
HAL Id: tel-00764830
https://theses.hal.science/tel-00764830

Submitted on 13 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Models for design, implementation and deployment of
3D Collaborative Virtual Environments

Thierry Duval

To cite this version:
Thierry Duval. Models for design, implementation and deployment of 3D Collaborative Virtual En-
vironments. Graphics [cs.GR]. Université Rennes 1, 2012. �tel-00764830�

https://theses.hal.science/tel-00764830
https://hal.archives-ouvertes.fr

Habilitation à Diriger des Recherches

présentée

devant l’Université de Rennes 1

pour obtenir

l’Habilitation à Diriger des Recherches

Mention Informatique

par

Thierry Duval

Équipe d’accueil : IRISA – VR4i
École Doctorale : Matisse

Composante universitaire : ISTIC

Titre:

Models for design, implementation and deployment

of 3D Collaborative Virtual Environments

Soutenue le 28 November 2012 devant la commission d’examen

M. : Jean-Marc Jézéquel Président
MM. : Sabine Coquillart Rapporteurs

Jean-Pierre Jessel

Marc Erich Latoschik

MM. : Joëlle Coutaz Examinateurs
Pascal Guitton

Jacques Tisseau

Contents

Contents 1

Introduction 5

3D Collaborative Virtual Environments . 5

Example of Design of a 3D Collaborative Virtual Environments 6

Main Steps of the Design of 3D Collaborative Virtual Environments 8

Addressing the essential requirements about the design of 3D CVE 10

I System and Software Architectural Models for CVE 11

1 System Architectures for Collaborative Virtual Environments 15

1.1 Introduction . 15

1.2 Related work . 16

1.2.1 Network architectures . 16

1.2.1.1 Peer-to-peer architecture . 16

1.2.1.2 Client/server architecture . 17

1.2.1.3 Hybrid architecture . 17

1.2.2 Models for data distribution . 18

1.2.2.1 Shared centralized world . 19

1.2.2.2 Homogeneous replicated world . 19

1.2.2.3 Partially replicated world (or distributed world) 20

1.2.3 Preliminary conclusion about system architectures for CVE 22

1.3 A new adaptive data distribution model for consistency maintenance in CVE 23

1.3.1 Introduction . 23

1.3.2 A new adaptive data distribution . 23

1.3.3 The three main modes of data distribution 24

1.3.3.1 Centralized mode . 24

1.3.3.2 Hybrid mode . 24

1.3.3.3 Replicated mode . 24

1.3.3.4 Quantitative comparison of the three modes 25

1.3.4 Each object can choose its data distribution mode 26

1.3.5 Dynamic changes of data distribution mode 27

1.3.6 Instantiation of the data distribution model for collaborative scientific visu-
alization . 28

1.4 Conclusion and future work . 28

1

2 Contents

2 Synchronization Models for Collaborative Virtual Environments 29

2.1 Introduction . 29

2.2 Related work . 29

2.2.1 Time synchronization . 29

2.2.1.1 Lockstep synchronization . 29

2.2.1.2 Imposed global consistency . 30

2.2.1.3 Delayed global consistency . 30

2.2.1.4 Time warp synchronization . 30

2.2.1.5 Predictive time management . 30

2.2.1.6 Server synchronization . 31

2.2.2 Concurrency control . 31

2.2.3 Network delays and side effects . 32

2.2.4 Providing awareness of network troubles . 32

2.2.5 Conclusion . 33

2.3 Managing network delays with OpenMASK . 33

2.3.1 Detection and awareness of network troubles 33

2.3.1.1 Detection of network delay or disconnection 34

2.3.1.2 The awareness provider system . 34

2.3.2 Migration of virtual objects . 36

2.4 Object migration with Collaviz . 37

2.5 Group synchronization with Collaviz . 37

2.6 Conclusion and future work . 38

3 Software Architectural Models for 3D Collaborative Virtual Environments 39

3.1 Introduction . 39

3.2 Related work: models for HCI and CSCW . 40

3.2.1 Software architectural models for HCI . 40

3.2.2 Models for collaborative HCI . 41

3.2.3 Synthesis about HCI models and collaboration 42

3.3 PAC for collaborative 3D applications . 43

3.3.1 Interfaces for independence between components 43

3.3.2 Adapting PAC to collaboration . 44

3.4 Dealing with distribution modes . 45

3.4.1 PAC-C3D and duplicated architecture . 45

3.4.2 PAC-C3D and centralized architecture . 46

3.4.3 PAC-C3D and hybrid architecture . 47

3.4.4 Adapting distribution policies . 48

3.4.5 Creation of the shared virtual objects . 48

3.5 Adaptation to different representations . 49

3.6 PAC-C3D implementation examples . 50

3.6.1 Current implementations of PAC-C3D . 50

3.6.2 The 2DPointer/3DRay . 50

3.6.3 Other interaction and navigation tools . 52

3.6.4 Coupling a physics engine to a virtual environment 53

3.7 Another approach: the Scene Graph Adapter . 53

3.7.1 Concepts and prerequisites . 54

3.7.2 Overall architecture . 54

3.7.3 Benefits . 55

3.8 Conclusion and future work . 56

Contents 3

II Models for Designing Collaborative Interactions 57

4 Modeling Interaction and Collaboration 61

4.1 Introduction . 61

4.2 Related work . 62

4.2.1 Hardware device abstraction . 62

4.2.2 Interaction metaphors . 63

4.2.3 Feedback to the user . 63

4.3 Enabling interaction between interaction tools and 3D objects in CVE 64

4.4 Model: tools and interactive objects . 65

4.4.1 Tools . 65

4.4.2 Interactive objects . 65

4.4.3 Relations between tools and interactive objects 66

4.5 How to make interaction tools and interactive objects communicate? 66

4.5.1 One interactive object with many tools . 66

4.5.2 One tool with many interactive objects . 68

4.5.3 Access to interactive object properties . 70

4.6 Description of interactive and collaborative properties 71

4.7 3DFC: a new container for 3D file formats compositing 72

4.7.1 Interaction nodes to mix 3D files functionalities 72

4.7.2 Possible uses and benefits of a container . 73

4.7.3 Implementation . 73

4.7.4 Conclusion . 74

4.8 Conclusion and future work . 74

5 Metaphors for Collaborative Interactions 75

5.1 Introduction . 75

5.2 Related work . 76

5.2.1 Two-hand object manipulation . 76

5.2.2 Multi-user object manipulation . 76

5.2.3 Tangible devices . 77

5.3 3D virtual rays for collaborative manipulations . 78

5.3.1 Introduction . 78

5.3.2 The targeted interaction tool: a virtual ray 78

5.3.2.1 The ray with a rubber-band . 78

5.3.2.2 The creased ray . 78

5.3.2.3 The ray with a bent ray . 79

5.3.3 Conclusion . 79

5.4 An asymmetric 2D Pointer / 3D Ray for 3D interaction within CVE 79

5.4.1 Introduction . 79

5.4.2 The asymmetric 2D Pointer / 3D Ray . 80

5.4.3 Conclusion . 82

5.5 The SkeweR . 82

5.5.1 Introduction . 82

5.5.2 Concept . 83

5.5.3 Using only one crushing point . 83

5.5.4 Extension to 2 crushing points . 84

5.5.5 With only 2 crushing points: one DOF is missing. 85

5.5.6 Extension to 3 crushing points, or more. 85

5.5.7 Preliminary experimental setup . 85

4 Contents

5.5.8 Conclusion and perspectives . 85
5.6 The 3-hand manipulation technique . 86

5.6.1 Concept . 86
5.6.2 Manipulation and visual feedback . 86
5.6.3 Computation of manipulated object’s motion 86
5.6.4 Implementation . 88
5.6.5 General conclusion and perspectives . 89

5.7 A Reconfigurable Tangible Device for 3D object manipulation 89
5.7.1 Concept . 89
5.7.2 RTD-3: Reconfigurable Tangible Device with 3 points of manipulation 89
5.7.3 RTD-4: Reconfigurable Tangible Device with 4 points of manipulation 90
5.7.4 Implementation details . 90
5.7.5 Manipulation examples . 91
5.7.6 Evaluation . 92
5.7.7 Conclusion . 92

5.8 Conclusion and future work . 93

6 Modeling Users’ Physical Workspaces 95
6.1 Introduction . 95
6.2 Related work . 96

6.2.1 Embedding the physical workspaces into the VE 97
6.2.2 Software models for VR system design . 98
6.2.3 Synthesis . 99

6.3 Overview of the IIVC . 100
6.3.1 The hierarchy of workspaces . 100
6.3.2 The IIVC concept . 100

6.4 The IIVC model . 101
6.4.1 The IIVC structure . 101
6.4.2 The IIVC operators . 103

6.5 The IIVC main features . 104
6.5.1 Navigating with the IIVC . 104
6.5.2 Carrying 3D interaction tools . 105
6.5.3 Making users aware of the physical environment 105
6.5.4 Collaborating through several IIVC . 105

6.6 IIVC applications . 107
6.6.1 First instances . 107
6.6.2 Instances of “state of the art” VR techniques 107

6.7 Conclusion and future work . 108

Conclusion and Perspectives 109
Conclusion . 109
Perspectives . 110

Bibliography 111

Introduction

3D Collaborative Virtual Environments

What is it?

A 3D Virtual Environment (3D VE) is a virtual environment where 3D objects are displayed to a
user. A user of such an environment is involved in a perception/action loop [SSO94], and the success
of his interactions contributes to his feeling of presence in the virtual environment [ZJ98]. Usually
he can interact with this virtual environment through dedicated input devices. Chris Hand [Han97]
proposes three categories of interactions: the navigation (the interaction with the viewpoint of the
user), the manipulation of the virtual objects of the virtual environment (object selection, object
manipulation), and the application control (interaction with 3D widgets in order to change some
parameters of the virtual environment). This is very similar to the four categories proposed by
Bowman et al. [BJH99] where interaction with the objects of the world is explicitly decomposed into
selection and manipulation. Many efficient interaction techniques have been developed in this area
in the past decade [BKLP04], and due to new 3D input devices and 3D displays becoming widely
available for everyone, research in new 3D user interfaces is more relevant than ever [BCF+08].

A 3D Collaborative Virtual Environment (3D CVE) is an interactive 3D virtual environment
where several local or distant users can join to share a collaborative interaction experience.

When an interactive 3D Virtual Environment is deployed upon an immersive display system,
such as a CAVE� [CNSD93], or a Head-Mounted Display (HMD), or a workbench, or simply a big
screen, we can say that we are using Virtual Reality techniques in order to explore this 3D Virtual
Environment and interact with it.

What is the use for them?

Object manipulation is one of the most fundamental tasks of 3D interaction in Virtual Reality
(VR), and collaborative manipulation of virtual objects by multiple users is a very promising
area [BGRP01].

Collaborative manipulation of objects is indeed necessary in many different applications of VR
such as virtual prototyping, training simulations or assembly and maintenance simulations [RSJ02].
In such virtual collaborative tasks, all the users should participate naturally and efficiently to the
motion applied to the object manipulated in the VE [FN98, LGH98]. Another common use of 3D
CVE is for virtual navigation: collaborative visits (museums, cultural heritage, architectural/urban
project reviews), collaborative games (cars races).

3D CVE intend to make the users not just remotely communicate, but rather really interact
together by sharing interactions in the 3D virtual environment. These interactions can happen on
distinct objects, or on different parts of a same object, or even on the same part (at the same time)
of a shared virtual object [MAP99].

5

6 Introduction

Example of Design of a 3D Collaborative Virtual Environment

Today there are many kinds of virtual reality display devices that can be linked together in order
to obtain collaborative VR applications. Nevertheless, designing these collaborative applications
is still complex, especially if we want to allow the users to share highly interactive and immersive
collaborative experiences.

For example, let’s consider the design of a collaborative application where two distant users are
going to share a co-manipulation of a virtual table through a 3-point manipulation technique. We
will suppose that one user will use a big cave-like system and that his head and his two hands will
be tracked so that he will be able to use his two hands to drive 3D cursors (see Figure 1 (a)), while
the other user will use a desktop system and a 2D input device (such as a 2D mouse) for driving a
3D ray and that his head will be tracked so that his point of view will change when he will move
in front of his screen (see Figure 1 (b)).

(a) (b)

Figure 1: (a) The first user in his cave-like system — (b) The second user with his desktop system

Indeed, the designer of such a distributed and multi-user application is facing several complex
topics to meet its requirements:

1. at an abstract level, he has to describe both the interactive content of the virtual universe and
the collaborative interaction tools that will be used to drive this content, through dedicated
new collaboration metaphors able to give to the users the best collaborative 3D interaction
experience. Here, there will be a table, two 3D cursors, a 3D ray, an avatar of the position of
the head of the first user, and an avatar of the position of the head of the second user. The 3D
cursors and the 3D ray will be able to manipulate the table by using a 3-point manipulation
technique.

2. at a network level, he has to choose a model for the communications between distant users: a
distribution mode for the virtual objects that will be part of the shared virtual environment,
and also a synchronization mode for distant sites and machines. Here, he could decide that
the table will be on a server, that the two 3D cursors and the head of the first user will be
on the first user’s machine, and that the 3D ray and the head of the second user will be on
the second user’s machine. He can also decide that there will be a strong synchronization
between these three machines.

3. at a presentation level, he has to adapt the graphic rendering to the hardware output devices
and he also has to make a link between the abstract interaction tools and the input devices
that will be used at run-time to drive them. Here, for the first user he will have to use a
3D graphics API able to manage a stereo rendering on several displays with head-tracking,

Introduction 7

and explain that his two 3D cursors will be driven by the position provided by two targets
of his tracking system, while for the second user he will have to use a 3D graphics API for
rendering on a simple screen with a low-cost tracking system to track his head to deform the
field of view, and explain that his 3D ray will be driven by a 2D mouse (for example using
the wheel of the mouse in order to provide the depth).

�
�
��

�
�
�
�	

�
A
�
B

C
D
E
��
F
�
��
	
�
A
�
B

�B������ �B���������A��

�
�
�
E
�
�
�F

��
�
�
�	

�
A
�
B

�E����

�E����

Figure 2: The different levels involved in a global CVE architecture

The different levels involved in the global architecture of such a CVE are illustrated in Figure 2.
As the hardware and software features of such a system may change over the time, the designer

of such a CVE should take into account some more points:

1. at a network level, he should be able to change the distribution characteristics of the virtual
objects and the synchronization mode of the system, and to let the users join and leave
dynamically the collaborative session.

2. at the connection between the abstract level and the presentation level, he has to make the
virtual environment as independent as possible from the input and output devices used at
run-time, to be able to adapt it dynamically (at run-time if necessary) to various kinds of
hardware (tracking systems, input devices, displays) and software (3D graphics API).

3. at the connection between the abstract level and the network level, he has also to make the
virtual environment as independent as possible from these network features.

8 Introduction

Last, still at the abstract level, he also should be able to integrate a representation of the
run-time hardware components in the virtual environment (to make a link between the different
levels), to make the users aware of the limitations of these components. It leads to the creation of
new virtual objects that must be added to the CVE: a representation of the bounds of the tracking
systems of each user, a representation of the display surfaces of the first user, and a representation
of the field of view of the second user.

The resulting global architecture of the CVE with this extended content is illustrated in Figure 3.
It shows that the designer of such a CVE will have a quite difficult exercise to realize as he will
have to embed into the shared virtual environment a description of the physical workspace of the
users (known only at the presentation level) while he will have to maintain a strong independence
of the abstract level from the presentation level.

�
�
��

�
�
�
�	

�
A
�
B

C
D
E
��
F
�
��
	
�
A
�
B

�B������ �B���������A��

�
�
�
E
�
�
�F

��
�
�
�	

�
A
�
B

Figure 3: The different levels involved in a revisited global CVE architecture

Main Steps of the Design of 3D Collaborative Virtual Environments

From this example, we can extract some main steps in the global design process of a CVE.

Introduction 9

1 – Choosing a model for distribution and synchronization

This task consists in determining the best way, according to the needs of the users and to the
constraints of the system, to distribute and synchronize each shared object of the CVE, in order
to have the best possible consistency of the CVE between all the machines involved at run-time.

The designer of a CVE will have to answer many questions such as: should all the shared objects
be centralized on a server, or totally replicated on each site, or spread over the sites with a hybrid
distribution model? How should distant sites be synchronized: with a strong synchronization or
with a relaxed one? Can we tolerate and manage some temporary relaxation of the synchronization
due to network breakdowns? Should we allow some shared objects to migrate individually from
one site to another to provide load-balancing or to make a shared object closer to its user?

Some of these choices may be imposed by some requirements of the collaborative application
or by the features provided by the framework used to implement the CVE.

2 – Adapting the Virtual Environment to various hardware systems

This task consists in adapting a VR application to the software and to the hardware input and
output devices that are available at run-time.

It can be difficult to address different kinds of hardware devices with the same software. For
example, some 3D graphics API are adequate for a rendering using a single screen but not for a
rendering in an immersive system (with head-tracking and stereo-vision) or on a mobile device.
Similarly, it should be possible to deploy a VR application with different kinds of input devices,
according to what is available at run-time: sophisticated input devices such as ART flysticks,
low-cost devices such as the Nitendo Wiimote or the Microsoft Kinect, or even simply a 2D mouse.

So, designers of VR applications need software architectural models in order to clearly separate
the core of the VR application from the software used for the rendering and for the interactions.

3 – Designing interaction and collaboration in the VE

The description of a virtual environment is often limited to the 3D geometrical features of its virtual
objects. This task is essential, but it takes into account neither the interactive and collaborative
features of the virtual objects, nor their behavior. Furthermore, in a collaborative context, the
interaction capabilities of a virtual object can vary accordingly to the user who interacts.

The designer of an interactive CVE must also describe in which way each interactive object
will make users aware of its interactive potential: how will it propose interaction to a user? How
will it make the user understand its constraints? How will it make users aware of the collaboration
possibilities? This designer will also have to define the software interaction tools that will be used
for these interactions. This part should complete the description of the CVE.

Last, most of the time single-user interaction tools and metaphors are not adapted to offer effi-
cient collaboration between users of a CVE. Some of these tools and metaphors can be adapted for
collaborative interactions, and new really collaborative metaphors need to be proposed to enhance
real multi-user collaborative interactions, with dedicated collaborative feedback.

4 – Embedding the users’ physical workspaces within the CVE

It is also quite important to take into account the features of the hardware devices available at
run time, because they have a strong impact on user immersion and interaction. For example
the knowledge of the boundaries of an immersive display can prevent the user from disrupting the
feeling of immersion by colliding the display. In a collaborative context, it is also interesting to
make users aware of the interaction capabilities of the other users. So, designers will have to find
a model for the features of the hardware devices used at run-time in order to embed them in the
virtual environment as a new kind of virtual objects.

10 Introduction

Addressing the essential requirements about the design of 3D CVE

We have identified six topics that must be addressed when designing a CVE to meet most of their
requirements. These topics focus either on the global architecture of the CVE, at a system or at a
software level, or on the details of the collaborative interactions, at the object level.

For each of these identified topics, we will present a state of the art about the solutions that
can address this topic, then we will show our own contributions: how we improve existing solutions
and what are our new propositions.

Part I: System and Software Architectural Models for Collaborative Virtual
Environments

Chapter 1 (System Architectures for Data Distribution in Collaborative Virtual Envi-
ronments) makes a point about pros and cons of the main CVE system architectures. Our main
contribution to this topic is to propose to allow CVE designers to mix in a same CVE the three
main distribution models usually encountered (centralized on a server, totally replicated on each
site, or distributed), and to offer an implementation of this concept in the Collaviz framework.

Chapter 2 (Synchronization Models for Collaborative Virtual Environments) deals
with synchronization between distant sites. Our contribution to this point is about adaptation
to the jitter of the network latency, with several synchronization groups of users, some migration
mechanisms for virtual objects, and some metaphors dedicated to make the users aware of what is
occurring on the network.

Chapter 3 (Software Architectural Models for 3D CVE) explains why it is so important
to make a strong separation between the core of the virtual environment and the software and
hardware features used to implement and deploy the virtual environment. We present a state of the
art about software architectural models for interactive and collaborative software, and we propose
our own solution, the PAC-C3D model, which is able to deal with the three main distribution
modes encountered in CVE.

Part II: Models for Designing Collaborative Interactions

Chapter 4 (Modeling Interaction and Collaboration) presents how to go one step beyond
geometric modeling, by adding interactive and collaborative features to the model of the virtual
objects. Here our main contribution is about a unified model of dialog between interactive objects
and interaction tools. We have also proposed an extension to Collada in order to describe interactive
and collaborative properties of these interactive objects and interaction tools.

Chapter 5 (Metaphors for Collaborative Interactions) talks about metaphors for interac-
tion within CVE. It shows that usual 3D interaction metaphors must generally be adapted to fit
with collaborative interactions, and to make users aware of this collaboration. We have contributed
to this field through new metaphors for multi-user interaction, with new interaction tools acting at
the object level.

Chapter 6 (Modeling Users’ Physical Workspaces) shows that we need to take into account
the users’ physical environment at run-time in order to adapt the CVE to the hardware input and
output devices of the users. This is why we propose the Immersive Interactive Virtual Cabin (IIVC)
concept to embed in the CVE a 3D model of the users’ physical workspaces.

Part I

System and Software Architectural
Models for CVE

11

System and Software Architectural Models for CVE 13

Collaborative Virtual Environments (CVE) enable users to collaborate and interact together
by sharing a common virtual environment. Ensuring the global consistency of such a virtual envi-
ronment is very important to provide efficient collaboration between users. However, users sharing
a CVE may be scattered over different physical locations, so CVE systems have to guarantee the
virtual environment consistency despite network issues such as low bandwidth or network latency.
Absolute consistency is nearly impossible to achieve because it would prejudice the responsiveness
of the system during user interactions. So, CVE systems have to deal with a trade-off between
consistency and responsiveness of the system. This is a network level viewpoint upon a CVE global
architecture, as illustrated in Figure I.1.

�
�
�
�
�
�
��

��
	
�
AB

�
C
�
D

E
�
�F

	
�
�
AB

�
C
�
D

�
�
�
��
�
�
�A
B
�
C
�
D

�D����A� �D����A�
���C��

Figure I.1: Modeling distribution and synchronization in a CVE

In chapter 1 (System Architectures for Collaborative Virtual Environments) we present a survey
of architectures and mechanisms used to improve the consistency of a shared virtual environment.
Architectures of CVE systems are studied according to their impact on consistency. We identify
three main different distribution modes, each one has some advantages upon the two others. So
our contribution to this topic is a new framework that implements these three distribution modes.
The choice of the distribution mode can be made individually for each virtual object of the world,
according to its requirements, and this distribution mode can be modified at run-time.

In chapter 2 (Synchronization Models for Collaborative Virtual Environments) consistency
maintenance mechanisms are also examined. First, a time synchronization must be achieved in
order to enable users to perceive the same state of the virtual environment at the same time. Sec-
ond, the virtual environment can be seen as a database shared by several users, so CVE systems
must manage users’ concurrent access to shared virtual objects. Our conclusion about synchro-

14 System and Software Architectural Models for CVE

nization is that usual synchronization modes can be improved to deal with network latency. Our
contributions are about management and awareness of the jitter of the network latency. We pro-
pose to dynamically organize, at run-time, several synchronization groups, and to make the users
aware of the latency between some sites of a CVE.

When designing a VR application, one can choose between the many hardware devices and
software API that are available for managing the interactions of the users and the rendering of the
virtual environment. Typically, if these software and hardware devices are too closely-coupled to the
core representation of the virtual environment, it will be very difficult to adapt the VR application
to other kinds of devices (many input devices can be used to provide similar interactions) or to
other kinds of rendering software. So we need software architectural models to make an efficient
link between the different levels of a CVE, as illustrated in Figure I.2.

�
�
�
�
�
�
��

��
	
�
AB

�
C
�
D

E
�
�F

	
�
�
AB

�
C
�
D

�
�
�
��
�
�
�A
B
�
C
�
D

�D����A� �D����A�

���C��

Figure I.2: Making the link between the different levels of a CVE architecture

In chapter 3 (Software Architectural Models for 3D CVE) we propose PAC-C3D as a new
software model for 3D CVE. This model merges the results from two research fields: distribution
models for CVE and HCI design for computer-supported cooperative work. PAC-C3D uses explicit
interfaces to ensure a strong separation between the core functions of each object of a virtual
environment, its (visual) representations, and its collaborative features such as synchronization
and consistency maintenance between remote users. PAC-C3D makes it possible to design a CVE
with low dependency between the core functions, the distribution mode and the 3D graphics API
used for each virtual object. It explicitly deals with the main distribution modes encountered in
CVE and it makes it easy to use different 3D graphics API for different nodes involved in the same
collaborative session, providing interoperability between these 3D graphics API. It also makes it
possible to integrate other kinds of 3D representations such as physics engines into the CVE.

Chapter 1

System Architectures for
Collaborative Virtual Environments

1.1 Introduction

One of the main goals of Collaborative Virtual Environments (CVE) is to enable users to work
together in a natural way and to provide them a truly interactive experience. Generally, each
user uses his own computer to have individual interaction capabilities or to meet the others if
they are not located at the same geographical place. So, this collaborative work must be achieved
over a local area network (LAN) or a wide area network (WAN) between the users’ computers
that we will call “nodes”. For example, in the case of the French ANR project Collaviz1, remote
experts have to analyze together scientific data using an Internet connection through a secured
proxy. Such network connections have a strong impact on the consistency of the shared virtual
environment because they delay the transmission of the virtual environment changes. While some
users of a CVE can interact through immersive devices, powerful computers, and high-bandwidth
network connections, some other users can share the same CVE through simple workstations and
low-bandwidth network connections. Even if not powerful enough computers or low-bandwidth
network connections put some users at a disadvantage, these users have the right to share the same
state of the virtual environment than the other users. Ensuring the CVE consistency is the best
way to make possible an efficient collaboration between users because it can avoid conflicts between
several user actions or misunderstandings when users perform collaborative tasks.

To define the consistency of a CVE, Delaney et al. [DWM06a] explain that a CVE must be
considered as a distributed database with users modifying it in real-time. Consistency maintenance
consists in ensuring that this database is the same for all the users, i.e. users observe or interact
with the same data. The consistency of a CVE can be characterized by the following three criteria:

� synchronization: (1) time synchronization: an event (state modification of a shared virtual
environment) should happen simultaneously on all the nodes. (2) spatial synchronization:
CVE objects should have the same location at the same time on all the nodes.

� causality: events order must be the same for all the users.

� concurrency: conflicts can occur when users change the same parameter of a virtual object
at the same time. These conflicts have to be managed to avoid that users make their own
modifications and have inconsistent states of the CVE.

Consistency is directly linked to system responsiveness. Responsiveness can be defined as the
time needed by the system to respond to user actions. Responsiveness during interactions can be

1www.collaviz.org

15

16 System architectures for CVE

quantified by the system latency, i.e. the time between a user action and the system response.
This latency is often due to the transmission time over the network and to the processing delays of
the events. Improving the consistency of a CVE can increase latency during interactions and vice
versa. So, CVE systems must reach a trade-off between consistency and system responsiveness.

Latency is especially a problem for highly interactive applications. Delaney et al. [DWM06a]
present several values of latency found in the literature. It seems that no consensus has been found
about these values. The maximum latency values fluctuate between 40 and 300 ms to ensure real-
time interactions, and a maximum latency of 100 ms seems sufficient for most of the applications.
These values also depend on the jitter (the variation of the latency) of the system. Roberts et
al. [RRS98] explain that jitter has a more significant impact on user performance than latency. It
would be better to have a quite high and constant latency (i.e. with a low jitter), rather than a
lower latency with a higher jitter.

In this chapter, section 1.2 describes the different architectures of CVE systems and their impact
on consistency and system responsiveness. Then section 1.3 proposes a new solution to maintain
the consistency in CVE systems.

1.2 Related work

Consistency and performance of a CVE are highly correlated with its system architecture. For ex-
ample, some architectures maintain a strong consistency of the CVE but introduce latency during
interactions. In contrast, other architectures accept a few inconsistencies but offer a better respon-
siveness during interactions. Previous state of the art reports classify CVE systems according either
to how the nodes are connected together [DWM06b, JDGMT04] or to how data are distributed on
these nodes [MZ97, Zam05]. Although these two characteristics are often interrelated, we chose to
examine both of them independently for our classification: the kind of network architecture (sec-
tion 1.2.1) and the kind of data distribution (section 1.2.2). This classification choice is motivated
by the fact that more and more hybrid solutions mix different architectural choices to meet their
requirements.

1.2.1 Network architectures

A CVE system is usually made up of several interconnected nodes that can be geographically
scattered. Each node can communicate with the others through three main data transmission
methods:

� unicast: transmission from one node to another one.

� broadcast: transmission from one node to all the others.

� multicast: transmission from one node to a subset of other nodes.

Delaney et al. [DWM06b] distinguish two basic network organizations used for CVE systems:
the peer-to-peer architecture and the client/server architecture. They also introduce hybrid archi-
tectures that combine these two solutions.

1.2.1.1 Peer-to-peer architecture

The peer-to-peer architecture enables fast communications between pairs of users, because events
are transmitted directly from one node to another one (see Figure 1.1). So, it enables a few users
to have strong synchronization, and consequently closely coupled interactions. However, increasing
the number of users will increase hugely the number of messages transmitted on the network,
especially when an unicast transmission is used (if the session contains N members, a node has
to send N-1 messages to transmit one event). Consequently, it is difficult to contact all the nodes

Related work 17

Figure 1.1: Peer-to-peer architecture. Figure 1.2: Client/server architecture.

at the same time to transmit virtual environment changes. So, time synchronization and global
consistency of the CVE may be difficult to ensure. This kind of architecture appeared with the first
CVE systems (Reality Build for Two [BBH+90] that connects only two computers, MR Toolkit
[SG93]) and is used in military applications (SIMNET [CDG+93], NPSNET [MZP+94]).

Our first contribution to collaborative systems is the ARéVi distributed virtual reality toolkit
[DMR+97, RHM+98]. Its kernel (a set of C++ classes) uses a peer-to-peer architecture to make it
possible for several “applications” (what we call “ARéVi sessions”) to share a common 3D universe.
At first it was using broadcast for communication between sessions on a local area network, and
unicast for communication between sessions on a wide area network.

1.2.1.2 Client/server architecture

This kind of architecture is based on a central server. All the nodes get connected to this server
(see Figure 1.2). The central server manages the communication between different nodes and
stores data. This kind of architecture enables the server to contact all the nodes at the same time.
So, time synchronization and CVE consistency are easier to maintain than with the peer-to-peer
architecture. However, when two users want to interact together, all the communications have to
pass through the server, which increases latency during interactions. When the number of users
increases, a bottleneck can occur on the server due to too many communication requests, so all the
communications can be slowed down. For example, a client-server architecture is used in RING
[Fun95], BrickNet [SSP+95], and ShareX3D [JFM+08].

1.2.1.3 Hybrid architecture

To overcome the previous limitations, some systems propose an hybrid network architecture that
uses both peer-to-peer connections and one or several servers. For example, it is possible to speed
up communications between nodes by using peer-to-peer connections, and it is possible to maintain
a better consistency with a server.

In SPLINE [WAB+97], several servers share up-to-date information (messages, events, etc.)
with peer-to-peer connections between these servers (see Figure 1.3). At the beginning of a session,
the session manager connects nodes to one of these servers, then nodes only communicate with
their assigned server. This solution avoids the bottleneck on the server when the number of users
increases, and it makes it possible to easily connect nodes with slower or secured connections.
Indeed, each server can perform additional processing such as compression or communication with
a specific protocol. However, the use of too many servers can increase the system latency and the
load of the servers.

Anthes et al. [AHV04] suggest another hybrid architecture to facilitate collaboration between
nearby users (according to their location in the virtual environment) by reducing the latency be-

18 System architectures for CVE

Figure 1.3: Several servers using peer-to-peer connections.

Figure 1.4: Temporary peer-to-peer connections between close users.

tween them. Users are connected to the CVE through a server. When some users come closer
together in the virtual environment, temporary peer-to-peer connections are established between
these users to increase the virtual environment consistency (see Figure 1.4).

CAVERN [LJD97] is based on a generic interface that defines the network connection and the
data storage. Each node implements this interface to make possible a communication with all the
other nodes. This node can act as a client or as a server, so any kind of network architectures can
be implemented with this framework.

Our second contribution to distributed VR is the hybrid architecture of the OpenMASK plat-
form [MAC+02], previously known as the GASP platform [DM00b, DM00a]. It uses peer-to-peer
connections to send updates and events to nodes. It also uses a server to manage the identification
of virtual objects and to dynamically add nodes during a session.

1.2.2 Models for data distribution

As stated by Macedonia et al. [MZ97], the location of the virtual environment data (i.e. geometric
data, textures, etc.) is a critical decision when designing a CVE system. It determines which
computers store this data and which computers execute the processing related to each virtual object.
We distinguish three data distribution modes: centralized, homogeneously replicated (duplicated),
and partially replicated (distributed). Further details about the impact of system architectures on
CVE consistency can be founded in [FDGA10b].

Related work 19

1.2.2.1 Shared centralized world

Some systems such as Vistel [YTAK95] use one database shared by all the nodes. All the data
relative to the virtual environment are stored on a central server. Similarly, behaviors of the CVE
objects are executed on this server (see Figure 1.2.2.1). Users log on the server to join a session (it
requires a client/server network architecture). When a user wants to modify an object, his node
sends a request to the server. The server processes the modification request, then transmits the
up-to-date state of the object to all nodes, including the one that asked for this modification (see
Figure 1.2.2.1).

(a) (b)

Figure 1.5: (a) Executions of object behaviors and (b) object modifications in a shared centralized
world.

This method ensures consistency between all the nodes and avoids data replication, but it has
two main drawbacks:

� During interactions, latency can increase when transmission delays occur between the clients
and the server. Indeed, each modification request must pass through the server before return-
ing to the user (see Figure 1.2.2.1). Users can get annoyed with this lack of responsiveness
during interactions.

� With many users, a bottleneck can appear on the server because it has to send updates to all
the nodes at the same time (especially with unicast connections).

1.2.2.2 Homogeneous replicated world

This kind of data distribution is used in many CVE systems (SIMNET [CDG+93], MR Toolkit
[SG93]). All the nodes are initialized with the same database that contains all the information about
the virtual environment (terrain, geometric models, textures, object behaviors, etc.). Similarly,
bcDSG [NLSG03] replicate a shared scene graph on all the nodes. Data can already be present
on the node when the user logs in (such as in most of the video games). Otherwise, data must
be replicated from a server, or from the other nodes already connected to the session. During the
session, the database evolves independently on each node and all object behaviors are executed
locally (see Figure 1.2.2.2). Additionally, a synchronization mechanism can be used to control
executions of object behaviors on each node. To maintain consistency, only object modifications
and some special events (collision between two objects, etc.) are transmitted on the network in
order to enable all nodes to update their database (see Figure 1.2.2.2).

20 System architectures for CVE

(a) (b)

Figure 1.6: (a) Executions of object behaviors and (b) object modifications in an homogeneous
replicated world.

This data distribution has two main advantages:

� The number and the size of messages transmitted on the network are really small because
only update messages are sent.

� The latency is very low during user interactions. In fact, virtual object modifications are
performed locally before being sent to the other nodes by using update messages.

However, data replication also has drawbacks:

� Data replication can introduce inconsistencies between users’ virtual environments because
of delays or losses during the transmission of update messages.

� Additional mechanisms must be provided to manage the concurrent access on each node.
Indeed, a user can perform a local modification of an object, but modification conflicts can
only be checked when the changes are transmitted to the other nodes.

� This solution is not really appropriate for very large data sets such as scientific data or
complex CAD models, because each node may manage its own large database.

� This approach is not really flexible, especially if users want to add new objects in the initial
database.

1.2.2.3 Partially replicated world (or distributed world)

Many CVE systems choose hybrid solutions between totally centralized and totally replicated data
distributions in order to avoid the drawbacks of these two solutions. These hybrid solutions dis-
tribute the data and their processing among the nodes. It reduces the necessary resources and
eases the consistency maintenance. For example, RAVE [GAW09] uses a central server to process
object behaviors, and uses asynchronous transmission to perform “best effort” collaboration. Nodes
maintain a local copy of the virtual environment, only receiving update messages from the server.
In the literature, these hybrid solutions are called partially replicated world or distributed world.

To avoid the duplication of all the data on each node, data can be distributed on the network
among these nodes. So the database can be seen as a shared and distributed memory. In DIVE
[FS98], when a new user joins a collaborative session, only the necessary objects are replicated on his
node instead of downloading the whole data of the virtual environment (see Figure 1.7). However,
if this user needs other objects during the session, they must be dynamically downloaded.

DIVE uses peer-to-peer connections to manage communication between nodes (transmissions
of messages or object data when needed). DIVE also uses a server to backup the data distributed

Related work 21

Figure 1.7: Data partially replicated on each node.

all over the nodes, in order to save the state of the virtual environment when a user logs out, and to
restore this session later. This method makes it possible to share CVE between many users and to
share a very large amount of data without necessarily duplicate this data on each node. However,
dynamic transmission of data and consistency maintenance induce a high cost of communication
between nodes. When an object changes, update messages must be sent to all the nodes even if
they do not own this object. Indeed, a node cannot know which node owns the modified object.

The main difficulty of this partially replicated world is to dynamically download data without
disturbing user interactions. According to Lee et al. [LLHL07], two solutions can be used:

� The prioritized transfer: this technique consists in selecting first the objects that are in
the user field of view, and transferring these objects using level of details (LODs) or multi-
resolution techniques. This solution maximizes graphical fidelity of the virtual environment
as well as interactive performance by mediating graphical details and transmission overhead
of the objects.

� Caching and prefetching the data that users will probably need: it makes data immediately
available when users ask for it. However, this solution must predict efficiently which objects
will interest first a user to define a loading priority. Generally, the distance between users
and objects is used to determine this priority, assuming that users will be interested first by
the closest objects. Other solutions suggest to add the moving direction of users or to use the
objects type to determine the users’ scope of interest. However, this prediction is difficult to
achieve with lots of objects.

To reduce the cost of communications for the updates, BrickNet [SSP+95] uses a server to
keep information about the shared objects: access rights, ownership, etc. It uses a client/server
architecture: the server manages communication between nodes. Object behaviors are executed on
each node, and the server keeps a list of nodes that share this object. When a user wants to modify
an object, his node must first ask the server for the modification rights on this object (only one
user can modify an object at the same time). When its request is granted, it can modify locally
this object. Then the new state of the object is transmitted to the node that owns this object,
using a list of object owners on the server. With this approach, the server makes it possible to ease
the consistency maintenance and to manage concurrent access to objects.

In OpenMASK [MAC+02], data of the virtual environment are replicated on each node. Each
object behavior is executed only on one node. To achieve this, OpenMASK uses a referent/proxies
paradigm [DM00b, DM00a]. The referent is assigned to a particular node and defines the object

22 System architectures for CVE

behavior. On the other nodes, proxies are created to represent the object. A proxy provides the
same interface as the remote referent (same inputs, same outputs, etc.). However, there is no
processing done locally and the proxy is driven by its referent (see Figure 1.8(a)). The OpenMASK
kernel maintains the consistency between the referent and its proxies. When a user manipulates an
object with the referent on his node, first the object is modified locally, second an update is sent to
all the other nodes (see Figure 1.8(b)). If the referent of the manipulated object is not on his node,
the object modification is computed first on the remote node that owns the referent. Then this
node transmits updates to all the nodes, including the node that asked for the modification (see
Figure 1.8(c)). In this second scenario, transmission delays on the network can introduce latency
during interactions. However, this solution makes it possible: (1) to combine the processing power
of all the nodes, (2) to ensure a better consistency of the virtual environment, and (3) to manage
implicitly the concurrent access to the objects (in a first step, only the referent can be modified).

ARéVI [DMR+97] uses the same referent/proxies paradigm than OpenMASK except that it
uses a dead-reckoning algorithm with simplified behavior models for predicting the state of the
proxies.

(a) (b) (c)

Figure 1.8: (a) Executions of object behaviors, (b) direct modification of an object through its
referent, and (c) modification of an object through on of its proxies in OpenMASK.

CAVERN [LJD97] also uses a kind of referent/proxies paradigm for data distribution. Each
object is defined by a “local key” on one node and “remote keys” on the other nodes. All these keys
are linked together over a communication channel, so any modification of one key is automatically
propagated to all the others.

Similarly, Schmalstieg et al. [SRH03] proposes to use referent/proxy paradigm to distribute a
shared scene graph. Each node only replicated a part of the scene graph according to its location
in the virtual world. Nongraphical application data are also embedded in the scene graph. For
each object, a particular node is responsible for processing its data. A migration mechanisms can
be used to change this node.

All these hybrid solutions mix features of the centralized world and features of the totally
replicated world to meet particular requirements of consistency and responsiveness. The partially
replicated world enables CVE systems to make a trade-off between the advantages and drawbacks of
the two other data distributions. For example, replicating only the necessary objects on each node
avoids replicating all the data as in the centralized world, and it makes the system as responsive as
in the replicated world. However, these hybrid solutions also have some drawbacks: in the previous
example, the consistency is still hard to maintain.

1.2.3 Preliminary conclusion about system architectures for CVE

A universal solution, which would meet the requirements of all CVE systems, does not yet exist.
Existing CVE systems have chosen the most adapted data distribution mode to meet their require-
ments, and they have done a trade-off between CVE consistency and system responsiveness. So
each solution has some advantages, but also some drawbacks. It would be interesting to combine

A new adaptive data distribution model for consistency maintenance in CVE 23

the advantages of each solution to deal with several kinds of application and several network capa-
bilities. Contrary to the network architecture that is often imposed by the technical requirements,
the data distribution can be adapted according to the application requirements (collaboration, in-
teractivity, etc.), the tasks that users are performing during a session, and the functions that the
objects fulfill in the virtual environment.

1.3 A new adaptive data distribution model for consistency main-
tenance in CVE

1.3.1 Introduction

We propose an adaptive data distribution model to deal with several kinds of requirements imposed
by various applications and different network constraints. This model makes it possible to dynam-
ically change the data distribution during a collaborative session to adapt it to the tasks that users
perform in the virtual environment. The choice of the data distribution can be made at the object
level rather than at the application level, because all the objects of a virtual environment do not
necessarily have the same need for consistency.

1.3.2 A new adaptive data distribution

Some applications require a good responsiveness to user’s actions, while some others require a
strong consistency of the virtual environment. Moreover, during the same collaborative session,
some manipulation tasks require a good responsiveness, while some collaboration tasks require a
strong consistency. Finally, in a same virtual environment, some objects shared by several users can
require a strong consistency, while some other objects do not. Consequently, it would be interesting
to adapt the data distribution to each particular case, especially when the network capabilities are
limited (low bandwidth, high latency). So we propose an adaptive data distribution model to reach
the best trade-off between consistency and responsiveness according to the requirements of each
shared object and according to the network constraints occurring at run-time.

This adaptive data distribution model is based on a referent/proxy paradigm that enables our
CVE system to:

� implement the three modes of data distribution,

� define a particular data distribution mode for each object,

� dynamically change the data distribution mode individually for each object.

On each node, an object is represented by a referent or a proxy. A referent stores the application
data of the object, executes the object behavior, and processes the modification requests for this
object. According to the data distribution mode, a referent can also send update messages to its
proxies on the other nodes. A proxy only stores the application data of the object and updates this
data when it receives update messages from a remote referent (see Figure 1.9). So a proxy performs
no processing locally, but it keeps an up-to-date state of the object and transmits the modification
requests from the user of its node to a remote referent. Even if the proxy has the same inputs and
outputs as a referent, it is necessarily controlled by a remote referent.

This first referent/proxy distribution (see Figure 1.9(a)) makes an easy migration of the referent
possible (see section 1.3.5), because all the application data is already on the proxy. When a proxy
must become a referent, it has just to start to process the object behavior and the modification
requests. No additional data transfers are required, but the application data are replicated on all
the nodes. If we do not want to replicate this data, it is possible to use a second referent/proxy
distribution: a proxy can directly update the object outputs (visual representation, sound, etc.)

24 A new adaptive data distribution model for CVE

����

�����	�AB�

C�DDAE�FAB��� ����AD��AB���

�F���

�ABA

�����	�AB�

�����	�AB�

����

�����	�AB�

C�DDAE�FAB��� ����AD��AB���

�F��������	�AB�

(a) (b)

Figure 1.9: Proxy (a) stores up-to-date object data, contrary to proxy (b) which only updates the
visual representation.

when it receives an update message from a referent, but it does not store any data in the application
part (see Figure 1.9(b)). In this case, application data is not replicated, so it requires transferring
all this data to achieve a migration of the referent.

1.3.3 The three main modes of data distribution

According to the location of the object referent, three modes of data distribution can be im-
plemented without major system modifications. Each data distribution mode meets particular
requirements of consistency and responsiveness. In this part, gap in consistency (GC) and inter-
action latency (IL) are quantified in an abstract way according to the value L of network latency.
This network latency L corresponds to the time needed to transmit a message between two nodes
or between a node and a server. To simplify the explanations, we assume that processing delays
of events (updates, modification requests) are negligible in comparison to network latency. Actual
measurements of interaction latency and gap in consistency can be found in [FDGA10a].

1.3.3.1 Centralized mode

To achieve a centralized data distribution for an object, only one referent is put on a server. All the
other nodes have a proxy that is controlled by the referent on the server. Behavior and modification
requests are processed on the server, and then update messages are sent to all the nodes. So GC
is quasi-null if all the nodes have similar network connections, but IL is about 2L during user
interactions (see Figure 1.10).

1.3.3.2 Hybrid mode

To achieve a hybrid data distribution for an object, only one referent is put on a particular node.
All the other nodes have an object proxy that is controlled by this remote referent. For behavior
execution and modification processing, GC is quasi-null for all nodes, except for the node which
owns the referent: it perceives the object state with an advance of L in comparison with the other
nodes. IL can be quasi-null if the user interacts with the referent (see Figure 1.11(a)), but it can
be about 2L if the user interacts with a proxy (see Figure 1.11(b)). However, migration mechanism
can be used to move the referent to the interacting user node (see part 1.3.5)

1.3.3.3 Replicated mode

To achieve a replicated data distribution for an object, the referent/proxy paradigm must be
adapted: one referent for this object is put on each node. The object behavior is executed on each
node and no update messages are sent between nodes. So the gap in consistency can be very large if

A new adaptive data distribution model for CVE 25

��������

��		AB�CA�D�EFA�A

��C��C ������ ������

���
���
�

�������

�������

�D��A	D�A�D�E��		AB�CA�D�E �D��A	D�A�D�E��		AB�CA�D�E

�������A��

�������A���������A��

����C�E�

L

L

 C�!"
#���$��C�
%��D�D&A�D�E

 C�!"

�������A��

IL

GC

Figure 1.10: Modification of an object in centralized mode.

no synchronization mechanism is used between nodes. A synchronization mechanism enables object
behavior to be executed at the same time on each node, and reduces the gap in consistency. For
modification, requests are processed locally on the interacting user node, then update messages are
sent to the other nodes (see Figure 1.12). So IL is quasi-null, but GC is about L for modifications.

This data distribution mode offers at least the same or better responsiveness during user in-
teractions than the hybrid mode. However, to guarantee the same CVE consistency between all
the nodes, a strong synchronization must be achieved, especially with objects whose behavior in-
dependently evolves in time. Processing all the object behaviors on each node and achieving the
synchronization cost a lot of processing power on each node, so it can reduce the user interac-
tion capability. Moreover, simultaneous interactions with a same object by remote users are quite
impossible because each node locally computes its own modifications.

1.3.3.4 Quantitative comparison of the three modes

Data distribution
mode

user IL others IL GC

Centralized 2L 2L 0
Hybrid
Referent on user node

0 (referent) L (proxy) L (ref. ↔ proxy)
0 (proxy ↔ proxy)

Hybrid
Proxy on user node

2L (proxy) L (referent)
2L (proxy)

L (ref. ↔ proxy)
0 (proxy ↔ proxy)

Replicated 0 L L

Table 1.1: Interaction latency and gap in consistency for user interaction according to the data
distribution mode.

Table 1.1 summarizes values of interaction latency and gap in consistency of the three data
distribution modes. This table takes into account the time between a user’s action and the system
response on his node (user IL), on the other users node (others IL), and the gap in consistency
between these users (GC). We can see that only the centralized mode guarantees a perfect con-
sistency, whereas the replicated mode makes low latency during interactions possible. Finally, the

26 A new adaptive data distribution model for CVE

���������	

AB�	�C AB�	�D

���������	

E��������	

D���F	�
���������	

C����	� �����	�

�����������B��B����B����B� �B����B����B����� �����������B�

��B���	 	�	�� !���"�	��
#B�� �$���B�

L

IL

GC

AB�	��

E��������	

�B����B����B� �����������B�

��B��

GC'

E����
����	

%��������	

E��������	

�����	�

%��������	

����F	�
���������	

D����	�

C����	�
L

IL

GC

!���"�	��
#B�� �$���B�

L

GC'

&�'

&�'

Figure 1.11: Modification of an object in hybrid mode when user is interacting with the referent
(a) or with a proxy (b).

hybrid mode can ensure at the same time a good consistency and low latency interactions, but it
requires to move the object referent to the interacting user node.

1.3.4 Each object can choose its data distribution mode

Using a referent/proxy paradigm enables us to choose a particular data distribution for each object,
contrary to the existing CVE systems, which are designed with only one data distribution mode for
all the object. In fact, for each object and on each node, a simple boolean indicates if the object
version is a referent or a proxy, and consequently if this object version has to process the object
behavior and modification requests or not. So the referent locations can be different for each object,
and an object can also have several referents on different nodes. When several referents are used
for a same object, a concurrency control must be achieved to avoid that concurrent modifications
are done on each referent.

The choice of the data distribution at the object level is motivated by the fact that each object
does not have the same need for consistency according to the function that this object fulfills
in the virtual environment. For example an object, such as a pointer, used to show something to
another user, or temporally animated objects which have to progress at the same time on each node
will require a strong consistency. However, a static object decorating the virtual environment will
probably not require a strong consistency. So it can be interesting that this kind of objects requires
just few network transmissions in order to reduce the global communication cost. Moreover, some
tools used for object manipulation will require a good responsiveness during interactions instead
of a strong consistency.

A new adaptive data distribution model for CVE 27

�������

��	��A ��	��B

C���DE	F��
����DE	F��

���DF���F��������F���F�����F�F

��������

L

IL

GC

�������
����DE	F��

B������ A������

���DF���F��������F���F�����F�F

���� ����
!�	���"F����

��������

Figure 1.12: Modification of an object in replicated mode.

1.3.5 Dynamic changes of data distribution mode

With the referent/proxy paradigm, it is quite simple to dynamically change an object data distri-
bution mode during a collaborative session. If the data is already on proxies (see Figure 1.9(a)),
only the status boolean has to be changed to indicate that a proxy is now a referent, and vice versa.
If the data is not on proxies (see Figure 1.9(b)), object data has to be transferred from a referent,
before a proxy can become a referent. So data distribution can be easily changed from one mode
to another to adapt this data distribution to user’s actions or network troubles during a session.
In the same way, the referent can be moved to the interacting user node when the hybrid mode
is used (migration mechanism). The following examples illustrate dynamic changes for each data
distribution mode:

� centralized mode → hybrid mode: if a user needs to use a 3D pointer to precisely manipu-
late a virtual object, the 3D pointer referent can be moved to the user node to offer good
responsiveness during the manipulation.

� hybrid mode → centralized mode: if now the user wants to use this 3D pointer to show a
point of interest in the virtual environment to another user, the 3D pointer referent can be
moved to a server to ensure that the two users see this pointer at the same location at the
same time.

� centralized or hybrid mode → replicated mode: in case of network troubles, the replicated
mode can be used to reduce network communications and enables users to interact in spite
of network issues.

� replicated mode → centralized or hybrid mode: if an object behavior suddenly requires high
processing power for specific processing as scientific data computation, the object referent
can be moved on a server or on a node with high processing power to not overload all the
nodes.

Rules for data distribution changes can be determined by the object behaviors or by the ap-
plication controller. So this rules could be defined in the application configuration files or in the
object description files (see section 1.4).

28 A new adaptive data distribution model for CVE

1.3.6 Instantiation of the data distribution model for collaborative scientific
visualization

This adaptive data distribution model has been used to design the Collaviz framework [DDF+10],
a new CVE system dedicated to collaborative scientific data visualization. The Collaviz project
aims to enable remote experts to visualize complex scientific data together by sharing a common
virtual environment in an industrial context. The details can be found in [FDGA10a].

1.4 Conclusion and future work

To enable users to perform an effective collaboration in a shared virtual environment, a good
consistency has to be maintained between the users’ nodes. However, maintaining CVE consistency
must not reduce user interaction capability by decreasing the system responsiveness. The stronger
the network constraints are (low bandwidth, secured protocols), the more CVE systems must deal
with the application’s particular requirements to reach a good trade-off between consistency and
responsiveness. So we propose an adaptive data distribution model. This model enables our CVE
system to achieve three data distribution modes to deal with several applications requirements and
various kinds of network connection. The data distribution mode can be individually chosen for
each object according to the function that it fulfills in the virtual environment. Moreover, this data
distribution can be dynamically changed during a session to adapt itself to the tasks that users need
to perform in the CVE. Finally, measurements of interaction latency and gap in consistency between
remote computers show that each data distribution mode has its own performance characteristics.
So, adapting the data distribution according to the application requirements improves collaboration
and interaction capabilities of CVE users, especially with a WAN.

Future work could focus on developing a syntax to describe rules of data distribution changes
for each object. According to the user actions or to the network status, these rules could determine
when the data distribution mode of an object must be changed. We could propose extensions to
an XML language (such as X3D or Collada) in order to include such rules in the description of the
shared virtual world.

Chapter 2

Synchronization Models for
Collaborative Virtual Environments

2.1 Introduction

In addition to the system architecture and to the communication protocol, some mechanisms can
be used to improve the virtual environment consistency. First, we present time synchronization
mechanisms that enable each node to process CVE changes at the same time. Second, we examine
different solutions used to manage the concurrent access to virtual objects.

2.2 Related work

Time is a fundamental element of a CVE. The notion of time can differ from one application to
another. Delaney et al. [DWM06a] distinguish two different notions of time in CVE:

� Absolute time: the time of a CVE can be based on a clock periodically synchronized
between each node, based on the coordinated universal time (UTC).

� Logical or virtual time: the time of a CVE can be based on a logical clock that is not
precisely synchronized between each node as proposed by Jefferson [Jef85]. This time can be
seen as an ordered event sequence. When no new event occurs, it stays the same.

The relationship between time and consistency is very important. In a perfectly consistent CVE, all
the users perceive the same state at the same absolute time. However, this perfect case can never
happen because of network latency. Delaney et al. [DWM06a] list different solutions to improve
consistency over time according to the required responsiveness for interactions.

2.2.1 Time synchronization

2.2.1.1 Lockstep synchronization

The lockstep synchronization used in RING [Fun95] or OpenMASK [MAC+02] is the easiest way
to ensure the consistency of a CVE. It consists in stopping nodes until all of them have processed
the current simulation step. So, each node does not increment its logical clock until all the other
nodes have acknowledged that they are ready for the next simulation step. This solution avoids
roll-backs because it imposes that events are processed in the correct order. However, it guarantees
consistency but not in real-time. If there are delays or losses during transmissions, the time spent
to wait increases, and the system responsiveness breaks down. Furthermore, simulation steps are
not necessarily constant, so the system jitter can be substantial.

29

30 Synchronization Models for CVE

2.2.1.2 Imposed global consistency

This technique consists in delaying the processing of both local and remote events. The delay is
the same for all the nodes, its value is usually defined according to the maximum values of the
network latency. This delay makes it possible to increase the probability that the remote events
are received before processing all the events of a simulation step. This method makes possible a
strong global consistency between all the nodes with an absolute clock. However, this solution
introduces interaction latency which value varies according to the network characteristics. This
latency is constant during the whole session.

2.2.1.3 Delayed global consistency

Contrary to the imposed global consistency, the goal of this technique is to maintain an asyn-
chronous consistency. Users perceive the same state of the virtual environment, but not at the
same time. Each event is marked with a “timestamp” (using a logical clock). Each node manages
its logical clock. So the state of a CVE can be rebuilt locally with the events right order. However,
this delayed consistency can disturb collaborative tasks (users may not perceive the same virtual
environment at the same time).

2.2.1.4 Time warp synchronization

“Time Warp” synchronization proposed by Jefferson [Jef85] is an optimist technique, which consists
in processing each event as soon as it arrives. Events are also marked with a “timestamp”. When
an event is received with an older “timestamp” than the event that has just been processed, the
mechanism must cancel the processing of all the events with a most recent “timestamp” (roll-back).
Then it processes again all these events to catch up with the current time. Moreover, it must send
messages to cancel incorrect messages sent during the deprecated execution (roll-back propagation).

This synchronization method makes possible low latency interactions. However, it can only
be used when roll-backs happen rarely, because they are extremely annoying for users. Several
systems propose to quickly display several key-frames during the re-execution of events to facilitate
the users’ understanding. Finally, this method requires to store the received events to re-execute
them in case of roll-back.

2.2.1.5 Predictive time management

This method proposes to predict events and to send them on the network before they occur.
This concept was first proposed by Roberts et al. [RS97] in the PARADE system to manage
the consistency when users collaborate through a network with inherent latency. Obviously, this
mechanism can not be applied to all the virtual environment objects because some objects are not
predictable. Particularly, user actions are difficult to predict. For example, PARADE uses this
method for collision detection.

Events are predicted locally, marked with a “timestamp” and sent to other nodes, where these
events will be processed at the appropriate time (defined by the “timestamp”). This predictive
management is interesting only if the time between the sending of the predicted event and its
processing is higher than the network latency. Otherwise the message will arrive too late to be
processed. If the prediction is false, the system needs to make roll-backs to resolve mistakes. To
minimize roll-backs in PARADE, predicted events are sent “just-in-time” by using estimations of
network delays: network delays are determined by the study of the RTT (Round-Trip Time) of the
network.

Related work 31

2.2.1.6 Server synchronization

In client/server architectures, the server can be used to synchronize events using a logical clock.
In ShareX3D [JFM+08], the server maintains a “state number” for each object of the CVE. When
the server receives a change for an object, it increases the “state number” of this object. Nodes
also maintain a “state number” for each object corresponding to the last update messages received
for this object. When a node asks the server for new changes about an object (see “long polling”
in [JFM+08]), it sends the local “state number” for this object. If this “state number” is older
than the server one, the server sends back an update message with the new “state number” value.
Otherwise, the node is up-to-date and its request stays in standby.

This solution provides a simple way to ensure that nodes have the most recent object states,
but it does not guarantee that all events will be received and processed by nodes. This is not an
issue in ShareX3D because the server sends whole states of objects, so nodes can restore the state
of an object with only one update message.

2.2.2 Concurrency control

The centralized data distribution ensures an implicit control of concurrent access to CVE objects,
because this data can be changed only on the server. It is the same for systems that use a ref-
erent/proxies paradigm as OpenMASK [MAC+02], because only the referent of an object can be
modified by users. However, when data is distributed on each node (homogeneous or partially repli-
cated worlds), the users can access and modify objects locally before these changes are transmitted
to other users. So it is necessary to explicitly manage the users’ concurrent access to these objects
to avoid inconsistencies in the virtual environment. When an object can be modified by only one
user at the same time (non-collaborative interactions), Lee et al. [LLHL07] distinguish three kinds
of mechanisms to manage the concurrent access:

� pessimistic mode, as in BrickNet [SSP+95]: This mode ensures that only one user can
modify an object at the same time with a lock system. When a user wants to manipulate an
object, he asks to become its owner. An object has only one owner. So if the object already
has an owner, the user has to wait until this owner releases the ownership of this object. Only
the current owner of an object can modify it. In this way, no concurrent access to an object
can occur. However, when the network latency or the number of users are high, the necessary
time to acquire the ownership of an object can be long and therefore introduces latency during
interactions. BrickNet [SSP+95] uses the server to save which user is the owner of each object.
This mode is difficult to set up in the case of a peer-to-peer architecture. Indeed, when a
node requests the ownership of an object, it must ask all the other nodes if they own this
object.

� optimistic mode: This mode enables users to modify objects without checking the potential
concurrent access on these objects. So users can have low latency interactions with these
objects. However, when a conflict occurs, it is necessary to make a correction. It can be
complex and also requires that users perform their actions again.

� prediction based mode, as in PARADE [RS97] or ATLAS [LLHL07]: This mode consists in
predicting for each object which users may manipulate this object to prioritize these potential
owners. If the prediction is false for a user (he is not interacting with the object), it gives
the ownership of the object to the next user on the list of potential owners. Generally, this
prediction is based on the position and the user behavior (where they move, where they look,
etc.).

In several applications, it may be useful to enable several users to manipulate a same object at the
same time. Margery et al. [MAP99] classify collaborative interactions into three categories:

32 Synchronization Models for CVE

� Only one user can manipulate an object at the same time. So the previous modes of concur-
rency control can be used.

� Several users can modify simultaneously independent parameters of a same object. So the
previous modes of concurrency control can be adapted to each parameter of the objects.

� Several users can modify simultaneously co-dependent parameters of a same object. Other
mechanisms must be used to combine user actions to modify appropriately the object.

2.2.3 Network delays and side effects

The network affects directly the performance of distributed virtual environments systems. For
example when interacting remotely, a user can take the control of a virtual object and manipulate
it. Low latency offers a real time interaction by minimizing the delay between user’s actions and
the object’s responses that may be on a very distant site. If a data transmission problem arises
on the network, this problem will directly affect the remote interaction. The most frequently
types of problems envisaged are the delay when transmitting data over a network and some little
disconnections from time to time due to dynamic rerouting systems. If the disconnection time of a
site increases during a distributed virtual simulation, the consequences can be catastrophic.

A network disconnection can drive different kinds of perturbations to a shared distributed virtual
reality session. Whatever the kind of the data model the virtual reality system is using (centralized,
distributed, ...) we can not avoid a periodic communication between all the sites that are sharing
the same virtual world, especially when users interact with objects of the shared universes. So,
from the interactivity point of view, when a network disconnection occurs, the user’s interactions
that exist on the disconnected site are not seen any longer by the other sites. This same user is
not able any longer to see the interactions of the other users and it also produces collaboration
breakdowns.

When an object is evolving linearly, we can tone down the communication problem between
different sites by using a prediction system that achieves local computing to estimate for example a
future position of a moving object. NPSNET implements this method using the “Dead Reckoning”
algorithm [MZP+94]. But when we are facing a complex evolution or totally unpredictable actions
like users’ interactions with virtual objects (interaction may depend on user skills or mood), such
prediction systems are unable to manage the situation in a virtual world, so we find ourselves
powerless facing a technical challenge. Some other systems like SPIN [DDS+99] duplicate all
universes objects and perform parallel calculations locally on each site. In this case network delay
is not meaningful to a virtual session from the animation point of view, but this architecture
does not resolve the main problem when objects are interactive because the possible interactions
of a user can not be “duplicated”, so we can not avoid the anomalies provoked by delays and
disconnections. OpenMASK [MAC+02] implements a predictive architecture based on the concept
of referentials and mirrors, which is similar to the distribution concept in NPSNET. The evolution
of a mirror relies completely on updates received from its associated referential, so it is possible
to detect the presence of a network problem (if any) referring to referentials and mirrors points of
view [ZD03] because it is possible to detect that some mirrors do not receive regular updates from
their referential.

2.2.4 Providing awareness of network troubles

In [VGB99] Vaghi et Al. have presented an experiment of a collaborative two players ball game
where one player was subjected to an increasing amount of delay. They observed that as the
network delay increases, the users (being aware) modify their strategies in an attempt to cope with
the situation. Fraser et Al. have made a step forward in [FGV+00] by giving visibility to what
they have called “delay induced phenomena”. They have implemented a system that estimates the

Managing network delays with OpenMASK 33

maximum difference between the “objective” position of a user avatar, and where another might
perceive it to be, according to network delay times between the users and speed of motion. For
example, in case of network delay, an avatar is shown surrounded by a sphere that represents all
uncertain possible positions, and this sphere evolves according to the network delay.

In [ZD03] we have presented two different methods to make network troubles visible and also
to make a user aware of possible inconsistencies in the virtual environment. The first method is a
marker system that marks all mirror objects existing on a particular site to make a user aware that
these objects are neither interactive nor updated anymore. The other method is the creation of an
echo object that is associated to each mirror object in the virtual world. This echo is visualized at
the same place than the original object’s place. In case of delay between the process of the referential
and the process of its mirror, we can see a spatial gap between the motion of the referential and
the motion of the echo associated with this mirror that shows in this case the position variation
between these two processes. This last method presents some limitations when a large number of
sites are participating to a simulation due to the very important number of echoes, which will be
harmful to visualization.

2.2.5 Conclusion

We have presented mechanisms that enable CVE systems to achieve a time synchronization between
users, to manage the concurrent access to the data of a CVE, and to manage network delays.

We have contributed to this field by proposing strong synchronization mechanisms in the Open-
MASK framework [MAC+02] (the successor of the GASP framework [DM00b, DM00a]) and the
Collaviz framework [DDF+10].

Next sections present our propositions to manage several groups of synchronization to enable
all the users to interact in the CVE even if they have hardware limitations such as low processing
power or low network capabilities, to make the users aware of the network troubles, and to allow
object migration from one site to another.

2.3 Managing network delays with OpenMASK

As mentioned above, the default time synchronization in OpenMASK is a lockstep synchronization
that ensure a strong consistency for a CVE. This mechanism has been enriched to also support
a weak synchronization, which can be useful when some troubles occur on the network. This
mechanism comes with the possibility to make the users aware of the troubles that are occurring
on the network, and to make OpenMASK objects migrate from one site to another.

2.3.1 Detection and awareness of network troubles

Whatever the kind of the data model the virtual reality system is using (centralized, distributed, ...),
we can not avoid a communication between all the sites that are sharing the same virtual world,
especially when users interact with the shared universes. One of the common synchronization
methods in distributed systems is the use of periodic synchronization messages. This method
ensures a hard real-time synchronization between all sites. Hard real-time applications require a
response to events within a predetermined amount of time in order to function properly. Network
delays or troubles will deny events and updates from coming in time, which will cause the breaking
of the real time concept. In a distributed virtual reality simulation context, the consequence of
breaking real time may be one of the two following scenarios: freeze the whole virtual world on
all sites until a synchronization message shows up, which is very harmful for the session especially
if the delay is important; or let the distributed virtual world goes on even in case of delay or

34 Synchronization Models for CVE

disconnection. This second scenario will split up the virtual world into several parallel worlds, due
to different users interactions on the same virtual object, which is a very bad choice.

In this section we present our proposition to manage these network troubles, which is a mix
of the two scenarios. We choose to let the simulation continue by freezing only the parts of
the world whose state is uncertain for consistency considerations. We let the virtual simulation
evolve even in case of presence of non updated values due to latency or disconnection. So, the
virtual world is not out of use while waiting the reception of updates as it is in hard real time
synchronization based distributed systems. Even objects interactivity will be preserved but only
for objects that are calculated locally. Remote calculated objects lose their interactivity as long as
they are disconnected.

2.3.1.1 Detection of network delay or disconnection

Usually, all participant sites to a virtual simulation using OpenMASK are sending each other
synchronization messages, used to synchronize an object with its distant mirrors and to carry the
updates from a referential to its mirrors. A synchronization message may even contain only a
dating element in case of no new changes in the virtual world. Once a participant site is not
receiving synchronization messages from one or more sites any longer, these sites will be declared
as disconnected. Each site conserves a list of disconnected sites that is not necessarily the same on
each site. The synchronization message time-out threshold has to be carefully determined according
to the characteristics of the network, otherwise it could downgrade the system performance, either
by too frequent creation of unnecessary echoes or by detecting the troubles too late.

2.3.1.2 The awareness provider system

In order to make the participants aware of any possible network trouble, we have implemented,
in the kernel of OpenMASK, some services that provide useful informations to the higher level
applications. In [ZD03] we did a first step for realizing an information system provider implemented
in the kernel of OpenMASK. Next we will detail the limitations of this first implementation and
we will explain the solutions that we have proposed and realized to enhance our system.

The echoing system. We want to make users aware that sometimes their interactions are not
seen by other users as they should be, because of network delay or disconnection. The idea is to use
an echo object that represents the state of its associated real distant object. Initially, the echoing
system had been implemented in a static way.

On each process, for each mirror object in the virtual world, we associate an echo object that
follows the motion of the mirror. The echoes association is made in a special configuration file
where we specify manually which objects in the world will have echoes. The echo is a referential,
it will have mirrors on the other sites as all OpenMASK simulated objects and it is visualized at
the same place than the original object (e.g. the referential of the mirrors it is echoing). Physically
the echo has the shape of its original object but is a little bit smaller and half-transparent so that
we can not see it when a simulation is going on normally. We can associate as many echoes as we
have mirrors in the virtual world. When the delay between the process of the referential and the
process of its mirror is important, we may encounter some inconsistencies between the state of the
two processes. For example, in case of spatial motion we can see a gap between the motion of the
referential and the motion of the echo associated with its mirror, as illustrated in Figure 2.1 (a)).
In case of a disconnection, the echo associated with the mirror existing on the disconnected site is
frozen on the screen and it does not evolve any longer. This means that the mirror concerned with
this echo is not receiving updates any longer because of the disconnection.

The disadvantage of this method is that each referential object of a scene will have as many
echoes as there are mirrors (participant sites). This will overcrowd the scene especially when moving

Managing network delays with OpenMASK 35

Figure 2.1: (a) The Echoing System and (b) the Marker System.

objects while interacting, and it will increase the calculus time that the system will need in case
of a huge number of users. So we have decided to change the whole way of creating and managing
echoes: a better solution to the above cited limitations is to create local echoes dynamically in an
automatic way.

The first approach is to activate dynamically the creation of echoes after the detection of a
first network perturbation, and disable the echoes as long as the distributed simulation is going on
normally. This method is a clear amelioration relatively to the static creation method, but what
if the first perturbation encountered during a simulation was the loss of a participating site? In
this case it is too late to create echoes because we are not able to communicate with this site any
longer.

We resolve this problem by providing a new concept that avoids the creation of the referentials
echoes on the disconnected site: local objects. Once a site detects the lost of another distant
site, it activates locally the creation of local echo objects that appear exactly with the current
states (position and orientation for example) of existing referentials. Only one simulation step time
separates the physical disconnection of a site from the creation of associated echoes on other sites,
so the lost of the last exact value is not really significant (in the order of few milliseconds). Echoes
may also appear with the current state of some mirrors in the scene. Actually the dynamic echoes
creation system detects not only referentials existing on a site but also mirrors that have “brothers”
located on a disconnected site. “Brother” mirrors are mirrors associated to the same referential.
This way, a user becomes aware that his interactions with a mirror are not perceived any longer by
some other users.

This last approach has been implemented in the kernel of OpenMASK [DZ06b] and could be
extended to present more informations about disconnected or delayed sites by displaying the name
of the disconnected site above the associated echo, or may be by using different echo colors in case
of a few number of participating sites. Each color could then represent a particular site.

The marker system. In [ZD03] the marker system is a very limited service that marks a specific
kind of objects existing on a particular site (for example the mirror objects): we use a 3D button
that launches the marker system once pressed by the user. The marker system surrounds all mirror
objects (or may be another kind of object) by a half-transparent sphere that makes it clear to the
user that these marked objects are not holding the last updated values (Fig. 2.1 (b)). The limitation
of this version of the marker system is that it was not able to be more specific by designing only
mirrors damaged by a delay, so it was marking all the mirrors.

We have extended this system in order to be more specific about objects that we need to mark,

36 Synchronization Models for CVE

as detailed in [DZ06b]. For example, the new marker system is able now to mark only the mirrors
associated to referentials that exist on a disconnected site without marking all mirror objects. This
new realization offers two main advantages. First we can give to the user a very specific idea
concerning the disconnected sites. Second we do not charge the scene by undesirable marks unless
the user really wants to mark all the objects belonging to a particular type. We can take also a
supplementary advantage from the fact of surrounding frozen mirrors, which is the protection from
the user attempts for interaction. Actually, even if the user is no longer able to interact with a
disconnected mirror, all his attempts are stocked in a special PVM buffer 1. Once the site holding
this mirror is reconnected, all orders stocked in this buffer are transmitted to the referential that
may be confused at this time because of some contradictory orders. So, as we surround mirrors
with non-interactive objects, it prevents order attempts issued from 3D direct interaction of being
transmitted to the PVM buffer.

2.3.2 Migration of virtual objects

As we have mentioned earlier in the introduction, beside detecting and visualizing network troubles
to the users, we want to provide them a rescue technique based on virtual objects migration. Some
few virtual reality systems like AVIARY [WHH+93, SW94] and WAVES [Kaz96] have implemented
object migration, but only to ensure load balancing.

In our case we use object migration to ensure a non-interrupted control of a specific object
chosen by the user. Let us remind the reader that, on each site, when network troubles occur, a
user can only control referential objects. Mirror objects lose their interactivity as they perform no
calculation and receive their updates from distant referentials. If a user is interested in keeping
the control of a specific object or a set of objects, he can claim the need of these objects to the
migration system that ensures that the user will own these objects locally on his site.

We have implemented the object migration system at the kernel level of OpenMASK [DZ06a],
it migrates an object by changing the state of its mirror and referential, because this ensures a good
continuity of the shared virtual environment. For example, to migrate an object from site1 to site2
the migration system changes the state of the mirror of the object on site2 to make a referential of
it, and then it changes the state of the referential on site1 to make a mirror of it. If no mirror exists
on site2, the migration system will first create one. This way there is no destruction of existing
objects when they migrate.

We have studied two different possibilities allowing to switch on and off between referentials and
mirrors. The first solution can be achieved by implementing the migration thanks to an internal
mutation of the object. The second solution enables migration by changing the nature of the object.

The first method consists in reconstructing the internal structure of referentials and mirrors
so that they implement exactly the same interface. This means that a referential will contain the
same functionality than a mirror, in other terms it is considered as a referential and mirror at the
same time. Referential or mirror interface will be enabled or disabled accordingly to the need of the
migration system. The advantage of this method is that the mutation of an object from a referential
into a mirror is very easy to realize at run-time and conversely. The disadvantage, mainly because
of our OpenMASK context, is the important structure modifications that may change deeply the
software architecture of a simulated object. Moreover this will generate a heavy object structure
that contains referential interface and mirror interface at the same time.

The second method changes neither the structure nor the interface of referentials and mirrors.
Migrating an object by changing its nature consists in removing the manager of an object and
replacing it without destroying the object itself. For example, to transform a mirror into a referen-
tial, we only destroy its mirror manager and we replace it by a referential manager. In case a user
has given some specific behavior to an object, he can migrate this behavior by redefining two extra

1OpenMASK’s distributed version rely on PVM [PVM]

Object migration with Collaviz 37

methods emigrate() and immigrate(), which are kinds of serialization and deserialization methods
that allow to determine all the important information to transmit from the old referential to the
new one, within a dedicated message.

Although the first method is the most efficient one, we adopted the second method to implement
object migration within OpenMASK, because the first method would have imposed too much
modifications within the OpenMASK kernel. But the first method has been the model for the data
distribution and migration of the Collaviz framework.

2.4 Object migration with Collaviz

As detailed in section 1.3.4, each Collaviz object can have its own distribution mode, and as
explained in section 1.3.5, this distribution mode can be changed dynamically at run time, which
makes object migration possible simply by switching its distribution mode from referent to proxy
(or the inverse). This is the most efficient migration mechanism presented in the previous section.

Collaviz proposes also to create objects that can be local to a site, not shared with the other
sites. So the marker system and the echoing system of OpenMASK could easily be implemented
in Collaviz.

2.5 Group synchronization with Collaviz

A synchronization can be achieved for the three modes of data distribution proposed by Collaviz.
For replicated data distribution, it ensures that the object behavior is executed at the same time
on all the nodes. It is the only way to guarantee consistency, otherwise each node executes the
object behavior as fast as it can and inconsistencies quickly appear. For centralized or hybrid
data distribution, the consistency is already guaranteed by the data distribution model, but a
synchronization can be used to improve the consistency by ensuring that the update messages are
processed at the same time on all the nodes.

As explained previously, the Collaviz synchronization mechanism is based on a lockstep syn-
chronization: nodes must wait until all of them have computed the current simulation step before
computing the next simulation step. A simulation step consists in (1) processing incoming events
such as update messages, (2) computing object behaviors, and (3) sending resulting events. The
server is used to achieve the synchronization: it sends a message authorizing the computation of a
simulation step to all the nodes, and waits acknowledgments of all the nodes before sending the next
message. A desynchronization of a few simulation steps can be authorized to overcome network
latency.

To avoid that a node with low processing power or low bandwidth slows down all the other
nodes, we propose to perform a synchronization by groups of users (see Figure 2.2):

� one group is strongly synchronized with the server,

� N groups have weaker synchronization (all the users of a same group are synchronized to-
gether),

� one group is not synchronized.

These groups can be dynamically changed during a session. When a node slows down a syn-
chronization group, the node is moved to a group with a weaker synchronization. Consequently,
the slower nodes have a delayed state of the virtual environment, but they are limited by their
network capabilities or their processing power in any case. On the contrary, when a node quickly
computes simulation steps according to its synchronization group, it can be moved to a group with
a stronger synchronization.

38 Synchronization Models for CVE

Figure 2.2: Server manages group synchronization.

Finally, the server is used to manage the concurrent access to the virtual object. It performs
a pessimistic concurrency control as in BrickNet [SSP+95]: only one user can modify an object at
the same time. The server stores which user has the modification rights for each object. Before
modifying an object, a user must ask the modification rights for this object to the server. If another
user is modifying the object, he has to wait until this user has finished.

2.6 Conclusion and future work

We have proposed some mechanisms to detect and visualize network problems while interacting
within a networked virtual environment, and we have proposed to perform a synchronization by
groups of users to ensure the best trade-off between synchronization and interaction latency.

Two kinds of metaphors are used to inform users about the availability of the updates of an
object: echoes for users having referentials, and marks for those having mirrors. Those metaphors
are coupled with a virtual object migration mechanism implemented within the OpenMASK plat-
form. This migration mechanism is used to ensure a non interrupted control and manipulation of
an object by migrating this object onto the site of a user who wants to interact with it, since local
interactions are not sensitive to a network problem.

Our contributions make possible the dynamic management of areas of interest by migrating
automatically a set of objects to a particular site depending on the interest of users, for example
depending on the 3D position of the user, to ensure that most of the objects he can interact with
will be located on his site.

Future work could focus on making users aware of the level of the degradation of the synchro-
nization (in which synchronization group is currently a user?), and, with the marker system, of the
possible range of values that could have been taken by a parameter during a network breakdown.

Chapter 3

Software Architectural Models for 3D
Collaborative Virtual Environments

The Java3D Visualizer The jReality Visualizer The Immersive jReality Visualizer

Figure 3.1: Three different visualizers sharing the same virtual environment.

3.1 Introduction

The design of 3D Collaborative Virtual Environments (CVE) merges the design of interactive 3D
applications and the design of distributed collaborative applications. This task is complex because
it must address 3D interaction and immersion issues as well as collaborative issues dealing with
distribution, synchronization, and consistency maintenance of the shared virtual environment.

The configuration (adaptation to the hardware deployment systems) of CVE is complex be-
cause it must address various network characteristics (from high bandwidth on professional or
experimental networks to low bandwidth on personal networks) as well as various displays and 3D
interaction devices (from a 6-face CAVE� [CNSD93] to simple workstations or even to simple inter-
active tablets). All these configurations can even be used at the same time in a single deployment
in order to make asymmetric collaboration possible between remote users using different input and
output devices.

To meet all these requirements, these CVE must be designed according to a software architec-
tural model that makes it possible to adapt the distribution mode of a CVE to solve the network
interoperability issues. Such a model should also make it possible to design software components
that encapsulate the hardware 3D graphics requirements, in order to be able to choose at run-time
the best components for each hardware configuration. Existing solutions focus either on how to

39

40 Software Architectural Models for 3D CVE

manage distribution and consistency maintenance for 3D CVE, or on how to manage indepen-
dence between core functions and graphics API for 2D CSCW. For now, design models for CVE
deal neither with independence to 3D graphics API nor with efficient management of distribution
modes.

So we propose to merge these two main research fields in order to provide a new solution, the
PAC-C3D model, which offers a better way to design and implement CVE. PAC-C3D meets two re-
quirements: ensure synchronization and consistency maintenance of CVE, and ensure independence
of CVE from 3D graphics engines to make interoperability possible between such 3D engines.

The location of the virtual environment data (i.e. geometric data, textures, etc.) is a crit-
ical decision when designing a CVE system [MZ97]. It determines which nodes (usually the
users’ computers) store this data, which nodes execute the processing related to each virtual ob-
ject, and how the synchronization of the distributed objects is achieved. As presented in sec-
tion 1.2.2, we distinguish three data distribution modes: homogeneously replicated, centralized,
and partially replicated [FDGA10a], which is similar to the approaches presented in [Dew99]. A
more complete overview of synchronization and data distribution within CVE can be found in
[DWM06a, DWM06b, FDGA10b]. As each distribution mode has its own advantages and draw-
backs, a good software architectural model for CVE should be able to manage these three main
distribution modes and should be flexible enough to provide solutions for evolution toward new
distribution or synchronization modes.

In this chapter, section 3.2 presents the software architectural models used in the field of HCI
and CSCW. Section 3.3 presents PAC-C3D, our new software architectural model, and how its
instances communicate together. Consistency maintenance is explained in section 3.4 for each of the
main distribution modes. Section 3.5 describes how this model can be used to address the problem
of interoperability between 3D API, for 3D graphics or physics engines. Then section 3.6 gives
some implementation examples illustrating how our model faces adaptation to different distribution
situations and to different 3D engines. Finally, section 3.7 presents a complementary approach for
offering interoperability between several rendering engines: the Scene Graph Adapter, which is
compliant with PAC-C3D.

3.2 Related work: models for HCI and CSCW

A lot of research work about architectural models for human-computer interaction (HCI) deals
with separating clearly the graphics part of interactive software from its core part. Some of these
models have been adapted to the context of computer-supported collaborative work.

3.2.1 Software architectural models for HCI

The most commonly used software architectural models for HCI are based either on the Model-
View-Controller (MVC) model [Ree79, Gol90] or on the Presentation-Abstraction-Control (PAC)
model [Cou87]. Both of them have inspired many models dedicated to particular situations: for
example for Struts web-based applications (MVC-2 [Dav01]), for C++ or Java applications (Model-
View-Presenter (MVP) [Pot96]) or for multi-modal applications (PAC-Amodeus [NC91]).

MVC divides interactive components into three parts: the Model, the View and the Controller
(see figure 3.2(a)).

“The Model represents data and the rules that govern access to and updates of this data. . . . The
View renders the contents of a Model. It specifies exactly how the Model data should be presented.
If the Model data changes, the View must update its presentation as needed. This can be achieved
by using a push model, in which the View registers itself with the Model for change notifications, or
a pull model, in which the View is responsible for calling the Model. . . . The Controller translates
the user’s interactions with the View into actions that the Model will perform. . . . ” [Eck07]

Related work: models for HCI and CSCW 41

����������

�	�A

B�C��

���������	A B�C�CA����	A

D	A��	E

(a) (b)

Figure 3.2: (a) The MVC model and (b) the PAC model.

So the Model and the View of MVC can be closely coupled, contrary to the formal separation
achieved by PAC between these two kinds of components.

PAC divides interactive components into three parts: the Presentation, the Abstraction and
the Control (see figure 3.2(b)). At first look, one could consider that PAC is just another name
for MVC where Presentation could stand for View, Abstraction could stand for Model and Control
could stand for Controller. In practice, the PAC components have a quite different behavior than
the MVC components.

“The Presentation defines the concrete syntax of the application, i.e. the input and output
behavior of the application as perceived by the user. The Abstraction corresponds to the semantics
of the application, it implements the functions that the application is able to perform. . . . The
Control maintains the mapping and the consistency between the abstract entities involved in the
interaction and implemented in the Abstraction, and their Presentation to the user. It embodies
the boundary between semantics and syntax. It is intended to hold the context of the overall
interaction between the user and the application.” [Cou87]

So the Abstraction and the Presentation are not allowed to communicate directly: the Control
acts as a mediator and filters all the communications between its Abstraction and Presentation,
and with the other Controls.

In fact, most of the MVC-like models propose also this separation between the Model and the
View, as detailed in the Oracle/Sun interpretation of MVC [Eck07], which is very similar to the
PAC model.

In order to ensure a better independence between these three kinds of components, the Arch
model [UIM92] proposes to add adaptor components between them (see figure 3.3). This model
is also considered as a meta-model for other software models, which should follow this generic
separation between facets of interactive components.

These models must now be extended to manage the collaborative aspects of CVE.

3.2.2 Models for collaborative HCI

Several adaptations of the PAC and Arch models have been proposed to cope with these collab-
orative features. They rely on Ellis’s conceptual model of groupware [EW94] or on the clover
conceptual model [LN02]. Ellis’s model proposes three complementary components or models: on-
tological, coordination, and user-interface model. The clover conceptual model proposes to divide
the services of collaborative software into three main parts: production, communication and coor-
dination (see Figure 3.4(a)). Ontological model and the production space refer to the shared virtual
objects of a CVE. Coordination model and coordination space cover the consistency maintenance
in the CVE. User-interface model refers to the representation of human-computer interaction while
communication space refers only to the communication between the users of a CVE.

PAC∗ [CCN97] (see Figure 3.4(b)) dispatches these three kinds of functions across the three
PAC facets. To our opinion, this is a problem for designing Abstractions independently from the

42 Software Architectural Models for 3D CVE

�������
�	�AB�C

D��A��E�B

�������
FAE�����

D��A��E�B

�������E
D��A��E�B

�CE�E�B�B���
D��A��E�B

��BEC��B���
������B

D��A��E�B

Figure 3.3: The Arch model.

collaborative aspects.

���������	
ABC�D

E�FF�	��C���	
ABC�D

E�����	C���	
ABC�D

��

�

������	A�B

��CC�BA�D	A�B

�����ABD	A�B

(a) (b)

Figure 3.4: (a) The clover concepts and (b) the PAC∗ model.

Clover [LN02] (see Figure 3.5(b)) is an extension of PAC∗ that relies on Dewan’s “generic
multi-user architecture”[Dew99] (see Figure 3.5(a)), which is a collaborative extension of the Arch
model. Here again, each unit can contain three sub-components about production, communication
and coordination, especially the higher-level units that correspond to the core of the CVE.

3.2.3 Synthesis about HCI models and collaboration

Software architectural models for HCI propose to divide interactive components in three kinds of
components that should be as independent as possible from each other. Some of these models have
been extended to address the design of CVE, according to the clover conceptual model, but they do
not address how to cover the three main distribution modes of the CVE. Furthermore, they spread
the collaborative aspects over all the components of the models, which is a problem for designing
Abstractions that should not be aware of the collaborative aspects.

This is why we need a new model for designing 3D CVE, which would ensure the best possible
separation between core functions, visualization (3D graphics API and libraries) and collaboration
aspects, and which would provide explicit solutions to achieve these different synchronization modes.

PAC for collaborative 3D applications 43

�������

�
�
	
ABC

�
D�

E
�A
�
�
�
�F

�
�
�
��

E
�A
�
�
�
�F

�������
�����FD�DB���

�������
�����C����B�D�

���������
���F��

�������
������DBCF�

�������

�������
�����FD�DB���

�������
�����C����B�D�

��
	
�
DF

�
�
D	

�
DF

������
���	A���BA

CD�E	�����
��ABF����	BA

�B���E�	B�FC�

����D��E�	���

�A��DE	���

���A����	���

������
���	A���BA

CD�E	�����
��ABF����	BA

�B���E�	B�FC�

����D��E�	���

�A��DE	���

���A����	���

���AB�FC�

����D��E�	���

�A��DE	���

���A����	���

�
B
�
��E

�
	B

�
F�
�
�
B
A�

�
�
�
AB

�
F�
�
�
B
A�

(a) (b)

Figure 3.5: (a) Dewan’s model and (b) the Clover model.

3.3 PAC for collaborative 3D applications

3.3.1 Interfaces for independence between components

In order to make the PAC facets independent from each other, we choose a special interpretation
of the PAC model that proposes interfaces to specify the features of each facet of the model. An
important feature of this model is that the Control is a Proxy (GoF207)[Gam95] of its associated
Abstraction.

In Figure 3.6 we present a new interpretation of this model in order to allow the presence of
several Presentations associated to the same Control. Each virtual shared object will be described
through 3 interfaces:

� Interface for the Abstraction (IA): it declares the methods in charge of the object behavior
and the methods allowing to set and get its attributes.

� Interface for the Presentation (IP): it declares the methods allowing to set and get the
attributes of the representation of the object (for example the position of its 3D visualization).

� Interface for the Control (IC): it declares all the methods of the Interface for the Abstraction,
as the Control will be used to manage the access to the Abstraction (the Control will be
the proxy of the Abstraction) to maintain consistency between the Abstraction and all the
Presentations, and some methods dedicated to the communication with its Presentations and
the other Controls.

As these interfaces will be implemented by the real facets of the PAC components, at run time
these facets will be instances of:

� Abstraction (A): it implements the object model and behavior, and the setters and getters.

� Presentation (P): it implements the object representation: for example it can use a 3D graphic
API to visualize the object and its properties.

44 Software Architectural Models for 3D CVE

� �

�� ��

�

��

����	�A

BCCDBCCE
F���	F�����

�	�����F����

Figure 3.6: The PAC model with interfaces between facets.

� Control (C): it implements the consistency maintenance between the Abstraction and the
Presentations, and it regulates the access to the Abstraction.

Very often, a Presentation is closely coupled to a 3D graphics API, but thanks to the Interface
for the Presentation, the Control will be totally independent of this 3D API.

In the same way, thanks to the Interface for the Control, the Presentations and Abstraction will
be totally independent from the implementation of the Control.

3.3.2 Adapting PAC to collaboration

As for the PAC∗ model [CCN97] and the Clover model [LN02], here again the PAC model will be
the basis of our proposition, but unlike these two models, the collaborative parts will not be spread
out into all the components of the model, but only into the Control of the PAC components.

Indeed, we consider that the objects of the production space should remain in the core parts of
a 3D CVE, and that their coordination should be achieved by the Control of the PAC components.
Last, we consider that communications between users should be either totally integrated within a 3D
CVE through shared virtual objects, or totally independent of the 3D CVE, so these communication
aspects are not central to a model dedicated to the design of 3D CVE. In our opinion, the distributed
aspects should not impact the Presentations and Abstraction of a PAC component, in the same way
that the 3D graphics details should be restrained to the Presentations and that the core concepts
should remain in the Abstraction. This independence is possible thanks to the three interfaces of
our model.

� �

�� ��

�

��

����	�A

B��B�

CB�

BB�

DEEF

DEE�DEEF
����	������

�	����������

�����	���������A���

Figure 3.7: Adaptation of the PAC model for 3D CVE.

Dealing with distribution modes 45

The Control is associated to one distribution policy, dedicated to synchronization and consis-
tency maintenance. There are three distribution policies:

� Referent distribution policy (RDP): implementation of what is needed to manage the set
messages and to distribute updates to other Controls: each time the value of a parameter of
the object is set, this policy makes the referent Control send (for example using multicast)
an update message to the distributed proxy Controls so that they can also update their
Presentations.

� Proxy distribution policy (PDP): implementation of what is needed to transmit the set mes-
sages toward the referent Control, and to manage the update messages returned by the referent
Control: each time the value of a parameter of the object is set, this policy makes the proxy
Control send a set message to its referent Control, and this value will be effectively set only
when the proxy Control will receive an update message from its referent Control.

� Duplicated distribution policy (DDP): same management of the update messages as the PDP,
same management of the set messages coming from other objects as the RDP, and local
management of the set messages due to the autonomous evolution of the abstraction.

These components will be distributed across the network according to the number of nodes in
a collaborative session and to the architecture chosen for the distribution.

3.4 Dealing with distribution modes

In this section we will detail the behavior of PAC-C3D Controls according to their associated dis-
tribution policy, in order to show that this behavior is able to deal with the three main distribution
modes for CVE.

We will consider a modification of the value of a parameter of a virtual object occurring from a
presentation component where a user will have made an action upon a shared virtual object, and
we will trace the subsequent communications between the PAC-C3D components and facets.

3.4.1 PAC-C3D and duplicated architecture

In a CVE with a typical duplicated architecture, for each shared virtual object there will be as
many instances of Abstractions, Presentations and Controls with a duplicated distribution policy
(DDP) as there are visualization nodes embedding one or several representations of the shared
virtual universe.

Figure 3.8 presents a typical duplicated architecture with three nodes. The exchanges between
the facets of the PAC-C3D components will be as follow:

1 An action occurs upon the Presentation of a virtual object, on one node, to set the value of one
attribute of this virtual object. This Presentation does not set the attribute, but instead asks
its Control for a modification.

2-5 This Control receives the set request and transmits it to its Abstraction. This Abstraction
processes the set requests in its own way: the final value of the attribute of the Abstraction
can be different from the value proposed by the Control, for example because a proposed
value could put the Abstraction into an incorrect status. This is why the Control then asks
its Abstraction for the effective value of the attribute and updates its Presentation with this
new value. Then the Control transmits this value to the other duplicated Controls by sending
them an update message (this sending can be synchronous but it is more efficient to make it
asynchronous to allow all the duplicated Controls to process the update at the same time).

46 Software Architectural Models for 3D CVE

��������	

A�������	

BCDEEF FCDEEF CDEEF F

���	�� ���	��

A�������	

��������	

����	�

����	�

����	�
����	�

��������	

BB F

���	��

��������	��������	

Figure 3.8: PAC-C3D and duplicated architecture.

6-8 Finally on each other node a duplicated Control receives the update message and asks its
Abstraction and then its Presentation for an update.

As we have seen in section 1.2.2.2, the main advantage of this architecture is that when a user
interacts with an object, he obtains an immediate feedback. Then all the other users may perceive
the result of the interaction at the same time, with a delay corresponding to the network latency.
The main drawback of this architecture is that it must ensure a strong synchronization between the
nodes because of the potential autonomous behavior of some shared virtual objects. It is also quite
impossible to allow several users to interact directly at the same time on a same shared virtual
object.

3.4.2 PAC-C3D and centralized architecture

In a CVE with a typical centralized architecture, for each shared virtual object:

� there is only one instance of Abstraction, on the server,

� there are as many instances of Presentations as there are visualization nodes embedding one
or several representations of the shared virtual universe,

� there is only one instance of Control with a referent distribution policy (RDP), without
Presentation,

� there are as many instances of Control with a proxy distribution policy (PDP) as there are
Presentation instances.

Figure 3.9 presents a typical centralized architecture with one server and two clients. The
exchanges between the facets of the PAC-C3D components will be as follow:

1-2 On one client an action occurs upon the Presentation of a virtual object, and this Presentation
asks its proxy Control for a modification. This proxy Control transmits the set request to its
referent Control (this transmission can be synchronous or asynchronous).

3-5 The referent Control transmits the value to its Abstraction. Here again this Abstraction pro-
cesses the set requests in its own way and then the Control asks its Abstraction for the effective
value of the attribute. Then it transmits to its proxy Control by sending them an update
message (here again this sending should be asynchronous).

Dealing with distribution modes 47

����� �������

��	A�	 BCD�EF

��E���

��E��D���

��E���

F�E���

��E���

��E��D���

��E���

������

BCD�E�

��E��D���

Figure 3.9: PAC-C3D and centralized architecture.

6-7 Finally on each client a proxy Control receives the update message and asks its Presentation
for an update.

As we have seen in section 1.2.2.1, the main advantage of this architecture is that all the users
may perceive the result of the interaction at the same time, but the drawback is that the delay
for the semantic feedback is about twice the network latency. Another interesting property of this
distribution policy is that it is not absolutely necessary to have a strong synchronization between
all the nodes as all the behaviors are executed on the server node. Last, it is easy to allow several
users to interact at the same time with the same object as the referent Control will be in charge
of centralizing all the interactions coming from all the nodes: it can integrate all the concurrent
propositions to compute a single result.

3.4.3 PAC-C3D and hybrid architecture

In order to answer more quickly to a user’s interaction with a virtual object, it can be interesting
to locate the Abstraction of this object on this user’s node, which means to allow the referent to
be on a client node rather than to stay on a centralized server. So we can consider that the hybrid
architecture is a simple evolution of the centralized architecture where all the referents are not
necessarily on the same node and where a centralized server is not absolutely necessary any longer.

In such a case, there will be two different situations while interacting with a virtual object, as
described in Figure 3.10: either the Abstraction of the object is on the same node than the user,
either it is on another node.

If the Abstraction of the object is on the node of the interacting user, this user will obtain an
immediate interaction feedback, while the other users will perceive the interaction with a small
lag mainly due to the network latency. This is very similar to the behavior of the duplicated
architecture.

If the Abstraction of the object is not on the node of the interacting user, the user on the node
of the Abstraction will be the first to perceive the result of the interaction, and all the other users
(even the one who is interacting) will see the result of the interaction at the same time, with a
delayed feedback about twice the network latency. This is quite similar to the behavior of the
centralized architecture.

In both cases this hybrid solution offers the same possibility as the centralized architecture
to enable several users to interact at the same time with a same object. And as we have seen
in section 1.2.2.3, it also has the same main drawback as the duplicated architecture about the
necessity to synchronize all the nodes because each node can be in charge of the behavior of some
virtual objects.

48 Software Architectural Models for 3D CVE

������

� �	ABC�	A�C� �

DEF���DEF���

�����F���

�����F���

������

������

�����F���

������
������

������������

�����F���������

������

�����F���

	A�C� �

DEF���

�����F���

�����F��������F��������F���

Figure 3.10: PAC-C3D and hybrid architecture.

3.4.4 Adapting distribution policies

To change the distribution mode of a system designed according to our model, for example to
transform a centralized architecture to a hybrid architecture or to a duplicated architecture, we
only have to change the distribution policy of the Controls: it impacts neither the Abstractions nor
the Presentations. It is even possible to change dynamically the distribution policy of a Control,
by replacing its current distribution policy by a new one, which allows to meet the requirements of
the Collaviz system [FDGA10a].

In the same way, with a hybrid system it is possible to enable some Abstractions to migrate
from one node to another and to change the distribution policies of the associated Controls to offer
a better interaction to a user by placing the Abstraction of a virtual object on the user’s node. And
in the case of concurrent interaction of two users with the same object, it is better for equity to
make the Abstraction of the co-manipulated object migrate to a third node.

Last, thanks to a precise description of the basic network services, all the network communi-
cation details are also limited to basic network policy components. These components implement
the communications between the PAC-C3D Controls using network facilities such as RPC, RMI,
TCP communications (Unicast or Multicast) or HTTP communications. So, to change the basic
network layer used by the Controls, we only have to provide a new set of distribution policies that
rely on the new network layer.

3.4.5 Creation of the shared virtual objects

To ensure an easy evolution of a CVE, we propose to use the Abstract Factory design pattern
(GoF87) [Gam95] for object creation. This design pattern makes it possible to let the Abstractions
create new objects without any knowledge of collaboration by asking an abstract factory to create
these objects. The real instance of this abstract factory, called PAC-C3D factory, will deliver
Controls (which are Proxies of their Abstraction) instead of Abstractions.

In the same way, the Controls must use several factories in order to create their associated

Adaptation to different representations 49

Abstractions and Presentations. The PAC-C3D factory will give each Control one factory for
Abstraction creation, and a list (which can be empty) of factories for Presentations creation, cor-
responding to each kind of existing Presentation on its node. If allowed by its distribution policy,
then the Control will ask the Abstraction factory to create a real Abstraction. Next, the Control
will ask each Presentation factory to create a Presentation. This is illustrated in Figure 3.11 for
the creation of a PAC-C3D object on one node that is hosting two kinds of Presentations.

�������
��	ABCD

�CEFE�A�A�B��
��	ABCD

��FAC�	A�B�
��	ABCD�

����E��������

���	CE�AE���E	A

�

���	CE�AE�����������������
�

��
���	CE�AE����������������������������������

��

�CEFE�A�A�B��
��	ABCD

���	CE�AE�

����E���

����E����

����E����

Figure 3.11: Creation of the PAC-C3D facets.

Then, according to its distribution policy, this Control can send a message to the other nodes
of the CVE to create also local Controls: each local PAC-C3D factory will allow the creation of a
local Control with the appropriate set of local Presentations.

3.5 Adaptation to different representations

As our model offers great independence between the facets of each PAC-C3D object, it makes it
easy to provide several kinds of Presentations for a same virtual object.

First, for each distribution mode, the Controls can be associated to different kinds of Presenta-
tions, dedicated to a particular visualization of the shared virtual environment. For example, with
Controls written in Java, on one node the Presentation could rely on Java3D [Jav] while on another
node it could rely on JMonkey [JMo] or jReality [jRe]. As the implementation details of the 3D
graphics API are encapsulated within the Presentations, for example it is also possible to use any
C++ 3D graphics API without perturbing Abstractions and Controls.

To avoid code duplication, all the code relative to high-level interaction with virtual objects
should be removed from the Presentations and written once in some Abstractions of PAC 3D
interaction tools. But for an optimal efficiency, it is also possible to use built-in interaction and
navigation metaphors that come with a 3D viewer.

Several kinds of Presentations can also be associated with the same Control in order to provide
several representations of a shared virtual environment to a user. Some of these representations
can also be a 2D visualization of the CVE. This can be extended to any kind of presentation, which
could be non-visual, as a sound or a physical representation.

To benefit fully from “active” Presentations such as physics engines (for example they can re-
act to an update because of collision detection when trying to move a 3D object), the behavior
of the PAC-C3D Controls should be slightly adapted, otherwise the “naive” use of such engines

50 Software Architectural Models for 3D CVE

could introduce more latency and some small inconsistencies on other Presentations in the worst
situation about distribution (when the physical Presentation is not on the same node than its asso-
ciated Abstraction)(see Figure 3.12)). This adaptation could consist in updating first the “active”
Presentations and taking their results into account before updating the “passive” Presentations.

�����
��

��	ABCDE
�����

�BFECDE
���C��

�

������ ������

���E������������������

���E��

��� A�	��������

���E��

!��E��

"�����

#��E��

�$�� A�	��

��
��	ABCDE

�����

������

%�� A�	��

���� A�	��

��
��	ABCDE

�����

������

%�� A�	��

���� A�	��

&	��
�	' �

�����D�C��
(F��B�

�BFECDE����C���

�����
�	' �

Figure 3.12: “Naive” use of a physics engine.

3.6 PAC-C3D implementation examples

In this section we will make a short point about the current implementations of PAC-C3D, then we
will illustrate this model through 3 examples, in the context of the Collaviz framework [DDF+10,
Col]. The first one explains in details how PAC-C3D can help the designer of a new 3D collaborative
visualizer to reuse existing interaction tools. The second one describes more generally how PAC-
C3D has been used to design the IIVC concept. The third one describes how PAC-C3D allowed us
to integrate a physics engine within the Collaviz framework.

3.6.1 Current implementations of PAC-C3D

The first implementation of our model is dedicated to student VR projects and has already been
used for two years. This simple implementation has been made with Java3D [Jav] and JMon-
key [JMo] as 3D rendering engines, and implements only the referent and proxy distribution poli-
cies, with migration capabilities. The proxy distribution policy uses Java RMI for communication
with its referent, and the referent distribution policy uses Multicast facilities to communicate with
its proxies Controls.

The second implementation is dedicated to industrial collaborative scientific visualization, it
has been implemented in the context of a collaborative project called Collaviz [DDF+10, Col]. It
relies on Java3D (for desktop visualization), jReality (for desktop and immersive visualization)
and jMonkey [JMo] (for desktop and mobile device visualization) as illustrated in Figure 3.1. The
Controls can use the three distribution policies, and these distribution policies use either TCP or
HTTP for communication [FDGA10a]. All these distribution policies can be changed at run-time.
This implementation has also been coupled to the JBullet [JBu] Physics Engine which appears as
another Presentation associated to some Controls of the system.

3.6.2 The 2DPointer/3DRay

Here is a full example of the benefits to use our model that shows the complementarity of the PAC-
C3D separation between abstraction and presentation and of the PAC-C3D collaboration through

PAC-C3D implementation examples 51

the controls. This exemple is the implementation of the 2DPointer/3DRay metaphor [DF09]: a 3D
ray for 3D selection and interaction which orientation is computed so that the user always sees this
3D ray as a 2D pointer on the screen, to be used as easily as a classical 2D pointer, but to be seen
as a 3D ray by the other users of the shared virtual environment.

We first implemented this 2DPointer/3DRay metaphor in our Java3D visualizer, this cursor was
driven with mouse events provided by Java3D. We took care to clearly separate the behavior of
the 2DPointer/3DRay (the computation of its orientation according to its position, that has been
isolated in an abstraction component) from the Java3D presentation code in charge of the Java3D
mouse events and of the 3D picking for object selection. As a first result, this 2DPointer/3DRay
can be driven by any other input device able to provide a position, for example a wiimote or an
ART tracking device (see Figure 3.13)).

���������	

ABCD�E

FD��
FD��BF���B�

���������F�����D�

�

���B���D�������
��

����	��B�FD��B�D
D�D�����C�B����	�
 !DD���B�FD�D�D��

FD��

�"C��D�#

FD��BF���B�FD��

$���B�D

��������	
��%��&�DC
����D�D��

�B�FD�'��'(�D�D��
'��'(

����'(����'(

CB����'(
CB����'(

����'(

CB����'(
CB����'(

CB����'(

�)���B�
����D�D��

����'(

*D��#

*D��#
�"C��D�#

CB����'(

+ � ��

Figure 3.13: Driving the same abstraction with different input devices.

Then, we worked with jReality to provide another 3D viewer, mainly dedicated to immersive
visualization devices such as workbenchs or CAVE�. As this viewer was not first dedicated to
desktops, we did not want to waste time to write a small presentation component able to deal
with mouse events, which would be useless for immersive situations as we would use an ART
tracking system for interaction. But for testing this new jReality visualization component, some
work had to be done in desktop mode, and some interaction could be useful. We decided to use
the 2DPointer/3DRay metaphor driven by a wiimote (see Figure 3.14).

Once the 2DPointer/3DRay metaphor was driven by a wiimote within our jReality visualizer,
the only remaining problem was to allow this metaphor to select and manipulate 3D objects. The
more natural solution was to enable a 3D picking service in jReality.

If such a picking service could not have been realized with jReality, we could also have enabled
the 3D picking thanks to our Java3D visualizer. As PAC-C3D has been used to design the Collaviz
framework architecture, the Collaviz system allows to share a virtual environment between several
visualizers, so it is possible to instantiate a Java3D visualizer and a jReality visualizer to share a
common virtual environment. The abstraction of the 2DPointer/3DRay interaction metaphor of
the jReality Visualizer can be instantiated on the process of the Java3D visualizer, that owns also
a control component and a Java3D presentation component for this metaphor, while the process

52 Software Architectural Models for 3D CVE

��������	ABC

DEF��� �����	AB��	����	���

�

���E	�A�������B

��A��A

��F�A�
��F�A�

��

FE���	��

�

���	��

FE���	��
FE���	��

FE���	��

���	��

 		!EA��

��"#B#�C
	�$��%��F
�����&��A

�

'�AAE�
�����&��A

�

Figure 3.14: Visualizing an abstraction with another 3D API.

of the jReality visualizer owns only a proxy control and a jReality presentation component for this
metaphor. As illustrated in Figure 3.15, this distribution mode would allow the proxy control on
the jReality side to send the picking request to the referent control on the Java3D side, which would
be able to achieve the picking thanks to the 3D picking service of the Java3D visualizer.

���������	

ABCD�E

���F��

�

���BF��D�������

���F��

CB���F��

�FF�B�D

�

����B�
D�D��

�����D��F��	

ABCD�E

���F��

�

���BF��D�������

CB���F��

������
 F!���F"D�

CB���F��

ABCD�E ABCD��

� � �

Figure 3.15: Delegating behavior to abstraction and other presentation.

3.6.3 Other interaction and navigation tools

The whole architecture of our Collaviz 3D visualizers is designed thanks to the PAC-C3D model,
this enables us to provide a common architecture for navigating and interacting within 3D virtual
environments that we call the Immersive Interactive Virtual Cabin (IIVC) [FCD+11] that will be
detailed chapter 6. All the operators that have been proposed for this IIVC (such as dedicated
navigation modes or interaction tools) are implemented within abstraction components linked to
dedicated presentation in charge of the visualization of their actions upon the virtual environment
through control components.

It makes it possible to use the same input devices (for example a 2D GUI or a joystick) for
navigation whatever the 3D graphics API is used for a 3D visualizer: the navigation orders are sent
to the abstraction of what we call a “conveyor”, which supports several virtual objects including a

Another approach: the Scene Graph Adapter 53

virtual viewpoint, which position and orientation are changed whenever the conveyor moves in the
world. These changes occur in the abstraction of the virtual viewpoint, then its control component
is in charge of propagating these changes to its associated local presentation component and to its
distributed controls if any.

3.6.4 Coupling a physics engine to a virtual environment

To make collision detection possible within our Collaviz 3D visualizers, we chose to integrate the
JBullet Physics Engine [JBu] into the Collaviz framework. The most straightforward way to achieve
this is to place the JBullet engine component on the central collaboration server process, in order
to be able to provide the physics services (for example collision detection or mechanical constraints)
in the same way to any Visualizer client. Otherwise, this JBullet component could be placed on
any node of the shared virtual environment. So, for any virtual object for which we want to offer
physics, we declare it as a physical object, with an additional JBullet presentation component,
linked to the JBullet engine. Each move of the virtual object in the virtual environment will make
its physical JBullet presentation move in the JBullet world (see Figure 3.16), which will allow to
take into account the results (collision or constraints) provided by the JBullet engine, as already
presented in Figure 3.12.

�
�������
��	A��

B

CDEFA���������

F��

F��

������

	��

������

C����E���
����DA�F�

�

CDEFA���������

���������

C
���������

F��

 ��!���"#�� ��A����"#��

Figure 3.16: Maintaining consistency between Virtual and Physical worlds.

Once again, this allows to offer physics for the objects of the virtual universe whatever the 3D
graphics API used for the 3D Visualizer: we have implemented generic physical 3D cursors that
behave exactly in the same way in our two main visualizers, based on Java3D and jReality.

3.7 Another approach: the Scene Graph Adapter

In this section we present another architecture for building 3D applications that use several 3D
formats for describing a virtual universe that can be rendered through several rendering engines.
It is based on the Scene Graph Adapter, which aims at interfacing communication between 3D
application inputs (e.g. 3D files) and output (e.g. the interactive visualization window) through
the use of several API. These API ensure a strong separation between the rendering engines, they
can be compared to the interface components proposed by the PAC-C3D model.

54 Software Architectural Models for 3D CVE

3.7.1 Concepts and prerequisites

When creating a 3D application we have technical and functional requirements that lead us to the
choice of a rendering engine. But rendering engines support a limited amount of input formats that
makes the choice even more difficult when we also have formats requirements. These requirements
could be the need to reuse existing 3D contents or to work with specific modeling tools which
formats are not supported. Even if 3D formats and rendering engines have different usages and
functionalities, they nonetheless have many similarities. Most of them are indeed based on a scene
graph data structure. They also use similar ways to model and organize data in the scene graph. For
example they have a similar shape description structure with a separation between geometry and
appearance. They also use similar modeling transformations as well as similar primitive shapes.
For 3D formats, this can be explained by the fact that since the concept of scene graphs was
introduced by Open Inventor [SC92] in 1992, no other concept as efficient and flexible as this
one has been proposed. It indeed reflects the underlying rendering pipeline. The explanation for
rendering engines is more obvious. In fact they all rely on one or both of the existing low-level
API: OpenGL and DirectX. Thus, their evolution follows those API improvements as well as GPUs
improvements. It was for example the case when GPUs enabled shader programming.

In [Hin00] and later in [DH02], Döllner and al. have proposed a generalized scene graph structure
based on these similarities with a view to improve the rendering process. Steinicke et al. [SRH05b]
propose a generic virtual reality software system based on Döllner’s work in which rendering can
be performed by several low-level rendering APIs. We have used those previous works to design
the Scene Graph Adapter API.

3.7.2 Overall architecture

Figure 3.17 depicts our architecture. The purpose of the Scene Graph Adapter API is to enable
communication between an input scene graph of a given 3D format and the output scene graph
of a rendering component (rendering engine, physics engine, behavior engine, etc.) in a 3D
application. This application can be a game, a plugin, a GUI for a 3D display and so on. We call
the first scene graph the format scene graph and the second scene graph the engine scene graph
(called the renderer scene graph as here we will only use one rendering engine).

To complete our architecture we need components that load, decode and adapt a format scene
graph using the Scene Graph Adapter API on the input side. Similarly, on the rendering side of
our architecture, we need a component that adapts instructions from the Scene Graph Adapter
API into instructions of the renderer API to build the renderer scene graph. We call these two
components the format wrapper and the renderer wrapper respectively. There is only one format
wrapper for every file of a given format as well as one renderer wrapper per rendering engine.

Format wrappers do not depend on an application. They can be reused in any application
providing that it relies on the Scene Graph Adapter API. Yet a Format Wrapper depends on a
Format Decoder. Format Decoders are composed of existing tools like a parser or a loader that
help at developing a format wrapper. Every 3D format indeed comes with at least a viewer so that
this part should not be made from scratch. Besides as every 3D format possess specific features,
reusing these pre-existing tools helps at keeping them up to date. The Format Decoder decodes and
parses the input file and builds an internal scene graph data structure of the format scene graph.
Depending on the used decoder, this component may include an update message handler that
receives event update messages and updates relevant nodes accordingly. If it is not the case, then
it must be implemented in the format wrapper. The format wrapper then uses this representation
to adapt it using methods from the Scene Graph Adapter. Our architecture allows to mix several
format wrappers within a single application in order to mix different input formats.

Renderer wrappers do not depend on an application either and can be reused in any application
based on the Scene Graph Adapter. A renderer wrapper relies on the rendering engine API in the

Another approach: the Scene Graph Adapter 55

Figure 3.17: Our architecture allows the loading of any 3D graphics format simultaneously in any
available rendering engine. The scene graph adapter is an interface that adapts a scene graph (SG)
of a given format into a renderer scene graph and which also allows the rendering part to request
this scene graph.

same way a format wrapper relies on a Format Decoder. It uses methods from the Scene Graph
Adapter API and adapts them using the rendering engine API to build and update the renderer
scene graph. As explained in 3.7.1, the choice of a rendering engine is crucial when designing a 3D
application. Therefore it is important to enable the use of most of the available rendering engines.

3.7.3 Benefits

The SGA architecture addresses the reusability issue and achieves the rendering of any 3D format
without functionality loss. It has several benefits:

� First, it fully supports all the scene-graph-based 3D formats without rendering limitation,
assuming that we have the appropriate format wrapper. It makes it possible to use old 3D
models without transcoding and functionality loss. Thus it allows a more efficient collabora-
tive work. Research teams can share their resources without being hampered by compatibility
problems. Furthermore, depending on the requirements of an application, it is possible to use
the most appropriate format without rendering engine restriction. It also makes easier the
porting of a format into rendering engines; this can help to promote a new format.

� Second, it works with any rendering engine without input format restriction. Once a renderer
wrapper is available, it gives access to every available format wrappers. An application can
use the most appropriate rendering engine without being hampered by format compatibility.
Designers team can use any modeling tool and export their 3D models without compatibility
problems. It is also possible to directly import a modeler native format in the application
while avoiding transcoding drawbacks.

� Third, it makes it possible to mix and reuse format wrappers and renderer wrappers as
required by application. It allows to mix 3D formats and their functionalities. We can for
example load a Collada model with physics properties in an X3D world and explore it using

56 Software Architectural Models for 3D CVE

X3D’s navigation and interaction features. Besides a wrapper can be reused in any application
that is based on the Scene Graph Adapter API. It allows development teams to share their
wrappers hence facilitating components reuse and teams cooperation. In addition, more and
more 3D application use third-party rendering components instead of creating new ones.
There are physics engines (Havok 1, PhysX 2, Open Dynamics 3, etc.), character animation
engines (Granny 4, Havok Animation 5, etc.) or AI components (Kynapse 6). Thus, a wrapper
for those components can be reused in many applications.

For more information about the SGA, [BBRDA11] and [BBDRA11] illustrates how the different
components are working and how they interact together. The Scene Graph Adapter allows the
rendering of multiple 3D formats simultaneously in a single view but also manages interactions and
animations declared in the input files. To achieve this, the Scene Graph Adapter API provides a
two-way communication between format wrapper and renderer wrapper.

3.8 Conclusion and future work

The PAC-C3D architectural model is an explicit evolution of the PAC model dedicated to 3D
collaborative virtual environments. Each shared virtual object of a CVE must be decomposed into
three main kinds of components described by three interfaces. The Abstraction is in charge of the
core data and behavior of the object, the Presentations are in charge of the presentation of the
object to the user, and the Control is in charge of the consistency maintenance between Abstraction
and Presentations, and between all the distributed Controls of the shared object.

PAC-C3D can deal with the main distribution modes encountered in CVE and it has been
validated with several distribution policies, on local area networks and on wide area networks over
the internet. PAC-C3D also makes it possible to design a CVE with very small dependency on a
3D graphics API, and it makes it easy to use different 3D graphics API for different nodes involved
in the same collaborative session, providing easy interoperability between 3D graphics API. It is
also possible to rapidly couple other 3D engines (for example physics engines) by adding another
Presentation (related to the engine) to PAC-C3D objects.

The next steps are to take more efficiently into account “active” Presentations and to couple
PAC-C3D objects with other kinds of engines, for example Artificial Intelligence behavior libraries
that could be used in the same way as a physics engine to drive virtual objects.

Although it was not initially designed using the PAC-C3D model, the Scene Graph Adapter
architecture is compliant with PAC-C3D and presents another approach to design and implement
VR applications with a strong separation between rendering engines. We now have to validate this
architecture for CVE, which should be possible by adding a network engine to the SGA architecture,
this is a work in progress.

1http://www.havok.com/index.php?page=havok-physics
2http://www.nvidia.com/object/physx_new.html
3http://www.ode.org/
4http://www.radgametools.com/granny.html
5http://www.havok.com/index.php?page=havok-animation
6http://usa.autodesk.com/

Part II

Models for Designing Collaborative
Interactions

57

59

This part deals with the models that can be used to design interaction and collaboration within
CVE. Its main concern is about the abstract level viewpoint upon a CVE architecture, but these
models have also to be deployed at the presentation level and they must be driven by the physical
input devices of the users, as illustrated in Figure II.1.

�
�
�
�
�
�
��

��
	
�
AB

�
C
�
D

E
�
�F

	
�
�
AB

�
C
�
D

�
�
�
��
�
�
�A
B
�
C
�
D

�D����A� �D����A����C��

Figure II.1: Design of collaborative interactions at the abstract level of a CVE architecture, with
an extraction, from the presentation level, of the features of the users’ physical workspaces.

Indeed, building virtual reality applications is still a difficult and time consuming task. Software
developers need a common set of 3D widgets, hardware device abstraction and a set of software
components that are easy to write and use. These means are intended to provide collaborative
interactions in rich virtual applications and easy use of many input devices to drive collaborative
interaction metaphors.

In chapter 4 (Modeling Interaction and Collaboration) we propose a solution for expressing
interaction and collaboration in 3D CVE, by adding interactive and collaborative features to virtual
objects, to model both interactive objects and interaction tools (special virtual objects dedicated
to interaction), and to model how these two kinds of virtual objects can communicate together.
As a consequence, we describe a communication protocol between interaction tools and interactive
objects. We then obtain users on different sites that are able to interact in a shared environment
with interactive objects that are provided with access levels.

Then, chapter 5 (Metaphors for Collaborative Interactions) deals with metaphors for interac-
tion within Collaborative Virtual Environments (CVE). Usual 3D interaction metaphors must be
adapted to fit with collaborative interactions, and to make users aware of this collaboration. We

60

���������	�ABCD���AE
���A��������AF���A��	����
���������B�A�BB��
F���A����������A������A��	��

�BF��B��A����
��������A������

��ADB�������
B�A��������

�������	�
���������
������

�����B�
���������
������

 ���A!������
��������A������
�B�A����A���ACB��

 ���A!������
��������A������
�B�A����A���ACB��

"�A�����A��	���

���������B�
�BB��E
�C������
��A����B��

���������B�
�BB�E
�C������
	������A���

#�����������B�AB�A���
��������A�����AB�A���A����

#�����������B�AB�A���
��������A�����AB�A���A����

#�����������B�AB�A���
�����AB�A	��FAB�A���A����

Figure II.2: Modeling collaborative interaction in a CVE.

have contributed to this field through new metaphors for multi-user interaction.
Although it is important to work on abstract interaction and metaphors, indeed sometimes

the hardware features of the real environment of the users must be embedded in the run-time VR
application to take into account the physical environment of the users, such as the size and the
resolution of the screens of a VR immersive system. So we need both to develop VR software that
would be loosely-coupled with hardware input and output devices and with rendering software, and
which would also be able to adapt itself at run-time to available hardware and software. We need
models to achieve this link between the different levels of a CVE architecture detailed in Figure II.2.

In chapter 6 (Modeling Users’ Physical Workspaces) we explain why most Virtual Reality (VR)
systems must consider the users’ physical environment to immerse these users in a virtual world
and to make them aware of their interaction capabilities. Actually, no consensus has been found in
the existing VR systems to embed the real environment into the virtual one: each system meets its
particular requirements according to the devices and interaction techniques used. So, we propose
a generic model that enables VR developers to embed the users’ physical environment into the
Virtual Environment (VE) when designing new applications, especially collaborative ones. The
real environment we consider is a multi-sensory space that we propose to represent by a structured
hierarchy of 3D workspaces describing the features of the users’ physical environment (visual,
sound, interaction or motion workspaces). A set of operators enables developers to control these
workspaces in order to provide interactive functionalities to end-users. Our model makes it possible
to maintain a co-location between the physical workspaces and their representation in the VE. As
the virtual world is often larger than these physical workspaces, workspace integration must be
maintained even if users navigate or change their scale in the virtual world. Our model is also
a way to carry these workspaces in the virtual world if required. It is implemented as a set of
reusable modules and it has been used to design and implement multi-scale Collaborative Virtual
Environments (msCVE).

Chapter 4

Modeling Interaction and
Collaboration

Figure 4.1: At left, only one ray (the one at left) is controlling car position. At center, both rays
are bent (see lines coming from them) because they attempt to modify car position at the same
time in opposite directions. At right, the right ray left its control but the left ray continues its
action. (Car model courtesy of PSA Peugeot Citroën)

4.1 Introduction

From a developer point of view, building virtual reality applications is still difficult as opposed to
the development of 2D applications as stated by [BHB08, OF04]. In fact, building 2D applications
can be a matter of an assemblage of a set of well known 2D elements in a graphical application.
At the same time, many VR platforms still do not propose a common set of 3D widgets but
sometimes the connection of low level blocks in an editor (e.g. the Virtools platform). To ease
the development of VR applications, many authors describe abstractions of hardware devices (e.g.
[OHL+04]). With 2D applications, people generally use a 2D mouse and a keyboard whilst high-
level VR applications propose optical markers for 3D tracking, haptic devices, speech recognition,
etc. Hardware devices need an abstract code layer to ease their deployment, use and replacement
by other hardware devices. Also, the application code is built of this abstract layer in order to
not depend directly on a very specific hardware device. This goal has led to the development of
many metaphors for interactions (virtual rays [PBWI96, BJH99], virtual hands, Go-Go [PBWI96],
etc.) that are driven by the abstract hardware layer. From a user point of view, it is possible to
replace a hardware device, for instance a 3D mouse, with another one, for instance a 3D optical

61

62 Modeling Interaction and Collaboration

tracker, while still using the same interaction metaphor. Also, interaction tools are equivalent to
the pointing or manipulating techniques found with 2D applications. An interactive object is any
object in a virtual environment that users can interact with. An interaction tool [BH95] is an object
in a virtual environment that will send data to an interactive object; a tool will also receive data
from an interactive object in order to track its behavior. Finally, an interaction tool may be driven
by hardware devices in order to let a user interact with an interactive object, or an interaction tool
may be driven by a software component (e.g. a virtual agent with a behavior). As a consequence,
a VR application contains interaction tools and virtual interactive objects.

In this chapter, we propose a communication protocol to describe the messages that an inter-
action tool and an interactive object will exchange, as described in [ADA09a]. It is an extension of
the protocol presented in [DM00a] and in [DLT04]. This protocol provides several advantages. For
developers, it will ease the the development of new metaphors. For users, il will enable: natural
collaborative interactions at the same time on objects; multi-sites interactions; easy deployment,
because our protocol aims to provide VR platform interoperability. As well, abstraction of hard-
ware devices let users use different kinds of devices and change them at runtime depending on
tasks.

As we stated, many VR applications are written from scratch instead of reusing existing solu-
tions. Usually, they are written around a 3D engine (such as OpenInventor, OpenSG, Ogre, Java3D
or jReality) or even at a lower level around a 3D rendering system (such as OpenGL or JoGL), or
around a toolkit such as ARToolkit for augmented reality applications. In addition, applications
based on VRML mix up in the same graph several scene parts to describe hierarchies of geometric
models and behaviors/constraint of the interactive elements.

We propose to use a set of software components that have to be aggregated together. The
dependencies between these elements are described through the connection of these elements in a
configuration file. These extensions have been implemented and tested with OpenMASK [LCAA08]
but can be implemented on other platforms. Here we will describe communications between inter-
action tools and interactive objects, and how they are implemented.

In this chapter, section 4.2 presents related work, focusing on hardware device abstraction,
interaction tools programming and reusability. Section 4.3 compares our approach to previous
methods. In section 4.4, we describe our model: interaction tools, interactive objects and how they
are linked together. In section 4.5, we describe the communication protocol with different cases of
interaction, and section 4.6 presents our proposition for describing interaction and collaboration
in a declarative way. Section 4.7 presents another approach, based on 3D files composition, for
describing interaction between virtual objects described using different file formats. Finally, we
conclude and then we give some cues leading to future work.

4.2 Related work

This section presents related work for interactions with VR platforms. The first part deals with
hardware device abstraction which enables the development of many interaction metaphors that
we present after. Finally, we also explain that awareness is required to help users or the system to
make collaborative interactions possible.

4.2.1 Hardware device abstraction

The large variety of hardware devices in AR and VR makes them hard to use for software developers.
Previous work has undergone to provide a set of basic components to obtain platform-independent
code that can speed up the creation of new VR platforms [BLO+05]. DWARF [ISA01] is a frame-
work of reusable distributed services described through XML. For instance, the service manager
will connect a service providing a captured picture, thanks to a camera, to a system analyzing the

Related work 63

picture for tracking. Services managers running at each system site communicate with CORBA.
MORGAN [OHL+04, BLO+05] is a framework for AR/VR that classifies hardware devices within
a hierarchy. An hardware device is then derived of a set of classes. For instance, a mouse is a
child of the classes MousePointer, Button and Wheel. Figueroa et al. [FGW01] present a software
architecture using filters connected in a dataflow. A filter that read data from an hardware device
encapsulate code to acts as an hardware driver. For example, there might be a 2D mouse filter.
Also, other filters can be connected to its outputs to read the data it sends. OpenTracker [RS01] is
also based on a dataflow mechanism where filters are here named nodes. A set of connected nodes
forms interaction tools as stated by [FGW01]. Each node is made up of one to many inputs whereas
it has only one output. Inputs and outputs are both typed and OpenTracker allows a connection
from an output to an input only if they are of the same type.

4.2.2 Interaction metaphors

Interaction tools depend on the abstracted hardware layer and are involved in metaphors commonly
found in VR applications. A taxonomy of the main interaction metaphors is provided in [BKLP04].

Implementation

Metaphors usually depend on available devices as stated by [BHB08] when no abstract layer is
provided for hardware. However, many of them, like hand metaphors (e.g. “Go-Go” [PBWI96])
and pointer metaphors (e.g. ray-casting [PBWI96, BJH99]), need to obtain information about the
interactive object they want to interact with, for example the object’s position. Figueroa et al.
[FGW01] use a set of inputs and outputs for data, but they seem to hard-code connections between
tools and interactive objects and to limit interactions to the control of the object’s positions.

Instantiation

As a result of hardware device abstraction, many higher-level interaction paradigms have been
implemented. With dataflow based platforms, they are composed of a set of connected components
(e.g. filters or nodes). A graphical system can be used to connect the objects of a scene. Unit
[OF04] lets a user compose its tools via the connection of their properties. InTml [FGW01] relies on
a set of interconnected properties and define a XML format, as an X3D extension, to describe 3D
interactions. CONTIGRA [FGH02] proposes also an XML-based format, as a X3D extension, based
on its own scenegraph. Finally, authoring tools has been developed, which can use for instance a
XML-based format to store produced virtual worlds, to hide low-level/technical issues.

4.2.3 Feedback to the user

From the interactive objects’ side, Smart Objects [KT98] encapsulates within the object descriptions
of its characteristics, properties, behaviors and the scripts with each associated interaction [SVP07].
With such an approach, an interactive object can give useful information to the interaction system
in order to provide helpful feedback to the end-user. Many authors demonstrated that feedback
is required to help users. Firstly a user needs to understand the actions he is able to apply to an
interactive object: object position update, orientation update, color update, scale transformation,
etc. Visual metaphors using arrows or cursor indicate that positions can be updated. These visual
metaphors can then be used during interaction and be merged with other modalities [SLMA06].
Feedback helps a user to understand what his action causes. In a collaborative virtual environment,
users must also understand the actions done by other users to help them, to continue theirs actions
or to do a simultaneous action [GG99]. The following section compares our approach with the
existing literature about behavior coding, feedback to the user / awareness coding and VR software
architecture.

64 Modeling Interaction and Collaboration

4.3 Enabling interaction between interaction tools and 3D objects
in CVE

We want to enable distributed interactive sessions with multi-users at different sites but sharing the
same virtual environment. Each user will interact with interactive objects through interaction tools.
Interaction tools and interactive objects are equivalent to filters [FGH02], or nodes [RS01]. We name
them virtual objects. Our platform, OpenMASK [LCAA08] manages low-level communication
between them. We propose a communication protocol for these objects in order to:

� Ease development of metaphors: for an interaction tool, it is not needed to develop a specific
code for interaction with an interactive object of type “A”, then code for an object of type
“B”, etc. Dialog between interaction tools and interactive objects is normalized.

� Change dynamically access permissions to interactive objects at run-time and/or before in a
configuration file.

� Provide more dynamicity to interactive objects: a property can be added or removed dynam-
ically. For instance, an interactive object may be static because it does not offer a position
attribute. But this interactive object will become movable if it adds such an attribute after
it received a particular event for instance.

� Ease deployment of virtual reality platforms: the VR platform does not need to be pro-
grammed in a specific language because our protocol defines its own introspection mechanism
and does not need to use technologies such as Java remote method invocation. Our platform
is currently implemented in C++. Moreover, using an introspection mechanism avoids us to
need a distributed scene-graph which describes properties, unlike [SH02]; it avoids also to use
complex systems like distributed shared memory models [Tra99] to spread properties.

� Provide interoperability between different VR platforms at run-time: a language neutral
system is easier to port to many programming languages.

� Propose a new communication protocol for communication between interaction tools and
interactive objects. In fact this protocol, while more adapted to distributed applications,
works also on a single host. This protocol introduces a small overhead to the connection
phase since a tool and an interactive object have to become interconnected. When a property
of a tool has been connected to the property of an interactive object, the tool sends data as
it would if the connection was hard-coded.

We have implemented the protocol communication with virtual objects which are used as empty
shells that encapsulate software extensions. A software extension is a software component that
needs a virtual object as a host. Each of them will be executed sequentially at run-time by its
virtual object. Once software extensions have been assembled in an interaction tool, VR application
designers can therefore use it instead of a set of many small virtual objects and speed up building
of VR applications. For VR application developers, extensions introduce many advantages:

� Improving software engineering: the models proposed in [FGW01, RS01] lead to the creation
of for-general-use filters/nodes. For instance, if you need a very specific filter for an hardware
device, you will create a filter of type SpecificFilterForMyDevice and it will look like any
general filter or node while it is not. Software extensions clearly describe pieces of code that
are aimed to be used inside a main structure (i.e. a virtual object).

� Improving performances at run-time: our platform is multi-sites, in which case we can improve
performances if objects are correctly distributed. So, extensions can help us toward this goal

Model: tools and interactive objects 65

because they lead to a unique data structure to distribute, a virtual object, rather than a set
of many, filters/nodes. Extensions migrate automatically with their virtual object.

� Improving scalability/adding dynamicity: it may be interesting to avoid adding heavy and
complex behavior on some virtual object all the time, to lower CPU or network usage. There-
fore, a mechanism such as our software extensions, introducing a way to add or remove
software components at run-time, is required. Let us take a very simple filter that will send
positions to move an object up and down. To change this behavior, another filter, for instance
a filter to move from left to right, will be required. First, it will be need instantiate this filter,
if needed, then to disconnect the up-and-down filter, connect the object to the left-to-right
filter and eventually remove the useless up-and-down filter. Moreover, creation, destruction,
connection and disconnection will have to be managed by a supervisor, so another filter. With
software extensions, one object will manage itself its up-and-down extension, after it will have
received an event for instance, with a left-to-right extension.

4.4 Model: tools and interactive objects

We define an interaction as a bidirectional communication between a tool and an interactive object:
a tool sends commands to an interactive object that is in charge of treating the commands, and it
also receives commands from interactive objects.

4.4.1 Tools

We assume that an interactive object is only manipulable through a tool. Our assumption leads
to a situation where every user who wants to interact with an interactive object will have to use a
tool. A user will interact with an object through a tool: a hand, a ray, a pointer, etc. This user
can be a person or a software component.

A tool modifies properties of an interactive object so it is made to send data to an interactive
object that will treat these data. A tool is made up of a set of attributes where each of them has
a type and an access level. They define data that a tool will be able to send. For instance, a ray
intended to move an object would need to embed a position attribute. The position attribute of
the tool contains the position value and is sent to the interactive object when the value is updated.

From the tool’s point of view, the communication flow with an interactive object follows three
steps: i) initialization, ii) use, iii) release of resources. Those three steps fit with how an interaction
happens: i) selection of an object, ii) manipulation, iii) object release. At selection, a tool starts
a particular communication with an object designated by a user with a tool (e.g. a ray, a menu,
etc.). Then the tool requests the possibilities of interaction that the interactive object offers and
presents them to the user. The user can now start manipulation on some object properties: we
call this state the manipulation state. The tool is now sending values to the interactive object (e.g.
a new position, a color). If many tools are sending values to an interactive object, we say that
those tools are interacting cooperatively and so the interactive object will have to deal with those
concurrent inputs, we will explain this case in the following section.

4.4.2 Interactive objects

An interactive object must give some knowledge to tools about which control it offers. Our model
assumes that each interactive object embeds a set of attributes which define the data the object
can receive. An interactive object can be interrogated to give its interaction capabilities.

When a tool knows the capabilities an interactive object offers, it can take control of some of the
attributes to modify the data they contain. As a consequence, any tool can modify any properties
of an object. We define a control interaction access policy for the tools in order to regulate which

66 Modeling Interaction and Collaboration

of them can interact. An interactive object arbitrates actions from the tools: it can accept or
refuse any action from them. Also a tool does not have any way to directly stop interaction of
a concurrent tool. Moreover, a control can be interrupted. This access policy is associated with
attributes of an interactive object.

Each attribute has a type, a shareable flag, an informative entry and an access level. The type
and the informative entry are used to match a tool attribute with an attribute of an interactive
object when a tool tries to take control of an interactive object attribute. For example, we need
to make a tool aware that the object it wants to control position has a position attribute, and we
also need to connect the tool to the position attribute.

A shareable attribute must be able to deal with concurrent actions. In this way an attribute is
preceded by a converter. A converter aims to handle concurrent actions and convert them into a
value that the associated attribute will use as a new value to contain. A converter may compute
the mean value of a set of positions. We do not propose any way to handle contradictory actions
like a Boolean set to true by a tool while another tool sets it to false. Contradictory actions will
usually lead to the last action received being the result stored into the current attribute.

Finally, some tools can be manipulated as interactive objects to move them or change their
color for instance, so those tools are both tools and interactive objects at the same time.

4.4.3 Relations between tools and interactive objects

Figure 4.2 gives the general picture of how two tools control the position of an interactive object.
An interactor module is embedded in a tool and has to compute a new position to send to the
interactive object. The interactor module must also listen for events coming from the controlled
interactive object to track its activity: if a new tool is connecting to the interactive object for
instance. Finally, the interactor module implements the tool part of our communication system.
An interactive object embeds an interactive module which implements the interactive object part of
the communication system. The fusion converter presents an attribute to let the two tools modify
the object position. For positions, it can be limited to the computation of average values positions
from n values that it received.

The interactor module and the interactive module are both a piece of software that can be
added or removed dynamically to any object to turn it into an interactor or an interactive object.
We will see that they contain software extensions.

4.5 How to make interaction tools and interactive objects com-
municate?

This section explains how one interactive object can be manipulated by many tools, then how a
tool can manipulate one or many interactive objects.

4.5.1 One interactive object with many tools

We consider the two ways an interactive object can be manipulated: first only one tool is manip-
ulating the object; second at least two tools are manipulating the (same) interactive object at the
same time.

Simple control

The sequence we describe in this section is illustrated in Figure 4.3 and shows one tool that will
control all the attributes found as accessible in an interactive object. First, the tool opens a session

How to make interaction tools and interactive objects communicate? 67

Figure 4.2: Global organization of two tools controlling position of an interactive object.

with the interactive object previously selected by the interactor, which can be a human person or
a software component.

A person may select an object via ray-casting for instance. Then the tool needs to interrogate
the interactive object to obtain the object attributes it would be able to manipulate:

� It sends a get accessible parameters command to the interactive object.

� The interactive object answers with an accessible parameters message which is also made up
of a list of IDs of accessible parameters of this object for this tool.

This interrogation system does not rely on an introspection mechanism given by a programming
language such as Java, but it defines a set of types given by a configuration file for the virtual
environment and associates some meta-data to describe the attributes. This way we define a
programming language agnostic protocol. Now the tool can try to take control of some attributes
and later to send new values to the interactive object:

� The tool attempts to take control of the accessible parameters. For instance, if it tries to take
control of a position attribute, it will send a control take over and get current values message
with an ID for the position.

� The interactive object uses a current value message to send back a value for the position;
this message is composed of an ID for the position attribute and the position value. When
all the values the tools were interested in have been sent then the interactive object sends
a control taken of message, which is composed of the IDs that the tool is controlling. This
message acts also as an end flag. Now depending on the values the tool received, it is able
to initialize itself for further computations. With a position, a tool can compute an offset
between itself and an interactive object to simulate a fixed slider constraint when it moves
the object.

� The tool can now propose new values to the interactive object with a send value message.
The tool will send as many messages as they are values to send.

� The interactive object periodically informs a controlling tool of the values of the attributes
the tool is controlling with an effective value message. Each message contains the value of a
controlled attribute.

68 Modeling Interaction and Collaboration

Figure 4.3: Communication sequence between a tool and an interactive object.

� The tool can release control of an attribute it is controlling with a control release message.
This message is sent with IDs of the attributes to release control of.

Shared control

A shared control stands for a control where at least two tools are manipulating the same interactive
object. At this time each tool needs: i) to know the other tools that are manipulating the same
object, ii) to track the object’s evolutions to inform its users (human person or software component)
about incoming/outcoming of tools, iii) or to adapt its internal computations. A human user
adapts his actions depending on the actions that other tools are doing: for example, in order to
help another user, someone needs to become coordinated with the user or the actions he made,
etc. Let us consider a tool named T1 which is interacting with an interactive object named O. If
another tool, named T2 takes control of some attributes of O then T1 will receive a control taken by
message made up of the ID of T2 and also the IDs of the controlled attributes. When T2 releases
the control of some attributes, T1 will receive a control released by message made up of the same
kind of attributes a control taken by message uses. Figure 4.1 illustrates how two rays manipulated
by two human people can move a car together. A ray becomes bent when the position it tries to
apply is constrained by, for instance, the position given by another tool. This metaphor is described
in [DF02]. The use of the control take over and get current values message is not decomposed into
two commands to avoid a mutual exclusion. Concurrency is supported by the interactive object
itself to let many people interact together. Moreover, if we first ask for control and latter for
values, we will introduce an important delay between object picking and the beginning of object
manipulation. This is a main issue when a user wants to pick a moving interactive object.

4.5.2 One tool with many interactive objects

We consider that a tool can manipulate an object if it has an interactive extension. We will explain
how one tool interacts with one interactive object. Then, we will explain what a complex interactive
object is and how one tool interacts with.

How to make interaction tools and interactive objects communicate? 69

Figure 4.4: This 3D widget is a slider which is made up of a ring sliding along a bar. Here the ring
is selected and we can see a small pointer in front of the ring that a user can manipulate to move
the ring.

Control of a single simple interactive object

This case is the one presented in section 5.1.1. Also, a tool takes control of the set of attributes
it asked for. After the manipulation of the position of the interactive object, the tool releases its
control.

Control of a single complex interactive object

We qualify an object as complex when it has a “big” number of attributes to interact with. Such
an object requires a particular approach for interaction. Some virtual objects would require a
composition of interactive objects: a “virtual” car may be made up of doors, wheels, an engine, a
chassis, etc. where each of these pieces embeds an interactive extension. Some constraints would
be added to interactive objects thanks to software extensions in order to keep doors attached to
the car; maintain seats within the car, etc. so an interactor can move the entire car and interact
with some of its parts without disassembling everything. The interactive feature is described here
through a local approach.

Let us consider a flexible hose made up of many rings so it may be hard to add local constraints
between them and compute positions. A global approach may be needed: only one (or at least
a small number) interactive object is employed to implement a finite element method. When
an interactor wants to apply some actions on the flexible hose, it has to go through the unique
interactive object which computes all the properties of each ring. This feature needs to be able to
decompose a flexible hole into a set of rings selectable by the user. Associations between rings and
attributes of the hose are described in a configuration file.

A user may select an object part by different ways: a menu, voice, etc. As an example, we
assume that a user selects an object by ray-casting. A 3D mesh is decomposed into a set of 3D
submeshes so a user will pick one of them. Each 3D submesh is associated with a given ID thanks
to the configuration file describing the virtual environment. Now, when a user picks a 3D submesh
it obtains an ID that it sends through a get accessible parameters message. The interactive object
receives an ID of one of its part, and then it answers with the associated attributes. This message
behaves like a filter for the interactive object attributes.

As a simple example, Figure 4.4 shows a 3D widget made up of two parts. At screen, there are
two 3D meshes (a ring and a slide) but only one interactive object allows interaction and it keeps
these two objects together. If the interactor selects the ring then it will move it along the slider, if

70 Modeling Interaction and Collaboration

it selects the rest of the slider it will move all the slider including the ring.

Control of a set of interactive objects

With a set of interactive objects, a tool does not directly interact with interactive objects but
through proxy-tools (see Figure 4.5). A proxy-tool is an intermediate tool between the “real” tool,
that the user manipulates, and the interactive object. Note that to simplify, we did not decompose
tools in a main tool + proxy-tools in section 5. The use of a proxy-tool aims to add more flexibility
to how a tool is programmed: the tool does not have to contain code to communicate directly with
one interactive object or many. A proxy-tool embeds the code to manipulate an object: a control
extension and a behavior extension. Also it becomes easier to manipulate many interactive objects
because the tool only has to instantiate many proxy-tools and then follows their evolution.

Moreover a proxy-tool can have its own extensions that are different with the tool. Those
extensions can add a specific behavior to each proxy-tool. In addition, proxy-tools can be spread
on the network to reduce latencies and network traffic during a distributed session.

Figure 4.5: A tool uses proxy-tools to manipulate some interactive objects. The main tool sends its
position then each proxy-tool computes a position for an interactive object using the main tool’s
position.

4.5.3 Access to interactive object properties

Platforms for virtual reality may be used to simulate real-life interactions where a trainer explains
industrial maintenance procedures to technicians, a boss accesses to confidential data, etc. Prior
work has been done in [GPS00], for instance, but its policies seem quite limited.

Each attribute of an interactive object is provided with an access level. When a tool tries to
manipulate an attribute, it first needs to have an attribute that matches the expected interactive
object attribute: same type, corresponding meta-data and a sufficient access level. This policy
leads to the fact that a tool can fail to take control of some attributes, or it can be “kicked out”
by another one. When a tool is interacting with an interactive object, another one can come and
raise access level to a higher value, thus the former tool lost its control and receives a control ended
message which is made up of IDs of the released attributes. In order to implement this policy, we
propose to manage interactive properties that can be associated with interactive objects themselves
or interactive object attributes. Let us describe elements of such a property:

� A name, a type (e.g. Integer, Position, Orientation, etc.), a meaning (i.e. a kind of comment),
an association with a feature of the interactive object (e.g. interactive object position) and
the number of tools that can interact with it at the same time.

� A priority level in order to determine the lowest priority needed by an interaction tool to be
allowed to interact with an object. This priority can be set globally for all tools, or for each
existing group of tools, or for an object. The priority can be set globally for an object or
specifically for each of its attributes.

Description of interactive and collaborative properties 71

� An access policy for an interactive object attribute or a group of interactive objects. It
determines how the interactions can be shared between several tools. The different policies
allow either many interaction tools to share interactions with an interactive object, or only
one tool to interact with the object. Currently, we propose three policies:

– “Unfreezable” policy: a tool interacting with such an attribute will not be able to forbid
another authorized tool to stop or join the current interaction. Motivation: a tool will
not be “kicked out” by another one.

– “Freezable at any level” policy: a tool interacting with such an attribute will be allowed
to determine, for each existing group of tools, the minimum required level needed for a
tool in order to be able to stop or join the current interaction. Motivation: a tool will
give access to only a set of tools.

– “Freezable at tool level” policy: nearly the same policy than “Freezable at any level”
but the level cannot be superior to the priority of the tool that initiated the interaction
session. Motivation: a tool will lower the access level to allow new tools. For instance,
we imagine a powerful user that give access to some people by lowering access level.

� A description of how the feedback used to make the user aware of its interaction (with an
attribute, an object or a group of objects), have to be triggered: before, at the beginning,
during or after the selection and/or the manipulation of an interactive object or attribute.

4.6 Description of interactive and collaborative properties

All the properties defined in section 4.5.3 can be declared in configuration files that make it possible
to describe all the interactive and collaborative properties of the content of a virtual environment.

A first implementation is available for the OpenMASK platform, allowing to describe both
interaction tools and interactive objects.

<partage:interactive_model id="mon_objet" target="mon_objet">

<partage:interactive_access mode="ABSOLUTE" count="0"

policy="Freezable at tool level">

<partage:group_control group="local" level="2" />

<partage:group_control group="invite" level="1" />

<partage:group_control group="inspecteur" level="3" />

<partage:group_control group="*" level="0" />

</partage:interactive_access>

<partage:interactive_object_property

name="mon_objet_Interact_TranslationXYZ"

type="translation" type_meaning="translation_XYZ"

target="mon_objet/translation" />

</partage:interactive_model>

Figure 4.6: Collada description of the interactive properties of a virtual object.

Another implementation has been made as en extension to the Collada format. A new profile
(named partage) has been created to describe these interactive properties through two new libraries:

� library interactive scenes, which contains the interactive scene tags, and that is instantiated
once to describe the virtual environment, this instance can contain several instances of inter-
active model;

72 Modeling Interaction and Collaboration

� library interactive models, which contains interactive model tags.

Figure 4.6 shows a brief Collada description of an interactive object. More details can be found
in [Agu10]. Here is a short description of the new tags:

� interactive access: defines the access restrictions to the attributes of an object.

� group control: for each group, defines the level required for an interaction toll to be allowed
to access to the attributes of the object.

� interactive object property: defines the properties of the interactive object.

� interactive feedback: can initiate a feedback toward interaction tools.

4.7 3DFC: a new container for 3D file formats compositing

We have also worked upon a new formalism to mix several 3D files format and to make them
interoperate. It is a 3D container model that enables to compose 3D file formats. It allows not only
to compose 3D scenes made of several 3D files of different types but also to combine their features
and to make them interact together in the rendering window. This model, called 3DFC for 3D File
Container, relies on the Scene Graph Adapter (SGA) architecture presented section 3.7. The SGA
makes it possible to load any scene-graph-based 3D file format in a 3D application whatever the
involved engines (rendering engine, physics engine, etc.).

The proposed approach consists in defining these interactions inside a container file and de-
scribing the 3D files associated and their connections. Our intention is not to propose a new 3D file
format but rather to outline a model of container that could possibly be inserted into existing stan-
dard formats. We opt for an XML-based model because it is a widespread open-standard, supported
by a large number of tools. Our model has been designed as compact as possible, only defining
the main nodes required for composition. Therefore it contains a root node (SGA-3DContainer),
a grouping node (Group), a positioning node (Transform) and a content node (Content). The
Group and Transform nodes are typical nodes for organizing the scene. The Content node allows
us reference an external 3D file whatever its format.

4.7.1 Interaction nodes to mix 3D files functionalities

This format allows us to identify and annotate the 3D files that are combined in a 3D scene. We
define interaction between these files through three new nodes: a Route node, a Match node and a
Converter node.

The Route node creates a path between two equivalent properties of two nodes from two different
format scene graphs. By equivalent properties we mean properties that have the same semantic.
For example the field translation of an X3D transform node and the translate attribute of a node
from a visual scene in Collada. The route node contains 7 attributes: fromFile, toFile, fromNode,
toNode, fromField, toField and converter. fromFile and toFile values are identifiers of the two
format scene graph connected together. These identifiers are defined in the DEF attribute of the
content node referencing each file. The attributes fromNode, fromField, toNode and toField are
names of the nodes and fields in their respective format scene graph that are connected through
the Route node.

The match node allows to add a property extracted from a given node to another node. We
can use it to add a mass to a node encoded with a format that does not take into account physics
properties. The match node has five attributes: fromFile, toFile, fromNode, toNode (identical to
those of Route node) and field (the name of the property to match as it appears in the original
format).

3DFC: a new container for 3D file formats compositing 73

The sample file in Figure 4.7 declares a Route and a Match between nodes of two different
format scene graphs.

<?xml ve r s i on =”1.0” encoding=”UTF−8”?>

<SGA 3DContainer>
<Group DEF=”MyGroupNode”>

<Content DEF=”F i l e 1 ” type=”t1 ”
de code r u r l=”” wrapper ur l=”” u r l=” f i l e 1 . t1 ” />

<Transform DEF=’TRANS’ t r a n s l a t i o n =’−80 60 50 ’ s c a l e=”2 2 2” >
<Content DEF=”F i l e 2 ” type=”t2 ”

de code r u r l=”” wrapper ur l=”” u r l=” f i l e 2 . t2 ” />
</Transform>

</Group>
<Match f romFi l e=”F i l e 1 ” fromNode=”Sphere 1 ”

t oF i l e=”F i l e 2 ” toNode=”Sphere 2 ” f i e l d=”mass”/>
<Route f romFi l e=”F i l e 2 ” fromNode=”Sphere 2 ” fromFie ld=”ro t a t i on ”

t oF i l e=”F i l e 1 ” toNode=”Cube 1” toF i e l d=”ro t a t e ”
conver s i on=”conve r t e r 1 ” />

<Converter DEF=”conve r t e r 1 ” type=”VectRotToQuaternion” />
</SGA 3DContainer>

Figure 4.7: Example of a 3DFC file with interactions between nodes of different 3D files.

4.7.2 Possible uses and benefits of a container

Using a container makes 3D file compositing possible without format compatibility constraints and
also allows their contents to communicate. Along with the use of the SGA framework, we have an
interoperability model that answers the issue raised by the multiplicity of 3D formats.

The Route node is used to copy a property of a given node to another node from a different
format scene graph. The properties are shared among different files possibly encoded in different
formats.

With the Route node, it is possible to organize and break down in our scene among several
files in order to improve the reusability of the different involved contents. Moreover, the routing
functionality allows us to bring animation in 3D file format that do not provide it. Indeed we have
two options to animate an ordinary node: 1) by creating a route between an external animated
node and this node, 2) by creating a route between an external animation node and this node.
Thanks to the Converter node, routes can be created between nodes without being hampered by
an incompatibility of units between two semantically identical properties.

The Match node is used to match a property of a given node to another node declared in a
format that does not offer this property. Through the Match node we are able to add properties to
a model of any 3D format without altering the original file. The new property is defined by the file
format where the match declaration comes from and it is interpreted by the SGA as if the modified
node was a node of that format.

4.7.3 Implementation

We have implemented our architecture with three format wrappers and two engine wrappers. The
three format wrappers are for X3D, Collada and 3DFC. The two engine wrappers are for Ogre3D
and Bullet. More details can be found in [BBRDA12].

74 Modeling Interaction and Collaboration

4.7.4 Conclusion

The 3DFC solution solves the interoperability issue among 3D file formats. It enables communi-
cation between 3D assets encoded with different 3D formats. Indeed through a container file, we
are able to describe a 3D scene composed of several 3D contents no matter of their original format
and also to define interactions between them.

A container format allows us to capitalize on all features of a 3D format, mix them with other
3D format features and obtain a rich 3D scene without any preliminary alteration of the involved
3D files. In order to use a new 3D format through the SGA architecture, the only thing to do
consists in finding a decoder and implementing a format wrapper according to an API given by the
SGA. This allows anyone to promote its own file format, whether a small or a big one, and makes
it interact with other 3D file formats and 3D application.

The mechanisms offered by 3DFC are also another way to add interactive capabilities to 3D
contents without altering them.

4.8 Conclusion and future work

Our motivation is to help software developers to produce rich virtual reality applications, with
hardware input abstraction device, software component reuse, easy modification of instances of
virtual applications. As a result, we propose a new formalism for 3D interactions in virtual envi-
ronments. This formalism defines what a virtual interactive object and an interaction tool are, and
how these two kinds of objects can communicate together.

We have shown how this communication system works for simple interactions: one tool interact-
ing with one interactive object; and more complex collaborative interactions: two tools interacting
simultaneously with the same interactive object, making the users aware of this closely coupled
collaboration.

For software reuse, we have developed many software components, which are called software
extensions, dedicated to selection and manipulation. The manipulation extension also uses a control
extension which implements the communication protocol we described. Interactive objects embed
an interactive extension. Thereby tools and interactive objects are easier to implement and describe.

The communication system and the description of what a tool and what an interactive object
are, are a step toward a more sophisticated language to describe interactions in virtual reality
applications. The description we propose is based on the use of many software components which
are assembled.

We also worked on the mixing of interactive features of existing 3D file formats, which is a
complementary approach. Furthermore we also think that the union of these format extensions
and the description of the communication dialog for tools and interactive objects can enable a
better interoperability between different virtual reality platforms.

The formalism we introduced by proposing new extensions to Collada is a first step toward a
complete description language to describe the interactive and collaborative properties of virtual
objects. Future work could first focus on proposing to make these extensions official for Collada,
and to embed them also into other 3D description format standards such as X3D.

We should also embed our interactive extensions in 3DFC, which would be another way to make
virtual objects (described for example through Collada or X3D files) interactive through interactive
features described at the 3DFC level.

A next step would be also to provide a high-level description of interaction with physical prop-
erties of virtual objects, in order to make possible an easy description of more realistic interactions
with non-rigid objects.

Chapter 5

Metaphors for Collaborative
Interactions

5.1 Introduction

Object manipulation is one of the most fundamental tasks of 3D interaction in Virtual Real-
ity (VR), and many efficient interaction techniques have been developed in this area in the past
decade [BKLP04]. Due to new 3D input devices becoming widely available even for the general
public, research in new 3D user interfaces is more relevant than ever [BCF+08]. Furthermore, the
collaborative manipulation of virtual objects by multiple users is a very promising area for Col-
laborative Virtual Environments (CVE) [BGRP01]. Collaborative manipulation of objects seems
indeed necessary in many different applications of VR such as virtual prototyping, training simula-
tions or assembly and maintenance simulations [RSJ02, DRC+00, FN98, LGH98, SCF97]. In such
virtual collaborative tasks, all the users should participate naturally and efficiently to the motion
applied to the object manipulated in the VE.

Although most collaborative systems support simultaneous manipulation of different objects
by different users, generally only one user at a time can manipulate a virtual object. Interaction
metaphors that are usually used for single-user 3D interaction, such as virtual hands, virtual rays
or virtual 3D cursors, have to be adapted for collaborative 3D virtual manipulations.

It is important for people sharing a CVE to be aware of the activity of other users, as explained
in [FBHH99], in order to help them to understand the evolution of the CVE and to collaborate
more efficiently with the other users. Showing the activity of a user to the other users whom
he may collaborate with, is a central point for an efficient collaboration, and a lot of work has
been realized in this area [FGV+00, GG98]. Many egocentric metaphors, such as the virtual ray
casting [PWBI98], are well suited for interaction within CVE, thanks to their graphical visualization
that can be shown to the other users.

Therefore, in this chapter, in section 5.2 we make a short state of the art about 3D interaction
mataphors and their adequation to CVE. A more detailed state of the art about 3D collaborative
interactions can be found in [ADA09b]. Then we introduce some of our contributions to multi-
user interaction through the proposition of new collaborative interaction metaphors. Section 5.3
presents our first contribution to simultaneous multi-user manipulation of the position and orien-
tation of a virtual object through deformable rays used ad interaction tools. Section 5.4 presents
an asymmetric 2D Pointer / 3D Ray that is as easy to use as a simple pointer driven by a 2D
input device, but which provides a 3D representation in order to make the other users aware of
the interactions driven by this interaction tool. Section 5.5 recalls our first contribution to multi-
point manipulation of virtual objects, by grabbing only two points of a virtual object. Section 5.6
proposes a new 3D interaction technique for 6 DOF multi-user collaborative manipulation of 3D

75

76 Metaphors for Collaborative Interactions

objects through only positions of three non-aligned manipulation points on this object. Section 5.7
presents a novel concept of reconfigurable tangible interface that can match many shapes of 3D
objects, for the purpose of object manipulation by single or multiple users in virtual environments.

5.2 Related work

5.2.1 Two-hand object manipulation

Several 3D interaction techniques have been proposed to manipulate virtual objects with the two
hands of a single user [HPPK98]. But only a few of them, such as “grab-and-carry”, “grab-and-
twirl” and “trackball” techniques [CFH97], enable users to position and rotate virtual objects.

The “grab-and-carry” technique [CFH97] is a 5 Degrees-of-Freedom (DoF) bimanual symmetric
tool that enables users to carry and turn an object around with both hands. Object roll is not
supported since it is not possible to determine rotation around the axis defined by the positions
of the two hands. The “grab-and-twirl” technique extends the “grab-and-carry” technique, adding
the sixth DoF using either the left hand’s roll, the right hand’s roll, or a combination of both. The
“trackball” technique is a bimanual asymmetric tool that enables users to use the non-dominant
hand to position a virtual object while the dominant hand rotates this object around its center.

In our opinion, these techniques are not very representative of real world interactions considering
users’ movements. In addition, they could probably not be used to simulate interactions with large
or cumbersome objects that a user cannot manipulate alone.

5.2.2 Multi-user object manipulation

Several approaches are suitable to combine two users’ movements to obtain the final movement
of a virtual object [RSJ02]. A first approach consists in adding the two motions (asymmetric
integration of movements). A second approach is to average the two motions. A third approach
aims at keeping only the common part (intersection) of the two motions (symmetric integration
of movements). But none of these combinations seems ideal. Indeed, the intersection technique
is the more relevant when the two users have to perform a very similar action, whilst the average
technique is preferred when users have to perform different tasks [RSJ02].

The Bent-Pick-Ray [RHWF06] metaphor enables several users to simultaneously co-manipulate
a virtual object. This technique merges users’ inputs according to the amount of hand movement
a user does with one input device. Rotations are computed with a spherical linear interpolation
(Slerp) [Sho85], while the translations are interpolated using only offset transformations. Results
may be close to those of the average technique.

The SkeweR technique enables multiple users to simultaneously grab any part of a virtual
object through special points called “crushing points” [DLT06]. To determine the translation and
the rotation of a grabbed object, the SkeweR considers positions of those points. A problem remains
for determining the rotation along the axis linking the two crushing points. The SkeweR will be
described section 5.5. A similar technique seems to be used to construct a virtual gazebo [RWOS03].
Two users manipulate a beam by grabbing its extremities. But no solution is proposed for the sixth
DoF. This beam manipulation has been reproduced by using two virtual hands but simply using
their average position in order to provide a position for the manipulated virtual beam [GMMG08].
In [SJF09], Salzmann et al. use two optical markers to let two users manipulate a windshield.
Authors also use the simple averaging of translation and rotation to move the virtual windshield.

Another kind of collaborative manipulation consists in splitting the task among users [PBF02].
In this case, the number of DoF that each user can access and control is limited: one user controls
rotation of the object while the other one is limited to translation. This can be compared to the
Two-Hand “trackball” technique [CFH97].

Related work 77

Separate motions of several users’ inputs (from several hands or users) can be used to define
the final motion of a virtual object. However, due to the complexity of current VR interfaces,
no universal collaborative solution has already been proposed to naturally apply a motion to a
co-manipulated object. Therefore, in this chapter we will propose to extend these techniques by
adding a third manipulation point for collaborative manipulation [ADL09].

5.2.3 Tangible devices

A tangible device (or prop) is a real object that users can hold to move a virtual object and
feel a passive tactile feedback. Such tangible interfaces are often preferred by people over non-
physical interfaces [SJF09]. However, several studies show that they do not always lead to better
performance [HTP+97, WR99]. Nevertheless, passive tactile feedback can be used to increase
presence and improve training effectiveness in virtual environments [IMWB01].

Many adhoc tangible interfaces have been proposed to mimic real objects in a virtual world
such as in [HTP+97, SJF09]. In this case, users may have to hold a scale model for interaction
with the virtual environment as in [HPGK94]. If some tangible interfaces let users use both hands,
to our knowledge usual tangible interfaces are generally limited to single-user interactions.

Tangible User Interfaces (TUI) were designed to give a physical form to digital informa-
tion [UI00]. They were shown to improve the manipulation of objects in many cases, in 3D or
in 2D applications [IU97].

In virtual reality, a famous example is the neurosurgery visualization application of Hinckley et
al. [HTP+97] in which a user holds two physical objects: a head doll in one hand and a plastic plane
in the other hand. These tools are used to select and visualize more directly and more efficiently
cuts in a 3D brain model. The Monkey [EPO95] is dedicated to the configuration of virtual human
postures for the purpose of computer animation. Note that a TUI does not necessarily have to
take the shape of the corresponding real object (iconic representation [UI00]) but it can also be an
abstract representation of this real object (symbolic representation).

Tangible interfaces can also be designed for helping people to coordinate their movements during
a collaborative manipulation. In [SJF09], Salzmann et al. propose a prop for two-user manipulation
that maintains the users’ hands at the same distance. As such, the prop acts as haptic link between
them. As position and orientation are given by only one optical marker on the top of the prop,
this technique is limited to one point of manipulation. The shape of the prop also restricts its use
to cases where users use only one of their hands or keep their two hands very close.

We can further subdivide tangible user interfaces from the literature into two distinct types:
non-reconfigurable TUIs and reconfigurable TUIs. Non-reconfigurable tangible user interfaces have
a shape that cannot be modified, whereas reconfigurable TUIs are tangible interfaces whose shape
can be modified. A first example of a reconfigurable TUI consists in assembling or removing phys-
ical blocks that progressively design and match 3D object shapes. Research on this topic was
initiated with architectural applications [Fra95] and led to numerous TUIs such as the MERL
bricks [AFM+99] or the ActiveCubes [WIA+04]. Another approach consists in deforming a mal-
leable TUI. Users are then able to use pressure to build shapes in 3D modeling tools for in-
stance [STP08]. Several reconfigurable TUIs follow an approach balancing between malleability
and rigidity. The Senspectra TUI [LPI07] connects rigid balls by flexible joints to form an overall
flexible structure. The Glume TUI [PLI06] connects malleable balls by a rigid structure. How-
ever, all these reconfigurable TUIs were built for specific applications, e.g. games or education,
and never in the context of virtual reality and 3D virtual object manipulation. We assume that a
good rigidity of a TUI could better mimic rigid “real” objects and provide a haptic passive link for
collaborative manipulations between users. However, to the authors’ best knowledge no previous
work has been done in the area of reconfigurable tangible user interfaces to find a good balance
between easy reconfigurability and rigidity for object manipulation in virtual environments.

78 Metaphors for Collaborative Interactions

5.3 3D virtual rays for collaborative manipulations

This section describes how we propose to help a user of a 3D collaborative virtual world to be aware
of the constraints due to the other users during his collaborative interactions with the objects
of the universe. As several users can interact simultaneously with the same shared interactive
object, the behavior of such an interactive object can result from the addition of all the concurrent
interactions, and it has to be explicitly shown to the users in order to let them understand why
the co-manipulated object does not behave as it should (i.e. such as it would if there was only one
user in interaction). So we present here some metaphors for collaborative interactions within 3D
virtual worlds that can improve the awareness of such collaborative interactions for the users.

5.3.1 Introduction

Usual interaction metaphors such as virtual rays, virtual hands or 3D cursors are efficient for
single-user interaction, but they must be adapted for multi-user simultaneous interaction on a
single object. For example, when grabbing a virtual object with a virtual hand, the virtual object
should follow the position of the hand until it is released. But if several users take control of the
same object at the same time, with virtual hands, it is impossible to let the users move freely their
virtual hand while making the grabbed object follow all these virtual hands. The only solution
would be to use force-feedback input devices, in order to constrain the users to move their virtual
hands in the same way. As force-feedback input devices are very expensive and do not usually
offer a wide area for the movements of the users, we prefer to propose a solution to simultaneous
interaction through new visual metaphors that can be driven with classical 3D input devices. These
metaphors propose to give to the manipulated object a position which is the result of the action of
all the users, and to give visual cues to the users to explain why the co-manipulated object is not
where it would be if each user was interacting alone.

5.3.2 The targeted interaction tool: a virtual ray

We often use virtual rays for object manipulation. A virtual ray can be used to select and to interact
with many kinds of virtual objects, for example thanks to the protocol presented in chapter 4.

5.3.2.1 The ray with a rubber-band

Our first proposition to make a user aware of the difference between the “should be” position and
the effective position of a virtual object manipulated through a virtual ray is to use a rubber-band.
This rubber-band will make a link between the “should be” position and the effective position
(see Figure 5.1(a)) of the manipulated object. As a result, each user is aware that there are some
constraints on the manipulated object (here the constraints are due to other users who are currently
co-manipulating the object), which explains why the co-manipulated object is not at the “should-
be” position on his virtual ray. This solution can also be used for other interaction tools such as
virtual hands or 3D cursors.

5.3.2.2 The creased ray

Our second proposition fits only virtual rays. Instead of using a rubber-band, we propose to resize
the virtual ray and break it into two parts, in order to make the end of the ray reach the manipulated
object, as illustrated in Figure 5.1(b).

This solution does not show to a user the “should-be” position of the co-manipulated object.
There could be some ways to show the “should-be” position, for example with a half-transparent
ghost of the object for each interaction tool currently co-manipulating it. Such a solution could be
effective for every co-manipulation metaphor.

An asymmetric 2D Pointer / 3D Ray for 3D interaction within CVE 79

(a) (b) (c)

Figure 5.1: (a) Three virtual rays are interacting simultaneously with a virtual object — (b) The
extremity of each creased ray reaches the manipulated object — (c) The bent rays make a link
with the co-manipulated object.

5.3.2.3 The ray with a bent ray

Our third proposition is an evolution of the creased ray. Here we propose to bend the ray in order
to have a progressive deformation of the virtual ray, instead of having only two segments. We also
let the initial virtual ray always visible, for a better visual feedback, as illustrated in Figure 5.1(c).
This additional bent ray is very similar to the one that has been proposed in 2006 by Riege et
al. [RHWF06].

Here again, the user does not perceive where the object would be if he was the only user
interacting with this object. It is easy to show this “should-be” position, either by changing the
length of the straight virtual ray so that its extremity would show this position, or simply by using
a rubber-band as proposed in section 5.3.2.1. In both cases this position is the position of the
interactive object relative to the ray when the ray selects it.

5.3.3 Conclusion

These three metaphors have been first implemented in the GASP framework during a master
thesis [DF02], with the very first version of our dialog protocol [DLT04]. They can be useful to make
the users aware of the constraints that can be applied to interactive objects during an interaction.
These constraints can occur because of collaborative interactions such as co-manipulation, or also
because of mechanical constraints applied to the objects.

5.4 An asymmetric 2D Pointer / 3D Ray for 3D interaction within
CVE

5.4.1 Introduction

What is the best technical solution for easy and natural 3D interaction within Virtual Environments
(VE)? Most people will answer that it is immersion, but to obtain high quality immersion you need
stereovision for the visualization, linked to a 3D tracking device in order to track the position of
tools of the user and of his head. Indeed, such technical solutions allow the images to be generated
such that virtual tools can be colocated with parts of the user’s body or with the real tools he
is using, so a user feels like his arms, hands, or tools were really embedded within the virtual
environments. Furthermore, interaction metaphors that are usually used in this context, such as

80 Metaphors for Collaborative Interactions

virtual hands [PBWI96], virtual rays [BH97] or virtual 3D cursors [ZBM94], are interesting for
Collaborative Virtual Environments (CVE) because they provide a natural 3D representation that
is perceptible for the other users of the CVE. Due to this 3D visualization of the interaction tools, a
user can be easily aware of the activity of the other users of the CVE. Nevertheless, 2D metaphors
and input devices have also to be considered for 3D interactions because they are sometimes easier
to use than 3D metaphors, as stated in [BCF+08].

However, a good immersion cannot be obtained without expensive hardware such as high-
frequency video-projectors (for active stereovision) or double projectors (for passive polarized stere-
ovision). Providing only stereovision is not enough to obtain a good immersion, because it cannot
ensure a good co-location between the virtual tools driven by the users and the physical objects
or body parts that the user uses to control the virtual tools. We need wireless tracking systems
(optical, ultrasonic or magnetic) for head tracking, tools tracking and body parts tracking.

Without co-location, we consider that it would be difficult for somebody to use efficiently the
classical 3D interaction metaphors, and that these metaphors will not be user-friendly. So perhaps
basic 2D interaction tools such as a 2D pointer driven with a classical 2D mouse could be as
efficient as the usual 3D metaphors for simple tasks such as object selection and manipulation (3D
positioning, for instance).

Two problems arise when using such basic 2D interaction metaphors. First, when several users
share a CVE, it will be difficult to make a user aware of the interactions of other users, because
their 2D interaction tools will not be associated with any 3D virtual objects. Second, using a
classical mouse will not fit semi-immersive environments when a user stands in front of a big image
produced by a videoprojector, generally without any keyboard or 2D mouse.

This is the reason why we propose a new 2D pointer that will be associated with a 3D geometry
in order to appear visually within the Collaborative Virtual Environment. This 2D pointer will be
easy to use and will be driven by any device that can control a 2D position: for example a classical
2D mouse, a gamepad or a Nintendo wiimote remote gaming controller. The 3D geometry of this
pointer will be a virtual ray, so other users can be easily made aware of the movement of this 3D ray,
in the same way they can be made aware of the evolution of classical 3D interaction metaphors.
This 2D Pointer / 3D Ray will use the classical ray-casting technique for object selection and
manipulation. In this way, its behavior is similar to the aperture based selection technique [FHZ96]
and to the technique developped in [WL97].

In order to show that our 2D Pointer / 3D Ray can be useful for selection and basic interaction
tasks, we have made some experiments comparing four interaction techniques, which results are
discussed in [DF09].

5.4.2 The asymmetric 2D Pointer / 3D Ray

Our idea is to use a 3D virtual ray that would be as easier to drive than the classical 2D mouse
pointer. The result looks like a classical 2D pointer moving on the surface of the screen. In fact it
is a quite thin and long 3D virtual ray, moving near the viewpoint of the user, staying always at
the same depth, which orientation is calculated in a way that its projection on the screen is always
a small spot.

As shown in Figure 5.2, the 2D device used to control the pointer will provide the Xc and the
Y c values, and the Zc value is a chosen one, so the rho and theta values can be calculated this
way, if the rho angle (the heading) is first applied around the Y axis and then the theta angle (the
elevation) is applied around the X ′ axis :

� rho = atan(−Xc/Zc)

� theta = atan(Y c/sqrt(Xc ∗ Xc + Zc ∗ Zc))

An asymmetric 2D Pointer / 3D Ray for 3D interaction within CVE 81

Figure 5.2: Projection of the 3D Ray as a small spot on the screen.

This way, the user of the 2D Pointer / 3D Ray will always feel that he is using a 2D pointer (see
Figure 5.3(a)), while other users will see a 3D virtual ray moving thanks to the action of the first
user (see Figure 5.3(b)). So it is quite easy to use for the first user, and quite easy to understand
by the other users.

(a) (b)

Figure 5.3: (a) On the left, user 1 moves a 3D slider with his red 2D pointer and he sees the green
3D virtual ray of user 2 ready to select another slider. (b) On the right, user 2 is ready to select
a slider with his green 2D pointer while he is looking at user 1 moving a slider with his red 3D
virtual ray.

This 2D Pointer / 3D Ray is completely independent from the hardware device that will be
used to drive it: either a classical 2D mouse, or a game pad, or any device able to provide 2D
coordinates, or even a graphical 2D user interface.

As the 2D Pointer / 3D Ray is turning around the closest extremity of the virtual ray, the
movements of a manipulated object can also be affected by a small rotation and will not stay at the
same Z coordinate within the user’s coordinate system, except if we force it to preserve its relative

82 Metaphors for Collaborative Interactions

orientation and Z coordinate.

This metaphor can be easily extended to 3D movements within the user’s coordinate system:
the X and the Y coordinates are directly provided by the physical device used to drive the 2D
pointer, and the Z coordinate can be changed by moving the manipulated object along the 3D
ray. To achieve such a translation along the virtual ray, the device used to drive the 2D pointer
must also provide the information needed to calculate the Z coordinate, or it can be associated to
another device providing this value. For example, this Z coordinate can be obtained thanks to the
wheel of a 2D mouse, or some buttons of a gamepad.

A rotation of the manipulated object within the user’s coordinate system can also be calculated
with additional devices, for example the keyboard or some buttons or joysticks of a gamepad.

We consider our technique as an egocentric interaction metaphor using a pointer as described
in [PWBI98]. As our 2D Pointer / 3D Ray is a tool associated to the user’s viewpoint, the user
carries this interaction tool with him when he navigates within the VE, in the same manner as 3DM
[BDHO92]. So as the 2D Pointer / 3D Ray moves with the viewpoint when the user navigates, the
object that has been grabbed by the moving tool navigates also within the VE, which is another
complementary way to provide a new position and orientation to this manipulated object.

Last, the 2D Pointer / 3D Ray can simply be used as a classical 2D pointer to trigger somme
elements of a 3D GUI that could be carried by the user, in order to control the state of the
application.

So, according to Hand [Han97] who separates virtual interactions into 3 categories: 3D interac-
tion (selection and manipulation), navigation and application control; we see that our 2D Pointer
/ 3D Ray, carried by the user, is well suited for these three kinds of interactions.

5.4.3 Conclusion

We have proposed a new metaphor for 3D interaction within Collaborative Virtual Environments:
the 2D Pointer / 3D Ray, which associates a 3D representation with a 2D pointing device (for
example a 2D mouse). This metaphor allows an asymmetric collaboration between users immersed
within a CVE (via stereovision and head-tracking) and users simply sitting in front of the screen
of their workstation. The user without immersion will interact as easily as if he had a simple 2D
pointer, as the associated 3D ray (a 3D virtual ray) will be continuously moved and oriented in a
way that its projection on the screen of the user will always be a small spot. The other users of
the CVE will be made aware of the action of this user thanks to the movements of his associated
3D virtual.

5.5 The SkeweR

In this section we introduce an interaction technique for two users to move the same virtual object
simultaneously in a VE. The technique is called the “SkeweR” technique [DLT06] since each user
manipulates the object by one crushing point, like handling one extremity of a skewer. When using
the SkeweR technique, the final motion of the manipulated virtual object is based on a combination
of the two translation motions of the users.

5.5.1 Introduction

The SkeweR technique allows multiple users to select and manipulate virtual objects simultane-
ously in a VE. Most of the previous interaction techniques were designed for the multiple users to
manipulate the virtual object by translating or rotating its geometrical center (or gravity center).
On the contrary, we propose to take into account the size and geometry of the object, in order
to obtain a more natural interaction. Indeed, we propose to move the virtual object by grabbing

The SkeweR 83

any part of it, at any location. The SkeweR technique can be first considered as an equivalent (in
the field of 2-user collaborative manipulation) of the “grab-an-carry” tool described by Cutler et
al. [CFH97] which was designed for 2-hand manipulation. However, the principle of the SkeweR
technique can also be extended, in order to be used by 3 (or more) users. The SkeweR technique can
also be compared with the techniques developed for shared haptic interaction [BHSS00]. However,
the SkeweR technique does not use force-feedback and physical models, but simply uses kinematics
and information of motions of the users. The SkeweR technique can tolerate large offsets between
the position of the user’s hand and the position of the shared object in the simulation.

5.5.2 Concept

The SkeweR technique uses only the translation motion of the users. These motions are measured
by position sensors. They are used to move one virtual 3D cursor per user in the VE. These 3D
cursors are used to activate some “crushing points” on the manipulated object (see Figure 5.4).
We will assume that a virtual 3D cursor stays at the same position than its associated crushing
point.

Figure 5.4: Two users reach and crush a parallelepiped object with their virtual 3D cursors

When associated with the crushing points, the 3D cursors of the two users become the extrem-
ities of a virtual skewer which is used to hold and move the interactive object. As displayed on
Figure 5.5, a virtual object (parallelepiped) can be turned and rotated easily in a VE without using
any rotation motion from the users.

Figure 5.5: 2-user collaborative manipulation of an object with the SkeweR technique in one turn
of a virtual maze

The SkeweR technique uses only the translation motions of the two users to move the objects
within a complex 6 DOF movement. The scheme is thus different from the techniques described in
section 5.2, making the SkeweR technique a hybrid technique.

5.5.3 Using only one crushing point

It is possible to change the orientation of the manipulated object with only one crushing point:
once a crushing point (associated to a 3D cursor) is selected and activated on the manipulated

84 Metaphors for Collaborative Interactions

object, the translation motions of the user are used to move the cursor and then to compute a new
rotation increment for the object. At each time step, we consider an elementary straight motion of
the cursor, and we compute an elementary rotation to apply to the object. If Po is the geometrical
center of the object, Pct the position of the 3D cursor at time t, Pct+1 the position of the 3D cursor
at time t+1, then the elementary rotation to apply to the interactive object will be a rotation of a
θ angle around the ω axis, i.e. the axis which is passing by Po and orthogonal to the plane defined
by Po, Pct and Pct+1. The θ angle and ω axis are computed as follows:

θ = arccos(

−−−−→
PoPct ·

−−−−−−→
PoPct+1

||
−−−−→
PoPct|| × ||

−−−−−−→
PoPct+1||

) (5.1) −→ω =
−−−−→
PoPct ∧

−−−−−−→
PoPct+1 (5.2)

The change in position of the manipulated object is achieved by constraining the position of
the crushing point (relative to the object) to follow the position of the cursor. Let us assume
that R is the rotation used to determine the absolute orientation of the manipulated object. R
is obtained by the accumulation of the elementary rotations defined previously with Equation 5.1
and Equation 5.2. The new position of the object is then obtained using Equation 5.3.

Po = Pc − R · Pc/Po (5.3)

In this equation, (Pc/Po) represents the local position of the 3D cursor relatively to the center
(Po) of the manipulated object, in the relative frame of this object. This position is the same than
the position of its associated crushing point, and it remains constant as long as the user does not
choose to manipulate the object thanks to another crushing point. As a result, this technique gives
the user the impression that he is pulling the object with a virtual cord.

5.5.4 Extension to 2 crushing points

With two crushing points, each user may control the motion of the manipulated object as if he was
holding one extremity of a virtual skewer. The final position of the interactive object is computed
using Equation 5.4, in which Pc1 and Pc2 are the absolute positions of the cursors of the 2 users,
and (Pc1/Po) and (Pc2/Po) are the local positions of these 3D cursor relatively to the center of
the manipulated object, in the relative frame of this object. The final position reached by the
object corresponds to the middle of the two positions obtained when using the two crushing points.

Po =
Pc1 + Pc2

2
− R ·

Pc1/Po + Pc2/Po

2
(5.4)

Here again, the expression ((Pc1/Po + Pc2/Po)/2) remains constant as long as one user does
not choose to manipulate the object thanks to another crushing point. Since the four points Pc1t,
Pc1t+1, Pc2t and Pc2t+1 do not always remain in the same plane, the final rotation applied to the
interactive object now uses the vector v defined by Equation 5.5. This vector is defined using the
absolute position of the two cursors. The new θ rotation angle and the new ω rotation axis are
then given respectively by Equation 5.6 and Equation 5.7.

−→v =
−−−−−→
Pc1Pc2 (5.5) θ = arccos(

−→vt ·
−−→vt+1

||−→vt || × ||−−→vt+1||
) (5.6) −→ω = −→vt ∧

−−→vt+1 (5.7)

The SkeweR 85

5.5.5 With only 2 crushing points: one DOF is missing. . .

It is not possible for the two users to rotate the virtual object around the axis of the skewer, since
the rotation axis remains always orthogonal to the skewer’s axis. To do so, the users have to stop
their current motions and change the positions of their crushing points, which means change the
axis of the skewer. We can imagine complementary techniques to make up for the lack of this sixth
degree of freedom, and apply rotations around the skewer axis. First, we could use the rotation
motions of the users around the skewer’s axis straightforwardly, as measured by orientation trackers
(similar to the “grab-and-twirl” tool referenced in [CFH97]). However, this solution can not be
implemented with 3 DOF trackers. Second, when pressing a button, users could be enabled to move
their 3D trackers along the skewer’s axis to define the sign and angle of a rotation as a function of
the translation motion of each user along the axis. For example when the 3D trackers would get
closer the object would rotate positively around this axis, and it would rotate negatively otherwise.

5.5.6 Extension to 3 crushing points, or more. . .

The proposed technique could be extended to the use of more crushing points. This could indeed
allow a better control of the motion of the interactive object. To control the orientation of an
object, the best solution is to use 3 crushing points (not aligned), as these 3 points can easily be
used to define exactly the orientation of the manipulated object. It will be detailed in section 5.6.
Indeed, these 3 crushing points define a plane embedded in the manipulated object and we can
easily compute one vector orthogonal to this plane. Each time one crushing point (i.e. one 3D
cursor) is moved, it is possible to compute a new orthogonal vector and to determine the exact
rotation that transforms the initial vector into this new one. Furthermore, the position of this
object could be computed as the average of the positions of the 3 crushing points. In the case of a
manipulation of three crushing points by one user, one or two crushing points could be used to fix
temporarily some position constraints, and the remaining crushing points would be used to move
the object and change its orientation. With four crushing points or more, the orientation of the
interactive object might become over-constrained. Thus, with more than three crushing points,
one must find arbitrary simplifications to apply changes in orientation to the object. Future work
must be done to manage the computation of the orientation in this over-constrained case.

5.5.7 Preliminary experimental setup

This technique has been implemented thanks to our OpenMASK platform within our Reality
Center, with magnetic trackers. We have made some preliminary tests, asking two users to move a
parallelepiped object inside a 3D maze. Our first observations indicate that the SkeweR technique
seems very intuitive and natural to use. Further experiments would be necessary to measure if this
technique is easy and efficient enough for collaborative manipulations of 3D virtual objects.

5.5.8 Conclusion and perspectives

The SkeweR technique is a 3D interaction technique for 2-user collaborative manipulation of virtual
objects. This technique enables two users to move simultaneously the same virtual object in a
3D environment. The technique uses and combines the translation motions of the two users, as
measured by 3 DOF position trackers. Each user manipulates the object by one “crushing point”,
like handling the extremity of a skewer. This technique can also be used with only one crushing
point, and could also be used with 3 or more crushing points.

86 Metaphors for Collaborative Interactions

5.6 The 3-hand manipulation technique

5.6.1 Concept

We propose a new 3D interaction technique for 6 DOF multi-user collaborative manipulation of 3D
objects. Our technique enables the determination of virtual object position and orientation through
only positions of three non-aligned manipulation points on this object. These manipulation points
can be used naturally, in a realistic way, by three different “hands” of two or three users.

5.6.2 Manipulation and visual feedback

Hands are represented by pointers. When a hand is close enough to the object to manipulate,
ray-casting from the hand gives an intersection point with the object. This point is called a
manipulation point. If a user starts a manipulation, a virtual ball is added to display the location
of the manipulation point. In addition, a rubber band is added between the virtual ball and the
hand to avoid any ambiguity concerning its owner and to display the distance between the hand
and the manipulation point (see Figure 5.7). A screenshot of the virtual environment with three
hands manipulating a hood is given in Figure 5.6.

Figure 5.6: Screenshot of a 3-Hand Manipulation of a virtual hood.

The rubber band drawn between a hand and its manipulation point is elastic and its color varies
according to the distance between the hand and the manipulation point. The rubber band uses a
green-yellow-red code: the farther a hand is from its associated manipulation point, the more the
rubber band becomes redder. With such a feedback, users’ hands are expected to remain close to
their manipulation point to avoid instabilities during the manipulation.

5.6.3 Computation of manipulated object’s motion

The manipulated object motion can be computed in different ways using input motions of the three
users’ hands. One solution consists in making the manipulation points stay as close as possible
to the hands. At the beginning of the manipulation, hands positions H1, H2, H3 correspond to
positions of their contact points P1, P2, P3 with the manipulated object. These contact points are
the manipulation points and are illustrated in Figure 5.8.

When users move their hands to H ′

1, H ′

2, H ′

3, the ~T translation to apply to the initial position
Pc of the manipulated object is computed as follows:

H0 =
H1 + H2 + H3

3
; H ′

0 =
H ′

1 + H ′

2 + H ′

3

3
; ~T =

−−−→
H0H

′

0

The 3-hand manipulation technique 87

Figure 5.7: A rubber band between a pointer and a manipulation point.

Figure 5.8: Computation of virtual object’s motion (~T) given the three hand’s motions.

To compute the rotation difference with the initial plane orientation, the first step consists in
computing the rotation (~R1, α1) that transforms ~i into ~i′ (see Figure 5.9):

~i =
−−−→
H0H2 ; ~j =

−−−→
H0H3 ; ~i′ =

−−−→
H ′

0H
′

2 ; ~j′ =
−−−→
H ′

0H
′

3 ; ~R1 =~i × ~i′ ; α1 = arccos (
~i · ~i′

‖~i‖ ∗ ‖~i′‖
)

Figure 5.9: Rotation (~R1, α1) and rotation (~i′, α2).

This rotation transforms ~j into an intermediate vector ~j′′: ~j′′ = (~R1, α1) ∗~j

The second step consists in computing the rotation (~i′, α2) that transforms ~j′′ into ~j′. After
constructing a new 3D orthogonal basis (~u, ~v, ~i′), this angle is calculated as follows:

88 Metaphors for Collaborative Interactions

~k′′ = (~j′′ · ~u) ∗ ~u + (~j′′ · ~v) ∗ ~v ; ~k′ = (~j′ · ~u) ∗ ~u + (~j′ · ~v) ∗ ~v ; α2 = arccos (
~k′′ · ~k′

‖ ~k′′‖ ∗ ‖~k′‖
)

The difference between the current and the initial orientation of the object is then obtained by
combining these two rotations: (~i′, α2) ∗ (~R1, α1).

If the first triangle, defined by the positions of the three hands, and the second triangle, defined
by the three initial positions of the manipulation points, do not keep the same shape then the roll
angle (rotation around the axis orthogonal to these triangles) is the best possible approximation,
otherwise this roll angle value is exact.

Another solution for implementation is to use three “point-to-point” constraints of a physics
engine like Bullet [Bul] or PhysX [Phy]. A constraint is dynamically added between a hand and
a manipulation point. Here, if the triangles do not keep the same shape, there can be some small
inconsistencies for the roll angle.

In both cases, the use of a colored rubber band can help users to keep their hands close to the
manipulation points.

5.6.4 Implementation

The 3-Hand Manipulation technique was implemented in a virtual reality center involving ARTrack-
ing markers [ART]. The five ART infrared cameras placed around a large screen were tracking hand
positions in 3D space. Users were located in front of this large screen.

Two or three people could manipulate simultaneously a virtual hood to place it on a support.
This hood had holes that users had to align with the support. This task is inspired by an assembly
task faced in automative industry.

Figure 5.10: Three users manipulating a virtual hood with the 3-hand manipulation technique.

Physics and collisions in the virtual environments were implemented using the Bullet physics
engine. Hands were manipulating objects through Bullet constraints.

During the manipulation, we observed that people needed to communicate a lot: to start or
end the action, and to decide where to move the hood. All users found the 3-Hand Manipulation
technique natural. During a 2-user manipulation, one user had notably the impression that “he
was moving his hands in the air as he would have done with a real object”.

A Reconfigurable Tangible Device for 3D object manipulation 89

5.6.5 General conclusion and perspectives

We have presented a new 3D interaction technique for multi-user collaborative manipulation of
virtual objects called “3-Hand Manipulation” [ADL09]. This technique relies on the use of three
manipulation points that can be used simultaneously by three different “hands” of two or three
users. The three translation motions of the manipulation points fully determine the resulting 6 DOF
motion of the manipulated object.

The considered task consisted in assembling a virtual hood on a support. Different config-
urations were tested with two or three users. First user feedback suggested that the technique
was suitable for collaborative manipulation, which was validated through the distant collaborative
manipulation of a clipping plane between 2 users for analysis of scientific data [FDGS12].

5.7 A Reconfigurable Tangible Device for 3D object manipulation

Although most collaborative systems support simultaneous manipulation of different objects by
different users, generally only one user at a time can manipulate a virtual object. Interaction
metaphors that are usually used for single-user 3D interaction, such as virtual hands, virtual rays
or virtual 3D cursors, must be adapted for collaborative 3D virtual manipulation. This is why we
have proposed a new physical device named Reconfigurable Tangible Device (RTD) [ADL10b] to
enable collaboration on a shared virtual object through a tangible device and precise positioning of
users’ real hands. The RTD maintains the distance between users hands. Besides users can modify
the shape of the RTD to better fit the virtual object they intend to manipulate.

5.7.1 Concept

Our main objective is to match numerous shapes of 3D objects, in various contexts of manipulation
in virtual reality. We consider that such a Tangible User Interface (TUI) should be reconfigurable
simply and quickly, to match many kinds of virtual objects, and to avoid interrupting the users’
activity when being reconfigured. To enable single but also multiple-user manipulation, we believe
that such a TUI should provide rigidity and act as haptic passive link between multiple hands.

For this purpose, we have designed a novel concept of TUI called the Reconfigurable Tangible
Device (RTD) that is both rigid and reconfigurable. It proposes a generic and universal physical
user interface made up of points rigidly linked together. The manipulation points are handles that
form a simple shape that can be modified. The shape corresponding to the points roughly sketches
the shape (or mesh) of the virtual object that is manipulated by the user(s). The RTD provides
rigid, but easy-to-stretch, physical links between each manipulation point (or physical handles).
The RTD has been designed to support two (or more) users in interacting together with the same
virtual object. In this case, rigid links between users’ hands act as a passive haptic feedback, which
could improve the collaborative manipulation [SJF09].

5.7.2 RTD-3: Reconfigurable Tangible Device with 3 points of manipulation

The first instance of RTD that we have developed is a triangular version called RTD-3 (see Fig-
ure 5.11). This reconfigurable triangle is made up of three arms connected together by a pivot.
As a result, it supports three points of manipulation (handles). It can be considered as a phys-
ical and reconfigurable version of the 3-Hand Manipulation technique introduced by Aguerreche
et al. [ADL09]. This configuration fully determines the position and orientation of any attached
virtual object through the positions of three non-aligned manipulation points placed on it. More
generally, the RTD-3 could enable to grab any part of an object to manipulate even if it is in an
inner or outer part of the virtual object. As a result, two or three users can move, resize or reshape
a virtual object thanks to this device.

90 Metaphors for Collaborative Interactions

Figure 5.11: Reconfigurable Tangible Device with 3 points of manipulation (RTD-3): A reconfig-
urable triangle.

The RTD-3 is made up of three branches connected together by a pivot. Each arm of the RTD-3
can be compressed or stretched (see Figure 5.12) by pulling a button to unlock/lock an arm. When
users want to attach the device to an object, they start to set the relevant branch lengths. Then
they move the three virtual points associated with the device in order to touch the virtual object
to manipulate. After selecting the object, users can begin to manipulate it.

Varying the lengths of the arms and using many angles let users obtain small or large triangles
with lengths from 38 cm up to 95 cm, and angles varying from 20 degrees up to 130 degrees. As
a result, the RTD-3 can be used to match various basic shapes of virtual object (see Figure 5.12).
Users are able to grasp flat objects but also long, round or cubic objects. Virtual objects can be
grasped horizontally or vertically.

5.7.3 RTD-4: Reconfigurable Tangible Device with 4 points of manipulation

The second instance of RTD that we have developed uses four points of manipulation (see Fig-
ures 5.13 and 5.14). This instance is called RTD-4, it enables users to compose various and complex
shapes of 3D objects in 2D or 3D, i.e., quadrilateral or tetrahedral (see Figure 5.13). It is made
of four stretchable and rigid arms (same type as the RTD-3) connected together by articulated
joints that enable the overall structure to become non-planar. This feature is extremely useful with
articulated objects, such as a door to open for instance. An example of how to use the RTD-4 is
given in Figure 5.14 in which the RTD-4 approximately matches the shape of a virtual chair.

5.7.4 Implementation details

The two versions of the RTD introduced in this paper have been tested within a virtual reality
center involving an ART [ART] optical tracking system. Virtual environment was displayed on a
large stereoscopic screen. An optical marker was placed on each handle (manipulation point) of the
RTD. Infrared cameras were placed around users to track positions and orientations of the optical
markers. Each marker was associated with a virtual pointer in the virtual environment.

We built both RTDs with low-cost camera tripods that we have disassembled. For RTD-3,
the three telescopic arms of a tripod are linked together by hinges. For RTD-4, four tripods have
been used: 4 arms and 4 tripod camera supports (or tripod ‘heads’). Each tripod camera support
provides 2 hinges which leads to RTD with many articulations that can be turned into 3D. The
resulting RTDs are both rigid and light: 200 g for RTD-3 and 400 g for RTD-4.

A Reconfigurable Tangible Device for 3D object manipulation 91

Figure 5.12: Different configurations of the Reconfigurable Tangible Device (RTD-3) (on the left)
to match the manipulation of the corresponding objects (on the right).

In collaborative two-user situations with the RTD-3, users can move the triangle seamlessly
together by applying movements to the device. The two users can naturally and easily use their
two hands to hold the RTD-4 by all its corners.

When users want to attach the RTD to a virtual object they first set the relevant RTD shape,
i.e. adjust the various lengths of the arms. They can then move the virtual pointers associated with
the manipulation point of the device in order to touch the desired virtual object. After selecting
the object (button click), users can begin to manipulate it.

5.7.5 Manipulation examples

In virtual reality, we can give different examples of manipulation in which our concept of Recon-
figurable Tangible Device could be tested:

� Classical manipulation of 3D objects. The RTD is used to change the global position
and orientation of the virtual object (classical case described above). Users can hook the
RTD on any part of the object, provided that the RTD can be deformed to match the shape
of this object. Movements of the RTD are directly transferred to the virtual object.

92 Metaphors for Collaborative Interactions

Figure 5.13: Reconfigurable Tangible Device with 4 points of manipulation (RTD-4): Different
configurations and different shapes.

� Manipulation of articulated objects. The RTD is used to act on one part of the virtual
object that is linked with the other parts through an articulated joint. Movements of the
RTD are transferred to the manipulated part of the object, and movements of other parts of
the object are generated through the articulated joint.

� Deformation of objects. The RTD is used to modify and deform the shape of a virtual
object (e.g., vertices of the 3D mesh). In this case, changing the shape of the RTD could
modify the shape of the manipulated object using control points or direct manipulation of
vertices of the mesh.

5.7.6 Evaluation

The objective of our evaluation was to compare the RTD-3 with two classical techniques for col-
laborative virtual manipulation: the Mean and Separation of DoF techniques. The proposed task
is a “pick-and-place” task involving two users in the manipulation of a virtual car hood described
in [ADL10a] and illustrated in Figure 5.15. We collected task completion time, number of collisions,
distance covered by the virtual hood and by the users’ hands, and a questionnaire on users’ sub-
jective preferences. Preliminary results of this evaluation about subjective preferences have been
briefly presented in [ADL10b], and the full details have been presented in [ADL11].

5.7.7 Conclusion

We have introduced the novel concept of a Reconfigurable Tangible Device for 3D object ma-
nipulation in virtual environments. It is a physical interface that can be altered by the user to
appropriately match the shape of a virtual object. It is made up of handles (or manipulation points)
rigidly linked together by arms. This device can be reconfigured at any time as its arms can be
compressed or stretched by users at will. The RTD can be used by multiple users, who can grasp
different parts of the interface. We have developed two versions of the RTD with three (RTD-3)

Conclusion and future work 93

Figure 5.14: Example of configuration of the RTD-4 for manipulating a virtual chair.

or four (RTD-4) manipulation points. Both have been implemented and tested within a virtual
reality center for collaborative manipulation of 3D objects.

We conducted an experiment to compare the RTD-3 with classical collaborative interaction
techniques: the Mean of interactions and the DoF Separation. Objective results show that the RTD-
3 ends with slower task completion time than the Mean technique probably due to the complex
movements of the two-handed user, and that the RTD-3 is as precise as the Mean technique.
Subjective results show that our technique provides a better sense of immersion and better realism.
According to users, the RTD-3 provides a better knowledge transfer to the real world.

The evaluation suggests that the RTD-3 could be used in many collaborative applications such
as for training people in virtual environments to do collaborative assembly or maintenance tasks.

Future Work concerns first more evaluations of our techniques, notably to compare the two
versions of our reconfigurable tangible device (RTD-3 vs. RTD-4). We would also like to study the
use of the RTD in different scenarios and use-cases such as object deformation by means of control
points associated with the manipulation points of the RTD.

We could also construct other instances of RTD with more points, for example to allow more
than two users to interact with the same virtual object. We also plan to use the RTD for dynamically
resizing or reshaping virtual objects.

5.8 Conclusion and future work

In this chapter we have presented our contribution to the construction of new metaphors for in-
teraction within Collaborative Virtual Environments (CVE). They are the evolution of usual 3D
interaction metaphors that have been adapted to fit with collaborative interactions, and to make
users aware of this collaboration. All these metaphors have been constructed using the protocol of
dialog between interaction tools and interactive objects that has been presented in chapter 4.

We plan to go on proposing new 3D collaborative interaction metaphors in order to improve
collaborative experience in CVE, which is still a very relevant topic as it was the core subject of
the 3DUI 2012 contest. We participated to this contest by proposing some solutions based on the
Collaviz framework in order to enhance collaboration between two users [NFD12] and we are now
evaluating these solutions and proposing new ones dedicated to fully immersive collaboration.

94 Metaphors for Collaborative Interactions

Figure 5.15: Experimental task. Column on the left: two users are achieving the task with the
RTD-3. Column on the right: movements of the virtual car hood. Steps are as follows: 1) initial
position, 2) passing the “elbow” of the “Z-shape”, 3) passing between the “T-shape” and a stem,
4) reaching the final position.

Chapter 6

Modeling Users’ Physical Workspaces

Figure 6.1: Three users with their own IIVC navigating and interacting within a Multi-Scale
Collaborative Virtual Environment: each user can perceive other users’ physical workspaces

6.1 Introduction

Nowadays Virtual Reality (VR) applications are used in many different fields such as industrial
design, scientific data visualization and training, etc. Each kind of application requires specific
interaction techniques and can be used on various physical environments from full immersive devices
to “non-immersive” devices. To improve user presence, VR developers must consider the users’
physical environment when designing these applications. This makes it possible to match the real
world with the virtual world (co-location), to increase the users’ sensation of presence, and to
inform users about their interaction capabilities (these capabilities are often limited by the size of
the users’ physical workspaces).

As an example, Figure 6.1 presents the viewpoints of three users collaborating in a multi-scale
Collaborative Virtual Environments (msCVE): each user carries his interaction tools (instances of
2D Pointers/3D Rays [DF09] dedicated to collaborative interaction) within his Immersive Interac-
tive Virtual Cabin (IIVC). This area, where the user can move and interact with co-located virtual
objects, is represented as a colored virtual flying carpet. The IIVC also embeds a representation
of its user’s field of view. So each user can perceive the interactions limitations of the other users:
he can see what they can reach with their virtual hand inside their IIVC, or what they can reach
with a virtual ray inside their field of view.

Despite the fact that several existing VR applications take into account the features of the
users’ physical environment, such as for natural walking applications [CMRCL09] (see Figure 6.3),
no consensus has been reached for these VR systems on how to embed this real environment into the
virtual one. Each system models the real world in a particular way according to its requirements.
We want to fill in the lack of standard metaphors for 3DUI to simplify Virtual Environment Design
and Implementation [WL10]. We are interested in modeling the system, not only through device
abstraction, but also by modeling the physical users’ workspaces and their relationships.

95

96 Modeling Users’ Physical Workspaces

We propose the Immersive Interactive Virtual Cabin as a generic model that enables VR devel-
opers to embed the users’ physical environment into the Virtual Environment (VE) when designing
or deploying new applications. This high-level model depicts the relationships between the real and
the virtual world whatever the physical devices used or the room physical configuration. Our model
deals with multi-scale collaborative virtual environments (msCVE as described in [ZF05]). This
kind of virtual environment is more and more used to enable remote experts to work together on
multi-scale structures such as scientific data or chemical molecules. Our model solves issues induced
by collaborative sessions with remote users who interact from different physical environments: it
enables users to perform a more effective collaboration by providing them a better understanding
of the others’ interaction capabilities, as it integrates users’ physical workspaces and interaction
tools in the virtual environment (see Figure 6.2).

Figure 6.2: One user within his IIVC viewed by another user: we can see him, his conveyor, his
stage, his view frustum and his virtual ray.

As user presence is a multi-sensory perception of the virtual world, we propose to model the
users’ physical environment as a structured hierarchy of sensory workspaces, such as motion, visual,
sound, interaction or haptic workspaces. For example, a motion workspace is the area where a user
can move his body. A visual workspace corresponds to a display device. A sound workspace
represents the area in which a user perceives sound. An interaction workspace is the area where
a user can interact. A haptic workspace is the area where a user can interact and have feedback
when he uses a haptic device. The structured hierarchy of workspaces depicts the real-world spatial
relationships between these workspaces. Our model also defines a set of operators to control each
workspace, which enables VR developers to provide interactive features to end-users.

In this chapter, section 6.2 presents related work about the necessity of embedding the users’
physical workspaces and about VR system design. Section 6.3 presents an overview of the IIVC
concept, then section 6.4 describes the IIVC model, its structure and its operators. Section 6.5
describes the features it offers to end-users for interaction and collaboration, and how they can
be implemented by VR developers. Section 6.6 illustrates how this model has been instantiated
to design and implement Collaborative Virtual Environments (CVE), and how it could be used to
design other existing VR techniques. Finally, section 6.7 concludes and gives some directions for
future research on this topic.

6.2 Related work

Previous work about user interaction aims to provide users with a truly immersive experience.
To achieve this, an increasing amount of this work must embed the users’ physical workspaces
into the VE to consider the users’ interaction capabilities (see part 6.2.1). Although they often

Related work 97

propose interesting hierarchical data-structures, device abstractions and customization at run-time
to adapt to physical devices, none of the existing software models take into account these physical
workspaces in the VE when designing a new VR application (see section 6.2.2).

6.2.1 Embedding the physical workspaces into the VE

Embedding the user’s motion workspace into the virtual environment offers the user an intuitive
way to navigate by moving his own body. It also makes it possible to manage problems induced by
the fact that the virtual world is often larger than this workspace. For example, the 3DM graphical
modeler [BDHO92] enables a user to move on a “magic carpet” which represents the boundaries of
the tracking area. The user uses Head Mounted Display (HMD), so he can perform real movements
on the “magic carpet” to intuitively perform interactions. For long-distance navigation, he can also
drive the “magic carpet” into the virtual world with a specific tool. The user reaches interaction
tools through a 3D menu, which can be put on the “magic carpet” in order to travel with it. For
natural walking in virtual worlds with a restricted workspace, the “Magic Barrier Tape” [CMRCL09]
displays the boundaries of the physical workspace as a virtual barrier tape (see Figure 6.3). It
informs the user about the boundaries of his walking workspace defined by the tracking area or the
display devices. It also enables the user to intuitively navigate in the virtual world, without a break
in presence, by “pushing” on the virtual barrier tape. Moreover, even if they do not display the
user’s motion workspace in the virtual environment, previous work about natural walking also has
to consider these workspaces to prevent the user from colliding with the real environment or leaving
the tracking area. Thus, they can determine when the user reaches the limits of the workspace
to achieve redirected walking techniques [Raz05] or resetting techniques [WNR+07] such as the
Freeze-backup or the 2:1 Turn.

Figure 6.3: The “Magic Barrier Tape” displays the limits of the user’s mobility workspace. (Image
from G. Cirio, IRISA.)

Additionally to the user’s motion workspace, other workspaces (sound, visual, interaction and
haptic, etc.) have to be considered in the virtual environment. For example, the “bubble” tech-
nique [DLB+05] proposes to display the limited workspace of a haptic device by a semi-transparent
sphere that surrounds the manipulated cursor (see Figure 6.4). When the cursor is inside the “bub-
ble”, its motion is position-controlled. However, when the cursor is outside, the user can move the
“bubble” into the virtual world using a velocity control. For prop-based haptic interaction [OC05],
a real object (prop) is linked with a representation and an action in the virtual environment. So
the haptic device workspace has to be embedded in the virtual environment to co-locate the prop
with this virtual representation and to determine the user’s interaction area. Moreover, the Hand
Held Display (HHD) [Ams95] is a LCD display whose position and orientation are captured by a
tracker. This display can be seen as a window on the virtual world. The system needs to know the

98 Modeling Users’ Physical Workspaces

location of this visual workspace according to the user’s location to compute the user’s frustum.
With the prop or the HHD, the co-location between the real world and the virtual world has to be
maintained even if the user navigates or changes his scale in the virtual environment.

Figure 6.4: The “bubble” displays the limits of the haptic workspace. (Image from L. Dominjon,
University of Angers.)

Within collaborative virtual environments, users must be able to communicate in order to
perform closely coupled collaborative tasks. However, comprehension problems can occur for users
with different viewpoints on the virtual world [FBHH99]. Even if they can see each other user’s
avatar, its position, and its orientation in the virtual world as in CALVIN [LJVD96], users have
difficulty in perceiving what the others see, and more generally what they are doing and what they
can do. To overcome these perception problems, Fraser et al. [FBHH99] explicitly outline each
user’s view frustum using a wireframe model. This model has to be adapted according to the users’
display device. Moreover, when a user interacts with an object, they represent the link between
this user and the manipulated object by extending the avatar’s arm to the object. By extension,
the spatial model of interaction proposed by [BBFG94] and implemented in Massive [GB95] can
be seen as an interesting approach to describe users’ multi-sensory perception. This spatial model
defines sensory focus and nimbus for each user. The focus corresponds to the area in which a user
has a sensory perception of the other users or of the virtual objects. The nimbus corresponds to
the area in which the others have a sensory perception of this user. The focus and nimbus can
have different sizes and shapes according to their corresponding media (sound, visual, haptic, etc.).
These awareness areas are not necessarily symmetrical. Even if focus and nimbus do not represent
users’ real environment, they are directly linked to the features of this environment. Moreover,
users carry their focus and nimbus when they move in the virtual world.

6.2.2 Software models for VR system design

Lots of VR software models have been proposed to support the development of virtual reality
applications. Even if the first ones are very specific to particular technical features (scene-graph,
operating system, input and output devices, etc.), some models such as VRJuggler [BJH+01] aim
to be independent from the operating system and VR hardware configurations. VR2S [SRH05a]
can also support multi-sensory output and various input paradigms. This makes it possible to
run VR applications in desktop environments by simulating VR devices with standard desktop
input paradigms. Additionally to this device abstraction, rendering in VR2S can be performed
with several low-level APIs such as OpenGL or ray-tracing systems. As stated by Ohlenburg
et al. [OBL07], these device abstraction layers provide a solution to deal with a large variety of
interaction devices, but are usually limited to a specific set or type of input devices. So they
introduce DEVAL as a generic device abstraction layer that defines device classes and structures
them hierarchically. Thus, it can be easily extended by new device types. However, all these

Related work 99

abstractions consider devices only as input or output data, and not as real objects with their
associated physical workspace to embed into the virtual world.

Robinett et al. [RH92] propose a hierarchy of coordinate systems to model a Head Mounted
Display (HMD) system. This hierarchy of coordinate systems enables the system to modify the user
position, orientation and scale in the virtual environment and to maintain the relationship between
the real world and the virtual world using transform compositions. Dive [CH93, Hag96, FS98]
defines also its own data-structure, which describes a scene in the manner of a scene-graph. Dive
and Diverse [KAKS02] aims at creating extensible, reconfigurable and device independent virtual
environments, through device abstraction and modular design. In this context, a program can
run on different hardware configurations using appropriated configuration files. Dive stresses that
VR applications should be adaptable to hardware and low-level software changes. In particular
Dive proposes high-level concepts such as Vehicle, User and Body Abstraction [Ste08] in order
to manage different hardware configurations. Simple Virtual Environment (SVE) [KBH00] also
allows to design VR applications independently from the system configuration at run-time. Its
design allows a variety of device configurations to be specified at run-time by providing a separation
between the devices used and the environment model, and by defining how the device input affects
the model. It also makes it possible to configure the software in order to use the best possible
devices at run-time. SVE makes a separation between the VE model and the physical devices used,
so it is easily configured according to the I/O devices used. The VE model includes a description of
the 3D scene and a model of the user. This user model can be driven by input devices, and it can
drive output devices. However, none of these VR software consider the physical devices as explicit
3D volumes that virtual representation could be embedded within the virtual world.

For collaboration, Zhang et al. [ZF05] propose a similar approach using the Java 3D scene-
graph [SD99]. The Java 3D ViewPlatform concept uses a particular coordinate system to model
the users’ display device, with the idea of “Write once, view everywhere”. Even if this ViewPlatform
makes it possible to adapt a VR application to several display devices, it cannot represent the users’
visual workspace in the virtual environment. Moreover, it is not able to deal with other sensory
workspaces.

Mulder et al. [MB04] describe a first notion of sensory workspaces. For a particular immersive
device (a mirror-based display), they model the user’s visual space and the user’s interaction space.
The visual space is defined according to user’s head position in relation to the display device
position. The interaction space, where a user can perform direct 3D interaction, is limited to the
area that the user can reach. They define the user’s “direct workspace” as the combination of these
two spaces. Several of these personal immersive devices can be placed side by side to enable several
users to collaborate in a “physically shared workspace”. However, each user seems to be unable to
freely navigate (i.e. to move his “direct workspace”) in the virtual environment because the spatial
relationship with the others has to be maintained. Moreover, this solution does not enable users
to have remote collaboration and to visualize the others’ “direct workspace” in the virtual world.

6.2.3 Synthesis

Many kinds of VR applications require the users’ physical environment to be embedded into the
virtual environment. This embedding aims to simply model or to represent this real environment
into the virtual world. Modeling users’ physical environment improves user presence by match-
ing the virtual world with the real world and by providing an environment safe from collisions or
tracking problems. Representing the boundaries of users’ physical workspaces enables users to be
aware of their interaction capabilities (or the interaction capabilities of the other users in the col-
laborative case). However, each VR application achieves a particular embedding of users’ physical
environment to meet its requirements instead of proposing a generic software model.

Some VR software models propose a device abstraction layer to enable developers to design

100 Modeling Users’ Physical Workspaces

applications by simplifying the integration of various input or output devices. Moreover, they pro-
pose also to specify the devices configuration at runtime in order to adapt the software to hardware
devices with no additional programming. However, they do not deal with the representation of
these devices in the virtual environment, and they can neither describe the spatial relationships
between these physical devices, nor model the users’ physical workspace associated to each device.

Other solutions describe the organization of users’ physical environment by a hierarchy of co-
ordinate systems and introduce the notion of workspace, but they do not consider the physical
workspaces of a user as explicit 3D volumes. Moreover, these approaches depend on the system
properties such as the scene-graph, the system architecture, etc. Nevertheless, these can be seen
as a first basic hierarchy of workspaces, even if they do not propose software models for embedding
multi-sensory workspaces associated to various physical devices.

Last, the notion of workspaces introduced by Mulder et al. [MB04] must be generalized to all
the sensory workspaces and to various devices. It must also maintain the spatial relationships
between workspaces even if users navigate or change their scale in the virtual environment in order
to combine several interaction techniques.

6.3 Overview of the IIVC

We need a generic solution that considers the users’ physical environment during the VR software
design, its deployment and its use. This solution must make the link between these three steps: it
must propose a high-level model to describe, configure and modify the users’ physical workspace
organization whatever the immersive devices used.

6.3.1 The hierarchy of workspaces

We propose to model the users’ physical environment as a structured hierarchy of virtual workspaces.
We define the motion workspace as the area where a user can move his body. The visual workspace
is not limited to a display device but to what the user can see through and around such a device.
A sound workspace represents the area in which a user perceives sound. An interaction workspace
is the area where a user can interact. A haptic workspace is the area where a user can interact and
have feedback when he uses a haptic device. We call stage the reference workspace of our hierarchy
(see section 6.4.1 for more details about this structure). Each virtual workspace must be described
and located in relation to this stage or to another workspace included in the stage. Thus, we obtain
a structured hierarchy of workspaces that depicts the real-world spatial relationships between these
workspaces. Each workspace can contain real or virtual objects according to its sensory features,
such as a tangible interface co-located with a virtual tool [OC05].

6.3.2 The IIVC concept

We propose the Immersive Interactive Virtual Cabin (IIVC) concept as a generic model to describe
and manage the relationships between users, their physical environment, the virtual environment
and the VR software developers. The IIVC is a link between the real world and the virtual world,
but it can also be seen as a link between the end-users and the VR software developers (see
Figure 6.5).

Coexistence End-users are located in the physical environment, so they can act on the real objects
and on the input devices.

Design Developers create the virtual environment and choose which interaction and navigation
techniques will be used.

The IIVC model 101

Figure 6.5: The IIVC concept.

Interaction End-users perform navigation and interaction tasks in the virtual environment. Some-
times, they have to perform these tasks in collaboration with other users. A good presence
experience in the virtual environment enables them to interact more effectively.

Co-location 3D spaces of the virtual environment match 3D spaces of the physical environment
to link real objects with their representation and action in the virtual world.

Abstraction Developers can design VR software with an abstraction of users’ physical environ-
ment, which makes VR software more generic.

Adaption of applications Developers can efficiently configure and adapt applications to end-
users’ real environments.

6.4 The IIVC model

This section describes the structure and the main operators of the IIVC model.

6.4.1 The IIVC structure

The IIVC can be defined as an abstraction of the users’ physical environment in the virtual world.
It enables developers to implement their VR software without considering the physical devices
used. For example, developers only have to manage position, orientation and scale of each user’s
IIVC when they develop navigation techniques. In a second step, each IIVC is configured with the
features of each user’s physical devices (size, shape, hierarchy of workspaces). The IIVC is based
on three main components: the workspace, the stage, and the conveyor.

The stage is a virtual description of the users’ real environment. It usually matches the room
where users interact, but it is also the virtual space containing the virtual representations of users’
workspaces. These workspaces are defined by the features of the physical devices used. For example,
motion workspace limits are often defined by the boundaries of the area in which users can move:
position of the display devices (such as in CAVE� [CNSD93] or a Reality Center) or limits of
the tracking area. These workspaces are organized in a hierarchy of included 3D spaces into the
stage. Each workspace has its own 3D shape and its own coordinate system to locate smaller
workspaces or objects (real or virtual) that it contains. The stage uses its own coordinate system
to locate directly or indirectly all the users’ workspaces and all the objects of the IIVC. With this
organization, the IIVC model is able to deal with physical reconfiguration such as modifications of
workspace position and shape, additions of new screens or other devices, etc.

The conveyor is the integration frame of the stage into the virtual world. This conveyor is
located in the virtual world coordinate system, so it has its own position, orientation and scale in

102 Modeling Users’ Physical Workspaces

Figure 6.6: The IIVC structure: the conveyor carries the stage with its workspaces in the virtual
world.

this world. The stage is linked to the conveyor with position, orientation, and scale offsets (see
Figure 6.6). The conveyor also defines the navigation technique, the travel direction, the rotation
center, and the scale of the IIVC. So the stage, its workspaces and consequently the objects inside
the workspaces are carried by the conveyor when it moves or changes its scale in the virtual world.

The conveyor is totally virtual, while the stage makes the link between the real world and the
virtual world. With this splitting into two parts, we have to decide where to put the limit between
the stage and the conveyor. In other words, we have to choose which part of the real world must be
embedded in the virtual environment. Indeed, we cannot represent all the real world in the virtual
environment for all users. So we propose to define the limit of the stage as the last physical level
which cannot move during the simulation. For example, in a CAVE�, the limit of the stage will be
the cube defined by the screen’s position. However, if the user interacts on a mobile platform such
as a flight simulator, the limits of the stage will be the space surrounding the platform.

Like in Dive [FS98], we propose to manage our own data-structure in the manner of a scene-
graph, without direct dependence to the 3D scene-graph that we use for our 3D graphic visualiza-
tion. This data-structure rely upon the SupportedObject component: it is a VirtualObject that
can be attached to a support, it can be compared to the famous Transform VRML Node. This
generic component is provided with mechanisms ensuring the proper propagation of data updates
between components at run-time, in order to make it able to compute its state relative to its sup-
port state. We use the Observer design pattern (GoF293)[Gam95] to propagate the changes from
a support towards its supported objects.

The IIVC software architecture is based on a central component: the Workspace (see Figure 6.7).
This component is an extension of the SupportedObject with new features described section 6.4.2.
The Workspace is able to manage virtual objects such as virtual lights, virtual rays, virtual viewing
frustums and to include other workspaces. The Stage is a particular Workspace that is linked to
a Conveyor. The support of a Stage should always be a Conveyor, this is why we choose to make
a special link between these two classes. The Stage is the root of hierarchy of the users’ physical
workspaces. Lastly, the Conveyor describes the navigation technique used.

All the virtual objects that will be embedded in the IIVC inherit also from the SupportedObject,
such as the User, the VirtualHand, the VirtualRay or the VirtualLight. Each of these classes
comes with its own behavior and features that we will not detail here.

The IIVC model 103

VirtualObject

+position

+orientation

+scale

+3DRepresentation

Workspace

+includedWorkspaces

+includedSupportedObjects

Stage

+associatedConveyor

Conveyor

+navigationTechnique

1

0..*

0..*

SupportedObject

+positionOffset

+orientationOffset

+scaleOffset

+support

0..1

User

VirtualHand

VirtualLight

VirtualRay

Vision

Workspace

Mobility

Workspace

Interaction

Workspace

...

...

Figure 6.7: Partial UML model of the IIVC.

In the same way, specialized workspaces such as the VisionWorkspace, the MobilityWorkspace
or the InteractionWorkspace inherit from the Workspace and come with their own behavior and
features. For example such workspaces will require at least to know the relative location of their
associated User in order to adapt the view to his position or to make him aware of some interaction
possibilities or constraints (see Figures 6.8 and 6.9).

Last, the IIVC software architecture makes it possible to describe the users’ physical environ-
ment independently from the usual 3D scene-graph or the 3D graphics API used to visualize it. It
allows to switch from one 3D graphics API to another one without changing the core of our VR
software, but only the component in charge of the coupling with the 3D visualization. This archi-
tecture can be described in a configuration file and its components can be associated to external
3D graphical representations. These graphical representations can be described using languages
such as X3D or Collada without modifying the IIVC software components.

6.4.2 The IIVC operators

The operators are the basic and generic operations that are used to manage the IIVC structure.
We provide a library that enables VR developers to implement several features as described in the
section 6.5. First, the basic operators are:

Bo1: modify the position (6 DoF) or scale of a VirtualObject,

Bo2: modify the features of a VirtualObject (range of a virtual light or a virtual ray, etc.),

Bo3: provide a new support to a SupportedObject,

Bo4: modify the offset values of a SupportedObject,

104 Modeling Users’ Physical Workspaces

Bo5: add or remove a VirtualObject into a workspace,

Bo6: provide a new Conveyor to a Stage,

Bo7: compute the local or global position of a SupportedObject in relation to another frame.

Second, we provide higher level operators, called “advanced operators” obtained through combina-
tion of basic operators, such as:

Ao1: superpose several Stages or several Conveyors,

Ao2: provide the same Conveyor as a support to several Stages,

Ao3: link a Conveyor to a VirtualObject,

Ao4: detect the proximity of VirtualObjects,

Ao5: compute the intersection of Workspaces,

Ao6: modify the shape of a Workspace (for example the virtual frustum associated to a VisualWorkspaces),

Ao7: restrain DoF for position modification.

This set of seven advanced operators does not pretend to cover all possible operations in a VR, it
will have to be extended in the future.

6.5 The IIVC main features

The IIVC concept provides several features to VR application designers in order to optimize end-
users’ navigation, interaction, presence and collaboration according to their physical environment.
We analyze the IIVC main features from both an end-user’s point of view and a developer’s point
of view. The IIVC enables VR developers to integrate many VR features proposed in the literature,
and also to introduce new VR features thanks to its particular architecture.

6.5.1 Navigating with the IIVC

Navigation from an end-user’s point of view

Users can move within the motion workspace included in their stage. If a user can be located
in this workspace (with a tracking system), his view frustum must be distorted according to his
head position (head-tracking). This visual workspace can be seen as the stage “windows” on the
virtual world. It enables users to observe or to position themselves in an intuitive way in the virtual
environment.

Users can use almost any navigation technique or metaphor proposed in the literature in order
to move their IIVC. For example, they can “fly”, “walk”, “teleport” themselves, turn around a
position or an object, join or follow another user or another object, etc.

Navigation from a developer’s point of view

Some of these navigation facilities, such as real or virtual walking, flying and teleportation, are
provided by directly using some basic operators (Bo1, Bo4) of section 6.4.2.

Higher-level features are obtained by combining these operators. For example, allowing a user
to select an object in order to turn around it, can be realized by providing this object as the new
support of his conveyor (Bo3, Ao3) (with a null translation offset), computing the new translation
offset of the stage according to the current positions of the virtual object, the conveyor and the stage
(Bo7, Bo4), and restraining navigation interaction to only the rotation of the conveyor (Ao7).
Joining or following a user or an object can be achieved in the same way.

The IIVC main features 105

6.5.2 Carrying 3D interaction tools

Interaction from an end-user’s point of view

3D interaction tools such as a virtual ray or a virtual hand can be included in the users’ workspace as
particular real or virtual objects. So, as in 3DM [BDHO92], these interaction tools are automatically
carried by the IIVC when it moves or changes its scale in the virtual world. Moreover, users can
organize their workspaces by placing these interaction tools according to the kind of interaction
they have to perform.

Interaction from a VR developer’s point of view

It is easy for a VR developer to combine such interaction techniques with navigation, because he
can locate these interaction tools in relation to the stage coordinate system of the users’ workspaces
(see Figure 6.6) (Bo3, Bo4).

6.5.3 Making users aware of the physical environment

Awareness from an end-user’s point of view

A user and the real objects located in his physical environment can be embedded in the virtual
world through the stage. So the user and these real objects can be co-located in the real and virtual
world as in [OC05], even if the IIVC is moved or scaled in the virtual world.

An IIVC makes the user aware of his interaction capabilities and limitations by representing the
limits of his workspaces (by a visual representation, by a sound, etc.). For example, it is possible
to light up the virtual objects located in a user’s interaction workspace in order to show him which
objects are reachable (see Figure 6.8).

Virtual “semi-transparent” glasses can also prevent users from crossing the boundaries of the
tracking system or colliding with the display device (in a full immersive device). When the user
inside the immersive device is far from the limits of his motion workspace, the glasses are totally
transparent. When the user comes closer to these limits, the glasses become visible to avoid the
user crossing the workspace limits and breaking his presence (see Figure 6.9).

Awareness from a developer’s point of view

Users’ physical workspaces are limited by walls, boundaries of tracking systems, display devices,
etc. By embedding these workspaces into the virtual environment as 3D volumes, the IIVC makes
the virtual world match the real world, and it makes it possible to perform some computations, for
example collision detection between users and workspaces (Ao4, Ao5), or virtual matching such
as adjustment of the range of a virtual light to the interaction workspace geometry and size to
highlight all accessible objects (Bo2, Ao5).

6.5.4 Collaborating through several IIVC

Collaboration from an end-user’s point of view

IIVC navigation lets users progress independently from the other users in the virtual world: users
can have heterogeneous perspectives of the virtual world, which can be very effective for collabo-
rative work [BCF+08].

The IIVC provides features to improve the collaboration between users, such as joining or
making collaborative navigation together, or interacting with the conveyor or the stage of another
user in order to move, rotate, or scale it.

106 Modeling Users’ Physical Workspaces

Figure 6.8: When objects enter the yellow user’s interaction workspace, they are illuminated by a
colored light (pictures on the left). The other users can also see that objects enter the yellow user’s
interaction workspace (pictures on the right).

Figure 6.9: The closer to the display device the user comes, the more visible the “semi-transparent”
glasses become, to avoid collision with the physical workspace.

An IIVC can lap over another one: it establishes a relationship between different real environ-
ments through the virtual world. It has some restrictions because the real objects cannot appear
in each real environment. However, a real object in an IIVC can have a virtual representation in
the virtual world, so it can appear virtually in the other IIVC.

The IIVC represents users inside their physical devices in the virtual world in order to make
users aware of the other users’ interaction capabilities, which can improve the collaboration. It can
help them to understand what the others are doing and where they are looking (see Figure 6.1),
which physical device they are using, which object they can reach without performing a navigation
task, etc. For example, Figure 6.8 shows the yellow user’s interaction workspace lighting up to
inform other users about which objects this user can reach.

Collaboration from a developer’s point of view

As in Robinett et al. [RH92], when a user performs a navigation task, the VR developer can choose
to move, rotate, or scale the IIVC rather than the virtual world, which allows each user to have

IIVC applications 107

their own viewpoint (Bo1, Bo4).

Synchronization of several users can be realized by setting their conveyor at the same position
(Ao1) or by linking their stages to the same conveyor (Ao2).

Considering that the IIVC represents its user’s physical environment in the virtual environment,
it can also be considered as an interactive object, which allows a VR developer to offer interaction
with an IIVC of other users (Bo1, Bo4). It also naturally makes it possible to overlap several
IIVC (Ao1) to provide collaborative awareness.

6.6 IIVC applications

The IIVC model has been implemented as a set of reusable modules, and all users’ physical
workspaces can be described within a file that we call the configuration file.

First, we present how we have used the IIVC to design several and implement multi-scale
collaborative virtual environments. Then, we discuss how existing VR techniques could be designed
using the IIVC model.

6.6.1 First instances

To demonstrate the possibilities of the IIVC, we have seamlessly integrated several classical in-
teraction techniques in the IIVC such as virtual ray, and several collaboration facilities such as
techniques to meet others, to navigate with the others or to leave 3D annotations (for example, a
landmark representing an interactive viewpoint). All these tools can be carried by the user in his
IIVC.

We thus obtained multi-scale collaborative virtual environments [DFNA08] that we have tested
with simple workstations, with a Reality Center (an immersive device with stereoscopic vision,
head-tracking and an area in which the user can move) and with a workbench. The IIVC model
adapts our applications seamlessly to these kinds of devices: we have just to change the application
configuration files. It also enables different users to interact in the same virtual environment with
different devices: we have tested our collaborative applications with one user in a Reality Center
and two other users in front of simple workstations (see Figure 6.1).

6.6.2 Instances of “state of the art” VR techniques

To illustrate the use of the IIVC model, we discuss how this model could be useful to design three
“state of the art” VR techniques. These techniques involve a motion workspace for the first one, a
haptic workspace for the second one, and a movable visual workspace for the last one.

Limited motion workspace

The “Magic Barrier Tape” [CMRCL09] (see Figure 6.3) could be implemented using the IIVC
by displaying the virtual barrier tape just inside the real limits of the motion workspace, and this
motion workspace would be directly included in the stage. As long as the user stays in this delimited
area, he can freely walk to navigate in relation to the stage (Bo4). But, when he pushes on the
virtual barrier tape, spatial movements of the conveyor would be computed from this action on
the barrier tape (Bo1, Ao7). Thus the user could perform long-distance navigation in the whole
virtual world by moving the conveyor.

Limited haptic workspace

The “bubble” technique [DLB+05] (see Figure 6.4) could be implemented using the IIVC by mod-
eling the workspaces of the “bubble”. The limited workspace of the haptic device would be rep-

108 Modeling Users’ Physical Workspaces

resented by a concentric sphere that would be slightly smaller than this workspace. This haptic
workspace would be included in the global motion workspace that would be also included in the
stage. As long as the 3D cursor associated to the haptic device stays in the “bubble”, it would
be used for interaction within the stage as usual. But, when the cursor goes outside this area,
it would be used for navigation: spatial movements would be computed from the cursor position
in relation to the “bubble” boundaries (Ao4, Ao5). These movements can be used to move the
conveyor (Bo1) in the virtual world in order to maintain the co-location of the “bubble” with the
haptic device.

Movable visual workspace

The visual workspace associated to the screen of the Hand Held Display (HHD) [Ams95] could be
defined as a movable workspace included in the user’s motion workspace. As the user’s head and
this visual workspace would be located in the motion workspace, it would be easy to compute the
visual workspace deformation (a viewing frustum) (Ao6) and the image to display on the screen.
The way to compute this deformation would stay the same even if the user navigates by moving
his conveyor and consequently the whole IIVC in the virtual world.

6.7 Conclusion and future work

With its ability to manage a hierarchy of 3D workspaces, the Immersive Interactive Virtual Cabin
(IIVC) provides a generic software model to embed users’ physical workspaces in a virtual envi-
ronment. The IIVC is an abstraction of immersive devices which enables the VR developers to
design applications without taking into consideration which immersive devices will be used. It can
be adapted to a simple workstation or to a full immersive device such as a CAVE�. It matches the
real world with the virtual world to maintain head-tracking of users or co-location of real objects
even if users navigate in the virtual world. This navigation (position, orientation and scale changes)
is independently performed by each user and is also applied to the interaction tools included in the
users’ workspaces.

The IIVC software architecture makes it possible to describe the users’ physical environment
independently from the 3D graphics API used to visualize it. Only one component is in charge
of the coupling with the 3D visualization, through a configuration file to associate its components
to external 3D graphical representations. The IIVC is useful to Collaborative Virtual Environ-
ments (CVE) developers because it automatically provides a 3D representation of a user’s physical
workspaces to the other users who share the same CVE, making them naturally aware of the
physical activity and limitations of each other user.

As we have essentially used visual and motion workspaces, future work should consist now in
exploring other kinds of workspaces such as sound or haptic workspaces.

We will also need to enhance our existing model with other advanced operators, especially
for the perception of the users’ interaction capabilities and for collaboration. We will have to
evaluate how much embedding users’ physical workspaces within the IIVC can enable the user to
better understand their interaction capabilities or limitations. In collaborative situations, it should
naturally provide a better awareness of the other users’ activities and interaction capabilities.

Finally, we should propose a standardized formalism to describe workspace management and
manipulation. Thus, a language to describe the physical workspace of each user and its mapping
with the virtual environment should be defined. It could be an extension to X3D or Collada, or to
3DFC, as for describing interactive and collaborative features in chapter 4.

Conclusion and Perspectives

Conclusion

We have proposed some cues to answer the challenges of designing dynamic CVE to meet their
architectural requirements at a system and at a software level:

� a new adaptive data distribution model that enables a CVE system to achieve three data
distribution modes to deal with several applications requirements and various kinds of network
connections. The data distribution mode can be individually chosen for each object according
to the function that it fulfills in the virtual environment. Moreover, this data distribution
can be dynamically changed during a session to adapt itself to the tasks that users need to
perform in the CVE.

� mechanisms to detect and visualize network problems while interacting within a networked
virtual environment, which make it possible to perform a synchronization by groups of users
to ensure the best trade-off between synchronization and interaction latency.

� PAC-C3D, a new architectural model dedicated to 3D collaborative virtual environments. It
can deal with the main distribution modes encountered in CVE, and it makes it possible to
design a CVE with very small dependency on a 3D graphics API, providing easy interoper-
ability between 3D graphics API.

We have also addressed the design of collaborative interactions and the design of what can
contribute to give users a better awareness of the collaboration and of their environment:

� a new formalism for describing 3D interactions in virtual environments. It defines what a
virtual interactive object and an interaction tool are, and how these two kinds of objects
can communicate together. It is a first step toward a description language to describe the
interactive and collaborative properties of virtual objects.

� new metaphors for interaction within Collaborative Virtual Environments (CVE). They are
the evolution of usual 2D or 3D interaction metaphors that have been adapted to fit with
collaborative interactions, and to make users aware of this collaboration.

� the Immersive Interactive Virtual Cabin (IIVC), which is an abstraction of immersive devices
which enables the VR developers to design applications without taking into consideration
which immersive devices will be used. It makes it possible to describe the users’ physical
environment independently from the 3D graphics API used to visualize it, and also to visualize
the physical features of the hardware input and output devices.

All this work has been realized in the context of 5 Master thesis (Michaël Rouillé, Aurélien
Fénals, Sébastien Thomas, Ting-Yun Lu and Cédric Fleury) and 5 PhD thesis (Chadi Zammar,
Laurent Aguerreche, Cédric Fleury, Rozenn Bouville and Thi Thuong Huyen Nguyen).

109

110 Conclusion and Perspectives

Perspectives

Frameworks for collaborative virtual environments are now mature enough to allow researchers to
focus on higher-level description of collaboration rather than on low-level system features. Nev-
ertheless, there is still some very interesting work to be done in order to enhance interoperability
between rendering engines (graphics engines, physics engines, behavior engines, collaboration en-
gines, interaction engines, . . .), by describing at a high level of abstraction what are the data
that must be exchanged between these engines. The PAC-C3D architectural model implemented
in the Collaviz framework and the Scene Graph Adapter are some steps toward this high-level
interoperability, but it is still a work in progress.

Another important topic is to let CVE designers focus on high-level collaboration rather than
on low-level distribution or synchronization features. We have contributed to this topic through the
OpenMASK and Collaviz frameworks, which propose to describe a shared virtual universe through
virtual objects, without needing to worry about how the distribution and the synchronization are
achieved, only focusing upon interactive and collaborative features. For now, these descriptions are
made through dedicated (xml-based) description languages, and a first attempt has been made to
extend the Collada description language. An effort should be made to propose an official description
of shared virtual objects that could be an extension to X3D or Collada, or to 3DFC.

CVE designers who want to propose new 3D interaction metaphors for OpenMASK and Collaviz
still have to code some behavior (in C++ or Java). We should go one step beyond this coding
phase by defining a Domain Specific Language (DSL) dedicated to interaction, that would be some
kind of Model Driven Engineering (MDE) development tool, able to produce C++ OpenMASK
code or Collaviz Java code, or any other framework-dedicated code.

Establishing as automatically as possible a good matching between the virtual environment and
the physical environment of the end-users is still a challenge. Our IIVC concept is a first answer to
this problem, it can be improved by providing more high-level operators and by generalizing this
approach to other frameworks than OpenMASK and Collaviz. Once again, a MDE approach would
certainly be very interesting, with a DSL for describing the features of the physical environment
and their matching with virtual objects of the virtual universe.

Last, we still have to improve the collaboration between distant users who are sharing a virtual
environment, by proposing again and again more efficient metaphors for 3D collaborative inter-
actions. This topic is still very relevant: it was the main subject of the 3DUI 2012 contest. We
participated to this contest by proposing some solutions based on the Collaviz framework in order
to enhance collaboration between two users [NFD12] and we will go on proposing new solutions
dedicated to fully immersive collaboration.

Bibliography

[ADA09a] Laurent Aguerreche, Thierry Duval, and Bruno Arnaldi. A description of a Dialog to
Enable Interaction between Interaction Tools and 3D Objects in Collaborative Virtual
Environments. In Proc. of VRIC 2009, pages 63–73, Laval, France, April 2009.

[ADA09b] Laurent Aguerreche, Thierry Duval, and Bruno Arnaldi. Analyse de techniques de
coopération en environnements virtuels 3D. Revue Technique et Science Informatiques
(TSI), 28(6-7):767–797, 2009.

[ADL09] Laurent Aguerreche, Thierry Duval, and Anatole Lécuyer. 3-Hand Manipulation of
Virtual Objects. In Proc. of JVRC 2009 (Joint Virtual Reality Conference of EGVE
- ICAT - EuroVR), pages 153–156, 2009.

[ADL10a] Laurent Aguerreche, Thierry Duval, and Anatole Lécuyer. Comparison of Three In-
teractive Techniques for Collaborative Manipulation of Objects in Virtual Reality. In
Proc. of CGI, 2010.

[ADL10b] Laurent Aguerreche, Thierry Duval, and Anatole Lécuyer. Reconfigurable Tangible
Devices for 3D Virtual Object Manipulation by Single or Multiple Users. In Proc. of
VRST, pages 227–230, New York, NY, USA, 2010. ACM.

[ADL11] Laurent Aguerreche, Thierry Duval, and Anatole Lécuyer. Evaluation of a Reconfig-
urable Tangible Device for Collaborative Manipulation of Objects in Virtual Reality.
In Proc. of UK Eurographics Chapter, Theory and Practice of Computer Graphics,
pages 81–88, Warwick, United Kingdom, September 2011.

[AFM+99] David Anderson, James L. Frankel, Joe Marks, Darren Leigh, Eddie Sullivan,
Jonathan Yedidia, and Kathy Ryall. Building Virtual Structures with Physical Blocks.
In Proc. of UIST, pages 71–72, 1999.

[Agu10] Laurent Aguerreche. Partage d’interactions en environnements virtuels : de nouvelles
techniques collaboratives basées sur un protocole de dialogue générique. These, INSA
de Rennes, June 2010.

[AHV04] C. Anthes, P. Heinzlreiter, and J. Volkert. An Adaptive Network Architecture for
Close-Coupled Collaboration in Distributed Virtual Environments. In VRCAI’04:
Proceedings of the 2004 ACM SIGGRAPH international conference on Virtual Reality
continuum and its applications in industry, pages 382–385, New York, NY, USA, 2004.
ACM.

[Ams95] Denis Amselem. “A Window on Shared Virtual Environments”. Presence: Teleop. &
Virtual Env., 4(2):130–145, 1995.

[ART] A.R.T. Gmbh website.
http://www.ar-tracking.de/.

111

112 Bibliography

[BBDRA11] Rozenn Bouville Berthelot, Thierry Duval, Jérôme Royan, and Bruno Arnaldi. Im-
proving Reusability of Assets for Virtual Worlds while Preserving 3D Formats Fea-
tures. JVWR (Journal for Virtual World Research), 4(3), November 2011.

[BBFG94] Steve Benford, John Bowers, Lennart E. Fahlén, and Chris Greenhalgh. “Managing
Mutual Awareness in Collaborative Virtual Environments”. In Proc. of the Symp. on
Virtual Reality Software and Technology, pages 223–236, 1994.

[BBH+90] C. Blanchard, S. Burgess, Y. Harvill, J. Lanier, A. Lasko, M. Oberman, and M. Teitel.
“Reality built for two: a virtual reality tool”. In SI3D’90: Proceedings of the sympo-
sium on Interactive 3D graphics, pages 35–36, New York, NY, USA, 1990. ACM.

[BBRDA11] Rozenn Bouville Berthelot, Jérôme Royan, Thierry Duval, and Bruno Arnaldi. Scene
Graph Adapter: An efficient Architecture to Improve Interoperability between 3D For-
mats and 3D Application Engines. In ACM, editor, Web3D 2011 (16th International
Conference on 3D Web technology), pages 21–29, Paris, France, June 2011.

[BBRDA12] Rozenn Bouville Berthelot, Jérôme Royan, Thierry Duval, and Bruno Arnaldi. 3DFC:
a new container for 3D file formats compositing. In Web3D 2012 (17th International
Conference on 3D Web technology), pages 27–35, Los Angeles, United States, August
2012. ACM.

[BCF+08] D.A. Bowman, S. Coquillart, B. Froehlich, M. Hirose, Y. Kitamura, K. Kiyokawa,
and W. Stuerzlinger. 3D User Interfaces: New Directions and Perspectives. Computer
Graphics and Applications, IEEE, 28(6):20–36, 2008.

[BDHO92] Jeff Butterworth, Andrew Davidson, Stephen Hench, and Marc. T. Olano. “3DM: A
Three Dimensional Modeler using a Head-Mounted Display”. In Proc. of the Symp.
on Interactive 3D graphics, pages 135–138, 1992.

[BGRP01] Steve Benford, Chris Greenhalgh, Tom Rodden, and James Pycock. Collaborative
Virtual Environments. Communication of the ACM, 44(7):79–85, 2001.

[BH95] Doug A. Bowman and Larry F. Hodges. User interface constraints for immersive
virtual environment applications. Technical report, Graphics, Visualization, and Us-
ability Center GIT-GVU-95-26, 1995.

[BH97] Doug A. Bowman and Larry F. Hodges. An evaluation of techniques for grabbing
and manipulating remote objects in immersive virtual environments. In SI3D ’97:
Proceedings of the 1997 symposium on Interactive 3D graphics, pages 35–ff., New
York, NY, USA, 1997. ACM Press.

[BHB08] W. Broll, J. Herling, and L. Blum. Interactive bits: Prototyping of mixed reality appli-
cations and interaction techniques through visual programming. In Proceedings of the
2008 IEEE Symposium on 3D User Interfaces, 3DUI ’08, pages 109–115, Washington,
DC, USA, 2008. IEEE Computer Society.

[BHSS00] Cagatay Basdogan, Chih-Hao Ho, Mandayam A. Srinivasan, and Mel Slater. An
experimental study on the role of touch in shared virtual environments. ACM Trans.
Comput.-Hum. Interact., 7(4):443–460, December 2000.

[BJH99] Doug A. Bowman, Donald B. Johnson, and Larry F. Hodges. Testbed evaluation of
virtual environment interaction techniques. In Proceedings of the ACM symposium on
Virtual reality software and technology, VRST ’99, pages 26–33, New York, NY, USA,
1999. ACM.

Bibliography 113

[BJH+01] Allen Bierbaum, Christopher Just, Patrick Hartling, Kevin Meinert, Albert Baker, and
Carolina Cruz-Neira. “VR Juggler: A Virtual Platform for Virtual Reality Application
Development”. In Proc. of the IEEE Virtual Reality Conference, pages 89–96, 2001.

[BKLP04] Doug A. Bowman, Ernst Kruijff, Joseph J. LaViola, and Ivan Poupyrev. 3D User
Interfaces: Theory and Practice. Addison Wesley, 2004.

[BLO+05] Wolfgang Broll, Irma Lindt, Jan Ohlenburg, Iris Herbst, Michael Wittkamper, and
Thomas Novotny. An infrastructure for realizing custom-tailored augmented real-
ity user interfaces. IEEE Transactions on Visualization and Computer Graphics,
11(6):722–733, November 2005.

[Bul] Bullet Physics Library website.
http://www.bulletphysics.com/.

[CCN97] Gaëlle Calvary, Joëlle Coutaz, and Laurence Nigay. From Single-User Architectural
Design to PAC*: a Generic Software Architecture Model for CSCW. In Proceedings
of CHI 97, ACM publ, pages 242–249, 1997.

[CDG+93] J. Calvin, A. Dickens, B. Gaines, P. Metzger, D. Miller, and D. Owen. “The SIMNET
virtual world architecture”. IEEE Virtual Reality Annual International Symposium,
pages 450–455, Sep 1993.

[CFH97] Lawrence D. Cutler, Bernd Fröhlich, and Pat Hanrahan. Two-Handed Direct Ma-
nipulation on the Responsive Workbench. In Proceedings of SI3D’97, pages 107–114.
ACM, 1997.

[CH93] Carlsson C. and Hagsang O. Dive – a platform for multi–user virtual environnement.
Computer and Graphics, pages 663–669, 1993.

[CMRCL09] Gabriel Cirio, Maud Marchal, Tony Regia-Corte, and Anatole Lécuyer. “The Magic
Barrier Tape: A Novel Metaphor for Infinite Navigation in Virtual Worlds with a Re-
stricted Walking Workspace”. In Proc. of the 16th Symp. on Virtual Reality Software
and Technology, pages 155–162, 2009.

[CNSD93] Carolina Cruz-Neira, Daniel J. Sandin, and Thomas A. DeFanti. Surround-screen
projection-based virtual reality: the design and implementation of the cave. In Pro-
ceedings of SIGGRAPH’93, pages 135–142, New York, NY, USA, 1993. ACM.

[Col] The Collaviz website. http://www.collaviz.org/.

[Cou87] Joëlle Coutaz. PAC: An Object Oriented Model for Implementing User Interfaces.
SIGCHI Bull., 19(2):37–41, 1987.

[Dav01] Malcolm Davis. Struts, an open-source MVC implementation.
http://www.ibm.com/developerworks/library/j-struts/, february 2001.

[DDF+10] Florent Dupont, Thierry Duval, Cédric Fleury, Julien Forest, Valérie Gouranton,
Pierre Lando, Thibaud Laurent, Guillaume Lavoué, and Alban Schmutz. Collabo-
rative Scientific Visualization: The COLLAVIZ Framework. In JVRC Demos, 2010.

[DDS+99] Cédric Dumas, Samuel Degrande, Grégory Saugis, Christophe Chaillou, Mary-Luce
Viaud, and Patricia Plénacoste. SpIn: a 3D Interface for Cooperative Work. Virtual
Reality Society Journal, 1999.

114 Bibliography

[Dew99] Prasun Dewan. Architectures for Collaborative Applications. Trends in Software,
special issue on Collaborative Systems, pages 169–193, 1999.

[DF02] Thierry Duval and Aurélien Fenals. Faciliter la perception de l’interaction lors de
manipulations coopératives simultanées en environnements virtuels 3d. In Informal
communication in annex of the Proceedings of IHM 2002, pages 29–32, 2002.

[DF09] Thierry Duval and Cédric Fleury. An asymmetric 2d pointer/3d ray for 3d interaction
within collaborative virtual environments. In Web3D’09: Proceedings of the 14th
International Conference on 3D Web Technology, pages 33–41, New York, NY, USA,
2009. ACM.

[DFNA08] Thierry Duval, Cédric Fleury, Bernard Nouailhas, and Laurent Aguerreche. “Collabo-
rative Exploration of 3D Scientific Data”. In VRST’08: Proceedings of the 2008 ACM
symposium on Virtual reality software and technology, pages 303–304, New York, NY,
USA, 2008. ACM.

[DH02] J. Döllner and K. Hinrichs. A generic rendering system. IEEE Transactions on
Visualization and Computer Graphics, pages 99–118, 2002.

[DLB+05] Lionel Dominjon, Anatole Lécuyer, Jean-Marie Burkhardt, Guillermo Andrade-
Barroso, and Simon Richir. “The “Bubble” Technique: Interacting with Large Virtual
Environments Using Haptic Devices with Limited Workspace”. In Proc. of the World
Haptics Conference, pages 639–640, 2005.

[DLT04] Thierry Duval and Christian Le Tenier. Interactions 3D coopératives sur des objets
techniques avec OpenMASK. Mécaniques et Industries, 5(2):129–137, 2004.

[DLT06] Thierry Duval, Anatole Lecuyer, and Sebastien Thomas. SkeweR: a 3D Interaction
Technique for 2-User Collaborative Manipulation of Objects in Virtual Environments.
In Proceedings of 3DUI’06, pages 69–72. IEEE, 2006.

[DM00a] Thierry Duval and David Margery. Building Objects and Interactors for Collaborative
Interactions with GASP. In CVE 2000, pages 129–138, San Francisco, United States,
september 2000.

[DM00b] Thierry Duval and David Margery. Using GASP for Collaborative Interactions within
3D Virtual Worlds. In Proceedings of the Second International Conference on Virtual
Worlds (VW’2000), pages 65–76, Paris, France, july 2000. Springer LNCS/AI.

[DMR+97] Thierry Duval, Serge Morvan, Patrick Reignier, Fabrice Harrouet, and Jacques Tis-
seau. Arévi : une bôıte à outils 3d pour des applications coopératives. Numéro spécial
de la revue Calculateurs Parallèles (coopération), pages 239–250, juillet 1997.

[DRC+00] Thierry Duval, Jordi Regincòs, Alain Chauffaut, David Margery, and Bruno Arnaldi.
Interactions collectives locales en immersion dans des univers virtuels 3d avec gasp.
In ERGO-IHM, October 2000.

[DWM06a] D. Delaney, T. Ward, and S. McLoone. “On consistency and network latency in
distributed interactive applications: A survey – part I”. Presence: Teleoperators and
Virtual Environments, 15(2):218–234, 2006.

[DWM06b] D. Delaney, T. Ward, and S. McLoone. “On Consistency and Network Latency in
Distributed Interactive Applications: A Survey – Part II”. Presence: Teleoperators
and Virtual Environments, 15(4):465–482, 2006.

Bibliography 115

[DZ06a] Thierry Duval and Chadi el Zammar. A migration mechanism to manage network
troubles while interacting within collaborative virtual environments. In Proc. of Vir-
tual reality continuum and its applications - VRCIA, pages 417–420, 2006.

[DZ06b] Thierry Duval and Chadi el Zammar. Managing Network Troubles while Interacting
within Collaborative Virtual Environments. CSAC’2006, Paphos, Cyprus, pages 85–
94, 2006.

[Eck07] Robert Eckstein. Java SE Application Design With MVC.
http://www.oracle.com/technetwork/articles/javase/mvc-136693.html, march 2007.

[EPO95] Chris Esposito, W. Bradford Paley, and JueyChong Ong. Of Mice and Monkeys: A
Specialized Input Device for Virtual Body Animation. In Proc. of I3D, pages 109–114,
1995.

[EW94] Clarence Ellis and Jacques Wainer. A conceptual model of groupware. In Proceedings
of the 1994 ACM conference on Computer supported cooperative work, CSCW ’94,
pages 79–88, New York, NY, USA, 1994. ACM.

[FBHH99] Mike Fraser, Steve Benford, Jon Hindmarsh, and Christian Heathq. “Supporting
Awareness and Interaction through Collaborative Virtual Interfaces”. In Proc. of the
12th Symp. on User Interface Software and Technology, pages 27–36, 1999.

[FCD+11] Cédric Fleury, Alain Chauffaut, Thierry Duval, Valérie Gouranton, and Bruno Ar-
naldi. A Generic Model for Embedding Users’ Physical Workspaces into Multi-Scale
Collaborative Virtual Environments. In Proc. of ICAT, pages 1–8, 2011.

[FDGA10a] Cédric Fleury, Thierry Duval, Valérie Gouranton, and Bruno Arnaldi. A New Adap-
tive Data Distribution Model for Consistency Maintenance in Collaborative Virtual
Environments. In Proc. of JVRC, pages 29–36, 2010.

[FDGA10b] Cédric Fleury, Thierry Duval, Valérie Gouranton, and Bruno Arnaldi. “Architectures
and Mechanisms to efficiently Maintain Consistency in Collaborative Virtual Environ-
ments”. In Proc. of Software Engineering and Architectures for Realtime Interactive
Systems - SEARIS, pages 87–94, 2010.

[FDGS12] Cédric Fleury, Thierry Duval, Valérie Gouranton, and Anthony Steed. Evaluation of
Remote Collaborative Manipulation for Scientific Data Analysis. In VRST 2012 - 18th
Symposium on Virtual Reality Software and Technology, Toronto, Canada, December
2012. ACM.

[FGH02] Pablo Figueroa, Mark Green, and H. James Hoover. Intml: a description language
for vr applications. In Proceedings of the seventh international conference on 3D Web
technology, Web3D ’02, pages 53–58, New York, NY, USA, 2002. ACM.

[FGV+00] Fraser, M., Glover, T., Vaghi, I., Benford, S., Greenhalgh, C., Hindmarch, J., and
Heath, C. Revealing the Realities of Collaborative Virtual Reality. In Proceedings of
CVE’2000, San Francisco, pages 29–37, 2000.

[FGW01] Pablo Figueroa, Mark Green, and B. Watson. A framework for 3d interaction tech-
niques. CAD/Graphic., 8:22–24, 2001.

[FHZ96] Andrew Forsberg, Kenneth Herndon, and Robert Zeleznik. Aperture based selection
for immersive virtual environments. In UIST ’96: Proceedings of the 9th annual ACM
symposium on User interface software and technology, pages 95–96, New York, NY,
USA, 1996. ACM.

116 Bibliography

[FN98] Emmanuel Frécon and Anneli Avatare Nöu. Building distributed virtual environments
to support collaborative work. In Proceedings of the ACM symposium on Virtual
reality software and technology, VRST ’98, pages 105–113, New York, NY, USA, 1998.
ACM.

[Fra95] John H. Frazer. An evolutionary architecture. Architectural Association, London,
1995.

[FS98] E. Frécon and M. Stenius. “DIVE : A scaleable network architecture for distributed
virtual environments”. Distrib. Syst. Engng., 5:91–100, 1998.

[Fun95] T. A. Funkhouser. “RING: a client-server system for multi-user virtual environments”.
In SI3D’95: Proc. of the symposium on Interactive 3D graphics, pages 85–93, New
York, NY, USA, 1995. ACM.

[Gam95] Gamma, E. and Helm, R. and Johnson, R. and Vlissides, J. Design patterns: Elements
of reusable Object-Oriented Software. Addison-Wesley, 1995.

[GAW09] I. J. Grimstead, N. J. Avis, and D. W. Walker. “RAVE: the resource-aware visualiza-
tion environment”. Concurrency and Computation : Pract. & Exper., 21(4):415–448,
2009.

[GB95] C. Greenhalgh and S. Benford. Massive: a distributed virtual reality system in-
corporating spatial trading. In Proceedings of the 15th International Conference on
Distributed Computing Systems, ICDCS ’95, pages 27–, Washington, DC, USA, 1995.
IEEE Computer Society.

[GG98] Gutwin, C. and Greenberg, S. Design for Individuals, Design for Groups: Tradeoffs
Between Power and Workspace Awareness. CSCW’98, Seattle, Washington, US, pages
207–216, 1998.

[GG99] Carl Gutwin and Saul Greenberg. The effects of workspace awareness support on the
usability of real-time distributed groupware. ACM Trans. Comput.-Hum. Interact.,
6(3):243–281, September 1999.

[GMMG08] Arturo S. Garćıa, José P. Molina, Diego Mart́ınez, and Pascual González. Enhancing
Collaborative Manipulation through the Use of Feedback and Awareness in CVEs. In
Proceedings of VRCAI’08, pages 1–5. ACM, 2008.

[Gol90] Adele Goldberg. Information models, views, and controllers. Dr. Dobb’s J., 15:54–61,
May 1990.

[GPS00] Chris Greenhalgh, Jim Purbrick, and Dave Snowdon. Inside massive-3: flexible sup-
port for data consistency and world structuring. In Proceedings of the third inter-
national conference on Collaborative virtual environments, CVE ’00, pages 119–127,
New York, NY, USA, 2000. ACM.

[Hag96] Olof Hagsand. “Interactive Multiuser VEs in the DIVE System”. IEEE MultiMedia,
3(1):30–39, 1996.

[Han97] Chris Hand. A Survey of 3D Interaction Techniques. Computer Graphics Forum,
16(5):269–281, 1997.

[Hin00] J. D.K Hinrichs. A generalized scene graph. Vision, modeling, and visualization 2000:
proceedings: November 22-24, 2000, Saarbrücken, Germany, page 247, 2000.

Bibliography 117

[HPGK94] Ken Hinckley, Randy Pausch, John C. Goble, and Neal F. Kassell. Passive real-
world interface props for neurosurgical visualization. In Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 452–458, 1994.

[HPPK98] Ken Hinckley, Randy Pausch, Dennis Proffitt, and Neal F. Kassell. Two-handed
Virtual Manipulation. ACM Transactions on Computer-Human Interaction, 5(3):260–
302, 1998.

[HTP+97] Ken Hinckley, Joe Tullio, Randy Pausch, Dennis Proffitt, and Neal Kassell. Usability
analysis of 3d rotation techniques. In Proc. of UIST, pages 1–10, 1997.

[IMWB01] Brent Edward Insko, Michael J. Meehan, Mary C. Whitton, and Frederic P. Brooks.
Passive haptics significantly enhances virtual environments. Technical report, The
University of North Carolina at Chapel Hill, 2001.

[ISA01] ISAR2001. Design of a component-based augmented reality framework. In Proceedings
of the IEEE and ACM International Symposium on Augmented Reality (ISAR’01),
ISAR ’01, pages 45–, Washington, DC, USA, 2001. IEEE Computer Society.

[IU97] Hiroshi Ishii and Brygg Ullmer. Tangible Bits: Towards Seamless Interfaces between
People, Bits and Atoms. In Proc. of CHI, pages 234–241, 1997.

[Jav] The Java3D website. http://java3d.java.net/. Accessed August 22, 2012.

[JBu] The JBullet website. http://jbullet.advel.cz/.

[JDGMT04] C. Joslin, T. Di Giacomo, and N. Magnenat-Thalmann. “Collaborative virtual
environments: from birth to standardization”. IEEE Communications Magazine,
42(4):28–33, Apr 2004.

[Jef85] D. R. Jefferson. Virtual time. ACM Trans. on Programming Language and Systems,
7(3):404–425, 1985.

[JFM+08] S. Jourdain, J. Forest, C. Mouton, B. Nouailhas, G. Moniot, F. Kolb, S. Chabridon,
M. Simatic, Z. Abid, and L. Mallet. “ShareX3D, a scientific collaborative 3D viewer
over HTTP”. In Web3D’08: Proceedings of the 13th international symposium on 3D
web technology, pages 35–41, New York, NY, USA, 2008. ACM.

[JMo] The JMonkey website. http://jmonkeyengine.org/.

[jRe] The jReality website. http://www3.math.tu-berlin.de/jreality/.

[KAKS02] John Kelso, Lance E. Arsenault, Ronald D. Kriz, and Steven G. Satterfield. “DI-
VERSE: A Framework for Building Extensible and Reconfigurable Device Indepen-
dent Virtual Environments”. Virtual Reality Conference, IEEE, 0:183, 2002.

[Kaz96] Kazman, R. Load Balancing, Latency Management and Separation of Concerns in
a Distributed Virtual World. Parallel Computations - Paradigms and Applications,
1996.

[KBH00] G. Drew Kessler, Doug A. Bowman, and Larry F. Hodges. “The Simple Virtual Envi-
ronment Library: An Extensible Framework for Building VE Applications”. Presence:
Teleoper. Virtual Environ., 9(2):187–208, 2000.

[KT98] Marcelo Kallmann and Daniel Thalmann. Modeling objects for interaction tasks.
In Proceedings of the 9th Eurographics Workshop on Animation and Simulation
(EGCAS), pages 73–86, Lisbon, Portugal, 1998.

118 Bibliography

[LCAA08] Xavier Larrodé, Benôıt Chanclou, Laurent Aguerreche, and Bruno Arnaldi. Open-
MASK: an Open-Source platform for Virtual Reality. In IEEE VR workshop on
Software Engineering and Architectures for Realtime Interactive Systems (SEARIS),
Reno, États-Unis, March 2008.

[LGH98] Vali Lalioti, Christophe Garcia, and Frank Hasenbrink. Virtual meeting in cyberstage.
In Proceedings of the ACM symposium on Virtual reality software and technology,
VRST ’98, pages 205–212, New York, NY, USA, 1998. ACM.

[LJD97] J. Leigh, A. E. Johnson, and T. A. DeFanti. “Cavern: A Distributed Architecture for
Supporting Scalable Persistence and Interoperability in Collaborative Virtual Envi-
ronments”. Virtual Reality: Research, Development, and Applications, 2(2):217–237,
1997.

[LJVD96] J. Leigh, A.E. Johnson, C.A. Vasilakis, and T.A. DeFanti. Multi-perspective Col-
laborative Design in Persistent Networked Virtual Environments. In Proceedings of
VRAIS’96, pages 253–260, 1996.

[LLHL07] D. Lee, M. Lim, S. Han, and K. Lee. “ATLAS: A Scalable Network Framework for Dis-
tributed Virtual Environments”. Presence: Teleoperators and Virtual Environments,
16(2):125–156, 2007.

[LN02] Yann Laurillau and Laurence Nigay. Clover architecture for groupware. In Proceedings
of the Conference on Computer-Supported Cooperative Work, pages 236–245. ACM,
2002.

[LPI07] Vincent LeClerc, Amanda Parkes, and Hiroshi Ishii. Senspectra: A computationally
augmented physical modeling toolkit for sensing and visualization of structural strain.
In Proc. of CHI, pages 801–804, 2007.

[MAC+02] David Margery, Bruno Arnaldi, Alain Chauffaut, Stéphane Donikian, and Thierry
Duval. “OpenMASK: Multi-Threaded or Modular Animation and Simulation Kernel
or Kit : a General Introduction”. In Virtual Reality International Conference (VRIC
2002), pages 101–110, 2002.

[MAP99] D. Margery, B. Arnaldi, and N. Plouzeau. “A General Framework for Cooperative
Manipulation in Virtual Environments”. In Virtual Environments’99, pages 169–178,
1999.

[MB04] Jurriaan D. Mulder and Breght R. Boschker. “A Modular System for Collabora-
tive Desktop VR/AR with a Shared Workspace”. Proc. of the IEEE Virtual Reality
Conference, 0:75, 2004.

[MZ97] M.R. Macedonia and M.J. Zyda. “A taxonomy for networked virtual environments”.
IEEE Multimedia, 4(1):48–56, Jan-Mar 1997.

[MZP+94] M. R. Macedonia, M. J. Zyda, D. R. Pratt, P. T. Barham, and S. Zeswitz. “NPSNET:
A network software architecture for large scale virtual environments”. Presence,
3(4):265–287, 1994.

[NC91] L. Nigay and J. Coutaz. Building User Interfaces: Organizing Software Agents. In
Proceedings of Esprit’91, pages 709–717, 1991.

[NFD12] Thi Thuong Huyen Nguyen, Cédric Fleury, and Thierry Duval. Collaborative Explo-
ration in a Multi-Scale Shared Virtual Environment. In 3DUI 2012, Orange County,
United States, March 2012.

Bibliography 119

[NLSG03] Martin Naef, Edouard Lamboray, Oliver Staadt, and Markus Gross. The blue-c dis-
tributed scene graph. In Proc. of Eurographics Workshop on Virtual environments -
EGVE, pages 125–133, 2003.

[OBL07] Jan Ohlenburg, Wolfgang Broll, and Irma Lindt. “DEVAL - A Device Abstraction
Layer for VR/AR”. In Universal Acess in Human Computer Interaction, volume 4554
of Lecture Notes in Computer Science, pages 497–506. Springer, 2007.

[OC05] M. Ortega and S. Coquillart. “Prop-Based Haptic Interaction with Co-Location and
Immersion: An Automotive Application”. In Proc. of the Int. Workshop on Haptic
Audio Visual Environments and their Applications, pages 23–28, Oct. 2005.

[OF04] Alex Olwal and Steven Feiner. Unit: modular development of distributed interaction
techniques for highly interactive user interfaces. In Proceedings of the 2nd international
conference on Computer graphics and interactive techniques in Australasia and South
East Asia, GRAPHITE ’04, pages 131–138, New York, NY, USA, 2004. ACM.

[OHL+04] Jan Ohlenburg, Iris Herbst, Irma Lindt, Thorsten Fröhlich, and Wolfgang Broll. The
morgan framework: enabling dynamic multi-user ar and vr projects. In Proceedings
of the ACM symposium on Virtual reality software and technology, VRST ’04, pages
166–169, New York, NY, USA, 2004. ACM.

[PBF02] Márcio S. Pinho, Doug A. Bowman, and Carla M.D.S. Freitas. Cooperative Object
Manipulation in Immersive Virtual Environments: Framework and Techniques. In
Proceedings of VRST’02, pages 171–178. ACM, 2002.

[PBWI96] Ivan Poupyrev, Mark Billinghurst, Suzanne Weghorst, and Tadao Ichikawa. The Go-
Go Interaction Technique: Non-Linear Mapping for Direct Manipulation in VR. In
UIST ’96: Proceedings of the 9th annual ACM symposium on User interface software
and technology, pages 79–80, New York, NY, USA, 1996. ACM Press.

[Phy] NVIDIA PhysX website.
http://developer.nvidia.com/object/physx.html.

[PLI06] Amanda Parkes, Vincent LeClerc, and Hiroshi Ishii. Glume: Exploring Materiality
in a Soft Augmented Modular Modeling System. In Proc. of CHI, pages 1211–1216,
2006.

[Pot96] Mike Potel. MVP: Model-View-Presenter — The Taligent Programming Model for
C++ and Java. http://www.wildcrest.com/Potel/Portfolio/mvp.pdf, 1996.

[PVM] The PVM website. http://www.csm.ornl.gov/pvm/. Accessed August 23, 2012.

[PWBI98] Ivan Poupyrev, Suzanne Weghorst, Mark Billinghurst, and Tadao Ichikawa. Egocentric
Object Manipulation in Virtual Environments: Empirical Evaluation of Interaction
Techniques. Computer Graphics Forum, 17(3), 1998.

[Raz05] Sharif Razzaque. “Redirected Walking”. PhD thesis, University of North Carolina at
Chapel Hill, 2005.

[Ree79] Trygve Reenskaug. The original MVC reports.
http://heim.ifi.uio.no/˜trygver/2007/MVC Originals.pdf, 1979.

[RH92] Warren Robinett and Richard Holloway. “Implementation of Flying, Scaling and
Grabbing in Virtual Worlds”. In Proc. of the Symp. on Interactive 3D Graphics,
pages 189–192, 1992.

120 Bibliography

[RHM+98] Patrick Reignier, Fabrice Harrouet, Serge Morvan, Jacques Tisseau, and Thierry Du-
val. Arévi : A virtual reality multiagent platform. In Proceedings of the First Inter-
national Conference on Virtual Worlds (VW’98), Paris, Lecture Notes in Computer
Science, Artifial Intelligence series (LNCS/AI 1434), pages 229–240, juillet 1998.

[RHWF06] Kai Riege, Thorsten Holtkamper, Gerold Wesche, and Bernd Frohlich. The Bent Pick
Ray: An Extended Pointing Technique for Multi-User Interaction. In Proceedings of
3DUI’06, pages 62–65. IEEE, 2006.

[RRS98] D. J. Roberts, M. D. Ryan, and P. M. Sharkey. “Combining Two Techniques for
Overcoming Network Delays in a Distributed Virtual Ball Game”. In Proc. of the
2nd Workshop on Systems Aspects of Sharing a Virtual Reality at the ACM conf. on
Collaborative Virtual Environments (CVE 98), 1998.

[RS97] D. J. Roberts and P. M. Sharkey. “Maximising concurrency and scalability in a consis-
tent, causal, distributed virtual reality system, whilst minimising the effect of network
delays”. In Proc. of the IEEE workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises, pages 161–166, Jun 1997.

[RS01] Gerhard Reitmayr and Dieter Schmalstieg. An open software architecture for virtual
reality interaction. In Proceedings of the ACM symposium on Virtual reality software
and technology, VRST ’01, pages 47–54, New York, NY, USA, 2001. ACM.

[RSJ02] Roy A. Ruddle, Justin C. D. Savage, and Dylan M. Jones. Symmetric and Asymmetric
Action Integration during Cooperative Object Manipulation in Virtual Environments.
ACM Transactions on Computer-Human Interaction, 9(4):285–308, 2002.

[RWOS03] David Roberts, Robin Wolff, Oliver Otto, and Anthony Steed. Constructing a Gazebo:
Supporting Teamwork in a Tightly Coupled, Distributed Task in Virtual Reality.
Presence: Teleoperation and Virtual Environments, 12(6):644–657, 2003.

[SC92] P. S Strauss and R. Carey. An object-oriented 3d graphics toolkit. In Computer
Graphics (Proceedings of SIGGRAPH 92), volume 26, pages 341–349. ACM, ACM,
1992.

[SCF97] Maher Suleiman, Michèle Cart, and Jean Ferrié. Serialization of concurrent operations
in a distributed collaborative environment. In Proceedings of the international ACM
SIGGROUP conference on Supporting group work: the integration challenge, GROUP
’97, pages 435–445, New York, NY, USA, 1997. ACM.

[SD99] Henry A. Sowizral and Michael F. Deering. “The Java 3D API and Virtual Reality”.
IEEE Computer Graphics and Applications, 19(3):12–15, 1999.

[SG93] C. Shaw and M. Green. “The MR Toolkit Peers Package and Experiment”. In IEEE
Virtual Reality Annual International Symposium (VRAIS 93), pages 463–469. IEEE,
1993.

[SH02] D. Schmalstieg and G. Hesina. Distributed applications for collaborative augmented
reality. In Virtual Reality, 2002. Proceedings. IEEE, pages 59 –66, 2002.

[Sho85] Ken Shoemake. Animating rotation with quaternion curves. ACM SIGGRAPH Com-
puter Graphics, 19(3):245–254, 1985.

[SJF09] H. Salzmann, J. Jacobs, and B. Froehlich. Collaborative interaction in co-located two-
user scenarios. In Proc. of JVRC 2009 (Joint Virtual Reality Conference of EGVE -
ICAT - EuroVR), pages 85–92, 2009.

Bibliography 121

[SLMA06] J. Sreng, A. Lecuyer, C. Megard, and C. Andriot. Using visual cues of contact to im-
prove interactive manipulation of virtual objects in industrial assembly/maintenance
simulations. Visualization and Computer Graphics, IEEE Transactions on, 12(5):1013
–1020, sept.-oct. 2006.

[SRH03] Dieter Schmalstieg, Gerhard Reitmayr, and Gerd Hesina. Distributed applications
for collaborative three-dimensional workspaces. Presence: Teleoperators and Virtual
Environments, 12(1):53–68, 2003.

[SRH05a] Frank Steinicke, Timo Ropinski, and Klaus Hinrichs. “A Generic Virtual Reality Soft-
ware System’s Architecture and Application”. In Proc. of the International Conference
on Augmented Tele-existence, pages 220–227, 2005.

[SRH05b] Frank Steinicke, Timo Ropinski, and Klaus Hinrichs. A generic virtual reality soft-
ware system’s architecture and application. In Proceedings of the 2005 international
conference on Augmented tele-existence, ICAT ’05, pages 220–227. ACM, 2005.

[SSO94] Gerda J. F. Smets, Pieter Jan Stappers, and Kees Overbeeke. Designing in virtual
reality: implementing perception-action coupling with affordances. In Proceedings of
the conference on Virtual reality software and technology, VRST ’94, pages 97–110,
River Edge, NJ, USA, 1994. World Scientific Publishing Co., Inc.

[SSP+95] G. Singh, L. Serra, W. Png, A. Wong, and H. Ng. “BrickNet: sharing object behaviors
on the Net”. IEEE Virtual Reality Annual International Symposium (VRAIS 95),
pages 19–25, Mar 1995.

[Ste08] Anthony Steed. “Some Useful Abstractions for Re-Usable Virtual Environment Plat-
forms”. In Software Engineering and Architectures for Realtime Interactive Systems
- SEARIS, 2008.

[STP08] Ross T. Smith, Bruce H. Thomas, and Wayne Piekarski. Digital Foam Interaction
Techniques for 3D Modeling. In Proc. of VRST, pages 61–68, 2008.

[SVP07] Pedro Sequeira, Marco Vala, and Ana Paiva. What can i do with this?: finding possible
interactions between characters and objects. In Proceedings of the 6th international
joint conference on Autonomous agents and multiagent systems, AAMAS ’07, pages
5:1–5:7, New York, NY, USA, 2007. ACM.

[SW94] Snowdon, D. and West, A. The AVIARY VR System: A Prototype Implementation.
6th ERCIM Workshop, 1994.

[Tra99] Henrik Tramberend. Avocado: A distributed virtual reality framework. In Proceedings
of the IEEE Virtual Reality, VR ’99, pages 14–, Washington, DC, USA, 1999. IEEE
Computer Society.

[UI00] Brygg Ullmer and Hiroshi Ishii. Emerging Frameworks for Tangible User Interfaces.
IBM Systems Journal, 39(3-4):915–931, 2000.

[UIM92] ”” UIMS 1992. A metamodel for the runtime architecture of an interactive system:
the uims tool developers workshop. SIGCHI Bull., 24(1):32–37, 1992.

[VGB99] Vaghi, I., Greenhalgh, C., and Benford, S. Coping with Inconsistency due to Network
Delays in Collaborative Virtual Environments. Proceedings of the ACM symposium
on Virtual reality software and technology, pages 42–49, 1999.

122 Bibliography

[WAB+97] R. Waters, D. Anderson, J. Barrus, D. Brogan, S. Mckeown, T. Nitta, I. Sterns, and
W. Yerazunis. “Diamond Park and Spline: A Social Virtual Reality System with 3D
Animation, Spoken Interaction, and Runtime Modifiability”. Presence: Teleoperators
and Virtual Environments, 6(4):461–480, 1997.

[WHH+93] West, A., Howard, T., Hubbold, R., Murta, A., Snowdon, D., and Butler, D. AVIARY
- A Generic Virtual Reality Interface for Real Applications. Virtual Reality Systems
(sponsored by the BCS), May 1992, pages 213–236, 1993.

[WIA+04] Ryoichi Watanabe, Yuichi Itoh, Masatsugu Asai, Yoshifumi Kitamura, Fumio Kishino,
and Hideo Kikuchi. The Soul of ActiveCube — Implementing a Flexible, Multimodal,
Three-Dimensional Spatial Tangible Interface. Computers in Entertainment, 2(4):15–
15, 2004.

[WL97] Colin Ware and Kathy Lowther. Selection Using a One-eyed Cursor in a Fish Tank
VR Environment. ACM Trans. Comput.-Hum. Interact., 4(4):309–322, 1997.

[WL10] Chadwick A. Wingrave and Joseph J. LaViola. “Reflecting on the Design and Im-
plementation Issues of Virtual Environments”. Presence: Teleoper. Virtual Environ.,
19(2):179–195, 2010.

[WNR+07] Betsy Williams, Gayathri Narasimham, Bjoern Rump, Timothy P. McNamara,
Thomas H. Carr, John Rieser, and Bobby Bodenheimer. “Exploring Large Virtual
Environments with an HMD When Physical Space is Limited”. In Proc. of the 4th
Symp. on Applied perception in graphics and visualization, pages 41–48, 2007.

[WR99] Colin Ware and Jeff Rose. Rotating virtual objects with real handles. ACM Trans-
actions on Computer-Human Interaction, 6(2):162–180, 1999.

[YTAK95] M. Yoshida, Y. A. Tijerino, S. Abe, and F. Kishino. “A virtual space teleconferencing
system that supports intuitive interaction for creative and cooperative work”. In
SI3D’95: Proceedings of the symposium on Interactive 3D graphics, pages 115–122,
New York, NY, USA, 1995. ACM.

[Zam05] Chadi Zammar. “Interactions coopératives 3D distantes en environnements virtuels :
gestion des problèmes réseau”. PhD thesis, IRISA/INSA de Rennes, 2005.

[ZBM94] Shumin Zhai, William Buxton, and Paul Milgram. The “Silk Cursor”: Investigating
Transparency for 3D Target Acquisition. In CHI ’94: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 459–464, New York, NY,
USA, 1994. ACM Press.

[ZD03] Chadi Zammar and Thierry Duval. Management and Awareness of Delay Perception
when Interacting within Networked Virtual Environments. In VRIC 2003, Laval,
France, May 2003.

[ZF05] Xiaolong Zhang and George W. Furnas. “mCVEs: Using Cross-Scale Collaboration
to Support User Interaction with Multiscale Structures”. Presence: Teleop. & Virtual
Env., 14(1):31–46, 2005.

[ZJ98] Pavel Zahorik and Rick L. Jenison. Presence as being-in-the-world. Presence:
Teleoper. Virtual Environ., 7(1):78–89, February 1998.

Abstract

This document aims at providing some cues in order to address the essential requirements about
the design of 3D Collaborative Virtual Environments (CVE).

We have identified six essential topics that must be addressed when designing a CVE. For each
of them, we present a state of the art about the solutions that can address this topic, then we show
our own contributions: how we improve existing solutions and what are our new propositions.

Choosing a model for the distribution of a CVE

We need a distribution model to distribute as efficiently as possible the content of a CVE among
all the nodes involved in its execution, including the machines of the distant users. Our proposition
is to allow CVE designers to mix in a same CVE the three main distribution models usually
encountered: centralized on a server, totally replicated on each site, or distributed according to a
hybrid distribution model.

Choosing a model for the synchronization of these nodes

To maintain consistency between all the nodes involved in the execution of a CVE, we must choose
between a strong synchronization or a relaxed one, or an in-between solution. Our proposition
is to manage some temporary relaxation of the synchronization due to network breakdowns, with
several synchronization groups of users, making them aware of these network breakdowns, and to
allow some shared objects to migrate from one site to another.

Adapting the Virtual Environment to various hardware systems

VR applications must be adapted to the software and to the hardware input and output devices
that are available at run-time, in order to be able to deploy a CVE onto different kinds of hardware
and software. Our solution is the PAC-C3D software architectural model which is able to deal with
the three main distribution modes encountered in CVE.

Designing interaction and collaboration in the VE

Expressing the interactive and collaborative capabilities of the content of a CVE goes one step
beyond geometric modeling, by adding interactive and collaborative features to virtual objects.
We propose a unified model of dialog between interactive objects and interaction tools, with an
extension to Collada in order to describe interactive and collaborative properties of these interactive
objects and interaction tools.

Choosing the best metaphors for collaborative interactions

Most of the time single-user interaction tools and metaphors are not adapted to offer efficient
collaboration between users of a CVE. We adapt some of these tools and metaphors to collabo-
rative interactions, and we propose new really collaborative metaphors to enhance real multi-user
collaborative interactions, with dedicated collaborative feedback.

Embedding the users’ physical workspaces within the CVE

Taking into account users’ physical workspaces makes it possible to adapt a CVE to the hardware
input and output devices of the users, and to make them aware of their physical limitations and
of those of the other users, for better interaction and collaboration. We propose the Immersive
Interactive Virtual Cabin (IIVC) concept to embed such 3D representations in CVE.

