Dictionary learning methods and single-channel source separation

Augustin Lefèvre

October 3rd, 2012

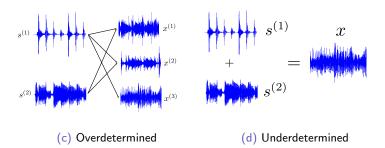
From raw signals to intelligible information

(a) Transcription of polyphonic signals

Susie kchrr I'm in the subway pffrrrrt Meet me at ?x%r square at 9 in front of pfffrrt

(b) Speech recognition in complex environments

What is source separation?



How do we define a source ? Different sources may sound similar. How do sources interact ?

Outline

Building blocks of a source separation system

Time-frequency representations
Linear model of sources
Dictionary learning with training data

Two contributions to unsupervised dictionary learning

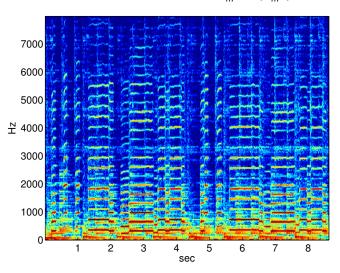
Limited interaction between sources, and group-sparse coding Full interaction and matrix completion problems

Realtime unsupervised source separation and online learning

Conclusion and perspectives

Time-frequency representations

$$\begin{array}{cccccc} x \in \mathbb{R}^T & \to & X \in \mathbb{C}^{F \times N} & \to & V_{fn} = |X_{fn}|^2 \,, \\ s^{(g)} & \to & S^{(g)} & \to & V_{fn}^{(g)} = |S_{fn}^{(g)}|^2 \,. \end{array}$$



Nonnegative Matrix Factorization

Reduce the number of unknowns to explain redundancy in the data :

$$V = \underbrace{(W^{(1)}H^{(1)})}_{\hat{V}^{(2)}} + \underbrace{(W^{(2)}H^{(2)})}_{\hat{V}^{(1)}}.$$

 $W \in \mathbb{R}_{+}^{F \times K}$ is a dictionary with K basis elements (K < F). $H \in \mathbb{R}_{+}^{K \times N}$ is a matrix of activation coefficients. Enforce (pointwise) nonnegativity of the input:

$$W^{(g)} \geq 0, H^{(g)} \geq 0 \Rightarrow \hat{V}^{(g)} \geq 0.$$

- 1) W fixed, H unknown: nonnegative linear model.
- 2) (W, H) unknown: nonnegative matrix factorization.

(Paatero & Tapper, 1994; Smaragdis & Brown, 2003)

Itakura-Saito NMF

$$\begin{aligned} \min_{W,H} \quad & \sum_{fn} d_{IS}(V_{fn}, (WH)_{fn}) \\ \text{s.t.} \qquad & W \geq 0, H \geq 0 \end{aligned}$$

$$d_{IS}(x,y) = \frac{x}{y} - \log(\frac{x}{y}) - 1.$$

$$d_{IS}(x,y) \geq 0.$$

$$d_{IS}(x,y) = 0 \Rightarrow x = y.$$

$$d_{IS}(\lambda x, \lambda y) = d_{IS}(x,y)$$

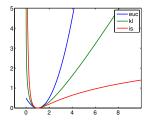


Figure: Plot of $d_{IS}(1,x)$ alongside Kullback-Leibler and Euclidean distance.

Probabilistic interpretation of Itakura-Saito NMF

 $V_{\cdot n} \in \mathbb{R}_+^F$ observed power spectrum at time n.

$$V_{\mathit{fn}} = \left|\sum_{g} S_{\mathit{fn}}^{(g)} \right|^2 \qquad S_{\mathit{fn}}^{(g)} \sim \mathcal{N}_c(0, \mathsf{diag}(\sum_{k} W_{\mathit{fk}}^{(g)} H_{\mathit{kn}}^{(g)})) \,.$$

(Févotte et al., 2009)

- ▶ Phase of spectrograms is assumed uninformative.
- ▶ Reconstruct $S^{(g)}$ from $\hat{V}^{(g)}$ and X in a principled way.

$$S_{\mathit{fn}}^{(1)} = rac{\hat{V}_{\mathit{fn}}^{(1)}}{\hat{V}_{\mathit{fn}}^{(1)} + \hat{V}_{\mathit{fn}}^{(2)}} X_{\mathit{fn}}$$
 keep the same phase as the mixture

▶ Select the number of components, cheaper than cross-validation.

(Tan & Févotte, 2009; Hoffmann et al., 2010; Lefèvre et al., 2011)

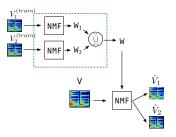
Finding a dictionary

What dictionary should we use ?

- 1) Ask a physicist to design the dictionary for you.
- 2) Use a large collection of samples from source 1 and source 2.

Storing all samples from source 1 and source 2 into memory is inconvenient and violates the assumption K < F.

Supervised dictionary learning



Having at hand a collection of true source signals decouples learning in two separate problems.

Find
$$(W, H)$$

 $s.t.$ $V^{(g)} = W^{(g)}H^{(g)}$
 $W \ge 0, H \ge 0$

Combine dictionaries at test time to compute activation coefficients.

Structure

$$\min_{H} \sum_{f_n} \|V_{f_n} - (WH)_{f_n}\|^2 + \lambda \Psi(H)$$
.

Few fewer basis elements are used at the same time : $\Psi(H) = \{\text{number of nonzero coordinates of } H\}.$

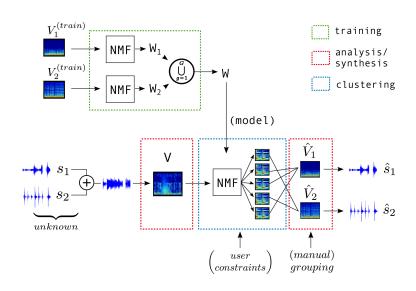
Choice of Ψ reflects assumed structure : temporal continuity at 200 ms scale, phonems in speech, etc.

This thesis : Ψ models independence between sources as a group of basis elements.

Assuming simple interactions, we can make weaker assumptions on the dictionary.

(Hoyer, 2004; Virtanen, 2007; Mysore et al., 2010)

Overview



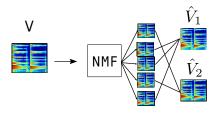
Building blocks of a source separation system
Time-frequency representations
Linear model of sources
Dictionary learning with training data

Two contributions to unsupervised dictionary learning
Limited interaction between sources, and group-sparse coding
Full interaction and matrix completion problems

Realtime unsupervised source separation and online learning

Conclusion and perspectives

Unsupervised learning



If no training data is available to learn $W^{(g)}$ separately, then

Find
$$(W, H)$$

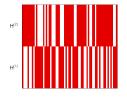
s.t. $W^{(1)}H^{(1)} + W^{(2)}H^{(2)} = WH = V$.

Not ill-posed any more, but there are still several global optima (nonconvex problem).

Trial and error: find a dictionary that reconstructs the input while enforcing specified structure.

NMF with time structure

Unsupervised learning with time annotations is equivalent to supervised dictionary learning.



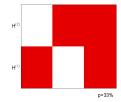


Figure: Take time annotations by expert, re-shuffle columns, run supervised dictionary learning.

(red) source g is active (white) source g inactive.

If expert does not have time to give annotations, we need a criterion to group components into sources. What is the appropriate $\Psi(H)$ for group structure? Can we still use time structure to group components?

NMF with time structure

$$\Psi(H) = \sum_{n} \sum_{g} \psi(\sum_{k} H_{kn}^{(g)}).$$

good $\psi: \mathbb{R}_+ \to \mathbb{R}+$, differentiable and concave.

bad: sparsity at group level AND component level.

ideal: expert computes optimal permutation of components.

baseline : run NMF, permute components to optimize $\Psi(H)$.

GIS-NMF:

$$\begin{aligned} \min_{W,H} \quad & \sum_{fn} d_{IS}(V_{fn}, (WH)_{fn}) + \lambda \Psi(H) \,. \\ \text{s.t.} \quad & W \geq 0, H \geq 0 \end{aligned}$$

Proof of concept

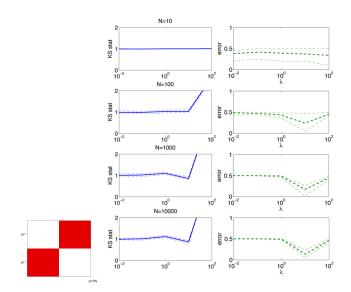
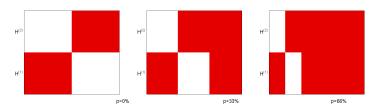


Figure: (Left) KS statistic (Right) Support recovery error. Thin dashed lines are error bars.

Experiments on SiSEC 2010 campaign

Experiment 2: control the overlap, see how far we can go.



track	source	GIS-NMF	base	random	ideal
0%	bass	8.88	-67.53	-8.55	8.86
	guitar	13.60	3.77	-2.19	13.94
33%	bass	4.33	-4.60	-8.74	4.56
	guitar	9.77	-7.40	-2.02	9.90
66%	bass	1.47	-5.29	-9.08	3.12
	guitar	7.72	-8.11	-1.94	8.68
100 %	bass	-5.13	-4.16	-9.02	2.54
	guitar	-0.21	-2.68	-2.02	8.09

Table: Source to distortion ratios (SDR) for the track "We are in love"

(Lefèvre et al., 2011)

NMF with time-frequency annotations

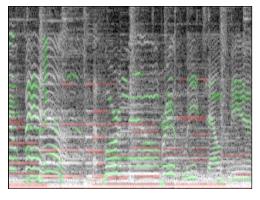


Figure: Example of user annotations in a ten seconds' audio track: green voice. red accompaniment.

NMF with time-frequency annotations

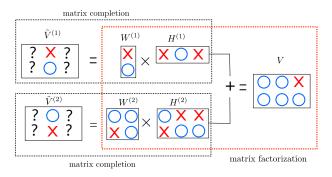


Figure: Semi-supervised NMF consists in solving G matrix completion problems, coupled by a matrix factorization problem.

Robustness to error via relaxation of the constraints (tuning parameter) Allow "soft" annotations : $M_{fn}^{(g)} \in [0,1]$. Discard $M_{fn}^{(g)} = 0.5$.

Towards automatic annotations

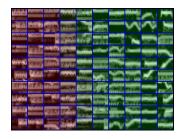


Figure: Time-frequency patches (green) voice (red) accompaniment

Nearest neighbour.

Quantized nearest-neighbour.

Random Forest.

Experimental results

	% annotated	% correct
track 1	0.23	0.91
track 2	0.10	0.89
track 3	0.29	0.91
track 4	0.17	0.81
track 5	0.22	0.95

Table: Evaluation of user annotations on the SISEC database.

Experimental results

Track1	
accomp	voice
15.65	10.34
8.74	3.18
2.44	2.35
8.20	0.86
5.07	-5.11
	accomp 15.65 8.74 2.44 8.20

Table: Time-frequency annotations: listening tests

ideal: annotations computed from ground truth (upper-bound).

baseline : NMF with optimally permuted components 1 .

auto: automatic annotations.

user: user annotations.

lazy : use $\frac{1}{2}x$ as estimate of each source.

¹Supposing expert correctly finds best permutation among 10¹⁸ possibilites ...

Building blocks of a source separation system

Time-frequency representations
Linear model of sources
Dictionary learning with training data

Two contributions to unsupervised dictionary learning

Limited interaction between sources, and group-sparse coding Full interaction and matrix completion problems

Realtime unsupervised source separation and online learning

Conclusion and perspectives

Bottlenecks in NMF

Batch algorithm requires computing and storing matrix-matrix products of the same size as the data set.

Online learning: can't afford to store past data and re-compute activation coefficients.

Large scale learning : $N \to +\infty$, train set is too large to store into memory.

- 1) Divide-and-conquer strategies (Cao et al., 2007; Mackey et al., 2011).
- 2) Stochastic updates (Robbins & Monro, 1951).
- 3) Incremental updates (Neal & Hinton, 1998; Mairal et al., 2010).

On-the-fly updates of the auxiliary function

Batch algorithm works on majorization-minimization

$$\sum_{fn} d_{IS}(V_{fn}, (WH)_{fn}) \leq \sum_{fk} \frac{A_{fk}}{W_{fk}} + B_{fk}W_{fk}.$$

H optimized using current estimate \underline{W} .

$$A_{fk} \leftarrow \underline{W}_{fk}^2 \sum_{n=1}^{N} V_{fn} (\underline{W}_{H})_{fn}^{-2} H_{kn},$$

$$B_{fk} \leftarrow \sum_{n=1}^{N} (\underline{W}_{H})_{fn}^{-1} H_{kn},,$$

Matrix products in O(FKN) in time and memory.

On-the-fly updates of the auxiliary function

Batch algorithm works on majorization-minimization

$$\sum_{fn} d_{IS}(V_{fn}, (WH)_{fn}) \leq \sum_{fk} \frac{A_{fk}}{W_{fk}} + B_{fk}W_{fk}.$$

Draw v at random from V. h optimized using \underline{W} .

$$A_{fk} \leftarrow A_{fk} + \underline{W}_{fk}^2 v_f (\underline{W}h)_f^{-2} h_k ,$$

$$B_{fk} \leftarrow B_{fk} + (\underline{W}h)_f^{-1} h_k ,$$

Matrix-vector products in O(FK) in time and memory. After N draws, same overall number of operations O(FKN). Memory requirements reduced to O(FK).

How much faster?

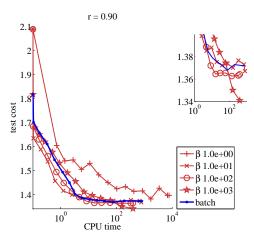


Figure: $N \simeq 10^3$ (30 seconds' excerpt)

How much faster?

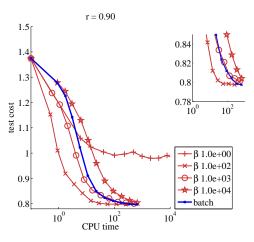


Figure: $N \simeq 10^4$ (4 minutes' audio track)

How much faster?

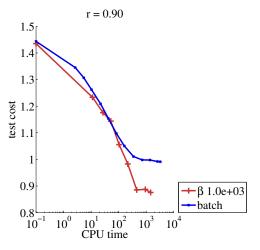


Figure: $N \simeq 10^5$ (1 hour 20 minutes' album)

Conclusion

Machine learning

"Sensible" solutions to an otherwise underdetermined problem.

User input gives ideas to design structure.

Structured decompositions enhance user input.

Stochastic optimization opens the door to large scale data analysis.

Audio source separation

Dictionary learning does not replace expert knowledge, it enhances it.

Audio analysis on larger units: CD, audio collections, and beyond.

Perpectives

Nonnegative decoding in a finite number of iterations.

Automatic annotations using harmonic structure of sound signals (multipitch).

Find other ways to exploit sparsity of time-frequency images.

Audio collections are naturally structured in graphs : we should use that ${}^{\rm I}$

Acknowledgements

Ministere de la Recherche

European Research Council

Willow team

Sierra team TSI Telecom ParisTech

Selected Publications I

- Adler, Amir, Emiya, Valentin, Jafari, G. Maria, Elad, Michael, Gribonval, Rémi, and Plumbley, Mark D. Audio Inpainting. *IEEE Transactions on Audio, Speech and Language Processing*, 2012.
- Bach, F. and Jordan, M.I. Blind one-microphone speech separation: A spectral learning approach. In *Advances in Neural Information Processing Systems (NIPS)*, 2004.
- Bengio, S., Pereira, F., Singer, Y., and Strelow, D. Group sparse coding. In *Advances in Neural Information Processing Systems (NIPS)*, 2010.
- Bertalmío, M., Sapiro, G., Caselles, V., and Ballester, C. Image inpainting. In *International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH)*, 2000.
- Bucak, S. and Gunsel, B. Incremental subspace learning via non-negative matrix factorization. *Pattern Recognition*, 2009.
- Cao, B., Shen, D., Sun, J.T., Yang, X., and Chen, Z. Detect and track latent factors with online nonnegative matrix factorization. In *International Joint Conference on Artifical Intelligence (IJCA)*, 2007.

Selected Publications II

- Cappé, O., Févotte, C., and Rohde, D. Algorithme em en ligne simulé pour la factorisation non-négative probabiliste. In *Colloque du GRETSI*, 2011.
- Daudet, L. Sparse and structured decompositions of signals with the molecular matching pursuit. *IEEE Transactions on Audio Speech and Language Processing*, 2006.
- Duan, Z., Mysore, G.J., and Smaragdis, P. Online PLCA for real-time semi-supervised source separation. In *International Conference on Latent Variable Analysis and Signal Separation (LVA/ICA)*, 2012.
- Févotte, C., Bertin, N., and Durrieu, J.-L. Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis. *Neural Computation*, 2009.
- Ganseman, J., Scheunders, P., and Dixon, S. Improving plca-based score-informed source separation with invertible constant-q transforms. In *European Signal Processing Conference (EUSIPCO)*, 2012.
- Hoffmann, M.D., Blei, D.M., and Cook, P. Bayesian nonparametric matrix factorization for recorded music. In *International Conference on Machine Learning (ICML)*, 2010.

Selected Publications III

- Hoyer, P.O. Non-negative matrix factorization with sparseness constraints. *Journal of Machine Learning Research*, 2004.
- Jenatton, R., Audibert, J.-Y., and Bach, F. Structured variable selection with sparsity-inducing norms. *Journal of Machine Learning Research*, 2011.
- Lagrange, M., Martins, L.G., Murdoch, J., and Tzanetakis, G. Normalized cuts for predominant melodic source separation. *IEEE Transactions on Audio, Speech, and Language Processing*, 2008.
- Lefèvre, A., Bach, F., and Févotte, C. Itakura-Saito nonnegative matrix factorization with group sparsity. In *International Conference on Acoustics Speech and Signal Processing (ICASSP)*, 2011.
- Mackey, L., Talwalkar, A., and Jordan, M.I. Divide-and-conquer matrix factorization. In *Advances in Neural Information Processing Systems* (NIPS), 2011.
- Mairal, J., Bach, F., Ponce, J., and Sapiro, G. Online learning for matrix factorization and sparse coding. *Journal of Machine Learning Research*, 2010.

Selected Publications IV

- Mysore, G., Smaragdis, P., and Raj, B. Non-negative hidden markov modeling of audio with application to source separation. In *International Conference on Latent Variable Analysis and Signal Separation (LVA/ICA)*, 2010.
- Neal, R.M. and Hinton, G.E. A view of the EM algorithm that justifies incremental, sparse, and other variants. *Learning in Graphical Models*, 1998.
- Paatero, P. and Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. *Environmetrics*, 1994.
- Raphael, C. and Han, Y. A classifier-based approach to score-guided music audio source separation. *Computer Music Journal*, 2008.
- Robbins, H. and Monro, S. A stochastic approximation method. *Annals of Mathematical Statistics*, 1951.
- Smaragdis, P. and Brown, J.C. Non-negative matrix factorization for polyphonic music transcription. In *IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)*, 2003.

Selected Publications V

- Sprechmann, P., Ramirez, I., Cancela, P., and Sapiro, G. Collaborative sources identification in mixed signals via hierarchical sparse modeling. In *International Conference on Acoustics Speech and Signal Processing (ICASSP)*, 2011.
- Srebro, N. and Jaakkola, T. Weighted low-rank approximations. In *International Conference on Machine Learning (ICML)*, 2003.
- Tan, V.Y.F and Févotte, C. Automatic relevance determination in nonnegative matrix factorization. In *Workshop on Signal Processing with Adaptive Sparse Structured Representations*, 2009.
- Tibshirani, R. Regression shrinkage and selection via the lasso. j. *Journal* of the Royal Statistical Society: series B, 1996.
- Virtanen, T.O. Monaural sound source separation by non-negative matrix factorization with temporal continuity and sparseness criteria. *IEEE Transactions on Audio Speech and Language Processing*, 2007.
- Wang, D., Vipperla, R., and Evans, N. Online pattern learning for convolutive non-negative sparse coding. In *Interspeech*, 2011.

Selected Publications VI

- Yu, G. and Slotine, J.J. Audio classification from time-frequency texture. In *International Conference on Acoustics Speech and Signal Processing (ICASSP)*, 2009.
- Yuan, M. and Lin, Y. Model selection and estimation in regression with grouped variables. *Journal of the Royal Statistical Society : series B*, 2006.
- Zhang, Y. and Scordilis, M.S. Effective online unsupervised adaptation of gaussian mixture models and its application to speech classification. *Pattern Recognition*, 2008.