lubin-Tate spaces, cf. [25] chapter 1 and [26], and
the locally finite cell decomposition of the unitary group Rapoport-Zink spaces which
we obtained in the last section. By studying the action of + on the cells, we verify
the conditions in Mieda’s theorem of Lefschetz trace formula hold, by the dictionary
between the equivalent categories of Hausdorff strictly Berkovich k-analytic spaces and
adic spaces which are taut and locally of finite type over Spa(k, k°). (k is a complete
non-archimedean field and k° is its ring of integers.) Thus we can reprove the above
theorem, by different method. The advantage of our method is that, once we know there
exists a locally finite cell decomposition, with the fundamental domain compact, then
by studying the action on the cells we will easily verify Mieda’s theorem applies.

In the following until the end of this introduction, let the notations be as in section
2. For the definition of the subspaces U, C M, see subsection 3.4.

Theorem 3.1.2. For the fived v = (h,g) € G(Z,) x Stab(A) with h,g both regular,
elliptic, and v,(deth)+v,(detg) = 0, there exist a sufficient small open compact subgroup
K' C G(Z,) and a sufficient large number py >> 0, such that for all open compact
normal subgroups K C G(Z,) contained in K' and all p > py, we have the Lefschetz
trace formula

Tr(y|H; (U, x Cp, Q) = #Fia(y| M x C,),

which 1s well defined and finite. Since the right hand side is independent of p, we can
define B B
Tr(y|[H; (M x Cp, Q) := Tr(7[H: (U, x C,, Q1))

for p >> 0, and thus

Tr(y|Hi (MY x C,, Q) = #Fia(y| M x C,).
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We have a nice fixed points number formula for the quotient space Mg /p”. Note if
g € Jp(Q,) is a regular elliptic semi-simple element, for any = € Fix(g|F*(C,)), there
is an element h,, € G(Q,) which is conjugate to g over Q, defined by the comparison
isomorphism
Vp(Hy) ®q, Bar — Vi @1 Bar,

where y € 77!(z) is any point in the fiber of the p-adic period mapping 7 : M — F.

Corollary 3.1.3. Let the notations be as in the above theorem. If n is even we assume
that 2(v,(deth) + vy(detg)) is even. Fix compatible Haar measures on G(Q,) and the
centralizer of hyy, G, , = {h € G(Qp)|Why h'~' = hy,}. Denote the characteristic
function of AV K by 1,1 and the volume of K under the fired Haar measure by Vol(K).
Then we have the following formula

* VA o) Z 1h71K
TrH((Mic/p") < Cul) = D, VollGuy, /0°)On,. (77055)
z€Fiz(g|F*(Cp))

where Vol(Gy,,/p") is the volume of G, /p” by the induced Haar measure on
G(Q)/r",

1h*1K / 1]751[( 1
O T — 4 h $Z dz
h, (Vol(K)) Q)G Vol(K)( 90%)

is the orbit integral of

-1k
Vol(K)

over the conjugate class of hg ;.

Assume 7 is a supercuspidal representation of G(Q,), we consider

H(m) =) (~1)Homgg,) (lim H{ (Mg x Cp, Qy), ).

J=0

Assume that Homg(q,)(lim HI(Myg x C,,Q,), ) is of finite length, which should be
always the case, then H % is a well defined element in Grothg, (J,(Qy))-

Corollary 3.1.4. Let g € J,(Q,) be a regular elliptic semi-simple element. Assume that

w is of the form m = ¢ — Ind%:@p))\, for some open compact modulo center subgroup
K, C G(Q,) and some finite dimensional representation \ of K. Then we have

trum(g9) = Z tra(hg,z)-

x€Fiz(g|F*(Cp))

As remarked in the introduction 2.1 and the above, we should also prove an analogous
Lefschetz trace formula for basic Rapoport-Zink spaces for GSpy4, by their corresponding
locally finite cell decomposition and the compactness of the fundamental domain. The
Lefschetz trace formula for these Rapoport-Zink spaces for unitary groups or GSpy,
and (for n even in the unitary case) should enable us to prove the realization of local
Jaquet-Langlands correspondence between irreducible smooth representations of G(Q,)
and J,(Q,) in the cohomology of these Rapoport-Zink spaces. These will be the contents
of our future works. On the other hand, for the non-basic Rapoport-Zink spaces in these
cases, our previous results in section 1 say that their cohomology is essentially a parabolic
induction.
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3.2 The locally finite cell decomposition of Lubin-Tate spaces

In [25] and [27] Fargues found some locally finite cell decompositions of M. The
parameter set of cells in [25] is the set of vertices of some Bruhat-Tits building, and
these cells for K varies form in fact a cell decomposition of the tower (M) but not
for a fixed space M k. Therefore we will mainly follow the construction in [27], where the
parameter set is essentially some set of Hecke correspondences. To consider the group
actions on these cells, we will relate the parameter set with a Bruhat-Tits building by
borrowing some ideas from [25].

First consider the case without level structures. Fix a uniformizer II € D*, then
It M= ML

Let M?® be the semi-stable locus in M, i.e. the locus where the associated p-divisible
groups are semi-stable in the sense of [27] definition 4, see also definition 2.5.1, which is
a closed analytic domain in M. Let D = M?®*0 := M5\ M°, then M* =[[._, 117D
and D is the compact fundamental domain of Gross-Hopkins, see [25] 1.5. The main
results of [27] for our special case say that we have a locally finite covering

M = U TII'D,
GLn(O\GLn(F)/GLn(O)
i=0,...,n—1
where T.A is the image under the Hecke correspondence T' for a subset A, which is an
analytic domain if A is. In the following we shall actually work with one component
M?, so we consider its induced cell decomposition

MO = U (7.7 D) (Y MO).

TEGLyp(0)\GLn (F)/GLn(0)
= —1

1=0,...,n

For T € GL,(O)\ GL,(F)/GL,(0),i=0,...,n—1,
(T.I17'D) (Y M # 0 & —vy(detT) +i =0,

in which case

TI'D c M°.

Here (v, : F* — Z is the valuation of F* such that v,(7m) = 1) the composition
v, o det : GL,(F) — Z factors through GL,(0) \ GL,(F)/GL,(0O) — Z. Thus we have

M = U TII'D.
TEGLn(0)\GLy (F)/GLy(0)
1=0,...,n—1
—vp(detT)+i=0

Let K C GL,(O) be an open compact subgroup, mx : My — M be the natural
projection. We set
Di =y (D),

which is a compact analytic domain in M. Since the group GL,(O) acts trivially on
M, any element in this group will stabilize Dg. Thus for two Hecke correspondences
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Ty,T, € K\ GL,(F)/K having the same image under the projection K \ GL,(F)/K —
GL,(0)\ GL,(F)/K, we have T\II"" D = TRII'Dy; (II"" Dy = 7 (II7"D) since 7g
is D*-equivariant). Therefore, we have the following locally finite cell decomposition in
level K

My = U T D.

TeGLn,(O)\GL,(F)/K
1=0,...,n—1

We will denote the cells T.II"*Dg by

DT,Z’,K?

which are compact analytic domains. For any T € GL,,(O)\GL,(F)/K,i € Z, we denote
also Dr; ¢ = T.II""Dg. Since the action of F* on My through F* — GL,(F),z + z is
the same as the action of it on My through F* — D* 2z + 2, (2,271) € GL,(F) x D*
acts trivially on M. We have

DT,i,K - DTz7i+nvp(z),K~

If g € GL,(F) is an element such that gK¢g~' = K, and b € D* is an arbitrary element,
set

7= (9,0).
Then automorphism v : Mg — Mg naturally induces an action of 7 on the set of cells
of Mg :
’Y(DT,i,K) = DTg,ifvp(Nrdb),K~
Here Nrd: D* — F is the reduced norm.

For the component MY, for T € GL,(0)\ GL,(F)/K,i=0,...,n—1,
(T Dye) (| MY # 0 = —vy(detT) +i =0,

in which case ‘
TII "Dy € MY,.

Thus we have a locally finite cell decomposition

MY = U (7.7 Dge) (Y M%)
TEG L (O)\GLy(F)/K
1=0,...,n—1

= U Dr, k.

TeEGLn(O)\GL,(F)/K
i=0,....,n—1
—vp(detT)+i=0

In fact for any i € Z,T € GL,(0) \ GL,(F)/K such that —uv,(detT) +i = 0, we have
Dr;x C MY with the convention above. However one can always by multiplying with
some z € F* to reduce to the cases 0 < i <mn — 1. Let v = (¢,b) € GL,(F) x D* be
such that gKg' = K, v,(detg) + v,(Nrdb) = 0, then the action of v on My induces
v MY — MY In this case v acts on the set of cells of MY as in the same way as
above.

To understand better the parameter set of cells of MY, we look at some ideas
from [25]. Consider the embedding G,, — GL,, x D*,z + (z,27!) of algebraic groups
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over F. Let B(GL,, x D*,F) be the (extended) Bruhat-Tits building of GL, x D*,
and B = B(GL, x D*,F)/F* be its quotient by the action of F’* through the above
embedding. The set B° of vertices of B, which we define by the quotient of vertices in
B(GL, x D* F), can be described as the set of equivalent classes

{(A, M)|A C F"is an O-lattice , M C D is an Of-lattice}/ ~,

where
(Ay, M) ~ (Mg, My) < 3i € Z, Ay = Ay®, My = ' My,

see [25] 1.5. We can understand B in this way : the (extended) Bruhat-Tits building of
GL,, over F is the product B(PGL,, F') x R, while the (extended) Bruhat-Tits building
of D* over F is B(D*, F) ~ R, then by construction

B =B(GL, x D*,F)/F* ~ (B(PGL,,F) x R x R)/ ~,

where (z,s,t) ~ (2,8, t') & v =12',s —§ =t —t = nr for some r € Z. Thus any
point [z, s,t] in B can be written uniquely in the form [z, s', | for z € B(PGL,, F),s" €
R,# € [0,n). The elements (g,b) € GL,(F) x D* act on B by V[z, s,t] € B,

(9,0)[x, s,t] = [g7 "2, s + v,(detg), t + v,(Nrdb)].

If we consider the right action of GL,(F) on B(PGL,, F) by g := g 'z, then we can
also write (g,b)[x, s,t| = [xg, s + v,(detg), t 4+ v,(Nrdb)].

On the other hand, consider the action of F* on GL,(0)\ GL,(F) x D*/Of by
2(GL,(0)g,dO}) = (GL,(0)gz, 27 'dOY), ¥z € F*, then the quotient set

(GL,(O)\ GL,(F) x D*JOf)/F*

is naturally identified with the set B° after fixing the vertex [O™ Op] € B
For an element [GL,(O)g,dO}], the associated point in B’ can be written as
[GL,(O)F*g,v,(detg), vy(detd)]. Here GL,(O)F*g € B(PGL,, F) by fixing the ho-
mothety class of O". Now let K C GL,(O) be an open compact subgroup, then the
set

Tk == (GLu(0) \ GL(F)/K x D* [OF)/F"

can be identified with the image BY/K of B in the quotient space B/K. If v = (g,b) €
GL,(F) x D* such that gKg~' = K, then v acts on the set Zx by [T, d] — [Tg,bd).
There are two natural projection maps Zx — (GL,(0)\ GL,(F)/K)/F* and Zxx —
(D*/O3)/F* ~Z/nZ. There is as well as a map

GL,(O)\ GL,(F)/K x D*/O} — Z
(T,d) — —vy(detT) — v,(Nrdd).

Let (GL,(O)\GL,(F)/K x D*/O3)° be the inverse image of 0 under this map. Since the
action of I'* does not change the values of the above map, it factors through Zx — Z.
In fact there is a well defined continuous map

p:B—R
[z, 8,t] — —s —t,
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with each fiber stable under the action of K. The above map is induced by ¢. For the
v as above with further condition that v,(detg) + v,(Nrdb) = 0, it stabilizes the subset

2 = (GL,(0)\ GL,(F)/K x D*/O})°/F*
for the above action. For the map ¢ above, we see that ZY% is identified with the quotient
set 07 1(0)°/K of vertices in ¢p~1(0).
For any element [T, d] € Zg, the cell [T,d|Dk is well defined, which is what we
denoted by Dy _y,(nrdd),x above. As before we denote [T, d|Dg as

Dira).x-

Then we can rewrite the cell decompositions as

= J Drax

[T,d|€Tx

MY = U Dirq,x

[T,d]€Zd,

For v = (g,b) € GL,(F) x D* as above, it acts on the cells in the way compatible with
its action on Zg :

’Y(D[T,d],K) = D[Tg,bd],K-

Recall there is a metric d(-,-) on B, so that (GL,(F) x D*)/F* acts on it by
isometries. If d'(+,-) is the metric on B(PGL,, F), then for two points [z, s, ], [/, s, ']
with x,2" € B(PGL,, F),s,s' € R t,t' € [0,n) we have

d([z, s,t], [2, ', 1)) = Vd'(z,2')2 + (s — )2 + (t — t/)2.

The group K acts on B through the natural morphisms K — GL,(F) x D* —
(GL,(F) x D*)/F*. There is an induced metric d(-,) on the quotient space B/K :

1 L . n oo o
d(zK,yK) := k,}cr’ng d(xk,yk") = ég}f{ d(zk,y) = klg}f(d(x,yk), VoK, yK € B/K,

the last two equalities come from d(xk,yk’) = d(zk(k')™',y) = d(z,yk'k™"'). Since K
is compact, one checks it easily that this is indeed a metric on B/K. With this metric,
Tk, IY are both infinity discrete subset of B/K, and any closed ball in B/K contains
only finitely many elements of Zx and Z%. We will directly work with the induced metric
space

Ix = B/K.

For v = (¢,b) € GL,(F) x D* with gKg~! = K, one can check by definition of d that
the above action of v on Zy is isometric :

d(yz,yz) = d(z, ), Vo € Tk.

Note that for [Tl,dl], [Tg,dg] < IK, D[Tl,dﬂ,KﬂD[Tg,dg],K 7é @ 1mphes that vp(detTl) -+
'UP(NT’ddl) = Up<d€tT2> + Up(N?”ddz). If we write [Tl,dl] = [IlK, 81,t1],[T2,d2] =
[JZQK, Sg,tg] with T1,T9 € B(PGLn,F),Sl,SQ €7 C R,tl,tg € [O,n)ﬂZ (16 El’r’l,?"g €
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Z,s.t. vy(detT;) = s;+nr;, v,(Nrdd;) = t;+nr;,i = 1,2), then s14+t; = so+1g,51 — 53 =
ty —t; € [1 — n,n — 1], the distance

E([Tl, dl], [TQ, dQ]) = klglf( \/d,<$1, .Z’Qk?)z + 2(81 — 82)2

just depends on d'(z1K, 25 K) for the induced metric d’ on B(PGL,, F') defined in the
same way as d. By the construction of the locally finite sell decomposition of Mg, we
have the following proposition.

Proposition 3.2.1. There exists a constant ¢ > 0, such that for any [T1,d:], [Ty, ds] €
Ty with d([T1,dq], [Ty, ds]) > ¢, we have

Diry ), K ﬂ Diryan),x = 0.

Proof. We need to prove that, there exists a constant ¢ > 0, such that for any [T, d| € Z,
and any [T’,dl] S {[T’, d/] € IK’D[T’,d’},KﬂD[T,d],K 7é @}, we have 8([T, d], [T’,dl]) < c
This just comes from the construction of the above locally finite cell decomposition of
M, and the definition of d. We just indicate some key points. First, for any fixed choice
of fundamental domain Vi in B for the action of K, by definition Vz,y € Vi, d(z,y) >
d(zK,yK). Next, By the proof of proposition 24 of [27], and the Cartan decomposition
GL,(O)\GL,(F)/GL,(O) ~Z = {(a1,...,a,) € Z"|ay > --- > ay,}, for any fixed the
Hecke correspondence T' € GL,(0)\ GL,(F)/GL,(0),i € Z, the finite set

Ay = {[T".j] € (GL(0) \ GL,(F)/GL,(0) x Z)/F*|T.II"D(|T' D # 0}

is such that V[1",j] € Ay we have v,(detT”) + j = vy(detT) + i; and if T' corre-
sponds to the point (aq,...,a,) € Z7, then for j € Z/nZ fixed, the set T" € GL,(O) \
GL,(F)/GL,(O) with [T",j] € Ay, correspond to the points (a},...,a;) € Z such
that > p_,a), =,  ax+i—7j (mod nZ),|ay —a;| < Cforall k=1,...,n,and C >0
is a constant doesn’t depend on [T, i]. From these two points one can easily deduce the

proposition for K = GL,(0O), and the general case will be obtained as soon as the case
K = GL,(O) holds. O

We remark that, in [24] Fargues defined an Opx-invariant continuous map of topo-
logical spaces
M°® — B(PGL,, F)/GL,(0),

and identified the image of D under this map. However, this map depends quite on our
special case, and in general there is no such a map from Rapoport-Zink spaces to Bruhat-
Tits buildings. For any open compact subgroup K C GL,,(O), there is also a continuous
map M" — B(PGL,, F)/K, and we have a commutative diagram of continuous maps
between topological spaces

MY B(PGL,,F)/K

| |

M° — B(PGL,, F)/GLy,(O).

These maps are Hecke equivariant, thus compatible with the cell decomposition of M.
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3.3 Lefschetz trace formula for Lubin-Tate spaces

In this subsection v = (g,b) € GL,(F)x D* is an element such that both g and b are
regular elliptic semi-simple, gKg~' = K and v,(detg) + v,(Nrdb) = 0. Since 7 is regular
elliptic, the set of y-fixed vertices (B°)” is non empty, cf. [T1]. Let 0 be a fixed choice of
point in (B°)?, and o € T be its image in the quotient space. One can take the above
choice of 0 so that 0 € p=1(0)°, 0 € Z%. Then (o) = o by the action 7 : Z% — Z%. For
any real number p > 0, we consider the subset of Z%

4, = {e € T d(o,2) < p},
which is a finite set for any fixed p. Moreover since (o) = o and d is y-isometric, we
have v(A4,) = A,.
Definition 3.3.1. For any finite set A C I%, we define two subspaces of MY
U D[T,d],K?
[T,dleA

Us=My - |J Drax

[T,d]¢ A

Proposition 3.3.2. Uy is an open subspace of MY, while Vy is a compact analytic
domain, and Uy C Vy.

Proof. Since M%—U, = U[T’ d¢A Dir.q),x, which is a locally finite union of closed subsets,
therefore it is closed, and Uy is open. V4 is a finite union of compact analytic domains
thus so is itself. The inclusion simply comes from the fact M% = V4 MY —U,). O

When p — oo, the finite sets A, exhaust Z}.. For any p > 0, we denote U, =
Ua,,V, = Va,. Since U, is relatively compact, we can compute the cohomology of MY
as

H(My x C,,, Q) = @Hi(Up x Cp, Q).
P
Moreover, for p >> 0 large enough, the cohomology groups H, WU, x C,, @Q,) is constant
and bijective to Hi(MY x C,,Q,), see proposition 3.3.5.
For the y above, we consider the action y : M9 — MY Since y(A4,) = A,

V(Up) = Um'Y(Vp) =V,

7 thus acts also on the cells contained in V,, : ¥(Dir,q,x) = Dirgpa),x- Passing to coho-
mology, 7 induces an automorphism

v Hz(Up X (Cp,©l) — Hé(Up X (Cpa@l)'

Consider B . B
H: (U, x Cp, @) = Y (=1)'Hi(U, x C,, @)
as an element in some suitable Grothendieck group, and the trace of ~

Tr(y|H; (U, x Cp, @) = Y _(=1)'Tr(7|H{(U, x C,, Q)).

%
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Let Fix(y|MY% x C,) be the set of fixed points of v on MY% x C,, then each fixed point
is simple since the p-adic period mapping is étale (cf. [T7] theorem 2.6.8).

We will use the cell decomposition of MY, to verify that the action of + satisfies
the conditions of Mieda’s theorem 3.13 [59], thus deduce a Lefschetz trace formula. In
fact we will use a Berkovich version of loc. cit. Recall that, if k£ is a complete non-
archimedean field and k° is its ring of integers, then the category of Hausdorff strictly
k-analytic spaces is equivalent to the category of adic spaces which are taut and locally
of finite type over spa(k, k°), see [41] chapter 8. If X is a Hausdorff strictly k-analytic
space, we denote by X% the associated adic space, which is taut and locally of finite
type over spa(k, k°).

Theorem 3.3.3. Let the notations and assumptions be as above. There exist an open
compact subgroup K' C GL,(O) and a real number py, such that for all open compact
subgroup K C K' which is normalized by g and all p > po, we have

TT(’V‘H:(UP X Cm@l)) = #F2x<7|M(I)( X (Cp)~

For p sufficiently large, the left hand side is just Tr(y|H (M x C,,Q,)).

Proof. Since g € GL,(F) is elliptic, we first note the following fact : for any sufficiently
small open compact subgroup K C GL,(O) such that gK¢g~! = K, we have

d(z,vz) — oo, when z € IV, d(o0,z) — .

In fact, since o,z € ZY%, write 0 = [0K,—s,s],z = [2/K,—t,t] with o, 2’ €
B(PGL,,F)°, then vy(z) = [¢'gK,v,(detg) — t,v,(Nrdb) + t] = [2/gK,—t,t']. If we
denote the metric on B’ = B(PGL,, F) by d'(-,-) and the induced metric on B'/K by
d' as before, then we just need to prove that

d'(v'K,7'gK) — oo, when 'K € (B))°/K,d (¢ K, 7' K) — oo.

To prove this statement, we first work with B’ itself by not the quotient. Since g is
elliptic, the fixed points set (B’)? is nonempty and compact. Moreover, for K sufficiently
small, (B)9 = (B')Y for any ¢ € g (cf. the proof of lemma 12 in [71]). For o’ € (B')¢
fixed, a simple triangle inequality shows that d'(z’, (B')9) — oo when d'(2/,0) — oo,
since (B')9 is compact. On the other hand, for any automorphism o of B’ with (B')7 # 0,
there exists a constant 0 < # < 7 which just depends on B’ and o, such that

d'(2',ox") > 2d'(«, (B)7) sin(g),

see [70] proposition 2.3. In particular, d'(z’,2'¢’) — oo when d'(¢/,2') — oo for any
g € gK. As K is compact this deduces the above statement.

For p sufficiently large,
M(])( - Up - U D[T,d],K
[T,d]e1d —A,

V,-U,= U Fra

[T, dleA,—Ay_c
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where for [T, d] € A,
Firag = Drax [ Mk —Up),

which is nonempty if and only if [T,d] € A, — A,_. by the above proposition, in which
case Firq is a compact analytic domain in D g x C V,. For K sufficiently small, p
sufficiently large and [T, d] € Z% — A, ., by the lemma d([T, d],v([T,d])) > ¢, thus

p—C>

Dirai [\ V(D) =0, Frra [ \V(Firag) =0 (for [T,d] € A, — A, ).

To apply Mieda’s theorem, we pass to adic spaces. We have the locally finite cell
decomposition of the adic space (MY )

MO ad _ U DTd]K

[T,d]€ZY,

where each cell D[T d.K is an open quasi-compact subspace, D[T ALK N D[T2 do), K¢ +) <
Diryan.k (N Diyasx # 0, and the action of v on (M%)* induces an action on the
cells in the same way as the case of Berkovich analytic spaces. By [41] 8.2, U;‘d is an
open subspace of (M%) which is separated, smooth, partially proper. On the other
hand, Vp“d = U[T7 dea, Df%i, d.K is a quasi-compact open subspace. Consider the closure

W = Upraea, D%ﬁl a.x of Vedin (M%), which is a proper pseudo-adic space. We

know that Ve (resp. D[T ) &) is the set of all specializations of the points in Vp“d (resp.
Dde 4.5¢)- Moreover 7 induce automorphisms 7 : W — W, Ved — yoed god — U;}d.

Since V4, c Us* € VI, we have Vad — Vod = U[T,d]eAp—Ap,c<Df17(“j,d},K - D%dLK). Note

D[T1 d1],K ﬂ D[Tg da],K 7£ 0= D[Tl di],K ﬂ D[T2 da],K 7é 0.

For [T,d] € A, — A,—¢, let Wipg = D[ K D[Td} By the paragraph above, for
p >> 0 we have y(Wirq) \Wirag = 0. One sees the conditions of theorem 3.13 of [59]

hold for V¢ and its compactification Vo4, i.e.

Tr(7|H; (V4 x C,, Q) = #Fix(7|V;4 x C,) = #Fix(y|V, x Cp).

Here and in the following Vp“d x C, = Vp“d x spa(C,, Oc,), and similar notations for
other adic spaces. By [42] proposition 2.6 (i) and lemma 3.4, we have

Tr(y|H: (V" x Cp, Q) = Tr(y[HZ (U x Cp, @) + Tr(y[HZ(V, = Up?) x Cp, Q).

By the paragraph above one can see it easily by the induction argument of the proof of
proposition 4.10 in [59] that Tr(y|H; (Ve —Us) x C,,Q;)) = 0. Thus we can conclude
by Huber’s comparison theorem on compactly support cohomology of Berkovich spaces
and adic spaces,

Tr(y| H: (U, xC,, Q) = Tr(3|H: (U2 C,, Q))) = Tr(2| H: (VEAxC,, Q) = #Fix(+]V,xC,).
But as reason above for p >> 0 there is no fixed points of v outside V,, x C,,
#Fix(v[V, x C,) = #Fix(7| M} x Cp).

The last statement in the theorem comes from the following proposition 3.3.5.
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Remark 3.3.4. In fact we can use V, to compute the cohomology of MY directly when
passing to adic spaces :

HE(M(I)( X (Cpa@l) = Hé((M(I)()ad X (Cpa@l) = @Hé(‘/;)ad X Clh@l)a Vi > Oa
P

here the second equality comes from proposition 2.1 (iv) of [42]. Here we prefer to transfer
back the results to Berkovich spaces, so we insist on working with the open subspaces U,.

In fact, the formal models M\(}( are algebraizable : they are the formal completion
at closed points of some Shimura varieties as in [36], or one can find the algebraization
directly as in theorem 2.3.1 in [77]. So we have for all integer i > 0

Hé(M?{ X (Cpa@l) = (@ Hé(M(I)( X CPaZ/lTZ)) ®Zz @17

and similarly for the cohomology without compact support. We have the following propo-
sition.

Proposition 3.3.5. Let the notations be as above. Then for p >> 0 and all integer
1 > 0, we have bijections

Hé(M?{ X (Cpa@l) = Hz(vpad X Cp?@l) = Hé<Up X Cpa@l)'

Proof. This comes from the description of V,, and Huber’s theorem 2.9 in [43]. Recall the
fundamental domain D C M is associated to an admissible open subset D9 C (M?)"%9.
On the rigid analytic space (M)" there is a natural coordinate x1, ..., z,_1, such that
for z = (z1,...,2,1) € (M®)™, the Newton polygon of multiplication by 7 on the
formal group law associated to w-divisible group H, is the convex envelope of the points
(¢*,v(x:))o<i<n, where zg = 0,2, = 1,q = #O/m, cf. [25] 1.1.5. Under this coordinate

D' ={r = (21,...,2p_1) € (M) Yv(z;) > 1~ i,i =1,...,n—1},
n

cf. loc. cit. 1.4. Thus after base change to C, it is isomorphic to a closed ball. In [24]
section 5 Fargues had described the Newton polygons of the points in a Hecke orbit.
In particular at level K = GL,(O) the admissible open subsets Vp”? x C, are locally
described by closed balls. Then this is also the case for any level K. Now pass to adic
spaces, Vpad x C,, are quasi-compact open subsets and locally described by B., = {z €
(MO)2d % Cpllzi(2)] < €,}. Since Us? x C,, (M?)* x C,, can be described as unions of
ascending chains of quasi-compact open subsets locally in the above forms, by theorem
2.9 of [43] and the comparison theorem 8.3.5 of [41] one can conclude. O

Let v = (9,b) € GL,(F) x D*, with g,b both regular elliptic and gK¢g~* = K. For
the quotient space M /7% we have a nice fixed points formula by considering the p-adic
period mapping, which is non zero if and only if v,(degg) + v,(Nrdb) is divisible by n.
Fix compatible Haar measures on GL,(F) and G, (see below), we can also write it as
some suitable orbit integral ([77] theorem 2.6.8, [59] proposition 3.3).

#Fix(7| (M /77) x Cp) = n#{h € GL,(F)/n" K| gyh = g7}
1,1
:nVoleWZ/ 9K (21 gy2)dz,
( g / ) GLn(F)/ng VOZ(K)( gb )

where g, € GL,(F') is an element stably conjugate to b € D*, G,) is the centralizer
of gy in GL,(F), Vol(K) (resp. Vol(G,,/7")) is the volume of K (resp. G, /7% for the
induced Haar measure), and 1,-1x is the characteristic function of g~'K.
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3.4 Lefschetz trace formula for the unitary group Rapoport-
Zink spaces

In this subsection we study some cohomological applications of the locally finite cell
decomposition of the tower (Mg)xcaz,) studied in section 2, as in the same way for
Lubin-Tate spaces.

We first review some basic facts. Fix a prime | # p. Let Q; (resp. @p) be a fixed
algebraic closure of Q; (resp. @Q,), and C, be the completion of @p for its valuation which
extends that of Q,. For any open compact subgroup K C G(Z,) and integer j > 0, the
j-th cohomology with compact support of My x C, with coefficient in Q is

HI(Mg x C,, Q) = hglgnHi(U x Cp, Z/I"L) ® Q,
U n

where the injective limit is taken over all relatively compact open subsets U C M, see
[23] section 4. Recall in section 2.2 we introduced the group A = Hom(Xg (G),Z) ~ Z
and there is a mapping

%:./T/l\—>Z,

with the image A’ is Z if n is even and 27Z if n if odd. This mapping satisfies that
#(gx) = wy(g) + »(x)

for all g € J,(Qp),z € M. Here wy : Jy(Qp) — A is defined by < wy(z),x >=
up(i(x)(x)) where i : X§ (G) — X§ (Jp) is the natural morphism between the two
groups of Q,-rational characters. We denote

=[] kerli(x)l,

x€Xg, (@)
which we consider as a subgroup of J,(Q,). Here

i)y — Z
= vp(1(x)(2))-

We have a decomposition

M= ] Mk

1€Z, in even

as the case of M by considering the height of quasi-isogenies, and in fact M%, = 7' (M?)
for the projection 7x : My — M. The group J,(Q,) acts transitively on A’ and MY, is
stable under the group .J; for the action of J,(Q,). We have the equalities for cohomology
groups

H(Mg xC, Q)= @ HIMj x C,, Q) = e-Ind 3™ HI(M x C,, Q)

1€Z, in even

for the last equality see lemme 4.4.10 of |23]. In fact there are also actions of G(Q,)
and Wg on A/, where E is the reflex local field. Let (G(Q,) x J,(Q,) x Wg)! be the
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subgroup of G(Q,) x J,(Q,) x Wg which acts trivially on A’. Let K varies as open
compact subgroup of G(Z,), we have equalities of G(Q,) x J,(Q,) X Wg-representations

lig H(Mx x C,,Q) = €D lim HI(Mjc x C,, Q)
K 1€Z, in even K

p) X Ty (Qp) X W,
= c-Indg g e IQHJ(MO x Cp, Qy),

see remarque 4.4.11 of loc. cit. In the following we will forget the action of Wg and just
consider the cohomology groups as G(Q,) x J,(Q,)-representations.

The dimension of HJ (MY x (Cp,@l) as Q,-vector space is infinite. However, as J}-
representation, it is of finite type, see loc. cit. proposition 4.4.13. As in section 2.10,
we fix a A € Ly such that t(A) = #,,4,. Recall the subscheme M, C M, which is
an irreducible component of M? ;. and the set of all irreducible components of M2,
is exactly {gMp = Myalg € J¥(Q,)/Stab(A)}. We have a locally finite covering by
open subsets

M = U gsp™ (Ma).

9EJ"(Qp)/Stab(A)

We have J(Q,) C Ji, and the action of J¥"(Q,) on Ly naturally extends to an
action of J}, and we still denote by Stab(A) the stabilizer of A in J;. We set U :=
T (sp7H(My)) € MY, then by theorem 3.3 (ii) of [41]

dim@lﬂg(U x C,, Q) < 0.
We have a J}-equivariant spectral sequence

B = P HUU() x C,, Q) = HIMMY x C,,Q),
aCJg/Stab(A)
#a=—p+1

where p < 0,0 < ¢ <n—1,U(a) =\, gU. The J; action on EP* is
VYhe Jb, h: Hi(U(a) x Cp, Q) = HI(hU(a) x C,p, Q).

Denote Ko = [,cq 9Stab(A)g™", then HI(U(a) x C,,Q,) is a smooth Q,-representation
of K,, and E{"? can be rewritten as
EP = @D  chndp H(U() x C,,Q)).

[e]eJy\(J; /K)~PHt

Since (9U)ge/stab(a) 18 @ locally finite covering of M,

#{la] € Jy \ (J;/Stab(A))PHHU(a) # 0} < o0,
i.e. the above direct sum has just finitely many non zero terms.

Let v = (h,9) € G(Q,) x J4(Q,) be a fixed element with both h and g regular
elliptic. Then there is a fundamental system of neighborhoods of 1 in G(Q,) consisting
of open compact subgroups K C G(Z,) which are normalized by h. From now on let
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K C G(Z,) be a sufficiently small open compact subgroup such that hKh™! = K.
Consider the locally finite cell decomposition of MY

M = U (T.g'Dr) [\ M%)
TeG(Zp)\G(Qp)/K
g’eJl‘fer (Qp)/Stab(A)

if n is odd, and
M = U  (TeldDr) (M%)
TeG(Zp)\G(Qp)/K

7=0,1
g'€Jde(Qp)/Stab(A)

if n is even. Here by replacing D by D’ in the proof of theorem 2.10.8 we can assume D
is compact. Thus the notation D in this section is a little different from that in previous

sections. If n is odd, for any ¢’ € J¥"(Q,)/Stab(A),T € G(Z,) \ G(Q,)/K,
(T.g'Dr) (Y Mk # 0 v,(detT) =0,

in which case we have
T.9Dg € M.

If n is even, for any ¢’ € J#(Q,)/Stab(A),j =0,1,T € G(Z,) \ G(Q,)/K,
J ol 0 2 .
(T.g19'Dk) mMK #0 < —ﬁvp(detT) +j=0,

in which case we have .
T.9gdDx € MY

Thus we can rewrite the locally finite cell decomposition of MY as

Mg( = U T.gIDK
TeG(Zp)\G(Qp)/K
vp (detT)=0
g'€J2e(Qp)/ Stab(A)

if n is odd, and
MY = U T.919'Di
TeG(ZLp)\G(Qp)/ K

7=0,1,— 20, (detT)+5=0
g'€J{T(Qp)/Stab(A)

if n is even. We will write the cells T.¢'Dx and T.¢l¢'Dx as Dry kx and Drj g i Te-
spectively. If n is odd, for any T' € G(Z,) \ G(Q,)/K,j € 2Z,¢" € J¥"(Q,) such that

—20,(detT) + j = 0, we denote also

@ # DT,j,g’,K = Tp%ngDK C M?{
If n is even, for any T € G(Z,) \ G(Q,)/K,j € Z,g € J¥(Q,)/Stab(A) such that
vy(detT) 4+ j = 0, we denote also

T.p7 gDy (7 even)

@ D ol = —j
7 Drig.x {T.plzglg’DK (7 odd),
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which is a compact analytic domain in MY. Since (z,27') € G(Q,) x J,(Q,) acts
trivially on My for any 2z € Q;, with these notations we have

— — X
Dry k = Drz.-1¢9. ks Drjg.x = Drzjio ).k, V2 €Q,

For the v = (h, g) above we suppose further v,(deth) + v,(detg) = 0. Then y(MY%) =
M0Y.. To describe the action of v on the cells, we have to introduce some more natural
parameter set of cells.

Consider the product G' x J, as reductive group over Q,, then G,, acts on it through
the imbedding z — (z, 2). Let B(G x J,,Q,) be the (extended) Bruhat-Tits building of
G x J, over Q,, and B = B(G x Jp, Qp)/@; be its quotient by the action of Q' through
the embedding above. More precisely, if B(G*,Q,) (resp. B(J¢,Q,)) is the Bruhat-
Tits building of the adjoint group G (resp. J2?) over Q,, which is isomorphic to the
Bruhat-Tits building of the derived group G%" (resp. Ji") over Q,, then the (extended)
Bruhat-Tits building of G (resp. J,) over Q, is B(G*, Q,) x R (resp. B(J,Q,)) over
Q,. The quotient building B is

B~ (B(G",Q,) x R x R x B(J;",Qp))/ ~,
where
(‘1:7 87 t? y) ~ (x/7 5/7 tl? y/) @
r=1y=vy,s—5 =t —t=r(nodd) or 2r( n even),for some r € Z.

Any point of B can be written in the form [z,s,t,y] = [z, t',y] where ' € R/’ €
[0,1)(n odd)or [0,2)(n even) are uniquely determined. The action of G(Q,) x J,(Q,) on
B is given by

V(h,g) x G(Q,) x J,(Q,), (h,g)[z, s, t,y] = [h "2, s+ %Up(deth), t+ %vp(detg),gy].

If we consider the right action of G(Q,) on B(G*,Q,) by zh := h™'z, we can write
(h,9)[z,s,t,y] = [wh, s+ 2v,(deth), t + 2v,(detg), gy]. The sets of vertices of B(G*, Q,)
and B(J#4, Q,) can be described as in section 2.7, as certain sets of lattices in Q.- By
fixing a choice (Z;Q, A) with t(A) = t,42, We can identify the following set

(G(Zp) \ G(Qp) x Jp(Qp)/Stab per g,y (A))/Qy

with a subset of the set of vertices B° (the quotient by Q) of vertices in B(G x Jy, Qp)),
such that the projections to B(G*,Q,)° and B(J2,Q,)° are vertices of types determined
by Z7>, A respectively. In the following we will simply denote Stab Jger(Qp)(A) by Stab(A)
as in section 2.10. For any open compact subgroup K C G(Z,), we can identify

T = (G(Zy) \ G(Qp)/ K x Jp(Qp)/Stab(A))/Qy

with a subset of B°/K C B/K. We can write an element of Zx in the form [T, ¢'] =
[z, 2v,(detT), 2v,(detq’),y] for some z € B(G*,Q,)% y € B(Ji?, Q,)° uniquely deter-

n

mined by 7" and ¢'. There is a map
G(Zp) \ G(Qp)/ K x Jp(Qy)/Stab(A) — Z

(T, = == (ty{detT) + vy(detg'),
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with image Z if n is even and 27Z if n is odd. Let (G(Z,) \ G(Q,)/K x J,(Q,)/Stab(A))°
be the inverse image of 0, then Q. acts on this subset. We denote

Ty = (G(Z,) \ G(Qy)/ K x Jy(Q,)/Stab(A))°/Qy".
In fact there is a well defined map
p:B— R
[z, 8,t,y] — —s — t,
with each fiber stable for the action of K. Then we have Z0, C »~'(0)°/K.
Now for any [T, ¢'] € Zk, the subset

D[T,g’},K = T.g/DK C MK
is well defined, which is a compact analytic domain. If [T ¢'] € T,
D[T,g’],K C M[}{

We can rewrite the cell decomposition of My and MY as

Mg = U Dirgn.x
[T,g/}EIK
Mg = U Droix

[T.9'1€T

For v = (h,g) € G(Q,) x J,(Q,) such that hKh™' = K, it induces an action on Zx by
[T,¢'] — [Th,gg']. On the other hand the automorphism v : My — My induces an
action of v on the cells compatible with its action on the parameter set above :

Y(Dirgn.x) = Dirhggn i -

If we assume as above v,(deth) + v,(detg) = 0 then v acts on Zj; by [T, ¢'] — [Th, g¢'],
and the automorphism v : M% — MY induces a compatible action on the cells as
above.

Recall there is a metric d on the building B. If we denote the metrics on
B(G" Q,) and B(Jf* Q,) by di,dy respectively, for [z,s,t,y], [2',s,t,y] € B with
t,t' €10,1)(n odd) or [0,2)(n even), we have

d([z, s, t,y], [z, 8", 1, ¢]) = \Vdi(z,2')2 4+ da(y,y/)2 + (s — )2 + (t — t/)2.

It induces a metric d on the quotient space B/K :

dzK,yK) = inf d(k yk') = inf d(zk,y) = inf d(z,yk).

Since K C G(Z,) is compact, one checks it easily this is indeed a metric. For any
fixed p > 0 and 0 € B°/K, the closed ball B(o, p) of B/K contains only finitely many
points of the discrete subsets B/ K, Iy, Z.. For the v = (h,g) € G(Q,) x J,(Q,) with
hKh~! = K, the action of v on the parameter set Iy is isometric :

d(yz,vz) = d(z, 1), Vo € Ik.
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Note for any [T1, ¢1], (1%, 92) € Lk, Diry g1,k (1 Pimngo),x 7 O implies that v,(detT}) +
vp(detgr) = vy(detTy) + vy(detgs). If we write

[T1, 1] = [21K, s1,t1, 1], [T3, 2] = 22K, 82, 12, o]
with
z1, 29 € B(G“Q,), y1,v2 € B(JP,Q,), 81,80 € Z C R, ty,t5 € {0}(n odd) or{0, 1}(n even),
(i.e. Iry,re € Z, s.t. %vp(detTi) = s, + nr;,v,(detg;) = t; +nr;, i = 1,2,) then sy + ¢, =
So + tg, 81 — Sg =t — t; € [—1, 1], the distance
d([Th, 1], T2, go]) = Inf Vdi(z1,29k)? + da(y1,52)? + 2(s1 — 52)?

just depends on d, (z, K, oK) and da(y1, y2) : for the induced metric d; on B(G*,Q,)/K

defined in the same way as d, and the metric dy on B(J#, Q,).

Proposition 3.4.1. There exists a constant ¢ > 0, which depends only on the lo-
cally finite cell decomposition of My, such that for any [T1, 1], [Ts, g2) € Zk, if

d([Tlagﬂ, [T2,gz]) > ¢ then we have
D[ThglLK ﬂID[TQ,gQ],K = (.

Proof. We need to prove that, there exists a constant ¢ > 0, such that for any [T, g| € Z,
and any [T, g'] € {[T",g'] € Tx|Dip ).k N Dirgiic # 0}, we have d([T.g], [T, ) < .
This proposition is in fact implicitly contained in last section. We just indicate some
key points here. First, if Vx C B is any fixed fundamental domain for the action of
K, then Vz,y € Vi by definition we have d(zK,yK) < d(z,y). Next, in the proof of
proposition 2.10.2 (and also in remark 2.10.7), we see the T' € G(Z,) \ G(Q,)/G(Z,)
such that D(T.D # 0 corresponds to elements (a1,...,a,) € X, (A)y C Z% such
that a; < C for : = 1,...,n and C is a constant independent of T". Also by results of
Vollaard-Wedhorn which we reviewed in section 2.7, the vertices A’ = ¢’A € B(J*", Q,)°
such that D ¢'D # 0 satisfy A’(JA # 0, i.e. they share some common neighborhood,
therefore there exists some constant C” independent of A, A’ such that d(A, A’) < C’ for
the metric d on B(J#",Q,). Then one can easily deduce the proposition for the case
K = G(Z,), and the general case will follow as soon as this case holds. O

From now on we assume v = (h,g) € G(Q,) X J,(Q,) such that both h and g are
regular elliptic semi-simple, hKh™' = K and v,(deth) 4+ v,(detg) = 0. Recall the v-fixed
vertices (B°)7 is non empty (cf. [T1]), we fix a choice of y-fixed vertex 0, and let o be
its image in BY/K. We can take a choice 0 € ¢1(0)° so that 0 € ¢™1(0)°/K (see the
above ). Then v(0) = o for the induced action v : B°/K — BY/K. For any p > 0, we
consider the subset in ZY defined by intersection of Z% with the closed balls of radius p
with center o in B/K :

A, ={z € B/K]| d(0,z) < p}(Z%,

which is a finite set, and (4,) = A, since v(0) = o, d is y-isometric, and (Z%) = Z%..
For any finite set A C Z%, we consider
Va= U Dirgn.x
[Thg'leA
Urs=Mi = |J Drgrx

[T.9']¢A



122 CELL DECOMPOSITION AND LEFSCHETZ TRACE FORMULA

Proposition 3.4.2. With notations as above, Uy is an open subspace of M%, V4 is a
compact analytic domain of MY, and we have Uy C V.

Proof. By our assumption in this section, Dk is compact, thus it is clear that V, as
a finite union of compact analytic domains, is still a compact analytic domain. Since
the union of closed subsets Uy, 44 Dirgxc s locally finite, one can check easily it is

closed in M(}{. Thus Uy, is open. Finally the inclusion Uy C V4 holds since /\/l?( =
(MY — U4)JVa by the cell decomposition of M. O

For any p > 0, denote
Uy,=Un,, V,=Vy,.
Then
VUp) =Up,v(V,) =V,
since 7(A4,) = A,. By the above proposition, each U, is a locally compact open subspace
of MY%.. We have
Hg(M?( X Cp?@l) = @Hg(Up X (Cpa@l)a
P

with
dimg, H](U, x C,, Q) < oo.

We have an induced action of v on cohomology of U,
v: H)(U, x C,,Q) — H.(U, x C,,Q).

Denote
H:(UP X va@l) = Z(_1>]Hg(UP X Cpa@l)?

320

as an element in some suitable Grothendieck group. We consider the trace of v on this
Euler-Poincaré characteristic

Tr(v|H: (U, % (Cp»@l)) = Z(_l)jTr(7|Hg<Up X Cm@l))-

>0
We consider also

H (M x Cp, Q) = ) (~ 1) HI(MG x C,, Q).

320

as an element in the Grothendieck group of smooth representations of (G(Q,) x J,(Q,))*.
Let Fix(y|MY% x C,) be the set of fixed points of 7y on MY% x C,, then each fixed point
is simple since the p-adic period mapping MY — F¢ is étale, and the fixed points of g
on F* are all simple.

As last subsection, we will use our result of cell decomposition of MY to verify
that the action of v satisfies the conditions of Mieda’s theorem 3.13 [60], thus deduce a
Lefschetz trace formula for these unitary Rapoport-Zink spaces.
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Theorem 3.4.3. For the fized v = (h,g) € G(Q,) x J,(Q,) such that both h and g
are reqular elliptic, v,(deth) + v,(detg) = 0, there exist a sufficient small open compact
subgroup K' C G(Z,) and a sufficient large number py >> 0, such that for all open
compact subgroup K C K' which is normalized by h and all p > po, we have the Lefschetz
trace formula

Tr(y|H; (U, x Cp, Q) = #Fia(y| M x Cp),

which s well defined and finite. Since the right hand side is independent of p, we can
define B B
Tr(y|H: (M x Cp, Q) = Tr(y|H (U, x Cp, Q)

for p >>0, and thus

Tr(y|H; (Mg x Cp, Q) = #Fia(y| Mg x Cp).
Proof. Since h is elliptic, for sufficiently small open compact normal subgroup K C
G(Zp>7

d(z,yx) — oo, when x € I, d(0,7) — oo.

In fact, since o,z € ¢ 1(0)°/K, write 0 = [0, K, —s,5,05], 0 = [11K, —t,1,15] with
01,71 € B(G,Q,), 09, 22 € B(J#,Q,),s,t € {0}(n odd) or {0,1}(n even), then

2 2
v(z) = [x1hK, Evp(deth) —t, ﬁvp(detg) +t,9%0] = [ hK, —t', 1, gas]

with ¢ € {0}(n odd) or {0, 1}(n even),

d(x,yx) = klglf{ Vdi (21, 21hk)? + dy (19, g0)2 + 2( — t)2,

d(o,r) = klglf{ Vi (z1k,01)2 + do(29,00)2 + 2(t — 5)2.

To prove the above statement, we first work with B’ := B(G",Q,) x B(J*,Q,). Denote
the metric on B’ by d'. Since h, g are elliptic, the fixed points set (B’)? is nonempty
and compact. Moreover, for K sufficiently small, (B)"9 = (B')"9) for any h' € hK
(cf. the proof of lemma 12 in [71]). For o = (01,00) € (B')"9 fixed, a simple tri-
angle inequality shows that d'(z/, (B')"9) — oo when 2’ = (11,1,) € B, d'(d',2') =
Vdi(z1,01)? + da(x9,09)2 — 00, since (B')"™9) is compact. On the other hand, for any
automorphism o of B’ with (B')7 # (), there exists a constant 0 < # < 7 which just
depends on B’ and o, such that

d'(2',ox") > 2d' (2, (B)7) sin(g),

see [70] proposition 2.3. In particular, d'(2’,7'z’) — oo when d'(0/,2') — oo for any
e hK,v = (h',g). As K is compact this deduces the above statement.

We have

My -U,= | Dugx
[T,g’]EI?(—A,,
Vo—=U,= U Irg,

[T.9'|€Ap—Ap—c
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where for any [T, ¢'] € A,,
Frg =Dirgk ﬂ(M?( - U,),

which is nonempty if and only if [T, ¢'| € A, — A,_. by proposition 3.4.1, in which case
Fr g is a compact analytic domain in Dy 4 x C V,. By the above lemma, there exists
a sufficiently large py >> 0, such that for any p > po,[T,¢'] € ) — A,_., we have
d([T, ¢',7([T, ¢'])) > ¢, and thus by proposition 3.4.1

Drgx [ \V(Prgrx) =0, Fry [ 1(Fry) =0 (for [T, 4] € A, — A, ).

To apply Mieda’s theorem, we pass to adic spaces. We have the locally finite cell

decomposition
U D[Tg 1K
[T,9"1€TY,
where each cell Df‘ff JLK is a quasi-compact open subspace

of (M%), DFle axD [T2 ok 7 0 Dirygy kN Dimygpx # 0, and the action of
v on (M%) induces the action of the cells in the same way as the case of Berkovich
spaces. By [I] 8.2, Us? is an open subspace of (M), which is separated, smooth,
and partially proper. On the other hand V“d = U[T g1, Df’Td g5 1S @ quasi-compact
open subspace. Consider the closure V =U T.g1€A, D[ LK of V“d in (M%) which
is a proper pseudo-adic space and contalned in the quasi- compact space Vpad We know
that W (resp. Df‘jilg,} ) is the set of all the specializations of the points in Vpad (resp.
DFng] x)- Moreover, v induces automorphisms 7 : W — W, Vpad — Vp“d, U;}d — U;}d.

ad ad ad 1/ad ad _ a ad
Since V4, C U3¢ C Vi, we have Vad —Vod = U[Ty,]eAppr_c(D[ﬁg,]’K — Dff 1.x)- Note

[Tl g1, K ﬂ Da T2,92], K 7& @ = D[Tl 1), K ﬂ D[T2,92] K

For [T.¢'] € A, — Ap—¢, let W, = Dﬁpdjg,]’ D[Tg} By the paragraph above, for

p >> 0 we have v(Wry) (\Wr,y = 0. One sees the conditions of theorem 3.13 in [60]
for Vp“d and its compactification Vp“d hold, i.e.

TT(PY’H:U/;;ad X va@l)) = #Fix(7|vpad x Cp) = #Fix(y[V, x Cp).
By [42] proposition 2.6 (i) and lemma 3.4, we have
Tr(y|H; (V" x Cp, Q) = Tr(y|HI (U x Cp, Q) + Tr(y[H (V! = Up?) x C,, Q))).

By the paragraph above and the induction argument as the proof of proposition 4.10
in [59], one has Tr(y|H; (V4 — Us?) x C,,@Q;)) = 0. By the comparison theorem on
compactly support cohomology of Berkovich spaces and adic spaces, we can conclude

Tr(y|H;(U,xCy, Q) = Tr(y|H;(Uy?xC,, Q) = Tr(y|H; (VX C,, Q) = #Fix(y]V,xC,).
As the reason above, for p >> 0, v permutes the cells Djr 4 x for [T, g'] ¢ A,, we have
Fix(3]V, x Cy) = Fix(s] MY x C,).

The theorem is thus proved. O
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Similarly we have a remark as the case of Lubin-Tate that

HZ('A/l?( X Cp,@[) = HZ((M?{)GCI X Cp,@l) = hﬂHZ(Vpad X CP7@I)7 Vi Z 07
o

and we can work totally in the framework of adic spaces when considering cohomology.
But here we have chosen to transfer back the result to Berkovich spaces, so we insist on
working with the open subspaces U,,.

We have a nice fixed points number formula for the quotient space Mg /p”. Note if
g € Jp(Q,) is a regular elliptic semi-simple element, for any = € Fix(g|F*(C,)), there
is a element h,, € G(Q,) which is conjugate to g over @p defined by the comparison
isomorphism
Vo(Hy) ®q, Bir — Vi @ Bag,

where y € 7 !(z) is any point in the fiber of the p-adic period mapping 7 : M — F°.

Corollary 3.4.4. Let the notations be as in the above theorem. If n is even we assume
that 2(v,(deth) + vy(detg)) is even. Fix compatible Haar measures on G(Q,) and the
centralizer of hyy, Gp,, = {h € G(Q,)|Whyoh'~' = hy,}. Denote the characteristic
function of "' K by 1,-1 and the volume of K under the fived Haar measure by Vol(K).
Then we have the following formula

* VA a) Z 1h71K
eI (MR /1) % € @) = 32 Vol(Giy /o7 )On. (i)
z€ Fiz(g| F2(Cp))

where Vol(Gy,,/p") is the volume of G, ,/p" by the induced Haar measure on

G(Qp)/p",

]-h*1K / ]-h*1K -1
O, ., = 27 hy p2)dz
g, ( o ) G(Qp)/thyx VOZ(K)( g )

is the orbit integral of {1/’;;(1[?) over the conjugate class of hg .

Proof. We just need count the number of the fixed geometric points set
Fix(y|(Mg/p?) x C,). This can be done by considering the map

MK/pZ — fa C Pnfl,an

induced the p-adic period mapping, as in theorem 2.6.8 of [77] and [62]. In particular
we have

HF(IMi/p") x C) = S #{l € GQ)/p KN " hyult! = b7},

z€Fix(g|F*(Cyp))

One can then write this number easily in the form as in the corollary. O

For any irreducible smooth representation 7 of J,(Q,), and any integers 4,j > 0,
although the Q;-vector space A B
Hl} (Mg x Cp, Q)

is of infinity dimension, we have (cf. [23] corollarie 4.3.11)

dim@lExtf,b(Qp)(Hg(MK x Cp, Q,),m) < 00,
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and there are finitely many 4, j for which Ethb(Qp)(Hg (Mg x C,, @), ) # 0. Thus we
can consider the element

J(m) = Z(_l)iﬂ MExtf,b(Qp)(Hg(MK x C,,Q,), ) € Grothg, (G(Qy)),
K

4,520

where Grothg (G(Q,)) is the Grothendieck group of smooth @-representations of G(Q,).
We can thus define a morphism

J: Groth@l(Jb(@p)) — GrOth@l(G(@p))

by li_nearly extension of the above map. If 7 is supercuspidal, hg K Extf}b(Qp)(H (Mg x
C,,Q,),m) = 0 unless j = 0, in which case it is

J(m) = lim Homy, (g, (H; (Mg x C,, Qi), ),
K

for
HY (Mg x Cp, @) = Y (1) HI(Mg x C,, Q).
Jj=0
In the following we will work in the operate direction, that is assume 7 is now a super-
cuspidal representation of G(Q,), and consider

H(w) =Y (=1)Homgg,) (lim HI (Mg x Cp, @), 7).
K

320

Assume that Homg(q,)(lim HI(My x C,,Q,), ) is of finite length, which should be
always the case, then H (ﬁ is a well defined element in Grothg, (J5(Qy)).

Corollary 3.4.5. Let w be a supercuspidal representation of G(Q,), g € Jo(Q,) be a
reqular elliptic semi-simple element. Assume that 7 is of the form m = c— IndgiQp)A, for
some open compact modulo center subgroup K, C G(Q,) and some finite dimensional
representation \ of K. Then we have

trum() = Y tra(hga).

z€Fiz(g|F*(Cp))

Proof. One computes exactly as in [62] or the proof of theorem 4.1.3 in [77], using
theorem 3.4.3 and corollary 3.4.4. Here we just indicate a point when using the method
of [62]. As the notations there, let 7' = p” considered as a subgroup of G(Q,), and
Ky < K, be an open compact normal subgroup such that A is trivial on T K. Let
Er = K;/TK, and Z¢ be the subset of classes which contain an elliptic representative.
We have a natural bijection H}((Mg,/T) x C,,Q;) ~ H; (MY, x C,, Q) if n is odd,

and H;((Mg,/T) x C,, Q) = @i—o1 H; (M, x C,, Q) if n is even. Then

(e (9) = tr(g|Homu (H: (M, /T) x €, @), V)
— S (b ) H2 (U, % Cp Q) ()

#=n heze
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if n is odd, and

1 . _
= —= > tr((h,9)| @imo1 H (U}, x C,, Q))tr(h™"|N)

™ he=g

if n is even. The remaining computations are just using theorem 3.4.3 and corollary
3.4.4. O

As [77] and [62], we will hope to use the above corollary to prove the realization of
the local Jacquet-Langlands correspondence for smooth representations of G(Q,) and
Jp(Q,) (for n even) in the cohomology of our Rapoport-Zink spaces. By the methods
of loc. cit., we are just reduced to problems of classification of L-packets of G(Q,) and
Jp(Q,), and characterization of the local Jacquet-Langlands correspondence between
smooth representations of them. Considering the recent progress on classification of L-
packets (global and local) for unitary groups, for example see [63] for the local case
which concerns us, it seems that these can be achieved soon.
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