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We need to optimize 
memory management
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Context

• Object-oriented programming. Why?

Most modern and widespread. 

Memory is usually automatically managed (GC).

• Dynamic languages. Why?

Powerful.

More and more used. 
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In this context of OOP, 
is GC actually enough to 

optimize memory 
management?
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Unused objects

Referenced.

GC cannot collect them!

Waste primary memory.
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Unused objects

Referenced.

GC cannot collect them!

Waste primary memory.

No, the GC is not enough
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OS’ Virtual Memory is 
not the answer

• It only swaps pages.

• Developers cannot easily influence it. 
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A virtual memory for dynamic OOP languages 
should be: 

Application-aware

Efficient

Thesis statement
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A model for efficient application-level virtual 
memory:

• Designed for dynamic OOP

• Based on the swapping of object graphs
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Objectives

 Correctness:  SwapIn(SwapOut(X))==X

 Maximize memory released. 

 Minimize runtime overhead.
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subsystems

Object 
Graph 

Swapper

Proxy 
Toolbox

Object 
Graph 
Storage

Object Graph
Serializer
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How to efficiently detect 
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• Back-pointers.
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How to efficiently detect 
and manage facade objects?

• Back-pointers.

• Whole memory scan.  A

B C

E F

DY A

C

Marea provides an 
efficient solution.
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Graph intersections

• Avoiding proxies for proxies (Ppc) does not solve 
the problem either.
• Several scenarios for swapping in 
swapped intersecting graphs.
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Graph intersections

• Avoiding proxies for proxies (Ppc) does not solve 
the problem either.
• Several scenarios for swapping in 
swapped intersecting graphs.

Marea solves all these 
scenarios and challenges.
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Experiment
1. We swapped out most classes 

with their instances. 

2. We navigated, used and tested 
each application 

1. Swapped in all needed 
graphs for typical uses.

2. Tests also for correctness.

3. We measured differences. 

(web app + CMS)

(standalone + lots of tools + large)

(mobile app)

(infrastructure)

(174 pack. 1364 class. 121010 LOC)
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There is still 
 room for improvement.

Marea released between 25% 
and 40% of the used memory. 
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Speed overhead
• For typical uses is 0%.

• For non covered uses:
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The graph size has a small 
impact in small/medium graphs.

Swapping in is faster 
than swapping out.

Speed overhead
• For typical uses is 0%.

• For non covered uses:
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Comparison criteria
• Efficient object-based swapping unit.

• Uniformity.

• Reversibility.

• Automatic swapping in.

• Automatic swapping out.

• Transparency.

• Controllability at the application level.

• Portability.
31
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OS related

Runtimes

OS related
Language level and libraries

In progress
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• An extensible, uniform and fast serializer. 

• General-purpose. 

• Used in research and industry.

• Integrated in Pharo 2.0 and ported to Squeak, 
VisualWorks and Newspeak.

• ESUG Innovation Technology Awards 2011.

35



• An extensible, uniform and fast serializer. 

• General-purpose. 

• Used in research and industry.

• Integrated in Pharo 2.0 and ported to Squeak, 
VisualWorks and Newspeak.

• ESUG Innovation Technology Awards 2011.

Martin Dias, Mariano Martinez Peck, Stéphane Ducasse and 
Gabriela Arévalo. Fuel: A Fast General Purpose Object 
Graph Serializer. Software: Practice and Experience, 2012.
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• Proxify all kind of objects.

• Low memory footprint.

• Intercepting all messages. 

• Clear division between proxies and handlers.

• General-purpose.
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• Proxify all kind of objects.

• Low memory footprint.

• Intercepting all messages. 

• Clear division between proxies and handlers.

• General-purpose.

[Martinez Peck 2012a] Mariano Martinez Peck, Noury Bouraqadi, 
Stéphane Ducasse, Luc Fabresse and Marcus Denker. Ghost: A Uniform 

and Lightweight Proxy Implementation. Science of Computer 
Programming, 2012 (submitted + passed first review round).
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Object replacement

• Provided by regular VM (#become:)

Specific to Smalltalk.

• Different implementations

Full memory scan in Pharo VM.

Object header swapping in VisualWorks VM.

Object tables’ entries swapping in Gemstone VM.
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For an improved automatic memory 
management we need: 

GC 
+

 An application-level virtual memory

We propose

Conclusion
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Results

Correct 
• Facade objects.
• Graph intersection.
• Serializer and proxies for all type of objects.
• Proxies intercept all messages. 
• Support proxies in primitives.
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Results
Maximizes memory released

• Small proxies.
• Object graphs as swapping unit.
• Proxies only for facade objects.

Minimizes speed overhead
• Fast serialization.
• Fast detection of facade objects.
• Avoid unnecessary swap in. 
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Future Work 

• Automatic graphs detection.
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Visualizing Objects Usage
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Future Work 

• Automatic graphs detection.

• Study possible integration with GC.

• Partial swap in.
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Mariano Martinez Peck

• We implemented a novel and efficient 
application-level virtual memory for object-
oriented systems.

• Almost no need from the VM and fully 
implemented in the language side. 

• Users can decide and influence what and when 
to swap. 

Thanks!

RMod

In summary...
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