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Introduction

Ce mémoire présente une partie de mon activité de recherche postérieure à la thèse,
soutenue en 2000. Plus particulièrement, je décris ici les résultats obtenus à partir de
2004, en tant que Mâıtre de Conférences à l’Institut des Sciences de l’Ingénieur de Toulon
et du Var et membre de l’actuel Institut de mathématiques de Toulon et du Var.

Mon travail de recherche est centré autour des solutions faibles des systèmes hyper-
boliques de lois de conservation. Je me suis intéressée à l’existence, l’unicité et la stabilité
des solutions du problème de Cauchy et aux limites, avec applications à la dynamique
des fluides et des matériaux compressibles, le trafic routier et la théorie mathématique
du contrôle.
De 2000 à 2003, j’ai eu des contrats postdoctoraux (CNRS et Communauté Européenne)
au Centre de Mathématiques Appliquées de l’Ecole Polytechnique, sous la direction de
P.G. LeFloch. Pendant cette période, j’ai étudié la stabilité en norme L1 des solutions
entropiques des systèmes de lois de conservation [A8, A10], ainsi que certains systèmes
avec termes source et résonants [A6, A7, A9].
J’ai commencé à m’intéresser à la modélisation du trafic routier lors du séjour de
R.M. Colombo en qualité de professeur invité à l’Université de Toulon en 2004. Ce
mémoire est une synthèse des résultats que j’ai obtenus dans ce domaine.

L’intérêt des mathématiciens appliqués pour la dynamique du trafic routier et pédestre
a considérablement augmenté ces dernières années. La modélisation associée peut se faire
à différentes échelles : on distingue ainsi des modèles de description microscopiques (par-
ticulaires), mésoscopiques (cinétiques) et macroscopiques (dynamique des fluides). Les
modèles macroscopiques de trafic routier représentent une application de la théorie des
lois de conservation. Dans ce contexte, plusieurs modèles ont été proposés. Je me suis
principalement intéressée au modèle de trafic routier avec transition de phase introduit
par R.M. Colombo [40] dans le but de retrouver les relations observées expérimentalement
entre le flux et la densité. Le modèle consiste en une loi de conservation scalaire qui
décrit l’écoulement “fluide”, et un système de deux lois de conservation (il s’agit d’un
système de Temple) pour décrire le comportement “congestionné”. Le couplage est
obtenu par l’introduction d’une transition de phase entre la phase fluide et la phase
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1. INTRODUCTION

congestionnée.
Dans [A4] nous montrons un résultat de stabilité pour le problème de Cauchy et

pour le problème aux limites, pour toute donnée à variation totale bornée. Du point
de vue théorique, il s’agit du premier exemple d’un résultat de bonne position globale
pour des lois de conservation avec transition de phase, qui est indépendant du nombre
de transitions dans la solution. Ce résultat est également important du point de vue des
applications aux problèmes de contrôle et d’optimisation.

Le même modèle peut être utilisé sur un réseau représentant un ensemble de routes
avec des jonctions. Ce problème fait l’objet d’une étude en collaboration avec R.M. Co-
lombo et B. Piccoli [P1]. Dans ce cas, le problème consiste à définir correctement le
solveur de Riemann au niveau des jonctions, de façon à obtenir l’unicité de la solution.
En utilisant la méthode de suivi de fronts, nous démontrons l’existence globale des
solutions.

En m’inspirant du modèle de Colombo, j’ai proposé dans [A5] un couplage du modèle
2 × 2 de Aw et Rascle [8] et du modèle LWR [86, 91], en introduisant une transition
de phase entre le flux fluide et le flux congestionné. Ceci permet un meilleur accord
avec les données expérimentales, et présente l’avantage de corriger certains défauts du
modèle 2 × 2 d’origine [8]. D’autres couplages et une description générale des modèles
avec transition de phase sont présentés dans [P3].

D’un point de vue numérique, la présence des transitions de phase rend difficile
l’utilisation des méthodes classiques, comme par exemple la méthode de Godunov. Dans
les faits, puisque le domaine du modèle n’est pas convexe (il n’est même pas connexe),
l’étape de projection inhérente à la méthode de Godunov donne généralement des valeurs
qui n’appartiennent pas au domaine. En collaboration avec C. Chalons [A1], nous avons
modifié l’algorithme habituel de façon à contourner ce problème. Plus précisément, on
introduit des cellules modifiées en suivant les fronts des transitions de phase. Ainsi, on
effectue l’étape de projection sur des valeurs qui appartiennent à une seule et même
phase. Le retour aux cellules initiales se fait par une stratégie d’échantillonnage. Une
extension à l’ordre deux en temps et en espace est également proposée.

Dans le même esprit, dans [A2] nous avons proposé un algorithme de type Transport-
équilibre pour assurer une bonne approximation des discontinuités de contact du modèle
Aw-Rascle. L’objectif est de supprimer les oscillations importantes générées par la
méthode de Godunov à proximité de ces discontinuités. Pour cela, nous traitons séparé-
ment les discontinuités de contact en utilisant une stratégie d’échantillonnage a la
Glimm, et continuons à utiliser le schéma de Godunov pour les autres ondes. Comme
cela est attendu, l’algorithme obtenu n’est pas conservatif, mais les tests effectués sem-
blent montrer que la convergence vers la solution exacte est garantie. Par ailleurs, ce
qui nous parâıt à la fois très intéressant et nouveau dans ce contexte, c’est la possibilité
de démontrer une propriété de consistance forte de la méthode, ainsi que la validité d’un
principe du maximum sur les deux invariants de Riemann.

Un autre problème issu de la modélisation du trafic routier, intéressant dans un
cadre plus général, est l’étude d’une loi de conservation scalaire (ou plus généralement
d’un système de lois de conservation) soumise à une contrainte unilatérale en un point
(comme dans le cas d’un péage) ou sur un intervalle (comme dans le cas d’une limite
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1. INTRODUCTION

de flux ou de vitesse). Dans [A3], un premier résultat d’existence et de stabilité par
rapport à la donnée initiale est obtenu par la méthode de suivi de fronts dans un cadre
BV. Le point fondamental de cette construction est le choix d’un solveur de Riemann
non classique et la disponibilité d’un critère d’entropie. Ensuite, nous construisons une
approximation du problème par des lois de conservation avec flux discontinu en temps
et en espace, comme dans [76, 77, 37]. Par un passage à la limite, nous retrouvons la
solution faible entropique du problème originel. Cela renforce le premier résultat.
Des lois de conservation avec contraintes unilatérales ont déjà été étudiées dans la
littérature (voir [16], et ses références), mais avec des motivations et des résultats
différents. A notre connaissance, le problème que nous avons proposé n’avait jamais
été étudié.

La construction d’un schéma numérique pour le problème avec contrainte a fait
l’objet d’une étude en collaboration avec B. Andreianov et N. Seguin [P4]. Nous mon-
trons d’abord que le problème peut être interprété du point de vue de la théorie des lois
de conservation avec flux discontinu développée par Adimurthi et al. [3] et Bürger et
al. [26]. Cela nous permet de reformuler la définition de solution entropique par des con-
ditions qui s’avèrent plus adaptées à l’étude de la convergence des schémas numériques.
Par ailleurs, nous étendons les résultats d’existence et d’unicité au cadre L∞.
Le schéma numérique pour le problème avec contrainte est construit à partir d’un schéma
volumes finis monotone général. La convergence est démontrée en utilisant une notion
nouvelle de solution processus [61].

Les problèmes avec contrainte unilatérale trouvent une application dans la modélisa-
tion du trafic routier et les mouvements de foule. Des travaux sont en cours dans cette
direction en collaboration avec R.M. Colombo et M.D. Rosini. Les premiers résultats
sont présentés dans [P2].

La plupart des résultats analytiques présentés dans ce mémoire ont été obtenus en
appliquant la méthode du suivi des fronts. Cette technique, qui permet de construire
des solutions approchées constantes par morceaux, a été introduite dans les papiers de
Dafermos [52] pour les équations scalaires, et DiPerna [57] pour les systèmes 2 × 2.
Bressan [20] et Risebro [92] ont généralisé cette technique aux systémes n × n. La
méthode du suivi des fronts génère des approximations très précises, et permet de bien
capturer les caractéristiques des solutions.

L’étude de la stabilité des solutions a été conduit selon l’approche du semigroupe
introduit par Bressan dans [21], puis développé dans nombreuses publications, en parti-
culier dans [23, 24].

Afin de permettre une plus grande accessibilité pour tous les rapporteurs, les autres
chapitres de ce mémoire ont été rédigés en anglais.
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[A1 ] C. Chalons et P. Goatin, “Godunov scheme and sampling technique for com-
puting phase transitions in traffic flow modeling”, Interfaces and Free Boundaries,
10 (2) (2008), 195-219.
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[A3 ] R.M. Colombo et P. Goatin, “A well posed conservation law with a variable
unilateral constraint”, J. Differential Equations 234 (2007), 654-675.

[A4 ] R.M. Colombo, P. Goatin et F. Priuli, “Global well posedness of a traffic flow
model with phase transitions”, Nonlinear Anal. Ser. A: Theory, Methods & Ap-
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[A5 ] P. Goatin, “ The Aw-Rascle vehicular traffic flow model with phase transitions”,
Math. Comput. Modeling. 44 (2006), 287-303.
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hyperbolic systems of balance laws”, Ann. Inst. H. Poincaré (C) Nonlinear Analysis
21 (2004) 6, 881-902.

[A7 ] P. Goatin et L.Gosse, “Decay of positive waves for n × n hyperbolic systems of
balance laws”, Proc. AMS. 132 (2004) 6, 1627-1637.

[A8 ] P. Goatin et P.G. LeFloch, “ L1 continuous dependence for the Euler equations
of compressible fluids dynamics”, Comm. Pure Appl. Anal. 2 (2003) 1, 107-137.

[A9 ] P. Goatin, “One sided estimates and uniqueness for hyperbolic systems of bal-
ance laws”, Math. Models Methods Appl. Sci. 13 (2003) 4, 527-543.
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Actes de congrès avec comité de lecture

[C1 ] P. Goatin, “Traffic flow model with phase transitions on road networks”, Netw.
Heterog. Media, à parâıtre.

[C2 ] P. Goatin, “Analysis and numerical approximation of a traffic flow model with
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transition model for vehicular traffic”, soumis.

[P4 ] B. Andreianov, P. Goatin et N. Seguin, “Finite volume schemes for locally
constrained conservation laws”, soumis.

5



1. INTRODUCTION

6



2

Vehicular traffic flow models with

phase transitions

Macroscopic traffic flow models are derived from fluid dynamics, and are intended to
describe the evolution of macroscopic variables such as the density and the mean velocity
of vehicles. To this aim, the road is represented by an (infinite) line, and car’s size is
assumed negligible compared to the road length.

The first model of this type was proposed by Lighthill and Whitham [86], and inde-
pendently by Richards [91], and it is known as the LWR model. It consists in a scalar
equation that expresses the conservation of the number of cars:

∂tρ + ∂xf(ρ) = 0, (2.1)

where ρ = ρ(t, x) is the mean traffic density, usually intended as the number of vehicles
per unit length, and f(ρ) is the traffic flow, i.e. the number of vehicles per time unit.
In scalar models, also called first order models, the flux is assumed to depend only on
the density, and can be expressed as

f(ρ) = ρv(ρ),

where the mean velocity v is a non-negative, non-increasing function, but more com-
plex closure relations, involving the density gradient, can be considered (see [15] and
references therein). However, this phenomenological relation is valid in steady state
conditions, and it is not realistic in more complicate situations. In particular, as shown
in Fig. 2.1, the fundamental diagram of equation (2.1) in the (ρ, f)-plane does not quali-
tatively match the experimental data at high traffic densities (we refer the reader to the
paper of Helbing [71, Section II] for a description of the features recovered by a detailed
analysis of the fundamental diagram). The experimental data suggest that a realistic
traffic flow model should exhibit two qualitative different behaviors:

1. for low densities, the flow is free and can be described by a scalar model of LWR
type;

7



2. VEHICULAR TRAFFIC FLOW MODELS WITH PHASE
TRANSITIONS

0 R

ρv

ρ

Figure 2.1: Left: standard flow for the LWR model. Right: experimental data, taken
from [81]; q denotes the flux ρv.

2. when density increases, the flow becomes congested and covers a 2-dimensional
domain in the fundamental diagram: a “second order” model (with two equations)
seems more appropriate to describe this dynamic.

A first prototype of second order models was proposed by Payne [90] and Whitham [101]:

{
∂tρ + ∂x(ρv) = 0 ,
∂t(ρv) + ∂x(ρv2 + p(ρ))) = 0 ,

(2.2)

where p(ρ) is a “pressure” term in analogy to the equations of gas dynamics. The main
drawback of this model is that it does not satisfy the two principles usually required for
a traffic flow model, that are:

a) drivers react to what happens in front of them, thus no information travels faster
than cars;

b) density ρ and velocity v must stay non-negative and bounded.

It appears that the Payne-Whitham model (2.2) may display negative velocities. More-
over, the eigenvalues of the system (2.2) are λ1,2 = v±

√
p′(ρ), so part of the informations

travels with speed always bigger than the cars’ one (we refer the reader to Daganzo’s
paper [54]). These failures have been corrected by Aw and Rascle [8], by replacing the
spatial derivative ∂x of the pressure in the second equation by the convective derivative
∂t + v∂x, getting {

∂tρ + ∂x(ρv) = 0 ,
∂t(ρ(v + p(ρ)) + ∂x(ρv(v + p(ρ))) = 0 .

(2.3)

Thus, the quantity p(ρ) plays the role of an “anticipation factor” that takes into account
the reactions of the drives to what happens in front of them. Nevertheless, as pointed
out by the authors, the Aw-Rascle model is not well-posed near the vacuum ρ = 0. This
fact is intended to reproduce instabilities that might appear in real situations at low car
densities, but it is a source of difficulties from the mathematical point of view. Global
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2. VEHICULAR TRAFFIC FLOW MODELS WITH PHASE
TRANSITIONS

well posedness is needed for analytical and numerical results.
Another second order model has been proposed by Colombo in [39]:

{
∂tρ + ∂x(ρv) = 0 ,
∂tq + ∂x((q − Q)v) = 0 ,

(2.4)

where q is a sort of “weighted momentum” in analogy to gas dynamics, Q is a parameter
depending on the road under consideration and a closure law for v = v(ρ, q) is given.
This model displays a maximal car density, that is the only positive density at which
velocity is zero. In other words, whenever a queue at zero speed forms, the maximal
density is reached. Viceversa, cars cannot stop if maximal density is not reached.

In order to describe the different behaviors observed between free and congested
traffic, some models with phase transitions have been introduced [59, 40, 68, 19]. In this
Chapter, I describe the models that I have studied and the analytical results that I have
obtained.

A phase transition is a discontinuity separating a state of free traffic from one in the
congested phase.

In the following I will denote by Ωf (respectively Ωc) the domain of free (respectively
congested) data, and I will use the unified notation

∂tu + ∂xf(u) = 0 , u ∈ Ω = Ωf ∪ Ωc , (2.5)

for the models of phase transitions under consideration, with
{

u = uf and f(u) = ff (uf ) , if u ∈ Ωf ,
u = uc and f(u) = fc(uc) , if u ∈ Ωc .

It is important to keep in mind that u and f(u) have not the same meaning in the free
phase and in the congested phase.

2.1 The scalar model

In [59] the authors select a variation of the “Edie formulation” [60] as the best among
several traffic models, see also [88] or [102, Model B]. Essentially, it consists of the
Lighthill-Whitham [86] and Richards [91] (LWR) model with a fundamental diagram
as in Fig. 2.2. Then, the conservation of the total number of vehicles along any road
segment reads

∂tρ + ∂x (ρ v(ρ)) = 0 , (2.6)

where the speed v and the flow ρv are defined on a disconnected set, its two connected
components being two disjoint intervals representing the free and the congested phases.

Proposition 2.1.1 Let Ωf = [0, Ř], Ωc = [R̂,R], with 0 < Ř < R̂ < R, and v : Ωf ∪
Ωc 7→ R be smooth, decreasing and such that v(R) = 0. Then, for all ρo ∈ L1(R; Ωf∪Ωc),
(2.6) admits a unique weak entropy solution ρ ∈ C0

(
R

+;L1(R; Ωf ∪ Ωc)
)

attaining ρo

as initial datum and which is non expansive with respect to the L1 norm.
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2. VEHICULAR TRAFFIC FLOW MODELS WITH PHASE
TRANSITIONS

ρv

ρ

Figure 2.2: The fundamental diagram in the Edie hypothesis, see [59, 60].

Above, R is the maximal car density, which corresponds to a traffic jam. Note that
the invariance of Ωf ∪ Ωc implies that density and speed remain positive and bounded.
The proof of Proposition 2.1.1 follows from the slightly more general Proposition 2.1.2
below.

Let f : Ω 7→ R be smooth with Ω = Ωf ∪ Ωc. The case of more than two phases is
entirely similar. The standard Kružkov Theorem, see for instance [22, § 6.2 and 6.3] is
directly extended to the present situation.

Proposition 2.1.2 Let f : Ω 7→ R be locally Lipschitz. Then,

1. for all u0 ∈ L1(R; Ω)∩BV(R; Ω), the Cauchy problem (2.6) with initial datum u0

admits a weak entropy solution u : R
+ × R 7→ R with

TV (u(t, ·)) ≤ TV(u0) and ‖u(t, ·)‖L∞ ≤ ‖u0‖L∞ ∀t ≥ 0 ;

2. if u0 and w0 are in L1(R; Ω) ∩ BV(R; Ω), then for all t ≥ 0

‖u(t, ·) − w(t, ·)‖L1 ≤ ‖u0 − w0‖L1 ;

Proof. It is straightforward to extend the proof in [22] to the present situation. Indeed,
assume for simplicity that Ωf = [a, b] and Ωc = [c, d], with −∞ < a ≤ b < c ≤ d < +∞,
the other cases being entirely analogous. Consider the following extension f̄ of f to the
whole R:

f̄(u) =





f(a) if u ∈ ]−∞, a[
f(u) if u ∈ [a, b]
c − u

c − b
f(b) +

u − b

c − b
f(c) if u ∈ ]b, c[

f(u) if u ∈ [c, d]
f(d) if u ∈ ]d,+∞[

Then, it is immediate to prove that if u0 ∈ L1(R,Ω)∩BV(R,Ω), then the weak entropy
solution u = u(t, x) of {

∂tu + ∂xf̄(u) = 0
u(0, x) = u0(x)

10
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attains values in Ω. Indeed, if u0(R) ⊆ [a, d], then also u(t, R) ∈ [a, d] for all t ≥ 0 by
the “maximum principle” [22, (iv), Theorem 6.3, Chapter 6]. Moreover, u(t, x) is the
limit of piecewise constant solutions uν(t, x) to conservation laws

{
∂tu + ∂xf̄ ν(u) = 0
u(0, x) = uν

0(x)

with f̄ ν being a piecewise linear and continuous approximation of f̄ and uν
0 a piecewise

constant approximation of u0, see [22, § 6.1 and § 6.2]. For all ν, f̄ ν can be chosen so
that f̄ ν(u) = f̄(u) for u ∈ [b, c]. Hence, if uν

0(R) does not intersect ]b, c[ , also uν(t) does
not attain values in ]b, c[ . �

I recall that in the present section we used Liu’s entropy condition, see [53, § 8.4].

2.2 The 2 × 2 model of Colombo

In this section, I consider the model introduced in [40]. It consists of a scalar LWR
model coupled with the 2 × 2 system (2.4) presented in [39]. The former applies to the
states of free flow, while the latter to the congested states. More precisely, the model
in [40] reads

Free flow: (ρ, q) ∈ Ωf Congested flow: (ρ, q) ∈ Ωc

∂tρ + ∂x(ρv) = 0 ∂tρ + ∂x(ρv) = 0
q = ρV ∂tq + ∂x((q − Q)v) = 0
v = vf (ρ) =

(
1 − ρ

R

)
V v = vc(ρ, q) =

(
1 − ρ

R

) q
ρ .

(2.7)

Using the notation (2.5), we set

{
u = (ρ, q) and f(u) = (ρvf (ρ), qvf (ρ)) , if (ρ, q) ∈ Ωf ,
u = (ρ, q) and f(u) = (ρvc(ρ, q), (q − Q)vc(ρ, q)) , if (ρ, q) ∈ Ωc .

Here, R is the maximal traffic density, V is the maximal traffic speed and Q is a parame-
ter of the road under consideration related to the phenomenon of wide jams, see [40, 80].
The weighted linear momentum q is originally motivated by gas dynamics. It approxi-
mates the real flux ρv for ρ small compared to R.

It is assumed that if the initial data are entirely in the free (resp. congested) phase,
then the solution will remain in the free (resp. congested) phase for all time. Thus Ωf

and Ωc are chosen to be invariant sets for the corresponding equations. The resulting
domain is given by Ωf ∪ Ωc, where

Ωf ={(ρ, q) ∈ [0, R] × [0,+∞[ : vf (ρ) ≥ Vf , q = ρV }

Ωc =
{

(ρ, q) ∈ [0, R] × [0,+∞[ : vc(ρ, q) ≤ Vc,
q−Q

ρ ∈
[

Q−−Q
R , Q+−Q

R

]}
,

where Vf and Vc are the threshold speeds, i.e. above Vf the flow is free, and below Vc

the flow is congested. The parameters Q− ∈ ]0, Q] and Q+ ∈ [Q,+∞[ depend on the
environmental conditions and determine the width of the congested region.

11
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Fig. 2.3, left, shows that the shape of the invariant domain is in good agreement with
experimental data in Fig. 2.1, right. Following [48], throughout the present chapter we
assume that the various parameters are strictly positive and satisfy:

V > Vf > Vc ,
Q+ − Q

RV
< 1 , Vf =

V − Q+/R

1 − (Q+ − Q)/(RV )
. (2.8)

I recall here the basic informations on the 2 × 2 system on the right hand side of (2.7):

r1(ρ, q) =

[
ρ

q − Q

]
, r2(ρ, q) =

[
R − ρ

R
ρ q

]
,

λ1(ρ, q) =

(
2

R
−

1

ρ

)
· (Q − q) −

Q

R
, λ2(ρ, q) = vc(ρ, q) ,

∇λ1 · r1 = 2
Q − q

R
, ∇λ2 · r2 = 0 ,

L1(ρ; ρo, qo) = Q +
qo − Q

ρo
ρ , L2(ρ; ρo, qo) =

ρ

ρo

R − ρo

R − ρ
qo ,

w1 = vc(ρ, q) , w2 =
q − Q

ρ
,

(2.9)

where ri is the i-th right eigenvector, λi the corresponding eigenvalue and Li is the i-Lax
curve. In the Riemann coordinates (w1, w2), Ωc = [0, Vc] × [W−

2 ,W+
2 ], where

W−
2 =

Q− − Q

R
, W+

2 =
Q+ − Q

R
.

For (ρ, q) ∈ Ωf , we extend the corresponding Riemann coordinates (w1, w2) as follows.
Let ũ = (ρ̃, ρ̃V ) be the point in Ωf with ρ̃ = Q/(V − W−

2 ), see Fig. 2.3, left. Define

w1 = Vf and w2 =

{
V − Q/ρ if ρ ≥ ρ̃ ,
vf (ρ̃) − vf (ρ) + V − Q/ρ̃ if ρ < ρ̃ ,

(2.10)

so that, in the Riemann coordinates, Ωf = {Vf}× [Wo,W
+
2 ], with Wo = W−

2 +vf (ρ̃)−V
(see Fig. 2.3, right).

Note that the 2 × 2 system describing the congested flow is hyperbolic, the second
characteristic field is linearly degenerate but the first has an inflection point along the
curve q = Q.

2.2.1 The Riemann problem

For sake of completeness and future reference, I recall in this section the description
of the classical Riemann solver for (2.7), i.e. the self-similar solution of the Cauchy
problem 




∂tu + ∂xf(u) = 0 ,

u0(x) =

{
ul , if x < 0 ,
ur , if x > 0 .

(2.11)

If the initial data ul, ur belong to the same set Ωf or Ωc, standard Lax solutions
to the corresponding Riemann problem can be considered. Otherwise, following [40],
admissible solutions are defined as follows.

12
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ρv

ρ
0

Ωf

Ωc

RRc

Uc

ũ
w1

w2

0
Vc

Vf

W+
2

W−
2

W̄

Wo

Figure 2.3: Notation used in Section 2.2. The continuous curves that border Ωc are
ρv = (1 − ρ/R)(Q + ρ(Q± − Q)/R).

Definition 2.2.1 If ul ∈ Ωf and ur ∈ Ωc, then an admissible solution to (2.11) is a
self-similar function u : R

+ × R 7→ Ωf ∪ Ωc such that, for some Λ ∈ R, we have:

1. u(t, ] −∞,Λt[) ⊆ Ωf and u(t, ]Λt,+∞[) ⊆ Ωc;

2. the functions

u−(t, x) =

{
u(t, x) if x < Λt ,
u(t,Λt−) if x > Λt ,

(2.12)

u+(t, x) =

{
u(t,Λt+) if x < Λt ,
u(t, x) if x > Λt ,

(2.13)

(2.14)

are Lax solutions to corresponding Riemann problems for (2.7) left, right, respec-
tively;

3. the Rankine-Hugoniot condition

ρ(t,Λt+) vc(ρ, q)(t,Λt+) − ρ(t,Λt−) vf (ρ(t,Λt−)) = Λ (ρ(t,Λt+) − ρ(t,Λt−))

holds for all t > 0.

If ul ∈ Ωc and ur ∈ Ωf , the conditions are obtained by interchanging the roles of Ωf , Ωc

and vf , vc.

Notice that condition 3 above ensures that the total number of car is conserved across
phase transitions.

Definition 2.2.1 does not assure uniqueness. We are then led to introduce the notion
of consistency [40].
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Definition 2.2.2 Let R : (ul,ur) 7→ R(ul,ur) denote a Riemann solver, i.e. (t, x) 7→
R(ul,ur)(x/t) is a self-similar solution of (2.11). R is consistent if the following two
conditions hold for all ul, um, ur ∈ Ωf ∪ Ωc, and λ̄ ∈ R:

(C1)
R(ul,um)(λ̄) = um

R(um,ur)(λ̄) = um

}
⇒ R(ul,ur)(λ) =

{
R(ul,um)(λ) , if λ < λ̄ ,
R(um,ur)(λ) , if λ ≥ λ̄ ,

(C2) R(ul,ur)(λ̄) = um ⇒





R(ul,um)(λ) =

{
R(ul,ur)(λ) , if λ ≤ λ̄ ,
um , if λ > λ̄ ,

R(um,ur)(λ) =

{
um , if λ < λ̄ ,
R(ul,ur)(λ) , if λ ≥ λ̄ .

Essentially, (C1) states that whenever two solutions to two Riemann problems can
be placed side by side, then their juxtaposition is again a solution to a Riemann problem.
(C2) is the vice-versa.

To describe the Riemann solver, we have to consider several different cases:

(A) The data in (2.11) are in the same phase, i.e. they are either both in Ωf or both
in Ωc. Then the solution is the standard Lax solution to (2.7), left, respectively
right, and no phase boundary is present.

(B) ul ∈ Ωc and ur ∈ Ωf . We consider the points uc ∈ Ωc and um ∈ Ωf implicitly
defined by

(
1 −

ρc

R

)(
Q + w2(u

l)ρc
)

= ρcVc ,

(
1 −

ρm

R

)(
Q + w2(u

l)ρm
)

= ρmV

(
1 −

ρm

R

)
.

If w2(u
l) > 0, the solution is made of a 1-rarefaction from ul to uc, a phase

transition from uc to um and a Lax wave from um to ur. If w2(u
l) ≤ 0, we have

a shock-like phase transition from ul to um and a Lax wave from um to ur.

(C) ul ∈ Ωf and ur ∈ Ωc with w2(u
l) ∈ [W−

2 ,W+
2 ]. Consider the points uc and

um ∈ Ωc implicitly defined by

(
1 −

ρc

R

)(
Q + w2(u

l)ρc
)

= ρcVc ,

(
1 −

ρm

R

)(
Q + w2(u

l)ρm
)

= ρmw1(u
r) .

If w2(u
l) > 0, the solution is made of a shock-like phase transition from ul to um

and a 2-contact discontinuity from um to ur. If w2(u
l) ≤ 0, the solution displays

a phase transition from ul to uc, a 2-rarefaction from uc to um and a 2-contact
discontinuity from um to ur.
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(D) ul ∈ Ωf with w2(u
l) < W−

2 and ur ∈ Ωc. Let um ∈ Ωc be the point on the lower
boundary of Ωc implicitly defined by

(
1 −

ρm

R

)(
Q + W−

2 ρm
)

= ρmw1(u
r) ,

and consider the speed of the phase boundary joining ul ∈ Ωf to um ∈ Ωc

Λ(ul,um) =
ρlvf (ρl) − ρmw1(u

r)

ρl − ρm
.

Let Uc = (Rc, Q
−) ∈ Ωc be the point whose Riemann coordinates are (Vc,W

−
2 ),

see Fig. 2.3. If λ1(Uc) ≥ Λ(ul,Uc), the solution is a phase transition from ul to
Uc, a 1-rarefaction from Uc to um and a 2-contact discontinuity from um to ur.
Otherwise:

– If λ1(u
m) ≤ Λ(ul,um), the solution is a phase transition from ul to um

followed by a 2-contact discontinuity from um to ur.

– If λ1(u
m) > Λ(ul,um), let uc = (ρc, qc) ∈ Ωc be implicitly defined by

λ1(u
c) = Λ(ul,uc) ,

i.e. ρc is the bigger root of the equation

(Q − Q−)ρ2 − 2ρl(Q − Q−)ρ + R2(ρlvf (ρl) − Q) + ρlR(2Q − Q−) = 0

and qc = Q − ρc(Q − Q−)/R. Then the solution shows a phase transition
from ul to uc, an attached 1-rarefaction from uc to um and a 2-contact
discontinuity from um to ur.

2.3 The Aw-Rascle model with phase transitions

The model under consideration has been introduced in [68]. The LWR equation and
the Aw-Rascle model (2.3) describe the free flow and the congested phase, respectively.
More precisely, the model in conservative variables reads

Free flow: Congested flow:
(ρ, y) ∈ Ωf (ρ, y) ∈ Ωc

∂tρ + ∂x(ρv) = 0 ∂tρ + ∂x(ρv) = 0
y = ρV ∂ty + ∂x(yv) = 0
v = vf (ρ) = (1 − ρ/R)V y = ρ(v + p(ρ)), p(ρ) = Vref ln(ρ/R),

(2.15)

i.e., using the notation (2.5),

{
u = (ρ, y) and f(u) = (ρvf (ρ), yvf (ρ)) , if (ρ, y) ∈ Ωf ,
u = (ρ, y) and f(u) = (ρv, yv) , if (ρ, y) ∈ Ωc .
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As before, R is the maximal possible car density, V is the maximal speed allowed and Vref

a given reference velocity. The 2 × 2 hyperbolic system describing the congested phase
has the first characteristic field which is genuinely non-linear, and the second is linearly
degenerate. The variables are the car density ρ and the car speed v or, equivalently,
the conservative variables ρ and y := ρv + ρp(ρ). In [8], the “pressure” function p
is assumed increasing and plays the role of an anticipation factor, taking into account
drivers’ reactions to the state of traffic in front of them. Here we take p(ρ) = Vref ln(ρ/R)
as in [7, 9], because this choice allows to define a unique Riemann solver without any
further assumption on the parameters R and V . However, under suitable assumptions,
the model allows more general pressures (see [68] for further details).

I recall at this point the main features of the two models used in (2.15). In the free
phase the characteristic speed is λ(ρ) = V (1 − 2ρ/R), while the informations on the
Aw-Rascle system are collected in the following table (see [8] for a more detailed study
of the model):

r1(ρ, v) =

[
1

−p′(ρ)

]
, r2(ρ, v) =

[
1
0

]
,

λ1(ρ, v) = v − ρ p′(ρ) , λ2(ρ, v) = v ,
∇λ1 · r1 = −2 p′(ρ) − ρ p′′(ρ) , ∇λ2 · r2 = 0 ,
L1(ρ; ρo, vo) = vo + p(ρo) − p(ρ) , L2(ρ; ρo, vo) = vo ,
w1 = v , w2 = v + p(ρ) ,

(2.16)

where ri is the i-th right eigenvector, λi the corresponding eigenvalue and Li is the i-Lax
curve. Shock and rarefaction curves coincide, hence the system belongs to the Temple
class [96].

The invariant domain for (2.15) is shown in Fig. 2.4, left. Its shape agrees with
the experimental data in Fig. 2.1, right, better than the scalar fundamental diagram in
Fig. 2.1, left. In the (ρ, v) coordinates, it is given by

Ωf ={(ρ, v) ∈ [0, Rf ] × [Vf , V ] : v = vf (ρ)} ,

Ωc ={(ρ, v) ∈ [0, R] × [0, Vc] : p(r) ≤ v + p(ρ) ≤ p(R)} .

where Vf > Vc are the threshold speeds, i.e. above Vf the flow is free and below Vc the
flow is congested. The parameter r ∈ ]0, R] is fixed depending on the environmental
conditions and determines the width of the congested region. The maximal free-flow
density Rf must satisfy Vf + p(Rf ) = p(R) (that is Vf + Vref ln(Rf/R) = 0 with our
choice of the pressure). In order to get this condition, we are led to assume Vref < V .
It is easy to check that the capacity drop in the passage from the free phase to the
congested phase [81] is then automatically satisfied. In order to resume, we have the
following order relation between the speed parameters:

V > Vref > Vf > Vc.

Using Riemann coordinates (w1, w2), Ωc = [0, Vc] × [p(r), p(R)]. For (ρ, v) ∈ Ωf , I
extend the corresponding Riemann coordinates (w1, w2) as in Sec. 2.2: Let ũ = (ρ̃, vf (ρ̃))
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ρv

ρ0

Ωf

Ωc

RrRfρ̃

w1

w2

0

Vc Vf

Ωf

Ωc

p(r)

p(ρ̃)

Figure 2.4: Notation used in Section 2.3.

be the point in Ωf implicitly defined by vf (ρ̃) + p(ρ̃) = p(r). We define

w1 = Vf , w2 =

{
vf (ρ) + p(ρ) , if ρ ≥ ρ̃ ,
vf (ρ) + p(ρ̃) , if ρ < ρ̃ ,

(2.17)

so that, in Riemann coordinates, Ωf = {Vf} × [p(ρ̃), p(R)] (Fig. 2.4, right).
A detailed description of the Riemann solver and further analytical results are given

in [68].

Remark. Coupling the Aw-Rascle model with the LWR equation allows to correct
some drawbacks of the original Aw-Rascle model. First of all, model (2.15) is well-posed
and stable near the vacuum, which is not the case for the Aw-Rascle system. Second,
as noted in [8, Sec. 5], when there is a rarefaction wave connecting a state (ρ−, ρ−v−)
to the vacuum, the maximal velocity v reached by the cars with our choice of pressure
is vmax = +∞, i.e. the maximal speed reached by the cars on an empty road is infinite,
which is clearly unrealistic. With other choices of the pressure, the maximal speed
depends on the initial data ρ−, v−. On the contrary, the solution given by model (2.15)
reaches the maximal velocity V independently from the choice of the pressure and the
initial data.

2.4 Well posedness for the Cauchy problem

When considering the Cauchy problem, (2.5) is supplemented with a given value of the
solution at time t = 0. More precisely, we assume that the initial datum u0 ∈ Ω is given
and we set

u(0, ·) = u0. (2.18)

Definition 2.4.1 Fix M > 0. A map S : R
+ × D 7→ D is an M -Riemann Semigroup

(M -RS) if the following holds:

(RS1) D ⊇
{
u ∈ L1 (R; Ωf ∪ Ωc) : TV(u) ≤ M

}
;

(RS2) S0 = Id and St1 ◦ St2 = St1+t2 ;
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(RS3) there exists an L = L(M) such that for t1, t2 in R
+ and u1,u2 in D,

‖St1u1 − St2u2‖L1 ≤ L · (‖u1 − u2‖L1 + |t1 − t2|) ;

(RS4) if u ∈ D is piecewise constant, then for t small, Stu coincides with the gluing of
solutions to Riemann problems.

Properties (RS1)–(RS4) provide the natural extension of [22, Definition 9.1] to the
present case.

The following theorem states the existence of an M -RS generated by the Cauchy
problem for (2.5), (2.18). It has been published in [48].

Theorem 2.4.2 For any positive M , the system (2.5) generates an M -RS S : R
+×D 7→

D. Moreover

(CP1) for all u0 ∈ D, the orbit t 7→ Stu0 is a weak entropic solution to (2.5), (2.18);

(CP2) any two M–RS coincide up to the domain;

(CP3) the solutions yielded by S can be characterized as viscosity solutions, in the sense
of [22, Theorem 9.2].

(CP4) D ⊆
{
u ∈ L1 (R; Ωf ∪ Ωc) : TV(u) ≤ M̂

}
for a positive M̂ = M̂(M).

Sketch of the proof. I give the proof for model (2.7), but it remains valid with minor
changes when applied to (2.15). The proof follows [18] and is achieved through the
construction of exact weak solutions to (2.7) that are only approximately entropic, built
by means of wave-front tracking. For ν ∈ N, we introduce a mesh Ων in Ω. In Riemann
coordinates, let

Ων
c =

{(
i2−νVc,W

−
2 + j2−ν(W+

2 − W−
2 )
)
∈ Ωc : i, j = 0, . . . , 2ν

}

where W−
2 and W+

2 are as in Fig. 2.3, right. Now, let

Iν
1 =

{
W−

2 + j2−ν(W+
2 − W−

2 ) : j = 0, . . . , 2ν
}

Iν
2 =

{
w ∈ [Wo,W

−
2 ] :

w = V − Q/ρ where Λ̄ (ρ′, ρ) = λ̄1(ρ
′)

for some (ρ′,L1(ρ
′;R,Q−)) ∈ Ων

c

}

W̄ = min Iν
2

Iν
3 =

{
{Wo} if W̄ − Wo < 2−ν
{
Wo + j2−ν(W̄ − Wo) : j = 0, . . . , 2ν

}
if W̄ − Wo > 2−ν

Ων
f = {Vf} × (Iν

1 ∪ Iν
2 ∪ Iν

3 )

Ων = Ων
f ∪ Ων

c .

We note that, since we are dealing with a Temple class system, the Riemann prob-
lem (2.11) with data in Ων admits a piecewise constant weak solution attaining values
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in Ων . Nevertheless, these solutions may well be non entropic, since rarefaction waves
are replaced by shock fans.

An approximate solution uν = uν(t, x) to the Cauchy problem for (2.5)-(2.18) is now
constructed by means of the standard wave front tracking technique, see [18, 22]. Recall
that uν can be defined up to any positive time provided the number of interaction points
is finite on any compact subset of R

+ × R and the range of uν remains in Ων .
The latter requirement is met, as pointed out above. The former is obtained through

suitable interaction estimates, that also ensure the existence of a bound on TV (uν(t, ·))
uniform in ν and t.

To this aim, we assign a strength to each simple wave. Let ul, ur be the states on the
sides of the wave and call (wl

1, w
l
2), (wr

1, w
r
2) the corresponding Riemann coordinates,

see (2.9), (2.10). Then, the strength of the wave is

τ =
∣∣∣wr

1 − wl
1

∣∣∣+
∣∣∣wr

2 − wl
2

∣∣∣ . (2.19)

Note that only in case (D) in Sec. 2.2.1 these summands are both non zero. Let τi,α be
the strength of the wave of the i-th family exiting from the α-th point of jump xα in
uν(t, ·). With this choice, we define the usual Glimm functionals

V ν(t) =
∑

i,α

|τi,α| , Qν(t) =
∑

α,β : xα<xβ

|τ2,ατ1,β| . (2.20)

It is immediate to prove that along any approximate solution, the maps t 7→ V ν(t)
and t 7→ Qν(t) are both non increasing and, at each interaction, at least one of them
decreases by at least 2−ν . Hence there is a finite number of interactions on all R

+ × R.

We prove the L1 Lipschitz continuous dependence using pseudo-polygonals, as in [23,
4, 18]. We introduce a class of curves (pseudo-polygonals) that connect any two initial
data in Dν

M = {u : R → Ων : V ν(u) ≤ M}.
Let ]a, b[ be an open interval and PC denote the set of piecewise constant functions

with a finite number of jumps. An elementary path is a map γ : ]a, b[ 7→ PC of the form

γ(θ) =

N∑

α=1

uα · χ[xθ
α−1

,xθ
α[ , xθ

α = xα + ξαθ ,

with xθ
α−1 ≤ xθ

α for all θ ∈ ]a, b[ and α = 1, . . . , N .
A continuous map γ : ]a, b[ 7→ Dν

M is a pseudo-polygonal if there exist countably
many disjoint open intervals Jh ⊆ ]a, b[ such that ]a, b[ \

⋃
h Jh is countable and the

restriction of γ to each Jh is an elementary path. Moreover, any two elements of Dν
M

can be joined by a pseudo-polygonal γ entirely contained in Dν
M .

As shown in [18, 22, 23], the semigroup Sν defined by Sν
t = uν(t, ·) preserves the

pseudo-polygonals in the sense that if γ is a pseudo-polygonal then Sν
t ◦ γ is also a

pseudo-polygonal, for all t ≥ 0.
Define the length of a curve γ ⊆ Dν

M of approximate solutions as ‖γ‖ν =
∫ b
a Υν [γ(θ)] dθ,

where Υν =
∑

i,α |σi,αξi,αWi,α|, Wi,α being a suitable weight and σi,α being the strength
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of a jump measured in the conserved coordinates. Suitable interaction estimates, see [48,
Prop. 4.4], ensure that one can define weights Wi,α such that Wi,α ∈ [1,W ] and the
map t 7→ Υν (u(t, ·)) is non increasing. The first requirement implies that the metric

dν
η(u,w) = inf {‖γ‖ν : γ pseudo-polygonal joining u to w}

is equivalent to the L1-distance uniformly in ν, see also [4, 18, 22]; the latter ensures
that the ν-approximate semigroup Sν is non expansive with respect to dν

η . This finally
ensures that the approximate semigroup is Lipschitz in the L1 norm, uniformly with
respect to ν. �

Remark. From the analytical point of view, this is a first example of a system of
conservation laws developing phase transitions whose well posedness is proved globally,
i.e., for all initial data attaining values in a given set and with bounded total variation.
In the literature, several results deal with the solution to Riemann problems in presence
of phase transitions, see for instance [51, 84, 85]. Other works prove the global in time
well posedness of the Cauchy problem, but with initial data that are perturbations of
a given phase boundary, see for instance [41, 42]. On the contrary, here the number of
phase boundaries that are present in the data and in the solution is not a priori fixed.

Note that it is not possible to extend the result to initial data in L∞(R), due to the
presence of a linearly degenerate field, see [25].

From the traffic point of view, well posedness allows to consider various control and
optimization problems, see [50].

Observe that the description of several realistic situations requires suitable source
terms in the right hand sides of models (2.7), (2.15). The techniques in [9, 43] can then
be applied.

2.5 Road networks

In this section I illustrate the extension to road networks of the existence theory for
systems with phase transitions reported above. The results have been obtained in col-
laboration with R.M. Colombo and B. Piccoli, and are contained in [47]. They are
detailed for system (2.7), but they remain valid for (2.15).

There are now many available results for the LWR model or the Aw-Rascle model
on networks, see [13, 35, 36, 63, 64, 65, 72, 73, 74]. However, this is the first result
for a phase transition model applied to a network. The interest in such a theory is
motivated also by other applications: data networks [56], supply chains [55, 70], air
traffic management [14] and gas pipelines [11, 44, 45].

Our main result is the existence of weak solutions on the whole network for initial
data in BV under a technical assumption. More precisely the latter asks for traffic to
keep away from the zero velocity, see assumption (H) in Section 2.5.5. Our construction
is based on the wave-front tracking method, for reference see [22, 53, 75].

More precisely, first we consider Riemann problems at nodes, which are Cauchy
problems with constant initial data on each road. Notice that the conservation of cars
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alone is not sufficient to single out a unique solution. Thus, one has to prescribe solutions
for every initial data and we call the relative map a Riemann solver at nodes. Then, it is
possible to construct approximate solutions using classical self-similar entropic solutions
for Riemann problems inside roads and an assigned Riemann solver at junctions. To pass
to the limit we rely on a BV estimate on the density flux variation, and assumption (H)
is necessary to get BV bounds also on the density itself and the linearized momentum.

Following [67], we define three properties (Pr1), (Pr2) and (Pr3) of a Riemann
solver (see Definition 2.5.7), which guarantee the needed bounds and thus the existence
of solutions to the Cauchy problem. These key properties are in particular satisfied by
the Riemann solver RJ introduced in Section 2.5.4. The latter is defined generalizing to
the phase transition model the Riemann solver previously presented for the LWR scalar
model in [36]. It prescribes a fixed distribution of traffic in outgoing roads, and then
the maximization of the flux through the junction.

The definition of RJ for the case of the phase transition model is a nontrivial ex-
tension of the Riemann solver for the LWR model. In particular, the set of attainable
states on a road, entering or exiting a junction, gives rise to non-convex sets of possible
density fluxes. In order to have the continuous dependence of solutions, we have to get
convexity removing the metastable states from the attainable set. This choice is consis-
tent with the idea that these states should appear in a transient situation, which should
not happen at a junction.

2.5.1 Basic definitions

A road network is a couple (I,J ), where I is a finite collection of unidirectional roads
and J is the set of junctions. Each road is modelled by real intervals Ii = ]ai, bi[,
i = 1, . . . , N , whereas each junction J consists of two sets Inc(J) ⊂ {1, . . . , N} and
Out(J) ⊂ {1, . . . , N} corresponding to incoming and outgoing roads of J .

Given a junction J , a Riemann problem at J is a Cauchy problem with initial data
constant on each incoming and outgoing road. As for classical Riemann problems on
a real line, we look for self-similar, centered solutions, which are the building blocks to
construct solutions to Cauchy problems.
We follow the same procedure used in Sec. 2.2.1 for classical Riemann problems on the
real line: we first define admissible solutions at the junction, state a consistency property
and then select a Riemann solver.

Definition 2.5.1 Consider a junction J and assume for simplicity Inc(J) = {1, . . . , n},
Out(J) = {n+1, . . . , n+m}. If ui,0 ∈ Ωf ∩Ωc for i = 1, . . . , n+m, then an admissible
solution to {

∂tui + ∂xf(ui) = 0 ,
ui(0, x) = ui,0

i = 1, . . . , n + m . (2.21)

is a self-similar function u : R×[0,+∞[ 7→ (Ωf∪Ωc)
n+m such that, for some û1, . . . ûn+m ∈

Ωf ∩ Ωc, we have:

1. for all i ∈ {1, . . . , n}, (R(ui,0, ûi)) (x/t) = ûi for x ≥ 0 and ui(t, x) = (R(ui,0, ûi)) (x/t),
for x ≤ 0;
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2. for all i ∈ {n + 1, . . . , n + m}, (R(ûi,ui,0)) (x/t) = ûi for x ≤ 0 and ui(t, x) =
(R(ûi,ui,0)) (x/t), for x ≥ 0;

3.
n∑

i=1

f1(ûi) =
n+m∑

j=n+1

f1(ûj), where f1 is the first component of f .

In other words, Definition 2.5.1 states that an admissible solution:

1. consists of waves with negative speed in incoming roads;
2. consists of waves with positive speed in outgoing roads;
3. conserves the number of cars at J .

The above definition assigns a key role to the traces ûi of admissible solutions at the
junction. Once these values are known, the whole solution is uniquely determined by
points 1 and 2 in Definition 2.5.1. Therefore, following [66, Def. 4.2.2], in the case of
the Riemann problem at a junction (2.21) we call Riemann Solver at J the map

RJ : (Ωf ∪ Ωc)
n+m −→ (Ωf ∪ Ωc)

n+m

(u1,0, . . . ,un+m,0) 7−→ (û1, . . . , ûn+m)

assigning to the initial data in (2.21) the trace û1, . . . , ûn+m of the admissible solution
at the junction.

We give the following

Definition 2.5.2 We define a Riemann solver at a Junction RJ to be consistent at
J if

(CC) RJ (RJ(u1,0, . . . ,un+m,0)) = RJ(u1,0, . . . ,un+m,0)

for every (u1,0, . . . ,un+m,0) ∈ (Ωf ∪ Ωc)
n+m.

Below, I assume that, besides (2.8), also
(

1 −
Q+

RV

)
·

(
Q+

Q
− 1

)
< 1 (2.22)

holds. Notice that condition (2.22) is fulfilled for Q+ sufficiently large. It ensures that
supΩf∪Ωc

λ1 < 0, hence all waves of the first family in the congested region move with
negative speed.

2.5.2 Incoming roads: attainable values at the junction

To respect condition 1 of Definition 2.5.1, only waves with negative speed can be pro-
duced on incoming roads. Thus we determine all states which can be connected to an
initial state (to the right) by waves with negative speed. In particular, we determine
the maximum flux γmax

i that can be reached from an initial datum ui,0 = (ρi,0, qi,0) by
means of waves with negative speed only.

We start describing the sets of fluxes corresponding to states that can be connected
to ui,0 on the right using non positive waves only. We use the notations introduced in
Sec. 2.2.1, cases (B)-(D), where we set ui,0 = ul. Moreover, we introduce the velocities
V1 and V2 defined as follows:
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Figure 2.5: Notations used in the definition of Oi, i = 1, . . . , n.

• V1 := vf (ρ1), where ρ1 ∈ Ωf is the smaller root of the equation ρ1vf (ρ1) = RcVc;

• V2 := vf (ρ2), where ρ2 ∈ Ωf is the smaller root of the equation

(
1 −

ρ2

R

)(
Q +

Q− − Q

R
ρ2

)
= ρ2V

(
1 −

ρ2

R

)
.

We refer the reader to Fig. 2.5 for a more intuitive explication of the notations. The
sets of reachable fluxes are then given by:

Oi =





[0, ρi,0vf (ρi,0)] if ui,0 ∈ Ωf , vf (ρi,0) ≥ V1 ,
[0, RcVc] ∪ {ρi,0vf (ρi,0)} if ui,0 ∈ Ωf , V2 ≤ vf (ρi,0) ≤ V1(Case (D), Sec. 2.2.1) ,
[0, ρcVc] ∪ {ρi,0vf (ρi,0)} if ui,0 ∈ Ωf , vf (ρi,0) ≤ V2(Case (C), Sec. 2.2.1) ,
[0, ρcVc] ∪ {ρmvf (ρm)} if ui,0 ∈ Ωc(Case (B), Sec. 2.2.1) ,

(2.23)
for i = 1, . . . , n. We observe that the sets Oi are non convex. Thus we remove the
metastable states from the attainable sets and we define the corresponding maximum
fluxes as follows:

γmax
i =





ρi,0vf (ρi,0) if ui,0 ∈ Ωf , vf (ρi,0) ≥ V1 ,
RcVc if ui,0 ∈ Ωf , V2 ≤ vf (ρi,0) ≤ V1(Case (D), Sec. 2.2.1) ,
ρcVc if ui,0 ∈ Ωf , vf (ρi,0) ≤ V2(Case (C), Sec. 2.2.1) ,
ρcVc if ui,0 ∈ Ωc(Case (B), Sec. 2.2.1) .

(2.24)
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Figure 2.6: Notations used in the definition of Oj , j = n + 1, . . . , n + m.

Proposition 2.5.3 Given an initial datum ui,0 on an incoming road and γ̂ ∈ [0, γmax
i ],

there exists a unique ûi such that the Riemann problem (ui,0ûi) is solved by waves with
negative speed and f1(ûi) = γ̂.

2.5.3 Outgoing roads: maximal flux at the junction

To respect condition 2 of Definition 2.5.1 only waves with positive speed can be produced
on outgoing roads. Thus we determine all states, and the corresponding set of fluxes,
which can be connected to an initial state uj,0 (to the left) using waves with positive
speed.
We introduce the fluxes F and fmax defined as follows (see Fig. 2.6):

• F := Rfvf (Rf ) = max
ρ∈Ωf

ρvf (ρ) > max
(ρ,q)∈Ωc

ρvc(ρ, q) is the maximal flux supported

by the road;

• for uj,0 ∈ Ωc, fmax := fmax(uj,0) = ρmax vc(ρ
max, qmax), where ρmax is the

bigger root of the equation

(
1 −

ρmax

R

)(
Q +

Q+ − Q

R
ρmax

)
= ρmax vc(ρj,0, qj,0) ,

and qmax = Q + ρmax(Q+ − Q)/R.

The sets of reachable fluxes are given by

Oj =

{
[0, F ] if uj,0 ∈ Ωf ,
[0, fmax] if uj,0 ∈ Ωc ,

(2.25)

for j = n + 1, . . . , n + m. Since the sets Oj are convex, the corresponding maximum
fluxes are defined accordingly:

γmax
j =

{
F if uj,0 ∈ Ωf ,
fmax if uj,0 ∈ Ωc .

(2.26)
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Proposition 2.5.4 Given an initial datum uj,0 on an outgoing road and γ̂ ∈ [0, γmax
j ],

there exists a unique ûj ∈ Oj such that the Riemann problem (ûj ,uj,0) is solved by
waves with positive speed and f1(ûj) = γ̂.

2.5.4 The Riemann solver at junctions

We consider a Riemann solver similar to the one introduced in [36] for scalar equations.
First, we need to define a suitable set of matrices. Consider the set

A :=



 A = {aji}i=1,...,n, j=n+1,...,n+m :

0 < aji < 1 ∀i, j,
n+m∑

j=n+1
aji = 1 ∀i



 .

Let {e1, . . . , en} be the canonical basis of R
n. For every i = 1, . . . , n, we denote Hi =

{ei}
⊥. If A ∈ A, then we write, for every j = n + 1, . . . , n + m, aj = (aj1, . . . , ajn) ∈ R

n

and Hj = {aj}
⊥. Let K be the set of indices k = (k1, ..., kℓ), 1 ≤ ℓ ≤ n − 1, such that

0 ≤ k1 < k2 < · · · < kℓ ≤ n + m and for every k ∈ K define

Hk =

ℓ⋂

h=1

Hkh
.

Writing 1 = (1, . . . , 1) ∈ R
n and following [36] we define the set

N :=
{
A ∈ A : 1 /∈ H⊥k for every k ∈ K

}
. (2.27)

Notice that, if n > m, then N = ∅. This means that we cannot have more incoming that
outgoing roads. The matrices of N allow to define a unique solution to the Riemann
problem at J .

1. Fix a matrix A ∈ N and consider the closed, convex and not empty set

Λ =



(γ1, · · · , γn) ∈

n∏

i=1

[0, γmax
i ] : A · (γ1, · · · , γn)T ∈

n+m∏

j=n+1

[0, γmax
j ]



 .

2. Find the point (γ̄1, . . . , γ̄n) ∈ Λ which maximizes the function

E(γ1, . . . , γn) = γ1 + · · · + γn,

and define (γ̄n+1, . . . , γ̄n+m)T := A · (γ̄1, . . . , γ̄n)T . Since A ∈ N, the point
(γ̄1, . . . , γ̄n) is uniquely defined. In fact, by (2.27), ∇E = 1 is not orthogonal
to any nontrivial subspace contained in a supporting hyperplane of Λ.

3. For every i ∈ {1, . . . , n}, set ûi either to ui,0 if f1(ui,0) = γ̄i, or to the solution to
f1(u) = γ̄i given by Proposition 2.5.3. For every j ∈ {n + 1, . . . , n + m}, set ûj

either to uj,0 if f1(uj,0) = γ̄j , or to the solution to f1(u) = γ̄j given by Proposition
2.5.4. Finally, set

RJ(u1,0, . . . ,un+m,0) = (û1, . . . , ûn+m) .

It is easy to verify that RJ satisfies the consistency condition (CC).
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2.5.5 Existence of solutions on the whole network

To prove existence of solutions on the whole network, we first construct a sequence of
approximate solutions via wave-front tracking (see [22] for the general theory and [66,
§ 4.3] in the case of networks) and then pass to the limit using a BV bound on the
density flux.

Roughly speaking a wave-front tracking solution is constructed as follows: Fix an
initial datum u0 = (u1,0, . . . ,uN,0) with bounded total variation on the whole network.
For every ν ∈ N, one first discretizes the initial datum using a piecewise constant approx-
imation uν,0 with total variation bounded by the total variation of u0. Then Riemann
problems on each road and at each junction of the network are solved, replacing rarefac-
tion waves by a collection of small rarefaction shocks of size at most 1/ν. A solution is
obtained, for small times, by piecing together the solution to Riemann problems and it
is a weak solution up to the interaction of two waves or of a wave with a junction. Then
a new Riemann problem is solved and so on.

To construct approximate solutions, one needs to bound the number of waves and
of interactions. To assure this bounds, we rely on accurate estimates of waves number
based on variation estimates. Since we obtain estimates on f1(uν), we make the following
assumption in order to provide the needed estimates on ρν and qν :

(H) There exists a positive v̄ such that the approximate solutions uν = (u1,ν , . . . ,uN,ν)

attain values in Ω̃ = Ωf ∪ {(ρ, q) ∈ Ωc : vc(ρ, q) ≥ v̄}.

Assumption (H) is verified as long as the traffic keeps away from the complete conges-
tion, which is the standard situation in, say, highway traffic.
It is easy to verify the following:

Proposition 2.5.5 If assumption (H) holds, there exists C = C(v̄) such that, for every
u1, u2 ∈ Ω̃ belonging to the same phase, one has:

|ρ1 − ρ2| ≤ C |f1(u1) − f1(u2)|, |q1 − q2| ≤ C |f1(u1) − f1(u2)| .

Therefore, under assumption (H), a BV estimate on f1(ul,ν), l = 1, . . . , N , ensures the
estimates on the conserved variables, provided we give bounds on the number of phase
boundaries in ul,ν.

The strategy used to get a BV estimate on f1(ul,ν) is the following: We determine
three basic properties (Pr1), (Pr2) and (Pr3) of the map RJ , which guarantee the
desired estimates. These properties can be verified as in [67].

Consider a wave front tracking approximate solution uν and define the functionals

ΓJ(t) :=
∑

i∈Inc(J)

f1 (ui,ν(t, bi−))

TVf (t) :=

N∑

l=1

TV (f1 (ul,ν(t, ·))) ,
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where J is a given junction. These functionals are well defined for every positive time
and can vary only when a wave reaches a junction or when two waves interact in a road.
Thus, we easily derive for every t ≥ 0 the bound

0 ≤ ΓJ(t) ≤ #Inc(J) F,

where #Inc(J) is the cardinality of Inc(J).

Definition 2.5.6 Let (ul,ur) be a wave interacting with J from Ii, i ∈ Inc(J), then we
say that the wave has decreasing flux if f1(ul) < f1(ur) (i.e. the flux at the junction
J from road Ii decreases because of the interaction).

Let (ul,ur) be a wave interacting with J from Ij, j ∈ Out(J), then we say that the
wave has decreasing flux if f1(ul) > f1(ur) (i.e. the flux at the junction J from road
Ij decreases because of the interaction).

Now I can state the three key properties of a Riemann solver at junctions, which
ensures the necessary bounds on the approximate solutions.

Definition 2.5.7 We say that a Riemann solver RJ at a junction J has property (Pr1)
if the solution depends only on the values γmax

i , i ∈ Inc(J), see (2.24), and γmax
j ,

i ∈ Inc(J), see (2.26).
We say that a Riemann solver RJ has property (Pr2) if there exists C > 0 such

that the following holds true. Assume u0 is an equilibrium at J , i.e. RJ(u0) = u0, a
wave is interacting with J and there is no other wave in the network. Denote with TV −f ,

resp. TV +
f , the value of TVf before, resp. after, the interaction, similarly for ΓJ , and

set ∆ΓJ =
∣∣Γ+

J − Γ−J
∣∣, then

TV +
f − TV −f ≤ C min

{
TV −f ,∆ΓJ

}
.

We say that RJ has property (Pr3) if the following holds true. Assume u0 is an
equilibrium, i.e. RJ(u0) = u0, and a wave with decreasing flux is interacting with J .
Denote with Γ−J , resp. Γ+

J , the value of ΓJ before, respectively after, the interaction.
Then,

Γ+
J ≤ Γ−J .

I can now state the existence result.

Theorem 2.5.8 Consider a network (I,J ), a Riemann solver RJ for every J ∈ J
satisfying properties (Pr1), (Pr2) and (Pr3), an initial datum u0 on the network,
with bounded total variation, and let uν be a sequence of wave-front tracking approximate
solutions. If (H) holds true, then there exists the limit u of uν in L1

loc and u is a weak
entropic solution on each road of the network with u0 as initial datum. Moreover, for
every J ∈ J and for a.e. t > 0:

RJ (uJ(t)) = uJ(t) ,

where uJ = (ui(t, bi−),uj(t, aj+)) with i varying in Inc(J) and j in Out(J).

I refer the reader to [47, Sec. 6] for the technical details of the proof.
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Numerical schemes

This chapter is devoted to the numerical approximation of the models with phase tran-
sitions presented in Chapter 2 and of the Aw-Rascle model [8]. This study has been
done in collaboration with C. Chalons, and is detailed in [32, 31].

3.1 Numerical approximation of traffic flow models with

phase transitions

In this section, I present a numerical strategy designed to cope with the difficulties
arising in the approximation of solutions to (2.7) and (2.15).

From a numerical point of view, the presence of phase transitions makes standard
numerical schemes useless. For example, it is easy to see that the classical Godunov
method is not applicable due to the lack of convexity of the whole model phase space
Ω = Ωf ∪ Ωc. Indeed, the latter turns out to be a disconnected set in R

2, made of two
connected components associated with the free and the congested domains, respectively.
In the presence of phase transitions, the projection step taking place in the classical
Godunov method can then give values that are not in the domain. This necessarily
stops the procedure. We propose a new version of Godunov method, based on a modified
averaging strategy and a sampling procedure. More precisely, we modify the mesh cells
following the phase boundaries, so that the projection involves only values belonging to
the same phase. In order to come back to the original cells, we complete the projection
step with a Glimm-type sampling technique.

This scheme is essentially first order accurate, and hence introduces a considerable
dissipation away from phase transitions. In order to improve accuracy, we have extended
the method to second-order accuracy in space and time.

The averaging procedure on modified cells that we introduce has first been used (to
the best of my knowledge) in [103], but in a different context and in a slightly different
form. However, the idea of going back to the initial cells by means of a sampling proce-
dure is new and allows to avoid dealing with moving meshes (as in [103]). It has been
motivated by recent works proposed by Chalons for approximating nonclassical solu-
tions arising in certain nonlinear hyperbolic equations (see [29], [29] and the references
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therein), and very recently by Chalons and Coquel in [30] for computing sharp discrete
shock profiles. Let me stress that the model studied here greatly differs from the one
addressed in [103], since we are coupling systems of different dimensions. Moreover, we
describe a higher order strategy adapted to our model.

The technique is described and tested for (2.7), but it applies without changes to
models in [59, 68] (see also [19]).

3.1.1 Description of the method

We introduce a space step ∆x and a time step ∆t (for simplicity, both of them are
assumed to be constant in the forthcoming developments). We set ν = ∆t/∆x. Then,
we define the mesh interfaces xj+1/2 = j∆x for j ∈ Z and the intermediate times
tn = n∆t for n ∈ N, and at each time tn we seek an approximation un

j of the solution
of (2.5)-(2.18) on the interval [xj−1/2, xj+1/2), j ∈ Z. Therefore, a piecewise constant
approximated solution x → uν(t

n, x) of the solution u is given by

uν(t
n, x) = un

j for all x ∈ Cj = [xj−1/2;xj+1/2), j ∈ Z, n ∈ N.

When n = 0, we set xj = 0.5 · (xj−1/2 + xj+1/2) and

u0
j = u0(xj), for all j ∈ Z.

Note that the usual L2 projection is not adapted in the present context since, depending
on the initial data, it could artificially introduce unphysical states which are not in the
phase space at time t = 0 (recall that Ω = Ωf ∪ Ωc is not connected).

Assuming that a sequence (un
j )j∈Z is given at time tn, we propose a strategy to

update at the next time tn+1.

Step 1: Evolution in time.
In this first step, one solves the following Cauchy problem

{
∂tv + ∂xf(v) = 0, x ∈ R,
v(0, x) = uν(t

n, x),
(3.1)

for times t ∈ [0,∆t]. Recall that x → uν(t
n, x) is piecewise constant. Then, under the

usual CFL restriction

∆t

∆x
max

v
{|λi(v)|, i = 1 if v ∈ Ωf , i = 1, 2 if v ∈ Ωc} ≤

1

2
, (3.2)

for all the v under consideration, the solution of (3.1) is known by gluing together the
solutions of the Riemann problems set at each interface. More precisely

v(t, x) = R(un
j ,un

j+1)
(
(x − xj+1/2)/t

)
for all (t, x) ∈ [0,∆t] × [xj , xj+1], (3.3)
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where (t, x) → R(un
j ,un

j+1)
(
(x − xj+1/2)/t

)
denotes the self-similar solution of the Rie-

mann problem 



∂tv + ∂xf(v) = 0, x ∈ R, t ∈ R
+,⋆

v(0, x) =

{
vl if x < 0,
vr if x > 0,

whatever vl and vr are in the phase space Ωf ∪ Ωc (see Sec. 2.2.1).

Step 2: Projection (modified).
In order to define a piecewise constant approximated solution on each cell Cj at time
tn+1, the Godunov scheme averages the solution v(∆t, x) given by (3.3) on each space
cell, as expressed by the following update formula :

un+1
j =

1

∆x

∫ xj+1/2

xj−1/2

v(∆t, x) dx, j ∈ Z. (3.4)

In order to overcome the difficulties mentioned above, we propose to average the solution
on (possibly) modified cells constructed as follows. Let (σn

j+1/2 = σ(un
j ,un

j+1))j∈Z be a

sequence of characteristic speeds of propagation at the interfaces (xj+1/2)j∈Z such that:
- if un

j and un
j+1 are not in the same phase (free or congested), then σn

j+1/2 coin-
cides with the speed of propagation of the phase transition in the Riemann solution
R(un

j ,un
j+1),

- if un
j and un

j+1 belong to the same phase, then σn
j+1/2 = 0.

Then, assuming that for all j ∈ Z the interface xj+1/2 moves at velocity σn
j+1/2 between

times tn and tn+1 = tn + ∆t, we define the new interface xn
j+1/2 at time tn+1 setting

xn
j+1/2 = xj+1/2 + σn

j+1/2 ∆t, j ∈ Z. (3.5)

We also introduce the new space step

∆x
n
j = xn

j+1/2 − xn
j−1/2, j ∈ Z.

The modified cells C
n
j = [xn

j−1/2, x
n
j+1/2) may be either smaller or larger than the original

ones Cn
j , depending on the signs of the velocities σn

j+1/2, j ∈ Z. This is illustrated in

Fig. 3.1. The advantage is that on C
n
j the solution x → v(x,∆t) given by (3.3) is fully

either in the free phase or in the congested phase. Then, averaging this solution on the
cells C

n
j provide us with a piecewise constant approximated solution uν(x, tn+1) on a

non uniform mesh defined by

uν(t
n+1, x) = un+1

j for all x ∈ C
n
j , j ∈ Z, n ∈ N,

with

un+1
j =

1

∆x
n
j

∫ xn
j+1/2

xn
j−1/2

v(∆t, x) dx, j ∈ Z.
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xj−3/2 xj−1/2 xj+1/2

xn
j−1/2 xn

j+1/2

xj+3/2

tn+1

tn a

b c

d

Figure 3.1: An example of averaging element in the modified Godunov method

Even in this case, a simpler formula is obtained for un+1
j by integrating equation (3.1)

over the element E = (abcd) defined by :

E = {(t, x) : t ∈ [0,∆t] and xj−1/2 + σn
j−1/2 t ≤ x ≤ xj+1/2 + σn

j+1/2 t}

(see again Fig. 3.1). Applying Green’s theorem on E, we get

un+1
j =

∆x

∆x
n
j

un
j −

∆t

∆x
n
j

(
f
−
(un

j ,un
j+1) − f

+
(un

j−1,u
n
j )
)

for all j ∈ Z, (3.6)

with numerical fluxes

f
±
(un

j ,un
j+1) = f(R(un

j ,un
j+1)(σ

n,±
j+1/2)) − σn

j+1/2R(un
j ,un

j+1)(σ
n,±
j+1/2) for all j ∈ Z.

(3.7)
Let me notice that if un

j and un
j+1 are in the same phase, then R(un

j ,un
j+1)(σ

n,−
j+1/2

) and

R(un
j ,un

j+1)(σ
n,+
j+1/2) also does. The conservation property

f(R(un
j ,un

j+1)(σ
n,−
j+1/2)) − σn

j+1/2R(un
j ,un

j+1)(σ
n,−
j+1/2)

=

f(R(un
j ,un

j+1)(σ
n,+
j+1/2)) − σn

j+1/2R(un
j ,un

j+1)(σ
n,+
j+1/2)

(3.8)

then remains valid thanks to Rankine-Hugoniot conditions. Actually, note that in such
a situation σn

j+1/2 = 0 by definition. If R(un
j ,un

j+1)(σ
n,−
j+1/2) and R(un

j ,un
j+1)(σ

n,+
j+1/2) are

not in the same phase, equality (3.8) makes sense only for the first component associated
with the mass conservation.

Step 3: Sampling.
In order to avoid dealing with moving meshes, we complete the projection step defining
a new approximation un+1

j of the solution at time tn+1 on the original cells Cj, j ∈ Z.
To this aim, for all j ∈ Z, we propose to pick up randomly on the cell Cj a value between
un+1

j−1 , un+1
j and un+1

j+1 , in agreement with their rate of presence in the cell. More precisely,
given an equidistributed random sequence (an) within interval (0, 1), we set :

un+1
j =





un+1
j−1 if an+1 ∈ (0, ∆t

∆x max(σn
j−1/2, 0)),

un+1
j if an+1 ∈ [ ∆t

∆x max(σn
j−1/2, 0), 1 + ∆t

∆x min(σn
j+1/2, 0)),

un+1
j+1 if an+1 ∈ [1 + ∆t

∆x min(σn
j+1/2, 0), 1),

(3.9)
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for all j ∈ Z.
Following a proposal by Collela [38], we consider the van der Corput random sequence
(an) defined by

an =
m∑

k=0

ik2
−(k+1), (3.10)

where n =
∑m

k=0 ik2
k, ik = 0, 1, denotes the binary expansion of the integers n = 1, 2, ....

This sequence is often used in the context of Glimm scheme because it leads to very good
results in the smooth parts of the solutions (see for instance [38, 33] for illustration).

It is worth noting that, due to the sampling procedure, the algorithm proposed is
not “strictly” conservative in the classical sense of finite volumes methods. However, the
numerical tests presented in Sec. 4.6.3 show that the scheme is “weakly” conservative in
the sense that phase transitions propagate with the right speeds (given by the Rankine-
Hugoniot condition) and conservation errors seem to tend to zero with the mesh size.

Remark. Of course, the random choice method (Glimm scheme) can be applied
successfully to compute solutions of (2.5). Nevertheless, our method doesn’t need to
compute all the values in the Riemann solution, but only the values on both sides of the
phase transition. Moreover, the algorithm coincides with the classical Godunov scheme,
and hence it is conservative, away from phase transitions.

3.1.2 Higher order extension of the method in space and time

We have proposed a both space and time second-order extension of the modified Go-
dunov scheme presented in Sec. 3.1.1. Our strategy relies on the very popular MUSCL
approach for the space accuracy and on a Runge-Kutta technique for the time accuracy.
As usual, the second-order accuracy is obtained for smooth solutions only, even if better
numerical results are expected also when discontinuities (or non smooth regions) are
present. In our context, it is important to notice that smooth solutions exist, but, nec-
essarily, take values in a fixed phase (free or congested) since phase changes are always
associated with discontinuities. As a consequence, the resulting procedure has to be
considered second-order accurate away from phase transitions. For this reason, I will
focus on the first part of the projection step only, the sampling procedure being kept
unchanged.

Below, I first address the space accuracy and show how to obtain a MUSCL scheme
which is stable in the L1 sense. Then, I deal with the time accuracy and show how to
apply a second-order Runge-Kutta technique.

Accuracy in space
I begin by briefly recalling the MUSCL method for obtaining the second-order accuracy
in space. For more details, I refer the reader to [99, 69, 97, 17] and the references therein.
Assume that there exists a change of variables u → U = ϕ(u) from Ω onto some set
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ΩU. The starting point of the method consists in replacing at each time tn and on each
cell Cj the constant values un

j by means of ϕ and a linear reconstruction of U. We set

un(x) = ϕ−1(Un(x))

for x ∈ Cj = [xj−1/2;xj+1/2), with

Un(x) = Un
j + sn

j

(x − xj)

∆x
, Un

j = ϕ(un
j ), j ∈ Z.

Above, xj represents the center of the cell Cj , xj = 1
2(xj−1/2 + xj+1/2), and sn

j is the
slope of the linear reconstruction. The choice of the reconstructed variable U generally
depends on the system under consideration. In the present study, in order to ensure
the L1 stability of the method, the reconstruction can be performed on the conservative
variable for the scalar equation modeling the free flow (U = u), while the Riemann
variables U = (w1, w2) turn out to be more adapted for the congested phase.
We denote un,±

j and Un,±
j the values at the edges x = xj±1/2 of un and Un respectively:

un,±
j = ϕ−1(Un,±

j ), Un,±
j = Un

j ±
1

2
sn
j .

Then we replace the couple (un
j ,un

j+1) with (un,+
j ,un,−

j+1) in the evaluation of the numer-

ical fluxes f
n,±
j+1/2 at each interface xj+1/2. More precisely, we consider f

±
(un,+

j ,un,−
j+1)

instead of f
±
(un

j ,un
j+1) in (3.7).

As far as the choice of the reconstructed variable U and the slopes sn
j is concerned,

it is well-known that these have to be carefully determined for stability reasons. Once U
is chosen, an usual choice for sn

j is given by a slope-limiter procedure with for instance
the so-called minmod limiter:

sn
j = minmod(Un

j+1 − Un
j ,Un

j − Un
j−1), (3.11)

where the minmod function is defined by

minmod(a, b) =

{
sgn (a) min(|a|, |b|) if ab ≥ 0,
0 otherwise,

for two scalar quantities a and b. In (3.11), minmod is applied component by component.

In the rest of this section, in order to simplify the notations, I will assume that the
three states Un

j−1, Un
j and Un

j+1 in (3.11) belong to the same phase. Otherwise, if Un
j−1

and/or Un
j+1 are not in the same phase of Un

j , they are replaced by ϕ(u+(un
j−1,u

n
j ))

and/or ϕ(u−(un
j ,un

j+1)), where u±(un
j ,un

j+1) represent for all j the values on both sides
of the phase transition in the Riemann solution associated with initial states un

j and
un

j+1. Then, by definition ϕ(u+(un
j−1,u

n
j )), un

j and ϕ(u−(un
j ,un

j+1)) belong to the same
phase.
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The objective is guaranteeing the L1 stability of the reconstruction procedure, i.e.,
un,±

j to necessarily belong to the phase space Ω. This relies on a suitable choice of U.
If un

j ∈ Ωf , we consider a conservative reconstruction: U = u. Since q always equals

ρV in the free phase, the constraint un,±
j ∈ Ωf reads

Vf ≤ vf (ρn,±
j ),

which by definition of vf is equivalent to

0 ≤ ρn,±
j ≤ R

(
1 −

Vf

V

)
.

Since the above set is convex, we can take

sn
j = minmod(ρn

j+1 − ρn
j , ρn

j − ρn
j−1).

If un
j ∈ Ωc, the constraints un,±

j ∈ Ωc are equivalent to

{
0 ≤ w1(ρ

n,±
j , qn,±

j ) ≤ Vc,

W−
2 ≤ w2(ρ

n,±
j , qn,±

j ) ≤ W+
2 .

(3.12)

We set U = (w1(ρ, q), w2(ρ, q)), where w1, w2 denote the Riemann invariants defined
in (2.9), and define

{
(w1)

n,±
j = (w1)

n
j ± 1

2minmod((w1)
n
j+1 − (w1)

n
j , (w1)

n
j − (w1)

n
j−1),

(w2)
n,±
j = (w2)

n
j ± 1

2minmod((w2)
n
j+1 − (w2)

n
j , (w2)

n
j − (w2)

n
j−1),

which is easily seen to imply the last two constraints in (3.12) by definition of the
minmod function (and since un

j−1 and un
j+1 are also assumed to be in Ωc).

Accuracy in time
In order to have second-order accuracy in time in smooth regions and away from phase
transitions, we propose a simple numerical time integration that is equivalent, away from
phase transitions, to the well-known RK2 method (2nd order Runge-Kutta, or Heun).

The MUSCL scheme obtained above writes

un+1
j − un

j =
∆x − ∆x

n
j

∆x
n
j

un
j −

∆t

∆x
n
j

(f
−
(un,+

j ,un,−
j+1) − f

+
(un,+

j−1,u
n,−
j )).

From this formula and the approximated values (un
j )j∈Z on the cells Cj, we then define

a first approximation un+1=
j of the updated value on the cell C

n
j by

un+1=
j − un

j =
∆x − ∆x

n
j

∆x
n
j

un
j −

∆t

∆x
n
j

(f
−
(un,+

j ,un,−
j+1) − f

+
(un,+

j−1,u
n,−
j )).
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Then, another one denoted un+1−
j is obtained from the first approximations (un+1=

j )j∈Z:

un+1−
j −un+1=

j =
∆x − ∆x

n
j

∆x
n
j

un+1=
j −

∆t

∆x
n
j

(f
−
(un+1=,+

j ,un+1=,−
j+1 )−f

+
(un+1=,+

j−1 ,un+1=,−
j )).

Finally, un+1
j is defined from these two approximations setting

un+1
j = un

j +
1

2
[(un+1=

j − un
j ) + (un+1−

j − un+1=
j )],

which equivalently recasts as

un+1
j = un

j +
∆x − ∆x

n
j

2∆x
n
j

(un
j + un+1=

j )

−
∆t

2∆x
n
j

(f
−
(un,+

j ,un,−
j+1) − f

+
(un,+

j−1,u
n,−
j ))

−
∆t

2∆x
n
j

(f
−
(un+1=,+

j ,un+1=,−
j+1 ) − f

+
(un+1=,+

j−1 ,un+1=,−
j )).

Note that, away from phase transitions, we have ∆x
n
j = ∆x and the numerical fluxes

coincide with the ones of the usual Godunov method. In this case we get

un+1
j = un

j −
∆t

2∆x

(
f(R(un,+

j ,un,−
j+1)(0)) − f(R(un,+

j−1,u
n,−
j )(0))

)

−
∆t

2∆x

(
f(R(un+1=,+

j ,un+1=,−
j+1 )(0)) − f(R(un+1=,+

j−1 ,un+1=,−
j )(0))

)
,

and we recover the classical method consisting in a RK2 time integration together with
a MUSCL reconstruction strategy for the space discretization. The scheme is then
second-order accurate in both space and time in smooth regions.

3.1.3 Numerical experiments

In [32] we have tested the algorithm on several cases. Here, I present the results obtained
on three Riemann problems leading to solutions involving phase transitions. The param-
eters of the model are: R = 1, V = 2, Vf = 1, Vc = 0.85, Q = 0.5, Q− = 0.25, Q+ =
1.5. The numerical solutions are represented by the density and velocity profiles, and
are compared to the exact solutions. Solutions computed by the second-order extension
of the method are also showed.

For Test A, we consider ρl = 0.7, ρlvl = 0.3 in the congested phase and ρr = 0.3
in the free phase, leading to a solution made of a rarefaction in the congested phase,
followed by a phase transition to a free state, itself followed by a rarefaction wave in the
free phase. The solutions are plotted on Fig. 3.2 at time Tf = 0.5. For this test case,
we have used a mesh containing 500 points (∆x = 0.002).

For Test B, we choose ρl = 0.35 in the free phase and ρr = 0.6, ρrvr = 0.25, in the
congested phase. The corresponding solution is a shock-like phase transition followed
by a contact discontinuity. Fig. 3.3 plots the solution at time Tf = 0.6 with ∆x = 0.002.

35



3. NUMERICAL SCHEMES

For Test C, we take ρl = 0.215 in the free phase and ρr = 0.7, ρrvr = 0.2, in
the congested phase, leading a solution composed of a phase transition followed by a
rarefaction wave, and a contact discontinuity propagating with positive speed. In this
case the congested state of the phase transition is very difficult to capture properly, due
to the numerical diffusion of the scheme, which is present in the rarefaction wave. Note
that this state is always over-estimated from the proposed averaging strategy. However,
we observe a good agreement between the numerical solution and the exact solution,
and the numerical solution becomes closer to the exact one when the order of accuracy
of the method is higher, as it is illustrated on Fig. 3.4, where we have taken ∆x = 0.005
and Tf = 0.8.

Conservation error. Due to the random sampling in Step 3, the method does
not strictly conserve the mass ρ. We measure the conservation error on the piecewise
constant numerical solution ρν defined as

ρν(t, x) = ρn
j if (t, x) ∈ [tn, tn+1) × [xj−1/2, xj+1/2),

between times t = 0 and t = T , for some T > 0. In the computational domain [−0.5, 0.5],
we compare with 0 the function E : T ∈ R

+ → E(T ) ∈ R with E(T ) defined by

∫ x1

x0

ρν(T, x) dx × E(T ) =

∫ x1

x0

ρν(T, x) dx −

∫ x1

x0

ρν(0, x) dx

+

∫ T

0
{ρvc(ρ, q)}ν(t, x1) dt −

∫ T

0
{ρvc(ρ, q)}ν(t, x0) dt.

Recall that q = ρV in the free phase. E(T ) represents the relative conservation error of
ρν at time T on the interval [x0, x1]. In the next table, we give for the Tests A, B, C
the values of the L1 norm 1

Tf
||E||L1(0,Tf ) of E, namely

1

Tf
||E||L1(0,Tf ) =

1

Tf

∫ Tf

0
|E(T )|dT =

tn+1=Tf∑

tn=0

(tn+1 − tn)

Tf
|E(tn)|,

where Tf is the final time of the corresponding simulations. We observe that the con-
servation errors are very small and decrease with the mesh size.
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# of points Test A Test B Test C

100 0.44% 0.64% 0.91%

500 0.16% 0.17% 0.22%

1000 0.094% 0.095% 0.11%

2000 0.051% 0.057% 0.052%

Table 3.1: Conservation errors (first-order scheme).

# of points Test A Test B Test C

100 0.25% 0.23% 0.87%

500 0.054% 0.071% 0.21%

1000 0.030% 0.044% 0.11%

2000 0.016% 0.031% 0.052%

Table 3.2: Conservation errors (second-order scheme).
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Figure 3.2: Test A: ρ (Left) and v (Right)
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Figure 3.3: Test B: ρ (Left) and v (Right)
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Figure 3.4: Test C: ρ (Left) and v (Right)

3.2 Numerical approximation of the Aw-Rascle model

In this section, I present a numerical scheme designed to capture the contact disconti-
nuities in the Aw-Rascle model of traffic flow

{
∂tρ + ∂x (ρv) = 0 ,
∂ty + ∂x (yv) = 0 ,

t > 0, x ∈ R , (3.13)

that has been already surveyed in Sec. 2.3. The system under consideration is strictly
hyperbolic for ρ > 0, with a genuinely nonlinear and a linearly degenerate characteristic
field. The latter is associated with the faster eigenvalue, which is equal to v, and devel-
ops discontinuous waves, the so-called contact discontinuities, along which the speed of
propagation is constant and given by v. I will focus on the numerical approximation of
these contact discontinuities.

In the past decade, the numerical approximation of contact discontinuities received
a lot of attention in the context of compressible multicomponent (or multifluid) flows.
Indeed, when the flow is made of several species, it is observed that classical conservative
schemes (like Godunov’s scheme) generate important nonphysical oscillations near the
material fronts, eventually leading to numerical solutions that are not precise (at least
for realistic meshes). The same pathologies also exist for single fluid computations, and
they are going to appear for system (3.13). Several corrections have been proposed in the
literature, see for instance [78, 79, 1, 94, 62, 2, 12] and the references therein. Roughly
speaking, the common idea is to keep on using a classical conservative scheme far from
the material interfaces and to introduce a non conservative modification in the regions
where the problem occurs, in order to preserve constant pressure and velocity. Note
however that the threshold technique often attached to the local treatment prevents
the methods from strictly preserving isolated contact discontinuities. The resulting
non conservative schemes give good results and seem to be numerically converging. In
addition, these strategies are usually designed for models involving at least two fluids,
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and then two pressure laws. As a consequence, it seems difficult to apply them to our
“single fluid” system (3.13).

The algorithm presented here is based on the Transport-Equilibrium approach re-
cently introduced by Chalons in [28]. The idea of the Transport-Equilibrium schemes
lies on the following observation. On one side, classical Godunov-type schemes are cheap
and give good approximations of smooth solutions. On the other side, Glimm scheme
works well for discontinuities, but it requires the computation of the solution to the Rie-
mann problem at each mesh interface, being in general very expensive. Hence the idea is
to construct an hybrid method based on a Godunov type technique, but using a random
strategy near the discontinuities we are interested for. These schemes require two steps:
a Transport step to localize the discontinuity and make it move by a random sampling,
and an Equilibrium step to take into account the regular parts by introducing a suitable
numerical flux. I would like to underline here that the Transport-Equilibrium method
was originally designed for scalar conservations laws with non classical shocks. On the
contrary in this case it is applied to a 2 × 2 system. It allows to remove the spurious
oscillations generated by the Godunov scheme near the contact discontinuities. As ex-
pected, the algorithm is non conservative but numerical experiments give very accurate
numerical solutions with sharp (without numerical diffusion) contact discontinuities and
very small conservation errors that decrease with the mesh size. Moreover, we are able
to prove that the method enjoys important stability properties like strong consistency
and a maximum principle on the two Riemann invariants of system (3.13), see Theorems
3.2.1 and 3.2.2 in Sec. 3.2.2. Note also that the algorithm is free of threshold techniques.
As a consequence of all these properties, contact discontinuities are always computed
without oscillations.

To conclude, I wish to mention that the same difficulties related to the numerical
computation of contact discontinuities are expected to occur for the second-order model
proposed by Colombo [39], that has a linearly degenerate field. Moreover, the techniques
presented in this section can be easily adapted and used for models with phase transi-
tions (2.7), (2.15), in combination with the numerical scheme described in the previous
section.

In the following sections, I will use the notations introduced in Sec. 3.1.1.

3.2.1 Failure of Godunov scheme in properly capturing contact dis-

continuities

I begin recalling that the self-similar solution to the general Riemann problem for (3.13),
i.e. 




∂tu + ∂xf(u) = 0,

u(0, x) =

{
ul if x < 0,
ur if x > 0,

(3.14)

is made of one Lax wave (shock or rarefaction) moving with negative and/or positive
speeds, and a contact discontinuity always moving with positive speed v = vr. For a
more detailed description of the Riemann solver see [8]. Using the Riemann coordinates
introduced in (2.16) and the property that w1 (respectively w2) is constant across the
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waves of the first (respectively second) family, the intermediate state u⋆(ul,ur) in the
Riemann solution is easily computed :

{
w⋆

1 = wl
1 = vl + p(ρl),

w⋆
2 = wr

2 = vr,
=⇒





ρ⋆ = ρl exp

(
vl − vr

vref

)
,

y⋆ = ρ⋆(vr + p(ρ⋆)).

Note that v⋆ := v(u⋆(ul,ur)) = vr.
Let us consider the Riemann problem (3.14) with ul = (ρl, yl) and ur = (ρr, yr) such

that ρl > 0, ρr > 0, ρl 6= ρr but vl = vr > 0. In this case, the solution simply consists
in a contact discontinuity propagating at speed v0 := vl = vr:

u(t, x) =

{
ul if x < v0t,
ur if x > v0t.

The first time step:
The discretization of the initial data gives

u0
j =

{
ul if j ≤ 0,
ur if j > 0.

Due to the CFL restriction (3.2) and the assumption v0 > 0, only the cell C1 may be
affected by the update formula (3.4) in the first time step. In other words,

u1
j = u0

j for all j 6= 1.

For j = 1, (3.4) is equivalent to

ρ1
1 = ρ and y1

1 = y,

where we have used the notation

α =
1

∆x

∫ ∆x

0
α(∆t, x) dx.

We observe that

y =
1

∆x

∫ ∆x

0
y(∆t, x) dx =

1

∆x

∫ ∆x

0
(ρv + ρp(ρ))(∆t, x) dx.

Since the velocity remains constant across a contact discontinuity, we have

y = v0
1

∆x

∫ ∆x

0
ρ(∆t, x) dx +

1

∆x

∫ ∆x

0
(ρp(ρ))(∆t, x) dx = v0ρ + ρp(ρ).

On the contrary, if we calculate v1
1 from ρ and y, we get

v1
1 =

y

ρ
− p(ρ) = v0 +

ρp(ρ) − ρp(ρ)

ρ
.
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We observe that the function ρ → ρp(ρ) is convex. By Jensen’s inequality, we deduce
ρp(ρ) ≥ ρp(ρ) and then

v1
1 ≥ v0,

with strict inequality generally speaking. This means that after the first time iteration,
the velocity no longer equals v0 everywhere. We conclude that the Godunov method
is not able to keep constant the velocity profile and then to properly capture contact
discontinuities. In Sec. 3.2.3, numerical tests show that the non physical values created
by the Godunov method around contact discontinuities may significantly damage the
numerical solution.

Remark. (i) The failure that I have just underlined is due to the fact that Godunov
method does not obey to a maximum principle property on the velocity v. The algorithm
proposed in the next section verifies the maximum principle on the Riemann invariants
v and v + p(ρ), see Theorem 3.2.2.

(ii) It is important to notice that if we consider an isolated 1-wave between ul and
ur, the Godunov method actually keeps constant the Riemann invariant v + p(ρ). If we
set C0 := vl + p(ρl) = vr + p(ρr), we have indeed

(v + p(ρ))11 = (
y

ρ
)11 =

y

ρ
=

ρ(v + p(ρ))

ρ
= C0

ρ

ρ
= C0.

This property is very interesting and means in particular that all the points in a numer-
ical 1-wave profile associated with Godunov’s method belong to the same 1-wave curve
for all the possible choices of p(ρ). This property is also satisfied by our method (see
Theorems 3.2.1 (iii) and 3.2.2).

3.2.2 A Transport-Equilibrium scheme

In [31], we have proposed an algorithm that allows to avoid the spurious oscillations
generated near the contact discontinuities by the classical Godunov method. The basic
idea is to treat in a different way contact discontinuities on one side, and other waves
(shock and rarefaction waves) on the other side. We keep on using Godunov method
for shocks and rarefactions (since it works well and it is conservative), and we propose a
particular treatment for contact discontinuities, which make use of a (Glimm’s) random
sampling strategy.

We set
g(ul,ur) = f(R(ul,ur)(0−)),

so that the numerical flux of the Godunov method writes fn
j+1/2 = g(un

j ,un
j+1) for

all j ∈ Z. Recall that u⋆(ul,ur) is the intermediate state in the Riemann solution
ur(·;u

l,ur) (between the 1-wave and the 2-contact discontinuity). See Fig. 3.5.
The method is made of two steps. On each interval [xj , xj+1], j ∈ Z, the first step

takes into account only the contact discontinuity in the Riemann solution R(un
j ,un

j+1),
while the second step focuses on the 1-wave. Our procedure may be viewed as a waves
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xj−1/2 xj+1/2
xj−1 xj xj+1

un
j−1 un

j un
j+1

vn
j vn

j+1

u⋆(un
j−1,u

n
j ) u⋆(un

j ,un
j+1)

Figure 3.5: Notations used in Sec. 3.2.2.

splitting strategy, performed locally around each interface xj+1/2 where a Riemann
problem is set.

Assuming as given un
j−1, un

j and un
j+1, we show now how to define un+1

j . Note that,
under the CFL condition (3.2), it is sufficient to focus on the interval [xj−1, xj+1], since
the Riemann problems set at other interfaces are not expected to influence the definition
of un+1

j . See Fig. 3.5.

Step 1: Propagation of contact discontinuities (tn → tn+1/2).
In this step, we focus on the dynamics of contact discontinuities. The Riemann problems
at the interfaces xj−1/2 and xj+1/2 generally develop a 1-wave and a 2-contact discon-
tinuity, the latter propagating at speed vn

j and vn
j+1 respectively (see again Fig. 3.5).

These velocities being nonnegative, the contact discontinuities only affect [xj−1/2, xj)
and [xj+1/2, xj+1], but not [xj−1, xj−1/2) and [xj , xj+1/2). This means that the Riemann
solutions R(un

j−1,u
n
j ) and R(un

j ,un
j+1) can be replaced in this step with the following

function

ṽ(t, x) =





un
j−1 if x ∈ [xj−1, xj−1/2),

u⋆(un
j−1,u

n
j ) if x ∈ [xj−1/2, xj−1/2 + vn

j (t − tn)),

un
j if x ∈ [xj−1/2 + vn

j (t − tn), xj+1/2),

u⋆(un
j ,un

j+1) if x ∈ [xj+1/2, xj+1/2 + vn
j+1(t − tn)),

un
j+1 if x ∈ [xj+1/2 + vn

j+1(t − tn), xj+1],

on the whole interval (xj−1, xj+1), see Fig. 3.6. Of course, this function has to be
considered as a substitute of function v in (3.3), where only contact discontinuities have
been kept.

In order to properly capture contact discontinuities, we define ṽ(tn+1/2, x) as a piece-
wise constant function on each interval [xj−1, xj−1/2), [xj−1/2, xj+1/2) and [xj+1/2, xj+1]
(as ṽ(tn, x) is) by means of a Glimm’s random sampling strategy. More precisely, we pick
up randomly on the cell [xj−1, xj+1] a value between un

j−1, u
⋆(un

j−1,u
n
j ), un

j , u⋆(un
j ,un

j+1)
and un

j+1 in agreement with their rate of presence in the corresponding interval, or equiv-
alently in agreement with the definition of the function x → ṽ(tn + ∆t, x). Given an
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Figure 3.6: Function ṽ.

equidistributed random sequence (an) within interval (0, 1), it amounts to set :

ṽ(tn+1/2, x) =





un
j−1 if x ∈ [xj−1, xj−1/2)

u
n+1/2
j if x ∈ [xj−1/2, xj+1/2)

u
n+1/2
j+1,L if x ∈ [xj+1/2, xj+1]

with

u
n+1/2
j =

{
u⋆(un

j−1,u
n
j ) if an+1 ∈ (0, ∆t

∆xvn
j ),

un
j if an+1 ∈ [ ∆t

∆xvn
j , 1),

(3.15)

and

u
n+1/2
j+1,L =

{
u⋆(un

j ,un
j+1) if an+1 ∈ (0, 2∆t

∆x vn
j ),

un
j+1 if an+1 ∈ [2∆t

∆x vn
j , 1).

(3.16)

See Fig. 3.7. We will consider the van der Corput random sequence (an) defined
by (3.10).

Remark. It is worth noticing from now on that if both un
j−1 and un

j on one hand

and un
j and un

j+1 on the other hand can be connected by a 1-wave, then ṽ(tn+1/2, x) =
ṽ(tn, x). Then, the first step is transparent when no contact discontinuity is present.

Step 2 : Account for the dynamics of shock and rarefaction waves (tn+1/2 → tn+1).
Let us first consider the Riemann problem set at the interface xj+1/2 for which only
the part of the solution located on the left of the contact discontinuity may enter the
cell Cj = [xj−1/2, xj+1/2) (see Fig. 3.5). We propose to take it into account by simply

averaging R(u
n+1/2
j ,u

n+1/2
j+1,L ) on (xj , xj+1/2). Then we set

un+1
j+1/2,L =

2

∆x

∫ xj+1/2

xj

R(u
n+1/2
j ,un

j+1)((x − xj+1/2)/∆t) dx

= u
n+1/2
j − 2∆t

∆x (g(u
n+1/2
j ,un

j+1) − f(u
n+1/2
j )).

(3.17)
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xj−1/2 xj+1/2
xj−1 xj xj+1

un
j−1 u

n+1/2
j u

n+1/2
j+1,L

Figure 3.7: Function ṽ(tn+1/2, x).

Let us now focus on the Riemann problem set at the interface xj−1/2 for which both
parts of the solution located on the left and on the right of the contact discontinuity
may enter the cell Cj depending on the sense of propagation of the 1-wave (see again
Fig. 3.5). There are two possibilities:

• u
n+1/2
j = un

j : it corresponds to the case where the random sampling “decided”
that the (possibly present) contact discontinuity of R(un

j−1,u
n
j ) do not yet enter

the cell Cj . Then we only have to account for:

- the right part of the contact discontinuity in R(un
j−1,u

n
j ) (i.e. un

j = u
n+1/2
j ) if

a contact discontinuity is actually present in R(un
j−1,u

n
j ), that is if u⋆(un

j−1,u
n
j ) 6=

un
j . This is simply done by replacing un

j−1 and un
j with u

n+1/2
j = un

j in R(un
j−1,u

n
j );

- the part of the solution R(un
j−1,u

n
j ) entering Cj if no contact discontinuity is

present in R(un
j−1,u

n
j ), that is if u⋆(un

j−1,u
n
j ) = un

j .

• u
n+1/2
j = u⋆(un

j−1,u
n
j ) 6= un

j : it corresponds to the case where the random sam-
pling makes the contact discontinuity of R(un

j−1,u
n
j ) enter the cell Cj. Then we

also have to account for the part of the solution R(un
j−1,u

n
j ) located on the left of

the contact discontinuity and entering the cell Cj , that is equivalently the part of

the solution R(un
j−1,u

n+1/2
j ) entering the cell Cj.

Thus, since the condition u⋆(un
j−1,u

n
j ) 6= un

j is equivalent to u⋆(un
j−1,u

n+1/2
j ) 6=

u
n+1/2
j when u

n+1/2
j = un

j , we average on [xj−1/2, xj) setting

un+1
j−1/2,R =

2

∆x

∫ xj

xj−1/2

R(un
j−1,u

n+1/2
j )((x − xj−1/2)/∆t) dx

= u
n+1/2
j −

2∆t

∆x
(f(u

n+1/2
j ) − g(un

j−1,u
n+1/2
j ))

if u⋆(un
j−1,u

n+1/2
j ) = u

n+1/2
j ,

un+1
j−1/2,R =

2

∆x

∫ xj

xj−1/2

R(u
n+1/2
j ,u

n+1/2
j )((x − xj−1/2)/∆t) dx = u

n+1/2
j

otherwise. We get the following update formula:

un+1
j =

1

2
(un+1

j+1/2,L + un+1
j−1/2,R) = u

n+1/2
j −

∆t

∆x
(g

n+1/2,L
j+1/2 − g

n+1/2,R
j−1/2 ) for all j ∈ Z,

(3.18)
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where the left and right numerical flux functions g
n+1/2,L
j+1/2 and g

n+1/2,R
j−1/2 are defined

according to

g
n+1/2,L
j+1/2 = g(u

n+1/2
j ,un

j+1),

and

g
n+1/2,R
j−1/2 =

{
g(un

j−1,u
n+1/2
j ) if u⋆(un

j−1,u
n+1/2
j ) = u

n+1/2
j ,

f(u
n+1/2
j ) otherwise.

(3.19)

The description of the method is now completed. Stability properties enjoyed by this
algorithm are proposed below (see [31] for the proof).

Remark. (i) Putting the first and the second step together, we note that the
definition of un+1

j only depends on un
j−1, un

j and un
j+1.

(ii) For numerical reasons, the test u⋆(un
j ,u

n+1/2
j+1 ) = u

n+1/2
j+1 in (3.19) is replaced

with |u⋆(un
j ,u

n+1/2
j+1 ) − u

n+1/2
j+1 | ≤ ε, with for instance ε = 1.e−12.

Theorem 3.2.1 (Consistency) Under the CFL restriction (3.2), the scheme defined
by (3.15)-(3.18)-(3.19) is consistent with (3.13) in the following sense :
(i) Constant state : Assume that u := un

j−1 = un
j = un

j+1, then un+1
j = u.

(ii) Isolated contact discontinuity : Let ul and ur be two distinct constant states that

can be connected by a contact discontinuity. Set v := vl = vr. Assume that u0
j = ul

if j ≤ 0 and u0
j = ur if j > 0. Then the scheme (3.15)-(3.18)-(3.19) is equivalent to

Glimm’s random choice scheme and then converges to the solution of (3.14) given by
u(t, x) = ul if x < vt and u(t, x) = ur otherwise. In particular, we have un

j ∈ {ul,ur}
∀ j ∈ Z and ∀ n ∈ N so that the velocity profile remains constant : vn

j = v ∀ j ∈ Z

and ∀ n ∈ N.
(iii) Isolated 1-wave : Let us assume that un

j−1 and un
j can be connected by a 1-wave

(u⋆(un
j−1,u

n
j ) = un

j ). Then the definition un+1
j of the scheme (3.15)-(3.18)-(3.19) coin-

cides with the one of the Godunov scheme.

Theorem 3.2.2 (Maximum principle) Under the CFL restriction (3.2), the scheme
defined by (3.15)-(3.18)-(3.19) satisfies the following maximum principle property for all
j ∈ Z and all n ∈ N :





inf
j∈Z

v0
j ≤ vn

j ≤ sup
j∈Z

v0
j ,

inf
j∈Z

(v0
j + p(ρ0

j)) ≤ vn
j + p(ρn

j ) ≤ sup
j∈Z

(v0
j + p(ρ0

j )) .

3.2.3 Numerical experiments

In this section, I take p(ρ) = Vref ln(ρ/R), R = 1 and Vref = 1.4427. In order to
test the proposed scheme, we have considered three Riemann problems leading to three
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solutions of interest: an isolated contact discontinuity (Test 1), a shock wave followed
by a contact discontinuity (Test 2) and a sonic rarefaction wave followed by a contact
discontinuity (Test 3). In each case, the method is first evaluated by means of a
qualitative comparison with the exact solution: the ρ, v and v + p(ρ) profiles are shown
on Figs. 3.8, 3.9 and 3.10. For several mesh sizes, a quantitative evaluation through
the L1 norm (of the difference between the exact and the numerical solutions) is then
made, as well as a measure of the conservation errors on both ρ and y. They are given
on Tables 3.3, 3.4, 3.5 : Eρ

cons and Ey
cons denote the conservation errors on ρ and y,

and Eρ
L1 and Ev

L1 denote the L1 errors on ρ and v. The L1 norm errors are computed
in a very classical way. For the sake of completeness, I give the precise meaning of
Eρ

cons and Ey
cons in our computations (see [2, 28, 29] for more details on these formulas):

denoting [x0, x1] = [−0.25, 0.75] the computational domain of our simulations and Tf

the corresponding final time, we first set for all n ≥ 0

Eu(tn) =

(
Eρ(tn)
Ey(tn)

)

=

∫ x1

x0

uν(t
n, x)dx −

∫ x1

x0

uν(0, x)dx +

∫ tn

0
f(uν(s, x1))ds −

∫ tn

0
f(uν(s, x0))ds

∫ x1

x0

uν(tn, x)dx

,

where the ratio has to be understood component by component, and then

Eu
cons =

(
Eρ

cons

Ey
cons

)
=

1

Tf

N∑

n=0

∆t|Eu(tn)| with N = Tf/∆t.

Note that Eu
cons corresponds to the sum of the absolute value of the relative conservation

errors made at each intermediate time tn. In other words, the possible compensation
effects are not taken into account here.

Initial states are chosen as follows:

Test 1

ul : ρl = 0.9 vl = 1.
ur : ρr = 0.1 vr = 1.

Test 2

ul : ρl = 0.1 vl = 1.8
ur : ρr = 0.2 vr = 1.6

Test 3

ul : ρl = 0.5 vl = 1.2
ur : ρr = 0.1 vr = 1.6
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The qualitative results are presented on a mesh made of 100 points per unit interval.
We observe, as predicted above, that the classical Godunov method develops spurious

oscillations near the contact discontinuities, that strongly affect the whole numerical
solutions. On the contrary, our algorithm removes them and provides numerical solutions
in full agreement with exact ones, with sharp contact discontinuities. As far as the
conservation errors and the L1 errors are concerned, they decrease with the mesh size,
which proves numerically the convergence of the method. Moreover, we see that the
L1 errors between the numerical and exact solutions are really lower for our scheme
compared with the Godunov method.
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Figure 3.8: Test 1: ρ (top), v (middle) and v + p(ρ) (bottom) at time Tf = 0.2.
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Figure 3.9: Test 2: ρ (top), v (middle) and v + p(ρ) (bottom) at time Tf = 0.2.
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Figure 3.10: Test 3: ρ (top), v (middle) and v + p(ρ) (bottom) at time Tf = 0.25.
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# of points Eρ
cons Ey

cons Eρ
L1 Ev

L1

100 0. 0. 8.39e−2 8.68e−2

500 0. 0. 4.26e−2 3.83e−2

1000 0. 0. 3.06e−2 2.66e−2

2000 0. 0. 2.18e−2 1.85e−2

# of points Eρ
cons Ey

cons Eρ
L1 Ev

L1

100 1.52% 7.74% 8.e−3 0.

500 0.32% 1.83% 1.6e−3 0.

1000 0.16% 0.94% 8.e−4 0.

2000 0.08% 0.47% 4.e−4 0.

Table 3.3: Test 1: Godunov scheme (top) and our scheme (bottom).

# of points Eρ
cons Ey

cons Eρ
L1 Ev

L1

100 0. 0. 3.2e−3 6.55e−3

500 0. 0. 1.47e−3 2.76e−3

1000 0. 0. 1.03e−3 1.78e−3

2000 0. 0. 7.3e−4 1.22e−3

# of points Eρ
cons Ey

cons Eρ
L1 Ev

L1

100 0.35% 0.14% 1.02e−3 2.3e−3

500 0.07% 0.03% 2.19e−4 6.47e−4

1000 0.04% 0.02% 1.09e−4 3.26e−4

2000 0.03% 0.01% 9.72e−5 1.63e−4

Table 3.4: Test 2: Godunov scheme (top) and our scheme (bottom).

# of points Eρ
cons Ey

cons Eρ
L1 Ev

L1

100 0. 0. 2.12e−2 3.8e−2

500 0. 0. 9.82e−3 1.68e−2

1000 0. 0. 6.98e−3 1.17e−2

2000 0. 0. 4.94e−3 8.22e−3

# of points Eρ
cons Ey

cons Eρ
L1 Ev

L1

100 0.81% 6.04% 3.82e−3 3.36e−3

500 0.17% 1.14% 9.41e−4 1.25e−3

1000 0.08% 0.57% 5.17e−4 7.78e−4

2000 0.04% 0.28% 2.84e−4 4.72e−4

Table 3.5: Test 3: Godunov scheme (top) and our scheme (bottom).
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4

Conservation laws with variable

unilateral constraints

This chapter is devoted to scalar constrained Cauchy problems of the form

∂tu + ∂xf(u) = 0, t > 0, x ∈ R, (4.1)

u(0, x) = u0(x), x ∈ R, (4.2)

f(u(t, 0)) ≤ F (t), t > 0. (4.3)

This problem was originally motivated by the modeling of a toll gate along a road,
but it tuns out to be useful for other applications in traffic flow modelling such as
traffic lights [5] or pedestrian motion through a door [49]. The results about the exis-
tence and stability of solutions to (4.1)-(4.3) have been obtained in collaboration with
R.M. Colombo and are published in [46]. The construction and analysis of a class of
corresponding finite volume schemes have been addressed in collaboration with B. An-
dreianov and N. Seguin in [5].

In the following sections, I will assume that the flux function f : [0, 1] → R is
Lipschitz continuous with Lipschitz constant L and satifies

f(u) ≥ 0, f(0) = f(1) = 0, f ′(u)(ū − u) > 0 for a.e. u ∈ [0, 1] \ {ū}, (4.4)

for some ū ∈ (0, 1). I will also assume that F ∈ L∞(R+; [0, f(ū)]) and u0 ∈ L∞(R; [0, 1]).

4.1 The Constrained Riemann Solver

This section is devoted to the Riemann problem for (4.1)-(4.3), i.e. we take

u0 =

{
ul if x < 0,
ur if x > 0,

(4.5)

and F (t) ≡ F constant.
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ǔF ûFū 1

F

f

u ǔF ûFū 1

F

f

u

Figure 4.1: Examples of fundamental diagrams considered here.

We denote below by R the standard (i.e. without the constraint (4.3)) Lax [83] or
Liu [87] Riemann solver for (4.5), i.e. the map (t, x) 7→ R(ul, ur)(x/t) is the standard
weak entropy solution to (4.1)-(4.5).

Definition 4.1.1 A Riemann solver RF : (ul, ur) 7→ RF (ul, ur) for (4.1)-(4.3) is de-
fined as follows.
If f

(
R(ul, ur))(0)

)
≤ F , then RF (ul, ur) = R(ul, ur).

Otherwise, RF (ul, ur)(λ) =

{
R(ul, ûF )(λ) if λ < 0 ,
R(ǔF , ur)(λ) if λ > 0 .

Above, ǔF ≤ ûF are the solutions to f(u) = F , see Fig. 4.1. Note that when the
constraint is enforced, a non classical shock arises at x = 0. The solution so obtained is
a weak solution to (4.1) but it violates the entropy condition as soon as F < f(ū).

The Riemann solver RF generates a semigroup SF whose orbits are solutions to
Cauchy problems. A necessary condition for the L1 continuity of SF is the consistency
of RF , see Definition 2.2.2. It is easy to verify the following:

Proposition 4.1.2 The Riemann Solver defined by Definition 4.1.1 enjoys the following
properties, for all ul, ur ∈ [0, 1].

(RS1) (t, x) 7→
(
RF (ul, ur)

)
(x/t) is a self similar weak solution to (4.1)-(4.5);

(RS2) RF (ul, ur) ∈ BV (R; [0, 1]) for all t > 0;

(RS3) RF (ul, ur) satisfies the constraint (4.3) in the sense that for all t > 0

lim
x→0−

f
(
RF (ul, ur)(x/t)

)
≤ F and lim

x→0+
f
(
RF (ul, ur)(x/t)

)
≤ F ;

(RS4) RF is consistent in the sense of Definition 2.2.2.

Moreover, the map RF : [0, 1]2 7→ L1
loc(R; R) is uniformly continuous for all t > 0.

4.2 Entropy solutions

The non-classical problem (4.1)-(4.3) can be viewed as a singular limit of a classical
Cauchy problem with discontinuous flux function. Fix ε > 0 and consider the problem

{
∂tu

ε + ∂x (kε(t, x) f(uε)) = 0,
uε(0, x) = u0(x),

kε(t, x) =





1 |x| > ε,
F (t)

f(ū)
|x| ≤ ε.

(4.6)
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(I refer the reader to [46] for the rigorous formalization of limit procedure.) The above
equation fits in the framework provided by [77, Theorems 4.5, 5.5 and 6.5], see also [37,
76]. The associated entropy formulation (see for instance [98, 76, 77]) is

∫ +∞

0

∫

R

(|uε(t, x) − κ| ∂t + Φ(uε(t, x), κ)∂x) ϕ(t, x) dx dt

+

∫

R

|u0(x) − κ| ϕ(0, x) dx

+

∫ +∞

0

(
1 −

F (t)

f(ū)

)
f(κ) (ϕ(t,−ε) + ϕ(t, ε)) dt ≥ 0,

for all κ ∈ [0, 1] and ϕ ∈ C1
c(R+ × R; R+), where I have set Φ(a, b) = sgn (a− b)(f(a)−

f(b)). Note that the solution uε satisfies the constraint f(uε(t, x)) ≤ F (t) for a.e.
|x| < ε.
We are led to formulate the following definition for (4.1)-(4.3).

Definition 4.2.1 A function u ∈ L∞(R+×R; [0, 1]) is a weak entropy solution of (4.1)-
(4.3) if
(i) it satisfies the following entropy inequalities: for every ϕ ∈ C1

c(R
+ × R; R+) and all

κ ∈ [0, 1],

∫ +∞

0

∫

R

(|u(t, x) − κ|∂t + Φ(u(t, x), κ)∂x) ϕ(t, x) dx dt

+

∫

R

|u0(x) − κ| ϕ(0, x) dx + 2

∫ +∞

0

(
1 −

F (t)

f(ū)

)
f(κ) ϕ(t, 0) dt ≥ 0, (4.7)

(ii) it verifies the constraint:

f((γlu)(t)) = f((γru)(t)) ≤ F (t) for a.e. t > 0, (4.8)

where γl,r denote the operators of left- and right-side strong traces on {x = 0}.

Remark. Taking κ = 0 and κ = 1 in the above formulation, from the condition
u(t, x) ∈ [0, 1] a.e. we deduce that u is a weak solution of equation (4.1) (i.e., solution
in the sense of distributions).

It is worth noting that the traces γl,ru exist a.e. since we are dealing with a flux
function such that the measure of the set {s ∈ [0, 1], f ′(s) = 0} is zero (by assump-
tion (4.4)), as shown by Panov [89] (see also Vasseur [100] in the case of smooth non
linear flux functions).

Remark. Definition 4.2.1 selects the maximal solution, for a non classical stationary
shock at x = 0 separating states u2 and u1 with u1 < u2 and f(u1) = f(u2) < F (t)
turns out to be non entropic.
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Even if the above definition appears to be the natural one with respect to the ap-
proximation problem (4.6), its formulation is not easy to manipulate when dealing with
wave-front traking or finite volume approximations, because of the explicit constraint on
the traces of the flux in (4.8). Therefore, I introduce an (equivalent) entropy condition.
Let me first define the following sets:

• G1(F ) = {(cl, cr) ∈ [0, 1]2; cl > cr, f(cl) = f(cr) = F},

• G2(F ) = {(c, c) ∈ [0, 1]2; f(c) ≤ F},

• G3(F ) = {(cl, cr) ∈ [0, 1]2; cl < cr, f(cl) = f(cr) ≤ F},

and denote
G(F ) = G1(F ) ∪ G2(F ) ∪ G3(F ).

Remark that G1(F ) = {(ûF , ǔF )} is a singleton, uniquely defined by the conditions

f(ûF ) = f(ǔF ) = F, ûF ≥ ǔF .

Using the ideas of [10, 6, 27], we propose in [5] a new definition of solutions based on
the comparison of the solution with functions c defined by

c(x) =

{
cl if x < 0,
cr if x > 0,

(4.9)

with (cl, cr) ∈ [0, 1]2.

Definition 4.2.2 A function u ∈ L∞(R+×R; [0, 1]) is a weak entropy solution of (4.1)-
(4.3) if there exists M > 0 such that for every ϕ ∈ C1

c(R
+ × R; R+) and all c defined

by (4.9) with (cl, cr) ∈ [0, 1]2,

∫ +∞

0

∫

R

(|u(t, x) − c(x)|∂t + Φ(u(t, x), c(x))∂x) ϕ(t, x) dx dt

+

∫

R

|u0(x) − c(x)| ϕ(0, x) dx + M

∫ +∞

0
dist ((cl, cr),G(F (t))) ϕ(t, 0) dt ≥ 0. (4.10)

In (4.10) “dist” indicates a distance function on R
2. I refer the reader to [5] for a de-

tailed derivation of this condition, and the proof of equivalence between Definitions 4.2.1
and 4.2.2. Here I just want to point out that the two definitions are linked by a third
formulation of the entropy condition, which gives accurate informations on the traces
of the flux at x = 0 and hence turns out to be useful in the sequel when applied in
standard techniques a la Kružkov.

Definition 4.2.3 A function u ∈ L∞(R+×R; [0, 1]) is a weak entropy solution of (4.1)-
(4.3) if
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(i) it is a Kružkov entropy solution for x < 0 and x > 0: for all ϕ ∈ C1
c(R

+×R\{0}; R+)
and all κ ∈ [0, 1],

∫ +∞

0

∫

R

(|u(t, x) − κ| ∂t + Φ(u(t, x), κ) ∂x) ϕ(t, x) dx dt

+

∫

R

|u0(x) − κ| ϕ(0, x) dx ≥ 0,

(ii) for a.e. t > 0,
((γlu)(t), (γru)(t)) ∈ G(F (t)). (4.11)

The equivalence of the three definitions relies on the dissipativity and maximality prop-
erties of the admissibility germ G(F ).

Lemma 4.2.4
(i) If (bl, br) ∈ G(F ), then

∀(cl, cr) ∈ G(F ), Φ(bl, cl) ≥ Φ(br, cr). (4.12)

(ii) The converse is true, under the following form:

if (4.12) holds and the Rankine-Hugoniot condition
f(bl) = f(br) is satisfied, then (bl, br) ∈ G(F ).

(4.13)

4.3 Well posedness in the BV setting

Fist of all, observe that the constraint (4.3) and the consequent Definition 4.1.1 may
cause sharp increases in TV (u(t, ·)). The simplest example is provided by a constant
initial datum u0(x) = ū and a constraint

F (t) =

{
f(ū) if t < 1
1
2 f(ū) if t > 1 .

At time t = 1, two shocks arise from x = 0 and the total variation jumps from 0 to
2(û − ǔ), where ǔ < û and f(û) = f(ǔ) = 1

2f(ū).
To overcome this difficulty, following [37, 95], we use the nonlinear mapping

Ψ(u) = sgn (u − ū) (f(ū) − f(u)) (4.14)

and bound the total variation of Ψ ◦ u. In fact, Ψ is one-to-one, but possibly singular
at u = ū. Indeed, it is immediate to see that if u ∈ BV(R; R), then TV(Ψ ◦ u) ≤
‖f ′‖C0 ·TV(u), while TV(u) may well be infinite with TV(Ψ ◦ u) finite, as in the case

of f(u) = u (1 − u), ū = 1/2 and u =
1

2
+

+∞∑

n=3

1

n
χh

1

n+1/2
, 1

n

h.

To state the well posedness result, it is useful to introduce the translation Tt by
(TtF )(τ) = F (τ + t). Below we introduce a map SF : R

+ ×D 7→ D, D being a suitable
subset of L1(R; [0, 1]) containing the initial datum (4.2). We then denote by S̄F the
map S̄F : R

+ × D̄ 7→ D̄ defined by S̄F
t (u, F ) = (SF

t u,TtF ) with D̄ = D × BV.

56



4. CONSERVATION LAWS WITH VARIABLE UNILATERAL
CONSTRAINTS

Theorem 4.3.1 Let (4.4) hold. Then, for every constraint F ∈ BV (R+; [0, f(ū)]) there
exists a map SF : R

+ ×D 7→ D such that

(CRS1) D ⊇
{
u ∈ L1 (R; [0, 1]) : Ψ(u) ∈ BV(R; R)

}
;

(CRS2) S̄F is a semigroup, i.e. S̄F
0 = Id and S̄F

t1 ◦ S̄
F
t2 = S̄F

t1+t2 ;

(CRS3) SF is non expansive in u, i.e. for all u1, u2 ∈ D
∥∥SF

t u1 − SF
t u2

∥∥
L1

≤ ‖u1 − u2‖L1 ;

(CRS4) if u0 and F are piecewise constant, then for t sufficiently small, SF
t u0 coincides

with the gluing of the solutions to standard Riemann problems centered at the
points of jump of u0 and to (4.1),(4.3) and (4.5) at x = 0;

(CRS5) for all u0 ∈ D, the orbit t 7→ SF
t u0 yields a weak entropy solution to (4.1)-(4.3),

according to Definitions 4.2.1 or 4.2.2.

The above statements (CRS1)–(CRS4) are clearly modeled on the definition of Stan-
dard Riemann Semigroup, see [22, Def. 9.1] and provide an analogue to it in the present
constrained (and non autonomous) setting. The Lipschitz estimate (CRS3) is proved
with suitable modifications of the techniques in [82].

Sketch of the proof. The proof uses the standard technique of wave front tracking
and is detailed in [46, Sec. 4.3].
Fix a positive n ∈ N, n > 0 and introduce in [0, 1] the mesh Mn by

Mn = f←(2−n
N) .

Let PLCn be the set of piecewise linear and continuous functions defined on [0, 1] whose
derivatives exist in [0, 1] \Mn. Let fn ∈ PLCn coincide with f on Mn. Clearly, if f
satisfies (4.4), then also fn satisfies (4.4).

Similarly, introduce PCn, respectively PC+
n , as the set of piecewise constant func-

tions defined on R, respectively R
+, with values in Mn, respectively in f(Mn). Let

Fn ∈ PC+
n coincide with F on f(Mn). Note that if F ∈ BV(R+; [0, 1]), then so does

Fn. We write

un =
∑

α

un
α χ

]xα−1,xα]
with un

α ∈ Mn,

Fn = Fn
0 χ

[0,t1]
+
∑

β≥1

Fn
β χ

]tβ ,tβ+1]
with Fn

β ∈ 2−n
N,

(4.15)

and we agree that for α = 0, xα = 0. Both the approximations above are meant in the
strong L1 topology: limn→+∞ ‖Fn − F‖L1(R) = 0 and limn→+∞ ‖un − u‖L1(R) = 0.

Let Dn = {u ∈ PCn : Ψ(u) ∈ BV(R; R)} and D̄n = Dn × PC+
n . On any (un, Fn) ∈

D̄n, written as in (4.15), we define the Glimm type functional Υ as

Υ(un, Fn) =
∑

α

∣∣Ψ(un
α+1) − Ψ(un

α)
∣∣+ 5

∑

tβ≥0

∣∣Fn
β+1 − Fn

β

∣∣+ γ , (4.16)
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where γ is defined by

γ =

{
0 if (un(0−), un(0+)) ∈ G1(F

n(0)) ,
4 (f(ū) − Fn(0)) otherwise.

For small times, an approximate solution un = un(t, x) to (4.1)-(4.3) is constructed by
piecing together the solutions to the Riemann problems





∂tu + ∂x (fn(u)) = 0

u(0, x) =

{
u0,0 if x < 0
u0,1 if x > 0

f (u(t, 0)) ≤ Fn
0 ,





∂tu + ∂x (fn(u)) = 0

u(0, x) =

{
u0,α if x < xα

u0,α+1 if x > xα

α 6= 0 .

(4.17)

Note that the solutions to the Riemann problem (4.17), left, is constructed by means of
RF , whereas the solutions to (4.17), right, by means of R. In both cases, for fixed t, the
solutions are piecewise constant in x. Their juxtaposition yields a well defined (exact)
weak entropy solution un to





∂tu
n + ∂x (fn(un)) = 0

un(0, x) = un
0 (x)

f(un(t, 0)) ≤ Fn(t),
(4.18)

as long as either two discontinuities collide, or the value of the constraint changes. In
both cases, a new Riemann problem arises and its solution, obtained in the former case
with R and in the latter with RF , allows to extend un further in time.

The following lemma guarantees that the total number of interactions is finite and
the procedure allows to construct a global approximate solution.

Lemma 4.3.2 For any n ∈ N and (un
0 , Fn) ∈ D̄n, at any interaction, the map t 7→

Υ(t) = Υ (un(t, ·))

either decreases by at least 2−n,

or remains constant and the number of waves does not increase.

A standard procedure based on Helly’s Compactness Theorem, see [22, Theorem 2.4]
allows to exhibit a weak solution to (4.1)-(4.3). Passing to the limit in (4.10), we easily
see that the limit is also an entropy solution. �

4.4 Well posedness in the L∞ setting

For the extension to L∞, we follow the classical way. As mentionned above, assump-
tion (4.4) is sufficient for the existence of strong traces of the solution and therefore, to
extend the result of uniqueness for BV solutions of [46]. Besides, the existence result
for initial data and constraint in BV can be extended to L∞ by the use of mollifiers
and of the L1

loc contraction with respect to the initial data and to the constraint.
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Proposition 4.4.1 Assume F 1, F 2 ∈ L∞(R+; [0, f(ū)]), and u1
0, u

2
0 ∈ L∞(R, [0, 1])

such that (u1
0−u2

0) ∈ L1(R). Assume that u1, u2 are entropy solutions of (4.1)-(4.3),
corresponding to the initial data u1

0, u
2
0 and to the constraints F 1, F 2, respectively. Then,

for a.e. T > 0, we have

∫

R

|u1 − u2|(T, x) dx ≤ 2

∫ T

0
|F 1 − F 2|(t) dt +

∫

R

|u1
0 − u2

0|(x) dx. (4.19)

The proof mimics the standard Kružkov doubling of variables technique, with suitable
test functions. It is detailled in [5, Sec. 6].

Combining the estimate (4.19) with a truncature and a density argument, we deduce
the following generalization of Theorem 4.3.1.

Theorem 4.4.2 For any u0 ∈ L∞(R; [0, 1]) and F ∈ L∞(R+; [0, f(ū)]) there exists one
and only one entropy solution to Problem (4.1)-(4.3) (in the sense of Definitions 4.2.1
and 4.2.2).

Proof. The uniqueness claim is contained in Proposition 4.4.1. Let us prove the exis-
tence. Take the truncations u0(x)1l{|x|<n}, F (t)1l{0<t<n} and regularize them by con-
volution with a standard sequence of mollifiers (ρn)n∈N. Denote by un

0 , Fn the data
obtained in this way; these data are of bounded variation. By Theorem 4.3.1, there
exists a unique entropy solution un of (4.1) with initial datum un

0 and constraint Fn. In
particular, it verifies condition (4.10). Clearly,

un
0 → u0 in L1

loc(R) and a.e.; Fn → F in L1
loc(R

+) and a.e.. (4.20)

Combining (4.19) and (4.20) with the finite speed of propagation, we infer that the
sequence (un)n∈N is a Cauchy sequence in L1

loc(R
+ × R). Further, notice that for all

(cl, cr) ∈ [0, 1]2, for a.e. t > 0 we have

dist ((cl, cr), G(Fn(t))) −→ dist ((cl, cr),G(F (t))) as n → +∞.

Indeed, this follows from the explicit description of G(F ), from (4.20) and from the
continuity of the map F 7→ (ûF , ǔF ), which stems from the continuity of the two branches
of f−1:

f−1
− : [0, f(ū)] −→ [0, ū] and f−1

+ : [0, f(ū)] −→ [ū, 1].

Passing to the limit in the “global” entropy formulation (4.10) written for un, we infer
that the L1

loc limit u of (un)n∈N is an entropy solution of (4.1)-(4.3) associated with u0

and F . �

4.5 Entropy process solutions

We now look at more general solutions, that are entropy process solutions. They are
based on an L∞ representation of Young measures via their distribution function (see
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Eymard, Gallouët and Herbin [61]). Entropy process solutions are very useful since
they are a natural tool to investigate the limit of numerical schemes for which enough
compactness (we mean in particular BV bounds) cannot be proved. Besides, when the
initial datum is a usual initial condition u0 ∈ L∞(R), entropy process solutions coincide
with entropy solutions; this is the reduction principle for entropy process solutions. The
reduction principle guarantees the convergence (in the Lp

loc norm, for all 1 ≤ p < ∞) of
the discrete solutions, obtained by numerical schemes, to the unique entropy solution.

Observe that it is difficult to generalize Definition 4.2.1 of entropy solutions, because
the condition (4.8) requires the existence of strong one-sided traces γl,ru of u on the
interface {x = 0}. In the case of entropy process solutions, only weak traces of the

mean entropy fluxes

∫ 1

0
Φ(µ(·, α), κ) dα are clearly available; fortunately the “traceless”

Definition 4.2.2 can be adapted in a straightforward way.

Definition 4.5.1 Let u0 ∈ L∞(R, [0, 1]) and F ∈ L∞(R+, [0, f(ū)]). Let µ ∈ L∞(R+ ×
R × (0, 1); [0, 1]). Then µ is a G-entropy process solution to (4.1)-(4.3) if there exists
M > 0 such that for all test functions ϕ ∈ C1

c(R
+ × R; R+) and all c defined by (4.9)

with (cl, cr) ∈ [0, 1]2,

∫ +∞

0

∫

R

∫ 1

0
(|µ(t, x, α) − c(x)| ∂t + Φ(µ(t, x, α), c(x)) ∂x ) ϕ(t, x) dx dt dα

+

∫

R

|u0(x) − c(x)| ϕ(0, x) dx + M

∫ +∞

0
dist ((cl, cr),G(F (t))) ϕ(t, 0) dt ≥ 0. (4.21)

It is not clear whether G-entropy process solutions are “intrinsically” unique. Indeed,
we lack an explicit description, of the kind (4.11), for the traces of G-entropy process
solutions. This prevents us from mimicking the proof of uniqueness of entropy solutions;
as a matter of fact, we are unable to give a sign to the term coming from the comparison
of two G-entropy process solutions at the interface {x = 0}. However, because we know
the existence of an entropy solution, we can compare a G-entropy process solution with
an entropy solution of (4.1)-(4.3), and thus deduce the uniqueness and the reduction
principle for G-entropy solutions:

Proposition 4.5.2 Let u0 ∈ L∞(R; [0, 1]) and F ∈ L∞(R+, [0, f(ū)]). If u is the en-
tropy solution to (4.1)-(4.3) and if µ is a G-entropy process solution associated with the
same initial datum u0 and the same constraint F , then they coincide almost everywhere,
i.e.,

µ(t, x, α) = u(t, x) for a.e. α ∈ (0, 1) and a.e.(t, x) ∈ R
+ × R. (4.22)

Proof. We use the Kružkov doubling of variables method with test functions ϕ ∈
C1

c(R
+ × R\{x = 0}; R+). We obtain

∫ 1

0

∫

R+

∫

R\{0}
(|µ(t, x, α) − u(t, x)| ∂t + Φ(µ(t, x, α), u(t, x)) ∂x) ϕ(t, x) dx dt dα ≥ 0.
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Choosing ϕ as a sequence of approximations of the characteristic function of the set
{t ∈ (0, T ), 0 < |x| < R + L(T − t)} with R, T > 0, from the previous inequality we
deduce that

−

∫ 1

0

∫ R

−R
|µ(T, x, α) − u(T, x)| dx dα +

∫ T

0

(
γr

w

[∫ 1

0
Φ(µ(·, α), u(·)) dα

])
(t) dt

−

∫ T

0

(
γl

w

[∫ 1

0
Φ(µ(·, α), u(·)) dα

])
(t) dt ≥ 0. (4.23)

The existence of the above weak traces follows from the previous inequality in the way
of [34]. Moreover, the traces γl,ru being strong, we have the identification

γl,r
w

[∫ 1

0
Φ(µ(·, α), u(·)) dα

]
≡ γl,r

w

[∫ 1

0
Φ(µ(·, α), γl,ru) dα

]
. (4.24)

Notice that (γlu(t), γru(t)) ∈ G(F (t)). Then we can use the fact that the weak traces
of a G-entropy process solution satisfy for a.e. t > 0 the inequalities

γl
w

[∫ 1

0
Φ(µ(·, α), cl) dα

]
(t) ≥ γr

w

[∫ 1

0
Φ(µ(·, α), cr) dα

]
(t) (4.25)

for all (cl, cr) ∈ G(F (t)). The above property is stated and proved in [5, Proposition
3.1]. From (4.23), we then recover

for all R > 0 and for a.e. T > 0

∫ 1

0

∫ R

−R
|µ(T, x, α) − u(T, x)| dx dα ≤ 0.

�

4.6 Finite volume schemes

In this section, I describe the construction of a finite volume scheme to approximate (4.1)-
(4.3), and analyze its convergence.

I start defining the mesh:

Definition 4.6.1 An admissible mesh I of R is given by an increasing sequence of real
values (xi+1/2)i∈Z, such that R = ∪i∈Z[xi−1/2, xi+1/2] and x1/2 = 0. The mesh I is the
set I = {Ki, i ∈ Z} of subsets of R defined by Ki = (xi−1/2, xi+1/2) for all i ∈ Z. The
length of Ki is denoted by hi (the so-called space step), so that hi = xi+1/2 − xi−1/2 for
all i ∈ Z. We assume that h = size(I) = supi∈Z hi is finite and that, for some α ∈ R

∗
+,

αh ≤ infi∈Z hi.

The finite volume approximation of the initial datum u0 is

u0
i =

1

hi

∫

Ki

u0(x) dx, i ∈ Z.
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We aim at defining a sequence (un
i )i∈Z,n∈N which approximates the solution u of (4.1)-

(4.3) in the sense

un
i ≈

1

hi

∫

Ki

u(nk, x) dx, i ∈ Z, n > 0,

where the time step k is a positive constant (which will be prone to a CFL condition in
the sequel). The finite volume scheme which is presented in this section can be written
under the form

un+1
i = un

i − λi(g(un
i , un

i+1, F
n
i+1/2) − g(un

i−1, u
n
i , Fn

i−1/2)) (4.26)

where λi = k/hi. The sequence (Fn
i+1/2)i is given by

Fn
i+1/2 =

{
(1/k)

∫ (n+1)k
nk F (s) ds if i = 0,

f(ū) if i 6= 1.
(4.27)

Note that any approximation of F which strongly converges in L1
loc can be chosen to

define Fn
1/2.

The numerical flux g is defined by

g(u, v, f) = min(h(u, v), f), (4.28)

where h is a classical numerical flux, i.e. it obeys the three classical properties:

• Regularity: h is Lipschitz continuous, with L as Lipschitz constant.

• Consistency: h(s, s) = f(s) for any s ∈ [0, 1].

• Monotonicity: h is nondecreasing with respect to (w.r.t.) its first argument and
nonincreasing w.r.t. its second argument.

I will also employ the notation

un+1
i = Gλi

(un
i−1, u

n
i , un

i+1, F
n
i−1/2, F

n
i+1/2). (4.29)

In the following sections, I give the results that we have obtained for this class of finite
volume schemes.

4.6.1 A priori estimates and discrete entropy inequalities

The approximate solutions constructed by the numerical scheme (4.26)-(4.28) satisfy the
following classical properties. (In the following, I adopt the notations: a⊥b = min(a, b)
and a⊤b = max(a, b).)

Lemma 4.6.2 (L∞ estimates) Assume that u0 ∈ L∞(R; [0, 1]). Then, under the CFL
condition

k ≤
infi hi

2L
, (4.30)

the functions Gλi
are nondecreasing w.r.t. their three first arguments and the finite

volume approximation (4.26) satisfies

0 ≤ un
i ≤ 1, ∀n ∈ N,∀i ∈ Z. (4.31)
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Lemma 4.6.3 (Weak BV estimates) Let ξ ∈ (0, 1) and I be an admissible mesh.
Let T > k and R > h be two positive constants and denote I0, I1 and N the indices such
that −R ∈ KI0, R ∈ KI1 and T ∈ (Nk, (N + 1)k]. Then, if the time step k satisfies the
CFL condition

k ≤ (1 − ξ)
infi∈Z hi

2L
, (4.32)

there exists a positive constant C only depending on T , R, ξ, α, f and u0 such that

k

N∑

n=0

I1∑

i=I0
i6=0,1

(
max

(p,q)∈ I(un
i ,un

i+1
)
|h(p, q) − f(p)|

+ max
(p,q)∈ I(un

i ,un
i+1

)
|h(p, q) − f(q)|

)
≤ C h−1/2,

(4.33)

where the set I(a, b) is defined as {(p, q) ∈ [a⊥b, a⊤b], (q − p)(b − a) ≥ 0}.

Lemma 4.6.4 (Discrete entropy inequalities) Let κi = cl for i ≤ 0 and κi = cr

for i > 0, where (cl, cr) ∈ [0, 1]2. Then, the numerical scheme (4.26)-(4.28) fulfills the
following inequalities:

|un+1
i − κi| − |un

i − κi| + λi(G
n
i+1/2 − Gn

i−1/2) − λi|H
n
i | ≤ 0 (4.34)

where

Gn
i+1/2 = g(un

i ⊤κi, u
n
i+1⊤κi+1, Fi+1/2) − g(un

i ⊥κi, u
n
i+1⊥κi+1, Fi+1/2),

Hn
i = h(κi, κi+1)⊥Fn

i+1/2 − h(κi−1, κi)⊥Fn
i−1/2,

for all n ∈ N and i ∈ Z.

The proofs of above lemmas are obtained as in the classical framework (see [61] for
instance). The interested reader can find the details in [5]. Lemmas 4.6.2 and 4.6.3
will enable us to pass to the limit, using the nonlinear weak-⋆ convergence (see Defini-
tion 4.6.5 below). The discrete entropy inequalities (4.34) will allow us to show that the
limit is a G-entropy process solution of (4.1-4.3).

4.6.2 Convergence

The convergence result is based on the notion of nonlinear weak-⋆ convergence, defined
in [61]:

Definition 4.6.5 Let Ω be an open subset of R
N , N ≥ 1, (um)m∈N ⊂ L∞(Ω) and

µ ∈ L∞(Ω × (0, 1)). The sequence (um)m∈N converges to µ in the nonlinear weak-⋆
sense if ∫

Ω
θ(um(y))ϕ(y) dy −−−−→

m→∞

∫

Ω

∫ 1

0
θ(µ(y, α))ϕ(y) dy dα

for all ϕ ∈ L1(Ω) and all θ ∈ C(Ω).
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This definition provides a useful interpretation of the convergence to Young’s measures
(as used by DiPerna in [58]). It enables to obtain the convergence of any sequence (up
to a subsequence) just using a L∞(Ω) bound:

Theorem 4.6.6 Let Ω be an open subset of R
N , N ≥ 1. Consider a bounded sequence

(um)m∈N in L∞(Ω). Then, one can extract a subsequence to (um)m∈N which converges
in the nonlinear weak-⋆ sense.

Moreover, the convergence is strong (in the L1
loc(Ω) sense) if and only if the nonlinear

weak-⋆ limit µ of (um)m∈N is independent of α.

By Definition 4.6.5, in the situation of Theorem 4.6.6 the corresponding subsequence of

(θ(um))m∈N converges weakly in L1
loc(Ω) to

∫ 1

0
θ(µ(., α)) dα, for all θ ∈ C(R). In the

sequel, I will not re-label the subsequences; the uniqueness of the entropy solution will
ensure that all subsequences converge to the same limit, and the reduction of µ to an
α-independent function will ensure that the convergence is strong.

Now, let me define the sequence of approximate solutions:

uI,k = un
i for x ∈ Ki and t ∈ [nk, (n + 1)k). (4.35)

where (un
i )i∈Z,n∈N is defined by the numerical scheme (4.26)-(4.28). Thanks to the a

priori bounds and to the discrete entropy inequalities of Section 4.6.1, we can prove the
following convergence result:

Proposition 4.6.7 Let ξ, α ∈ (0, 1). Consider a sequence of admissible meshes Im

and of time steps km satisfying the stability condition (4.30) for all m ∈ N, such that
size(Im) → 0 as m → ∞.

Consider the sequence (uIm,km)m∈N, which is bounded in L∞(R+ × R). Then, there
exists a subsequence, still noted (uIm,km)m∈N, and a function µ ∈ L∞(R+ × R × (0, 1))
such that (uIm,km)m tends to µ in the nonlinear weak-⋆ sense as m → +∞, and µ
satisfies

∫ 1

0

∫ +∞

0

∫

R

(|µ(t, x, α) − c(x)| ∂t + Φ(µ(t, x, α), c(x))∂x) ϕ(t, x) dx dt dα

+

∫

R

|u0(x) − c(x)| ϕ(0, x) dx

+ 12L

∫ +∞

0
dist ( (cl, cr),G1(F (t)) ∪ G2(F (t))) ϕ(t, 0) dt ≥ 0, (4.36)

for all test functions ϕ ∈ C1
c(R+ × R; R+) and all functions c(x) given by (4.9) with

(cl, cr) ∈ [0, 1]2.

Notice that the inequalities (4.36) seem weaker than the inequalities (4.21) in the defi-
nition of G-entropy process solutions. In fact, it follows from Lemma 4.6.8 below that
the two families of inequalities are equivalent.
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Sketch of the proof. The convergence of the subsequence (uIm,km)m to µ follows by
Lemma 4.6.2 and Theorem 4.6.6. We must now prove that µ satisfies (4.36).

Let ϕ ∈ C1
c(R

+ × R; R+) and two positive constants, T and R, be such that for
all t ≥ T and |x| ≥ R, ϕ(t, x) = 0 (we choose T and R sufficiently large w.r.t. h
and k). Besides, let I0, I1 and N be the indices satisfying −R ∈ KI0 , R ∈ KI1 and
T ∈ (Nk, (N + 1)k].

We multiply the discrete entropy inequality (4.34) by
∫
Ki

ϕ(nk, x) dx and sum for
n ∈ [0, N ] and i ∈ [I0, I1], which yields

Ah + Bh + Ch ≤ 0, (4.37)

where

Ah =
N∑

n=0

I1∑

i=I0

(|un+1
i − κi| − |un

i − κi|)

∫

Ki

ϕ(nk, x) dx,

Bh =

N∑

n=0

I1∑

i=I0

λi(G
n
i+1/2 − Gn

i−1/2)

∫

Ki

ϕ(nk, x) dx,

Ch = −
N∑

n=0

I1∑

i=I0

λi|H
n
i |

∫

Ki

ϕ(nk, x) dx.

We aim at passing to the limit h → 0 in (4.37) and recover (4.36). The convergence of
the terms Ah and Bh is achieved by standard procedures, as detailed in [5]. It gives:

lim
h→0

Ah = −

∫ 1

0

∫ ∞

0

∫

R

|µ(t, x, α) − κ(x)|∂tϕ dx dt dα

−

∫

R

|u0(x) − κ(x)|ϕ(0, x) dx,

(4.38)

and

lim
h→0

Bh = −

∫ 1

0

∫ ∞

0

∫

R

Φ(µ(t, x, α), κ(x))∂xϕ(t, x) dx dt dα. (4.39)

It remains to check that

lim
h→0

Ch = −12L

∫ ∞

0
dist ((cl, cr),G1(F (t)) ∪ G2(F (t))) ϕ(t, 0) dt. (4.40)

By definition of Hn
i , we obtain

Ch = −
1∑

i=0

1

hi

∫

Ki

N∑

n=0

|Hn
i | k ϕ(nk, x) dx

= −
1

h0

∫

K0

N∑

n=0

|h(cl, cr)⊥Fn − f(cl)| k ϕ(nk, x) dx

−
1

h1

∫

K1

N∑

n=0

|f(cr) − h(cl, cr)⊥Fn| k ϕ(nk, x) dx.
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Since ϕ is smooth and Fn strongly converges to F , we obtain the limit

lim
h→0

Ch = −2

∫ ∞

0
D(cl, cr, F (t)) ϕ(t, 0) dt,

where
D(cl, cr, F ) = |h(cl, cr)⊥F − f(cl)| + |f(cr) − h(cl, cr)⊥F |.

The function D is Lipschitz continuous with respect to cl and cr, with constant 6L.
Moreover, if (cl, cr) ∈ G1(F ) ∪ G2(F ), then D(cl, cr, F ) = 0 (it is no longer true if
(cl, cr) ∈ G3(F ), since a monotone scheme does not necessarily preserve stationary shock
waves). Therefore

D(cl, cr, F ) ≤ 6Ldist ((cl, cr),G1(F ) ∪ G2(F )),

so that the limit verifies the entropy inequalities (4.36). �

It remains to prove that if inequalities (4.36) hold, then µ is a G-entropy process
solution. The proof of the equivalence between (4.21) and (4.36) is based on the following
lemma.

Lemma 4.6.8 Let η ∈ L∞(R+×R×(0, 1)). Assume that the weak traces γl,r
w

∫ 1

0
Φ(η(·, α), κ) dα

exist. If for a.e. t > 0, the inequality
(

γl
w

∫ 1

0
Φ(η(·, α), cl) dα

)
(t) ≥

(
γr

w

∫ 1

0
Φ(η(·, α), cr) dα

)
(t) (4.41)

holds for all (cl, cr) ∈ G1(F (t)) ∪ G2(F (t)), then it also holds for all (cl, cr) ∈ G3(F (t)).

Proof. Let (cl, cr) ∈ G3. Then,

γl
w

∫ 1

0
Φ(η(t, ·, α), cl) dα − γr

w

∫ 1

0
Φ(η(t, ·, α), cr) dα

= γl
w

∫ 1

0
Φ(η(t, ·, α), cl) dα − γl

w

∫ 1

0
Φ(η(t, ·, α), cr) dα

+ γl
w

∫ 1

0
Φ(η(t, ·, α), cr) dα − γr

w

∫ 1

0
Φ(η(t, ·, α), cr) dα

= γl
w

∫ 1

0
(Φ(η(t, ·, α), cl) − Φ(η(t, ·, α), cr)) dα

+ γl
w

∫ 1

0
Φ(η(t, ·, α), cr) dα − γr

w

∫ 1

0
Φ(η(t, ·, α), cr) dα.

The first term in the right-hand side is nonnegative; indeed, the function ũ(t, x) :=
cl1l{x<0} + cr1l{x>0} is a classical Kružkov stationary solution of (4.1), whereas k =
η(t, x, α) can be seen as the constant in the Kružkov definition. The last line in the
above inequality is nonnegative thanks to (4.41), because (cr, cr) ∈ G2(F (t)). �
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Finally from Proposition 4.5.2, we obtain the final result:

Theorem 4.6.9 Under the CFL condition (4.30), the finite volume scheme (4.26)-
(4.28) converges in Lp

loc(R
+ × R) for any 1 ≤ p < +∞ to the unique entropy solution

of (4.1)-(4.3).

4.6.3 Numerical results

I conclude this section by presenting some numerical experiments performed with the
numerical scheme (4.26)-(4.28), using the Rusanov numerical flux [93]:

h(u, v) =
f(u) + f(v)

2
−

max(|f ′(u)|, |f ′(v)|)

2
(v − u).

This numerical flux is consistent and monotone. The flux of the conservation law is
given by f(u) = u(1 − u), so that the constraint F (t) must belong to [0, 1/4].

I report here a simple test case, corresponding to the simulation of the solution to a
Riemann problem. Other studies are presented in [5].

The domain of computation is [−1/2, 1/2] and the data are

u0(x) =

{
0.4 if x < 0,

0.5 if x > 0,
and F = 0.2 .

The exact solution is composed of a classical shock wave with a negative speed, of a
non-classical stationary shock wave at x = 0 satisfying the constraint, and of another
classical shock wave with a positive speed. Fig. 4.2 shows the comparison between

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

-0.4 -0.2  0  0.2  0.4

u

x

Exact solution
Rusanov scheme

Figure 4.2: Comparison between the Rusanov scheme (100 cells, CFL=0.4) and the
exact solution at time t = 1.
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the numerical results provided by the “constrained” Rusanov scheme and the exact
solution. The non-classical shock wave seems to be perfectly solved. An analysis of the
convergence of the numerical scheme has been performed, as reported in Table 4.1:

Number of cells L1-error Rate of conv.

100 4.1938 × 10−3 —
300 1.2356 × 10−3 1.112
1000 3.7494 × 10−4 0.990
3000 1.1864 × 10−4 1.047
10000 3.6899 × 10−5 0.970
30000 1.2945 × 10−5 0.953
100000 3.6448 × 10−6 1.053
300000 1.2199 × 10−6 0.996

Table 4.1: Convergence analysis for Rusanov scheme.

Fig. 4.3 depicts the error with respect to the space step. We can easily see that the
rate of convergence is 1, that is to say that the constraint does not affect the accuracy
of the numerical scheme.
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Figure 4.3: Convergence of the Rusanov scheme in the L1 norm.
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