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Docteur de l’École Normale Supérieure de Cachan

Domaine: Mathématiques appliquées

Sujet de la thèse:
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Résumé

Étant donné un mélange de plusieurs signaux sources, par exemple un morceau et
plusieurs instruments, ou un entretien radiophonique et plusieurs interlocuteurs,
la séparation de source mono-canal consiste à estimer chacun des signaux sources
à partir d’un enregistrement avec un seul microphone. Puisqu’il y a moins de
capteurs que de sources, il y a a priori une infinité de solutions sans rapport avec
les sources originales. Il faut alors trouver quelle information supplémentaire
permet de rendre le problème bien posé.

Au cours des dix dernières années, la factorisation en matrices positives
(NMF) est devenue un composant majeurs des systèmes de séparation de sources.
En langage profane, la NMF permet de décrire un ensemble de signaux audio á
partir de combinaisons d’éléments sonores simples (les atomes), formant un dic-
tionnaire. Les systèmes de séparation de sources reposent alors sur la capacité à
trouver des atomes qui puissent être assignés de façon univoque à chaque source
sonore. En d’autres termes, ils doivent être interprétables.

Nous proposons dans cette thèse trois contributions principales aux méthodes
d’apprentissage de dictionnaire. La première est un critère de parcimonie par
groupes adapté à la NMF lorsque la mesure de distortion choisie est la diver-
gence d’Itakura-Saito. Dans la plupart des signaux de musique on peut trouver
de longs intervalles où seulement une source est active (des soli). Le critère de
parcimonie par groupe que nous proposons permet de trouver automatiquement
de tels segments et d’apprendre un dictionnaire adapté à chaque source. Ces
dictionnaires permettent ensuite d’effectuer la tâche de séparation dans les in-
tervalles où les sources sont mélangées. Ces deux tâches d’identification et de
séparation sont effectuées simultanément en une seule passe de l’algorithme que
nous proposons.

Notre deuxième contribution est un algorithme en ligne pour apprendre le
dictionnaire à grande échelle, sur des signaux de plusieurs heures, ce qui était
impossible auparavant. L’espace mémoire requis par une NMF estimée en ligne
est constant alors qu’il croit linéairement avec la taille des signaux fournis dans
la version standard, ce qui est impraticable pour des signaux de plus d’une heure.

Notre troisième contribution touche à l’interaction avec l’utilisateur. Pour des
signaux courts, l’apprentissage aveugle est particulièrement dificile, et l’apport
d’information spécifique au signal traité est indispensable. Notre contribution
est similaire à l’inpainting et permet de prendre en compte des annotations
temps-fréquence. Elle repose sur l’observation que la quasi-totalité du spectro-
gramme peut etre divisé en régions spécifiquement assignées à chaque source.
Nous décrivons une extension de NMF pour prendre en compte cette information
et discutons la possibilité d’inférer cette information automatiquement avec des
outils d’apprentissage statistique simples.
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Abstract

Given an audio signal that is a mixture of several sources, such as a music
piece with several instruments, or a radio interview with several speakers, single-
channel audio source separation aims at recovering each of the source signals
when the mixture signal is recorded with only one microphone. Since there are
less sensors (one microphone) than sources (several sources), there is a priori an
infinite number of solutions to this problem that are not related to the original
source signals. They key ingredient in single-channel audio source separation is
to decide what kind of additional information must be provided to disambiguate
the problem.

In the last decade, nonnegative matrix factorization (NMF) has become a
major building block in source separation. In lay man’s term, NMF consists in
learning to describe a collection of audio signals as linear combinations of typical
atoms forming a dictionary. Source separation algorithms are then built on the
idea that each atom can be assigned unambiguously to a source. However, since
the dictionary is learnt on a mixture of several sources, there is no guarantee that
each atom corresponds to one source rather than of a mixture of them : put in
other words, the dictionary atoms are not interpretable a priori, they must be
made so, using additional information in the learning process.

In this thesis we provide three main contributions to blind source separa-
tion methods based on NMF. Our first contribution is a group-sparsity inducing
penalty specifically tailored for Itakura-Saito NMF : in many music tracks, there
are whole intervals where at least one source is inactive. The group-sparsity
penalty we propose allows identifying these intervals blindly and learn source
specific dictionaries. As a consequence, those learned dictionaries can be used to
do source separation in other parts of the track were several sources are active.
These two tasks of identification and separation are performed simultaneously in
one run of group-sparsity Itakura-Saito NMF.

Our second contribution is an online algorithm for Itakura-Saito NMF that
allows learning dictionaries on very large audio tracks. Indeed, the memory
complexity of a batch implementation NMF grows linearly with the length of the
recordings and becomes prohibitive for signals longer than an hour. In contrast,
our online algorithm is able to learn NMF on arbitrarily long signals with limited
memory usage.

Our third contribution deals with user informed NMF. In short mixed sig-
nals, blind learning becomes very hard and sparsity do not retrieve interpretable
dictionaries. Our contribution is very similar in spirit to inpainting. It relies on
the empirical fact that, when observing the spectrogram of a mixture signal, an
overwhelming proportion of it consists in regions where only one source is active.
We describe an extension of NMF to take into account time-frequency localized
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information on the absence/presence of each source. We also investigate inferring
this information with tools from machine learning.
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Aux collègues et confrères avec qui j’ai fait mon apprentissage des premiers
posters, des premiers oraux, avec qui j’ai eu des discussions intéressantes au
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À Louise mon amour.



Contents

Contents ix

1 Introduction 5
1.1 Mixing assumptions and related tasks . . . . . . . . . . . . . . . . 5

1.1.1 Assumptions on the mixing process . . . . . . . . . . . . . 5
1.1.2 Standard metrics for single-channel source separation . . . 6
1.1.3 Related tasks . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Time-frequency representations . . . . . . . . . . . . . . . . . . . 9
1.2.1 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 Short time Fourier transform . . . . . . . . . . . . . . . . 10
1.2.3 Recovery of source estimates via time-frequency masking . 12

1.3 Models for audio source separation . . . . . . . . . . . . . . . . . 13
1.3.1 Mixture models : hard sparsity constraints . . . . . . . . . 14

1.3.1.1 Inference . . . . . . . . . . . . . . . . . . . . . . 14
1.3.1.2 Learning: trained models or blind learning ? . . . 17
1.3.1.3 Extension to hidden Markov models . . . . . . . 17

1.3.2 Nonnegative matrix factorization with sparsity constraints 19
1.3.2.1 Trained learning with sparsity . . . . . . . . . . . 19
1.3.2.2 Partially blind learning or model calibration . . . 21
1.3.2.3 Smoothness penalties . . . . . . . . . . . . . . . . 21
1.3.2.4 Parameterized atoms . . . . . . . . . . . . . . . . 22

1.3.3 Other latent variable models : Complex Matrix Factorization 22
1.3.4 Other approaches : Computational Audio Scene Analysis . 24

1.3.4.1 Basic complexity issues . . . . . . . . . . . . . . 24
1.3.4.2 A clustering approach to audio source separation 24

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Structured NMF with group-sparsity penalties 29
2.1 The family of NMF problems . . . . . . . . . . . . . . . . . . . . 31

2.1.1 The family of beta-divergences . . . . . . . . . . . . . . . . 32
2.1.2 Identification problems in NMF . . . . . . . . . . . . . . . 33
2.1.3 Determining which divergence to choose . . . . . . . . . . 34

2.2 Optimization algorithms for the β-divergences . . . . . . . . . . . 36
2.2.1 Non-convexity of NMD with beta-divergences . . . . . . . 36
2.2.2 MM algorithms and multiplicative updates . . . . . . . . . 37
2.2.3 Expectation-Maximization algorithms . . . . . . . . . . . . 39

2.2.3.1 Itakura-Saito divergence . . . . . . . . . . . . . . 39
2.2.3.2 Kullback-Leibler divergence . . . . . . . . . . . . 41

ix



x CONTENTS

2.3 Itakura-Saito NMF . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.1 Generative model . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.2 Recovery of source estimates . . . . . . . . . . . . . . . . . 43
2.3.3 Consistent source estimates . . . . . . . . . . . . . . . . . 44
2.3.4 Derivation of a descent algorithm . . . . . . . . . . . . . . 47
2.3.5 Discussion of convergence properties . . . . . . . . . . . . 48
2.3.6 Discussion of convergence properties: empirical results . . 51
2.3.7 Overview of the algorithm . . . . . . . . . . . . . . . . . . 53
2.3.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4 Group-sparsity enforcing penalty in NMF . . . . . . . . . . . . . . 54
2.4.1 Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.4.2 Interpretation of the penalty term . . . . . . . . . . . . . . 56
2.4.3 Extension to block-structured penalties . . . . . . . . . . . 57
2.4.4 Algorithm for group Itakura Saito NMF . . . . . . . . . . 58

2.5 Model selection in sparse NMF . . . . . . . . . . . . . . . . . . . 59
2.5.1 Kolmogorov-Smirnov statistic . . . . . . . . . . . . . . . . 59
2.5.2 Bayesian approaches . . . . . . . . . . . . . . . . . . . . . 61

2.6 Experiments with group-sparse NMF . . . . . . . . . . . . . . . . 61
2.6.1 Validation on synthetic data . . . . . . . . . . . . . . . . . 61
2.6.2 Results in single channel source separation . . . . . . . . . 61
2.6.3 Block-structured penalty . . . . . . . . . . . . . . . . . . . 64

2.7 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3 Online NMF 69
3.1 Algorithm for online IS-NMF . . . . . . . . . . . . . . . . . . . . 70

3.1.1 Itakura-Saito NMF . . . . . . . . . . . . . . . . . . . . . . 70
3.1.2 Recursive computation of auxiliary function . . . . . . . . 71
3.1.3 Practical implementation . . . . . . . . . . . . . . . . . . . 72

3.2 Experimental study . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 User informed source separation 79
4.1 A GUI for time-frequency annotations . . . . . . . . . . . . . . . 81
4.2 Annotated NMF . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3 Towards automatic annotations . . . . . . . . . . . . . . . . . . . 84

4.3.1 Learning algorithms . . . . . . . . . . . . . . . . . . . . . 85
4.3.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3.3 Raw Patches . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3.4 Oriented filters . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3.5 Averaging training labels . . . . . . . . . . . . . . . . . . . 88

4.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.4.1 Description of music databases . . . . . . . . . . . . . . . 89
4.4.2 Ideal performance and robustness . . . . . . . . . . . . . . 89



CONTENTS xi

4.4.3 Evaluation of automatic annotations . . . . . . . . . . . . 90
4.4.4 Overall results . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.5.1 Detailed comparison of detectors . . . . . . . . . . . . . . 94
4.5.2 Extension of annotated NMF with more than one dominant

source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.5.2.1 Mathematical formulation . . . . . . . . . . . . . 96
4.5.2.2 Source separation of three instrumental tracks . . 96

4.5.3 Handling uncertainty in automatic annotations . . . . . . 97
4.5.4 Predicting source specific time intervals . . . . . . . . . . . 98

4.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Conclusion 103

A Projected gradient descent 107

B Description of databases 109

C Detailed results 111

Bibliography 115





Structure of this thesis

Audio source separation systems are a blend of signal processing techniques and
machine learning tools. Signal processing techniques are used to extract features
of interest from the signal, and outline strategies to recover source estimates, and
machine learning tools are used to make decisions based on available training data
and possibly additional information (specific models, user information, etc.).

NMF W1
W

NMF

NMF W2

V

+

(model)

training
analysis/
synthesis
clustering

Figure 0.1: Workflow of a typical source separation system

The main building blocks of a typical single-channel source separation system
are illustrated in Figure 0.1. In the training block (in green), offline databases
specific to various types of sound signals are first exploited to build interpretable
models. At test time, a mixture of unknown sound signals is presented, which is
first transformed in the analysis step into a feature matrix. This feature matrix is
then clustered, or decomposed into elementary matrices, and those are grouped
to yield estimates of the sources. These estimates must then be transformed
back into time domain signals in the synthesis step. The clustering step is the
main block of the source separation step : we use here the term clustering in a
generic way, since this unit accommodates matrix factorization algorithms as well
as segmentation/clustering algorithms. The clustering block may perform blind
source separation, in which case a model of the data is learnt at the same time
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2 CONTENTS

as source estimates are computed. It may also be fed with a pre-learnt model
computed by the training block, but also with user specific constraints.

In this thesis, we study every aspect of this workflow In Chapter 1, we will
give an overview of each step of the system with a particular emphasis on latent
variable models used to build interpretable representations of spectrograms. In
Chapter 2, we will discuss algorithms for nonnegative matrix factorization as
well as model selection issues and in particular present our contribution to that
point with group nonnegative matrix factorization [Lefèvre et al., 2011a]. In
Chapter 3 we will present a modification of the multiplicative updates algorithm
to large scale settings where only a few passes over the entire data set are allowed
[Lefèvre et al., 2011b] Finally, in Chapter 4 we will present recent contributions in
user informed source separation, among which our recent work on time-frequency
annotated NMF [Lefèvre et al., 2012].

Contributions

Our contributions in this thesis are the following :

⋆ We propose in Chapter 2 a group-sparsity penalty for Itakura-Saito NMF.
This penalty is designed for audio signals where each source “switches”
on and off at least once in the recording. Our group-sparsity penalty al-
lows identifying segments where sources are missing, learn an appropriate
dictionary each source, and un-mix sources elsewhere. Simple temporal de-
pendencies may be enforced in the form of a block-sparsity penalty, which
favors contiguous zeroes in the decomposition coefficients. Moreover, we
propose a criterion to select the penalty parameter based on tools from
statistical theory.

⋆ Our second contribution in Chapter 3 is an online algorithm to learn dic-
tionaries adapted to the Itakura-Saito divergence. We show that it allows
a ten times speedup for signals longer than three minutes, in the small dic-
tionary setting. It also allows running NMF on signals longer than an hour
which was previously impossible.

⋆ Our third contribution, presented in Chapter 4, goes back to short signals
and blind separation : we introduce in NMF additional constraints on the
estimates of the source spectrograms, in the form of time-frequency annota-
tions. While time annotations have been proposed before, time-frequency
annotations allow retrieving perfect source estimates provided only 20% of
the spectrogram is annotated, and annotations are correct. Our formula-
tion is robust to small errors in the annotations. We provide a graphical
interface for user annotations, and investigate algorithms to automatize the
annotation process.

These contributions have led to the following publications:
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A. Lefèvre and F. Bach and C. Févotte, “Itakura-Saito Nonnegative Ma-
trix Factorization with group sparsity”, in Proceedings of the International
Conference on Acoustique Speech and Signal Processing (ICASSP),2011.

A. Lefèvre and F. Bach and C. Févotte, “Factorisation de matrices struc-
turée en groupes avec la divergence d’Itakura-Saito”, in Proceedings of 23e
colloque GRETSI sur le Traitement du Signal et des Images, 2011.

A. Lefèvre and F. Bach and C. Févotte, “Online algorithms for nonnegative
matrix factorization with the Itakura-Saito divergence”, in Proceedings of
the IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics (WASPAA), 2011.

A. Lefèvre and F. Bach and C. Févotte, “Semi-supervised NMF with time-
frequency annotations for single-channel source separation”, in Proceedings
of the International Conference on Music Information Retrival (ISMIR),
2012.

Notations

• x ∈ R
T a mixture signal, s(g) ∈ R

T , for g = 1 . . . G source signals. T is the
length of the recording acquired at sampling rate fs (usually 44, 100Hz,
i.e., 44, 100 samples per seconds, or equivalently one sample every 22 every
millisecond (ms).

• Superscript (g) is used to index source numbers, and should not be confused
with the power operator xg = x× · · · × x

︸ ︷︷ ︸

g times

.
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Figure 0.2: Various representations of an audio signal.

• Linear instantaneous mixing assumption, xt =
∑G

g=1 s
(g)
t .
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• X ∈ C
F×N is a short time Fourier transform (STFT) of x.

• Likewise S(g) will denote the STFT of s(g) for g = 1 . . . G.

• F is the analysis window length, thus f coordinates span the frequency
axis. N is the number of time frames, so n spans the time axis. We will
often refer to f as a frequency bin, n as a time bin (or sometimes a time
frame1), and (f, n) as a time-frequency bin. In every case, context will
make clear which meaning is used.

• W (g) ∈ R
F×Kg

+ is a dictionary associated with each source g.

• H(g) ∈ R
Kg×N
+ is a matrix of activation or amplitude coefficients associated

with each source g.

• The dictionaryW = (W (1), . . . ,W (G)) ∈ R
F×K
+ whereK =

∑

gKg is formed

by concatenating the W (g) column by column. Throughout this thesis we
will assume that all Kg are equal to some constant Q for simplicity.

• Likewise H ∈ R
K×N
+ is formed by concatenating matrices H(g) along the

row dimension.

• If g is a subset (the cardinality of which is denoted by |g|), then xg is a
vector in R

|g| formed of the coefficients of x indexed by g (in the same order,
i.e., if g = {2, 3} then xg = (x2, x3)

⊤.

• Subscript · stands for all coordinates along one dimension, so

W·1 = (W11, . . . ,WF1)
⊤ . (1)

• Whenever notations become too heavy we bundle all relevant parameters
into a single Θ, e.g., Θ = (W,H).

1There is a difference between time frames, which are time intervals in which local Fourier
transforms are computed, and frame operators which are linear operators used in time-frequency
analysis. In any case, which meaning is used will be clear from context.



Chapter 1

Introduction

Structure of this chapter in Section 1.1, we will introduce elementary as-
sumptions on the signals we deal with, evaluation criteria and describe tasks
related to audio source separation. In Section 1.2, the analysis/synthesis block of
our source separation system will be described : it extracts a spectrogram from
the mixed signal, and conversely, maps spectrograms of the estimated sources
back into time domain signals. We introduce the Fourier transform and short
time Fourier transform (STFT), which allow analyzing the properties of long au-
dio signals in the time domain and the frequency domain simultaneously. More-
over, we explain why nonnegativity is important to build translation invariant
representations of the recorded signals.

At the heart of the source separation system lie nonnegative sparse coding
and dictionary learning. Source-specific dictionaries are learnt either beforehand
on a set of isolated source signals, or directly on the mixed signal (blind source
separation). Dictionary learning is a vast topic with applications in neurosciences
[Olshausen and Field, 1997], image denoising [Mairal et al., 2010], texture classi-
fication [Ramirez et al., 2010], among other topics. In Section 1.3, we will review
the main dictionary learning models used in audio source separation, and then de-
scribe in more details how and why sparse representations evolved from mixture
models to nonnegative matrix factorization, and highlight the need for additional
prior knowledge for blind source separation. In order to grasp the computational
advantages of NMF, we will also present alternative methods for single-channel
source separation relying on clustering methods and tools from computational au-
dio scene analysis, so that the reader can compare the advantages and drawbacks
of each approach.

1.1 Mixing assumptions and related tasks

1.1.1 Assumptions on the mixing process

Given G source signals s(g) ∈ R
T , and one microphone, we assume the acquisition

process is well modelled by a linear instantaneous mixing model :

xt =
G∑

g=1

s
(g)
t . (1.1)

5
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It is standard to assume that microphones are linear as long as the recorded
signals are not too loud. If signals are too loud, they are usually clipped. The
mixing process is modelled as instantaneous as opposed to convolutive. Indeed,
when multiple microphones are used(I > 1), the output xit at each microphone

can be modelled by : xit =
∑G

g=1

∑+∞
s=0 h

(g,i)
s s

(g)
t−s , where h

(g,i) are impulse re-
sponses depending on the relative position of source g to microphone i and the
configuration of the room in which signals are recorded. While crucial when using
multiple microphones, taking into account convolutive mixing is not as important
in the case I = 1 : in this case, we would recover a linear transformation of each
source which can then be processed independently.

In the multiple microphone setting, source separation, also known as the
“cocktail party problem”, or the un-mixing problem, has given birth to the tech-
nique of independent component analysis (ICA)[Comon, 1994, Cardoso, 1998,
Hyvärinen, 1999].

1.1.2 Standard metrics for single-channel source
separation

Listening tests provide the most valuable insights on the quality of source esti-
mates ŝ(g). Purely quantitative criteria, on the other hand, are much less time
consuming, and provide a good check of source separation quality before listening
tests. The simplest performance criterion is the signal to noise ratio:

SNR = 10 log10
‖ŝ‖22
‖s− ŝ‖22

. (1.2)

Current standard metrics were proposed in [Vincent et al., 2006] and consist
in decomposing a given estimate ŝ(g) as a sum :

ŝ
(g)
t = starget + einterf + eartif . (1.3)

where starget is an allowed deformation of the target source s(g), einterf is an
allowed deformation of the sources which accounts for the interferences of the
unwanted sources, eartif is an “artifact” term that accounts for deformations
induced by the separation algorithm that are not allowed. Given such a decom-
position, one can compute the following criteria :

SDR = 10 log 10
‖starget‖

2
2

‖einterf + eartif‖22
(Signal to Distortion Ratio)

SIR = 10 log 10
‖starget‖

2
2

‖einterf‖22
(Signal to Interference Ratio)

SAR = 10 log 10
‖starget‖

2
2

‖eartif‖22
(Signal to Artifact Ratio)
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auto user baseline self oracle
SDR1 1.83 8.92 9.41 7.35 18.43
SDR2 1.17 -0.39 -0.61 -7.34 10.82

Table 1.1: Example of source separation results on one audio track

Higher values of the metrics are sought for (+∞ means the true source signal
is recovered exactly, −∞ that anything but the source signal can be heard in ŝ).
Values of the SDR are hard to interpret, they depend highly on the structure of
the signal. The SDR of a proposed method must always be compared to that
obtained when using the mixed signal as a source estimate, in order to measure
the improvement accomplished rather than an absolute value that is not always
meaningful. 1. In Table 1.1 this is displayed in the column self. As we can
see, the SDR values obtained by the proposed methods are above that threshold,
which means that an improvement was obtained in extracting the source from
the mixture. Incidentally, note that the SAR obtained by self is always∞, since
the mixed signal x is a linear combination of source signals with no additional
noise.

Allowing simple deformations of the target signal is important : for instance,
if the estimate ŝ(g) was simply a scaled version of the true source signal λs(g) then
perceptually the result would be perfect, but the SNR would be 10 log10

λ2

(1−λ)2

which can be arbitrarily low. However, the SDR and SAR (of this source) would
still be +∞ because scaling is one of the allowed deformations2. Other deforma-
tions can be allowed in the bss eval toolbox released by Vincent et al. [2006],
which are especially useful in a multichannel setting.

1.1.3 Related tasks

Single-channel source separation may be useful in many different scenarios :

• Fine level decomposition : for each instrument, each note must be extracted
as an individual source. In contrast with polyphonic music transcription,
recovering source estimates may be useful in this case to perform modifi-
cations such as modifying notes or changing the length of a note without
changing that of the others.

• Instrument per instrument separation : this is the kind of task proposed
in separation campaigns such as MIR-1K or SISEC. While there may be
several instruments, in popular songs those are highly synchronized. Due
to its particular role in Western popular music, it is of particular interest

1For readers with a machine learning background, it would seem more natural to use a
random method to evaluate the significance of a method, but in the case of audio source
separation, randomly sampled signals yield −∞ SDR so using the mixed signal more relevant

2however, since
∑

g
ŝ(g) =

∑

g
s(g) the interference ratios will be low for other sources.
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to extract voice from the accompaniment. It might be also interesting to
extract solo instruments (e.g., electric guitar in rock and roll recordings).

• “Nonstationary” denoising : while denoising has been a successful applica-
tion of signal processing since the 1970’s, it is limited to stationary noise
e.g., ambient noise in room recordings, the spectral properties of which are
considered as constant throughout time. In field recordings, on the con-
trary, or in real-life situations, what we commonly experience as noise may
have time-varying spectral properties : wind, traffic, water trickling, etc. In
this case, denoising is no longer an appropriate term and source separation
methods should be used.

• Source separation can also be used as a pre-processing step for other tasks,
such as automatic speech recognition (ASR). When there are sources of
interference (other voices for instance), source separation could be used to
clean the target speech signal from interferences and feed it to a standard
recognizer. This approach to speech enhancement is used by many partici-
pants in the Pascal Chime Challenge and allows achieving recognition rates
that are close to that of human hearing.

Source separation databases

• SISEC3 : held in 2008,2010, 2011. Several tasks proposed, including Pro-
fessionally Produced Music Recordings. Short 10 seconds’ excerpts from
songs are provided as well as original sources as train data. For test data,
other songs were released in full. This data set is particularly challenging
because instruments change entirely from train to test. Moreover, train-
ing samples are very short (10 seconds), so that sophisticated methods are
likely to overfit.

• QUASI4 : released in 2012, is very similar to the Professionally Produced
Music Recordings task of SISEC, but provides more training data.

• Chime challenge5 : held in 2011, it aims at evaluating the performance
of automatic speech recognizers (ASR) in real-world environments. Sen-
tences from the grid corpus are mixed with environmental noise. There
are several hours of training data for environmental noise and clean speech.
In this setting, source separation algorithms were key in providing reliable
estimates of clean speech on test data.

• NOIZEUS dataset6 : this corpus has thirty short English sentences (each
about three seconds long) spoken by three female and three male speakers.

3http://SISEC.wiki.irisa.fr/tiki-index.php
4http://www.tsi.telecom-paristech.fr/aao/en/2012/03/12/quasi/
5spandh.dcs.shef.ac.uk/projects/chime/PCC/introduction.html
6http://www.utdallas.edu/ loizou/speech/noizeus/
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1.2 Time-frequency representations of sound

signals

In this short section we present as much mathematical content as necessary for
the reader to understand their essential properties, in particular the short time
Fourier Transform. A complete presentation of time-frequency representations
can be found in books such as [Kovačevic̀ et al., 2012, Mallat, 2008].

1.2.1 Fourier Transform

Given a time signal x ∈ R
T , the Fourier transform of x is defined as :

x̂k =
T−1∑

t=0

xt exp(−i
2πkt

T
) k = 0 . . . T − 1 . (1.4)

x̂ has Hermitian symmetry around T/2:

∀k, x̂T−k = x̂⋆k k = 0 . . . T − 1 . (1.5)

Hermitian symmetry compensates the fact that x̂ lives in C
T which has twice as

many dimensions as RT .
Coefficient k of the Fourier transform describes the contribution of a sinusoid

at frequency fs ∗ k/T , from 0Hz to the Shannon-Nyquist rate fs/2Hz. In sound
signals, coefficient k = 0 is always zero, and Fourier coefficients decay fast with k,
provided there are no discontinuities in the signal (which happens at notes onset
and offset in music signals, at the beginning and end of utterances in speech, and
so on).

The Fourier transform is invertible and conserves energy, i.e.,

∀x, ‖x‖2 = ‖x̂‖2 (1.6)

so the contribution of all sinusoids is sufficient to describe the whole signal.
Note that a circular translation of x does not change the modulus of its

Fourier coefficients : thus if we keep only magnitude coefficients |x̂| we obtain a
translation invariant representation of x.

It is particularly relevant for sound signals at time scales of the order of
a few tens of milliseconds, who typically have few nonzero coefficients in the
Fourier domain, but are very dense in the time domain. This sparsity property
is exploited in lossy compression schemes such as AAC.

On the other hand, at larger time scales, localized structures such as sequences
of vowels in speech or of notes in music cannot be described by the Fourier
transform, while they are easily discriminable in the time domain. Trading off
time localization versus frequency localization is at the heart of time-frequency
representations of signal, as we shall now see.
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Figure 1.1: Time vs frequency representation of sounds. The magnitude of
Fourier coefficients is displayed on the right plot.

1.2.2 Short time Fourier transform

Time-frequency representations are a compromise between time and frequency
localized properties of sound signals. In this thesis, we use a well-known time-
frequency representation, called the short time Fourier Transform (STFT).

The STFT is computed in two steps : first the signal is cut into smaller pieces
and multiplied by a smoothing window. The Fourier transform of each x(n) is
then computed and those are stacked column-by-column into X ∈ R

F×N . These
operations may be summed up in the following formula :

S(x)f,n =
F−1∑

t=0

wtxnL+t exp(−i
2πft

F
) . (1.7)

where w ∈ R
F is a smoothing window of size F , L is a shift parameter (also

called hop size), or equivalently H = F − L is the overlap parameter.
Thus each column of X gives a complete description of the frequency content

of x locally in an interval of the form [nL, nL+ F ].
The STFT operator S has several important properties :

• it is linear, i.e. : ∀x, y ∈ R
T , ∀λ, µ ∈ R,S(λx+ µy) = λSx+ µSy.

• Suppose that

∀t,
∞∑

n=−∞

w2
t−nL = 1 . (1.8)

where wt = 0 if t < 0 or t ≥ T , by convention. Then, the following
reconstruction formula holds :

xt =
1

F

N−1∑

n=0

F−1∑

f=0

(Sx)fnwt−nL exp(i
2πft

F
) . (1.9)
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Figure 1.2: Illustration of the short time Fourier Transform.

More concisely, let S⊤ be the conjugate transpose of S. We then have
S⊤S = FId, where Id ∈ R

T×T is the identity matrix. A generalization of
condition 1.8 exists if the analysis window in 1.7 and the synthesis window
in 1.9 are not equal. In the rest of this thesis, S† will stand for the inverse
short time Fourier transform. Note that the term inverse is not meant in a
mathematical sense, we will come back to this point later.

Remark 1. In this thesis, we use sinebell windows for which 1.8 holds as long
as L ≤ F

2
:

wt =







sin(π
2
t−1/2
H

) if 0 ≤ t ≤ H − 1
1 if H ≤ t ≤ F −H − 1

sin(π
2
F−1−t−1/2

H
) if F −H ≤ t ≤ F − 1

(1.10)

Once the STFT is computed, phase coefficients are discarded and either the
magnitude coefficients |Xfn| or the squared power |Xfn|

2 is kept. As noticed
in the last Section, the magnitude of the Fourier transform |x̂| is invariant by
circular translation. As for the magnitude spectrogram, only translations by
a multiple of the shift parameter preserve it strictly. For smaller shifts, the
discrepancy between the magnitude spectrogram of the shifted signal and that of
the original is small if the signal is stationary inside each analysis window : it is
close to 0 where the signal is sinusoidal, and the largest discrepancies are found
at transients.
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H H

F
Figure 1.3: The sinebell window fulfills 1.8 and allows up to 50% overlap.

On the other hand, enforcing translation invariance in linear models is so
costly in terms of computational resources that, on the whole, the magnitude
spectrogram is widely accepted as a convenient tool to provide approximate trans-
lation invariance at minimal cost in terms of accuracy.

1.2.3 Recovery of source estimates via time-frequency
masking

Given estimates of the source power spectrograms V̂ (g), a naive reconstruction
procedure would consist in keeping the same phase as the input mixture for each
source

Ŝ
(g)
fn =

√

V̂
(g)
fn exp(iφfn) . (1.11)

where φfn is the phase of spectrogram X (modulo [0, 2π]). However, source spec-
trograms estimates are often noisy due to over-simplifying assumptions, subopti-
mal solutions, etc. Using the reconstruction formula 1.11 would imply in partic-
ular that source estimates do not add to the observed spectrogram

∑

g Ŝ
(g)
fn 6= X.

Instead, it is preferable to compute source estimates by filtering the input :

S
(g)
fn =M

(g)
fnX where M

(g)
fn =

V̂
(g)
fn

∑

g V̂
(g)
fn

. (1.12)

We will show in Section 2.3.2 that if a Gaussian model is assumed for the
source spectrograms S(g), then this formula corresponds to computing Minimum
Mean Square Estimates of the sources. These particular coefficients M

(g)
fn will

be referred to as Wiener masking coefficients, or oracle coefficients : indeed, for
each time frame n and each source g,M

(g)
fn may be interpreted as the f -th Fourier

coefficient of a linear filter. Linear filters given determined by Formula 1.12 were
derived by Wiener to estimate clean signals corrupted by Gaussian white noise.

Other probabilistic models imply different recovery formulae, see [Benaroya
and Bimbot, 2003] for a discussion.

Ideal binary masks also work surprisingly well :

M
(g)
fn =

{

1 if V
(g)
fn > maxg′ 6=g V

(g′)
fn

0 otherwise
(1.13)
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1.3 Models for audio source separation

Once a time-frequency representation has been computed, latent variable models
are used to estimate the contribution of putative sources to the observed mixed
signal. In this thesis we assume that the number of sources is known as well as
the source types (voice, instrument, environmental noise), although the source
signals are not. Latent variable models capture typical sounds emitted by each
source in a compact model called a dictionary. Given a mixed signal, the most
plausible combination of dictionary atoms of each source are searched for, and
used to estimate source spectrograms.

The first latent variable models for single-channel source separation where
based on independent component analysis [Casey and Wetsner, 2000, Jang et al.,
2003] (ICA). Note however that those works differ from classical approaches of
ICA (see [Cardoso, 1998, Comon, 1994, Hyvärinen, 1999]), which require more
channels than sources. In [Casey and Wetsner, 2000], each frequency in the
STFT operator is considered as a channel. In this case, ICA can be viewed as
an instance of a matrix factorization problem, sharing similarities with NMF
but requiring different assumptions on the source signals. In [Jang et al., 2003],
a single-channel recording is broken into a collection of 25 milliseconds’ long
segments, without aplication of the Fourier transform. Those are passed as input
to an ICA algorithm that enforces a translation-invariant representation of the
signals.

At the same time, mixture models where proposed by [Roweis, 2001] to model
the nonstationarity of source signals. While ICA may be seen as a matrix factor-
ization technique similar in spirit to PCA, and is widely used for multichannel
source separation, it relies on the assumption that source spectrograms are inde-
pendent. In many audio signals such as music signals, this assumption is incor-
rect, since several instruments may play notes which are very similar at similar
times. NMF was then introduced as a natural way to circumvent this problem
while keeping the idea of a low-rank approximation of the observed spectro-
gram. It was first presented as a tool for polyphonic transcription [Smaragdis
and Brown, 2003], and was intensively studied in the following years.

In this Section, we will show how NMF may be seen as an extension of mixture
models and outline the main challenges in learning appropriate models for source
separation. In early contributions, one model was trained for each source in
isolation and then models were combined at test time to infer the state of each
source. These models proved successful in controlled experimental conditions, but
in real-world source separation benchmarks, learning models directly on mixed
data became primordial as training data is scarce and sometimes missing.

We begin this section by presenting mixture models with a special emphasis
on the Gaussian (scaled) mixture model (GSMM) proposed by [Benaroya and
Bimbot, 2003, Benaroya et al., 2006] for audio source separation and an appli-
cation of hidden Markov models (HMM) proposed by [Roweis, 2001]. We then
show that nonnegative matrix factorization may be seen as a relaxation of GSMM
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where the sparsity of each source is no longer fixed to one.

(a) GMM (b) GSMM

(c) NMF

Figure 1.4: Data points generated from each model with the same basis elements.

1.3.1 Mixture models : hard sparsity constraints

1.3.1.1 Inference

Latent variables H(g) ∈ {0, 1}Kg×N represent the state of each source at a given
time bin. A global matrix H = ((H(1))⊤, . . . , (H(G))⊤)⊤ is created by concate-
nating H(g) row by row.

To each source is associated a dictionary of template spectra W (g) ∈ R
F×Kg

+ .
Each column of W (g) is interpreted as a typical spectrum observed in source
g. Since the class of sources encountered in this thesis are quite general (voice,
guitar, piano, etc.), it is reasonable to assume that each source emits several
typical spectra, the collection of which corresponds to W (g).

These dictionaries are concatenated column by column to yield

W = (W (1), . . . ,W (g)) ∈ R
F×K
+ (1.14)

where K =
∑

gKg. Throughout this thesis we will assume that all Kg are equal
to some constant K without loss of generality.
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Figure 1.5: Graphical representation of the mixing process in a mixture model :
the observed output is modelled as a combination of one and only one atom per
source

Each column of the spectrogram is then modelled as a linear combination of
columns of W :

V̂fn =
G∑

g=1

K∑

k=1

W
(g)
fk H

(g)
kn =

K∑

k=1

WfkHkn . (1.15)

One and only one column of each W (g) contributes to the output. Assuming
an i.i.d. generative model of the output , maximum-likelihood inference of H
reads :

min −
∑

fn log p(Vfn|V̂fn) .

subject to ‖H(g)
·n ‖0 = 1

H ∈ {0, 1}K×N

(1.16)

Example 1. If V̂fn ∼ N (
∑G

g=1W
(g)

fz
(g)
n

, σ2), then − log p(Vfn|V̂fn) = 1
2σ2‖Vfn −

V̂fn‖
2.

Example 2. If V̂fn ∼ Exp(
∑G

g=1W
(g)

fz
(g)
n

), then − log p(Vfn|V̂fn) =
Vvn

V̂fn
+ log V̂fn.

This model was used by Benaroya and Bimbot [2003] in the context of audio
source separation, and the connexion with exponential models and multiplicative
noise was observed in [Févotte et al., 2009].

Prior knowledge Additional knowledge about the latent variables may be
used by assuming a prior distribution of the latent variables p(H). In this case,
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since they are binary variables, if we assume that sources are independent and

i.i.d., p(H) =
∏

n

∏

g

∏

k(p
(g)
k )H

(g)
kn .

Maximum-likelihood7 estimates of H are then computed by solving :

min − log p(V·n|V̂fn)− log p(H·n) .

subject to ‖H(g)
·n ‖0 = 1

H ∈ {0, 1}K×N

(1.17)

With or without prior knowledge, solving for H is a combinatorial problem,
because it involves evaluating the objective function for all G-uplets of states
(k1, . . . , kG) and keeping that with lowest values. The cost is of order O(FKGN)
in time and O(FNGK) in space.

Scaling factors As noticed in [Benaroya et al., 2006], the number of compo-
nents be may reduced by introducing scaling factors so that still only one compo-
nent Hkn is active at a time, but it is allowed to take values in R+ to compensate
for amplitude modulations in the spectrogram (typically a 5 seconds’ second pi-
ano notes with very slow damping would require a linear number of components
to quantize the variations of intensity whereas only one or two components suffice
if scaling is allowed). We sketch this idea in Figure 1.6, where a scaled mixture
model captures the whole data set with two components (dashed black lines),
whereas mixture models need six components (red circles).

Figure 1.6: Adding a scaling factor allows reducing the number of components
dramatically.

7Maximum A Posteriori when prior knowledge is added.
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This amounts to dropping the binary assumption so the inference problem
becomes

min − log p(V·n|V̂fn)− log p(H·n) .

subject to ‖H(g)
·n ‖0 = 1
H ≥ 0 .

(1.18)

Solving for H in 1.18 is still of order O(FQGN), but with a much higher
multiplicative constant since for each G-uplet of states (k1, . . . , kG), a nonnegative
matrix division problem must be solved. There is a tradeoff to make between the
decrease in the number of components Q and that multiplicative constant.

1.3.1.2 Learning: trained models or blind learning ?

The key to successful inference is that columns of W (g) should provide good
estimates of spectrograms generated by source g and bad estimates of other
sources. As proposed in [Benaroya and Bimbot, 2003, Roweis, 2001], the first
part of this statement is achieved by optimizing the likelihood of isolated sam-
ples from source g, with respect to W (g). However, when benchmarks were in-
troduced (SASSEC,SISEC, Chime, RWC), participants submitted mostly source
separation systems where models where learnt partially or completely on mixed
data, because training samples are sometimes missing or inadequate to represent
mixed signals (variability in between instrument classes, in between singers for
instance, usage of linear/nonlinear effects on instruments in some mixed signals,
etc.). Blind learning of W is a non-convex problem involving continuous variables
W and discrete variables H.

min − log p(V·n|V̂fn)− log p(H·n) ,

subject to ‖H(g)
·n ‖0 = 1 ,

W ≥ 0, H ≥ 0 .

(1.19)

It is solved by an EM algorithm, which has the attractive property of being
a descent algorithm [Dempster et al., 1977]. However, while for many choices of
p(H) and p(V |V̂ ), inference in H is a convex problem, it is no longer the case
when (W,H) are estimated jointly. This entails that there are many stationary
points of the problem, and that the solution found by the EM algorithm will
highly depend on the chosen initial point. In practice, several initial points are
tried and that with the lowest objective cost function is kept.

1.3.1.3 Extension to hidden Markov models

In the early days of speech recognition, dynamic time warping (DTW) emerged
as an essential tool for accurate recognition of phonemes [Sakoe and Chiba, 1978].
It was then superseded by hidden Markov models (HMM). Training HMMs for
single-channel source separation was proposed in [Roweis, 2001]. In principle,
a (factorial) HMM consists in introducing a probabilistic model for H with the
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following minus log-likelihood :

PHMM(H) = −
∑

g

K∑

k=1

H
(g)
k1 log p

(g)
k −

N−1∑

n=1

∑

g

∑

k,k′

H
(g)
kn logP

(g)
kk′H

(g)
k′n+1 . (1.20)

where

pk ≥ 0 ,
∑

k

p
(g)
k = 1 , P

(g)
kk′ ≥ 0

∑

k′

Pkk′ = 1 . (1.21)

This term replaces static prior information − log p(H) in 1.17. The stochastic

matrix P (g) describes the most likely pairwise sequences of states (H
(g)
kn , H

(g)
kn+1).

p(g), the a priori distribution of initial states, should be adapted to provide the
best fit to data. Figure 1.7 provides a graphical representation of the condi-
tional independencies induced by this optimization problem. Inference in hidden
Markov models is conducted with a forward-backward algorithm of complexity
O(FK2GN), where in each pass, the objective function value must be evaluated
for every combination of pairwise states ((k1n, k1n+1), . . . , (kGn, kGn+1)).

Additional scaling factors may be added without changing the order of com-
plexity, as shown in [Ozerov et al., 2009], at the cost however of a much larger
multiplicative constant (typically 10 to 100 depending on the number of sources
considered and the correlation of the design matrix W ).

z1(1)

z2(1)

z1(2)

z2(2)

z1(n)

z2(n)

y(1) y(2) y(n)

...

...

...

Figure 1.7: Graphical representation of a factorial hidden Markov model.

Note that Markov models of higher order can be introduced to tie together
sequences of three, four, states or more, instead of two. However the complexity
grows exponentially as O(FK(p+1)GN), where p is the order of the Markov model.

Alternative mixture models The ℓ2 norm is a poor measure of distortion
for audio signals, because the human ear is sensitive to variations in log scale
(in dB). Multiplying the amplitude of sound by 10 leads to an increase of 10dB
whereas the ℓ2 norm is sensitive to linear variations. The Itakura-Saito divergence
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is introduced in [Févotte et al., 2009] to measure distortion as a function of V

V̂

rather than V − V̂ . We will discuss this choice in more details in Chapter 2.

Roweis [2001] take a different point of view and use the ℓ2 norm as a measure
of distortion while transforming the input data into log(V ).

log V = log
∑

g

V (g) = log
∑

g

exp(log V (g)) . (1.22)

Since the function log(exp(x1) + exp(x2)) is roughly equivalent to max(x1, x2),
[Roweis, 2001] propose replacing + by max in the mixture model, i.e.,

log V̂fn = max
g

log(
∑

k∈g

W
(g)
fk H

(g)
kn ) . (1.23)

1.3.2 Nonnegative matrix factorization with sparsity
constraints

In this Section, we introduce nonnegative matrix factorization. Similarly to the
case of mixture models, there are several settings : either one learns a dictionary
W (g) on training data for each source, and then uses the concatenated dictionary
W to infer decomposition coefficients H on mixed data, or one learns blindly
(W,H) directly on mixed data.

The key to successful inference is that W (g) should be good at reconstructing
source g (interpretability) and bad at reconstructing the others (incoherence).
We argue in Section 1.3.2.1 that sparsity penalties are needed to learn incoherent
dictionaries.

In the case of blind learning, sparsity in itself may not be sufficient to learn
interpretable dictionaries and additional prior knowledge is necessary. The eas-
iest case is when a learnt dictionary is provided, and must be re-calibrated on
mixed data, rather than be learnt from scratch (Section 1.3.2.2). Taking into ac-
count temporal dependencies is important when dealing with speech signals. We
present in Section 1.3.2.3 counterparts of the Hidden Markov Model that have
been proposed for NMF. Another way of enforcing prior knowledge is through
re-parameterization as we will see in Section 1.3.2.4.

1.3.2.1 Trained learning with sparsity

Placing a hard constraint on the number of nonzero coefficients in H entails a
complexity of order O(FKGN) . By relaxing this constraint, instead of fitting
a mixture of K one-dimensional half-lines, nonnegative matrix factorization con-
sists in fitting a K dimensional cone to the data :

min
∑

fn− log p(Vfn|V̂fn) .
subject to W ≥ 0, H ≥ 0 .

(1.24)
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where V̂fn =
∑

kWfkHkn. When only H is optimized for fixed W , this problem
is referred to as nonnegative regression or nonnegative matrix division (NMD).
We will arbitrarily use the latter name.

With the same number of dictionary elements, a much larger portion of the
space is spanned in NMF than in mixture models. However, this advantage comes
at a cost. Consider the cloud of points in Figure 1.8b, for instance. Two pairs of
dictionary elements (W·1,W·2) and (W ′

·1,W·2) fit the data equally well. However,
the cone generated byW ′ is too big so learningW ′ on training data might fit well
but at test time, it might contain data points from other sources : they would
be mistakenly represented as points from source 2.

Selecting model W rather than W ′ is hard problem. However, in this simple
case we can see that, given a data point, the latent coefficients satisfy h1 + h2 <
h′1 + h′2.

(a) NMF (b) Need for sparsity constraint

Thus, a reasonable model selection procedure would consist in learning W for
good reconstruction while enforcing an upper-bound on the value of

∑

kHkn for
every n.

min − log p(V·n|V̂fn) .
subject to

∑

kHkn ≤ C
H ≥ 0 .

(1.25)

or equivalently learnW to minimize the reconstruction cost penalized by the sum
of coefficients :

min − log p(V·n|V̂fn) + λ
∑

k,nHkn

subject to H ≥ 0 .
(1.26)

This is a simple illustration of the benefits of sparsity in the particular case of
NMF. In the wider scope of dictionary learning (with or without nonnegativity
constraints), there are other ways of learning source specific dictionaries, see e.g.,
[Ramirez et al., 2010].
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1.3.2.2 Partially blind learning or model calibration

Blind learning may be too hard in the sense that many local minima exist that
do not yield satisfactory source estimates. However, given rough estimates of
(W̃ (g), H̃(g)) from prior training data, one may enforce the additional constraints
that estimates computed on new mixed data should be close to (W̃ , H̃). This type
of solution can be straightforwardly addressed in a penalized likelihood setting,
where prior distributions p(W |W̃ ) and p(H|H̃) are chosen to be concentrated
around W̃ and H̃. For instance, when V is modelled as a multinomial, a Dirichlet
prior on W with scale parameter W̃ was used in [Smaragdis, 2009]. If V is
modelled as gamma random variable, an inverse gamma prior with scale W̃ could
also be used.

min − log p(V·n|V̂fn)− log p(W |W̃ ) . (1.27)

Additionally, if the generative model is such that prior distributions p(W |W̃ )
and p(H|H̃) are conjugate with the probability distribution of the data given
W,H, then inference in H and W can be addressed straightforwardly.

Following this rule, [Smaragdis, 2009] propose a user guided source separation
system where a rough estimate of the voice is provided by the user. This side
signal is used to train a model which is then re-calibrated on test data.

1.3.2.3 Additional prior knowledge for blind learning : taking into
account temporal dependencies and basis priors

One drawback of NMF is that Markov models can no longer be used to model
temporal dependencies. A “brute force” solution consists in learning small se-
quences of atoms coupled together by a unique gain. Instead of one dictionary
W , one then learns L dictionaries →lW such that the spectrogram model is :

V̂fn =
∑

k

L−1∑

l=0

→lWfkHkn−l , (1.28)

where we define by convention Hkn = 0 if n ≤ 0. This approach, called convo-
lutive NMF, is used in speech separation and speech recognition since it allows
learning time-varying spectra which correspond to phonemes.

Another line of work consists in enforcing smoothness in the decomposition
coefficients, such as in [Virtanen et al., 2008, Cemgil et al., 2007, Févotte and
Cemgil, 2009, Févotte, 2011a]. For instance, [Févotte, 2011a] propose penalty
terms of the form :

P (H) =
N∑

n=1

dIS(Hkn−1, Hkn) . (1.29)

where divergence term dIS(x, y) ≥ 0 is such that dIS(x, y) = 0 if and only if
x = y.
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Of course, since W and H play a symmetric role, enforcing smoothness in the
spectral shape of atoms and/or in decomposition coefficients is also possible, see
[Dikmen and Cemgil, 2009].

1.3.2.4 Additional prior knowledge for blind learning : model
re-parameterization

When the model is learnt blindly on mixed signals, sparsity in itself is not suf-
ficient to yield interpretable dictionaries. Indeed, dictionary learning algorithms
are prone to local minima, so either they should be provided with a good enough
initialization near the global optimum, or additional constraints must be added
to prune irrelevant local minima.

Source/filter models Among several contributions, we discuss here the case
of source/filter models, proposed by [Durrieu et al., 2010]. Voice signals can be
well approximated at the scale of a few hundreds of milliseconds as a periodic sig-
nal, corresponding to the glottal flow, convolved by a filter representing the vocal
tract, whose impulse response is short. In the frequency domain, this convolution
turns into multiplication of a sparse spectrum with a smooth spectrum. Allow-
ing several periodicity patterns (several pitches) and several vocal tract transfer
functions leads to the following representation :

V
(voice)
fn ≃ (W (source)H(source))fn(W

(filter)H(filter))fn . (1.30)

where W (source) and W (filter) have respectively K1 and K2 columns. W (source) is
given by the KLGLOTT model (see [Durrieu, 2010] for details), while W (filter) is
estimated on the training data. Durrieu et al. [2010] consider either inference of

H
(source)
kn with only one atom active at a time, or let all vary.
Note that this model is formally equivalent to estimating a dictionary for the

voice W̃ of K1 ×K2 components with additional constraints on the shape of the
dictionary elements :

W̃f,(k1−1)K2+k2 = W
(source)
fk1

W
(filter)
fk2

∀k1 = 1, . . . , K1 k2 = 1, . . . , K2 . (1.31)

By restricting the space of possible values of the dictionary W̃ , this parame-
terization acts as a form of regularization.

1.3.3 Other latent variable models : Complex Matrix
Factorization

One problem with NMF is that if two sources are active in the same time-
frequency bin, they can never be recovered by NMF, because phase information
has been lost. This illustrated in Figure 1.8 : because of phase differences, the
magnitude of the observed signal at a given time-frequency bin may be smaller
than that of the sources. In this case, even with a perfect fit, NMF would assign
smaller magnitude to each source and the same phase.
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Figure 1.8: How CNMF and NMF differ in estimating individual sources S
(g)
fn

from an observed mixture Xfn.(Figure borrowed from [King and Atlas, 2011])

This is because additivity of the spectra is not a correct hypothesis in source
separation : only additivity of the complex spectrograms holds.

In order to restore this property, [Kameoka et al., 2009] have proposed a new
representation of audio signals called complex matrix factorization (CMF).

X̂fn =
∑

k

WfkHkn exp
iφfkn (1.32)

and propose to fit this representation to the observed complex spectrogram Xfn

using the ℓ2 norm:

min
W≥0,H≥0,φfnk∈[0,2π]

∑

fn

‖Xfn − X̂fn‖
2 (1.33)

Because KFN phase parameters φfnk are introduced, for a given pair (W,H)
there might still be multiple global minima to this problem. Descent algorithms
have been proposed, with convergence of the objective cost function. CMF was
compared to NMF (with squared loss) in recent work [King and Atlas, 2010,
2011], on an automatic speech recognition task, in which a gain of 10% was
observed in word recognition accuracy (in absolute terms).
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As we will see in chapter 2, Itakura-Saito NMF is another model that assumes
only additivity of the complex spectrograms and not of the power spectrograms.
On the other hand, there is no need to introduce phase parameters in Itakura-
Saito NMF, which saves a lot of the computational efforts needed in CMF.

1.3.4 Other approaches : Computational Audio Scene
Analysis

We discuss here alternative approaches to source separation based on ideas from
computational audio scene analysis.

1.3.4.1 Basic complexity issues

Figure 1.9: Example of partial tracking (from [Ellis, 2003])

Early studies in source separation typically involved mixtures of two speakers
[Parsons, 1976, Quatieri and Danisewic, 1990], and relied on sinusoidal modelling.

At each time frame, the g-th source signal is modelled as :

x(g)(t) =

Kg∑

k=1

a
(g)
k cos(ω

(g)
k t+ φ

(g)
k ) , (1.34)

where (ω
(g)
k ) are a set of spectral peaks (also called partials), and for each spectral

peak, a
(g)
k and φ

(g)
k are the associated phase and amplitude parameters. Only the

sum x =
∑

g x
(g) is observed, which makes the problem ill-posed. Indeed, while

estimating the whole set of instantaneous frequencies is a well-studied problem,
deciding which frequency belongs to which speaker is the key issue. Without
further modelling, if there are G sources and each source has K spectral peaks
per each time frame, then there are GKN possible models of the form 1.34 that
yield the same observed signal x.

1.3.4.2 A clustering approach to audio source separation

At the same time as we introduce basic CASA concepts, we will also present
here another point of view on blind source separation, based on the principle of
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clustering. This approach has been taken in [Bach and Jordan, 2004] to deal
with separation of speech signals. We saw earlier in this chapter that source
spectrograms were estimated by masking the spectrogram of the mix. Among
all, binary masks are particularly simple and surprisingly, ideal binary masks
provide excellent source separation results, both subjectively and quantitatively.
Thus, “tagging” together time-frequency bins belonging to the same auditory
object is sufficient to recover good source estimates.

“Fortunately, in audition (as in vision), natural signals exhibit a lot of regu-
larity in the way energy is distributed across the time-frequency plane. Grouping
cues based on these regularities have been studied for many years by psycho-
physicists and are hand built into many CASA systems. Cues are based on the
idea of suspicious coincidences. Upward/downward sweeps are more likely to be
grouped into the same stream. Also, many real world sounds have harmonic
spectra so frequencies which lie exactly on a harmonic “stack” are often percep-
tually grouped together. ”8 Actually, beyond harmonicity multi-pitch detectors
are essential for CASA methods to succeed, as multiple harmonic stacks may be
present if two speakers speak simultaneously or if several instruments play a note
at the same time.

Source separation can thus be formulated as a problem of segmentation in the
time-frequency plane. This problem has been a field of intense study in vision,
with now mature procedures such as graph cuts, and normalized cuts [Shi and
Malik, 2000], which we now present briefly.

For simplicity, time frequency bins will be indexed by i where i− 1 . . . I and
I = FN . Given pairwise similarity measures Mij between time-frequency points
i and j, the similarity matrixM ∈ R

I×I is normalized and its first two eigenvalues
and eigenvectors are computed. Then, forming a I × 2 with these eigenvectors
as columns, we cluster the I rows of this matrix as points in R

2 using K-means.
These clusters define the final partition.

There are two main difficulties with this approach : the first is to build a
relevant affinity matrix, the second is to deal with the size of the matrix which
is huge (I = 106 for a ten seconds’ signal). Given J affinity matrices M1, . . . ,MJ

built each on different cues, [Bach and Jordan, 2004] proposes using combinations
of cues of the form :

M =
K∑

k=1

λkM
αk1
1 × · · · ×M

αkJ

J (1.35)

where products are taken component-wise. Intuitively, if the entries of Mj are
thought of as (soft) boolean variables, then taking products amounts to an
AND operation, while sums amount to an OR operation, so if K is taken large
enough, M can represent any logical procedure to build an affinity measure from
M1, . . . ,MJ . Additionally, the combination may be optimized given training ex-
amples of binary masks computed on mixed signals for which sources are known.

8[Roweis, 2001]
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Harmonic
stacking.

Common
onset.

Frequency
co-modulation.

Figure 1.10: Example of auditory grouping cues in computational auditory scene
analysis. (Figure from [Roweis, 2001])

For fixed affinity matrix M , the complexity of normalized cuts is dominated
by that of computing two principal eigenvectors, which involves matrix-vector
operations of order O(I2) where I is roughly equal to twice the number of samples
of the test signal. A remedy is to compute affinity measures such that points too
far apart in the time-frequency plane always have zero similarity : then the
number of non-zeros per row of M is never more than a fixed amount L and
matrix-vector multiplications O(LI). Following this idea, [Lagrange et al., 2008]
propose to subdivide spectrograms into short segments of a few seconds, cluster
each separately, and then ensure coherence between labels in each segment by
hand. Additionally, they compute affinity matrices only for time-frequency points
located at spectral peaks.

Clustering methods yield promising results for unsupervised audio source
separation, however they cannot yet identify binary masks correctly when two
sources are active in the same time-frequency region (see Fig 1.11).

1.4 Conclusion

We have outlined in this chapter the main building blocks of a source separa-
tion system. At the core of the system lie latent variable models which may be
either optimized on a training set or blindly on mixed signals. While mixture
models were initially proposed for that purpose, nonnegative matrix factorization
penalized (or constrained) by sparsity penalties naturally extend them while pro-
viding more efficient algorithms in O(FGQN) instead of O(FQGN). For trained
models, sparsity is crucial in estimating source-specific dictionaries that correlate
most with their target source and least with potential interfering sources. We
refer to this property as interpretability. [Ramirez et al., 2010], in the context of
classification, propose learning dictionaries that are specific enough for each class
and at the same time share features. In addition to sparsity, the authors propose
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Figure 1.11: (Left) Optimal segmentation for the spectrogram in Figure 1 (right),
where the two speakers are “black” and “grey;” this segmentation is obtained
from the known separated signals. (Right) The blind segmentation obtained by
[Bach and Jordan, 2004] (Figure reproduced from there).

a penalty that promotes incoherent dictionaries and show that the reconstruction
cost may be used as a heuristic for multi-class classification.

In recent benchmarks, re-calibration or even blind learning of models appears
necessary, owing to high intra-class variability. In this, we have emphasized the
need for additional constraints, either in the form of sparsity penalties on the
decomposition coefficients or parameterization of the dictionary.

Intensive research efforts have then been spent on extending sparsity penal-
ties to smoothness penalties. These mimic the ability of factorial scaled hidden
Markov models to take into account temporal dependencies between latent vari-
ables, which are essential in modelling speech and music. Hidden Markov Models
were introduced for NMF in [Mysore et al., 2010] to learn models of speech with
state persistence.

In the wider scope of sparse representations (with or without nonnegative
constraints), efficient algorithms for structured sparsity-inducing penalties have
been recently proposed by [Jenatton et al., 2011c, Mairal et al., 2011] to model
general patterns of dependencies between latent variables. Structured decompo-
sitions tailored to audio applications have also been proposed in [Daudet, 2006]
for the task of coding. Sparse representations yield state-of-the art performance
in audio restoration tasks such as inpainting [Adler et al., 2012]. A complete sur-
vey of the applications of sparse audio representations can be found in [Plumbley
et al., 2010].

Dictionary learning with sparsity is now an established research topic, with
several branching paths : study of the stability of local minima for square dictio-
naries [Gribonval and Schnass, 2010], or overcomplete dictionaries in the presence
of noise[Geng et al., 2011, Jenatton et al., 2011b], applications to image restora-
tion [Mairal et al., 2010]. In the field of audio, dictionary learning and especially
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nonnegative matrix factorization obtain state-of-the art results in polyphonic
transcription. Denoising of audio signals with learnt dictionaries has been the
subject of recent work [Jafari and Plumbley, 2009]. In the context of music/voice
separation, Sprechmann et al. [2012] propose a nonnegative version of robust
principal component analysis to learn a decomposition of the spectrogram into
a low-rank component for the musical accompaniment, and a sparse component
for the vocal part.

As we have seen in Section 1.3.4, there are alternative approaches to dictionary
learning for audio source separation. Among those are contributions coming
from computer vision that have been successfully transposed to audio signals. In
particular, in the context of music/voice separation, Rafii and Pardo [2011] use
a background/foreground segmentation technique.



Chapter 2

Structured NMF with
group-sparsity penalties

In this chapter, we first study algorithms for NMF in more details. We
first outline algorithms for NMF with a general family of loss functions
called beta-divergences and emphasize the importance of multiplicative
updates when using other divergences than the Euclidean loss.
Our main contribution is a group-sparsity penalty which is adapted to
Itakura-Saito NMF. Unlike mixed norms used with the Euclidean loss,
we advocate concave penalty terms. Concavity is important because
it allows keeping a multiplicative updates algorithm. Simple temporal
dependencies may be enforced in the form of a block-sparsity penalty,
which favors contiguous zeroes in the decomposition coefficients. We
also contribute to model selection in matrix factorization problems, by
proposing a criterion to select the number of components and the penalty
parameter. Our criterion is a competitive alternative to cross-validation
and may be used out of the box for as soon as a probabilistic model of
the data is provided.
This work has led to the following publication(s):

A. Lefèvre and F. Bach and C. Févotte, “Itakura-Saito Nonnegative
Matrix Factorization with group sparsity”, in Proceedings of the In-
ternational Conference on Acoustique Speech and Signal Processing
(ICASSP),2011.

A. Lefèvre and F. Bach and C. Févotte, “Factorisation de matrices
structurée en groupes avec la divergence d’Itakura-Saito”, in Pro-
ceedings of 23e colloque GRETSI sur le Traitement du Signal et des
Images, 2011.

Audio demonstrations are available onlinea.

awww.di.ens.fr/ lefevrea/demo-group.html

29



30
CHAPTER 2. STRUCTURED NMF WITH GROUP-SPARSITY

PENALTIES

Nonnegative matrix factorization is an instance of the more general problem
of dictionary learning. This problem has practical applications in neurosciences,
image processing and audio processing, but also in text analysis. The most basic
instance of dictionary learning is Principal Component Analysis: computing the
SVD of an input matrix X = USV ⊤ and extracting the K principal eigenvectors
may be interpreted as cleaning X from noise (under a Gaussian generative model
[Tipping and Bishop, 1999]) and interpreting the K principal eigenvectors as
latent factors. In image processing, dictionary learning has showed state-of-the-
art results in denoising experiments [Mairal, 2011, Aharon et al., 2005]. In the
field of audio signal processing, subspace tracking methods were introduced for
high-resolution tracking of partials in harmonic signals [Badeau et al., 2004].

The analogy between dictionary learning may be extended further than the
Euclidean loss. As observed in [Buntine, 2002], topic modelling may be cast as
multinomial PCA: the term document-document matrix X is factored into WH
whereW is a matrix of latent topics and H describes each document as a mixture
of relevant topics.

Thus, finding factorizations of matrices X ≃ WH is a common trait of many
methods in machine learning. The key difference is the choice of the loss function
used: in topic modelling, the Kullback-Leibler divergence is used to compare
distributions of words. As discussed in Chapter 1, NMF for audio signals was
originally introduced in the context of polyphonic music transcription [Smaragdis
and Brown, 2003]. It is more sensitive than the ℓ2 loss to relative errors in the

frequency counts
Xfn

(WH)fn
. As we will argue in this chapter, the Itakura-Saito

divergence is an interesting measure of distortion for sounds, among others. Using
non-Euclidean measures of distortion implies new optimization problems that are
not always as well-behaved as the ℓ2 norm. We present in Section 2.1 a general
class of losses for NMF which includes classical Euclidean loss, Kullback-Leibler
divergence and Itakura-Saito divergence. Among this family, we have chosen
the Itakura-Saito divergence because it captures the sensitivity observed in the
human auditory system (sensitivity in log scale).

In Section 2.2, we outline the main challenges in optimizing NMF with beta
divergences. Multiplicative updates algorithms are then presented to estimate
NMF on a given set of training data. The algorithm covers the optimization of
both H and W and may be specialized to optimization of either one when the
other is fixed. Thus blind learning and inference ofH for fixedW are covered. We
compare the multiplicative updates algorithm with a standard projected gradient
descent method and discuss the use of expectation-maximization algorithms in
special cases where a probabilistic generative model of the data is available.

In Section 2.3, we provide an in-depth study of multiplicative updates for
Itakura-Saito NMF, with a discussion of convergence properties and an overview
of the complete multiplicative updates algorithm.
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Sparsity inducing penalties were introduced in the last chapter as a way to
learn interpretable dictionaries while relaxing the hard sparsity constraints im-
posed by mixture models. Sparse NMF with the Euclidean loss was proposed
in [Laurberg et al., 2008b],and for the Kullback-Leibler divergence in [Smaragdis
et al., 2007, Virtanen, 2007]. In the case of the Itakura-Saito divergence, a general
framework is proposed in [Févotte et al., 2009] to include probabilistic models
of the dictionary and/or decomposition coefficients : a cascade of gamma prior
distributions mimicking a hidden Markov model is studied, although static priors
could also be chosen.

We propose in Section 2.4 an extension of multiplicative updates to account
for a group-sparsity inducing penalty. This penalty is designed for audio signals
containing intervals where one of the sources is missing. The simplest case is that
of a two instrument track divided in three parts: one part with instrument A, one
part with instrument B, and a third part where both instruments are mixed. This
setting may be generalized to the case of several sources. Provided that for each
source, there is at least one interval where this and only this source, it was shown
in [Laurberg et al., 2008b] that this setting is equivalent to learning a dictionary
on isolated source signals and UN-mixing them when they are mixed. Our group-
sparsity penalty allows identifying segments where sources are missing, learn an
appropriate dictionary each source, and un-mix sources elsewhere.

In Section 2.5, we discuss model selection in NMF. Indeed, choosing the ap-
propriate number of components and additional parameters such as the strength
of the penalty is a hard problem in statistics. In Section 2.5.1, we show that the
generative model in Itakura-Saito NMF may be used to derive goodness-of-fit
statistics that are sensitive to the parameters used in NMF. In Section 2.6, we
validate the user of the Kolmogorov-Smirnov statistics presented in Section 2.5
and the effect the proposed group-sparsity penalty on real music signals.

2.1 The family of NMF problems

Noisy vs exact NMF Given an observed matrix V ∈ R
F×N
+ , nonnegative

matrix factorization (NMF) is the problem of finding W ∈ R
F×K
+ ,H ∈ R

K×N
+

such that

V = WH . (2.1)

Either K is fixed or the smallest possible K is sought for.

For real life signals, the NMF model cannot be expected to be exact, given
its simplistic formulation, and it is unlikely to find anything other than trivial
solutions (e.g., chooseK = F andW = I and H = V , or vice versa withK = N),
so one may instead look for approximate solutions:

min
W≥0,H≥0

∑

fn

d

(

Vfn, (WH)fn

)

. (2.2)
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where d : R+ ×R+ → R+ is an appropriate measure of similarity1. In this thesis
we are interested in noisy NMF problems, although we may use exact NMF cases
for illustration.

2.1.1 The family of beta-divergences

Given an observed matrix V ∈ R
F×N
+ , nonnegative matrix factorization may be

defined for a wide range of divergence measures, as the following optimization
problem:

min
∑

fn d

(

Vfn, (WH)fn

)

.

subject to W ≥ 0, H ≥ 0 .
(2.3)

and the optimization is over W ∈ R
F×K
+ and H ∈ R

K×N
+ . When W is fixed and

only H is optimized we refer to Eq. (2.3) as nonnegative matrix division (NMD).
Three choices of divergences are frequently used:

d(x, y) =
1

2
(x− y)2 the Euclidean (or ℓ2) norm

d(x, y) =x log
x

y
+ y − x the Kullback-Leibler (KL) divergence

d(x, y) =
x

y
− log

x

y
− 1 the Itakura-Saito divergence

In any case, divergence d must be chosen such that: ∀(x, y), d(x, y) ≥ 0 and
d(x, y) = 0 ⇒ x = y. These three commonly used divergences are part of the
larger family of β-divergences, defined by:

dβ(x, y) =







1
β(β−1)

(
xβ + (β − 1)yβ − βxyβ−1

)
if β ∈ R \ {0, 1} ,

x log x
y
+ y − x if β = 1 ,

x
y
− log x

y
− 1 if β = 0 .

(2.4)

Note that dβ(x, y) is continuous in β at 0 and 1, so that by changing β we
can move continuously from the Euclidean norm (β = 2) to the Itakura-Saito
divergence.

The essential features of β-divergences are discussed thoroughly in [Févotte
and Idier, 2011]. dβ(x, y) is homogeneous of degree β: dβ(λx, λy) = λβdβ(x, y).
It implies that factorizations obtained with β > 0 (such as with the Euclidean
distance or the KL divergence) will rely more heavily on the largest data values
and less precision is to be expected in the estimation of the low-power compo-
nents, and conversely factorizations obtained with β < 0 will rely more heav-
ily on smallest data values. The IS divergence (β = 0) is scale-invariant, i.e.,
dIS(λx, λy) = dIS(x, y), and is the only one in the family of β-divergences to
possess this property.

1Note that similarity measures between matrices might also be used, however none will be
encountered in this thesis
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2.1.2 Identification problems in NMF

For every pair (W,H), the cost function value is unchanged under any of the
following transformations:

• Permutation: choose a permutation matrix P and setW ′ = WP , H ′ = PH.

• Scaling: choose a diagonal matrix Λ = diag(λ) where λ ∈ (R⋆
+)

K and set
W ′ = WΛ, H ′ = ΛH.

• Dilation: see below.

Scaling indeterminacy is often solved by constraining the columns ofW to sum to
1. In practice, these indeterminacies must be taken into account when comparing
two pairs (W,H) and (W ′, H ′). They can be resolved by constraining the columns
of W to sum to 1, and sorting them in lexicographic order (sorting the first row,
then for all elements equal, sorting based on the second row, etc.).

Dilations of a cone. Scaling and permutations are not the only transforma-
tions that leave the product invariant. For any matrixW the cone spanned byW
is defined as C = {Wh, h ∈ R

K
+}. C contains all nonnegative linear combinations

of columns of W . The set V = {V·1, . . . , V·n} is entirely contained in C if and only
if there exists an exact NMF of V . Figure 2.1 shows an example in 2 dimensions
of two cones C1 and C2 spanned by two matrices W1 and W2 that contain V . A
numerical example can be found in [Hennequin, 2010].

Figure 2.1: Two cones C1 and C2 containing the whole set of data points V .

Several lines of research have been taken to tackle this problem: in [Ding
et al., 2010], the columns of W are constrained to be linear combinations of data
points: we can see on Figure 2.1 that the exact NMF is then unique and C is
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exactly the cone spanned by the data points. In [Zhou et al., 2011], the authors
add a constraint of the form log | det(W )| ≤ C for square matrices W : in the
two-dimensional case this amounts to enforce small angles between columns of
W .

2.1.3 Determining which divergence to choose

Factorizations with small positive values of β are relevant to decomposition of
audio spectra. Indeed those typically exhibit exponential power decrease along
frequency f , and it is important to keep track of low-power amplitudes because
the ear is sensitive to differences in log amplitudes (measured in dB).

Choosing β for the decomposition of spectrograms is a delicate question.
There are at least three aspects to this question : for some values of β, the NMF
problem corresponds to a probabilistic model, which may be useful to obtain a
certain number of mathematical properties such as consistency of the estimates
of (W,H). In Subsection 2.3.2 for instance, this probabilistic framework helps
design optimal estimates of the source signals which are otherwise difficult to
justify.

The secon aspect aspect is that β might depend on the task to which NMF
is aimed : for instance, the value β = 0.5 is advocated by [FitzGerald et al.,
2009, Dessein et al., 2010] and has been shown to give optimal results in music
transcription based on NMF of the magnitude spectrogram by [Vincent et al.,
2010a].

In the case of audio source separation, a case study is proposed in [Févotte
et al., 2009]. The authors present the results of NMF on a very specific piano
recording : four notes are present (Db

4, F4, A
b
4, and C5 in increasing pitch order),

and the recording consists of all pairs of notes played simultaneously, plus a
combination of all four notes at the beginning of the recording 2. Figure 2.2
reproduces these results for the three most commonly used divergences in audio
source separation : the Euclidean norm, the Kullback-Leibler divergence and the
Itakura-Saito divergence. Components may be interpreted either as transients or
pitched spectras, upon listening to the reconstructed waveforms. [Févotte et al.,
2009] then perform pitch estimation to assign each component to a note. We
performed the assignment again by listening to the reconstructed waveforms. In
Figure 2.2, components 1 to 4 correspond for all three divergences to Db

4, F4, A
b
4,

and C5 respectively, and component 5 to 7 to transients. In the case of Euclidean
NMF and Kullback-Leibler NMF, the remaining transients contain interferences
pitched components. In Euclidean NMF, components 1 and 4 contain interference
from each other. In IS-NMF. component 5 corresponds to a hammer hit and
components 6-7 to broadband noise.

Although listening tests are strikingly in favour of IS-NMF, a comprehensive
comparison of all three divergences is yet to be found for more complex tasks.
An interesting benchmark would be matrix completion or annotated NMF (which

2audio samples available at http://perso.telecom-paristech.fr/~fevotte/Samples/is-nmf/
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Figure 2.2: Comparison of NMF decompositions using either the IS divergence
or the ℓ2 norm. Columns of W are displayed on the left in deciBels/Hertz scale.
rows of H are displayed on the right in deciBels/time scale.
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will be presented in 4), evaluated on a standard source separation database such
as SiSEC or QUASI.

Finally, the third aspect to take into account when deciding which divergence
to choose, but certainly not the least, is optimization issues. For that matter, let
us go into more details in the next subsection.

2.2 Optimization algorithms for the

β-divergences

In this Section we assume that the reader is familiar with basic optimization
techniques such as convex functions, and projected gradient descent techniques
(see Appendix A for the particular version we use here, or e.g., [Bertsekas, 1999]
for a complete presentation). We will discuss algorithms for the problem of
nonnegative matrix division (NMD). Note that all algorithms for nonnegative
matrix factorization presented in this section rely on alternate optimization of
W and H in 2.3. Thus, once an algorithm is proposed for NMD, an algorithm
for NMF is deduced.

Algorithms for Euclidean NMD/NMF have been extensively studied, and sev-
eral competitive alternatives have been proposed : the standard projected gra-
dient descent with guaranteed convergence rates[Lin, 2007a], multiplicative up-
dates, the easiest to implement but not the most efficient [Daube-Witherspoon
and Muehllehner, 1986], active set methods which are particularly useful when
K is small [Kim and Park, 2008], and finally block-coordinate descent methods
which seem to be the most efficient method in many datasets [Gillis and Glineur,
2012, Mairal et al., 2010] (block-coordinate descent for NMF is also referred to
as HALS, for complete bibliographic references see [Gillis and Glineur, 2012]).

A crucial point in NMF with β-divergences is the difficulty of the optimization
problem : indeed, as soon as β < 1, optimizing H for fixed W is already a
nonconvex problem. Moreover, as soon as β < 2 (recall that Euclidean NMF
corresponds to β = 2), second order derivatives of the problem are unbounded.
Consequently, NMF with β-divergences have received a very special treatment,
which is the subject of debate in the optimization community : namely the use of
multiplicative updates, the efficiency of which is difficult to analyze, in contrast
with gradient descent and related methods which have been extensively studied
for a long time, but are difficult to apply in NMF.

We give here theoretical as well as practical insights into this debate.

2.2.1 Non-convexity of NMD with beta-divergences

In this Section, we show that NMD is not convex even though W is fixed, for
certain values of β.
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Let us first consider first-order derivatives of the objective function :

min
W≥0,H≥0

∑

fn

dβ(Vfn, (WH)fn)

︸ ︷︷ ︸

G(W,H)

. (2.5)

∂

∂Wfk

G(W,H) =
∑

n

Hkn(WH)β−2
fn ((WH)fn − Vfn) , (2.6)

∂

∂Hkn

G(W,H) =
∑

f

Wfk(WH)β−2
fn ((WH)fn − Vfn) , (2.7)

For the sake of this discussion let us also give second order derivatives with
respect to W , for fixed H. Notice that the objective function is separable in f
so that ∂2

∂WfkWf ′k′
= 0 if f 6= f ′.

The second order derivative of dβ with respect to y is :

∂2

∂y2
dβ(x, y) =

{
yβ−3 ((β − 1)y − (β − 2)x) if β 6= 2

1 if β = 2
(2.8)

Therefore, second order derivatives of G are equal to :

∑

n

HknHk′n
∂2

∂y2
dβ(Vfn, (WH)fn) (2.9)

or, in expanded form :

∂2

∂WfkWfk′
G(W,H) =

{ ∑

nHknHk′n(WH)β−3
fn ((β − 1)(WH)fn − (β − 2)Vfn) if β 6= 2
∑

nHknHk′n if β = 2
(2.10)

As a matter of fact, the objective function is only convex with respect to W
(or H) if β ≥ 1. Otherwise, g is convex in some places and concave in others.
This implies that, for β < 1, even the problem of inferring H with W fixed
(Nonnegative Matrix Division) is non-convex ! Moreover, as soon as β < 2,
second-order derivatives are unbounded near (WH)fn = 0.

2.2.2 Majorization-minimization algorithms and
multiplicative updates

Although multiplicative updates algorithms for NMF were originally proposed
by [Lee and Seung, 1999], similar updates in the case where the dictionary is
fixed may be found in [Richardson, 1972, Lucy, 1974] in the case of the KL
divergence. In [Lee and Seung, 2001], a justification of multiplicative update
algorithms is given based on majorization-minimization algorithms. We outline
in this section the essential properties of majorization-minimization algorithms.
Based on empirical comparison, we then show that, while projected gradient
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descent is preferable to optimize the Euclidean loss, it fails for other values of β
such as the Itakura-Saito divergence (β = 0).

A derivation of multiplicative updates for the Itakura-Saito divergence will
be presented later in Section 2.3.4.

Theorem 1. Let g(h, h) satisfy the following properties :

• ∀(h, h), g(h) ≤ g(h, h).

• ∀h, g(h, h) = g(h)⇒ h = h.

g(h, h) is said to be an auxiliary function of g. Then, any sequence (h(t))t≥0

defined in R
K
+ , satisfying

∀t, g(h(t), h(t−1)) ≤ g(h(t−1), h(t−1)) (2.11)

also satisfies

∀t, g(h(t)) ≤ g(h(t−1)) . (2.12)

In particular, if h(t) = argminh g(h, h
(t−1)), we obtain a majorization-minimization

algorithm. The Expectation-Maximization is an example of majorization-minimization
algorithm that efficiently solve otherwise intractable maximum-likelihood opti-
mization problems.

Auxiliary functions for the Euclidean loss and the Kullback-Leibler divergence
were proposed in [Lee and Seung, 2001]. An extension to the whole family of beta
divergences may be found in [Févotte and Idier, 2011].

An experimental comparison In the following experiment we compare pro-
jected gradient descent and multiplicative updates when W is fixed and N = 1
(inference in H only). We construct W ∈ R

F×K
+ with F = 257 and K = 12. The

columns of W correspond to the twelve semitones of the second octave of a piano
from the Iowa database of recorded instruments3. A true H0 ∈ R

K×1
+ is chosen

at random, and V is drawn at random according to V ∼ Exp(Wh0).

For projected gradient descent, we use a diminishing step size µt =
µ
t
where

µ is tuned at the first iteration to yield descent of the cost function.

As we can see on Figure 2.3, in the case of the ℓ2 norm (β = 2), the time
taken by gradient descent to reach convergence is order of magnitudes shorter
than that of multiplicative updates. On the other hand, when β = 0 the situation
is reversed, and gradient descent is stuck at high function values compared to
multiplicative updates.

The reason for this is that while the ℓ2 norm has bounded second-order deriva-
tives, the Itakura-Saito divergence is unbounded near zero.

3http://theremin.music.uiowa.edu/MIS.html
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Figure 2.3: (left) Euclidean loss (right) Itakura-Saito divergence. Dashed curve
is gradient descent, solid curve is multiplicative updates. Error bars measure the
variability across initializations.

2.2.3 Expectation-Maximization algorithms

The expectation-maximization[Dempster et al., 1977, Hathaway, 1986] algorithm
is a particular case of majorization-minimization. It is adapted to inference or
estimation in probabilistic models and provides for those a generic recipe. It is a
competitive alternative to gradient descent in a number of situations where the
objective function does not satisfy minimal assumptions (bounded second order
derivatives, etc.). For a quick introduction we refer the reader to [Hastie et al.,
2009]. We present here two cases of expectation-maximization algorithms used
to solve NMF, that are different from multiplicative updates.

2.2.3.1 Itakura-Saito divergence

Itakura-Saito NMF is equivalent to maximum-likelihood in a probabilistic model
with latent variables S

(k)
fn for each component k. [Févotte et al., 2009] take ad-

vantage of this to derive an auxiliary function of the form :

G(W,H,W,H) =
∑

k

∑

fn

Tfnk
WfkHkn

+ log (WfkHkn) , (2.13)

where

Tfnk =

(

W fkHkn

V̂fn

)2

Vfn +W fkHkn

(

1−
W fkHkn

V̂fn

)

. (2.14)

G(W,H,W,H) is then optimized alternately in W and H. At each step the
minimum is obtained in closed form.

Altogether, the following steps are repeated until convergence :
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(a) K vary

(b) Number of iterations vary

Figure 2.4: Comparison of multiplicative updates and the EM algorithm for IS-
NMF, as the number of components and the number of iterations vary. For
each experiment, 10 different initializations are tried. (a) 5000 iterations (b) 6
components.(Figure reproduced from [Févotte et al., 2009])

Compute Tfnk as in 2.14,

Wfk =
1

N

∑

n

Tfnk
Hkn

,

Hkn =
1

F

∑

f

Tfnk
Wfk

. (2.15)

The cost of each iteration of EM (all steps together) is O(FNK), which is
comparable to multiplicative updates (MU). Another common feature with MU
is sensitivity to the initial point. Both algorithms give comparable objective
function values for a fixed number of iterations.
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2.2.3.2 Kullback-Leibler divergence

[Smaragdis et al., 2007] introduce a different parameterization of NMF with the
Kullback-Leibler divergence with an additional constraint and obtain a different
algorithm by taking advantage of a probabilistic interpretation. This approach
was called probabilistic latent component analysis (PLCA).

min
∑

fn−Vfn log (
∑

k skWfkHkn)
∑

f Wfk = 1
∑

nHkn = 1
∑

k sk = 1

(2.16)

where W ∈ R
F×K
+ , s ∈ R

K
+ , H ∈ R

K×N
+ , and V is rescaled so that

∑

fn Vfn = 1.

Introduce V̂fn =
∑

k skWfkHkn. Then for any (W,H, s) satisfying the con-
straints, the generalized Kullback-Leibler (β = 1) evaluates to :

∑

fn

−Vfn log V̂fn +
∑

fn

V̂fn −
∑

fn

Vfn

︸ ︷︷ ︸

=0

. (2.17)

In this sense, PLCA is equivalent to re-parameterizing KL-NMF and adding the
constraint that

∑

fn V̂fn = 1.

Auxiliary function and EM steps An auxiliary function of the objective
function is obtained by introducing auxiliary variables Qfnk such that

∑

kQfnk =
1 :

∑

fn

−Vfn log

(
∑

k

skWfkHkn

)

︸ ︷︷ ︸

G(W,H)

=
∑

fn−Vfn log
(
∑

k
sk

Qfnk
WfkHknQfnk

)

≤
∑

k

∑

fn

−QfnkVfn log(WfkHkn
sk
Qfnk

)

︸ ︷︷ ︸

Gu(W,H,Q)

.

Moreover, one can show that

min∑
k Qfnk=1

Gu(W,H,Q) = G(W,H) . (2.18)

and the minimum is reached at

Qfnk =
skWfkHkn

∑

k′ sk′Wfk′Hk′n

. (2.19)

For fixed Q, minimizing Gu(W,H,Q) with respect to W , H and s amounts
to the following subproblems independently :
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minH

∑

n−
∑

f QfnkVfn logHkn ,

subject to
∑

nHkn = 1 .

minW

∑

f − (
∑

nQfnkVfn) logWfk ,

subject to
∑

f Wfk = 1 .

mins

∑

k−
(
∑

fn VfnQfnk

)

log sk

subject to
∑

k sk = 1

For each of these problems, closed form updates are obtained.

Wfk =

∑

nQfnkVfn
∑

f ′nQf ′nkVf ′n

Hkn =

∑

f QfnkVfn
∑

fn′ Qfn′kVfn′

sk =

∑

fnQfnkVfn
∑

fnk′ Qfnk′Vfn
. (2.20)

The obtained updates are different from multiplicative updates, however a
comparison of both algorithms either on generic data or based on theoretical
study has not been provided up to date.

2.3 Itakura-Saito NMF

We introduced Itakura-Saito NMF in previous Sections as an acoustically-motivated
measure of distortion. In this section, we show that Itakura-Saito NMF derives
from a generative model of the source spectrograms. In addition to the EM algo-
rithm presented in Section 2.2.3.1, maximum-likelihood estimates of the sources
given estimates of V̂ (g) = W (g)H(g) are explicitly computed in Section 2.3.2. In
Section 2.3.4 we derive an auxiliary function for IS-NMF, from which multiplica-
tive updates follow.

A useful property brought by majorization-minimization is that the cost func-
tion decreases with each iteration. Convergence of W and H however, cannot be
guaranteed, but we can still study the properties of the limit points generated by
multiplicative updates. This will be the subject of Sections 2.3.5 and 2.3.6.

Itakura-Saito NMF is not the only one which derives from a probabilistic
model, see for instance [Abdallah and Plumbley, 2004, Plumbley et al., 2006],
who introduce a Gamma distribution for the spectrogram. However, it is the
only model for which strict additivity of the source spectrograms holds.
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2.3.1 Generative model

Given a short time Fourier transform X ∈ C
F×N of an audio track, we make the

assumption that X is a linear instantaneous mixture of i.i.d. Gaussian signals :

Xfn =
∑

g

S
(g)
fn where S

(g)
fn ∼ N (0,

Q
∑

k=1

W
(g)
fk H

(g)
kn ) . (2.21)

The power spectral density of each source g is thus E(|S(g)|2) = W (g)H(g) ∈ R
F×N
+ .

As a consequence, we have E(V ) = WH where V = |X|2 is the observed power
spectrogram. Furthermore, V has the following distribution :

p(V |Ṽ ) =
∏

f,n

1

Ṽfn
exp

(

−
Vfn

Ṽfn

)

. (2.22)

As pointed out in [Févotte et al., 2009], maximum-likelihood estimation of
(W,H) is equivalent to minimizing the Itakura-Saito divergence between V and
WH.

The Itakura-Saito loss is defined on strictly positive scalars by :

dIS(x, y) =
x

y
− log

x

y
− 1 . (2.23)

2.3.2 Recovery of source estimates

The advantage of having a generative model is that maximum-likelihood esti-
mates provide a grounded and non-intuitive formula for source estimates.

The likelihood of complex spectrograms must be computed conditional to the
observation of X =

∑

g S
(g) :

max
∏

fn

p(S
(1)
fn , . . . , S

(G)
fn |Xfn, V̂

(1)
fn , . . . , V̂

(g)
fn ) . (2.24)

where V̂
(g)
fn =

∑

kW
(g)
fk H

(g)
kn . We express the constraint that X =

∑

g S
(g) by

setting S(G) = X−
∑G−1

g=1 S
(g) so that we need only compute p(S(1), . . . , S(G−1)|X).

We use the following property to compute this conditional distribution :

Property 1. Let x =

(
x1
x2

)

be a Gaussian random variable in R
n1+n2 with

mean

(
µ1

µ2

)

and covariance matrix

(
Σ11 Σ12

Σ21 Σ22

)

. Then the distribution of x1

conditional to x2 is also Gaussian with mean and covariance given by :

µ = µ1 + Σ12Σ
−1
22 (x2 − µ2) Σ = Σ11 − Σ12Σ

−1
22 Σ21 . (2.25)
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As a consequence, conditionally to the observation of X, spectrograms satisfy
an independence property across time-frequency entries :

p(S(1), . . . , S(G−1)|X) =
∏

fn

p(S
(1)
fn , . . . , S

(G−1)
fn |Xfn) (2.26)

The distribution of the complex spectrograms (S
(g)
fn )

G
g=1 conditional to Xfn is

Gaussian with mean and covariance given by :

µg =
V̂

(g)
fn

V̂fn
Xfn Σgg′ =







V̂
(g)
fn

∑

g′ 6=l V̂
(g′

fn

V̂fn
if g = g′

−
V̂

(g)
fn V̂

(g′)
fn

∑

g′ V̂
(g′)fn

otherwise

. (2.27)

and we have dropped (f, n) indices from µ and Σ for simplicity. Since X =
∑

g S
(g) is fixed, there are only G− 1 free sources in the above distribution, and

S(G) = X −
∑G−1

g=1 S
(g).

MMSE estimates of the sources’ STFT are thus given by:

Ŝ
(g)
fn =

V̂
(g)
fn

V̂fn
Xfn . (2.28)

Note that the sources’ STFT share the same phase as the mixture signal. This
is because we have supposed that phases are distributed uniformly, so without
additional information, the best estimate is to keep the mixture’s phase. Time
signals are then obtained by taking ŝ(g) = iSTFT(Ŝ(g)).

2.3.3 Consistent source estimates

The material in this section is related to previous work by [Le Roux et al., 2010].
The source estimates in the previous section are projections of the maximum-
likelihood solutions back into the subspace of time-domain signals. However,
signals s(1), . . . , s(G) such that S(g) = STFT(s(g)) do not necessarily exist. In
particular, S(g) 6= S(S†(S(g))). This is because the S is an overcomplete operator,
so S† has a nontrivial kernel.

We may instead solve directly for time-domain signals, as we shall now ex-
plain.

Since we have at hand the distribution of (S
(g)
fn )f,n,g we need only solve a

maximum-likelihood problem where we parameterize S(g) = S(s(g)) and solve
directly for s(g) in the time domain. For the sake of simplicity we will restrict
ourselves to the case where G = 2. Since s(1) and s(2) are tied, we need only solve
for s(1). In the remaining of this section we drop indices (g) for clarity.

The maximum likelihood problem then writes:

min
s

∑

fn

αfn((Ss)fn − Ŝfn)
2 , (2.29)
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Figure 2.5: While the observed spectrogramX is the image of signal x by operator
S, the estimate Ŝ that we compute may not be the image of any source signal s
so in this case the S† operator projects S on im(S) before inverting it to a time
domain signal.

where α−1
fn = 1

V̂
(1)
fn

+ 1

V̂
(2)
fn

. Since S is a linear operator, this is an unconstrained

quadratic optimization problem, with Hessian S⊤diag(α)S. If all αfn were equal

to one, then the solution of Problem 2.29 would be s = S†Ŝ = (S⊤S)−1S⊤Ŝ.
Otherwise, we can still compute a close form solution but it requires inverting a
n× n matrix (where n is the size of the time-domain signal), which is computa-
tionally very expensive. Instead, we exploit the fact that the operation Ss can
be computed efficiently via Fast Fourier Transforms, by using gradient descent
to solve for s. We choose s(0) = S†(Ŝ) as initial point, and compute the t-th step
of gradient descent:

s(t) = s(t−1) − µtS
⊤diag(α)(Ss(t−1) − Ŝ) . (2.30)

The cost of computing this step is dominated by the computation of one STFT
and one inverse STFT (indeed S† and S⊤ are equal up to a multiplicative constant
since we use the same window for analysis and synthesis).

We study the effect of these estimates in an ideal setting where the optimal
Ŝ(g) are known, so that we can compare the benefits of consistent source signal
estimates independently of the quality of model estimates. Table 1 compares
the quality of source separation with Wiener vs consistent estimates on a 10
seconds’ excerpt from the SISEC database (Tamy - Que pena tanto faz). While
the decrease in cost function value between Wiener estimates and consistent
estimates is of several orders of magnitude, the difference in terms of standard
metrics is very small. [Le Roux et al., 2010] obtain a 2dB improvement on average.
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There might be two reasons why our findings disagree : suboptimality of our
estimates, while [Le Roux et al., 2010] compute exact solutions (method referred
to as “time domain”). Moreover, we have tested our method only on one mixture
signal, so that more extensive results should be collected before we can make any
firm claim.

SDR SIR SAR CPU time
Wiener 11.9018 23.7229 12.2155 0.0785

Consistent 11.9057 23.7310 12.2191 27.6253

Table 2.1: Comparison of Wiener estimates and consistent estimates on a 10
seconds’ audio excerpt.

In gradient descent, we choose µt such that µ−1
t I upper-bounds the Hessian

of Problem 2.29, so we observe descent of the cost function at each step in Figure
2.6. As we can see, after a few iterations, the objective function decreases very
slowly, so maybe exploiting the structure of the Hessian to compute a closed form
solution efficiently would improve the quality of consistent estimates in terms of
SDR.
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Figure 2.6: Descent of the cost function is observed with an appropriate choice
of µt.

We have shown how to compute time domain source estimates directly via a
maximum-likelihood approach. The approach taken in [Le Roux et al., 2010] is
slightly different, and consists in finding a source signal x such that the modulus
|S(x)| is as close to |S(0)| as possible. The reader may point out, with reason,
that a proper approach would consist in formulating a generative model directly
in terms of time signals, since postulating independence of the time-frequency
entries of a complex spectrogram is unrealistic.
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Finally, estimates of the source spectrograms are mapped back to time-domain
signal. Since the mapping is linear, the conservation property X =

∑

g Ŝ
(g)

translates to x =
∑

g s
(g).

2.3.4 Derivation of a descent algorithm

In this Section we derive an efficient algorithm for solving Equation Eq. (2.3)
with the Itakura-Saito divergence, which is inspired by [Cao et al., 1999]. Define
G(W,H) = dIS(V,WH) the objective function of the NMF problem. G is not
convex so we cannot hope for a unique global minimum. We optimize alternately
in W and H. Descent at each step yields a descent algorithm.

G(W (t+1), H(t+1)) ≤ G(W (t), H(t+1)) ≤ G(W (t), H(t)) . (2.31)

The essential building block in multiplicative updates, as explained in Section
2.2.2 is to find an auxiliary function g(h, h) for g that is easy to minimize. The
objective function is separable in the columns of H, so we need only consider the
following subproblem:

minh g(h) ,
h ≥ 0

(2.32)

where

g(h) =
∑

f

vf
∑

kWfkhk
+ log(

∑

k

Wfkhk) , (2.33)

and minimization is over h ∈ R
K
+ .

g is the sum of convex terms of the form 1
x
and concave terms of the form

log(x). In the following, we deal with each separately. Let h ≥ 0 be the current
estimate for h, and assume ∀k, hk > 0. In particular, ∀f,

∑

kWfkhk > 0, and
∑

k hk > 0. Introduce ρfk =
Wfkhk∑
l Wflhl

, and xk = hk

hk
. Since the function x → 1

x
is

convex, we may apply Jensen’s inequality, thereby obtaining:

vf
∑

kWfkhk
=

vf
∑

kWfkhk
(
∑

k

ρfkxk)
−1

≤
vf

∑

kWfkhk

∑

k

ρfkx
−1
k

=
vf

(
∑

kWfkhk)
2

∑

k

h2k
hk

On the other hand, since the function x → log(x) is concave, we may apply
the tangent inequality :

log(
∑

k

Wfkhk) ≤ log(Wfkhk) +
1

∑

kWfkhk

∑

k

(hk − hk) .
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Moreover, by strict concavity, the inequality is an equality if and only if h = h.
Summing both inequalities over f , we obtain an inequality of the form g(h) ≤
g(h, h), where

g(h, h) =
∑

k

pk
h2k
hk

+ qk(hk − hk) + c ,

and

pk =
∑

f

Wfk
vf

(
∑

lWflhl)
2

qk =
∑

f

1
∑

lWflhl
c =

∑

f

log(
∑

l

Wflhl) . (2.34)

Moreover, the inequality is an equality if and only if h = h. Thus, ∀h ∈
(R⋆

+)
K , g(h, h) is an auxiliary function for g(h).

As shown in [Cao et al., 1999], we may rewrite g(h, h) as follows:

g(h, h)− g(h) =
∑

k

(

−pk
hk
hk

+ qk

)

(hk − hk) . (2.35)

g is separable in hk, so we can deal with each term independently of the
others. We may either (a) minimize the right hand side with respect to hk, or

(b) set each term −pk
hk

hk
+ qk to 0, yielding the multiplicative updates found in

[Févotte et al., 2009]. Both cases can be summarized as:

∀k, hk = hk

(
∑

f wfk
vf

(Wh)2
f

∑

f wfk
1

(Wh)f

)δ

, (2.36)

where δ = 0.5 (a) or δ = 1 (b).
Similar updates can be found for W with the same arguments. Note that

multiplicative updates are only valid for h ∈ (R⋆
+)

K . This has an important

consequence: if at any iterate a coefficient h
(t)
k = 0 , then it stays at zero for all

s > t. It is possible to guarantee that h
(t)
k > 0 at every iteration by appropriately

choosing h(0),as we will see in Section 2.3.5, but this does not really change
the problem in practice: as h

(t)
k approaches zero, it is likely to become stuck.

This statement can be made more precise by interpreting multiplicative updates
differently, as we will do in the next Section. This problematic effect of absorbing
zeroes makes the choice of initial points h(0) all the more important: not only
is NMD sensitive to the choice of the initial point because it is non-convex, but
also because absorbing zeroes must be avoided.

As we we will see in the next section, solutions to this problem were found by
studying the convergence properties of multiplicative updates.

2.3.5 Discussion of convergence properties

The material in this section is directly inspired by [Lin, 2007b]. The main prop-
erty of multiplicative updates is that they enforce descent of the cost function at
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each step, and hence convergence of the cost function.

∀t, g(h(t+1)) ≤ g(h(t))

∃l, lim
t→+∞

g(h(t)) = l .

A desirable property would be that limit points of the sequence of estimates
(W (t), H(t))t≥1 be stationary points of the NMF problem.

h⋆ is a stationary point of NMD if and only if is satisfies the following first-
order optimality conditions:

h⋆k ≥ 0 , (2.37)

∂

∂hk
g(h⋆) = 0 if h⋆k > 0 , (2.38)

∂

∂hk
g(h⋆) ≥ 0 if h⋆k = 0 . (2.39)

First-order optimality conditions for the NMF are found by writing first-order
optimality conditions for H andW . For the sake of clarity we will not write them
here.

Multiplicative updates produce bounded sequences and thus have limit points.
These limit points may not necessarily be stationary points of NMF, because of
the problem of absorbing zeroes. Modifications of multiplicative updates were
proposed to circumvent this problem [Lin, 2007b]. We show here how to adapt
those modifications for NMD (i.e. updating H for fixed W ) with the Itakura-
Saito divergence, and show that any limit points found by modified multiplicative
updates are stationary points of the NMD algorithm. The proof may be extended
to NMF straightforwardly. Whether modified multiplicative updates still yield a
descent algorithm in the case of the Itakura-Saito divergence is an open question.

Let h⋆ be a limit point of a sequence of multiplicative updates (h(t))t≥0, so
that:

h⋆k = h⋆k
pk
qk
. (2.40)

where pk and qk are defined in Eq. (2.34). As a consequence

h⋆k = 0 OR
∂

∂hk
g(h⋆) = 0 . (2.41)

Thus, condition 2.38 is satisfied but not 2.39. In [Lin, 2007b], a modification
of NMF is proposed to overcome this limitation and ensure that all limit points
are stationary points of NMF, in the case where the divergence used is the Eu-
clidean norm. We introduce here an adaptation to the case of the Itakura-Saito
divergence and discuss whether their proof can also be “adapted”. Updates of h
can be rewritten as:

h
(t+1)
k = h

(t)
k −

h
(t)
k

q
(t)
k

(p
(t)
k − q

(t)
k ) = h

(t)
k −

h
(t)
k

q
(t)
k

∂

∂hkn
g(h(t)) . (2.42)



50
CHAPTER 2. STRUCTURED NMF WITH GROUP-SPARSITY

PENALTIES

KKT conditions can be violated if h
(t)
kn = 0 while ∂

∂hkn
g(h(t)) < 0. In this case,

H
(t)
kn is stuck at zero without guarantee on the sign of the gradient.
A natural modification of multiplicative updates is thus:

h
(t+1)
k = h

(t)
k −

h̄
(t)
k

q
(t)
k

∂

∂hkn
g(h(t)) , (2.43)

where

h̄
(t)
k =

{

h
(t)
k if ∂

∂hkn
g(h(t)) ≥ 0

max(h
(t)
k , σ) if ∂

∂hkn
g(h(t)) < 0

. (2.44)

and σ is a small pre-defined constant. Similar modifications should be made to
updates in W .

These updates are of the same order of complexity in time and memory as
multiplicative updates. They guarantee that if h

(t)
k = 0 but ∂

∂hkn
g(h(t)) < 0,

then h
(t+1)
k > 0. The following Theorem asserts that this is sufficient to ensure

convergence to stationary points of the objective function.

Theorem 2. Let h⋆ be a limit point of the modified updates in Equation 2.44.
Then h⋆ is a stationary point of the NMD problem.

In order to prove Theorem 2, we will need the following property:

Property 2. If ∀k, h(0)k > 0, then ∀k, h(t)k > 0

Proof. If h
(t)
k > 0∀k, then ∀f,

ǫ+Vf

ǫ+(Wh)f
> 0, and ∀f, 1

ǫ+(Wh)f
> 0. Since each

column of W has at least one nonzero coefficient, it follows that p
(t)
k > 0 and

qk(t) > 0, so h
(t)
k > 0.

Proof. (of theorem 2) Let h⋆ ∈ R
K
+ be a limit point of Eq. (2.44), i.e., ∀k, limt→+∞ h

(t)
k =

h⋆k. Let k be fixed.

Assume h⋆k > 0. For t large enough: 0 < C1 = min(σ, h⋆k/2) ≤ h̄
(t)
k ≥ C2 =

2h⋆k. Thus,

h
(t)
k − h

(t+1)
k = h̄

(t)
k

p
(t)
k − q

(t)
k

q
(t)
k

,

and,

C1(h
(t)
k − h

(t+1)
k ) <

p
(t)
k

q
(t)
k

− 1 < C2(h
(t)
k − h

(t+1)
k ) ,

By continuity of p
(t)
k and q

(t)
k , and since ∂

∂hkn
g(h(t)) = pk − qk, we may conclude

h⋆k > 0⇒
∂

∂hkn
g(h(t)) = 0 .
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Suppose h⋆k = 0 and ∂
∂hk

g(h⋆) < 0. By continuity, there exists c < 0 such

that for t large enough: p
(t)
k − q

(t)
k = ∂

∂hk
g(h(t)) ≤ c, and so h̄

(t)
k = σ. Since h⋆ 6= 0

and every column of W has at least one nonzero value, ∀k, q⋆k > 0. By continuity

there exist q1, q2 > 0 such that q1 ≤ q
(t)
k ≤ q2 for t large enough. Therefore, there

exists C < 0 such that for t large enough:

pk(t)− q
(t)
k

q
(t)
k

h̄
(t)
k = h

(t)
k − h

(t+1)
k ≤ C < 0

which contradicts the fact that h
(t)
k converges.

The essential point in [Lin, 2007b] is that the authors prove their modified
updates still yield a descent algorithm, whatever the value of σ. Whether this
is still true in the case of the Itakura-Saito divergence is an open question. We
make the following conjecture: there exists σ⋆, and a sequence (σ(t))t≥0 such that:

∀t, g(h(t+1)) ≤ g(h(t)) (2.45)

σ(t) > σ⋆ . (2.46)

If this is true, then the proof of theorem 2 still holds.
In this section, we have highlighted two important facts : descent of the cost

function is important to ensure boundedness of sequences generated by multi-
plicative updates. Dealing with absorbing zeroes is important to obtain limit
points with good theoretical properties. Modified multiplicative updates sup-
press the problem of absorbing zeroes but descent of the cost function still needs
to be fixed.

2.3.6 Discussion of convergence properties: empirical
results

In this subsection we focus on the case N = 1 and W is fixed to examine the
behavior of multiplicative updates of h. In Figure (2.7a) we compare the rate of
convergence of the algorithm for δ = 1 and δ = 0.5, obtained on synthetic data
sets. A surprising property of multiplicative updates with δ = 1 is that while
the auxiliary function is not fully minimized, the quantity g(h(t)) decreases much
faster than with δ = 0.5. This is another missing elements in the analysis of
multiplicative updates.

In order to monitor the rate of change of the objective function, we display
f(h(t))−f(h(∞)) where h(∞) is the last iterate of h we obtain. Dotted lines indicate
variation of each curve across 10 different data sets. The differences in l∞ =
f(h∞) between δ = 1 and 0.5 are negligible with respect to the variations across
data sets. Empirically, the rate of convergence of multiplicative updates is a
power law (linear in log-log scale), so that the number of iterations before stopping



52
CHAPTER 2. STRUCTURED NMF WITH GROUP-SPARSITY

PENALTIES

10
0

10
1

10
2

10
3

10
−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

l(H(t))−l(H(+∞))

 

 

(a)
(b)

(a) Compare updates with (a) δ = 1,(b) δ = 0.5

10
0

10
1

10
2

10
3

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iterations

l(H(t))−l(H(+∞))

 

 

(a)
(b)
(c)
(d)

(b) Different initializations schemes, cf. text for legend.
Curve (b) is masked by curve (c)

Figure 2.7: Convergence of the loss function value for different initializations.
N = 1,F = 103, K = 30. Data is sampled from a known model W . Cost is
averaged over 10 data sets (plain curves), and standard deviations are plotted
(dashed lines).
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the algorithm can vary dramatically depending on the precision threshold (10
iterations for a precision of 10−2, 100 iterations for a precision of 10−3).

MM algorithms are prone to local minima and thus very sensitive to initial-
ization, so we try different strategies :

(a) Choose h(0) at random

(b) h(0) = 1

(c) h(0) = c⋆1, the optimal c⋆ being given by (c = 1
FK

∑

f vf (W1)−1
f ).

(d) h
(0)
k = 1/K argminh dIS(v,W·kh).

(e) (Not shown) h(0) = argminh≥0

∑

f
(vf−(Wh)f )

2

(vf+σ)2
. The objective function is a

second-order approximation of dIS(v, ṽ) at ṽ = v. The σ makes the problem
less ill-conditioned. That method yielded worse local minima.

In Figure (2.7b), we compare those 4 initialization methods. How good the initial
estimates are really makes the difference in the ten first iterations. After that,
the four different initialization schemes do not make much difference except that
(a) and (d) tend to be more robust across data sets.

2.3.7 Overview of the algorithm

Algorithm 1 summarizes the descent algorithm that we have laid out in the previ-
ous subsections. We will denote by (W (t), H(t))t≥1 any sequence of updates given
by this Algorithm. Note that non-negativity of W and H is naturally handled
by multiplicative updates since only multiplications, divisions and additions by
nonnegative numbers are used. The use of a small ǫ > 0 constant guarantees
that multiplicative updates are well defined even if a whole row of H or a whole
column of W goes to zero.

It has a time complexity of O(FKN) and a memory complexity of O(FK +
KN). In audio applications, F may vary between 128 and 2048 while N grows
proportionally to the length of the analyzed signal, for 10 seconds’ signals N is
typically of the order of 104. K depends on the number of sources and their
complexity.

Note that if W
(t)
fk = 0 (resp. H

(t)
kn) for some t then ∀s > t,W

(s)
fk = 0. Special

care must be taken in Algorithm 1 if any column of W (t) becomes equal to zero,
or any row of H(t): in that case, at any rate, subsequent updates of Hkn will be
equal to zero for that particular k, so one should stop updating Wfk and Hkn for

all (f, n) and consider the sequences H
(t)
kn and W

(t)
fk as stationary.

2.3.8 Related Work

Finding efficient algorithms for NMD when the ℓ2 loss is used (also called non-
negative least squares) has been an active topic of research. In this case, there are
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Input V , (W, H), δ,T
For T iterations

V̂ ← WH

H ← H ⊙

(

W⊤(ǫ+ V )⊙ (ǫ+ V̂ )·−2)

W⊤((ǫ+ V̂ )·−1)

)·δ

V̂ ← WH ,

W ← W ⊙

(

H⊤((ǫ+ V )⊙(ǫ+ V̂ )·−2)

H⊤((ǫ+ V̂ )·−1)

)·δ

,

Λ = diag(‖W·1‖1, . . . , ‖W·K‖1)
W ← W Λ−1 H ← ΛH.
End

Algorithm 1 Multiplicative updates algorithm for IS-NMF

several alternatives to multiplicative updates that are more efficient : active set
methods [Kim and Park, 2008], block-coordinate descent algorithms [Gillis and
Glineur, 2012, Mairal et al., 2010], and projected gradient descent [Lin, 2007a]. A
comparison of these algorithms on several types of datasets (image, text, sound)
may be found in [Gillis and Glineur, 2012]. Interestingly, the authors show that
the complexity of updating H in block-coordinate descent is essentially equal to
that in multiplicative updates.

2.4 Group-sparsity enforcing penalty in NMF

For simple signals, individual components of NMF were found to retrieve mean-
ingful signals such as notes or events [Smaragdis et al., 2007, Févotte et al., 2009].
However, when applied to more complex signals, such as music instruments, it
is more reasonable to suppose that each sound source corresponds to a subset of
components. Grouping is usually done either by the user, but as the number of
components grows large, this task becomes time-consuming and also very sub-
jective. Automatic grouping criteria were proposed in [Murao et al., 2010], based
on the correlation of atoms W·k or the decorrelation of their decomposition coef-
ficients. In this case the complexity of optimizing such criteria is combinatorial
as it requires searching all permutations of components.

In this Section, we argue that grouping may be incorporated in the inference
of the dictionary W as a maximum-likelihood problem penalized by a group-
sparsity inducing term.

The penalty that we propose is designed for audio signals containing intervals
where one of the sources is missing. The simplest case is that of a two instru-
ment track divided in three parts: one part with instrument A, one part with
instrument B, and a third part where both instruments are mixed. This setting
may be generalized to the case of several sources. Provided that for each source,
there is at least one interval with this and only this source missing, it was shown
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in [Laurberg et al., 2008b] that this setting is equivalent to learning a dictionary
on isolated source signals and un-mixing them when they are mixed. Our group-
sparsity penalty allows identifying segments where sources are missing, learn an
appropriate dictionary for each source, and un-mix sources elsewhere.

Sparsity-inducing functions have been a subject of intensive research. Ac-
cording to the loss function used, either sparsity-inducing norms [Bengio et al.,
2010, Jenatton et al., 2009] or divergences [Smaragdis et al., 2007, Virtanen, 2007]
are preferred. The penalty term we introduce is designed to deal with a specific
choice of loss function, the Itakura-Saito divergence.

After presenting our model for group structure, we derive it from a simple
graphical model, and give an intuitive interpretation in terms of amplitude of the
sources.

Warning By “Group structure”, we mean here that components of NMF are
grouped (see Figure 2.8). This is different from grouping features as is done in
feature selection or grouping observations as might be done in clustering. This
has practical implications since in this case groups tie columns of W AND rows
of H, but the NMF problem is still separable in n and f .

AND {{ g_1
g_2
g_3

g_1

g_3
g_2 W

H
OR {{ g_1 g_2 g_3

W

H

g_1

g_2

g_3

This thesis !
Figure 2.8: Different meanings of group-sparsity in matrix factorization

2.4.1 Presentation

We wish to partition the K components into G non-overlapping groups. In
the following a source will be uniquely identified by the subset g to which it
corresponds. In the framework of statistical inference, many priors have been
proposed to identify components, either on W or H or both (see e.g., [Smaragdis
et al., 2007, Virtanen, 2007]). We focus here on a simple grouping principle : if a
source is inactive at a given frame n of the spectrogram, then all the corresponding
gains Hgn should be set to zero.

An additional benefit of our group-sparsity penalty is that it automatically
solves the practical problem of assigning components to sources once NMF is
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computed from mixed signals.

min DIS(V,WH) + λΨ(H),
W ≥ 0, H ≥ 0
∀k, ‖W·k‖1 = 1

(2.47)

with Ψ(H) =
∑

g,n ψ(‖Hgn‖1) and ψ(x) = log(a+x). We refer to Eq. (2.47) as the
GIS-NMF problem (group Itakura-Saito NMF), and call L(W,H) the objective
function. Eq. (2.47) generalizes IS-NMF in the sense that when λ = 0 we recover
the standard IS-NMF problem. In GIS-NMF a tradeoff is made between the fit
to data as measured by the loss term, and the grouping criterion defined by Ψ.
Although we impose a particular choice of ψ, note that for optimization purposes
we only require that ψ be a differentiable, concave, increasing function.

2.4.2 Interpretation of the penalty term

n=1 ... N

...

α1 α2

h4 h5h1 h2 h3

Figure 2.9: A graphical model for grouping components in NMF

The penalty term ψ(H) may be interpreted in terms of a probabilistic model
with latent variables. Assume ∀k,

∑

f Wfk = 1. For g = 1 . . . G, and n = 1 . . . N ,

define random variables α
(g)
n and suppose they are mutually independent and

identically drawn from an inverse Gamma distribution with shape parameter b
and scale a:

p(α) =
ab

Γ(b)
αb−1 exp(−

α

a
) . (2.48)

Furthermore we suppose that the conditional distribution of the gains Hkn

factorizes in groups, i.e.,

p(H·n|(α
(g)
n )g∈G) =

∏

g

∏

k∈g

p(hkn|α
(g)
n ) (2.49)
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and that hkn are exponentially distributed conditionally on α
(g)
n , with mean α

(g)
n .

The conditional independence structure of this model is captured in Figure 2.9
The marginal distribution of H·n is then given by:

p(H·n) =
∏

g

Γ(Kg + b)

Γ(b)

ab

(a+ ‖Hgn‖1)b+Kg
. (2.50)

By taking the minus logarithm of this expression, one obtains the penalty
term ψ(H) in Eq. (2.47), with λ = b+Kg ≥ 0.
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Figure 2.10: Probability density function of a Gamma random variable, for vari-
ous values of the shape b and scale a

Now we can give another interpretation of our model in physical terms: since,
∑

f Wfk = 1, then
∑

k∈gHkn =
∑

f V̂
(g)
fn = E(

∑

f |S
(g)
fn |

2).
∑

k∈gHkn is a local
measure of the energy of source g in time bin number n. Group sparsity consists
thus in assuming that the energies of each source are independently distributed.

As we can see on Figure 2.10, there is little gain in varying both parameters
b and a, since the effect on the penalty term is essentially the same: large values
of b (resp. small values of a) favor small values of h. In our experiments, we thus
fix a to a small value while varying b to control sparsity. Since λ = K + b, λ is
the hyperparameter we will tune in our experiments.

2.4.3 Extension to block-structured penalties

One limitation of the sparsity penalty proposed in Eq. (2.47) is that temporal
dependency between adjacent observations is not taken into account: indeed,
musical notes or phonemes typically last from ten to hundreds of STFT frames,
which does not correspond to an i.i.d. model. We thus propose to extend the
group-sparsity penalty to a block-sparsity penalty:

Ψ(H) =
N−1∑

n=0

∑

g∈G

ψ(‖Hg n +Hg n+1‖1) . (2.51)
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Ψ is structured in overlapping blocks of size 2 in the observation dimension.
This kind of smoothing differs from that proposed for instance in [Févotte, 2011b,
Virtanen, 2007], who propose pairwise penalties encouraging continuity in the
activation coefficients, of the form ψ(Hkn+1 −Hkn). Penalizing ‖Hg n +Hg n+1‖1
favors zeroes in adjacent frames. Since each coefficient Hkn is linked to Hkn−1

and Hkn−1, this induces a chain effect in support recovery : hopefully zeroes will
tend to cluster in large blocks, instead of being scattered.

2.4.4 Algorithm for group Itakura Saito NMF

We derive an algorithm for group Itakura-Saito NMF based on the same con-
siderations as in Section 2.3.4. Since the objective function is separable in the
columns of H, we need only consider the following subproblem:

minh g(h) ,
h ≥ 0

(2.52)

where
g(h) = DIS(v,Wh) + λψ(h) . (2.53)

and minimization is over h ∈ R
K
+ . Since the additional penalty term is concave,

we may apply the same arguments as before to obtain an auxiliary function and
multiplicative updates.

To optimize with respect to W , we notice that the minimizers of Eq. (2.47)
are also minimizers of:

min DIS(V,WH) + λΦ(W,H),
W ≥ 0, H ≥ 0

(2.54)

where Φ(W,H) =
∑

g

∑

n ψ(
∑

k∈g hkn‖W·k‖1). Thus updates for W may be
derived in the same way as for H. Since the objective function in (2.54) is
unchanged under the transformation W ← WΛ−1, H ← ΛH, where Λ is a
diagonal matrix, we may rescale matrices W and H at each step to return to the
feasible set of (2.47).

Thus, we derived a descent algorithm to solve Eq. (2.47), that is summed up
in Algorithm 2.

Algorithm 2 provides an overview of the alternate descent algorithm. It is
very similar to the standard multiplicative updates algorithm and differs only
in the presence of an additional term in the denominator of the updates. This
additional term in Equation (2.36) favors low values ofHkn : since ψ′(x) decreases
with x (ψ is concave), low values of ‖Hgn‖1 are more penalized than high values.
Moreover the quantity ‖Hgn‖1 is the same for all k in group g. Thus, if at a given
frame n the volume of source g is small with respect to that of source g′, the
updates in (2.47) tend to mute source g. We thus get the same grouping effect
than the traditional penalization by the ℓ2-norms ‖Hgn‖2 [Bengio et al., 2010],
but with the added benefit of natural multiplicative updates. The choice of a
is not important, as argued previously, in practice we choose a relatively small
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Input V , (W, H), G, (λ, a), δ,t
For t iterations

V̂ ← WH
For n = 1 . . . N, g ∈ G, k ∈ g

pkn ← ψ′(‖Hgn‖1)
End

H ← H ⊙

(

W⊤(V ⊙V̂ ·−2)

W⊤(V̂ ·−1) + λP

)·δ

, V̂ ← WH ,

For f = 1 . . . F, g ∈ G, k ∈ g
rfk =

∑

n hknψ
′(‖Hgn‖1)

End

W ← W ⊙

(

H⊤(V ⊙V̂ ·−2)

H⊤(V̂ ·−1) + λR

)·δ

,

Λ = diag(‖W·1‖1, . . . , ‖W·K‖1)
W ← W Λ−1 H ← ΛH.
End

Algorithm 2 Algorithm for GIS-NMF

value a = 0.01. In practice the choice of regularization parameter λ is crucial
and will be discussed in Section 2.5.

We run the algorithm with several different initializations and keep the result
that yields the lowest cost value, in order to avoid local minima. The objective
function decreases at each step, and convergence of the parameters is observed
in practice.

2.5 Model selection in sparse NMF

Selecting the right number of components in NMF is an active line of research.
When penalties or prior knowledge is introduced, selecting hyperparameters is
also an important problem. Cross-validation could be used to measure the fit of
learnt dictionaries to the data, but this involves computing as many NMF as there
are folds in the cross-validation procedure times the size of the (K,λ) parameter
grid. Instead, we propose to select models based on statistics of goodness-of-fit.
Other approaches are based on probabilistic extensions of NMF [Tan and Févotte,
2009, Hoffmann et al., 2010b, Févotte and Cemgil, 2009]. We briefly present the
most recent and discuss its benefits compared to ours.

2.5.1 Kolmogorov-Smirnov statistic

Define standardized observations εfn =
Vfn

V̂fn
. Then if the observed data follow the

model in Eq.(2.22), the empirical distribution function of E converges towards
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Figure 2.11: (a) When K is too large, the empirical cdf (red) deviates from
the assumed cdf F (x) = 1 − exp(−x) (green). (b) The right plot displays the
discrepancy between empirical cdfs obtained for various values of K and the
expected cdf.

that of an exponential random variable, in the following sense:

Theorem 3. Let x1, . . . , xn be i.i.d random variables with distribution function
F . Let x⌊1⌋ ≤ . . . x⌊n⌋ define a re-ordering of x1, . . . , xn in increasing order.

Define the empirical distribution function F̂n:

F̂n(y) =







0 if y ≤ x⌊1⌋ ,
k
n

if x⌊k⌋ ≤ y ≤ x⌊k+1⌋ ,
1 if x⌊n⌋ ≤ y .

(2.55)

Then,
lim

n→+∞
‖F̂n − F‖∞

a.s.
−→ 0 . (2.56)

The reader is referred to [Lehmann and Romano, 2005] for a detailed proof
and other goodness-of-fit statistics. The quantity ‖F̂n − F‖ is referred to as the
Kolmogorov-Smirnov (KS) statistic. We propose to select the parameters of our
model λ that yield the minimum KS statistic.

Intuitively, if we let K = F then we obtain a perfect fit since V = WH
exactly. However, the empirical distribution function will be far away from that
of an exponential random variable. Indeed, since all εfn = 1, the empirical

distribution function F̂ (x) is a step function where the step is located at x = 1.
This is illustrated in Figure 2.11a: if V = WH, the KS statistic is exactly equal
to exp−1 = 0.3679 . . . . Figure 2.11b displays emprical cdfs obtained after running
NMF on the piano excerpt presented in Section 2.1.3, for various values of K.
As one can see, values around K = 7 yield the best KS statistic, in surprisingly
good agreement with comments in Section 2.1.3.

The advantage of selecting with a statistic is that the number of NMF to be
computed is equal to the size of the grid, unlike in cross-validation. We study
the impact of this statistic on model selection in Subsection 2.6.1.
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2.5.2 Bayesian approaches

In [Hoffmann et al., 2010b], the authors propose a Bayesian nonparametric ap-
proach to selecting the number of components in NMF. Instead of selecting a
known number of components K, they pick a large K and introduce hidden vari-
ables θk for the global scale of component k. More precisely, they define the
following model:

Wfk ∼ Γ(a, a)

Hkn ∼ Γ(b, b)

θk ∼ Γ(α/K, αc)

Vfn ∼ Exp(
K∑

k=1

θkWfkHkn) (2.57)

This model differs from Itakura-Saito NMF only in the appearance of scaling
terms θk. As K grows, the number of components k such that θk > ǫ for some
ǫ > 0 is finite almost surely, and is expected to be small. Exact inference of
(W,H, θ) given V is intractable so the authors appeal to variational Bayesian
inference, a faster alternative to MCMC sampling methods.

Bayesian nonparametric procedures are attractive because the number of com-
ponents K is estimated at the same time as the model (W,H).

2.6 Experiments with group-sparse NMF

2.6.1 Validation on synthetic data

We designed an optimization procedure to enforce structured sparsity on the
columns of H. In order to validate our algorithm, we picked W (⋆) ∈ R

100×20
+ at

random and H(⋆) with two groups of 10 components each and disjoint supports.
10 synthetic data sets of various sizes were generated according to model (2.22).
Define the support recovery error as the proportion of frames where the active
sources are incorrectly identified. Figure 2.2 displays, for various data set sizes
N , how the test statistic and the support recovery error vary with λ. For fixed
N , the KS statistic reaches a minimum in the interval [100, 102]. As N grows
large, the support recovery error decreases towards zero, and the minimizer of
the KS statistic (which does not require to know the ground truth) matches the
one of the recovery error.

2.6.2 Results in single channel source separation

We experiment our algorithm on two audio tracks found on the Internet Archive
(www.archive.org): the individual sources x(g), g = 1 . . . 2. were available, from
which we took 20-30 seconds excerpts 2. For each track, we propose the following

2Complete results on all mixtures, including .wav files, are available online
(www.di.ens.fr/~lefevrea/demos.html)
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Table 2.2: Relationship between support recovery error and KS statistic as the
size N of the data set increases. x-axis: regularization parameter λ. y-axis: KS
statistic (solid line) and the support recovery error (dashed line). Thin dashed
lines are error bars
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p=0.66

 

 
x

(1)

x
(2)

x

Figure 2.12: Sketch of the experimental setup. True source signals (in blue and
red), are partly muted (dashed parts) in order to control that they overlap over
no more than a fraction p of the total length, here p = 66%. The mixed signal is
displayed in black.

mixture:

xn =







x
(1)
n if n ≤ 1−p

2
T

x
(2)
n if n ≥ 1+p

2
T

x
(1)
n + x

(2)
n otherwise

. (2.58)

where T is the total length of the track: thus if p = 0.33, we make sure that

track source GIS-NMF base random ideal
love bass 8.88 -67.53 -8.55 8.86
0 % guitar 13.60 3.77 -2.19 13.941

love bass 4.33 -4.60 -8.74 4.56
33 % guitar 9.77 -7.40 -2.02 9.90
love bass 1.47 -5.29 -9.08 3.12
66 % guitar 7.72 -8.11 -1.94 8.68
love bass -5.13 -4.16 -9.02 2.54
100 % guitar -0.21 -2.68 -2.02 8.09

Table 2.3: Source to distortion ratios (SDR) for the track “We are in love”2 . x% is
the overlap between sources.

sources overlap over no more than 33% of the track. The goal is to analyze how

1“ideal NMF” serves for comparison, but is not an upper bound for the performance of our
algorithm, see text.
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important sparsity is to estimate the mixtures correctly by varying p. Table 2.3
compares our algorithm (GIS-NMF) with several other strategies:

• The baseline consists in estimating Itakura-Saito NMF and then group
components so as to minimize Ψ(H), so that Ψ(H) plays the role of a
heuristic criterion to group components.

• Ideal NMF consists in running NMF and choose groups that yield optimal
SDR (by selecting from all possible of K! permutations): ideally we should
perform at least as well. However, note that it is not an oracle performance
(not the same objective function).

• random: the average SDR of 10 random binary masks.

In Table 2.3 we display our results on one audio track. In GIS-NMF, param-
eters (a, λ) were chosen to minimize the test statistic, then we tuned the number
of components per group as to maximize SDR. In most cases, we perform better
than a random binary mask, unlike the baseline. For overlap p up to 66%, we
obtain SDR values close to that of the ideal i.e., we find the best assignment
for source separation. Thus group-sparsity in the columns of H plays a key role
in identifying sources. Our algorithm meets his limits when there is too much
overlap, then we fail to identify the sources correctly, and more knowledge about
the sources is needed.

2.6.3 Block-structured penalty

We experiment the block-structured penalty presented in Section 2.4.3 on a seg-
mentation task. The recorded signal is a radio interview with a female interviewer
and a male interviewee. Figure 2.13 compares the result of NMF with and with-
out block-structured penalty. Given the length of the recording, we chose only a
few values of (K,λ), and kept K = 15, λ = 1. Recovered supports of each group
are almost disjoint with our block-structured penalty, which is not the case with
the baseline NMF. This is an interesting case where NMF fails to recover an ap-
propriate model for each source whereas intuitively the task is particularly simple
since source signals are never mixed. In particular it illustrates why sparsity is
important to learn interpretable dictionaries.

2.7 Related work

Exploiting structure in regression problems is a very active topic in statistics and
optimization. In this paragraph, we make no distinction between nonnegativity-
constrained problems and unconstrained ones. For clarity we will consider the
following general formulation of penalized regression problems :

min ‖x−Da‖22 + λΩ(a) . (2.59)
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Figure 2.13: Application of the block-sparse penalty term to a segmentation task.
(Top) Mixture (Middle) Female voice estimate (Down) Male voice estimate
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Regression with an ℓ1 norm penalty was shown to promote sparsity in re-
gression coefficients [Tibshirani, 1996]. Sparsity may be important either for
prediction (e.g., denoising) or for support identification : variables which have
nonzero coefficients may be interpreted as causal factors of the observed variable.
Provided sufficient conditions on the design matrix, and signals are sufficiently
sparse, the support may be correctly identified. As the conditioning of the de-
sign matrix worsens, more elaborate structure must be exploited to identify the
support. Group-structured penalties were proposed as a way to enforce zeroes
in several coefficients simultaneously [Yuan and Lin, 2006], where groups form a
partition of the regression coefficient indices.

Tree-structured penalties were proposed to handle the case when variables are
assumed to be embedded in a tree, and the ancestor relationship is interpreted
as :

αk = 0⇒ αj = 0 ∀j ∈ descendants(k) . (2.60)

In this case, the right penalty also has group structure but now groups have a
specific overlapping structure. Efficient algorithms were proposed to compute
regression coefficients in a finite number of iterations [Jenatton et al., 2011c].
Extensions to general loss functions (other than the ℓ2 norm) are proposed based
on these algorithms. Recovery in the general case of overlapping groups was
studied in [Jenatton et al., 2011a].

When a collection of signals are presented simultaneously, as is the case in
source separation, there are various settings.

min ‖X −DA‖2F + λΩ(A) (2.61)

In multi-task regression, each dimension of the observed signals is interpreted
as a different task, and group-sparsity is imposed in such a way that multiple
tasks share the same nonzero regression coefficients, for all observations, see e.g.,
[Sprechmann et al., 2011]. In the other setting, various sets of observations
share the same regression coefficients. As argued in [Bengio et al., 2010], “this
approach can also be used to encourage using the same dictionary words for all
the images in a class, providing a discriminative method in the construction of
image representations”.

Note that using mixed norms is not the only way of exploiting structure in
regression problems. Coming back to the “hard” sparse coding problem where
the pseudo-norm Ω(a) = ‖a‖0 is used, structured decompositions specifically
tailored for audio signals were proposed in [Daudet, 2006]. In this case, structure
is exploited by adding simultaneously groups of coefficients at each step of a
matching pursuit algorithm.

2.8 Conclusion

In this Section, we have provided an overview of NMF with the family of β
divergences. Among this family, the Itakura-Saito divergence was singled out
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because it provides a generative model which accounts for the additivity of the
mixing process. It is the only one which does not rely on approximate additivity
of the power spectrograms.

Optimizing NMF with β divergences implies a careful comparison between
algorithms : for β = 2, projected gradient descent algorithms are preferable to
multiplicative updates, but the latter are faster for β = 0. Moreover, the story
of multiplicative updates is still not closed: indeed, we have seen that in this
case that partial optimization of the auxiliary function yields faster convergence
rates than full optimization. Multiplicative updates suffer from the problem of
absorbing zeroes, which is especially problematic when using sparsity penalties:
in order to be able to select components accurately it is necessary that all subsets
of components be searched throughout the algorithm, which is not possible with
absorbing zeroes. Adapting propositions of [Lin, 2007b] to the general case of β
divergences is an interesting direction, and will be the subject of future work.

We have introduced a penalized maximum-likelihood principle to find groups
in NMF with the Itakura-Saito divergence. Instead of finding groups after run-
ning NMF, which is computationally expensive, we introduce a grouping criterion
based on the natural structure of music signals.

Our algorithm keeps the attractive features of multiplicative updates algo-
rithm (low complexity, descent property), and allows performing blind source
separation on complex signals, with no assumption on the frequency profiles of the
sources. Moreover, we show how to incorporate temporal dependencies between
coefficients of H by replacing group-sparsity by block-sparsity. Other penalties
to capture such dependencies were proposed e.g., [Févotte, 2011a], which enforce
smoothness rather than sparsity. Finally, introducing temporal dependencies be-
tween components of NMF is still an open subject.

Indeed, the Euclidean loss accommodates very-well Markov terms of the form
P (H) =

∑

n

∑

k,k′ Hk,nLHk′,n+1, where L may be learnt on training data. It
would be interesting to investigate possible adaptations to beta-divergences.





Chapter 3

Online algorithms for large-scale
nonnegative matrix factorization

Our contribution in this Chapter is an online algorithm to learn dictio-
naries adapted to the Itakura-Saito divergence. We show that it allows
a ten times speedup for signals longer than three minutes, in the small
dictionary setting. It also allows running NMF on signals longer than an
hour which was previously impossible. This work has led to the following
publication(s):

A. Lefèvre and F. Bach and C. Févotte, “Online algorithms for non-
negative matrix factorization with the Itakura-Saito divergence”, in
Proceedings of the IEEE Workshop on Applications of Signal Pro-
cessing to Audio and Acoustics (WASPAA), 2011.

Code is available onlinea

awww.di.ens.fr/ lefevrea/xnmf.zip

Estimating the dictionary can be quite slow for long audio signals, and indeed
intractable for training sets of more than a few hours. We propose an algorithm
to estimate Itakura-Saito NMF (IS-NMF) on audio signals of possibly infinite
duration with tractable memory and time complexity. This chapter is organized
as follows : in Section 3.1, we review the essential structure of the auxiliary func-
tion used to derive multiplicative updates for Itakura-Saito NMF, then propose
a recursive computation of the auxiliary function, which is the essential ingredi-
ent of our online algorithm, and provide implementation details. In Section 3.2,
we experiment our algorithms on real audio signals of short, medium and long
durations. We show that our approach outperforms regular batch NMF in terms
of computer time.

69
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3.1 An online algorithm for Itakura-Saito

NMF

Various methods were recently proposed for online dictionary learning [Mairal
et al., 2010, Hoffmann et al., 2010a, Bucak and Gunsel, 2009]. However, to the
best of our knowledge, no algorithm exists for online dictionary learning with the
Itakura-Saito divergence. In this section we summarize IS-NMF, then introduce
our algorithm for online NMF and explain briefly the mathematical framework.

3.1.1 Itakura-Saito NMF

Define the Itakura-Saito divergence as dIS(y, x) =
∑

i(
yi
xi
− log yi

xi
− 1). Given

a data set V = (v1, . . . , vN) ∈ R
F×N
+ , Itakura-Saito NMF consists in finding

W ∈ R
F×K
+ , H = (h1, . . . , hN) ∈ R

K×N
+ that minimize the following objective

function :

LH(W ) =
1

N

N∑

n=1

dIS(vn,Whn) , (3.1)

The standard approach to solving IS-NMF is to optimize alternately in W and
H and use majorization-minimization [Févotte and Idier, 2011]. At each step,
the objective function is replaced by an auxiliary function of the form LH(W,W )
such that LH(W ) ≤ LH(W,W ) with equality if W = W :

LH(W,W ) =
∑

fk

Afk
1

Wfk

+BfkWfk + c . (3.2)

where A,B ∈ R
F×K
+ and c ∈ R are given by:

Afk =
∑N

n=1HknVfn(WH)−2
fnW

2
fk ,

Bfk =
∑N

n=1Hkn(WH)−1
fn ,

c =
∑F

f=1

∑N
n=1 log

Vfn
(WH)fn

− F .

(3.3)

Thus, updating W by Wfk =
√

Afk/Bfk yields a descent algorithm. Similar
updates can be found for hn so that the whole process defines a descent algorithm
in (W,H) (for more details see, e.g., [Févotte and Idier, 2011]). In a nutshell,
batch IS-NMF works in cycles: at each cycle, all sample points are visited, the
whole matrix H is updated, the auxiliary function in Eq. (3.2) is re-computed,
and W is then updated. We now turn to the description of online NMF.
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3.1.2 Recursive computation of auxiliary function

WhenN is large, multiplicative updates algorithms for IS-NMF become expensive
because at the dictionary update step, they involve large matrix multiplications
with time complexity in O(FKN) (computation of matrices A and B). We
present here an online version of the classical multiplicative updates algorithm,
in the sense that only a subset of the training data is used at each step of the
algorithm.

Suppose that at each iteration of the algorithm we are provided a new data
point vt, and we are able to find ht that minimizes dIS(vt,W

(t)ht). Let us rewrite
the updates in Eq. (3.3). Initialize A(0), B(0),W (0) and at each step compute :

A(t) = A(t−1) + ( vt
(W (t−1)ht)2

h⊤t ) · (W
(t−1))2 ,

B(t) = B(t−1) + 1
W (t−1)ht

h⊤t ,

W (t) =
√

A(t)

B(t) .

(3.4)

Now we may updateW each time a new data point vt is visited, instead of visiting
the whole data set. This differs from batch NMF in the following sense : suppose
we replace the objective function in Eq. (3.1) by

LT (W ) =
1

T

T∑

t=1

dIS(vt,Wht) , (3.5)

where (v1, v2, . . . , vt, . . . ) is an infinite sequence of data points, and the sequence
(h1, . . . , ht, . . . ) is such that ht minimizes dIS(vt,W

(t)h). Then we may show
that the modified sequence of updates corresponds to minimizing the following
auxiliary function :

L̂T (W ) =
∑

k

∑

f

(

A
(T )
fk

1

Wfk

+B
(T )
fk Wfk

)

+ c . (3.6)

If T is fixed, this problem is exactly equivalent to IS-NMF on a finite training
set. Whereas in the batch algorithm described in Section 3.1.1, all H is updated
once and then all W , in online NMF, each new ht is estimated exactly and then
W is updated once. Another way to see it is that in standard NMF, the auxiliary
function is updated at each pass through the whole dataset from the most recent
updates in H, whereas in online NMF, the auxiliary function takes into account
all updates starting from the first one.

Extensions Prior information on H orW is often useful for imposing structure
in the factorization [Lefèvre et al., 2011a, Virtanen, 2007, Smaragdis et al., 2007].
Our framework for online NMF easily accommodates penalties such as :

• Penalties depending on the dictionary W only.
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• Penalties on H that are decomposable and expressed in terms of a concave
increasing function ψ, such as those presented in chapter 2 : Ψ(H) =
∑N

n=1 ψ(
∑

kHkn).

3.1.3 Practical implementation

Algorithm 3 Online Algorithm for IS-NMF

Input training set, W (0), A(0), B(0), ρ, β, η, ε.
t← 0
repeat

t← t+ 1
draw vt from the training set.
ht ← argminh dIS(ε+ vt, ε+Wh)
a(t) ← ( ε+vt

(ε+Wht)2
h⊤t ) ·W

2

b(t) ← 1
ε+Wht

h⊤t
if t ≡ 0 [β]

A(t) ← A(t−β) + ρ
∑t

s=t−β+1 a
(s)

B(t) ← B(t−β) + ρ
∑t

s=t−β+1 b
(s)

W (t) ←
√

A(t)

B(t)

for k = 1 . . . K
s←

∑

f Wfk , Wfk ← Wfk/s

Afk ← Afk/s , Bfk ← Bfk × s
end for

end if
until ‖W (t) −W (t−1)‖F < η

We provided a description of a pure version of online NMF, we now discuss
several extensions that are commonly used in online algorithms and allow con-
siderable gains in speed.

Finite data sets. When working on finite training sets, we cycle over the
training set several times, and randomly permute the samples at each cycle.

Sampling method for infinite data sets. When dealing with large (or in-
finite) training sets, samples may be drawn in batches and then permuted at
random to avoid local correlations of the input.

Fresh or warm restarts. Minimizing dIS(vt,Wht) is an inner loop in our
algorithm. Finding an exact solution ht for each new sample may be costly (a
rule of thumb is 100 iterations from a random point). A shortcut is to stop the
inner loop before convergence. This amounts to compute only an upper-bound of



3.1. ALGORITHM FOR ONLINE IS-NMF 73

dIS(vt,Wht). Another shortcut is to warm restart the inner loop, at the cost of
keeping all the most recent regression weights H = (h1, . . . , hN) in memory. For
small data sets, this allows running online NMF very similarly to batch NMF :
each time a sample is visited ht is updated only once, and then W is updated.
When using warm restarts, the time complexity of the algorithm is not changed,
but the memory requirements become O((F +N)K).

Mini-batch. Updating W every time a sample is drawn costs O(FK) : as
shown in simulations, we may save some time by updating W only every β
samples i.e., draw samples in batches and then update W . This is also meant to
stabilize the updates.

Scaling past data. In order to speed up the online algorithm it is possible to
scale past information so that newer information is given more importance :

A(t+β) = A(t) + ρ
∑t+β

s=t+1 a
(s) ,

B(t+β) = B(t) + ρ
∑t+β

s=t+1 b
(s) ,

(3.7)

where we choose ρ = rβ/N . We choose this particular form so that when N →
+∞, ρ = 1. Moreover, ρ is taken to the power β so that we can compare
performance for several batch sizes and the same parameter r. In principle this
rescaling of past information amounts to discount each new sample at rate ρ,
thus replacing the objective function in Eq. (3.5) by :

1
∑T

t=1 r
t

T∑

t=1

rT+1−tl(vt,W ) , (3.8)

Rescaling W . In order to avoid the scaling ambiguity, each timeW is updated,
we rescale W (t) so that its columns have unit norm. A(t), B(t) must be rescaled
accordingly (as well as H when using warm restarts). This does not change the
result and avoids numerical instabilities when computing the product WH.

Dealing with small amplitude values. The Itakura-Saito divergence dIS(y, x)
is badly behaved when either y = 0 or x = 0. As a remedy we replace it in our
algorithm by dIS(ε+ y, ε+ x). The updates were modified consequently in Algo-
rithm 3.

Overview. Algorithm 3 summarizes our procedure. The two parameters of
interest are the mini-batch size β and the forgetting factor r. Note that when
β = N , and r = 0, the online algorithm is equivalent to the batch algorithm.
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3.2 Experimental study

In this section we validate the online algorithm and compare it with its batch
counterpart. A natural criterion is to train both on the same data with the same
initial parameters W (0) (and H(0) when applicable) and compare their respective
fit to a held-out test set, as a function of the computer time available for learning.
The input data are power spectrogram extracted from single-channel audio tracks
sampled at 16000Hz, with analysis windows of 512 samples and 256 samples
overlap. All silent frames were discarded.

We make the comparison for small, medium, and large audio tracks (resp.
103, 104, 105 time windows). W is initialized with random samples from the
train set. For each process, several seeds were tried, the best seed (in terms of
objective function value) is shown for each process. Finally, we use ε = 10−10

which is well below the hearing threshold.

Small data set (30 seconds). We ran online NMF with warm restarts and one
update of h every sample. From Figure 3.1, we can see that there is a restriction
on the values of (β, r) that we can use : if r < 1 then β should be chosen larger
than 1. On the other hand, as long as r > 0.5, the stability of the algorithm is
not affected by the value of β. In terms of speed, clearly setting r < 1 is crucial
for the online algorithm to compete with its batch counterpart. Then there is a
tradeoff to make in β : it should be picked larger than 1 to avoid instabilities,
and smaller than the size of the train set for faster learning (this was also shown
in [Mairal et al., 2010] for the square loss).

Medium data set (4 minutes). We ran online NMF with warm restarts and
one update of h every sample. The same remarks apply as before, moreover we
can see on Figure 3.2 that the online algorithm outperforms its batch counterpart
by several orders of magnitude in terms of computer time for a wide range of
parameter values.

Large data set (1 hour 20 minutes). For the large data set, we use fresh
restarts and 100 updates of h for every sample. Since batch NMF does not fit
into memory any more, we compare online NMF with batch NMF learnt on a
subset of the training set. In Figure 3.3, we see that running online NMF on the
whole training set yields a more accurate dictionary in a fraction of the time that
batch NMF takes to run on a subset of the training set. We stress the fact that
we used fresh restarts so that there is no need to store H offline.

The online algorithm we proposed is stable provided minimal restrictions on
the values of the parameters (r, β) : if r = 1, then any value of β is stable. If r < 1
then β should be chosen large enough. Clearly there is a tradeoff in choosing the
mini-batch size β, which is explained by the way it works : when β is small,
frequent updates of W are an additional cost as compared with batch NMF. On
the other hand, when β is small enough we take advantage of the redundancy
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Figure 3.1: Comparison of online and batch algorithm on a thirty-seconds long
audio track.

in the training set. From our experiments we find that choosing r = 0.7 and
β = 103 yields satisfactory performance.

3.3 Related Work

Since the publication of our work [Lefèvre et al., 2011b], there have been a num-
ber of publications on online algorithms for NMF, which fall into two main cat-
egories : algorithms based on stochastic gradient descent, and algorithms based
on the method of cumulating auxiliary functions. The latter category, to which
our contribution belongs, may be traced back to [Zhang and Scordilis, 2008]. It
includes : matrix factorizations with the ℓ2 loss [Mairal et al., 2010] and generic
constraint sets (nonnegativity, sparsity), matrix factorizations for the Kullback-
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Figure 3.2: Comparison of online and batch algorithm on a three-minutes long
audio track.

Leibler divergence [Duan et al., 2012], online multiplicative updates tailored for
NMF with the ℓ2 loss [Bucak and Gunsel, 2009], extensions to convolutive non-
negative sparse coding [Wang et al., 2011]. Bayesian extensions have also been
proposed for online dictionary learning, either in the framework of variational
inference [Hoffmann et al., 2010a] or using sampling strategies [Cappé et al.,
2011].

There is also an alternative approach which was presented in the context
of text mining[Cao et al., 2007]. It relies on the following principle : once a
dictionary W (1) is learnt on a first batch of data V (1), then this data may as well
be replaced by W (1). To be more precise, once the next batch of data V (2) is
available, W (2) is optimized to reconstruct the modified input matrix (W (1)V (2)),
instead of (V (1)V (2)). Like ours, this procedure requires constant memory instead
of linear. In the noiseless case, the batch and online algorithms yield the same
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Figure 3.3: Comparison of online and batch algorithm on an album of Django
Reinhardt (1 hour 20 minutes).

solution. The behavior of this algorithm in the noisy setting is yet to be studied.
Finally, a divide-and-conquer matrix factorization method was recently pro-

posed in [Mackey et al., 2011], where base matrix factorization algorithms are
used to factorize subsets of the data, and solutions of each subproblem are com-
bined using techniques from randomized matrix approximation.

3.4 Conclusion

In this Chapter, we have provided an algorithm for online IS-NMF with a com-
plexity of O(FK) in time and memory for updates in the dictionary. We have
also proposed several extensions to stabilisze online NMF and summarize them
in a concise algorithm1. We show that online NMF competes with its batch coun-
terpart on small data sets, while on large data sets it outperforms it by several
orders of magnitude. In a pure online setting, data samples are processed only
once, with constant time and memory cost. Thus, online NMF algorithms may
be run on data sets of potentially infinite size which opens up many possibilities
for audio source separation.

1Code is available online at http://www.di.ens.fr/~lefevrea/xnmf.zip





Chapter 4

Informed source separation : how
user annotations disambiguate
the source separation problem

Our third contribution, presented in this Chapter, is an extension of
NMF to incorporate additional constraints on the estimates of the source
spectrograms, in the form of time-frequency annotations. While time
annotations have been proposed before, almost perfect source estimates
may be obtained with as little as 20% of annotations, provided those
are correct, whereas this is not guaranteed with time annotations, even
when the whole recording is annotated. Our formulation is robust to
small errors in the annotations. We provide a graphical interface for user
annotations, and investigate algorithms to automatize the annotation
process. This work has led to the following publication(s) :

A. Lefèvre and F. Bach and C. Févotte, “Semi-supervised NMF
with time-frequency annotations for single-channel source separa-
tion”, in Proceedings of the International Conference on Music In-
formation Retrival (ISMIR), 2012.

Audio demonstrations are available onlinea, as well as a GUI for anno-
tating spectrogramsb

ahttp://www.di.ens.fr/~lefevrea/annot.html
bhttp://www.di.ens.fr/~lefevrea/annot gui.zip

In this chapter we present a recent contribution to informed source separation
[Lefèvre et al., 2012]. In Chapter 1, we have discussed how sparsity penalties
and/or prior information could be added to nonnegative matrix factorization V =
WH. In parallel, recent contributions propose to incorporate user information
that are tailored to the specific mixed signal at hand. Indeed, such information
as time activation of the various sources is easy to produce even for non-trained
listeners, whereas it is very hard to estimate it computationally. [Ozerov et al.,
2011] have shown that time annotations, together with multichannel modelling of

79
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Time

Recording 3 

Violin

FrHorn

Bass

Voice

Figure 4.1: Example of time activations on a track from the SiSEC database.
(Figure reproduced from [Ozerov et al., 2011])

the mixing process, produce excellent separation results. Pitch information has
also helped improve separation quality sharply, as shown in [Durrieu and Thiran,
2012]. Finally, score-guided source separation has been the subject of several
contributions [Raphael and Han, 2008, Hennequin et al., 2011, Ganseman et al.,
2012].

A common trait of these methods is that are all based on a simple extension
of NMF : either annotations are used to identify zeroes in the matrix of activa-
tion coefficients in NMF; in this case, using some form of multiplicative update
algorithm, it is straightforward to constrain solutions of NMF to have zeroes at
required time frames. When activation coefficients are fixed, annotations help
learn a source specific dictionary W (g) on segments of the recording where only
source g is active. [Ganseman et al., 2012] propose instead to synthetize tracks
using score information and sophisticated synthetizers, learn prior distributions
for the dictionary and activation coefficients, and use those priors in the main
source separation step.

In this chapter, we advocate direct annotations of time-frequency regions in
the spectrogram. It is an empirical fact that a large fraction of time-frequency
bins may be assigned unambiguously to one dominant source : that is why op-
timal binary masks are often considered as an upper-bound of source separation
performance. As illustrated in Figure 4.2, some patches in the spectrogram are
cues for source-specific activity, which may be exploited as information on the op-
timal binary mask : techniques from computational audio scene analysis (CASA)
make extensive use of such cues to build interpretations of “acoustic scenes”. If
the spectrogram was entirely annotated, then we could obtain almost perfect
source separation results. Off course, such annotations are hard to find, and in
practice we can only hope for a fraction of the time-frequency plane. The main
contribution of this chapter is to show how NMF can exploit a partially annotated
spectrogram to learn an accurate model of the sources. With no annotations, we
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Figure 4.2: Some patches in the spectrogram are easy to read for the user

recover standard NMF, and with all annotations, the spectrogram is already sep-
arated. Therefore, there must be a small enough fraction of annotations such
that NMF can complete the rest of the spectrogram.

The rest of this chapter is organized as follows : in Section 4.1, we introduce
a graphical user interface to retrieve such time-frequency annotations, and ex-
amine how hard it is to produce such annotations. In Section, 4.2, we propose
a modification of NMF to take into account time-frequency annotations of the
spectrogram, that is robust to errors in the annotations. Since our modified NMF
algorithm does not depend on the way annotations were obtained, we study in
Section 4.3 how the process of annotating may be automatized with supervised
learning algorithms. Finally, we illustrate our contributions on publicly available
source separation databases, and incidentally provide early results on the recently
released QUASI database.

Section 4.5 is devoted to specific aspects of this contribution and may be
skipped at first reading.

4.1 A graphical user interface for

time-frequency annotation of spectrograms

In this section, we investigate manual annotation of the spectrogram. A GUI
was designed in Matlab to annotate spectrograms (see Figure 4.3), with some
extra sound functionalities to help the user. It takes sound files (in the .wav
format) as input, applies some basic preprocessing (re-sampling at user-specified
rate, down-mixing to mono), computes a time-frequency representation via user-
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specified parameters, and displays the spectrogram. Zooming and slide-rule nav-
igation are enabled for better visualization. Annotation of sources is done with
a simple rectangle drawing utility : one color for each source. Annotations are
stored in an annotation mask, short for a 3-dimensional array of size F ×N ×G
(where (F,N) is the size of the spectrogram and G the number of sources). They
are displayed in transparency as in Figure 4.3. Several annotation masks may
be loaded into memory and displayed alternatively, via a list-box, so the user
can compare, for instance, manual annotations with the output of a blind source
separation algorithm. Annotation masks may be exported to .mat format for
further processing. Finally, we implemented playback functionalities to help the
user read the spectrogram : play, pause, and navigate by clicking. Before play-
back, the track can be filtered according to any of the annotation masks loaded
by the user.

Figure 4.3: Example of user annotations in a ten seconds’ audio track: green
regions are assigned to voice, and red regions to accompaniment.

We designed the GUI to make the annotation process easier and faster : in-
deed, in our experience, while time annotations are easy and require only listening
once or twice to the mix, time-frequency annotation is a hard task, and it may
take up to one hour to annotate a twenty seconds track. While 100% of the track
can be covered in the case of time annotations or pitch tracks, time-frequency an-
notations are partial, and prone to errors (see the experimental section for more
details). Moreover, time-frequency annotations are difficult to correct since the
contribution of one time-frequency bin to the signal is difficult to discriminate by
listening. In the next section, we explain how NMF can exploit such incomplete
and partly incorrect annotations to provide a complete source separation mask.
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4.2 Annotated NMF
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Figure 4.4: Semi-supervised NMF may be understood as solving G matrix com-
pletion problems, coupled by a matrix factorization problem.

In this Section we show how NMF may be extended to take into account
time-frequency annotations. These come in the form of incomplete masks M

(g)
fn ,

whose values are defined on a subset L of the time-frequency plane. An example
of user annotations is displayed in Figure 4.3, where time-frequency masks take
values in {0, 1}. Each color corresponds to one source, and we assume that only

one source is active at each time-frequency bin. Ideally, coefficients M
(g)
fn should

be equal to the Wiener coefficients in [0, 1], so the general admissible form of
time-frequency masks will be :

M
(g)
fn ∈ [0, 1]

∑

g

M
(g)
fn = 1 ∀(f, n) ∈ L . (4.1)

In a first step, we could consider recovering source spectrograms by matrix
completion : for each source g, define target values Ṽ

(g)
fn = M

(g)
fn Vfn. In the

noiseless case, this would amount to solving G inpainting problems :

Find W (g) ≥ 0, H(g) ≥ 0 .

subject to (W (g)H(g))fn = Ṽfn .
(4.2)

We should also introduce the additional constraint of reconstructing the mixed
spectrogram :

Solve V = WH .

subject to (W (g)H(g))fn = Ṽ
(g)
fn ,

W ≥ 0, H ≥ 0 .

(4.3)
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where
Ṽ

(g)
fn =M

(g)
fn Vfn (4.4)

The noiseless formulation gives an idea of how manually labelled spectrograms
are handled by our algorithm. As illustrated in Figure 4.4, it may be interpreted
as G inpainting problems, one for each source, coupled together by an NMF
problem. We now extend this formulation to the noisy case.

Let L be the set of annotated bins, and M
(g)
fn a set of time-frequency masks

such that : M
(g)
fn ∈ [0, 1], and

∑

gM
(g)
fn = 1 if (f, n) ∈ L,

∑

gM
(g)
fn = 0 other-

wise. For annotated time-frequency bins, we use M
(g)
fn Vfn as a target for V

(g)
fn .

The remaining entries of (W,H) are then computed so as to fit the observed
spectrogram. This idea translates into the following optimization problem :

min
∑

(f,n) dIS(Vfn, V̂fn) . . .

+λ
∑

(f,n)∈L

∑

g∈G dIS(Ṽ
(g)
fn , V̂

(g)
fn ),

W ≥ 0, H ≥ 0

(4.5)

where
Ṽ

(g)
fn =M

(g)
fn Vfn V̂

(g)
fn =

∑

k

W
(g)
fk H

(g)
kn . (4.6)

The second and third sums in Eq. 4.5 act as soft versions of the constraint that
V̂

(g)
fn be equal to its target valueM

(g)
fn Vfn. We may tune the relative importance of

annotation by varying parameter λ, from λ = 0 (standard NMF), to λ→ +∞ (in
which case (WH)fn = V g

fn is enforced exactly if there are any feasible solutions).
Thus, robustness to uncertainty in the annotations is introduced by replacing
hard constraints by penalty terms in the NMF optimization problem. Note that
since annotations dictate the assignment of components to sources, there is no
need to group components by hand.

Due to the constraint, that there is only one dominant source per time-
frequency bin, our model cannot handle time annotations such as those found
in [Ozerov et al., 2011], unless there are only two sources. However, when there
are more than two sources, a simple extension of 4.5 allows dealing with the case
where more than one source is allowed to be active (see Section 4.5.2).

Remark 2. Given that some values are set to zero, we replace the IS-divergence
dIS(x, y) by dIS(ǫ + x, ǫ + y) (where ǫ = 10−10) in our optimization problem, in
order to deal with numerical instabilities.

4.3 Towards a supervised algorithm for

annotation

Research in computational audio scene analysis (CASA) has emphasized the role
of frequency tracks in source identification : indeed by looking at a spectrogram,
it is easy to assign a significant number of frequency tracks either to a voiced
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source or a musical source (see Figure 4.2). In previous works, such cues have
been used to compute a similarity matrix that would then be used to perform
clustering, see [Lagrange et al., 2008, Bach and Jordan, 2004]. We propose here
a supervised learning procedure to predict annotations automatically.

This is a radical change of perspective since in this case, we will use training
data to supervise these “detectors”. We argued in previous chapters that some
benchmark datasets in source separation such as the “Professionally Produced
Music Recordings” task in SISEC where too small to train NMF. Across tracks
variations are so important that training NMF on some tracks would not allow
to generalize well to the other tracks. Indeed, state-of-the art algorithms are
obtained by blind source separation systems using either additional modelling
of the sources [Durrieu and Thiran, 2012], or exploiting stereo tracks to learn
spatial models [Ozerov et al., 2012].

The detectors we present in this Section, on the other hand, are built on
typical cues from CASA : frequency co-modulation and harmonic stacking will
be captured by oriented filters proposed in Section 4.3.4. As we will see in Section
4.3.2, the detection task we propose to solve is very noisy : very similar time-
frequency patches may have very different labels. However, we count on the fact
that some cues such as frequency co-modulation, clearly identify time-frequency
bins where voice is dominant. Also we expect such cues to be used in a supervised
setting, i.e., they should generalize well from train to test set, even with the wide
inter-track variations seen in databases such as SiSEC.

4.3.1 Learning algorithms

For convenience we use index i ∈ {1, . . . , I} to denote time frequency bins (f, n),
so that I = FN . For each time-frequency bin i, a set of features is xi extracted to
describe local information in the neighborhood. The training data thus consists
of pairs (xi, yi) where yi = (M

(1)
i , . . . ,M

(G)
i ) are the optimal masking coefficients

computed using ground truth source signals.

We thus face a classical machine learning task which consists in fitting a
smooth decision surface f : X → [0, 1]G to the observed data points (xi, yi). Orig-
inally we were considering classification, i.e., predicting binary values of masking
coefficients. However, since masking coefficients are allowed in [0, 1], we finally
opted for regression algorithms.

In order to alleviate the computational burden, we make two restrictions on
the learning procedure : vectors yi are predicted independently, and based only
on local information xi (contrary to [Lagrange et al., 2008, Bach and Jordan,
2004] who use global cues such as multi-pitch detectors). Since there is scarce
literature related to our approach, we experimented with several features and
several algorithms in order to get an idea of how hard the problem is.

The interference patterns observed on the training set are interpolated with
standard regression algorithms [Hastie et al., 2009].
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K-Nearest neighbors : for each test point x
(test)
i , the Q nearest points

x
(train)
j , j ∈ {1, . . . , Q} from the train set are used to predict M

(g)
i =

1/Q
∑

j M
(g)
j .

K-means : We learn Q clusters from the train set; for each cluster, we com-
pute average prediction coefficients M

(g)
q . For each test point, we predict

M
(g)
q from the nearest cluster q.

Random Forests: We learn Q regression trees of depth d from the train
set and average over the Q predictions for each test point.

Figure 4.5 displays the accuracy of our detectors trained on a toy dataset.
As we can see, random forests interpolate a sharper decision boundary thanks
to bagging. Moreover, recursive partitioning of the input space allows keeping a
low test time complexity as the training data size grows.

SVMs were considered in the first place, but abandoned because of the di-
mensionality of the problem : in our experiments the train set consisted of 104

points in dimensions up to 200, while the test sets were of size 105 with the same
dimensions.
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(c) Random Forest

Figure 4.5: Comparison of textbook detectors on the checkers dataset. Test
points (’x’ and ’o’ markers) are plotted on top of the decision surface. For all
three experiments, Q = 100. d = 10 for random forest.

4.3.2 Features

Several features and transformations of these were considered according to the
data extraction chart in Figure 4.6.

4.3.3 Raw Patches

The features we use for regression are simple time-frequency blocks extracted
from the SiSEC 2010 database. (train set : 5 tracks 10 to 30 seconds’ long; test
set : 5 tracks of several minutes). Blocks of a given size are extracted those with
lowest energy are discarded. They are then normalized to have unit norm so that
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transform
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Figure 4.6: Data extraction flow chart

patches extracted at high frequencies are comparable to patches extracted at low
frequencies. We also considered taking the log of patches, and adding coordinates
of the patch as additional information.

Examples of raw patches extracted from the SiSEC 2010 database are shown
in Figure 4.8. Patches are colored according to the value of their Wiener coeffi-
cients : red if M

(1)
fn = 1 (accompaniment), green if M

(1)
fn = 0 (voice). As we can

see, regressing Wiener coefficients onto local time-frequency patches is a hard
task : very similar patches may have widely different labels.

4.3.4 Oriented filters

Gabor wavelets are widely used in texture discrimination because they are sen-
sitive to specific orientations in the signal, as illustrated in Figure 4.7 :

gω,θ(x, y) = exp

(

−
x2 + y2

2σ2
+ iω(x cos θ + y sin θ)

)

. (4.7)

the Fourier transform of g is highly concentrated around (ω cos θ, ω sin θ), so θ
controls the spatial orientation of the wavelet, and ω its scale.

For every patch f ∈ R
p×p computed in the previous subsection, we compute

a new feature vector :
(
|〈f, gω,θ〉|

2)

ω∈Ω,θ∈Θ
, where Θ = 2π

K
{0, . . . , K − 1}, Ω =

2π
p
{0, . . . , p− 1}.

The number of orientations K is chosen arbitrarily (it will be cross-validated
eventually). The bandwidth is not a critical parameter so we set it to σ = p for
all experiments. The new feature vector allows classifying patches according to
their orientation and scale, which makes more sense than classifying pixel values.
Another asset is that the size of the feature vector grows as p instead of p2 for
raw patches.

They are then normalized to have unit ℓ1 norm so the features are scale
invariant. We also considered taking the log of patches, adding coordinates of
the patch as additional information, and taking a Gabor transform of the patches.
The Gabor transform in particular was introduced so that correlations between
pixels in each time-frequency blocks is taken into account. Such oriented filters
were also used [Yu and Slotine, 2009, Bach and Jordan, 2004].
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Figure 4.7: Repartition of the energy of gabor wavelets at a given scale and
orientations kπ/4 for k = 0, . . . , 7, in the 2-D Fourier plane.

As noted in [Bach and Jordan, 2004] they may be related to harmonic stacking
and frequency co-modulation in CASA terminology.
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Figure 4.8: Samples of patches extracted from the SISEC database. Intensity
reflects amplitude, patches which are labeled as accompaniment are in red, while
patches which are labeled as voice are in green. Patches in brown have mixed
Wiener coefficients.

4.3.5 Averaging training labels

A desirable feature of our detector is that it should be robust to the chosen
discretization of the time-frequency plane. To achieve this property we introduce
a small amount of averaging of yi in the neighborhood of the time-frequency bin
i. As we will see in 4.5.1, averaging reduces the prediction error or our detector
at the cost of biasing predictions towards 0.5.
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4.4 Experimental results

4.4.1 Description of music databases

We used two publicly available databases in our experiments: the QUASI database1

and the SISEC database for Professionally produced music recordings2 (PPMR).
All source tracks were down-sampled from 44100 Hz to 16000 Hz, and down-
mixed to mono by taking the average of left and right channels. A voice track
and accompaniment track are then created by aggregating the various source files,
and then a final mix is created by summing the two tracks. Sine-bell windows of
size 1024 with 512 overlap were used to compute short time Fourier transforms.
The QUASI database contains longer tracks that are amenable to time anno-
tations. The SISEC database contains short tracks where only time-frequency
annotations can be used. Although detailed instrumental tracks are provided for
most of the mixtures, we work only on single-channel signals. Since we are dealing
with under-determined mixtures, we restrict ourselves to separating voice from
accompaniment in each track, in order to alleviate the difficulty of the problem.

4.4.2 Ideal performance and robustness

SDR1 SDR2 SIR1 SIR2 SAR1 SAR2
0.1 % -0.02 -0.60 5.15 5.16 3.62 2.33
1 % 0.70 0.24 4.59 6.25 4.39 2.85
10 % 6.71 6.68 13.57 16.53 7.95 7.40
100 % 10.40 10.41 19.88 20.88 11.00 10.88

Table 4.1: Mean results on the SISEC database, as the proportion of annotation
increases.

Table 4.1 displays source separation results achieved by semi-supervised NMF
on the SISEC database when fed with the actual Wiener coefficients computed
from the ground truth sources. Source separation performance is measured by
Source to Distortion Ratio (SDR), Source to Interference Ratio (SIR), and Source
to Artefact Ratio (SAR). Higher values indicate better performance. As we can
see, satisfactory results are obtained with as little as 10% of annotations. When
100% of annotations are given, NMF does nothing and the computed masks are
simply the ideal Wiener coefficients computed from the sources.

We study the robustness of our NMF routine by replacing part of the ideal
annotations by noise to simulate human errors. Table 4.2 displays average SDRs
obtained when fixing the annotation rate to 10% and varying either the rate of
wrong annotations p or the optimization parameter λ. As expected, for fixed

1www.tsi.telecom-paristech.fr/aao/
2sisec.wiki.irisa.fr
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λ the average SDR drops as p increases. When p is fixed, there is an optimal
value of λ that trades off the benefits and drawbacks of annotations. Fixing the
target annotation rate to 10%, satisfactory results are obtained with up to 10%
of wrong annotations (i.e., 1% of the spectrogram). Note that wrong annotations
were simulated by choosing at random p% of the annotations and replacing them
with uniform draws in [0, 1].

λ p = 0 p = 0.05 p = 0.1 p = 0.2 p = 0.5
10−1 0.11 -0.08 -1.76 -1.47 -1.47
100 5.59 4.10 3.50 2.29 1.20
101 7.59 6.53 5.32 3.43 0.59
102 7.07 5.66 4.54 3.15 0.77

Table 4.2: Mean SDR value as λ and the proportion of wrong annotations vary.
The proportion of annotations is set to 0.1

4.4.3 Evaluation of automatic annotations

method mean error (% improvement)
4 8 loggabor km avg 0.141 ±0.018 (0.1493)
4 16 wcoords knn avg 0.140 ±0.015 (0.1589)
4 8 wcoords knn avg 0.138 ±0.015 (0.1682)
4 32 loggabor rf avg 0.137 ±0.013 (0.1736)
4 32 loggabor knn avg 0.137±0.010 (0.1739)

Table 4.3: Mean error on Wiener coefficient predictions on the SISEC database
(% improvement over random prediction), for various learning strategies .

Learning algorithms were trained by dividing the SISEC database in two sets
of tracks. For each set, we train detectors and test them on the other set. Thus
we may compute annotations and run semi-supervised NMF for all tracks without
the risk of overfitting. We emphasize the fact that each track is annotated with
a detector that has never seen the spectrogram before : our method is purely
supervised with no adaptation to test data. Parameters of the learning algorithms
were selected at train stage by cross-validation. Time-frequency patches of size in
{4, 8} × {8, 16, 32} were extracted. Out of each track we extract 5× 103 patches
at train time, and 105 patches a test time, so approximately 10% of the track is
annotated at test time when semi-supervised NMF is called.

We display in Table 4.3 the results of the best 5 detectors, in terms of mean
prediction error (first column) and in terms of relative improvement over a purely
random predictor (see Section 4.5.1 for a precise definition).

Detectors are named after the following rule : {patch size} {feature} {learning
method} {averaging or identical}. For instance, the tag loggabor corresponds
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(a) Automatic

(b) Correct

Figure 4.9: Comparison of automatic annotations and correct annotations (at the
same time-frequency bins). Gray-scale time-frequency bins are not annotated, red
bins are annotated as accompaniment, green bins as voice.
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to taking log then Gabor transform of patches, and wcoords adding frequency
coordinates of the patches as side information. Note that we used exact Wiener
coefficients to compute errors, so that all detectors can be compared even when
averaging was used at train stage. The improvement over a random predictor
is consistent across the features and the algorithms that were used. Figure 4.9
compares annotations provided by the best detectors from Table 4.3 with ideal
annotations at the same points were automatic annotations were made. Red
time-frequency bins correspond to accompaniment, and green to voice.

The most striking observation is that, while ideal annotations are in very
bright colors (few Wiener coefficients are different from 0 or 1), automatic an-
notations, on the other hand, are generally biased towards 0.5. This is to be
expected since predicting 0.5 incurs a risk of losing at most 0.25 (since we use
a regression loss), while predicting 0 or 1 incurs a maximum loss of 1. The
main asset of automatic annotations is that pitch tracks with varying frequency
are successfully predicted as voice. Automatic annotations are biased towards
predicting voice in the higher frequencies : however the learning algorithm in
this example did not have the information of frequency. This might be because
transients “look” a lot like patches of unvoiced speech. Finally, one may spot
inconsistencies in the predictions in the sense that points belonging to the same
pitch tracks are sometimes classified incoherently, which is not surprising since
the learning algorithms we have proposed predict time-frequency bins indepen-
dently.

To sum up, predictions of Wiener coefficients from local patches are not per-
fect but provide a good starting point for further modelling of the spectrogram.
We expect that better performance could be obtained by using more advanced
cues from CASA, such as pre-clustering the spectrogram into pitch tracks and
transient tracks, before learning3.

% annotated % correct
track 1 0.23 0.91
track 2 0.10 0.89
track 3 0.29 0.91
track 4 0.17 0.81
track 5 0.22 0.95

Table 4.4: Evaluation of user annotations on the SISEC database.

4.4.4 Overall results

We now turn to results obtained by semi-supervised NMF combined with various
annotation methods. On the SISEC database, manual time-frequency annota-
tions were done with the GUI presented in Section 4.1. On the QUASI database,

3This is very similar to what is done in vision, where super-pixels help deal with consistency
in prediction and alleviate the computational burden of predicting all pixel values.
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auto user (t-f) baseline self oracle
SDR1 0.97 6.21 6.16 3.09 14.79
SDR2 0.51 2.58 1.61 -3.18 11.53
SIR1 3.17 18.64 9.91 3.09 24.00
SIR2 4.57 11.35 5.09 -3.18 23.90
SAR1 6.74 6.91 9.26 279.17 15.41
SAR2 4.18 3.91 5.58 279.17 11.84
% ann. 8.69 19.81 0.00 0.00 100.00

(a) SISEC

auto user (t) baseline self oracle
SDR1 6.76 7.59 6.29 6.21 16.88
SDR2 -4.33 -4.57 -1.71 -6.22 10.37
SIR1 6.97 15.05 13.81 6.21 25.62
SIR2 -3.75 4.09 1.88 -6.22 24.83
SAR1 21.91 9.00 7.71 268.45 17.66
SAR2 10.28 0.21 4.29 268.45 10.60
% ann. 6.91 100.00 0.00 0.00 100.00

(b) QUASI

Table 4.5: Results on the evaluated databases: (a) time-frequency annotations,
(b) time annotations.

tracks were amenable to significant time annotations, so by comparing results on
both databases we can compare the respective benefits of time-frequency anno-
tations VS time annotations.

In both scenarios, we compare five methods :
auto : Automatic annotations and semi-supervised NMF. The best detector
from Table 4.3 was chosen.
user : User annotations and semi-supervised NMF (time-frequency annota-
tions for SISEC, manual annotations for QUASI). We tried K ∈ {5, 10, 20}
for the SISEC database and {10, 20, 50} for the QUASI database, as well as
λ ∈ {1, 10, 100}, and selected parameters yielding highest SDR for fair compari-
son with the baseline.
baseline : Run NMF and permute factors to obtain optimal SDR. We set
K = 8 because it already takes a 10 times as long to evaluate SDRs for all
permutation on a single track as it takes to run semi-supervised NMF.
self : set s(g) = 1

G
x as estimates for the sources, it serves to estimate the difficulty

of the source separation problem for a given database.
oracle : results obtained with Wiener coefficients computed from the ground
truth. In addition we display track by track annotation accuracy for user an-
notations, for comparison with Table 4.2. For each method, we ran NMF three
times for 1000 iterations to avoid local minima, and kept the run with the lowest
objective cost value.
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Tables 4.5a and 4.5b display average evaluation metrics for each source (source
1 is always the accompaniment, and source 2 is always the voice), on two differ-
ent databases : on the SISEC database, we experimented with time-frequency
annotations since the tracks were too short for time annotations. Overall, results
on the SISEC database are better than those on QUASI. Our interpretation is
that since most of the time the accompaniment is active, the dictionaries tend
to overfit the accompaniment and underfit the voice. Time-frequency annota-
tions on SISEC yield SDRs that are a few points below that predicted by our
benchmark from Table 4.2 : indeed human errors are not distributed randomly
as was the case in our benchmark. Time-frequency annotations outperform the
baseline by 1 point in SDR, which is important because in semi-supervised NMF
there is no manual grouping of the components, whereas the baseline required
knowing the ground truth to find the optimal permutation of components. Time
annotations loose to the baseline by −1 in SDR, but they are still significantly
correlated with the true sources when compared with the baseline.

On the SISEC database, automatic annotations are also below the baseline,
however they are also significantly correlated with the true sources, when com-
pared with the “self” column. Signal to Interference Ratios are even comparable
with those of the baseline on the SISEC database. Automatic annotations do
not perform as well on the QUASI database since we trained detectors only on
tracks from SISEC, so that more supervision would significantly improve those
figures.

For the sake of completeness, we display in Appendix B track by track detailed
results. Audio samples are available online4.

4.5 Miscellaneous

4.5.1 Detailed comparison of detectors

We plot in Figure 4.10 the expected distance
√

E((ŷ − y)2|y) of predicted val-
ues ŷn conditional to observed values y, as a function of y. The dashed curves
correspond to a uniformly random predictor, for which the mean error can be
computed explicitly:

√

E((y − ŷ)2|y) =

√

1

12
+ (y −

1

2
)2 . (4.8)

Like the other prediction curves, it has a bell shape and is minimum for y = 1
2
.

The default classifier is a random forest fed with raw patches with a log
transform taken on rectangular 8 × 32 time-frequency windows. As we can see,
while our classifiers are able to retrieve patches that correspond to isolated sources
accurately, they make more mistakes when mixing coefficients are equal. The
distribution of the Wiener coefficients provides one explanation for that : Wiener

4www.di.ens.fr/~lefevrea/annot.html
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Figure 4.10: Mean distance of the predicted Wiener coefficient ŷ to the ob-
served value y, as a function of the true value, for various combinations of fea-
tures/algorithms. Dashed lines are the theoretical error achieved by the uniform
predictor (pure chance prediction).
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coefficients tend to concentrate around 0 and 1, so mixed patches count less in
the minimization criterion. The parameters we put in the grid are the size of
windows (width and height), the type of predictor (K-nearest neighbor, k-means
based and random forest), the type of features, and finally the amount of spatial
averaging of the Wiener coefficients.

We found that two parameters were crucial in reducing the prediction error :
choosing random forests and averaging masking coefficients yi over small time-
frequency neighborhoods of the same size as that used for extracting features xi.
While this biases the predictions yi towards 0.5 as we can see on Figure 4.9, it also
allows predicting more accurately time-frequency bins where sources have equal
amplitudes V̂

(g)
fn : in this sense, smoothing the training data points yi decreases

the false prediction error. However, as the size of the neighborhood increases,
false prediction error stays the same but true prediction errors E(‖y−ŷ‖2|y = ±1)
increase.

Finally, using time-frequency coordinates (f, n) as features did not improve
prediction error significantly.

4.5.2 Extension of annotated NMF with more than one
dominant source

In this section, we show that our framework may be extended to handle time-only
annotations when there are more than 2 sources. In this case, we cannot make
the assumption that only one source is dominant per time frame anymore. We
adapt our formulation accordingly in Section 4.5.2.1, and provide experimental
results on a three instrument track from the QUASI database.

4.5.2.1 Mathematical formulation

L is the set of annotated time indices n. While in the time-frequency annotations
case we allow only one active source at each annotated time-frequency bin, in the
case of time annotations, there may be several. For each time frame n, the set
pres(n) denotes all sources that are annotated as active and abs(n) all sources
that are annotated as inactive, so that pres(n)

⋃
abs(n) = {1, . . . , G}. Problem

4.5 is then naturally generalized to :

min
∑

f,n dIS(Vfn, V̂fn) + . . .

λ
∑

n∈L

∑

f dIS(Vfn,
∑

g∈pres(n) V̂
(g)
fn ) + . . .

λ
∑

n∈L

∑

f dIS(0,
∑

g∈abs(n) V̂
(g)
fn ) ,

subject to W ≥ 0H ≥ 0 .

(4.9)

where V̂
(g)
fn =

∑

kW
(g)
fk H

(g)
kn .

4.5.2.2 Source separation of three instrumental tracks

We display here separation results on a mix of three instruments. The task is
particularly difficult because the drum source is always active, as can be seen on
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Figure 4.11. Compared to random estimates, the baseline and time-annotated
methods manage to obtain better estimates of piano and guitar. However, only
time-frequency annotations might still improve upon those results, which are far
below standards.

time
 

 
1:drums

2:piano

3:guitar

Figure 4.11: Time annotations used for the three instruments’ track.

user baseline self oracle
sdr1 5.30 9.53 8.79 17.26
sdr2 -7.72 -6.73 -11.06 6.57
sdr3 -4.86 -7.80 -13.37 4.99
sir1 21.98 13.43 8.79 24.12
sir2 -1.90 0.89 -11.06 19.58
sir3 5.04 1.17 -13.37 18.81
sar1 5.42 11.99 261.79 18.28
sar2 -2.34 -3.31 261.79 6.84
sar3 -3.21 -4.75 261.79 5.24
% ann. 100.00 0.00 0.00 0.00

Table 4.6: Source separation results for a track with three instruments

As we can see on Table 4.6, time only annotations are not sufficient to retrieve
good enough source estimates.

4.5.3 Handling uncertainty in automatic annotations

While the detectors proposed in Section 4.3 masking coefficients M
(g)
fn ∈ [0, 1],

values such as (0.5, 0.5) do not really indicate that sources are mixed in these
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proportions. Instead, we interpret a value of (0.5, 0.5) as a measure of uncer-
tainty : the probability that source 1 is dominant in this time-frequency bin is
0.5. This time-frequency bin should thus be discarded from the set of labelled
time-frequency bins L. In this Section, we introduce a weighting term to take
into account this uncertainty.

We introduce a weighting term µfn, that depends on M , in order to compen-

sate for uncertainty in our estimate of V
(g)
fn . Assume the time-frequency index

(f, n) is fixed and we observe X =
∑

k xk, where xk ∼ N (0, vk). Then the dis-
tribution of x = (x1, . . . , xk) conditional on the value of X is also a Gaussian
distribution. The expectation and variances are as follows :

Ex = mX
E(x− Ex)(x− Ex)⊤ = v(diagm−mm⊤) .

(4.10)

where mk = vk∑
l vl

and v =
∑

k vk. In particular, each individual prediction has

variance mk(1−mk)v. We propose then to compute the weight µfn as :

µfn = 1−
G

G− 1

∑

g

M
(g)
fn (1−M

(g)
fn ) . (4.11)

Thus 0 ≤ µfn ≤ 1 and µfn = 0 if all M
(g)
fn are equal, µ compensates for

the fact that Wiener coefficients bring us a lot of information although it is not
perfect.

As a consequence, we use the following complete formulation of semi-supervised
NMF in our algorithm:

min
∑

(f,n) dIS(Vfn, V̂fn) + λ
∑

(f,n)∈L µfn

∑

g∈G dIS(M
(g)
fn Vfn, V̂

(g)
fn ),

W ≥ 0, H ≥ 0
(4.12)

where

Ṽ
(g)
fn =M

(g)
fn Vfn V̂

(g)
fn =

∑

k

W
(g)
fk H

(g)
kn . (4.13)

It only differs from 4.12 by the additional term µfn in the second term. This
implies only minor changes in the algorithm itself. In practice, if there are two
sources and masking coefficients take values in (0.5, 0.5), then µfn = 0 and the
penalty term for time-frequency bin (f, n) disappears.

4.5.4 Predicting source specific time intervals

To improve the reliability of our detectors, we try predicting time-only anno-
tations on long audio tracks from the QUASI database. We first show that
time-only annotations may be cast as an averaged version of time-frequency an-
notations, so that we may combine the output of any of the detectors proposed
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Figure 4.12: Average prediction error (µ̂
(1)
n − µ

(1)
n )2 plotted against true µ

(1)
n , for

various detectors trained on the SISEC database.

previously to predict time annotations. We then examine how these results com-
ply with manual annotations, since those have very small error. Finally we com-
pare source separation results when combining these automatic time annotations
with our NMF algorithm.

Define by µ
(g)
n the relative amplitude of source (g) at time n, i.e., the ratio

of the energy of source (g) to the total energy of the signal. The following

relationship holds (in expectation w.r.t. to the Gaussian random variables S
(g)
fn ):

µ(g)
n =

∑

f |S
(g)
fn |

2

∑

f,g′ |S
(g′)
fn |

2
=

∑

f µ
(g)
fnVfn

∑

f Vfn
. (4.14)

Thus µ
(g)
n is a weighted average of the same Wiener coefficients that are the

output of our detectors. In practice, in order to save computational resources, we
only predict a fraction of the indices f , so we compute approximate averages with
only those indices. Figure 4.12 displays prediction error averaged over all tracks
from the QUASI database, for various detectors that were trained on the SISEC
database. Results could be further improved by using data from the QUASI
database.

4.6 Related work

Although our formulation of semi-supervised NMF is entirely novel, we were
strongly inspired by work on matrix completion : matrix factorizations is one
among other techniques used to perform matrix completion [Srebro and Jaakkola,
2003] or solve the problem of inpainting [Bertalmı́o et al., 2000]. Our work on
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supervised detection was inspired by [Yu and Slotine, 2009], who have built audio
classifiers based on measures of local time-frequency information.

Our approach is closely related to discriminative learning of time-frequency
masks proposed in [Emiya et al., 2009], although we did not know of this approach
at the time we published our work. We were inspired by methods proposed [La-
grange et al., 2008, Bach and Jordan, 2004], which are unsupervised, in contrast
to ours : instead of estimating a model and comparing it to data, only pairwise
comparison between data points are used. More information is used than in our
setting to compute those comparisons : in particular, both papers rely on some
kind of multi-pitch detection scheme to compare time-frequency bins that are far
apart in frequency coordinates.

4.7 Conclusion

We have introduced in this chapter an extension of NMF that shares similarities
with inpainting and allows incorporating user-provided side information, that is
specific to the mixed signal at hand. Our framework generalizes the case of using
time annotations or score information to initialize H with zeros where sources
are known to be absent.

A striking difference between time-frequency annotations and time annota-
tions is the performance quickly reaches its limits even when 100% of the track
is annotated. In contrast, if 100% of correct time-frequency annotations are pro-
vided, the source separation result are perfect. As we have shown in Section
4.4.2, even with 20% of annotations, the obtained estimates are very satisfactory.

This calls for new exciting directions in source separation. Indeed, the task
of annotating time-frequency regions is very hard, even for trained users having
both a good ear and a good knowledge of time-frequency representations. It is
therefore important to develop automatic annotations tool which might comple-
ment user annotations. To this end, we have experimented with simple regression
techniques, such as random forests, using local time-frequency information.

Several improvements might be made to our automatic annotation unit :
incorporating features from multipitch detection was indeed critical in [Bach and
Jordan, 2004, Lagrange et al., 2008]. Another drawback of our detectors is that
masking coefficients are heavily biased towards 0.5 : in our opinion this is due to
the use of the ℓ2 loss. The logistic loss is better suited to predicting coefficients
whose distribution is strongly concentrated around 0 and 1.

We view our contribution to training automatic detectors as a starting point
to multiple working directions : in addition to technical improvements to the
particular system we have proposed, there may be other ways to build automatic
annotation tools.

One idea would be to alternate annotations and runs of semi-supervised NMF,
then in the next rounds correct wrong annotations, etc. However, in our own
experience, correcting annotations is hard, because the contribution of a small
time-frequency region to the global source estimate is difficult to “hear apart”.
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However, it is worth thinking about the concept of reinforcement learning, which
in our case means that annotations would be successively proposed by the system
and corrected by the user.





Chapter 5

Conclusion

In this thesis we have made several contributions to audio source separation.
These contributions are independent and complementary, each one of them tack-
les a different aspect of learning for audio signals, but they may be combined
together seamlessly. Each of them opens perspectives for future work.

First we have experimented in Chapter 2 with group-sparsity penalized NMF
in signals which in some parts are mixed and in other parts feature isolated
sources. In this case, group-sparsity allows identifying which segment are mixed
and which segment are isolated. Actually, source specific models may also be
learnt in a more general setting : in the case where each source is modelled by
only one dictionary element, then provided that for each source, there is at least
one long segment where this and only this source is missing, it was shown in
[Laurberg et al., 2008a] that learning NMF on the mixed signal is equivalent to
learning NMF on each signal in isolation and then using that to separate sources.
If more than one component per source is needed, theoretical results must still be
investigated. We have proposed a criterion to select the penalty parameter based
on tools from statistical theory. It is a competitive alternative to cross-validation,
and may be used to select parameters as soon as a generative model of the data
is provided. Compared to selection methods based on probabilistic extensions
(Bayesian nonparametric methods)[Zhou et al., 2009, Tan and Févotte, 2009,
Hoffmann et al., 2010b], it is more computationally demanding but on the other
hand it may be used out of the box without the need to modify the algorithm
used to estimate the dictionary and activation coefficients.

There are still algorithmic challenges in sparse NMF, namely finding algo-
rithms which do not suffer from absorbing zeroes. Current algorithms are still
slow when compared to running NMF with the Euclidean loss. Alternatives to
multiplicative updates based on active set algorithms [Kim and Park, 2008] or
block coordinate descent [Gillis and Glineur, 2012] are interesting candidates that
may be studied in the general case of β-divergences. Once efficient solutions are
found for sparse NMF, more elaborate sparsity inducing terms should be investi-
gated. Recent contributions have been made to take into account local structure,
with smoothness penalties or hidden Markov models [Mysore et al., 2010, Févotte,
2011a, Virtanen, 2007, Vincent et al., 2010b, Virtanen et al., 2008]. But it is also
important to look at larger time intervals, at the level of sentences in speech, of
bars and verses in music.
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Figure 5.1: Excerpt of sheet music from second Mozart Piano Sonata K. 332.

Using score information to perform source separation was proposed before,
and is still an active topic of research. The main problem is that of performing
audio to score alignment : dynamic time warping, hidden Markov models [Cont,
2006, Montecchio and Cont, 2011] and conditional random fields [Joder et al.,
2011] were investigated. Independently from the problem of alignment, parsing
scores and extracting prior information about the most likely sequences of notes
in polyphonic music might be of substantial help in polyphonic transcription.
One might think of such information as clues on the kind of initial points to try
when estimating activation coefficients. In order to encode such priors, depen-
dencies in the range of a quarter of a second, i.e. 10 time bins, should be taken
into account, which is already intractable for Markov models. In the last years,
efficient methods have been proposed to overcome the limitation of Markov mod-
els : conditional random fields (CRF) [Lafferty et al., 2001] provide a framework
to model dependency between latent variables at a given time and observations
at any point in the future or the past, while still assuming a Markov property for
latent variables.

Our second contribution in Chapter 3 is an online algorithm to learn dictionar-
ies adapted to the Itakura-Saito divergence. We show that it allows a ten times
speedup for signals longer than three minutes, in the small dictionary setting. It
also allows running NMF on signals longer than an hour which was previously
impossible. The approach we take in our contribution [Lefèvre et al., 2011b]
was inspired from [Mairal et al., 2010], who additionally show in the Euclidean
setting that limit points of the algorithm are stationary points of an abstract
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function, provided minimal assumptions on the distribution of the data. Their
algorithm is itself inspired by incremental EM algorithms [Neal and Hinton, 1998]
which have been around for a long time now. Compared to popular stochastic
gradient descent algorithms [Robbins and Monro, 1951], the method of averaging
auxiliary functions is more robust in the sense that it does not depend on the
careful tuning of a learning rate. Extensions of online NMF were proposed, in
the Euclidean setting, to the case of convolutive NMF [Wang et al., 2011]. In
the case of the Itakura-Saito divergence, additional penalties such as the group
structured penalty proposed in Chapter 2 may be handled straightforwardly.

Online dictionary learning opens exciting prospects for dictionary learning
on large scale audio databases. For instance, instrument specific dictionaries
might be learnt on full-length databases such as the Iowa database. It would
be interesting to extend this work to overcomplete dictionaries with sparsity
penalties, so that the number of components in the dictionary can match tens of
hours of audio recordings. This in turn implies additional algorithmic challenges
when estimating sparse decomposition coefficients.

Our third contribution, presented in Chapter 4, goes back to short signals
and blind separation : we introduce in NMF additional constraints on the es-
timates of the source spectrograms, which are related to the optimal masking
coefficients. Other approaches to user informed source separation had been pro-
posed before [Wang, 2009, Hennequin et al., 2011, Durrieu and Thiran, 2012].
Our contribution is closer in spirit to inpainting techniques based on matrix fac-
torization [Roux et al., 2011, Adler et al., 2012]. In an ideal setting where part
of the ground truth optimal masks is known, we achieve state-of-the-art source
separation results, while being robust to small but significant amounts of errors
in the masking coefficients. In order to retrieve optimal masking coefficients
we appeal to techniques from computational audio scene analysis (CASA) and
obtain promising results, which suggest interesting connections between CASA
techniques and blind source separation. A quantized nearest-neighbor algorithm
was also used in [Emiya et al., 2009] to predict masking coefficients based on
training data consisting of mixed signals plus known sources. This approach is
an interesting “discriminative” counterpart to the more “generative” approach
of learning one dictionary per source and using concatenated dictionaries at test
time. User annotations give satisfactory results, but are very time consuming and
require a lot of training. Automatic tools should be provided to help the user and
propagate his annotations quickly. As regards automatic annotations, the tools
we have provided in this thesis need additional work : in particular, using more
adapted losses based e.g., on generalized linear models [MacCullagh and Nelder,
1989] may reduce the bias observed in Section 4.4.3. Moreover, more features
such as multipitch information should be added to obtain comparable results to
[Bach and Jordan, 2004, Lagrange et al., 2008]. In a broader perspective, tak-
ing into account dependencies between labels may be done in two ways : either
pre-clustering the spectrogram in pitch tracks and then predicting annotations
for each pitch track independently, as is done for instance in [Reyes-Gomez and
Jojic, 2011], or introducing local dependencies between labels in the framework
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of Markov random fields. Structured output methods [Joachims, 2005] also offer
the possibility of modelling dependencies between latent variables.

Audio source separation is an example of the rich interplay between machine
learning, optimization and signal processing. Starting from the open problem of
single-channel source separation, machine learning offers generic tools to learn
models either based on training data or in an unsupervised fashion. Adapting
these tools and scaling them to the size of audio collections in turn poses signifi-
cant optimization issues. Algorithmic solutions open the way for more imagina-
tive solutions : how can we use additional data, additional information ? What
are the new machine learning tools we need to use this information and solve our
problem. This interplay between many fields of applied mathematics is at the
heart of the contributions we have presented in this thesis.



Appendix A

Projected gradient descent

The following theorem may be found in [Bertsekas, 1999]. For simplicity we
assume that f is twice continuously differentiable although the results presented
here hold under weaker assumptions.

Figure A.1: Illustration of the stationarity property for a constrained minimum
problem. There is no feasible direction y − x that locally decreases the value of
f(x⋆).

Definition 1. Let f : Rn → R be a twice differentiable function. Consider the
following optimization problem

min
x∈C

f(x) (A.1)

where C is a convex set. x⋆ ∈ C is a stationary point (or local minimum) of
Problem A.1 if :

∀y ∈ C, (y − x⋆)⊤∇f(x⋆) ≥ 0 . (A.2)

This condition is necessary but not sufficient.

Theorem 4. Define projected gradient descent algorithm with diminishing step
size :

x(0) ∈ C (A.3)

x(t) = (x(t−1) − µ(t)∇f(x(t−1)))+ (A.4)
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where (·)+ is the projection operator onto C and

µ(t) → 0
∞∑

t=1

µ(t) =∞

If there exists a constant L such that ‖∇2f(x)‖2 ≤ L for all x, then every limit
point of projected gradient descent is a stationary point of Problem A.1.

This is one of several variants of projected gradient descent. In particular, we
did not use the Armijo rule to update the step size.



Appendix B

Description of music databases
used in this thesis

We used two publicly available databases in our experiments : the QUASI
database1, and the SISEC database for Professionally Produced Music Record-
ings2 (PPMR). For each database, mixes and source files were processed as fol-
lows : All source tracks were down-sampled from 44100 Hz to 16000 Hz, and
down-mixed to mono by taking the averaging of left and right channels. A
voice track and accompaniment track are then created by aggregating the various
source files, and then a final mix is created by summing the two tracks.

Table B.1b displays the train set, i.e. tracks provided along with full sources.
Table B.1c displays the test set, i.e. full tracks provided without accompany-
ing sources. We could only use the train set which we split in two to validate
user informed NMF, as we need ground truth sources to compute performance
measures. As we can see on Table B.1b, the PPMR task is particularly difficult
because tracks are very short : only ten seconds per track. Moreover, listening
to those tracks reveals that they are very different from each other : different
instruments, different music genres, different recording conditions. For instance,
there is very little in common between the acoustic track “Tamy - Que pena
tanto faz”, where sources are an acoustic guitar and a female voice with little
or no post-processing, and “Fort Minor - Remember the name”, a rap track,
with a saturated bass, a piano loop which was certainly created with commercial
software, two male voices, and additional sound effects. This is one example of
the wide variations between tracks, which is one of the reason why training a
dictionary with NMF on train tracks is not sufficient to yield satisfactory results.

In the QUASI database, on the other hand, there is no train and test set,
and full tracks are released along with the sources so that extensive training may
be performed. In our opinion this is a major step forward as it will emphasize
overfitting problems and favor algorithms tailored for large scale learning.

1http://www.tsi.telecom-paristech.fr/aao/en/2012/03/12/quasi/
2http://sisec.wiki.irisa.fr
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Track (artist - title) Duration (hh:mm:ss.cs)
another dreamer-one we love 00:03:25.32
carl leth-the world is under attack 00:05:08.67
fort minor-remember the name 00:03:48.35
glen philips-the spirit of shackleton 00:04:04.98
jims big ego-mix tape 00:03:03.29
nine inch nails-good soldier 00:03:22.97
shannon hurley-sunrise 00:03:14.07
ultimate nz tour 00:02:21.12
vieux farka-ana 00:04:09.76

(a) Listing of the QUASI database

Track (artist - title) Duration (hh:mm:ss.cs)
bearlin-roads 00:00:14.00
tamy-que pena tanto faz 00:00:13.00
another dreamer-the ones we love 00:00:25.00
fort minor-remember the name 00:00:24.00
ultimate nz tour 00:00:18.00

(b) Listing of the SISEC database (short recordings)

Track (artist - title) Duration (hh:mm:ss.cs)
another dreamer-the ones we love 00:03:25.32
fort minor-remember the name 00:03:48.35
ultimate nz tour 00:02:21.12

(c) Listing of the SISEC database (full recordings)

Table B.1: Listing of the databases used in our source separation tasks
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Detailed results of
semi-supervised NMF

We provide in this appendix track by track source separation results for the
semi-supervised NMF algorithm presented in Chapter 4. Audio samples are
available online1. A detailed inspection reveals that user annotations consistently
outperform NMF with ideally permuted components (which requires knowing the
ground truth !). The average gain is small in SDR (1dB) but very significant
in terms of Source to Interference Ratio (4dB on average). Remind that for
the SISEC database, user annotations are time-frequency while in the QUASI
database they are time-only. Source 1 is always the accompaniment, and source
3 is always the voice.

In both scenarios, we compare five methods :

auto : Automatic annotations and semi-supervised NMF. The best detector
from Table 4.3 was chosen.

user : User annotations and semi-supervised NMF (time-frequency annota-
tions for SISEC, manual annotations for QUASI). We tried K ∈ {5, 10, 20}
for the SISEC database and {10, 20, 50} for the QUASI database, as well as
λ ∈ {1, 10, 100}, and selected parameters yielding highest SDR for fair compari-
son with the baseline.

baseline : Run NMF and permute factors to obtain optimal SDR. We set
K = 8 because it already takes a 10 times as long to evaluate SDRs for all
permutation on a single track as it takes to run semi-supervised NMF.

self : set s(g) = 1
G
x as estimates for the sources, it serves to estimate the difficulty

of the source separation problem for a given database.

oracle : results obtained with Wiener coefficients computed from the ground
truth. In addition we display track by track annotation accuracy for user an-
notations, for comparison with Table 4.2. For each method, we ran NMF three
times for 1000 iterations to avoid local minima, and kept the run with the lowest
objective cost value.

For each track, the column self gives an idea of how hard it is to provide good
source estimates. The results obtained by self gives an idea of the difficulty of
the problem. Since the mixture itself is given as an estimate for both source, the
SAR is always +∞ (finite values in Tables C.1-C.2 are due to rounding errors for

1www.di.ens.fr/ lefevra/annot.html
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numbers smaller than 10−16). As we can see, in each track the voice is always
harder to extract than the accompaniment.

Overall results have been discussed in Section 4.4.4. Detailed results on the
SISEC database (Table C.1) reveal that automatic annotations often yield results
below the “significance threshold” indicated by self. On the other hand, that
of the baseline and of user annotations are systematically above that. User an-
notations yield consistently equal or better SDR values than the baseline, which
suggest that user annotations allow to group components. Recall that the baseline
consists in NMF with optimally permuted components, which requires knowing
the ground truth.

For longer tracks such as those in the QUASI database, the results obtained
by all methods are are not always above self. One reason for this is that there are
large intervals in which only one source is active, so that providing the mix itself
as an estimate of the sources makes sense. A more careful comparison would
consist in measuring SDR only where sources are really mixed.

auto user baseline self oracle
SDR1 2.44 8.74 8.20 5.07 15.65
SDR2 2.35 3.18 0.86 -5.11 10.34
SIR1 4.87 21.85 12.05 5.07 23.84
SIR2 6.08 13.62 3.47 -5.11 23.36
SAR1 7.36 8.99 10.76 273.30 16.38
SAR2 5.71 3.77 5.93 273.30 10.58
% ann. 10.37 22.61 0.00 0.00 0.00

(a) Track 1

auto user baseline self oracle
SDR1 0.22 2.07 2.66 -2.72 11.78
SDR2 -0.65 6.51 6.21 2.54 14.52
SIR1 2.39 24.87 7.22 -2.72 23.81
SIR2 3.60 9.74 9.22 2.54 24.77
SAR1 6.25 2.11 5.29 280.02 12.08
SAR2 2.97 9.75 9.71 280.02 14.97
% ann. 6.31 10.33 0.00 0.00 0.00

(b) Track 2

auto user baseline self oracle
SDR1 -0.61 5.09 4.37 2.68 13.27
SDR2 -0.84 1.02 -0.02 -2.79 10.42
SIR1 1.75 10.79 6.41 2.68 20.90
SIR2 1.94 10.43 3.60 -2.79 20.99
SAR1 5.39 6.80 9.54 268.33 14.13
SAR2 4.57 1.92 4.02 268.33 10.86
% ann. 8.79 29.64 0.00 0.00 0.00

(c) Track 3

auto user baseline self oracle
SDR1 1.83 8.92 9.41 7.35 18.43
SDR2 1.17 -0.39 -0.61 -7.34 10.82
SIR1 3.67 17.05 13.98 7.35 27.44
SIR2 6.65 11.60 4.05 -7.34 26.46
SAR1 7.99 9.73 11.45 295.03 19.02
SAR2 3.46 0.19 2.65 295.03 10.95
% ann. 9.29 16.68 0.00 0.00 0.00

(d) Track 4

Table C.1: Track by track results on the SISEC database
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auto user baseline self oracle
SDR1 7.89 8.66 7.33 7.51 16.76
SDR2 -5.95 -1.85 -2.84 -7.54 8.83
SIR1 8.04 13.93 14.18 7.51 24.04
SIR2 -5.48 7.86 1.03 -7.54 22.84
SAR1 23.22 10.36 8.50 278.94 17.68
SAR2 10.49 -0.70 1.97 278.94 9.03
% ann. 5.08 100.00 0.00 0.00 0.00

(a) Track 1

auto user baseline self oracle
SDR1 6.24 8.51 7.95 5.17 17.67
SDR2 -1.88 2.50 0.83 -5.16 12.34
SIR1 6.41 18.51 11.50 5.17 28.09
SIR2 -1.19 11.13 6.38 -5.16 27.95
SAR1 21.35 9.03 10.77 283.12 18.09
SAR2 10.11 3.46 3.15 283.12 12.47
% ann. 8.25 100.00 0.00 0.00 0.00

(b) Track 2

auto user baseline self oracle
SDR1 4.54 3.39 -0.68 4.38 15.89
SDR2 -3.98 -2.26 -3.06 -4.40 11.33
SIR1 4.70 11.26 13.21 4.38 24.92
SIR2 -3.36 3.28 -1.48 -4.40 24.53
SAR1 20.35 4.48 -0.30 251.42 16.48
SAR2 9.80 0.84 5.91 251.42 11.56
% ann. 5.85 100.00 0.00 0.00 0.00

(c) Track 3

auto user baseline self oracle
SDR1 8.63 9.70 9.46 7.77 17.47
SDR2 -4.66 0.43 -1.27 -7.74 9.33
SIR1 8.88 19.07 14.04 7.77 25.31
SIR2 -4.04 7.73 2.98 -7.74 24.21
SAR1 21.62 10.29 11.49 264.99 18.26
SAR2 9.65 2.00 2.55 264.99 9.49
% ann. 7.86 100.00 0.00 0.00 0.00

(d) Track 4

auto user baseline self oracle
SDR1 12.36 13.38 8.26 12.22 19.14
SDR2 -10.51 -3.94 -9.23 -12.23 6.11
SIR1 12.78 16.19 15.97 12.22 24.00
SIR2 -10.06 13.04 -6.10 -12.23 21.63
SAR1 22.95 16.70 9.17 279.84 20.88
SAR2 10.10 -3.64 0.72 279.84 6.27
% ann. 6.67 100.00 0.00 0.00 0.00

(e) Track 5

auto user baseline self oracle
SDR1 -0.26 0.70 1.99 -0.27 10.04
SDR2 -0.14 -9.04 2.45 0.25 10.32
SIR1 -0.22 10.61 6.44 -0.27 18.56
SIR2 0.47 -6.84 3.71 0.25 18.62
SAR1 24.17 1.52 4.81 262.04 10.75
SAR2 11.52 2.62 9.99 262.04 11.07
% ann. 7.37 100.00 0.00 0.00 0.00

(f) Track 6

auto user baseline self oracle
SDR1 9.23 7.15 7.49 8.44 17.71
SDR2 -5.55 -26.57 -3.94 -8.49 8.82
SIR1 9.56 10.75 16.46 8.44 25.32
SIR2 -4.96 -18.25 -2.30 -8.49 24.21
SAR1 21.08 10.00 8.18 264.30 18.54
SAR2 9.56 -7.56 5.42 264.30 8.97
% ann. 8.56 100.00 0.00 0.00 0.00

(g) Track 7

auto user baseline self oracle
SDR1 5.45 9.24 8.56 4.49 20.40
SDR2 -1.96 4.15 3.40 -4.48 15.85
SIR1 5.62 20.06 18.66 4.49 34.73
SIR2 -1.41 14.77 10.81 -4.48 34.65
SAR1 20.51 9.66 9.07 262.99 20.57
SAR2 11.03 4.69 4.62 262.99 15.91
% ann. 5.64 100.00 0.00 0.00 0.00

(h) Track 8

Table C.2: Track by track results on the QUASI database
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factorisation non-négative probabiliste. In Colloque du GRETSI, 2011.

J-F Cardoso. Blind signal separation: statistical principles. Proceedings of the
IEEE, special issue on blind identification and estimation, 1998.

M.A. Casey and A. Wetsner. Separation of mixed audio sources by independent
subspace analysis. In Internation Computer Music Conference (ICMC), 2000.

A.T. Cemgil, P. Peeling, O. Dikmen, and S.J. Godsill. Prior structures for time-
frequency energy distributions. In IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics (WASPAA), 2007.

P. Comon. Independent component analysis, a new concept ? Signal Processing,
Elsevier, 1994.

A. Cont. Realtime audio to score alignment for polyphonic music instruments
using sparse non-negative constraints and hierarchical hmms. In International
Conference on Acoustics Speech and Signal Processing (ICASSP), 2006.

M.E. Daube-Witherspoon and G. Muehllehner. An iterative image space recon-
struction algorithm suitable for volume ect. IEEE Transactions on Medical
Imaging, 1986.

L. Daudet. Sparse and structured decompositions of signals with the molecular
matching pursuit. IEEE Transactions on Audio Speech and Language Process-
ing, 2006.

A. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, 1977.

A. Dessein, A. Cont, and G. Lemaitre. Real-time polyphonic music transcription
with non-negative matrix factorization and beta-divergence. In International
Conference on Music Information Retrieval (ISMIR), 2010.

O. Dikmen and A.T. Cemgil. Gamma markov random fields for audio source
modelling. In Signal Processing with Adaptative Sparse Structured Represen-
tations (SPARS), 2009.

C. Ding, T. Li, and M.I. Jordan. Convex and semi-nonnegative matrix factor-
izations. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2010.



BIBLIOGRAPHY 117

Z. Duan, G.J. Mysore, and P. Smaragdis. Online PLCA for real-time semi-
supervised source separation. In International Conference on Latent Variable
Analysis and Signal Separation (LVA/ICA), 2012.

J.-L. Durrieu. Automatic Transcription and Separation of the Main Melody in
Polyphonic Music Signals. PhD thesis, Telecom ParisTech, 2010.

J.-L. Durrieu and J.-P. Thiran. Musical audio source separation based on user-
selected f0 track. In International Conference on Latent Variable Analysis and
Signal Separation (LVA/ICA), 2012.

J.-L. Durrieu, G. Richard, B. David, and C. Févotte. Source/filter model for
unsupervised main melody extraction from polyphonic audio signals. IEEE
Transactions on Audio Speech and Language Processing, 2010.

D.P.W. Ellis. Sinewave and sinusoid+noise analysis/synthesis in Mat-
lab, 2003. URL http://www.ee.columbia.edu/~dpwe/resources/matlab/

sinemodel/. online web resource.

V. Emiya, E. Vincent, and R. Gribonval. An investigation of discrete-state dis-
criminant approaches to single-sensor source separation. In IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics (WASPAA), 2009.

C. Févotte. Majorization-minimization algorithm for smooth Itakura-Saito non-
negative matrix factorization. In International Conference on Acoustics Speech
and Signal Processing (ICASSP), 2011a.

C. Févotte. Majorization-minimization algorithm for smooth Itakura-Saito non-
negative matrix factorizations. In International Conference on Acoustics Speech
and Signal Processing (ICASSP), 2011b.

C. Févotte and A.T. Cemgil. Nonnegative matrix factorizations as probabilis-
tic inference in composite models. In European Signal Processing Conference
(EUSIPCO), 2009.

C. Févotte and J. Idier. Algorithms for nonnegative matrix factorization with
the beta-divergence. Neural Computation, 2011.

C. Févotte, N. Bertin, and J.-L. Durrieu. Nonnegative matrix factorization with
the Itakura-Saito divergence: With application to music analysis. Neural Com-
putation, 2009.

D. FitzGerald, M. Cranitch, and E. Coyle. On the use of the beta divergence for
musical source separation. In Irish Signals and Ssytems Conference, 2009.

J. Ganseman, P. Scheunders, and S. Dixon. Improving plca-based score-informed
source separation with invertible constant-q transforms. In European Signal
Processing Conference (EUSIPCO), 2012.

http://www.ee.columbia.edu/~dpwe/resources/matlab/sinemodel/
http://www.ee.columbia.edu/~dpwe/resources/matlab/sinemodel/


118 BIBLIOGRAPHY

Q. Geng, H. Wang, and J. Wright. On the local correctness of ℓ 1 minimization
for dictionary learning. Technical report, Microsoft Research Asia, 2011.

N. Gillis and F. Glineur. Accelerated multiplicative updates and hierarchical als
algorithms for nonnegative matrix factorization. Neural Computation, 2012.

R. Gribonval and K. Schnass. Dictionary Identification - Sparse Matrix-
Factorisation via ℓ 1-Minimisation. IEEE Transactions on Information Theory,
2010.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
Springer, 2nd edition edition, 2009.

R.J. Hathaway. Another interpretation of the EM algorithm for mixture distri-
butions. Statistics and Probability Letters, 1986.
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