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Abstract

In this thesis we address the numerical approximation of the incompressible Navier-
Stokes equations evolving in a moving domain with the spectral element method and high
order time integrators.

First, we present the spectral element method and the basic tools to perform spec-
tral discretizations of the Galerkin or Galerkin with Numerical Integration (G-NI) type.
We cover a large range of possibilities regarding the reference elements, basis functions,
interpolation points and quadrature points. In this approach, the integration and differen-
tiation of the polynomial functions is done numerically through the help of suitable point
sets. Regarding the differentiation, we present a detailed numerical study of which points
should be used to attain better stability (among the choices we present).

Second, we introduce the incompressible steady/unsteady Stokes and Navier-Stokes
equations and their spectral approximation. In the unsteady case, we introduce a com-
bination of Backward Differentiation Formulas and an extrapolation formula of the same
order for the time integration. Once the equations are discretized, a linear system must be
solved to obtain the approximate solution. In this context, we consider the solution of the
whole system of equations combined with a block type preconditioner. The preconditioner
is shown to be optimal in terms of number of iterations used by the GMRES method in
the steady case, but not in the unsteady one. Another alternative presented is to use alge-
braic factorization methods of the Yosida type and decouple the calculation of velocity and
pressure. A benchmark is also presented to access the numerical convergence properties of
this type of methods in our context.

Third, we extend the algorithms developed in the fixed domain case to the Arbitrary
Lagrangian Eulerian framework. The issue of defining a high order ALE map is addressed.
This allows to construct a computational domain that is described with curved elements.
A benchmark using a direct method to solve the linear system or the Yosida-q methods is
presented to show the convergence orders of the method proposed.

Finally, we apply the developed method with an implicit fully coupled and semi-implicit
approach, to solve a fluid-structure interaction problem for a simple 2D hemodynamics
example.

Keywords: spectral element method, incompressible Navier-Stokes equations, precon-
ditioning, algebraic factorization method, fluid-structure interaction, hemodynamics
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Resumé

Dans cette thèse nous nous intéressons à l’approximation numérique des équations
incompressibles de Navier-Stokes évoluant dans un domaine en mouvement par la méthode
des éléments spectraux et des intégrateurs en temps d’ordre élevé.

Dans une première phase, nous présentons la méthode des éléments spectraux et les
outils de base pour effectuer des discrétisations spectrales du type Galerkin ou Galerkin
avec intégration numérique (G-NI). Nous couvrons un large éventail de possibilités con-
cernant les éléments de reference, fonctions de base, points d’interpolation et points de
quadrature. Dans cette approche, l’intégration et la différentiation des fonctions polyno-
miales est faite numériquement grâce à l’aide d’ensembles de points convenables. En ce qui
concerne la différenciation, nous présentons une étude numérique des points qui doivent
être utilisés pour atteindre une meilleure stabilité numérique (parmi les choix que nous
avons actuellement).

Deuxièmement, nous introduisons les équations incompressibles stationnaires et non-
stationnaires de Stokes et de Navier-Stokes et son approximation spectrale. Dans le cas
non-stationnaire, nous introduisons une combinaison de la méthode Backward Differentia-
tion Formula (BDF) et une formule d’extrapolation du même ordre pour l’intégration par
rapport au temps. Une fois les équations discrétisées, un système linéaire doit être résolu
pour obtenir la solution approchée. Dans ce contexte, nous résolvons ce système avec un
préconditionneur par blocs. Nous montrons que le préconditionneur est optimal par rap-
port au nombre d’itérations utilisées par la méthode GMRES dans le cas stationnaire, mais
pas dans le cas non-stationnaire. Une autre alternative est d’utiliser les méthodes de fac-
torization algebrique de type Yosida et separer le calcul de la vitesse et de la pression. Un
cas test est présenté pour determiner les proprietés de convergence de ce type de méthodes
dans notre contexte.

Troisièmement, nous étendons les algorithmes développés dans le cas où le domaine
est fixé au cadre de la formulation Arbitraire Lagrange-Euler (ALE). La question de la
définition d’une carte ALE d’ordre élevé est abordée. Cela permet de construire un domaine
de calcul qui est décrit avec des éléments courbes. Un cas test utilisant une méthode directe
et les méthodes Yosida-q pour résoudre le système linéaire est présenté pour montrer les
ordres de convergence de la méthode proposée.

Finalement, nous appliquons la méthode développée pour résoudre une un problème
d’interaction fluide-structure pour un exemple simple bidimensionnel d’hémodynamique.
Nous considérons deux approches: une implicite entièrement couplée et une semi-implicite.
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Nomenclature

Polynomial bases setting:

Ω̂ reference domain
Ω domain
∂Ω boundary of Ω

d topological dimension of Ω̂
T d reference d-simplex
Qd reference simplex-product in Rd

LN N -th Legendre polynomial

P
(α,β)
N Jacobi polynomial of degree N and indices (α, β)

PN(−1, 1) set of polynomials of order N defined in (−1, 1)
PN(T d) set of polynomials of total degree smaller or equal to N defined in T d

QN(Qd) set of polynomials of degree smaller or equal to N defined in Qd

ℓi i-th Lagrange basis function
B set of basis functions
Jf Jacobian of application f
(

n
k

)

number of possible combinations of k objects chosen among a set of
n elements

TN dimension of PN(T d) or QN(Qd)
ΛTN

Lebesgue constant
V (B, X) generalized Vandermonde matrix associated with basis B

and point set X
P polynomial set
Dn

r set of the n-th derivatives of the polynomials in P in the r direction
CP representation matrix of the polynomials in P in the underlying basis
ϕ geometrical transformation
Ngeo polynomial order of the geometrical transformation
Th,Ngeo

triangulation of the domain Ω using mesh size h and geometrical
transformations of order Ngeo
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Functional setting:
Lp(Ω) space of p-integrable functions on Ω
Lp
0(Ω) subspace of Lp(Ω) of zero mean functions, ie,

∫

Ω
vdx = 0

Wm,p(Ω) space of functions v in Lp(Ω) with all partial derivatives up to
order m in Lp(Ω)

Hm(Ω) Wm,2(Ω)
‖·‖Hm(Ω) standard norm for the space Hm(Ω)

| · |Hm(Ω) standard semi-norm for the space Hm(Ω)

Linear algebra setting:
K(A) iterative condition number of matrix A
λmin minimum eigenvalue of matrix A
λmax maximum eigenvalue of matrix A
GN matrix associated with the discretization of the gradient operator
DN matrix associated with the discretization of the divergence operator
HN matrix associated with the discretization of the Laplacian operator
Mp mass matrix for the pressure operator
Ap discrete Laplacian matrix for the pressure operator



Introduction

The accurate approximation of the incompressible Navier-Stokes equations evolving in
a moving domain is an important subject of research in applied mathematics. This type of
problem appears in many important fluid dynamics applications, including fluid-structure
interaction problems [19, 67, 31] or free surface flows [45, 4]. The main difficulties of
simulating this problem are:

(i) how to discretize the system of equations in a domain that evolves in time, see [47, 22]

(ii) the choice of the solution algorithm for the coupled problem, see [19, 29, 42, 31]

(iii) the techniques to solve the linear system that appear in the process of calculating
the solution.

The full problem that we propose to solve reads as

ρ
∂u

∂t

∣

∣

∣

∣

Y

+ ρ((u−w) ·∇x)u− 2νDx(u) +∇p = f , in Ωt × I

divx(u) = 0, in Ωt × I

ρwh
∂2η

∂t2
− kGh

∂2η

∂z2
+

Eh

1− µ2
η

R2
0

− γv
∂3η

∂z2∂t
= Φr in Γw

0

u ◦ϕη = η̇er, on Γw
0

− ((Tn) · er) ◦ϕη = Φr

where u is the velocity of the fluid, p the pressure field associated and η the displacement
associated with the arterial wall (with respect to some reference configuration). The incom-
pressible Navier-Stokes equations are coupled with the generalized string model through
the interface Γw

t (see Figure 1 for a schematic representation of the domains involved).
This model and all the notation used are derived and explained in chapter 5.

The goal of this thesis is to develop a numerical method to solve the incompressible
Navier-Stokes equations defined in a moving domain that combines a spectral space dis-
cretization, a multistep Backward Differentiation formula time discretization, a Yosida type
algebraic factorization scheme and apply it to a problem with blood flowing through an
artery.

1



2 Contents

Ωtu

Σt Γ
w

t

S2

S1

Figure 1: 2D simplified compliant tube.

The Spectral Element Method (SEM)

Spectral methods are a class of spatial discretization techniques for approximating the
solution of differential equations within a space of high degree polynomials through the
method of weighted residuals. Typically, the spectral approximation of the solution is
expanded as a linear combination of certain basis functions that span this space. These
basis functions, which can be either of nodal or modal type, depending on the domain of
the problem, are often the Tchebychev, Legendre, Lagrange or Dubiner polynomials.

Classical (single domain) spectral methods can be categorized in three types: Galerkin
(pure or with numerical integration), collocation and tau. The difference between all
these methods resides in the choice of the test functions, that is, the set of functions used
to insure that the differential equation and/or boundary conditions are enforced to the
approximation. The Galerkin method uses the same trial/test functions that individually
satisfy the boundary conditions. The collocation method uses as test functions discrete
Dirac delta functions centered at, a priori, chosen points, and enforces the differential
equation exactly at these points. The tau version of this method is similar to the Galerkin
method, except that the test functions do not need to satisfy the boundary conditions.
These are enforced with a separate set of equations.

The first comprehensive theoretical formulation and analysis of spectral methods was
performed by Orzag and Gottlieb [38]. At this point, the spectral method was applied to
very simple geometries (basically 1D), defined in one single domain, see Canuto, Hussaini,
Quarteroni and Zang [10] for a complete analysis. The development that the SEM went
through in the 80’s gave rise to the the modern Galerkin (with or without numerical
integration) spectral method. The work by Patera in [61] provided the bases for the
modern multidomain spectral method. This version of the SEM pushes the method to deal
with arbitrary geometries, combining its spectral properties with the flexibility of the finite
element method. Although in the beginning it was only applied to geometries that were
partitioned into quadrangular sub-domains, the monography by Sherwin and Karniadakis
[48] provided a further extension of this method to geometries that could be partitioned



Contents 3

into simplices, thus giving even more flexibility to the SEM.

The incompressible Navier-Stokes equations

The starting point in discretizing in space the Navier-Stokes equations (in a fixed do-
main) in the primitive variable formulation is the choice of discrete spaces for velocity
and pressure. It is a well known fact that these spaces cannot be chosen independently.
This discrete compatibility condition enforces that a certain gap must exist between these
spaces. If such a condition is violated, then the linear system associated with the dis-
cretization fails to have a unique solution. This is the Brezzi-Babuska inf-sup condition,
see Quarteroni and Valli [70]. In the literature one can find a few possible choices of spaces
that fulfill such condition. Some examples are Bernardi and Maday [2], Schwab and Suri
[76], Ainsworth and Coggins [1] and Stenberg and Suri [81]. It is known that, for instance,
choosing velocities as polynomials of degree N and pressures as piecewise discontinuous
polynomials of degree N or N − 1 violates the inf-sup condition, see Bernardi and Maday
[2]. At an algebraic level, this violation is reflected in the existence of non-constant pres-
sures (defined all over the domain) whose discrete gradient is zero. Such pressures lead
to the non uniqueness of the solution of the Stokes/Navier-Stokes equations. One of the
most popular and widely used discretizations that does not lead to the presence of spuri-
ous pressure modes was studied by Patera, Maday [2] and Rønquist [72]. In their work,
they approximate the velocities with polynomials of degree N and pressures with piece-
wise discontinuous polynomials of degree N − 2. This introduces a gap sufficiently large
between the discrete spaces that allows for the fulfillment of the compatibility condition.
However, the error estimates proven are not optimal regarding the polynomial order of
the approximation spaces. This is due to the fact that the inf-sup constant decreases as
the polynomial order increases. Schwab and Suri investigated in [76] the PN − PN−2 and
PN − Pdisc

N−2 methods. They showed that the inf-sup constant can be bounded from below
by CN−3. We remark that other spaces can be found in the hp-FEM literature but they
all suffer either from spurious pressure modes (and thus stabilizing or filtering should be
applied) or have inf-sup constants that decrease to zero with increasing polynomial order.

In the context of the finite/spectral element method, apart from the space discretization
issue, several solution strategies have been proposed to solve the unsteady Navier-Stokes
equations. We highlight two of them: (i) coupled methods and (ii) splitting methods.
Splitting methods attempt to decouple the calculation of the velocity and pressure field,
either by performing a splitting in the differential equations, see for instance [39, 40, 41],
or by doing so at the algebraic level, see [68, 69, 75, 34, 33]. Such decoupling of the
variables makes the calculation of the solution faster, but at the cost of introducing some
error in the approximation, called splitting error. The differential type of splitting also
introduces an artificial boundary condition (that needs to be derived) for the pressure
operator. On the other hand, algebraic splitting methods do not have this requirement.
Coupled algorithms do not introduce splitting error. Instead, they try to solve the fully
coupled velocity-pressure system of equations, either with an Uzawa approach or with a
suitable preconditioner for the whole linear system, see [50, 51, 78].
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The Arbitrary Lagrangian Eulerian framework

The numerical simulation of differential equations evolving in a moving domain adds
an extra layer of complexity to the numerical methods that are devised to solve such
problem. A common technique to keep track of the evolution of the domain is the Arbitrary
Lagrangian Eulerian (ALE) framework [47, 22]. This framework introduces a quantity
that measures the domain’s velocity of deformation. Its numerical approximation has
been discussed in the context of the spectral element method, Ho and Rønquist [45] and
Bouffanais [4], or the finite element method Nobile [57]. A relevant aspect in devising
numerical schemes in the ALE framework is the so called Geometric Conservation Law
(GCL). A numerical scheme satisfies the GCL if it can represent a constant solution through
time. Although it is not a necessary or sufficient condition for convergence/stability of the
schemes, in some cases, the satisfaction of the GCL implies stability independently of the
domain’s rate of deformation, see Nobile [57].

Life and main contributions

The starting point of this thesis is undoubtedly the spectral (element) method and it’s
implementation. All the simulations and algorithms presented in this thesis are coded in a
library called Life. Life is a versatile library allowing for 1D, 2D and 3D partial differential
solves using h/p type Galerkin methods, continuous as well as discontinuous, in sequential
and parallel settings. The reader can consult [65, 64, 66] for some references on the code
and it’s potentialities.

Looking at the status of the library in the beginning of this work and the point that
it has reached today, the evolution is quite significant. When this thesis was started,
Life could handle, for instance in 2D, the Lagrange basis built only with Equidistributed
points. The connectivity issues were already handled in 2D, but not in 3D. The Domain
Specific Embedded Language was already available, but could only tackle scalar functions.
For example, a solver for the Navier-Stokes equations could be coded, but component by
component. Now, a standard variational formulation of these equations in vectorial form
can be easily programmed.

All the points sets, high order geometrical mappings, integration in faces, 3D connec-
tivity, interface with linear algebra solvers (Trilinos), Yosida schemes, ALE framework and
the fluid-structure interaction solvers are some of the main contributions of the author to
the library.

All of these algorithms, by themselves, or their combinations in a fluid-structure in-
teraction solver, are the main contribution of this thesis. For instance, all the algebraic
factorization Yosida methods, up to the author’s knowledge, had never been implemented
in such a general framework, independent of the type of mesh and it’s topological dimen-
sion.

Another contribution is the reproducibility (see [23]) of many results that can be found
in the literature. Some examples are the convergence of a certain type of spectral element
or the condition number of the generalized Vandermonde matrix using several bases and
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point sets.
Some of the results shown in this thesis are already quite known, while others are being

published for the first time.

Thesis Outline

In chapter 1 we introduce the basic tools to formulate spectral discretizations, with spe-
cial focus on the Galerkin and Galerkin with Numerical Integration (G-NI) variants. We
show how to construct the basis functions used by the spectral method in dD, d = 1, 2, 3, in
several reference elements, and on how to differentiate and integrate them. In our construc-
tion we express polynomial sets in terms of an orthonormal basis (Dubiner for simplices
and Legendre for tensorized domains), namely, the Lagrange polynomials associated with
a certain point set. A numerical study is presented to estimate the Lebesgue constant
associated with the point sets described in this chapter. Also, due to the approach we use
to differentiate polynomials, we study the conditioning of the generalized Vandermonde
matrix since it will influence the stability of the numerical algorithm.

In chapter 2 we present the multidomain extension of the spectral method. The issue
of connectivity is addressed both for modal and nodal type bases and we explain how
to create a map that relates the indices of the functions defined in the reference element
with the ones defined in a triangulation of the domain. This construction is described
for globally continuous bases functions, but also for expansions where the basis functions
are continuous within each element of the partition and discontinuous across the faces.
These basis functions are suitable for the discontinuous Galerkin methods. We finish this
chapter with the study of a Poisson equation, in dD, d = 1, 2, 3. We show the spectral
convergence of the method as well as some properties of condition number/eigenvalues of
the stiffness/mass matrix associated with the method.

In chapter 3 we address the numerical approximation of the incompressible Stokes and
Navier-Stokes equations in a fixed domain. We use the spectral element method to approx-
imate the variables of the problem (velocity and pressure), but also for the geometry, i.e.,
we consider geometrical transformations that are polynomials of higher degree bigger than
one. Regarding time integration, we introduce a combination of Backward Differentiation
Formulas and an extrapolation formula of the same order. We propose some precondition-
ing strategies for the linear system obtained after standard space-time discretization and
investigate their optimality in terms of number of iterations used by the GMRES method.
Also, we test the Yosida-q methods in solving the same linear system (in the unsteady
case) and show the expected convergence orders in time.

In chapter 4 we extend the algorithms developed in chapter 3 to the Arbitrary Lagrangian
Eulerian (ALE) framework. Since we consider the case of having high order geometries
describing the domain, we describe in detail the construction of a high order ALE map,
responsible, at each time step, for description of the computational domain where the
Navier-Stokes equations are to be solved. The Yosida-q schemes are also extended to this
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context. The last part of this chapter is dedicated to testing the developed solver with a
simple benchmark problem.

In chapter 5 we apply the previous solver to simulate blood flow in large arteries. We
use as test case a simple 2D hemodynamics problem and describe in detail the fluid and
structure solvers and their coupling. We propose two strategies to tackle the FSI problem:
an implicit fully coupled method and a semi-implicit method.



Chapter 1

The Spectral Method

In this chapter, we present the basic tools to formulate spectral discretizations with
special focus on the Galerkin or Galerkin with Numerical Integration (G-NI) variants.

Let Ω ⊂ Rd, d = 1, 2, 3, denote the domain of the problem. In the following, we show
how to construct the basis functions used by the spectral method in dD, d = 1, 2, 3. The
basic ingredients of our construction are: (i) the reference (or parent) element Ω̂, (ii) a
polynomial basis B defined in it, and (iii) a geometrical transformation that maps the
reference element into the domain Ω, ϕ : Ω̂ −→ Ω. This construction will be carried out
in simplices and tensorized domains, with bases both of nodal and modal type.

1.1 Reference element

A reference element is defined by a domain Ω̂ ⊂ Rd, d = 1, 2, 3, containing the geo-
metrical information associated, i.e., the relation between the several topological entities
that compose the domain itself, and the coordinates of its vertices. The description of the
reference element in terms of subentities is of crucial importance when dealing with bases
defined in a mesh of several elements. Moreover, the numbering and orientation of these
subentities will play a key role in addressing two problems: (i) defining continuous polyno-
mial expansions in a multidomain setting, see section 2.1 and (ii) matching points in faces,
see section 2.2. The former is related with the gluing of neighbor basis functions in a con-
tinuous Galerkin setting and the later is related with face integration in the discontinuous
Galerkin method.

In this section, we consider the following reference elements: (i) the interval (−1, 1),
for d = 1 (ii) quadrilaterals and triangles, for d = 2 and (iii) tetrahedra and hexahedra for
d = 3. We remark that in the three dimensional case, we could also consider prisms and
pyramids as reference elements. The construction in terms of polynomial bases that will
be exposed in this thesis is still valid, see Sherwin and Karniadakis [48]. We will refer to
simplices, for segments, triangles and tetrahedra, and tensorized domains for quadrilaterals
and hexahedra.

7



8 The Spectral Method

1.1.1 The reference interval

We define the reference element used when dealing with 1D geometries, the (−1, 1)
interval and we denote it by Q1 or T 1.

From a geometrical point of view, a closed interval is composed of two vertices and
one edge connecting them. Let E1i denote the set of indices associated with a topological
sub entity of dimension i in the reference interval. The decomposition of Q1 in topological
subentities is given by

E10 = {0, 1}
E11 = {0}

where E10 and E11 denote the set of global indices of vertices and edges, respectively. This
numbering system is depicted in Figure 1.1. For the edge defined by the two vertices of

0 10

Figure 1.1: Local and global numbering for the interval.

the interval, we also assign a local vertex numbering (that in this case coincides with the
global one). This introduces an orientation in the edge (illustrated by the arrow in Figure
1.1).

From an implementation point of view, the description of the relations between the
reference element and its topological subentities can be achieved by defining an appropriate
set of functions: elementToPoint, elementToEdge and edgeToPoint. They are defined as
follows

elementToPoint : E11 × E10 −→ E10 , elementToPoint(0, i) = i, ∀i ∈ E10 ,
elementToEdge : E11 × E11 −→ E11 , elementToEdge(0, 0) = 0,
edgeToPoint : E11 × E10 −→ E10 , edgeToPoint(0, i) = i, ∀i ∈ E10 .

The function edgeToPoint coincides with elementToPoint in this case (it will be differ-
ent for the forthcoming reference elements). These functions are responsible for providing
an orientation to the reference element.

1.1.2 The reference triangle and square

For the reference triangle and square, we consider

T 2 =
{

(x1, x2) ∈ R2 | − 1 < x1, x2 < 1, x1 + x2 < 0
}

and
Q2 =

{

(x1, x2) ∈ R2 | − 1 < x1, x2 < 1
}

and the vertices and edges of its closure.
Let us introduce again the decomposition of each reference element in terms of its

subentities. For the triangle, we define
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E20 = {0, 1, 2}
E21 = {0, 1, 2}
E22 = {0}

and for the square

E20 = {0, 1, 2, 3}
E21 = {0, 1, 2, 3}
E22 = {0}.

For both reference elements considered, we define the functions elementToPoint, ele-
mentToEdge and edgeToPoint. The first two are defined in the same way for both reference
triangle and square:

elementToPoint : E22 × E20 −→ E20 , elementToPoint(0, i) = i, ∀i ∈ E20
elementToEdge : E22 × E21 −→ E21 , elementToEdge(0, i) = i, ∀i ∈ E21

The function edgeToPoint is different for the triangular and quadrangular reference ele-
ments. In the first case it is defined as

edgeToPoint : E21 × E10 −→ E20 , edgeToPoint(i, j) = (i+ j + 1)%3, ∀(i, j) ∈ E21 × E10 .

and in the quadrangular case, as

edgeToPoint : E21 × E10 −→ E20 , edgeToPoint(i, j) = (i+ j)%4, ∀(i, j) ∈ E21 × E10 .

where % denotes the remainder of the integer division. We remark that this last function
introduces an orientation in the edges of the reference elements. For both reference triangle

0 1

23

0

1

2

3

0 1

2

01

2

Figure 1.2: Local numbering and orientation for vertices and edges in the quadrilateral
and triangle.

and square, the numbering and orientations just defined are depicted in Figure 1.2. The
same figure also shows the global index of the vertices of each reference element.

We finish by remarking that the numbering/orientation described here is different
from the ones described in Canuto, Hussaini, Quarteroni and Zang [12] and Sherwin and
Karniadakis [48].



10 The Spectral Method

1.1.3 The reference tetrahedron and hexahedron

Regarding the tetrahedron and hexahedron, we consider the following domains

T 3 =
{

(x1, x2, x3) ∈ R3 | − 1 < x1, x2, x3 < 1, x1 + x2 + x3 < 0
}

and
Q3 =

{

(x1, x2, x3) ∈ R3 | − 1 < x1, x2, x3 < 1
}

.

and the vertices, edges and faces of its closure.
We define similar numbering and orientations as before. First, we provide the decom-

position of these reference elements in terms of topological subentities. For the tetrahedron
we have

E30 = {0, 1, 2, 3}
E31 = {0, 1, 2, 3, 4, 5}
E32 = {0, 1, 2, 3}
E33 = {0}

and for the hexahedron

E30 = {0, 1, 2, 3, 4, 5, 6, 7}
E31 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
E32 = {0, 1, 2, 3, 4, 5}
E33 = {0}

In Figure 1.3 we display the numbering and orientation of the vertices and edges com-
posing the reference elements.
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(a) Vertices and edges.
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(b) Vertices.
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(c) Edges.

Figure 1.3: Numbering and orientation for vertices and edges in the tetrahedron and hex-
ahedron.

In the three dimensional case, we define the functions elementToPoint, element-

ToEdge, elementToFace, faceToPoint, faceToEdge and edgeToPoint. The first three
functions have the same definition for both reference elements:

elementToPoint : E33 × E30 −→ E30 , elementToPoint(0, i) = i, ∀i ∈ E30 ,
elementToEdge : E33 × E31 −→ E31 , elementToEdge(0, i) = i, ∀i ∈ E31 ,
elementToFace : E33 × E32 −→ E32 , elementToFace(0, i) = i, ∀i ∈ E32 .
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The last three need to be defined differently for each one of the reference elements. To
simplify their definition, we present these functions in the form of an array. The first row
has the indices of the topological entity with bigger dimension and the first left column
has the local indices of the underlying sub entity.

In the case of the tetrahedron, these functions are defined as follows:

(i) faceToPoint : E32 × E20 −→ E30
0 1 2 3

0 1 0 0 0
1 2 2 1 1
2 3 3 2 3

Remark 1.1.1. The indices 0,1,2,3 in the top row correspond to the indices of the
faces in the element (in the case of the tetrahedra, they are four). The indices 0,1,2
in the left column correspond to the local indices of the points in a triangular face.

(ii) faceToEdge : E32 × E21 −→ E31
0 1 2 3

0 0 1 2 2
1 5 3 1 4
2 4 5 0 3

(iii) edgeToPoint : E32 × E10 −→ E30
0 1 2 3 4 5

0 1 2 0 0 1 2
1 2 0 1 3 3 3

The numbering and orientations on vertices, edges and faces for the tetrahedron are dis-
played in Figures 1.3(a) and 1.4. Each face in Figure 1.4 is then oriented as in section
1.1.2.

Regarding the hexahedron, we define the functions

(i) faceToPoint : E32 × E20 −→ E30
0 1 2 3 4 5

0 0 0 1 2 3 4
1 1 1 2 3 0 5
2 2 5 6 7 4 6
3 3 4 5 6 7 7

(ii) faceToEdge : E32 × E21 −→ E31
0 1 2 3 4 5

0 0 0 1 2 3 5
1 1 4 7 9 6 8
2 2 5 8 10 11 10
3 3 6 4 7 9 11
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Figure 1.4: Local numbering for the faces of the tetrahedron.

(iii) edgeToPoint : E32 × E10 −→ E30

0 1 2 3 4 5 6 7 8 9 10 11
0 0 1 2 3 1 5 4 2 6 3 7 4
1 1 2 3 0 5 4 0 6 5 7 6 7

The complete numbering and orientation of the vertices, edges and faces for the hexa-
hedron is displayed in Figures 1.3(b), 1.3(c) and 1.5. Again, each face in Figure 1.5 is then
oriented as in section 1.1.2.

1.2 Point Sets

In finite element or spectral methods, point sets have an important role in three main
applications: (i) numerical integration (ii) nodal bases definition and (iii) polynomial dif-
ferentiation. Within the context of defining nodal bases, they are used to determine pro-
jections into nodal subspaces, construct the table of degrees of freedom (see section 2.1)
and visualization of arbitrary degree polynomials (see section 2.3).

We distinguish two main classes (not necessarily exclusive): interpolation point sets
and quadrature point sets.
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Figure 1.5: Local numbering for the faces of the hexahedron.

1.2.1 Quadrature point sets

Starting again with the one dimensional case, quadrature formulas can be constructed
by using zeros of Legendre polynomials defined in (−1, 1) and/or its boundary points, orig-
inating the Gauss-Legendre, Gauss-Radau-Legendre and Gauss-Lobatto-Legendre quadra-
ture formulas in 1D.

Let us briefly review these quadrature formulas (see e.g. Canuto, Hussaini, Quarteroni
and Zang [12]).

Gauss-Legendre

Let x0 < x1 < · · · < xN be the roots of the (N +1)-th Legendre polynomial, LN+1, and
let w0, . . . , wN be the solution of the linear system

N
∑

j=0

(xj)
kwj =

∫ 1

−1

xk dx, 0 6 k 6 N. (1.1)

Then,

(i) wj > 0, for j = 0, . . . , N and

N
∑

j=0

p(xj)wj =

∫ 1

−1

p(x) dx, for all p ∈ P2N+1(−1, 1)
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where P2N+1(−1, 1) denotes the polynomials of degree less or equal to 2N +1 defined
in (−1, 1).
The positive numbers wj are called weights. They are also given by

wj =

∫ 1

−1

ℓj(x) dx

being ℓj the characteristic Lagrange polynomial of degree N such that ℓj(xi) = δij.

(ii) It is not possible to find xj, wj, j = 0, . . . , N , such that (1.1) holds for all polynomials
p ∈ P2N+2(−1, 1).

This is the well known Gauss-Legendre quadrature formula. However, the roots, which
define a point set, do not include any points in the boundary. The inclusion of such
points provides the Gauss-Radau-Legendre and Gauss-Lobatto-Legendre quadratures. Let
us start by the first.

Gauss-Radau-Legendre

The Gauss-Radau-Legendre quadrature includes one point in the boundary of the in-
terval (−1, 1). We construct it after the following polynomial:

q(x) = LN+1(x) + aLN(x), (1.2)

where a is such that q(−1) = 0, that is,

a = −LN+1(−1)/LN(−1).

Let x0 < x1 < · · · < xN be the roots of (1.2) and let w0, . . . , wN the solution of the
linear system

N
∑

j=0

(xj)
kwj =

∫ 1

−1

xk dx, 0 6 k 6 N.

Then
N
∑

j=0

p(xj)wj =

∫ 1

−1

p(x) dx, for all p ∈ P2N(−1, 1).

In order to have the Gauss-Radau formula to include the point x = 1, the variable a is
taken in such a way that q(1) = 0 and a similar result as the previously presented is valid.

Gauss-Lobatto-Legendre

Finally, the Gauss-Lobatto-Legendre quadrature formula is obtained by considering

q(x) = LN+1(x) + aLN(x) + bLN−1(x), (1.3)
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where a and b are chosen such that q(−1) = q(1) = 0.
Let x0 < x1 < · · · < xN be the roots of (1.3) and let w0, . . . , wN be the solution of the

linear system
N
∑

j=0

(xj)
kwj =

∫ 1

−1

xk dx, 0 6 k 6 N.

Then
N
∑

j=0

p(xj)wj =

∫ 1

−1

p(x) dx, for all p ∈ P2N−1(−1, 1).

Remark 1.2.1. For simplicity in the terminology we will refer to the previous quadra-
ture formulas, or just the point sets described, as Gauss, Gauss-Radau or Gauss-Lobatto,
respectively.

The extension of these quadrature formulas to quadrangles and hexahedra is straightfor-
ward using tensorization, see Sherwin and Karniadakis [48] or Canuto, Hussaini, Quarteroni
and Zang [12].

Quadrature formulas in simplices

For simplices we mention two types of quadrature formulas: (i) the general formulas
and (ii) the optimal formulas. The former are based on Gauss type formulas defined in the
simplex products and can be extended to any degree. The latter have to be defined one
by one for the simplices but they use less integration points than the general formulas to
integrate exactly the same polynomial degree.

General formulas can be constructed by applying a suitable transformation to the
quadrature formulas defined in the square/hexahedron. In 2D consider the mappings

m : T 2 → Q2, (x1, x2) 7→ (ξ1, ξ2) =

(

2
1 + x1
1− x2

− 1, x2

)

(1.4)

m−1 : Q2 → T 2, (ξ1, ξ2) 7→ (x1, x2) =

(

1

2
(1 + ξ1)(1− ξ2)− 1, ξ2

)

, (1.5)

between T 2 and Q2 and
QQ2 = {(xi, wi)}(N+1)2

i=0

a quadrature formula in the tensorized domain Q2. Then

QT 2 =
{

(m−1(xi), Jm(xi) · wi)
}(N+1)2

i=0

is as a quadrature formula for T 2, where Jm is the Jacobian of (1.4). In Figure 1.6 we
display the effect of transformation m−1 to a set of quadrature points in Q2. The map
(1.4) is called collapsed coordinate system.

For tetrahedra, this construction can be conducted using transformation (1.15).
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m
−1

Figure 1.6: Transformation m−1 acting on a tensorized Gauss point set.

Remark 1.2.2. The singularity in the collapsed coordinate system transformation does not
allow this procedure to be applied to all quadrature formulas defined in the quadrilateral.
It can only be applied to quadrature rules that do not have points in the top edge of the
quadrilateral. Both Gauss and Gauss-Radau quadrature formulas can be used, but not
Gauss-Lobatto. Similar considerations are valid for hexahedra and tetrahedra.

The reason why to consider non optimal quadrature rules in simplices is related with
implementation reasons. While arbitrary degree quadrature rules for tensorized domains
can be generated automatically through the zeros of specific polynomials, for simplicial
domains, this is not the case. Formulas exist, but they cannot be generated in a simple
and unified fashion and have to be hard coded. We refer the reader to Solin, Segeth and
Dolezel [79]. If one seeks performance, then these later are the choice, but they have to be
programmed for each degree. The simulations in this thesis use, in 2D and 3D, whenever
possible, such formulas up to N = 20. In Table 1.1 we show a comparison between the two
types of quadratures formulas in terms of the number of points used.

2 4 6 8 10 12 14 16 18 20
Gauss 4 9 16 25 36 49 64 81 100 121

Optimal 3 6 12 16 25 33 42 52 70 79

2 4 6 8 10 12 14 16 18 20
Gauss 8 27 64 125 216 343 512 729 1000 1331

Optimal 4 11 24 43 126 210 330 495 715 1001

Table 1.1: Number of points needed to integrate a polynomial of degree N using general
and optimal formulas for d = 2 (top) and d = 3 (bottom).

1.2.2 Interpolation point sets

Interpolation point sets are points that are used to generate Lagrange basis, see section
1.3.3. Let N > 0 be an integer and TN a quantity that depends on the reference element
and N and is defined as

TN =

{

(N + 1)d − 1, for Qd, d = 1, 2, 3
(

N+d
N

)

− 1, for T d, d = 2, 3.
(1.6)
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We denote {xi}TN

i=0 a point set and {ℓi}TN

i=0 the Lagrange polynomials associated. The
Lebesgue constant ΛTN

is defined as

ΛTN
= max

ξ∈Ω̂

TN
∑

i=0

|ℓi(ξ)|. (1.7)

Let f : Ω̂ −→ R denote a function and Πf : Ω̂ −→ R its interpolating polynomial of degree
TN that verifies

Πf(xi) = f(xi), ∀i = 0, . . . , TN . (1.8)

Then, it can be shown that

‖f − Πf‖∞ 6 (1 + ΛTN
) ‖p∗ − f‖∞ (1.9)

where p∗ denotes the best approximating polynomial in the max-norm

‖f‖∞ = max
ξ∈Ω̂

|f(x)|.

We are interested in points such that the growth of the Lebesgue constant in TN is
moderate. Due to inequality (1.9), this constant can be considered as a measure of the
“good” approximation properties of the Lagrange basis associated. More details can be
found in Canuto, Hussaini, Quarteroni and Zang [12] or Sherwin and Karniadakis [48].

In the literature, several point sets have been proposed, for tensorized and simplicial
domains. The Gaussian points (Gauss, Gauss-Radau and Gauss-Lobatto) are usually used
to construct Lagrange bases in tensorized geometries due to their well behaved Lebesgue
constants. For simplicial domains, there is no equivalent of the Gaussian points. The
Equidistributed points are a first alternative, but these do not have low Lebesgue constants
and, in the context of the Galerkin method, they lead to very ill conditioned linear systems,
as will be seen in section 2.4. Other choices in the triangular case, more robust with respect
to interpolation, are the Electrostatic [44], Fekete [85], Heinrichs [43] and more recently,
Warpblend [90] points. A very interesting property shared by the Electrostatic, Fekete and
Warpblend points is that, in the edges of the triangle where they are defined, they coincide
with the Gauss-Lobatto points. This feature allows the use of hybrid meshes (composed of
quadrangles and triangles) in a continuous Galerkin setting.

In the following, we present these point sets (except the Electrostatic) used to construct
Lagrange basis for tensorized as well as simplicial domains.

Point set ordering

The ordering of the point set is done according to the numbering and orientations
defined in section 1.1. First, the vertices, ordered by local index; second, the points that
lie in the edges of the element, again ordered by local index, and so on. Within each
topological subentity, take edges as an example, we order the points in edge 0 according
to the orientation of this edge, and do the same to all edges of the reference element (see
Figure 1.7). In 3D, the same is done to the points that lie in the faces.

For simplicity of exposure, we do not order the points in the following.
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Figure 1.7: Example of the ordering of a point set in the reference triangle and quadrangle.

Equidistributed points

The definition of the Equidistributed points is quite straightforward in the reference
domains we are considering. For the [−1, 1] interval, given an integer N > 0, they are
defined as the set

{

xequii : xequii =
2i

N
− 1, i = 0, 1, . . . , N

}

As we did in previous cases, the extension from the interval [−1, 1] to quadrangles is
done by tensorization

{

xequii,j : xequii,j =

(

2i

N
− 1,

2j

N
− 1

)

, i, j = 0, 1, . . . , N

}

Finally, for triangles, the Equidistributed point set reads as
{

xequii,j : xequii,j =

(

2i

N
− 1,

2j

N
− 1

)

, 0 6 i+ j 6 N

}

For hexahedra and tetrahedra, the generalization is straightforward from the previous
definitions.

Warpblend points

The Warpblend point set is introduced in Warburton [90] as a point distribution that
allows to create arbitrary degree interpolation points based on the Equidistributed and
Gauss-Lobatto points mentioned previously. This construction is done in the reference
triangle and tetrahedron.

The Warpblend points are constructed by defining a transformation from the Equidis-
tributed to the Gauss-Lobatto points in the interval [−1, 1]. and blending this deformation
for the Equidistributed points inside an equilateral triangle. These points, as will be seen
later in this section, have relatively low Lebesgue constants and have, in the edges of the
triangle, the Gauss-Lobatto points. A similar construction can be done for tetrahedra.
However, the possibility of having hybrid meshes is no longer available, if hexahedra and
Gauss-Lobatto points are to be used in the nodal expansion.
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(a) (b)

(c) (d)

Figure 1.8: (a-c): warp and blend functions for each of the three edges, constructed with
warping which reproduces a 8 point Gauss-Lobatto point set. (d): sum of warp and blend
functions for the three edges.

We address now the construction of this point set in 2D and refer the reader to
Warburton [90] for the details on how to construct the points in the tetrahedron. Given
the N + 1 Gauss-Lobatto points in the interval [−1, 1],

{

xgli , 0 6 i 6 N
}

,

we define a deformation function

ω(x) =
N
∑

i=0

(

xgli − xequii

)

N
∏

j=0,j 6=i

(

x− xequij

xequii − xequij

)

where xequii are the Equidistributed points defined in the previous section.
We consider now a reference triangle with vertices

v1 =

(

−1,− 1√
3

)

, v2 =

(

1,− 1√
3

)

, v3 =

(

0,
2√
3

)

.

We extend the edge warp into the triangle by blending in the edge normal direction.
Therefore, given the barycentric coordinates of a point in the previous triangle, we define
the warp and blend transformation that achieves this results as being the product of the
following functions

w1(λ1, λ2, λ3) = ω(λ3 − λ2)(1, 0)
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and

b1(λ1, λ2, λ3) =

(

2λ3

2λ3 + λ1

)(

2λ2

2λ2 + λ1

)

This is the transformation for edge one. For the other edges, the warping functions can be
expressed by permuting λ1, λ2, λ3:

w2(λ1, λ2, λ3) = ω(λ1 − λ3)

(

−1
2
,

√

3

2

)

w3(λ1, λ2, λ3) = ω(λ2 − λ1)

(

−1
2
,−
√

3

2

)

and the blending functions are

b2(λ1, λ2, λ3) =

(

2λ3

2λ3 + λ2

)(

2λ1

2λ1 + λ2

)

b3(λ1, λ2, λ3) =

(

2λ2

2λ2 + λ3

)(

2λ1

2λ1 + λ3

)

,

respectively.
The final coordinate shift can be expressed as

g(λ1, λ2, λ3) = b1w1 + b2w2 + b3w3. (1.10)

To further obtain a point set in T 2, we need to transform the equilateral triangle into
our reference element T 2. This can be done by a linear transformation, see section 1.4.

Figure 1.9: Warpblend points corresponding to the 8 point Gauss-Lobatto point set in the
equilateral triangle (left) and the reference element (right).

It is possible to improve further the Lebesgue constant associated with the set just
defined by introducing a parameter α in transformation (1.10).

g(λ1, λ2, λ3) =
(

1 + (αλ1)2
)

b1w1 +
(

1 + (αλ2)2
)

b2w2 +
(

1 + (αλ3)2
)

b3w3.
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triangle tetrahedron
α3 1.4152 0
α4 0.1001 0.1002
α5 0.2751 1.1332
α6 0.9808 1.5608
α7 1.0999 1.3413
α8 1.2832 1.2577
α9 1.3648 1.1603
α10 1.4773 1.0153
α11 1.4959 0.6080
α12 1.5743 0.4523
α13 1.5770 0.8856
α14 1.6223 0.8717
α15 1.6258 0.9655

Table 1.2: Values of the optimization parameter α for the Warpblend point set.

A complete study of the growth of the Lebesgue constant for these points will be given in
section 1.2.2.

In Warburton [90], the values for parameter α are given up to N = 15 for the two and
three dimensional point sets. We reproduce these values in Table 1.2. For higher degree,
we set α = 5

3
for d = 2 and α = 1 for d = 3.

Fekete points

Let us consider a basis B = {φi}TN

i=0, a point set X = {xi}TN

i=0 and define the generalized
Vandermonde matrix associated

V (B, X) =







φ0(x0) . . . φ0(xTN
)

...
...

φTN
(x0) . . . φTN

(xTN
)






(1.11)

The Fekete points are a set of points {ξ0, . . . , ξTN
} that maximize, for a fixed basis B, the

determinant of (1.11), ie,
max

ξi

|V (B, {ξ0, . . . , ξTN
})|.

It is known that in the interval [−1, 1], the Fekete points are the Gauss-Lobatto quadra-
ture points. This was proven by Fejer [28] and was extended to the square and cube by Bos,
Taylor and Wingate [3]. To evaluate the Fekete points, Taylor, Wingate and Vincent [85]
proposed a steepest-descent algorithm to determine the points that provide the maximum
determinant of the generalized Vandermonde matrix.

A consequence of this property is that the Lagrange polynomials constructed with these
points achieve their maximum at the nodal points. This implies a bound to the Lebesgue
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constant given by

ΛTN
= max

ξ∈Ω̂

TN
∑

i=0

|ℓi(ξ)| 6 TN . (1.12)

Evaluation of the Lebesgue constants

To calculate the Lebesgue constant ΛTN
, we need to compute the maximum (1.7). For

this, we evaluated the sum at sufficiently high number of Equidistributed points, that is,
170 points in Q1,

(

100+d
100

)

points in T d, d = 2, 3 and 31d points in Qd, d = 2, 3. We plot
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Figure 1.10: Lebesgue constants in the reference line.

in Figures 1.10 and 1.11 the Lebesgue constants that we obtained. We start by observing
that the Lebesgue constant associated with Equidistributed point set is too big for N > 5.
This is a well known fact and they are not suited as interpolation points, see Trefethen and
Weideman [87].

Regarding the one dimensional case, we recover a known result concerning the growth
of the Lebesgue constant associated with the Gauss-Lobatto points, namely, that it grows
as O(log(TN)), see Sherwin and Karniadakis [48].

For the two dimensional case, we start by discussing the triangular points. We notice
that the Fekete points have lower Lebesgue constants than the Warpblend ones for N > 12.
We estimated the Lebesgue constant for the Warpblend points grow as O(1.014TN ) and for
the Fekete points as O(T 0.62N ). For the Gauss-Lobatto point set defined in the reference
square, we estimated the Lebesgue constant to grow as O(log(TN)).

Finally, for the three dimensional point sets, we observe a growth of O(T 1.48N ) for the
Warpblend points andO(T 0.39N ) for the Gauss-Lobatto one’s. The last result is in agreement
with (1.12). We note that the Lebesgue constant associated with the 3D equidistributed
points exhibits again an exponential behavior.
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(a) Quadrilateral.
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(b) Hexahedron.
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(d) Tetrahedron.

Figure 1.11: Lebesgue constants for the reference simplices and tensorized domains.

1.3 Polynomial bases

There are two ways to define polynomial bases in the reference element. One is to
calculate formally the expression of the polynomials. These expressions can then be imple-
mented but they are different for each polynomial degree and reference element. The other
possibility, and the one followed in this work, is to use algebraic calculus. This approach
consists in having a (fixed) basis B = {φ̂i}TN

i=0, called prime basis, defined in the reference
element, Ω̂ in which all other polynomials defined in the element are expressed. The prime
basis should be a modal basis and provide well conditioned generalized Vandermonde ma-
trices, see section 1.3.2. The requirement of modality for the prime basis is justified by the
fact that it allows in a straightforward way to extract subsets of bases functions.

Let P = {p̂j} be another polynomial family. Then there exist coefficients αij ∈ R such
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that

p̂j =

TN
∑

i=0

αijφ̂i, ∀j.

Let CP be a matrix containing the entries αij. Then, P is represented by the prime basis
B and the matrix CP . One advantage of this approach is that it reduces operations like
evaluation, differentiation and integration of polynomials to matrix-matrix of matrix-vector
operations, see section 1.3.1. At this level, BLAS or LAPACK optimized routines can be
used to boost performance. From a programming perspective, the prime basis should
support evaluation, differentiation and integration on its own. This means that these three
operations should be implemented for each polynomial of the basis. We refer the reader
to Warburton, Pavarino and Hesthaven [91], Sherwin and Karniadakis [77] and Pasquetti
and Rapetti [60] for more details regarding this approach.

On top of this algebraic polynomial construction, we define finite elements in the sense of
Ciarlet [16]. LetW be a vector space spanned by B and Σ a set of linear forms {σ0, . . . , σTN

}
that form a basis for the space of linear functionals in X. Then, Σ induces a basis

B∗ = {θ0, . . . , θTN
}

for W that satisfies

σi(θj) = δij, ∀i, j = 0, . . . , TN . (1.13)

By expressing the functions in B∗ in terms of the prime basis B, equation (1.13) allows
to calculate CB∗ . We highlight that this approach to define finite elements is used in section
1.3.3 to construct the Lagrange polynomials in Ω̂, but the same framework can be used to
construct other finite elements: (i) the Raviart-Thomas element or (ii) the Nédélec element.
For more details on these finite elements, see Ern and Guermond [26] or Ciarlet [16].

In this section, a few families of polynomials that can be used as prime basis in the
reference elements presented in section 1.1 are defined. They are

(i) the Jacobi basis

(ii) the Legendre basis (tensorized domains)

(iii) the Dubiner basis (simplices)

(iv) the Boundary Adapted basis (tensorized domains and simplices).

In section 1.3.1, we show how to evaluate and differentiate polynomials (expressed
in terms of a prime basis). We present in section 1.3.2 a numerical analysis on how to
choose the prime basis. Finally, in section 1.3.3, the construction of Lagrange polynomials
associated with a point set is addressed.

We recall that for d = 1, 2, 3, we have

T d =
{

(x1, . . . , xd) ∈ Rd | − 1 < x1, . . . , xd < 1, x1 + · · ·+ xd < 0
}
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and

Qd =
{

(x1, . . . , xd) ∈ Rd | − 1 < x1, . . . , xd < 1
}

.

Note that for d = 1, these two sets coincide with the interval (−1, 1).
In what follows, we are interested in constructing bases for the space PN(T d) of poly-

nomials of total degree smaller or equal than N and the space QN(Qd) of polynomials of
degree smaller or equal than N , for d = 1, 2, 3. We remark that the dimension of PN(T d)
and QN(Qd) is given by the constant TN + 1.

Remark 1.3.1. Sometimes we refer to the spaces PN and QN , rather than PN(T d) and
QN(Qd) to simplify notation.

1.3.1 Algebraic framework for polynomials

We now describe how to evaluate and differentiate several families of high degree poly-
nomials.

Polynomial evaluation

Let us consider a set of polynomials P = {pi}M
i=0 expressed in a basis B = {φj}TN

j=0. If

pi =

TN
∑

j=0

αijφj, i = 0, . . . ,M (1.14)

then the entry (i, j) of CP is given by αij.

The evaluation of all the polynomials of P at a given set of points, say Y = {yk}K
k=0, is

done by calculating

pi(yk) =
K
∑

j=0

αijφj(yk), i = 0, . . . ,M, k = 0, . . . , TN .

Remark 1.3.2. This evaluation can be recast in matricial notation

V (P , Y ) = CPV (B, Y )

using the notations from section 1.2. This provides an uniform framework of evaluating
polynomials, independent of reference element, basis functions or polynomial degree.

We notice also that if several polynomial sets have to be evaluated at the same point
set, then we only need to calculate the matrix V (B, Y ) once and reuse it in each evaluation.
Taking into account the construction we presented, this is of particular interest when B is
the prime basis and Y are quadrature points.
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Polynomial differentiation

Let us suppose that the polynomials in P are defined in Ω̂ ⊂ Rd. For each r = 1, 2, . . . , d,
by differentiating (1.14) in the r direction we have

∂pi

∂xr

=
K
∑

j=0

αij
∂φj

∂xr

.

In this way, the evaluation of the derivatives of the polynomials pi is delegated to the
evaluation of the derivatives of the prime basis. If we can express the functions

∂φj

∂xr
in

the prime basis B, then the evaluation of the derivatives reduces again to matrix-matrix
multiplications.

To accomplish this “simple” calculus, we need to calculate the coefficients of
∂φj

∂xr
with

respect to the basis B. This means that we need to determine the coefficients βjm such
that

∂φj

∂xr

=

TN
∑

m=0

βjmφm.

Finding such coefficients is possible by considering a point set, say Y = {yk}TN

k=0, and
impose the equality at such points. The point set Y must satisfy the following conditions:

• the number of points must be the same as the number of basis functions in B

• yk 6= yj, if k 6= j.

If such a point set is used then

∂φj

∂xr

(yk) =
K
∑

m=0

βjmφm(yk).

Let Dr denote the set of the derivatives of the polynomials in P in the r direction. Then

V (Dr, Y ) = CDr
V (B, Y )

and CDr
, called differentiation matrix, can be calculated by solving a linear system with

matrix V (B, Y ). Here we notice the importance of the good conditioning of this matrix.
Once CDr

is calculated, the evaluation of ∂pi

∂xr
at a given point set is straightforward. In

fact, even higher order derivatives are easy to calculate following this approach. Let n be
a positive integer and X = {xk}M

k=0 a set of points. Denoting Dn
r as the set of the n − th

derivatives of the polynomials in P then

V (Dn
r , X) = CP(CDr

)nV (B, X).
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1.3.2 Choices for the prime basis

The basis in which all polynomial families are expressed, the prime basis, needs to
be carefully chosen. We highlight three characteristics that it should/could verify: (i)
hierarchical, (ii) L2-orthogonal and (iii) provide good conditioning for V (B, Y ). The first
property is related with the easiness to extract basis for subsets and it is relevant in the
context of constructing the Raviart-Thomas element, for instance. The second property
is relevant for exact integration. The third option is of crucial importance for numerical
stability of these algorithms.

In the following, we present some families of polynomials that could be considered as
prime basis. Some verify all three properties and some do not. In section 1.3.2 we show
a numerical study of the conditioning of the generalized Vandermonde matrix and the
different choices of prime basis. We will make our choice using these results as reference.

Jacobi polynomials

The Jacobi polynomials P
(α,β)
k of indices α, β > 1 and degree k > 0 are a family of

orthogonal polynomials in (−1, 1), see Szego [84]. The orthogonality holds with respect to
the inner product

(u, v)(α,β) =

∫ 1

−1

u(x)v(x)(1− x)α(1 + x)β dx.

These are calculated easily using recurrence relations (see for instance Sherwin and
Karniadakis [48]).

Moment basis

The moment basis, which is a modal one, consists in taking the canonical basis for the
spaces PN(T d) or QN(Qd). For the first space we consider the functions

mij(x1, x2) = xi
1x

j
2, 0 6 i+ j 6 N

in the 2D case and

mijk(x1, x2, x3) = xi
1x

j
2x

k
3, 0 6 i+ j + k 6 N

for d = 3.
Regarding quadrilaterals and hexahedra, the spaces are constructed in an analogous

way, but with the conditions 0 6 i, j 6 N for d = 2 and 0 6 i, j, k 6 N for d = 3.

Tensorized Legendre basis

By taking α = β = 0 in the Jacobi polynomials, we define the Legendre polynomials
Lk (that form a basis for QN(Q1)).
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The extension of a 1D basis to quadrilaterals or hexahedra is done by tensorization. If
we consider d 1D bases {ϕ(l)kl

}d
l=1 defined in Q1, the family {φk(x)}k given by

φk(x) =
d
∏

l=1

ϕ
(l)
kl
(xl), k = (k1, . . . , kd), x = (x1, . . . , xd),

is a multidimensional basis for QN(Qd). Taking the 1D Legendre basis in the previous
construction, we obtain bases in 2D or 3D.

Dubiner basis

The Dubiner basis is an orthogonal modal basis defined in the reference triangle, in-
troduced by Dubiner in [24]. Using the collapsed coordinate system (1.4) introduced in
section 1.2.1, for k = (k1, k2), we define the function

Φk(ξ1, ξ2) = ψk1(ξ1)ψk1,k2(ξ2),

where

ψk1(ξ1) = P
(0,0)
k1

(ξ1), ψk1,k2(ξ2) =

(

1− ξ2
2

)k1

P
(2k1+1,0)
k2

(ξ2),

which is a polynomial of degree k1 in ξ1 and k1 + k2 in ξ2. ψp and ψp,q are called principal
functions of first and second order. Applying m we obtain a function defined in T 2 :

ϕk1,k2(x1, x2) = P
(0,0)
k1

(

2
1 + x1
1− x2

− 1

)(

1− x2
2

)k1

P
(2k1+1,0)
k2

(x2).

By taking k1, k2 > 0 and k1+k2 6 N , we obtain the so called 2D Dubiner basis for PN(T 2).

Figure 1.12: 2D Dubiner basis functions for P5(T 2). (Courtesy of G. Steiner)

In 3D, the construction follows the same ideas by using the coordinate mapping from
T 3 to Q3 defined by

ξ1 =
2(1 + x1)

−x2 − x3
− 1, ξ2 =

2(1 + x1)

1− x3
− 1, ξ3 = x3. (1.15)
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Figure 1.13: The three stages to contract the hexahedron onto the tetrahedron (from left
to right).

We can see in Figure 1.13 the several stages by which the coordinate system in the hexa-
hedra is collapsed to obtain the tetrahedron. We define the principal functions of first and
second order as before and the principal functions of third order as

ψk1,k2,k3(ξ3) =

(

1− ξ3
2

)k1+k2

P
(2k1+2k2+2,0)
k3

(ξ3).

Therefore, the 3D Dubiner polynomials can be written as

ϕk1,k2,k3(x1, x2, x3) = ψk1(ξ1)ψk1,k2(ξ2)ψk1,k2,k3(ξ3).

that is

ϕk1,k2,k3(x1, x2, x3) = P
(0,0)
k1

(

2(1 + x1)

−x2 − x3
− 1

)

·
(−x1 − x3

1− x3

)k1

P
(2k1+1,0)
k2

(

2(1 + x1)

1− x3
− 1

)

·
(

1− x3
2

)k1+k2

P
(2k1+2k2+2,0)
k3

(x3).

and the set

{ϕk1,k2,k3 | 0 6 k1, k2, k3, k1 + k2 + k3 6 N}
is a basis for PN(T 3).

Boundary Adapted basis

We define also the Boundary Adapted basis, as presented in Sherwin and Karniadakis
[48], which is also a modal basis. This boundary Adapted basis allows to build a C0

multidomain expansion, see chapter 2.
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In 1D, this basis is defined by performing a modification of the Jacobi basis. The basis
functions are

ϕp(x) =











1−x
2
, p = 0,

(

1−x
2

)(

1+x
2

)

P
(1,1)
p−1 (x), 0 < p < N,

1+x
2
, p = N.

By considering the tensorized construction described in section 1.3.2, we can obtain the
Tensorized Boundary Adapted basis.

Concerning the construction of this set of polynomials in the triangle, this is done in
the same way as for the Dubiner set except that the principal functions are different.

For N ∈ N, we define the first, second and third order boundary adapted principal
functions as:

ψi(x) =







1−x
2
, i = 0,

(

1−x
2

) (

1+x
2

)

P
(1,1)
i−1 (x), 0 < i < N,

1+x
2
, i = N,

ψij(x) =























ψj(x), i = 0, 0 6 j 6 N,
(

1−x
2

)i+1

, 1 6 i < N, j = 0,
(

1−x
2

)i+1(
1+x
2

)

P
(2i+1,1)
j−1 (x) 1 6 i < N, 1 6 j < N,

ψj(x), i = N, 0 6 j 6 N,

ψijk(x) =







































ψjk(x), i = 0, 0 6 j 6 N, 0 6 k 6 N,
ψik(x), 0 6 i 6 N, j = 0, 0 6 k 6 N,
(

1−x
2

)i+j+1

, 1 6 i < N, 1 6 j < N, k = 0,
(

1−x
2

)i+j+1(
1+x
2

)

P
(2i+2j+1,1)
k−1 (x) 1 6 i < N, 1 6 j < N, 1 6 k < N

ψik(x), 0 6 i 6 N, j = N, 0 6 k 6 N,
ψjk(x), i = N, 0 6 j 6 N, 0 6 k 6 N,

for x ∈ [−1, 1].
The Boundary Adapted basis is then the collapsed product of these principal functions.

We list here the functions in the 2D case. For each vertex, we associate a function

vertex 0 : ϕ0,0(x1, x2) = ψ0(ξ1)ψ00(ξ2),
vertex 1 : ϕN,0(x1, x2) = ψN(ξ1)ψN0(ξ2),
vertex 2 : ϕ0,N(x1, x2) = ψ0(ξ1)ψ0N(ξ2) + ψN(ξ1)ψNN(ξ2).

For each edge, (N − 1) basis functions are associated:

edge 2 : ϕi,0(x1, x2) = ψi(ξ1)ψi0(ξ2), 0 < i < N,
edge 1 : ϕ0,j(x1, x2) = ψ0(ξ1)ψ0j(ξ2), 0 < j < N,
edge 0 : ϕN,j(x1, x2) = ψN(ξ1)ψNj(ξ2), 0 < j < N.
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Finally, the (N − 1)(N − 2)/2 interior functions are defined by

ϕi,j(x1, x2) = ψi(ξ1)ψij(ξ2), 0 < i, j, i+ j < N.

The set of all the ϕi,j functions just defined is a basis for PN(T 2).

Figure 1.14: Boundary Adapted function basis in 2D for P5(T 2). (Courtesy of G. Steiner)

For the 3D basis, the reader can consult Sherwin and Karniadakis [48] for the vertex,
edge, face and volume functions. We highlight that our numbering of vertices/edges/faces
is different.

Condition number of the generalized Vandermonde matrix

Typically, the prime basis taken to represent polynomials is the moment basis. However,
other choices are obviously available: the Dubiner, Legendre or Boundary Adapted bases,
depending on the reference element we are considering. We discuss now the choice of basis
and point set to have the lowest condition number for the generalized Vandermonde matrix
V (B, X). Let us start with the bases and point sets defined in the reference interval. We
evaluate the Moment, Legendre and Boundary Adapted basis at the Equidistributed and
Gauss-Lobatto point sets. The condition number1 of the generalized Vandermonde matrix
is plotted in Figures 1.15(a) and 1.15(b). We observe that the lowest condition numbers
are obtained with the Gauss-Lobatto points. Indeed, the sub-linear growth associated with
the Legendre basis and these points lead us to conclude that this is the best possible choice
among those we present.

Regarding bases and point sets defined in Q2 and Q3, similar results are obtained.
In Figure 1.15 we plot the condition number of V (B, X), for the same bases (except the
Moment basis) and point sets.

It is interesting to notice that the growth rate associated with the Boundary Adapted
(and the Legendre basis) and the Gauss-Lobatto points does not differ too much between
the two and three dimensional setting.

The previous results justify our choice of using the Gauss-Lobatto points to construct
the differentiation matrix.

1
The condition number was calculated with the algorithm provided by the GMM++ 1.6 library.
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(c) Equidistributed point set.
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(d) Gauss-Lobatto point set.
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(e) Equidistributed point set.
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(f) Gauss-Lobatto point set.

Figure 1.15: Condition number of V (B, X) for Q1 (top), Q2 (middle) and Q3 (bottom).



1.3 – Polynomial bases 33

We turn now to the simplicial reference elements T 2 and T 3. It is also clear from
Figure 1.16 that from the choices available, the Fekete points (in 2D) and the Warpblend
(in 3D) should be used in the construction of the differentiation matrix. The growth of
the condition number of V (B, X) is linear using Fekete points either with the Dubiner or
Boundary Adapted two dimensional bases. In the case of the Dubiner basis, the results are
comparable with the ones obtained with the Legendre basis and the Gauss-Lobatto points.
We do not present a figure with the results obtained using the Warpblend points in 2D,
but the growth of K(V (B, X)) using those points is exponential. On the other hand, for
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(a) Equidistributed point set.
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(b) Fekete point set.
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(c) Equidistributed point set.
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(d) Warpblend point set.

Figure 1.16: Condition number of V (B, X) associated with T 2 (top) and T 3 (bottom).

the three dimensional case, the condition number of V (B, X) is lower using the Dubiner
basis calculated at the Warpblend points. The growth is exponential but is about four
times smaller than in the case of the Equidistributed points.

We present shortly, in Table 1.3, the choices we make for the prime basis in dD,
d = 1, 2, 3, and for the different reference elements, and in Table 1.4, the choices for
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T d Qd

d = 1 Legendre
d = 2

Dubiner Tensorized Legendre
d = 3

Table 1.3: Prime basis that provide the lowest condition number for V (B, X).

T d Qd

d = 1 Gauss-Lobatto
d = 2 Fekete Gauss-Lobatto
d = 3 Warpblend Gauss-Lobatto

Table 1.4: Point set that provide the lowest condition number for the generalized
Vandermonde matrix.

the point set to be used for differentiation.

1.3.3 Lagrange basis

Let us fix a polynomial degree N > 0. To define a Lagrange basis for PN (or QN) in
the reference elements, we need a set of distinct points X = {xi}TN

i=0. The Lagrange finite
element (Ω̂,PN ,Σ) is defined by the set of linear functionals Σ = {σ0, . . . , σTN

} given by

σi : PN −→ R, σi(p) = p(xi), ∀p ∈ PN .

Using equation (1.13) and the definition of σi, the Lagrange basis functions L = {ℓi}TN

i=0

satisfy
ℓi(xk) = δik, ∀i, k = 0, . . . , TN (1.16)

If we want to express the Lagrange polynomials in terms of a prime basis B = {φj}TN

j=0, we
need to calculate, for each i, the coefficients of ℓi in this basis. By writing

ℓi(x) =

TN
∑

j=0

αijφj(x), (1.17)

relations (1.16) and expansion (1.17) imply that the coefficients αij must satisfy

TN
∑

j=0

αijφj(xk) = δik, i = 0, . . . , TN

Therefore by evaluating the prime basis in the point set and solving the linear system

CLV (B, X) = ITN+1
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where ITN+1 denotes the (TN +1)× (TN +1) identity matrix, the coefficient matrix CL can
be calculated.

We remark that the matrix V (B, X) should be well conditioned so that the coefficients
of the Lagrange basis are calculated accurately. Since the points are fixed a priori, we can
only decide which basis B to choose to represent the Lagrange polynomials in order fulfill
this property. The conclusions from section 1.3.2 are still valid in this context.

Figure 1.17: Lagrange basis of degree 4 in Q2.

Remark 1.3.3. For the Lagrange basis presented, the numbering associated with the basis
functions is the same as for the point set associated, see section 1.2.

1.4 Geometrical Mapping

The connection between the reference element, which from now on we generically denote
by Ω̂, and another domain Ω (that can be, for instance, an element of a mesh or a single
domain, as is the case of the spectral method), is done by means of a mapping, ϕ : Ω̂ −→ Ω,
which is usually called geometrical mapping. Depending on the choice of ϕ, this map can
account for elements with curved edges/faces.

We make some assumptions on this transformation: (i) the Jacobian ofϕ is not singular,
(ii) ϕ is a bijection between the Ω̂ and Ω and (iii) ϕ is sufficiently regular.

Our construction of the geometrical mapping is done by considering a fixed positive

integer Ngeo, two sets of nodes X̂ = {x̂i}
TNgeo

i=0 ⊂ Ω̂ and X = {xi}
TNgeo

i=0 ⊂ Ω and a Lagrange

interpolant associated with the points in X̂. The points in X are called geometrical nodes.

Let L = {ℓi}
TNgeo

i=0 denote the Lagrange basis functions associated with X̂ and G = [gij] the
d × (TNgeo

+ 1) matrix that has the coordinates of the points of X in its columns. Then
the i−th component of ϕ is expressed as

TNgeo
∑

j=0

gijℓj(x̂), x̂ ∈ Ω̂. (1.18)
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for i = 1, . . . , d. By expressing the geometric mapping in terms of the Lagrange polynomials
defined in section 1.3.3, it inherits all the potentialities of the framework developed so far,
namely, how to evaluate and differentiate ϕ.

Let us denote by CL the block diagonal matrix with blocks CL and V(L, X) the anal-
ogous matrix but now built with blocks V (L, X). Then

ϕ(x̂) = GV(L, {x̂}), x̂ ∈ Ω̂. (1.19)

The derivative of ϕ can now be easily calculated and we denote it by the matrix

K(x̂) = ∇ϕ(x̂) = G∇V(L, {x̂})

which can be expressed with the formulas given in section 1.3.1 in terms of matrix-matrix
operations.

We define also the pseudo-inverse of ∇ϕ as

B(x̂) = K(x̂)−T .

In our construction, we take X̂ as the Equidistributed point set. The mapping ϕ is
then completely defined by providing the point set X in the domain Ω. There are two ways
of obtaining X. The first is to use a high order mesh generator, like for instance Gmsh,
see [35]. Given the geometry of the problem, it provides the geometrical nodes and ϕ is
automatically defined. However, we point out that in the case of Gmsh, the Jacobian of
this transformation might be singular, see section 4.3.1.

The second possibility is to use Gordon-Hall type transformations, see Gordon and
Hall [36, 37]. This is the strategy we adopt to generate the coordinates of the points of X.
Given a description of the boundary of Ω, we construct the Gordon-Hall transformation
associated and apply it to the points of X̂, thus obtaining the point set that we take as X.
ϕ can then be seen as a Lagrange interpolant of this Gordon-Hall transformation and we
remark that it conserves the orientation defined in section 1.1. In the following we present
the expressions of these Gordon-Hall type transformations.

Finally, we observe that the spaces PN(Ω̂) and QN(Ω̂) can be naturally extended to Ω
by considering the image of all polynomials by ϕ:

PN(Ω) =
{

p : p = p̂ ◦ϕ−1, p̂ ∈ PN(Ω̂)
}

(1.20)

Remark 1.4.1. When using an affine geometrical transformation, (1.20) coincides with
the space of polynomials of total degree N in Ω. However, if the map is a polynomial of
higher degree, this is not the case. Indeed, by looking at relation

p(ϕ(x̂)) = p̂(x̂), ∀x̂ ∈ Ω̂

we notice that if ϕ is a polynomial of degree K, to represent polynomials of degree N
exactly in PN(Ω), we need to consider, in our construction, polynomials from PN ·K(Ω̂).
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1.4.1 One dimensional reference element

The geometrical mapping to transform Q1 in any interval Ω = [a, b] is given by

ϕ(ξ) =
(b− a)ξ + b+ a

2
, ∀ξ ∈ Q1.

This map is a clear C∞ bijection between Q1 and Ω.

1.4.2 Triangular reference element

Let us consider a triangular region in R2 with curved boundaries, Ω, as in Figure 1.18.
A simple procedure exists to map a straight sided triangle into one with curved boundaries
based in Gordon-Hall transformations, see Gordon and Hall [36, 37]. Let us admit that the

Γ̂0Γ̂1

Γ̂2

Ω̂

Γ0Γ1

Γ2

ϕ

Ω

Figure 1.18: Transformation of the reference triangle.

edges of Ω, which we denote by Γi, are parameterized by functions πi : [−1, 1] −→ Γi. We
assume that the parameterizations are consistent with the orientation defined in section
1.2, meaning π0(−1) = π2(1), π1(−1) = π0(1) and π2(−1) = π1(1).

A transformation that extends smoothly the boundary mappings to the interior of Ω
can be found in Canuto, Hussaini, Quarteroni and Zang [12]. Here, we adapt it to be
consistent with our orientation of the edges. The geometrical transformation has the form

ϕ(ξ, η) = Faff (ξ, η) + F0(ξ, η) + F1(ξ, η) + F2(ξ, η), ∀(ξ, η) ∈ Ω̂

where Faff (ξ, η) is the affine mapping given by

Faff (ξ, η) =
1 + ξ

2
π2(1) +

1 + η

2
π0(1)−

ξ + η

2
π1(1)

and the functions Fi are such that they vanish on the sides Γ̂k, for k 6= i and are equal to
πi in the interior of Γ̂i.

For example, if π̂2 is the bubble function over (−1, 1) defined as

π̂2(ξ) = π2(ξ)−
1− ξ

2
π2(−1)−

1 + ξ

2
π2(1)
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a possible expression for F2 is

F2(ξ, η) =
1− η

2
π̂2(ξ)−

1 + ξ

2
π̂2(−η).

One can easily check that F2(ξ,−1) = π̂2(ξ), F2(−1, η) = 0 and F2(ξ,−ξ) = 0.
Proceeding in a similar way for F0 and F1, we arrive at the final expression

ϕ(ξ, η) =
1− η

2
π2(ξ)−

1 + ξ

2
π2(−η) +

1− ξ

2
π1(−η)−

1 + η

2
π1(ξ)

+

(

1 +
ξ + η

2

)

π0(−ξ)−
1 + ξ

2
π0(−1− ξ − η)

+
1 + ξ

2
π2(1) +

ξ + η

2
π1(1),

for all (ξ, η) ∈ Ω̂.

1.4.3 Quadrangular reference element

Regarding the quadrilateral reference element, a transformation of the same kind can
be derived using the ideas presented in the previous subsection. If we consider parameter-

Γ̂1Γ̂3

Γ̂0

Γ̂2

Ω̂ Γ1Γ3

Γ0

Γ2

ϕ
Ω

Figure 1.19: Transformation of the reference square.

izations πi : [−1, 1] −→ Γi as in Figure 1.19 with the orientations described in section 1.2,
then the following transformation can be derived

ϕ(ξ, η) =
1− η

2
π0(ξ) +

1 + η

2
π2(−ξ)

+
1− ξ

2

[

π3(−η)−
1 + η

2
π2(1)−

1− η

2
π3(1)

]

+
1 + ξ

2

[

π1(η)−
1 + η

2
π1(1)−

1− η

2
π0(1)

]

for all (ξ, η) ∈ Ω̂.
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1.4.4 Tetrahedral and hexahedral reference element

The geometrical mappings for the three dimensional reference elements can also be built
using the same techniques. We refer the reader to Sherwin and Karniadakis [48] or Solin,
Segeth and Dolezel [79].

1.5 Integration on a single domain

We now address how to calculate integrals of functions defined in Ω, or a part of it’s
boundary. The tools that we use are the geometrical mapping, see section 1.4, and a
quadrature rule, see section 1.2.1.

Let f : Ω −→ R be a function and let us denote again ϕ : Ω̂ −→ Ω. We wish to
calculate

∫

Ω

f(x) dx. (1.21)

By performing a change of variable using the geometrical mapping ϕ in the previous
integral, we obtain

∫

Ω̂

f(ϕ(x̂))Jϕ(x̂) dx̂. (1.22)

LetQΩ̂ = {(x̂i, wi)}K
i=0 denote a quadrature formula in Ω̂. Then (1.22) can be approximated

by
K
∑

i=0

f(ϕ(x̂i))Jϕ(x̂i)wi.

We highlight that in the case f is a polynomial of PN(Ω) or QN(Ω) (see 1.4), then (1.21)
can be calculated exactly, either by exact or numerical integration. The first approach
takes advantage of the fact that the polynomials are expressed in terms of the prime basis,
as well as it’s Jacobian. The second uses a quadrature formula with enough points so that
the integral is calculated exactly.

In a similar way we calculate integrals over subsets Γ ⊂ Ω such that Γ = ϕ(Γ̂) where
Γ̂ is a face of the reference element. Let f : Γ −→ R denote now a function defined in the
face Γ. Then

∫

Γ

f ds =

∫

Γ̂

f(ϕ(ŝ)) ‖nΓ‖ Jϕ(ŝ) dŝ =

∫

Γ̂

f(ϕ(ŝ)) ‖B(ŝ)nΓ̂‖ Jϕ(ŝ) dŝ

where nΓ and nΓ̂ denote the outward normals to Γ and Γ̂, respectively. The matrix B
is defined as in section 1.4. The evaluation of this integral is done with an appropriate
quadrature formula, see section 1.2.1.

In the case f is a vectorial function, say f : Γ −→ Rd, then
∫

Γ

f · nΓ ds =
∫

Γ̂

f(ϕ(ŝ)) · (B(ŝ)nΓ̂) Jϕ(ŝ) dŝ.



40 The Spectral Method

1.6 Conclusion

In this chapter, a general framework is proposed to evaluate, differentiate and integrate
polynomial bases for the spectral method in dD, d = 1, 2, 3. By construction, we use a
basis to represent all polynomial families and delegate the latter operations into the prime
basis.

In the framework presented, the Legendre/Dubiner bases are the most well suited among
the shown families, to be prime bases.

The choice of a point set to construct Lagrange basis, the Fekete and Warpblend points
revealed to have the lowest Lebesgue constants, in 2D and 3D (note that using a hexahedron
as reference geometry, the Fekete points are the ones to choose in this matter). This
property makes them suitable as interpolation point sets. The same conclusions are valid
for chosing points to numerically differantiate the polynomial bases.

Regarding the two dimensional framework, it can be further extended by using the
Fekete points up to order 30. These are calculated in Roth [73] and should be considered
when using higher degree polynomials.

The work presented in this chapter can and should be extended also to other reference
elements such as prisms and pyramids, in the 3D case. The prime bases functions for these
reference elements can be found in Sherwin and Karniadakis [48].

In the matter of interpolation and differentiation in 3D simplicial geometries, a better
point set should be used. We considered the Warpblend point set, but the growth of the
Lebesgue constant is not satisfactory. Ideally, Fekete points should be used, but they are
not known in 3D.

Finally, the high order geometrical mappings in 2D should be extended to 3D, see Solin
[79].



Chapter 2

The Spectral Element Method

So far, we have seen how to construct, evaluate, differentiate and integrate polynomial
sets defined in a single domain. The goal of this chapter is to define polynomial sets of
arbitrary order defined in an domain partitioned in several elements. The construction is
based on the fact that each element is the image by a geometrical transformation of the
type described in section 1.4. Using this transformation, the polynomial bases defined in
the previous chapter are then constructed in this element.

We analyze the construction of two types of global expansions: continuous and discon-
tinuous. The first produces basis functions that are globally continuous, while the second
produces an expansion where the basis functions are continuous within each element of
the partition and discontinuous across the faces. These basis functions are suitable for
the continuous and discontinuous Galerkin (dG) methods, respectively. To build the con-
tinuous expansion, special attention is given to glue the basis functions between neighbor
elements. This constraint is not present in the construction of the discontinuous expansion.
However, when integrating a function (that might take two values) over a face, we have the
problem of matching quadrature points coming from the different elements that share that
face. This issue is circumvented in 2D using the same construction done in the continuous
setting.

This chapter is organized as follows: in the first section we describe how to construct
basis functions in a domain partitioned in several elements, in the continuous and discontin-
uous setting just presented; the second section is dedicated to the assembly of vectors and
matrices arising from a Galerkin formulation and integration over faces in the dG frame-
work; section 2.3 introduces an operator which provides a tool for visualization of arbitrary
order polynomials, in dD. In the last section, we analyze the properties of the method in
the context of a Poisson problem, namely the spectral accuracy of the method, the eigen-
values and condition number of the matrix arising from the Galerkin approximation and
the mass matrix associated with the bases.

41
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2.1 Multidomain expansions

Let us consider a domain Ω ⊂ Rd, d = 1, 2, 3, and a partition Th,Ngeo
(h is the maximum

diameter of all elements in the partition) of Ω in the union of Nel subdomains Ωe satisfying
the following assumptions:

• Ω =
⋃Nel

e=1Ωe

• Ωe ∩ Ωi is empty whenever e 6= i

• two neighbor subdomains can only share vertices, edges or faces1

• Ωe is the image of one of the reference elements, see section 1.1, by a geometrical

mapping, say ϕe : Ω̂ −→ Ωe, of degree Ngeo, see section 1.4. We assume that all
geometrical transformations have the same polynomial degree.

Depending on the topological dimension, each subdomain is either an interval, a trian-
gle, a quadrangle, a tetrahedron or a hexahedron with possibly curved boundaries.

The extensions to the multidomain case of the polynomial space PN(Ωe), defined in
(1.20), (and QN(Ωe)) can be stated as

FN(Th,Ngeo
) =

{

v ∈ C0(Ω) : v|Ωe
∈ PN(Ωe), ∀Ωe ∈ Th,Ngeo

}

(2.1)

and

Fdisc
N (Th,Ngeo

) =
{

v ∈ L2(Ω) : v|Ωe
∈ PN(Ωe), ∀Ωe ∈ Th,Ngeo

}

. (2.2)

To simplify the notation, we define the parameter δ = (h,Ngeo) and write Tδ whenever
we want to designate Th,Ngeo

. If δ is replaced only by h, then it is subjacent that the
geometrical transformation is of degree 1, that is Ngeo = 1.

Remark 2.1.1. Regarding the notation for the triangulations, we will not make a difference
between using triangulations with simplices of simplex products. This difference will be
however pointed out each time there’s ambiguity of what type of geometrical elements are
being used.

We describe how to construct a basis for Fdisc
N (Tδ) and FN(Tδ). Let {φ̂i}TN

i=0 be the basis

functions associated with Ω̂ and {φ̂i ◦ϕ−1e }TN

i=0 the corresponding functions in Ωe. We start

by extending each function φ̂i ◦ϕ−1e to the whole domain Ω

φe,i(x) =

{

φ̂i (ϕ
−1
e (x)) , x ∈ Ωe

0, otherwise
(2.3)

1
The geometrical entities shared by subdomains depends on the topological dimension of Ω: in 1D,

only vertices are shared, in 2D, vertices and edges can belong to neighbor elements, and in 3D all three

types of geometrical entities are allowed to be shared.
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Discontinuous space Fdisc
N (Tδ). Using the functions given by (2.3), we can develop a

polynomial uN ∈ Fdisc
N (Tδ) as

uN(x) =

Nel
∑

e=1

TN
∑

i=0

ûloce,iφe,i(x),

for x ∈ Ω. The coefficients ûloce,i are called local degrees of freedom. If we consider global
functions that are discontinuous across the element’s boundary, then a basis for Fdisc

N (Tδ)
is directly given by the set of functions {φe,i}.

We remark that in the discontinuous Galerkin framework, continuity is not enforced at
the level of the basis functions, but is done weakly at the level of the variational formulation.

Continuous space FN(Tδ). It is clear that the boundary modes included in (2.3)
associated with each element (functions that do not have compact support in Ωe) are not
continuous in Ω and that the interior modes, which are zero on ∂Ωe are naturally extended
to global continuous functions.

To build a continuous global expansion, the matching of similar boundary functions that
are defined in neighbor elements is required. This matching depends on the orientation of
the subentities that compose the reference element. Notice that a boundary adapted or
nodal basis should be used to construct multidomain expansions, otherwise it is impossible
to ensure the continuity in the global basis functions.

From the implementation point of view, the matching between neighbor basis functions
can be described with a mapping array n(e, i) that contains the global index of the ith local
index in the element Ωe. We have to identify the neighbor basis functions and assign them
the same global index. This means that if ûloce,i and û

loc
k,j are coefficients of basis functions

that should be glued together, then n(e, i) = n(k, j). The polynomial uN now reads as

uN(x) =

Nel
∑

e=1

TN
∑

i=0

ûglon(e,i)φe,i(x),

for x ∈ Ω. The coefficients ûglon(e,i) are called global degrees of freedom.

Remark 2.1.2. In the discontinuous setting, the sets of local and global degrees of freedom
have the same cardinality.

In the nodal case, only the map n(·, ·) is necessary in the assembly process. However,
when using a modal expansion, to properly match neighbor degrees of freedom, we need to
negate some of the modes in the expansion. For now, we will just introduce a map, similar
to n(·, ·), say sign(·, ·), that given the element and the local to the element index of the
degree of freedom, returns the sign with which the mode should be multiplied, therefore,
+1 or −1.

We refer the reader to Sherwin and Karniadakis [48] for a complete description on how
to build the maps n(·, ·) and sign(·, ·). In the following, we explain how to identify neighbor
functions as well as provide the necessary algorithms to determine the permutations to be
applied to the local degrees of freedom.
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2.1.1 2D connectivity

To match the degrees of freedom (degree of freedom ) associated with the edges of the
element, the key ideas are the orientation and numbering of the reference element and
the geometrical transformation ϕe, see chapter 1. We point out that ϕe preserves the
numbering and orientation of the subentities in the elements.

To make the exposure of the matching easier, we suppose that the elements are oriented
in an anticlockwise fashion, as in Figure 2.1. When this is not the case, the algorithms to
determine the orientation of the edges of the triangulation presented in section 2.1.2 are
valid and can be applied in the 2D case.

Nodal basis functions. The ingredients of this construction are the maps that allow to
pass between the global/local indices of the points in the edges of the element, as well as the
permutation (in this case a simple reversion) in the local indices of the nodes. In this case,
we only need to reverse the order of the local degrees of freedom in one of the edges, since
the local degrees of freedom are ordered according to the edge’s orientation. Let us take
Figure 2.2 as example: in order to match the functions defined in both elements, degree of
freedom number 3 in the upper element must correspond to degree of freedom number 10
in the lower and so on. Using the decomposition into subentities of the reference element

Figure 2.1: Orientation of the edges in a two dimensional mesh of triangles.

and the point set, we know, for a given edge and point in that edge, how to relate the local
(w.r.t. the edge) index of the point with its index in the set of points of the whole element,
i.e., the indices of the local degree of freedom . If we denote by e1 and e2 the element’s
indices and edge1 and edge2 the corresponding local to the element indices of the edges,
then

n(e1, edgeToPoint(edge1, i− 1)) = n(e2, edgeToPoint(edge2, P (i− 1))),

for i = 1, . . . , N − 1, where P is a permutation such that P (i) = N − 2− i.

Modal basis functions. If a modal basis is used in the construction, the situation is
slightly different. Since the local numbering follows the polynomial degree of the functions,
there is no need to invert the order of the local modes. However, due to the possible inverse
edge orientation, the odd degree modes associated with the edge will have opposite signs
in neighbor elements. Therefore, we negate these modes in one of the edges, that is, we
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Figure 2.2: Permutation needed in the local degrees of freedom to match neighbor edge
associated functions.

set the sign function equal to +1 in all the modes in both edges and −1 in only the odd
modes of one edge. Regarding the interior degrees of freedom, the bubble functions have
compact support in the elements and they do not need to be taken care of.

2.1.2 3D connectivity

The problem in matching functions defined in edges or faces in 3D is more complex than
in the 2D case. For edges, we need to determine the permutation to be used in the local
indices of the points since it is impossible to have always opposite orientations by default.
An algorithm to determine which permutation to apply to the edges is used, which we
describe briefly. Since the same algorithm is used for determining the permutation for the
faces, we will describe it in terms of entity which can either be edge or face.

Algorithm 2.1 Edge permutation determination.
if indices match then
assign identity permutation

else
assign reverse permutation

end if

Let us assume that the set of all possible permutations is known for each entity2. We
start by creating two empty vectors: vindex which stores the global indices (in the mesh) of
the entities whose permutations have been assigned and vtuple that stores the global indices
of the vertices that define the entity (ordered entity local indices). The full procedure is
then given by Algorithm 2.2.

We remark that point (*) is what makes the difference between dealing with faces or
edges in 3D. For edges, this line should be replaced by Algorithm 2.1.

2
This set will be specified later on for quadrangular and triangular faces.
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Algorithm 2.2 Procedure to determine the permutation for edges and faces in 3D.
for e = 1 ... Nel do

for p = 1 ... Nentity do
determine global index of the entity in the mesh, gp

if gp not found in vindex then
add gp to vindex

add entity global indices to vtuple (ordered by local index)
assign identity permutation

else
determine the global indices of the vertices that define the entity
compare the previous indices with the ones in vtuple

depending on the previous comparison, assign a permutation to the entity (*)
end if

end for
end for

For faces, due to the possible local coordinate systems, there are more possible permu-
tations. We note that this number is different between triangular and quadrangular faces.
We shall specify now those permutations for both cases.

Triangular face match. For triangular faces there are six possible permutations. In
this context, point (*) is replaced by Algorithm 2.3.

Algorithm 2.3 Face permutation algorithm.
if all indices match then
assign identity permutation

else
if only one index matches (**) then
assign swap permutation

else
assign rotation permutation

end if
end if

It is clear that depending on the index that matches in Point (**) of Algorithm 2.3, we
choose a different permutation: using the notation of Figure 2.3, if the first index matches,
then σ1 is assigned; if the second index matches, assign σ3 and finally, if the third index
matches, assign σ2. A similar procedure is applied for the rotation permutations. The six
possible permutations are shown in Figure 2.3 for a particular case. We remark that the
set of these permutations is a group ST that can be generated by base and height swap,
that is, σ2 and σ1:

σ4 = σ1σ2, σ3 = σ4σ1, σ5 = σ2σ1
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Figure 2.3: Example of the permutations for the local degrees of freedom. The indices 0,
1 and 2 denote the local face vertex indices.

With these permutations, we now know exactly how to order the local degrees of freedom
in a face for a nodal basis to properly match the functions.

When analyzing the same problem for a modal basis, we notice that a renumbering
of the tetrahedron vertices needs to be done. Because a collapsed coordinate system is
used and the basis may not be rotationally symmetric, we must enforce that all tetrahedra
are oriented like Figure 2.4 a) and not like 2.4 b). To accomplish this, we follow an

a) b)

3

0

1

2

Figure 2.4: Orientation for neighbor tetrahedra for a modal basis.
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idea of Warburton [89]. Referring to (ξ1 = −1, ξ2 = −1, ξ3 = 1) as local top vertex and
(ξ1 = −1, ξ2 = 1, ξ3 = −1) as local base vertex, we reorder the vertex local indices according
to Algorithm 2.4. Although it is not necessary for matching nodal basis, this reordering

Algorithm 2.4 Local renumbering algorithm.
place the local top vertex at the global vertex with the lowest global index
place the local base vertex at the global vertex with the second lowest global index
orient the last two vertices in such a way that the anticlockwise orientation of the indices
is preserved

reduces the number of possible non-identity permutations for the faces, and thus simplifies
the construction of the degree of freedom table construction as well as face integration.

Quadrangular face match

For quadrangular faces, the algorithm for determining the permutations for each face
is similar to 2.3. The group of all possible permutations of the vertices of the quadrilateral
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Figure 2.5: Example of the permutations for the local degrees of freedom in a hexahedron.

is of order eight and, using notation from Figure 2.5, it can be generated with ω2 and ω3:

ω1 = ω2ω3, ω7 = ω1ω3, ω5 = ω7ω2, ω4 = ω7ω3, ω6 = ω3ω5

2.2 Global assembly of matrices and face integration

Let us consider a bilinear form a(·, ·) and a linear form F (·) arising from the weak
formulation of some differential equation. The assembly process of the linear system matrix
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and right hand side vector corresponding to a(·, ·) and F (·) are described in algorithm 2.5.

Algorithm 2.5 Assembly procedure.

A(i, j) = 0, ∀i, j
F (i) = 0, ∀i
for e = 1 ... Nel do

for p = 1 ... Nentity do
for q = 1 ... Nentity do
A(n(e, p), n(e, q)) = A(n(e, p), n(e, q)) + sign(e, p)sign(e, q)a(φe,p, φe,q)

end for
F (n(e, p)) = F (n(e, p)) + sign(e, p)F (φe,p)

end for
end for

The integrals a(φe,p, φe,q) and F (φe,p) are defined in the element Ωe and are calculated
as in section 1.5.

We describe now how to evaluate a certain type of integrals that appear in the discon-
tinuous Galerkin method or whenever we need to integrate discontinuous functions that
have a jump across the interfaces between elements. Let u, v ∈ Fdisc

N (Th,Ngeo
) and Γ be an

internal face of the triangulation shared by two elements, say ΩR and ΩL. We denote by
uR and uL the trace of u in element ΩR and ΩL, respectively. Similar definitions are valid
for v. We denote by ϕR and ϕL the respective geometrical mappings associated with each
element.

We are interested in calculating integrals of the form

∫

Γ

uRvL ds (2.4)

where the functions in the integral are defined in different elements that share Γ.
Let us fix an element a priori, say ΩR. We extend the function vL defined in ΩL to ΩR

by

ṽL = vL ◦ϕL ◦ϕ−1R .

Notice that ṽL is defined in ΩR and it coincides with vL in Γ. Now, integral (2.4) is rewritten
as

∫

Γ

uRṽL ds.

To calculate this integral, we now apply the procedures from section 1.5.
If QΓ̂R

= {(ŝi, wi)}K
i=0 is a quadrature formula defined on the face Γ̂R then,

K
∑

i=0

uR(ϕR(ŝi))ṽL(ϕR(ŝi))
∥

∥BR(ŝi)nΓ̂R

∥

∥ JϕR
(ŝi)wi. (2.5)
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Our goal now is to rewrite ṽL(ϕR(ŝi)) using the geometrical mapping ϕL and vL. We
introduce another quadrature formula, now in Γ̂L, QΓ̂L

= {(q̂i, zi)}K
i=0. We notice that if

xi = ϕR(ŝi) then
ṽL(ϕR(ŝi)) = ṽL(xi) = vL(xi).

Therefore, if the quadrature points in QΓ̂L
are such that

xi = ϕL(q̂i) = ϕR(ŝi) (2.6)

then (2.5) is equivalent to

K
∑

i=0

uR(ϕR(ŝi))vL(ϕL(q̂i))
∥

∥BR(ŝi)nΓ̂R

∥

∥ JϕR
(ŝi)wi. (2.7)

Once the quadrature points are generated in the face of the reference elements and
according to the face’s orientation, it is not given that condition (2.6) is satisfied. In
fact, this condition is equivalent to the problem of glueing nodal basis functions between
neighbor elements. Therefore, we can apply here the algorithm described in section 2.1
to have the proper matching of the points in Γ, thus satisfying (2.6). We remark that in
3D, we should be careful with the permutations to be applied to the quadrature points in
order to do the matching. Whether the quadrature points are obtained using Gauss type
or optimal quadratures, the permutations to be applied have to be devised for each case.
Another, more expensive alternative, is to generate quadrature formulas directly in the
face of the mesh.

2.3 Visualization of polynomials of arbitrary degree

We now describe an operator which is useful in visualizing meshes with curved elements
and functions of (2.1) without losing too much information. We will present this construc-
tion in the context of nodal basis and for simplicial elements. The extension to modal basis
or quadrangular elements is straightforward. We introduce the following interpolation op-

Figure 2.6: Visualization of a function using the operator ΠP1 . The mesh Th̃,1 is represented
in black.
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erator

ΠP1 : FN(Th,Ngeo
) 7→ FN(Th̃,1) (2.8)

where the triangulation associated to FN(Th̃,1), a space spanned by a first degree Lagrange
polynomial basis using a first degree geometric approximation, is constructed from the
points associated to the degrees of freedom of FN(Th,Ngeo

). The cornerstone in the con-
struction of ΠP1 is the triangulation Th̃,1. This is done in two steps: first we create a

triangulation, T̂, in Ω̂ whose vertices are the points associated with the nodal basis in the
reference element; second, for each element of Th,1, we apply the corresponding geometrical

mapping to T̂. This induces a triangulation in Ω that we take as Th̃,1. Notice that the
construction is valid in dD, d = 1, 2, 3. We observe that the points on ∂Th,Ngeo

are located,

T̂

ϕ

T
h̃,1

Figure 2.7: On the left, the triangulation T̂ in the reference element; on the right, the
image of T̂ using the geometrical transformation, Th̃,1.

thanks to the geometrical transformation ϕ, exactly on ∂Th̃,1 thus retaining a good approx-
imation of the boundary. Also, this operator retains the continuity of the original space,
as well as the dimension, ie,

dim
(

FN(Th̃,1)
)

= dim
(

FN(Th,Ngeo
)
)

.

We point out that this operator has been analysed in literature for preconditioning
purposes. This stems from the fact that if v ∈ FN(Th,Ngeo

), ΠP1(v) has the same nodal
values on the mesh associated to FN(Th̃,1) as v. For more details, see Canuto, Hussaini,
Quarteroni and Zang [12, 11] and Deville, Fischer and Mund [20]. We will also consider
this kind of preconditioner in section 3.4.

2.4 A Poisson test problem

We now apply the Galerkin spectral element method to a simple Poisson test case. This
analysis will be carried out for one, two and three dimensional domains.
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Let Ω be one of the reference elements, that is, Ω = T d or Ω = Qd, for some d ∈ {1, 2, 3}.
We consider the following Poisson problem

−∆u = f, in Ω
u = g, on ∂Ω

(2.9)

where f and g are determined so that the exact solution of the problem is u(x) = exp(x)
if d = 1, u(x, y) = exp(x+ y), if d = 2 and u(x, y, z) = exp(x+ y + z), if d = 3.

We define our functional setting

H1
g =

{

v ∈ H1(Ω) : v|∂Ω = g
}

and denote H1
0 (Ω) by taking in the previous space g = 0.

The weak formulation of problem (2.9) reads as

Problem 2.4.1. Find u ∈ H1
g (Ω) such that

∫

Ω

∇u · ∇v dx =
∫

Ω

fv dx, ∀v ∈ H1
0 (Ω)

Let us present the numerical method used to approximate the solution u of (2.9). Let
N > 0 be an integer and h > 0 be a real. We consider Th, a triangulation where the
maximum diameter of all elements is smaller than h, having Nel elements and the space
FN(Th), as defined in section 2.1. If {φi}K

i=0 denotes a basis for FN(Th), then, by putting

uN =
K
∑

i=0

ûiφi

the numerical method reads:

Problem 2.4.2. Find uN ∈ FN(Th) such that

K
∑

i=0

ûia(φi, φj) = F (φj), ∀j = 0, . . . , K. (2.10)

which is equivalent to solve the linear system

Aexpu = f

where Aexp
ij = a(φi, φj) and u and f contain the components ûi and F (φj), respectively.

Remark 2.4.1. We deal with the imposition of the boundary equations at an algebraic
level, that is, for each degree of freedom whose corresponding function has nonzero trace on
the boundary of Ω, we replace the line of Aexp corresponding to such degree of freedom with
zeros and put the value 1 in the diagonal entry; also, we replace the corresponding entry in
vector f by the proper value given by the boundary condition. In practice, this means that
we discretize the original differential problem in H1(Ω) and then fix the degrees of freedom
on the boundary at the algebraic level. This is the reason why the space FN(Th) (that
accounts for functions with nonzero trace on the boundary) is used to solve the discrete
problem (2.10).
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Let Λ = {0, . . . , K} and Λ∗ ⊂ Λ denote the set of indices corresponding to degrees of
freedom where Dirichlet boundary conditions are imposed. Then, Problem 2.4.2 is recast
as

Problem 2.4.3. Find uN ∈ FN(Th) such that

K
∑

i=0

ûia(φi, φj) = F (φj), ∀j ∈ Λ\Λ∗ (2.11)

ûi = gi,∀i ∈ Λ∗ (2.12)

where gi corresponds to the value of the function g calculated at the node i.

This is the problem that we are going to solve in this section. However, Problem 2.4.3
induces a linear system similar to Aexpu = f , say Au = ˜f , where A and ˜f are calculated
respectively from Aexp and f following remark 2.4.1. We shall call matrix A, the stiffness
matrix.

We define the iterative condition number of matrix A as the ratio

K(A) = λmax(A)

λmin(A)

where λmax(A) and λmin(A) are the largest and smallest eigenvalues of A, if A has real and
positive eigenvalues.

In literature, we find estimates for the condition number of the matrix Aexp where the
rows and columns of the boundary degrees of freedom are eliminated from the system. We
highlight that the condition number of this matrix is the same as the iterative condition
number of A, since their eigenvalues are the same (apart from the extra eigenvalues λ = 1
introduced by the boundary condition enforcement). This is why, in the analysis performed
in this section, we compare K(A) with the results existing in literature.

In the following sections, we will also analyze the eigenvalues/condition number of the
mass matrix associated with the basis of FN(Th), that is, the matrix M with entries

Mij =

∫

Ω

φiφj dx.

Remark 2.4.2. Whenever integrals should be calculated to assemble the matrices or to
measure the error in a particular norm, e.g., ‖u− uN‖H1(Ω), we use a Gauss quadrature
formula that integrates exactly all polynomials.

2.4.1 1D Poisson problem

We considered in our numerical test two meshes. The first corresponds to take the
whole domain as an element and the second corresponds to take 10 equally spaced sub-
domains. Regarding the bases, we compare the Lagrange bases with Equidistributed and
Gauss-Lobatto points.
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Error analysis. From Canuto, Hussaini, Quarteroni and Zang [11] we know that if
u ∈ Hs(Ω) then

‖u− uN‖H1(Ω) 6 C1(s)h
min(N+1,s)−1N1−s|u|Hs(Ω)

where C1 is a constant that only depends on the regularity index s of u, uN is the approx-
imation obtained from the discrete problem (2.10) and |u|Hs(Ω) is the standard semi-norm
of Hs(Ω). From Figure 2.9 we can observe the spectral convergence of the method using

-1 1 -1 10

Figure 2.8: From left to right, meshes with one element (h = 2.0) and ten elements
(h = 0.1875) for the 1D Poisson problem.

one or ten elements. We observe also, as to be expected, the faster convergence rate using
more than one element due to the hN factor in the error estimate. There is no substantial
difference between the Lagrange bases associated with Gauss-Lobatto and Equidistributed
points up to degree N = 11. For N > 11, better results are obtained using Gauss-Lobatto
points as interpolation points and this is related with the conditioning of the stiffness
matrix.
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Figure 2.9: Error measured in the H1(Ω)-norm for the 1D Poisson problem.

Iterative condition number of A. Regarding the matrix associated with the problem,
we plot in Figures 2.10(c) and 2.10(d) the iterative condition number of matrix A for
the previous choices of h. In this context, both bases show very different behaviors: the
iterative condition number of the matrix obtained using the Lagrange basis associated
with Gauss-Lobatto points grows algebraically as O(N3), while for the other one, they
grow exponentially. The behavior of the condition number for the Lagrange Gauss-Lobatto
basis is comparable to the one associated with a Legendre approximation in one domain,
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Figure 2.10: Iterative condition number for the mass (top) and stiffness (bottom) matrices
for the 1D Poisson problem.
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see Canuto, Hussaini, Quarteroni and Zang [12]), and is consistent with the results in
Melenk [55]. The exponential growth of K(A) using a Lagrange basis with Equidistributed
points had already been proved in Olsen and Douglas [58].
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(d) Stiffness matrix.

Figure 2.11: Maximum and minimum eigenvalues for the 1D Poisson problem (h = 1 on
top and h = 0.1875 on bottom).

Condition number of M . In Figures 2.10(a) and 2.10(b) we notice that the behavior
of K(M) is exponential for the Equidistributed point set basis and algebraic for the Gauss-
Lobatto basis. In the latter basis, we estimate that this quantity grows as O(N0.7). As far
as we know, these are new results concerning the iterative condition number of the mass
matrix when using the Lagrange basis with Gauss-Lobatto points. Usually, the matrix
M is lumped, that is, a Gauss-Lobatto quadrature formula is used to evaluate the entries
∫

Ω
φiφj dx and, in this case, the matrix turns out to be diagonal, and it is known that in

this context, K(M) = O(N). We highlight that in the one element case, M is full.
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Eigenvalues of A and M . Regarding the largest and lowest eigenvalues of A andM , like
for the condition number, they grow algebraically for the Gauss-Lobatto and exponentially
for the Equidistributed bases. For the stiffness matrix, our results agree with the theoretical
predictions for the Gauss-Lobatto Lagrange basis, see Canuto, Hussaini, Quarteroni and
Zang [12]. Theory predicts that the smallest eigenvalue decreases with O(N−1) and this is
confirmed from Figures 2.11(b) and 2.11(d). For the highest eigenvalue, we have smaller
growth rates: the theoretical estimation for the growth is O(N2) but we obtain O(N1.83)
in the monodomain case and O(N1.65) in the multidomain example.

We display in Figures 2.11(a) and 2.11(c) the extreme eigenvalues for the mass matrix.

2.4.2 2D Poisson problem with triangular mesh

We now consider the domain Ω = T 2 and discretize it with two different meshes:
one having only 1 element (this correspondes to take h = 1.5) and the other having 125
elements (which corresponds to take h = 0.375), see Figure 2.12. Regarding the bases

Figure 2.12: Mesh with 125 elements for the 2D Poisson problem defined in T 2.

tested for this case, we only use Lagrange nodal bases associated with Fekete, Warpblend
and Equidistributed point sets.
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Figure 2.13: H1 error plots for Poisson problem using a triangular mesh.
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Error analysis. Again, spectral convergence is observed for both (single element) spec-
tral method and the spectral element methods, see Figure 2.13. As in the 1D test problem,
the error associated with each basis is the same, and a small difference is only noticed for
large N , in the refined mesh.
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Figure 2.14: Iterative condition number K(A) for the Poisson problem discretized with a
triangular mesh.

Iterative condition number of A and M . Unlike for the Gauss-Lobatto Lagrange
basis, there are no known estimates regarding the conditioning number of the stiffness ma-
trix, nor its maximum or minimum eigenvalues, in the case of simplicial domains. However,
we provide some insight regarding the behavior of these quantities. In Figures 2.14 and
2.15 we can see that the condition number associated with the Lagrange Warpblend basis
grows exponentially as O(2N), both for the stiffness and mass matrices. Regarding the
Lagrange basis associated with Fekete points, we estimated that K(A) grows like O(N3.36)
and K(M) as O(N2.86) (in the spectral element case). The former result is consistent with
the observations in Pasquetti and Rapetti [60]. We remark that up to degree 8, the it-
erative condition number associated with the Warpblend and Fekete points is almost the
same. However, the Lagrange basis associated with Warpblend points produces linear sys-
tems that can be ill conditioned, for N > 10. We remark here that good preconditioning
strategies should be developed to tackle the ill conditioned system that needs to be solved.
A possibility, already found in Warburton, Pavarino and Hesthaven [91] for Fekete and
Electrostatic based Lagrange bases, is to use the finite element preconditioner. Although
there is no FEM-SEM equivalence (see Canuto, Hussaini, Quarteroni and Zang [12]) for
these points, it can still ease the solving of such systems.

Eigenvalues of A and M . Finally, we show in Figure 2.17 the largest and smallest
eigenvalue of the stiffness matrix. We denote by λF (resp. λW ), the eigenvalue of the
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Figure 2.15: Iterative condition number K(M) for Poisson problem discretized with a
triangular mesh.
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Figure 2.16: Eigenvalues for the mass matrix for the 2D Poisson problem using a triangular
mesh.
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underlying matrix using Fekete (resp. Warpblend) points.

We observe that the growth of the smallest eigenvalue of this matrix is the same as the
theory predicts for a Gauss-Lobatto Lagrange basis. However, the same does not happen
to the largest eigenvalue. We can see from Figures 2.14(a) and 2.14(b) an exponential
growth for this quantity. Similar considerations are valid for the eigenvalues of the mass
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Figure 2.17: Eigenvalues for the stiffness matrix for the 2D Poisson problem using a trian-
gular mesh.

matrix in Figure 2.16.

2.4.3 2D Poisson problem with quadrangular mesh

Let us consider now problem (2.9) defined in Ω = (−1, 1)2. We define a single element
mesh and also a uniform mesh with sixteen quadrangular elements.

In Figure 2.18 we show that in this case too, for monodomain or multidomain expan-
sions, spectral convergence is achieved, for both Lagrange bases considered.

Error analysis. In this case, again we recover spectral convergence, see Figure 2.18.

Iterative condition number of A and M . It can be seen from Figures 2.19(a) and
2.19(b) that the iterative condition number of matrix A associated with Lagrange Gauss-
Lobatto basis exhibits an algebraic growth rate. This result agrees with the estimation
provided in Melenk [55] that states that the conditioning of this matrix scales as h−2N3.

The iterative condition number of M grows like O(N1.5) for the Lagrange basis associ-
ated with Gauss-Lobatto points. K(M) shows exponential growth when using the Lagrange
basis with Equidistrubuted points.
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Figure 2.18: H1 error for the Poisson problem with a quadrangular mesh.
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Figure 2.19: Condition number of the stiffness matrix for quadrangular meshes.
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Eigenvalues of A andM . We start by introducing some notation. The symbol λGaussLobattomin

(resp. λGaussLobattomax ) denotes the smallest (resp. largest) eigenvalue of the underlying matrix
using Gauss-Lobatto points.

Regarding the eigenvalues of the stiffness matrix, it is interesting to notice that the
smallest eigenvalue behaves exactly the same way as for the triangular case, that is,
O(N−2). As for the largest eigenvalue, we estimate that is grows like O(N).
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Figure 2.20: Minimum and maximum eigenvalues for A and M for the Poisson problem
using quadrangular meshes.

Finally, we plot 2.20(b) the minimum and maximum eigenvalues of the mass matrix.
We estimate that the minimum eigenvalue decreases as O(N−3.5) and the maximum as
O(N−1.68). Again, the behavior of the minimum eigenvalue is the same as for the triangular
case.

2.4.4 3D Poisson problem with tetrahedral mesh

We now consider the domain Ω = T 3 and discretize it with two different meshes: one
having only 1 element and the other having 6 elements. Regarding the bases tested for this
case, we only use Lagrange nodal bases associated with Warpblend and Equidistributed
point sets.

Error analysis. Again, spectral convergence is observed for both monodomain and mul-
tidomain cases, see Figure 2.21. The error associated with each basis is the same, and a
small difference is only noticed for large N , in the refined mesh.

Iterative condition number of A and M . The condition number of matrix A is
plotted in Figures 2.23(a) and 2.23(b), for the cases when the case has one and six elements,
respectively. We notice that using the Lagrange basis associated with Warpblend points
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Figure 2.21: H1 error plots for Poisson problem using a tetrahedral mesh.
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Figure 2.22: Iterative condition number K(A) for the Poisson problem discretized with a
tetrahedral mesh.
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Figure 2.23: Iterative condition number K(M) for Poisson problem discretized with a
tetrahedral mesh.

we get smaller condition numbers for A than using the Equispaced points. However, the
growth in both cases is exponential (O(3N) in the monodomain case and O(2.5N) in the
multidomain case). Again, good preconditioning strategies should be developed to tackle
the ill conditioned system that needs to be solved. Similar considerations are valid for the
mass matrix.

2.5 Conclusion

In this chapter, we extended the framework developed in chapter 1 to domains de-
composed in several elements. The algorithms to construct a continuous expansion in a
multidomain setting were addressed, as well as the discontinuous case. In the matter of
matrix assembly, we provided an algorithm for assembly of linear and bilinear forms using
the local to global table of degrees of freedom n(·, ·). In 2D, face integration was addressed
and we provide the ideas and tools to calculate integrals in this context.

Regarding the Poisson test case presented in the last section, we obtained several results
that were known in the literature: the condition number of the stiffness matrix in 1D and
2D, using Gauss-Lobatto points; spectral convergence using Fekete, Warpblend and Gauss-
Lobatto based Lagrange bases. We also obtain some new numerical results regarding
the point sets used, namely, the condition number and eigenvalues of the mass matrix
associated with each discrete function space. We highlight that K(M) grows like O(N0.7)
and O(N1.5) using Gauss-Lobatto points in 1D and 2D, respectively, and like O(N2.86)
using Fekete points (in 2D). The condition number of A and M obtained using Warpblend
points have always a growth that is exponential in N . All the other results regarding
condition numbers are consistent with what can be found in the literature.

In the present work, we do not conduct a test for meshes composed of hexahedra.
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This should be done to confirm the spectral convergence of the Gauss-Lobatto points and
gather information on the eigenvalues and condition number of the stiffness and mass
matrix associated with this problem.





Chapter 3

Algorithms for the incompressible
Stokes and Navier-Stokes equations

In this chapter, we discuss algorithms to solve the incompressible Stokes and Navier-
-Stokes equations, written in the primitive variable formulation using the spectral element
method. It is structured as follows. In section 3.1 we present the steady Stokes equations.
After introducing its spectral element approximation, we provide some numerical tests
to confirm the expected orders of convergence for several known inf-sup stable spaces
for velocity and pressure, varying the mesh size and the polynomial degree. Spectral
convergence is shown also for the Kovasznay test problem when using geometrical elements
of degree one up to four. In the second section we introduce the unsteady Navier-Stokes
equations and propose a spectral element discretization in space. Section 3.3 is dedicated
to preconditioning strategies for the steady/unsteady Stokes/Navier-Stokes linear system
arising from time/space discretization and linearization of the convective term. We present
a block preconditioner and show the dependence of the number of iterations with respect to
viscosity, mesh size, time step and polynomial degree. We also compare this preconditioner
with two other strategies: a LU direct solver and a incomplete LU preconditioner. These
strategies were compared in terms of time to calculate the preconditioners, time to solve
the linear problem and number of iterations taken by an iterative solver. The last section
presents a class of algebraic factorization methods to solve the unsteady Stokes/Navier-
-Stokes equations, called the Yosida-q schemes. We show that in our framework, these
schemes maintain their expected order of convergence in time for the velocity and pressure
fields. We address also the question of how to precondition efficiently the approximate
Schur complement that appears in these methods.

67
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3.1 The steady Stokes equations

Let Ω be a bounded open polygonal domain in Rd with Lipschitz continuous boundary
∂Ω, d = 2, 3. The Stokes equations

−ν∆u+∇p = f , in Ω
div(u) = 0, in Ω

(3.1)

are a fundamental model of viscous flow. Here ν represents the kinematic viscosity, the
velocity vector field u represents the components of the velocity of the fluid and the scalar
function p represents the pressure. The first equation arises from the conservation of
momentum of the fluid and the second from the conservation of mass, see Streeter, Wylie
and Bedford [82]. The fact that the second equation, called incompressibility constraint,
does not involve the pressure makes the construction of finite/spectral element methods
problematic.

To complete system (3.1), boundary conditions must be supplied to ensure its well-
posedness. For simplicity of the presentation, we consider only homogeneous Dirichlet
boundary conditions in the whole boundary ∂Ω.

3.1.1 Variational formulation

The weak form of system (3.1) is obtained by multiplying both momentum and mass
conservation equations by test functions and integrating by parts. We start by choosing
suitable functional spaces for the trial and test functions, for velocity and pressure. Let us
introduce the following spaces

H1
0(Ω) =

{

v ∈ H1(Ω)d : v|∂Ω = 0
}

and

L20(Ω) =

{

q ∈ L2(Ω) :
∫

Ω

q dx = 0

}

.

Remark 3.1.1. The reason why the pressure is sought in L20(Ω) in the case of Dirichlet
boundary conditions is related to the fact that in L2(Ω), it exists up to a constant. The
extra zero average condition in L20(Ω) helps to uniquely determine the pressure.

The variational formulation reads as

Problem 3.1.1. Find u ∈ H1
0(Ω) and p ∈ L20(Ω) such that

ν

∫

Ω

∇u : ∇v dx−
∫

Ω

p div(v) dx =

∫

Ω

f · v dx, ∀v ∈ H1
0(Ω)

∫

Ω

q div(u) dx = 0, ∀q ∈ L20(Ω)
(3.2)
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where the notation : stands for the scalar product of two tensor fields of rank 2, F and G,
as

∫

Ω

F : G dx =
N
∑

i=1

N
∑

j=1

∫

Ω

FijGij dx.

To simplify the notation, we define the bilinear forms, a : H1
0(Ω) ×H1

0(Ω) −→ R and
b : H1

0(Ω)× L20(Ω) −→ R by

a(u,v) = ν

∫

Ω

∇u : ∇v dx, b(v, p) =

∫

Ω

p div(v) dx (3.3)

and the linear bounded functional F : H1
0(Ω) −→ R by

F (v) =

∫

Ω

f · v dx.

where f ∈ L2(Ω)d. This functional will take a different form in the case of non homogeneous
Dirichlet conditions or Neumann conditions, see Remark 3.1.3. Denoting V = H1

0(Ω) and
Q = L20(Ω) we can rewrite problem (3.2) in the more compact form

Problem 3.1.2. Find u ∈ V and p ∈ Q such that

a(u,v)− b(v, p) = F (v), ∀v ∈ V
b(u, q) = 0, ∀q ∈ Q.

The uniqueness and existence of solution of Problem 3.1.2 depends on the regularity
of the data and the functional spaces involved. In the case of pure Dirichlet boundary
conditions, a solution exists (see Brezzi [5]) if

∃β > 0 : ∀p ∈ Q : sup
0 6=v∈V

b(v, p)

‖v‖V
> β ‖p‖Q (3.4)

∃C > 0 : a(v,v) > C ‖v‖2V , ∀v ∈ V (3.5)

Condition (3.4) is called the continuous inf-sup condition and (3.5) refers to the coer-
civity of the bilinear form a(·, ·).

Remark 3.1.2. In fact, it is sufficient for a solution to exist that a(·, ·) be coercive on the
subspace

Ṽ = {v ∈ V : b(v, q) = 0, ∀q ∈ Q}

It is easily seen that a(·, ·) is continuous and coercive and therefore, the existence and
uniqueness of solution depends only on condition (3.4) as well as the regularity of the given
data.
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Remark 3.1.3. If there is a part of ∂Ω where Neumann boundary conditions are imposed,
say ∂ΩN , then the natural space to look for the velocity u is

H1
ΓD(Ω) =

{

v ∈ H1(Ω) : v|
ΓD

= 0
}

. (3.6)

being ΓD that part of the boundary on which homogeneous Dirichlet conditions are imposed
on the velocity field. The Neumann condition has also an impact on choice of the functional
space for the pressure field. Actually, the fact that Neumann boundary conditions are
imposed in a nonzero measure set implies that the average of the pressure field is fixed.
Therefore the pressure should be sought in L2(Ω). In this case, conditions (3.4) and (3.5)
still hold.

3.1.2 The discrete problem

Let Th be a triangulation of the domain Ω, see section 2.1. For simplicity we consider
a partition with straight edge geometrical elements only, i.e., Ngeo = 1.

The spectral element spaces used to approximate the velocity and pressure fields are
VN = (FN(Th))

2 and QM = FM(Th), where M = N − 1 or M = N − 2 and FN(Th)
is the space introduced in section 2.1. We remark that the definition in the case of a
quadrangular partition is straightforward. When we use these discretization spaces, we
will refer to the PN - PM method (QN - QM if the partition is made out of quadrangles)
to be consistent with the nomenclature in the literature. We notice that in this case,
we define the pressures continuous across the elements of the mesh. The discontinuous
pressure version of this method is also considered and denoted by PN - Pdisc

M .
The discrete problem reads as follows

Problem 3.1.3. Find (uN , pN) ∈ VN ×QM such that

a(uN ,v)− b(v, pN) = F (v) ∀v ∈ VN

b(uN , q) = 0, ∀q ∈ QM .
(3.7)

In order to reduce (3.7) to an algebraic problem, we consider basis functions for the
spaces associated with the Galerkin method, say VN = span{φi} and QM = span{ψi}.
Denoting UN and PN as the representation of uN and pN w.r.t. these basis, Problem 3.1.3
is equivalent to find the solution of a linear system of the form

[

FN GN

DN 0

] [

UN

PN

]

=

[

F
0

]

. (3.8)

where FN = [a(φi,φj)]i,j, GN = [−b(φi, ψj)]i,j and DN = −GT
N .

From the theoretical point of view, the pressure is sought in L20(Ω) due to the fact that
it exists up to a constant in L2(Ω). In practice, to construct a finite dimensional space
whose basis functions have zero mean is undesirable. This issue can be circumvented in
three ways:
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• using the space QM that approximates L2(Ω) and determine the pressure field up to
a constant. The linear system (3.8) will be singular and the linear solver should take
that into account. A possibility is to use for instance a Krylov subspace solver with
an incomplete factorization.

• fix the pressure field algebraically in one point. This fixes the pressure to have a
certain average and makes system (3.8) non singular. The solution PN of (3.8) must
then be shifted in order for the pressure average to be zero.

• using a Lagrange multiplier approach to fix the average of the pressure.

The latter strategy is actually the one used whenever we solve Stokes problems with only
Dirichlet boundary conditions. The idea consists in adding a new equation to (3.1)

∫

Ω

p dx = 0

and use a Lagrange multiplier to enforce it. The weak formulation for the new problem
reads as

Problem 3.1.4. Find (uN , pN , λN) ∈ VN ×QM × R such that

a(uN ,v)− b(v, pN) = F (v) ∀v ∈ VN (3.9)

b(uN , q) +

∫

Ω

λNq dx = 0, ∀q ∈ QM (3.10)

∫

Ω

µpN dx = 0, ∀µ ∈ R. (3.11)

This problem is now reduced to solving a linear system with one more row and column
that is non singular.

Remark 3.1.4. When dealing with non homogeneous Dirichlet boundary conditions, say

u|∂Ω = g,

we write the full variational formulation for the Stokes equations, meaning that we consider
any H1(Ω) function as test function for the velocity. At the discrete level, we consider an
approximation space whose functions are nonzero at the boundary and impose the Dirichlet
boundary conditions algebraically, as mentioned in Remark 2.4.1. The solution obtained
with this procedure is the same as the one obtained by deriving the variational formulation
with v ∈ H1

0(Ω) and lifting the Dirichlet boundary condition with an appropriate interpolant
that belongs to VN . This interpolant is defined as the nodal projection of g in ∂Ω and
extended to the interior of Ω by setting the respective degrees of freedom to zero. For more
details, consult Sherwin and Karniadakis [48].
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Stability and convergence of the discrete problem

We first observe that the bilinear and linear forms a(·, ·) and b(·, ·) are continuous, that
is, there exist constants γ, δ such that

|a(u,v)| 6 γ ‖u‖V ‖v‖V , ∀u,v ∈ V
|b(v, q)| 6 δ ‖v‖V ‖q‖Q , ∀v ∈ V, ∀q ∈ Q.

On the other hand, concerning the right hand side of the momentum equation, due to the
Cauchy-Schwarz inequality, there exists C(f) such that

|(f,v)| 6 C(f) ‖v‖V , ∀v ∈ V (3.12)

The existence and uniqueness of solution of this problem is then connected with the
following result, due to Brezzi [5],

(i) Setting
ZN = {v ∈ VN : b(v, q) = 0, ∀q ∈ QM} (3.13)

there exists a constant αN > 0 such that

a(v,v) > αN ‖v‖V , ∀v ∈ ZN (3.14)

(ii) there exists a constant βN > 0 such that

sup
v∈VN

b(v, q)

‖v‖V
> βN ‖q‖Q , ∀q ∈ QM . (3.15)

The constant βN is known as inf-sup constant.

If these conditions are verified then the following error estimates are valid:

‖u− uN‖V 6

(

1 +
γ

αN

)

inf
w∈ZN

‖u−w‖V +
δ

αN

inf
q∈QM

‖p− q‖Q (3.16)

and

‖p− pN‖Q 6
γ

βN

(

1 +
γ

αN

)

inf
w∈ZN

‖u−w‖V +

(

1 +
δ

βN

(

1 +
γ

αN

))

inf
q∈QM

‖p− q‖Q

(3.17)
The condition (3.15) is called discrete inf-sup condition.
In our context, we suppose that there exists α > 0 not depending in N such that

0 < α 6 αN , ∀N.
It can be shown (see Canuto, Hussaini, Quarteroni and Zang [11]) that

‖u− uN‖V + βN ‖p− pN‖Q 6 C1β
−1
N hmin{N,s−1}N1−s ‖u‖Hs(Ω)

+C2h
min{M+1,s−1}M1−s ‖p‖Hs−1(Ω)

(3.18)

for u ∈ Hs(Ω) and p ∈ Hs−1(Ω), s > 1.
For more details concerning these error estimates or estimates that account for nu-

merical integration, we refer again the reader to Canuto, Hussaini, Quarteroni and Zang
[11].
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Compatibility condition between velocity and pressure: the discrete inf-sup
condition

The inequality (3.15) requires a compatibility between the velocity and pressure spaces
involved in the discretization of the Stokes problem. The violation of (3.15) produces a set
of spurious pressure modes, that is, discrete pressures q, non constant in Ω, that satisfy

b(v, q) = 0, ∀v ∈ VN . (3.19)

Since the pressure only enters the Stokes equations through the gradient and no boundary
conditions are associated with it, any pair (u, p + q) is a solution as long as (u, p) solves
the Stokes problem.

The spurious modes can also be characterized at an algebraic level. Using the notation
as in section 3.1.2, condition (3.19) is written as

GNq = 0 (3.20)

for a discrete pressure q corresponding to the chosen basis. We remark that this condition
is equivalent to the matrix GT

NGN having a zero eigenvalue with multiplicity greater than
1.

Another important concept that is related with the discrete inf-sup condition is the
notion of pseudo-spurious pressure modes. To introduce this notion, let us consider the
following generalized eigenvalue problem

GT
NF

−1
N GNq = µMpq (3.21)

whereMp denotes the pressure mass matrix. Denoting β
∗
N as the square root of the smallest

eigenvalue of (3.21), we say that the numerical method has pseudo-spurious modes if

lim
N−→∞

β∗N = 0.

It can be shown (see the details in Canuto, Hussaini, Quarteroni and Zang [11]) that
the quantity β∗N behaves asymptotically as βN , the inf-sup constant.

3.1.3 Choices of the pressure space

By fixing the space that approximates the velocities as PN or QN , we consider different
possibilities to approximate the pressure field. As already mentioned, there are several
possible choices, but we will restrict our analysis to PM (or QM), for M ∈ {N − 1, N − 2},
continuous or discontinuous across the elements of the underlying mesh.

We present now a numerical study of the convergence properties of such spaces. As
a model problem, we consider the Kovasznay solution of the steady Stokes equations, see
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Kovasznay [52]. The exact solution is

u(x, y) =

[

1− eλx cos(2πy),
λ

2π
eλx sin(2πy)

]T

p(x, y) = −e
2λx

2

λ =
1

2ν
−
√

1

4ν2
+ 4π2.

(3.22)

The domain is defined as Ω = (−0.5, 1)× (−0.5, 1.5) and ν = 0.035. The forcing term for
the momentum equation is obtained from the solution and is

f =
(

eλx
((

λ2 − 4π2
)

ν cos(2πy)− λeλx
)

, eλxν sin(2πy)(−λ2 + 4π2)
)T

(3.23)

Dirichlet boundary conditions are derived from the exact solution.
The norms in which the error for velocity and pressure are computed are the H1(Ω)-

norm and L2(Ω)-norm, for velocity and pressure, respectively.

Space discretization, assembly and linear solver

We have to choose bases for the spaces VN and QM . In both cases, we use a Lagrange
basis, associated with Fekete points in the case the mesh is made up of triangles, and
associated with Gauss-Lobatto points in the quadrangular mesh case. In Figure 3.1 we
see some of the meshes used in the simulation. The choice of the basis for the pressure in
the discontinuous setting is nonstandard in the case of quadrangular meshes. Typically,
the bases chosen for this kind of approach are built upon Gauss points or interior Gauss-
Lobatto points. We consider the full set of Gauss-Lobatto points to create the Lagrange
basis, including the ones in the boundary of the elements. The reason of this choice is to
retain the similarity with the equivalent method defined in a triangular mesh and using
the Fekete points.

Whenever integrals over the domain have to be calculated, we use a quadrature rule
with a sufficiently high number of points that integrates all bilinear/linear forms exactly.
In the triangular and quadrangular mesh cases, a quadrature rule is used.

At the linear algebra level, the system is solved with a LU factorization.

The QN - QN−1 and PN - PN−1 methods

One of the most known elements in the finite element community is Q2 - Q1 or P2 -
P1. These are called Taylor-Hood elements. The generalization of these spaces to high
degree was studied by Brezzi, Falk [6] in the case of meshes composed by squares and
triangles. It was concluded that QN - QN−1 is inf-sup stable and for meshes satisfying
certain properties, so is PN - PN−1. However, in the work of Ainsworth and Coggins [1],
numerical evidence is shown that the inf-sup constant decays to zero with the increasing
polynomial degree.
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Figure 3.1: Meshes used in the simulations (h = 0.125). On the left an uniform quadran-
gular mesh, on the right a nonuniform triangular mesh.
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Figure 3.2: Error plot for the velocity and pressure for the generalized Taylor-Hood element
PN - PN−1.
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Figure 3.3: Error plot for the velocity and pressure for the generalized Taylor-Hood element
QN - QN−1.

In Figures 3.2 and 3.3 we plot the errors for the velocity and pressure fields. From
Figure 3.2, we remark that the H1(Ω) error for the velocity is of order two for P2 - P1 and
approximately order four for P4 - P3. On the other hand, the pressure error is of order
two for P2 - P1 and of order approximately 4.3 for P4 - P3. The convergence order for
the velocity and pressure fields appears to be optimal regarding the approximation space.
Similar considerations are valid for the QN - QN−1 method and Figure 3.3.

The QN - Qdisc
N−2 and PN - Pdisc

N−2 methods

The QN - Qdisc
N−2 method was proposed by Bernardi and Maday in [2] and is one of the

most widely used discretization spaces. It is known that the inf-sup constant is proportional
to N

1−d
2 . A quasi-optimal error estimate is obtained in this case from the estimate (3.18)

‖u− uN‖V +N
1−d
2 ‖p− pN‖Q 6 C1h

min(N,s−1)N1−s ‖u‖Hs(Ω)

+C2h
min(N−1,s−1)N1−s ‖p‖Hs−1(Ω)

In Figure 3.4 we can observe the quasi-optimality of the previous estimate regarding the
velocity. Though we approximate the velocity with N degree velocities, the error decays as
hN−1, for N = 3, 4. As for the pressure, the error behaves as hN−1, thus showing optimality
regarding the approximation space.

The same kind of quasi-optimality is present in the PN - Pdisc
N−2 method. This is docu-

mented in Figure 3.5.

The QN - QN−2 and PN - PN−2 methods

Regarding this choice of spaces, since their counterparts with discontinuous pressures
are inf-sup stable, so will these be. With respect to error estimates, we can refer to the work
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Figure 3.4: Error plot for the velocity and pressure for the element QN - Qdisc
N−2.
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Figure 3.5: Error plot for the velocity and pressure for the element PN - Pdisc
N−2.
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of Schwab and Suri [76] for the PN - PN−2 method. In this paper, exponential convergence
is proven for the Stokes problem. The numerical results in terms of convergence order are
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Figure 3.6: Error plot for the velocity and pressure for the element QN - QN−2.

very similar to the ones obtained in the previous section for the PN - Pdisc
N−2 and QN - Qdisc

N−2

methods, and here at the cost of a reduced pressure space.
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Figure 3.7: Error plot for the velocity and pressure for the element PN - PN−2.

Comparison between the different methods and conclusion

If a h refinement is seeked, which of the previous methods should we choose? By analyz-
ing the results presented before, the answer is the generalized Taylor-Hood method. This
method, for meshes with triangles or quadrangles, is optimal regarding the approximation
spaces used, for velocity and pressure, whereas the other is one order less from optimality.
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Figure 3.8: Error plot for the several methods associated with triangular meshes.

In the case of a N refinement, then the situation is different. First, we remark that the inf-
sup constant associated with the Taylor-Hood methods decays to zero probably at a higher
rate than N

1−d
2 . Numerical evidence by Ainsworth and Coggins [1] showed that this should

behave as N−1. We did not experience any degradation in the pressure field as result of
the increased polynomial degree, and for the range of N that is used in practice, this does
not seem to be a problem. However, the generalized Taylor-Hood methods perform worse
in terms of polynomial degree refinement. In Figures 3.8 and 3.9 we plot for a fixed mesh
size h, the errors for the velocity and pressure fields depending on the polynomial degree.
From these figures, we conclude that if we refine in N then one should use the PN - PN−2
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Figure 3.9: Error plot for the several methods associated with quadrangular meshes.

or the QN - QN−2 methods. Comparing with the generalized Taylor-Hood method, the
latter show better accuracy properties and if we compare it with it’s discontinuous version,
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though there is no substantial difference in the quadrangular case, the pressure error is
slightly smaller in the triangular case.

3.1.4 Using high order geometrical elements

We also checked for spectral convergence of our method w.r.t. using high order trian-
gular geometrical elements. For this benchmark, we consider again the Kovasznay solution
(3.22) defined in the new domain Ω obtained from the rectangle (−0.5, 1)× (−0.5, 1.5) by
replacing the lower edge with the image of

ϕ(x) =
[

x, 0.08(x+ 0.5)(x− 1)(x2 − 1)
]T
, x ∈ (−0.5, 1).

Again, we impose the Kovasznay solution as Dirichlet boundary condition. A plot of the
domain’s shape and pressure profile is depicted in Figure 3.10.

(a) Magnitude of velocity (b) Pressure

Figure 3.10: Plot of the solution of the Kovasznay problem.

Let us fix h > 0 and Ngeo = 1, 2, 3, 4. We consider a triangulation Tδ of Ω, where
δ = (h,Ngeo) and the respective domain Ωδ it induces, that is,

Ωδ =
⋃

T∈Tδ

T.

Remark 3.1.5. Notice that if geometrical elements of order four are used, the boundary
of Ω can be described exactly for all h and no error is produced from approximating the
geometry of the domain.

In Figure 3.11 we plot the error in H1(Ωδ)-norm for the velocity and L2(Ωδ)-norm
for the pressure. We observe that spectral convergence is achieved using all four types of
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Figure 3.11: Convergence plots for the modified Kovasznay example using several high
order geometrical elements and the PN − PN−2 method.

geometrical elements. We stress that the error coming from approximation of the domain
is not taken into account in the error quantities we calculated. With this test case, we
merely want to show that spectral convergence is still achieved, even using high order
geometrical elements. We remark from Figure 3.11 the appearance of a shift in the errors,
both for velocity and pressure, when we vary the polynomial degree of the geometrical
transformation Ngeo. This is due to what we already mentioned in Remark 1.4.1.

If we calculate the error of the approximation in the H1(Ω)-norm then we obtain the
plots shown in Figure 3.12. The solution uN of the problem is nodally projected onto the
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Figure 3.12: Convergence plot in the H1(Ω)-norm for the modified Kovasznay example
using high order geometrical elements and the PN − PN−2 method.

velocity space of the same polynomial degree associated with the fourth order mesh (that
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describes the domain exactly). By taking into account the approximation of the domain in
the error, we observe that for Ngeo = 1, 2, 3, the error stagnates. There is only convergence
when the geometry is exactly described.

Another way to assess the accuracy of a method using high order geometrical elements,
is to calculate the drag and lift forces on the curved boundary. Let us define ∂Ωbottom as
the part of the boundary of Ω that is curved. Then, these coefficients are respectively the
first and second component of the vector force

∫

∂Ωbottom

(−pI+ ν∇u)n ds.

We can use as reference drag and lift the values obtained in the fourth order mesh (that
describes the domain exactly) and with an approximation space of high degree for velocity
and pressure. In Figure 3.13 we plot the error between several approximations for the
domain/fluid variables and exact drag/lift values (obtained using the fourth order mesh
and the P8 − P6 method.

In respect of the geometrical elements, we get similar results as in Figure 3.12: the error
stagnates, unless we approximate the geometry of the domain exactly. We also observe the
convergence in h for the drag and lift coefficients.

Remark 3.1.6. We highlight that this latter method does not involve any interpolation
procedure to the high order mesh and should be preferred to the first one presented.

3.2 The unsteady Stokes and Navier-Stokes equations

Let us consider now the unsteady incompressible Stokes and Navier-Stokes equations
written in the primitive variable formulation. Let Ω ⊂ Rd, d = 2, 3, be an open and
bounded domain with Lipschitz continuous boundary ∂Ω. We will split the boundary ∂Ω
in two parts: ΓD and ΓN where we impose homogeneous Dirichlet and Neumann boundary
conditions, respectively. We introduce the space

H1
ΓD(Ω) =

{

v ∈ H1(Ω) : v|
ΓD

= 0
}

of all H1(Ω) functions with zero trace in ΓD. Let T be a positive and fixed real. Given

a divergence free datum u0 ∈ H1
ΓD(Ω) and an external field f ∈ [L2 (0, T ;H−1(Ω))]

d
, we

look for the velocity field u ∈
[

L2
(

0, T ;H1
ΓD(Ω)

)

∩ L∞(0, t;L2(Ω)
]d

and pressure field
p ∈ L2 (0, T ;L2(Ω)) solutions of

∂u

∂t
− ν∆u+ (u ·∇)u+∇p = f , in Ω × (0, T ) (3.24)

div(u) = 0, in Ω × (0, T ) (3.25)

u = 0, on ΓD × (0, T ) (3.26)

(−pI+ ν∇u)n = 0, on ΓN × (0, T ) (3.27)

u = u0, in Ω × {0} (3.28)
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Figure 3.13: Convergence plot in the H1(Ω)-norm for the modified Kovasznay example
using high order geometrical elements and the PN − PN−2 method.
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q β−1 β0 β1 β2 β3
1 1 1
2 3/2 2 −1/2
3 11/6 3 −3/2 1/3
4 25/12 4 −3 4/3 −1/4

Table 3.1: Coefficients of the BDFq schemes up to order 4 of accuracy.

where ν is the viscosity parameter and I is the identity tensor. This problem admits a
unique solution in the case d = 2, see Temam [86].

Remark 3.2.1. In the case ΓN = ∅ then the pressure must be sought in L2 (0, T ;L20(Ω))
since it will be unique up to a constant.

To obtain the weak formulation of system (3.24)-(3.28) we proceed as follows: first, we
discretize the equations in time; then, concerning the space discretization, we proceed as
in section 3.1 for the Stokes problem.

3.2.1 Time discretization

We start by approximating the time derivative by a backward differentiation formula of
order q (BDFq) and linearize the nonlinear convective term with an extrapolation of order
q. Given ∆t ∈ (0, T ), we set t0 = 0, tn = t0 + n∆t (for any n > 1) and NT =

[

T
∆t

]

; then

Problem 3.2.1. For each n > q−1, we look for the solution (un+1, pn+1) ∈ H1
ΓD(Ω)×L2(Ω)

of

β−1
∆t

un+1 − ν∆un+1 + (βn ·∇)un+1 +∇pn+1 = fn+1 +

q−1
∑

j=0

βj

∆t
un−j in Ω

div(un+1) = 0 in Ω

(3.29)

that satisfies the boundary conditions (3.26)-(3.28).

The vector βn that appears in the previous formulation is the result of the linearization
of the convective term and it depends on the BDF scheme used.

The coefficients βj, j = −1, . . . , q − 1 are the well known coefficients associated with
the BDF schemes which we briefly remind in Table 3.2.1.

3.2.2 Space discretization

Often the fluid flows are dominated by the convection and the velocity in the variational
formulation needs to be stabilized. In our approach, we consider the interior penalty
(IP) stabilization technique. One of the main advantages of this approach is that the
stabilization term is independent of time derivatives and source terms, at the cost however
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of increasing the stencil of the finite/spectral element method. More details in the IP
method can be found in Burman and Fernandez [8] to stabilize the Navier-Stokes equations
and Burman and Ern [7] to stabilize steady convection-diffusion problem with an arbitrary
degree space discretization.

To properly introduce the IP stabilization, let us first introduce some notation. Let
v ∈ H1(Ω) and v ∈ H1(Ω) and FI the set of internal faces of a triangulation Th,Ngeo

. Given
a face F ∈ Fi, let T1 and T2 the elements of Th,Ngeo

that share F , that is, F = T1 ∪ T2. We
denote by v1, v2, respectively, v1,v2 the restriction of v,v to the element T1 and T2. Let
n1 and n2 be the exterior normal of T1 and T2. Then, the jump of v,v across F is defined
as

[[v]]F = v1n1 + v2n2 (3.30)

[[v]]F = v1 · n1 + v2 · n2. (3.31)

In the case of a matricial function, like for instance ∇v, we define the jump as

[[∇v]]F = ∇v1n1 +∇v2n2.

The stabilization term to be added to the variational formulation reads

j(β;u,v) =
∑

F∈FI

∫

F

|β · n| h
2
F

N3.5
[[∇u]]F · [[∇v]]F ds (3.32)

where hF denotes the length of the face F and N the degree of the velocity approximation.
The presence of the term (3.32) increases the stencil of the standard continuous Galerkin

i

j

F

Figure 3.14: Example of two degrees of freedom that are coupled with the IP stabilization
term.

formulation. This means that once we assemble the matrix with this term (and all the
others from the weak formulation of the Navier-Stokes equations), this matrix has more
nonzero entries than the one without the contribution of the IP term. In Figure 3.14 we
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observe two degrees of freedom, that are not usually coupled. However, if φi and φj are
the functions corresponding to the degrees of freedom in the figure, the term

∫

F

[[∇φi]]F · [[∇φj]]F ds

is nonzero.
Before we introduce the complete weak formulation associated with system (3.29), we

introduce the following notations

(u,v) =

∫

Ω

u · v dx,

c (β;u,v) =

∫

Ω

(β ·∇)u · v dx.

Using the notation for the bilinear forms (3.3), the approximation for system (3.29) by the
IP method reads as

Problem 3.2.2. For each n > q − 1, find (un+1
N , pn+1

N ) ∈ VN ×QM such that

β−1
∆t

(

un+1
N ,v

)

+ a(un+1
N ,v) + c(βn

N ;u
n+1
N ,v) + γj(βn

N ;u
n+1
N ,v)− b(v, pn+1

N ) = (f̃n+1,v)

b(un+1
N , q) = 0

(3.33)
for all v ∈ VN and q ∈ QM ,

where VN and QM are any of the inf-sup stable spaces discussed in section 3.1 associated
with Th,Ngeo

, f̃n+1 accounts for the whole right hand side the first equations of (3.29) and
γ is a parameter. The vector βn

N is now equal to some linear combination of previous time
step known solutions

βn
N =















un
N , q = 1

2un
N − un−1

N , q = 2
3un

N − 3un−1
N + un−2

N , q = 3
4un

N − 6un−1
N + 4un−2

N − un−3
N , q = 4

(3.34)

Remark 3.2.2. In the case that non homogeneous Neumann boundary conditions are
prescribed in ΓN , say by a function gN , the variational formulation changes slightly by
adding to the right hand side of the first equation of (3.33) the term

∫

ΓN

gN · v ds

As we did in section 3.1.2, we consider basis function for the spaces VN and QM , say
VN = span{φi} and QM = span{ψi}. Then equation (3.33) is equivalent to solve, for each
n > 1 a system of the form

[

FN GN

DN 0

] [

Un+1
N

Pn+1
N

]

=

[

Fn+1
N

0

]

, (3.35)
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where Un+1
N and Pn+1

N are the representations of un+1
N and pn+1

N in the bases of VN and
QM , respectively. The matrices GN and DN are the discrete representatives of the gradient
and divergence operators, just like in system (3.8). However, in this context, matrix FN

accounts for the discretization of not only the diffusive terms of the Navier-Stokes equations,
but also the linearized convection, CN , mass matrix, MN , and possibly, the matrix arising
from the IP stabilization term (which we include in CN)

FN =
β−1
∆t

MN + νHN + CN (3.36)

Remark 3.2.3. As already mentioned before, the imposition of Dirichlet boundary condi-
tions is done at the algebraic level. This implies the elimination of the rows in matrix FN

but also of matrix GN .

3.3 Efficient preconditioning techniques

Let us recall the linear system (3.35)

[

FN GN

DN 0

]

︸ ︷︷ ︸

AN

[

UN

PN

]

=

[

f
0

]

. (3.37)

where FN is given in (3.36). We remark that system (3.37) is quite general and encompasses
the discretization of the unsteady/steady Stokes/Navier-Stokes equations.

For the solution of (3.37), iterative methods are usually preferred. In the case AN is
symmetric, the conjugate gradient method is usually chosen. In the more general case,
generalized minimum residual GMRES or Bi-CGSTAB are suitable alternatives. In these
circumstances, a good preconditioner is the cornerstone to solve the linear system in a fast
way.

Several preconditioners for AN can be found in literature. Among them, we refer to
multigrid [30, 21], overlapping Schwarz [62, 63, 13, ?, 59] or block type [56, 25] precondi-
tioners as possible choices. In the following, we analyse a family of block preconditioners
for AN and compare it to two other strategies: a direct solver using a LU factorization and
a preconditioner performing an incomplete LU factorization.

3.3.1 A block type preconditioner

We start by noticing that AN can be factorized as follows

AN =

[

IN 0
DNF

−1
N IN

]

︸ ︷︷ ︸

L

[

FN 0
0 SN

]

︸ ︷︷ ︸

D

[

IN F−1N GN

0 IN

]

︸ ︷︷ ︸

U

. (3.38)

where we denote by SN = −DNF
−1
N GN the pressure Schur complement.
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If we use the matrix PL = LD as preconditioner for AN and a Krylov subspace method,
than the matrix P−1L AN has two distinct eigenvalues, thus convergence is achieved in at
most two iterations, see Murphy, Golub and Wathen [56]. However, this preconditioner is
prohibitive in practice due to the presence of the pressure Schur complement. The idea
here to build an effective preconditioner is to replace matrices FN and SN by cheap approx-
imations, say F̃N and S̃N . These approximative versions of the original operators should
be chosen such that they constitute good preconditioners for FN and SN , respectively.

In the work of Elman and Sylvester [25], a preconditioner based on PR = DU was used
as a right preconditioner together with the GMRES method to solve the steady Stokes
and Navier-Stokes equations. This preconditioner has the property that the number of
iterations stays bounded independently of the the mesh size h or the polynomial degree of
the approximation N . The preconditioner and these results were extended to the unsteady
Navier-Stokes case for N = 2 in Silvester, Elman, Kay and Wathen [78].

We propose a left preconditioner based on PL and the ideas in Elman and Sylvester [25]
and Silvester, Elman, Kay and Wathen [78] and extend the experiments in [78] to spectral
discretizations. Let

P =

[

F̃N 0

DN S̃N

]

(3.39)

where F̃N and S̃N are suitable approximations of FN and SN .
The inverse of P is given by

P−1 =

[

F̃−1N 0

RN S̃−1N

]

(3.40)

where RN = −S̃−1N DN F̃
−1
N . If a Krylov subspace method is used to solve problem (3.37),

then, at each iteration, we need to solve a system with matrix P . This means that for a
given vector (r, s), we need to calculate (v,q) such that

[

F̃N 0

DN S̃N

] [

v
q

]

=

[

r
s

]

. (3.41)

In order to solve (3.41), we follow Algorithm 3.1.

Algorithm 3.1 Steps to solve a system with matrix P .
given r and s,
solve F̃Nv = r
solve S̃Nq = s−DNv
return (v, q)

Choice for the operator F̃N

In this section we will consider F̃N = FN and solve any systems with this matrix using
a LU factorization. In the case α = β−1

∆t
is “big”, a cheap alternative is to take F̃N as the
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diagonal of αMN . However, this choice is not considered in this work. Other more robust
choices are additive Schwarz or multigrid methods. The latter were used in the works by
Silvester, Elman, Kay and Wathen [78] and Kay, Loghin and Wathen [50].

Choice for the operator S̃N

We follow the idea of Kay, Loghin and Wathen [50] and take as approximation of the
pressure Schur complement the operator S̃N = ApFp

−1Mp, where Ap, Fp and Mp are the
discretizations of the pressure operators −∆, αI − ν∆ + β · ∇ and I, respectively. The
quantity β is velocity obtained after linearization of the non linear convective term of the
momentum equation. If the velocity field is convection dominated, then the discretization
of the convection-diffusion-reaction pressure operator should also be stabilized.

The preconditioner that we obtain with the choices of F̃N and S̃N is called block trian-
gular pressure convection diffusion (BTPCD) preconditioner

P̃ =

[

FN 0
DN ApF

−1
p Mp

]

. (3.42)

Remark 3.3.1. In this work, we assume that the discrete pressures are continuous all over
Ω. The case where we look for the pressure in Fdisc

M (Th,δ) is not treated here. We point
out a strategy that can be used in this framework. It consists in discretizing the pressure
operators, −∆ and αI − ν∆+β · ∇, with suitable discontinuous Galerkin approximations,
see for instance Houston, Schwab and Suli [46].

Regarding the overall computational cost of using S̃N as preconditioner, at each it-
eration, we have to invert the mass matrix Mp and the discrete laplacian Ap (for which
efficient solvers can be chosen, for instance, preconditioned conjugate gradient method) and
apply operator Fp.

In the case we consider a steady Stokes problem, the operator S̃N becomes simply 1
ν
Mp

which is known to be a good preconditioner. Also, in the unsteady Stokes case (β ≡ 0), the
inverse of the pressure Schur complement approximation becomes αAp

−1 + νMp
−1, which

is the preconditioner proposed by Cahouet and Chabard [9].

Imposition of boundary conditions

The most delicate issue in implementing the preconditioner strategy lies in the boundary
conditions that are imposed to the pressure operators, namely, Fp and Ap. If we do not
impose any boundary conditions to the pressure Laplace problem, the matrix Ap will be
singular, thus posing problems when solving a system associated with this matrix. In
order to go around this issue, we consider Dirichlet boundary conditions in some part of
the boundary and homogeneous Neumann for the rest of the boundary. Since we only
care about the entries of matrix Ap, we do not need to devise an actual expression for the
Dirichlet boundary condition. The same has to be done to the convection-diffusion-reaction
operator Fp.
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We remark that in the steady Stokes/Navier-Stokes, the Dirichlet boundary conditions
should be imposed at the inflow boundary, that is, where β ·n < 0. For unsteady problems,
this should be done at ∂ΩN . We highlight that in the test cases we will present, if another
part of the boundary is used, either in the steady or unsteady simulations, optimality of the
preconditioner is completely lost and the number of GMRES iterations necessary to reach
a certain tolerance increases tremendously while decreasing the mesh size or increasing the
polynomial degree.

According to Remark 2.4.1, the imposition of Dirichlet boundary conditions is done by
eliminating the values in the row corresponding to the all Dirichlet degrees of freedom and
putting the value 1 in the diagonal element. We will do a similar approach for the pressure
operators Ap and Fp. First, to retain a good scaling with respect to the parameters β, α
and ν, we keep the previous diagonal element of the matrix instead of replacing it with
1. We also symmetrize the matrices, that is, if we perform the previous algorithm in row
i∗, then the same is applied to column i∗. Like this, system Ap remains symmetric and
positive definite.

One last detail needs to be mentioned. For the steady problems, the convective term
should not be incorporated as a contribution to the Dirichlet entries in matrix Fp. If
incorporated, then the optimality of the preconditioner is lost, see section 3.3.2.

Regarding the velocity, we proceeded as in section 2.4, Remark 2.4.1.

Inner loop solvers

As mentioned before, for each iteration of a Krylov subspace solver we have to solve a
system like (3.41). This operation translates in solving three systems, with matrices F̃N ,
Mp and Ap. We use LU factorizations to invert the three of them.

An alternative to invert the discrete pressure operators is the preconditioned conjugate
gradient method. This is a valid choice due to the fact that these matrices are s.p.d.
Suitable preconditioners for this method can be obtained through incomplete Cholesky
factorizations or multigrid method. We remark that the preconditioners for Mp and Ap

only need to be calculated once and then reused at each iteration.

3.3.2 Numerical results

We show now some numerical simulations conducted to test the previous precondition-
ing strategy.

A steady Navier-Stokes problem

The first numerical benchmark we consider is the steady Navier-Stokes equations

−ν∆u+ (u ·∇)u+∇p = 0, in Ω
div(u) = 0, in Ω

(3.43)

applied to the backward facing step problem, where Ω is depicted in Figure 3.15. Regarding
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(c) h = 0.0625

Figure 3.15: Domain description for problem (3.43).
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boundary conditions, we impose homogeneous Dirichlet conditions for the velocity every-
where, except in the inflow and outflow boundaries. At the inflow we impose a parabolic
profile

u = [y(1− y), 0]T

and at the outflow, homogeneous Neumann boundary conditions. In order to solve the non

Figure 3.16: Pressure profile with streamlines for the backward facing step problem using
ν = 0.005, h = 0.125 and N = 5.

linearity of the previous system, we will use fixed point iterations, meaning, for k > 0, we
solve the system

−ν∆uk + (uk−1 ·∇)uk +∇pk = 0, in Ω (3.44)

div(uk) = 0, in Ω (3.45)

for uk and pk. At the space discretization level, we consider the PN − PN−1 method up to
degree N = 7. The bases of the spaces for the discrete velocity and pressure are built with
standard Lagrange polynomials associated with Fekete points.

The stopping criteria for the fixed points scheme is the

(

∥

∥uk−1
N − uk

N

∥

∥

2

2
+
∥

∥pk−1
N − pk

N

∥

∥

2

2

)1/2

< 10−6 (3.46)

where uk
N and pk

N denote the spectral element approximations of uk and pk.

Regarding the linear solver, we use the GMRES method. The stopping criteria for the
linear solver is when the relative residual in the ℓ2-norm goes below 10−6. The initial guess
for each linear solve is the previous fixed point iteration. We define u0N and p0N as zero
vectors.

Table 3.3 shows the maximum number of iterations required to solve an iteration of
the fixed point method over all fixed point iterations performed and Table 3.2 reports the
number of degrees of freedom for the problems that were solved.
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N
2 3 4 5 6 7

h

2.0 50 101 170 257 362 485
1.0 112 242 423 655 938 1272
0.5 347 789 1417 2231 3231 4417
0.25 1705 4041 7415 11827 17277 23765
0.125 7040 16947 31342 50225 73596 101455

Table 3.2: Number of degrees of freedom for the problems associated with the backward
facing step with varying h and N .

Since the initial guess is the zero vector, the left table of Table 3.3 shows the iteration
counts for a pure Stokes problem. In this case, the Schur complement is preconditioned
only by a scaled pressure mass matrix, see section 3.3.1. From these results, the number of
iterations stays bounded independently of the viscosity ν, the mesh size h or the polynomial
degree of the approximation N .

Regarding the right table of Table 3.3, it concerns the Navier-Stokes problem. Similar
conclusions can be drawn in this case, although now, there is a mild dependence of the
number of iterations with respect to ν. A characteristic of this preconditioner that can
be observed from Table 3.3 is that if we reduce the mesh size or increase the polynomial
degree, the number of iterations decreases. This behavior occurs because S̃N becomes
a good approximation of the continuous pressure operator, as the mesh is refined or the
polynomial degree is increased. These results are in agreement with what had been reported
by Kay, Loghin and Wathen [50] and Kay and Lungu [51].

An unsteady Navier-Stokes problem

Let us consider now the unsteady Navier-Stokes equations (3.24)-(3.28) applied to the
same backward facing step problem. The boundary conditions are the same as for the
steady Navier-Stokes problem, with the exception of the inflow boundary condition. In
this case, the new boundary conditions are

u = [4 (1 + (t− 1)χ(t 6 1)) , 0]T

where χ denotes the characteristic function, ie, given a set X,

χ(x) =

{

1 if x ∈ X,
0 otherwise.

The mesh that we use is depicted in Figure 3.17. As space-time discretization, we con-
sider the formulation (3.33) with q = 1 and γ = 0. Regarding the the polynomial bases
for velocity and pressure, we consider again the Lagrange basis associated with the Fekete
point set. At the algebraic level the only difference between the linear system/precondi-
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ν h
N

2 3 4 5 6 7

0.1

2.0 9 22 27 29 33 38
1.0 17 24 25 27 29 30
0.5 22 28 31 32 37 39
0.25 20 21 21 21 21 21
0.125 20 21 20 21 21 21

0.01

2.0 9 22 26 28 33 38
1.0 17 24 24 26 27 29
0.5 22 27 29 30 34 34
0.25 19 20 20 19 19 19
0.125 18 19 18 18 18 18

0.005

2.0 9 22 26 27 37 38
1.0 17 24 24 26 27 29
0.5 22 27 29 30 34 34
0.25 19 20 20 19 19 19
0.125 18 19 18 18 18 18

N
2 3 4 5 6 7

16 47 51 67 59 61
26 47 56 54 59 59
45 56 56 58 58 60
43 39 35 35 35 34
34 33 32 31 31 30
19 81 105 142 150 128
51 83 119 147 143 111
59 103 95 105 110 120
60 65 59 56 56 55
58 56 54 53 52 50
19 82 146 204 195 204
60 114 149 179 199 233
79 198 179 146 150 167
75 72 70 70 68 65
71 68 59 57 56 55

Table 3.3: GMRES iteration count for the steady Stokes (left) and Navier-Stokes (right)
problems associated with the backward facing step with varying ν, h and N .

Figure 3.17: Only mesh used for solving the unsteady backward facing step problem.
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ν ∆t 2 3 4 5 6 7

0.1

0.5 12 12 13 13 14 15
0.1 12 12 12 13 13 14
0.01 16 14 14 14 15 15
0.001 17 22 21 21 24 23

0.01

0.5 12 11 12 11 11 12
0.1 15 12 12 12 13 13
0.01 16 18 18 17 18 17
0.001 17 24 27 28 31 31

0.005

0.5 13 12 12 12 12 12
0.1 15 13 12 12 13 13
0.01 16 19 19 19 20 21
0.001 17 24 27 29 36 36

Table 3.4: GMRES maximum number of iterations for the unsteady Stokes problem asso-
ciated with the backward facing step.

tioner obtained in the steady simulations and now, is that a scaled mass matrix is present
in the FN block, as well as in Fp.

In Table 3.4 we present the iteration counts for the Stokes version of this problem. In
this case, the preconditioner for the pressure Schur complement takes the form
S̃N = ∆t−1A−1p + νM−1

p . We observe that, for small time steps, the number of itera-
tions increases mildly with the polynomial degree and the growth rate is dependent on the
viscosity also.

We now turn to the complete version of the preconditioner, where Fp involves the
discretization of the whole operator αI−ν∆+β ·∇. We show in Table 3.5 the variation of
the iterations counts depending on the time step, viscosity and polynomials degree. Also
here we observe that the number of iterations stays bounded, independently of viscosity,
time step and polynomial degree. As a final remark, notice the low average iteration counts
that decrease while decreasing ∆t and stay bounded while increasing the polynomial degree.

Regarding the robustness of the preconditioner (3.39) in terms of viscosity, time step
and mesh size, we refer the reader to the work of Silvester, Elman, Kay and Wathen [78].
Due to the similarity of their preconditioner and the one we propose here, we expect
the same behavior. In their work, it is shown that using the P2 − P1 method as space
discretization, the number of iterations stays bounded independently of the time step and
mesh size.

Comparison with other preconditioners

In this section, we consider a fixed viscosity ν = 0.1 and compare the preconditioner
(3.39) with two others strategies: a LU factorization (which translates in practice in solving
the system (3.37) with this type of factorization) and an incomplete LU factorization,
with fill in 3, see [74]. The LU factorization is calculated with the KLU algorithm, see
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ν ∆t 2 3 4 5 6 7

0.1

0.5 14 14 14 15 15 16
0.1 12 (7) 13 (7) 14 (8) 14 (8) 15 (8) 15 (9)
0.01 14 (4) 13 (4) 13 (4) 14 (4) 14 (4) 15 (4)
0.001 14 (3) 16 (2) 15 (2) 16 (2) 16 (2) 16 (2)

0.01

0.5 24 21 19 17 17 17
0.1 16 (10) 16 (10) 15 (9) 15 (9) 15 (9) 16 (9)
0.01 14 (5) 16 (5) 16 (5) 17 (5) 17 (5) 18 (5)
0.001 14 (2) 18 (3) 18 (2) 20 (3) 21 (3) 22 (3)

0.005

0.5 31 37 35 29 23 22
0.1 17 (12) 18 (12) 19 (12) 18 (11) 17 (10) 18 (10)
0.01 14 (6) 17 (5) 17 (5) 10 (5) 19 (6) 21 (6)
0.001 14 (3) 18 (3) 19 (3) 21 (3) 22 (3) 24 (3)

Table 3.5: GMRES maximum number of iterations for the unsteady Navier-Stokes problem
associated with the backward facing step. In parenthesis, we provide the average number
of iterations over all time steps for different values of ν,∆t and N .

[17, 80]. We compare these three solution strategies in terms of the time to calculate the
preconditioner and the time to solve the linear system, both regarding the mesh size h
and the polynomial degree N . We highlight that our results are obtained using only one
processor. The use of more processors and parallel implementations of the LU/ILU(3)
factorization are not discussed in this work.

In the case of the LU and incomplete LU factorization, that we hereby denote by ILU(3),
the preconditioner is calculated directly from the matrix of system (3.37). However, for the
BTPCD preconditioner, at each iteration of the fix point method, the cost of constructing
this preconditioner is dependent on the calculation of the LU factorization of the FN block
and the assembly of the pressure convective term plus the construction of matrix Fp.

Tables 3.6 show the maximum number of iterations used by the GMRES method, Nit,
to solve the steady Navier-Stokes problem (3.44)-(3.45), as well as the time to calculate
the preconditioner, tprec, and the maximum time to solve the linear system, tsolve. These
results were obtained using a Dual Core AMD Opteron(tm) Processor 270, 2GHz cpu and
3Gb of RAM memory.

We observe from Tables 3.6 that for the size of problems we tested (. 100000 degrees
of freedom), the LU factorization applied to the linear system proves to be the fastest
solution strategy. However, for bigger problems, this factorization takes too much memory
and time to calculate and stops being an acceptable option. The same conclusion can be
taken from the results regarding the ILU(3) factorization as preconditioner. In this case,
the cost of the calculation of the preconditioner is where the most amount of time is spent.

Regarding the number of iterations used by each algorithm, the ILU(3) preconditioner
together with GMRES, uses a number of iterations that stays bounded when we increase
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the polynomial degree. The same does not happen when the mesh size is decreased. In
this case, the number of iterations increases.

3.4 Yosida algebraic factorization methods

An efficient solution technique of the Navier-Stokes equations are splitting methods,
of differential or algebraic type, see [40, 41, 39, 69, 68, 75] for a few references on this
kind of methods. The former methods split the differential operators of the equations at
hand, while the latter attempts to split a linear system like (3.35) using inexact block LU
factorizations. In this section we present a class of algebraic factorization methods, named
as Yosida-q schemes.

3.4.1 The Yosida-q schemes

The starting point of the Yosida schemes is the factorization (3.38). The idea behind
the first Yosida scheme, introduced by Quarteroni, Saleri and Veneziani [69], was to ap-
proximate matrix F−1N in the pressure Schur complement SN by a second order in time
approximation

F−1N ≈ ∆t

β−1
M−1

N .

This leads to the approximate matrix ÃN given by

ÃN =

[

FN 0
DN − ∆t

β−1
DNM

−1
N GN

] [

IN F−1N GN

0 IN

]

.

It was seen by Quarteroni, Saleri and Veneziani [68] that this scheme applied to the un-
steady Stokes equations, together with a BDF2 time discretization leads to second order
in time convergence for the velocity, order 3/2 for the pressure and unconditional stability.

Remark 3.4.1. Replacing the pressure Schur complement by Sapp
N = − ∆t

β−1
DNM

−1
N GN ,

called approximate pressure Schur complement, allows to reduce the computational cost
to solve system (3.37), while introducing a splitting error of the same order as the time
discretization used for the Navier-Stokes equations. Since Sapp

N is s.p.d. we can use the
preconditioned conjugate gradient method to efficiently invert it. Moreover, in the case
matrix MN is lumped, its inversion is very cheap.

Later versions of this first Yosida scheme, now called Yosida-2 scheme, have been
proposed and improved the order of convergence in time for velocity and pressure. By
introducing a matrix JN in the inexact block LU factorization

ÃN =

[

FN 0
DN − ∆t

β−1
DNM

−1
N GN

] [

IN F−1N GN

0 JN

]

.
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and choosing it carefully, one can obtain schemes of order q for the velocity and q−1/2 for
the pressure, named Yosida-q. Such choice is based on the minimization of the splitting
error originated from approximating AN with ÃN , see Saleri and Veneziani [75], Gervasio,
Saleri and Veneziani [34] and Gervasio [33].

All three Yosida schemes differ only in the expression of matrix JN . While for Yosida-2
it is equal to the identity matrix, the higher order versions take more complicated expres-
sions. If we define

BN = −DN
∆t

β−1
M−1

N FN
∆t

β−1
M−1

N GN

then for Yosida-3
JN = B−1N Sapp

N . (3.47)

The fourth order version of the Yosida schemes, Yosida-4, is obtained by replacing BN

in (3.47) by

B̂N = BN(S
app
N )−1BN +BN +DN

(

∆t

β−1
M−1

N FN

)2
∆t

β−1
M−1

N GN .

Though appearing complicated to calculate, the three Yosida schemes can be summa-
rized in Algorithm 3.2.

Algorithm 3.2 A step of the Yosida algorithm.

given f and g,
solve FN ũ = f
solve Sapp

N p̃ = g +DN ũ
if q > 2 then
solve z = BN p̃
solve Sapp

N p = z
if q = 4 then

compute pB = BNp+ z+DN

(

∆t
β−1

M−1
N FN

)2
∆t
β−1

M−1
N GN p̃

solve Sapp
N p = pB

end if
else

p = p̃
end if
FN(u− ũ) = −GNp
return (u, p)

A complete analysis on the convergence properties of all Yosida schemes is provided in
[33] for a time-dependent Stokes problem.

Remark 3.4.2. The use of the pressure operator arising from the Yosida-3 method,

Pschur = Sapp
N B−1N Sapp

N ,
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has been studied as a preconditioner for the pressure Schur complement in Gauthier, Saleri
and Veneziani [32].

3.4.2 Preconditioners for the approximate pressure Schur com-
plement

The systems to solve appearing in algorithm 3.2 are either with matrix FN or with
the approximate pressure Schur complement. The computational efficiency of the Yosida
schemes is dependent on efficient solvers for the latter operator, that is, in solving equations
of the form

Sapp
N p = q. (3.48)

As we already mentioned, the matrix Sapp
N is s.p.d. and therefore, techniques as Cholesky

factorizations or the preconditioned conjugate gradient method should be used. In the
former case, the matrix Sapp

N needs to be built explicitly, which is a costly operation, even
in the case MN is lumped.

In this section we consider several preconditioners for Sapp
N and report the number of

iterations it takes to solve a system like (3.48) with the preconditioned conjugate gradient
method.

Let us consider matrices DN , MN and GN arising from the discretization of the Navier-
-Stokes used in the previous section. In Figure 3.18 we report the number of iterations
using several preconditioners so that the initial residual is reduced by a factor of 10−10.
A few remarks are in order about the building blocks for the considered preconditioners.
First, the matrix MN,lumped is obtained from the mass matrix MN by summation of all the
elements in the rows into the diagonal. Second, the matrix Ap is the matrix associated with
the Laplace operator for the pressure; the Neumann boundary conditions of the velocity
operator are applied to Ap as Dirichlet ones, the system is symmetrized (row and column
elimination) and the diagonal element from the original Ap is kept. The matrix Ap,fe

is obtained the same way as Ap except we use the P1 function space from section 2.3.
Regarding the factor MN in the approximate Schur complement, it needs to be inverted at
each iteration of the PCG method. For this, we use the PCG method with MN,lumped as
preconditioner.

We start by remarking that, without the use of any preconditioner, the conjugate
gradient method takes O(N2) iterations to converge when applied to equation (3.48), see
Figure 3.18. This is to be expected since the approximate Schur complement behaves like
the discretization of a Laplace operator. From section 2.4, we know that its condition
number number grows like O(N4). Therefore, the conjugate gradient method converges in
O(
√
N4) = O(N2) iterations.
The use of the diagonal based preconditioners does not change this behavior. The finite

element preconditioner Ap,fe also reports a growth of O(N2) for the iteration count and this
is probably due to the high aspect ratio of the elements of the mesh created in the reference
element. However, it reduces the number of iterations from the non-preconditioned version
by a factor of 3. On the other side, using Ap as preconditioner is a good choice. The
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Figure 3.18: Comparison between several preconditioners for Sapp
N (h = 0.125).

N \ h 1.0 0.5 0.25 0.125 0.625 0.03125
2 3 16 17 25 30 31
4 16 27 31 36 37
6 21 38 41 44 43
8 27 49 50 54 51
10 33 60 59 62

Table 3.7: Number of iterations for the ∆tAp preconditioner, varying N and h.

dependence on the number of iterations reduces to O(
√
N), see Figure 3.18. We have no

explanation for this at the moment. Also, regarding the dependence of this preconditioner
in terms of the mesh size, we can see from Table 3.7 that it remains bounded.

3.4.3 Convergence tests

Let Ω = (−1, 1)2 and t ∈ [0, 1]. We consider ΓN as the lower edge of the domain Ω and
ΓD = ∂Ω \ΓN . We consider the Navier-Stokes equations as in (3.24)-(3.25) and determine
the forcing term as well as the proper Dirichlet and Neumann boundary conditions so that

u(x, y, t) = [sin(x) sin(y + t), cos(x) cos(y + t)]T

p(x, y, t) = cos(x) sin(y + t)

is the exact solution of that system of equations.
We define the norms in which the error is going to be calculated

Eu =

(

∆t

NT
∑

n=0

‖u(tn)−Un
N‖2H1(Ω)

)1/2
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and

Ep =

(

∆t

NT
∑

n=0

‖p(tn)−Pn
N‖2L2(Ω)

)1/2

.

where (Un
N ,P

n
N) denotes the numerical solution obtained with the Yosida schemes. We plot
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Figure 3.19: Convergence analysis using the P10 − P9 element and ν = 0.01.

in Figure 3.19 the quantities Eu and Ep. In Figure 3.20 we also plot the L
∞(0, 1;L2(Ω))-

norm of the divergence of the velocity. These results agree with the rates predicted for the
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Figure 3.20: Decay of the divergence while reducing the time step.

time-dependent Stokes equations in [33].

Remark 3.4.3. The curves in Figures 3.20 and 3.19 do not go below 10−8. This is because
of the accumulation of spacial error during the time integration. Nevertheless, the results
we obtain confirm the convergence rates expected.
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3.5 Conclusion

We have presented several algorithms to solve the incompressible steady/unsteady
Stokes/Navier-Stokes equations. Regarding the steady equations, the preconditioning
strategy is very efficient in the test cases performed, although we showed that a LU fac-
torization is a faster solver for the problems of the size we considered.

For the unsteady equations, two strategies were presented: one to precondition the
whole system and another to directly solve the linear system by inexact block LU factor-
izations. Both have advantages and disadvantages. For instance, the block preconditioning
strategy is strongly dependent on finding proper boundary conditions for the pressure op-
erator. In our case, this seems to be solved, but for more general boundary conditions,
one would need to derive the proper conditions. This is not the case if we consider either
a direct method or an incomplete LU preconditioner, but this approach becomes imprac-
tical with the increasing size of the linear systems to solve, at least using one processor
only. A parallel LU solver might be competitive with the parallel version of the BTPCD
preconditioner but this is out of the scope of the present work.

The algebraic factorization methods we present do not suffer from the issue of finding
appropriate boundary conditions. Once the equations are discretized (boundary conditions
included, whatever they are) and in linear form, the block factorization takes care of solving
the system. Moreover, the approximate Schur complement that appears does not change
in time and one could even lump the mass matrix to obtain a fast solver for this operator.

The analysis in this chapter is restricted to two dimensional problems. The extension
of the above algorithms to three dimensional flows in terms of discretization strategy, high
order geometrical elements, algebraic factorization methods and the BTPCD precondition-
ing strategy is an on going project. In terms of implementation, the work is already done
regarding the discretization spaces, but the high order geometrical transformation is not
yet implemented, nor a 3D high order mesh generator. Another topic of interest for fu-
ture work is to use a cheaper operator F̃N that maintains the properties of the BTPCD
preconditioner, or at least, to keep the number of iterations of GMRES within reasonable
bounds. From this perspective, one could also consider the Yosida-q as preconditioners, by
replacing the matrices FN and Sapp

N by suitable approximations.





Chapter 4

The incompressible Navier-Stokes
equations in a moving domain

The formulation of initial boundary value problems in a moving domain is typically
done in the so called Arbitrary Lagrangian Eulerian (ALE) framework. Whether we are
dealing with the unsteady Navier-Stokes equations or more general evolutionary problems,
this framework allows to keep track of the domain’s deformation. The main goal of this
chapter is to propose strategies for the ALE method to be effectively used in combination
with high degree space discretization methods like those that we have addressed in the
previous chapters.

The chapter is organized as follows: in section 4.1, we present the Arbitrary Lagrangian
Eulerian formulation; section 4.2 is dedicated to write the incompressible Navier-Stokes
equations in the new ALE framework and to derive the weak formulation for this system of
equations. In section 4.3.1, the construction of the high order map is addressed; we propose
a high order ALE map using a high degree polynomial description of the boundary of the
computational domain and the Laplace operator. This construction will only be done for
2D geometries and triangular meshes. As we will see, the construction of the map relies on
a straight edge mesh in the reference domain. The map we propose also has the property
of conserving the triangular shape of the interior elements of the mesh. Also in this section,
we present the space-time discretization we consider for the problem at hand. In section
4.3.4 we show that the schemes we advocate satisfy the Geometric Conservation Law, as
well as the equivalent Yosida-q methods. Finally, in the last section, some numerical results
are provided regarding the methods proposed.

4.1 The Arbitrary Lagrangian Eulerian framework

Let us denote by Ωt0
a reference configuration, for instance, the domain at time t = t0

in which we want to solve some evolutionary differential equation. The position of a point
in the current domain Ωt, t > t0, is denoted by x (in the Eulerian coordinate system)
and by Y in the reference domain Ωt0

. The system’s evolution is studied in the interval

105
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I = [t0, T ].
In practical situations, like for instance, the flow inside a portion of a compliant artery,

we have to calculate the solution of the fluid equations in Ωt (or an approximation of it).
Since the boundaries of the domain are changing with t ∈ I, Eulerian variables are not
usable. An alternative is to use a Lagrangian coordinate system. In this approach, we
consider a family of mappings

Lt : Ωt0
−→ Ωt, x(Y, t) = Lt(Y), t ∈ [t0, T ] (4.1)

and follow the trajectory of a particle ξ ∈ Ωt0
in time. However, this procedure is unde-

sirable in some cases, as for instance, blood flow in an artery. In this scenario, we need
artificial boundaries in the inlet and outlet of the artery (otherwise, we would have to
simulate the whole cardiovascular system), see Figure 4.1. If the Lagrangian approach is

Ωt

∂Ω
D

t
∂Ω

D

t

∂Ω
σ

t

∂Ω
σ

t

Ωt

∂Ω
D

t
∂Ω

D

t

∂Ω
σ

t

∂Ω
σ

t

Ωt0
∂Ω

D

t0
∂Ω

D

t0

∂Ω
σ

t0

∂Ω
σ

t0

Lt At

u

Figure 4.1: Reference domain at time t = t0 (bottom) and computational domain at time
t (top). On the top right figure, we use a Lagrangian coordinate system and on the top
left, a ALE coordinate system.

used, these boundaries will be transported and the domain might deform too much, if the
time interval is too big. The other situation in Figure 4.1 is preferred since it maintains
the position of the fictitious boundaries and allows for other parts of the boundary of the
domain to change in time. This is the motivation to use the Arbitrary Lagrangian Eulerian
approach, see [47, 22, 71, 57, 67] for a few references in this subject.

Let us introduce a family of mappingsAt such that, for each t associates a pointY ∈ Ωt0

to a point x ∈ Ωt:

At : Ωt0
−→ Ωt, x(Y, t) = At(Y), t ∈ [t0, T ]. (4.2)

The mapping At is assumed to be an homeomorphism in Ωt0
, i.e., At is a continuous

bijection from the closure Ωt0
onto Ωt, as well as it’s inverse, from Ωt onto Ωt0

. We also
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assume that the application
t 7→ x(Y, t), Y ∈ Ωt0

is differentiable almost everywhere in I. The application At is called ALE map.
Often, we need to transport functions defined in the reference configuration Ωt0

, to Ωt

and vice-versa. Let f : Ωt × I −→ R be a function defined in the Eulerian frame, and
f̂ := f ◦ At the corresponding function defined in the ALE framework, defined as

f̂ : Ωt0
× I −→ R, f̂(Y, t) = f(A−1t (Y), t). (4.3)

We introduce the following notation to designate the ALE time derivative, that is the
time derivative in the ALE framework

∂f

∂t

∣

∣

∣

∣

Y

: Ωt × I −→ R,
∂f

∂t

∣

∣

∣

∣

Y

(x, t) =
∂f̂

∂t
(A−1t (x), t)

A very important quantity in the context of the Arbitrary Lagrangian Eulerian formula-
tion is the velocity at which the domain Ωt deforms, called domain’s velocity of deformation.
We denote it by w and it is defined as

w(x, t) =
∂x

∂t

∣

∣

∣

∣

Y

. (4.4)

It can be shown by applying the chain rule to (4.3) that the following relationship holds
between ALE and Eulerian time derivatives

∂f

∂t

∣

∣

∣

∣

Y

=
∂f

∂t

∣

∣

∣

∣

x

+w · ∇xf. (4.5)

4.2 ALE formulation of the incompressible Navier-

Stokes equations

In the Eulerian framework, the unsteady Navier-Stokes equations read as

∂u

∂t

∣

∣

∣

∣

x

− divx(2νDx(u)) + (u ·∇x)u+∇xp = f , in Ωt × I (4.6)

divx(u) = 0, in Ωt × I (4.7)

u = 0, on ΓD
t × I (4.8)

(−pI+ 2νDx(u))n = 0, on ΓN
t × I (4.9)

u = u0, in Ωt0
(4.10)

where all differential operators are defined w.r.t. the Eulerian coordinate system. Here, we
introduce the strain tensor Dx(u) that is defined as

Dx(u) =
1

2

(

∇xu+ (∇xu)
T
)

.
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For simplicity of the exposition, we will consider homogeneous Dirichlet and Neumann
boundary conditions in all ∂Ωt = ΓD

t ∪ ΓN
t as we did in section 3.2. The more general

case can be dealt as in the previous chapter: the non homogeneous Dirichlet conditions are
treated algebraically and the Neumann boundary condition just implies adding a term to
the variational formulation.

Remark 4.2.1. A constant viscosity ν implies that from the differential point of view,
equation (4.6) is the same as (3.24).

The equivalent formulation of system of equations (4.6)-(4.7) in the ALE framework
just presented is

∂u

∂t

∣

∣

∣

∣

Y

− divx(2νDx(u)) + ((u−w) ·∇x)u+∇xp = f , in Ωt × I (4.11)

divx(u) = 0, in Ωt × I (4.12)

By adding the ALE time derivative, we introduce an additional term to the convection
involving the domain’s velocity, see (4.5).

The derivation of a weak formulation for system (4.11)-(4.12) is typically done recurring
to special function spaces for trial and test functions built with the ALE map At and spaces
defined in the reference domain. Using the ALE map, functions from the spaces H1

ΓD(Ωt0
)

and L2(Ωt0
) are extended to the domain Ωt. Let V(Ωt) and Q(Ωt) be defined as

V(Ωt) =
{

v : Ωt × I −→ Rd, v = v̂ ◦ A−1t , v̂ ∈ H1
ΓD(Ωt0

)
}

(4.13)

and
Q(Ωt) =

{

q : Ωt × I −→ R, q = q̂ ◦ A−1t , q̂ ∈ L2(Ωt0
)
}

. (4.14)

Remark 4.2.2. We must ensure that V(Ωt) ⊂ H1(Ωt) and Q(Ωt) ⊂ L2(Ωt), for all t ∈ I.
Such inclusions impose restrictions on the regularity of the ALE map At. It was shown in
Nobile [57] that if Ωt0

and Ωt = At(Ωt0
) are bounded domains, with Lipschitz continuous

boundaries, and
At ∈W1,∞(Ωt0

), A−1t ∈W1,∞(Ωt)

then, v ∈ H1(Ωt) if and only if v̂ = v ◦ At ∈ H1(Ωt0
). Moreover, ‖v‖H1(Ωt)

is equivalent

to ‖v̂‖H1(Ωt0
), for all v ∈ H1(Ωt). This result allows to consider (4.13) and (4.14) as

admissible spaces for the weak formulation of (4.11)-(4.12).

Then, the weak formulation of the Navier-Stokes equations in the ALE framework reads
as

Problem 4.2.1. For almost every t ∈ I, find u(t) ∈ V(Ωt), with u(t0) = u0 in Ωt0
and

p(t) ∈ Q(Ωt), such that

ρ

∫

Ωt

∂u

∂t

∣

∣

∣

∣

Y

· v dx+ ρ

∫

Ωt

[(u−w) ·∇x]u · v dx

+2ν

∫

Ωt

Dx(u) : ∇xv dx+

∫

Ωt

divx(v) p dx =

∫

Ωt

f · v dx, ∀v ∈ V(Ωt)
∫

Ωt

divx(u) q dx = 0, ∀q ∈ Q(Ωt)

(4.15)
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The previous problem is said to be in the non-conservative form due to the fact that
the ALE time derivative is under the integral over Ωt. Examples of the treatment of the
conservative form of the Navier-Stokes equations in this formulation can be found in Nobile
[57] and Deparis [18].

Remark 4.2.3. In the case of a pure Dirichlet boundary conditions problem, that is, when
ΓN

t = ∅, then Remark 3.2.1 is still valid and similar adaptations have to be done for the
function spaces introduced.

4.3 Discretization strategy

We address now the discretization of the system of equations (4.15). When dealing with
the Navier-Stokes equations expressed in the ALE framework, besides the space and time
discretizations that one needs to approximate the fluid variables, we also have to define
the ALE map.

In the literature, the construction of the ALE map using low and high degree finite
elements has been addressed. In the works of Ho and Rønquist [45], Veneziani [88], Nobile
[57] and more recently, Sy and Murea [83], this map is defined through an elliptic operator.
In the first reference, the authors consider spectral elements while the others considered
the simple finite elements. More recently, Bouffanais [4] solved a steady Stokes problem
to calculate the domain’s velocity. Integrating (4.4), the ALE map is obtained. If the
Stokes problem is solved with spectral elements, the ALE map constructed in the end of
the process can describe a domain with curved boundary using high degree polynomials.
This section is dedicated to explain our approach to construct an ALE map with high order
geometrical elements and present the space-time discretization strategy adopted.

We start by introducing some notations. Let Tt0,δ be a triangulation of the reference
domain Ωt0

, where δ = (h,Ngeo). Here, h denotes the maximum diameter of all the
elements in the partition and Ngeo is the polynomial degree of the geometrical mapping
associated with each element in the partition. Often Tt0,δ and Ωt0

do not coincide and
the triangulation only approximates the domain. Let Ωt0,δ

be a domain, obtained by the
reunion of all elements in the triangulation Tt0,δ, that approximates Ωt0

.

4.3.1 Construction of the discrete ALE map

Let t ∈ I. We denote by Ωt,δ the domain where the Navier-Stokes equations are to be
solved, called computational domain, and

gt,δ : ∂Ωt0,δ
−→ ∂Ωt,δ

the map that transforms the boundary of Ωt0,δ
onto the boundary of Ωt,δ (which we assume

known a priori).

Remark 4.3.1. In the context of the incompressible Navier-Stokes equations applied to
blood flow, we have in the simplest case, a situation as in Figure 4.1. The part of the
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boundary ∂ΩDt,δ represents where the blood goes in or out and it does not change in time.
On the other hand, ∂Ωσ

t,δ represents the arterial wall, evolving in time according to some
viscoelastic model.

Clearly, we want to construct a discrete ALE map At,δ such that

At,δ |Ω
t0,δ

= gt,δ, At,δ(Ωt0,δ
) = Ωt,δ, (4.16)

that is, a map that is capable of retrieving at any time t the actual shape of the computa-
tional domain.

To build At,δ, and given the fact that in practice we only have a description of the
boundary of Ωt,δ, several approaches can be followed. One possible approach is to construct
an approximation of the domain’s velocity field in Ωt,δ

wδ(x, t) =
∂At,δ

∂t
◦ A−1t,δ (4.17)

and use a time integration scheme to obtain At,δ at discrete time levels. In Bouffanais [4],
a steady Stokes problem having wδ as velocity field was solved to insure that the domain
velocity wδ was divergence free, thus satisfying automatically the Geometric Conservation
Law (GCL), see Nobile [57]. We will give more details about the GCL in section 4.3.4.

The most widely used approach is the harmonic extension. It has been proposed by Ho
and Rønquist [45], Nobile [57] and Veneziani [88] and it is a valid option when considering
small displacements.

Associated with the triangulation Tt0,δ, we construct the space FNgeo
(Tt0,δ), as described

in section 2.1. We recall briefly its definition

FNgeo
(Th,Ngeo

) =
{

v ∈ C0(Ω) : v|Ωe
∈ PNgeo

(Ωe), ∀Ωe ∈ Tt0,δ

}

.

For each t ∈ I, the harmonic extension of gt,δ to the whole domain Ωt0,δ
is obtained by

solving the following problem:

Problem 4.3.1. Find At,δ ∈
(

FNgeo
(Tt0,δ)

)d
such that







∫

Ω
t0,δ

∇At,δ : ∇z dx = 0, ∀z ∈
(

FNgeo
(Tt0,δ) ∩H1

0 (Ωt0,δ
)
)d

At,δ = gt,δ, on ∂Ωt0,δ

(4.18)

This is the simplest situation for an elliptic extension operator and it can be solved in
the same way as the problem in section 2.4 or by using a Krylov subspace solver.

The map At,δ induces a triangulation in Ωt,δ, that we denote by Tt,δ, obtained by
calculating the image of each element of Tt0,δ. Notice that if a nodal basis is used to
represent At,δ then the degrees of freedom associated with this map, i.e. the coefficients

of the basis chosen for
(

FNgeo
(Tt0,δ)

)d
, will be the coordinates of the (possibly high order)

nodes of Tt,δ.
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Remark 4.3.2. Ho and Rønquist [45] used the harmonic extension just as described in
Problem 4.3.1, thus generating a triangulation in the computational domain where all ele-
ments are possibly curved. On the other side, Nobile [57] only considered the case Ngeo = 1
in his simulations and therefore, the triangulations used have all straight edges.

A practical construction of a high order ALE map

Let us start by dividing the boundary ∂Ωt,δ into two parts: ∂Ω
D
t,δ a part of the boundary

that we wish to remain fixed in time and ∂Ωσ
t,δ the part the changes with t. Clearly,

∂Ωt,δ = ∂ΩDt,δ ∪ ∂Ωσ
t,δ.

Let us assume that we have a description of ∂Ωσ
t,δ in terms of polynomials of degree N .

To more clearly explain the methodology, we consider the domains of Figure 4.1.

Ωt0

x0 xL

p

x

y

Figure 4.2: Description of the reference and computational domains. The top and bottom
boundaries are described in terms of polynomials.

We do the following assumptions: (i) the upper and lower parts of the boundary ∂Ωσ
t,δ

are described by polynomials p of degree N defined in [x0, xL]; (ii) Ωt0,δ
can be covered

exactly by a triangulation composed of elements with straight edges. This assumption is
not as restrictive as it seems. Actually, given a geometry, mesh generators can typically
create triangulations for Ngeo = 1, 2. Some exist, like GMSH, that can discretize a domain
with geometrical elements of order up to 5, but it might happen that elements in the
boundary are invalid (we will explain this situation later on).

Remark 4.3.3. In the case of a three dimensional geometry, then one would need a
parametrization of the surface of the domain, which could be done using at least two poly-
nomials.

Given the description of the boundary in terms of polynomials, we perform a standard
harmonic extension of the function gt,δ using Tt0,δ and Ngeo = 1 in the function space of
Problem 4.3.1, that is, we use P1 standard finite elements to solve the harmonic extension
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problem. Like this, we obtain an ALE map At,δ1 , where δ1 = (h, 1), that once applied to
the triangulation Tt0,δ generates a mesh Tt,δ1 for Ωt,δ. This process is depicted in Figure
4.3. We highlight that at this point, the triangulation Tt,δ1 has only straight edges by
construction and the map At,δ1 is piecewise linear in Ωt0,δ

. Our goal is to construct a map

Figure 4.3: Transformation from the mesh in the reference domain, Tt0,δ, to the mesh in
the computational domain, Tt,δ1 through the map At,δ1 .

that verifies (4.16). For the time being, At,δ1 might not satisfy this property. We see from
Figure 4.3 that if the boundary of the domain are curved, the mesh that is generated (that
has straight edges) might not cover the computational domain. In order to construct a
map that conforms with the curved boundary, we need more degrees of freedom to describe
the transformation.

The next step is to project At,δ1 onto the space
(

FNgeo
(Tt0,δ)

)d
. Let B = {φi}i be

a nodal basis for this space (in our simulations, B is the Lagrange basis associated with

Fekete points). With these notations, the projection of At,δ1 onto
(

FNgeo
(Tt0,δ)

)d
, that we

denote by A∗t,δ, is
A∗t,δ =

∑

i

αiφi

where the coefficients αi are determined by interpolating At,δ1 over the high order nodes

associated with
(

FNgeo
(Tt0,δ)

)d
. Since the basis is nodal, these coefficients are no more than

the evaluation of At,δ1 at these nodes.
From the functional point of view, At,δ1 and A∗t,δ are the same polynomial. However, the

number of degrees of freedom are substantially different. These extra degrees of freedom
are the key to construct the high order ALE map.

Let us look now more closely to the effect of A∗t,δ on a point set defined in the reference
domain. We see from Figure 4.4 that the edges of the triangulation Tt,δ1 in contact with
the curved wall do not conform with it. In order for that to happen, we can change the
value of the degrees of freedom, associated with that edge, of A∗t,δ. Since the basis in which
A∗t,δ is expressed is the Lagrange nodal basis, this can be done by shifting the value of the
degrees of freedom. If x0 is a point in the mentioned edge that corresponds to a degree of
freedom and (xt, yt) are the coordinates of it’s image through A∗t,δ then we take

A∗t,δ(x0) = (xt, p(xt)).
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Figure 4.4: Effect ofA∗t,δ on a equidistributed point set defined in an element of the reference
mesh.

This shifting in the coordinates solves the problem of making the edges of the elements
conform with the curved boundary. However, this might create a map that has a singular
Jacobian since part of the interior of the element in the reference domain is mapped outside
the corresponding element in the computational mesh, as seen in Figure 4.5.

Figure 4.5: Effect of A∗t,δ if only the degrees of freedom in the edges are shifted.

The final step to obtain a valid ALE map is to shift also the nodes in the faces of the
elements of the reference domain and obtain a situation as in Figure 4.6. The coordinates
of the new nodes are obtained using a transformation of the type presented in section 1.4.

Remark 4.3.4. We highlight that at the time this thesis is being written, GMSH does not
shift the points in the interior of the elements as we do, it only does so to the points in
the edges. If the deformation of the elements is “big”, then it can happen that the curved
elements generated are simply invalid, due to the fact that the image by the geometrical
transformation is not contained inside the three edges of the triangle, just like in Figure
4.5.

To minimize the evaluation of the functions describing the boundary, we perform a
loop in all elements that intersect the boundary and have a curved edge. Then, for each
element, we use the a transformation as the ones presented in section 1.4 to generate the
new values at the degrees of freedom and replace these values in A∗t,δ. Let At,δ denote the
updated map.
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Figure 4.6: Transformation from the reference mesh to the computational one (update on
face’s degrees of freedom).

After this update procedure, At,δ, transforms the straight boundary edges of the ref-
erence mesh into the curved edges that conform with the curved boundary, as we see in
Figure 4.6. This is precisely the kind of discrete ALE map that we consider from now on.

Figure 4.7: The effect of the mapping At,δ to an equidistributed point set in the reference
domain. The shadowed elements are, from left to right, triangles where the geometrical
transformation is of high degree or linear, respectively.

Remark 4.3.5. We highlight that the construction just presented does not depend on the
extension operator that was used to generate the first mesh in the computational domain.
Therefore, it can be coupled with more complicated procedures to create such mesh.

Advantages and disadvantages. A consequence of the definition of the map just pre-
sented is that it is affine for elements that do not share an edge with the curved boundary.
For these elements T ,

At,δ |T
= At,δ1 |T

.

This also means that the geometric mapping associated with these elements is affine. This
situation is illustrated in Figure 4.7. The advantage of this property is that when inte-
grating linear/bilinear forms in these elements, a constant Jacobian is associated with the
geometrical transformation and therefore a minimal order quadrature can be used (in the
sense that the geometrical transformation does not need to be taken into account), see
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section 1.5. For the elements that intersect the curved boundary, the quadrature order has
to account for the possibly non constant Jacobian. However, with this approach, we can
reduce the integration cost in the whole mesh and confine it to the elements in contact
with the curved boundary.

A final remark concerns possible strategies in the case the boundary’s deformation is
“big”. In this case, it can happen that an interior straight edge of the mesh intersects the
curved boundary, see Figure 4.8. This originates an invalid element and several techniques
are proposed in literature to deal with this issue, see Sherwin and Karniadakis [49]. The
map we propose here is built in such a way that increasing the order of the map will not
solve the problem. This is a matter regarding the configuration of the straight edge mesh.
If we increase the polynomial degree to represent the geometrical transformation, at best,
we describe the curved boundary better, but the problem of the edge crossing the inner
edge of the mesh still remains. To go around this issue, one can perform edge swapping or

Figure 4.8: Invalid element created due to the high distortion in the boundary (left). Edge
swap technique to correct possible invalid elements (right).

similar techniques, see Figure 4.8. In this figure, the edge that crosses the curved boundary
is moved to allow the creation of a valid element. However, since we do not want to change
the structure of our reference mesh, other possibilities are to use a control function in the
Laplace operator of the harmonic extension to somehow follow the boundary movement
or use a reference mesh that is refined near the curved boundary. A final, more costly
possibility, is to re-mesh the whole domain. In our approach, since the displacements we
consider are small, we do not control the quality of the mesh.

Some numerical results

We present now some numerical results to assess the accuracy of the ALE map describ-
ing the surface of a domain. Let us consider the reference domain Ωt0

= (0, 5)× (−1, 1).
We define Ω as the domain we obtain by moving the upper and lower sides of the

rectangle Ωt0
using the following displacement functions:

• upper boundary: η(x, 1) = [x, 1 + 0.3 cos(x)]T
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• lower boundary: η(x,−1) = [x,−1.1− 0.3 cos(x)]T

(a) P2 ALE map (b) P3 ALE map

(c) P4 ALE map (d) P5 ALE map

Figure 4.9: In black the P1 mesh used in the construction of the ALE maps. In red, the
P1 mesh constructed on top of the high order nodes.

In Figures 4.9(a)-4.9(d) we show the application of the ALE maps A : Ωt0
−→ Ω con-

structed using polynomials of degree two to five to a mesh of the reference domain.
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Figure 4.10: Convergence plot for the high order ALE maps

We also wanted to determine the accuracy at which the ALE maps describe the boundary
of the domain Ω. For this, we measured the error

‖(A(·, 1)− η(·, 1)) · e2‖L2(0,5)
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in the upper boundary of the reference domain and

‖(A(·,−1)− η(·,−1)) · e2‖L2(0,5)

in the lower part of Ωt0
. We plot the sum of both quantities in Figure 4.10. The error

decreases with the expected rates, ie, O(hNgeo+1)

4.3.2 Space discretization

We address now the discretization in space of the system of equations (4.15). Let

Vδ(Ωt,δ) =
{

v : Ωt,δ × I −→ Rd, v = v̂ ◦ A−1t,δ , v̂ ∈ H1
ΓD(Ωt0

) ∩ (FN(Tt0,δ))
d
}

(4.19)

and
Qδ(Ωt,δ) =

{

q : Ωt,δ × I −→ R, q = q̂ ◦ A−1t,δ , q̂ ∈ FM(Tt0,δ)
}

(4.20)

where M = N − 1 or M = N − 2. These are going to be the finite dimensional functional
spaces in which velocity and pressure will be discretized in space.

Remark 4.3.6. Once again, we apply a transformation to an element (not the reference
element now, but an element in the reference mesh) to obtain an element in the computa-
tional mesh. Taking into account Remark 1.4.1, it is clear that this has consequences of
the approximation properties of the spaces (4.19) and (4.20). However, the consideration
in Remark 1.4.1 are also valid here. Given the reference mesh, we apply the discrete ALE
map to construct the mesh for the computational domain. This implies that in the new
mesh, we are in the conditions of Remark 1.4.1 and therefore, if we want to represent ex-
actly degree N polynomials in Ωt,δ, we need to consider, in our construction, polynomials
of degree N in Ωt0,δ

and polynomials of degree N · Ngeo in the reference element. Under
these hypotheses and the regularity assumptions of Remark 4.2.2

Vδ(Ωt,δ) = (FN(Tt,δ))
d ∩H1

ΓD(Ωt,δ)

and
Qδ(Ωt,δ) = FM(Tt,δ).

With these functional spaces, the semi-discrete variational problem reads as

Problem 4.3.2. For almost every t ∈ I, find uδ(t) ∈ (FN(Tt,δ))
d, with uδ(t0) = u0,δ in

Ωt0,δ
and pδ(t) ∈ Q(Ωt,δ), such that

ρ

∫

Ωt

∂uδ

∂t

∣

∣

∣

∣

Y

· v dx+ ρ

∫

Ωt

[(uδ −wδ) ·∇x]uδ · v dx

+
ρ

2

∫

Ωt

divx(uδ)uδ · v dx+ 2ν

∫

Ωt

Dx(uδ) : ∇xv dx

+

∫

Ωt

divx(v) pδ dx =

∫

Ωt

f · v dx, ∀v ∈ Vδ(Ωt,δ)
∫

Ωt

divx(uδ) q dx = 0, ∀q ∈ Qδ(Ωt,δ)

(4.21)
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The discrete domain’s velocity wδ is defined as in (4.17). Since the construction of the
discrete ALE map lies upon the discretization of a differential problem in a mesh, we also
call this quantity mesh velocity.

The reader will notice that this formulation has an extra term

ρ

2

∫

Ωt

divx(uδ)uδ · v dx.

This term is added to enhance the stability of the spatial discretization and it is consistent
with the Navier-Stokes equations, since at the fully continuous level, divx(u) = 0. For a
more detailed explanation of the importance of adding such term to the formulation in the
context of stability, see Nobile [57].

4.3.3 Time integration

The temporal discretization described in section 3.2.1 for the incompressible Navier-
-Stokes equations in a fixed domain can be extended to (4.21) in a straightforward way.
The BDFq schemes applied to (4.21) will read

Problem 4.3.3. For each n > q − 1, let tn = t0 + n∆t and NT =
[

T−t0
∆t

]

. Then, we look

for the solution (un+1
δ , pn+1

δ ) ∈
(

FN(Ttn+1,δ)
)d × Qδ(Ωtn+1,δ

), with u0δ = u0,δ in Ωt0,δ
, such

that

ρ

∫

Ωtn+1

β−1
∆t

un+1
δ · v dx+ ρ

∫

Ωtn+1

[(

u∗δ −wn+1
δ

)

·∇x

]

un+1
δ · v dx

+
ρ

2

∫

Ωtn+1

divx(u
∗
δ)u

n+1
δ · v dx+ 2ν

∫

Ωtn+1

Dx(u
n+1
δ ) : ∇xv dx+

∫

Ωtn+1

divx(v) p
n+1
δ dx =

∫

Ωtn+1

f̃n+1
δ · v dx, ∀v ∈ Vδ(Ωtn+1,δ

)

∫

Ωtn+1

divx(u
n+1
δ ) q dx = 0, ∀q ∈ Qδ(Ωtn+1,δ

)

(4.22)
where

f̃n+1
δ = fn+1 +

q−1
∑

j=0

βj

∆t
un−j

δ

Notice that the functions un−j
δ should be defined in Ωtn−j ,δ, which might not coincide

with the integration domain Ωtn+1,δ
. However, these quantities can be ported from their

domain of definition to the current one by applying ALE maps. If we denote by un−j,∗
δ the

approximation of u(tn−j) defined in Ωtn−j ,δ, then

un−j
δ = un−j,∗

δ ◦ Atn+1,δ ◦ A−1tn−j ,δ.
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Similar considerations are valid every time a quantity defined in a domain of the type Ωt·,δ

needs to be ported to the current computational domain Ωtn+1,δ
.

In equation (4.22), there are two quantities that we have not yet defined, or at least
said how to calculate: u∗δ and wn+1

δ . Regarding the former, this is a linearization of the
convective term of the Navier-Stokes equations. We extrapolate the velocity in the same
way as in section 3.2.2 and define u∗δ exactly as (3.34), for each q = 1, 2, 3, 4.

Regarding the second quantity, wn+1
δ , since it is defined as the time derivative of the

ALE map, we also adopt the BDFq schemes to approximate it. For instance, for q = 2, we
have

wn+1
δ =

1

∆t

(

3

2
Atn+1,δ − 2Atn,δ +

1

2
Atn−1,δ

)

◦ A−1tn+1,δ
. (4.23)

Remark 4.3.7. Also in system (4.22), we can add an IP stabilization term as in section
3.2.2, in a straightforward fashion. We highlight that since our ALE map transforms
straight interior edges from the reference triangulation into straight interior edges in the
computational one, the computational cost of this approach is not increased by the fact that
we have high order geometrical elements in the boundary.

Numerical schemes of the type (4.22) have been analyzed in literature in the context of
a linear advection diffusion problem. It has been shown in Nobile [57] that when applying
the Backward Euler time integration method (equivalent to our method with q = 1) to the
advection diffusion problem in the non-conservative form, the scheme is only conditionally
stable. The stability condition (derived in [57]) is

∆t <

(

‖div(wn
δ )‖L∞(Ω

tn,δ
) + sup

t∈(tn,tn+1)

∥

∥

∥
JAtn,tn+1

div(wδ)
∥

∥

∥

L∞(Ω
t,δ
)

)−1

(4.24)

for all n = 1, . . . , NT . We remark that the quantities involved in (4.24) are only geometrical.
If the mesh velocity is calculated in such a way that it is divergence free, then the scheme is
unconditionally stable. This is a sufficient condition to satisfy the Geometric Conservation
Law (GCL), see section 4.3.4.

Also in Nobile [57], for the case q = 2, again in the context of a linear advection diffusion
equation, it is shown that the method is conditionally stable and the time step restriction
depends only on geometrical quantities, just like (4.24).

4.3.4 Satisfying the Geometric Conservation Law

We say that an equation/numerical scheme satisfies the Geometric Conservation Law
(GCL) if it is able to reproduce a constant solution (in the absence of source terms and
proper boundary conditions).

It is clear that the system of equations (4.11)-(4.12) trivially satisfies the GCL, with
the proper choice of boundary conditions. However, at the discrete level, such property is
no longer automatically satisfied. Regarding numerical schemes, it has been proved in the
context of finite-volume methods that the GCL is linked with convergence properties of the
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proposed scheme, see Farhat, Geuzaine and Grandmont [27] and Lesoinne and Farhat [53].
In the context of the Navier-Stokes in the ALE framework, no evidence exists that makes
the GCL a sufficient or necessary condition for convergence or stability, see Mavriplis and
Yang [54].

In Nobile [57], two strategies for satisfying the GCL are proposed. The first introduces
appropriate time integration schemes in the formulation, leading to the appearance of
intermediate integration domains. The second is to have a mesh velocity that is divergence
free. In this case, the GCL is automatically satisfied. This was the approach followed by
Bouffanais [4].

For our schemes, we use the definition of the GCL property to verify that it is satisfied.
Let us suppose that ui

δ ≡ ũ and pi
δ ≡ 0 are constant, for all i = 0, . . . , n. Notice that if a

constant velocity is solution of the Navier-Stokes system, then the pressure is zero all over,
in the presence of homogeneous Neumann boundary conditions.

Then, from the system of equations (4.22), in order that (ũ, 0) is a solution of (4.22),
we need that

ρ

∫

Ωtn+1

β−1
∆t

un+1
δ · v dx =

∫

Ωtn+1

q−1
∑

j=0

βj

∆t
un−j

δ · v dx, ∀v ∈ Vδ(Ωtn+1,δ
)

which is true if

β−1 =

q−1
∑

j=0

βj.

The previous equality is a consequence of the consistency of the BDFq schemes. Therefore,
our formulation of the Navier-Stokes equations in the ALE frame satisfies the GCL, for all
BDFq schemes considered.

Remark 4.3.8. Since the GCL property only depends on the momentum equation, also
the Yosida-q schemes, when applied to solve equation (4.25), satisfy the GCL.

4.3.5 Linear system solution

Let us consider basis functions for the spaces Vδ(Ωtn+1,δ
) and Qδ(Ωtn+1,δ

), say

Vδ(Ωtn+1,δ
) = span{φi}Nu

i=0, Qδ(Ωtn+1,δ
) = span{ψi}Np

i=0.

In practice, we remark that the construction of {φi} and {ψi} does not have to be done for
each t. By creating the functional space Vδ(Ωt0,δ

), for instance, and using the ALE map
to move the nodes of the subjacent mesh, one can obtain basis functions for Vδ(Ωtn+1,δ

).
Actually, we only modify the geometrical transformation in each element to produce the
elements of Ttn+1,δ.
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We introduce the following matrices and vectors (we omit the superscript n+1 to indi-
cate the dependence of the basis functions and the matrices on n to simplify the notation):

Gδ(i, j) = −
∫

Ωtn+1

divx(φi) ψj dx, 0 6 i 6 Nu,

0 6 j 6 Np

Dδ(i, j) =

∫

Ωtn+1

divx(φj) ψi dx, 0 6 j 6 Nu,

0 6 i 6 Np

Hδ(i, j) = 2ν

∫

Ωtn+1

Dx(φi) : ∇xφj dx, 0 6 i, j 6 Nu

Cδ(i, j) = ρ

∫

Ωtn+1

[

(

u∗δ −wn+1
δ

)

·∇xφi +
1

2
divx(u

∗
δ)φi

]

· φj dx, 0 6 i, j 6 Nu

Mδ(i, j) =

∫

Ωtn+1

φi · φj dx, 0 6 i, j 6 Nu

Fδ(j) =

∫

Ωtn+1

f̃n+1
δ · φj dx, 0 6 j 6 Nu

and

Fδ = ρ
β−1
∆t

Mδ + νHδ + Cδ.

Then Problem 4.3.3 is equivalent to solve, for each n > 1 a system of the form

[

Fδ Gδ

Dδ 0

] [

Un+1
δ

Pn+1
δ

]

=

[

Fδ

0

]

(4.25)

where Un+1
δ and Pn+1

δ are the representations of un+1
δ and pn+1

δ in the bases of Vδ(Ωtn+1,δ
)

and Qδ(Ωtn+1,δ
), respectively. Again, we remark, though we did not include such term in

the definition of Cδ that the IP stabilization term might be included (now considering also
the term coming from the mesh velocity in the stabilization).

Remark 4.3.9. To solve system (4.25) one can use several approaches, namely, the ones
described in the previous chapter. We will consider in section 4.4 the solution of (4.25) by
using a direct method applied to the whole system and the Yosida-q schemes.

4.4 Numerical results

Consider Ωt0
= (0, 5)× (−1, 1) and Ωt obtained from the reference domain by applying

the following displacement law

d(x, t) = 0.02
(

(x− 2.5)2 + 5
)

x(5− x) (f(t)χ(t ∈ [1, 3]) + χ(t > 3)) , (4.26)
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(a) t = 1.

(b) t = 2.

(c) t = 3.

(d) Zoom of the left lower

corner of the mesh.

Figure 4.11: Plot of the high order mesh used in visualizing the simulations (left) and the
magnitude of the mesh velocity (right) at different time steps (ν = 10−3).
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to the lower edge of the rectangle, with t ∈ I = [0, 5], χ(·) the characteristic function and

f(t) = −0.15625t7 + 2.1875t6 − 12.46875t5 + 37.1875t4 − 62.34375t3

+59.0625t2 − 29.53125t+ 6.0625

Remark 4.4.1. The function f satisfies f(1) = 0, f(3) = 1 and f (k)(1) = f (k)(3) = 0, k =
1, 2, 3. It is the only polynomial of degree 7 that satisfies these conditions. It was devised
so that the variation of the mesh velocity in time is smooth enough.

Let û = (1− y2, 0)
T
and p̂ = −2ν(x − 5) be the solution of the steady Navier-Stokes

equations in the reference domain Ωt0
.

We consider equations (4.11)-(4.12) defined in Ωt with f ≡ 0. Regarding boundary
conditions, we define

ΓN
t = {5} × (−1, 1) and ΓD

t = ∂Ωt \ ΓN
t .

We set as boundary conditions
u = û, on ΓD

t (4.27)

and
(−pI+Dx(u))n = (−p̂I+Dx(û))n, on ΓN

t

We remark that since the boundary of Ωt deforms inside Ωt0
, equation (4.27) makes

sense in the part of the domain that changes in time. Also, the pair (û, p̂) is the solution
of (4.11)-(4.12) with the boundary conditions that we presented. In Figure 4.11 we show
the evolution of the domain Ωt for three time steps. We also show in the same figure, the
macro structure of a fourth order mesh, that is, a triangulation such that Ngeo = 4, that
describes the geometry of the domain exactly. It can be seen that for each macro triangle,
there is a mesh, built upon the high order nodes of a six degree polynomial space (using
the procedure described in section 2.3).

This benchmark test allows us to test the Navier-Stokes ALE framework with spectral
elements in space, high order time integration, high order geometrical elements and also
the IP stabilization.

The discretization of this problem is done with the scheme proposed in Problem 4.3.3.
We try two strategies to solve the linear system (4.25): the first, using a direct method
and the second, using the Yosida-q schemes.

Let us first define the following error quantities that we are going to measure in order
to assess the accuracy of the solver. We denote by

Eu =

(

∆t

NT
∑

n=0

‖u(tn)− un
δ ‖2H1(Ω

tn,δ
)

)1/2

and

Ep =

(

∆t

NT
∑

n=0

‖p(tn)− pn
δ ‖2L2(Ω

tn,δ
)

)1/2

.



124 The incompressible Navier-Stokes equations in a moving domain

4.4.1 Using a direct method

In Figure 4.12 we plot the error quantities Eu and Ep for several choices of approxi-
mation spaces for velocity and pressure, different values of Ngeo and different integration
in time strategies. We considered for this test h = 0.5, ν = 10−3, ρ = 1. We highlight
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(a) N = 2, M = 1, Ngeo = 1.
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Figure 4.12: Plot of the errors Eu and Ep for different choices of velocity-pressure spaces,
geometrical elements and BDFq schemes.

that the flow is convection dominated (without the stabilization term, the method would
not converge) and we have stabilized the equations by the interior penalty term. We took
γ = 0.1. These results were obtained by solving directly the linear system (4.25) with a
LU factorization. We highlight that the preconditioner proposed in the previous chapter
could have been used, but the main goal here was to study the numerical properties of
the methods in terms of accuracy. Moreover, the size of the problems solved in these tests
falls in the range where the LU factorization performs better than the block preconditioner
proposed in chapter 3. Moreover, we reuse the LU factorization as preconditioner until
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the number of iterations needed to solve the linear system is equal to 10. Once this value
is attained, the LU factorization is recalculated. A better strategy to determine when to
recalculate the preconditioner is described in [92].

From Figure 4.12 we confirm the expected convergence order for the proposed methods
in time. Using a BDFq time integrator, a linear extrapolation of the convective term of
the same order and an approximation of the mesh velocity also with a BDFq formula, the
error, in ∆t is of the order of ∆tq, q = 1, 2, 3, 4. The convergence order of each scheme is
seen in Figure 4.12 through the slope of each curve.

Due to stability constraints of the time integration technique used, when we increase
the polynomial degree, the stability regions of the BDF4 and BDF3 start not to be big
enough to handle the stiffness of the problem and we only get the schemes to give acceptable
results when we decrease ∆t. In Figure 4.12(b), we do not even plot the results for BDF4
because the method was not stable for the range of ∆t we considered. On the other hand,
the BDF1 and BDF2 schemes remain stable.

We remark that in Figures 4.12(a) and 4.12(b), the numerical schemes used describe
the solution of the problem exactly in space, though not the geometry. We also tested
the above numerical schemes using a fourth order geometry. In this case, the orders of
convergence in ∆t are the same as the ones reported for the cases in Figures 4.12(a) and
4.12(b), although the stability limitations on ∆t are more severe. Again, in this case, the
BDF1 and BDF2 schemes remain stable.

4.4.2 Using the Yosida-q schemes

In the benchmark using Yosida-q schemes, we considered h = 0.5, ν = 0.05, ρ = 1 and
γ = 0. The error quantities Eu and Ep are plotted in Figure 4.13. We notice that the
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Figure 4.13: Plot of the errors Eu and Ep for N = 2,M = 1, Ngeo = 1 and different BDFq
and Yosida-q schemes.

convergence orders for the BDFq-Yosida-q are the same as the ones reported in section
3.4.
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Similar tests were conducted using ν = 10−3. The convergence orders for the pressure
were slightly better in this case, for the range of ∆t considered. This was due to the
fact that the splitting error introduced by the Yosida-q schemes was much smaller than
the error introduced by the corresponding BDF method. Regarding the stability of the
methods, we did not observe considerable differences between using BDFq and Yosida-q
schemes, for q = 2, 3, 4.

4.5 Conclusion

In this chapter, we extended the Navier-Stokes solver from chapter 3 to the ALE frame-
work. If the mesh velocity is approximated with the same BDF scheme as the velocity and
the extrapolation formula, we showed that the same order of accuracy as for the fixed
domain version is maintained. Similar tests were conducted with the Yosida versions of
the solver and the results are the same as for the fixed domain version.

We highlight that the ALE map construction described in this chapter can be extended
easily to more quadrangular meshes and account for more than vertical displacements only.
The map’s approximation properties in the moving boundary of the domain are of order
O(Ngeo + 1) in the L2(Ω)-norm.

The extension of the present ALE framework to 3D is, in general, straightforward. Re-
garding the approximation spaces, these are already available in the code used to produce
all the simulations. Also, the Yosida-q and BDFq schemes do not depend on any geo-
metrical quantities, but only on blocks of matrices or previous time step solutions. The
tricky point here is to define a 3D high order map. This construction is easy if we consider
first order finite elements. In the high order case, right now, the map’s definition relies
on Gordon-Hall transformations. The use of these transformations should be avoided in
3D due to their complicated expressions plus orientations issues that might appear to the
programmer. Instead, a more general procedure should be devised to produce the high
order nodes for the boundary elements.



Chapter 5

Application to Fluid-Structure
Interaction in Hemodynamics

The goal of this chapter is to apply the algorithms developed in the previous chapters
to simulate blood flow in large arteries. We restrict ourselves to a two dimensional setting
and consider the fluid-structure interaction problem consisting of a thin elastic tube filled
with an incompressible fluid.

The chapter is organized as follows. First, we introduce the system of equations that
model the fluid-structure interaction (FSI) between the solid material and the fluid. This
system is obtained from the coupling of an elasticity model, the incompressible Navier-
-Stokes equations in their ALE form, and suitable coupling conditions. Second, we present
the numerical methods used to solve this coupled problem. We consider two approaches:
an implicit fully coupled (FC) approach, where the unknowns related with the geometry
are treated implicitly, and a semi-implicit (SI) one, where these quantities are treated in
an explicit way. Both these methods rely on fixed point iterations. Finally, we present
some results regarding the number of fix point iterations used by the FC and SI methods.
We study the dependence of this quantity with respect to different BDF schemes for the
structure and fluid solvers, different geometrical elements, polynomial degree to describe
the structure displacement and velocity and pairs of spaces used to solve the fluid equations.

5.1 Model description

Let us consider a portion of an artery that, at time t, occupies the region Ωt and its
wall Σt. The interface between Σt and the blood vessel Ωt, that we denote by Γ

w
t , together

with the section S1 and S2 that connect the vessel with the rest of the cardiovascular
system, form the boundary of Ωt. Typically, the blood enters from S1 and leaves the artery
through S2. In Figure 5.1 we present a simplified 2D model that describes schematically
this situation.

127



128 Application to Fluid-Structure Interaction in Hemodynamics

Ωtu

Σt Γ
w

t

S2

S1

Figure 5.1: 2D simplified compliant tube.

5.1.1 Blood flow (fluid) model

In large arteries, blood can be approximated as a Newtonian fluid. We describe the flow
through the unsteady Navier-Stokes equations, as presented in section 3.2. Let t ∈ (0, T )
and x ∈ Ωt. We recall that if u(x, t) is the fluid velocity and p(x, t) the pressure field then
the unsteady incompressible Navier-Stokes equations in Ωt read as

ρ
∂u

∂t
+ ρ(u ·∇x)u− divx (T(u, p)) = f , in Ωt, t ∈ (0, T ) (5.1)

divx(u) = 0, in Ωt, t ∈ (0, T ) (5.2)

T is the Cauchy stress tensor and it is defined as

T(u, p) = −pI+ 2νDx(u) (5.3)

Remark 5.1.1. In smaller arteries, as for instance capillaries, the blood behavior is no
longer Newtonian and a different constitutive law should be taken into account in (5.3), see
Chapter 6 in Formaggia, Quarteroni and Veneziani [31].

System (5.1)-(5.2) has to be completed with suitable boundary conditions. We will
consider Dirichlet or Neumann boundary conditions at the inlet,

u = g or Tn = g, on S1

and homogeneous Neumann boundary conditions at the outlet

Tn = 0, on S2.

We highlight that this last condition is not physical. Indeed, since there are traveling waves
in the compliant tube, this boundary condition introduces spurious reflections that have
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no physical meaning. It has been proposed in the literature to couple the FSI problem
with one-dimensional models that act as absorbing devices as the wave exits the tube, see
Nobile [57] and Quarteroni and Formaggia [67].

We address now the boundary conditions considered for Γw
t . Normally, the position of

the interface Γw
t between the artery wall and the blood vessel is given by a displacement

variable η with respect to a reference configuration of the artery, see Figure 5.2. Therefore,

R0

Γ
w

t

Γ
w

0

η

z

r

Figure 5.2: The displacement of the boundary w.r.t the reference configuration.

the condition imposed at Γw
t is the continuity of the velocity, i.e.,

u = η̇er, on Γw
t (5.4)

with some abuse in the notation, see remark 5.1.2.

If the displacement η is provided a priori, then we fall back into the problem already
presented and analyzed in chapter 4. However, in fluid-structure interaction problems, as
it is the case of the blood flowing through an artery, that is not the case. The position
occupied by the wall, that we will refer as structure, is modeled by a differential equation.

5.1.2 Arterial wall (structure) model

We start by defining the set of points that describes the upper boundary of Figure 5.2,

Γw
0 =

{

(z, r) ∈ R2 : r = R0, 0 6 z 6 L
}

.

Let η : [0, L]×R+ −→ R be the vertical displacement of Γw
0 and ϕη : [0, L]×R+ −→ R2

be defined as

ϕη(z, t) = (z,R0 + η(z, t)).

Then

Γw
t =

{

(z, r) ∈ R2 : (z, r) = ϕη(z, t), 0 6 z 6 L, t ∈ I
}

.

Remark 5.1.2. With these new notations, the boundary condition at the wall of the vessel
is

u = (η̇ ◦ϕ−1η )er, on Γw
t . (5.5)
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In this work, we will limit ourselves to consider a one dimensional model for the struc-
ture, the generalized string model, see Quarteroni, Formaggia and Veneziani [31]. We
suppose that the long wall assumption holds, i.e.,

∂η

∂z
≪ 1.

Note that without this assumption, the wall curvature would enter the equations in the
form of

√

1 +

(

∂η

∂z

)2

making them nonlinear. In this case, the displacement η is modeled by the following
differential equation

ρwh
∂2η

∂t2
− kGh

∂2η

∂z2
+

Eh

1− µ2
η

R2
0

− γv
∂3η

∂z2∂t
= f. (5.6)

Here, h is the thickness of the structure, R0 is the arterial reference radius at rest, k is the
Timoshenko shear correction factor, G is the shear modulus, E is the Young modulus, µ is
the Poisson ratio, ρw is the wall volumetric mass, γv is a viscoelastic parameter and f is
an external force being applied to the structure, to be specified later in the context of the
fluid-structure interaction.

5.1.3 Fluid-structure interaction problem

The coupling between the fluid equations and the structural equations is enforced at
Γw

t through the continuity of the normal stress at the interface and the adherence of the
fluid particles to the structure. The first coupling conditions implies that the force f is
given by the radial component Φr of the normal stress exerted by the fluid, i.e.,

Φr = − (Tn) · er ◦ϕη

while the second coupling condition is given by equation (5.5).

The final system of equations for the fluid-structure interaction problem reads as

ρ
∂u

∂t

∣

∣

∣

∣

Y

+ ρ((u−w) ·∇x)u− 2νDx(u) +∇p = f , in Ωt, t ∈ I

divx(u) = 0, in Ωt, t ∈ I

ρwh
∂2η

∂t2
− kGh

∂2η

∂z2
+

Eh

1− µ2
η

R2
0

− γv
∂3η

∂z2∂t
= Φr in (0, L), t ∈ I

u = (η̇ ◦ϕ−1η )er, on Γw
t

− ((Tn) · er) ◦ϕη = Φr
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supplied with initial boundary conditions

u = u0, for t = t0, in Ωt0

η = η0,
(

η̇ ◦ϕ−1η

)

er = u0, for t = t0, on Γ
w
0 .

For this problem, we considered two types of boundary conditions for the inflow/outflow
sections of the fluid and structure. The first set of boundary conditions reads as

Tn = h, on S1,
∂η

∂t
−

√

kG

ρw

∂η

∂z
= 0, at z = 0 (5.7)

Tn = 0, on S2,
∂η

∂t
+

√

kG

ρw

∂η

∂z
= 0, at z = L (5.8)

In this case, the inflow profile is imposed as a Neumann boundary condition and the
boundary conditions for the structure allow for the boundary of the structure to evolve
with the movement of the fluid.

The other set of boundary conditions considered is

u = h, on S1 Tn = 0, on S2 η = 0, at z = 0, L.

In this case, the velocity is imposed as a Dirichlet boundary condition at the inflow and
the boundary points of the structure are fixed.

Remark 5.1.3. The spaces where we look for the velocity and pressure fields are VF (Ωt) =
H1(Ωt) and Q(Ωt) = L2(Ωt). On the other hand, the displacement η is sought in V S(0, L) =
H1
0 (0, L) ∩W 1,∞(0, L).

The system of equations is non-linear, not only at the level of the fluid equations, but
also because of the coupling.

Remark 5.1.4. We highlight that the following variational formulation stands for the first
set of boundary conditions presented, see equations (5.7) and (5.8). The case with Dirichlet
boundary conditions is dealt as in the previous chapters.

Following Nobile [57], we introduce a formal decoupling for this problem (already in the
weak formulation) to solve separately the fluid and structure parts. The fluid sub-problem
is

Problem 5.1.1. find u(t) ∈ VF (Ωt), p(t) ∈ Q(Ωt) such that

ρ

∫

Ωt

∂u

∂t

∣

∣

∣

∣

Y

· v dx+ ρ

∫

Ωt

[(u−w) ·∇x]u · v dx+ 2ν

∫

Ωt

Dx(u) : ∇xv dx

+

∫

Ωt

divx(v) p dx =

∫

Ωt

f · v dx+

∫

S1

h · v ds, ∀v ∈ V(Ωt)
∫

Ωt

divx(u) q dx = 0, ∀q ∈ Q(Ωt)

u =
(

η̇ ◦ϕ−1η

)

er, on Γw
t

(5.9)
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and structure sub-problem is

Problem 5.1.2. find η(t) ∈ V S(0, L) such that

∫ L

0

ρwh
∂2η

∂t2
ξdz +

∫ L

0

Eh

(1− µ2)R2
0

ηξdz

+

∫ L

0

(

−kGh∂η
∂z
− γv

∂2η

∂z∂t

)

∂ξ

∂z
dz =

∫ L

0

Φrξ, ∀ξ ∈ V S(0, L).

(5.10)

For more details on these decoupling strategies, we refer the reader to Nobile [57].

5.2 Discretization

The numerical schemes that we are going to use to solve the FSI problem are based on
the Arbitrary Lagrangian-Eulerian Navier-Stokes solver developed in the previous chapter
and the schemes proposed in Nobile [57] and Deparis [18]. The idea is to use the decoupling
presented in the previous section and iterate between the solution of the fluid problem 5.1.1
and the structure problem 5.1.2.

As we mentioned before, we consider two approaches: the implicit fully coupled, see
section 5.2.3 and the semi-implicit, see section 5.2.4.

We detail now the numerical schemes used to solve the structure/fluid equations sepa-
rately.

5.2.1 Structure solver

Let us suppose that (u, p) are known at a certain time step. With the velocity and
pressure fields, we can calculate explicitly the normal stress at the moving boundary, ie,

Φr = − (Tn) · er ◦ϕη, on (0, L). (5.11)

Introducing the notation

η̇ =
∂η

∂t

we can rewrite equation (5.10) as

∫ L

0

ρwh
∂η̇

∂t
ξdz +

∫ L

0

Eh

(1− µ2)R2
0

ηξdz +

∫ L

0

(

−kGh∂η
∂z
− γv

∂η̇

∂z

)

∂ξ

∂z
dz

=

∫ L

0

Φrξ, ∀ξ ∈ V S(0, L)
∫ L

0

η̇ζdz =

∫ L

0

∂η

∂t
ζdz, ∀ζ ∈ V S(0, L).
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Applying the BDFq schemes to the previous system of equations, we obtain

∫ L

0

ρwh
β−1
∆t

η̇n+1ξdz +

∫ L

0

Eh

(1− µ2)R2
0

ηn+1ξdz

+

∫ L

0

(

−kGh∂η
n+1

∂z
− γv

∂η̇n+1

∂z

)

∂ξ

∂z
dz =

∫ L

0

fn+1ξ, ∀ξ ∈ V S(0, L)
∫ L

0

η̇n+1ζdz =

∫ L

0

β−1η
n+1ζdz +

∫ L

0

gn+1ζdz, ∀ζ ∈ V S(0, L).

(5.12)

where

fn+1 = Φn+1
r +

q−1
∑

j=0

βj

∆t
η̇n−j,Φn+1

r = Φr(tn+1) and gn+1 = η̇n+1 +

q−1
∑

j=0

βj

∆t
ηn−j.

In these equations, the quantity fn+1 is the force function calculated with the fluid solution.
To have a fully discrete scheme, we can now replace the continuous space V S(0, L) by

the spectral element space FNs
(Th) (Ns is the polynomial degree used in discretizing the

displacement and Th is a mesh of the domain [0, L]). This induces a linear system that can
be solved by standard techniques.

5.2.2 Fluid solver

Regarding the numerical method to solve the fluid equations (5.9), if we assume that
the displacement η and its derivative η̇ are known at time n + 1, then we use the solver
developed in the previous chapter. We recall the weak formulation of the fluid problem

Problem 5.2.1. find the solution (un+1
δ , pn+1

δ ) ∈ Vδ(Ωtn+1,δ
)×Qδ(Ωtn+1,δ

), such that

ρ

∫

Ωtn+1

β−1
∆t

un+1
δ · v dx+ ρ

∫

Ωtn+1

[(u∗δ −w∗
δ) ·∇x]u

n+1
δ · v dx

+
ρ

2

∫

Ωtn+1

divx(u
∗
δ)u

n+1
δ · v dx+ 2ν

∫

Ωtn+1

Dx(u
n+1
δ ) : ∇xv dx+

∫

Ωtn+1

divx(v) p
n+1
δ dx =

∫

Ωtn+1

f̃n+1
δ · v dx+

∫

S1

h · v ds, ∀v ∈ V0
δ(Ωtn+1,δ

)

∫

Ωtn+1

divx(u
n+1
δ ) q dx = 0, ∀q ∈ Qδ(Ωtn+1,δ

)

(5.13)
where

f̃n+1
δ = fn+1 +

q−1
∑

j=0

βj

∆t
un−j

δ

and the spaces Vδ(Ωtn+1,δ
), V0

δ(Ωtn+1,δ
) and Qδ(Ωtn+1,δ

) are defined as

Vδ(Ωtn+1,δ
) =

(

FN(Ttn+1,δ)
)2 ∩

{

v ∈ H1(Ωtn+1,δ
) : vΓw

t
=

(

η̇ ◦ϕ−1η

)

er

}

,
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V0
δ(Ωtn+1,δ

) =
(

FN(Ttn+1,δ)
)2 ∩H1

Γw
t
(Ωtn+1,δ

)

and
Qδ(Ωtn+1,δ

) = FM(Ttn+1,δ).

The quantity w∗
δ will be specified for each one of the two methods we are going to present.

u∗δ are given according to (3.34).

To use the interior penalty method we just need to add the stabilization term to the
formulation. We highlight that the shape of the domain is known since η is known.

5.2.3 Implicit fully coupled (FC) FSI solver

The sub-structuring iteration algorithm, see Nobile [57], reads as follows:

Problem 5.2.2. for each tn+1

(i) extrapolate the structure displacement: solve equations (5.12) for structure displace-
ment, ηn+1

(0) (and η̇n+1
(0) ) using the normal stress Φn

r from the previous time step.

(ii) for j = 1, . . . (fix point iterations)

(a) given ηn+1
(j−1), calculate the ALE map, the computational domain and wn+1

δ

(b) solve the Navier-Stokes equations (5.13) with w∗
δ = wn+1

δ

(c) calculate normal stress, Φn+1
r,(j), in the moving boundary of the fluid

(d) solve equations (5.12) for structure displacement, ηn+1,∗ (and η̇n+1,∗)

(e) if
∥

∥

∥
ηn+1,∗ − ηn+1

(j−1)

∥

∥

∥

L2
∥

∥

∥
ηn+1
(j−1)

∥

∥

∥

L2

+

∥

∥

∥
η̇n+1,∗ − η̇n+1

(j−1)

∥

∥

∥

L2
∥

∥

∥
η̇n+1
(j−1)

∥

∥

∥

L2

< tolerance

advance for the next time step with ηn+1 = ηn+1,∗ and η̇n+1 = η̇n+1,∗

(f) otherwise (relaxation)

ηn+1
(j) = θηn+1,∗ + (1− θ)ηn+1

(j−1)

η̇n+1
(j) = θη̇n+1,∗ + (1− θ)η̇n+1

(j−1)

For more details regarding this fix point type algorithm, called Dirichlet-Neumann
method, we refer the reader to [57, 15, 19]. A full justification of the equivalence of solving
the coupled FSI problem and the fix point problem is presented therein.

We highlight, as it is done in Nobile [57], that the relaxation parameter θ has to be
chosen in an appropriate way for the fix point iteration to converge. In order to accelerate
the convergence of this algorithm and not choose a priori a fixed relaxation parameter, we
considered a strategy described in Deparis [18] using Aitken extrapolation. In this way,
the parameter θ is calculated at each fix point iteration.
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5.2.4 Semi-implicit (SI) FSI solver

A scheme of this type had already been proposed in Nobile [57]. The idea is, at each
time step, freeze the domain where the fluid equations are solved in the first fix point
iterations. Then, we iterate between solving the fluid and the structure, but passing to the
fluid the displacement’s velocity as boundary condition on the moving boundary.

The sub-structuring iteration algorithm reads as follows:

Problem 5.2.3. for each tn+1

(i) ηn+1
(0) and η̇n+1

(0) are taken from the previous solution of the structure solver

(ii) calculate ALE map, fix computational domain and calculate wn
δ

(iii) for j = 1, . . .

(a) solve Navier-Stokes equations using η̇n+1
(j−1)e2 as boundary condition (on Σt) with

w∗
δ = wn

δ

(b) calculate normal stress in the moving boundary of the fluid

(c) solve for structure displacement, ηn+1,∗ (and η̇n+1,∗)

(d) if
∥

∥

∥
ηn+1,∗ − ηn+1

(j−1)

∥

∥

∥

L2
∥

∥

∥
ηn+1
(j−1)

∥

∥

∥

L2

+

∥

∥

∥
η̇n+1,∗ − η̇n+1

(j−1)

∥

∥

∥

L2
∥

∥

∥
η̇n+1
(j−1)

∥

∥

∥

L2

< tolerance

advance for the next time step with ηn+1 = ηn+1,∗ and η̇n+1 = η̇n+1,∗

(e) otherwise (relaxation)

ηn+1
(j) = θηn+1,∗ + (1− θ)ηn+1

(j−1)

η̇n+1
(j) = θη̇n+1,∗ + (1− θ)η̇n+1

(j−1)

A few remarks are in order:

Remark 5.2.1. The parameter θ in the semi-implicit method is also chosen through Aitken
extrapolation.

Remark 5.2.2. Since the computational domain is fixed for each time step, in each it-
erations of the fix point method, the fluid equations have to be solved always in the same
geometry. Therefore, the matrices used to solve the Navier-Stokes equations have to be
assembled only once per time step. This reduces considerably the computational cost of this
method, compared with the FC method.
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Remark 5.2.3. A particularity of both FC and SI method is that, if different BDF schemes
are used to approximate the time derivatives in the fluid and structure equations, the dis-
placement’s velocity approximation passed from the structure to the fluid solver is always
of the order of the fluid’s time approximations. This means that, for instance, if we take
BDF3 to approximate the time derivatives in the structure and BDF1 for the fluid, the
displacement’s velocity η̇n+1

(j−1)e2 passed to the fluid solver will actually be a first order in
time approximation, and not third order. This is a particularity of how the solver was built
and is valid both for the FC and SI methods. The impact of this choice in the stability of
the methods is unknown.

5.3 Numerical results

As mentioned before, we performed several numerical tests with the fluid-structure
solvers. For the FC method (which was the first one to be implemented) we considered two
types of boundary conditions at the inflow, Dirichlet and Neumann. For the SI method,
we only considered the latter.

We considered the following problem. The initial domain is a 2D rectangle of height
D = 1cm and length L = 6cm. The upper and lower boundaries of the domain are
deformable in the vertical direction according to equation (5.6). The fluid and structure
are at rest at time t = 0.

The parameters used for the fluid problem are ν = 0.035poise and ρ = 1gr/cm3. As for
the structure we considered: density ρw = 2gr/cm3, thickness h = 0.1cm, Young modulus
E = 0.75 · 106dyne/cm2, Poisson coefficient µ = 0.5, reference radius R0 = 0.5, shear
modulus G = 105, Timoshenko shear factor k = 2.5 and viscoelastic parameter γv = 0.01.
This problem is the same considered in Nobile [57] and Deparis [18], except for the wall
density value. In our case, we consider a denser wall to avoid problems with the added
mass effect. We simulated the pulse for 10ms.

5.3.1 Implicit fully coupled (FC) solver

We describe now the results obtained with the FC method, both for Dirichlet and
Neumann boundary conditions at the inflow, as well as several other tests.

Using inflow Neumann boundary conditions

In this case, we impose the following Neumann condition at the inflow boundary

Tn = −104
[

1− cos

(

πt

2.5ms

)]

n.

In our numerical tests we always obtained instabilities using a Neumann boundary
condition, except in the cases where the viscosity ν was big or the magnitude of pressure
pulse imposed at the inlet was at least one order of magnitude smaller than 104. We noticed
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that these instabilities were formed at the inlet boundary where the Neumann condition
was imposed and after the pressure wave entered the tube. We believe that this behavior is
caused by the lack of control of the velocity field at the inlet; since the boundary condition
is of Neumann type, the degrees of freedom at the inlet should also be taken into account
in the stabilization. This does not happen because the interior penalty stabilization only
takes care of the interior faces of the domain.

Once we enforced a similar pulse at the inlet as a Dirichlet boundary condition (second
test case), the instabilities disappeared and we successfully simulated the fluid-structure
interaction.

Using inflow Dirichlet boundary conditions

We changed the original problem only by imposing a Dirichlet velocity profile at the
inlet given by:

u(0, y, t) = 343.99(0.25− y)2(−1357t9 + 7443t8 − 17099t7 + 21255t6

−15356t5 + 6379t4 − 1368t3 + 97t2 + 6t)e1, with e1 = (1, 0)T .
(5.14)

This initial condition comes from realistic data measured in a pig. The velocity was scaled
to have the same magnitude as the velocity profile that was obtained using Neumann
boundary conditions at the inflow.

We performed successfully several simulations, with different time/space discretizations,
namely, PN − PN−2 finite elements (N = 3, 4, 5) for the fluid, P1 and P2 geometries and
BDFq, q = 1, 2, 3, 4 as time integrator. The structure model was discretized with PN

elements, N = 1, 2. In Figure 5.3 we plot the pressure field associated with the inlet profile
(5.14) at several time steps. We can observe the pressure wave propagating through the
pipe due to the elastic behavior of the walls.

The solver was tested by varying some of the parameters at the discretization level. In
the following, we present the results obtained.

Varying Ns and Ngeo. In Figure 5.4 we plot the residual

∥

∥

∥
ηn+1,∗ − ηn+1

(j−1)

∥

∥

∥

L2
∥

∥

∥
ηn+1
(j−1)

∥

∥

∥

L2

+

∥

∥

∥
η̇n+1,∗ − η̇n+1

(j−1)

∥

∥

∥

L2
∥

∥

∥
η̇n+1
(j−1)

∥

∥

∥

L2

of the fix point method for the first time step of the simulation. We considered the fol-
lowing spaces/parameters: fluid discretized with BDF1 and P4 − P2 elements, h = 0.2, no
stabilization and tol = 10−6; for the structure we used BDF1. We observe that the more
we increase the polynomial degree associated with the geometry and/or the structure, the
convergence of the fix point algorithm becomes slower (and in some cases extremely slow).
When using second order geometrical elements for the fluid and second degree polynomials
for the structure’s displacement, the residual eventually hits the tolerance prescribed, but
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(a) t = 0ms

(b) t = 2ms

(c) t = 4ms

(d) t = 6ms

(e) t = 8ms

(f) t = 10ms (g) Legend

Figure 5.3: Pressure pulse propagating through the pipe. Fluid discretized with BDF3 and
P4 − P2 elements, h = 0.2, ∆t = 10−4, γ = 0.01 and tol = 10−6. For the structure we used
BDF3 and P1 elements. The displacement is magnified five times.
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Figure 5.4: Residual of the fix point iteration.

at around 10000 iterations. As we can see from Figure 5.4, not even reducing the time step
(in one order of magnitude) changes this behavior.

This happens due to the added mass effect [14] and the increasing stiffness of the
problem using higher degree polynomials for the interface between structure and fluid.

We also ran the same tests using ρw = 1.1. This problem is the same as the one solved
in Nobile [57] and Deparis [18]. The results obtained are slightly different from the above
regarding the convergence of the (Ns, Ngeo) = (2, 1) case. While in the above case, the
convergence of Ns = Ngeo = 1 and (Ns, Ngeo) = (2, 1) are similar, with the denser wall, the
method using (Ns, Ngeo) = (2, 1) takes much more iterations to converge. This is again a
sign of the added mass effect.

Remark 5.3.1. We highlight that the simulation using geometrical elements of order one
and second order elements for the structure displacement’s discretization was conducted
until T = 10ms as all the simulations in this chapter. For each time step, the fix point
method converged to the established tolerance.

Varying BDFq for fluid and structure. As a second test, we fixed the polynomial
spaces used for the spatial discretization and varied the order of the integration methods for
the fluid and structure discretization. In Figure 5.5 we show the evolution of the fix point
iterations over time using the BDF1, BDF2 and BDF3 methods in the fluid discretization.
The choice of parameters is the same as in the previous case. The results show that for a
fixed time integration order for the fluid, increasing the integration order for the structure
solver decreases the number of iterations for the fix point method. The same behavior is
observed using BDF4 to integrate in time the fluid equations. We conducted the same
tests using the P2-P1 and the results are similar.

We plot in Figure 5.6 the average number of iterations for the P2-P1 and P4-P2 methods.
Each set of columns represents a choice for the time integrator for the fluid and in each set,
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Figure 5.5: Evolution of the number of iterations of the fix point method throughout a
simulation using the P4-P2.
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from right to left, it represents the choice of the BDF4, BDF3, BDF2 and BDF1 methods
for the structure solver. The colors chosen are consistent with Figure 5.5. In these figures,
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Figure 5.6: Average number of iterations for the fix point method, for several time inte-
gration methods for the fluid.

we confirm what we mentioned before regarding the decrease of fix point iterations when
increasing the order of the BDFq method for the structure.

On the other side, if we fix the order of the structure time integrator and vary the
order of the fluid’s BDFq scheme, in any of the cases, the number of iterations increases, in
average. When using the BDF1 method for the structure, if we choose BDF3 or BDF4 for
the fluid discretization, the fix point method stops converging to the prescribed tolerance.

We highlight an interesting fact that can be directly observed from Figures 5.6(a) and
5.6(b). If we look at the number of fix point iterations taken by schemes that use the same
order in time for fluid and structure, that is, schemes where BDFq is used for fluid and
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structure, the average number of iterations is more or less the same.

Varying the polynomial order for the velocity and pressure spaces. The num-
ber of iterations used by the fix point method is also reported when considering several
discretization pairs of spaces for velocity and pressure. In this test, we took the PN -PN−1

and PN -PN−2 methods for N ranging from 2 to 5 in the first case, and from 3 to 5 in the
second. The fluid was discretized using BDF1 and the structure with BDF4. The results
are displayed in Figure 5.7. We conclude that the number of iterations isn’t affected by
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Figure 5.7: Average number of iterations for the fix point method, for several PN -PN−1

(left) and PN -PN−2 (right) methods.

the discretization spaces, at least for the polynomial orders considered.

5.3.2 Semi-implicit (SI) solver

We performed the same batch of tests to the semi-implicit solver. We start by analyzing
the dependency of the number of iterations of the fix point method with respect to the
order of the geometrical elements of the fluid mesh and the polynomial degree of the
approximation of the displacement.

Varying Ns and Ngeo. The behavior of the semi-implicit solver in terms of these quanti-
ties is similar to the FC solver. Regarding the choices all the choices but Ngeo = Ns = 2, the
solvers perform more or less the same (apart from an increase in the number of iterations
that the SI solver needs to achieve the prescribed tolerance). However, when using second
order geometrical elements for the fluid and the P2 to approximate the displacement and
the velocity’s displacement of the structure, the SI solver converges not only in the first
time step, but throughout the whole test simulation. We plot in Figure 5.8 the residual
for tn = 1ms .
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Figure 5.8: Residual of the fix point iteration for tn = 1ms.

We show some results with the SI method and second order geometrical elements (with
the fixed set of parameters chosen) in Figure 5.9. In this figure, we present a few snapshots
of the pressure evolution in time. The rest of the simulation is as in Figure 5.3, apart from
the dissipative behavior of BDF1. There are some artifacts in Figure 5.9, but this is due

(a) t = 2ms (b) t = 4ms

Figure 5.9: Pressure pulse propagating through the pipe. Fluid discretized with BDF1 and
P4 − P2 elements, h = 0.2, ∆t = 10−4, γ = 0.01 and tol = 10−4. For the structure we used
BDF1 and P2 elements. The displacement is magnified five times. The legend for these
figures is the same as in Figure 5.3.

to the routine that exports the solutions and not an error of computation of the method.

Varying the polynomial order for the velocity and pressure spaces. As it hap-
pened with the FC method, the choice of different pairs of approximation spaces for velocity
and pressure does not influence much the number of iterations. We plot in Figure 5.10 the
number of fix point iterations necessary to achieve the usual tolerance during a simulation.
The results are twice as big as the ones obtained for the FC method, see Figure 5.7.

Varying BDFq for fluid and structure. Notice that in average, the SI method takes
more iterations to converge than the FC method. Looking at the average number of
iterations of the methods that use BDFq for fluid and structure, we remark that also the
SI method maintains the number of iterations fixed. The average number of iterations is
about three times bigger for the SI method than for the FC method.
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Figure 5.10: Average number of iterations for the fix point method, for several PN -PN−1

(left) and PN -PN−2 (right) methods.

From Figures 5.11(a) and 5.11(b) we stress that the gap of iterations that exists between
using the SI method combined the P2-P1 method and the P4-P2 method is bigger than in
the FC method. There is a reduction in the number of iterations that is more significant
than in the results shown in Figures 5.6(a) and 5.6(b).
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Figure 5.11: Average number of iterations for the fix point method, for several time inte-
gration methods for the fluid.





Chapter 6

Conclusions

In this thesis we addressed the numerical approximation of the incompressible Navier-
-Stokes equations evolving in a moving domain with the spectral element method. As an
application, we solved a simple fluid-structure problem in the context of hemodynamics.

First, we described the polynomial framework behind the spectral element method. One
crucial aspect in this construction was the choice of points to differentiate the polynomial
bases and the conditioning of the generalized Vandermonde matrix associated with this
issue. A numerical study was conducted to assess which points should be used in order
that the methodology was numerically stable. We concluded that the Fekete points were
the best choice in 1D and 2D and the Warpblend points in 3D. We highlight that these
results were limited to the point sets taken for comparison.

The multidomain case was also addressed and we showed how to construct a map that
relates the local degrees of freedom with the global ones. This construction was made in
nD, n = 1, 2, 3, for all the reference elements considered, and in the case of modal and nodal
bases. A Poisson test problem was considered as benchmark to determine the growth of
the eigenvalues or the conditioning of the stiffness matrix for the different Lagrange based
bases. Again, the best results were obtained with the Lagrange basis associated with either
Fekete or Warpblend points, in 1D and 2D, and 3D, respectively.

Second, we introduced the incompressible Navier-Stokes equations in a fixed domain and
its approximation by the spectral element method. We considered inf-sup stable, arbitrary
order polynomial bases to discretize velocity and pressure. The geometry of the domain was
considered to be approximated with curved elements. In the test case we presented based
on the Kovasznay solution, we highlight the importance of using high order geometrical
elements, as being the only way to, in curved geometries, achieve spectral accuracy.

The discrete problem that was obtained after time-space discretization (or only space
discretization, in the steady case) of these equations is quite difficult to solve. We proposed
two strategies to deal with the solution of this system: a block type preconditioner and
the Yosida-q methods. It was shown that the preconditioner is optimal (regarding the
number of iterations used by the GMRES method) w.r.t. the polynomial order for the
velocity/pressure and mesh size, in the steady Navier-Stokes frame. In the unsteady case,
optimality was lost regarding the polynomial order. The dependence was mild w.r.t. the
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viscosity.
We compared the block type preconditioner with other strategies and showed that for

the range of problems that we considered, a LU factorization of the matrix is a faster
method of solution. Regarding the Yosida-q methods, we showed the order of convergence
in time for velocity and pressure. The results obtained are in agreement with the ones in
the literature for this type of methods.

Next, we addressed the incompressible Navier-Stokes equations evolving in a moving
domain. We generalized the discretization method used in the fixed domain case to the
Arbitrary Lagrangian Eulerian framework. The construction of a high order ALE map
was explained in detail. After space-time discretization of the equations, the linear system
obtained is solved using a LU factorization or the Yosida-q methods. The order of conver-
gence of both approaches, in time, using both methods, was the same as the fixed domain
version.

Finally, we considered a 2D fluid-structure interaction problem with a one dimensional
structure. The strategies to solve the coupled problem were an implicit fully coupled
method and a semi-implicit method. We showed for the FC method that the residual of
the fix point method converges to a prescribed tolerance when the geometrical elements are
straight and the structure is discretized with first or second degree polynomials. Increasing
the order of the geometrical elements for the fluid makes the fix point method converge very
slowly, making this approach unfeasible to use in practice. We were able to circumvent this
drawback of the FC method with the SI scheme. Although in general the semi-implicit
method takes more iterations to converge and has more severe stability restrictions, its
behavior regarding second order elements is satisfactory, at least compared with the FC
method.

Summarizing, the simulation of fluid-structure interaction problems using high order
in time and space methods is far from being complete. Regarding algorithms to solve the
coupled problem, we conclude that the fix point method, combined with an implicit or
semi-implicit approach, takes too much time to convergence to some prescribed tolerance.
We do not provide timings with this respect (only the number of iterations), but taking
into account that in the FC method the matrix solving the fluid equations has to be
reassembled, makes it extremely expensive. On the other hand, the semi-implicit approach
does not have this drawback, but it has more severe time stability restrictions. In the
future, other semi-implicit approaches or even monolithic methods (using the Newton or
quasi-Newton methods) might be of interest to test in this framework to go around the
slow convergence of the fix point method, see Chapter 9 of Formaggia, Quarteroni and
Veneziani [31].

Another crucial point is the extension of the framework to 3D geometries. This is
strongly dependent on two things: first, the construction of a high order ALE map in 3D;
and second, the solution algorithms for the fluid solver (or in the case of a non modular
approach, the whole fluid-structure system). These are issues that are not considered in
this thesis, but that should be looked at in the future.
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