
HAL Id: tel-00764405
https://theses.hal.science/tel-00764405v1
Submitted on 13 Dec 2012 (v1), last revised 21 Feb 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decoupled (SSA-based) Register Allocators : from
Theory to Practice, Coping with Just In Time

Compilation and Embedded Processors Constraints.
Quentin Colombet

To cite this version:
Quentin Colombet. Decoupled (SSA-based) Register Allocators : from Theory to Practice, Coping
with Just In Time Compilation and Embedded Processors Constraints.. Data Structures and Algo-
rithms [cs.DS]. Ecole normale supérieure de lyon - ENS LYON, 2012. English. �NNT : 2012ENSL0777�.
�tel-00764405v1�

https://theses.hal.science/tel-00764405v1
https://hal.archives-ouvertes.fr

THÈSE

en vue d'obtenir le grade de

Docteur de l'École Normale Supérieure de Lyon � Université de Lyon

spécialité : Informatique

Laboratoire de l'Informatique du Parallèlisme

École doctorale Informatique et Mathématiques de Lyon

présentée et soutenue publiquement le 07/12/12

par Monsieur Quentin COLOMBET

Decoupled (SSA-based) Register Allocators :

from Theory to Practice, Coping with Just-In-Time Compilation

and Embedded Processors Constraints.

Directeur de thèse : Monsieur Alain DARTE

Co-directeur de thèse : Monsieur Fabrice RASTELLO

Après avis de : Monsieur Vivek SARKAR, Membre/Rapporteur

Monsieur Erven ROHOU, Membre/Rapporteur

Devant la Commission d'examen formée de :

Monsieur Erik ALTMAN, Membre

Monsieur Albert COHEN, Membre

Monsieur Alain DARTE, Membre

Monsieur Vivek SARKAR, Membre/Rapporteur

Monsieur Fabrice RASTELLO, Membre

Monsieur Erven ROHOU, Membre/Rapporteur

Numéro National de Thèse: 2012ENSL0777

Abstract

In compilation, register allocation is the optimization that chooses which vari-
ables of the source program, in unlimited number, are mapped to the actual
registers, in limited number. Parts of the live-ranges of the variables that can-
not be mapped to registers are placed in memory. This eviction is called spilling.

Until recently, compilers mainly addressed register allocation via graph col-
oring using an idea developed by Chaitin et al. [33] in 1981. This approach
addresses the spilling and the mapping of the variables to registers in one phase.
In 2001, Appel and George [3] proposed to split the register allocation in two
separate phases. This idea yields better and independent solutions for both
problems, but requires a very aggressive form of live-range splitting, split ev-
erywhere, which renames all variables between all instructions of the program.
However, in 2005, several groups [27, 84, 56, 16] observed that the static single
assignment (SSA) form provides su�cient split points to decouple the register
allocation as Appel and George suggested, unless register aliasing or precoloring
constraints are involved.

Prior to this thesis, no alternative to this aggressive live-range splitting was
available for decoupled register allocation with register aliasing. Other forms of
architectural constraints, e.g., encoding and application binary interface (ABI)
constraints, can be handled via a form of live-range splitting, more intensive
than SSA but less aggressive than split everywhere [55].

This thesis covers all the aspects of decoupled register allocation under SSA
with architectural constraints. In a �rst part, we focused on the spilling problem.
Using an exact formulation of the spilling problem, we investigated the impact of
SSA during this phase and compared several spilling approaches, exact or not, in
our model. This comparison pointed out that SSA complicates the problem and
that the state-of-the-art objective function, the static spill cost, used to optimize
spill code placement may not be relevant for runtime performances. Following
these observations, we evaluated several, existing or not, simpli�cations of the
spilling problem that should help design a good spilling heuristic in terms of
runtime performance, though not necessarily static spill cost.

The second part of the manuscript is dedicated to the assignment phase.
We showed how to handle regular architectural constraints without intensive
live-range splitting. Our approach is compatible with graph-coloring-based ap-
proaches, but also with scan-based approaches (traversal of the control-�ow
graph), as we demonstrated with our fast register allocator, tree-scan . Regard-
ing register aliasing, we showed how to limit the e�ect of split everywhere and
still having the decoupling property.

Finally, in a third part, we demonstrated how to improve the �nal assembly
code via local recoloring techniques. These techniques help to deconstruct col-
ored SSA, i.e., register-allocated SSA, and eliminates many copies instructions
inserted for live-range splitting purposes.

We wanted all this work to be applicable to just-in-time (JIT) compilation
for embedded targets, thus speed and memory footprint were a concern.

Keywords: Decoupled register allocation, register aliasing, precoloring, JIT,
SSA, spilling.

Résumé

En compilation, l'allocation de registres est l'optimisation qui choisit quelles
variables du programme source, en nombre illimité, sont stockées dans les reg-
istres physiques, en nombre limité. Les variables qui ne peuvent tenir en registre
sont placées en mémoire. Cette éviction est appelée spilling.

Jusqu'à récemment, les compilateurs traitaient l'allocation de registres glob-
alement via la coloration de graphes en utilisant une idée développée par Chaitin
et al. [33] en 1981. En 2001, Appel et George [3] ont proposé de découper
l'allocation de registres en deux phases distinctes. Cette idée permet de dé�nir
de meilleures solutions pour les deux problèmes, mais nécessite une forme très
agressive de renommage des variables, le split everywhere, qui renomme toutes
les variables entre toutes les instructions du programme. Cependant, en 2005,
plusieurs groupes [27, 84, 56, 16] ont observé qu'en l'absence de contraintes
d'aliasing de registres et de précoloriage, le passage en static single assignment
(SSA) dé�nit des points de renommage su�sants pour découpler l'allocation de
registres tel que suggéré par Appel et George.

Avant cette thèse, pour les approches découplées, seule la technique agressive
du split everywhere était disponible en présence d'aliasing de registres. Les
autres formes de contraintes d'allocation, contraintes d'encodage d'instructions
et celles dites d'application binary interface (ABI) peuvent être traitées par du
renommage plus intensif qu'avec SSA mais moins qu'avec le split everywhere [55].

Cette thèse couvre tous les aspects de l'allocation de registres découplée
sous SSA avec des contraintes architecturales. Dans une première partie, nous
nous sommes concentrés sur le problème du spill. En utilisant une formulation
exacte, nous avons mis en évidence le fait que SSA complique le problème et
que la fonction objective de l'état de l'art, le coût statique de spill, utilisée
pour optimiser le placement du code de spill n'est pas pertinente en ce qui con-
cerne les performances d'exécution. Suivant ces observations, nous avons évalué
plusieurs simpli�cations du problème, proposées antérieurement ou non, qui de-
vraient permettre de concevoir un bonne heuristique en termes de performances
d'exécution mais pas nécessairement de coût statique de spill.

La deuxième partie du manuscrit est dédiée à la phase d'assignation aux
registres. Nous avons montré comment éviter un renommage intensif pour gérer
les contraintes architecturales habituelles. Notre méthode est compatible avec
les approches basées sur la coloration de graphe, mais aussi sur les scans (par-
cours du graphe de �ot de contrôle), comme nous l'avons démontré avec notre
allocateur de registre rapide, le tree-scan . En présence d'aliasing de registres,
nous avons montré comment limiter les e�ets de split everywhere tout en ayant
les bonnes propriétés des approches découplées.

Finalement, dans une troisième partie, nous avons montré comment améliorer
le code assembleur �nal avec des techniques de recoloriage. Celles-ci aident à la
déconstruction de SSA et à l'élimination des copies insérées par le renommage.

En�n, nous voulions que nos travaux soient applicables à la compilation dite
just-in-time (JIT) pour processeurs embarqués, ainsi la vitesse et l'empreinte
mémoire ont été une préoccupation de tous les instants.
Mots clés : Allocation de registres découplée, JIT, SSA, aliasing de registres,
contraintes de registres (precoloring), vidage en mémoire (spilling).

Contents

Acronym 5

I Introduction 6

1 Introduction 7
1.1 Register Allocation . 7
1.2 Motivations . 9
1.3 Outline and Contributions . 10

2 Prerequisites and Hypotheses 12
2.1 Program Representation . 12

2.1.1 Code Operations . 12
2.1.2 Control Flow Graph (CFG) 14

2.2 Static Single Assignment (SSA) 15
2.2.1 φ-Functions . 15
2.2.2 Strictness and Dominance Property 16
2.2.3 Conventional SSA . 16
2.2.4 Deconstructing SSA . 16
2.2.5 Liveness and SSA . 17

2.3 Register Allocation . 18
2.3.1 Hypotheses . 18
2.3.2 Global Register Allocation 21
2.3.3 Decoupled Register Allocation 25

II Spill 31

3 Studying Optimal Spilling in the Light of SSA 33
3.1 Formulating �Optimal� Spilling 34

3.1.1 Existing �Exact� Formulations 34
3.1.2 Limitations of Existing Approaches 35

3.2 A More �Optimal� Formulation 38
3.2.1 Basic Formulation . 39
3.2.2 Emulating Other Formulations 41
3.2.3 Handling SSA and φ-Functions 42
3.2.4 Extended Formulation . 45

3.3 Experiments . 50

1

3.3.1 Solving Time . 51
3.3.2 Static Spill Cost . 52
3.3.3 Dynamic Counts . 56
3.3.4 Execution Time Measurements 57

3.4 Conclusion . 62

4 Towards a Better Spilling Heuristic 63
4.1 Existing Spilling Criteria . 63

4.1.1 Static Spill Cost . 63
4.1.2 Furthest First . 65

4.2 Simplifying Assumptions . 67
4.2.1 The Instruction store . 67
4.2.2 The Instruction load . 70

4.3 Existing Heuristics . 72
4.3.1 Graph Coloring . 72
4.3.2 Scan-Based Approaches 74
4.3.3 Decoupled Approaches . 75

4.4 Improving Runtime . 76
4.4.1 Latency . 76
4.4.2 Helping the Scheduler . 78

4.5 Conclusion . 79

III Coloring with A�nities and Antipathies 81

5 Coloring with Encoding Constraints 83
5.1 Graph Coloring with Repairing 85

5.1.1 Model and restrictions . 85
5.1.2 Strategies . 86
5.1.3 Repairing Code . 90

5.2 Tree-Scan . 91
5.2.1 The Basic Algorithm . 91
5.2.2 Repairing . 94

5.3 Biased Coloring . 99
5.4 Related Work . 102
5.5 Experiments . 105

5.5.1 Graph Coloring and Repairing 105
5.5.2 Tree-Scan . 107

5.6 Conclusion . 114

6 Decoupled Graph-Coloring Register Allocation with Hierarchi-
cal Aliasing 115
6.1 Background . 116
6.2 Spilling Test in Face of Aliasing 120

6.2.1 Checking Colorability via Smith's Simpli�cation Test . . . 120
6.2.2 Correct Spilling Test Handling Aliasing and Precoloring . 121
6.2.3 Improving Smith's Test with Live-Range Merging 122

6.3 Semi-Elementary Form . 124
6.3.1 Criterion to Avoid Live-Range Splitting 124
6.3.2 Local Merging of Live-Ranges 126

2

6.4 Experiments . 128
6.5 Conclusion . 133

IV Post Phases 134

7 Parallel Copy Motion 136
7.1 Parallel Copy Motion . 137

7.1.1 Parallel Copies . 137
7.1.2 Moving a Parallel Copy Out of an Edge 139
7.1.3 Parallel Copy Motion Inside Basic Blocks 140

7.2 Permutation Motion and Region Recoloring 141
7.2.1 Reversible Parallel Copies & Permutations 141
7.2.2 Region Recoloring . 142

7.3 Applications . 143
7.3.1 Removing Parallel Copies from Critical Edges 143
7.3.2 Shrinking Parallel Copies in a Basic Block 147

7.4 Experiments . 150
7.4.1 The Impact of Copy Motion Out of Edges 151
7.4.2 The Impact of Copy Motion in Basic Blocks 153
7.4.3 All Together . 155

7.5 Conclusion . 156

8 Elimination of Parallel Copies Using Copy Motion on Data De-
pendence Graphs 158
8.1 Data Dependence Graphs . 159

8.1.1 Parallel Copies . 160
8.1.2 Parallel Copy Motion . 161

8.2 Copy Elimination on Data Dependence Graphs 161
8.2.1 Downward Motion of De�nitions 163
8.2.2 Upward Motion of Uses 173
8.2.3 Code Motion Past Cyclic Parallel Copies 182
8.2.4 Algorithm Complexity . 182
8.2.5 Additional Remarks . 183

8.3 Experiments . 184
8.3.1 Copy Elimination after Full Coalescing 185
8.3.2 Copy Elimination after Decoupled Register Allocation . . 187
8.3.3 Coalescing versus DDG-Based Copy Elimination 189
8.3.4 Runtime Behavior . 190

8.4 Related Work . 191
8.5 Conclusion . 192

V Conclusion 194

9 Conclusion 195
9.1 Contributions . 195

9.1.1 Spilling . 195
9.1.2 Coloring . 196
9.1.3 Post Phases . 197

3

9.2 Perspectives . 198
9.2.1 Spilling . 198
9.2.2 Coloring . 198
9.2.3 Post Phases . 199

List of Publications 200

Bibliography 201

A Appendix 209
A.1 Coloring with Encoding Constraints 209

4

Acronym

ABI application binary interface

BF brute force coalescer

CFG control �ow graph

CISC complex instruction set computing

CSSA conventional static single assignment

DDG data dependence graph

DFS depth-�rst search

IG interference graph

ILP integer linear programming

IR intermediate representation

IRC iterated register coalescer

ISA instruction set architecture

JIT just-in-time

KERNELS benchmarks from STMicroelectronics

LAO linear assembly optimizer

OPEN64 open source version of the SGI Pro64 compiler [49]

RISC reduced instruction set computing

RPO reverse post-order

SSA static single assignment

SSI static single information

VLIW very-long instruction word

5

Part I

Introduction

6

Chapter 1

Introduction

In computer science, compilation is the process that translates a source program
into a destination program, that is equivalent in terms of behavior. Both pro-
grams may share their programming languages. Such process is called �source-
to-source compilation�. But it is not the common usage of compilers, the pro-
grams that perform the compilation. Indeed, compilers are generally used to
translate machine-independent, usually human-written, programs into machine-
depend programs. In their last phases, compilers have to deal with the actual
constraints of the target machine, which, by de�nition, were not present in the
original programs. This thesis focuses on this low-level aspect of compilation
called �back-end compilation� and in particular on register allocation, which
deals, among these architectural constraints, with the limited amount of fast
storage space, i.e., the registers.

1.1 Register Allocation

Register allocation consists in mapping the unbounded set of variables used in
a low-level program representation to the limited number of registers available
in the target architecture. When not all variables can be mapped to registers,
some are stored in memory to reduce register demand. This eviction to memory
is called spilling. Memory transfers are costly in execution time, power dissipa-
tion, and code size, thus a good register allocator should reduce spilling in order
to preserve the gains of previous optimizations. Indeed, other optimizations
have their own pro�tability model that may not match register allocation con-
cerns. Moreover, according to Hennessy and Patterson [59], register allocation
adds the largest single performance improvement to compiled programs. For
instance, Figure 1.1 gives the assembly code produced for x86 for a function
computing factorial. In this example, the assembly code generated with register
allocation enabled is twice as fast as the assembly without. Indeed, without
register allocation, the program accesses variables n and res via the stack, i.e.,
they are allocated in memory, whereas with register allocation, it directly uses
registers. Thus, register allocation has been extensively studied in the past.

As a reminder, it is always bene�cial to improve the performance of the
program in the embedded world even when the reactivity of the system is not
a concern. Indeed, if a program requires less computations, the frequency of

7

unsigned int
facto(unsigned int n) {
unsigned int res = 1;

L3: for(; n > 0; --n) {
res *= n;

}
return res;

}

facto:
pushl %ebp
movl %esp, %ebp
subl $16, %esp
movl $1, -4(%ebp)
jmp .L2

.L3:
movl -4(%ebp), %eax
imull 8(%ebp), %eax
movl %eax, -4(%ebp)
subl $1, 8(%ebp)

.L2:
cmpl $0, 8(%ebp)
jne .L3
movl -4(%ebp), %eax
leave
ret

Assembly in O0

facto:
pushl %ebp
movl %esp, %ebp
movl 8(%ebp), %edx
movl $1, %eax
testl %edx, %edx
je .L2

.L3:
imull %edx, %eax
subl $1, %edx
jne .L3

.L2:
popl %ebp
ret

Assembly in O1

gcc -O0, basically nothing gcc -O1 ≃ -O0 + register allocation

O1 is 2x faster here

Figure 1.1: When enabling register allocation on gcc 4.4.3 for the x86 target, the
generated assembly code is 2x faster for this example. In the x86 assembly code,
the de�nition is the second operand of the instruction. For instructions with two
arguments, like imull, the second operand is both read and written. The L3 label
denotes the body of the original loop. Without register allocation, assembly
in O0, n is accessed via memory location 8(%ebp) and res is accessed via
memory location -4(%ebp). With register allocation, assembly in O1, accesses
to the stack are eliminated as n is in register %edx and res is in register %eax.

the processor can be decreased without slowing down the application. On the
other hand, if the frequency is not changed, the processor ends the computations
earlier and can enter in idle mode sooner. In both cases, for the same amount
of work, this spares the battery of the system.

Until recently, compilers performed register allocation using variants of graph
coloring, as developed by Chaitin et al. [33]. This method gives fairly-good re-
sults in practice. However, nowadays, compilers are used in many di�erent con-
texts. In particular, they have to cope with memory and/or time constraints, as
implied by just-in-time (JIT) compilation, that are not compatible with graph-
coloring-based approaches. Indeed, these approaches are known to be memory
consuming and quite slow.

In the past few years, some researchers proposed to decompose register al-
location in two phases [3, 56]. The �rst phase decides where to place spilling
instructions (load and store) so that a second phase that assigns registers to
variables will not generate additional spill code. For that to be possible, register-
to-register copies (move instructions) may need to be inserted. The underlying
assumption that makes such a decoupling e�cient is that move instructions are
more likely to be cheaper than memory transfers. Decoupled register allocation

8

is often associated with static single assignment (SSA) form [37] as, in strict
SSA, the way live-ranges are split, explicitly, makes the second phase always
feasible. This is when all variables can be mapped to any register. The case of
precoloring and register aliasing is more complex as we will see.

Many recent register allocation algorithms follow such a decoupled approach,
see for example [3, 57, 58, 84, 85, 93, 95, 104]. This model has important advan-
tages. First, the separation between these two phases yields simpler and more
modular implementations: di�erent spilling heuristics can easily be combined
with di�erent register assignments. As an example, about 20% of the lines of
code of the machine-independent code generator of LLVM [68] are exclusively
related to register allocation. Thus, from an engineering point of view, it is inter-
esting to design register allocators that are modular. Second, the local register
pressure, a property that is easy to infer in decoupled designs, simpli�es other
compiler optimizations, such as redundancy elimination, and code analysis.

1.2 Motivations

Decoupled register allocation is an elegant approach to a complex problem.
Its inherent qualities make it appealing for modern compilers. The feasibility
of this approach has been well studied in the past few years, in particular by
Hack [55], Pereira [83], and Bouchez [15]. In this thesis, we wanted to go beyond
the feasibility aspects by proposing e�cient solutions that may be applied to
JIT compilation. Moreover, we wanted to address some pending questions. In
particular, we focused on the following points.

A �rst aspect concerns the spilling phase. As already stated, SSA form is
usually used in these allocators to ensure that, once the register pressure is low
enough, graph coloring can be used for register assignment without additional
spilling. However, how to perform the spilling phase itself, i.e., how to place
load and store instructions, was not completely understood. In particular, the
question we had was: does SSA help for spilling? We wanted to evaluate the
impact, positive or negative, of SSA on the spilling model and the quality of the
generated solution to derive good spilling heuristics.

A second aspect concerns the register assignment phase. As compilers are
more and more embedded in the user environment, we wanted to supply fast
and lightweight algorithms for register allocation. One of the questions we had
was: is it possible to use the elegant formalism of decoupled approach to derive
fast algorithms? This was clear in a simpli�ed model, but less clear in the
context of actual machines. Indeed, as Hack [55] showed, speci�c constraints
of the instruction set architecture (ISA) can make the decoupling between the
two phases more complicated. In some extreme cases, even extensive live-range
splitting is not enough to handle complex ISA constraints. Moreover, it may
even not be possible or desirable to apply this kind of splitting, depending on
the compiler/architecture. In other words, a more precise question was: is it
possible to cope with these constraints and still use the elegant formalism of
decoupled approach to derive fast algorithms?

Another assumption concerns move instructions and spill instructions. As
already stated, decoupled register allocation assumes that move instructions can
be inserted to spare spill instructions. The direct question that we wanted to
address was: is it really true that move instructions are less expensive than spill

9

instructions? Because of this assumption, it is likely that the number of move
instructions generated increases compared to a non-decoupled approach. This
led us to ask: is it possible to reduce this number of move a posteriori?

1.3 Outline and Contributions

This thesis is organized in six contributions dispatched in three di�erent parts.
These parts follow the regular compilation �ow of a decoupled register alloca-
tor: Part II deals with the spilling phase, Part III with the coloring phase, and
Part IV with post phases. Before, Chapter 2 of Part I completes this intro-
duction by de�ning all introduced notions, such as graph coloring, live-range,
register pressure, and so on. To clarify the assumptions that we make, it also
presents in details the assumptions made by existing decoupled register alloca-
tors and it discusses the problems induced by architectural constraints. The
rest of the manuscript is organized as follows.

The �rst chapter of Part II, Chapter 3, evaluates the impact of SSA on
the modeling of the spilling problem. Using a newly-de�ned integer linear
programming (ILP) formulation, we show that SSA form complicates the prob-
lem and that a naive handling of its speci�cities may end up in very bad cases.
We then introduce two di�erent handling of this form and demonstrate that
they are su�cient to catch up the gap with non-SSA spillers. Moreover, we
show that, thanks to these models, spillers based on SSA can achieve even bet-
ter performances for an equivalent complexity of the implied analysis.

Chapter 4 comes back on the spilling problem but from an heuristic point
of view. We review existing spilling criteria and heuristics and point out their
advantages and weaknesses. Moreover, we evaluate empirically di�erent sim-
plifying assumptions that may help to derive simpler and faster heuristics, in
particular in the JIT context. Finally, we propose a new cost model to help im-
proving the runtime of the generated code. This chapter is the less elaborated
one as it was done at the end of the thesis.

We then enter Part III, which deals with coloring. In a �rst chapter, Chap-
ter 5, we give a formal model to deal with ISA and application binary interface
(ABI) constraints in both graph-coloring-based and scan-based approaches with-
out extensive live-range splitting. We introduce the concept of antipathies in
graph-coloring-based approaches, a way to guide variables to be assigned to
di�erent registers, and describe di�erent strategies to deal with them. These
strategies require di�erent implementation e�orts, from very light to light, in
existing approaches depending on the expected quality of the generated code.
We de�ne a new scan approach that takes advantages of the properties of SSA
form, the tree-scan . We describe several methods to bias the coloring during any
scan approach, including tree-scan, to limit the insertion of move instructions.
We evaluate all our strategies in the state-of-the-art graph-coloring allocator,
the iterated register coalescer (IRC) [51], and compare them to our tree-scan
approach with di�erent con�gurations of the bias methods. The evaluation fo-
cuses on the runtime, the compile time, the memory footprint, and the code
quality with respect to move instructions. This evaluation includes also the lat-
est scan-based approach, the preference-guided allocator [22]. Tree-scan proves
to be a very aggressive register allocator, whose compile time and lightweight
memory footprint make it appealing for JIT compilation.

10

In Chapter 6, we then focus on register aliasing constraints. We show how
the spilling test can be modi�ed to take into account the particularities of such
constraints. We then propose a new form of live-range splitting that we called
the semi-elementary form. This form allows to decouple the spilling phase from
the assignment phase, i.e., without any additional spill code, without requiring
the extensive live-range splitting used so far. We demonstrate the bene�ts of
this splitting in the context of graph-coloring-based approaches, in particular in
terms of compile time and memory footprint, thus improving its applicability
to JIT compilation.

We then continue with Part IV, concerning post phases, i.e., optimization
phases after register allocation. In Chapter 7, we extend the theoretical frame-
work of Bouchez [15] proposed to avoid the extensive edge splitting induced, in
particular, by decoupled approaches when going out SSA form. Our method,
based on the formalism of parallel copy motion, turns out to be able to improve
the quality of the generated code although it was not its initial goal. It de-
�nes a nice way to move move instructions, thanks to region recoloring. Then,
Chapter 8 allows even more general region recoloring as it provides a framework
to perform parallel copy motion directly on data dependence graphs (DDGs).
Both methods can be stopped at any time and still producing correct code,
making them appealing for JIT compilation as they can improve the code until
a certain time budget is consumed.

Chapter 9 concludes this manuscript.

Note: For the experiments, STMicroelectronics provided the compiler, the
associated tools, e.g., pro�ler, linker, and the target processor, an embedded
very-long instruction word (VLIW) media processor, the ST231.

11

Chapter 2

Prerequisites and Hypotheses

This chapter presents and details the important notions that we use in this
manuscript. We �rst start with the program representation, de�ning step by
step the elements that form a program and how they work together. We then
introduce the static single assignment form, quickly discussing its concepts and
properties as they will be essential to understand the decoupled register allo-
cation. The next section presents the liveness, an important notion in register
allocation. Then, we present the di�erent approaches to register allocation, both
global and decoupled, and in particular their hypotheses.

2.1 Program Representation

This section gathers the de�nitions of the notions related to a program, which is
the input to the analysis and algorithms that we develop in this manuscript. In
general, depending on the compiler, the input may be a source �le, a complete
application, a trace, etc. Whatever the input form is, the compiler front end
translates it into an intermediate representation (IR). The choice of the IR
depends on the goals of the compiler; a given IR facilitates some operations
but may complicate others. In our case, we deal with a low-level description
of a function or procedure represented by a control �ow graph (CFG), which
abstracts basic blocks and instructions, as de�ned hereafter.

2.1.1 Code Operations

Basic Block A basic block is a sequence (in general maximal) of instructions
with only one entry point and one exit point. Each block is assigned a frequency
that represents how many times it is executed exactly or as an approximation.
This information can be obtained by pro�ling or heuristics [5].

Instruction An instruction, also called operation, takes a list of arguments to
perform a computation, according to its label (e.g., move, add, jump, function
call), and stores the results in a list of de�nitions. The number and the type of
the arguments/de�nitions depend on the computation. We will use the terms
temporaries or variables to denote arguments and de�nitions that may be as-
signed to a register, i.e., that are allocatable. For instance, the label argument

12

of a goto instruction is not allocatable. From this point, unless it is speci�ed,
the de�nitions and arguments terms refer to the de�nitions and arguments that
are allocatable. In this thesis, the arithmetic semantics of instructions is not
relevant. However, will be of particular interest the following instructions:

• move: copy a variable to another one.
• store: copy a variable to a memory location.
• load: copy a memory location to a variable.
• jump: create a control �ow to another basic block.
• call: jump to another function and return.

Allocation Constraints In this thesis, we focus on reduced instruction set
computing (RISC) architectures. In such a con�guration, all the instructions,
but special ones, use at most two arguments and de�ne at most one result. This
representation is called 3-address code. Moreover, all de�nitions and arguments
must be in register when they are de�ned or used. On the other hand, complex
instruction set computing (CISC) architectures o�er the capability to use or
de�ne a variable directly from/to a memory slot but they have constraints on
the usage of the instruction set that depend on the target processor. On x86,
for instance, the number of operands that can reside in memory for a given
instruction is limited to one. Moreover, on such architectures, every instruction
has only two operands: one read-only and one read-write. Such a representation
is called 2-address code.

For some instructions, a special processing is needed to cope with constraints
coming from the hardware. There are mainly two kinds of such instructions. The
�rst kind is instructions that use their operands implicitly. The location of these
operands is de�ned by the application binary interface (ABI). For instance, the
ABI of the ST200 family speci�es that the �rst argument of call instructions is
in register 16, the second in register 17, and so on. The second kind is pseudo
(or virtual) instructions, i.e., instructions that do not exist on the architecture.
These instructions are translated by the compiler into a sequence of actual
architecture instructions. For example, STxP70 has no division instructions. In
general, these translations are performed before register allocation. However,
some of them will be introduced during or just before register allocation and
will need to be translated after. This is the case of the parallel copy (see below)
and of the φ-function (see Section 2.2.1).

Parallel Copy Parallel copies are virtual instructions that perform multiple
move instructions at the same time. The moves represent the propagation of
values performed by the parallel copy. The parallel semantics is fundamental,
since performing moves in a sequential way with no care may cause a value to
be erased before being copied to its proper destination, variable or register.

More formally, a parallel copy, denoted (d1, . . . , dn)← (a1, . . . , an), assum-
ing that all di are di�erent, performs in parallel the n copies di ← ai, which
performs a move of variable ai into variable di. A parallel copy can be rep-
resented as a directed graph, whose vertices are the variables involved in the
parallel copy and there is an edge from ai to di for each i. A particularity of
this graph is that the in-degree of all vertices is at most 1 (such a graph is called
windmill [92]). A parallel copy contains a duplication if it exists i 6= j such that
ai = aj , i.e., if its graph representation has a node with an out-degree at least 2.

13

A parallel copy contains a cycle if so does its graph representation. A parallel
copy is regular if its graph representation is a chain. A parallel copy is cyclic
if its graph representation is a single cycle. A parallel copy is reversible if its
graph representation is a disjoint union of chains and simple cycles, i.e., if it is
the union of regular parallel copies and cyclic parallel copies (Spartan parallel
copy [86]), in other words, if it has no duplication. It can be completed into a
permutation.

Such instructions have to be eliminated prior to the end of the compilation
process, since they do not exist on actual architectures. The elimination pro-
cess consists in mapping the parallel copies into a sequence of move or swap

instructions [13, 86]. If swap instructions are not available, this process needs
an additional variable in case the parallel copy is a union of (disjoint) cycles.

Parallel copies are a key structure for decoupled register allocation as we will
show in Section 2.3.

2.1.2 Control Flow Graph (CFG)

The control �ow graph is the object that abstracts the structure of the program,
i.e., the basic blocks and the way the control �ows between them.

General Structure A control �ow graph G = (V,E) is a directed graph
where nodes or vertices (V) represent basic blocks and where edges (E) represent
the possible control �ow between basic blocks. The source of an edge is called
the source block, its destination the destination block. The edges that �ow in
(resp. out) a basic block are its incoming (resp. outcoming) edges. For a given
basic block, the source blocks of its incoming edges are its predecessors, and the
destination blocks of its outcoming edges are its successors.

A node represents an entry block if it has no predecessor and an exit block if
it has no successor. These represent the possible starting points (resp. ending
points) of the execution of the program (typically a function). From now on,
we assume that there is only one entry block and only one exit block. If not, we
create a virtual entry (resp. exit) block, predecessor of all entry blocks (resp.
successor of all exit blocks).

Edges have a probability, which can also be pro�led or heuristically esti-
mated. This information can be combined with the frequency of the source
block, to obtain the frequency of the edge. An edge is critical if its source
block has several successors and its destination block has several predecessors.
Algorithms for removing critical edges are standard [4], when it is possible.

Figure 6.1(a) (Page 117) shows the CFG representation of a program.

Loops and Back-Edges A cycle in the CFG corresponds to a �loop� (a cyclic
behavior) in the program. Such loops are worth to mention because they usually
represent the hot spots of the applications, i.e., the most executed parts. The
way loops are structured, in particular how they are nested, has to do with the
theory of natural loops, reducible graphs, and loop nesting forests [90]. We do
not intend to develop this theory here, just to recall intuitive notions.

A back-edge is de�ned, from a depth-�rst search (DFS) traversal of the CFG,
as an edge (u, v) such that u is �rst visited in the traversal issued from v. By
construction, the graph obtained by removing all back-edges from the CFG is

14

acyclic. If for all back-edges (u, v), v dominates u, i.e., all paths from the entry
node to u traverse v, then the CFG is said reducible. In this case, a �natural�
notion of loops can be de�ned as follows. Each node v that is the destination of
a back-edge is the loop header, i.e., the entry, of a loop. If (u1, v), . . . , (un, v)
are the back-edges leading to v, then the body of the loop is composed by all
nodes that belong to a path from v to one of the ui. The de�nition of loops in
an irreducible CFG is not unique and relates to loop nesting forests [90].

Reachability and Program Point If there is a path from u to v, we say
that u reaches v or v is reachable from u. By de�nition, this terminology
applies to nodes of the CFG, i.e., basic blocks. We extend it in a natural way to
instructions following the sequential order of instructions within a basic block.

During register allocation, compilers may insert instructions, mainly move

and spill (load/store) instructions. The insertion happens between existing
instructions, possibly on edges of the CFG. A program point denotes such a
place, as illustrated in Figure 3.10.

Reverse Post-Order Traversal As for arbitrary directed graphs, there exist
several ways to walk through a CFG. The reverse post-order (RPO) traversal
has nice properties that will be used in the next chapters. This traversal orders
the basic blocks as follows. First, a classical DFS is applied with postorder
labeling, i.e., all children are numbered before their father. Then, the basic
blocks are sorted in decreasing order of their numbering.

2.2 Static Single Assignment (SSA)

The static single assignment (SSA) form, or more simply SSA, satis�es the
property that each variable is textually de�ned only once. This is a static
property, not a dynamic property as a variable can be de�ned several times
during the execution (for example in a loop). The SSA form was introduced in
1988 as an e�cient support for some optimizations [1, 94]. Its foundations as
well as the algorithms to build it were provided in 1991 [37]. How to translate
out of SSA is detailed in [13].

2.2.1 φ-Functions

The single de�nition property is not achievable just by renaming the variables.
Indeed, with renaming only, all the de�nitions that reach a given use (there
is a path from the de�nition of the variable to the instruction that uses it)
must share the same name, thus breaking the single de�nition property. For
instance, this occurs for a loop counter de�ned both inside (increment) and
outside (initialization) of the loop. To tackle this problem, SSA introduces
special instructions called φ-functions.

φ-functions are placed at the �rst program point of a basic block. A φ-
function produces one de�nition and uses as many arguments as the basic block
has incoming edges. The semantics is that the de�nition is copied from the
argument whose index equals the index of the incoming edge. When several
φ-functions are placed at the start of a basic block, they are assumed to be per-
formed in parallel. More formally, let B be a basic block with m incoming edges

15

a ←
if(...)

a ← a + 1

← a

(a) Original program

a1 ←
if(...)

a2 ← a1 + 1

a3 ← φ(a1, a2)
← a3

(b) Program under SSA

Figure 2.1: The SSA representation. Operands on the left (resp. right) hand
side of the ← symbol are de�nitions (resp. uses).

and a set of φ-functions, {d1 ← φ(a11, . . . , a1m), . . . , dn ← φ(an1, . . . , anm)}.
These φ-functions are equivalent to placing a parallel copy on each incoming edge
of B, where the ith edge carries the parallel copy (d1, . . . , dn)← (a1i, . . . , ani).

Figure 2.1 presents a program with and without SSA. The de�nitions of a
in the original program are renamed with a1 and a2. A φ-function is created to
choose the right de�nition for the last use of a.

2.2.2 Strictness and Dominance Property

A program is strict if, for each use of a variable, all the control-�ow paths
from the entry of the program to this use traverse a de�nition. In other words,
whatever the path used to reach an instruction, all its arguments have been
de�ned. A non-strict program can be translated into strict SSA form by adding
in the entry block, before constructing the SSA form, a dummy de�nition for
all arguments that do not stick to the strict rule. Hence, from this point, we
will only consider programs in strict SSA form.

An interesting property of strict SSA programs is that the de�nition of a
variable dominates its uses, i.e., as already stated, every path from the entry
to each use traverses the de�nition. We say that a node d strictly dominates a
node u if d dominates u and d 6= u. A node v is the immediate dominator of u
if v strictly dominates u and there is no node w such that v strictly dominates w
and w strictly dominates u.

2.2.3 Conventional SSA

A program is in conventional static single assignment (CSSA) form if replacing,
for all φ-functions, all operands (de�nition and arguments) with the same name
does not change the semantics of the program. This property can be very useful
to simplify some process, e.g., deconstructing SSA. However, all programs may
not be in CSSA. In particular, this property is easily broken by copy propagation
or code motion optimizations. When this property is needed, there are several
algorithms to translate from SSA to CSSA [100, 11]. We point out however that
this translation may impact the register allocation as it may insert moves and
may create new variables.

2.2.4 Deconstructing SSA

Deconstructing the SSA form may not be as simple as it seems to be at �rst
glance [24, 100]. This problem has been solved e�ciently, both in terms of qual-

16

ity of the generated code and run time of the compiler [13]. Nevertheless, these
approaches have been designed to work on codes that are not yet register al-
located. On register-allocated codes, the single de�nition property is obviously
broken as a register may be reused several times. Moreover, these approaches
may create intermediate values, which will have to be allocated again, poten-
tially causing new spill code.

For register-allocated codes, simple processes are usually applied, which rely
on strong assumptions. For example, Hack [55] relies on the fact that move

and spill instructions can be placed on the CFG edges (i.e., a basic block can
be inserted), which makes the translation straightforward. On the other hand,
Pereira and Palsberg approach [86] requires the program to be in CSSA form
prior to coloring, that it does not have critical edges, and that the target archi-
tecture is able to perform swap instructions. Then, the deconstructing process,
after coloring, places the parallel copies implied by φ-functions on the prede-
cessor blocks. Their assumptions make this process easier. In particular, the
CSSA form ensures that the parallel copies generated by the φ-functions have
no duplication. See also Section 2.3.3.2 for a more detailed discussion related
to the liveness of variables and to critical edges.

2.2.5 Liveness and SSA

A variable v is said to be alive (or live) at a program point p, if p belongs to a
path from a de�nition of v to one of its uses. For a given variable, these pro-
gram points form its live-range, as illustrated by the vertical bars in Figure 5.6
(Page 103). To make things simpler, we assume that all de�nitions are used.
Considering a node, e.g., a basic block or an instruction, all the variables alive at
the entry (resp. exit) point of the node are the live-in (resp. live-out) variables.
Variables that are both live-in and live-out of a node and not de�ned within
this node are called live-through. We often refer to these variables as the live-in,
live-out, or live-through sets. Liveness information is usually determined using
a backward data-�ow analysis [36]. There are more e�cient algorithms that use
the property of SSA form to build live-in and live-out sets [12] as well as to
develop fast queries to determine if a variable is live at a given point [14].

The liveness of operands of φ-functions have to be de�ned with care depend-
ing on where the implicit parallel copies will �nally be placed. If we strictly stick
to the semantics of φ-functions, which places copies on the incoming edges, each
argument of a φ-function in block B is live-out of the related predecessor block
of B but not live-in of B (unless further used) and each de�nition is live-in of B.
If critical edges cannot be split (i.e., if a basic block cannot be inserted on the
edge) or if jump instructions have allocatable operands and the copies need to
be placed before such a jump, the liveness of the operands of φ-functions needs
to be de�ned carefully. In our case, unless otherwise speci�ed, we assume the
standard liveness of φ-functions as stated above, i.e., with copies on the edges.

The notion of liveness de�nes the positions where a variable must be avail-
able in the storage resources (register or memory). Determining if two variables
can share the same storage resource requires to know the exact behavior of the
program (values of variables and execution paths), which is not possible. To ap-
proximate these constraints, the simplest way is to use liveness information. We
say that two variables interfere (cannot share the same storage resource) if they
are simultaneously live at some program point. Chaitin et al. [33] introduced a

17

particular case to relax this de�nition of interference: a and b interfere if and
only if either a is live just after a de�nition of b and this de�nition is not a move

from a to b, or the converse (inverting a and b). However, if b and c are simul-
taneously live and are both a copy of a, there is still an interference between b
and c. In strict SSA, it is often assumed that all moves are removed by simple
variable name propagation while the implicit moves induced by φ-functions are
not analyzed. In this case, the two de�nitions are equivalent. Thus, in this
thesis, unless otherwise speci�ed, we assume that two variables interfere if and
only if they are both simultaneously alive. This leads to the notion of regis-
ter pressure at a program point p, which is the number of variables live at p.
We will see in Section 2.3.3.2 that care has to be taken to make sure that the
maximal register pressure corresponds to the register need, i.e., the number of
register needed to allocate the variables.

2.3 Register Allocation

This section sets the hypotheses we make on register allocation. It also provides
a quick view of related work, which is further discussed in each chapter according
to the related point of view.

As already stated, register allocation is the problem of mapping the un-
bounded number of variables of a low-level representation of the program to the
limited number of registers. When the registers are not su�cient, the memory,
or more generally a spilling destination, has to be used. Thus, there are two
main problems to address during register allocation:

Spilling Which variables should be evicted into memory and where the related
load and store instructions should be placed.

Assignment Which register should be assigned to each variable.

There are two ways of dealing with register allocation. Global approaches
perform register allocation with a single algorithm, i.e., they solve both the
assignment and spilling problems in one integrated phase. On the other hand,
decoupled approaches split this process into mainly two independent phases:
spilling then assignment. This design is particularly interesting as it yields
more modular and more speci�c optimizations to each phase implementation.
The degree of independence of each phase depends on some assumptions, in
particular regarding the insertion of moves and the architectural constraints,
as discussed in Section 2.3.3. Despite the fact that these approaches are not
optimal in the general case, they perform well in practice and in particular
compared to global approaches as demonstrated by Koes and Goldstein [66].

2.3.1 Hypotheses

In this section, we discuss several aspects that may change the problem of
register allocation. We �x the model we consider and our hypotheses for each
aspect, for the whole manuscript.

Instruction Selection Register allocation considers mainly two storage loca-
tions: memory and registers. This is not uncommon that architectures feature
several register �les, i.e., independent sets of registers used for di�erent purpose,

18

e.g., �oating point registers, general purpose registers, etc. Some instructions,
e.g., additions, may be available over several types of register �les and it may
be equivalent to use one or another. Hence, depending on the actual registers
usage, it may be interesting to adapt the instruction to avoid spilling or make
a better use of all register �les. We will not consider this option in this work,
i.e., we assume a �xed instruction selection.

Spilling Destination In the spilling problem, the storage resource where the
variables are evicted, i.e., the spilling destination, is assumed to be unique.
In fact, a register allocator targeting an architecture featuring several register
�les could choose, thanks to move instructions between them, to spill some
variables into another register �les instead of spilling to the memory. Thus, it
may be possible to use di�erent spilling destinations to spill a variable as Lu
et al. showed [72]. We choose not to do so, i.e., we assume that the spilling
destination is unique.

Amount of Storage Location for Spilled Variables In general, the mem-
ory is used as the spilling destination. As it comes usually in far more amount
than registers, it is assumed to be unlimited. In fact, a register �le may not be
directly moveable into the memory. This is the case for the branch registers on
ST231architecture for instance, where the spill code is performed into general
purpose registers. In such a case, the spilling destination comes in very limited
amount. To cope with this problem, we assume that we can derive an order
in which the allocations to the di�erent register �les can be processed without
creating a new problem instance for an already-solved register �le. For instance,
for ST231architecture, we solve register allocation for the branch registers, then
for the general purpose registers. Thus, spill locations created during the reg-
ister allocation of branch registers are variables that are allocated during the
processing of general purpose registers.

Thus, we make the following two assumptions: we assume that we can allo-
cate each type of register �le independently following a prede�ned order and that
the storage location where spilling is performed is unlimited. In other words, in
this thesis, we discuss problems with only one type of register �le in mind. The
proposed method can then be applied successively to each register �le, adapting
the spill cost to the unique spilling location.

Aliasing There exist architectures where the addressing of a register �le is not
unique, i.e., the same chunk of a register �le can be accessed through di�erent
registers. These registers are said to alias. In such a con�guration, we say
that register allocation has to deal with register aliasing. In an aliasing pattern,
i.e., the way registers alias within a register �le, a level is de�ned by the sets of
registers that have a speci�c bitwidth. Each level is numbered from the smallest
to the largest bitwidth. In such a numbering, the �rst level is called the atomic
level and its registers are the atomic registers.

The �rst assumption we make is that registers at the same level do not alias,
i.e., we focus on aliasing patterns involving di�erent bitwidths. We also restrict
to a special form of aliasing. Figure 2.2 illustrates di�erent patterns. When all
registers at level l are composed by a contiguous number of registers of level
l − 1 and l covers completely l − 1 (the level l − 1 is a partition of the level l),

19

D0 D2
D1

R0 R1 R2 R3

(a) Arbitrary aliasing pattern

S0
TO T1

R0 R1 R2 R3 R4 R5

(b) Hierarchical aliasing pattern

Figure 2.2: Example of aliasing patterns. In this example, the arbitrary pat-
tern (a) has an unaligned register, D1, at level 1. Moreover, this register aliases
with D0 and D2. Hierarchical aliasing pattern (b) has no aliasing register within
a level. Moreover, a level l is composed by all the elements of level (l − 1).

Figure 2.3: General purpose registers of x86 architecture. Due to encoding
constraints, each level can address only 8 registers.

the aliasing pattern is said hierarchical. This pattern is used in several common
architectures, like x86 and ARM. To strictly stick to the de�nition of an hier-
archical aliasing pattern, the aliasing register �les may need to be completed
with non-allocatable registers. For instance, this is the case of the x86 archi-
tecture, see Figure 2.3, taken from Pereira and Palsberg [86]. This architecture
uses 3 bits, i.e., it has 8 �names�, to encode each access to a register for each
operand. As it features eight 32 bits registers, it should have sixteen 16 bits
registers. However, due to the encoding constraints, only 8 of these 16 registers
are addressable. Thus, holes in the aliasing pattern appear. Nevertheless, we
consider that this pattern is still hierarchical, since it can be �lled with non-
allocatable registers to match the de�nition. As a side remark, non-allocatable
registers are not taken into account in register allocation, thus it is not nec-
essary to explicitly add them. To summarize, in this thesis, we consider only
hierarchical aliasing.

Instructions Scheduling It is well known that register allocation is impacted
by the schedule of the instructions. A di�erent schedule may require fewer
registers. However, for most of our work, we do not take this opportunity into
account. In other words, we assume a �xed schedule of the instructions, unless
otherwise speci�ed.

20

2.3.2 Global Register Allocation

2.3.2.1 Graph-Based Approach

In 1981, Chaitin et al. [33] introduced graph coloring as a global approach for
register allocation. It was the �rst method that dealt with a complete function.
Previous approaches were limited to one instruction (more precisely a tree of
arithmetic operations) [97] or one basic block [46, 61]. Chaitin et al. approach
relies on a clean and simple formalism, thus, making it appealing to use. The
signi�cance of this method can be seen in the number of publications related to
register allocation via graph coloring, see [25, 8, 26, 35, 23] to quote but a few.

The General Problem Graph-coloring approaches build an undirected graph
(V,E,A,w), the interference graph (IG), where V is a �nite set, E ⊆ V × V ,
A ⊆ V × V , and w is a function from A to N. The set of nodes V represents
the variables, the set of undirected edges E represents the interferences between
variables, and the set of undirected weighted edges A represents the a�nities
between variables. If (u, v) ∈ E, u and v interfere, which means that they can-
not share the same register. The neighbors of a node u are the nodes connected
to this node by an interference, i.e., {v | (u, v) ∈ E}. The number of neighbors
of u is its degree. An a�nity a = (u, v) means that u and v are connected
by a move instruction in the program. Its weight w(a) represents the gain of
removing the related move, thus assigning the same register to both u and v.
Figure 4.9 (Page 74) presents a program and its related interference graph.

Graph coloring consists in �nding a function that maps each node to a color,
so that two nodes connected by an edge (of E, i.e., an interference) do not share
the same color. The related optimization problem consists in �nding a mapping
function that uses as few colors as possible, i.e., that computes the chromatic
number of the graph. For register allocation, the number of possible colors is
�xed by the number of registers, say k, so it is more related to the corresponding
decision problem: is a graph G colorable with at most k colors, i.e., is it k-
colorable? In other words, is the chromatic number of G at most k? This
k-colorability problem is well-known to be NP-complete for arbitrary graphs
and k ≥ 3 [50, Problem GT4]. Moreover, Chaitin et al. [33] showed that,
given an arbitrary graph G, it is always possible to build a program whose
interference graph is G. In other words, for an arbitrary program, deciding
whether k registers are su�cient to register allocate, through this graph-coloring
formalism, a program without any spill is NP-complete. This motivated the use
of a heuristic, based on a simpli�cation scheme, to perform register allocation.

This simpli�cation scheme is an old concept introduced by Kempe in 1879 [63].
It relies on the worst possible coloring of the neighbors of a node, worst in
the sense that the neighbors are considered to use as many colors as possible.
Using this idea, a node u can be safely removed from the graph if it has at
most (k − 1) neighbors. In the worst case, each neighbor uses a di�erent color,
so at most(k − 1) colors are consumed by the neighbors of u. Thus, once its
neighbors have been colored, it always remains at least one color to color u,
whatever the coloring of its neighbors. Using this simpli�cation process iter-
atively orders the nodes from less to most constrained ones. Then, a valid
mapping function can be obtained by iteratively reintroducing the most con-
strained node and choosing a color compatible with its current neighborhood.

21

If the simpli�cation process gives an order for all nodes, the coloring phase �nds
a valid solution by construction. In such a case, the graph is said to be greedy
k-colorable. Of course, not all k-colorable graphs are greedy k-colorable.

What happens if a graph is not greedy k-colorable, i.e., if the simpli�cation
process is blocked because all remaining nodes have a degree at least k? That
is where spilling comes into play. In 1982, Chaitin [32] proposed an heuristic
to spill using the IG, which consists in deleting a node from the graph, based
on a cost function. This principle has the e�ect of completely ignoring the
live-range of the variable associated to this node, as if it was always stored
in memory. For this reason, it is called spill everywhere. After such spills, the
simpli�cation can possibly proceed again, then the coloring of non-spilled nodes.
However, on a RISC architecture for example, the arguments and de�nitions
of instructions must reside in registers. A variable can thus never be spilled
everywhere. To cope with this approximation, spill code is inserted for spilled
variables at the end of the simpli�cation process. To be as close as possible to the
spill-everywhere approximation, the live-range parts that remain in registers are
made as short as possible. Thus, store instructions, the instructions that copy
the value from register to memory, are placed immediately after each de�nition
of the variable whereas load instructions, the instructions that copy the value
from memory to register, are placed immediately before each use of the variable.
This creates new variables. Then, the IG is rebuilt and the simpli�cation process
redone. This is as long as no more spill code has to be inserted (in general
twice, sometimes 3 times). To our knowledge, all graph-coloring-based register
allocators use such a spill-everywhere heuristics, even if the placement of load
and store instructions can also be re-optimized afterwards.

The Coalescing Problem Regarding the elimination of moves, graph-based
allocators o�er a natural way to model it. The move-related variables are con-
nected by a�nities, coalescing them means imposing that they are assigned the
same color, which can be done by merging the two corresponding nodes. One
possible optimization problem is then to merge as many a�nity-related nodes
as possible so that the sum of the weights of the coalesced a�nity edges is max-
imal. This problem, known as aggressive coalescing, is NP-complete [15, Ch.5].
If too aggressive, this kind of coalescing may increase the chromatic number
of the IG. Indeed, by fusing the live-ranges, merged variables may interfere
with more variables. The �rst algorithm proposed by Chaitin et al. used this
coalescing scheme prior to coloring.

On recent architectures, memory accesses and thus spill code are more likely
to be more expensive that register-to-register moves. Moreover, as it was ob-
served, aggressive coalescing may increase the number of spilled variables, but
the opposite is also true: inserting variable-to-variable copies, i.e., splitting live-
ranges, may help reducing the chromatic number of a graph [41]. To take advan-
tage of these observations, another kind of coalescing, conservative coalescing,
was introduced by Briggs et al. [26]. The optimization problem of conservative
coalescing is similar to the aggressive coalescing, except that coalescing an edge
should never increase the chromatic number of the graph. Deciding whether
a coalesced graph is k-colorable with at most a given number of a�nities not
coalesced is NP-complete [15, Ch.5]. A simpli�cation of that problem, called
the incremental conservative coalescing, considers the a�nities one by one and

22

build simplify
conservative

coalesce
freeze

potential

spill
select

actual

spill

any spills done

Figure 2.4: Iterated register coalescer from Figure 5 in George and Appel [51].

merge both nodes if and only if it preserves the k-coloring property. This variant
is also NP-complete in the general case. Briggs et al. [26] proposed an heuristic
for that problem. It is based on some properties of the nodes to be coalesced,
which ensure that the coalesced node will be simpli�able at some point of the
simpli�cation process. This test is known as Briggs' rule. On the other hand,
Briggs showed in his thesis [23] that performing, as a pre-phase, aggressive
live-range splitting, i.e., inserting a variable-to-variable copy on each program
point, gives mitigate performances. Indeed, as coalescing is heuristic-based, it
may perform quite bad on large graphs. Therefore, in his allocator, live-range
splitting was not used or only in a very limited fashion.

Following the incremental conservative coalescing idea, George and Ap-
pel [51] modi�ed Chaitin's approach [32], using the improvements of Briggs
et al. [26], to create the iterated register coalescer (IRC) allocator. This alloca-
tor is depicted in Figure 2.4. Its name comes from the fact that it iterates on the
di�erent phases, the simplifying (removing a node with at most k−1 neighbors),
coalescing (merging the two extremities of an a�nity), and spilling (removing
a node with at least k neighbors) phases, as long as each can be performed (in
this order). Nowadays, this allocator is considered to be the state-of-the-art
register allocator for graph-based approaches. A new conservative test, known
as George's rule, was also designed.

In 2004, Smith et al. [99] generalized the notion of degree (i.e., number of
neighbors in terms of interferences) of a node to deal with register aliasing.
Their generalization can be applied to any graph-based allocator using the sim-
pli�cation scheme. We will come back to this technique in Chapter 6. For com-
pleteness, we can also mention that, in 2002, Scholz and Eckstein [96] modeled
the graph coloring problem using partitioned Boolean quadratic programming
(PBQP). This model features a complete graph coloring approach, i.e., integrat-
ing spilling, coloring, and coalescing, for CISC architectures. One year later,
Hirnschrott et al. [60] evaluated a classical graph-coloring approach versus an
optimal approach also based on PBQP.

Criticisms Graph coloring is not exactly register allocation as Bouchez et
al. [20] clearly pointed out. A �rst weakness is that the underlying CFG is
completely obfuscated. In particular, the spill-everywhere strategy does not
exploit any smart placement of load and store instructions, and cannot exploit
the structure of the CFG, except indirectly through global node or edge weights.

A second weakness is that IRC-like allocators can generate useless spill code,

23

unless the allocator could check that the variables selected to be spilled will
indeed help coloring. This is because the choice of spilled variables depends on
a coloring criterion, which is related to an NP-complete problem for arbitrary
graphs. This is also because the heuristic is greedy. To reduce this weakness, the
concept of potential spill was introduced: if a variable, selected to be spilled,
can nevertheless be colored in the coloring phase, it is not spilled. But still,
the spilling problem, intermixed with the coloring problem, remains not well-
understood and hard to capture in a graph-based register allocator.

The third limitation is that, by nature of the graph-based model, each vari-
able is assigned a unique register whereas moving a variable from a register to
another can help the coloring. Some attempts were made to circumvent this
limitation [31, 78, 64], introducing various live-range splitting capabilities.

Regarding the runtime of the compiler itself, graph coloring approaches are
known to induce a large memory footprint. Moreover, the iterative process
implied by the spill code insertion leads to a waste of compile time. Indeed,
between two iterations, the liveness information, the simpli�cation order, and
the graph structure have barely changed. Nevertheless, everything is redone.

2.3.2.2 Other Approaches

Graph coloring is not the only way to tackle register allocation. In 1990, Chow
and Hennessy [34] proposed their priority-based allocator. In their model, live-
ranges of the variables are in memory and they try to bring them back into
registers, based on the priorities of the related live-ranges. The priorities are
computed from program estimation, basically the frequency of the basic blocks,
and machine parameters. When a live-range cannot entirely �t into register, it
is split and new live-ranges are sorted in the priority list accordingly. When it
�ts, they choose the color that maximizes the number of neighbors having this
color in their forbidden set.

Several �optimal� formulations were also proposed. In 1996, Goodwin and
Wilken [52] proposed to solve the global register allocation problem using an
integer linear programming (ILP) formulation. Their approach assigns the reg-
isters to variables and features load/store optimization, i.e., the optimization
of the placement of load and store instructions, and coalesces existing copy
instructions. However, it does not split the existing live-ranges. Two years
later, Kong and Wilken [67] extended this formulation to deal with CISC archi-
tectures and their irregularities, in particular the 2-address code constraint. In
2002, Fu and Wilken [48] speeded up the resolution of Goodwin and Wilken's
formulation. They took advantage of the structure of the program to remove
redundant ILP constraints in the equations. More recently, in 2006, Koes and
Goldstein [65] performed register allocation using a multi-commodity network
�ow model. Their expressive model, which relies on the program structure,
optimizes the �ows of variables from their de�nitions to their uses, minimizing
the spill cost. Their approach can also be used in a decoupled fashion. We will
study and develop such optimal models in Chapter 3.

All approaches presented in the previous paragraph rely on ILP and look
for optimality in their respective model. However, in late 90s, scan-based
approaches (i.e., allocators that work directly on the program, traversing in-
structions) appeared to cope with new compiler constraints implied by just-in-
time (JIT) compilation. Poletto et al. [88], Traub et al. [103], and Poletto and

24

Sarkar [89] introduced linear scan. This allocator considers the linearization of
the program as a unique large basic block and assigns variables to register or
memory locations from top to bottom. It is very fast but may produce poor
allocated code as the live-ranges of the variables are largely over-approximated,
leading to spurious spill code. In 2005, Mössenböck and Wimmer [105] im-
proved the spill code placement of linear scan, which was until that work based
on spill everywhere, and features on-demand live-range splitting. Finally, in
2008, Pereira and Palsberg [85] proposed a new type of linear scan which, unlike
previous approaches, deals with register aliasing thanks to aggressive live-range
splitting (at all program points) and a �puzzle-based� solving.

2.3.3 Decoupled Register Allocation

To address the criticisms of graph coloring, in particular, regarding the spilling
heuristic, Appel and George [3] introduced in 2001 decoupled register allocation.
Their spilling phase uses an ILP formulation, which uses the peculiarities of
CISC architecture and performs load/store optimization. It ensures that, at
each program point, no more than k variables are alive. Then, to ensure that no
more spilling will be necessary during the coloring phase, they insert, for each
program point, a parallel copy of all live variables at that point. This form of
aggressive live-range splitting is called split everywhere. The resulting graph is a
collection of small interference graphs, each de�ned by the interferences in indi-
vidual instructions, all connected by a�nities capturing the parallel copies. For
one instruction, the live-in set produces a clique, i.e., a complete graph where all
nodes are connected to all nodes, so does the live-out set. Since, after spilling,
both sets have at most k variables, each variable of the live-in set that is not live-
out (or the converse) has degree at most (k− 1) and is thus simpli�able. Then,
all other variables (those that are both live-in and live-out) can be simpli�ed
too. Therefore, the �nal graph is greedy k-colorable, unless register constraints
are involved. We will come back to that aspect in Section 2.3.3.2. To avoid
mitigated results for the coloring phase as reported by Briggs [23], when aggres-
sive live-range splitting is used, Appel and George use an optimistic coalescing
approach [80] instead of the classical incremental conservative coalescing. The
optimistic coalescer fuses as many nodes as possible, but unlike aggressive coa-
lescing, it can decoalesce nodes when it does not manage to simplify the graph.
Appel and George reported that this approach gives good results as, in their
case, the initial graph was known to be greedy-k-colorable. To our knowledge,
this is the �rst decoupled register allocator.

2.3.3.1 Towards SSA-Based Decoupled Approach

The decoupled approach of Appel and George [3] has two main drawbacks. First,
it relies on an ILP formulation for the spilling phase. This may be an issue for
compiler users regarding run time or licensing1, for instance. Also, Liberatore
et al. [71] and Farach-Colton and Liberatore [43] showed that, even on a basic
block, optimal spilling with load/store optimizations is a hard problem. No
good alternative was available for the whole program at that time. Second, the
split-everywhere strategy was considered too aggressive (too many insertions
of parallel copies) and it is a di�cult problem to �nd good and su�cient split

1As ILP solver may not be free of use.

25

points. Therefore, despite its inherent advantages (having two decoupled phases
makes the problem �simpler� to address), this decoupled approach did not gain
much interest until recently.

Around 2005 (at least for the publications), several groups observed that
the interference graph (IG) of programs in SSA form is chordal [27, 84, 56, 16].
For such graphs, coloring with the minimal number of colors can be done in
polynomial time using the simpli�cation scheme. Also, the chromatic number
equals the size of the largest clique of interferences in the graph. For programs in
SSA, the largest clique is also de�ned as the largest liveness set (i.e., set of alive
variables), over all program points, unless precoloring or aliasing is involved
(see Section 2.3.3.2). Hence, SSA provides su�cient split points to enable a
decoupled register allocation. The spilling phase ensures that, at each program
point, the number of live variables is at most k. This property forms the spilling
test, i.e., checking that at most k variables are simultaneously live. Then, the
coloring phase uses the classical graph coloring algorithm.

In 2009, Braun and Hack [21] proposed a fast spilling heuristic for a decou-
pled approach, which o�ers a better spill code than with the spill-everywhere
strategy. In 2009 too, Ebner et al. [39] presented an optimal spilling approach
using a constrained minimum cut model (see again Chapter 3 for the discussion
of optimal approaches). Then, in 2010, Braun et al. [22] detailed a fast coloring
heuristic, also for a decoupled approach, that does not rely on graph coloring.

2.3.3.2 When Register Pressure and Register Need Do Not Match

In the previous section, we recalled the �spilling test� used in SSA-based de-
coupled allocators: if the register pressure (the number of simultaneously live
variables) is not more than the number of available registers, the live-range split-
ting induced by SSA guarantees that all live-ranges can be colored, each with
a single color, and with no spill. Actually, this is only partially true. Indeed,
for programs having encoding or ABI constraints, i.e., for almost all programs,
considering the register pressure is not enough to guarantee the colorability of
the interference graph unless the compiler pre-formats the program in some way.
In this section, we list the problems that can occur and how to transform the
program to tackle them. Hack [55] uses the term register pressure faithful to
express the case where the register pressure and the register need match, i.e.,
the register pressure is a good measure of how many registers are needed. More
generally, what is important in a decoupled approach is to design a spilling test
that is compatible with the coloring phase, i.e., that enables this decoupling.

Duplication Problem A �rst case where the register pressure may not be
enough to capture the register demand of the program is when a variable must
use several registers at the same time, due to architectural constraints. In such a
case, we insert an explicit copy of the variable to perform a duplication, i.e., two
variables names are now present in the program, which increases the register
pressure and makes it match the register need. Figure 2.5a illustrates this
problem. In this example, the encoding constraints of the instruction forces the
argument, used twice, to be in two di�erent registers. The same problem occurs
when the argument is live-through and must reside in a subset of the register
�le that cannot traverse the instruction due to constraints on de�nitions.

26

{a} X

← a↑{R1,R2}, a↑{R3} 7

{a} X

(a) Original code

{a} X

(R1, R3) ← (a, a)
{R1, R3, a} X

← R1, R3

{a} X

(b) Hack's handling

{a} X

(a', a�) ← (a, a)
{a, a', a�} X

← a'↑{R1,R2}, a�↑{R3}

{a} X

(c) Our method

Figure 2.5: Impact of duplications on the spilling test. The notation a↑{R1,R2}

indicates that the variable a should be in the subset of registers composed
by {R1, R2} for this use, i.e., it is pinned to {R1, R2} for this use. Liveness
sets are represented in braces for each program point, such as {a}. Implicit
duplications (a) result in a non-faithful (too low) register pressure, indicated
by 7. The symbol Xrepresents points where the register pressure is faithful, or
more precisely, where it is a valid over-approximation of the register need. To
increase the apparent register pressure, Hack [55] explicits the duplication by
�xing the colors for all constrained arguments and by adding a parallel copy
before the considered instruction (b). Our method (c) is similar but does not
�x the color of the newly created arguments; the coloring phase will decide.

How many duplications of names need to be done to ensure that the reg-
ister pressure gives the right number of registers needed? Hack addressed this
question in details [55, Sec. 4.6]. If the code contains an arbitrarily-constrained
instruction, it is NP-complete to decide whether there is a register allocation for
this instruction where each variable is assigned to a unique register, i.e., with-
out duplication [55, Ch.4]. In particular, determining the minimum number of
copies to insert to make the register pressure faithful is NP-complete. Hack
investigated a less general model where each operand is either unconstrained
or constrained to a single register, and no two arguments (resp. results) are
constrained to the same register (this last condition is obviously needed other-
wise the coloring of the instruction is not possible unless both arguments, resp.
results, always share the same value). With these hypotheses, Hack showed that
the problem becomes tractable. Indeed, for such an instruction, a duplication is
needed exactly for each live-through argument that is constrained to the same
register as a result. However, when there is more than one constrained instruc-
tion, some live-range splitting may need to be done so that the allocations of
the di�erent instructions match. Hack showed that even with this restricted
model, deciding if some split is required is NP-complete.

Based on this study, Hack proposed a heuristic approach to handle instruc-
tions with general constraints. For such instructions, the constraints are simpli-
�ed by �xing the color of all constrained arguments via bipartite matching, then
the same is done for the results, as explained in Figure 2.5b. Finally, a split
(parallel copy) of all the live variables is inserted prior to each constrained in-
struction. We use a similar method, as presented in Figure 2.5c, except that we
do not �x the color of the constrained operands when several choices are possi-
ble. This gives more freedom to the coloring phase. This preliminary step, with
some duplications and extra splits, �xes the duplication problem. In Chapter 5,
we also present a method that does not need to explicit the duplications.

27

{u, t} X

d↑{R2} ← u↑{R1} 7

{d, t} X

(a) Original code

{u, t} X

z ←
{u, t, z} X

d↑{R2} ← u↑{R1}, z
{d, t} X

(b) Hack's trick

{u, t} X

d↑{R2} ← u↑{R1} +1 X

{d, t} X

(c) Our method

Figure 2.6: Checking live-in and live-out sets of an instruction may not be
enough for an accurate spilling test. In (a), the register pressure of 2 fails to
capture the over pressured point implied by ABI constraints (symbol 7). Hack
explicits this constraint with a dummy argument z, increasing arti�cially (on
purpose) the pressure before the instruction. In our case, we check the register
pressure on the instruction and add 1 due to the impossibility to recycle the
color of the argument for the de�nition. The symbol Xrepresents points where
the updated register pressure is faithful.

The Encoding/ABI Problem The previous code preparation �xed the du-
plication problem. However, encoding and ABI constraints may still produce
cases where the register demand is not accurately represented by the cardinal
of the live-in and live-out sets. This is illustrated in Figure 2.6. Let us assume
that, due to ABI constraints, an instruction must take an argument in R1 and
must de�ne a result in R2. Let us assume also that the architecture has only two
registers and that three variables are involved: one argument, last used on that
instruction, one de�nition, and one live-through variable. The set of variables
live before the instruction is composed by the argument and the live-through
variable. The de�nition and the live-through compose the set of variables live
after the instruction. In both cases, the number of live variables equals 2, how-
ever it is clear that the live-through variable must be spilled. Following Hack's
terminology [55, Ch.4], this example is not register-pressure faithful. To �x that
problem, Hack proposed to add a dummy argument to that instruction and to
de�ne it just before the instruction. Using this trick, the dummy argument
now appears in the set of live variables before the instruction and the register
pressure used for the spilling test is relevant again.

We proceed slightly di�erently. Instead of �polluting� the program with such
dummy variables, we prefer to check the register pressure on the instruction
itself using the following method. We observe that this problem occurs only
when a variable is last used in an instruction. Indeed, if it is not last used,
it appears, with the de�nitions2, in the live-out set of the instruction, thus
it is correctly counted as consuming a register di�erent than the de�nitions.
Our method consists in traversing the set of last-used variables, restricted to
variables constrained on that instructions, and trying to �nd a de�nition that
can �recycle� a potentially-used color. Of course a de�nition can be used to
recycle only one argument. The register pressure on an instruction is then given
by the sum of the number of de�nitions, the number of last-used arguments,
and the live-through, minus the number of variables that can be recycled.

In this method, an argument may be recycled by several de�nitions. Thus,

2We assume that dead de�nitions reach at least the live-out set of the related instruction.

28

in theory, if we pick the wrong recycling, we may over-estimate the register
pressure on an instruction. In practice however, ABI constraints de�ne a one-
to-one mapping for all operands of the constrained instruction, thus the choice
is �xed a priori. Also, encoding constraints are limited to �regular� instructions,
i.e., instructions where at most two arguments and at most one de�nition are
constrained at the same time. Therefore, an exhaustive search could be used
with an acceptable cost, even if a heuristic pairing is also su�cient in practice.

Edges and Critical Edges An additional problem is due to control-�ow
edges in conjunction with SSA. In Section 2.2.4, we recalled that the usual
way of deconstructing SSA after coloring assumes that no edge is critical. The
standard semantics of φ-functions, as recalled in Section 2.2.5, assumes that
the related parallel copies are performed on the incoming edges, in particular
that variables de�ned by φ-functions are not live-out of the predecessor blocks.
However, when these parallel copies cannot be placed on the edges but must
be placed earlier (at the end of a predecessor block or even before a jump in-
struction), the liveness information computed in SSA may not describe correctly
what will be obtained after copy insertion, in particular the register pressure.

This approximation is not a problem unless the number of live variables is
larger than the one considered during the spilling phase. Let us examine this
more carefully. Let e be a regular (i.e., not critical) edge and assume that the
destination block of e contains φ-functions. The number of variables in the live-
out set of the source block of e is at most the number of variables in the live-in
set of the destination block of e, by de�nition of the liveness (except for variables
involved in the φ-functions, the live-in set is the union of the live-out sets of the
predecessor blocks) and the semantics of φ-functions (there are at least as many
de�nitions as arguments for each parallel copy). Since e is a regular edge, the
parallel copy on e can be sequentialized in the source block of e as this block has
no other successor. After this transformation, the de�nitions are in the live-out
set of the source block of e and in the live-in set of its destination block.

The previous �proof� makes an invalid assumption. It assumes that the
parallel copy will be expanded last in the source block. This may not be possible
if a branch instruction is required and, in this case, the register pressure may be
larger before the branch instruction as some of its arguments may not be live-
out of the block. Therefore, even without critical edges, deconstructing SSA
may require more registers than the liveness information obtained prior to the
transformation indicated. Obviously, if critical edges are allowed, the problem
is even more likely to occur. In other words, for this process to be correct, the
assumption must be that all edges are splittable, i.e., one can interleave a basic
block between the destination block and the source block of all edges. We will
see in Chapter 7 how to avoid this aggressive edge splitting without changing
the assumption during the spilling phase. Another possibility is to compute
liveness information more carefully, taking into account the actual places where
parallel copies will indeed be placed.

Register Aliasing When register aliasing, as de�ned in Section 2.3.1, comes
into play, the split points de�ned by the SSA form may not be su�cient to color
the live-ranges, with a simpli�cation scheme, without additional live-range split-
ting. Indeed, in such a con�guration, the coloring problem (i.e., each live-range

29

is mapped to a unique color) is NP-complete [9, 69]. The problem is not that the
spiller gets wrong but more that the coloring phase cannot be guaranteed to �nd
the optimal coloring. Using another form of coloring may solve this issue, e.g.,
Pereira and Palsberg's puzzle solver for some speci�c aliasing constraints [85].
In Chapter 6, we will give such a spilling test compatible with a coloring phase
that uses graph coloring in presence of aliasing.

In conclusion, as already stated, what is important is that the spilling test
and the coloring phase are compatible, i.e., that the spilling phase, driven by
the spilling test, spills and splits live-ranges enough so that the coloring phase
is guaranteed to succeed in assigning a unique register to each live-range. As
we just presented in this section, except for the case of hierarchical aliasing
that requires some more developments exposed in Chapter 6, standard register
constraints can be taken into account by preparing the program with adequate
live-range splits and duplications so that the register pressure is faithful, i.e.,
a right measure of the register need. Therefore, unless otherwise speci�ed, we
will not come back to this point in the manuscript. The reader must however
remember that these details have to be taken into account somehow.

30

Part II

Spill

31

This part deals with the �rst phase of a decoupled register allocation, i.e.,
the spilling phase. At this stage of the compilation process, the idea is to lower
the register pressure such that, at every program point, the assignment phase
will be able to �nd a proper coloring for all the variables, without inserting more
spill code. The spilling phase does not require that necessary split points for
coloring are inserted prior to its processing. Thus, it is possible to spill on a
program that is not in static single assignment (SSA), and to color the same
program using SSA. Nevertheless, if split points exist, the spiller has to deal
with them, in particular, it has to deal with φ-functions if the program uses the
SSA form.

Our initial motivation was to analyze whether SSA is helpful or not to achieve
good spilling. In the �rst chapter of this part, we investigate the impact of SSA
on spilling with a �exible integer linear programming (ILP) formulation. We
compare this formulation against existing optimal approaches, with respect to
static spill cost, as well as heuristic-based approaches, and we evaluate the im-
pact of SSA on the runtime of the generated code and the complexity, in terms
of implementation, of the algorithms. Then, in a second chapter, using the ex-
perimental results of the �rst chapter, we discuss existing spilling criteria and
existing heuristics. In particular, we validate experimentally several simplifying
assumptions and point out the weaknesses of the approaches. We �nally propose
a new cost model to optimize for runtime and emphasize some of the charac-
teristics of runtime performance that should be accounted so as to generate the
fastest possible code.

In the rest of the manuscript, we use the lightning symbol (E) to depict
program points where the register pressure exceeds the number of available
registers.

32

Chapter 3

Studying Optimal Spilling in

the Light of SSA

The static single assignment (SSA) form may appear attractive for the design of
spilling algorithms, because the underlying dominance tree often simpli�es algo-
rithms [21]. Also, a spill-everywhere strategy, i.e., considering than a variable is
never in a register, can be realized by �nding a maximal k-colorable subgraph in
the interference graph, which is chordal in SSA. Although NP-complete [107, 18]
(if k is not �xed), this problem may, in practice, appear simpler than for a gen-
eral graph. However, considering the di�erent SSA live-ranges, obtained from
a given non-SSA variable, as unrelated means that stores may be needed for
each spilled live-range, while only one might be enough for the original variable,
as depicted by Figure 3.1. This may increase the spill cost considerably, unless
the moves hidden in the SSA φ-functions are exploited.

if(. . .)
a ←
@a ← store a

E

else

a ←
@a ← store a

E

E
a ← load @a

← a

(a) Spill in a regular program

if(. . .)
a1 ←
@a1

← store a1
E
a3 ← load @a1

else

a2 ←
@a2

← store a2
E
a4 ← load @a2

a5 ← φ(a3, a4)
@a5

← store a5
E
a6 ← load @a5

← a6

(b) Spill under SSA

Figure 3.1: In SSA, considering as unrelated the di�erent live-ranges composing
a variable may produce bad spill code.

33

To analyze these choices, and not just through heuristics, we needed an ex-
act formulation of the spilling problem, as complete as possible, that exploits
the structure of decoupled register allocation. As we show in Section 3.1, pre-
vious formulations either express the whole register allocation problem and are
thus very expensive, or cannot express all solutions, due to some simplifying
assumptions, in particular the fact that a variable cannot be stored simulta-
neously in a register and in memory. We thus developed a new integer linear
programming (ILP) formulation to approach optimality even closer and to better
understand the mechanisms involved during spilling. Section 3.2 �rst presents a
simpli�ed version of this formulation, which already subsumes most previous ap-
proaches, and then shows extensions that incorporate more advanced features.
Section 3.3 gives a thorough analysis of the results obtained for the SPECINT
2000 and EEMBC 1.1 benchmarks and discusses the important features for
optimal spilling on load-store architectures.

To summarize, this chapter features:

• A new simple, �exible, and expressive ILP formulation for spilling on
load-store architectures, which allows us to accurately model variable
liveness, rematerialization, SSA and move instructions, memory coalescing,
placement restrictions of load/store operations, spill everywhere, etc.

• A detailed analysis of spilling choices that show, among others, a) the
extreme importance of rematerialization, b) the di�culty of memory co-
alescing when move instructions (e.g., through φ-functions) are exploited,
c) the strong interaction with post-pass scheduling.

3.1 Formulating �Optimal� Spilling

�Optimal� 1 spilling formulations are based on the notion of program points and
local register pressure induced by a given solution to the spilling problem. They
thus capture the number of live variables and their assignment to either memory
or registers at a given point. Since spilling is a global problem, program points
are connected according to the control �ow graph (CFG) so that decisions at
one point impose constraints at its neighbors in the CFG. This global model
is usually expressed as an integer linear programming (ILP) instance, which is
solved by a generic ILP solver, such as CPLEX or GLPK.

3.1.1 Existing �Exact� Formulations

The formulation of Goodwin and Wilken [52] models the complete register al-
location problem, including the actual assignment of registers, using live-range
graphs (LRG). A LRG models the live-range of a given variable with respect
to a speci�c hardware register and thus needs to be instantiated once for every
register. The initial LRGs are extended to capture spilling decisions along the
variable's live range, i.e., store and load operations, register-to-register copies,
and rematerialization. A major drawback of the formulation is the large size
of the ILP instances. The problem stems from the duplication of the LRGs
and also from redundancies arising from the LRG extensions. The approach

1We use quotation marks for the word �Optimal� because, as we will see, none of the exact
formulations proposed so far, ours included, is able to represent all possible solutions.

34

thus appears rather expensive in practice. However, an optimized variant later
addressed some of these issues [48].

Appel and George [3] were the �rst to exploit the decoupling between spilling
and register assignment by replacing the latter by a simpler constraint on register
pressure. Developed for complex instruction set computing (CISC) machines,
they demonstrated that this strategy considerably reduces the size of the ILP
instances. However, they made a fundamental (and surprising) assumption: a
variable cannot be stored simultaneously in memory and in a register. The prob-
lem can then be simpli�ed by expressing, for each program point, the possible
movements of a variable between the memory and the set of registers. However,
this limitation leads to sub-optimal solutions, in particular to redundant store
instructions. Indeed, each time a variable goes to memory, a store needs to be
placed even if the variable has already been stored there in the past.

The approach of Koes and Goldstein [65] is based on multi-commodity net-
work �ow. All live-ranges are expressed using a single network-�ow problem,
where variables are represented by source and sink nodes, while other nodes
represent allocation classes, such as constants, registers, and memory, at pro-
gram points and instructions. The network capacities express constraints on the
number of variables that can be assigned to each storage class simultaneously.
Initially designed to solve the complete register allocation problem, including
assignment, the approach can also be used to express the spilling problem alone,
by merging nodes and summing their associated capacities so as to constrain
the register pressure [66]. By adding some extra variables, called anti-variables,
Koes and Goldstein avoid counting redundant stores. However, as for Appel et
al., a variable may only be assigned to a single allocation class at any given
program point. Due to this limitation, not all solutions can be expressed and
the optimal can be missed too.

Ebner, Scholz, and Krall [39] address the spilling problem for SSA programs
using a series of network-�ow problems, one for each variable. Nodes correspond
to instructions and edges to program points where loads can be placed. Every
cut of such a network gives a solution to the spilling problem for that particular
variable. To capture the register pressure, i.e., to consider all variables together,
a constrained min-cut problem is de�ned by assembling nodes of the individual
�ow problems representing the same instruction into partitions with capacities.
The placement of stores is not optimized: they are always inserted after the
unique de�nition of a variable. Furthermore, the splitting of live-ranges due to
SSA is kept unchanged, i.e., the implicit moves corresponding to φ-functions are
not exploited.

3.1.2 Limitations of Existing Approaches

The approaches presented above were designed to solve register allocation and
spilling under various constraints and assumptions stemming from complexity
or modeling considerations. They thus often show slight limitations, sometimes
unexpected, concerning �optimality�, expressiveness, and even correctness, as we
will illustrate. In the following, the symbol E indicates a program point where
the register pressure is too high and some variable needs to be spilled.

35

a ← ...

b ← a + 1 E
...

← a

(a) before spilling

a ← ...

b ← a + 1 E
@a ← store a

...

a ← load @a

← a

(b) ine�ective spilling

Figure 3.2: Spilling the variable a does not help.

3.1.2.1 Liveness

The extent of live-ranges is a surprisingly frequent source of problems, at least
for load-store architectures. If a variable cannot be simultaneously in register
and memory, as for the approaches of Appel et al. and of Koes et al., a variable
stays live in a register after a use until the value can be spilled, unless the
variable dies at that use in the original program. In Figure 3.2, the variable a

remains live after its use and thus always interferes with b, regardless of the
spilling decision. Here, a should be stored just after its de�nition and, at the
same time, kept live in a register. In the worst case, these arti�cial interferences
between uses and de�nitions, due to the strong hypothesis that a variable can
never be simultaneously in memory and in register, may render the spilling
problem unfeasible, e.g., when the number of variables de�ned and used is larger
than the number of available registers.

A similar problem can arise with the initial formulation of Goodwin et al. [52],
linked to the block start and block end transformations. Later results resolve
this issue with additional ILP variables explicitly modeling deallocation [48].

3.1.2.2 Living in Memory and Register Simultaneously

As we already mentioned, a major limitation of the approach of Appel et al. is
the assumption that a variable may either be kept in memory or in a register,
but never in both at the same time. Besides the unnecessary extension of live-
ranges shown previously, this may lead to spurious store operations as shown
by Figure 3.3b. The necessary load operation inside the loop �destroys� the
previously-spilled value in memory and forces a useless store operation inside
the loop. The �optimal� solution in their model is given by Figure 3.3c. The
actual optimal solution cannot be expressed. It would consist of the code from
Figure 3.3b without the store inside the loop.

A similar example can be built for the formulation of Koes and Goldstein,
despite the fact that redundant stores cost zero in their model. Figure 3.4
shows three spilling scenarios on a simple loop. Redundant stores that are
not emitted are shown in gray. Figure 3.4c is close to the optimal solution.
However, a useless load operation is required before the loop due to the use of
the variable a on the else-branch within the loop.

3.1.2.3 Rematerialization

It is well-known that rematerialization has a great potential to reduce spill costs
by recomputing values instead of storing and re-loading them from memory.

36

a ← ...

while(...){

E
← a

}

(a) before spilling

a ← ...

@a ← store a

while(...){

E
a ← load @a

← a

@a ← store a

}

(b) Appel 1

a ← ...

while(...){

@a ← store a

E
a ← load @a

← a

}

(c) Appel 2

Figure 3.3: Spurious store operations following a load.

a ← ...

while(...){

if (...)

@a ← store a

E
a ← load @a

← a

else

← a

}

(a) Koes 1

a ← ...

@a ← store a

while(...){

if (...)

E
a ← load @a

← a

else

a ← load @a

← a

store a

}

(b) Koes 2

a ← ...

@a ← store a

a ← load @a

while(...){

if (...)

store a

E
a ← load @a

← a

else

← a

}

(c) Koes 3

Figure 3.4: Even when redundant stores cost zero, sub-optimal spilling solu-
tions may be generated.

However, in the context of �optimal� spilling, rematerialization and its impact
on code quality and solving times is hardly studied.

The approach of Appel et al. does not address rematerialization. As for
Koes et al., they model rematerialization of simple constants using a dedicated
allocation class. Again, the fact that a variable cannot be accessed through
multiple allocation classes at the same time prevents it to be used as a rema-
terialized operand and to stay available in memory. This may be needed for
further usage after a CFG join point if the variable is not rematerializable on
the other path. As for the model of Goodwin et al., it is restricted to variables
holding a constant value throughout their entire live-range. Moreover, remate-
rializable variables cannot be spilled to memory. This limits the optimization
since variables in non-SSA programs are often rematerializable only on parts of
their live-ranges.

3.1.2.4 Memory Coalescing under SSA Form

SSA simpli�es the register assignment phase but its bene�ts for spilling are less
clear. An important aspect, not covered by any of the existing �optimal� for-
mulations, is the modeling of φ-functions, in particular the e�ect of spilling the

37

if(...)

...

else

...

@a ← φ(@b, c)
@e ← φ(@b, d)

(a) Ebner output

if(...)

...

v1 ← load @b E
@a ← store v1 E
v2 ← load @b E
@e ← store v2 E

else

...

@a ← store c
@e ← store d

(b) Expansion

if(...)

...

@cross ← store cross
v1 ← load @b E
@a ← store v1 E
v2 ← load @b E
@b ← store v2 E
cross1 ← load @cross

else

...

@a ← store c
@b ← store d

cross2 ← φ(cross1, cross)

(c) Repairing

Figure 3.5: Hidden costs due to mixed type of operands in φ-functions in Ebner
et al. Removal of φ-functions may require to insert load/store instructions.
These instructions may need an additional register in case of memory to memory
copy (b). This additional register may exceed the register pressure and may
imply additional spill code for a variable crossing that region (c).

result and/or arguments of a φ-function. Ebner et al. treat them as completely-
independent variables and thus do not exploit the implicit copy relations, in their
cost model. Instead, they place loads and stores a posteriori, once spilling deci-
sions of SSA variables are done. This implies a hidden cost and potentially very
bad spilling decisions as illustrated in Figure 3.5. Spilling heuristics [21] usually
avoid the problem by requiring the program to be in conventional static single
assignment (CSSA), where the operands and the de�nition of a φ-function do
not interfere. In this case, the related variables can be stored at the same mem-
ory location, without the need of additional memory operations. Otherwise, the
copy relations and the possible coalescing (i.e., sharing) of memory locations
among φ-operands have to be modeled to derive an accurate cost model [55], as
we discuss in the next sections.

3.2 A More �Optimal� Formulation

This section presents a new ILP formulation of the spilling problem, more ac-
curate than previous solutions (but specialized to load-store architectures) and
�exible enough to evaluate di�erent opportunities when designing spilling strate-
gies. It can also emulate the spilling formulations given in Section 3.1 with a few
additional constraints. We �rst present a simpli�ed version for non-SSA pro-
grams, then describe extensions to handle moves, in particular those implicit in
the SSA representation.

Given a program represented by a CFG, with weights indicating the exe-
cution frequency of each instruction or basic block, our formulation seeks the
cost-optimal placement of stores and loads, with no other modi�cation of
the program (e.g., no re-scheduling). These spill operations can be placed on
program points before and after every instruction. Additional program points
might be available at CFG joins and splits, depending whether the CFG edges

38

can be split or not. An optimal solution might require to perform multiple spill
operations at a given program point. Without loss of optimality, we choose to
perform all stores �rst, then all loads, since this order reduces the local regis-
ter pressure. The relative order of the individual stores (respectively loads) is
not relevant and is thus not modeled.

3.2.1 Basic Formulation

For every variable live at a given program point, we record whether its value is
available in a register, in memory, or in both. This depends on the instructions
reading/writing the variable and on the spill operations. Additional constraints
ensure that the number of variables held in registers does not exceed the number
of available registers. A fundamental feature of our model is that a variable can
die in register and/or in memory at any moment. For a variable v live at a
program point p, we introduce the following 0-1 variables:

ρ1,p,v = 1 i� v is available in a register at the beginning of p.
ρ2,p,v = 1 i� v is available in a register at the end of p.
µ1,p,v = 1 i� v is available in memory at the beginning of p.
µ2,p,v = 1 i� v is available in memory at the end of p.
sp,v = 1 i� v is stored to memory at (the beginning of) p.
lp,v = 1 i� v is re-loaded from memory at (the end of) p.

The variables sp,v and lp,v can be deduced from the other 0-1 variables. Nev-
ertheless, we keep them for readability and to simplify the speci�cation of the
ILP cost function.

3.2.1.1 Constraints

De�nitions and Uses On a load-store architecture, a variable v must be in
a register immediately after its de�nitions and immediately before its uses. In
other words, for a program point p that immediately precedes an instruction
that uses v, the variable v must be in a register at the end of p, i.e.:

(Use) ρ2,p,v = 1

Similarly, for a program point p that immediately follows an instruction de�n-
ing v, the variable v must be in a register at the beginning of p, but is not
available in memory:

(DefR) ρ1,p,v = 1 (DefM) µ1,p,v = 0

Loads and Stores To do a load (resp. store) of v at a program point p, the
variable v has to be available in memory (resp. register) at the beginning of p:

(Load) lp,v ≤ µ1,p,v (Store) sp,v ≤ ρ1,p,v

To make things simpler (this does not change optimality), we add the following
constraints, which mean that a load (resp. store) does assign a register (resp.

39

memory location), at the end of p:

(Load*) lp,v ≤ ρ2,p,v (Store*) sp,v ≤ µ2,p,v

Propagation A variable v is available in a register at the end of a program
point p if it was available in a register at the beginning of p or it has just been
read from memory using a load:

(Regp) ρ1,p,v + lp,v ≥ ρ2,p,v

Similarly, a variable is available in memory if it was already in memory or if it
has just been written using a store:

(Memp) µ1,p,v + sp,v ≥ µ2,p,v

It remains to ensure the consistency between two successive program points p
and q for a variable v that is not de�ned by the possible instruction between p
and q: v is in register (memory) at the beginning of q if it is in register (memory)
at the end of all program points p that immediately precede q.

(Regp,q) ρ2,p,v ≥ ρ1,q,v (Memp,q) µ2,p,v ≥ µ1,q,v

Note that by using inequalities (≥) instead of equalities (=), it is possible to
release register and memory locations at any time (i.e., v dies), both within and
between program points.

Register Pressure There should be at most k variables in a register at the
beginning and at the end of each program point p, where k is the number of
available registers:

(Presb)
∑

v

ρ1,p,v ≤ k (Prese)
∑

v

ρ2,p,v ≤ k

Example For the two successive program points p and q surrounding the
instruction b ← a + 1, the following constraints are generated: ρ1,q,b = 1,
µ1,q,b = 0, ρ2,p,a = 1, ρ1,q,a ≤ ρ2,p,a, and µ1,q,a ≤ µ2,p,a. These last two
constraints are similar for variables whose live-ranges traverse the instruction.
Register pressure constraints are also added. Figure 3.6 illustrates the relation
among the associated ILP variables.

3.2.1.2 Objective Function

Our goal is to minimize the expected cost of spill code at runtime (code size
could also be modeled). We denote by Fp the expected execution frequency
of program point p and by Cstorep,v and Cloadp,v the costs of a store and a
load for variable v at p. The parameterization of the costs with p and v gives
additional freedom for our advanced formulations presented later. We then aim
at minimizing: ∑

p

∑

v

Fp

(
Cstorep,vsp,v + Cloadp,vlp,v

)

40

ρ1,p,a =? µ1,p,a =?

(Regp) + + (Memp)

•p lp,a =?
≤

(Load)

≥

(Store)
sp,a =?

(Regp) ≤ ≤ (Memp)

ρ2,p,a = 1 (Use) µ2,p,a =?

b ← a + 1 (Regp,q) ≥ ≥ (Memp,q)

ρ1,p,b = 1 (DefR) µ1,q,b = 0 (DefM) ρ1,q,a =? µ1,q,a =?

•q

Figure 3.6: Generated ILP variables and the related constraints on an instruc-
tion and its surrounding points. Question marks denote values to be set by the
ILP solver. The name of the rule is given next to the corresponding constraints.

3.2.1.3 Fully Rematerializable Variables

A variable v is fully rematerializable if all its de�nitions evaluate to the same
value that is recomputable on every program point for free. This is the particular
case of rematerialization captured in the model of Goodwin et al. In our basic
ILP formulation, we can easily express it as follows. For a program point pv
after a de�nition of a fully-rematerializable variable v, instead of applying DefM
and DefR, we simply force µ1,pv,v = 1 (then loading means recomputing) but
leave ρ1,pv,v unspeci�ed (a solution with ρ1,pv,v = 0 means that the de�nition is
removed at this point). We then rede�ne Cloadp,v, the cost of loading (here, of
recomputing), by Crematv. Finally, to take de�nition removals into account, we
subtract Fpv

Crematv(1 − ρ1,pv,v) from the objective function. A more general
model of rematerialization is given in Section 3.2.4.

3.2.2 Emulating Other Formulations

With a few additional constraints, we can emulate other ILP approaches, in
particular those of Appel and George, and of Koes and Goldstein, as well as
heuristic strategies such as the spill-everywhere approach.

To emulate spill-everywhere simpli�cations, for each variable v, we restrict
the program points where a store (resp. load) can be inserted to the points
immediately after the de�nitions (resp. before the uses) of v. This translates
into setting the ILP variables representing the insertion of load or store to 0
on all the points that do not match the previous constraints. Moreover, in a
spill-everywhere strategy, when a variable is spilled, all its de�nitions are stored
and all its uses are loaded. To achieve this behavior, all the permitted stores
and loads of a variable have to be linked. To not change the way ILP variables
and constraints are generated in our implementation, we added constraints that
state that all these ILP variables are equal. Another way could be to use a
single ILP variable for all these actions.

To emulate Appel and George, we just need to forbid a variable to be in
register and memory at the same time. This can be done by adding the con-
straint µ2,p,v + ρ2,p,v = 1 for every program point p and variable v live at p.
As for µ1,p,v + ρ1,p,v = 1, it is implied by the propagation constraints Regp,q

41

and Memp,q. An alternative formulation is to force a store (resp. load) to
release the corresponding register (resp. memory location):

(Appell) lp,v + µ2,p,v ≤ 1 (Appels) sp,v + ρ2,p,v ≤ 1

It is interesting to note that, if we do not add the Appell constraints but only
keep the Appels constraints, i.e., a load does not force the variable to die in
memory, we retrieve the model of Koes and Goldstein, in which the cost of
a store is zero when the variable has already been stored. Actually, to get a
faithful emulation, we should slightly weaken the model to express the limitation
exposed in Section 3.1.2.1. This can be done by adding ρ1,p,v = 1 for every
program point p after a use of variable v that is not the last use.

Note that these two emulations, of Appel et al. and of Koes et al., are both
derived by over-constraining our basic formulation. Thus, our formulation is
more general and expresses more solutions. Compared to the formulation of
Appel et al., our ILP unknowns express where variables are stored (register
and/or memory) while Appel et al. express the movements of these variables
between register and memory (mutually exclusive).

3.2.3 Handling SSA and φ-Functions

We now explain how to extend the previous basic formulation to deal with SSA
programs. Several approaches are possible depending on whether live-ranges of
SSA variables are considered to be unrelated, we call this the basic SSA approach
(see Section 3.2.3.1), or whether copy relations implicit in φ-functions are ex-
ploited. In this latter case, the fact that arguments of a φ-function can interfere
complicates the formulation: we then propose two solutions, an optimistic ap-
proach that may require repair code, and thus optimizes an under-estimation of
the spill costs, and a pessimistic approach that conservatively exploits memory-
to-memory copies. The way we handle φ-functions can also be used to exploit
regular move operations, thanks to the notion of local equivalence class that
will be explained later on. However, this extension has limited impact for the
benchmarks we considered, which have few moves. We also present support for
more sophisticated rematerialization.

3.2.3.1 Basic SSA

The easiest way of handling SSA programs is to consider live-ranges of SSA
variables as unrelated and to interpret φ-functions as copies between variables.
The basic formulation of Section 3.2.1 can then be applied on the code that
would be obtained by direct out-of-SSA translation [100]. In this process, the
di�erent φ-functions are represented by parallel move operations that are implic-
itly placed at the program point representing a φ-function and its predecessors
as illustrated by Figure 3.7. These parallel copies are then sequentialized, which
may require an additional variable.

This approach, although correct, has several weaknesses. For load-store ar-
chitectures, it requires every argument of a φ-function to pass through a register
at the corresponding copy. This may increase spilling. Also, each φ-function
potentially induces a store if the corresponding variable is spilled. Finally, the
fact that a particular sequentialization is chosen a priori may preclude opportu-

42

if (. . .)
. . .

else

. . .

a ← φ(b, c)
e ← φ(b, d)

(a) Before

if (. . .)
. . .
(aφ, eφ) ← (b, b)

else

. . .
(aφ, eφ) ← (c, d)

(a, e) ← (aφ, eφ)

(b) After

Figure 3.7: Replacement of φ-functions.

nities. Thus, when considering SSA variables, it is preferable to combine spilling
with a form of copy coalescing, in particular the coalescing of memory locations.

3.2.3.2 Optimistic Coalescing

A more natural handling of φ-functions is to consider a φ-function as a propa-
gation between program points, i.e., to transfer values of a φ-function through
registers and memory: the result of a φ-function is available in register (resp.
memory) if all other arguments are in register (resp. memory). More formally,
for every program point pi, 1 ≤ i ≤ n, preceding a program point q that repre-
sents a φ-function a0 ← φ(a1, . . . , an), we add the following two constraints:

(PhiR) ρ1,q,a0
≤ ρ2,pi,ai

(PhiM) µ1,q,a0
≤ µ2,pi,ai

In this approach, implicit memory-to-memory copies, expressed by the con-
straints PhiM , are allowed at no cost. This model is used in the heuristic of
Braun and Hack [21], assuming that the program is in CSSA, which guarantees
that no actual memory copies are required (how Ebner et al. [39] capture φ-
functions is not explained). Indeed, in CSSA, variables connected by φ-functions
do not interfere and can be spilled to the same memory location.

The same approach can be used optimistically for programs that are not in
CSSA, by observing that memory live-ranges are shorter than the original live-
ranges and thus, after spilling, are less likely to interfere than the original live-
ranges. After ILP solving, φ-functions whose results are not in a register at their
de�nition point are converted to φ-functions with memory operands. The live-
ranges of all memory locations are then computed and coalesced using aggressive
coalescing [33]. Finally, repair code is inserted that performs a transfer from the
memory location of a φ-function argument to the appropriate destination, when
the argument has not been coalesced with the result of the φ-function. These
additional costs are not re�ected in the ILP objective function, which may lead
to sub-optimal solutions. Also, in the worst case, the repair code may locally
increase register pressure, which might lead to additional local spilling.

3.2.3.3 Pessimistic Coalescing

The pessimistic approach proceeds in the opposite manner. Parallel move oper-
ations are implicitly placed at the program point representing a φ-function and
its predecessors, as illustrated in Figure 3.7a. Next, liveness is computed, an

43

a ← ...

b ← ...

E
← b

if (...)

E
c ← φ(a, b)

E

(a) Original

@c ← store a

@b ← store b

E
b1 ← load @b

← b1
if (...)

E
@c ← mem_dup @b

c ← φ(a, b)

(b) Optimistic/pessimistic

@c ← store a

@b ← store b

E
b1 ← load @b

← b1
if (...)

@c ← store b

E
c ← φ(a, b)

(c) Optimal

Figure 3.8: Optimal memory duplication placement.

interference graph of all live-ranges is built, and aggressive coalescing is used
to de�ne sets of coalescable variables. These sets are then used during the con-
struction of the ILP problem to express memory-to-memory duplications and
take their costs into account in the ILP objective function. This is expressed
using two new constraints Memcpy (copy at no cost) and Memdup (duplication)
detailed hereafter.

This approach is pessimistic, because, whenever a variable interferes stati-
cally with another variable in the original program, it is assumed that the spill
locations of these variables will also interfere in the �nal program. After ILP
solving, however, we might encounter that these memory locations actually do
not interfere, because the variables are not kept in memory throughout their
complete live-ranges. Using a post-processing, we may thus eliminate useless
memory duplications, again by coalescing memory locations, and lower the spill
cost. In contrast to the optimistic variant, this post-processing is optional and
not required for correctness.

3.2.3.4 Optimal Coalescing

None of the approaches presented in the previous sections captures the optimal
solution, as shown by the example of Figure 3.8. Optimally solving the memory
coalescing problem along with the spilling problem is intractable at the moment
due to the subtle semantics of φ-functions and the complexity of capturing
the actual live-ranges in memory, which are not known before spilling is done.
The problem of expressing optimal solutions for non-CSSA programs is thus
left open. However, we can draw a hierarchy between the di�erent approaches
compared to an optimal solution, as follows.

The basic SSA approach over-constrains the program by forcing the operands
of φ-functions to be in register. Clearly, this might be sub-optimal in certain
cases. The pessimistic approach might also yield sub-optimal solutions, due to
its conservative choice of coalescable memory locations and the resulting over-
estimation in the ILP objective function. The optimal solution can still be
achieved in some cases during post processing, i.e., when spurious memory du-
plications are eliminated by coalescing. Due to its added expressiveness, the
pessimistic approach is guaranteed to give better solutions than the basic SSA
approach. The optimistic approach, in contrast, may �nd solutions whose ob-
jective function are even better than optimal. This may happen when memory

44

a ← b

@a ← store a

E
a ← load @a

← a

. . .
← b

(a) useless spill

a ← b

E
a ← b

← a

. . .
← b

(b) code motion

a ← b

E
← b

. . .
← b

(c) renaming

Figure 3.9: Exploiting moves as special operations.

locations are falsely assumed to be coalescable. Repair code is consequently
inserted to correct this underestimation, resulting in the �nal, potentially sub-
optimal, spill code. Since these underestimations of the cost are implicit in that
model, it can end up with a lot of such insertions. The solution may then even
be worse than that of the basic SSA model, even if this is unlikely.

3.2.4 Extended Formulation

We now present an extension of the basic ILP formulation described in Sec-
tion 3.2.1, which can be customized to express the di�erent approaches proposed
earlier, by prede�ning some variables or by omitting certain constraints. These
details can be skipped at �rst reading.

3.2.4.1 Handling Regular Copy Operations

As described in Section 3.2.3, an important feature is to be able to exploit moves,
which are implicit in the SSA φ-functions. In particular, we want to take into
account the fact that memory coalescing may not be possible. Actually, the
same situation occurs for regular moves, which may appear in both SSA and
non-SSA programs.

Moves Figure 3.9 illustrates a situation where spill code can be avoided by
exploiting move operations, with either code motion or renaming. To express
such an optimization, we introduce the notion of local equivalence classes as
the set of variables, denoted ECp,v, that carry the same value as v at program
point p (these sets can be statically pre-computed). This allows us to express
several additional features. For example, whenever a variable v is used, we may
choose to read another variable u from its equivalence class, if u is in register,
or to load from the memory location of u. We may also allow to insert an
explicit register-to-register copy between u and v. To describe the constraints
more easily, we treat the original move as a virtual operation, using an arti�cial
program point. Figure 3.10 illustrates the handling of equivalence classes.

Crossing Variables On load/store architectures, memory-to-memory copies
require a register. Hence, we have to account for an additional register at a
program point with memory copies, unless the memory locations of all copies
can be coalesced. We also want to express explicitly the newly-introduced re-
materialization and move operations, even if some have cost 0 in our objective

45

•p1 {v1}
•p′1 v2 ← v1 {v1, v2}
•p2 {v1, v2}

← v2
•p3 {v1, v2}

v2 ←
•p4 {v1}{v2}

Figure 3.10: Moves & local equiv. classes (in brackets). Program points are on
the left, instructions in the middle and local equivalence classes on the right.
An equivalence class is valid only on the related program point. On p1, only one
variable is alive (v1), thus this point has only one equivalence class: {v1}. The
point p′1 de�nes v2 as a copy of v1, hence v1 and v2 share the same value at p′1
and p′1 equivalence class is {v1, v2}. Between p3 and p4, v2 is rede�ned. On p4,
v1 and v2 do not share the same value anymore, thus p4 has two equivalence
classes: {v1}{v2}. Live-ranges may also be extended (here v2 at p3).

function. A �xed order of these operations may lead to a suboptimal solution.
Nevertheless, to keep our ILP formulation practical, we chose the following
static ordering: (1) store operations, (2) memory-to-memory copies, (3) load
operations, (4) rematerialization operations, and �nally (5) register-to-register
moves. The assignment of a variable to a register may be released either at the
beginning of the program point by a store or in the middle by a register-to-
register move. We account for the variables crossing this region in a register to
ensure that the register pressure never exceeds the number of registers.

ILP Variables The extended formulation introduces 6 new 0-1 variables, for
each variable v live at a program point p:

mem_cpyp,v = 1 memory copy into memory slot of v.

mem_dupp,v = 1 duplication into memory slot of v.

has_mem_dupp = 1 at least one memory duplication at p.

movep,v = 1 register-to-register move to v at p.

rematp,v = 1 rematerialize v at p.

crossp,v = 1 v still in register after the stores at p.

Both memory copies and memory duplications represent memory-to-memory
transfers. The di�erence between them is that memory copies are only applica-
ble to memory locations that can be coalesced, in which case they are for free.
Memory duplications on the other hand cause a load followed by a store and,
in addition, require a register.

3.2.4.2 Constraints

In the extended formulation, most constraints change to express the opportuni-
ties o�ered by local equivalence classes. As these changes are straightforward,
we summarize them quickly and focus the discussion on the additional spill op-
erations. When moves are not exploited, equivalent constraints can be derived
using singleton equivalence classes.

46

Crossing Due to the additional spill operations and the fact that memory
duplications might require temporary live-ranges that are not visible at the
beginning or the end of the program point, we track variables crossing through
the program point in a register. The resulting propagation constraint for a
variable v at program point p becomes:

(Cross) ρ1,p,v ≥ crossp,v

Using Equivalence Classes Instead of requiring a given variable to be in
register at a use site, it is su�cient that some variable u ∈ ECp,v is available
in a register. Note that, of course, v ∈ ECp,v. Thus, at a program point p
preceding a use of variable v, we apply the following constraint:

(Use)
∑

u∈ECp,v

ρ2,p,u ≥ 1

Similar constraints allow a load (resp. store) to read from the memory location
(resp. register) of another variable:

(Load) lp,v ≤
∑

u∈ECp,v

µ1,p,u + sp,u

(Store) sp,v ≤
∑

u∈ECp,v

ρ1,p,u

Moves We do not represent an explicit move between variables as an instruc-
tion but as a program point with additional constraints. Instead of forcing the
operands of the move into a register using the regular Use or DefR constraints,
we indicate that the result is neither in memory nor in register. For a program
point p representing an explicit move de�ning a variable v, we write:

(Defmove) ρ1,p,v = 0, µ1,p,v = 0

This has the e�ect of killing any previous value of v (but v is added in the
right equivalence class). However, since the original instruction is removed, we
have to provide a way to instantiate the move, if needed. A move v ← u can
be performed anywhere along the original live-range of v, or beyond if desired,
as long as u belongs to the equivalence class of v. Given the equivalence class
ECp,v, a move can be instantiated at p under the following conditions:

(Move) movep,v ≤
∑

u∈ECp,v

crossp,u + lp,u

Note that, in contrast to other constraints, we use crossp,u instead of ρ1,p,u to
express that moves appear after the store and memory duplication operations
on a program point.

Memory Copies Memory-to-memory copies have di�erent implications de-
pending on whether the related memory slots are coalescable or not. A truly-
optimal spilling approach would require to solve the memory coalescing problem
along with the spill code placement. This is hardly an option since coalescing,

47

even aggressive, is NP-complete [17]. The constraints presented hereafter can
be used with di�erent coalescing strategies, including integrated approaches.

Let v be a variable live on a program point p and let CCp,v ⊆ ECp,v be the
set of variables whose memory slots can be coalesced with the memory slot of v.
A memory copy can be performed at no cost under to following condition:

(Memcpy) mem_cpyp,v ≤
∑

u∈CCp,v

µ1,p,u + sp,u

A memory duplication can be done regardless of whether v can be coalesced
with the source of the duplication as long as both are in the same equivalence
class, thus:

(Memdup) mem_dupp,v ≤
∑

u∈ECp,v

µ1,p,u + sp,u

To limit register pressure, we need to know whether at least one memory du-
plication is to be performed on a point p. We can express whether a memory
duplication is performed at p using a 0-1 variable has_mem_dupp:

∀v, has_mem_dupp ≥ mem_dupp,v

Register Pressure The following constraint ensures that the register pres-
sure is not exceeded within a program point p, even when memory duplications
are performed:

(Presc)
∑

v

crossp,v + has_mem_dupp ≤ K

Rematerialization The rematerialization is explicitly de�ned in the extended
formulation. The purpose is to have a clean model of what is in memory and
what is not. This information is important when memory-to-memory copies
read from a rematerializable variable (see Figure 3.11). At a program point p
where the rematerialization of v does not require any argument, we allow an
additional �spill� operation as follows:

(Remat) rematp,v ≤ 1

For a rematerialization reading from a set of arguments A:

(RematA) |A|rematp,v ≤
∑

u∈A

crossp,u

More complex compositions of rematerialized expressions are straightforward to
express for SSA programs. Since we limit our evaluation to simple rematerial-
ization, we do not discuss these capabilities any further at this point.

Propagation A variable v can be in register at the end of p, if it is the result
of a move, a load, a rematerialization, or if the variable crosses p in register:

movep,v + lp,v + rematp,v + crossp,v ≥ ρ2,p,v

48

if (. . .)
a ← 3

else

b ← . . .

E
c ← φ(a, b)
E

(a) Origin

if (. . .)
a ← 3

else

b ← . . .
@b ← store b

E
@c ← φ(@a,@b)
E

(b) Variable a is not in memory. Loading c may
give an unde�ned value.

if (. . .)
a ← 3

@a ← store a

else

b ← . . .
@b ← store b

E
@c ← φ(@a,@b)
E

(c) Extended model

Figure 3.11: Memory copies implies a correctness problem with rematerializa-
tion as presented for the basic formulation.

Likewise, v can only be in memory at the end of p, if its memory location was
de�ned by a store, memory duplication or copy on p, or was available before:

sp,v +mem_dupp,v +mem_cpyp,v + µ1,p,v ≥ µ2,p,v

Finally, the constraints to propagate between two program points are un-
changed. Local equivalence classes are not used here, so as to capture the cost
of register-to-register and memory-to-memory copies. Note also that the con-
straints of the extended formulation can easily emulate our basic formulation
by pre-setting the 0-1 ILP variables representing the new spill operations and
by restricting equivalence classes. The same is true for the proposed approaches
to coalesce memory locations of copy-related variables, either coming from φ-
functions or from regular copies. These approaches are summarized in Table 3.1.

Basic SSA
No exploitation of moves and φ-functions
No explicit memory copies nor duplications
Coalescing and repairing after ILP

Pessimistic
Explicit moves at φ-functions
Aggressive memory coalescing before ILP
Coalescable memory copies for free
Memory duplications with cost
No repairing needed

Optimistic
Free memory copies at φ-functions
All variables are assumed to be coalescable
Explicit memory copies are free
Coalescing and repairing after ILP

Table 3.1: This table lists the di�erent strategies we proposed to deal with
moves and memory coalescing under SSA and details their handling.

49

3.3 Experiments

We made our experiments on the ST231 embedded processor for media appli-
cations. This is a 4-way parallel VLIW architecture, supporting one memory
operation per instruction bundle. It features a direct-mapped cache of 32KB
for instructions (64b lines) and a 4-way set associative cache of 32KB for data
(32b lines). Both caches are connected to a shared bus memory controller with
an average latency of 120 cycles to access o�-cache data. For in-cache data, the
latency between the load and a use is 3 cycles. The pipeline is stalled automati-
cally if this latency is violated, i.e., at least 3 instruction bundles have to follow a
load to hide the cache latency. The data cache follows a write-through strategy.
A store bu�er for memory writes allows to group up to 4 store requests into a
single bus transaction. In case of a store/load con�ict in the store bu�er, the
store must be processed down to the memory before being reloaded.

We implemented our ILP spiller in the static C compiler of STMicroelec-
tronics, which is based on Open642. Register allocation, and thus spilling, is
performed in a separate back-end optimizer that comes with the production
compiler. The register allocation uses a decoupled approach, where spilling is
by default performed using a heuristic and assignment using graph coloring.
In the following experiments, we compare several spilling approaches, both ex-
act and heuristic:

Appel-G Appel and George's ILP Formulation [3],
Coloring Heuristic using iterated register coalescing [51],
Basic Our basic formulation, see Section 3.2.1,
SpEv Basic formulation emulating spill everywhere,
Koes-G Emulation of Koes and Goldstein's ILP Formulation [65].
BasicSSA Naive handling of SSA, see Section 3.2.3.1,
SpEvSSA Emulation of spill everywhere under SSA,
Optimistic Extended formulation, see Section 3.2.3.2,
Pessimistic Extended formulation, see Section 3.2.3.3,
Hack Hack's SSA-based spilling heuristic [55].
Braun-H Braun and Hack's SSA-based spilling heuristic [21].

The �rst 5 con�gurations were evaluated using regular non-SSA programs,
while the others were applied to SSA programs. In both cases, critical edges were
split prior to spilling. We also show results for con�gurations with equivalence
classes enabled (marked by a su�x _ec) and with rematerialization enabled
(su�x _remat) � both disabled by default, unless it is a basic feature of the
model like Koes-G and Braun-H. For the ILP solver, we used IBM CPLEX
for academics, version 12.2. All con�gurations were tested on the benchmark
suites EEMBC 1.1 and SPECINT 2000, excluding the C++ program eon. The
compiler was invoked using the -O3 optimization level with the number of al-
locatable registers limited to 8 (4 callee-saved and 4 caller-saved registers) so
that spilling e�ects are more apparent (see comments below). The cost model
is based on basic block frequencies, which were either derived from pro�ling
feedback or from estimates according to Ball and Larus' heuristic [5].

The experiments investigate the solving time of our formulation, its impact
on static spill costs over all benchmark programs, and the e�ects on the runtime

2http://www.open64.net/

50

http://www.open64.net/

behavior of the EEMBC benchmarks. Runtime measurements for SPEC are not
shown, because the benchmarks are too large for our architecture's instruction
cache. The programs spent up to 65% of the time waiting for the instruction
cache, making all runtime measurements irrelevant for spilling. We set a time
limit of 1000 seconds for all ILP con�gurations. To avoid the impact of random
results when the optimal solution is not reached, all presented numbers refer to
optimally-solved instances only. To reduce the solving time, a heuristic supplies
an initial solution for all ILP con�gurations. Hack's heuristic is used for SSA
programs, graph coloring otherwise. Therefore, when the solver reaches the time
limit, the provided solution is at least as good as the related heuristic.

Note on the number of registers The ST231 is classically shipped with 64
registers. However, this number is too big to reveal any interesting di�erence on
the runtime of EEMBC benchmarks. In other words, the amount of spill code
is too limited relatively to the rest of the program. For SPEC, this amount of
registers could have been relevant, but the runtime is not, as explained above.
In the end, we chose 8 allocatable registers to recall ARM and x86 architectures.

3.3.1 Solving Time

Our primary goal was to express the spilling problem in a simple and �exible
way. Speed was not a major concern. However, to reduce the solving times, we
restricted the program points where loads and stores can be performed, without
losing optimality. For example, for all formulations where a variable v can be
simultaneously in register and in memory, it is su�cient to consider solutions
where loads (resp. stores) for v are just before (resp. after) each use (resp.
de�nition) of v and at the end (resp. beginning) of basic blocks [52].

After 20s, whatever the formulation, 90% of the functions of EEMBC are
solved optimally. For SPEC, whose functions are larger, this takes 65s. SpEv is
the fastest con�guration to solve. After 5s, 95% (resp. 90%) of the functions are
solved optimally for EEMBC (resp. SPEC). As a comparison, Appel-G solves
79% (resp. 85%) of the functions optimally in 5s. After 1000s, all 656 functions
of EEMBC were solved optimally, except for the Optimistic and Pessimistic
con�gurations which reached the time limit for 2 of them. For SPEC, 99% of
the 5060 functions are solved optimally when reaching the time limit whatever
the con�guration. Note that we excluded from these numbers the functions that
do not require any spill code when solved by the heuristic used to initialize ILP.
In this case, we do not invoke the ILP solver. In other words, the presented
numbers do not include 221 functions of the EEMBC and 719 functions of the
SPEC benchmarks that are solved optimally in a trivial manner (with no spill).

Figure 3.12 gives an overview of the solving times for all EEMBC and SPEC
benchmarks. The curves show the percentage of functions solved optimally in a
given amount of time. These timings may change depending on the workload of
the machine and heuristic choices of the ILP solver. We observe that the solving
times of most con�gurations behave similarly, except for the SpEv con�guration
which is consistently solved the fastest for both benchmark suites. As expected,
the solving times increase for larger instances having more points, i.e., because
of larger functions or additional variables introduced by SSA form.

51

0.1 1 10 100 1000

20

40

60

80

100

Time in seconds

%
fu
n
ct
io
n
s
so
lv
ed

w
it
h
in

g
iv
en

ti
m
e

Basic

SpEv

Pessimistic

Optimistic

Koes-G

Appel-G

0.1 1 10 100 1000
0

20

40

60

80

100

Time in seconds

%
fu
n
ct
io
n
s
so
lv
ed

w
it
h
in

g
iv
en

ti
m
e

Basic

SpEv

Pessimistic

Optimistic

Koes-G

Appel-G

Figure 3.12: Percentage of functions that can be solved optimally in the given
amount of time for EEMBC (top) and SPEC (bottom). The markers on the
curves help to identify the related con�guration, they do not represent the actual
measurements, which would have been too dense.

3.3.2 Static Spill Cost

In this section, we compare the di�erent approaches with respect to the static
spill costs, following the cost model provided by Open64, where a store costs
1.25, a load 3.25, and a rematerialization 1 (all numbers multiplied by the ex-
pected execution frequency). These costs are computed from the actual spill
code after clean-ups and insertions of repair code, e.g., due to memory coa-
lescing or duplication. They may thus di�er slightly from the ILP objective
value. Figure 3.13 shows the geometric mean of the costs over all benchmarks,
normalized to the Appel-G con�guration and obtained by summing the costs
of all functions that are optimally solved by both the Appel-G con�guration
and the spilling strategy at hand. For the heuristic approaches, we consider all
functions that are optimally solved by Appel-G. In addition, the variation is
depicted using the minimum and maximum.

52

��
��
���

��
��
���
��
�	

AB
��
��

C�
DE

C�
DE
CC
�
F	
���

F	
���
��
��
��
�
	�

F	
���
CC
�

F	
���
CC
��
��
�
	�

��
��
��
���
��

��
��
��
���
���
��
�
	�

�
��
��
���
��

�
��
��
���
���
��
�
	�

�B
�B
���
�
�	
��

�	
��
��
��
	�

F�
	�
��
�

�

���

��

��!

��"

#

#��

#�

#�!

�

���

��

��!

��"

#

#��

#�

#�!
����� ����� ��������� ����� ����

�
��
��
��

�
��
��
��
��
�	

A
B�
��
�

C
�D
E

C
�D
EC
C
�

F
	�
��

F
	�
��
��
��
��
�
	�

F
	�
��
C
C
�

F
	�
��
C
C
�
��
��
	�

�
��
��
�
��
���

�
��
��
�
��
���
��
��
	�

�
��
��
��
���

�
��
��
��
���
��
��
	�

�
B�
B�
��
�

�
	�
�

�
	�
��
��
�
	�

F
�	
��
��

�

���

��

��!

��"

#

#��

#�

#�!

#�"

�

���

��

��!

��"

#

#��

#�

#�!

#�"

$B	% &��	� C�B�� '���'	(

��������

Figure 3.13: Geometric mean of static spill costs for EEMBC (top) and for
SPEC (bottom), using frequency estimates. (Lower is better)

Despite its restrictions, Appel-G performs much better than optimal spill
everywhere (SpEv), which is the worst, except for the graph coloring heuristic
(Coloring), which is also spill everywhere. This is particularly clear on Fig-
ure 3.14, which represents the static spill costs per function, where the curve
of spill everywhere is almost always above Appel-G (y=1). All other con�gura-
tions based on our ILP formulation outperform Appel-G by about 20% or more.
This is mostly due to the elimination of spurious stores (recall Figure 3.3). The
impact of SSA is interesting to examine. For spill everywhere, the fact that SSA
o�ers live-range splitting does not fully counterbalance the requirements implied
by uses of the naive modeling of φ-functions. In this setting, SSA increases the
static spill costs by 13% for EEMBC (8% for SPEC). BasicSSA performs bet-
ter than Appel-G, but increases spill costs in comparison to Basic (non-SSA),
with quite a few bad cases, due to the naive handling of φ-functions. This can
also be observed with Appel-G under SSA, which is 4% (resp. 5% for SPEC)
worse than Appel-G. Note that SSA (without rematerialization) also leads to

53

0

0.5

1

1.5

2

2.5

3

3.5
S
ta
ti
c
sp
il
l
co
st
s

SpEv Hack Pessimistic BasicSSA Basic

Figure 3.14: Static spill costs per function for EEMBC and SPEC, with fre-
quency estimates. Results are normalized to Appel-G (y=1). For readability,
functions where the static spill costs are the same for all ILP con�gurations
(Appel-G, SpEv, Pessimistic, BasicSSA, Basic) were �ltered. This �lter applied
to almost 37% of the functions. Results are sorted in increasing order of static
spill costs according to Basic, then Pessimistic, then SpEv. (Lower is better)

some improvements in a few cases. This is surprising, since the naive handling of
SSA constrains the solutions and also because all solutions reachable under SSA
should also be reachable without SSA (when rematerialization is disabled). This
is due to side e�ects. First, the spill code of a function may di�er between the
SSA and the non-SSA versions, leading to di�erent register assignments. Then,
since Open64 propagates information on register usage from sub-functions to
call sites, this may lead to changes in register pressure around call sites and
subsequent di�erences in spilling. Second, SSA construction performs a sim-
ple copy propagation that preserves CSSA constraints. This optimization can
change the register pressure, hence the global spill code. These observations are
particularly obvious in Figure 3.14, where some con�gurations achieve a cost of
zero, whereas the reference, Appel-G, requires some spilling.

In contrast to the naive handling of SSA (in BasicSSA), exploiting φ-functions
as proposed in Section 3.2.3 delivers good results without degradations (for both
Optimistic and Pessimistic). Note that our current settings mostly result in
CSSA programs. More aggressive transformations violating CSSA may thus
have an adverse impact to the optimistic strategy.

Rematerialization gives remarkable improvements of more than 20% in com-
parison to the same con�guration without rematerialization, and generally more
than 40% compared to Appel-G. Good rematerialization is thus essential to re-
duce spill costs and ought to be considered accordingly. Moreover, con�gura-
tions with rematerialization particularly pro�t from SSA. This is particularly
true for simple rematerialization strategies. Indeed, in SSA, each rematerializ-
able live-range matches a single variable, which results in more opportunities.

54

a ← cst

while(. . .){

← a

}

(a) Origin

while(. . .){
a ← cst

← a

}

(b) After spill

Figure 3.15: Ad-hoc rematerialization support in Hack heuristic. Rematerial-
ization is assumed to be free. Rematerializable values are not kept in register to
allow other variables to use this location. Also, rematerialization occurs before
every related use even if spilling was not need.

In principle, our extended formulation could handle more general cases than the
simple rematerialization of constants. However, its full potential is not exploited
here to preserve comparability with the other approaches.

Interestingly, Koes-G performs quite well. It is close to our formulation in
the same con�guration, i.e., simple rematerialization and not under SSA, Ba-
sic_ec_remat. Indeed, both geometric mean are within 4% for EEMBC (5%
for SPEC). In particular, this formulation is able to remove most of the spurious
stores compared to Appel-G. However, it makes less use of rematerialization
than Basic_ec_remat. In that con�guration, 32% of the static spill costs stem
from rematerialization for EEMBC (34% for SPEC) whereas for the Koes-G
formulation, it amounts only to 19% for EEMBC (24% for SPEC). This exper-
imentally con�rms the exposed limitation of Section 3.1.2.3.

In terms of static spill costs, the heuristics give better results for EEMBC
than for SPEC. For rematerialization, we extended Hack's heuristic so that re-
materializable values are always recomputed and never kept in registers, i.e., re-
materialization is always assumed to be free. This heuristic, named Hack_remat,
gives good results, especially for SPEC. However, we observe some bad cases
for EEMBC (16.25x w/o pro�ling feedback) because these rematerializations
are counted 1 in the Open64 cost model, while the heuristic behaves as if it
costs zero. Figure 3.15 gives an example of such a bad case. Braun and Hack
provided another heuristic to handle rematerialization. Their spilling algorithm
is based on a farthest-�rst strategy using next-use distances. When two vari-
ables have the same next-use distance, rematerializable variables are spilled �rst.
This Braun-H heuristic is the best among all the heuristics, also for the worst
cases. This is not surprising. Like Hack's original approach, it does not rely on
a spill everywhere strategy and, moreover, it provides an explicit control over
rematerialization costs � avoiding some of the bad cases.

Figure 3.14 helps to draw a hierarchy between the di�erent approaches de-
picted (without rematerialization). Spill everywhere is globally the worst, but
Hack's heuristic shares the trends of that con�guration. BasicSSA competes
with Basic but su�ers many bad cases (black spikes above Basic). Finally, Pes-
simistic is the best. Indeed, it avoids the bad cases of BasicSSA with its special
handling of SSA φ-functions, plus it takes advantages of the simple copy propa-
gation, discussed previously, that occurs when building SSA. This experimental
ranking is slightly di�erent than expected, since Basic should at least match
the SSA-based con�gurations. For that, we could have implemented a simple
copy propagation working on non-SSA code before spilling. We did not for two

55

frequency estimates pro�ling feedback
ld/st # instr. # ld/st # instr.

Con�g. G.m Min Max G.m Min Max G.m Min Max G.m Min Max
Appel-G 1 1 1 1 1 1 1 1 1 1 1 1
�_ssa 1.01 0.89 1.34 1 0.92 1.16 1.02 0.95 1.12 1.01 0.94 1.11
Koes-G 0.84 0.34 1 0.95 0.84 1.04 0.85 0.37 1 0.94 0.85 1.01
SpEv 1.04 0.82 1.84 1 0.84 1.42 1 0.83 1.22 0.98 0.83 1.04
SpEvSSA 1.03 0.82 1.8 1 0.85 1.4 1 0.74 1.16 0.98 0.83 1.09
Basic 0.94 0.78 1.02 0.97 0.87 1.01 0.94 0.74 1 0.97 0.84 1.02
�_ec_remat 0.81 0.34 1 0.93 0.75 1 0.82 0.37 1 0.93 0.78 1.03
BasicSSA 0.95 0.78 1.12 0.98 0.86 1.1 0.95 0.74 1.1 0.98 0.84 1.17
�_remat 0.83 0.45 1.12 0.94 0.81 1.14 0.83 0.37 1.07 0.94 0.81 1.11
Pessimistic 0.93 0.78 1.02 0.98 0.87 1.1 0.94 0.73 1.02 0.96 0.83 1.02
�_remat 0.8 0.34 1 0.93 0.8 1.02 0.82 0.37 1 0.93 0.78 1.04
Optimistic 0.94 0.78 1.05 0.97 0.86 1.04 0.94 0.73 1.05 0.96 0.84 1.05
�_remat 0.81 0.34 1 0.93 0.77 1.02 0.82 0.37 1 0.92 0.8 1
Coloring 1.14 0.9 1.98 1.06 0.92 1.49 1.09 0.76 1.44 1.02 0.86 1.14
Hack 0.99 0.78 1.16 0.98 0.82 1.1 1.01 0.86 1.28 0.97 0.86 1.06
�_remat 0.83 0.34 1.1 0.92 0.75 1.03 0.85 0.37 1.1 0.92 0.77 1.06
Braun-H 0.89 0.57 1.17 0.96 0.82 1.13 0.91 0.56 1.11 0.97 0.8 1.13

Table 3.2: Number of dynamically-executed instructions with frequency esti-
mates and pro�ling feedback (Geometric mean/Min/Max). Note that Koes-G
and Braun-H feature simple rematerialization. (Lower is better)

reasons. First, this would not have changed the problem, mentioned before,
due to di�erent colors in the callee functions. Second, SSA does simplify some
optimizations and we wanted to be able to stay in that con�guration.

Static spill costs with pro�ling feedback show the same trends as frequency
estimates. Thus, we did not include them here.

To conclude, restricting to solutions where a value is either in memory or
in register (but not in both) gives good results but only if spurious stores are
eliminated like in Koes-G con�guration. In particular, this approach gives better
results than spill everywhere strategies, which is not surprising. This tends to
prove that a spilling heuristic can use this simpli�cation and still achieve fairly
good results (however, problems such as those mentioned in Section 3.1.2.1 have
to be avoided). As for the strategies that we de�ned for dealing with SSA, they
perform very well too, especially if φ-functions are exploited. Furthermore, SSA
enables more rematerialization, which turns out to be very important.

3.3.3 Dynamic Counts

Table 3.2 compares the impact of the spilling strategy on the number of instruc-
tions that are dynamically executed, as reported by the ST231 pro�ling tools
when running the �nal assembly code. This corresponds to a sequential ma-
chine model, where every instruction completes in 1 cycle. The table provides
the geometric means, the best cases, and the worst cases, over all benchmarks
normalized to Appel-G.

The improvements seen for the static spill costs are still re�ected by the
dynamic execution counts and basically show the same trends with respect to
the di�erent con�gurations. However, the extent of the improvements is of

56

course reduced. This is due to the fact that the reported numbers include other
code not related to spill code. In particular, Table 3.2 reports all loads/stores
and not just those inserted during spilling. Overall, our approaches are very
e�ective at eliminating dynamically-executed instructions. The best one (Pes-
simistic_remat) reduces the number of loads/stores by 20% (and up to 66%!).
Even the total number of instructions is reduced by 7% (and up to 20%!). How-
ever, Hack with our rematerialization support achieves the best result for the
total number of instructions. This may look surprising since the static spill costs
were always worse than the Pessimistic approach. This is because the remate-
rialization support we implemented for that heuristic was selected with respect
to the target architecture (ST231) and type of codes. Most rematerializable
values come from constants and symbols representing base addresses of arrays.
On the ST231 family, most of these constants can be encoded directly with the
operation itself or can be supplied as addressing mode. Consequently, most of
the instructions emitted during the spilling phase as rematerialization do not
manifest themselves in the �nal assembly code. Nevertheless, we did not want
to model instruction re-writing but only the placement of instructions. This
shows why static spill costs may be quite far from reality.

As a side-e�ect, reducing the number of memory accesses reduces the tra�c
to and from memory. Indeed, we also measured a reduction of instruction and
data cache misses, although the objective functions of the ILP formulations
assume a perfect cache (i.e., no cache misses).

3.3.4 Execution Time Measurements

We now focus on measurable runtime e�ects of the di�erent strategies, speci�-
cally for the ST231 architecture, which, unlike the sequential model that corre-
sponds to counting instructions (Section 3.3.3), involves instruction and memory
latencies, as well as instruction bundling.

The leftmost bars of Figure 3.16 report the geometric means (normalized to
Appel-G) of the runtimes obtained by executing the programs compiled using
the various spilling strategies using frequency estimates. The huge gains of static
spill costs generally do not carry over to equivalent gains in execution time. For
example, the 20% improvements in static spill costs of the con�gurations without
rematerialization result in a moderate runtime mean gain of about 2%. Overall,
we measured mean runtime improvements from 2% to 8%. Considering the best
cases for individual benchmarks, we see impressive improvements that go up to
about 30%. Note also that the Hack_remat heuristic is even performing slightly
better than our �optimal� con�gurations.

Analyzing the individual benchmarks, we found that the di�erence between
the dynamic execution counts and the actual execution times are mostly due
to architectural features that are not accounted for in the spilling model but
may occur on most targets. As mentioned in Section 3.3.3, this di�erence is not
due to cache misses. However, memory latencies under a hit turned out to be
highly relevant. So far, for both the static spill costs and the dynamic execution
counts, we considered that load and store instructions induce a non-zero cost,
irrespective of their placement within basic blocks. In practice, the runtime
overhead of these instructions depends on the ability of the post-pass scheduler
to hide their latencies. If the scheduler succeeds, even bad spilling decisions in
terms of the number of loads might actually perform well. This explains why

57

�������
���

����
����

������ ���	�ABCDE�F ��D������C�		���A� �������

�E
E	
���

�E
E	
���
��
��

�D
	�
��

�E
�

�E
�
��
�

!�
��
A

!�
��
A�
	A
��
	"
��

!�
��
A�
��

!�
��
A�
��
��
	"
��

�	
��
�"
��
��A

�	
��
�"
��
��A
��
	"
��

�
E�
�"
��
��A

�
E�
�"
��
��A
��
	"
��

�
��
E#
$
D�
D�
��
�

%�
A�

%�
A�
��
	"
��

!�
�&
��
%

'F(

'F)

'F*

'F+

,

,F,

,F-

,F.

'F(

'F)

'F*

'F+

,

,F,

,F-

,F.

���	
	��� 	�� 	���

Figure 3.16: Runtime results for EEMBC, with post processing and pro�ling
feedback. Note again that the Koes-G and Braun-H con�gurations feature sim-
ple rematerialization. (Lower is better)

the di�erent con�gurations are relatively close to each other regarding execution
time. The opposite e�ect is also possible. In particular, we observed that, due to
the way loads and stores are placed (see Section 3.3.1), the post-pass scheduler
of Open64, which runs after register assignment, fails to hide many latencies and
to pack spill code nicely into bundles. This is particularly visible for the spill-
everywhere strategies, since loads are systematically placed right before uses.

We thing that analyzing such runtime measurements is important, although
they are almost never provided in the literature. In addition to revealing the
weaknesses of the heuristics or formulations, they also reveal the weaknesses of
the cost models that drive them (e.g., the fact that some loads can be cheaper
than predicted) as well as the di�culties due to the architecture (e.g., instruction
scheduling with bundles is more di�cult to model than sequential execution).

Latency Post-Processing For purely-sequential targets, the cache-hit la-
tency could be roughly modeled using the parametric costs we presented in our
formulation (see Section 3.2.1.2). Consider Figure 3.17. Loading v on point q
would cause the maximum latency, e.g., 3. Now, consider the point before the
instruction inst, which is the instruction just before the use of v. Loading v
at p will increase the load-to-use distance (load-use distance) by 1, reducing the
related latency by 1, since inst will be executed before the use of v. This load-
use distance can be computed for each program point to re�ect the cache-hit
latency. However, two inaccuracies lie in this model. First, the cost does not
re�ect the e�ect of other spill instructions inserted between a load and a use.
Second, it assumes a �xed scheduling, i.e., it does not consider that instructions
and, in particular, spill instructions can be reordered during post-pass schedul-
ing. Regarding the �rst point, the model gives an over-approximation, which
can be improved during the �nal insertion of spill code. Therefore, we believe

58

•p
inst

•q
... ← v

Figure 3.17: E�ect of load-use distance on overall program performance. Al-
though program points p and q are in the same basic block, loading v at p is
more e�cient than loading at q, where the load-to-use latency is fully paid.

it is a good model for this kind of targets if someone is ready to pay the extra
cost of widening the solution search space (remember that, to speed up the ILP
computations, not all points are considered for spill insertion, see Section 3.3.1).

Anyway, our target is not a purely sequential one and modeling the latency
in the ILP may be expensive and is not straightforward. To have an accurate
latency model, we would need to be able to formulate the bundling of instruc-
tions a priori. But this bundling may change according to the inserted spill
instructions. As for the latency model for a purely-sequential target, we could
estimate the number of bundles between a load and a use, so that we would
not consider the spill code but still have an overestimation of the latency.

Finally, we chose a simpler method that is applicable for all targets. Instead
of accounting for the cache-hit latency in the ILP itself (we will discuss this pos-
sibility in Chapter 4), we designed a heuristic, after spilling but before register
assignment, which moves loads up within basic blocks, while respecting register
pressure. The pseudo-code of this heuristic is given in Algorithm 1.

Algorithm 1 Post latency optimization
Require: Operands of all operations are on the same register �le.
Require: No precolored variables.
1: procedure optimizeLatency(Program p, integer limit)
2: for each block in p do

3: hideLoadLatency(block, limit)

1: procedure hideLoadLatency(BasicBlock block, integer limit)
2: for each instruction in block from top to bottom do

3: if isSpillCode(instruction) and isLoad(instruction) then
4: currentLive ← getLiveVariablesAfter(block, instruction)
5: remainingLatency ← getRemainingLatency(instruction)
6: while remainingLatency > 0 and isDe�ned(instruction.prev) do
7: prevInst ← instruction.prev
8: // Cannot move instructions before an early instruction like φ or label.
9: if isEarlyInstruction(prevInst) then
10: break
11: if checkDependency(prevInst, instruction) then
12: // Update liveness as if instruction is moved up
13: currentLive ← currentLive \ prevInst.defs
14: currentLive ← currentLive ∪ prevInst.args
15: if currentLive.size() ≤ limit then
16: block.moveInstructionUp(instruction)
17: remainingLatency ← remainingLatency - eatenLatency(prevInst)
18: else

19: break

In Procedure hideLoadLatency, the given basic block is traversed from the
beginning to the end. The principle is that all instructions that appear before
the current instruction have already been treated and will not move anymore,

59

while loads will move upwards (from bottom to top) among them. Thus, the
approximation of the latency is computed on already-�xed instructions. On
Line 3, the isSpillCode check avoids the need of memory alias analysis. However,
with such analysis, one could also move regular load instructions. At Line 5, the
function getRemainingLatency returns the latency that remains if the memory
operation is placed at this program point, i.e., taking into account the latency
of operations and a rough approximation of bundles (0.25 bundle for a load for
example). Coming back to the example of Figure 3.17, assuming that the load-
use latency of the target is 3 and a load of v has been placed on program point p,
the remaining latency is 2. Line 9 prevents to move a load before an instruction
that must be �rst in a basic block, e.g., a φ-function or a block label. Line 11,
the checkDependency function performs a data dependency check to ensure that
the instruction can be moved above (i.e., before) the previous instruction, i.e.,
it checks that prevInst does not de�ne registers and memory locations read by
the load and vice versa. The load is then moved up if the register pressure
allows it, i.e., remains below the acceptable limit. Line 17, the eatenLatency
function can be adapted to re�ect the actual architectural parameters. In our
case, it returns 1/4 per instruction, i.e., it assumes that the bundles are dense.

For our target, the load-use latency is not the single source of regression. The
bundle density is also relevant. To improve this point too, we perform a similar
optimization on stores, pushing them down (and not up as loads). The interest
of such stores placement is to give more freedom to the �nal scheduler for
placing stores into bundles. Without that, because of post-coloring constraints
(write after read), the stores may be stuck at some place.

These heuristics were applied to all spilling strategies as depicted by the mid-
dle bars in Figure 3.16, resulting in additional runtime improvements of about
4% on almost all con�gurations, while preserving the same static spill costs!
The spill-everywhere strategies, which place load operations right before uses,
pro�t the most, showing mean speed-ups of more than 10%. Manual inspection
of the resulting code in all con�gurations indicates that our heuristic is able
to resolve almost all spill-code latency-related violations, without changing the
spilling decisions. Some bad cases still remain that will discussed later.

The rightmost bars of Figure 3.16 give the results obtained using accurate
pro�ling feedback combined with the latency heuristic. In other words, we check
the performance of the model in a con�guration where the static spill costs re-
�ect much closer the actual runtime behavior. In this setting, the runtime of our
formulations, i.e. Basic, BasicSSA, Pessimistic, and Optimistic, with and with-
out rematerialization, is 8% to 13% better than Appel-G in the original setup
(Appel-G leftmost bar compared to the rightmost bars for our formulations) and
4% to 9% better than Appel-G with pro�ling and latency optimization (right-
most bar for all). Our optimal formulations show clear improvements in this
setting. But not all worst cases are eliminated, as shown in Figure 3.18, which
gives the runtime measurements per benchmarks. When pro�ling feedback is
enabled (bottom chart), the number of bad cases for the formulations that are
supposed to be better than Appel-G regarding static spill costs (Basic and Pes-
simistic on these charts) is reduced compared to without (top chart) and the
peaks are smaller. These bad cases come from the interaction between spill code
and bundling, for one part, and, for the other part, from code placed on critical
edges. As already stated, the density of the instruction bundling has a large
impact on the runtime. There are even cases where a too-aggressive spilling

60

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

8 16-bit automotive consumer networking office telecom

E
x
ec
u
ti
o
n
ti
m
e

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

8 16-bit automotive consumer networking office telecom

E
x
ec
u
ti
o
n
ti
m
e

SpEv Hack Pessimistic BasicSSA Basic Appel-G

Figure 3.18: Runtime results per bench for EEMBC using frequency estimate
(top) and pro�ling feedback (bottom). In both cases, latency optimization is
performed after spilling and before coloring. (Lower is better)

61

leads to codes where register pressure is at the upper limit on large sequence
of instructions, preventing the post-pass scheduler to move anything and hide
latencies. As for the second cause of regression, due to critical edge splitting,
it is applicable to all targets. When no code is placed on the basic block that
is inserted to split such an edge, the block is automatically removed, and so
is the related branch instruction. When spill code is inserted in such a block,
the overhead of the branch instruction is unavoidable. It may happen that the
bene�t of placing spill code at that point is negligible compared to the overhead
of the branch instruction. Static spill costs do not model this e�ect, even if it
could be done in our ILP. However, even with this potential improvement, we
still believe that static spill costs are not a good-enough metric to evaluate the
quality of the generated spill code. We will come back to this in Chapter 4.

Note that, at least for the EEMBC benchmarks, Hack's heuristic performs
very well, despite a few bad outliers. The same applies for Braun-H heuristic.

3.4 Conclusion

Decoupled register allocation gained much interest due to SSA form and its
properties. While SSA provides clear advantages during register assignment, its
bene�ts for spilling were yet unclear. We proposed a new accurate formulation
of the spilling problem using integer linear programming, applicable to SSA
and non-SSA programs. It is more expressive than previous approaches and,
additionally, it o�ers a great �exibility to model alternative spilling strategies.
For example, we can accurately emulate previous �optimal� spilling techniques,
as well as strategies used in existing heuristics.

We demonstrated that, if spilling is to be done under SSA, it is preferable to
exploit the implicit moves in φ-functions. Treating SSA live-ranges as unrelated
achieves acceptable results on average, however, it has an undesirable worst-case
behavior. Formulating the problem exactly for static spill costs is intractable
at the moment, both because of memory coalescing in non-CSSA programs and
of the parallel semantics of φ-functions, which can exhibit cycles. We presented
two strategies for handling φ-functions, an optimistic and a pessimistic one,
that provide equivalent or superior results compared to spilling on non-SSA
programs, in particular because basic rematerialization is more powerful in SSA.

Our study shows that good improvements can be obtained in terms of static
spill cost and dynamic counts. Also, the bene�t of rematerialization is consid-
erable. However, runtime improvements for our target VLIW architecture are
smaller due to the cost model used for spilling, which does not consider the
actual memory latencies and instruction bundling. This issue is often ignored
in previous work on spilling and should be studied more closely. A possibility
to explore is to de�ne a more accurate cost model for spilling with latency and
edge splitting consideration. An alternative is, as we proposed, to move loads,
heuristically, after spilling but before register assignment.

62

Chapter 4

Towards a Better Spilling

Heuristic

In this chapter, we review several aspects of spilling heuristics to help derive bet-
ter ones, with respect to actual runtime performance. In the �rst section (Sec-
tion 4.1), we discuss spilling criteria, what they model and what their intended
use was. In the second section (Section 4.2), we investigate several simplifying
assumptions and evaluate their impact on the runtime. We then discuss existing
spilling heuristics and their weaknesses in Section 4.3. Finally, in Section 4.4,
we give hints to improve the runtime performance of the generated code.

4.1 Existing Spilling Criteria

4.1.1 Static Spill Cost

4.1.1.1 Description

The static spill cost metric estimates the cost for placing load and store in-
structions at speci�c places. It assigns a constant cost to load and store

instructions, typically, the number of cycles needed to execute the related in-
struction, i.e., the cycles required for computation plus the latency. This cost is
weighted by the frequency of the related basic block. Thus, the cost of a spilling
instruction is the same everywhere in a basic block. Goodwin and Wilken [52]
used this observation to limit the program points to consider for spilling and
thus to restrict the search space of their integer linear programming (ILP) for-
mulation. Using this metric, the objective function of a spiller is to minimize
the sum of the weighted cost of all spilling instructions.

4.1.1.2 Scope

Let us go back to the characteristics of the cost per instruction. This cost is
constant whatever the actual latency will be. Therefore, the model is accurate
if and only if the latency is actually paid. This is the case on targets that stall
on each memory instruction. However, nowadays, this is usually not the case.

For modern architecture, the behavior of memory instructions depends on
the state of the cache. For an o�-cache access, the processor stalls until the
memory is written in the cache. This is compatible with the static spill cost

63

model. However, these o�-cache accesses are di�cult to predict, since highly
dynamic. Moreover, the cost accounted in the static spill cost is based on the
cache latency, i.e., only a few cycles, whereas o�-cache accesses are an order
of magnitude longer, typically hundreds of cycles. Nevertheless, spill code is
usually small compared to the cache size and is local to a function. That is why
this model assumes a perfect cache for spill code accesses, i.e., cache hit latency.

For an in-cache access, the processor continues its execution until it reaches a
use of the destination register of the requested memory address. At that point,
it has to wait for the remaining latency, if any. However, if it has executed
enough instructions, the latency is completely hidden. Therefore, for this kind
of architecture, the model is inaccurate unless the spill instruction are placed
such that the latency is fully paid. This is the case, for instance, for a load

instruction placed just before the related use.
To sum up the hypothesis of this model are:
• Perfect cache
• Fully-paid latency

4.1.1.3 Applications

Spill Everywhere Heuristics based on spill everywhere place loads just be-
fore uses and stores just after de�nitions. Thus, the static spill cost metric in
that model makes perfect sense. Indeed, this placement matches the worst case
scenario regarding latency.

In graph coloring based allocators [32, 51, 31, 81], this metric is coupled with
a notion of pro�tability. For each variable, its static spill cost is divided by its
degree in the graph. This modi�ed cost takes into account how many variables
will �bene�t� from the spilling of this variable. Thus, for these allocators, this
modi�ed cost balances the blindness toward the program structure.

Chow and Hennessy [34], in their priority-based allocator, also used a spill-
everywhere model. Like graph-coloring based allocators, they balanced the
static spill cost with the length of the live-range.

The objective function with spill everywhere gives a pessimistic cost of the �-
nal assembly code. Hence, post-passes optimizations can be used to hide latency
or to remove spurious load and store instructions.

Exact Approaches Goodwin and Wilken [52], Appel and George [3], and
more recently Ebner et al. [39] used this metric for their ILP approach. In all
cases, the considered machine or placement did not match the hypothesis of the
metric. They were able to demonstrate runtime speedup as they were comparing
to heuristic-based approaches and, in particular, graph coloring, which is known
to produce bad spill code. But, as we demonstrated in Chapter 3, this metric
should not be the only goal to achieve good runtime performance. Appel and
George faced the same problem but did not push their analysis as far as we did:

�Some of the benchmarks have a signi�cant improvement in static spills
[...] but no speedup; perhaps this is because we weight the spill costs by
static estimation, and perhaps dynamic pro�ling would signi�cantly im-
prove the performance of the optimal spiller.�

We feel that such conclusion is not enough. Our conclusion is that pro�ling
feedback is not the answer. The problem is that this static cost model is just
not good enough to capture latency and post-pass scheduling interactions.

64

4.1.2 Furthest First

4.1.2.1 Description

The furthest-�rst method drives the choices of spillers by next-use distance.
The underlying idea is that the furthest is a next-use, the longer the related
variable will decrease the register pressure, if it is spilled. Thus, the cost of
spilling code is not the primary objective. The important and di�cult part of
furthest-�rst-based heuristics is to choose the right next-use distance metric.

4.1.2.2 Scope

Originally developed for paging with write backs [7], the furthest-�rst method
was then adapted to local register allocation by Farach-Colton and Libera-
tore [43]. Local register allocation deals with basic blocks, thus straight-line
code. In that context, the next-use distance makes perfect sense. Moreover, if
the latency of loads is not considered, all spilling instructions have the same
cost and this cost does not depend on where they are placed since on straight-
line code all program points have the same frequency. Thus, minimizing the
number of spilled instructions also minimizes the amount of spill cost. Note
that load/store placement for straight-line code is already NP-complete [43].
However, Guo et al. [54] showed that even if it does not minimize the number
of loads and stores, this heuristic perform quite good in that context. In ad-
dition, an interesting side e�ect of the furthest-�rst method is that it tends to
spill a variable for which the number of bundles or cycles before the next use is
going to be large and, as a consequence, the post-pass scheduler is more likely
to have more freedom to schedule the corresponding load and hide its latency.

4.1.2.3 Applications

Straight Line Code and Linearized Code As already stated, the di-
rect usage of this method for register allocation appears in Farach-Colton and
Liberatore's work [43]. Later, this criterion has been used in linear-scan ap-
proaches [89, 105, 85]. In this context, the register allocation is performed on
the whole program but the program is viewed as one big basic block, according
to a possible linearization. The live-ranges are expressed on this large basic
block, thus over-approximating the actual liveness. Despite the fact that the
spilling cost is not homogeneous on this big basic block (some of the actual
blocks are more frequent than others), linear scans use this criterion with re-
spect to its original idea. They spill the live-range that will help to reduce the
register pressure for the longest �interval�, regardless of the actual spilling cost.
Spilled variables are spilled everywhere to simplify the process.

Post-processing phases may be used afterwards to improve the solution [105].
Unlike graph-coloring-based approaches, a spilled variable is guaranteed to help
reducing the register pressure. Indeed, it helps at least on the current processed
point. However, linear-scan approaches are known to produce fairly bad spilling
code. But their goal is mainly to allocate the code as fast as possible with a
small memory footprint.

General, Not Linearized, Programs Hack et al. [58] proposed to extend
the next-use distance to general programs. They de�ned the next-use distance as

65

a ← . . .

b ← . . .

E
if(. . .)

. . . ← b

while(. . .)
. . .

. . . ← a

(a) Original code

a ← . . .
← store a

b ← . . .

E
if(. . .)

. . . ← b

while(. . .)
. . .
a ← load

. . . ← a

(b) Min furthest �rst

a ← . . .

b ← . . .
← store b

E
if(. . .)

b ← load

. . . ← b

while(. . .)
. . .

. . . ← a

(c) Static spill cost

Figure 4.1: Counter-example of the e�ciency of the furthest-�rst criterion (b)
extended by Hack et al. [58] versus static spill cost (c).

the minimal number of instructions over all possible paths leading to a next-use.
However, they did not demonstrate any runtime improvements in their paper.
We can easily build examples where a spiller using their criterion performs worse
that a spill-everywhere strategy using static spill cost, as depicted in Figure 4.1.
This is not surprising, as there is no frequency consideration in their model.
Nevertheless, using their method, one can perform a load/store placement
and not just a spill-everywhere optimization.

Braun and Hack [21] furthest extended the previous model. They proposed
to add a length on edges during the computation of the next-use distance. They
set a long length for edges that exit loops. The idea is to consider that uses
in loops are closer than uses outside a loop. Doing so, it is more likely that
variables in a loop will be kept in registers. However, this extension is not able
to avoid the bad pathological case of Figure 4.1.

From our point of view, both extensions lack a key point. The notion of
pro�tability based on the fact that the interval that is not used the longest
should be spilled is no more true for code that is not straight line code. Indeed,
live-ranges spawn several branches and of course, the minimal distance to the
next-use does not mean that it does not have the biggest not used interval.
Figure 4.2 shows an example where spilling choices are bad because the initial
spilled variable, b, does not have, globally, the longest live-range. To match
the original spirit of the furthest-�rst method, we think that the total length
of the live-ranges may be taken into account instead, not just a distance along
one particular path. Indeed, this metric is more representative of the extent
of the live-ranges where it helps reducing the register pressure. Moreover, a
tweak can be made to take into account the frequency, or at least the nesting of
loops, with the length of edges as proposed previously, as well as points where
register pressure is high and where it is not. Taking into account the fact that
the latency of a load can be hidden or not may be interesting too.

66

a, b ← . . .
c ← . . . E
← c E
if(. . .)
← a

d ← . . . E
← b, d E
← a

Figure 4.2: Spilling choice based on a furthest-�rst criterion with minimal next-
use distance will choose to spill b. This choice does not help for the second
over-pressured point around the live-range of d, thus a has to be spilled too.

4.2 Simplifying Assumptions

In Chapter 3, we investigated several methods to simplify the way we can han-
dle the φ-functions of static single assignment (SSA). We do not come back
here on that aspect. Instead, in this section, we check the impact on runtime of
several assumptions, made in the literature or that we introduced, and that may
degrade the static spill cost. To do that, we used the experimental setup and
our ILP formulation de�ned in Chapter 3 in two di�erent con�gurations: basic
(non-SSA) and pessimistic (SSA), followed, optionally, by our post latency op-
timization and/or using pro�ling feedback. See Chapter 3 for details on the ILP
formulation. Also, as explained in Chapter 3, we will report runtime numbers
for EEMBC benchmarks only.

4.2.1 The Instruction store

On most architecture, store instructions are an order of magnitude cheaper
than load instructions. Thus, it is a common practice for load/store placement
heuristics to simplify the handling of stores.

Considering That stores Are Free The biggest simpli�cation consists in
considering that store instructions are free. In that setting, heuristics focus
only on the placement of loads according to their spilling cost model. Note
that, even if they are free, useless store instructions are of course not inserted
in the di�erent methods we evaluated.

The red curve with square markers in Figures 4.3 to 4.8 shows the impact
of this assumption on the runtime. 1 For the original Basic con�guration, given
in Figure 4.3, i.e., with frequency estimate and without post latency optimiza-
tion, this assumption produces only few worse cases (5 over 38) that are above
5%. This assumption shows comparable impact in the Pessimistic con�guration,
given in Figure 4.4. In both cases, on average, assuming that stores are free
does not change anything on the runtime, even if analyzing more precisely each
individual point may reveal interesting special cases.

Coupled with our post latency optimization, this assumption shows a similar
impact on runtime for both con�gurations, see Figures 4.5 and 4.6. Indeed, the

1In all these �gures, benchmarks are sorted so that one of the curves (�store at de�nition�,
then �Base�) increases. This is an arbitrary choice to make the �gures more readable.

67

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

benchmarks

E
x
ec
u
ti
o
n
ti
m
e

Free store

Store at definitions

Free store blocked at definitions

Load at uses, free blocked store

Figure 4.3: Impact of di�erent simplifying assumptions on the runtime for Basic
con�guration, over all benchmarks (horizontal axis). Numbers are normalized to
Basic con�guration (original version) with frequency estimate. (Lower is better)

benchmarks where this assumption produces a runtime worse than the same
setting (blue curve with circle mark) are limited. Finally, when the ILP works
with accurate frequencies (i.e., with pro�ling feedback), the impact remains
limited, see Figures 4.7 and 4.8. Again, on average, this assumption does not
change anything. This is not so surprising because assuming that a store is
free does not depend on the frequency estimation. Note also that these �gures
illustrate again the weakness of the static spill cost model, i.e., the model used
in our ILP, since, although this simpli�cation is a restriction, the runtimes
improve in a few cases. Similarly, the Base curve, i.e., with accurate frequency,
sometimes produces a few cases worse than with the same con�guration without
pro�ling feedback, i.e., with inaccurate frequency.

To conclude, assuming that a store costs nothing seems to be a reasonable
assumption. However, to our knowledge, this assumption is never used alone, it
is coupled with other assumptions as we will see now. It is indeed still important
to not let the formulation or heuristic place the store anywhere in the code,
even if it is considered as free.

Placing stores at De�nitions A common assumption in spilling heuristics
is to place a store at each de�nition point of the related variable. In particular,
all heuristics that use a spill-everywhere approach, from linear scan to puzzle
solving through graph coloring [32, 51, 85, 89], use that simpli�cation. This is

68

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

benchmarks

E
x
ec
u
ti
o
n
ti
m
e

Free store

Store at definitions

Free store blocked at definitions

Load at uses, free blocked store

Figure 4.4: Impact of di�erent simplifying assumptions on the runtime for Pes-
simistic con�guration, over all benchmarks (horizontal axis). Numbers are nor-
malized to Pessimistic con�guration with frequency estimate. (Lower is better)

also true for more recent SSA-based spilling approaches [39, 55, 21]. Moreover,
this simpli�cation may be combined with the previous assumption, as in the
progressive spill-code placement of Ebner et al. [39].

The brown curve with triangle markers in Figures 4.3 to 4.8 shows the impact
of this assumption on the runtime. The black curve with star markers demon-
strates the impact when coupled with the previous assumption (free store).

Alone, this assumption has a very limited impact on the runtime and in
particular when performed under non-SSA programs, as depicted in Figure 4.3.
Under SSA, there are some very bad cases, see Figure 4.4, with 2 benchmarks
slowed down by more than 10%. Here, the fact that the frequency is estimated
plays a role as we will see. When assuming that stores are free, the impact
remains limited, as on average it does not change anything, but, still, a few
worse cases are observed. The situation is a bit worse in SSA, mainly because
SSA codes have more de�nitions (due to φ-functions), some of them harder to
schedule in bundles, e.g., if several stores are inserted at the same place.

When our post latency optimization is enabled, as shown in Figures 4.5
and 4.6, the cases that are worse, i.e., the points above the Base curve (blue
curve with circle markers), are more limited. Indeed, this optimization also
helps to schedule the stores more freely. We directly see here the bene�cial
impact of this latency optimization. Therefore, coupled or not, these di�erent
assumptions make perfect sense for an heuristic in that con�guration, i.e., with
inaccurate frequency and post latency optimization.

69

0.6

0.7

0.8

0.9

1

1.1

1.2

benchmarks

E
x
ec
u
ti
o
n
ti
m
e

Base

Free store

Store at definitions

Free store blocked at definitions

Load at uses, free blocked store

Figure 4.5: Impact of di�erent simplifying assumptions on the runtime for Basic
con�guration followed by post latency optimization. The �Base� curve presents
Basic in that con�guration without any simplifying assumptions. Numbers are
normalized to Basic con�guration with frequency estimate. (Lower is better)

As expected, with pro�ling feedback, the results are even better for the
simpli�cation that considers stores only at de�nition, since its cost depends
on the block frequency. Also, as already stated, due to the inaccuracy of the
static spill cost model, the combination of both simpli�cations may sometimes
perform even better than the general formulation based only on spill cost: a
larger static spill cost, due to these limitations, may still produce a faster code.

4.2.2 The Instruction load

As load instructions are usually considered as expensive, the way they are han-
dled involves in general fewer simpli�cations. Based on the static spill cost
metric, Goodwin and Wilken [52] demonstrated that the optimality of this met-
ric is preserved if the insertion points of load instructions are limited to the
end of basic blocks or just before the related uses. This is easy to understand
because the static cost is the same for all program points of a given basic block
(the latency is not taken into account in such a cost). Spill-everywhere-based
heuristics use even more limited insertion points: loads are inserted just be-
fore all related uses, even if the variable has been already loaded earlier. It
is possible however to eliminate these redundant loads afterwards [10]. The
SSA-based spilling heuristic of Braun and Hack [21] does not explicitly limit
the insertion points of load instructions. However, by construction, it always

70

0.6

0.7

0.8

0.9

1

1.1

1.2

benchmarks

E
x
ec
u
ti
o
n
ti
m
e

Base

Free store

Store at definitions

Free store blocked at definitions

Load at uses, free blocked store

Figure 4.6: Impact of simplifying assumptions on the runtime for Pessimistic
con�guration followed by post latency optimization. The �Base� curve presents
Pessimistic in that con�guration without these simplifying assumptions. Num-
bers are normalized to Pessimistic with frequency estimate. (Lower is better)

inserts loads on edges, i.e., at the end of the previous basic blocks (there are
no critical edges), or just before uses. But a previously-loaded variable can be
reused, to avoid a redundant load.

Placing loads at Uses We decided to test a model simpler than the model
of Goodwin and Wilken, and of Braun and Hack, but more general than a spill-
everywhere strategy: in our ILP formulation, we limited the insertion points
of loads just before uses but unlike the spill-everywhere approach, we did not
force that every use of a spilled variable must be preceded by a load. Basically,
this is equivalent to an optimal, with respect to the static spill-cost model, spill-
everywhere approach coupled with a redundant load elimination optimization.
Moreover, we used the assumption that stores are free and blocked at de�ni-
tions as we showed they were valid simpli�cations for runtime performances.

The impact of this approach on runtime, in both a SSA and non-SSA context,
is given by the green curve with diamond markers in Figures 4.3 to 4.8. Since
this approach uses the frequency to determine the expected cost of a load,
the accuracy of this information has an impact on the runtime. Moreover, as
shown in Chapter 3, forcing loads to be placed just before uses produces the
worst possible latency. Thus, it is not surprising that the performance of this
simpli�cation in the original setting is quite bad, as shown in Figures 4.3 and 4.4.

71

0.6

0.7

0.8

0.9

1

1.1

1.2

benchmarks

E
x
ec
u
ti
o
n
ti
m
e

Base

Free store

Store at definitions

Free store blocked at definitions

Load at uses, free blocked store

Figure 4.7: Impact of simplifying assumptions on the runtime for Basic with
pro�ling feedback and post latency optimization. The �Base� curve presents
Basic in that con�guration without these simplifying assumptions. Numbers
are normalized to Basic with frequency estimate. (Lower is better)

This observation completely changes when our latency optimization is en-
abled, as shown in Figures 4.5 and 4.6. In this setting, this simpli�cation is, on
average, as fast as its baseline (Base curve in blue with circle markers) but with
a few worse cases. The same pattern can be observed when pro�ling feedback
is enabled, see Figures 4.7 and 4.8.

In conclusion, we believe that this model is quite accessible to heuristics.
Moreover, we showed that its impact on runtime, as soon as it is coupled with a
latency optimization, is limited on average compared to an optimal model based
on static spill cost. Therefore, we suggest to investigate this simpli�ed model
for a spilling heuristic. This has still to be explored.

4.3 Existing Heuristics

4.3.1 Graph Coloring

In graph-coloring-based approaches, spilling occurs when coloring fails. In this
model, spilling is an ad-hoc mechanism plugged into a heuristic used for a prob-
lem (coloring), which is NP-complete for general graphs [33]. In particular, the
e�ect of spilling is not well captured by the graph model. Indeed, unless the
target machine can use memory operands, which is usually highly constrained
when possible, spilled variables have to reside in registers at their de�nitions

72

0.6

0.7

0.8

0.9

1

1.1

1.2

benchmarks

E
x
ec
u
ti
o
n
ti
m
e

Base

Free store

Store at definitions

Free store blocked at definitions

Load at uses, free blocked store

Figure 4.8: Impact of simplifying assumptions on the runtime for Pessimistic
with pro�ling feedback and post latency optimization. The �Base� curve shows
Pessimistic in that con�guration without these simplifying assumptions. Num-
bers are normalized to Pessimistic with frequency estimate. (Lower is better)

and uses. These additional short live-ranges imply nodes that are not repre-
sented in the graph and require to rebuild and redo the whole approach after
every spilling phase. This problem is known as spilling with holes, where holes
represent chunks of the memory live-ranges that must reside in register. In
other words, when a variable is spilled, a live-range with holes is placed in mem-
ory, and not the full live-range. Without holes, on chordal graphs, e.g., those
generated by SSA programs, an optimal spill-everywhere strategy can be pro-
duced in polynomial time when the number of registers is �xed [15]. However,
the problem on general graphs or with holes, i.e., the most common cases, are
NP-complete [15]. With holes, the expected bene�ts of a spilled variable may
completely vanish leading to overspill as illustrated in Figure 4.9. It is possible
to build more complex examples where spilling a variable helps to reduce the
chromatic number of the interference graph in a given iteration of the simpli�-
cation process, but becomes useless later as another variable is spilled.

It is possible to emulate a spilling problem without holes. For that, one can
reserve some registers to materialize the spilling code. Chow and Hennessy [34]
used this simpli�cation for their priority-based coloring. However, doing so
decreases the number of possible colors that can be used when allocating the
variables to registers, and thus possibly increases the amount of spill. Therefore,
unless the target machine has a lot of registers, this is generally a bad idea.

73

a, b ←
d ← a, b E

← b, d E
← a

(a) Original code

a b

d

(b) Interference graph

a, b ←
d ← a, b E
← store d

d1 ← load

← b, d1 E
← a

(c) Useless spilled code

a b

d

d1

(d) Spilled interference graph

Figure 4.9: Spill-everywhere strategy coupled with graph-coloring model may
produce useless spill code. All variables have the same degree, but d has fewer
uses. Thus, the spill cost metric is the cheapest for d, which is chosen for spill.

To tackle the holes and the ine�ective spill code problems, it is possible to
explicit in the interference graph (IG) the parts of the live-ranges that reside
in registers using (parallel) copy instructions. To our knowledge, this method
is not used because it blows up the size of the IG, which is a major concern
of graph-coloring-based approaches as it impacts their runtime and memory
footprint as well as the quality of the produced results (see Chapter 6).

Since graph-coloring-based approaches perform everything in a single phase,
post phases may have limited opportunities to optimize the generated code.
Indeed, the allocated code is more constrained for scheduling than before allo-
cation. In this situation, a post latency optimization may be blocked because
of the reuse of registers (anti dependences also known as write after read de-
pendence). Similarly, load elimination optimization has fewer opportunities to
extend live-ranges, and so on.

4.3.2 Scan-Based Approaches

Scan approaches do not use an abstraction of the program, but work directly on
the program. As already stated, spilled variables help to decrease the register
pressure of at least one program point. This is a �rst advantage over graph-
coloring-based approaches. The original linear-scan approach was proposed by
Poletto and Sarkar [89]. Its main weakness is that it over-approximates the
actual live-ranges, increasing the register pressure, hence the amount of spill
code. Moreover, it reserves some registers for the whole program to emulate a
target featuring memory operand, thus enabling spill everywhere without holes.
These over-approximations are made for speed purposes.

Mössenböck and Pfei�er [76] adapted the linear-scan approach to SSA-based
program. The notable improvement in terms of spill compared to the original
algorithm concerns the modeling of live-ranges. The live-ranges can contain
holes in the linearization of the program. Later, Wimmer and Mössenböck [105]

74

introduced on-the-�y live-range splitting. This has two advantages. First, it
reduces the number of registers needed globally as a variable can change its
register on the �y. Second, they insert a split point before the next use of a
variable before spilling it. This results in spilling only this sub live-range, thus
yields better spill code than with a spill-everywhere strategy.

In 2007, Sarkar and Barik [95] in their extended linear-scan feature an exten-
sive live-range splitting framework to take advantage of all possible split points
for coloring. However, when they choose to spill, they do it in a spill-everywhere
fashion. Pereira and Palsberg [85], in their puzzle-based allocator, used a similar
approach but handle register aliasing.

Finally, to take spilling decisions, Barik [6, Ch.6] proposed a bipartite live-
ness graph that is more compact and more expressive than interference graphs.
On the left-hand side of this graph, there are variables, on the right-hand side,
the end point of each basic interval, i.e., a part of the live-range that is contigu-
ous in the linear ordering. The variables are connected to the end points where
they are alive. Then, each program point where the degree of the end points
(i.e., the right-hand side points) is at least k (the number of registers) is con-
sidered to take a spilling decision: the heuristic starts from the point with the
largest frequency and spills one of the connected variable with the smallest spill
cost, in a spill-everywhere fashion. This way, the heuristic forces the variables
that are highly executed to be kept in register.

All these approaches deal with global register allocation, in a non-decoupled
fashion, thus the di�culties that we pointed out for graph-coloring-based ap-
proaches regarding post phases also apply here.

4.3.3 Decoupled Approaches

To our knowledge, excluding the exact approaches [3, 65], only two decoupled
spillers were proposed so far and both work on SSA programs.

Hack et al. [58] de�ned an heuristic that performs a furthest-�rst analysis,
as discussed in Section 4.1.2.3, on each basic block independently. At the end of
this process, each basic block holds a set of variables that are in registers. Using
this information and the input set chosen for each basic block, the required loads
are placed on edges of the control �ow graph (CFG) to match the occupancy
sets. This approach lacks global information during the local analysis, resulting,
potentially, in a lot of load instructions on CFG edges.

Braun et Hack [21] extended the furthest-�rst criterion for the whole pro-
gram, as explained in Section 4.1.2.3. We already pointed out some of the
weaknesses and advantages of their approach there. More generally, this ap-
proach is compile-time and memory-footprint e�cient. Thus, it may be a good
match for a decoupled register allocation in a just-in-time (JIT) compiler. Of
course, as for all heuristics, it su�ers some bad cases. One source of such be-
havior stems from the fact that this heuristic tries to saturate the register �le,
i.e., to reload variables as soon as there is the space to do so. Figure 4.10 shows
how this can generate a bad spill code.

Both methods o�er good opportunities to apply optimizing post phases as
the resulting code is not yet constrained by register assignment, only the register
pressure is guaranteed to be low enough everywhere.

75

x ←

while(. . .)
E
if(almost never)

← x

else

. . .

. . .
← x

(a) Original code

x ←
← store x

while(. . .)
E
if(almost never)

x ← load

← x

else

. . .
x ← load

. . .
← x

(b) Braun and Hack spiller

x ←
← store x

while(. . .)
E
if(almost never)

x ← load

← x

else

. . .

x ← load

. . .
← x

(c) Optimal spiller

Figure 4.10: Bad spilling decision in Braun and Hack spiller [21] due to the
policy of saturating the registers. At the joint point of the if-then-else in
the while loop, x is available in register on the path where it is used. Since the
other path has room for this variable, it is reloaded there. Thus, x is available
in register at the exit of the while loop and no reload is necessary for the
�nal use. However, it would have been cheaper to reload x outside the loop as
shown in (c). Here, reloading x outside the loop would trigger the possibility to
eliminate the useless load by dead code elimination. This is not generally true.

4.4 Improving Runtime

This section is a collection of observations and ideas to help improving the
runtime performances of the generated code.

4.4.1 Latency

As we pointed out in Section 4.1, hiding latency is a key point to improve
runtime performances. Here we give the bases to account for latency in existing
spilling heuristics based on a spill cost.

As explained in Section 4.1.1.1, the static spill cost (the metric that states
how expensive a spill will be) is usually composed by the cost of the instruction
plus its latency. It is tempting to change the accounted latency with respect
to the minimal distance to the next use. This straightforward approach is not
realistic for the following reason. Actually, the target machine stalls at the point
of the use of the loaded variable. Hence, the remaining latency is paid at this
particular point and not at the place where the load has been issued. Moreover,
it remains some latency only if the path to the use issued a load and not each
time the use is processed. In other words, the remaining latency is paid at the
use point but not as frequently as the use is executed.

From this description, we can derive the following load cost: the base cost
of the instruction multiplied by the frequency of the point where it is placed
plus the maximum, over all next uses, of the remaining latency towards this
use multiplied by the path frequency to this use. As we are accounting for
the maximum couple (remaining latency, probabilities of its occurrence) in that
formula, we have a worst-case perspective of the runtime, assuming a �xed

76

a ←
. . .
E
l1
while(often)

. . .
u1 : ← a

u2 : ← a

(a) Input code

Use Remaining latency
u1 1
u2 2

(b) load-use distance if load at l1

Model
Latency cost

Cost
u1 u2

Static spill cost 3 4
Latency at use fu1

* 1 = 50 fu2
* 2 = 2 51

Path to use fl1 * pl1 to u1
* 1 = 0.5 fl1 * pl1 to u2

* 2 = 1 2
(c) load cost at l1 where f denotes the frequency and p the probability with fl1 = 1, fu1

= 50,
fu2

= 1, pl1 to u1
= 0.5 and pl1 to u2

= 0.5

Figure 4.11: Impact of the latency model in the optimized load cost. The same
load in a given code (a) may have very di�erent expected cost depending on the
model (c). All these models work statically, using or not the static information
of the remaining latency at a use point (b).

schedule, a perfect cache, and that the coloring phase will not remove or insert
instructions. Figure 4.11 gives an example of the di�erent models of latency.

In the proposed models, the remaining latency from a given point to each
use is a critical information. This information is more complex to compute as
it may appear at �rst glance. Indeed, the insertion or removal of instructions
may change this information. With a �xed schedule, it is tempting to ignore
these possibilities as things are not supposed to move around. In fact, even with
this assumption, instructions may still appear/disappear because of live-range
splitting or coalescing that are usually performed during the assignment phase
of a decoupled register allocator. We now discuss these hard-to-model e�ects.

Unless a newly-inserted instruction uses a loaded variable, its impact on
latency is always bene�cial. Indeed, it increases the load-use distance of other
variables or, said di�erently, it uses the remaining latency cycles to perform its
computation, improving the overall code productivity (ratio stall/computation).
However, if this instruction uses a loaded variable, the cost of the load may
be worse than expected in the model. This is the case if a move is inserted
just after a load. A possibility is to bias the coalescing process (the phase that
tries to assign the same registers to the two variables involved in a move) by
increasing the weight of such a move to take into account the remaining latency
penalty. Note that even if this is not a newly-inserted instruction, this bias will
improve the runtime behavior of the program, with respect to the accuracy of
the frequency estimation, as it may reduce the expected remaining latency.

Another situation is that, in case of coalescing, the related copy instructions
may disappear and thus may shorten some load-use distances as seen before
spilling, resulting in a worse runtime behavior 2. To avoid this degradation of

2More precisely, it impacts the productivity of the code (i.e., there are more empty slots

77

the performance, when computing the remaining latency for a given variable v,
we choose to consider the copy instructions in a conservative way as follows: if
the copy does not use v, we assume it will disappear, thus it does not decrease
the remaining latency, and if it uses v, we assume it is a regular use and will
produce a stall if the latency is not covered. This model is pessimist since it
assumes that the copies using v will not be coalesced and other copies will not
hide latency (this is the case if they are �nally all coalesced).

Of course, this model is not perfect. In particular, due to its static nature, it
does not capture the insertion of other spilling instructions. However, it remains
conservative as inserting instructions will decrease the remaining latency for
others and thus will produce better expected solutions. Moreover, a spilling
heuristic that inserts spilling instructions on the �y may be able to account
for these new instructions for other insertions. However, to be applicable for
our experimental target, this model has to be re�ned as it does not take into
account the instruction level parallelism available in the processor. Indeed, on
our target, the latency is not eaten by instruction but by bundles. Thus, a
heuristic must have the knowledge or, more likely, an estimation of the bundles,
as bundles may change when spilling instructions are inserted. Moreover, it
should take into account the density of the bundles, i.e., how much room it
remains in bundles to hide the cost (not the latency) of spilling instructions.
Indeed, when �lling a hole in a bundle, a spilling instruction may be completely
for free, regardless of the frequency of the bundle.

4.4.2 Helping the Scheduler

The runtime performance depends on the quality of the instruction schedule that
is �nally produced, which in part depends on the freedom that the scheduler has
to place instructions. It is hard to tune the scheduler for register allocation and
vice versa. The scheduling performed prior to register allocation, usually called
the pre-scheduler, has to balance the actual schedule length and the expected
impact on the spilling cost (with a metric based on register pressure). On the
other hand, after register allocation, the post-scheduler has limited scheduling
possibilities as the code is over-constrained by register reuse.

From that perspective, the post latency optimization, which moves load and
store instructions after spilling but before register assignment, helps the sched-
uler to produce a shorter schedule length or a denser sequence of instructions.
Following the same idea, we gave in the previous section a general cost model,
which aims at hiding the latency at a more global scope than just basic blocks.
However, none of these approaches is able to move other instructions around.
Thus, if the pre-scheduler just tried to minimize the length of the live-ranges �
a classical approach before register allocation � the allocated code may result
in very bad runtime performances even if the spiller is very good. This prob-
lem is even more relevant on targets that feature instruction level parallelism
as ours. Indeed, sequences of code that can be executed in parallel prior to
register allocation may be completely sequentialized because of a too-tight reg-
ister pressure that created register dependences between unrelated instructions.
This is one bene�cial side e�ect of spilling heuristics on runtime, compared to
optimal approaches as studied in Chapter 3. Indeed, spilling heuristics usually

in bundles), not necessarily its global runtime behavior.

78

over spill compared to optimal approaches and, as an unexpected consequence,
leave more freedom to the post-scheduler to hide latencies. Analyzing by hand
some of the �nal codes produced by the di�erent approaches, we indeed found
cases where this situation occurs: the static spill cost is much better with the
optimal solutions but the heuristics can still produce codes with an equivalent,
or sometimes better, runtime performance, because the degradation in static
cost is compensated by the post-pass scheduler, which has more freedom to
hide latencies.

From our point of view, it may be interesting to have an estimation of the
schedule length and the degree of parallelism, if any, during the spilling algo-
rithm. Therefore, on hot spots, like loops, it may be interesting to spill more
that the �xed k limit so that the post-scheduler has more freedom to schedule
instructions. For instance, one can spill more live-through variables. An alter-
native would be to design a scheduler with �local� spilling/recoloring capabilities
after register allocation or after the spilling phase. Fully integrating scheduling
and register allocation is well-known to be expensive, if not intractable. How-
ever, in the context of a decoupled register allocation, integrating scheduling
and spilling, before register assignment, seems an interesting option to explore.

4.5 Conclusion

In this chapter, we showed the limitations and scopes of the existing criteria used
for spilling. In particular, we saw that in many existing spilling approaches, the
related spilling criterion is used outside its scope, thus making di�cult to predict
the bene�ts on the runtime. In the case of the furthest-�rst criterion, we gave
some hints on how to extend its scope to achieve better runtime performances.

We then empirically validated some simplifying assumptions. In particular,
we showed that, if a post-spilling latency optimization (as explained in Chap-
ter 3) is available, it is a reasonable simpli�cation to restrict to loads placed just
before the related uses, when optimizing the cost of the spill instructions. We
believe that this simpli�cation may be interesting to design an e�cient heuris-
tic, in particular for architectures with bundles where loads can sometimes be
completely hidden. With an adequate live-range splitting, this can be seen as a
spill-everywhere problem (on the variables created by this live-range splitting)
where stores are free and �xed at the de�nition point of the original variable.
This splitting can be obtained by adding, after each instruction, a new virtual
de�nition of all its arguments, coupled with the static single information (SSI)
representation [98, 2].

We pointed out that the abstraction of live-ranges induces an overestimation
of the register pressure in the case of linear scan and of the bene�ts of spilling
in almost all spill-everywhere approaches. For the latter, this assumption may
require to reserve a register, or several registers depending on the algorithm, to
emulate the spill-everywhere principle even when spilling is not necessary. We
also emphasized the interest of decoupled register allocations due to their use
of live-range splitting and the possibility to help the scheduler before assigning
the registers to variables.

Finally, we discussed a latency cost model to be used as an objective function
in spilling heuristics. This model is not intended to be used with the proposed
simplifying assumptions but should be seen as another way to tackle the spilling

79

problem. We also proposed to explicitly spill more variables to help the scheduler
to reduce the schedule length in the regions of the program that are frequently
executed. All these aspects are still to be explored. Indeed, optimizing for
runtime performance remains a di�cult task. As we explained, in addition to
the fact that, given a cost model, the di�erent optimizations are in general NP-
complete, the design of the model is itself di�cult: how expensive a load will be
is hard to measure, depending on the architecture and the post-pass scheduling.

80

Part III

Coloring with A�nities and

Antipathies

81

The spilling phase is done. As a result, the register pressure is nowhere
greater than the number of registers. The challenge now consists in assigning
registers to the variables so that no additional spill code is generated. Moreover,
this assignment must respect the encoding, application binary interface (ABI),
and register aliasing constraints, while optimizing the performance of the code,
in particular, optimizing the register-to-register moves (coalescing).

In this part, we show that neither complex algorithms nor extensive live-
ranges splitting are required to handle such constraints, even in existing graph-
coloring-based allocators. The �rst chapter of this part (Chapter 5) deals with
encoding and ABI constraints. We present an extension of the interference graph
(IG) model to tackle these constraints without inserting any additional split
points. We show how to apply the same mechanism on scan-based approaches.
As a bonus, we de�ne a new allocator, called tree-scan , that may be suitable for
just-in-time (JIT) compilation. In a second chapter (Chapter 6), we focus on
register aliasing constraints. We show how they can be handled in a decoupled
graph-coloring-based allocator without the size explosion of the intermediate
representation (IR) usually implied by these constraints.

82

Chapter 5

Coloring with Encoding

Constraints

An important detail of the register assignment process is register constraints
imposed by the instruction set architecture (ISA) or the application binary
interface (ABI). For example, the �rst integer argument of a function call on the
ARM Linux ABI must be passed in register R0. Similarly the division in IA32
requires the source/destination operand to reside in register %eax and %edx.
Instruction sets may also impose two operands of the same instruction to use
the same register (two-address mode). These constraints, referred as operand
pinning, are local to instructions and are usually handled prematurely by the
allocator by splitting live-ranges, i.e., by introducing copy instructions, prior to
assignment. This places additional pressure on the coalescing to eliminate as
many of these extra copies as possible. Moreover, coalescing is the most costly
task of register allocation [23, 51] and is NP-complete (even with 3 registers) [17,
55].

This chapter proposes a new technique called repairing that deals with lo-
cal register constraints without requiring preliminary live-ranges splitting. We
emphasize that repairing is useful when certain instruction operands are re-
stricted to a subset of registers, possibly a singleton [70, 3, 51, 105]. The idea is
to relax register constraints during allocation and repair only afterward those
that have been violated. This approach allows to handle register constraints
without loosing the bene�ts of the elegant formalisms that have made graph
coloring [33], linear scan [89], and decoupled register allocation based on static
single assignment (SSA) form [15, 55, 27] appealing in the �rst place. Moreover,
it saves the overhead of premature live-range splitting. Lastly, the cost of a po-
tential repair can be integrated into a graph-coloring based register allocator,
e.g., the iterated register coalescer (IRC) [51], through the introduction of an-
tipathies (a�nities of negative weight) that can be handled with minor changes
in the implementation.

We also present how repairing approach can be applied to a linear scan [89,
95, 103, 76, 105] or to its SSA form based improvement a tree-scan . Those al-
locators use an approach that decouples the spilling to the coalescing phase [3].
SSA form enables the design of decoupled register allocation schemes very natu-
rally as it provides to liveness and interferences nice properties [15, 27, 58] that

83

guarantee the register pressure of the program to equal its register demand.
Thus, in SSA-based register allocation, the spilling phase simply decreases the
register pressure to the number of available registers K. Then, a tree-scan that
traverses the dominance tree can produce a register assignment in linear time
without introducing further spilling [18].

Our repairing approach does not address register bank irregularities, such as
aliasing [99] or register pairing; we will present in Chapter 6 a method that han-
dles those constraints in the context of a decoupled register allocation scheme
that tries to avoid inserting copies at every program point as in the elementary
form [85] but still relies on live-range splitting. Handling aliasing constraints
without excessive and preliminary live-range splitting remains an open prob-
lem, which we do not attempt to address here. Repairing is concerned with
constraints that are local to individual instructions.

This chapter makes the following contributions:

• In Section 5.1, we extend the standard coalescing problem with antipathies
between variables to express the fact that a variable should not be coa-
lesced to another variable or register. Unlike a�nities that have positive
weight to express the potential gain of coalescing the corresponding vari-
ables (removal of a copy), antipathies can be seen as negative a�nities
that express the potential cost of assigning them to the same register (in-
troduction of copies). While coalescing aims at merging as many a�nity
related variables as possible, alienation aims at making interfere as many
antipathy-related variables as possible. Using a�nities and antipathies,
hints for register constraints can be modeled without signi�cantly blowing
up the size of the interference graph (IG). We �rst show how antipathies
can be modeled by interferences and (positive weight) a�nities and can
thus be incorporated into existing allocators by only modifying the IG
construction phase. We then present an elegant extension to the IRC that
directly handles antipathies, so avoiding the modi�cation and size increase
of the IG.

• In Sections 5.2 and 5.3, we show how repairing can be used in scan like
allocators and describe a tree-scan. We show how to minimize the number
of repairing copies without the use of any graph-based coalescing. To this
end, we present several biased heuristics for coloring.

• Related work is reported in Section 5.4.
• Section 5.5 presents an extensive experimental evaluation that shows the
e�ectiveness of our techniques on the integer part of the Spec CINT2000

benchmark suite. The use of repairing technique produces IGs that have
26% less nodes (33% less edges) compared to the state-of-the art solution
with preliminary live-range splitting. Using antipathies and afterward
repairing does not change the quality in terms of run-time of the compiled
program. The base line tree-scan algorithm produces code of the same
quality as the IRC while showing an allocation time speedup of 8.81x.
Activating biasing techniques outperforms the run time performance of
the best IRC con�guration while the allocation time speedup compared
to IRC is still 6.43x. These good results also carry against the recent
preference guided scan allocator from Braun et al. [22] where our algorithm
is 4.72x faster for a similar run-time quality.

Finally, Section 5.6 concludes the chapter.

84

a, c← . . .
if (. . .)

. . .← c↑{R1}, a

. . .← a, c

(a) Initial code

a, c← . . .
if (. . .)
(R1, a

′)← (c, a)
. . . ← R1, a

a1 ← φ(a, a′)
c1 ← φ(c, R1)
. . . ← a1, c1

(b) Code with live-range splitting

Figure 5.1: E�ects of live-range splitting. (R1, a
′) ← (c, a) stands for parallel

copies where R1 ← c and a′ ← a are done in parallel. c↑{R1} indicates that
operand c has to be in the related subset of registers, here {R1}.

5.1 Graph Coloring with Repairing

Many compilers use an IG to guide register allocation (see Chapter 2 for more
details). In principle, any graph coloring register allocator can be modi�ed to
handle register constraints through the introduction of pre-colored vertices [51].
Any variable that should be assigned to register R is initially merged with the
pre-colored vertex R. Any variable which assignment is constrained to a reg-
ister subset is made interfering with any register not part of the subset. The
ful�llment of operand constraints might require splitting live-ranges by inserting
copies. Indeed, a given variable may appear in two operands which constraints
are incompatible. Also, constraining at least two vertices to be assigned to
some given colors can make a graph initially colorable not colorable anymore,
thus causing additional spilling. To limit the lifetime of constrained variables,
the allocator usually splits, prior to coloring, live-ranges by inserting copies
around [76], or at least (for SSA code) just before [55] each constrained instruc-
tion. In general, this can reduce the amount of additional spilling, and for SSA
form programs it guarantees the register pressure to equal its register demand.
As illustrated in Figure 5.1 live-range splitting can be done through the use of
parallel copies that correspond to set of copies to be executed simultaneously.

5.1.1 Model and restrictions

Register constraints have di�erent variants. Commonly several registers are
charged with a special meaning throughout the program such as the stack or
frame pointer. Hence, they are usually not subject to register allocation and
excluded from the set of available registers. In this chapter, we consider a more
local constraint were an instruction dictates that an operand has to be in a spe-
ci�c (subset of) register(s), e.g., a register class. Such constraints often occur
in calling conventions of the ABI. Each argument to a function call has to be
put into a dedicated register. Figure 5.2 illustrates how this constraint is mod-
eled using antipathies. In Figure 5.2a, b↑{R1,R3} states that the corresponding
operand that uses b is constrained to be in the register subset {R1, R3}. We
say [70, 91] that operand b is pinned to {R1, R3}. If, for some reason, b is as-
signed to R2 then some shu�e code has to be inserted prior to (and after) the

85

a, b← . . .

. . .← b↑{R1,R3}

. . .← a, b

(a) Initial code

a b

R1 R2

R3

−2w

(b) Interference graph

R1, R2 ← . . .
R3 ← R2

. . .← R3

R2 ← R3

. . .← R1, R2

(c) Allocated code

Figure 5.2: If a and b are respectively allocated to R1 and R2 some repairing
code (in gray) is inserted. An antipathy (dashed lines) of weight −2w is used
to model this cost in the interference graph.

pinned operation to copy b to (and respectively from) either R1 or R3, as shown
in Figure 5.2c.

As shown in Figure 5.2b, an antipathy of weight −2w between b and R2,
where w stands for the weight of a copy instruction, indicates that assigning
b to R2 will require at least two repairing copies around the pinned operation.
For coalescing, a�nities that express the bene�t of assigning two variables to-
gether are represented in the IG using dashed lines of positive weight. Similarly,
antipathies that express the repairing cost of assigning two variables together
are also represented using dashed lines but of negative weight. We say that an
a�nity is satis�ed by a coloring if the two corresponding are given the same
color (coalesced). Similarly, we say that an antipathy is satis�ed by a coloring
if the two corresponding nodes are given two di�erent colors (made interfering).

5.1.2 Strategies

We have integrated support for antipathies into the IRC, a graph-coloring based
register allocator by George and Appel [51]. The original IRC implementation
performs spilling and coalescing together (see Figure 2.4); as our compiler uses
a decoupled approach, and a di�erent spilling algorithm, we focus on the coa-
lescing part. In other words, the potential spill, select, and actual spill can be
ignored at this stage of the discussion.

The IRC algorithm iteratively transforms the graph by merging (coalescing)
some a�nity related nodes. It also removes nodes of low degree (i.e., of degree
smaller than the number of available registers) that are not a�nity related
(simpli�cation). Every simpli�ed node is pushed onto a stack. This is the
coalescing-simpli�cation phase. When all nodes are simpli�ed it pops nodes from
the stack and assigns a color. This is the color phase. The coalescing process
uses an ordered (by decreasing weight) work-list of a�nities (worklistMoves
in [51]). For each a�nity the algorithm checks by simple rules (namely Brigg's &
George's) if both ends of the a�nity can be coalesced conservatively (regarding
the graph colorability). If it can, it merges the nodes, otherwise, put the a�nity
in some other lists. Optimistically, a judicious choice of color still has the
possibility to satisfy some or all of the non-coalesced a�nities when it is later
popped from the stack and assigned a color; this is called biased coloring, as
discussed by Briggs et al. [26].

86

a b

−w

Add a node a ab b

Dummy node

w

a b

−w

Freeze

Freeze

a b

Conservative

Safe to add

interference?

Figure 5.3: Strategies to deal with antipathies.

Our goal is to handle antipathies within this algorithm. As the notation
(dashed lines) suggests, one may want to consider antipathies as a�nities of
negative weight. This allows the following formalism:

De�nition 1 (Optimal coloring). Consider an IG G = (V,E) and a weighted
function that associates to each couple (x, y) ∈ V ×V a number w(x, y) (positive
for a�nities, negative for antipathies, null for others). A k-coloring associates
to each vertex x ∈ V a integer (color) col(x) ∈ [1, . . . , k] such that for each
(x, y) ∈ E, col(x) 6= col(y). The weight w(col) of a k-coloring col is the sum over
each (x, y) ∈ V × V such that col(x) = col(y) of w(x, y). A k-coloring is said to
be optimal if there is no other k-coloring with bigger weight.

This formalism imposes to have at most one a�nity per pair of nodes. Thus
a�nities and antipathies have to be summed during the build phase of the IG.
This is however always a good idea to merge a�nities and antipathies between
nodes as coloring algorithms that aim at maximizing the overall weight are
heuristics. Notice also that this formalism allows an asymmetry for the function
w. In theory one can choose to set w(x, y) = w(y, x) = ω for each a�nity of
weight ω between x and y or set (for example) w(x, y) = ω and w(y, x) = 0.
One should just be coherent in his choice.

Using the IRC described above, we propose three di�erent strategies to ad-
dress our generalized optimization problem.

5.1.2.1 Freeze

Representing antipathies by a�nities of negative weight, and letting the IRC
cope with it is de�nitely a bad idea: Even if the weight of an a�nity is negative,
it will try to satisfy it, in other words merge the two corresponding nodes.
Given a graph with a�nities of negative weight, the simplest solution to avoid
this behavior is to ignore them during the simpli�cation-coalescing phase. This
is done by initially freezing all negative a�nities, i.e., by putting them in the
frozenMoves work-list of [51]. The biased coloring approach of the color phase
is modi�ed to take the antipathies into account.

87

5.1.2.2 Dummy Nodes

The second technique consists in transforming a graph with antipathies into an
equivalent graph with only (positive) a�nities. Every antipathy (x, y) of weight
−w is replaced by a sequence of an interference edge (x, xy), with a new vertex
xy called a dummy node, which does not correspond to an actual variable in
the program, and a (positive) a�nity (xy, y) of weight w. Any existing graph
coloring algorithm can directly assign color for the resulting graph. Any optimal
coloring of this new graph will provide an optimal coloring of the original graph.

De�nition 2 (Graph with dummy nodes). Consider an IG G = (V,E) and a
weighted function w. The corresponding graph with dummy nodes G′ = (V ′, E′)
and its corresponding weighted function w′ is de�ned and built as follow: (1)
for each x ∈ V create a vertex x in V ′; (2) for each (x, y) ∈ E, create an edge
in E′; (3) for each (x, y) ∈ V × V such that w(x, y) > 0 set w′(x, y) = w(x, y);
(4) for each couple (x, y) ∈ V ×V such that w(x, y) < 0, create a node xy in V ′,
an edge (x, xy) in E′, and set w′(xy, y) = −w(x, y); (5) for all remaining couples
(x, y) ∈ V ′ × V ′ set w′(x, y) = 0.

Theorem 1 (Equivalence with Dummy Nodes). Let k ≥ 2. Consider an
IG G = (V,E) and a weighted function w. Consider its corresponding graph
with dummy nodes G′ = (V

⋃
D,E′), with w′ its weighted function, and D the

dummy nodes.
(1) if there exists a k-coloring for G, then there also exists a k-coloring for G′;
(2) let col be an optimal k-coloring for G′, then the restriction of col to V is an
optimal k-coloring for G.

Proof. (1) Consider a k-coloring of G with k ≥ 2. For each dummy node xy of
D interfering with x, set col(xy) to any color di�erent than col(x). Such a color
exists as k ≥ 2. This provides a k-coloring for G′.
If we force col(xy) to be equal to col(y) when possible, i.e., when col(y) 6= col(x),
then we have

w(col) =
∑

(x,y)∈V×V
w(x,y)>0

col(x)=col(y)

w(x, y) +
∑

(x,y)∈V×V
w(x,y)<0

w(x, y)−
∑

(x,y)∈V×V,
w(x,y)<0,

col(x) 6=col(y)

w(x, y)

=
∑

(x,y)∈V×V
w(x,y)>0

col(x)=col(y)

w′(x, y) +
∑

(x,y)∈V×V
w(x,y)<0

w(x, y) +
∑

(x,y)∈V×V,
w(x,y)<0,

col(xy)=col(y)

w′(xy, y)

=
∑

(x,y)∈V×V
col(x)=col(y)

w′(x, y) +
∑

(x,y)∈V×V
w(x,y)<0

w(x, y) +
∑

(xy,y)∈D×V,
col(xy)=col(y)

w′(xy, y)

In other words, by letting

W− =
∑

(x,y)∈V×V
w(x,y)<0

w(x, y)

we get
w(col) = w′(col) +W− (5.1)

88

(2) Consider an optimal k-coloring col of G′. First, the restriction of col

to V provides a k-coloring of G. Indeed, given (x, y) ∈ E, by step (2) in the
construction of G′, (x, y) ∈ E′, so col(x) 6= col(y).
Now, let us prove that for each xy ∈ D, we have col(xy) = col(y) if and only
if col(x) 6= col(y). Indeed (by contraposition), if col(x) = col(y), as col(xy) 6=
col(x) (xy interferes with x), this implies col(xy) 6= col(y). Reciprocally, if
col(x) 6= col(y), col(xy) can be set to col(y) which satis�es the a�nity between
xy and y, and then provides a strictly better solution than if by absurd col(xy) 6=
col(y).
As equation 5.1 holds, this proves that if w′(col) is maximal for G′, w(col) is
maximal for G.

5.1.2.3 Conservative Alienation

The basic idea of this third technique is to conservatively replace an antipathy
(x, y) with an interference edge, when doing so does not a�ect the colorability
of the IG. Recall that the work-list of a�nities is sorted using their weight.
Our �rst modi�cation consists in putting both antipathies and a�nities in this
work-list and considering the absolute value of the weights in the way they are
sorted. Whenever a (positive) a�nity is popped from the work-list, the code
is unchanged: The conservative coalescing tests [19] are performed and if suc-
cessful the two corresponding nodes are merged. When an antipathy is popped
from the work-list, the test consists in checking instead if the antipathy can by
conservatively (regarding the graph colorability) replaced by an interference. If
the test is successful the interference is actually added, the degrees of the corre-
sponding nodes updated, and their position in the many work-lists handled by
IRC updated also. The rule can be stated as follow:

De�nition 3 (Conservative Alienation). let k be the number of available regis-
ters. Let (u, v) be an antipathy; (u, v) can be replaced with an interference edge
if, u (or v) has at most k − 2 neighbors of high degree i.e., of degree at least k.

This rule is conservative regarding the greedy-k-colorability [17] of the graph.
A graph is said to be greedy-k-colorable if it can be reduced to an empty graph
by successively eliminating (simpli�cation process mentioned above) low degree
nodes (degree less than k).

Theorem 2 (Preservation of greedy-k-colorability). The conservative interfer-
ing rule preserves the greedy-k-colorability. In other words, consider a greedy-k-
colorable IG G = (V,E). Consider two nodes u and v in this graph such that u
has at most k − 2 high degree neighbors. Then the graph G′ = (V,E

⋃
{(u, v)})

is greedy-k-colorable.

Proof. Clearly a sub-graph of a greedy-k-colorable graph is also greedy-k-colorable:
Any elimination order that fully reduces a graph can also be used to fully reduce
any sub-graph, as nodes on the sub-graph have a lower degree than in the initial
graph. Suppose u has at most k − 2 high degree neighbors. Adding an inter-
ference between u and v does not change the degree of nodes other than u and
v. All originally low degree neighbors of u (excluding v) can still be eliminated.
Remains at most k − 1 neighbors (including v), so u itself can then be elimi-
nated. The obtained graph is a sub-graph of the initial IG. This proves that the
introduction of such an interference does not change the greedy-k-colorability
of the graph.

89

a← . . .

c↑{R1}← a↑{R1,R3}

. . .← a, c

(a) Initial code

R1 ← . . .
(a1, a2)← (R1, R1)
R1 ← a1

↑{R1,R3}

(R1, R2)← (a2, R1)
. . .← R1, R2

(b) Allocated code

a2 a1

R1 R2

R3

2w

w

w

(c) Interference graph

Figure 5.4: a, c have been assigned R1, R2. Some parallel copies are introduced
to repair the inconsistency. The new local variables a1 and a2 have to be allo-
cated. The corresponding interference graph.

5.1.3 Repairing Code

When coloring is over, repairing code has to be inserted for each actual an-
tipathies that have not been satis�ed, i.e., whenever two antipathy-related nodes
have been assigned the same register. Repairing can be understood as an allo-
cation problem restricted to a very small region around the pinned operation.
Consider the example of Figure 5.4a. Suppose that, despite the a�nity of c
with R1 and the antipathy of a with R1 (as a is live-through), c and a have
been assigned respectively R2 and R1. To repair the inconsistencies, every vari-
able live-in of the pinned operation (a here) is copied to a new local variable
(a1 here). Any use in that operation is replaced by the corresponding freshly
created variable; hence the use of a is replaced by a use of a1. If, as a, a live-in
variable is both used in the operation and live-out of the operation then it is
duplicated, i.e., copied to another new local variable (here a2): This duplication
will be the one that will traverse the pinned operation. Note that a1 and a2
are not made interfering here. Every de�ned variable (here c) is also replaced
by a new local variable; in our example, as for any variable whose constrained
subset is a singleton, we directly replaced this new local variable by the only
possible register it has to be allocated to, i.e., R1. Now, for every variable live-
out of the pinned operation (here c allocated to R1, and a carried by a2) a copy
back from the corresponding new local variable is inserted just after the pinned
operation. In our example, R1 (that carries the de�nition of c) is copied to c
(allocated to R2), and a2 is copied back to a (allocated to R1). This leads to the
code of Figure 5.4b where assigned variables have been replaced by registers,
and where the freshly created local variables remain to be allocated. We end
up with a classical allocation problem where copies are a�nities to be satis�ed
and interferences link variables that cannot share the same register. The corre-
sponding IG is represented in Figure 5.4c. A�nities between interfering nodes
that could obviously not be satis�ed have been represented for completeness. a1
and a2 respectively assigned R1 and R2 would lead to a �nal code with a copy
R2 ← R1 before the operation and a swap of R1 and R2 after. In practice,
the allocation problem being very local, the IG is not actually built. A greedy
ad-hoc heuristic, such as the one developed in Section 5.2.2, is designed instead.

After repairing, like for every approaches that use the parallel copies [3, 85,
22], we sequentialize them using swap, move and xor operations [55].

90

5.2 Tree-Scan

In the general graph-coloring setting, the minimum number of registers required
to color the graph might very well exceed the maximum register pressure of the
program. Recent results on SSA-based register allocation show [15, 27, 58] that
if the program is in SSA form, its register demand equals its maximum register
pressure. This allows for decoupling spilling and register assignment: once the
maximum register pressure in the program is lowered to the number of available
registers, a scan algorithm manages to assign registers without causing further
spills.

To this end, the tree-scan algorithm traverses the dominator tree in pre-
order, while processing the de�nitions and uses of variables in a manner similar
to linear scan register allocation [89]. However, in contrast to the original linear
scan algorithm, tree-scan does not over-approximate the live-ranges of variables
by intervals but uses precise liveness information.

Spilling techniques [21, 55] for SSA programs are not in the scope of this
chapter; we assume that spilling has already been performed and the register
pressure is nowhere larger than the number of registers.

5.2.1 The Basic Algorithm

The control �ow graph (CFG) is processed in reverse post-order (RPO) (in
general any dominance-preserving order works). Each basic block is traversed
from top to bottom. A bit set of occupied registers is maintained. At the entry
of a basic block this should be set to the registers used by variables that are live-
in. However, SSA form allows to avoid the cost of pre-computing liveness sets in
favor of the fast liveness check developed by Boissinot et al. [14]. This technique
provides a query system to answer questions such as �is variable v live at location
q� but does not compute any set of live variables as the standard data-�ow
analysis technique would do. The reason why liveness sets can be avoided under
SSA is that, a variable live-in of a block is also live-out of its already processed
immediately dominating block: the scan algorithm can reuse the occupancy set
of the end of the immediate dominator block, tests which of those variables
are live-in, and release unused registers accordingly. During the scan of a basic
block, whenever a de�nition of a variable is encountered, it is assigned the next
free register. Whenever a death point of a variable is encountered (the variable
is no more live after this program point), the corresponding register is released.
For this last task, fast liveness check can also be used.

Main loop (Algorithms 2 and 3) The pseudo code of the main loop is
given in Algorithm 2 and the details of the processing of a single operation
is given in Algorithm 3. As register assignment is classically assimilated to
graph coloring, the term colors will be used heavily in place of registers. In
these algorithms, code in gray corresponds to repairing features explained in
Section 5.2.2. The remaining code shows the basic algorithm that can be directly
implemented as it if no repairing is involved or if repairing is done as a separate
phase afterwards. In this case, the helper function ChooseColor called for
each variables de�nition simpli�es to providing the �rst available register.

The �rst task TreeScan does when processing a basic block block is to
initialize its set of live-in variables block.allocatedVariables: checking if variable v

91

is live-in of basic block block is done through v.islivein(block). It is then updated,
for each operation, op, by ProcessOperation along with the corresponding
(not reported in the pseudo-code) bit-sets of occupied and available registers. To
avoid checking the set of all allocated variables, dead variables, i.e., variables not
live-out of the current operation (tested through u.isliveout(op)), are extracted
from the set of variables used by the operation (op.arguments). At this point
φ-functions need a special treatment as explained below.

As every de�nition dominates all its uses, once an operation have been fully
processed, all its operands can be replaced by the assigned registers. This is done
through the call of function AssignOperandsColor which implementation
subtleties related to φ-functions arguments are explained at the end of the next
paragraph.

Algorithm 2 Tree-scan main loop. Code in gray represents repairing code.

1: procedure Treescan(Region region)
2: for block in region.blocks using reverse post-order do
3: // Initialize set of occupied registers
4: block.allocatedVariables ← if block.isEntry then ∅

else block.idom.allocatedVariables
5: block.allocatedVariables← {v ∈ block.allocatedVariables / v.islivein(block)}

6: // Forward traversal of the operations
7: for op in block.ops do
8: ProcessOperation(block, op)
9: If op.next=⊥ or op.next.isLateOperation then

10: // Last point of the block where we can insert code
11: FixGlobalColor(block, op.next)

12: // If the late operation changes the global color, then the outgoing edges
13: // have to be split and FixGlobalColor called on all created blocks.

Special treatments for φ-functions Even if the instruction used to repre-
sent a φ-function in the intermediate representation (IR) is usually placed at the
beginning of a basic block, its uses should semantically be considered as being
at the end of its corresponding predecessor basic blocks, or as here, on the cor-
responding incoming edges. This explains why line 5 of Algorithm 3 �lters out
φ-functions: dead arguments (and in particular dead φ-arguments) are released
when entering the basic block thanks to line 5 of Algorithm 2. Another subtlety
related to φ-functions is that the set of φ-functions of a given basic block should
be executed simultaneously. As an example, consider two φ-functions written
in sequence in the IR of the program as follow: a1 = φ(a2, a3); b1 = φ(b2, b3).
Suppose a1 is not used anywhere in the program. The code should not be un-
derstood as the sequence (1) assign a1; (2) release a1; (3) assign b1. But as (1)
assign a1 and b1; (2) release a1. For that reason, the φ-functions of a basic block
should be treated all together: lines 21 and 34 of Algorithm 3 should iterate
over all φ-de�nitions, a1 and a2 in our example. Lastly, as already mentioned,
φ-function semantics also impacts the implementation of AssignOperands-
Color: when reaching a φ-function, the arguments that �ow from a back-edge,
are not yet assigned. To avoid a special treatment of φ-functions arguments at
the end of each basic blocks, a list of use operands (v.unassignedUses), is at-
tached to each variable v. Those will be replaced by the assigned color as soon
as the de�nition is processed and the variable allocated.

92

Algorithm 3 Tree-scan operation processing. Code in gray represents repairing
code.
Require: The set of all φ-functions of a basic-block should be encapsulated inside a

single operation
1: procedure ProcessOperation(BasicBlock block, Operation op)
2: dead ← ∅

3: parallelCopy ← []
4: // φ-function arguments are considered to be on the incomming edges, not here.
5: if op not is φ operation then

6: // Check arguments constraints and release last used colors
7: for u ∈ op.arguments do
8: // If current color does not match constraints, then repair
9: If u.ccolor 6∈ op.constraints(u) then
10: success ← RepairArgument(block, op, u, ¶llelCopy)
11: If not success then
12: // Repairing heuristic failed. Replay all using graph coloring
13: GraphColoring(block, op, ¶llelCopy)
14: goto end_of_coloring

15: // Check whether u is last used here or not
16: if not u.isliveout(op) then dead ← dead ∪ {u}

17: // Release dead variables
18: block.allocatedVariables ← block.allocatedVariables \ dead

19: // Assign de�nitions
20: for d ∈ op.results do
21: [d.gcolor, d.ccolor] ← ChooseColor(block, op, d)
22: If d.ccolor = ⊥ then

23: success ← RepairResult(block, op, d, ¶llelCopy)
24: If not success then
25: GraphColoring(block, op, ¶llelCopy)
26: goto end_of_coloring

27: block.allocatedVariables ← block.allocatedVariables ∪ {d}

28: label end_of_coloring:
29: // Instanciate repairing
30: InsertParallelCopy(block, op, parallelCopy)
31: AssignOperandsColor(op)

32: // Release dead de�nitions
33: for d ∈ op.defs if not d.isliveout(op) do
34: block.allocatedVariables ← block.allocatedVariables \ {d}

93

5.2.2 Repairing

The goal of this section is to describe how the tree-scan can be extended to
handle register constraints and inline the repairing process during the traversal.

Each variable is assigned one global color, called gcolor. This is the color
that the variable has across basic blocks: the assignment at the entry and exit
of each basic block must obey the global coloring. On the other hand, so as to
ful�ll some operand constraints inside a basic block, a variable can take, locally
to that basic block, di�erent colors than its global one. This follows the spirit
of repairing advocated in the previous section: just as the repairing approach
in graph coloring context allows to reduce the size of the IG, the repairing
approach in scan context avoids the storage of each basic block boundary register
assignment.

In other words, as the tree-scan progresses, any allocated variable has a
current color (called ccolor) that might be di�erent than its global color. The
current color of a variable can change (i.e., be di�erent than at the immediately
dominating operation) whenever a pinned operation is encountered. Note that
its global color is not necessarily restored just after a constraining operation.
This is done lazily instead: if live-out of the basic block, the variable can, later be
allocated back to its global color when another pinned operation is encountered,
or at least just before reaching the end of the basic block.

Repairing at the end of a basic block (Algorithm 2) In Algorithm 2,
the repairing code inserted before a constrained operation is handled during the
call to ProcessOperation. If, when reaching the end of the basic block, the
current color of a variable is di�erent than its global color, a copy is inserted to
restore it by the call to FixGlobalColor (Algorithm 4). By �end of the basic
block�, we mean the last point where a copy can be inserted i.e., not necessarily
at its really end but possibly just before an operation such as a jump (designed
as a late operation). The repairing code of ProcessOperation (Algorithm 3)
is detailed hereafter in the corresponding paragraph.

Algorithm 4 Tree-scan �x global color process. For all variables that are not
in their global color, copy them in parallel to their global color.
Require: All allocated variables at this point have a di�erent global color.
1: procedure FixGlobalColor(BasicBlock block, Operation op)
2: parallelCopy ← []
3: for var ∈ block.allocatedVariables do
4: if var.ccolor 6= var.gcolor then
5: AddToParallelCopy(¶llelCopy, var, var.gcolor)

6: InsertParallelCopy(block, op, parallelCopy)

Repairing at a constrained operation (Algorithm 3) When reaching a
pinned operation, a parallel copy (parallelCopy in Algorithm 3) might have to be
inserted just before the operation so as to match its register constraints. Recall
that the restoring to the global color is not done just after the operation but
lazily instead. The proposed heuristic that processes and ful�lls constrained
operands one after an other can fail in �nding a coloring. Graph coloring is

94

Algorithm 5 Tree-scan local assignment process.

1: procedure AssignOperandsColor(Operation op)
2: for i ← 0 to op.operands.length() do
3: v ← op.operands[i].var
4: if v.ccolor 6= ⊥ then op.operands[i].color ← v.ccolor
5: else v.unassignedUses← v.unassignedUses ∪ (op,i)

6: for u ∈ op.results do
7: for (op',i) ∈ u.unassignedUses do op'.operands[i].color← u.gcolor

used as a fallback solution. Procedure GraphColoring (Algorithm 10) is de-
tailed further in the corresponding paragraph. As the operands are processed,
if repairing is required, parallelCopy and the corresponding ccolor variables at-
tribute are updated by RepairArgument (Algorithm 7) for arguments and
RepairResults (Algorithm 9) for results (both procedures are detailed further
in the corresponding paragraphs). There are two situations that motivate the
insertion of repairing code: (1) if a pinned argument is not already in the re-
quired register class (line 9 of Algorithm 3); (2) if the colors of a pinned result
are already taken by other variables (line 22). For a variable v and an opera-
tion op, op.constraints(v) returns the register class v is restricted to on op. If
no restrictions apply, the whole register class of v, v.regClass, is returned. If
GraphColoring is called, repairing is done for all operands at once, paral-

lelCopy and variables attributes ccolor and gcolor are set accordingly. During
the processing of operands, parallelCopy is represented as a map that associates
copies to variables. It is instantiated as an actual parallel copy and inserted just
before the operation, only once all operands are processed through the call to
InsertParallelCopy.

Selecting a color for a variable (Algorithm 6) Repairing a�ects the
color choice in several ways. ChooseColor is called in three di�erent con-
texts. First, at the de�nition point of some variable v (line 22 of Algorithm 3),
both its global color and local one have to be set. Here the global color to
choose must be di�erent from the global colors used by interfering variables
i.e., not in block.allocatedVariables.gcolor (that abusively represents the set {
var.ccolor | var ∈ block.allocatedVariables and var.ccolor 6= ⊥ }). However,
it might be that a free global color is locally in use at v's de�nition (i.e., in
block.allocatedVariables.ccolor). This happens because of repairing: Another
variable took that color to ful�ll a certain constraint. The algorithm �rst
checks if a color is both locally and globally available. Here, for a set colors
Pick(colors) returns one of its elements if none empty and ⊥ otherwise. Color
biasing techniques as addressed by Section 5.3 can be applied at this point. If
none of the allowed global colors are locally available, global and local assign-
ment have to be di�erent. This temporary state will be automatically restored
later in the block thanks to the repairing process described further. The second
situation where ChooseColor is called is during repairing e.g., when a live-in
variable has to be recolored because of some local constraints. In that case, the
current color is preferably set to its global color (already set at its de�nition
point) if in allowedCColors. The last situation where ChooseColor is called
is right after the graph coloring of the current operation. The global color is
preferably set to its current color (set by graph coloring) if in allowedGColors.

95

Algorithm 6 Tree-scan color choice.
Require: The register pressure does not exceeded the number of registers.
Ensure: Returns ccolor if called by repairing, ggcolor if called by graph coloring,

[gcolor,ccolor] if called by the main tree-scan loop.
1: function ChooseColor(BasicBlock block, Operation op, Variable var, Register-

Set allowedCColors = op.constraints(var) \ block.allocatedVariables.ccolor)
2: AllowedGColors ← var.regClass \ block.allocatedVariables.gcolor

3: // Returns [gcolor, ccolor] (we have reached a de�nition point)
4: if var.gcolor = ⊥ and var.ccolor = ⊥ then

5: color ← Pick(allowedCColors ∩ allowedGColors)
6: if color 6= ⊥ then return [color, color]
7: else return [Pick(allowedGColors), Pick(allowedCColors)]

8: // Returns the new ccolor (required for repairing)
9: if var.gcolor 6= ⊥ and var.ccolor 6= ⊥ then

10: if var.gcolor ∈ allowedCColors then return var.gcolor
11: else return Pick(allowedCColors)

12: // Returns gcolor (required by graph coloring that only sets ccolor)
13: if var.gcolor = ⊥ and var.ccolor 6= ⊥ then

14: if var.ccolor ∈ allowedGColors then return var.ccolor
15: else return Pick(allowedGColors)

Repairing Arguments (Algorithm 7) RepairArgument procedure is
called whenever an operand is pinned to a register subclass fully occupied by
some other variables. So as to release a color for the pinned operand, a variable
(we say a pawn) has to be moved out from its place. As moving out a variable
might require moving another variable, the procedure is recursive. forbidden,
initialized to the empty set, is used to avoid endless loop. All the colors the
variable var is allowed to take, are considered as candidates for receiving var

(line 3). The one used by unconstrained variables are considered �rst as they
will avoid recursion (line 6). For a given candidate, if the occupant (pawn) can
move to another place (line 12) the process succeeds and the move is committed
(lines 13-14). If it cannot, RepairArgument is called recursively. The current
color taken by var is made available for the recursively considered pawns, but
the color taken by pawn is marked forbidden so as to avoid considering it again
in the recursion (line 17). If the repairing succeeds, the procedure returns true.
In that case, parallelCopy contains the appropriate permutation of colors, and
the current colors of all involved variables are updated accordingly. Otherwise,
nothing is modi�ed.

Note that, because of the recursion, the worst case complexity of this greedy
ad-hoc heuristic is exponential in the number of pinned operands even-though
a bipartite matching (with lower worst case complexity) could probably do a
better job in minimizing the amount of copies. We argue that repairing is rarely
required, and that the exponential behavior (only pinned operands to more than
one register impact the complexity) cannot appear at least for the architectures
we are aware of.

96

Algorithm 7 Tree-scan argument repairing process. No color is available, so
we take from a �pawn� already in place, that might itself move another pawn...
If success, makes the moves and recolor accordingly. If not return false.
Require: All variables live in front of the operation are in block.allocatedVariables.

No color is available for var.
Ensure: Performs the repairing if possible (update parallelCopy and ccolors accord-

ingly). Returns false otherwise.
1: function RepairArgument(BasicBlock block, Operation op, Vari-

able var, ParallelCopy& parallelCopy, RegisterSet available = allColors
\ block.allocatedVariables.ccolor, RegisterSet forbidden = ∅)

2: // Try out every possible moves
3: ccolor ← ⊥
4: allowed ← op.constraints(var) \ forbidden
5: while ccolor = ⊥ and allowed 6= ∅ do

6: // Not used in op ⇒ not constrained. So start trying not in op.uses �rst
7: if allowed \ op.uses.ccolor 6= ∅ then
8: ccolor ← ChooseColor(block, op, var, allowed \ op.uses.ccolor)
9: else ccolor ← ChooseColor(block, op, var, allowed)

10: pawn ← var ∈ allocatedVariables | pawn.ccolor = ccolor
11: // Try to move out the pawn from ccolor
12: pawnAllowed ← op.constraints(pawn) ∩ (available ∪ {var.ccolor})

\ forbidden
13: if pawnAllowed 6= ∅ then
14: pawnColor ← ChooseColor(block, op, pawn, pawnAllowed)
15: AddToParallelCopy(parallelCopy, pawn, pawnColor)
16: success ← true
17: else

18: success ← RepairArgument(block, op, pawn, ¶llelCopy,
available ∪ {var.ccolor},
forbidden ∪ {pawn.ccolor})

19: // Failed. Continue.
20: if not success then
21: allowed ← allowed \ {ccolor}
22: ccolor ← ⊥

23: // Commit if successed
24: if ccolor 6= ⊥ then

25: AddToParallelCopy(parallelCopy, var, ccolor)
26: return true
27: return false

Algorithm 8 Tree-scan parallel copy update. Parallel copy structure maps a
variable to a pair of colors (source → destination).

1: procedure AddToParallelCopy(ParallelCopy& parallelCopy, Variable var, Color
color)

2: if parallelCopy[var] = ⊥ then

3: set: parallelCopy[var] ← var.ccolor → color
4: else

5: replace in parallelCopy[var]: src → dst by src → color

6: var.ccolor ← color

97

Repairing Results (Algorithm 9) In theory repairing a result is similar
to repairing an argument. However, a cascading strategy with recursion would
requires a costly handling of sets of available colors depending on whether the
variable to move is a last use, a de�nition or a live through. The proposed
solution considers only the colors taken by live-through variables (designed as
the pawn) as candidates for receiving var. If pawn �nds an available spot (line 9),
then the repairing succeeds. If not, the idea is to look for a last-use variable
(designed as arg) to be swapped with pawn. To be possible, (1) as moving arg

frees arg.ccolor only for the upper part of pawn's live-range (arg is a last-use),
the lower part should already be free (line 14); (2) pawn should be allowed to
take arg's color (line 15); (3) �nally arg should be allowed to take pawn's color
(line 16). If those three conditions are meet, the swap is committed (lines 18, 21),
and as arg occupies only the upper part, the lower part becomes free for var that
can take it without further ado (line 27).

Algorithm 9 Tree-scan result repairing process.
Require:

1: function RepairResult(BasicBlock block, Operation op, Variable var, ParallelCopy&
parallelCopy)

2: // Trying a move among all live-through only variables
3: allowed ← op.constraints(var) \ op.defs.ccolors) \ op.uses.ccolors
4: while allowed 6= ∅ and ccolor = ⊥ do

5: ccolor ← ChooseColor(block, op, var, allowed)
6: pawn ← var | var.ccolor = ccolor
7: pawnAllowed ← op.constraints(pawn) \ op.defs.ccolors) \ op.uses.ccolors
8: if pawnAllowed 6= ∅ then

9: // There is an available spot for pawn
10: pawnColor ← ChooseColor(()block, op, pawn, pawnAllowed)
11: else

12: // pawn's color could be free (for var) by swapping pawn with a last use
13: for arg ∈ op.uses if not arg.isliveout(op) do
14: if arg.ccolor 6∈ block.allocatedVariables.ccolor and
15: arg.ccolor ∈ op.constraints(pawn) and
16: pawn.ccolor ∈ op.constraints(arg) then
17: pawnColor ← arg.ccolor
18: AddToParallelCopy(¶llelCopy, arg, pawn.ccolor)
19: break

20: if pawnColor 6= ⊥ then

21: AddToParallelCopy(¶llelCopy, pawn, pawnColor)
22: else

23: allowed ← allowed \ {ccolor}
24: ccolor ← ⊥

25: // Commit if success
26: if ccolor 6= ⊥ then

27: var.ccolor ← ccolor
28: return true
29: return false

Fallback: Graph Coloring of the Operation (Algorithm 10) The re-
pairing process has a fall-back mechanism as soon as one of the heuristic fails
to �nd a coloring that ful�lls the constraints. These failures mostly occur when
the register pressure is exceeded, which is unlikely unless the spilling phase gets
it wrong, or when there is a need for duplications. As opposed to a live-range

98

splitting that has the e�ect of moving a value from a resource to another, a du-
plication is a copy that lets the source variable alive. There are cases, such as for
variable a in the example of Figure 5.4c, where a duplication cannot be avoided.
In our register allocation scheme, such patterns are detected by the spilling
phase and required duplications are inserted prior to the coloring/coalescing.

The fall-back mechanism, based on a graph coloring, corresponds to the re-
pairing technique described in Section 5.1.3. First, every live-through variables
are duplicated (lines 10-16). Then the IG is built. Every live-in variable should
interfere with one another but for a variable with its duplicate (line 18); every
variable live at the de�nition point should interfere with one another (line 19).
Next operand constraints are expressed through interferences to non allowed
colors (line 21). A�nity setting presents two subtle di�erences with the de-
scription of Section 5.1.3. First, as the tree-scan restores the global color lazily
instead of right after the pinned operation, the a�nity of a live-through vari-
able is 1 with its current color (line 23) plus 0.5 with its global color (lines 25).
Second, as the global color of de�nitions are not set yet, antipathies with the
global color of interfering variables are added (line 26). Once a coloring has been
found, duplicated variables that have been assigned the same color than their
respective parent can be deleted (lines 29-30). If not, the parallel copy could
contain twice the same copy, which should be detected when sequentialized.

Our register allocation scheme is fully decoupled, meaning that no spilling is
required during coloring/coalescing. However, a non fully decoupled approach
using an optimistic lightweight spilling phase could be considered. In that case,
Algorithm 10 should be able to perform spilling. loads and stores for some
live-through variables would be inserted around the current operation. So one
iteration of the IRC would do the job.

5.3 Biased Coloring

The goal of coalescing/alienation is to remove as many copies as possible. Some
are already present in the original code, some come from the use of SSA form
(through the form of φ-functions), and the largest source of copies come from the
accommodation of register constraints (through preliminary live-range splitting
or repairing). Coalescing is a hard problem (it is already NP-complete for SSA
programs without register constraints [17]) and e�cient coalescing algorithms
are too slow (see Section 5.5) in a context of just-in-time (JIT) compilation.

The goal of this section is to present several heuristics to bias the color choice
of the tree-scan algorithm to give move-related variables the same color in the
�rst place. As our experimental evaluation shows, these heuristics su�ce to
waive the coalescing pass completely. Hereafter, we quickly review the adoption
of Mössenböck and Wimmer's register hints [105] for tree-scan and then present
new biasing approaches.

Register hints This technique can be considered as a copy propagation dur-
ing the scan process. When assigning a color to the result of a move or parallel
copy, if the color of the argument is available, the algorithm takes it. We also
apply this technique for φ-functions results. In a φ-function, we have to chose
among multiple source variables: One for each incoming edge. We select the
color with the highest execution frequency (either determined by static analysis
or pro�le information) over all already allocated sources.

99

Algorithm 10 Tree-scan fall back repairing process.
Ensure: op is colored with respect to coloring constraints (current repairing is discarded)
Ensure: availableColors and block.allocatedVariables are updated
1: procedure GraphColoring(BasicBlock block, Operation op, ParallelCopy& parallel-

Copy)
2: // Backtrack failed repairing
3: for var: src → dst in parallelCopy do var.ccolor ← src

4: parallelCopy ← []
5: block.allocatedVariable ← block.allocatedVariables \ op.defs
6: for var ∈ op.defs do (var.gcolor, var.ccolor) ← (⊥, ⊥)

7: // Build live-sets
8: lastUses ← {var ∈ op.uses | not var.isliveout(op)}
9: liveThrough ← block.allocatedVariables \ lastUses

10: // Duplicate variables that are both used and live-through
11: duplicates ← []
12: for i in op.arguments.indices if op.arguments[i].var ∈ liveThrough do

13: dup ← Duplicate(op.arguments[i].var)
14: duplicates[var] ← duplicates[var] ∪ {dup}
15: op.arguments[i].var ← dup
16: lastUses ← lastUses ∪ {dup}
17: dup.ccolor ← op.arguments[i].var.ccolor

18: // Build the interference graph and do graph coloring potentially with local spill
19: interferenceGraph.addCliqueButForDuplicates(lastUses ∪ liveThrough)
20: interferenceGraph.addClique(defs ∪ liveThrough)
21: for var ∈ op.operands do
22: interferenceGraph.addInterferences({var}, allColors \ op.constraints(var))

23: for var ∈ lastUses ∪ liveThrough do

24: interferenceGraph.addA�nity(var, var.ccolor, 1)

25: for var ∈ liveThrough do

26: interferenceGraph.addA�nity(var, var.gcolor, 0.5)

27: interferenceGraph.addAntipathies(op.defs, block.allocatedVariables.gcolor, 0.5)
28: coloring ← interferenceGraph.color(op)

29: // Remove useless duplicates and apply the coloring result
30: for var ∈ liveThrough do

31: for dup ∈ duplicates[var] if coloring[var] = coloring[dup] do
32: Delete(coloring[dup])
33: Delete(dup)

34: for var: color in coloring if var.ccolor 6= color do
35: var.ccolor ← color
36: if var 6∈ defs then AddToParallelCopy(¶llelCopy, var, color)
37: else block.allocatedVariables ← block.allocatedVariables ∪ {var}

38: // Set greedily a global color to de�nitions
39: for d in op.defs do d.gcolor ← ChooseColor(block, op, d)

100

Aggressive pre-coalescing An aggressive coalescing merges as many copy
and φ-function related variables as possible. It is easier than conservative co-
alescing as colorability of the resulting graph is not a concern. In particular
there exists very fast and e�cient algorithms that exploit SSA properties and
do not even require the built of an IG (e.g., Boissinot et al. [13] and Budimli¢
et al. [30]) . Instead of actually merging variables, our aggressive pre-coalescing
phase puts as many copy and φ-function related variables into interference-free
sets (called equivalence classes by Sreedhar in [100]). Classes are then used dur-
ing the tree-scan to bias the coloring of a variable to the �color� of the class it
belongs to. The �color� of a class (initially unde�ned) corresponds to the global
color of its last assigned variable. In other words, when assigning a color to a
variable, the tree-scan checks if the color of the class is available, if so, it takes
it. If not, it picks a di�erent color (based on the other heuristics presented here)
and updates the class' color.

Caller-saved registers This technique tries to put variables that are live
across a call site into registers that are saved by the callee. Thus, it tries to
avoid caller-saved registers for these variables. The fast liveness check method
used by the original tree-scan algorithm is not very helpful, as the question that
arises at the de�nition point of the variable is to know whether that variable
is live across a call: In that case every call site dominated by the variable's
de�nition should be tested. Instead, when using the caller-saved heuristics, we
resort to a classic liveness analysis. If aggressive pre-coalescing is used as well,
the across-a-call information is also propagated to the equivalence classes.

Round robin assignment The usual choice for a fresh register is to take the
�rst available color, usually in the order of the bit set that tracks the registers
in use. However, this paradigm usually leads to an unequal distribution of the
colors used. Freed registers are immediately reused by the variable de�ned next.
Hence, some registers are more frequently used than other ones. This has two
negative e�ects. First this usually decreases the chance that a move-related
variable can reside in the same register. Second, the allocated code contains
more anti-dependences, making the job of a post-pass scheduler much harder.
A round-robin strategy that a�ects registers in a cyclic manner aims at making
a more balanced assignment. Consider the example in Figure 5.5. The result
of the φ-function c is colored before its operand a. The variable d interferes
with a. Hence, assigning the register of the class {a, b, c} to d is bad because a
cannot get it anymore. With the classic allocation strategy this might easily
be the case. However, using round robin, the register of c will only be reused
after K de�nitions, where K is the number of available registers. This increases
the chances that c's register is available for a. Round robin assignment also has
a positive e�ect on post-allocation scheduling because it decreases the locality of
false dependencies. Thus, a post-allocation scheduler might have more freedom
to reorder the instructions while keeping the register allocation.

Move related To further increase the chance for move-related variables to get
�their� color (the one of their equivalence class),register �le is divided into two
parts (of equal size in our case but could be tuned): The �rst part is reserved for
move-related variables and is only used by non-move-related variables if registers

101

while (. . .) {

c ← φ(a,b)
. . . ← c

. . .
d ← . . .
. . .
a ← . . .
. . . ← call

. . .
}

(a) Initial code

while (. . .) {

R1 ← φ(a,R1)

. . . ← R1

. . .
R1 ← . . .
. . .
a ← . . .
. . . ← call

. . .
}

(b) Classical color choice

while (. . .) {

R1 ← φ(a,R1)

. . . ← R1

. . .
R2 ← . . .
. . .
a ← . . .
. . . ← call

. . .
}

(c) Round robin

Figure 5.5: Bene�ts of round robin on the color choice. Classical color choice
reuses c's color for d and blocks the usage of that color for a. Round robin
increases the chances that c's color will be available at a's de�nition.

of the second part are exhausted. Inside the move-related part, round-robin
strategy is used to assign registers.

Figure 5.6 summarizes all presented bias techniques. It shows the di�erent
allocation results for each technique on an example.

5.4 Related Work

Graph coloring and register constraints Chaitin et al. [33] showed that
every graph is the IG of a particular program, hence proving by reduction to
k-Colorability the NP-completeness of register allocation. In this situation,
there was no interest in properties of the graph structure. Thus, register con-
straints were represented as interferences.

More recently, it was shown that the IGs of SSA-form programs are chordal,
which allows for coloring in polynomial time [15, 27, 58]. However, checking
the k-colorability of a chordal graph with at least two pre-colored nodes is not
polynomial anymore. Thus, early SSA-based allocators [58] used premature live-
range splitting in front of constrained instructions as well. Moreover, Odaira et
al. [79] show that live-range splitting implies an overhead of 20% on average in
the compile time of IRC.

Scan approaches The idea of linear scan register allocation goes back to
Traub et al. [103] and Poletto and Sarkar [89]. Allocation is done with a linear
scan over the assembly code. Poletto and Sarkar do not take control �ow into
account and over-approximate the live-range of a variable by an interval on the
linearized assembly code. Thus, variables might occupy a register where they are
not live and might provoke unnecessary spill code. This method is simple and
fast, but gives worse results than standard graph-coloring approaches. Traub et
al. perform liveness analysis before and allow for holes in the intervals to avoid
the over-approximation of live-ranges.

Mössenböck and Pfei�er [76] proposed a modi�cation of the original linear

102

while (. . .) {

a← φ(d, . . .)
c← . . .

b← f(a)

. . .← b
d← c
call

}

R1 R2 R3

a

b c

d

(a) None

while (. . .) {

a← φ(d, . . .)
c← . . .

b← f(a)

. . .← b
d← c
call

}

R1 R2 R3

a

bc

d

(b) Register hints

while (. . .) {

a← φ(d, . . .)
c← . . .

b← f(a)

. . .← b
d← c
call

}

R1 R2 R3

a

bc

d

(c) Aggressive pre-coalescing

while (. . .) {

a← φ(d, . . .)
c← . . .

b← f(a)

. . .← b
d← c
call

}

R1 R2 R3

a

b c

d

(d) Caller-saved

while (. . .) {

a← φ(d, . . .)
c← . . .

b← f(a)

. . .← b
d← c
call

}

R1 R2 R3

a

bc

d

(e) Round-robin

while (. . .) {

a← φ(d, . . .)
c← . . .

b← f(a)

. . .← b
d← c
call

}

R1 R2 R3

a

bc

d

(f) Move related

Figure 5.6: Di�erent bias coloring strategies during tree-scan. For each tech-
nique, the left part represents the source code; the right part shows the allocation
of the variables with their live-range in the related column. The second argu-
ment e of the φ-function is supposed to be already assigned to R2. R1 and R2

are caller saved registers. For the aggressive pre-coalescing strategy, equivalence
classes are supposed to be {b}, {c}, and {a, d, e}. For the move-related strategy
the reserved set for move-related variables is supposed to be {R3}.

scan to work on SSA. Unlike our tree-scan, they do not take advantage of SSA
properties to allow for an optimal register assignment. Like Traub et al., their
live-ranges have holes.

Mössenböck and Wimmer [105] further improved linear scan. In particular,
they improved spill code placement and added on demand live-range splitting
to avoid spilling in some context. In 2007, Sarkar and Barik [95] extended the
linear scan. They explicitly split at basic block boundaries to avoid spilling
and to handle register constraints at the cost of shu�e code. In our setting,
the program is in SSA. Thus, introducing live-range splits in addition to φ-
functions will not save any further spills [58]. In 2009, Rong [93] proposed the
tree register allocation, which generalizes linear scan approaches. However, this
algorithm needs global liveness information, in particular for the handling of
pre-colored constraints. The same year, Barik in his thesis [6, Ch.6] proposed
a linear scan approach that colors the basic intervals, i.e. part of the live-range
that is contiguous in the linear ordering, independently. His algorithm tries
to use the same color for the global interval, i.e. composed by several basic
intervals, to minimize shu�e code between basic blocks. To minimize move

cost, it builds another graph with all basic intervals and all move instructions,
also the one expected to be inserted on edges, and uses this graph to get the
preferred color of a basic interval when assigning its color. Overall, our approach
is simpler as it does not require to build an additional graph for coalescing
nor it requires to handle the shu�e code on the edges. Regarding coloring

103

constraints, Barik proposed two di�erent approaches: (1) Choose an order of
the register class and assign them separately, starting with the most constrained
one. (2) Do everything at the same time with a register pressure by register
class. In that context, coalescing of basic intervals composing a variable may
be incompatible with already chosen color, thus creating a lot of moves. To
circumvent this bad behavior, instead of a top to bottom approach, i.e. basic
interval sorted by start date, Barik de�ned a bucket sorted list. With our
approach, the global interval is assigned a color, thus all basic intervals have
the same color a priori. Then, repairing makes the proper adjustments. The
frequency of these adjustments depend on the time invest in pre passes analysis.
In 2010, Wimmer and Franz [104] pointed out the interest of relying on SSA
to deal with liveness in linear scan. Finally, the same year, Braun et al. [22]
proposed a preference guided register allocator. Like our tree-scan, it works on
SSA. But unlike our approach, it processes the program using a linear ordering
of the basic blocks. This ordering is de�ned by a complete cover of the program
by traces. Moreover, it has to insert shu�e code at join point if all predecessors
have not been proceeded, using φ-functions. Regarding coloring, it uses a new
bias technique, the preference sets, that gives the liked and disliked colors for
each variables. Like us, their allocator repairs the register constraints on the �y
but does not handle duplications, which must be set a priori. It splits all live
variables when at least one of them does not match the instruction constraints
and �xes the color for all split variables. It then solves a bipartite matching
problem for all the new variables. Overall, the preference guided allocator is
more complex than our approach.

Interestingly, already in 1999, Yang et al. [106] proposed a fast scan based
register allocation than uses the CFG. This allocator presents some similarities
with both the preference guided allocator and our tree-scan. Like the preference
guided, it performs a two phases allocation. First, it computes some preference
set as well as the last uses points1 and second, it allocates the program. The
allocation uses a RPO ordering of the basic blocks, like us, and splits the CFG in
single entry multiple exits regions, i.e. it deals with tree like live-ranges. Like the
preference guided, at the end of each region it stores the result of the allocation.
If there is a mismatch between several predecessors of one region, it inserts some
shu�e code. When this process failed, it reallocates the related region. Overall,
again, this is more complex than our tree-scan, since we do not have to handle
shu�e code between region.

Coalescings In graph-coloring register allocation, many di�erent coalescing
techniques have been developed. They fall into three categories: Aggressive,
conservative, and optimistic coalescing. Aggressive coalescing removes as many
copies as possible, regardless of the colorability of the IG [32]. While it removes
many copies, it may also increase the register demand of the program which
potentially causes spilling. Since we never want to trade a spill for a copy,
aggressive coalescing has to be used with caution. Conservative coalescing uses
conservative tests [26, 51, 15, 19] that ensure that the chromatic number of the
graph is not increased, before a copy is coalesced. Optimistic coalescing uses
aggressive coalescing and de-coalescing if the k-colorability was violated [80,
81]. On the other hand, Biased coloring tries to remove copies by giving the

1Since it does not use SSA, this information is not directly available

104

source and the target of the move the same color in the �rst place. Chow
and Hennessy [34] rely on copy propagation to remove moves in the priority-
based allocator. Briggs et al. [26] integrate biased coloring into graph-coloring
allocation. Mössenböck and Wimmer [105] use �register hints� in their linear
scan allocator to propagate copy information to the de�nition points of the
variables. They gave also a technique based on register next use distances to
assign caller-saved registers to local temporaries.

5.5 Experiments

The algorithms described earlier in the chapter were implemented in the back
end of a production compiler developed by our industrial partner, STMicro-
electronics for their commercial media processor based on the Lx architec-
ture [42]. This static C compiler uses open source version of the SGI Pro64 com-
piler [49] (OPEN64) as the code generator, linear assembly optimizer (LAO) as
the register allocator, and OPEN64 for post-allocation optimization and assem-
bly code emission. LAO can be used both in a static and dynamic compilation
context. While the funding of those developments was motivated by dynamic
compilation constraints, the industrial partner does not provide us with access
to the dynamic compilation tool-chain. The target processor is 4-issue very-
long instruction word (VLIW) with 32 general-purpose registers, 8 of which are
callee-saved. Compared to IA32, for example, the Lx architecture [42] has rel-
atively few register constraints. That being said, our results show signi�cant
improvements compared to allocators that do not e�ectively handle register con-
straints; consequently, the disparity is likely to be even greater in our favor for
target architectures with more constraints.

Our experiments use a decoupled register allocation approach. The spilling
algorithms used is described in [55]; the purpose of the experiments is to compare
coalescers.

Our experiments use a subset of the Spec CINT2000 benchmarks compiled
using -O3 optimization level; our compiler cannot handle eon, which is written
in C++, and gcc, which requires a frame pointer that our compiler does not
support. To give a better idea on how the di�erent con�gurations may apply
to di�erent targets, we made our experiments with three di�erent numbers of
allocatable registers: 32, 16 and 8 registers.

5.5.1 Graph Coloring and Repairing

These experiments establish the e�cacy of our approach to repairing on �ve
di�erent coalescing con�gurations:

• IRC: The IRC algorithm without live-range splitting, but no repairing; this
algorithm is not guaranteed to �nd a k-coloring of the IG, so it is allowed
to spill, when necessary.

• Split: The IRC algorithm with live-range splitting, but no repairing.

• Freeze, Conservative, and Dummy Nodes: The IRC algorithm without
live-range splitting but with repairing implemented as described in Sec-
tion 5.1.2.

105

Figure 5.7 reports the normalized execution time of the code generated by
each con�guration. Figure 5.8 reports the normalized number of vertices and
number of edges of the IG for each benchmark.

Finally, Figure 5.9 reports the normalized number of dynamically executed
copies for each con�guration. We used frequency estimate [5] to �nd the number
of times each basic block executed. For each copy operation occurring in basic
block b, we use the weight assigned to b to estimate the number of times the
copy executes. These numbers are then summed to produce a per function cost,
and these costs are summed to produce a per benchmark cost. This metric
is architecture agnostic, as it ignores, for example, the possibility to hide the
copies by scheduling them in parallel with one another or with other operations,
or to schedule them in a branch delay slot.

Due to the number of con�gurations, these Figures depict just geometric
means. Detail per benchmark are given in the appendix, tables A.1 to A.6. All
numbers are normalized to IRC with 32 allocatable registers.

The baseline approaches are IRC and Split, denoted IRC Split in the Fig-
ures. Between those approaches, Split produces better quality code (Fig-
ures 5.7 and 5.9), but with a noticeable increase in the size of the IG (Fig-
ure 5.8). In its favor, Split is the only existing technique that can deal with
register constraints in a decoupled register allocation context. Our goal is to
identify a coalescer that achieves the code quality of Split but without increas-
ing the size of the IG.

We compare IRC and Split against three approaches to handle antipathies:

Dummy Nodes is the naive approach to extend graph coloring to deal with an-
tipathies. It represents antipathies using dummy nodes. As shown in
Figures 5.7 and 5.9, this approach produces good quality code, but the
dummy nodes that are added signi�cantly increase the size of the IG. Al-
though Dummy Nodes is not shown in Figure 5.8, its IGs are larger than
Split in virtually all instances. For this reason, we do not consider Dummy
Nodes to be a realistic approach.

Freeze only considers antipathies during the biased coloring phase at the end
of the coloring process. As shown in Figure 5.9, the quality of code gen-
erated by Freeze is inferior to that o�er all other graph approaches: IRC,
Split, Dummy Nodes, or Conservative. In particular, it has big worse
cases (more than 28 times more moves than the IRC) when using with 32
and 16 registers. This becomes better when less choice are possible for the
color of each variable, i.e. using only 8 registers, its quality competes with
IRC. However, these bad performances on the number of moves barely show
up in runtime numbers as reported in Figure 5.7. In that case, Freeze is
slightly worse that Split but still better than IRC. Hence, inserting moves
to repair is cheaper than having additional spill code. In terms of IG size,
Freeze is comparable to IRC (Figure 5.8); the di�erence in size (due to a
small number of negative-weighted a�nity edges) is negligible, and is not
shown in Figure 5.8.

Conservative converts antipathies into interference edges using criteria sim-
ilar to conservative coalescing. Conservative generates code that qual-
ity is comparable to Split, Dummy Nodes, and Freeze for runtime (Fig-
ure 5.7). It is one of the best regarding the dynamic number of moves

106

��
�

��
�
��

��
�	

ABC
C

D�
EF

��
�

��
��

��

�FE
��

��
�	

���

���
��

��
E�

� �� �
��

��
�

��

���
�
� ��

���
���

���
�

���

���
�

���
�

���
�
�

� !"

� !#

� #$

� #%

& �&

& �"

& �#

& &$

� !"

� !#

� #$

� #%

& �&

& �"

& �#

& &$

$'���(��	��� &)���(��	��� !���(��	��� ��E*��+

����
����

����
����

����
����

����
����

����
���	

����
���A

����
����

����
����

���A
���A

���A
���A

Figure 5.7: Geometric means over all benchmarks of the execution time of
the generated code. Each bar represents the runtime for the given number of
allocatable registers. The black lines in the middle of each bar represent the
variation, i.e. minimum and maximum, over all benchmarks. All numbers are
normalized to IRC with 32 registers (y=1). IRC stands for the iterated register
coalescer in a decoupled fashion. IRC Split is IRC plus live-range splitting. The
three next con�gurations are graph approaches with repairing as depicted in
Section 5.1.2. Preference reports preference guided numbers. Then, letters stand
for the mix of the bias coloring con�gurations applied to tree-scan. H: Hints; R:
Round-robin; C: Caller; M: Move related; A: Aggressive; W: Web; S: Split. For
tree-scan con�gurations, the results are sorted in increasing improvement with
32 registers. (Lower is better)

(Figure 5.9), while the size of the IG is comparable to that of IRC, and
is not shown in Figure 5.8. Among the three antipathy-based coalescers
considered here, Conservative is the only one to achieve the code quality
of Split with an IG size comparable to IRC.

5.5.2 Tree-Scan

This section evaluates the allocation time, i.e., the compile time dedicated to
register allocation, and the number of copy operations that execute dynamically
when coalescing is performed by the tree-scan algorithm with di�erent biased
color assignment techniques, as discussed in Section 5.3. As this technique is
intended to be applied in a JIT context, but not restricted to, this section also
reports its memory footprint. To ease the comparison with existing approaches,
we included the most recent, to our knowledge, scan approach, the preference
guided register allocator [22] to our results.

107

��
�� ��

�
�

�	

��
A	

BC

�A
�D

E�

�E
�F�

�
�

�A
�

��
�BE

�

��
��
�

B�
�F
	

�
���

EA
�

���

�

���

���

���

���

�

 !"�#�$E�B��ED %�F�B�#�$E�B��ED

 !"�#�&'�ED %�F�B�#�&'�ED

Figure 5.8: The normalized number of vertices and interference edges in the in-
terference graph for each benchmark. For a given benchmark, the sizes of the in-
terference graph of each function are summed. IRC, Freeze, and Conservative

have the same interference graph sizes, while Split's interference graphs are no-
ticeably larger. Dummy nodes is not a realistic solution, so we do not report its
interference graph sizes, which would be large.

��
�

��
�
��

��
�	

A
BC

C
D�

EF
��

�

���
��

�

�
FE

��
��

�	
��
�

���
��

��
E�

�
��

��
�
�

��
�
�
�

��
�

��
� �

�
�� ��

�� ��
�
��

�
��

�

��
�
�

��
�
�
�

�

� !

"

" !

#

!

$

$!

%

% !

!

�

� !

"

" !

#

!

$

$!

%

% !

!

$#���&��	��� "'���&��	��� (���&��	��� ��E)��*

�����

�����

����

����

����

����

����

�����

��������

����

Figure 5.9: Geometric means of dynamic number of moves. See caption Fig-
ure 5.7 for the explanation of the con�gurations. The tree-scan con�gurations
are sorted in increasing improvement with 32 registers. (Lower is better)

108

5.5.2.1 Allocation Time

Figure 5.10 reports the normalized compile time of the di�erent color assign-
ment approaches. The compile times reported include all memory allocation/de-
allocation, structure initialization/destruction, and liveness analysis; however,
they do not include the time required to translate out of SSA, which is not part
of the coloring process. For each benchmark, the runtime is the sum taken over
all functions. Due to the number of con�gurations, only the geometric means
over all benchmarks is reported. Detailed numbers are given in appendix, Ta-
bles A.7 to A.9.

As expected, the introduction of Register Hints to bias the color assign-
ment process during the tree-scan incurs no measurable overhead, while Round
Robin color assignment incurs an overhead of 10%. Pre-coalescing comes at a
higher price, 12% overhead for the Web strategy [30] and 27% for Aggressive
coalescing [13]; Move Related coalescing costs an additional 11% as we use a
pre-coalescing phase to know which variables are move related. The most ex-
pensive technique, however, is Caller, whose overhead is 50%; this overhead is
due to the data �ow analysis required to compute liveness information and a
traversal of the CFG to identify variables that are live across calls. Lastly, we
also report the allocation time of the tree-scan with a Split strategy, where all
live-ranges are split prior to constrained instructions [55]; the overhead of this
technique is 71%.

Regarding the evolution of the di�erent bias technique compile time with
respect to the number of allocatable registers, we see that tree-scan is more or
less not impacted by this number. The slight gain with 8 registers comes from
the way we chose the set of allocatable colors, here they are all callee-saved.
Thus, repairing on call site never occur anymore. The same observation applies
to Register Hints. For Round Robin, the compile time follows this number.
Nothing surprising as it traverses this set to �nd the next available color. The
pre-coalescing techniques depend on the program structure not the number of
registers. Thus, no patterns come out. Regarding Caller, the number of call
sites is not impacted by the number of registers. Thus the numbers are almost
the same. The slight gain with 8 registers comes again from choice of the
allocatable registers. When choosing the color for a variable having the caller
�ag, the operations which restrict the possible colors will never end in an empty
set, thus error case is never reached. Finally, the Split strategy depends on
the number of live variable, which is directly linked to the number of register in
decoupled register allocation approach.

On average, the baseline tree-scan runs 8.81 times faster than IRC, which
respectively represents 4% and 26% of the whole back end compile time (17%
for preference guided). In contrast, even the slowest-running variant of tree-scan
has a runtime of less than 2 times than of the baseline version. Compared to
the preference guided allocator, tree-scan is 4.72 times faster.

For a JIT compiler, it is clear that tree-scan runs much more e�ciently than
register allocation based on graph coloring. Moreover, it also beats the prefer-
ence guided allocator whatever the number of allocatable registers. However,
the gap is smaller with few registers and tree-scan is �nally 2.96 times faster with
8 registers2). This is because the preference guided repairing process is faster

2The reported 2.82 is against the baseline tree-scan with 32 registers as all numbers use
the same base to normalize

109

��
�

��
�
��

��
�	

ABC
DC

BC
EF

C

��E
C

��
E	
�

�
��
E�

�
C�

��
�B
C�
��
�C

�
��
C�
BC
��
	C
�

�
��
�C
B

��
��	

���

 �

 �!

 �"

 �#

 ��

���

 �

 �!

 �"

 �#

 ��

!$�BC���	CB� %�BC���	CB� &�BC���	CB� ��E'��(

���� ����� ����

��	� ���� 	�A�
A��	 B��� ���� ���� ��	B

Figure 5.10: Normalized geometric means of allocation time. Numbers are
normalized to tree-scan baseline (None) with 32 registers. Preference reports
preference guided numbers. Con�gurations to the right of None are tree-scan
algorithm with the related bias technique. (Lower is better)

when less variable are involved, whereas the tree-scan is more or less linear in
the number of instructions. Next, we look at the quality of the code generated
by the coalescers.

Note that by adding the techniques overhead, you get the allocation time
of the related composed method. For instance, caller plus web have composed
overhead of (1.5−1)+(1.12−1) = 0.62 on average. Thus, this composed method
is 1.62 times slower than the baseline.

5.5.2.2 Number of Dynamically Executed Copies

Figure 5.9 reports the number of dynamically executed copy operations that
result from di�erent combinations of color assignment enhancements to the tree-
scan algorithm. See Section 5.5.1 to know how these numbers are computed.
We consider that tree-scan using register hints (H) is the most realistic baseline
implementation for tree-scan, due to its low runtime overhead. Thus, we did
not test tree-scan without any bias technique.

Let us �rst focus on the di�erences between the tree-scan con�gurations,
using register hints (H) as baseline. As the trends are the same whatever the
number of registers, we comment the numbers with 32 allocatable registers.
The impact of the caller heuristic (HC) in isolation is minimal: The compiler
inserts less repairing code, but fewer copies are coalesced. In many cases, two
move-related variables cannot be coalesced because one crosses a call and the
other does not; as we will see, the caller heuristic becomes more e�ective when
combined with better coalescers.

Round-robin (HR) increases the number of dynamically executed copies by
79%. It does not have any information about future uses of variables, e.g.�
as operands of φs. Consequently, the likelihood of eliminating the copies that

110

result during SSA destruction is quite low. Thus, the potential bene�t of round-
robin, is possible only with a control on how it spreads the allocation over the
available colors. For instance, when combining round-robin with caller (HCR)
the negative impact is reduced from 79% to 20%.

The techniques that employ pre-coalescing (HW, HA) perform quite well.
Web and aggressive strategies respectively reduce the number of dynamically
executed copies by 20% and 35%. When combined with round-robin (HAR)
and move-related (HAM), the negative impacts observed for the round-robin
strategy, as described above, manifest themselves, but in a more limited fashion,
as the pre-coalescer gives a better guide for assigning registers.

Combining the pre-coalescer and caller heuristic (HAC) is bene�cial, because
variables that are move-related to others that cross procedure call boundaries
are biased using callee-saved registers. Compared to register hints alone (H),
HAC reduces the number of dynamically executed copies by 76%. Augmenting
HAC with the round-robin strategy (HARC) achieves an additional percent of
improvement. Similarly, combining the move-related heuristic with the caller
heuristic and a pre-coalescer (HACM) achieves 78% of improvement.

Lastly, we wish to establish that pre-splitting is not necessary when using
repairing; the best result achieved with pre-splitting (HARCS) increasing the
number of dynamically executed copies by 25% for 32 registers. This bad result
comes from the way parallel copies inserted by split are handled in tree-scan.
The algorithm does not have any special care for such instruction. Thus, it
assigns the result in a sequential order. If the �rst result should not reuse the
color of the �rst argument because of some bias information, like the caller �ag3,
the used color may not be available to coalesce one of the other result. In the
worse case, this error can propagate through all results of a given parallel copy,
whereas it would have been limited to few variables in the repairing case that
the bias information helps to avoid. However, with less registers, this problem is
less likely to occur and this con�guration competes with the best con�gurations.
Nevertheless, the impact of pre-splitting on allocation time does not justify its
use in a JIT compiler.

Compared to graph based and preference guided approaches, tree-scan vari-
ants perform quite well. In particular, HAC, HARC, HACM and HARCM, are
better than IRC using live-range splitting and are close to the best achieved
quality: Conservative repairing strategy. For 32 registers, a tree-scan using
only an aggressive pre-coalescer (HA) achieves results almost as good as prefer-
ence guided. Thus, it competes with preference guided whereas it is 3.72 times
faster according to Figure 5.10. With 16 registers, this tree-scan con�guration
has to be combined with at least the caller (HAC) technique to catch up the
gap in code quality against preference guided. In this case, it is still 1.64 times
faster. Finally, with 8 registers, the web pre-coalescer technique is su�cient for
tree-scan to beat the preference guided. In that con�guration, it is 2.5 times
faster.

5.5.2.3 Run Time Performance

We compare the quality of the execution of the code generated by tree-scan
using the di�erent biasing techniques. Figure 5.7 reports these results.

3Without other bias techniques, since split points are just a renaming of the variable, it is
always possible to reuse the color of the related argument.

111

Due to the advantage of a fully decoupled register allocation against IRC

decoupled approach, all programs compiled with tree-scan are always faster than
their counterparts compiled with IRC. Although tree-scan is approximately nine
times faster in allocation time than IRC.

The base tree-scan with register hints (H) generates code that is 3% faster
than IRC. More surprisingly, with the additional caller heuristic (HC), code is
only 2% faster than IRC even if the number of dynamic copies is less than register
hints (H). This is because of the VLIW processor we use for evaluation. When
the caller heuristic is not active, repairing often occurs at call sites. However,
at call sites there are usually enough free slots in the VLIW bundles to hide the
repairing code. Hence, this repairing code comes for free. If the caller heuristic
is active, the repairing move instructions occur at di�erent places where they
are no longer easy to hide because of saturated VLIW bundles.

Round-robin (HR) gives an additional percent of improvement. This bene�t
comes from the additional freedom for the post scheduler. On our machine,
post scheduling is very important because it places moves, stores, and loads in
unused slots of near bundles.

Using a pre-coalescing approach (HW, HA), tree-scan achieves 4% of im-
provement. This is almost as good as IRC with splitting or repairing technique.
Combining these approaches with caller heuristic (HAC), tree-scan gets an ad-
ditional percent of improvements and is as good as the best graph coloring
algorithms reported here. We achieve an additional percent by combining pre
coalescing with round robin (HAR), having tree-scan generated code running
faster than the best graph based approach.

Surprisingly, preference guided is just slightly better than tree-scan with
just register hints (H), despite the fact that it has far less dynamic moves than
this con�guration. The reasons are twofold. Preference guided biases his color
using the same metric as the one used to count the dynamic number of moves.
However, this metric is based on an heuristic of frequency estimate and may not
re�ect the actual runtime behavior. Moreover, like for the caller heuristic, the
repairing code is placed on saturated VLIW bundles, in that case, the edges.

In summary, we draw the following conclusions: Register hints should be
always used. Then, if there is a post-scheduling phase, round robin should be
applied. Although it does not help coalescing, the post scheduler has more
freedom and can hide more shu�e code in empty slots. On the other hand, it
might increase the number of moves. Here, the choice has to be made dependent
on the architecture. On our machine and our benchmarks, there were enough
empty slots in the VLIW bundles to hide those additional moves. The bene�t
from relaxed post scheduling outweighed those extra copies.

Pre-coalescing has a non-negligible overhead but gives very good results and
can improve other heuristics, too. This is the main source of tree-scan's perfor-
mance gain. The caller heuristic is quite expensive and gives bad results if used
alone. It should be avoided, unless pre-coalescing is enabled. Together, they
are more powerful in avoiding caller-saved registers for move-related variables
that are live across calls. We show that splitting before coloring does not give
any bene�ts in terms of run time. As it increases allocation time signi�cantly,
it should be avoided in the JIT context.

112

��
�

��
�
��
��
�	

AB
CD
CB
CE
FC

��
EC

��
E	
�

�
��
E�

�
��
�C
B

�
C�

��
�B
C�
��
�C

�
��
C�
BC
��
	C
�

��
��	

���

 �!

 �"

!

!�#

!��

$�!

$�"

#

#�#

#��

���

 �!

 �"

!

!�#

!��

$�!

$�"

#

#�#

#��

$!�BC���	CB� "�BC���	CB� ��BC���	CB� ��E%��&

�����

�����

�����

�����

���	�

����A 	�	�

Figure 5.11: Normalized geometric means of memory footprint. Numbers are
normalized to tree-scan baseline (None) with 32 registers. Preference reports
preference guided numbers. Con�gurations to the right of None are tree-scan
algorithm with the related bias technique. (Lower is better)

5.5.2.4 Footprint

So far we show that tree-scan approach runs faster, produces faster code with
a comparable number of dynamic moves than IRC decoupled approaches and
preference guided. However, to be suitable for JIT, it also must have a small
memory footprint. This is what we show in that section.

Figure 5.11 reports the normalized footprint of the main classes of ap-
proaches. The numbers are normalized to tree-scan baseline (None) using 32
registers. The footprint measure all memory speci�cally allocated to perform
the related algorithm. Thus, it does not take into account the footprint of the
program representation, which is the same for all but IRC with live-range split-
ting approach, but it does take into account, for instance, the footprint of a
liveness analysis and its results if this approach needs liveness sets information.
For a given benchmarks, footprint is summed over all its functions. Due to the
amount of reported con�gurations, only geometric means over all benchmarks
are reported. Detailed numbers are available in appendix, Tables A.10 to A.12.

As expected, IRC with live-range splitting has the biggest memory footprint
as its IG have more variables than IRC and uses far more memory, almost
30 times more for 32 registers, than a tree-scan approach. Preference guided
allocator consumes also more memory than tree-scan. For 32 registers, this
consumption is 5.59 bigger. It decreases rapidly, to 3.46 (3.84 against None
with 8 registers), according to the number of registers, whereas tree-scan is not
much a�ected by the number of registers (1 to 0.9). Preference guided is sensible
to these numbers because it has to record for each variable its preference set,
which size depends on the number of registers. The other di�erence in size
comes from the fact that it needs the liveness sets to build these preference sets.

For the di�erent bias approaches as for tree-scan baseline, the number of
registers has a limited impact on the footprint. Caller heuristic is the most

113

expensive bias technique, with 3.41 times the size of the base algorithm. It has
to perform a liveness analysis to know which variables are crossing calls and
then has to store that information. Split also has to perform that analysis but
it does not need to store any additional information. As already stated, the
move related technique uses a pre-coalescer heuristic to know which variable are
move related. However, it uses less memory than the used coalescer technique,
here aggressive, because it uses the result of the analysis, but does not have to
store the color information per set nor which variables are in one set.

Like allocation time, to know the overhead of a composed bias technique,
the overhead of each technique has to be added. Compared to IRC Split,
tree-scan has to use the HAC variant to achieve comparable coalescing quality,
thus it uses 4.15 more memory than baseline. Consequently it uses still 7.05
times less memory than this technique for the same code quality. Compared to
preference guided, we have to consider the number of registers. For 32 registers,
HA variant is the closest. In that case, tree-scan uses 3.21 times less memory
than preference guided. For 16 registers, HAC is the closest cheapest variant.
In that case, tree-scan uses about the same amount of memory as preference
guided. Finally, for 8 registers, HW is the closest cheapest variant and it uses
2.42 times less memory than preference guided.

5.6 Conclusion

This chapter has introduced repairing to handle register constraints during regis-
ter coalescing. Repairing has been shown to be compatible with graph coloring-
based coalescers and a new type of SSA-based coalescer called a tree-scan, that
does not build an IG and improves signi�cantly upon past linear scan allocators.
Our evaluation has shown that a graph coloring coalescer that employs repair-
ing can generate code whose quality is comparable to the most e�ective prior
techniques that handle register constraints. The tree-scan, moreover, runs more
e�ciently than the graph coloring-based coalescer with repairing because it does
not require an IG, while producing code of comparable quality. Moreover, this
is also true in the case of the recent scan allocator preference guided. Conse-
quently, we believe that the most reasonable choice for JIT compilers having a
decoupled register allocation is tree-scan. Finally Table 5.1 sums up the prop-
erties of the proposed approaches for people interested to invest in repairing.

Approach Pre-condition
Implementation

e�ort
Compile time Footprint

Freeze
+

ad-hoc repairing
Have IRC Low Medium High

Conservative
+

graph coloring repairing
Have IRC High High High

Conservative
+

ad-hoc repairing
Have IRC High Medium High

tree-scan
+

bias technique
according to time budget

- High Low Low

Table 5.1: Properties of repairing approaches

114

Chapter 6

Decoupled Graph-Coloring

Register Allocation with

Hierarchical Aliasing

Although less studied than classical register allocation, register allocation with
hierarchical aliasing is a common problem in actual architecture. Aliasing is
present in four general purpose x86 registers: AX, BX, CX and DX. Each of
these registers has two aliases, e.g., the 16-bit register AX is divided into two
eight-bit registers: AH and AL. Aliasing is also found in �oating point registers
of many architectures typical of the embedded world, such as ARM and Pow-
erPC, where single precision registers combine to make double precision ones.
Architectures such as ARM Neon go further, allowing the combination of two
doubles into a quad-precision register. There exist also more irregular archi-
tectures, such as the Carmel model, used in digital signal processors, showing
overlapping registers of 16, 32 and 40 bits [96].

As already stated, when aliasing is involved static single assignment (SSA)
split point are not su�cient to be able to decouple the spilling and coloring
phases when this latter uses graph-coloring. Indeed, in that con�guration the
coloring is NP-complete [9, 69], thus even if a coloring exists, graph-coloring
heuristics may not �nd it. In such con�guration, more split points need to
be inserted. Although fundamental, this notion of live-range splitting makes
it di�cult to extend decoupled algorithms to architectures with aliased register
banks. Previous solution would split live-ranges between each pair of consecutive
instructions [85], creating a program representation called Elementary Form.
However, this level of live-range splitting makes traditional register allocators,
like those based on partitioned Boolean quadratic programming [96], integer
linear programming (ILP) [67] or graph coloring [33], impractical, because the
number of program variables increases too much.

In this chapter we solve this problem introducing a program representation
that we call Semi-Elementary Form. Programs in this format provide the es-
sential property required by a decoupled register allocator: the local register
pressure at any given program point equals the weight of variables alive at that
point. Because the semi-elementary form does much less live-range splitting
than the original elementary form, it fosters decoupled allocators that are faster,

115

require a smaller memory footprint and, as a side e�ect, yield better register
coalescing when submitted to traditional coalescing heuristics. We also intro-
duce a way to merge the live-ranges of variables � the local merging test � which
reduces even more the size of the program's interference graphs, and speeds-
up allocation time considerably. Finally, we provide as a bonus an improved
spilling test, that might produce less spilling than the simpli�cation heuristics
traditionally used in graph-coloring based register allocation.

The semi-elementary form speeds up register allocation; however, it is not a
new register allocation algorithm. Hence, it does not increase the performance
of the assembly code produced in any substantial way. Although it has the
side e�ect of reducing the number of copies in the �nal assembly code, this
reduction is too small to provide performance gains. Nevertheless, it consider-
ably simpli�es register allocation, and we believe that this is the best way to
handle register aliasing in decoupled allocators. To substantiate this claim, we
have adapted two di�erent graph coloring-based register allocators to run in
a decoupled fashion: George and Appel's iterated register coalescer (IRC) [51]
and Bouchez et al.'s brute force coalescer (BF) [19]. We show, via experiments,
that building semi-elementary form programs is fast. Furthermore, allocators
working on semi-elementary form programs consumes much less memory than
elementary-form based approaches, and are much faster. In our experiments we
compile the SPEC CPU 2000 benchmarks to miniIR assembly, using 8, 16 and
32 aliased registers.

The rest of this chapter is organized as follows: Section 6.1 gives more back-
ground on the register allocation with aliasing. Section 6.2 introduces a spilling
test in face of aliasing. Section 6.3 presents our semi-elementary form, and
Section 6.4 provides experimental data supporting our techniques. Finally, Sec-
tion 6.5 concludes this paper.

6.1 Background

Figure 6.1 illustrates the traditional graph coloring approach. Figure 6.1(a)
shows an example program, and Figure 6.1(b) outlines its interference graph.
In this example, we assume that lower-case names denote 32-bit �oating-point
variables, while upper-case names denote 64-bit doubles. If we assume an ar-
chitecture with two 64-bit registers, each having two 32-bit aliases, then the
graph in Figure 6.1(b) is not colorable. That is, no register assignment keeps all
the variables simultaneously alive in registers. The register allocator normally
solves this problem via spilling. In Figure 6.1(c) we have sent variable a to
memory; thus, creating two new variables, a0, at the de�nition point of a, and
a1 at its use point. The new interference graph, given in Figure 6.1(d) is now
colorable.

This program does not match the essential property required for decoupled
register allocator:

Property 1. The maximum register pressure at any program point equals the
global register pressure.

Lee et al. [69] have proved that register allocation with two-level aliasing is
NP-complete even for SSA form programs without branches. Thus, in face of

116

 a = •

p1
 B,f = •

 c = •

p3
 d = B

p4
 E = c

• = a,d,E

 E = B

p6
 d = a,f

L1

L2

L3

L4

a

B

c d

E

 a0 = •

 st a0

p1
 B,f = •

 c = •

p3
 d = B

p4
 E = c

 ld a1

• = a1,d,E

 E = B

p6
 d = a0,f

L1

L2
L3

L4

B

c d

E

a0

a1

(a) (b)

(c) (d)

f

f

p7
p8

p5
p2

p2

p7

p8

p5

Figure 6.1: Traditional graph-coloring-based register allocation. (a) Example
program. (b) Program's interference graph; square nodes plus upper case letters
denote double precision values. (c) Program after spilling variable a. (d) New
interference graph.

aliasing, the SSA form conversion is not extensive enough to guarantee Prop-
erty 1; instead, elementary form can be used. We convert a program to elemen-
tary form via the insertion of parallel copies between each pair of consecutive
instructions. Figure 6.2(a) shows our running example in elementary form. The
interference graph of the new program, conveniently called an elementary graph,
is given in Figure 6.2(b). Elementary graphs have very simple structure; thus,
determining the local register pressure usually has a polynomial time solution,
even when nodes are allowed to have weights 1, 2 or 4, as in our case of aliased
register allocation. The variables in the program given in Figure 6.2(a) can be
allocated into our register bank made of two 64-bit registers and four aliased
32-bit registers; an improvement on the original program seen in Figure 6.1(a).
This result is not a coincidence: any program can be transformed into the ele-
mentary form, and the elementary form program never requires more registers
than the original code.

A heavy price incurred by the conversion into elementary form is the growth
in the program size. For instance, the interference graph in Figure 6.1(b) has

117

 a0 = •

p1 :a1 = a0

 B1,f1 = •

 c2 = •

p3:a3,B3,c3=a2,B2,c2

 d3 = B3

p4:a4,d4,c4=a3,d3,c3

 E4 = c4

• = ax,dx,Ex

 E6 = B6

p7:a7,E7,f7=a6,E6,f6

 d7 = a7,f7

L1

L2

L3

L4

(a)

p2:a2,B2 = a1,B1
p6:a6,B6,f6 = a1,B1,f1

p8:ax,dx,Ex=a7,d7,E7

p5:ax,dx,Ex=a4,d4,E4

a0

a1

B1

a2 B2

c2

a3 B3

c3d3

a4c4

d4 E4

a6

B6

E6

a7E7

d7

axEx

dx

(b)
f1 f6

f7

Figure 6.2: (a) The program from Figure 6.1 in elementary form. (b) The
interference graph of the elementary program.

six nodes, but the corresponding elementary graph seen in Figure 6.2(b) has 26.
This explosion is observed in actual benchmarks. Figure 6.3 compares the size of
program functions taken from SPEC CPU 2000 before and after the conversion
into elementary form. This transformation tends to increase quadratically the
number of variables in the intermediate representation.

In order to explain our ideas, we have adapted two di�erent graph coloring
based register allocators to run in a decoupled fashion in face of register alias-
ing. The �rst is IRC of George and Appel [51], and the other is BF of Bouchez
et al [19]. Figure 6.4 shows our version of these algorithms. Comparing Fig-
ure 6.4(a) and Figure 2.4 it is easy to notice that the decoupled version has
less iterations between its phases. Both these algorithms use the extensions of
Smith, Ramsey and Holloway [99] to deal with aliasing, which we re-introduce
later. Most of the phases that constitute each algorithm, i.e, simplify, coalesce,
freeze and select have been thoroughly described in previous works [51, 19]. De-
coupled register allocators in general also use a phase called patch, related to the
implementation of parallel copies. After register allocation, the compiler must

118

0

5000

15000

25000

0 100 200 300 400 500

Number of variables in the original trace

N
u

m
b

er
 o

f
v

ar
ia

b
le

s
in

 e
le

m
en

ta
ry

 f
o

rm
 t

ra
ce

Data extracted from 4054

program traces taken from

SPEC CPU 2000.

Figure 6.3: The growth in the number of program variables due to the conversion
to elementary-form.

split simplify

coalesce

freeze select patch

spill

split

simplify patchspill

briggs

george

brute

select

(a)

(b) coalesce

Figure 6.4: (a) A decoupled re-implementation of IRC. (b) A decoupled re-
implementation of Bouchez's BF that handles aliasing.

implement these parallel copies, using the instructions present in the target ar-
chitecture. Parallel copy patching has been thoroughly described by Pereira and
Palsberg [86].

The brute-force algorithm, outlined in Figure 6.4(b), has a more modular
design than IRC. After spilling is performed, BF orders the copies in the source
program according to their pro�tability, and try to coalesce them following this
ordering. The pro�tability of a copy is a measure of how much improvement its
elimination can bring to the target code. Copies inside deeply nested loops tend
to be more pro�table than copies outside loops. We say that the coalescing of
vertices a and b is conservative if the interference graph that we obtain after
collapsing these nodes into a single node ab can still be allocated with the
available registers. Brute Force uses one of the following three tests, in order,

119

to guarantee that the coalescing of copy a = b is conservative:

1. Briggs(a, b) [26]: the merging of a and b will create a node ab with fewer
than k neighbors with squeeze greater than k.

2. George(a, b) [51]: assuming that a is a pre-allocated variable, then every
neighbor of a already interferes with b, or has squeeze less than k. Notice
that we must also try George(b, a), as this rule is asymmetric.

3. Brute(a, b) [19]: the graph that results from merging a and b can be col-
ored with k colors. We do this check in polynomial time, given Property 1.

6.2 Spilling Test in Face of Aliasing

Decoupled register allocation is interesting as long as it does not cause more
spilling than traditional graph-based register allocators do. The elementary
form is an easy way to provide this guarantee. Given that the conversion to
elementary form divides the source program in regions that are very small and
simple, the problem of determining the local register pressure for each region has
polynomial time solution, at least for architectures with quad, double and single
registers, such as x86, ARM, PowerPC and SPARC. The polynomial time solu-
tion still holds in face of pre-allocation, a phenomenon caused by architectural
constraints that force variables to be assigned to particular registers [85].

6.2.1 Checking Colorability via Smith's Simpli�cation Test

In the case of both IRC, and BF, the spilling phase must guarantee that the
program it passes forward to the other phases of the register allocator has an
interference graph that is greedy k-colorable, where k is the number of registers.
In the presence of aliasing, the simple test based on the node degree is not enough
to check for greedy k-colorability. A correct test has been devised by Smith et
al. [99], using Fabri's idea of squeeze factor [41]. In Smith et al.'s framework, the
computer architecture provides a number of register classes, which might alias
in several ways. Each variable must be assigned to registers in a speci�c register
class. The squeeze of a variable is the maximum number of registers, in its class,
that could be denied to it, given a worst case allocation of its neighbors. Thus,
a node v can be simpli�ed if the worst case allocation of all neighbors of v is less
than v's squeeze factor. Figure 6.5 illustrates this idea, assuming an architecture
with double (R) and single (r) precision register classes. Figure 6.5(a) shows a
subgraph of the graph given in Figure 6.2(b). Each vertex has been augmented
with the squeeze factor of the variable that it represents, as determined by Smith
et al.'s simpli�cation criterion. For instance, variable B6 needs a double precision
register, and has two neighbors, which could be assigned to aliases of di�erent
double-precision registers; thus, its squeeze factor is 2. We use the su�x R in
B6's squeeze factor to indicate its register class. The squeeze of a variable is
bounded by the number of registers in this variable's class; hence, the squeeze
of a6 or f6 is 4, although the worst case allocation, assuming an unbounded
number of registers in class r would be 5 for any variable. Notice that the
interference graph of the variables alive between two consecutive instructions is
very simple: it consists of two cliques only. Thus, we can compute the squeeze
factor of each variable simply counting variables simultaneously alive.

120

a6

B6

E6

f6 a6

B6

E6

f6

f6

a6E6B6

E6B6

a6 f6

(b)

(c)

(a)

a6 f6

!

!

!

!

a6

E6/B6f6(d)

2R

2R

4r

4r

(r1)a6

(R1)B6

(R1)E6

(r0)f6

Figure 6.5: Smith et al. Simpli�cation test. (a) A connected component of
the graph in Figure 6.2(b). The nodes are labelled with their squeeze fac-
tors, e.g., the worst case allocation of E6's neighbors takes o� two registers
of class R. (b) Worst case allocation for each variable. (c) A tight allocation
produced by a puzzle solver [85]. (d) Variable merging guided by the puzzle
solver. Architectural de�nition: r = {r0, r1, r2, r3}, R = {R0, R1}. Aliases:
{(r0, R0), (r1, R0), (r2, R1), (r3, R1)}.

6.2.2 Correct Spilling Test Handling Aliasing and Precol-
oring

A fundamental question that concerns a decoupled register allocator is �which
spilling test should we use to ensure that after spilling we will be able to color the
program's interference graph using the algorithm's graph coloring technique?"
To answer this question one must be aware that after spilling and live-range
splitting no more spilling must be necessary. The choice of the graph coloring
technique is an important player in this game because a given heuristic may
fail to color a graph that is actually colorable, after all, graph coloring is a
NP-complete problem. Many allocators use Kempe's simpli�cation test as the
coloring heuristics. We are no exception.

The notion of greedy k-colorability, based on Kempe's test, is an over-
approximation of colorability; however, this approximation is tight if we do not
have to handle register aliasing. That is, in the absence of aliasing, if G is an
elementary graph, then G is greedy k-colorable if, and only if, G is k-colorable.
The proof of this statement follows from Bouchez's result for SSA-form pro-
grams without aliasing [17]. Therefore, without aliasing, answering the initial
question is very simple: the spilling test is as simple as counting the number of
variables alive at each program point.

In the presence of aliasing, greedy k-colorability is di�erent than colorability,
as the example in Figure 6.5(a) shows. Furthermore, a combination of pre-
coloring and aliasing may lead to situations in which every connected part of
an elementary graph is greedy k-colorable, but the global graph is not, as the
example in Figure 6.6 illustrates. We call the interference graph formed by the

121

4r

4r

3R 3R

8r

3R 3R 3R 3R

8r

B

rx

ry

A

(b)(a)

B

rx

ry

A DC

4r

4r

3R 3R

D

rx

ry

C

Figure 6.6: (a) Two greedy k-colorable elementary graphs. (b) The whole graph
is non-greedy k-colorable.

live-ranges live in, out and across an instruction local. Pre-colored nodes bind
many local graphs together. Thus, the global squeeze factor of pre-colored nodes
may be larger than their squeeze factor taken into consideration at each local
graph. The consequence of this observation is that for a decoupled approach
that performs the coalescing/coloring steps via Smith et al.'s method to be
correct in the presence of aliasing and pre-coloring, we need to perform the
spilling test carefully. In other words, we must start the simpli�cation process
from the uncolored nodes, leaving the pre-colored nodes to the end. Theorem 3
proves the correctness of this procedure.

Theorem 3. If every connected component of an elementary graph is greedy
k-colorable starting the simpli�cation process from the uncolored nodes, then the
whole graph is greedy k-colorable.

Proof. Any non-pre-colored node interferes only with nodes in its connected
component, even taking the whole graph into consideration. Hence, the squeeze
factor of these nodes is the same in the local and global interference graph.
After these nodes are simpli�ed, we are left with pre-colored nodes only. These
nodes must be simpli�able, because they represent the registers in the actual
architecture.

Therefore, a possible spilling test is to check the colorability of each local
graph via this method. Note that it does not mean that all split points will be
necessary as we will show in Section 6.3. Figure 6.7 illustrates that.

6.2.3 Improving Smith's Test with Live-Range Merging

Assuming only two double-precision registers, the squeeze-based simpli�cation
test would fail to simplify any node in Figure 6.5(a), and some variable would
have to be spilled. On the other hand, there exists a register assignment that
accommodates all the variables, as Figure 6.5(c) shows. In order to improve
Smith et al.'s simpli�cation test, we do live-range merging whenever we are un-
able to simplify any variable. To be able to do that, the live-ranges to be merged
must not interfere globally. Here we assume that the initial code is in SSA form,
therefore the local test is enough to get this information. Algorithm 11 gives
the pseudo code of the related spilling test.

122

c =

D = A

A b c D

l1

l2

A

b

c

3r

2R

3r

X

A

b

c

D

5r

2R

5r

2R

7

Figure 6.7: Spilling test based on Smith's simpli�cation test. In that example,
the register �le has two levels, with 4 registers at the lowest level and 2 registers
at the highest level. The �rst instruction l1 has a local interference graph
fully simpli�able, thus no spill is required. The second instruction l2 has a local
interference graph not simpli�able as all squeeze factors are bigger than or equal
to 4 for low level variables (resp. 2 for high level). Hence, for l2 the spiller has
to choose one of the variable to spill.

Algorithm 11 A correct spilling test in face of aliasing and precoloring fea-
turing live-range merging. Given sets represent the related information for the
given instruction.

1: procedure LiveRangeMerging(Instruction inst, Set last_uses, defs,
live_through)

2: live_local ← last_uses ∪ defs ∪ live_through
3: while live_local 6= ∅ do
4: if ∃v ∈ live_local : v is simpli�able then
5: simplify(v)
6: live_local← live_local \ {v}
7: else if ∃o ∈ defs and i ∈ last_uses: size(o) = size(i) then
8: let i, o be the largest pieces that full�lled the condition
9: a← merge(i, o)

10: live_local← live_local \ {i, o} ∪ {a}
11: else
12: let v ∈ live_through : v 6∈ inst.uses
13: spill(v)
14: live_local← live_local \ {v}

123

When merging variables, we start with pairs of variables in register classes
with the largest size, Line 8, because this strategy reduces more drastically
the squeeze factor of the other variables alive in that program point. Another
important detail of our algorithm is the fact that we use live-range merging with
discretion. If we are stuck in the simpli�cation process, then we choose only one
pair of pieces, merge them, and re-try the simpli�cation test. We proceed in this
careful fashion because merged variables will be assigned the same register. This
restriction might have the undesirable side e�ect of constraining too much the
register coalescer that will run after spilling takes place. In fact, this merging
can be completely virtual. The spiller knows that there is a valid coloring and
does not spill anything. In this case, the coloring phase has to provide the same
feature. Going back to Figure 6.7, with live-range merging enabled, variables A
and D can be merged, thus no spilling is required.

We do no apply live-range merging at program points that contain pre-
allocated variables. Pre-allocation might prohibit the merging of live-ranges,
and, in face of this phenomenon we fall back to Smith et al.'s simpli�cation
test.

6.3 Semi-Elementary Form

Traditional coalescing tests, such as George's [51] or Briggs's [26] have a number
of disadvantages if used on elementary graphs. The �rst disadvantage is in terms
of runtime. Each of these tests would have to be invoked once for each a�nity
edge in the elementary graph. The second disadvantage concerns the quality
of the code produced. In the presence of aliasing, the traditional coalescing
techniques may fail to eliminate copies, even though they are not necessary. For
instance, Figure 6.8 shows a program in elementary form, in which every copy
could be completely coalesced away. However, neither George nor Briggs rules
would be able to coalesce the inner copies. This limitations happen because
these rules are applied sequentially. Coalescing would be possible if all the
a�nity edges were analyzed in parallel.

The rational behind the elementary form is to reduce the amount of spilling
during register allocation. With such purpose, the conversion to elementary
form splits the live-ranges of the variables at every program point. However,
most of these splits are unnecessary. We have developed two techniques to
reduce the size of the program's interference graph. The �rst technique, that
we call the critical node test, is based on a criterion that avoids splitting live-
ranges whenever possible. We call the program representation that results from
this method semi-elementary form. The second technique merges variables,
whenever it is conservative to do so. In order to perform this merging we rely
on a method that we call the local merging test. We explain these two strategies
in the rest of this section.

6.3.1 Criterion to Avoid Live-Range Splitting

An elementary graph if formed by many unconnected components, which rep-
resent the live-ranges of variables at some particular program point. Therefore,
we expect a lot of redundancies between graphs formed from consecutive in-
structions. Given two instructions, the guider and the follower, all the vertices

124

A b

A

b

C e

C

b

A

e

b

byte f(int A, byte b) {

 while (true) {

 int C;

 byte e;

 C, e = div (A, b);

 A = C + e;

 }

 ret b;

}

Figure 6.8: Example showing the de�ciencies of traditional coalescing tech-
niques.

that correspond to variables live-in at the follower are connected through a�n-
ity edges to the vertices in the guider. The only vertices in the follower's graph
which have no a�nities for vertices in the guider's are those nodes that repre-
sent variables de�ned in the follower instruction. We call them critical nodes.
Usually an instruction de�nes at most one variable so as the number of critical
node. We except then to perform this test quickly. In light of these observations,
our criterion to avoid live-range splitting is as follows:

The critical node test: if every critical vertex in the follower's
graph has a squeeze factor less than k, then it is not necessary to
insert a parallel copy between guider and follower to achieve Prop-
erty 1.

Theorem 4. Let Gg and Gf be the interference graph at the guider and the
follower, as previously de�ned. If Gg is greedy k-colorable, then the graph that
results from merging Gg and Gf via the critical node test is greedy k-colorable.

Proof. The proof is straightforward: if the merging is done, the resulting graph is
formed by all the nodes from Gg plus the critical nodes in the follower. Because
of our criterion we know that every critical node can be simpli�ed. Once they are
simpli�ed, we fall back into Gg, which, by hypothesis, is greedy k-colorable.

Figure 6.9 illustrates our method when applied to the sequence of instruc-
tions from program point p1 to p5 in Figure 6.2(a). We have augmented the
graphs in Figure 6.9(a) with the squeeze factor of each node, and we have high-
lighted the squeeze factor of each critical node in the next �gures. Considering
two double precision registers available, we can avoid all the parallel copies
but the last, because the squeeze of E4 is 4. On the other hand, if applied on
the program in Figure 6.8, the critical node test would avoid every live-range
splitting. In this case, the semi-elementary form program equals the original
program converted to SSA form.

125

a1/2 B1/2

c2

f1

a1 B1

a2 B2

c2

f1

a3 B3

c3d3

a4 c4

d4 E4

a3 B3

c3d3

a4 c4

d4 E4

f1

a1/2/3 B1/2/3

c2/3d3

a4 c4

d4 E4

3r

2R

3r

3r 2R

3r4r

2r 2R

4r

2r

4r

4r

2R

3r

2r

(a) (b) (c)

!

!

Figure 6.9: Construction of semi-elementary form. (a) a subgraph of the graph
in Figure 6.2. (b) and (c) Subgraphs that result from avoiding the insertion of
two parallel copies. We cannot avoid the last parallel copy, otherwise we would
build a graph that is non greedy k-colorable.

The critical node test avoids splitting live-ranges unnecessarily. As the exper-
iments from Section 6.4 show, the interference graphs of semi-elementary form
programs that we found are about eight times smaller than the corresponding
graph of elementary-form programs; however, the former graphs are still ap-
proximately twice as big as the interference graphs of the original programs.
In order to avoid this growth, we can go even further, merging live-ranges of
non-a�nity related variables whenever it is conservative to do so. We call this
type of preprocessing the local merging of live-ranges, and explain it in the next
section.

6.3.2 Local Merging of Live-Ranges

To further reduce the size of the interference graph, we can merge some non-
a�nity related variables, using a technique based on a coloring oracle. The
oracle says for two variables whether they may be colored the same way or not.
For instance, performing linear-scan [89] on the program assign each variable
a color. This color can then be used to coalesce nodes that are not a�nity
related. In this work, we based our oracle on punctual coalescing [87]. We made
this choice because this technique works locally, is fast and has been speci�cally
designed to coalesce in face of aliasing.

Punctual coalescing is a strategy used in conjunction with puzzle-based reg-
ister allocation to remove copies in the target code. Puzzle-based register allo-
cation performs the coloring by solving a set of puzzles where the pieces are the
variables and the board is the register �le. Each puzzle represents the register
allocation local to one instruction. It is composed by the pieces of the variables
locally alive and a board which shape is a rectangle. This rectangle is de�ned by
two lines as large as the register �le. The �rst line denotes the space that will be

126

occupied by live-in variables and the second line the space for live-out variables.
From this description, the shape of the pieces involved for a puzzle is straigh-
forward. The width of the piece that represents a variable equals the width of
its register class. Its height equals one for last used and de�ned variables, two
otherwise. Then, the goal is to place as much pieces in the board as possible,
depending on a cost function, while preserving the semantic of the program, i.e.
a live through variable must be on both lines, de�nitions on the second line, last
uses on the �rst line and the alignement. In our case, the spilling test ensures
that all variables will �t the board. In that model, pre-colored variables discard
the related places in the rectangle. Moreover, it features hierarchical aliasing,
thus each piece have an alignment constraints.

The punctual coalescer traverses the dominator tree of the source program,
analyzing one instruction at a time. The algorithm processes the interference
graph formed by variables alive around this instruction, remembering the allo-
cation of the previous instruction. It is a locally optimal approach; that is, given
only the knowledge of the variables alive across two consecutive instructions, it
�nds the largest number of matches between variables that do not compromise
Property 1. We use the results that we get from the punctual coalescer to design
a local live-range merging method. Our live-range merging technique based on
punctual coalescing is given below:

• For each pair of consecutive instructions, guider and follower inside a
basic block, let Gg and Gf be the local interference graphs that denote
the register allocation problem for each instruction.

• We let the punctual coalescer [87] place in the same registers the vertices
that have a�nities. The punctual coalescer tends to maximize the number
of matches between two consecutive instructions.

• For each pair of same-size variables u ∈ Gg, and v ∈ Gf , that have been
assigned the same register r:

1. If the vertex uv that results from merging u and v does not interfere
with any vertex w that has been assigned r or an alias of r by the
punctual coalescer, then replace u and v by uv. This type of interfer-
ence might happen if u and v have non-contiguous live-ranges, and
w is alive between the kill site of u and the de�nition site of v.

• For each s denoting a variable de�ned in the follower:

1. If s has a squeeze factor greater than the number of registers in the
register class of s, then undo every merging of the previous step.

We only merge live-ranges inside the same basic block, because, by merging
non-a�nity related variables, we may eliminate coalescing opportunities. As
we show in Section 6.4, punctual merging decreases the capacity of both, IRC
and BF to eliminate copies in the �nal assembly code. Figure 6.10 illustrates
punctual merging. We have used a di�erent example this time, because our run-
ning example from Figure 6.2 is not complex enough to exercise the interesting
aspects of punctual merging. Notice that the critical node test, when applied
on Figure 6.10(b) would not insert the paralle copy on p1, thus only merge the

127

a0d0

f0C0

g1e1

f1C1
b1

a0

C0

C1

f0
d0

f1

g1 e1b1

C0 = d0

b1,e1,g1 = f1,C1

Live in: a0, d0

Live out: b1, e1, g1

(a) (b)

(c) (d)

p1: C1,f1 = C0,f0

a0 C0/1

d0e1

f0f1g1

b1

Figure 6.10: A constructed example showing punctual merging. (a) The
elementary-form program. (b) The interference graph. (c) The solution of
punctual coalescing. (d) The solution of punctual merging.

variables C's and f's. However, assuming a solution of punctual coalescing that
places variables f0, f1 and g1 into the same column, we can also merge these
pieces. The same happen with � non-contiguous � variables d0 and e1. On the
other hand, we cannot merge variables a0 and b1, because C0 and C1 have been
allocated to aliased of the registers assigned to a0 and b1. If we merged a0 and
b1, then the resulting variable would interfere with both C0 and C1.

6.4 Experiments

Testing Environment The algorithms were implemented in Python, pro-
ducing code to a prototype architecture called MiniIR 1, which is based on
the YAML 2 serialization format. YAML is used by STMicroelectronics Inc
to quickly prototype hardware. MiniIR provides a minimalist textual machine
level intermediate representation to be used for experimental tools. We report
numbers for the x86 architecture, which we described in miniIR (Figures 6.13,
6.14 and 6.15), and for an arti�cial architecture with 8, 16 and 32 registers, also
described via miniIR (Figure 6.12). In this case, each register has 32 bits, and
is divided into two 16-bit aliases. We have checked the validity of each register
allocation using the type-system of Nandivada et al. [77]. We chose to run our
experiments on SPEC CPU 2000, which we have compiled into MiniIR using
LLVM 2.7 [68].

1http://www.assembla.com/wiki/show/bE6Ve4RQir36HF eJe5cbLr
2http://www.yaml.org/

128

!"

#"

$"

%"

&"

'"

("

)"

*"

+"

#!"

,-./0" 12343-0567" 8349:12343-0567" ;<=52:>36?9-?"

*"63?9@036@" #("63?9@036@" %$"63?9@036@"

Figure 6.11: Number of nodes, in millions, of the interference graphs of di�erent
program representations. Input: input graph passed to the original iterated
register coalescing algorithm � the number of nodes is the number of variables
in the source program.

The Spilling Approach All the numbers in this section refer to greedy k-
colorable interference graphs. That is, because we do decoupled register allo-
cation, we perform spilling before doing register assignment. We are using a
simple spill heuristic: whenever the register pressure is too high at some pro-
gram point, we choose the variable that has the furthest use in a linearization of
the control �ow graph, and spill it using spill everywhere.. We check the register
pressure via the improved Smith test that we have described in Section 6.2. To
spill we replace the de�nition of the variable by a store, and each use by a load.
We do not try to re-use loads.

Size of Interference Graphs The chart in Figure 6.11 illustrates the ef-
fectiveness of the conversion into semi-elementary form in order to reduce the
size of the interference graphs. The interference graphs of elementary-form pro-
grams, on average, are 8 times larger than the interference graphs of the original
programs. This di�erence falls down to 2 times if we use semi-elementary form
instead. If we do local merging, then we obtain interference graphs that are
even smaller than the graphs produced for the original program, when we use
eight registers only. The graphs tend to become larger as more registers are
taken into consideration, because the amount of spilling decreases, but the pro-
portion of variables having di�erent sizes remains the same. Thus, although
we spill less when more registers are available, we still must perform live-range
splitting to avoid spilling, as we do in Figure 6.1. This fact also explains why
the input graphs are smaller when we have more registers available: in this
case, less spilling will happen, and fewer variables will be created to hold the
source/destination of stores/loads.

129

!"

#!"

$!"

%!"

&!"

'!"

(!"

)"*+,-./+*." #("*+,-./+*." %$"*+,-./+*."

01+2+3/4*5" 6+2-701+2+3/4*5" 89:417;+*,-3,"

Figure 6.12: Allocation time, in hundreds of seconds, for di�erent kinds of
interference graphs.

Allocation Time The size of the interference graph has a direct impact on
the allocation time, as Figure 6.12 shows. Considering eight registers only,
allocation in semi-elementary form is 3.1 times faster than in elementary form.
This di�erent increases to 3.3 times if we perform local live-range merging.
With 32 registers the di�erence is even larger. Semi-elementary form speeds-up
register allocation by a factor of 4.7x, and local merging moves this factor to
5.5x.

To put these results in perspective, let's consider the largest function that we
found in our benchmark, assuming eight registers. This function, in SSA-form,
has 10,163 variables. The interference graph of the elementary program contains
99,364 nodes. On this graph, IRC takes 4,544 seconds. This is 49.40x slower
than the punctual coalescer [87], which does not build an interference graph.
The semi-elementary form program has an interference graph with 19,024 nodes.
In this case, IRC is 5,30 times slower than the punctual coalescer. After local
live-range merging we have a graph with 13,764 nodes, in which IRC is 1.82x
slower than punctual coalescing. Thus, IRC is 27.2x faster on a graph after local
live-range merging than on an elementary graph.

E�ectiveness of Live-Range Merging on Coalescers The semi-elementary
form not only reduces the size of the interference graph, but also improves the
e�ectiveness of copy coalescing, as we show in Figures 6.13, 6.14 and 6.15. Fig-
ure 6.13 shows only the result of IRC using Smith et al.'s [99] extensions, im-
plemented according to Figure 6.4(a). The algorithm executing over elementary
graphs left 3418 copies on the SPEC CPU 2000 programs. On semi-elementary
form this number falls down to 3221 copies. If we perform local live-range merg-
ing on the source programs, then IRC leaves 4133 copies on the assembly code.
In these experiments we count only copies inserted into the program to do live-
range splitting; that is, we do not count the copy instructions that were part of

130

!"

#!!"

$!!"

%&!!"

%'!!"

&!!!"

()
)"

*+
,-
&"

(.
-"

)/
.0
"

1
)2
"

3-
/"

(+
,-
"

34
/5
67
"

-.
/8
6/
"

59
4:
2"

;:616<5./=" >61,?;:616<5./=" @4).:"A6/(,<("

Figure 6.13: Number of copy instructions left by IRC when running on di�erent
program representations.

the source program, even though many of them were coalesced too. In this way,
we focus on the ability of the allocators to handle aliasing. The local live-range
merging decreases the coalescing power of IRC, when compared to the results
that we obtain by using semi-elementary form. We speculate that this fact hap-
pens because the punctual merging constraints too much the interference graph,
creating nodes with larger squeeze factors.

Figure 6.14 shows the e�ectiveness of BF implemented using the modi�ca-
tions from Section 6.1, following Figure 6.4(b). Running the algorithm directly
on elementary-form or semi-elementary form programs leaves 2803 copies on
the �nal assembly code produced by the algorithm. Local live-range merging
degrades the ability of the coalescer to eliminate copies. In this case, BF leaves
3503 copies on the assembly programs.

Figure 6.15 compares the three algorithms: BF, IRC and punctual coalesc-
ing [87] in terms of the number of copies that each algorithm eliminates via
coalescing. We have chosen the best con�guration for each algorithm: IRC and
BF run on semi-elementary graphs, while punctual coalescing can only run on
elementary-form programs. Con�rming previous results [19, 87], BF is the most
e�ective algorithm, followed by IRC. Also, as reported by Pereira and Pals-
berg [85], the punctual coalescer increases the �nal assembly programs by 6.8%
on average. This relatively bad result of the punctual coalescer is due to the fact
that it is a local approach, which does not attempt to eliminate copies between
basic blocks.

131

!"

#!!"

$!!"

%!!"

&'!!"

&(!!"

)*
*"

+,
-.
'"

)/
."

*0
/1
"

2
*3
"

4.
0"

),
-.
"

45
06
78
"

./
09
70
"

6:
5;
3"

<;727=6/0>" ?72-@<;727=6/0>" A5*/;"B70)-=)"

Figure 6.14: Number of copy instructions left by BF when running on di�erent
program representations.

!"

#"

$"

%"

&"

'"

("

)"

*"

+,
,"

-.
/0
$"

+1
0"

,2
13
"

4
,5
"

60
2"

+.
/0
"

67
28
9:
"

01
2;
92
"

8<
7=
5"

>?" @AB" CDE,8D1="

Figure 6.15: Number of copy instructions left by three di�erent register co-
alescers, in thousands. IRC and BF run on semi-elementary form, and the
punctual coalescer runs in elementary form programs.

132

6.5 Conclusion

We have shown how to decouple graph coloring-based register allocators in face
of aliasing. In particular, we described a spilling test that is compatible with
the simpli�cation scheme used for the coloring in those approaches. Moreover,
we have introduced a number of techniques that make these allocators more
practical and e�ective in the presence of live-range splitting. Live-range split-
ting helps to decrease the number of variables spilled during register allocation.
However, in order to produce code to architectures with aliased register banks,
previous register allocators use a very aggressive form of live-range splitting �
the elementary format � which would increase too much the size of the pro-
gram's interference graph, in addition of potentially causing the insertion of
extra copies into the �nal assembly code. Our new techniques allows the regis-
ter allocators to use all the power of the elementary format, while at the same
time avoiding the size explosion, and decreasing the amount of copies into the
assembly program. Finally, these techniques can be applied either directly on
the program to remove or not to insert some split points or directly on the graph
to merge several move related or not move related variables that incremental
conservative coalescing technique would fail or not consider to merge.

133

Part IV

Post Phases

134

At this point of the compilation �ow, we performed the register allocation
in a decoupled fashion. We saw that the spilling phase can be decoupled from
the coloring even when register constraints are involved. However, this came
at the cost of some live-ranges splitting. Thus, at this stage, (parallel) copies
instructions may remain. This amount depends on the quality of the coalescing.

This part of the manuscript details two approaches to move or remove more
copies. The �rst one, parallel copy motion, focuses on eliminating the copies
from control �ow graph (CFG) edges as they may appear for instance using static
single assignment (SSA). It features a nice formal model to move copies from
one place to another. Using this approach, we are able to avoid to split a CFG
edge, otherwise required to instantiate the copies, when this edge splitting turns
out to produce poor code. The second approach eliminates copies directly on a
data dependence graph (DDG). The idea remains the same than the previous
approach but it is more powerful as it can reorder the instructions. For both
approaches, we detail the basics. These foundations can then be extended to
lead to the design of more sophisticated heuristics.

135

Chapter 7

Parallel Copy Motion

In back-end code generators, register coalescing means allocating to the same
register two variables involved in a move instruction so that the copy can be
removed. The register coalescing problem is the corresponding optimization
problem, i.e., how to map variables to registers so as to reduce the cost of
the remaining copies. Before quite recently, this issue was not very important
because, usually, the codes obtained after optimization did not contain many
move instructions. Even if they did, register coalescing algorithms, such as
the iterated register coalescer (IRC) [51], were good enough to eliminate most
of them. Today, the context of static single assignment (SSA) but also just-
in-time (JIT) compilation has put the register coalescing problem in the light
again and raised new problems.

The time and memory footprint constraints imposed by JIT compilation
have led to the design of light-weight register allocators, most of them derived
from a �linear scan� approach [89, 103, 76, 105, 95]. These algorithms perform
a simple traversal of the basic blocks, without building any interference graph,
in order to save compilation time and space. To make the technique work,
move instructions may need to be introduced on control �ow edges so that the
register allocations made in previous predecessor blocks match. Since these
register allocators are designed to be fast, they usually use cheap heuristics
that may lead to poor performance. In particular, many move instructions can
remain, which, in addition, can lead to edge splitting, i.e., the insertion of a new
basic block where register-to-register copies will be performed. Similar situation
occurs in the design of register allocators based on two decoupled phases as we
showed in Chapter 2.

These two situations illustrate the need for a better way of handling parallel
copies, not only in a JIT context: some JIT algorithms perform coalescing
poorly, so a fast and better coalescing scheme is needed, and some algorithms
(JIT or not) rely on the insertion of basic blocks, i.e., on edge-splitting, which
is not always desirable:

• edge splitting may add one more instruction (a jump), a problem on highly-
executed edges;

• splitting the back-edge of a loop may block the use of hardware loops as
found on some DSPs (e.g., [102, 45]);

• compilers may insert �abnormal� edges [75], i.e., control �ow edges that

136

cannot be split (for computed goto extensions, exception support, or region
scoping);

• copies inserted on critical edges cannot be scheduled e�ciently without
additional scheduling heuristics (speculation, compensation), especially
on multiple-issues architectures.

The goal of this chapter is to propose a general framework for moving around
parallel copies in a register-allocated code. Section 7.1 illustrates the concept of
parallel copy motion inside a basic block and out of a control �ow edge. For a
critical edge, moving copies is more complicated, as some compensation on adja-
cent edges must be performed, then possibly propagated. Section 7.2 describes
more formally our method, which is based on moving permutations of register
colors (possibly with compensation). In Section 7.3, we develop simple heuris-
tics to optimize the placement of moved parallel copies and address our initial
problems, i.e., parallel copy motion for better coalescing and to avoid edge split-
ting. Section 7.4 shows the results of our experiments on SPECint benchmark
suites. We show in particular that it is better not to split edges everywhere, but
to move some copies instead. The simplicity of the technique make us believe
it could be applied for JIT compilation. We conclude in Section 7.5.

7.1 Parallel Copy Motion

7.1.1 Parallel Copies

As recalled at the beginning of the Chapter, register-to-register parallel copies
can be generated by some live-range splitting phase done before or during reg-
ister allocation. In particular, in most extensions of the linear-scan register
allocator, the assignment of a variable between two consecutive basic blocks
might be di�erent, which leads, implicitly, to a register-to-register parallel copy
on the edge between the two basic blocks. Figure 7.1a illustrates such a case:
the registers assigned to a and b (in this �gure, the notation a(R1) means that
variable a is assigned to register R1 at this point) in basic block Bd are swapped
compared to the assignment in Bs, hence, the values contained in R1 and R2

must be swapped on the edge from Bs to Bd. On the contrary, variable c is
assigned to R3 on the two basic blocks so the value of R3 should remain there.
The parallel copy is represented in the �gure by a graph (whose semantics is
given hereafter) along the corresponding edge. A similar situation arises when
performing SSA-based register allocation: φ-functions are removed after the
register assignment phase, which leads, due to the semantics of these functions,
to the introduction of register-to-register parallel copies on the edges leading
to the φ-functions. Figure 7.1b shows an example where R1 and R2 must be
swapped on the left edge, because the left arguments of the φ-functions are
in di�erent registers than the variables de�ned. Also, some less-conventional
register allocation frameworks need to insert shu�e code either before, during,
or after the allocation. Parallel copies represent shu�e code, encoding data
movements in registers so that assignments in di�erent program regions match.
Examples of such frameworks include: graph coloring with insertion of split
points [23]; combined local, global coloring, and on demand split points, as in
priority-based graph coloring [34]; region-based approaches such as hierarchical
graph coloring [31]; or graph-fusion allocators [73].

137

{a〈R1〉, b〈R2〉, c〈R3〉}live
Bs

{a〈R2〉, b〈R1〉, c〈R3〉}liveBd

R1

R2

R3

(a) Linear scan

{a〈R1〉, b〈R2〉, c〈R3〉}live
Bs

A〈R2〉 ← φ(a〈R1〉 . . .)
B〈R1〉 ← φ(b〈R2〉 . . .)Bd

R1

R2

R3

(b) SSA

Figure 7.1: Parallel copies on edges.

In these contexts, a parallel copy means that values must be transferred
between registers from one program point to another. For this reason, it is
handy to represent, in the parallel copy, the registers that keep their value in
place. In other words, we enforce a parallel copy to represent the liveness because
all �interesting� values, i.e., those of live variables, are referenced in the parallel
copy. A parallel copy can be represented as a graph in which live registers are
nodes and directed edges represent the �ow of the values [55, 92, 86]. Self-edges
are necessary to represent unmodi�ed but live registers. In short, Ri is in the
live-in (resp. live-out) set of the parallel copy i� there is an edge leaving (resp.
entering) the node Ri in the graph representation. For simplicity, we consider
that any register in the graph representation of the parallel copy has at most
one entering edge. Otherwise, this would mean that the two source registers
carry the same value. In such case, we should modify the code so that it uses
only one of the registers at this point.

Finally, we also consider only reversible parallel copy. The advantage of this
restriction will appear clearly in the next section. Actually, when going out
of SSA, it is possible that the removing of φ-functions creates duplications in
parallel copies, thus breaking the assumption of an reversible parallel copy. This
happens for instance if, at the beginning of a basic block, the same variable is
used twice as argument, as in [b← φ(a, . . .); c← φ(a, . . .)], or if two arguments
have been coalesced and renamed into one variable. In practice, the duplications
can be extracted from the parallel copies and placed in the predecessor basic
block. But this task may lead to additional spilling and we chose for clarity not
to treat this case here. Also, none of the existing linear-scan register allocators
would lead to parallel copies with duplications on edges. For SSA-based register
allocators, the aforementioned situation can be avoided beforehand by inserting
a new variable for each duplication on the predecessor edge. In the example
above, this would give a copy [a′ ← a] in the predecessor block and the original
φ-functions would be replaced by [b ← φ(a, . . .); c ← φ(a′, . . .)]. This is less
constraining than enforcing SSA to be conventional static single assignment
(CSSA) [100], but CSSA would do the job [86] too.

A parallel copy can be de�ned as a transfer function from the registers of its
live_in set to the registers of its live_out set. With the additional constraints
above, i.e. the parallel copy is reversible, the transfer function is one-to-one:

De�nition 4. A reversible parallel copy //c is a one-to-one mapping from its
live_in set {si} to its live_out set {di}. We use the notation //c : (d1, . . . , dn)←
(s1, . . . , sn) where //c(si) = di and //c−1(di) = si.

138

The live_in and live_out sets are subsets of the register set. In Figure 7.1a,
the live_in and live_out sets are both equal to {R1, R2, R3}. The reversible
parallel copy is //c : (R2, R1, R3) ← (R1, R2, R3). An equivalent sequence of
move instructions is [Rx ← R1;R1 ← R2;R2 ← Rx;] if Rx is a register such
that Rx 6∈ live_out. For Ri 6∈ live_in, we abusively write //c(Ri) = ⊥ and, for
Ri 6∈ live_out, //c−1(Ri) = ⊥.

7.1.2 Moving a Parallel Copy Out of an Edge

It is usually obvious to move a parallel copy out of a non-critical edge. It
can indeed be placed at the bottom (resp. top) of the source (resp. destina-
tion) block, if this block has only one successor (resp. predecessor). The term
�usually� refers to the register pressure problem exposed for these moves in Sec-
tion 2.3.3.2. When this problem occurs, we treat the related edges the same way
as critical edges. For critical edges, these moves are not directly possible. Hence,
the parallel copy would then be executed on other undesired paths. However, it
is possible to compensate the e�ect of a reversible parallel copy on other edges.

This is similar to the idea introduced by Fisher [44] for trace scheduling,
later called �compensation code�, but it concerns general code and deals only
with duplicating the code when moving instructions above a join point or below
a split point. According to Freudenberger et al. [47], code could be inserted to
undo any e�ects on �o�-trace paths�. It is not done in practice because, even if
it would be possible for simple register operations, it is too complex for general
operations. We present in this section a way to �undo� the e�ects caused by
reversible parallel copies.

When trying to move a reversible parallel copy away from a critical edge
E : Bs → Bd, there are two possibilities: either move it down, i.e., to the
top of Bd, or move it up, i.e., to the bottom of Bs, as done in Figure 7.2b.
As illustrated by this example, when moving a parallel copy up, it might be
expanded to re�ect the change of liveness between the critical edge and the end
of the predecessor basic block. In our example, a possibility is to make the
reversible parallel copy grow with a self edge on R4 and an edge from R3 to save
its value in R1. Indeed otherwise, the transfer from R2 to R3 would overwrite
the value of a live variable, stored in R3 and needed in B′

d.
Once the parallel copy has been moved up, its e�ect should be compensated

on the other outgoing edges. The compensation is roughly the reverse of the
parallel copy. This explains why we restricted initial parallel copies on edges to
be reversible. In Figure 7.2b, the values of R2 and R3, which are alive on B′

d

must be restored.
This example shows that a reversible parallel copy can be moved out of a

critical edge, at the price of some compensation code, expressed as a parallel
copy too. This parallel copy can possibly be reduced or even removed by further
parallel copy motion inside basic blocks. Also, the copies inside a block can be
scheduled with the other instructions of the block. This is true in the example
for both the parallel copy moved up in the block Bs and the compensation
parallel copy moved down in the block B′

d. However, we need a model that
takes into account the cost of the critical edge splitting and the cost of the
compensation code so as to help the compiler make a decision between moving
the parallel copy as explained above or leaving it on the edge and splitting
the edge. The precise mechanism to perform this transformation correctly is

139

{R3, R4}live
S1 : R1 ← 2 ∗ R4

S2 : R2 ← R1 + 2
{R1, R2, R3, R4}live

Bs

{R2, R3}live

Bd

{R2, R3, R4}live

B′
d

R1

R2

R3

(a)

S1 : R1 ← 2 ∗ R4

S2 : R2 ← R1 + 2

Bs

Bd
B′

d

R1

R2

R3

R4

R1

R2

R3

R4

(b)

{R3, R4}live

{R1, R4}live
S1 : R2 ← 2 ∗ R4

S2 : R3 ← R2 + 2

Bs

Bd
B′

d

R4R1
R3

R2
R3 R1

R4

(c)

Figure 7.2: On a critical edge (a), parallel copies can be moved if compensated;
(b) the parallel copy is augmented to include the liveness of the top basic block,
and is compensated on the other leaving edge; (c) the permutation is moved
higher in the basic block and its size may shrink (here it does), the compensation
code is put at the beginning of basic block B′

d.

explained in Section 7.2 using the notion of permutation motion.

7.1.3 Parallel Copy Motion Inside Basic Blocks

Consider the example of Figure 7.2b again. Because of the presence of data
dependencies on R1 and R2, the parallel copy at the end of BS cannot be
scheduled before S2 using standard techniques. Still, it is possible to move a
parallel copy inside a basic block. The trick is to consider the parallel copy as a
reassignment function and not as a general instruction. This is of course possible
only by reassigning operands of �traversed� instructions. Figure 7.2c shows an
example where, after having moved a parallel copy up from an edge, the copy
is further moved inside the basic block. The operands have been reassigned
accordingly. Here, the resulting parallel copy is smaller after being moved up
because R1 and R2 are not live before, thus their values do not need to be
transferred.

The details for performing this transformation will use the permutation mo-
tion and region recoloring concepts. As illustrated by this example, one of the

140

bene�ts of moving a reversible parallel copy inside a basic block is that its size
may shrink down because the liveness changes. Another potential advantage of
this technique, not developed in this chapter, is the ability to place part of the
reversible parallel copies on empty slots of a scheduling.

One restriction to the motion inside basic blocks concerns registers con-
straints. Indeed, some instruction operands cannot be reassigned, for example
for function calls. So, unless //c(Ri) = Ri for all constraints of an instruction
S, //c cannot be moved beyond S as it is. Still, it does not mean that we are
blocked. It is in fact possible to decompose //c into //c′ ◦ //cid where //cid is the
identity for all register constraints of S. Then, //c′ stays on its side of S while
//cid can be moved further.

7.2 Permutation Motion and Region Recoloring

To take liveness into account when moving reversible parallel copies, we propose
a solution based on permutations.

De�nition 5. A permutation is a one-to-one mapping from the whole set of
registers to the whole set of registers.

As seen previously, moving a reversible parallel copy should be done carefully
because of liveness. A permutation is a transfer function that does not have to
cope with liveness, as it concerns all registers. Because of that, it is much easier
to move. The idea here is to extend a reversible parallel copy into a permutation
(we call this operation expansion), then to move the permutation, and �nally
to transform the permutation back to a reversible parallel copy (we call this
operation projection).

7.2.1 Reversible Parallel Copies & Permutations

A permutation π at a program point has the e�ect of moving each register Ri into
π(Ri). However, only live registers need to be considered as other registers con-
tain useless values. We can then de�ne a (reversible) parallel copy Project(π),
the projection of π, as the restriction of π to the live registers. In other
words, Project(π) is a one-to-one mapping from live_in(π) to live_out(π) =
π(live_in(π)), and such that, for all Ri ∈ live_in(π), Project(π)(Ri) = π(Ri).
In the graph representation, all edges leaving registers that do not contain any
live-in value of the permutation can be safely removed. All remaining edges
move data of a live variable and hence must remain in the projected permu-
tation. For convenience if live is the live-in set (resp. live-out set) of π, the
projection of π is denoted as Projectin(π, live) (resp. Projectout(π, live)). Of
course Projectin(π, live) = Projectout(π, π(live)). The projection mechanism
is illustrated in Figure 7.2c. Projected before statement S1, the permutation
π : (R2, R3, R1, R4) ← (R1, R2, R3, R4) must match its live-in set {R3, R4}:
Projectin(π, {R3, R4}) is (R1, R4)← (R3, R4).

Expanding a reversible parallel copy amounts to �nd a permutation whose
projection is the initial reversible parallel copy. First, the live_in set must
be augmented to be the whole set of registers. Second, since a permutation
contains only cycles, the chains of the reversible parallel copy must be closed to

141

Algorithm 12 Expands given parallel copy into a permutation. The permuta-
tion is available as the result of this function.
1: function Expand(Parallel copy //c)
2: π ← //c // Make π a copy of //c.

3: for Ri ∈ Registers do
4: if π−1(Ri) = ⊥ then
5: current ← Ri

6: while π(current) 6= ⊥ do
7: current ← π(current)

8: π(current)← Ri // Close the chain to form a cycle

9: return π

form simple cycles. There are more than one way to expand a parallel copy. A
possibility is to proceed as in the pseudo-code in Algorithm 12.

For every register that still has no predecessor (Line 4), i.e., every beginning
of a chain, the loop Line 6 �nds the register at the end of the chain. It then
connects this register to the �rst one so as to form a cycle. Free registers are
made cycles of length one (self-loop) by this process. This way, π is the identity
for as many registers as possible. Another possibility is to turn all chains into
a unique cycle so that it can be �sequentialized� [13] with a minimum number
of swaps. Note that the algorithm in [13] can be used to sequentialize any
reversible parallel copy using the minimum number of copies.

7.2.2 Region Recoloring

We can de�ne the permutation motion mechanism in a more formal way: for
any program region, it is possible to add a permutation π at every entry point
of the region, to add its inverse π−1 at every exit point of the region, and to
reassign every operand in the region according to π: textually replace in the
region each occurrence of Ri by π(Ri). However, there are still limitations
to this, as for the motion of parallel copies in a basic block described earlier:
some instructions have register naming constraints, e.g., arguments of a call,
that cannot be recolored. So, unless π(Ri) = Ri for all such constraints, these
instructions cannot be part of such a region.

We call this alternative view of permutation motion region recoloring, since
the variables of the regions get reassigned to di�erent registers. Using this
formalism, it is easy to understand how to move a permutation in a basic block,
and more generally how the whole parallel copy motion works. On Figure 7.3,
the reversible parallel copy //c will be moved up into basic block Bs by recoloring
the gray region with an expansion π of //c: on the right edge, the composition
of Project(π) followed by //c simpli�es to the identity.

Let us illustrates the process on the example of Figure 7.2 with 4 registers R1

to R4 and the same region recoloring as in Figure 7.3. A possible expansion of
the reversible parallel copy (R2, R3)← (R1, R2) is to extend it with π(R3, R4) =
(R1, R4), i.e., π : (R2, R3, R1, R4) ← (R1, R2, R3, R4). The projection of π
at the top of Bs is (R1, R4) ← (R3, R4) as the initial live-in of the region
{R3, R4} must match the live-in of the reversible parallel copy. The projection
of π−1 on B′

d is (R2, R3, R4)← (R3, R1, R4) as the initial live-out of the region

142

proj(π−1)

proj(π−1)

proj(π)

π(code)Bs

Bd

//c

Figure 7.3: Region recoloring, starting with //c on the critical edge.

{R2, R3, R4} must match the live-out of the reversible parallel copy. Within the
region, R1 is replaced by π(R1) = R2, R2 is replaced by π(R2) = R3, there is
no occurrence of R3, and R4 is unchanged.

To conclude, while trying to move directly reversible parallel copies seems
awkward and mind twisting, the detour through permutation motion and region
recoloring shows that parallel copy motion is, in fact, not a di�cult task to
perform. The last task is then to sequentialize the parallel copies using actual
instructions of the target architecture. This is a standard operation, see for
example [13]. The only critical case is when the parallel copy permutes all
registers, in which case a swap mechanism is needed.

7.3 Applications

We now detail some applications of parallel copy motion.

7.3.1 Removing Parallel Copies from Critical Edges

The problem with parallel copies on edges is that there is no basic block there.
So, in order to actually add code, such an edge must be split and a new basic
block must be created to hold the instructions. However, as mentioned in the
beginning of the Chapter, there is a folk assumption that splitting edges is a
bad idea. The main reasons are both performance reasons (possible additional
jump instruction, prevents the use of hardware loops, interaction with basic
block scheduling) and functional reasons (compilers may forbid some edges to
be split).

We now show how to optimize the removal of parallel copies out of control
�ow edges. Section 7.3.1.1 gives a heuristic based on a local cost to decide if an
edge should be split or if the parallel copy it contains should be moved. A simple
propagation mechanism along critical edges is proposed. This mechanism can
fail if parallel copies are moved out of an unsplittable edge whose neighboring
edges are also unsplittable. This case is addressed in Section 7.3.1.2.

7.3.1.1 A local heuristic

The input of the heuristic is a control �ow graph (CFG) with a reversible parallel
copy, possibly the identity, on each control �ow edge and at the top and bottom
of each basic block. The principle of the heuristic is to deal �rst with edges
that cannot be split, and then to deal with the others in decreasing order of

143

frequency.1 For each edge in a sorted worklist (initialized with all edges with
a parallel copy di�erent than the identity), the heuristic evaluates the impact
of parallel copy motion (moving it up, moving it down) by computing a local
gain (possibly negative) compared to the solution that keeps the parallel copy
on the edge, i.e., compared to edge splitting. Then, the heuristic selects the
best feasible solution, applies the modi�cations, and removes the edge from the
worklist. When the content of another edge is modi�ed (because the parallel
copy was moved and compensated as explained in Section 7.2), it is added
(if not already) in the worklist unless its new parallel copy (the initial copy
composed with the compensation) is the identity. The heuristic continues until
the worklist gets empty, i.e., it stops when no reversible parallel copy motion
leads to a positive gain. (The heuristic terminates as the cost of moves strictly
decreases at each step; another cheaper solution is to prevent compensation
on edges already examined.) Of course, staying on the edge is forbidden for
non-splittable edges. Likewise, a copy motion is not feasible if it produces a
parallel copy, di�erent than the identity, on a non-splittable edge. If no choice
is feasible, the heuristic fails. This case is discussed in Section 7.3.1.2.

To evaluate the gain, the heuristic should simulate the motion and the com-
pensation on neighboring edges using a performance model. To illustrate the
heuristic, let us describe a toy model for a very-long instruction word (VLIW)
architecture with 4 issues:

• The cost of an instruction in a basic block B with frequency WB is ap-
proximated to înst = 1

4 ×WB .
• The cost of splitting an edge E depends on the linearization of the basic
blocks in memory. Inserting some code between two basic blocks placed
consecutively in memory can be done for free. However, if the edge cor-
responds to an actual jump, a new basic block has to be created. The
initial jump should point to this new basic block, which itself ends up
with an unconditional jump to the target of E. In this case, if E has
frequency WE , the cost of splitting is the cost of a jump, înst, plus the
branch penalty WE , thus ŝplit = 5

4 ×WE .
• The number of instructions (copy or swap), ‖//c‖, necessary to sequential-
ize a parallel copy //c as described in [13].

• We slightly favor the placement of copies in blocks (as they can be sched-
uled with other instructions), with /̂/c = ‖//c‖

4 × WB , than on edges, in

which case we let /̂/c =
⌈
‖//c‖
4

⌉
×WE .

Of course this model is far from being perfect, but the e�ect of further opti-
mizations (e.g., post-pass scheduler), in addition to the approximation made on
edge frequency, makes it di�cult to model more precisely. What we need is just
a model to drive the heuristic in the right direction. Consider as an example
the code of Figure 7.5(a). If we leave the parallel copy in place, the local cost
will be evaluated as

⌈
1
4

⌉
×W(AB,B)+

5
4 ×W(AB,B). If we move it down, the cost

will be evaluated as 1
4 ×WB +

⌈
1
4

⌉
×W(BC,B) +

5
4 ×W(BC,B). If we move it up,

the cost will be evaluated as 2
4 ×WAB +

⌈
1
4

⌉
×W(AB,A)+

5
4 ×W(AB,A). Suppose

that moving it down leads to a positive gain. At this point, there should be

1This frequency can be obtained with any frequency-estimation algorithm or by simple
static considerations on the nesting of loops.

144

R4 ← . . .

R1 ← . . .

R3 ← . . .

. . .← R1

. . .← R3

. . .← R1

. . .← R3

R1

R2

R3

R4

R1

R2

R3

R4

(a)

R4 ← . . .

R1 ← . . .

R3 ← . . .

. . .← R1

. . .← R3

. . .← R1

. . .← R3

R1

R2

R3

R4

(b)

R3 ← . . .

R1 ← . . .

R3 ← . . .

. . .← R1

. . .← R3

. . .← R1

. . .← R3

R1 R2

(c)

R4 ← . . .

R2 ← . . .

R4 ← . . .

. . .← R2

. . .← R4

. . .← R2

. . .← R4

(d)

Figure 7.4: Local heuristic and motion in basic blocks. (a) Initial code, 4 moves;
(b) Local heuristic, 2 moves; (c) Local heuristic followed by parallel copy motion
in basic block, 1 move; (d) All together, no move.

(R2)← (R1) on the edge (BC,B) and (R1)← (R2) at the beginning of basic
block B. The content of (BC,B) is modi�ed with a non-trivial parallel copy, so
(BC,B) is added to the worklist.

The heuristic itself is not local, as copies can move, progressively, further
than to neighboring edges. But the decision to move down, to move it up, or to
split the edge, is made by a local computation of gain. Algorithm 13 describes
this in pseudo-code.

Figure 7.4b illustrates its principles, assuming that R2 and R4 are not live
beyond the control-�ow edges. Here, the local heuristic considers the parallel
copy on the critical edge �rst and computes the cost of leaving it on the edge. It
then computes the cost of moving it down. This would produce a compensation
on the right edge with two copies and two other copies in the destination basic
block. It �nally computes the cost of moving the parallel copy up. This would
produce a compensation on the left edge, which, composed with the parallel copy
already in place, gives the identity, plus two copies in the source basic block.
The best local choice is the latter, moving the parallel copy up, as depicted in
Figure 7.4b.

7.3.1.2 Parallel Copy Motion Might Be Stuck

Suppose that, in Figure 7.5(a), the edges AB → A, AB → B, and BC → B
are marked as unsplittable. If the �rst considered edge is the bold edge (from
AB to B), the heuristic fails as it cannot split the edge and it cannot move the
copy up (resp. down), as a compensation would be needed on the unsplittable
edge AB → A (resp. BC → B). In such a case, a recursive heuristic that
tries to move the compensation further is necessary. For example, the reversible
parallel copy can be moved down on B; its compensation on BC → A, can then
be moved up on BC; the compensation of this motion on BC → C can be moved

145

Algorithm 13 Evalutes the gain of moving in the given direction the reversible
parallel copy carried by the given edge if possible. Performs the changes implied
by the considered moves if simulate �ag equals false. Returns whether the
given direction is a valid move and the gain of such a move.
1: function Local-Heuristic(Edge e, Direction direction, Boolean

simulate)
2: //c← e.//c
3: gain ← 0
4: π ← Expand(//c)
5: if simulate = true then
6: save current state
7: // Move parallel copy in the related basic block

8: if direction =↑ then
9: edges ← Bs.leaveEdges // edges with compensation

10: gain ← Bs.//cbottom.cost // initial cost at end of block

11: // Move the parallel copy up

12: //c← Projectin (π,Bs.liveOutSet)
13: Bs.//cbottom ← //c ◦Bs.//cbottom // compose to get new copy

14: gain ← gain −Bs.//cbottom.cost // subtract new cost

15: else if direction =↓ then
16: edges ← Bd.enterEdges // edges with compensation

17: gain ← Bd.//ctop.cost // initial cost at start of block

18: // Move the parallel copy down

19: //c← Projectout(π,Bd.liveInSet)
20: Bd.//ctop ← Bd.//ctop ◦ //c // compose to get new copy

21: gain ← gain −Bd.//ctop.cost // subtract new cost

22: else
23: // We want to split e

24: if simulate = false and e.isSpittable then e.split = true

25: return e.isSpittable, gain
26: for ei ∈ edges do
27: gain ← gain + ei.//c.cost // initial cost on ei
28: // Apply compensation on the edge.

29: if direction =↑ then
30: // Compensation's liveout must match the livein of ei.//c

31: //c
tmp
← Projectout(π

−1, ei.//c.liveInSet)
32: ei.//c← ei.//c ◦ //ctmp

// compose to get new copy

33: else
34: // Compensation's livein must match the liveout of ei.//c

35: //c
tmp
← Projectin(π

−1, ei.//c.liveOutSet)
36: ei.//c← //c

tmp
◦ ei.//c // compose to get new copy

gain ← gain − ei.//c.cost // subtract new cost

37: if simulate = true then
38: restore current state
39: return true, gain

146

a ← . . .

c ← . . .

{a〈R1〉, c〈R2〉}

A
C a ← . . .

b ← . . .

{a〈R1〉, b〈R2〉}

A
B b ← . . .

c ← . . .

{b〈R1〉, c〈R2〉}

B
C

{a〈R1〉}
. . . ← aA

{b〈R1〉}
. . . ← bB

{c〈R2〉}
. . . ← cC

R1 R2

(a)

(a′, c′)← (R1, R2) (a′, b′)← (R1, R2) (b′, c′) ← (R1, R2)

R1 ← a′ R1 ← b′ R2 ← c′

(b)

Figure 7.5: Complex multiplexing region. (a) The local heuristic can be stuck;
(b) an ultimate solution involves Chaitin-like graph coloring.

down on C, and so on until a splittable edge is reached. Even though, in the
extreme case where all edges of the �gure are unsplittable, such a propagation
process will loop and will not manage to eliminate the parallel copy.

When the parallel copy motion is stuck, the ultimate solution is to consider
the whole region (that we call multiplexing region) formed by the maximal set of
connected edges and to view the problem as a standard (NP-complete in general)
graph coloring problem. This situation is depicted in Figure 7.5(b). Live-ranges
are split at the frontier of the multiplexing region using parallel copies between
registers and variables (a′, b′, and c′). The interference graph is a 3-clique. If
available, 3 di�erent registers can be assigned to the 3 variables, otherwise, some
spilling is required. Here, whatever the number of available registers, the parallel
copy motion is stuck. We point out that, although theoretically possible, we
never encountered such a case requiring a global graph-coloring approach in all
our benchmarks: the local heuristic always succeeded.

7.3.2 Shrinking Parallel Copies in a Basic Block

As mentioned earlier, moving parallel copies out of control �ow edges is not the
best we can do. We can still use the parallel copy motion mechanism to move the
parallel copy further in the block, either up if it comes from an outgoing edge of
the block, or down if it comes from an incoming edge. In a fully-scheduled code,
one could look for an empty slot to hide the parallel copy. But even without
knowing the schedule, the parallel copy motion can be interesting. Indeed,
depending where the parallel copy is placed, the number of moves it implies
may vary as the parallel copy is projected on the live variables. For example,
the extreme situation is when no variables are live at some program point:
placing the parallel copy there means simply recoloring the whole region below
(if the copy is moved up), with no move: the parallel copy vanishes. Another

147

R3 ←
← R3

R1 ← R1, R2

← R1

← R2

(R3, R2)← (R2, R1)

R1 R2 R3

(a) Original code

R3 ←
← R3

(R3)← (R2)

R2 ← R1, R3

← R2

← R3

(R3, R2)← (R3, R2)

R1 R2 R3

π1

π2

(b) Region recoloring

Figure 7.6: Composition of several recoloring regions allows to change the con-
sidered permutation within an instruction. This is possible when the com-
position projects to identity within the instruction. In that example, π1 =
(R1, R2, R3) ← (R1, R3, R2) and π2 = (R1, R2, R3) ← (R3, R1, R2). Thus,
the projection of π−1

1 ◦ π2 at the joint point of the region equals the identity.
Likewise, π−1

2 ◦ //cid projects to identity at the end of the second region

side e�ect is that some remaining moves in the code (with no duplication) can
also be absorbed along the way.

The region recoloring mechanism can cover arbitrary contiguous region. In
particular, it can consider a region starting (resp. ending) between the de�ni-
tions and uses of an instruction. At those spots, the number of live variables
may be even smaller than regular program point. Indeed, if a recoloring region
starts (resp. ends) at one of these point, the last used (resp. de�ned) variables
are not considered in the recolored region. However, the parallel copy resulting
from the projection of the liveness at that point cannot be inserted here. This
is not a problem as recoloring region can be composed at will2. Thus, another
recoloring region can be used to move this parallel copy copy at a valid program
point. In this case, the composition of the projection of the recoloring region
just have to end up in the identity on the invalid point. This is illustrated by
Figure 7.6. In other words, this technique allows to apply di�erent permutations
to di�erent regions. The challenge is then to choose the best permutations and
the best regions.

Using this idea, we developed a heuristic for parallel copy motion within a
basic block. For that heuristic, we �xed the regions we considered. Algorithm 14
gives the pseudo-code for the motion up (direction ↑) from the bottom of a basic
block. The input of the heuristic is a basic block with a reversible parallel copy
on its top and on its bottom. These parallel copies may have been composed
with the local heuristic of Section 7.3.1.1. We proceed in two phases. First,
we simulate the motion of the parallel copy in the basic block and we record
where the parallel copy is the cheapest. In a second time, we do the motion
to the previously-selected position. For both the simulation and the motion,
we proceed instruction after instruction. For each program point (before an
instruction, inside an instruction between the use and the def operands, after
an instruction), we project and re-expand the permutation that we are moving

2In particular, they can overlap.

148

up. This has the e�ect of potentially shrinking the permutation. If we cannot
traverse an instruction due to coloring constraints, we stop the process (although
we could split the parallel copy, as explained in Section 7.1.3). Moving a parallel
copy down in a basic block is similar to the pseudo code of Algorithm 14. The
only subtlety is to mark the last uses, i.e., the uses of variables that are not
live-out of the instruction so as to update liveness during the traversal.

Algorithm 14 Evaluates the best position to project in the given basic
block the parallel copy at the end of that block. Applies the changes if
simulate is false. Given position indicates where to stop the motion if
simulate = false. Returns the minimum cost for that motion and the
related position.
1: function Motion-up-from-bottom((BasicBlock block , Boolean

simulate, Operation position))
2: minPosition ← block .bottom
3: minCost ← block .//cbottom.cost // Sequentilization cost

4: π ← block .//cbottom
5: Live← block .//cbottom.liveInSet
6: for op ∈ block 's operations in reverse order do
7: if simulate = false and current position = position then
8: exit loop
9: if π can traverse op then

10: for result in op's results do
11: live← live− result
12: if simulate = false then
13: substitute result by π(result)

14: π ←Expand(Projectin(π, live))
15: for arg in op's arguments do
16: live← live ∪ arg

17: if simulate = false then
18: substitute arg by π(arg)

19: if Projectin(π, live).cost < minCost then
20: minPosition ←before op

21: minCost ← Projectin(π, live).cost
22: else
23: exit loop // Happens only when simulating.

24: if simulate = false then
25: Sequentialize(position, Projectin(π, live))
26: // Reset block's parallel copy with the identity on live out set

27: block .//cbottom ← Id(block .liveOutSet)

28: return minCost ∗ block .frequency, minPosition

Figure 7.2c illustrates a motion in a basic block after the local heuristic.
One copy remains before the de�nitions of R2 and R3. Here, the parallel copy
motion is performed after the decision made to move copies out of edges. But,
we can integrate the possibility of moving parallel copies inside basic blocks in
the cost function given in Section 7.3.1.1. With no change to the local heuristic,
we can achieve better performance. For example, Figure 7.4d shows how the

149

new cost function modi�es the algorithm decision. Now the parallel copy on
the critical edge is moved down, which produces a compensation on the right
edge. The resulting parallel copies shrink to identity. The same happens for
the parallel copy on the left edge. In this example, all copies can be removed
thanks to parallel copy motion.

7.4 Experiments

We implemented parallel copy motion on top of the linear assembly optimizer
(LAO), a production compiler for a commercial target architecture from STMi-
croelectronics. For these experiments, we used the LAO code generator as a
static compiler for C code, connected to the code generator of the open source
version of the SGI Pro64 compiler [49] (OPEN64). Using aggressive optimiza-
tion level -O3, the OPEN64 compiler generates the code up to register allocation
, at which point the LAO performs register allocation and implements parallel
copy motion. The compilation is completed by the OPEN64, which does post-
allocation optimizations and emits executables. We did not make experiments
using JIT con�guration as this setting was not available to us.

Our target processor is a commercial media-processing embedded VLIW ar-
chitecture from the Lx [42] family of processors issuing up to 4 instructions per
cycle over 6 functional units consisting of 1 load-store unit, 1 branch unit, and 4
arithmetic units. We made our experimentation on the C subset of Spec2000 in-
teger benchmarks and benchmarks from STMicroelectronics (KERNELS). The
eon C++ benchmark is not included due to the limited support for C++ in
our code generator version. Also the crafty benchmark is excluded due to a
yet unsolved functional problem with our compiler con�guration. The KER-
NELS are a set of computation-intensive kernels like �t, jpeg, and quicksort
algorithms, supposed to be representative of embedded media applications as
found in �rmware code such as audio, video codecs, or image processing.

For this study, we compared the parallel copy motion algorithm against a
split-everywhere strategy for critical edges. Both are run after our tree-scan reg-
ister allocator, see Chapter 5, with biased coloring on φ-functions and moves.
We used Hack's heuristic [55] for the spilling phase. The performance of the
allocator with the split-everywhere strategy is comparable to an extended lin-
ear scan coloring heuristic [76]. The colored φ-functions nodes are left in the
program, which is thus in colored-SSA form, and the φ-functions are then inter-
preted as parallel copies on the edges before the parallel copy motion heuristics
are run. We evaluated the parallel copy motion heuristics under three modes:
motion on edges alone (mode edge motion), motion on edges followed by motion
inside basic blocks (mode block motion), and motion on edges where the motion
inside basic blocks is taken into account in the cost model (mode all). When
not speci�ed otherwise, edge motion is thus done without motion in blocks. The
split-everywhere strategy only splits critical edges when some move operation
remain. Other edges are not split as their parallel copies can always be moved,
with no compensation, to their source or destination basic block.

We show di�erent kind of results, based on the cost model with static or
pro�le-based basic block frequency estimations.

First, we give some �gures corresponding to the cost model used in the
heuristics so that we can verify its e�ciency out of the execution context. At

150

Benchmark #edges Benchmark #edges
164.gzip 0 175.vpr 0
176.gcc 16 181.mcf 0
197.parser 0 253.perlbmk 15
254.gap 3 255.vortex 2
256.bzip2 0 300.twolf 0

Table 7.1: Number of non-splittable edges with moves, hence not solvable with-
out parallel copy motion out of edges.

the end of the compilation process, we measured the number and weight of
moves, split edges, branches, etc., using the basic block frequency estimations
as provided by the compiler. The weight of moves is the number of moves
times the basic block frequency. For basic blocks introduced by edge splitting,
we also account for the branch instructions, because they are a consequence of
the materialization of the moves. Except, of course, when the split edge does
not generate a branch (we call such edges false critical edges). The frequency
estimations come from static heuristics derived from [5] for the KERNELS and
from edge pro�ling for Spec2000.

Second, we give the actual performance by comparing the cycle counts of
benchmarks runs. As for the model �gures introduced above, the performance
measurements were run without pro�ling feedback on the KERNELS bench-
marks and with pro�ling feedback on the Spec2000 benchmarks. For the latter,
the performance were measured on the same data set as for the pro�ling feedback
run as we want to illustrate the potential of the parallel copy motion technique
on an accurate cost model.

7.4.1 The Impact of Copy Motion Out of Edges

7.4.1.1 Non-Splittable Edges

We found 36 critical non-splittable edges with implicit moves after SSA-based
register allocation in Spec2000 as reported in Table 7.1. They come from 4 dif-
ferent applications: gcc, perlbmk, gap, and vortex. Given the coloring produced
by the register allocator, the compilation of these 4 applications could not be
completed without parallel copy motion. With edge motion, we were able to
move all parallel copies out of these �abnormal� edges. Thus, this fairly simple
strategy is su�cient to complete the compilation. In particular, this means that
multiplexing region with non-splittable edges (such as in Figure 7.5) do not
occur, at least in these benchmarks. The KERNELS do not exhibit such edges.

7.4.1.2 Number of Split Edges

We computed how many splits of critical edges were avoided by using the heuris-
tics based on our cost model, i.e., for which it was preferable to move the parallel
copies, according to the model. This shows, as one may expect, that the best in-
sertion point for copies is not always on the edge. Table 7.2 presents the number
and weight of critical edges that still carry moves at the end of the compilation
process, and hence must be split, normalized to a strategy that always chooses
to split. This table shows that, on the average, roughly half of the edges (0.48)
are still split with edge motion. But in terms of weight, split edges are almost

151

Benchmark Split everywhere Edge motion
Number Weighted Number Weighted

164.gzip 1 1 0.52 0.00
175.vpr 1 1 0.45 0.03
176.gcc 1 1 0.33 0.03
181.mcf 1 1 0.36 0.00
197.parser 1 1 0.4 0.00
253.perlbmk 1 1 0.69 0.02
254.gap 1 1 0.41 0.02
255.vortex 1 1 0.73 0.00
256.bzip2 1 1 0.48 0.02
300.twolf 1 1 0.56 0.01
G.Mean (10) 1 1 0.48 0.004

Table 7.2: Number of critical edges split after parallel copy motion, normalized
to a split everywhere strategy.

Benchmark Edge motion All
w/o bl motion w/ bl motion

164.gzip +1% +1% +2%
175.vpr +1% +1% +1%
181.mcf +2% +3% +4%
197.parser +3% +4% +4%
256.bzip2 +2% +5% +5%
300.twolf 0% 0% 0%
G.Mean (6) +1% +3% +3%

Table 7.3: Execution speedup of the parallel copy motion heuristics compared
to a split-everywhere strategy for the Spec2000 subset, obtained with pro�ling
feedback activated. (Bigger is better)

never executed (0.004). This is because our model accounts for the additional
branch inserted and for the low resource usage on multiple-issues architectures
when an edge is split. In particular, it re�ects the fact that a small sequence of
operations, as generated by parallel copies, is more costly in a dedicated basic
block than on a basic block where it may be scheduled with other operations.

7.4.1.3 Performance Impact

We evaluated the performance improvements of our method, for the insertion of
parallel copies, when compiling at an aggressive optimization level in our static
compiler tool-chain. The evaluation was done on the two sets of benchmarks
previously presented, except for the four Spec2000 benchmarks that cannot be
compiled with the split-everywhere strategy, due to non-splittable edges. For
the Spec2000, the simple local heuristic edge motion leads to an average speedup
of 1% with no loss (see Table 7.3, column edge motion w/o block motion). Three
benchmarks (mfc, parser and bzip2) are improved by up to 2% with this simple
heuristic. These performance results con�rm that a split-everywhere strategy
not only fails in the case of non-splittable edges, but is also ine�cient compared
to an heuristic based on a cost model to decide if edge splitting is pro�table.

152

Looking at the KERNELS, we also got an average speedup of 2% and no loss (see
Table 7.4, column edge motion w/o block motion). Over the 50 benchmarks,
26 are actually improved. Over these 26 benchmarks, 9 show a performance
speedup of at least 5%. Note that for these tests, we do not use pro�ling-
feedback information, thus even with frequencies estimation, we achieved good
results, at least on computation-intensive benchmarks.

7.4.2 The Impact of Copy Motion in Basic Blocks

7.4.2.1 Weight of Moves

In order to evaluate the impact of parallel copy motion inside basic blocks, we
compared the weight of move operations with edge motion and with edge motion
followed by the heuristic for motion in basic blocks (block motion). Table 7.5
gives the results of these experiments on Spec2000. On average, edge motion
followed by block motion divided the weight of move operations against edge
motion by a factor 1.16 (0.86/0.74) and we observed no loss. For the bzip2
benchmark, it reduces this weight by a factor of 1.81. To be noted in the second
column of the table, when compared to the split-everywhere heuristic where
moves are inserted on critical edges, the weight of moves is always reduced
by any of the copy motion heuristic. For the KERNELS, block motion has
nearly no e�ects when we run the same experiment. At the basic block scope,
there are fewer opportunities for reduction of the size of parallel copies in these
benchmarks compared to Spec2000. Indeed, we observed that the length of the
basic blocks is generally smaller in these benchmarks and that there are fewer
call sites (a call site puts additional constraints on coloring and thus favors
parallel copy motion).

7.4.2.2 Performance Impact

Finally, we measured the performance impact of motion in basic blocks in ad-
dition to the weight reduction of move operations. Table 7.3 (the two columns
edge motion w/o and with block motion) shows the comparison in cycles on
Spec2000 between the motion out of edges and the same heuristic followed by
the motion in blocks. We see that this heuristic brings, on the average, an
improvement of 2% of performance compared to edge motion. If we compare
these results with the split-everywhere strategy, we get an average speedup of
3%, with an improvement of 5% on bzip2 and 4% on parser. Again, we observed
no performance loss. Considering the KERNELS, the results are quite similar
to edge motion. To be noted, we got a regression of 3% on the lsearch kernel,
compared to edge motion alone. This regression is the result of a bad inter-
action between the motion in blocks and the compiler post-scheduling phase.
This is a limitation of the cost model that does not account for the availability
of resource slots. Thus, while in most cases the cost model is e�cient, it may
actually augment the schedule length, even when reducing the number of copies,
due to a lack of resource at the point of insertion. Figure 7.7 shows such a case.
The same observation applies for the euclid kernel. We also observed that edge
motion alone reduces the weight of moves even if it was not our original moti-
vation. This is because it removes a lot of edge splitting and thus the related
branch penalty, which is counted in this weight.

153

Benchmark Edge motion All
w/o bl motion w/ bl motion

BDTI.bk�r +3% +3% +3%
BDTI.control 0% 0% +3%
BDTI.ss�r +3% +3% +3%
BDTI.vecprod +5% +5% +5%
BDTI.vecsum +6% +6% +6%
BDTI.viterbi +3% +3% +3%
ITI.bitaccess +2% +2% +2%
ITI.ctrlstruct +2% +2% +2%
ITI.logop +1% +1% +1%
ITI.recursive +1% +1% +1%
KERN.bitonic 0% 0% +7%
KERN.copya +9% +9% +9%
KERN.dotprod +6% +6% +6%
KERN.euclid +5% +4% +3%
KERN.�r8 +1% +1% +1%
KERN.�rcirc +1% +1% +1%
KERN.latanal +2% +2% +3%
KERN.lsearch +6% +3% +3%
KERN.max +7% +7% +7%
KERN.maxindex +2% +2% +2%
KERN.mergesort +2% +2% +3%
KERN.quicksort +4% +4% +7%
KERN.strtrim +17% +17% +17%
KERN.strwc +23% +23% +23%
KERN.vadd +4% +4% +4%
MUL.�r_int +1% +1% +1%
MUL.jpeg +1% +1% +1%
MUL.ucbqsort +1% +1% +2%
STFD.stanford 0% 0% +1%
(. . . plus 21 unchanged. . .)
G.Mean (50) +2% +2% +3%

Table 7.4: Benchmark execution speedup of the parallel copy motion heuris-
tics compared to a split-everywhere heuristic for the KERNELS suite, obtained
without pro�ling feedback. (Bigger is better)

154

Benchmark Split Edge motion All
w/o bl motion w/ bl motion

164.gzip 1 1 1 0.97
175.vpr 1 0.98 0.94 0.93
176.gcc 1 0.59 0.44 0.4
181.mcf 1 0.96 0.95 0.87
197.parser 1 0.59 0.47 0.45
253.perlbmk 1 0.96 0.9 0.85
254.gap 1 0.85 0.75 0.71
255.vortex 1 0.98 0.94 0.93
256.bzip2 1 0.94 0.52 0.52
300.twolf 1 0.93 0.84 0.82
G.Mean (10) 1 0.86 0.74 0.71

Table 7.5: Weighted moves normalized to a split everywhere strategy. (Lower
is better)

R1 ← R3, . . .
b1 ← cmp R1, R2

(R1, R2, R3)← (R2, R3, R1)
← jump b1

(a) Before block motion: schedule
length, 3 cycles

(R1, R2)← (R2, R3)
R3 ← R2, . . .
b1 ← cmp R3, R1

← jump b1

(b) After block motion: schedule
length, 4 cycles

Figure 7.7: Even if block motion heuristic reduces the number of inserted moves,
it may degrade the runtime performances. Horizontal bars are the frontiers of
the bundles. Each bundle is proceeded in 1 cycle. Before block motion, (a), the
region has 3 moves, depicted by the parallel copy just in front of the jump, but
only 3 bundles. After block motion, (b), the region has only 2 moves, but they
cannot be scheduled with any existing bundles, increasing the schedule length.

7.4.3 All Together

To take advantage of the recoloring ability of motion inside basic blocks, we
mentioned in Section 7.3.2 that we can integrate, in the cost model of the local
heuristic, the optimized cost of placing a copy, not only at the bottom or top
of a block, but also inside it. The goal is to account for the e�ect of reducing
the number of generated copies before making a choice. The bene�t of this
improved heuristic was illustrated in Figure 7.4d compared to the two-steps
heuristic performing motion out of edge, then motion in block as shown in
Figure 7.4c. In this section, we present the actual improvements of this cost
model on the overall performance of the benchmarks.

Columns All in Table 7.3 and Table 7.4 report performances of respectively
the Spec2000 and the KERNELS benchmarks. We have, on the average, 3%
of improvements for both the benchmarks suites, with no loss compared to
splitting the edges for inserting copies. We improve the performance of 5 over
6 benchmarks for Spec2000 and of 29 over 50 benchmarks for the KERNELS.
We have 9 benchmarks with more than 5% of improvement in the KERNELS.
In particular, 6 of these benchmarks are over 7% of improvement with greatest
improvements for strtrim (17%) and strwc (23%).

155

7.5 Conclusion

We introduced a new technique that we called parallel copy motion, which can be
seen as a formalized tool for moving copies around in a control �ow graph after
register allocation has been performed. The goal is to reduce the global cost that
copies induce directly (additional instructions) or indirectly (edge splitting).

While our initial motivation was the motion of copies out of critical edges,
this tool has been extended to handle recoloring arbitrary control �ow regions
containing operations with register constraints. Thanks to the expansion of
parallel copies into permutation of colors, the simple and sound theory on per-
mutation motion, and the simple constraints on region boundaries, it is now
easy to formalize the parallel copy motion problem, including a cost model and
a freedom of motion with di�erent granularities: operation, basic block, and up
to a complete region.

There are several possible applications to this technique. So far, we applied
it to the problem of destruction of colored SSA, as provided by a decoupled reg-
ister allocation algorithm over SSA. For this problem, we used the parallel copy
motion technique to move copies introduced by φ-functions away from critical
edges, when it is pro�table, or simply when the edge cannot be split, as it is
the case for some edges present in compiler code generators for C and C++.
We have indicated that the permutation motion can be stuck in the presence of
multiplexing regions, where all critical edges are non-splittable. In this case, we
propose to use classical graph coloring techniques to recolor the multiplexing
regions, possibly requiring additional spills. Nevertheless, in practice, the com-
piler hardly generates such regions (none showed up in our experiments), thus
it does not appear to be an issue for performance.

In the context of this colored SSA destruction problem, and for the VLIW
architecture for which we are compiling, we obtained performance improvements
of 3% on average, for both the C integer subset of Spec2000 and our own bench-
marks, compared to the edge-splitting approach generally used. More generally,
we have shown not only that critical edge splitting can be completely avoided
when necessary, but also that one can bene�t from having a cost model to drive
the edge splitting decision. In our context, we reduced the number of split
critical edges by a factor of two when using a cost model, which demonstrates
that edge splitting actually pays o� only half of the time on average. Moreover,
we got all these improvements with a very simple application of our model.
We think that the approach is promising and that we can perform even better.
In particular, we identi�ed several items that could complement the current
heuristic to achieve better performance: 1. a scheduling model, for instance to
take into account empty slots for VLIW architecture or memory latency, 2. the
possibility to decompose a permutation anywhere, for instance to go through
register constraints or to ful�ll empty slots of the scheduler, 3. the extension
of the permutation when the liveness is growing: What is the best strategy to
complete (expand) a parallel copy into a permutation?

We believe that discovering that parallel copies can be easily moved is a
major breakthrough for out-of-SSA translations. Up to now, it was in general
considered that placing copies on edges would require to split them, which is
not necessarily the best approach. For this reason, people tried to introduce
copies directly at the borders of basic blocks since the discovery of SSA, and
the �rst algorithms [37] up to the out-of-SSA translation of Sreedhar et al. [100]

156

and Boissinot et al. [13]. Recently, the idea of doing register allocation while
being still under SSA was developed. The goal is to use the nice properties
of SSA for a longer time. However, the drawback is that going out of SSA
introduces parallel copies on edges. A recoloring technique was proposed by
Hack and Goos [57] to coalesce the copies on these edges, but splitting edges
is still necessary whenever the coalescing fails. Last but not least, register
allocators used for JIT compilation, mostly variants of linear scans, perform
poor coalescing and could bene�t from a fast parallel copy motion post-phase.
As it is, our method can be applied in a JIT incrementally to improve coloring,
since it performs local coloring that can be safely stopped at any time. For
instance, one can start with most frequently executed edges and stop as soon
as a time limit is reached.

157

Chapter 8

Elimination of Parallel Copies

Using Copy Motion on Data

Dependence Graphs

Rise of decoupled register allocators has increased the pressure on the elimina-
tion of copies. Indeed, decoupled register allocation is possible at the price of
live-ranges splitting, thus more copy instructions. One possible form of live-
range splitting for such allocators is given by the static single assignment (SSA)
form.

Traditional copy elimination by coalescing using interference graphs (IGs)
generally performs well in this setting [3, 32, 26, 51, 81]. However, recent SSA-
based spilling and assignment heuristics [21, 22] avoid the costly construction
of IGs, to cope with a potential use in a just-in-time (JIT) compiler. It is thus
essential to develop new copy elimination techniques. One solution is to bias
the register assignment to heuristically assign the same register to copy-related
variables [28, 22]. Another possibility is to perform local recoloring [57] after
the assignment phase.

A common limitation of existing approaches to copy elimination is that the
ordering of the instructions in the program is not modi�ed. We present an
extension of the parallel copy motion technique, see Chapter 7, that operates
on data dependence graphs (DDGs) and eliminates copies by performing local
code motion. Our approach is based on parallel copies (see Section 2.1.1) that
originate from mismatching register assignments at split points. The parallel
copies are represented within a DDG, along with all other operations of a basic
block. We then perform upward and downward code motion of instructions
reading or de�ning a register of a parallel copy respectively. The goal is to
render this particular register dead before or after the parallel copy, i.e. the
register's value is no longer used. Once the register is dead, the parallel copy
becomes (partially) useless and can be split or even completely eliminated. The
goal is thus to eliminate as many copies in the dependence graph of each basic
block as possible. Not all code motions are permissible. It has to be ensured
that all data dependencies are preserved and no values are lost. In particular,
we have to ensure that no cyclic dependencies are introduced in the DDG, which
prevent an ordering of the instructions after copy elimination.

158

This chapter shows that the data dependence graph can be kept consistent
using rather simple and elegant transformation rules that split and eliminate
parallel copies until no further simpli�cation is possible or a prede�ned time
limit or threshold is reached.

The remainder of this chapter is organized as follows. We give some back-
ground on data dependence graphs in Section 8.1. Next, we will describe our
approach to copy elimination on data dependence graphs in Section 8.2. Sec-
tion 8.3 presents details on experiments conducted using the SPECINT 2000
benchmark suite. Related work is presented in Section 8.4 before concluding in
Section 8.5.

8.1 Data Dependence Graphs

The presented algorithms operate on data dependence graphs to eliminate copies.
We thus give a brief de�nition:

De�nition 6. A data dependence graph (DDG) is an acyclic graph G =
(V,E, L), where nodes n in V represent instructions and labeled edges (u, v, l) in
E ⊆ V × V × L dependencies among instructions. We distinguish four kinds of
labels in L: (1) true register dependencies ←−r , (2) register output dependencies
←→r , (3) register anti dependencies −→r , where r is a register name, and, �nally,
(4) other dependencies ⊤.

The de�nition above follows the standard conventions for dependence graphs
in instruction scheduling [101, Ch. 19] and the notion of dependencies used in
computer architecture design [82, Ch. 3]. However, we focus on register de-
pendencies only. A true register dependence (also known as, read-after-write
dependence) appears in a program whenever one instruction writes to a register
and another instruction subsequently reads from the very same register (without
any other de�nition in between). When reordering the instructions of the pro-
gram, the former instruction always has to appear before the latter in order to
preserve the original data �ow. These dependencies thus cannot be eliminated.
An output register dependence (aka. write-after-write dependence) arises when-
ever two instructions subsequently write to the same register. Finally, an anti
register dependence (aka. write-after-read dependence) arises when on instruc-
tion reads a register and a subsequent instruction writes to that register. In
contrast to true dependencies, output and anti dependencies stem from name
con�icts, i.e., the same register is reused to hold the result of otherwise inde-
pendent computations. These dependencies can sometimes be eliminated by
register renaming [82, Ch. 3]. Other forms of dependencies, such as memory de-
pendencies between memory access instructions or control dependencies arising
from branch and jump instructions, are not further distinguished, as this is not
necessary for our purposes.

Data dependence graphs are best represented using a graphical notation as
depicted by Figure 8.1, showing a linear code fragment and its DDG. Through-
out this chapter we follow the convention that true dependencies are represented
by an arrow with a �lled triangle tip (), output dependencies by an arrow with
two overlapping triangles (), and anti dependencies by an arrow with a dia-
mond tip (). Other dependencies are represented by an open triangle ().

159

1: mov r15 = r8;

2: ldw r8 = 44[r9];

3: add r8 = r8, r15;

4: stw 44[r9] = r15;

(a) Linear Assembly Code

n1

n2

n3

n4

r
1
5

r
1
5

r
8

r
8

r
8

⊤

(b) Data Dependence Graph

Figure 8.1: Assembly code (a) and the corresponding data dependence
graph (b).

8.1.1 Parallel Copies

We rely on the notion of parallel copies to represent, for every split point in
the program where live-ranges have been split, the set of mismatching register
assignments after register allocation and a set of atomic copy operations to �x-
up those mismatches. Under SSA form, for instance, split points are explicitly
represented by φ-functions. Parallel copies arise where the register allocator
was not able to assign the same register to some of the φ-functions source and
destination operands [58].

At this stage of the compilation, a Parallel Copy is a set of register-to-
register copies. The most general case of parallel copy is represented by graphs
where the nodes have an in-degree of at most 1, i.e., each register is de�ned at
most once. This form of parallel copies allows the duplication of register values.
However, for the remainder of this work, we consider regular or cyclic copies
only, see Section 2.1.1, more complex graphs are assumed to be decomposed
beforehand [74, 13][15, Ch. 7.3]. The algorithms presented in the following are,
in principle, applicable to more general graph structures under minor modi�ca-
tions.

When parallel copies are represented in a DDG, we implicitly assume a
set of individual register-to-register copies that are merged into a single node.
The dependencies between those moves and other instructions in the DDG are
directed to the merged node accordingly. Representing parallel copies as a single
node has the advantage that the resulting DDG is free of cycles, which would
arise in the case of cyclic copies.1 Figure 8.2 shows the two ways of representing
a parallel copy in a DDG: once using explicit moves and once using a merged
copy node. Note that all dependencies are re�ected equally in both versions. in
particular, the anti-dependencies among the individual copies are captured by
the copy chain r1→ r2→ r3→ r4 within the parallel copy node.

1Cyclic parallel copies could also be represented as a sequence of swap instructions. This
would avoid the cycles in the DDG, but would complicate the copy elimination presented later.

160

r4=r3

r3=r2

r2=r1

r3=

r2=

r1=

=r4

r3

r2

r
3

r
2

r
1

r
3

r
2

r
4

(a) DDG with a set of copy nodes

r1→ r2→ r3→ r4

r3=r2=r1=

=r4

r
1 r

2

r
3

r
3

r
2

r
4

(b) DDG with a merged parallel copy node

Figure 8.2: A parallel copy r1→ r2→ r3→ r4 represented as a set of register-
to-register copies (a) and as a single parallel copy (b) in a DDG.

8.1.2 Parallel Copy Motion

Our approach is an extension of the Parallel Copy Motion technique presented
in Chapter 7. In contrast to what the name suggests, parallel copy motion oper-
ates on register permutations covering all registers of the processor. The parallel
copies are thus turned into permutations before the algorithm starts. The prob-
lem is then to �nd a good placement of these permutations within the program
to minimize (1) the number of copies arising from projecting those permuta-
tions on the live registers at their �nal position and (2) the execution frequency
of those copies, where the frequencies are either based on static estimates or
pro�ling feedback.

Their algorithm proceeds by �rst treating permutations on critical edges
within the control �ow graph. This Edge Motion phase tries to use permutations
on neighboring critical edges to cancel each other out and reduce the execution
frequency of the resulting permutations. At the end, all permutations are either
assigned to a basic block or otherwise the respective critical edge is split by
forming a new basic block, the copy is then assigned to this block.

Next, during the Block Motion phase, the permutations are placed within
basic blocks. The algorithm again tries to combine permutations to cancel each
other out. The permutations are then placed within their basic blocks such that
the number of copies, induced by projecting them to the set of live registers, is
minimized using liveness information.

Basically, we reuse the Edge Motion phase without modi�cation and replace
the Block Motion phase by a more powerful technique based on data dependence
graphs as explained in the next section.

8.2 Copy Elimination on Data Dependence Graphs

It is easy to see that it is possible to (partially) eliminate parallel copies by
transforming the DDG and renaming register operands. We will present two
di�erent transformations that implicitly reorder the instructions of a basic block
in order to eliminate parallel copies. The main idea is to move instructions

161

within the DDG upward or downward past the parallel copy, while at the same
time renaming register operands. The involved parallel copy is split into smaller
pieces as a side-e�ect of these transformations. This eliminates useless copies.
In addition, it might enable other copy eliminations and break cyclic parallel
copies, which usually have to be implemented using more costly swap operations.

The goal of these transformations is to eliminate as many copies within the
DDG of each basic block as possible. The proposed transformations are thus
repeatedly applied until no further simpli�cations of the DDG are possible, or
a prede�ned time limit or threshold has been reached. Note that, since our
algorithms operate on the DDGs of individual basic blocks, all copy operations
incur equivalent runtime and code size costs, i.e., once a basic block is executed
all the copy operations within that block are equally executed. Ignoring phase
ordering issues, for instance with instruction scheduling, it is thus su�cient to
reason only about the number of copies eliminated by the algorithms presented
later on.

r1→ r2→→→r3→ r4

r3=r2=r2=r2=r1=

=r4=r3

r
1 r

2
r
2
r
2

r
3

r
3

r
2

r
4

r
3

(a) Original DDG

r3→ r4

=r4

r3=

r3=r3=r3=r1=

=r3r1→ r2

r
1

r
3

r
4

r
3 r3r3

r3r3r3

r3r3r3

(b) Transformed DDG

r2r2r2 ===
r1 = . . .
r3 = . . .
r1 → r2→→→ r3 → r4

. . . = r4

. . . = r3

(c) Original Code

r1 = . . .
r3 = . . .
r1 → r2

r3 → r4

r3r3r3 ===
. . . = r4

. . . = r3

(d) Transformed Code

Figure 8.3: A DDG before (a) and after (b) performing a downward motion of
the de�nition of register r2.

162

8.2.1 Downward Motion of De�nitions

The �rst form of transformation is to perform a downward motion of a de�ni-
tion of a register that is used by a parallel copy, i.e., the DDG contains a true
dependence between the de�nition and the copy. It is then possible to move the
de�nition down past the parallel copy while replacing the original register of the
de�nition with the corresponding destination register of the parallel copy. The
argument of the parallel copy becomes dead as a side-e�ect of this transforma-
tion, since the de�nition previously supplying the value now follows the parallel
copy in any valid linear ordering of the DDG. The respective register-to-register
copy thus becomes useless and can be eliminated, i.e., the parallel copy is split
into two pieces. Due to the register renaming and splitting of the parallel copy,
the DDG might need some additional updates in order to ensure correctness.

A more formal algorithm will be presented below, but we will �rst give a short
example. Consider the original DDG from Figure 8.3a. The value calculated for
register r2, the DDG node representing the de�nition is highlighted in bold, is
immediately copied to register r3, without any other instruction touching the
value. This copy operation can be avoided by register renaming and a minor
update of the DDG. Figure 8.3b shows the �nal DDG after performing this
transformation. Due to the renaming, some additional dependencies have to be
added to the DDG as highlighted by bold lines. It is important to note that
these dependencies can be easily derived from the dependencies of the original
DDG node of the parallel copy. We also see that the copy has been split into two
smaller pieces r1 → r2 and r3 → r4, while the copy r2 → r3 was eliminated.
This splitting is particularly interesting to break cyclic parallel copies because
register swaps can be avoided.

8.2.1.1 Handling Regular Parallel Copies

Algorithm 15 Perform downward motion of a de�nition.
1: procedure DefMotionDown(DDG G = (V,E), DDGNode def,

Register r, DDGNode copy)
2: // Ensure that no other uses exist besides copy

3: uses← {e | e = (def, u,←−r) ∈ E, u ∈ V }
4: if uses 6= {(def, copy,←−r)} then
5: return
6: // Check dependencies and transform the DDG

7: if ¬ExistsPathFromDef(G, def, r, copy) then
8: // Rename the destination register of def

9: u← ResultOfArgument(copy, r)
10: RenameResult(def, r, u)
11: // Split the parallel copy

12: (lcopy, rcopy)← SplitAtArgument(G, copy, r)
13: // Update the data dependencies

14: UpdateDefDependencies(G, def, r, u, lcopy, rcopy)

Algorithm 15 shows the main steps required to perform a downward motion
of an instruction, denoted def, de�ning a register r with respect to a regular
parallel copy operation copy. The algorithm �rst veri�es that a linear ordering

163

can be derived from the DDG after performing the transformation, i.e., it veri�es
that no dependence cycles are introduced � see lines 2�7. The transformation
is not performed if this check fails. The transformation itself consists of (1)
renaming the destination register of the de�nition, (2) splitting the parallel
copy, and (3) updating the DDG� see lines 8�14. It is important to note that
only the destination register of the de�nition is renamed during this processing,
all other registers, in particular, other register uses are not modi�ed. Before
we describe the phases in more detail, we de�ne a few helper functions required
during the processing:

• ArgIndex and ResIndex take a parallel copy and a register as argu-
ments and return the index within the argument list of the parallel copy.
For instance, given the parallel copy c = (d1, . . . , dn) ← (a1, . . . , an),
ArgIndex(c, ai) will return i, while ResIndex(c, dj) will return j.

• ResultOfArgument takes a parallel copy and a register as an argu-
ment and returns the respective destination register of the argument reg-
ister, i.e., for a copy c = (d1, . . . , dn) ← (a1, . . . , an) and register ai,
ResultOfArgument(c, ai) returns di.

• The function RenameResult performs a simple renaming of the desti-
nation registers of an instruction represented by a DDG node.

8.2.1.2 Preventing Cyclic Dependencies

In order to perform a downward motion of a de�nition, it has to be assured
that all data dependencies can be satis�ed while a linear order of the DDG can
still be derived after performing the transformation. Two situations have to be
considered: (1) uses of the register de�ned by the instruction other than the
parallel copy and (2) dependencies between the de�nition and the parallel copy.

In the former case, other uses than the parallel copy are simply rejected.
This is foremost a simpli�cation of the algorithm in order to avoid the need to
track register uses and their relative position to the parallel copy in question.
In particular, this avoids the need to track uses that are otherwise independent
from the parallel copy, as shown by Figure 8.4. Note that we can always choose
to rename those uses beforehand to allow the downward motion of the de�nition.

The second case arises foremost from data dependencies between the parallel
copy and the de�nition, e.g., when the parallel copy uses or de�nes a register
operand of the instruction def. In this case, after updating the DDG, we might

r2→→→ r3

r2=

=r2=r2=r2

r2r2r2r
2

(a) DDG with extra use

r2 ===
. === r2r2r2

r2→→→ r3

(b) Code with extra use

Figure 8.4: Care has to be taken that dependencies between a de�nition and its
uses are not lost.

164

r1→ r2→→→ r3→ r4

r2=r2r2r2+r4r4r4

r
2r
2

r
2
r
2
r
2 r4r4r4

(a) Original DDG

r3→ r4

r3=r2r2r2+r4r4r4

r1→ r2

r3r3r3

r4r4r4

r2r2r2

(b) Invalid transformed DDG

Figure 8.5: Performing a downward motion on the DDG in (a) results in cyclic
data dependencies after the transformation (b).

�nd that the parallel copy has a (transitive) dependence leading to the de�nition,
while at the same time a (transitive) dependence from the de�nition leads back
to the parallel copy.

Figure 8.5 shows such an example. The bold anti dependence labeled with
r4 in Figure 8.5a leads to a cyclic dependence after the transformation. Note
that it would be possible to resolve this issue by additional renaming if the
respective values are still accessible through other registers. However, in the
given example this is not possible since the value of r4 is destroyed. We will
come back to this issue in Section 8.2.3. The algorithm presented here does
not consider the possibility of additional renaming as practical examples rarely
require these transformations.

This is, in part, due to the fact that not all dependencies between the copy
and the de�nition immediately lead to cyclic dependencies. Consider, for in-
stance, the anti dependence labeled with r2 in Figure 8.5b. This dependence
remains in the �nal DDG even after the transformation is applied without caus-
ing any cycles. The reason for this is that the de�nition of register r2 appears
before the point where the parallel copy is split. The dependence thus cannot
cause a cyclic dependence. This property applies to all register dependencies
leading to regular parallel copies. We will make use of this property in the
following algorithms.

As discussed later in more detail (see Lemma 2), the transformation may
only lead to cyclic dependencies involving certain dependencies of one half of
the split parallel copy. These dependencies are part of the original DDG before
the transformation. Algorithm 16 thus explores all paths in the DDG leading
from the de�nition def to the parallel copy copy. Whenever the path ends
with a register dependence of an operand whose relative position is past the
point where the parallel copy is split, the respective dependence will lead to a
cycle during the transformation. All other kinds of dependencies are treated
conservatively, i.e., are assumed to lead to cycles. These kinds of dependencies
vary from compiler to compiler. As a general rule, memory dependencies are
not problematic, since parallel copies do not access memory. Thus only control
dependencies might pose problems. We assume DDGs of individual basic blocks
only, which ensured that all control dependencies lead from some node in the
DDG to the branch or call instruction terminating the basic block. Control

165

Algorithm 16 Check (transitive) dependencies between an instruction de�ning
a register and a regular parallel copy using the same register.
1: function ExistsPathFromDef(DDG G = (V,E), DDGNode def,

Register r, DDGNode copy)
2: for (n, copy, l) ∈ E where a path def

∗
−→ n exists in G do

3: if n = def and l ∈ {←−r ,−→r ,←→r } then
4: // Ignore all direct register dependencies

5: else if ∃rd : l ∈ {
←→rd ,
−→rd} then

6: // Ignore anti and output dependencies to the parallel

7: // copy if the involved operand appears before register r

8: if ArgIndex(copy, r) ≤ ResIndex(copy, rd) then
9: return true

10: else if ∃ru : l =
←−ru then

11: // Ignore true dependencies to the parallel copy if the

12: // involved operand appears before register r

13: if ArgIndex(copy, r) < ArgIndex(copy, ru) then
14: return true

15: else
16: return true

17: return false

dependencies among other instructions cannot appear in this case. However,
care has to be taken when other kind of dependencies are allowed or DDGs
cover multiple basic blocks, e.g., for DDGs used by various forms of region
scheduling [62, 44].

The usage of the relative position of arguments of the parallel copy is best
understood when viewing the parallel copy as a chain of individual copy opera-
tions � as for example shown in Figure 8.2. The chain of copies is constructed
from a regular parallel copy by processing the arguments of the copy in reverse
order. Splitting the parallel copy then corresponds to splitting this chain of copy
operations. Dependencies leading to the head of the chain, i.e., before the point
where the copy is to be split, are problematic and will cause cyclic dependencies,
while those leading to the tail of the chain, i.e., after the point where the copy
is split, are safe.

Cyclic parallel copies, however, do not form a chain of copies but a cycle
and thus need special treatment. We will return to this problem at the end of
this section after discussing the �nal update procedure to keep the DDG in a
consistent state after a downward motion of a de�nition.

8.2.1.3 Transforming the Dependence Graph

The transformation phase of downward code motion consists of three steps.
First, the destination register of the de�nition is renamed � see Algorithm 15
line 10. Given that this step is straightforward, it is not further discussed here.
We will instead focus on the splitting of the parallel copy (line 12) and the
update of the DDG (line 14).

The parallel copy is split at the use point of the de�nition's register during

166

the transformation using SplitAtArgument, resulting in two independent
parallel copies. Assume a parallel copy c = (d1, . . . , di−1, di, di+1, . . . , dn) ←
(a1, . . . , ai−1, ai, ai+1, . . . , an) and a register r = ai. The splitting gives two
copies (d1, . . . , di−1) ← (a1, . . . , ai−1) and (di+1, . . . , dn) ← (ai+1, . . . , an),
where the �rst is referred to as lcopy and the second as rcopy. We, further,
assume that, by splitting the copy, corresponding nodes are added to the DDG.
The DDG nodes inherit the respective dependencies from the DDG node of the
original parallel copy, which is discarded after the splitting. Note that both,
lcopy and rcopy, may be empty at this point. For the sake of simplicity we
assume that an empty copy will be inserted to the DDG in such a case � empty
copies can easily be eliminated by a post-processing pass.

Algorithm 17 Update the dependencies of the DDG after a downward copy
motion of a de�nition.
1: procedure UpdateDefDependencies(DDG G = (V,E), DDGNode def,

Register r, Register u, DDGNode lcopy, DDGNode rcopy)
2: // Remove spurious dependencies

3: remove (def,n, l) from E, for all n ∈ V , l ∈ {←→r ,←−r }
4: remove (def, rcopy,−→u) from E
5: remove (rcopy,n,−→u) from E, for all n ∈ V

6: // Transfer output and anti dependencies between def and lcopy

7: if lcopy not is empty or ∃redef : (lcopy, n,−→r) then

8: let nextdef =

{
lcopy , if lcopy is not empty
redef , otherwise

9: for e = (n, def, l) ∈ E where l ∈ {←→r ,−→r } do
10: remove e from E
11: add (n,nextdef, l) to E

12: // Transfer output and true dependencies between rcopy and def

13: for e = (rcopy, n, l) ∈ E where l ∈ {←→u ,←−u } do
14: remove e from E
15: add (def, n, l) to E

16: // Transfer output and anti dependencies between rcopy and def

17: for e = (n, rcopy, l) ∈ E where l ∈ {←→u ,−→u } do
18: remove e from E
19: add (n, def, l) to E

20: // Account for rede�nition of u by def

21: add (rcopy, def,−→u) to E

22: // Create an anti dependence to the next de�nition of u

23: if ∃(def, n,←→u) ∈ E and def has a use of u then
24: add (def, n,−→u) to E

167

u → . . .rcopy

def

. . . → r lcopy

r r

u

r

u

u

u u

2

3

4

6

12

16

(a) Before transforming the DDG

u → . . .rcopy

def

. . . → r lcopy

r

u

r

u

u
u

u

6

12

16

20

22

(b) After transforming the DDG

Figure 8.6: Illustration of the DDG update procedure after splitting the parallel
copy, showing the DDG before (a) and after (b) the transformation. The bold
circled numbers indicate the corresponding line of Algorithm 17.

After splitting the parallel copy the DDG has to be updated in order to
account for new and/or eliminated data dependencies due to the register re-
naming, the copy elimination induced by the splitting of the parallel copy, or
the code motion of the de�nition. Algorithm 17 shows the necessary steps to
update the DDG given a de�nition def de�ning a register r, which is to be
updated by register u, and two split pieces of the original parallel copy lcopy
and rcopy. First, dependencies are removed that become super�uous, either due
to the register renaming at the de�nition or the copy elimination. Then, anti
and output dependencies leading to the de�nition and labeled with the de�ni-
tion's original register are redirected to the left half of the parallel copy. Note,
true dependencies are not a�ected by the renaming and thus are left untouched.
A similar transfer of dependencies is performed for output and true dependen-
cies originating from the right piece of the parallel copy and labeled with the
de�nition's new destination register u. Yet another transfer of dependencies is
performed for dependencies leading to the right half of the parallel copy and
labeled with the de�nition's new destination register. Finally, a new mandatory
data dependence between the right piece of the parallel copy and the de�nition
is added to the DDG labeled with u. Also, a potential anti dependence added
to the DDG if the de�nition uses that register. A more detailed discussion of
the algorithm is given below (see Lemma 1).

Figure 8.6 illustrates the various steps performed during the DDG update
labeled with the corresponding line number of Algorithm 17. The lines of the
a�ected data dependencies are, in addition, highlighted: dependencies that re-
main untouched are represented by solid black lines, those that are removed are
gray, newly added dependencies are densely dashed, while other dependencies
transferred between the parallel copies and the de�nition are represented by
matching line styles at their original position before and �nal position after the
transformation (dashed, dotted, densely dotted).

168

8.2.1.4 Correctness

In order to verify the correctness of our approach two properties have to be
considered: (1) that data dependencies are neither falsely lost nor falsely in-
troduced during the transformation and (2) that a linear ordering of the DDG
nodes can be established, i.e., the DDG is free of cycles.

Lemma 1. Given an acyclic DDG, a de�nition, and a regular parallel copy,
Algorithm 17 correctly updates the DDG after splitting the parallel copy and
renaming the de�nition. All data dependencies are preserved, i.e., dependencies
are neither falsely lost not falsely introduced.

Proof. The update procedure only operates on register dependencies carrying
registers r and u, it is thus su�cient to consider the various cases of de�nitions
and uses of these two registers before the transformation. The respective in-
structions are assumed to either (1) precede def, (2) precede the parallel copy,
but not necessarily def, or (3) succeed the parallel copy in any valid linear or-
dering.
The three cases for another de�nition dr of r are as follows:

(1) The output dependence between dr and def, becomes obsolete due to the
renaming. The dependence is redirected to the next rede�nition of r suc-
ceeding def. Unless lcopy is empty it is the next rede�nition succeeding
def (see Algorithm 17, l. 7). If lcopy is empty, the dependence is redirected
to the closest rede�nition succeeding lcopy and thus def, if one exists. The
dependence is thus correctly updated.

(2) This is impossible. def would not be a candidate for the transformation.

(3) This case is only relevant when lcopy is empty, since otherwise the output
dependence between lcopy and dr is irrelevant for the DDG update. In
case lcopy is empty, dr is a rede�nition handled by case (1).

The cases for a use of r are analogous to the three cases above, with the
exception that the dependencies in question are anti dependencies. True depen-
dencies are not relevant for the transformation since they cannot refer to def.
This is also true for case (3) when lcopy is non-empty.

Some dependencies carrying r are removed unconditionally (l. 3). The var-
ious cases discussed above reintroduce corresponding output and anti depen-
dencies covering these dependencies when necessary. It is thus ensured that no
dependencies are lost.
Considering the three cases for a de�nition du of register u:

(1) The output dependence between the parallel copy is obsolete due to the
elimination of the copy r → u. This dependence has to be redirected
to def, since def de�nes u after renaming, (see l. 17). Anti dependencies
leading to du are not relevant for the transformation.

(2) This is equivalent to case (1), unless a (transitive) dependence leads from
def to du � and thus to the parallel copy. The transformation would then
result in a cyclic dependence. This situation is covered by Algorithm 16.

(3) In this case, the output dependence between the parallel copy and du
becomes obsolete due to the copy elimination. The dependence needs to

169

be transferred to def, since it de�nes u after renaming (see l. 13). In
contrast to case (1), an anti dependence between the parallel copy and du
can exist. This dependence becomes obsolete and has to be redirected to
def, due to the register renaming. Furthermore, def may use register u.
This requires an additional anti dependence between def and du (see l. 3,
l. 21, and l. 23).

Cases (1) and (2) for uses of u are analogous to the respective cases above,
with the exception that anti dependencies are considered. True dependencies
are not relevant for both cases. The situation for case (3) is di�erent. True
dependencies between the parallel copy become obsolete due to the copy elim-
ination the the register renaming. These dependencies have to be transferred
from lcopy to def, since def replaces the previous de�nition of u by the copy (see
l. 13). Anti dependencies originating from uses of u are not relevant.

Dependencies carrying u that are removed from the DDG (l. 3) are either
replaced by corresponding anti dependencies or become simply obsolete. Thus
no dependencies are lost.

Finally, other kinds of dependencies have to be considered. Since parallel
copies never touch memory, corresponding dependencies are not an issue for the
DDG update. In the case of simple basic blocks, the only control dependencies
in the DDG lead from every node to the branch terminating the block. Non-
register dependencies thus do not require additional handling during the DDG
update. It follows that Algorithm 17 is correct.

The previous proof already covered some cases potentially causing cyclic
dependencies after the transformation. However, these cases do not cover all
potential cycles. These are covered by the following lemma.

Lemma 2. Given an acyclic DDG, a de�nition, and a regular parallel copy,
Algorithm 16 ensures that the DDG remains acyclic after the transformation
through Algorithm 17.

Proof. The DDG is initially acyclic by de�nition. Furthermore, all cyclic depen-
dencies have to include the anti dependence between rcopy and def introduced
during the DDG update (see Algorithm 17, l. 21). All other dependencies can-
not lead to cycles since they arise from simple transfers between nodes that
originally were already ordered.

It thus remains to show that transitive dependence between def and rcopy
cannot occur. Since rcopy inherits all its dependencies from the original parallel
copy, any dependence between def and rcopy has to be present in the original
DDG before the transformation. Note that only one dependence is added to the
DDG involving rcopy (Algorithm 17, l. 21). It follows that cycles can be detected
in the original DDG by examining dependencies between def and the original
parallel copy. Note that only dependencies inherited by rcopy are relevant.
In the loop of Algorithm 16, the following four cases have to be considered:
(1) Direct output and true dependencies between def and the copy become

obsolete and are thus removed. An anti dependence may remain in the
DDG even after the transformation, but it simply refers to lcopy, the left
half of the parallel copy. A cycle is thus impossible.

(2) Output and anti dependencies carrying other registers and/or originating
from other nodes are not removed. It thus has to be ensured that these

170

dependencies refer to lcopy after the transformation. That is, the respec-
tive register needs to appear before or at the same position as r in the
original parallel copy (also see the de�nition of SplitAtArgument). A
cycle is thus impossible.

(3) Other kinds of true dependencies leading to the parallel copy similarly
remain untouched during the transformation. Again, it has to be ensured
that the dependence will refer to lcopy after the transformation. That
is, the argument has to appear (strictly) before the position of r in the
original parallel copy. Note that, in fact, the only true dependence leading
to the position of r originates from def and thus is handled by (1). A cycle
is thus impossible.

(4) This �nal case can never occur in DDGs of simple basic blocks. Memory
dependencies cannot refer to parallel copies and control dependencies in
DDGs of basic blocks can only refer to the branch terminating the basic
block. This case is still included to highlight to potential of cyclic de-
pendencies when other �avors of DDGs are used (e.g., in �avors used for
region scheduling [62, 44]). Treating those dependencies conservatively
renders cycles impossible.

Algorithm 16 thus ensures that the DDG remains acyclic after the the update
procedure as given by Algorithm 17.

The two lemmas ensure that no dependencies are falsely lost nor introduced
when performing a downward motion of a de�nition. Furthermore, cyclic de-
pendencies cannot occur during such a transformation.

Theorem 5. Algorithm 15 is correct for regular parallel copies.

Proof. Since the renaming and splitting of the parallel copy are trivial, this
follows from Lemma 1 and Lemma 2.

8.2.1.5 Handling Cyclic Parallel Copies

Cyclic copies have to be treated conservatively. If a path exists in the DDG
that leads from the de�nition to the parallel copy, a cyclic dependence will be
introduced, unless the path is of length 1 consisting of a single true or output
dependence labeled with the de�nition's register. These direct dependencies can
safely be ignored since the parallel copy will be split and the respective depen-
dencies will be removed during the transformation. Note that anti dependencies
cannot be discarded at this point, unless the respective register use is renamed �
which we do not considered here. Figure 8.7 shows an example of this situation.

The algorithms presented previously for the case of regular parallel copies
need to be adapted in order to handle cyclic parallel copies correctly. Firstly,
splitting a parallel copy always gives two non-empty regular parallel copies. The
function SplitAtArgument is thus rede�ned in the case of a cyclic parallel
copy as follows: given a cyclic parallel copy c = (d1, . . . , di−1, di, di+1, . . . , dn)←
(a1, . . . , ai−1, ai, ai+1, . . . , an) and a register r = ai. The function constructs a
non-empty copy (di+1, . . . , dn, d1, . . . , di−1)← (ai+1, . . . , an, a1, . . . , ai−1). This
copy is then returned as the left and the right piece of the split copy. In other
words, lcopy and rcopy in the previous algorithms for regular parallel copies
refer to the same copy.

171

r1→ r2→→→ r3→ r4r1→ r2→ r3→ r4

r2=r2r2r2+r5

r
2r
2

r
2
r
2
r
2

(a) Original DDG

r3→ r4→ r1→ r2

r3=r2r2r2+r5

r3 r2r2r2

(b) Invalid transformed DDG

Figure 8.7: Performing a downward motion on the DDG in (a) results in cyclic
data dependencies after the transformation (b).

Algorithm 18 Check (transitive) dependencies between an instruction de�ning
a register and a, potentially cyclic, parallel copy using the same register.
1: function ExistsPathFromDef(DDG G = (V,E), DDGNode def,

Register r, DDGNode copy)
2: for (n, copy, l) ∈ E where a path def

∗
−→ n exists in G do

3: if cyclic then
4: // Ignore direct true and output dependencies for cyclic parallel copies

5: if n 6= def or l /∈ {←−r ,←→r } then
6: return true

7: else
8: // Code of Algorithm 16

9: . . .

10: return false

172

A second issue stems from the fact that a cyclic parallel copy de�nes and uses
every operand register once. Note, in particular, that the original destination
register of the de�nition might be rede�ned by the parallel copy. This causes
additional dependencies that have to be accounted for in order to prevent cyclic
dependencies. Algorithm 18 shows an adapted variant of the ExistsPath-

FromDef function. The update procedure can be used as it is.

8.2.1.6 Correctness

The arguments proo�ng the correctness of the downward motion of de�nitions
on regular parallel copies carry over to the speci�c case of cyclic parallel copies.
The discussion is thus kept short:

Lemma 3. Given an acyclic DDG, a de�nition, and a cyclic parallel copy,
Algorithm 17 correctly updates the DDG after splitting the parallel copy and
renaming the de�nition. All data dependencies are preserved, i.e., dependencies
are neither falsely lost not falsely introduced.

Proof. Analogous to Lemma 1. The only di�erence arises from the fact that
lcopy and rcopy denote the same non-empty parallel copy.

Lemma 4. Given an acyclic DDG, a de�nition, and a cyclic parallel copy,
Algorithm 18 ensures that the DDG remains acyclic after the transformation
through Algorithm 17.

Proof. Analogous to Lemma 2. The only di�erence arises from the fact that the
parallel copy de�nes and uses all its register operands. Thus, all dependencies
leading to the parallel copy may lead to cycles.

Theorem 6. Algorithm 15 is correct for cyclic parallel copies.

Proof. This follows from Lemma 3 and Lemma 4.

8.2.2 Upward Motion of Uses

Another form of transformation is to perform an upward code motion of all uses
of a register de�ned by a parallel copy while renaming the respective register
uses. The result of this transformation, as before, is that the involved register
becomes dead, the copy operation can thus be eliminated and the parallel copy
split. As before, we start by giving an informal example of the transformation
and then present detailed algorithms.

Consider the DDG from Figure 8.8a, where all uses of register r3, which is
de�ned by the parallel copy, are highlighted in bold. The copy r2→ r3 can be
eliminated if all these uses are renamed as shown by Figure 8.8b. As with the
downward motion of de�nitions, some dependencies become useless due to this
transformation, while at the same time new dependencies arise. For instance,
the true dependence of the respective uses have to be updated to re�ect the
reordering and register renaming, as indicated by the bold true dependencies.
In addition, new anti dependencies arise due to the de�nition of r2 by the
parallel copy (also highlighted in bold). Similar to before, the transformation
may cause cyclic dependencies, which have to be avoided.

173

r1→ r2→→→ r3→ r4

r2=

=r3=r3=r3=r3=r3=r3

r
2

r
2

r3r3r3

r3r3r3

(a) Original DDG

r3→ r4

=r2=r2=r2=r2=r2=r2

r2=

r1→ r2

r2r2r2

r
2 r2r2

r2r2r2

r
2r2r2

r
2

(b) Transformed DDG

r2 = . . .
r1 → r2→→→ r3 → r4

. === r3r3r3

. === r3r3r3

(c) Original Code

r3 → r4

r2 = . . .
. === r2r2r2

. === r2r2r2

r1 → r2

(d) Transformed Code

Figure 8.8: ADDG before (a) and after (b) performing an upward motion of all
uses of register r3.

Algorithm 19 Perform upward motion of a all uses.
1: procedure UseMotionUp(DDG G = (V,E), DDGNodes uses, Register r,

DDGNode copy)
2: // Ensure that no other uses exist

3: all_uses← {u | (copy, u,←−r) ∈ E, u ∈ V }
4: if all_uses 6= uses then
5: return

6: // Check dependencies and transform the DDG

7: if ¬ExistsPathToUses(G, uses, r, copy) then
8: // Perform register renaming for every use

9: u← ArgumentOfResult(copy, r)
10: RenameUses(G, uses, r, u)

11: // Split the parallel copy

12: (lcopy, rcopy)← SplitAtResult(G, copy, r)

13: // Update the data dependencies

14: UpdateUseDependencies(G, uses, r, u, lcopy, rcopy)

174

8.2.2.1 Handling Regular Parallel Copies

In contrast to the code motion of de�nitions, all uses have to be considered
during an upward motion. The following Algorithm 19 thus operates on the set
of all uses, but otherwise follows the same principal phases as the downward
motion of a de�nition. Given a set of DDG nodes uses reading register r and a
parallel copy copy de�ning the same register, it is �rst veri�ed that the upward
motion is legal and does not cause any cyclic dependencies (lines 2�7). In the
next step all register uses are renamed (line 10), before the parallel copy is split
(line 12). Finally, the data dependence graph is updated for every use (line 14).
The algorithms following hereafter make use of some helper functions, which
are de�ned as follows:

• ArgIndex and ResIndex are de�ned as before � see Section 8.2.1.1.
• ArgumentOfResult takes a parallel copy and a register as an argument
and returns the corresponding argument of the parallel copy for the match-
ing destination register, i.e., for a copy c = (d1, . . . , dn) ← (a1, . . . , an),
ArgumentOfResult(c, di) returns ai.

• The function RenameUses performs a simple renaming of the argument
registers of the instructions represented by the uses in the DDG.

8.2.2.2 Preventing Cyclic Dependencies

In order to ensure that the DDG is in a valid state after an upward motion
of the uses of a register de�ned by a parallel copy, it has to be guaranteed
that (1) all uses are considered, and (2) no cyclic dependencies arise from the
transformation.

The former case depends, to some extent, on the DDG representation, in
particular, on how register uses outside of the scope of the currently considered
DDG are represented. For instance, if the DDG covers basic blocks only, regis-
ters might be used by an instruction in a successor basic block, i.e., the register
is live-out of the current basic block. The corresponding use is not amenable
to code motion, since it is not covered by the DDG. For this work, we assume
that arti�cial DDG nodes represent all external uses of registers live-out of the
code region covered by the DDG. Since those arti�cial uses are not amenable
to code motion they cannot appear in the set of uses in Algorithm 19, but may
well appear in the set all_uses (line 3).

The second issue is similar to the problem of cyclic dependencies that ap-
peared for the downward motion of de�nitions. Algorithm 20 shows the corre-
sponding test that veri�es that no cyclic data dependencies may arise from the
transformation. The test is, in fact, very similar to that of Algorithm 16, except
that the direction of the examined paths is inverted (line 3), i.e., DDG edges
originating from the parallel copy are examined. Consequently, the relation
between anti and true dependencies and the relative position of the respective
operands within the parallel copy is inverted too (see line 10 and 5). The algo-
rithm otherwise proceeds in the same manner as the corresponding version for
the downward motion of de�nitions. Please refer to Section 8.2.1.1 for a more
detailed discussion.

175

8.2.2.3 Transforming the Dependence Graph

The transformation phase of the upward code motion of uses consists of three
principal steps. First, register renaming is performed using theArgumentOfRe-
sult and RenameUses functions.

In the next step, the original parallel copy is split using the SplitAtRe-
sult function, which given a parallel copy c = (d1, . . . , di−1, di, di+1, . . . , dn)←
(a1, . . . , ai−1, ai, ai+1, . . . , an) and a register r = di returns two new parallel
copies, (d1, . . . , di−1) ← (a1, . . . , ai−1) and (di+1, . . . , dn) ← (ai+1, . . . , an),
which are denoted as lcopy and rcopy respectively. The two copies inherit the
respective data dependencies from the original parallel copy � in particular,
rcopy is assumed to inherit all dependencies carrying the original register and
lcopy is assumed to inherit all dependencies carrying the new register used for
renaming. The main di�erence to the corresponding function SplitAtArgu-

ment from Section 8.2.1.1 is that the registers de�ned by the parallel copy are
examined instead of the registers used in order to determine the split point. An
additional di�erence will become apparent when the handling of cyclic parallel
copies is discussed later in the next section.

Finally, the data dependencies of the DDG, i.e., of the involved uses and
pieces of the parallel copy, have to be updated. Since only register uses are
touched the situation is simple, only true and anti dependencies originating
from respectively leading to the use and the left half of the parallel copy as well
as true and output dependencies to respectively from the right half of the copy
have to be considered. The DDG update procedure, shown by Algorithm 21,
takes a set of DDG nodes uses, a register r, which is read by the uses, a register

Algorithm 20 Check (transitive) dependencies between a regular parallel copy
de�ning a register and all uses of that register.
1: function ExistsPathToUses(DDG G = (V,E), DDGNodes uses, Register

r,
DDGNode copy)

2: for (copy, n, l) ∈ E where a path n
∗
−→ u exists in G, u ∈ uses do

3: if n = u and l ∈ {←−r ,−→r ,←→r } then
4: // Ignore all direct register dependencies

5: else if ∃rd : l ∈ {
←→rd ,
←−rd} then

6: // Ignore true and output dependencies originating from the

7: // parallel copy if the involved operand appears after register r

8: if ResIndex(copy, r) > ResIndex(copy, rd) then
9: return true

10: else if ∃ru : l =
−→ru then

11: // Ignore anti dependencies originating from the parallel copy

12: // if the involved operand appears after register r

13: if ResIndex(copy, r) ≥ ArgIndex(copy, ru) then
14: return true

15: else
16: return true

17: return false

176

Algorithm 21 Update the dependencies of the DDG after a upward copy
motion of a set of register uses.
1: procedureUpdateUseDependencies(DDG G = (V,E), DDGNodes uses,

Register r, Register u, DDGNode lcopy, DDGNode rcopy)
2: // Account for dependencies after removing the de�nition of r

3: if ∃redef ∈ V : (rcopy, redef,−→r) ∈ E then
4: // Account for anti dependencies

5: for n ∈ V : (n, cropy,−→r) ∈ E do
6: add (n, redef,−→r) to E
7: remove (n, rcopy,←→r) from E

8: // Account for output dependencies

9: if ∃n ∈ V : (n, rcopy,←→r) then
10: add (n, redef,←→r) to E

11: // Remove spurious dependencies

12: remove (rcopy, n,←→r) from E, n ∈ V
13: remove (n, rcopy,←→r) from E, n ∈ V
14: remove (rcopy, n,←−r) from E, ∀n ∈ uses
15: remove (n1, n2,

−→r) from E, ∀n1 ∈ uses, n2 ∈ V

16: // Transfer anti dependencies carrying the new register u

17: if lcopy not is empty then
18: add (n, lcopy,−→u) to E, ∀n ∈ uses
19: remove (lcopy, n,−→u) from E, ∀n ∈ uses
20: else if ∃n1 ∈ V : (lcopy, n1,

−→u) ∈ E then
21: add (n2, n1,

−→u) to E, ∀n2 ∈ uses
22: remove (lcopy, n1,

−→u) from E

23: // Transfer true dependencies carrying the new register u

24: if ∃n1 ∈ V : (n1, lcopy,
←−u) ∈ E then

25: add (n1, n2,
←−u) to E, ∀n2 ∈ uses

26: remove (n1, lcopy,
←−u) from E

177

r → . . .rcopy

use

. . . → u lcopy

r

r

u u

u u

rr

r

12

11

13

14

19

23

(a) Before transforming the DDG

r → . . .rcopy

use

. . . → u lcopy

u

u

u

u u

r
2

8

17
19

23

(b) After transforming the DDG

Figure 8.9: Illustration of the DDG update procedure, showing the DDG be-
fore (a) and after (b) the transformation. The bold circled numbers indicate
the corresponding line of Algorithm 21.

u to update those uses and two split pieces of the original parallel copy lcopy
and rcopy. It proceeds in four main steps as follows.

First, output and anti dependencies carrying the original register r are han-
dled. Here, special care has to be taken for the case then rcopy is empty. Some
dependencies then have to be established between de�nitions and/or uses of r
preceding and succeeding the parallel copy. Next, dependencies carrying the
original register r involving any of the uses are removed. In comparison to the
downward motion of de�nitions, the situation is simpler, since uses, as opposed
to de�nitions, do not interfere with succeeding or preceding instructions using or
de�ning that register. Subsequently, output dependencies carrying the register
u are added to the DDG. Two cases need to be distinguished: If lcopy is non-
empty, it rede�nes u and output dependence from all uses have to be inserted.
In case the copy is empty, output dependencies are only appended if a rede�ni-
tion of u succeeds the parallel copy. By now the DDG is almost complete, the
only missing dependencies are true dependencies carrying the new register u.
These can simply be derived from the left half of the parallel copy.

An illustration of the individual steps of the update procedure are shown
by Figure 8.9. The bold circled numbers relate the respective dependencies
with the corresponding code lines of Algorithm 21. The line style indicates
untouched dependencies (solid), potentially removed dependencies (gray), newly
added dependencies (densely dashed), and dependencies transferred between the
parallel copy and the uses under consideration (dashed/dotted).

8.2.2.4 Correctness

As before, the correctness of the upward code motion of uses depends on (1)
the fact that all data dependencies are correct after the transformation and (2)
no cyclic dependencies arise.

178

Lemma 5. Given an acyclic DDG, a set of uses, and a regular parallel copy,
Algorithm 21 correctly updates the DDG after splitting the parallel copy and
renaming the uses. All data dependencies are preserved, i.e., dependencies are
neither falsely lost not falsely introduced.

Proof. The algorithm operates on dependencies involving register dependencies
carrying the registers r and u only. It is thus su�cient to consider de�nitions
and uses of those registers surrounding the respective parallel copy. We will
thus consider various cases involving such instructions whose relative position
in any linear ordering before the transformation is as follows: the instruction
(1) precedes the parallel copy, (2) succeeds the parallel copy (but not necessarily
the uses involved in the transformation), or (3) succeeds some or all uses.

Considering a de�nition dr of register r, the following cases may occur:

(1) In case an output dependence leading from dr to the parallel copy exists,
it becomes obsolete due to the splitting of the copy. The dependence has
to be redirected to the next rede�nition of the register, succeeding all uses
(see Algorithm 21, l. 9 and 13). Any potential true dependencies leading to
the parallel copy are not a�ected by the transformation and are inherited
by rcopy.

(2) This case is impossible, since some or all of the uses are not candidates for
the transformation. Otherwise, this case is equivalent to case (3) below.

(3) The only relevant scenario is that dr succeeds all uses. In case an output
dependence between the copy and dr exists, it becomes obsolete. The
situation is then handled by case (1) above. All anti dependencies between
the uses of r and dr become obsolete due to the renaming of the uses (see
l. 15). Furthermore, new anti dependencies may arise between uses of r
preceding the parallel copy and dr due to the splitting of the copy (see l. 3).
The anti dependence between the parallel copy and dr as well as any true
dependencies originating from dr are not relevant to the transformation.

For a use ur of register r the following cases arise:

(1) The case corresponds to the case (1) for de�nition dr from above, with
the exception that anti dependence instead of output dependencies have
to be considered.

(2) The only interesting scenario here is that ur appears before the next re-
de�nition of r, i.e., ur ∈ uses. The true dependencies between the copy
and ur become obsolete due to the renaming of the use. The dependence
needs to be redirected to the �rst de�nition preceding the parallel copy
de�ning u (l. 24). Anti dependencies originating from ur similarly become
obsolete. If lcopy is empty the anti dependence originating from it has
to be duplicated at each use (l. 20). Otherwise, lcopy de�nes u and thus
requires an anti dependence to all uses (l. 18).

(3) This case is covered by (2) above.

For a de�nition du of u the following cases have to be considered:

179

(1) True dependencies originating from du are covered by case (2) for a use ur
above. If an output dependence between du and the parallel copy exists, it
remains unchanged even after the splitting. Similarly, anti dependencies
are not relevant to the transformation.

(2) This is impossible unless du succeeds all uses. Then case (3) applies.

(3) The only relevant scenario here is that du succeeds all uses. In case a
output dependence between the parallel copy and the de�nition exists, it
remains unchanged � as do true dependencies originating from du. Anti
dependencies between uses and du become obsolete (this case is covered
by case (2) for uses ur above. Other anti dependencies are not relevant
for the transformation.

All register dependencies carrying register u and leading to/originating from
any use are not relevant for the transformation, because all de�nitions of u
remain untouched, i.e., no such de�nition is renamed or eliminated.

Other kinds of dependencies, not covered by the cases above, are also irrel-
evant to the transformation (considering DDGs on basic blocks). It follows the
correctness of the algorithm.

The preceding lemma shows that the DDG update procedure correctly pre-
serves all dependencies. It remains to show that no cyclic dependencies arise
from the transformation.

Lemma 6. Given an acyclic DDG, a set of uses, and a regular parallel copy,
Algorithm 20 ensures that the DDG remains acyclic after the transformation
through Algorithm 21.

Proof. The DDG is initially acyclic by de�nition. Furthermore, all cyclic de-
pendencies have to include the anti dependence between some use and lcopy
introduced during the DDG update (see Algorithm 21, l. 18 and 20). All other
dependencies cannot lead to cycles since they arise from simple transfers be-
tween nodes that originally were already in an ordering relation.

First consider the case when lcopy is not empty, i.e., line 18 of Algorithm 21 is
executed. Any cycle then has to include a path from lcopy to some use. Since no
dependencies are added or removed originating from lcopy, this path also exists
in the original DDG before the transformation (note line 20 of Algorithm 21 is
never executed). It is thus su�cient to check the original DDG to recognize any
potential cycles before the transformation.

Algorithm 20 examines all paths from the parallel copy to any use. Four
di�erent cases are distinguished:

(1) Direct register dependencies between the parallel copy and any use cannot
result in a cycle. These dependencies become obsolete due to the register
renaming.

(2) Output and true dependencies originating from a register operand appear-
ing in the right half of the parallel copy cannot cause any cycles, since they
will only appear in rcopy.

(3) Similarly, anti dependencies originating from the right half cannot lead to
any cycles, as they will only appear in rcopy.

180

(4) Other kinds of dependencies are assumed to lead to cycles. As noted
before, this can only appear in DDGs covering more than one basic block.
The case is included for completeness and to highlight this issue.

Now consider the case when lcopy is empty, i.e., line 20 of Algorithm 21.
Cycles may then arise from some de�nition du of u preceding some use, but
succeeding the parallel copy in the original DDG. Since du de�nes u and the
parallel copy uses u, a path from the copy to du exists (involving at least one
anti dependence carrying u). It is thus su�cient to check the original DDG to
recognize any potential cycles before the transformation as shown above.

Algorithm 20 thus ensures that the DDG remains acyclic after the update
procedure as given by Algorithm 21.

Theorem 7. Algorithm 19 is correct for regular parallel copies.

Proof. Since the renaming of the uses and the splitting of the parallel copy are
trivial, this follows from Lemma 5 and Lemma 6.

8.2.2.5 Handling Cyclic Parallel Copies

The upward motion of uses is a�ected by cyclic parallel copies to a lesser extent,
since even regular copies might rede�ne both the used register before and after
renaming. The DDG update procedure of Algorithm 21 can directly be applied
to cyclic copies without modi�cation. However, in order to prevent cyclic data
dependencies Algorithm 20 has to be extended. The problem arises from the
way cyclic copies are split. We will thus �rst discuss how the splitting is de�ned.

As noted before, the splitting of a cyclic parallel copy always yields one non-
empty parallel copy. In Section 8.2.1.5, for the downward motion of de�nitions,
the function SplitAtArgument was extended accordingly to correctly split
cyclic copies. The function SplitAtResult is re�ned in exactly the same way,
i.e., for the update procedure receives the non-empty result of SplitAtResult
as both lcopy and rcopy.

Since the register of the respective uses after renaming is rede�ned by the
parallel copy, it is now easy to see that any dependence between the copy and

Algorithm 22 Check (transitive) dependencies between a potentially cyclic
parallel copy de�ning a register and all uses of that register.
1: function ExistsPathToUses(DDG G = (V,E), DDGNodes uses, Register

r,
DDGNode copy)

2: for (copy, n, l) ∈ E where a path n
∗
−→ u exists in G, u ∈ uses do

3: if cyclic then
4: // Ignore true dependencies only

5: if l 6=←−r then
6: return true

7: else
8: // Code of Algorithm 20.

9: . . .
10: return false

181

r1→ r2→ r3→ r4r1→ r2→ r3→ r4

r2=r2+r4

r
2r
2

r
2

r
4

(a) Original DDG

r1→ r2→ r3→ r4r1→ r2→ r3→ r4

r3=r3+r1

r
1 r

3

r
3

r
3

(b) Transformed DDG

Figure 8.10: Downward and upward code motion is possible past cyclic parallel
copies by renaming all operands of the respective instruction that also appear
as operands of the copy.

any use immediately leads to a cycle in the DDG, unless the dependence is a
true dependence carrying register r. Algorithm 22 ensures that, in the case of
cyclic copies, all other forms of dependencies are rejected when paths between
the copy and the respective uses are explored.

8.2.2.6 Correctness

Lemma 6 is easy to adapt to handle cyclic parallel copies, we thus do not
further discuss it here. Lemma 5 applies to cyclic parallel copies without any
modi�cation. We thus conclude:

Theorem 8. Algorithm 19 is correct for cyclic parallel copies.

Proof. This follows from the lemmas given above (with minor adaption).

8.2.3 Code Motion Past Cyclic Parallel Copies

In the previous sections the focus was on eliminating individual copies by moving
individual instructions or sets of instructions downward or upward past a regular
or cyclic parallel copy. The goal was to render a given register dead by renaming
the corresponding de�nition or all uses respectively. In addition, an instruction
can be moved past a cyclic parallel copy, both downward or upward, by renaming
all register operands of the instruction that appear in the parallel copy. The
only requirement is that no (transitive) non-register dependencies exist between
the DDG node of the instruction and the parallel copy. An example of this
transformation is shown in Figure 8.10.

Such a transformation is, by itself, not necessarily useful, ignoring indi-
rect bene�ts that might arise in following optimization steps, e.g., instruction
scheduling. However, the ability to move arbitrary instructions past a cyclic
copy gives additional freedom and might be used to enable the elimination of a
copy by one of the previously described techniques. Even more, it might some-
times be bene�cial to turn a regular parallel copy into a cyclic one and move
instructions past that copy to enable further possibilities for copy elimination.

8.2.4 Algorithm Complexity

The coalescing problem on global interference graphs is well studied in the
literature, and complexity results showing that various variants of the problem

182

are NP-complete are available [17]. Our DDG-based copy elimination operates
locally on basic blocks, which eventually might reduce the problem complexity.
Unfortunately, this is not the case. Biró et al. [9] show that the coalescing
problem is NP-complete even for block-local interference graphs, i.e., interval
graphs, when pre-coloring constraints have to be respected. These constraints
are required for our problem to ensure that the local coalescing respect the
register assignments of predecessor and successor blocks. The general problem
of �nding an optimal local coalescing combined with instruction reordering is
thus also NP-complete.

The complexity of our heuristic clearly depends on the size of the parallel
copies of a basic block, i.e., the number of edges within all the parallel copies
of that block. This in turn depends on how aggressive live-range splitting is
performed. Considering SSA form, live-range splitting may only occur on join
points in the control �ow graph (CFG). Edge motion then assigns the parallel
copies to surrounding basic blocks, inserting them either at the beginning or
appending them at the end of a basic block. Since every processor register can
only be assigned a new value once at the beginning and the end of a basic
block, the total size of the parallel copies within a basic block is bounded by
the constant 2k, where k is the number of processor registers.

The algorithm complexity is thus dominated by the path searches performed
for Algorithm 16 and 20. This path search can be performed using depth-�rst
search in O(|V |+ |E|), where |V | and |E| correspond to the the number nodes
and edges in the DDG respectively. The for-loop of both algorithms is bounded
by O(|V |), since all checks inside the loops can be performed in constant time
� note again that the number of processor registers is constant.

The DDG update, Algorithm 17 and 21, operates locally on edges leading
to/from a parallel copy to other nodes. The for-loops of the respective algo-
rithms therefore execute in O(|V |+ |E|).

The handling of cyclic parallel copies neither increases the complexity of the
path search nor the update procedure. The overall complexity of our algorithm,
when live-range splitting is performed according to SSA form, is thus linear in
the size of the DDG of a basic block O(|V |+ |E|). In the case of more aggressive
live-range splitting after every instruction in the program the complexity is in
O(|V |2+|V ||E|). Even under such an aggressive live-range splitting, the number
of program points where parallel copies remain is usually low.

8.2.5 Additional Remarks

The algorithms presented in the previous sections are invoked iteratively as
long as parallel copies and candidate instructions, i.e., respective DDG nodes,
exist that might be eligible for code motion, or a prede�ned threshold has been
reached. So far, it was assumed that all instructions are amenable to renaming.
However, in practice this is not always the case, in particular, when additional
register constraints have to be accounted for. These constraints may arise from
registers that are accessed by an instruction independent from its operands,
i.e., clobbered registers, condition code registers, �xed operands. These registers
can, of course, not be renamed. Another source of constraints arise from register
usage conventions of the application binary interface (ABI), e.g., when function
parameters are passed using registers on function calls. Renaming those registers
is again not possible. These, and other forms of constraints, have not been

183

discussed to simplify the presentation, but are highly relevant in practice.
In addition, other forms of dependencies besides those discussed previously

might appear in an actual DDG. The respective algorithms to detect cyclic
dependencies and update the DDG have to be modi�ed in order to preserve the
program's original semantics throughout all code motion transformations. The
algorithms presented in the previous sections mainly dealt with dependencies
carrying registers in order to simplify the discussion.

Some processors provide instructions with multiple result registers, e.g., in-
structions yielding the quotient and the remainder of a division. The presented
algorithms do not consider this case, but can easily be extended to handle
instructions with multiple results. The only di�erence is that additional de-
pendencies may arise between a parallel copy and the respective register use or
de�nition.

8.3 Experiments

We evaluate our approach for the ST2xx architecture within the production
compiler (version 6.5.0) of STMicroelectronics, which is based on the Open64
optimizers2 and the LAO [38] backend extension. The ST2xx architecture is a
4-way parallel VLIW architecture o�ering a single load/store unit, i.e., only a
single memory access can be performed per cycle. The architecture de�nes 64
32-bit general purpose registers and 8 single-bit predicate registers, which can
be used to control a conditional branch or a select operation that conditionally
copies one if its two input operands to its output operand.

We applied our DDG-based copy elimination to the integer benchmarks of
the SPEC2000 suite. The 252.eon benchmark is omitted due to lacking C++
support. Also the 253.perlbmk is not considered since certain system calls
required by this benchmark are no longer supported by the ST2xx platform.

The code generator of the ST2xx compiler performs instruction selection,
followed by pre-pass instruction scheduling, register allocation, and post-pass
instruction scheduling. Pre-pass scheduling conservatively tries to reorder in-
structions to minimize execution time, while avoiding an increase of register
pressure. Since register allocation introduces additional operations, e.g., mem-
ory accesses and register copies, a second, more aggressive, instruction schedul-
ing pass produces the �nal instruction sequence.

Register allocation is performed under SSA by a generic graph coloring reg-
ister allocator featuring iterated coalescing [51], many copies are thus already
eliminated. The remaining copies are induced by φ-functions introduced by the
conversion to SSA form. The respective copies are converted to regular and
cyclic parallel copies, see Section 2.1.1, which are preliminarily placed on the
CFG edges before the corresponding φ-functions. The parallel copies are then
assigned to basic blocks using the Edge Motion technique of Chapter 7. Finally,
our DDG-based copy elimination is performed for each basic block in the pro-
gram separately. The copy elimination thus e�ectively executes after register
allocation and before post-pass scheduling. A potentially suboptimal ordering
of instructions produced by our copy elimination thus is automatically taken
care of by post-pass scheduling.

2http://www.open64.net/

184

http://www.open64.net/

In our experiments we evaluate the e�ectiveness of our DDG-based approach
with respect to the unmodi�ed Block Motion technique of Chapter 7. The exper-
iments focus on the total count of copies after register allocation in comparison
to the number of copies remaining after applying either standard Block Motion
or our approach. In addition, we also compare the reduction in copy costs, by
assigning each copy in the program a weight corresponding to the execution
frequency of the copy. The weight is computed using standard formulas of the
Open64 compiler as 1

4fBB , where fBB denotes the execution frequency of basic
block BB. The factor 1

4 accounts for the potential parallel execution of up to 4
copy operations in a single VLIW. Execution frequencies are estimated using the
standard approach of Ball and Larus [5]. The results are compared for each of
the 4811 function of the benchmark programs individually. To make the �gures
easier to read, only functions where either of the two copy elimination strategies
was able to eliminate some copy are shown. Furthermore, aggregated results
over whole benchmarks are discussed and the runtime behavior of the various
benchmarks are compared.

8.3.1 Copy Elimination after Full Coalescing

Our �rst setup shows the potential for our technique (DDGφ) after iterated co-
alescing, where coalescing of φ-related variables is enabled. The result is com-
pared with a con�guration (BASEφ), where only Edge Motion is performed, and a
con�guration (BMφ), where Block Motion is performed in addition. Figure 8.11
compares the number of remaining copies, sorted ascending according to the
DDGφ con�guration. The plot shows a data point for every function, where ei-
ther BMφ or DDGφ eliminate some copies. In the best case, only 25% of the original
copies remain for DDGφ (197.parser), compared to 48% for BMφ (300.twolf).
On average, depicted by the horizontal lines, over the 461 functions, only 90%
of the copies remain for DDGφ, whereas for BMφ 94% remain. Considering that
iterated coalescing already delivers much better results than other heuristic
coalescing techniques (about 20% in comparison to Brigg's conservative coa-
lescing [51]), these results are surprisingly good. Due to the conversion between
parallel copies and permutations, BMφ may, in some cases, increase the number of
copies. In the worst case, this increase amounts to 49% (197.parser), which is
explained by an adverse interaction between Block Motion and inter-procedural
register allocation. The problem here is that Block Motion touches caller-saved
registers when constructing permutations. This impacts the register assignment
at the call sites of the respective function and increases the number of copies.

Figure 8.12 shows the relative costs induced by register-to-register copies,
i.e., the sum of the estimated execution frequencies of the copies per function,
sorted ascending with respect to the DDGφ con�guration, which again delivers
considerably better results. In the best case, only 0.8%(!) (254.gap) of the
copy costs remain for DDGφ, whereas 7% (176.gcc) of the costs remain for BMφ.
On average over the 461 functions, only 91% of the costs remain for our new
approach, while for BMφ 94% of the costs remain.

The number of remaining copies and their total costs over all 4811 functions
is shown by Table 8.1. The trend observed previously is again re�ected by these
numbers, albeit at a reduced magnitude. On average, DDGφ eliminates more than
3% of all the copies that could not be eliminated by iterated coalescing, whereas
Block Motion eliminates just about 2%. For 300.twolf both approaches per-

185

���

���

���

���

���

���

��	

��A

B

B�B
CDEF����� CDEF������

��B������FD��

� �

Figure 8.11: Remaining copies relative to the BASEφ con�guration, per function,
after full coalescing. (Lower is better)

���

���

���

���

���

���

��	

��A

B

B�B
CDEFE��� CDEFE����

��B�����F�D�E

� �

Figure 8.12: Remaining costs relative to the BASEφ con�guration, per function,
after full coalescing. (Lower is better)

Number of Copies Total Costs
Benchmark BASEφ BMφ DDGφ BASEφ BMφ DDGφ

164.gzip 825 797 796 4212710 4211230 4211560
175.vpr 5437 5334 5312 3215486 3215023 3214308
176.gcc 40055 39075 38745 487753 475099 466556
181.mcf 228 227 223 1113 1106 1079

186.crafty 2149 2128 2122 247843 247839 247838
197.parser 3426 3352 3321 482189 363355 362490

254.gap 14446 14304 14129 16154931 16148202 16139236
255.vortex 22796 22722 22708 10922 10909 10898
256.bzip2 673 662 661 4362319 4361304 4361293
300.twolf 5201 4828 4752 1390838 1389218 1389016

Table 8.1: Total number of copies and total copy costs remaining for each
benchmark after register allocation with full coalescing. (Lower is better)

186

form best, eliminating 9% (DDGφ) respectively 7% (BMφ) of the copies. In terms
of copy costs, 197.parser shows the best reductions amounting to about 25%
for both techniques.

8.3.2 Copy Elimination after Decoupled Register Alloca-
tion

In our second setup, we simulate decoupled register allocation by deactivating
the coalescing of φ-related variables, i.e., more parallel copies appear. The
con�gurations (names without the φ subscript) remain unchanged otherwise.
Figure 8.13 shows the remaining copies relative to the base con�guration BASE.
DDG performs considerably better, only 73% of the copies remain on average over
the 2296 functions, where either DDG or BM are able to eliminate some copy. For
the BM con�guration, on the other hand, 82% of the copies remain. The medians
for the DDG-based and block-motion-based con�gurations lie at 76% and 83%
respectively. In the best case, DDG eliminates all copies (181.mcf, 186.crafty,
197.parser), while for BM 11% of the copies remain in the best case (176.gcc).
As before, Block Motion increases the number of copies for certain functions,
which amounts to 9% in the worst case (176.gcc).

The corresponding reductions in copy costs are shown by Figure 8.14. For
DDG only 71% of the initial copy costs remain, while 81% of the costs remain for
BM. Naturally, the copy costs for the functions where DDG is able to eliminate all
copies become zero as well. The Block Motion algorithm is only able to reduce
the remaining copy costs to less than 1% for a single function (186.crafty).
The medians lie at 80% and 88% respectively. For 6 functions of 176.gcc Block
Motion increases the copy costs between 2% and 22%.

A comparison of the total number of copies and their respective costs over
all 4811 functions for the three con�gurations is given by Table 8.2. The DDG-
based approach, on average, over all benchmarks eliminates 32% of all copies
with respect to the BASE con�guration. The best result is achieved for 164.gzip,
where 45% of the copies are eliminated. The approach performs even better
with regard to copy costs, where the reduction amounts to 37% on average.
The 254.gap benchmark here shows the best result, 55% of the copy costs are
eliminated. The con�guration based on Block Motion shows better results than
for our �rst setup. However, it cannot reach the DDG con�guration. On average
over all benchmarks, 21% of the copies and 23% of the copy costs are eliminated.
The best results are achieved for 300.twolf and 197.parser with reductions
of 28% in the number of copies and 42% in the total copy costs respectively.
Both con�gurations appear to have di�culties with the 255.vortex benchmark,
where DDG is able to eliminate only 13% and BM only 10% of the copies.

Note, however, that the total number of copies and their costs summarized
by the table favors benchmarks with larger functions having more copies, which
are often easy to eliminate. These large functions may dominate the overall
numbers, as depicted by Figure 8.15. The �gure shows the accumulated and
normalized number of copies eliminated by DDG in comparison to the accumu-
lated and normalized number of initial copies from BASE. For BASE, 414, i.e.,
less than 10%, out of the 4811 functions contain 50% of the total number of
copies. During copy elimination this is even further ampli�ed. For DDG, only
214 functions account for 50% of the eliminated copies. For the BASE con�gu-
ration, these functions contain about 37% of the total number of copies of all

187

���

���

���

���

���

���

��	

��A

B

B�B
CDEF����� CDEF������

��A�������FD��

Figure 8.13: Remaining copies relative to the BASE con�guration, per function,
after decoupled register allocation. (Lower is better)

���

���

���

���

���

���

��	

��A

B

B�B
CDEFE��� CDEFE����

��A������F�D�E

Figure 8.14: Remaining costs relative to the BASE con�guration, per function,
after decoupled register allocation. (Lower is better)

Number of Copies Total Costs
Benchmark BASE BM DDG BASE BM DDG

164.gzip 3205 2392 1754 5357735 4290840 4255540
175.vpr 8614 7254 6570 7627027 6163193 5170911
176.gcc 64359 52862 47567 13382491 9736197 7300438
181.mcf 527 404 342 7212 5924 3549

186.crafty 5912 4306 3453 2693734 2134310 1284878
197.parser 6508 5353 4677 1039805 604656 578991

254.gap 30039 24932 20679 67426060 56894894 30334354
255.vortex 27881 25008 24175 15696 13514 12803
256.bzip2 1780 1347 1153 6683255 5120760 5075978
300.twolf 14640 10579 8812 15582390 11381541 9985798

Table 8.2: Total number of copies and total costs remaining for each benchmark
after decoupled register allocation. (Lower is better)

188

functions.

8.3.3 Coalescing versus DDG-Based Copy Elimination

Due to the conservative nature of iterated register coalescing we can compare the
results of the two experimental setups presented in the previous sub-sections.
Figure 8.16 shows the number of remaining copies per function for the BASE

and DDG con�gurations (after decoupled register allocation) in relation to the
BASEφ con�guration, which performs full coalescing. Disabling the coalescing of
φ-related variables (BASE) leads to a dramatic increase in the number of copies
by 87% on average, per function. While 1812 (38%) of the functions do not
show any signi�cant increase, 293 (18%) show an increase by a factor of two or
more � up to a factor of 49 in the worst case.

Given the local scope of our DDG-based copy elimination, it turns out to be

� ��� ���� ���� ���� ���� ���� ���� ���� ����

�

���

���

���

���

���

���

��	

��A

��B

�
CDEFE���������E������� ���E������C�

Figure 8.15: Accumulated and normalized number of copies eliminated by DDG

in comparison to the accumulated and normalized number of copies for the BASE
con�guration, per function, after decoupled register allocation.

� ��� ���� ���� ���� ���� ���� ���� ���� ����

����

�

�

�

�

�	

ABCDEEF��EABCD ABCDEEF�E���

����EE���������

��

Figure 8.16: Increase in the number of copies relative to the base con�guration
BASEφ, per function. (Lower is better)

189

��������		
�AB�C�D			

�A���EE			
�F���E�			

�F��ED����
��A���D��D

�B�����			
�BB�C�D���

�B�������	
���������	

 C�D���

��B�

����

��B�

����

��B�

����

��B�

����

����

���� ����
��B� ����

���A ����
����

��A� ����
����

���F

��AA

!�����	" #$!�����	"% !�����	&&'()ED����

Figure 8.17: Increase in the number of copies relative to the base con�guration
BASEφ. (Lower is better)

surprisingly e�ective. On average, the increase for DDG in comparison to BASEφ
amounts to only 37% per function, i.e., our technique is able to make up for
more than half of the losses. Almost half of the functions, 2154 (42%) contain
the same amount or less copies than with full coalescing enabled, and only 357
(7%) show increases of a factor of two or more. The worst case increase is also
reduced down to a (still high) factor of 24 � only 5 out of all functions show an
increase larger than 16 and 27 functions an increase larger than 8.

The results per benchmark follow this trend, as depicted by Figure 8.17. The
255.vortex benchmark is the least impacted by the disabled coalescing of φ-
related variables, showing increases of 10% and 6% for BASE and DDG respectively.
The worst results are observed for 164.gzip, with an increase of a factor of 4 and
2.13 for these two con�gurations respectively. On average, we thus observe an
increase of a factor of 2.28 for the base con�guration, compared to an increase
of 49% for our DDG-based technique. The standard Block Motion approach
consistently gives results worse than our new method. The increases in copy
costs follow similar trends as the total number of copies.

8.3.4 Runtime Behavior

In a �nal experiment we further investigate the impact of the DDG-based copy
elimination on the runtime behavior of the benchmark programs. Note that
for these measurements the 176.gcc as well as the 253.perlbmk benchmarks
are omitted, because they cannot be executed on the ST2xx platform. The
execution data is collected using the cycle-accurate ST2xx simulator. Due to
the large size of the benchmark programs and their data sets, we observe that
the cache behavior is dominating the execution time by far. The actual gains
in execution time are thus negligible. This is not surprising as the number of
copy operations in comparison to other code is relatively small. Furthermore,
memory accesses and, in particular, cache misses take orders of magnitude long
than simple arithmetic and copy operations. In one case the benchmark even
spends about 65% of its execution time on servicing instruction and data cache
misses. We thus report measurements based on the total number of instructions

190

executed by the processor normalized to a base con�guration � see Table 8.3.
In comparison to the base con�guration after decoupled register allocation

(BASE), the DDG-based copy elimination (DDG) reduces the total amount of
executed instructions by 4% for 256.bzip2 and 3% for 164.gzip. Block Motion
(BM) gives slightly inferior reductions of up to 2% for 164.gzip and 254.gap. On
average the two copy elimination techniques reduce the total number of executed
instructions by about 1% and 2% respectively. Block Motion leads to slightly
better improvements in comparison to our technique in only two cases (181.mcf
and 254.gap). When full coalescing is performed during register allocation the
gains of copy elimination naturally diminish. We thus do not see any relevant
improvements for the DDGφ and BMφ con�gurations with respect to BASEφ. The
largest improvement is in the order of 0.1% for 175.vpr and 186.craft, slightly
favoring the DDG-based copy elimination.

It is interesting to note that both copy elimination techniques increase the
number of executed nop operations, i.e., instructions without side e�ect that are
sometimes required to ensure latency and alignment constraints. In the worst
case (181.mcf) this increase amounts to a factor of 2.69(!) for both, the DDG

and BM con�gurations, while on average the increase amounts to 34% and 22%
respectively. One might suspect an adverse interaction with instruction schedul-
ing, which has fewer copy operations available to �ll holes in the schedule. Or
in other words, one might suspect that copy operations are simply replaced by
nops during scheduling. However, we could not con�rm this intuition when
examining the �nal code produced after post-pass scheduling. Here, we observe
on average a minimal increase in the number of nop operations for BM (1.0003),
while DDG even yields a reduction by 0.5%. This is also re�ected by correspond-
ing code size reductions. Overall we conclude that our DDG-based approach
leads to slightly denser instruction schedules, while at the same time the total
number of executed instructions is reduced.

8.4 Related Work

A standard approach to copy elimination during register allocation is regis-
ter coalescing [32]. The problem, however, is that coalescing might increase

Benchmark BASE BM DDG BASEφ BMφ DDGφ
164.gzip 1.00 0.98 0.97 1.00 1.00 1.00
175.vpr 1.00 1.00 1.00 1.00 1.00 1.00
181.mcf 1.00 0.98 0.99 1.00 1.00 1.00

186.crafty 1.00 0.99 0.99 1.00 1.00 1.00
197.parser 1.00 0.99 0.98 1.00 1.00 1.00

254.gap 1.00 0.98 0.99 1.00 1.00 1.00
255.vortex 1.00 0.99 0.99 1.00 1.00 1.00
256.bzip2 1.00 0.99 0.96 1.00 1.00 1.00
300.twolf 1.00 0.99 0.99 1.00 1.00 1.00
Average 1.00 0.99 0.98 1.00 1.00 1.00

Table 8.3: Total number of instructions executed by a ST2xx processor for
each benchmark relative to the base con�guration without Block Motion and
DDG-based copy elimination. (Lower is better)

191

the register pressure and may lead to additional spilling. Heuristics thus try
to �nd a good balance [26, 51, 81] between overly aggressive coalescing and
spilling. Bouchez et al. showed that various variants of the coalescing problem
are NP-complete [17]. Grund and Hack [53] proposed an optimal solution to the
coalescing problem using linear programming. Our approach does not require
an interference graph and is thus better suited for decoupled approaches.

Similar to Brisk et al. [28], Braun et al. proposed techniques to eliminate
copies during register assignment [22] in decoupled register allocation. The basic
idea is to bias the assignment such that copy-related variables are assigned the
same register. In another approach, proposed by Buchwald et al. [29], the reg-
ister assignment is modeled as a non-linear optimization problem (partitioned
Boolean quadratic programming [40]), that can be solved heuristically or opti-
mally using branch-and-bound.

Linear scan register allocators [89], similarly try to avoid the explicit con-
struction of an interference graph. Wimmer and Mössenböck proposed register
hints [105] to propagate information on copy-related variables during register
allocation and, if possible, assign them to the same register. This is similar to
biased register assignment techniques.

Pereira and Palsberg proposed punctual coalescing [87] to model the coa-
lescing and assignment problem in a puzzle-based register allocator [85]. Given
a valid puzzle assignment for an instruction, it seeks a valid assignment for a
succeeding instruction, while avoiding useless copy operations. Since punctual
coalescing operates locally between two adjacent instructions, its scope is even
more restricted than our basic-block-local copy elimination.

These approaches are complementary to our work, it thus might prove inter-
esting to combine their respective strengths: the register assignment optimizes
global, φ-related live-ranges spanning multiple basic blocks, while the DDG-
based copy elimination handles basic-block-local assignment mismatches.

As proposed in this work, local recoloring after the assignment can be
performed. Hack and Goos proposed a recoloring technique on interference
graphs [57] that tries to �x-up mismatches locally, which are then propagated
throughout the entire IG. Parallel Copy Motion, brie�y introduced in Sec-
tion 8.1, aims at �nding a good placement of copies in the control �ow graph
and within basic blocks. The main advantage of this technique, similar to our
technique, is that the construction of an IG is avoided. It is thus best suited for
dynamic code generators, such as JIT compilers.

In contrast to this work, none of the previous approaches exploits the re-
ordering of instructions to eliminate copies.

8.5 Conclusion

This work presents a new algorithm to eliminate register-to-register copies after
register allocation based on the idea of local recoloring. Our approach operates
on data dependence graphs and thus has the unique ability to reorder instruc-
tions, if this appears to be pro�table.

Our experiments show that even after traditional copy elimination, using
a state-of-the-art coalescing algorithm, our approach is able to eliminate ad-
ditional copies. The approach also proves very powerful as an alternative to
coalescing in the context of decoupled register allocation. In both settings, our

192

DDG-based algorithm o�ers considerable improvements with respect to Parallel
Copy Motion.

A limitation of our approach, in comparison to traditional coalescing, is the
local scope, i.e., we currently limit our approach to basic blocks. It should
be fairly easy to extend the presented algorithms to operate on data depen-
dence graphs of extended basic blocks, super blocks, or even traces [62, 44].
The increased scope of the optimization might then improve its e�ectiveness
� in particular with respect to copy costs. It might also be interesting to in-
vestigate a closer intertwining between Edge Motion and our technique. For
instance, it might be pro�table to process the basic blocks in post-order us-
ing our technique, while propagating the remaining copies to neighboring basic
blocks along control-�ow edges.

We could, furthermore, exploit copies more aggressively after copy elimina-
tion in the �nal instruction scheduling pass. Uses of a register can be scheduled
freely before or after a related copy involving the same register, if no dependen-
cies exist between the use and the copy. The scheduler might even introduce
copies to avoid costly stalls. It might thus be interesting to extend our approach
to operate in concert with instruction scheduling.

193

Part V

Conclusion

194

Chapter 9

Conclusion

In this thesis, we demonstrated, based on a deep empirical evaluation, that
complex algorithms are not required to cope with aliasing, application binary
interface (ABI), or encoding constraints in decoupled register allocators. We
showed that handling such constraints is possible with another notion of register
pressure, with post-processing phases, or with better-placed split points. All
these contributions use the elegant framework of decoupled register allocation.

9.1 Contributions

9.1.1 Spilling

Chapter 3 introduced a new integer linear programming (ILP) formulation of the
spilling problem. This formulation is general enough to emulate, to our knowl-
edge, all existing exact approaches. In other words, it subsumes them. Using
this formulation, we studied optimal spilling, with respect to static spill cost, the
state-of-the-art spilling metric, in the context of static single assignment (SSA)
form. We showed that it is di�cult � although possible � to capture the e�ects
of φ-functions in the formulation, thus, a fortiori, in a heuristic. The φ-functions
are virtual split points and they should be handled as such, otherwise the static
spill cost may be degraded by up to 40% and the runtime by up to 10% for
the best model with and without SSA. In particular, an optimal spiller should
be able to transfer values through memory copies, i.e., without requiring any
registers, to match the performance of the same program without SSA. On a
reduced instruction set computing (RISC) architecture, this is possible if and
only if both values share the same memory location. Therefore, when SSA comes
in play, the spiller should be able to solve a coalescing problem for the memory
slots and it must solve it optimally to reach the optimal spilling solution.

As coalescing is a hard problem, we did not want to include it in the spilling
problem, this would have blown up the number of ILP variables and constraints.
Instead, we proposed two approaches to approximate the memory coalescing
problem. The �rst approach, optimistic, considers that all move-related mem-
ory locations, i.e., all memory slots of variables connected by a (parallel) copy or
a φ-function in the original program, can be coalesced, thus memory-to-memory
copy is free. The second approach, pessimistic, considers that all move-related
variables that do not interfere in the original program have their memory slots
coalesced, otherwise their memory slots interfere. Both approaches proved to

195

compete with their non-SSA counterpart, which o�ers a simple model to over-
come the di�culties implied by SSA for spilling. Moreover, we showed that,
when rematerialization is enabled, con�gurations using SSA achieved better
performances as this form gives more information on the variables. Similar re-
sults may be reachable for other con�gurations but with more complex analysis.

Finally, in this chapter, we observed that the static spill-cost model does
not capture the important feature of modern architectures, in particular the
fact that the latency of loads depends on the distance from the next use, thus
producing mitigate results for runtime performance.

Following this observation, we reviewed, in Chapter 4, the existing spilling
criteria and the related spillers. We identi�ed the limitations of these criteria
and their misuses in the spillers. We proposed several extensions to increase their
scope. We de�ned a better pro�tability metric for further-�rst-based heuristics
and a latency-based model for cost-based approaches. Moreover, using our
ILP formulation, we validated empirically some simplifying assumptions that
may help to derive good spilling heuristics. In particular, we validated that,
in a �rst approximation, store instructions can be blocked at de�nition points
and be considered as free. However, they are still minimized, i.e., no useless
store should be inserted. This way, spillers can focus on improving the cost
of loads. For loads, we proposed to force them to be placed just before the
related uses but not necessarily before all uses. Of course, this can lead to
some bad cases but interestingly, on average, this approach, coupled with the
store simpli�cation, does not impact the runtime when followed by a latency
optimization as we proposed. Thus, a very simple model, store at de�nitions
and free, load at uses and costly, yields runtime performances comparable to
optimal, with respect to spillers based on a static spill cost. This model may be
of interest for a just-in-time (JIT) compiler.

9.1.2 Coloring

In Chapter 5, we presented an extension of the interference graph (IG) model
to deal with encoding and ABI constraints. This extension features antipathies.
Antipathies look like the a�nities used in the coalescing optimization but, unlike
a�nities, they represent a dislike between two variables. These entities provide a
convenient way to model weak interferences, i.e., interferences between variables
but that may be broken at some cost. In our case, the cost represents the weight
of move instructions to be inserted to repair this interference.

This extension has two main advantages. First, it does not require any
additional split points than the ones provided by SSA, but still it produces an
IG with the nice properties of SSA. This way, it eliminates the pre-processing
phases needed to perform additional live-range splitting, e.g., liveness analysis,
split points insertion, SSA reconstruction. Second, it is compatible with existing
graph-coloring-based approaches, as antipathies are modeled with a�nities of
negative weight. We proposed three strategies to take advantage of this model
in existing approaches. These strategies achieve di�erent degrees of quality of
the generated code, depending on the implementation e�ort made to handle this
extension. In all cases, this e�ort is kept light. These strategies are:

Freeze Ignore the antipathies during the simpli�cation process and take them
into account when choosing the color.

196

Dummy Node After graph building and prior to coloring, replace each antipa-
thy by an a�nity and an interference using an additional dummy node.

Conservative Insert a new �coalescing� rule for antipathies and replace them
by interferences when it is conservative to do so.

We demonstrated that this model and its repairing counterpart produce code
whose quality is comparable to the approaches with extensive live-ranges split-
ting, but without the need for this splitting. We then showed how a similar
method, based on repairing, can be applied on scan-based approaches with our
fast register allocator tree-scan . Using this allocator, we evaluated the impact
of di�erent bias techniques on the code quality, the compile time, the memory
footprint, and the runtime. Tree-scan proved to be a very e�cient allocator
whose produced code quality, memory footprint, and compile time can be tuned
with the di�erent bias techniques according to a time budget. In particular,
it produces code whose runtime is within 2% of a decoupled iterated register
coalescer (IRC) with extensive split points, in 12x less compile time and almost
30x smaller memory footprint.

In Chapter 6, we presented a new spilling criterion to handle aliasing and still
be able to decouple the register allocation. We de�ned a new form of live-ranges
splitting, the semi-elementary form. This form provides the �rst light program
representation for decoupled register allocation when aliasing is involved while
previous approaches rely on split-everywhere strategies (i.e., possibly a split
on each program point). We demonstrated the interest of such a form with
existing graph-coloring-based allocation. The size of this representation yields
smaller graphs, which have a smaller memory footprint and are solved faster,
and produces better results as heuristics have di�culties to cope with large
graphs. Although graph coloring is not intended to be used in JIT compilers,
these results are interesting for regular compilers, in particular those featuring
aggressive approaches and for which the problem was previously intractable
because of the size of the representation. We believe that this improvement will
allow to further investigate this kind of approach, leading to a better problem
understanding and possibly heuristics suitable for JIT compilation.

9.1.3 Post Phases

In Chapter 7, we proposed an elegant formalism, called parallel copy motion,
that works on register-allocated codes. Parallel copy motion is useful to per-
form region recoloring (a re-allocation of variables by register permutations).
We demonstrated its interest with two di�erent applications. First, allocated
codes, in particular those produced by decoupled or fast allocators, often con-
tain (parallel) copies that are, from the semantics of SSA, to be placed on the
control �ow graph (CFG) edges. Prior to our work, to be materialized in the
code, these instructions required edge splitting, i.e., the addition of a basic block
on the edge. We showed how parallel copy motion can be used to move these
instructions from the CFG edges, possibly making this block empty and thus
useless. This proved to be bene�cial both for the code quality and the runtime
performances. Second, parallel copy motion turned out to be useful also to re-
move some (parallel) copy instructions that can remain anywhere in the code
at the end of the allocation process, not necessarily on CFG edges.

In Chapter 8, we further extended our parallel copy motion framework on
data dependence graphs (DDGs). Working directly with this information on

197

data dependences enables to reschedule the code as well as performing region
recoloring to eliminate copy instructions.

Both methods are not needed to produce a correct allocated code. However,
they improve its quality. Moreover, each method is composed by a sequence
of transformations (moving up, moving down), whose order can be tweaked via
heuristics. Each of these transformations produces a valid output. Therefore,
we believe that these methods o�er the �exibility required to be used in a JIT
compiler. Indeed, they can be used to increase the performance until a time
budget or a threshold is reached between each transformation.

9.2 Perspectives

9.2.1 Spilling

We believe that our ILP formulation provides a good framework to capture
the spilling problem with �xed scheduling. Using this framework, it is easy to
explore di�erent spill costs and restrictions. From our point of view, it will not
pay o� to invest in a more sophisticated formulation, unless new results help to
model the memory coalescing problem.

We are currently working on a fast spilling heuristic that will use either our
latency model or the proposed simplifying assumptions (or both). Using these
simpli�cations, we believe that with a proper live-range splitting, as introduced
in Chapter 4, a spill-everywhere, thus simple, approach can be used. Moreover,
we want to continue our research on de�ning a good spilling criterion. Indeed,
we gave some evidence that helping the scheduler is a good idea for runtime
performances, but we do not know yet how to model that. This problem is
even more complex in the case of very-long instruction word (VLIW) machines,
like our supplied target, as bundles may have a huge impact on the runtime
performances. In particular, a well-placed load instruction, i.e., whose latency
is completely hidden and that �lls a hole in an existing bundle, can be cheaper
(actually even free!) than a badly-placed move instruction. Indeed, if all bundles
are full, a new one will be created. In other words, on these architectures, the
assumptions that loads are, in �rst approximation, more expensive than moves
may not be true. We want to investigate further the implications of this fact.

In a longer-term perpective, we want to explore the coupling of a scheduler
and a spiller with a spill-aware scheduling or a scheduling-aware spilling, �rst
in a static compiler, then in a JIT compiler.

9.2.2 Coloring

In this thesis, we provided a complete framework to deal with encoding and
ABI constraints in a wide range of approaches. In particular, without aliasing,
we believe that our coloring approach, tree-scan, will be di�cult to overcome on
both the compile-time and the memory footprint. Moreover, the code quality
of its generated code, when combined with bias technique, competes with the
best known coloring approaches. This makes this approach appealing even for
static compilers.

However, our approach of aliasing constraints remained focused on graph-
coloring-based approaches. We are working on a tree-scan allocator that would

198

handle both kind of constraints. Our approach is a generalization of the puzzle
solver approach of Pereira and Palsberg [85] and yields better spilling decisions.

We think that our antipathy model has an applicability potential that has
not been exploited yet and that should be investigated. For instance, when
working on our post latency optimization for the spilling problem, we saw that
it would have been possible to bias the coloring using this model, so that the
resulting allocated code would have been easier to schedule with the regular
scheduler while hidding the latency.

9.2.3 Post Phases

Our parallel copy motion framework nicely solves the problem of the copies on
the edges. Moreover, as a by-product, our study has empirically proved that
it is generally a bad idea to leave these copies on the CFG edges. In terms of
correctness and cleanless of the approach, we believe it is not worth trying to do
better. However, our proposed methods can be tweaked to produce even better
code quality in terms of runtime. In particular, we presented a DDG-based
copy motion that works at the basic-block level. The objective function was to
minimize the number of moves, since all places in a basic block have the exact
same cost. We want to extend this approach in two orthogonal directions:

• The scope of the considered DDGs.
• Scheduling-aware elimination of moves.

For the �rst point, we have to re�ne the cost model and we may have add some
compensation code on edges. For the second point, we would look for a better
scheduling and not just a feasible one. Indeed, removing an instruction can
actually increase the schedule length on VLIW architectures.

199

List of Publications

[a] Florent Bouchez, Quentin Colombet, Alain Darte, Christophe Guillon, and
Fabrice Rastello. Parallel copy motion. In 13th International Workshop on
Software & Compilers for Embedded Systems (SCOPES'10), pages 1�10, St.
Goar, Germany, June 2010. ACM Press.

[b] Florian Brandner and Quentin Colombet. Copy elimination on data depen-
dence graphs. In Symposium on Applied Computing (SAC'12), Trento, Italy,
March 2012. ACM Press.

[c] Quentin Colombet, Benoit Boissinot, Philip Brisk, Sebastian Hack, and Fab-
rice Rastello. Graph coloring and treescan register allocation using repairing.
In International Conference on Compilers, Architectures, and Synthesis of
Embedded Systems (CASES'11), Taipei, Taiwan, October 2011. IEEE Com-
puter Society.

[d] Quentin Colombet, Florian Brandner, and Alain Darte. Studying optimal
spilling in the light of ssa. In International Conference on Compilers, Archi-
tectures, and Synthesis of Embedded Systems (CASES'11), Taipei, Taiwan,
October 2011. IEEE Computer Society.

[e] André Tavares, Quentin Colombet, Mariza Bigonha, Christophe Guillon,
Fernando Pereira, and Fabrice Rastello. Decoupled graph-coloring register
allocation with hierarchical aliasing. In 14th International Workshop on
Software & Compilers for Embedded Systems (SCOPES'11), pages 1�10, St.
Goar, Germany, June 2011. ACM Press.

200

Bibliography

[1] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of vari-
ables in programs. In POPL '88: Proceedings of the 15th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 1�11,
New York, NY, USA, 1988. ACM Press.

[2] C.S. Ananian. The static single information form. Technical Report MIT-
LCS-TR-801, 1999.

[3] A. W. Appel and L. George. Optimal spilling for CISC machines with
few registers. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI'01), pages 243�253, Snowbird, USA,
June 2001. ACM Press.

[4] A. W. Appel and J. Palsberg. Modern Compiler Implementation in Java.
Cambridge University Press, 2nd edition, 2002.

[5] T. Ball and J. R. Larus. Branch prediction for free. In ACM SIG-
PLAN Conference on Programming Language Design and Implementation
(PLDI'93), pages 300�313, Albuquerque, USA, June 1993. ACM.

[6] R. Barik. E�cient optimization of memory accesses in parallel programs.
PhD thesis, Rice University, 2009.

[7] L. A. Belady. A study of replacement algorithms for a virtual storage
computer. IBM Systems Journal, 5(2):78�101, 1966.

[8] D. Bernstein, M. Golumbic, Y. Mansour, R. Pinter, D. Goldin,
H. Krawczyk, and I. Nahshon. Spill code minimization techniques for
optimizing compliers. In Proceedings of the SIGPLAN '89 Conference on
Programming language design and implementation, pages 258�263. ACM
Press, 1989.

[9] Miklós Biró, Mihály Hujter, and Zsolt Tuza. Precoloring extension. I.
interval graphs. Discrete Mathematics, 100(1â��3):267�279, 1992.

[10] R. Bodík, R. Gupta, and M. L. So�a. Load-reuse analysis: design and
evaluation. SIGPLAN Not., 34(5):64�76, May 1999.

[11] B. Boissinot. Towards an SSA based compiler back-end: some interesting
properties of SSA and its extensions. PhD thesis, École normale supérieure
de Lyon, 2011.

201

[12] B. Boissinot, F. Brandner, A. Darte, B. de Dinechin, and F. Rastello.
A non-iterative data-�ow algorithm for computing liveness sets in strict
SSA programs. International Symposium on Programming Languages and
Systems, pages 137�154, 2011.

[13] B. Boissinot, A. Darte, B. Dupont de Dinechin, C. Guillon, and
F. Rastello. Revisiting out-of-SSA translation for correctness, code qual-
ity, and e�ciency. In International Symposium on Code Generation and
Optimization (CGO'09). IEEE Computer Society Press, 2009.

[14] B. Boissinot, S. Hack, D. Grund, B. Dupont de Dinechin, and F. Rastello.
Fast liveness checking for SSA-form programs. In CGO'08: proceedings
of the sixth annual ieee/acm international symposium on code generation
and optimization, pages 35�44, New York, NY, USA, 2008. ACM.

[15] F. Bouchez. A Study of Spilling and Coalescing in Register Allocation
as Two Separate Phases. PhD thesis, École normale supérieure de Lyon,
April 2009.

[16] F. Bouchez, A. Darte, C. Guillon, and F. Rastello. Register allocation
and spill complexity under SSA. Technical Report RR2005-33, LIP, ENS-
Lyon, France, August 2005.

[17] F. Bouchez, A. Darte, and F. Rastello. On the complexity of register coa-
lescing. In CGO '07: Proceedings of the International Symposium on Code
Generation and Optimization, pages 102�114, Washington, DC, USA, mar
2007. IEEE Computer Society Press. Best paper award.

[18] F. Bouchez, A. Darte, and F. Rastello. On the complexity of spill every-
where under SSA form. In ACM SIGPLAN/SIGBED Conference on Lan-
guages, Compilers, and Tools for Embedded Systems (LCTES'07), pages
103 � 112, San Diego, 2007.

[19] F. Bouchez, A. Darte, and F. Rastello. Advanced conservative and opti-
mistic register coalescing. In CASES'08: Proceedings of the 2008 interna-
tional conference on Compilers, Architectures and Synthesis for Embedded
Systems, pages 147�156, New York, NY, USA, 2008. ACM.

[20] Florent Bouchez, Alain Darte, Christophe Guillon, and Fabrice Rastello.
Register allocation: What does the NP-completeness proof of Chaitin et
al. really prove? In WDDD 2006, Fifth Annual Workshop on Duplicating,
Deconstructing, and Debunking, part of ISCA-33, Boston, MA, June 2006.

[21] M. Braun and S. Hack. Register spilling and live-range splitting for SSA-
form programs. In Compiler Construction 2009, volume 5501 of LNCS,
pages 174�189. Springer-Verlag, 2009.

[22] M. Braun, C. Mallon, and S. Hack. Preference-Guided Register Assign-
ment. In Compiler Construction 2010, volume 6011 of Lecture Notes In
Computer Science, pages 205�223. Springer, 2010.

[23] P. Briggs. Register allocation via graph coloring. PhD thesis, Rice univer-
sity, April 1992.

202

[24] P. Briggs, K. D. Cooper, T. J. Harvey, and L. Taylor Simpson. Practical
improvements to the construction and destruction of static single assign-
ment form. Software: Practice and Experience, 28(8):859�881, 1998.

[25] P. Briggs, K. D. Cooper, K. Kennedy, and L. Torczon. Coloring heuristics
for register allocation. In Proceedings of the conference on Programming
language design and implementation, pages 275�284. ACM Press, 1989.

[26] P. Briggs, K. D. Cooper, and L. Torczon. Improvements to graph coloring
register allocation. ACM Transactions on Programming Languages and
Systems, 16(3):428�455, May 1994.

[27] P. Brisk, F. Dabiri, J. Macbeth, and M. Sarrafzadeh. Polynomial time
graph coloring register allocation. In 14th International Workshop on
Logic and Synthesis, June 2005.

[28] P. Brisk, A. K. Verma, and P. Ienne. An optimistic and conservative
register assignment heuristic for chordal graphs. In Proc. of the Conf.
on Compilers, Architecture, and Synthesis for Embedded Systems, CASES
'07, pages 209�217. ACM, 2007.

[29] S. Buchwald, A. Zwinkau, and T. Bersch. SSA-based register allocation
with PBQP. In Proc. of the Conf. on Compiler Construction, pages 42�61.
Springer, 2010.

[30] Z. Budimli¢, K. D. Cooper, T. Harvey, K. Kennedy, T. Oberg, and
S. Reeves. Fast copy coalescing and live range identi�cation. In Pro-
ceedings of the ACM Sigplan Conference on Programming Language De-
sign and Implementation (PLDI'02), pages 25�32, Berlin, Germany, June
2002. ACM Press.

[31] D. Callahan and B. Koblenz. Register allocation via hierarchical graph
coloring. In PLDI '91: Proceedings of the ACM SIGPLAN 1991 confer-
ence on Programming language design and implementation, pages 192�
203, New York, NY, USA, 1991. ACM.

[32] G. J. Chaitin. Register allocation & spilling via graph coloring. In ACM
SIGPLAN Symposium on Compiler Construction (CC'82), volume 17(6)
of SIGPLAN Notices, pages 98�105, 1982.

[33] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hop-
kins, and P. W. Markstein. Register allocation via coloring. Computer
Languages, 6:47�57, January 1981.

[34] F. C. Chow and J. L. Hennessy. The priority-based coloring approach to
register allocation. ACM Transactions on Programming Languages and
Systems (TOPLAS), 12(4):501�536, Oct. 1990.

[35] K. D. Cooper and L. Taylor Simpson. Live range splitting in a graph
coloring register allocator. In Compiler Construction, volume 1383 of
Lecture Notes in Computer Science, pages 174�187. Springer Verlag, 1998.

[36] K. D. Cooper and L. Torczon. Engineering a Compiler. Morgan Kauf-
mann, 2004.

203

[37] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. E�-
ciently computing static single assignment form and the control depen-
dence graph. ACM Transactions on Programming Languages and Systems,
13(4):451�490, 1991.

[38] B. Dupont de Dinechin, F. de Ferrière, C. Guillon, and A. Stoutchinin.
Code generator optimizations for the ST120 DSP-MCU core. In Proc. of
the Conf. on Compilers, Architecture, and Synthesis for Embedded Sys-
tems, CASES '00, pages 93�102. ACM, 2000.

[39] D. Ebner, B. Scholz, and A. Krall. Progressive spill code placement. In
International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems (CASES'09), pages 77�86. ACM Press, 2009.

[40] E. Eckstein. Code Optimization for Digital Signal Processors. PhD thesis,
Institut für Computersprachen, Technische Universität Wien, November
2003.

[41] J. Fabri. Automatic storage optimization. In Proceedings of the SIGPLAN
symposium on Compiler construction, pages 83�91, 1979.

[42] P. Faraboschi, G. Brown, J. A. Fisher, G. Desoli, and F. Homewood. Lx:
A technology platform for customizable VLIW embedded processing. In
Proceedings of the 27th International Symposium on Computer Architec-
ture, pages 203�213. ACM, June 2000.

[43] M. Farach-Colton and V. Liberatore. On local register allocation. In
SODA '98: Proceedings of the ninth annual ACM-SIAM symposium on
Discrete algorithms, pages 564�573, Philadelphia, PA, USA, 1998. Society
for Industrial and Applied Mathematics.

[44] J. Fisher. Trace scheduling: A technique for global microcode compaction.
IEEE Transactions on Computers, C-30(7):478�490, 1981.

[45] SC140 DSP Core Reference Manual. Freescale Semiconductor, Inc., 2005.

[46] R. A. Freiburghouse. Register allocation via usage counts. Commun.
ACM, 17(11):638�642, November 1974.

[47] S. M. Freudenberger, T. R. Gross, and P. G. Lowney. Avoidance and
suppression of compensation code in a trace scheduling compiler. ACM
Transactions on Programming Languages and Systems, 16(4):1156�1214,
1994.

[48] C. Fu and K. Wilken. A faster optimal register allocator. In ACM/IEEE
International Symposium on Microarchitecture (MICRO'35), pages 245�
256, Istanbul, Turkey, 2002. IEEE Computer.

[49] G. Gao, J. Amaral, J. Dehnert, and R. Towle. The SGI Pro64 compiler
infrastructure. In Tutorial, International Conference on Parallel Archi-
tectures and Compilation Techniques, 2000.

[50] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman and Company, 1979.

204

[51] L. George and A. W. Appel. Iterated register coalescing. ACM Transac-
tions on Programming Languages and Systems, 18(3):300�324, May 1996.

[52] D.W. Goodwin and K.D. Wilken. Optimal and near-optimal global reg-
ister allocation using 0-1 integer programming. Software: Practice and
Experience, 26(8):929 � 965, 1996.

[53] D. Grund and S. Hack. A fast cutting-plane algorithm for optimal coa-
lescing. In Proc. of the Conf. on Compiler Construction, CC'07, pages
111�125. Springer, 2007.

[54] J. Guo, M. Jesús Garzarán, and D. Padua. The power of belady's al-
gorithm in register allocation for long basic blocks. In Languages and
Compilers for Parallel Computing, volume 2958/2004 of Lecture Notes in
Computer Science, pages 374�390. Springer Berlin / Heidelberg, 2004.

[55] S. Hack. Register Allocation for Programs in SSA Form. PhD thesis,
Univ. Karlsruhe, October 2007.

[56] S. Hack and G. Goos. Optimal register allocation for SSA-form programs
in polynomial time. Information Processing Letters, 98(4):150�155, May
2006.

[57] S. Hack and G. Goos. Copy coalescing by graph recoloring. In ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, pages 227�237, New York, NY, USA, 2008. ACM.

[58] S. Hack, D. Grund, and G. Goos. Register allocation for programs in SSA
form. In International Conference on Compiler Construction (CC'06),
volume 3923 of LNCS. Springer, 2006.

[59] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quanti-
tative Approach. Morgan Kaufmann, third edition, 2003.

[60] U. Hirnschrott, A. Krall, and B. Scholz. Graph coloring vs. optimal reg-
ister allocation for optimizing compilers. In JMLC, pages 202�213, 2003.

[61] L. P. Horwitz, R. M. Karp, R. E. Miller, and S. Winograd. Index register
allocation. J. ACM, 13(1):43�61, 1966.

[62] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter,
R. A. Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab,
J. G. Holm, and D. M. Lavery. The Superblock: An e�ective technique
for VLIW and superscalar compilation. The Journal of Supercomputing,
7(1-2):229�248, 1993.

[63] A. B. Kempe. On the Geographical Problem of the Four Colours. Amer-
ican Journal of Mathematics, 2(3):193�200, September 1879.

[64] K. Knobe and K. Zadeck. Register allocation using control trees. Technical
Report No. CS-92-13, Brown University, 1992.

[65] D. R. Koes and S. C. Goldstein. A global progressive register allocator.
In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI'06), pages 204�215, San Diego, June 2006.

205

[66] D. R. Koes and S. C. Goldstein. Register allocation deconstructed. In 12th
International Workshop on Software & Compilers for Embedded Systems
(SCOPES'09), pages 21�30. ACM Press, 2009.

[67] T. Kong and K. D. Wilken. Precise register allocation for irregular archi-
tectures. In MICRO, pages 297�307. IEEE, 1998.

[68] C. Lattner and V. S. Adve. Llvm: A compilation framework for lifelong
program analysis & transformation. In CGO, pages 75�88. IEEE, 2004.

[69] J. K. Lee, J. Palsberg, and F. M. Q. Pereira. Aliased register allocation.
In ICALP, 2007.

[70] A. Leung and L. George. Static single assignment form for machine code.
In Proceedings of the ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI'99), pages 204�214. ACM Press,
1999.

[71] V. Liberatore, M. Farach-Colton, and U. Kremer. Evaluation of algo-
rithms for local register allocation. In 8th International Conference on
Compiler Construction (CC'99), held as part of ETAPS'99, volume 1575
of Lecture Notes in Computer Science, pages 137�152, Amsterdam, The
Netherlands, March 1999. Springer Verlag.

[72] F. Lu, L. Wang, X. Feng, Z. Li, and Z. Zhang. Exploiting idle register
classes for fast spill destination. In Proceedings of the 22nd annual in-
ternational conference on Supercomputing, ICS '08, pages 319�326, New
York, NY, USA, 2008. ACM.

[73] G. Lueh, T. Gross, and A. Adl-Tabatabai. Fusion-based register al-
location. ACM Transactions on Programming Languages and Systems,
22(3):431�470, 2000.

[74] C. May. The parallel assignment problem rede�ned. IEEE Transactions
on Software Engineering, 15(6):821�824, 1989.

[75] R. Morgan. Building an Optimizing Compiler. Elsevier Science, 1998.

[76] H. Mössenböck and M. Pfei�er. Linear scan register allocation in the
context of SSA form and register constraints. In International Conference
on Compiler Construction (CC'02), volume 2304 of LNCS, pages 229�246.
Springer, 2002.

[77] V. K. Nandivada, F. Pereira, and J. Palsberg. A framework for end-to-end
veri�cation and evaluation of register allocators. In SAS, pages 153�169.
Springer, Kongens Lyngby, Denmark, August 2007.

[78] C. Norris and L. L. Pollock. Register allocation over the program depen-
dence graph. SIGPLAN Notices, 29(6):266�277, 1994.

[79] R. Odaira, T. Nakaike, T. Inagaki, H. Komatsu, and T. Nakatani.
Coloring-based coalescing for graph coloring register allocation. In Pro-
ceedings of the 8th annual IEEE/ACM international symposium on Code
generation and optimization, CGO '10, pages 160�169, New York, NY,
USA, 2010. ACM.

206

[80] J. Park and S. Moon. Optimistic register coalescing. In Proceedings of
the International Conference on Parallel Architecture and Compilation
Techniques (PACT'98), pages 196�204. IEEE Press, 1998.

[81] J. Park and S. Moon. Optimistic register coalescing. ACM Transactions
on Programming Languages and Systems (ACM TOPLAS), 26(4), 2004.

[82] D. A. Patterson and J. L. Hennessy. Computer Organization and Design -
The Hardware/Software Interface. Morgan Kaufmann, 5th edition, 2012.

[83] F. Pereira. Register Allocation by Puzzle Solving. PhD thesis, UCLA,
University of California, Los Angeles, 2008.

[84] F. M. Q. Pereira and J. Palsberg. Register allocation via coloring of
chordal graphs. In Proceedings of the Asian Symposium on Programming
Languages and Systems (APLAS'05), pages 315�329, Tsukuba, Japan,
November 2005.

[85] F. M. Q. Pereira and J. Palsberg. Register allocation by puzzle solving.
In PLDI '08: Proceedings of the 2008 ACM SIGPLAN conference on Pro-
gramming language design and implementation, pages 216�226, New York,
NY, USA, 2008. ACM.

[86] F. M. Q. Pereira and J. Palsberg. SSA elimination after register allocation.
In 18th International Conference on Compiler Construction (CC'09), vol-
ume 5501 of LNCS, pages 158�173, York, UK, March 2009. Springer.

[87] F. M. Q. Pereira and J. Palsberg. Punctual coalescing. In Proceedings
of the International Conference on Compiler Construction, CC'10, pages
165�184. Springer, 2010.

[88] M. Poletto, D. R. Engler, and M. F. Kaashoek. tcc: a system for fast,
�exible, and high-level dynamic code generation. SIGPLAN Notices,
32(5):109�121, 1997.

[89] M. Poletto and V. Sarkar. Linear scan register allocation. ACM Transac-
tions on Programming Languages and Systems, 21(5):895�913, 1999.

[90] G. Ramalingam. On loops, dominators, and dominance frontiers. ACM
Transactions on Programming Languages and Systems, 24(5):455�490,
September 2002.

[91] Fabrice Rastello, Francois de Ferrière, and Christophe Guillon. Optimiz-
ing translation out of SSA using renaming constraints. In International
Symposium on Code Generation and Optimization (CGO'04), pages 265�
276. IEEE Computer Society Press, March 2004.

[92] L. Rideau, B. P. Serpette, and X. Leroy. Tilting at windmills with Coq:
Formal veri�cation of a compilation algorithm for parallel moves. Journal
of Automated Reasoning, 40(4):307�326, 2008.

[93] H. Rong. Tree Register Allocation. In Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture, pages 67�77.
ACM, 2009.

207

[94] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers
and redundant computations. In POPL '88: Proceedings of the 15th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 12�27, New York, NY, USA, 1988. ACM.

[95] V. Sarkar and R. Barik. Extended linear scan: An alternate foundation
for global register allocation. In International Conference on Compiler
Construction (CC'07), volume 4420 of LNCS, pages 141�155. Springer,
2007.

[96] B. Scholz and E. Eckstein. Register allocation for irregular architec-
tures. In Proceedings of the joint conference on Languages, compilers and
tools for embedded systems: software and compilers for embedded systems,
LCTES/SCOPES '02, pages 139�148, New York, NY, USA, 2002. ACM.

[97] R. Sethi and J. D. Ullman. The generation of optimal code for arithmetic
expressions. J. ACM, 17(4):715�728, October 1970.

[98] J. Singer. Static program analysis based on virtual register renaming.
Technical Report UCAM-CL-TR-660, February 2006.

[99] M. D. Smith, N. Ramsey, and G. Holloway. A generalized algorithm
for graph-coloring register allocation. In PLDI '04: Proceedings of the
ACM SIGPLAN 2004 conference on Programming language design and
implementation, pages 277�288, New York, NY, USA, 2004. ACM.

[100] V. C. Sreedhar, R. D.-C. Ju, D. M. Gillies, and V. Santhanam. Translating
out of static single assignment form. In 6th International Symposium on
Static Analysis (SAS'99), volume 1694 of LNCS, pages 194�210. Springer-
Verlag, 1999.

[101] Y. N. Srikant and P. Shankar. The Compiler Design Handbook: Optimiza-
tions and Machine Code Generation. CRC Press, 2nd edition, 2007.

[102] TMS320C5x User's Guide. Texas Instrument, 2006.

[103] O. Traub, G. Holloway, and M. D. Smith. Quality and speed in linear-scan
register allocation. SIGPLAN Not., 33(5):142�151, 1998.

[104] C. Wimmer and M. Franz. Linear scan register allocation on ssa form.
In Proceedings of the 8th annual IEEE/ACM international symposium on
Code generation and optimization, pages 170�179. ACM, 2010.

[105] C. Wimmer and H. Mössenböck. Optimized interval splitting in a linear
scan register allocator. In 1st ACM/USENIX International Conference
on Virtual Execution Environments (VEE), pages 132�141, 2005.

[106] B. Yang, S. Moon, S. Park, J. Lee, S. Lee, J. Park, Y. C. Chung, S. Kim,
K. Ebcioglu, and E. Altman. Latte: A java vm just-in-time compiler with
fast and e�cient register allocation. Parallel Architectures and Compila-
tion Techniques, International Conference on, 0:128, 1999.

[107] M. Yannakakis and F. Gavril. The maximum k-colorable subgraph prob-
lem for chordal graphs. Information Processing Letters, 24(2):133�137,
1987.

208

Appendix A

Appendix

A.1 Coloring with Encoding Constraints

This section reports the detailed numbers of Chapter 5.

209

Table A.1: Execution time of the generated code: 32 registers

IRC
IRC
Split

Dummy
Nodes

Freeze Conser. Pref. H HC HR HCR HW HA HAC HAR HAM HARC HARCS HACM HARCM HARM

gzip 1 0.91 0.9 0.91 0.91 0.95 0.92 0.94 0.91 0.93 0.89 0.89 0.9 0.87 0.89 0.86 0.92 0.9 0.88 0.87
vpr 1 0.99 0.99 1 0.99 1.02 1.03 1.03 1.03 1.03 1.02 1 1 1.01 1.01 0.99 1.04 1 0.99 1.01
mcf 1 0.95 0.95 0.95 0.95 0.96 0.99 0.98 0.95 0.94 0.95 0.95 0.95 0.92 0.92 0.94 0.97 0.91 0.9 0.91

crafty 1 0.95 0.95 0.97 0.95 0.98 0.98 0.98 0.98 0.97 0.96 0.96 0.95 0.95 0.96 0.94 0.99 0.96 0.95 0.95
parser 1 0.94 0.93 0.94 0.93 0.96 0.98 0.99 0.95 0.96 0.95 0.94 0.94 0.93 0.94 0.93 0.94 0.93 0.92 0.93

perlbmk 1 0.95 0.95 0.95 0.94 0.97 0.98 0.98 0.95 0.96 0.96 0.96 0.95 0.93 0.95 0.93 0.94 0.95 0.93 0.93
vortex 1 0.97 0.97 0.98 0.97 0.99 0.99 0.98 0.96 0.95 0.98 0.98 0.97 0.95 0.98 0.94 0.97 0.97 0.95 0.95

gap 1 0.9 0.9 0.9 0.9 0.93 0.93 0.94 0.89 0.89 0.91 0.91 0.91 0.86 0.87 0.85 0.91 0.87 0.86 0.87
bzip2 1 0.95 0.95 0.95 0.95 0.96 0.96 0.96 0.97 0.97 0.95 0.95 0.95 0.94 0.95 0.94 0.95 0.95 0.94 0.94
twolf 1 0.99 0.98 0.99 0.99 1 1 1 1 1 1 0.99 0.99 0.98 0.99 0.98 0.98 0.99 0.98 0.99

G.Mean 1 0.95 0.95 0.95 0.95 0.97 0.97 0.98 0.96 0.96 0.96 0.95 0.95 0.93 0.94 0.93 0.96 0.94 0.93 0.93

210

Table A.2: Execution time of the generated code: 16 registers

IRC
IRC
Split

Dummy
Nodes

Freeze Conser. Pref. H HC HR HCR HW HA HAC HAR HAM HARC HARCS HACM HARCM HARM

gzip 1.06 0.96 0.95 0.95 0.95 0.99 0.97 1.04 0.95 1 0.95 0.95 0.97 0.94 0.96 0.94 0.95 0.97 0.96 0.94
vpr 1.03 1.01 1.01 1.01 1.01 1.02 1.03 1.02 1.02 1.03 1.03 1.02 1.02 1.01 1.01 1.02 1 1.02 1.02 1.01
mcf 1.01 0.95 0.96 0.96 0.96 0.97 0.99 0.99 0.99 0.96 0.97 0.97 0.96 0.95 0.96 0.94 0.97 0.96 0.96 0.96

crafty 1.12 1.09 1.09 1.1 1.09 1.09 1.1 1.1 1.1 1.11 1.08 1.08 1.07 1.06 1.09 1.06 1.06 1.08 1.06 1.07
parser 1.01 0.95 0.94 0.95 0.94 0.97 0.99 0.99 0.98 0.96 0.95 0.95 0.94 0.94 0.95 0.93 0.93 0.94 0.93 0.94

perlbmk 1.02 0.96 0.95 0.95 0.94 0.97 0.98 0.99 0.96 0.97 0.96 0.96 0.96 0.94 0.96 0.94 0.95 0.96 0.94 0.95
vortex 1 0.97 0.97 0.98 0.97 0.99 0.98 0.99 0.97 0.97 0.98 0.98 0.97 0.96 0.98 0.95 0.95 0.97 0.95 0.96

gap 0.97 0.92 0.92 0.92 0.92 0.95 0.95 0.95 0.9 0.91 0.93 0.93 0.93 0.86 0.9 0.86 0.87 0.89 0.88 0.88
bzip2 1 0.96 0.97 0.97 0.97 0.98 0.98 0.99 0.96 0.97 0.96 0.97 0.97 0.96 0.97 0.96 0.97 0.97 0.96 0.96
twolf 1.02 1.01 1 1.01 1 1.01 1.02 1.02 1.01 1.01 1.01 1.01 1 1.01 1.01 1 1 1 1 1.01

G.Mean 1.02 0.98 0.97 0.98 0.97 0.99 1 1.01 0.98 0.99 0.98 0.98 0.98 0.96 0.98 0.96 0.96 0.98 0.97 0.97

211

Table A.3: Execution time of the generated code: 8 registers

IRC
IRC
Split

Dummy
Nodes

Freeze Conser. Pref. H HC HR HCR HW HA HAC HAR HAM HARC HARCS HACM HARCM HARM

gzip 1.13 1.06 1.06 1.06 1.06 1.08 1.11 1.11 1.05 1.09 1.07 1.07 1.07 1.02 1.1 1.03 1.03 1.1 1.05 1.04
vpr 1.14 1.12 1.11 1.15 1.14 1.12 1.12 1.12 1.12 1.14 1.12 1.12 1.12 1.08 1.13 1.13 1.13 1.13 1.13 1.11
mcf 1.12 1.07 1.07 1.08 1.07 1.09 1.1 1.1 1.13 1.13 1.1 1.1 1.09 1.09 1.1 1.08 1.08 1.1 1.1 1.08

crafty 1.43 1.45 1.45 1.45 1.45 1.37 1.38 1.39 1.39 1.42 1.38 1.38 1.38 1.36 1.38 1.36 1.36 1.37 1.36 1.36
parser 1.03 1.01 1.01 1.01 1.01 1.01 1.04 1.04 1.07 1.05 1.02 1.02 1.02 1 1.02 1 1 1.01 1 1.01

perlbmk 1.05 1.03 1.03 1.02 1.02 1.04 1.04 1.06 1.02 1.04 1.04 1.04 1.04 0.99 1.04 1 1 1.04 1.01 1.02
vortex 1.06 1.03 1.03 1.03 1.03 1.04 1.05 0.97 1.02 1.02 1.04 1.04 1.03 1.01 1.04 1.01 1.01 1.03 1.01 1.01

gap 1.03 1 1 1.01 1 1.01 1.02 1.01 0.96 0.97 1.01 1.01 1.01 0.92 0.97 0.93 0.93 0.95 0.94 0.95
bzip2 1.06 1.05 1.05 1.06 1.05 1.05 1.06 1.06 1.04 1.05 1.05 1.05 1.04 1.05 1.05 1.03 1.03 1.05 1.04 1.05
twolf 1.07 1.06 1.06 1.06 1.06 1.05 1.06 1.06 1.06 1.06 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05

G.Mean 1.11 1.08 1.08 1.09 1.08 1.08 1.09 1.09 1.08 1.09 1.08 1.08 1.08 1.05 1.08 1.06 1.06 1.08 1.06 1.06

212

Table A.4: Dynamic Moves: 32 registers

IRC
IRC
Split

Dummy
Nodes

Freeze Conser. Pref. H HC HR HCR HW HA HAC HAR HAM HARC HARCS HACM HARCM HARM

gzip 1 0.94 0.01 28.17 0.01 1.9 2.86 2.87 4.32 2.89 0.97 0.96 0.02 1.45 3.79 0.02 11.36 0.02 0.02 4.73
vpr 1 0.71 0.74 7.78 0.76 1.15 2.04 1.81 3.08 1.82 1.91 1.56 0.98 2.41 2.29 0.96 3.26 0.95 0.95 2.52
mcf 1 0.36 0.4 1.36 0.39 0.77 1.55 1.4 2.19 1.78 1.45 1.05 0.6 1.1 1.13 0.52 2.35 0.49 0.5 1.14

crafty 1 0.12 0.12 1.05 0.11 0.35 0.63 0.54 2.1 1.42 0.77 0.44 0.18 0.96 1 0.21 2.13 0.2 0.19 1.13
parser 1 0.28 0.32 1.51 0.46 0.58 1.15 1.29 1.97 1.36 1.14 0.77 0.73 1.31 1.57 0.7 2.16 0.69 0.68 1.61

perlbmk 1 0.3 0.38 2.81 0.57 1.35 1.85 1.77 3.55 2.44 1.56 1.43 1.09 2.3 2.11 1.05 1.05 1.01 1.02 2.24
vortex 1 0.12 0.11 1.18 0.14 0.19 0.38 0.28 1.01 0.67 0.38 0.31 0.16 0.46 0.35 0.15 1.07 0.14 0.14 0.43

gap 1 0.67 1.05 2.89 1.06 1.99 2.8 3.19 3.54 3.39 1.66 1.44 1.2 1.79 1.8 1.11 4.9 1.08 1.08 1.89
bzip2 1 0.56 0.05 23.13 0.02 2.2 4.02 2.83 7.61 3.19 2.45 2.34 0.14 5.82 7.36 0.14 0.27 0.14 0.14 8.55
twolf 1 0.96 1.18 8.24 1.18 1.29 1.72 1.83 2.59 1.84 1.72 1.5 1.07 1.5 2.04 1.07 1.39 1.07 1.07 2.36

G.Mean 1 0.40 0.22 3.92 0.22 0.93 1.57 1.45 2.81 1.89 1.26 1.02 0.37 1.55 1.77 0.36 1.96 0.35 0.35 1.98

213

Table A.5: Dynamic Moves: 16 registers

IRC
IRC
Split

Dummy
Nodes

Freeze Conser. Pref. H HC HR HCR HW HA HAC HAR HAM HARC HARCS HACM HARCM HARM

gzip 1.02 0.94 0.001 28.15 0.01 0.02 0.99 0.99 2.89 0.99 0.96 0.96 0.02 1.91 2.86 0.02 0.02 0.02 0.02 2.86
vpr 0.65 0.31 0.31 4.73 0.52 0.54 1.1 0.85 1.6 0.85 1.07 0.99 0.42 1.39 1.05 0.41 0.48 0.37 0.37 1.45
mcf 1.42 0.21 0.19 0.96 0.29 0.48 0.88 1.09 1.51 1.09 0.75 0.67 0.4 0.83 0.99 0.36 0.71 0.3 0.38 1.02

crafty 0.88 0.08 0.07 0.91 0.27 0.17 0.34 0.33 1.51 0.8 0.43 0.26 0.15 0.46 0.95 0.12 0.1 0.12 0.1 0.97
parser 0.88 0.24 0.34 0.86 0.39 0.34 0.71 0.93 1.43 1.02 0.56 0.48 0.47 0.98 0.99 0.51 0.53 0.53 0.53 0.99

perlbmk 1.1 0.25 0.01 0.05 0.01 1.03 1.44 1.43 2.58 1.45 1.28 1.2 0.93 1.82 1.9 1.04 1.05 0.98 0.97 1.98
vortex 1.58 0.05 0.06 0.67 0.26 0.14 0.3 0.75 0.66 0.73 0.25 0.25 0.16 0.28 0.33 0.07 0.06 0.08 0.08 0.31

gap 0.88 0.25 0.39 1.88 0.4 0.78 1.04 1.27 1.77 1.46 0.66 0.61 0.36 0.87 1.1 0.39 0.57 0.3 0.3 1.09
bzip2 0.87 0.57 0.02 21.85 0.05 0.75 1.62 1.41 6.52 1.46 1.2 1.28 0.07 4.52 5.15 0.07 0.17 0.37 0.37 5.15
twolf 0.57 0.53 1.6 0.98 0.96 0.65 0.97 0.97 1.42 0.97 1.18 0.97 0.64 1.29 1.5 0.64 0.75 0.75 0.75 1.5

G.Mean 0.94 0.25 0.08 1.63 0.15 0.33 0.83 0.94 1.83 1.05 0.75 0.67 0.24 1.10 1.31 0.22 0.26 0.25 0.25 1.36

214

Table A.6: Dynamic Moves: 8 registers

IRC
IRC
Split

Dummy
Nodes

Freeze Conser. Pref. H HC HR HCR HW HA HAC HAR HAM HARC HARCS HACM HARCM HARM

gzip 0.51 0.001 0.001 5.63 0.001 0.01 0.03 0.51 0.99 0.98 0.01 0.01 0.01 0.02 0.95 0.01 0.01 0.01 0.01 0.95
vpr 0.19 0.02 0.02 0.86 0.03 0.03 0.1 0.23 0.41 0.29 0.05 0.05 0.04 0.22 0.18 0.04 0.04 0.04 0.15 0.3
mcf 1.03 0.05 0.05 0.24 0.05 0.27 0.51 0.62 1.03 0.92 0.33 0.32 0.36 0.21 0.33 0.29 0.29 0.32 0.32 0.32

crafty 0.76 0.01 0.01 0.18 0.01 0.16 0.46 0.42 0.85 0.92 0.1 0.1 0.1 0.12 0.16 0.06 0.06 0.02 0.02 0.18
parser 0.64 0.05 0.06 0.18 0.11 0.08 0.27 0.57 0.47 0.61 0.08 0.08 0.08 0.23 0.21 0.08 0.07 0.08 0.07 0.22

perlbmk 1.01 0.16 0.16 0.4 0.16 0.77 0.91 0.98 1.65 1.3 0.8 0.77 0.78 1.01 0.93 0.76 0.75 0.72 0.73 0.93
vortex 1.15 0.02 0.02 0.14 0.01 0.16 0.2 0.7 0.36 0.5 0.07 0.07 0.07 0.08 0.09 0.06 0.06 0.06 0.06 0.14

gap 0.54 0.01 0.03 0.52 0.07 0.07 0.22 0.69 0.9 1.11 0.1 0.1 0.07 0.24 0.23 0.07 0.06 0.04 0.04 0.23
bzip2 0.53 0.01 0.01 4.38 0.03 0.18 0.07 0.44 1.17 0.77 0.03 0.1 0.02 0.77 1.69 0.03 0.03 0.33 0.34 1.68
twolf 0.03 0.001 0.001 1.28 0.001 0.001 0.01 0.02 0.23 0.02 0.001 0.001 0.001 0.22 0.22 0.001 0.001 0.001 0.001 0.11

G.Mean 0.47 0.01 0.01 0.60 0.02 0.07 0.15 0.39 0.69 0.53 0.05 0.06 0.05 0.20 0.33 0.05 0.05 0.05 0.06 0.34

215

Table A.7: Alloction time: 32 registers

IRC
IRC
Split

Preference None Hints Round Caller Web Web �lter Aggressive
Move
related

Split

gzip 7.56 10.37 5.32 1 0.99 1.08 1.5 1.11 1.12 1.31 1.39 1.64
vpr 9.06 23.39 4.26 1 1.01 1.09 1.53 1.12 1.13 1.24 1.33 1.77
mcf 7.41 9.74 4.9 1 1 1.08 1.52 1.12 1.13 1.24 1.32 1.57

crafty 10.99 11.55 4.47 1 1.01 1.1 1.51 1.14 1.15 1.31 1.41 1.68
parser 7.25 11.5 4.46 1 1 1.13 1.48 1.12 1.13 1.23 1.36 1.78

perlbmk 10.6 12.45 4.95 1 1 1.11 1.44 1.13 1.13 1.4 1.51 1.77
vortex 9.15 9.99 4.79 1 0.99 1.1 1.49 1.11 1.12 1.26 1.36 1.59

gap 8.59 12.52 4.35 1 1.02 1.14 1.5 1.13 1.13 1.22 1.36 1.93
bzip2 7.81 10.71 4.86 1 0.99 1.11 1.53 1.12 1.13 1.24 1.35 1.68
twolf 10.74 12.75 4.95 1 1 1.09 1.52 1.13 1.14 1.3 1.39 1.71

G.Mean 8.81 12.09 4.72 1 1 1.1 1.5 1.12 1.13 1.27 1.38 1.71

216

Table A.8: Allocation time: 16 registers

IRC
IRC
Split

Preference None Hints Round Caller Web Web �lter Aggressive
Move
related

Split

gzip 6.44 8.86 3.72 0.98 0.97 1.05 1.47 1.1 1.12 1.4 1.47 1.58
vpr 7.04 9.32 3.47 1 1.01 1.08 1.55 1.21 1.22 1.9 1.98 1.7
mcf 6.67 7.63 3.63 1.01 1.01 1.1 1.52 1.15 1.16 1.41 1.5 1.5

crafty 8.21 9.16 3.4 1.02 1.02 1.1 1.55 1.21 1.22 1.64 1.72 1.61
parser 6.42 9.87 3.48 0.99 0.99 1.08 1.49 1.16 1.17 1.61 1.7 1.72

perlbmk 10.26 11.53 3.61 1 0.99 1.07 1.46 1.17 1.19 1.83 1.9 1.73
vortex 8.07 8.84 3.63 1 0.99 1.09 1.49 1.14 1.15 1.5 1.59 1.56

gap 6.69 10.16 3.44 0.99 0.98 1.06 1.47 1.16 1.18 1.63 1.7 1.75
bzip2 6.43 8.6 3.47 0.99 0.98 1.09 1.52 1.14 1.16 1.41 1.51 1.61
twolf 7.7 9.29 3.38 0.99 0.98 1.06 1.51 1.22 1.23 2.29 2.36 1.6

G.Mean 7.31 9.28 3.52 1 0.99 1.08 1.5 1.17 1.18 1.64 1.73 1.63

217

Table A.9: Allocation time: 8 registers

IRC
IRC
Split

Preference None Hints Round Caller Web Web �lter Aggressive
Move
related

Split

gzip 4.6 5.82 2.75 0.93 0.91 0.99 1.39 1.05 1.06 1.3 1.36 1.35
vpr 4.86 6.49 2.83 0.93 0.92 0.97 1.46 1.12 1.13 1.54 1.58 1.53
mcf 4.79 5.66 2.98 0.99 0.99 1.06 1.48 1.13 1.14 1.37 1.44 1.38

crafty 6.03 7.02 2.93 1.01 1.01 1.06 1.54 1.21 1.22 1.54 1.59 1.52
parser 5.21 7.01 2.84 0.94 0.93 1 1.43 1.09 1.1 1.45 1.51 1.55

perlbmk 5.4 7.15 2.69 0.92 0.92 0.97 1.37 1.09 1.1 1.48 1.53 1.47
vortex 5.27 6.33 2.85 0.97 0.94 1.03 1.44 1.1 1.11 1.4 1.46 1.41

gap 4.44 6.26 2.8 0.92 0.91 0.96 1.41 1.1 1.11 1.5 1.54 1.52
bzip2 5.27 6.12 2.83 0.97 0.95 1.02 1.48 1.11 1.12 1.34 1.39 1.46
twolf 5.65 6.49 2.71 0.95 0.94 1 1.44 1.17 1.18 1.79 1.84 1.48

G.Mean 5.13 6.42 2.82 0.95 0.94 1.01 1.44 1.12 1.13 1.47 1.52 1.47

218

Table A.10: Memory footprint: 32 registers

IRC
IRC
Split

Preference None Hints Round Caller Web Web �lter Aggressive
Move
related

Split

gzip 14.63 20.71 6.22 1 0.98 1.04 3.43 1.51 1.51 1.56 1.38 2.46
vpr 22.82 31.51 5.48 1 1 1.05 3.58 1.54 1.54 2.03 1.39 3.28
mcf 10.45 13.67 5.79 1 0.99 1.04 3.37 1.6 1.6 1.6 1.33 2.21

crafty 37.31 47.7 5.91 1 0.99 1.06 3.84 1.6 1.6 1.8 1.47 3.36
parser 16.81 25.04 5.11 1 0.99 1.04 3.11 1.53 1.53 1.74 1.35 2.61

perlbmk 33.07 45.27 5.19 1 0.99 1.03 3.15 1.53 1.53 1.72 1.37 2.89
vortex 19.33 25.36 5.62 1 0.97 1.05 3.37 1.52 1.52 1.59 1.4 2.62

gap 20.28 30.5 5.11 1 1 1.02 3.4 1.56 1.56 1.79 1.38 3.39
bzip2 15.1 21.4 5.61 1 0.99 1.05 3.29 1.57 1.57 1.6 1.38 2.61
twolf 43.73 57.84 5.99 1 0.98 1.06 3.61 1.52 1.52 2.09 1.44 4.04

G.Mean 21.24 29.27 5.59 1 0.99 1.04 3.41 1.55 1.55 1.74 1.39 2.9

219

Table A.11: Memory footprint: 16 registers

IRC
IRC
Split

Preference None Hints Round Caller Web Web �lter Aggressive
Move
related

Split

gzip 14.07 19.66 4.31 0.93 0.9 0.97 3.26 1.43 1.43 1.48 1.29 2.24
vpr 20.82 29 4.06 0.93 0.92 0.96 3.41 1.45 1.45 1.93 1.29 2.65
mcf 10.19 12.49 4.08 0.94 0.93 0.97 3.18 1.53 1.53 1.53 1.27 1.99

crafty 38.27 46.46 4.22 0.93 0.91 0.97 3.69 1.53 1.53 1.72 1.38 2.78
parser 16.05 23.54 3.83 0.93 0.92 0.97 3 1.46 1.46 1.67 1.27 2.28

perlbmk 32.08 43.83 3.82 0.93 0.92 0.96 3.05 1.46 1.46 1.65 1.31 2.5
vortex 18.73 24.45 4.07 0.93 0.9 0.98 3.24 1.45 1.45 1.52 1.31 2.35

gap 17.87 27.68 3.87 0.93 0.92 0.95 3.25 1.47 1.47 1.7 1.29 2.42
bzip2 14.52 20.02 3.97 0.93 0.92 0.98 3.12 1.5 1.5 1.53 1.29 2.28
twolf 40.79 53.82 3.98 0.93 0.91 0.98 3.3 1.44 1.44 1.98 1.35 2.98

G.Mean 20.26 27.52 4.02 0.93 0.91 0.97 3.24 1.47 1.47 1.66 1.3 2.43

220

Table A.12: Memory footprint: 8 registers

IRC
IRC
Split

Preference None Hints Round Caller Web Web �lter Aggressive
Move
related

Split

gzip 13.78 16.86 3.56 0.89 0.86 0.92 3.17 1.39 1.39 1.4 1.23 2.07
vpr 19.11 25.18 3.53 0.9 0.88 0.91 3.28 1.4 1.4 1.51 1.22 2.62
mcf 9.86 11.56 3.55 0.91 0.9 0.94 3.12 1.5 1.5 1.48 1.22 1.87

crafty 43.01 48.02 3.69 0.9 0.88 0.92 3.65 1.51 1.51 1.52 1.32 2.73
parser 15.5 20.7 3.37 0.9 0.88 0.92 2.92 1.42 1.42 1.52 1.2 2.2

perlbmk 30.24 38.17 3.26 0.89 0.88 0.91 2.94 1.41 1.41 1.51 1.22 2.33
vortex 18.7 22.49 3.47 0.9 0.87 0.93 3.17 1.42 1.42 1.43 1.25 2.19

gap 16.67 21.54 3.4 0.88 0.88 0.9 3.17 1.42 1.42 1.56 1.2 2.44
bzip2 14.92 18.45 3.43 0.91 0.89 0.94 3.05 1.47 1.47 1.47 1.24 2.18
twolf 41.34 49.46 3.39 0.9 0.88 0.93 3.22 1.4 1.4 1.55 1.29 3.03

G.Mean 19.97 24.63 3.46 0.9 0.88 0.92 3.16 1.43 1.43 1.49 1.24 2.34

221

	Acronym
	I Introduction
	1 Introduction
	1.1 Register Allocation
	1.2 Motivations
	1.3 Outline and Contributions

	2 Prerequisites and Hypotheses
	2.1 Program Representation
	2.1.1 Code Operations
	2.1.2 Control Flow Graph (CFG)

	2.2 Static Single Assignment (SSA)
	2.2.1 -Functions
	2.2.2 Strictness and Dominance Property
	2.2.3 Conventional SSA
	2.2.4 Deconstructing SSA
	2.2.5 Liveness and SSA

	2.3 Register Allocation
	2.3.1 Hypotheses
	2.3.2 Global Register Allocation
	2.3.3 Decoupled Register Allocation

	II Spill
	3 Studying Optimal Spilling in the Light of SSA
	3.1 Formulating ``Optimal'' Spilling
	3.1.1 Existing ``Exact'' Formulations
	3.1.2 Limitations of Existing Approaches

	3.2 A More ``Optimal'' Formulation
	3.2.1 Basic Formulation
	3.2.2 Emulating Other Formulations
	3.2.3 Handling SSA and -Functions
	3.2.4 Extended Formulation

	3.3 Experiments
	3.3.1 Solving Time
	3.3.2 Static Spill Cost
	3.3.3 Dynamic Counts
	3.3.4 Execution Time Measurements

	3.4 Conclusion

	4 Towards a Better Spilling Heuristic
	4.1 Existing Spilling Criteria
	4.1.1 Static Spill Cost
	4.1.2 Furthest First

	4.2 Simplifying Assumptions
	4.2.1 The Instruction store
	4.2.2 The Instruction load

	4.3 Existing Heuristics
	4.3.1 Graph Coloring
	4.3.2 Scan-Based Approaches
	4.3.3 Decoupled Approaches

	4.4 Improving Runtime
	4.4.1 Latency
	4.4.2 Helping the Scheduler

	4.5 Conclusion

	III Coloring with Affinities and Antipathies
	5 Coloring with Encoding Constraints
	5.1 Graph Coloring with Repairing
	5.1.1 Model and restrictions
	5.1.2 Strategies
	5.1.3 Repairing Code

	5.2 Tree-Scan
	5.2.1 The Basic Algorithm
	5.2.2 Repairing

	5.3 Biased Coloring
	5.4 Related Work
	5.5 Experiments
	5.5.1 Graph Coloring and Repairing
	5.5.2 Tree-Scan

	5.6 Conclusion

	6 Decoupled Graph-Coloring Register Allocation with Hierarchical Aliasing
	6.1 Background
	6.2 Spilling Test in Face of Aliasing
	6.2.1 Checking Colorability via Smith's Simplification Test
	6.2.2 Correct Spilling Test Handling Aliasing and Precoloring
	6.2.3 Improving Smith's Test with Live-Range Merging

	6.3 Semi-Elementary Form
	6.3.1 Criterion to Avoid Live-Range Splitting
	6.3.2 Local Merging of Live-Ranges

	6.4 Experiments
	6.5 Conclusion

	IV Post Phases
	7 Parallel Copy Motion
	7.1 Parallel Copy Motion
	7.1.1 Parallel Copies
	7.1.2 Moving a Parallel Copy Out of an Edge
	7.1.3 Parallel Copy Motion Inside Basic Blocks

	7.2 Permutation Motion and Region Recoloring
	7.2.1 Reversible Parallel Copies & Permutations
	7.2.2 Region Recoloring

	7.3 Applications
	7.3.1 Removing Parallel Copies from Critical Edges
	7.3.2 Shrinking Parallel Copies in a Basic Block

	7.4 Experiments
	7.4.1 The Impact of Copy Motion Out of Edges
	7.4.2 The Impact of Copy Motion in Basic Blocks
	7.4.3 All Together

	7.5 Conclusion

	8 Elimination of Parallel Copies Using Copy Motion on Data Dependence Graphs
	8.1 Data Dependence Graphs
	8.1.1 Parallel Copies
	8.1.2 Parallel Copy Motion

	8.2 Copy Elimination on Data Dependence Graphs
	8.2.1 Downward Motion of Definitions
	8.2.2 Upward Motion of Uses
	8.2.3 Code Motion Past Cyclic Parallel Copies
	8.2.4 Algorithm Complexity
	8.2.5 Additional Remarks

	8.3 Experiments
	8.3.1 Copy Elimination after Full Coalescing
	8.3.2 Copy Elimination after Decoupled Register Allocation
	8.3.3 Coalescing versus DDG-Based Copy Elimination
	8.3.4 Runtime Behavior

	8.4 Related Work
	8.5 Conclusion

	V Conclusion
	9 Conclusion
	9.1 Contributions
	9.1.1 Spilling
	9.1.2 Coloring
	9.1.3 Post Phases

	9.2 Perspectives
	9.2.1 Spilling
	9.2.2 Coloring
	9.2.3 Post Phases

	List of Publications
	Bibliography
	A Appendix
	A.1 Coloring with Encoding Constraints

