
Application-Level
Virtual Memory for

Object-Oriented Systems

Mariano Martinez Peck

RMod 1

Application-Level
Virtual Memory for

Object-Oriented Systems

Mariano Martinez Peck

RMod 2

Outline

1. Context, problem and introduction.

2. My proposal.

3. Validation.

4. Related work.

5. Implementation.

6. Conclusion and future work

3

Outline

1. Context, problem and introduction.

2. My proposal.

3. Validation.

4. Related work.

5. Implementation.

6. Conclusion and future work

3

Context

4

Context

4

Context

4

Context

4

Context

4

Context

4

We need to optimize
memory management

5

Context

• Object-oriented programming. Why?

Most modern and widespread.

Memory is usually automatically managed (GC).

• Dynamic languages. Why?

Powerful.

More and more used.

6

In this context of OOP,
is GC actually enough to

optimize memory
management?

7

% used objects
% unused objects

?
?

% used memory
% unused memory

?
?

8

(web app + CMS)

(standalone + lots of tools + large)

(mobile app)

(infrastructure)

(174 pack. 1364 class. 121010 LOC)

% used objects
% unused objects

% used memory
% unused memory

8

71%

29%

81%

19%

82%

18%

73%

27%

77%

23%
54% 46%

90%

10%

63%
37%

(web app + CMS)

(standalone + lots of tools + large)

(mobile app)

(infrastructure)

(174 pack. 1364 class. 121010 LOC)

% used objects
% unused objects

% used memory
% unused memory

8

71%

29%

81%

19%

82%

18%

73%

27%

77%

23%
54% 46%

90%

10%

63%
37%

(web app + CMS)

(standalone + lots of tools + large)

(mobile app)

(infrastructure)

(174 pack. 1364 class. 121010 LOC)

In average, %80 of the
objects are unused.

% used objects
% unused objects

% used memory
% unused memory

8

71%

29%

81%

19%

82%

18%

73%

27%

77%

23%
54% 46%

90%

10%

63%
37%

(web app + CMS)

(standalone + lots of tools + large)

(mobile app)

(infrastructure)

(174 pack. 1364 class. 121010 LOC)

In average, 77% of the
memory is unused.

In average, %80 of the
objects are unused.

% used objects
% unused objects

% used memory
% unused memory

8

Unused objects

Referenced.

GC cannot collect them!

Waste primary memory.

9

Unused objects

Referenced.

GC cannot collect them!

Waste primary memory.

No, the GC is not enough
9

OS’ Virtual Memory is
not the answer

• It only swaps pages.

• Developers cannot easily influence it.

10

A virtual memory for dynamic OOP languages
should be:

Application-aware

Efficient

Thesis statement

11

Outline

1. Context, problem and introduction.

2. My proposal.

3. Validation.

4. Related work.

5. Implementation.

6. Conclusion and future work

12

Outline

1. Context, problem and introduction.

2. My proposal.

3. Validation.

4. Related work.

5. Implementation.

6. Conclusion and future work

12

A model for efficient application-level virtual
memory:

• Designed for dynamic OOP

• Based on the swapping of object graphs

13

cloud

file database

Primary memory

Secondary memory

Swap in
needed object

 graphs

Swap out
unused object

 graphs

14

cloud

file database

Primary memory

Secondary memory

Swap in
needed object

 graphs

Swap out
unused object

 graphs

14

A

B C

E F

Y

Primary memory

Secondary memory

15

A

B C

E F

Y

Memory occupied by graph of unused objects

Primary memory

Secondary memory

15

A

B C

E F

Y

Memory occupied by graph of unused objects

bytes (A,B,C,E,F)

Swap out

Primary memory

Secondary memory

15

A

B C

E F

Y

Memory occupied by graph of unused objects

bytes (A,B,C,E,F)

Swap out

Primary memory

Secondary memory

Pa

15

Y

Memory occupied by graph of unused objects

bytes (A,B,C,E,F)

Swap out

Primary memory

Secondary memory

Pa

15

Y

bytes (A,B,C,E,F)

Primary memory

Secondary memory

Pa

15

Y

bytes (A,B,C,E,F)

Primary memory

Secondary memory

Pa

15

Y

bytes (A,B,C,E,F)

Primary memory

Secondary memory

Pa

Memory
Released

15

Y

bytes (A,B,C,E,F)

Swap in

Primary memory

Secondary memory

Pa

Memory
Released

15

A

B C

E F

Y

Primary memory

Secondary memory

15

A

B C

E F

Y

Primary memory

Secondary memory

16

A

B C

E F

DY

Primary memory

Secondary memory

16

A

B C

E F

DY

Memory occupied by graph of unused objects

Primary memory

Secondary memory

16

A

B C

E F

DY

Memory occupied by graph of unused objects

bytes (A,B,C,E,F)

Swap out

Primary memory

Secondary memory

16

A

B C

E F

DY

Memory occupied by graph of unused objects

bytes (A,B,C,E,F)

Swap out

Primary memory

Secondary memory

Pa

16

C

E

DY

Memory occupied by graph of unused objects

bytes (A,B,C,E,F)

Swap out

Primary memory

Secondary memory

Pa

16

C

E

DY

bytes (A,B,C,E,F)

Primary memory

Secondary memory

Pa

16

C

E

DY

bytes (A,B,C,E,F)

Primary memory

Secondary memory

Pa

16

C

E

DY

bytes (A,B,C,E,F)

Swap in

Primary memory

Secondary memory

Pa

16

C

E

DY

bytes (A,B,C,E,F)

Swap in

Primary memory

Secondary memory

Pa

16

C

E

DY

bytes (A,B,C,E,F)

Swap in

Primary memory

Secondary memory

Pa

16

A

B C

E F

DY

Primary memory

Secondary memory

C

E

16

A

B C

E F

DY

Primary memory

Secondary memory

C

E

16

A

B C

E F

DY

Primary memory

Secondary memory

C

INCORRECT!!!

E

16

Objectives

 Correctness: SwapIn(SwapOut(X))==X

 Maximize memory released.

 Minimize runtime overhead.

17

subsystems

Object
Graph

Swapper

Proxy
Toolbox

Object
Graph
Storage

Object Graph
Serializer

18

A

B C

E F

DY

Primary memory

Secondary memory

19

A

B C

E F

DY

Memory occupied by graph of unused objects

Primary memory

Secondary memory

19

A

B C

E F

DY

Memory occupied by graph of unused objects

bytes (A,B,C,E,F)

Swap out

Primary memory

Secondary memory

19

A

B C

E F

DY

Memory occupied by graph of unused objects

bytes (A,B,C,E,F)

Swap out

Primary memory

Secondary memory

A

C
facade objects

19

A

B C

E F

DY

Memory occupied by graph of unused objects

bytes (A,B,C,E,F)

Swap out

Primary memory

Secondary memory

A

C
facade objects
proxy

19

Pa

Pc

DY

Memory occupied by graph of unused objects

bytes (A,B,C,E,F)

Swap out

Primary memory

Secondary memory

facade objects
proxy

19

Pa

Pc

DY

bytes (A,B,C,E,F)

Primary memory

Secondary memory

facade objects
proxy

19

Pa

Pc

DY

bytes (A,B,C,E,F)

Primary memory

Secondary memory

facade objects
proxy

19

Pa

Pc

DY

bytes (A,B,C,E,F)

Swap in

Primary memory

Secondary memory

facade objects
proxy

19

Pa

Pc

A

B C

E F

DY

Primary memory

Secondary memory

facade objects
proxy

19

How to efficiently detect
and manage facade objects?

• Back-pointers.

• Whole memory scan. A

B C

E F

DY A

C

20

How to efficiently detect
and manage facade objects?

• Back-pointers.

• Whole memory scan. A

B C

E F

DY A

C

Marea provides an
efficient solution.

20

A

B C

D

Primary memory

Secondary memory

GraphTable

Swapping out

21

A

B C

D

Primary memory

Secondary memory

GraphTable

Swapping out

21

A

B C

D

Primary memory

Secondary memory

Graph ID: 42

GraphTable

 1) Assign graph ID

Swapping out

21

A

B C

D

Primary memory

Secondary memory

B’ A’ C’
1 2 3

42.swap

Graph ID: 42

GraphTable

 1) Assign graph ID
2) Serialize the object graph

Swapping out

21

A

B C

D

Primary memory

Secondary memory

B’ A’ C’
1 2 3

42.swap

Graph ID: 42

proxiesDict

Pa
42 2

Pc
42 3

Pb
42 1

GraphTable

 1) Assign graph ID
2) Serialize the object graph
3) Create and associate proxies

Swapping out

21

A Pa
B
C

Pb
Pc

A

B C

D

Primary memory

Secondary memory

B’ A’ C’
1 2 3

42.swap

Graph ID: 42

proxiesDict

Pa
42 2

Pc
42 3

Pb
42 1

GraphTable

 1) Assign graph ID
2) Serialize the object graph
3) Create and associate proxies

Swapping out

21

A Pa
B
C

Pb
Pc

A

B C

D

Primary memory

Secondary memory

B’ A’ C’
1 2 3

42.swap

Graph ID: 42

proxiesDict

Pa
42 2

Pc
42 3

Pb
42 1

GraphTable

 1) Assign graph ID
2) Serialize the object graph
3) Create and associate proxies

Swapping out

21

A Pa
B
C

Pb
Pc

A

B C

D

Primary memory

Secondary memory

B’ A’ C’
1 2 3

42.swap

Graph ID: 42

proxiesDict

Pa
42 2

Pc
42 3

Pb
42 1

GraphTable

 1) Assign graph ID
2) Serialize the object graph
3) Create and associate proxies
4) Replace original objects with proxies

Swapping out

21

A Pa
B
C

Pb
Pc

A

B C

D

Primary memory

Secondary memory

B’ A’ C’
1 2 3

42.swap

Graph ID: 42

proxiesDict

Pa
42 2

Pc
42 3

Pb
42 1

GraphTable

 1) Assign graph ID
2) Serialize the object graph
3) Create and associate proxies
4) Replace original objects with proxies

Swapping out

21

A Pa
B
C

Pb
Pc

A

B C

D

Primary memory

Secondary memory

B’ A’ C’
1 2 3

42.swap

Graph ID: 42

proxiesDict

Pa
42 2

Pc
42 3

Pb
42 1

GraphTable

 1) Assign graph ID
2) Serialize the object graph
3) Create and associate proxies
4) Replace original objects with proxies

Swapping out

21

APa
B
C

Pb
Pc

A

B C

D

Primary memory

Secondary memory

B’ A’ C’
1 2 3

42.swap

Graph ID: 42

proxiesDict

Pa
42 2

Pc
42 3

Pb
42 1

GraphTable

 1) Assign graph ID
2) Serialize the object graph
3) Create and associate proxies
4) Replace original objects with proxies

Swapping out

21

APa
B

C
Pb

Pc

A

B C

D

Primary memory

Secondary memory

B’ A’ C’
1 2 3

42.swap

Graph ID: 42

proxiesDict

Pa
42 2

Pc
42 3

Pb
42 1

GraphTable

 1) Assign graph ID
2) Serialize the object graph
3) Create and associate proxies
4) Replace original objects with proxies

Swapping out

21

APa
B
C

Pb
Pc

A

B C

D

Primary memory

Secondary memory

B’ A’ C’
1 2 3

42.swap

Graph ID: 42

proxiesDict

Pa
42 2

Pc
42 3

Pb
42 1

GraphTable

Pa Pb Pc
(weak array)

 1) Assign graph ID
2) Serialize the object graph
3) Create and associate proxies
4) Replace original objects with proxies
5) Update GraphTable

42

Swapping out

21

APa
B
C

Pb
Pc

A

B C

D

Primary memory

Secondary memory

B’ A’ C’
1 2 3

42.swap

Graph ID: 42

proxiesDict

Pa
42 2

Pc
42 3

Pb
42 1

GraphTable

Pa Pb Pc
(weak array)

 1) Assign graph ID
2) Serialize the object graph
3) Create and associate proxies
4) Replace original objects with proxies
5) Update GraphTable
6) GC runs

42

Swapping out

21

APa
B
C

Pb
Pc

D

Primary memory

Secondary memory

B’ A’ C’
1 2 3

42.swap

Pa
42 2

Pc
42 3

GraphTable

Pa Pc
(weak array)

 1) Assign graph ID
2) Serialize the object graph
3) Create and associate proxies
4) Replace original objects with proxies
5) Update GraphTable

nil

6) GC runs

42

Swapping out

21

APa
B
C

Pb
Pc

D

Primary memory

Secondary memory

B’ A’ C’
1 2 3

42.swap

Pa
42 2

Pc
42 3

GraphTable

Pa Pc
(weak array)

 1) Assign graph ID
2) Serialize the object graph
3) Create and associate proxies
4) Replace original objects with proxies
5) Update GraphTable

nil

6) GC runs

42

7) Compact (optional)

Swapping out

21

APa
B
C

Pb
Pc

D

Primary memory

Secondary memory

B’ A’ C’
1 2 3

42.swap

Pa
42 2

Pc
42 3

GraphTable

Pa Pc
(weak array)

 1) Assign graph ID
2) Serialize the object graph
3) Create and associate proxies
4) Replace original objects with proxies
5) Update GraphTable
6) GC runs

42

7) Compact (optional)

Swapping out

21

APa
B
C

Pb
Pc

D

Secondary memory

B’ A’ C’
1 2 3

42.swap

Pa
42 2

Pc
42 3

GraphTable

Pa Pc
(weak array)

42

Primary memory Swapping in

22

D

Secondary memory

B’ A’ C’
1 2 3

42.swap

Pa
42 2

Pc
42 3

GraphTable

Pa Pc
(weak array)

0) A proxy intercepts a message...

42

Primary memory Swapping in

22

D

Secondary memory

B’ A’ C’
1 2 3

42.swap

Pa
42 2

Pc
42 3

GraphTable

Pa Pc
(weak array)

0) A proxy intercepts a message...

42

Primary memory Swapping in

22

D

Secondary memory

B’ A’ C’
1 2 3

42.swap

Pa
42 2

Pc
42 3

GraphTable

Pa Pc
(weak array)

0) A proxy intercepts a message...

1) Materialize the object graph

42

Primary memory

A’

B’ C’

Swapping in

B’ A’ C’
1 2 3

materializedObjects

22

D

Secondary memory

B’ A’ C’
1 2 3

42.swap

proxiesDict

Pa
42 2

Pc
42 3

GraphTable

Pa Pc
(weak array)

0) A proxy intercepts a message...

1) Materialize the object graph
2) Associate proxies with
materialized objects

42

Primary memory

A’

B’ C’

Swapping in

B’ A’ C’
1 2 3

materializedObjects

22

D

Secondary memory

B’ A’ C’
1 2 3

42.swap

proxiesDict

Pa
42 2

Pc
42 3

GraphTable

Pa Pc
(weak array)

0) A proxy intercepts a message...

1) Materialize the object graph
2) Associate proxies with
materialized objects

42

Primary memory

A’

B’ C’

Swapping in

B’ A’ C’
1 2 3

materializedObjects

22

D

Secondary memory

B’ A’ C’
1 2 3

42.swap

proxiesDict

Pa
42 2

Pc
42 3

GraphTable

Pa Pc
(weak array)

0) A proxy intercepts a message...

1) Materialize the object graph
2) Associate proxies with
materialized objects

42

Primary memory

A’

B’ C’

Swapping in

B’ A’ C’
1 2 3

materializedObjects

22

D

Secondary memory

B’ A’ C’
1 2 3

42.swap

proxiesDict

Pa
42 2

Pc
42 3

GraphTable

Pa Pc
(weak array)

0) A proxy intercepts a message...

1) Materialize the object graph
2) Associate proxies with
materialized objects

42

Primary memory

A’

B’ C’

Swapping in

B’ A’ C’
1 2 3

materializedObjects

22

D

Secondary memory

B’ A’ C’
1 2 3

42.swap

proxiesDict

Pa
42 2

Pc
42 3

GraphTable

Pa Pc
(weak array)

0) A proxy intercepts a message...

1) Materialize the object graph
2) Associate proxies with
materialized objects

42

Primary memory

A’

B’ C’

Swapping in

B’ A’ C’
1 2 3

materializedObjects

22

D

Secondary memory

B’ A’ C’
1 2 3

42.swap

proxiesDict

Pa
42 2

Pc
42 3

GraphTable

Pa Pc
(weak array)

0) A proxy intercepts a message...

1) Materialize the object graph
2) Associate proxies with
materialized objects

42

Primary memory

A’

B’ C’

Swapping in

B’ A’ C’
1 2 3

materializedObjects

22

D

Secondary memory

B’ A’ C’
1 2 3

42.swap

proxiesDict

Pa
42 2

Pc
42 3

GraphTable

Pa Pc
(weak array)

0) A proxy intercepts a message...

1) Materialize the object graph
2) Associate proxies with
materialized objects

42

Primary memory

A’

B’ C’

Swapping in

B’ A’ C’
1 2 3

materializedObjects

Pa A’

22

D

Secondary memory

B’ A’ C’
1 2 3

42.swap

proxiesDict

Pa
42 2

Pc
42 3

GraphTable

Pa Pc
(weak array)

0) A proxy intercepts a message...

1) Materialize the object graph
2) Associate proxies with
materialized objects

42

Primary memory

A’

B’ C’

Swapping in

B’ A’ C’
1 2 3

materializedObjects

Pa A’

22

C’Pc

D

Secondary memory

B’ A’ C’
1 2 3

42.swap

proxiesDict

Pa
42 2

Pc
42 3

GraphTable

Pa Pc
(weak array)

0) A proxy intercepts a message...

1) Materialize the object graph
2) Associate proxies with
materialized objects
3) Replace proxies with original objects

42

Primary memory

A’

B’ C’

Swapping in

B’ A’ C’
1 2 3

materializedObjects

Pa A’

22

C’Pc

D

Secondary memory

B’ A’ C’
1 2 3

42.swap

proxiesDict

Pa
42 2

Pc
42 3

GraphTable

Pa Pc
(weak array)

0) A proxy intercepts a message...

1) Materialize the object graph
2) Associate proxies with
materialized objects
3) Replace proxies with original objects

42

Primary memory

A’

B’ C’

Swapping in

B’ A’ C’
1 2 3

materializedObjects

PaA’

22

C’Pc

D

Secondary memory

B’ A’ C’
1 2 3

42.swap

proxiesDict

Pa
42 2

Pc
42 3

GraphTable

Pa Pc
(weak array)

0) A proxy intercepts a message...

1) Materialize the object graph
2) Associate proxies with
materialized objects
3) Replace proxies with original objects

42

Primary memory

A’

B’ C’

Swapping in

B’ A’ C’
1 2 3

materializedObjects

PaA’

22

C’ Pc

D

Secondary memory

B’ A’ C’
1 2 3

42.swap

proxiesDict

Pa
42 2

Pc
42 3

GraphTable

Pa Pc
(weak array)

0) A proxy intercepts a message...

1) Materialize the object graph
2) Associate proxies with
materialized objects
3) Replace proxies with original objects
4) Clean

42

Primary memory

A’

B’ C’

Swapping in

B’ A’ C’
1 2 3

materializedObjects

PaA’

22

C’ Pc

D

Secondary memory

Pa
42 2

Pc
42 3

GraphTable

0) A proxy intercepts a message...

1) Materialize the object graph
2) Associate proxies with
materialized objects
3) Replace proxies with original objects
4) Clean

Primary memory

A’

B’ C’

Swapping in

22

C’ Pc

D

Secondary memory

GraphTable

0) A proxy intercepts a message...

1) Materialize the object graph
2) Associate proxies with
materialized objects
3) Replace proxies with original objects
4) Clean
5) GC runs

Primary memory

A’

B’ C’

Swapping in

22

C’ Pc

D

Secondary memory

GraphTable

0) A proxy intercepts a message...

1) Materialize the object graph
2) Associate proxies with
materialized objects
3) Replace proxies with original objects
4) Clean
5) GC runs

Primary memory

A’

B’ C’

Swapping in

22

C’ Pc

6) Forward message to object

D

Secondary memory

GraphTable

0) A proxy intercepts a message...

1) Materialize the object graph
2) Associate proxies with
materialized objects
3) Replace proxies with original objects
4) Clean
5) GC runs

Primary memory

A’

B’ C’

Swapping in

22

C’ Pc

6) Forward message to object

D

Secondary memory

B’ A’ C’
1 2 3

42.swap

Pa
42 2

Pc
42 3

GraphTable

Pa
(weak array)42

Primary memory Intersections...
Pc

23

D

Secondary memory

B’ A’ C’
1 2 3

42.swap

Pa
42 2

Pc
42 3

GraphTable

Pa
(weak array)42

Primary memory Intersections...
Pc

23

D

Secondary memory

B’ A’ C’
1 2 3

42.swap

Pa
42 2

Pc
42 3

GraphTable

Pa
(weak array)42

Primary memory Intersections...

1) Assign graph ID

Graph ID: 43

Pc

23

D

Secondary memory

B’ A’ C’
1 2 3

42.swap

Pa
42 2

Pc
42 3

GraphTable

Pa
(weak array)42

Primary memory Intersections...

1) Assign graph ID

2) Serialize the object graph

Graph ID: 43

Pc

23

D

Secondary memory

B’ A’ C’
1 2 3

42.swap

Pa
42 2

Pc
42 3

GraphTable

Pa
(weak array)42

Primary memory Intersections...

1) Assign graph ID

2) Serialize the object graph

Graph ID: 43

Pc

23

D

Secondary memory

GraphTable

Primary memory Intersections...

1) Assign graph ID

2) Serialize the object graph

Graph ID: 43

A’

B’ C’

Pc

23

D

Secondary memory

GraphTable

Primary memory Intersections...

1) Assign graph ID

2) Serialize the object graph

Graph ID: 43

D’ C’
1 2

43.swap

A’

B’ C’

Pc

23

D

Secondary memory

GraphTable

Primary memory Intersections...

1) Assign graph ID

2) Serialize the object graph

Graph ID: 43

D’ C’
1 2

43.swap

A’

B’ C’

Pc

23

...) as usually...

D

Secondary memory

GraphTable

Primary memory Intersections...

1) Assign graph ID

2) Serialize the object graph

Graph ID: 43

D’ C’
1 2

43.swap

A’

B’ C’

Pc

23

...) as usually...

We don’t want to swap in a graph while
swapping out another one

D

Secondary memory

B’ A’ C’
1 2 3

42.swap

Pa
42 2

Pc
42 3

GraphTable

Pa
(weak array)42

Primary memory Intersections...
Pc

24

D

Secondary memory

B’ A’ C’
1 2 3

42.swap

Pa
42 2

Pc
42 3

GraphTable

Pa
(weak array)42

Primary memory Intersections...
Pc

24

D

Secondary memory

B’ A’ C’
1 2 3

42.swap

Pa
42 2

Pc
42 3

GraphTable

Pa
(weak array)42

Primary memory Intersections...

1) Assign graph ID

Graph ID: 43

Pc

24

D

Secondary memory

B’ A’ C’
1 2 3

42.swap

Pa
42 2

Pc
42 3

GraphTable

Pa
(weak array)42

Primary memory Intersections...

1) Assign graph ID
2) Serialize the object graph (customize serializer)

Graph ID: 43

D’ Pc’
1 2

43.swap

Pc

24

D

Secondary memory

B’ A’ C’
1 2 3

42.swap

Pa
42 2

Pc
42 3

GraphTable

Pa
(weak array)42

Primary memory Intersections...

1) Assign graph ID
2) Serialize the object graph (customize serializer)
3) Create and associate proxies

Graph ID: 43

Ppc
43 2

D’ Pc’
1 2

43.swap

Pd
43 1

Pc

24

D

Secondary memory

B’ A’ C’
1 2 3

42.swap

Pa
42 2

Pc
42 3

GraphTable

Pa
(weak array)42

Primary memory Intersections...

1) Assign graph ID
2) Serialize the object graph (customize serializer)
3) Create and associate proxies
4) Replace original objects with proxies

Graph ID: 43

Ppc
43 2

D’ Pc’
1 2

43.swap

Pd
43 1

Pc

24

D

Secondary memory

B’ A’ C’
1 2 3

42.swap

Pa
42 2

Pc
42 3

GraphTable

Pa
(weak array)42

Primary memory Intersections...

1) Assign graph ID
2) Serialize the object graph (customize serializer)
3) Create and associate proxies
4) Replace original objects with proxies

Graph ID: 43

Ppc
43 2

D’ Pc’
1 2

43.swap

Pd
43 1

Pc

24

D

Secondary memory

B’ A’ C’
1 2 3

42.swap

Pa
42 2

Pc
42 3

GraphTable

Pa
(weak array)42

Primary memory Intersections...

1) Assign graph ID
2) Serialize the object graph (customize serializer)
3) Create and associate proxies
4) Replace original objects with proxies

Graph ID: 43

Ppc
43 2

D’ Pc’
1 2

43.swap

Pd
43 1

Pc

24

D

Secondary memory

B’ A’ C’
1 2 3

42.swap

Pa
42 2

Pc
42 3

GraphTable

Pa
(weak array)42

Primary memory Intersections...

1) Assign graph ID
2) Serialize the object graph (customize serializer)
3) Create and associate proxies
4) Replace original objects with proxies
5) Update GraphTable

Graph ID: 43

Ppc
43 2

D’ Pc’
1 2

43.swap

Pd
43 1

Pd
(weak array)

43

Pc

Ppc

24

D

Secondary memory

B’ A’ C’
1 2 3

42.swap

Pa
42 2

Pc
42 3

GraphTable

Pa
(weak array)42

Primary memory Intersections...

1) Assign graph ID
2) Serialize the object graph (customize serializer)
3) Create and associate proxies
4) Replace original objects with proxies
5) Update GraphTable
6) GC runs

Graph ID: 43

Ppc
43 2

D’ Pc’
1 2

43.swap

Pd
43 1

Pd
(weak array)

43

Pc

Ppc

24

Secondary memory

B’ A’ C’
1 2 3

42.swap

Pa
42 2

GraphTable

Pa
(weak array)42

Primary memory Intersections...

1) Assign graph ID
2) Serialize the object graph (customize serializer)
3) Create and associate proxies
4) Replace original objects with proxies
5) Update GraphTable
6) GC runsD’ Pc’

1 2

43.swap

Pd
43 1

Pd
(weak array)

43

nil

nil

24

Secondary memory

B’ A’ C’
1 2 3

42.swap

Pa
42 2

GraphTable

Pa
(weak array)42

Primary memory Intersections...

1) Assign graph ID
2) Serialize the object graph (customize serializer)
3) Create and associate proxies
4) Replace original objects with proxies
5) Update GraphTable
6) GC runs
7) Swap in graph 42

D’ Pc’
1 2

43.swap

Pd
43 1

Pd
(weak array)

43

nil

nil

24

Secondary memory

GraphTable

Primary memory Intersections...

1) Assign graph ID
2) Serialize the object graph (customize serializer)
3) Create and associate proxies
4) Replace original objects with proxies
5) Update GraphTable
6) GC runs
7) Swap in graph 42

D’ Pc’
1 2

43.swap

Pd
43 1

Pd
(weak array)

43
A’

B’ C’

nil

nil

24

Secondary memory

GraphTable

Primary memory Intersections...

1) Assign graph ID
2) Serialize the object graph (customize serializer)
3) Create and associate proxies
4) Replace original objects with proxies
5) Update GraphTable
6) GC runs
7) Swap in graph 42

D’ Pc’
1 2

43.swap

Pd
43 1

Pd
(weak array)

43
A’

B’ C’

8) Swap in graph 43...

nil

nil

24

Secondary memory

GraphTable

Primary memory Intersections...

1) Assign graph ID
2) Serialize the object graph (customize serializer)
3) Create and associate proxies
4) Replace original objects with proxies
5) Update GraphTable
6) GC runs
7) Swap in graph 42

D’ Pc’
1 2

43.swap

Pd
43 1

Pd
(weak array)

43
A’

B’ C’

8) Swap in graph 43...

nil

nil

24

Secondary memory

GraphTable

Primary memory Intersections...

1) Assign graph ID
2) Serialize the object graph (customize serializer)
3) Create and associate proxies
4) Replace original objects with proxies
5) Update GraphTable
6) GC runs
7) Swap in graph 42

A’

B’ C’

8) Swap in graph 43...

nil

24

D’

Pc’
42 3

Secondary memory

GraphTable

Primary memory Intersections...

1) Assign graph ID
2) Serialize the object graph (customize serializer)
3) Create and associate proxies
4) Replace original objects with proxies
5) Update GraphTable
6) GC runs
7) Swap in graph 42

A’

B’ C’

8) Swap in graph 43...

nil

24

D’

Pc’
42 3

Secondary memory

GraphTable

Primary memory Intersections...

1) Assign graph ID
2) Serialize the object graph (customize serializer)
3) Create and associate proxies
4) Replace original objects with proxies
5) Update GraphTable
6) GC runs
7) Swap in graph 42

A’

B’ C’

8) Swap in graph 43...

nil

24

D’

INCORRECT!!!

Pc’
42 3

Graph intersections

• Avoiding proxies for proxies (Ppc) does not solve
the problem either.
• Several scenarios for swapping in
swapped intersecting graphs.

25

Graph intersections

• Avoiding proxies for proxies (Ppc) does not solve
the problem either.
• Several scenarios for swapping in
swapped intersecting graphs.

Marea solves all these
scenarios and challenges.

25

Outline

1. Context, problem and introduction.

2. My proposal.

3. Validation.

4. Related work.

5. Implementation.

6. Conclusion and future work

26

Outline

1. Context, problem and introduction.

2. My proposal.

3. Validation.

4. Related work.

5. Implementation.

6. Conclusion and future work

26

Experiment
1. We swapped out most classes

with their instances.

2. We navigated, used and tested
each application

1. Swapped in all needed
graphs for typical uses.

2. Tests also for correctness.

3. We measured differences.

(web app + CMS)

(standalone + lots of tools + large)

(mobile app)

(infrastructure)

(174 pack. 1364 class. 121010 LOC)

27

0

25

50

75

100

DBXTalk Moose DrGeo Pharo

%
 o

f m
em

or
y

Original = 100% With Marea Measured minimun

28

0

25

50

75

100

DBXTalk Moose DrGeo Pharo

%
 o

f m
em

or
y

Original = 100% With Marea Measured minimun

Marea released between 25%
and 40% of the used memory.

28

0

25

50

75

100

DBXTalk Moose DrGeo Pharo

%
 o

f m
em

or
y

Original = 100% With Marea Measured minimun

There is still
 room for improvement.

Marea released between 25%
and 40% of the used memory.

28

Speed overhead
• For typical uses is 0%.

• For non covered uses:

29

0

75

150

225

300

51 236 777 5758 21753

T
im

e
(m

s)

Graph size (amount of objects)

Swap in Swap out

Speed overhead
• For typical uses is 0%.

• For non covered uses:

29

0

75

150

225

300

51 236 777 5758 21753

T
im

e
(m

s)

Graph size (amount of objects)

Swap in Swap out

Swapping in is faster
than swapping out.

Speed overhead
• For typical uses is 0%.

• For non covered uses:

29

0

75

150

225

300

51 236 777 5758 21753

T
im

e
(m

s)

Graph size (amount of objects)

Swap in Swap out

The graph size has a small
impact in small/medium graphs.

Swapping in is faster
than swapping out.

Speed overhead
• For typical uses is 0%.

• For non covered uses:

29

Outline

1. Context, problem and introduction.

2. My proposal.

3. Validation.

4. Related work.

5. Implementation.

6. Conclusion and future work

30

Outline

1. Context, problem and introduction.

2. My proposal.

3. Validation.

4. Related work.

5. Implementation.

6. Conclusion and future work

30

Comparison criteria
• Efficient object-based swapping unit.

• Uniformity.

• Reversibility.

• Automatic swapping in.

• Automatic swapping out.

• Transparency.

• Controllability at the application level.

• Portability.
31

OS related

Runtimes

OS related
Language level and libraries

32

OS related

Runtimes

OS related
Language level and libraries

32

OS related

Runtimes

OS related
Language level and libraries

32

OS related

Runtimes

OS related
Language level and libraries

32

OS related

Runtimes

OS related
Language level and libraries

32

OS related

Runtimes

OS related
Language level and libraries

In progress

32

Outline

1. Context, problem and introduction.

2. My proposal.

3. Validation.

4. Related work.

5. Implementation.

6. Conclusion and future work

33

Outline

1. Context, problem and introduction.

2. My proposal.

3. Validation.

4. Related work.

5. Implementation.

6. Conclusion and future work

33

Object
Graph

Swapper

Proxy
Toolbox

Object
Graph
Storage

Object Graph
Serializer

in

34

• An extensible, uniform and fast serializer.

• General-purpose.

• Used in research and industry.

• Integrated in Pharo 2.0 and ported to Squeak,
VisualWorks and Newspeak.

• ESUG Innovation Technology Awards 2011.

35

• An extensible, uniform and fast serializer.

• General-purpose.

• Used in research and industry.

• Integrated in Pharo 2.0 and ported to Squeak,
VisualWorks and Newspeak.

• ESUG Innovation Technology Awards 2011.

Martin Dias, Mariano Martinez Peck, Stéphane Ducasse and
Gabriela Arévalo. Fuel: A Fast General Purpose Object
Graph Serializer. Software: Practice and Experience, 2012.

35

• Proxify all kind of objects.

• Low memory footprint.

• Intercepting all messages.

• Clear division between proxies and handlers.

• General-purpose.

36

• Proxify all kind of objects.

• Low memory footprint.

• Intercepting all messages.

• Clear division between proxies and handlers.

• General-purpose.

[Martinez Peck 2012a] Mariano Martinez Peck, Noury Bouraqadi,
Stéphane Ducasse, Luc Fabresse and Marcus Denker. Ghost: A Uniform

and Lightweight Proxy Implementation. Science of Computer
Programming, 2012 (submitted + passed first review round).

36

Object replacement

• Provided by regular VM (#become:)

Specific to Smalltalk.

• Different implementations

Full memory scan in Pharo VM.

Object header swapping in VisualWorks VM.

Object tables’ entries swapping in Gemstone VM.

37

Outline

1. Context, problem and introduction.

2. My proposal.

3. Validation.

4. Related work.

5. Implementation.

6. Conclusion and future work

38

Outline

1. Context, problem and introduction.

2. My proposal.

3. Validation.

4. Related work.

5. Implementation.

6. Conclusion and future work

38

For an improved automatic memory
management we need:

GC
+

 An application-level virtual memory

We propose

Conclusion

39

Results

Correct
• Facade objects.
• Graph intersection.
• Serializer and proxies for all type of objects.
• Proxies intercept all messages.
• Support proxies in primitives.

40

Results
Maximizes memory released

• Small proxies.
• Object graphs as swapping unit.
• Proxies only for facade objects.

Minimizes speed overhead
• Fast serialization.
• Fast detection of facade objects.
• Avoid unnecessary swap in.

41

Future Work

• Automatic graphs detection.

42

Visualizing Objects Usage

43

Visualizing Objects Usage

43

Customized VM to

trace object usage

Visualizing Objects Usage

43

Customized VM to

trace object usage

Future Work

• Automatic graphs detection.

• Study possible integration with GC.

• Partial swap in.

44

List of publications

 [Dias 2011] Martin Dias, Mariano Martinez Peck, Stéphane Ducasse and Gabriela
Arévalo. Clustered Serialization with Fuel. In Proceedings of ESUG International Workshop
on Smalltalk Technologies (IWST 2011), Edinburgh, Scotland, 2011.

 [Martinez Peck 2010a] Mariano Martinez Peck, Noury Bouraqadi, Marcus Denker,
Stéphane Ducasse and Luc Fabresse. Experiments with a Fast Object Swapper. In
Smalltalks 2010, Concepción del Uruguay, Argentina, 2010.

 [Martinez Peck 2010b] Mariano Martinez Peck, Noury Bouraqadi, Marcus Denker,
Stéphane Ducasse and Luc Fabresse. Visualizing Objects and Memory Usage. In Smalltalks
2010, Concepción del Uruguay, Argentina, 2010.

 [Martinez Peck 2011a] Mariano Martinez Peck, Noury Bouraqadi, Marcus Denker,
Stéphane Ducasse and Luc Fabresse. Efficient Proxies in Smalltalk. In Proceedings of ESUG
International Workshop on Smalltalk Technologies (IWST 2011), Edinburgh, Scotland, 2011.

 [Martinez Peck 2011b] Mariano Martinez Peck, Noury Bouraqadi, Marcus Denker,
Stéphane Ducasse and Luc Fabresse. Problems and Challenges when Building a
Manager for Unused Objects. In Proceedings of Smalltalks 2011 International Workshop,
Bernal, Buenos Aires, Argentina, 2011.

Conferences

45

List of publications

 [Martinez Peck 2011c] Mariano Martinez Peck, Noury Bouraqadi, Stéphane Ducasse
and Luc Fabresse. Object Swapping Challenges: an Evaluation of ImageSegment.
Journal of Computer Languages, Systems and Structures, vol. 38, no. 1, pages 1–15, nov 2011.

 [Dias 2012] Martin Dias, Mariano Martinez Peck, Stéphane Ducasse and Gabriela
Arévalo. Fuel: A Fast General Purpose Object Graph Serializer. Software: Practice and
Experience, 2012.

 [Martinez Peck 2012a] Mariano Martinez Peck, Noury Bouraqadi, Stéphane Ducasse,
Luc Fabresse and Marcus Denker. Ghost: A Uniform and Lightweight Proxy
Implementation. Science of Computer Programming, 2012 (submitted + passed first
review round).

 [Martinez Peck 2012b] Mariano Martinez Peck, Noury Bouraqadi, Marcus Denker,
Stéphane Ducasse and Luc Fabresse. Object-Based Virtual Memory Brought To The
Application Level. Journal of Object Technology, 2012 (submitted).

Journals

46

Mariano Martinez Peck

• We implemented a novel and efficient
application-level virtual memory for object-
oriented systems.

• Almost no need from the VM and fully
implemented in the language side.

• Users can decide and influence what and when
to swap.

Thanks!

RMod

In summary...

47

