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Chapitre 1

Résumé

Dans la majorité des applications réelles, la dynamique du systéme est sou-
vent affectée par des variations de paramétres, des perturbations agissant sur
I’état et des bruits de mesure. De plus, certains paramétres physiques ne sont
pas connus avec exactitude, seules les bornes (inférieure et supérieure) de va-
riation étant disponibles. Ainsi, ces incertitudes peuvent avoir des influences
importantes sur le comportement du systéme considéré. Dans ce contexte, le
but principal de cette thése est de prendre en compte les différentes incer-
titudes dans la modélisation des systémes. Dans cet esprit, deux problémes
seront résolus dans ces travaux de theése :

e Des méthodes d’estimation d’état pour des systémes incertains fondées
sur des méthodes ensemblistes, plus précisément des ensembles zonoto-
piques, sont tout d’abord développées. Ces méthodes conduisent a ré-
soudre de problémes via un formalisme d’'Inégalité Matricielle Linéaire
(LMI), Inégalité Matricielle Bilinéaire (BMI) ou Inégalité Matricielle
Polynomiale (PMI) selon le cas envisagé.

e En utilisant le résultat de I’estimation zonotopique, une commande pré-
dictive robuste fondée sur des tubes d’incertitudes est ensuite proposée.

Cette these est structurée comme suit : le Chapitre 2 propose une in-
troduction portant sur le contexte, les motivations, les contributions et les
publications issues des résultats obtenus pendant les travaux. Le Chapitre
3 propose une introduction détaillée des méthodes de représentation d’in-
certitudes (intervalle, ellipsoide, polytope ou zonotope). Ensuite le Chapitre
4 présente une nouvelle technique d’estimation ensembliste fondée sur des
zonotopes pour des systémes affectés par des perturbations, des bruits de
mesure et des incertitudes paramétriques. Utilisant les résultats de I'estima-
tion zonotopique, le Chapitre 5 formule la mise en oeuvre de la commande



Résumé

prédictive robuste par retour de sortie pour le méme type de systéme. Dans
le Chapitre 5, les résultats théoriques développés sont implantés sur un sys-
téme de suspension magnétique. Le résumé de chaque chapitre est proposé
ci-dessous.

1.1 Chapitre 3 : Représentation des incertitudes
par des ensembles convexes

Le Chapitre 3 traite des différentes approches existant dans la littérature
pour représenter des incertitudes : I’approche stochastique ou probabiliste et
I’approche déterministe ou ensembliste. L’approche probabiliste [99], [12] est
fondée sur I’hypotheése que les lois de probabilité sur des perturbations et des
bruits de mesure sont connues. Pourtant, dans plusieurs applications, ces lois
de probabilité ne sont pas toujours connues, seules les bornes de ces pertur-
bations pouvant étre déterminées. Dans ce contexte, I’approche déterministe
s’avere plus adaptée a la modélisation de perturbations. Dans cette approche,
une variable incertaine est représentée par un ensemble convexe qui carac-
térise le domaine de valeurs possibles de cette variable. Dans la littérature,
plusieurs fagons de représenter un ensemble en fonction de la complexité et la
précision existent, par exemple les représentations par : intervalle, ellipsoide,
polytope, parallélotope et zonotope. Les ensembles les plus représentatifs sont
exposés par la suite.

1.1.1 Intervalle

La maniére la plus simple pour caractériser un domaine de variation d’un
parameétre est I'intervalle.

Définition 1.1. Un intervalle I = [a,b] est défini par un ensemble borné
{r:a<x<b}.

Définition 1.2. Le centre et le rayon d’un intervalle I = [a, b] sont repré-
sentés par mid(I) = %2 et rad(I) = 5%, respectivement.

Définition 1.3. Un matrice intervalle [M] € I™*™ est une matrice qui a
des intervalles comme éléments. Cela permet d’aboutir aux calculs simples
fondés sur 'analyse par intervalles. En revanche, la précision d’estimation
est parfois dégradée du fait d’occurrences multiples (voir Exemple 3.1) et de
effet d’enveloppement (voir Exemple 3.2)[68].
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1.1.2 Ellipsoide

Un autre famille d’ensembles utilisée dans la littérature du fait de son avan-
tage de faible complexité est représentée par 'ellipsoide.

Définition 1.4. Soit un vecteur ¢ € R™ et une matrice symétrique définie
positive P = PT = 0, l’ellipsoide E est défini par I'expression suivante :

E={zcR": (v —c)'P Yz —c)<1} (1.1)

Le vecteur ¢ € R™ est nommé le centre de l'ellipsoide E et la matrice P
est appelée la matrice de forme de 1'ellipsoide E.

L’avantage de la représentation d’un ensemble de paramétres incertains
par ellipsoides est que la complexité est fixée par la dimension de ’espace
(quadratique) [78]. Malgré cet avantage, la précision d’estimation dans le
contexte d’ellipsoides reste parfois conservative |66].

1.1.3 Polytope

Dans le domaine de 'automatique, une représentation trés utilisée pour dé-
crire des ensembles est le polytope. L’avantage du polytope est qu’il peut
conduire & une approximation trés précise de tout ensemble convexe [81],
[26], [127]. Un polytope peut étre défini de deux fagons équivalentes qui
permettent de choisir une représentation adaptée au probléme particulier
considéré.

Définition 1.5. (H-représentation) Un polyédre P € R™ est défini comme
I'intersection d’un nombre fini de demi-espaces :

P={zeR":H -2 <K} (1.2)
avec H € R™™ et K € R™. Si P est borné, alors P devient un polytope.

Définition 1.6. (V-représentation) Soit un ensemble fini de points V' =
{v1,v9,...,v,} € R" un polytope P est défini par I'enveloppe convexe de
I’ensemble V' :

P =conv(V) = {a1v; + agvg + ... + @y, : o € RT, Zai =1} (1.3)

i=1

Les deux représentations définies par les définitions 1.5 et 1.6 sont équiva-
lentes [151]. L’inconvénient principal du polytope est lié & sa complexité qui
augmente exponentiellement avec le nombre de sommets. Cette propriété du
polytope rend souvent le calcul trés cotiteux au niveau du temps de calcul.
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1.1.4 Zonotope

Le zonotope est un cas particulier de polytope, plus précisément un poly-
tope symétrique (d’ou une diminution de complexité en comparaison avec
le polytope quelconque). Comme un zonotope est un polytope, le zonotope
peut étre mis sous forme d’une H-représentation ou d’une V-représentation.
Cependant 'avantage du zonotope vient de ses propres définitions exposées
ci-dessous.

Définition 1.7. (G-représentation) Soit un vecteur p € R™ et un ensemble
de vecteurs G = {g1, g2, ..., gm} C R™, m > n. Un zonotope Z d’ordre m est
défini par :

Z=(pig1g2 - gm) ={r €ER" 1z =p+ Y agi—-1<ay <1} (14)
=1

Le vecteur p est appelé le centre du zonotope Z. Les vecteurs g1, ..., gm
sont appelés les générateurs du zonotope Z. L’ordre d’un zonotope est défini
par le nombre de générateurs (m dans ce cas). Cette définition est équivalente
a la définition d’un zonotope par la somme de Minkowski d’'un nombre fini
de segments définis par ¢;B', aveci=1,...,m :

Z = (p; 91,92, gm) = p S 1B @ ... @ g, B! (1.5)

Un exemple de zonotope construit par 3 générateurs est présenté Figure 1.1.
L’avantage principal du zonotope, qui facilite la résolution du probléme
d’estimation d’état considéré dans cette thése, vient de la définition suivante.

Définition 1.8. (Projection linéaire d’un hypercube) Un zonotope d’ordre
m dans R" (m > n) est la translation de centre p € R" de I'image d’un
hypercube de dimension m dans R™ par une application linéaire. Soit une
matrice H € R™™ représentant 'application linéaire, le zonotope Z est
défini par :

Z=(pH)=pd HB™ (1.6)

Grace a cette définition, les opérations comme la somme de Minkowski ou
I'image linéaire du zonotope peuvent étre effectuées facilement. Différentes
propriétés intéressantes du zonotope sont regroupées dans [82]. Comme le
zonotope propose un bon compromis entre la complexité du calcul et la pré-
cision de la représentation, il a été privilégié dans cette thése pour représenter
des incertitudes.
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FIGURE 1.1 — 3-zonotope et ses générateurs en 2D

1.2 Chapitre 4 : Estimation d’état par approche
ensembliste fondée sur des zonotopes

Ce chapitre examine le probleme d’estimation d’état du systéme affecté par
des incertitudes paramétriques, perturbations et bruits de mesure. Si les in-
certitudes sont modélisées par une approche stochastique, le filtre de Kalman
fondé sur deux étapes (prédiction et mise a jour) est susceptible de résoudre ce
probléme. Quand 'approche déterministe est utilisée, le choix des méthodes
d’estimation ensemblistes est une solution appropriée. Cette technique d’esti-
mation est développée depuis 35 ans par plusieurs auteurs [147], [126], [145],
[144], [68], [2], [82] etc. Avec la présence d’incertitudes, 1'état du systéme ne
peut pas étre exactement estimé, ’estimation ensembliste propose donc de
calculer a chaque instant un ensemble contenant 1’état du systéme, cohérent
avec les incertitudes du modéle, les perturbations éventuelles et les mesures
bruitées. Différentes représentations d’ensembles peuvent étre utilisées : in-
tervalles, ellipsoides, polytopes, zonotopes. Grace a ses avantages présentés
au Chapitre 3, le zonotope a été privilégié dans cette thése pour résoudre
le probléme d’estimation ensembliste. Le probléme d’estimation & résoudre
dans ce chapitre est formulé comme suit.
Considérons un systéme linéaire discret et invariant dans le temps :

(1.7)

Tpy1 = Az + wy
yr = Cay, + vy

ol xp € R™ est le vecteur d’état du systeme, y, € R™ est le vecteur de
mesures a l'instant k, les matrices A et C' ont les dimensions appropriées



Résumé

avec la paire (C,; A) détectable. Les notations wy € R™, v, € R™ sont utili-
sées pour les perturbations sur 1’état et le bruit de mesure, respectivement.
Les perturbations et les bruits de mesure sont supposés bornés par des zo-
notopes wy € W, v, € V. On suppose également que I’état initial appartient
a un zonotope Xg. Pour simplifier le calcul, les centres du zonotope V et du
ng-zonotope W sont supposés étre a 'origine. Si cette hypothése n’est pas
satisfaite, un changement de coordonnées peut étre utilisé pour ramener les
centres des zonotopes a l'origine. Avec ces hypothéses et a partir de la défini-
tion du zonotope, les ensembles W et V' peuvent étre réécrits sous la forme :
W =FB"™ et V =YXB"™, ou X € R™*™ une matrice diagonale. Avec ce mo-
déle, I'estimation ensembliste fondée sur des zonotopes calcule un ensemble
zonotopique contenant de maniére garantie I’état du systeme affecté par des
incertitudes. Avant de détailler cette approche, quelques notions utiles sont
définies.

Définition 1.9. Soit le systéme (1.7), ['ensemble des états cohérents avec
les mesures ("consistent state set”) a l'instant k est défini par X,, = {z €
R : [T — g <o}

Définition 1.10. Pour le systéme (1.7), l'ensemble exact des états incertains
("exact uncertain state set") X} est I’ensemble contenant les états cohérents

avec la sortie mesurée et 'ensemble des états initiaux possibles X, : X, =
(AX)_1 & W)NX,,, pour k > 1.

Similaire au filtre de Kalman, I'estimation ensembliste se décompose en
trois étapes :

1. Prédiction : calculer un domaine prédit X, contenant I’état du systéme
en tenant compte des perturbations;

2. Mesure : calculer I’ensemble des états cohérents X,, en utilisant la
mesure ¥ ;

3. Mise a jour : calculer I'intersection de I’ensemble des états cohérents
et du domaine prédit afin de trouver I’ensemble contenant 1’état du
systéme.

L’algorithme de l’estimation ensembliste est illustré Figure 1.2. A l'instant
k, I'ensemble prédit X, (bleu) est déterminé a partir de 'ensemble contenant
Pétat X;_; (rouge) a Pinstant & — 1. Ensuite, on considére 'intersection de
cet ensemble avec I’ensemble des états cohérents X,, (vert) qui est calculé a

~

partir de la mesure y;. Enfin, 'ensemble contenant 1’état X, a l'instant k est
I’approximation extérieure de cette intersection.
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FIGURE 1.2 — Illustration de ’estimation ensembliste

Estimation ensembliste basée sur des

ZONnotopes
I
| |
Approche DVS Approche reposant sur un
probléme d’optimisation
]
I | |
Minimisation Minimisation Minimisation
du P-rayon des segments du volume
| l
Systémes Systemes Systémes
mono-sortie incertains incertains

mono-sortie

multi-sorties

Extension de la

Solution multi-sorties

solution mono-sortie Approche PAZI
I
Approche Approche Approche
ESO ESOCE PMI

FIGURE 1.3 — Estimation ensembliste fondée sur des zonotopes
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En pratique le calcul exact de I'intersection de I’ensemble des états cohé-
rents et du domaine prédit est difficile, donc on cherche souvent & majorer
cette intersection par une approximation extérieure (zonotopique dans cette
these) de cet ensemble. Quelques méthodes pour résoudre ce probléme sont
regroupées dans le schéma Figure 1.3. Les méthodes existant dans la litté-
rature sont encadrées en bleu. L’approche fondée sur la minimisation des
segments d’'un zonotope présentée dans [2| permet d’avoir un calcul simple
mais la précision d’estimation est limitée. L’approche DVS présentée par
[37] et I'approche reposant sur la minimisation du volume d’un zonotope [2]
ont des bonnes précisions d’estimation mais les calculs sont complexes. Les
contributions de ce chapitre encadrées en rouge permettent d’avoir un bon
compromis entre la précision et la complexité. Ces méthodes seront ensuite
détaillées dans les sections suivantes.

1.2.1 Systéme mono-sortie

Considérons tout d’abord un systéme linéaire mono-sortie invariant a temps
discret :
{ Tpg1 = Axp + Wy (1.8)

yp = clay + vy

La perturbation et le bruit de mesure sont bornés par w, € W = F B"=,
v, €V =0B! C R, avec o0 € RT. Soit Xk 1 une approxnnatlon exterleure
zonotopique de I’ensemble contenant I’état du systéme X k—1 = Di— I@H r—1B"
a l'instant £ — 1 et la mesure de la sortie y; a l'instant k, 'ensemble prédit
X}, peut étre obtenu par la relation :

X = App1 @ [Af‘:fkq F] B = pp @ H, B (1.9)

Avec la définition de I’ensemble V', I'ensemble des états cohérents X,, a I'ins-
tant k est une bande de contraintes : X,, = {z € R" : |cTz — y| < o}
Pour déterminer I’ensemble contenant I’état du systéme a l'instant k, il faut
rechercher une approximation extérieure de I'intersection du zonotope X, et
de la bande de contraintes X,,. Ce probléme peut étre résolu en utilisant la
propriété suivante :

Propriété 1. Soit un zonotope Z = pdHB" C R", une bande de contraintes
S={r eR": |cly —d|l <o} etun vecteur A € R™. Définissons une fa-
mille de vecteurs p(A\) = p + A(d — ¢"p) € R™ et une famille de matrices
H(\) = (I = A")H o)] € R™>(m+D Alors I'expression suivante est satis-

faite ZN S C X(\) = p(\) & H(\) B+

8
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En utilisant cette propriété, on obtient I'approximation extérieure de 'en-
semble contenant 1’état a l'instant £ :

Xi(A) = pr(\) @ Hy(A\)B et (1.10)

avec les notations suivantes :

{ Pe(N) = Apr_1 + Myr — T Apr_1)

I:Ik:()\) = [([— /\CT)AHk—l (]_ /\CT>F O')\] (111)

Comme A est un vecteur libre, (1.11) représente une famille de zonotopes
contenant 1’état a l'instant k. Donc la valeur du vecteur A doit permettre
d’obtenir une meilleur précision de 'approximation. Les auteurs de [2]| pro-
posent deux méthodes basées sur différents critéres pour calculer le vecteur
. La premiére méthode minimise les segments du zonotope X (N). Cette mé-
thode aboutit & un calcul simple, mais le résultat est parfois conservatif. La
deuxiéme méthode minimise le volume du zonotope en résolvant un probléme
d’optimisation cotiteux en temps de calcul avec un résultat plus performant.
Dans ce chapitre, un nouveau critére d’optimisation est proposé permettant
de gérer le compromis entre la complexité du calcul et la précision de I’esti-
mation. Cette méthode est fondée sur la définition du P-rayon d’un zonotope
comme suit.

Définition 1.11. Soit un zonotope Z = p® HB™, le P-rayon de ce zonotope
est défini par ’expression suivante :

o . 2
L = max(2 - pl3) (112)

avec P = PT > 0 une matrice symétrique définie positive.

Cette définition est illustrée Figure 1.4 ot le zonotope est illustré en bleu
et D'ellipsoide associé au zonotope est illustré en rouge.

Pour trouver le vecteur optimal A\, un critére d’optimisation du P-rayon
du zonotope est utilisé. Une matrice symétrique définie positive P = PT = 0
et le vecteur \ seront déterminés tel que le P-rayon de I’ensemble zonotopique
des états estimés n’augmente pas. Cette condition est illustrée Figure 1.5
qui propose le zonotope (bleu) représentant l’ensemble contenant 1'état du
systéme et Dellipsoide (rouge) associé au P-rayon de ce zonotope. *

Cette condition peut étre exprimée par ’expression mathématique (condi-
tion nécessaire et suffisante) suivante qui caractérise la non-croissance du
P-rayon :

Ly < BLp 1+ max | Fs||3 + o (1.13)

Le zonotope n’inclut pas lellipsoide associé (Figure 1.4) car l'ellipsoide est seulement
un critére pour caractériser la taille du zonotope.
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FIGURE 1.4 — Zonotope et ellipsoide associé au P-rayon du zonotope

avec 3 € (0,1) afin d’assurer la non-croissance du P-rayon et max || Fs||3 +
S

0% > 0 est ajouté afin de borner I'influence des perturbations et des bruits de
mesure. Suivant la démarche proposée Chapitre 4 (équations (4.43)-(4.58)),
Ioptimisation suivante doit étre résolue afin de trouver la valeur de \ :

max T
7-7IB7P7}/

sous les contraintes BMI :

(_A=BP 1

o2+4const —
BP0 0 ATP— ATeyT
x FT'F 0 FT'P—FTey”

* x o0 Yo =0 (1.14)
* * * P
L 7>0

avec les variables de décision P, Y = P, f € (0,1) et 7.

Comme [ est une variable scalaire, ce probléeme d’optimisation peut étre
facilement résolu en utilisant un solveur de BMI ?(par exemple PenBM I
[74]) ou une boucle de recherche sur la valeur de g.

Pour éviter le probléme BMI, une modification du probléme d’optimisa-
tion (1.14) est ensuite présentée. Au lieu d’optimiser la valeur du P-rayon, la

2Cette BMI est un cas particulier du produit entre un scalaire et une matrice.

10
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FIGURE 1.5 — Evolution de ’estimation d’état garantie

valeur minimale de [ est cherchée permettant d’avoir une vitesse décroissante
maximale du P-rayon. Ce critére conduit & un probléme d’optimisation de
type LMI fondé sur 'algorithme de bissection sur (5 :

ﬁrr%in) B en utilisant ’algorithme de bissection sur 3
€(0,1
tel que le probleme suivant soit faisable

max T
,PY

sous les contraintes LMI :

( _(-p)P
o2+4const = 71

BP0 0 ATP— ATyT
« F'F 0 FTP— FTeyT

1.1

* * o2 YTo =0 (1.15)
* * * P

( 7>0

Dans le cas des systémes incertains (la matrice A est inconnue mais appar-
tient & une matrice intervalle [A]), la solution est similaire avec une hypothése

11
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supplémentaire (la matrice A est Schur stable). Comme (1.15) est convexe
en A et [A] est un ensemble convexe, si (1.15) est vraie pour chaque sommet
de [A4], elle sera respectée pour tous les éléments A appartenant & la matrice
intervalle [A] [122]. Donc la matrice P et le vecteur A sont la solution du
probléme d’optimisation suivant :

max T
T?/B7P7Y

sous les contraintes BMI :

( _(1-p)P — 7]

o2+4const — 5 5
BP0 0 ATP_ ATeyT
x FT'F 0 F'P—FTey?

1.16

* x 02 YTo =0 ( )
* * * P

( 7>0

pour i = 1,...,2%, o A; sont les sommets de la matrice intervalle [A], ¢ est
le nombre des éléments intervalles de [A] et Y = PA.

1.2.2 Systéme multi-sorties

Comme indiqué dans le schéma Figure 1.3, le probléme d’estimation pour
des systémes multi-sorties peut étre résolu par deux familles de solutions. La
premiére famille regroupe les solutions qui sont des extensions directes de la
solution pour des systémes mono-sorties.

Considérons le systéme multi-sorties (1.7); I'ensemble contenant 1’état
du systéme X peut étre déterminé en répétant successivement l'intersection
entre 'ensemble prédit X, avec chaque élément du vecteur de mesure yy,
noté yr/;

yk/i:clra:kjtvk/i,z‘:1,...,ny (1.17)

ot ¢ est la ligne ¢ de la matrice C et le bruit vy/; est borné par I'intervalle
V; = 0;B, avec 0; = ¥y (avec ¥y élément de la matrice X2).

Supposons I’ensemble contenant I’état du systéme X = = Pr_ @ H,_ B
a l'instant k& — 1, alors 'ensemble prédit a linstant suivant X, est calculé
comme (1.9). L’ensemble contenant 1'é¢tat du systéme est déterminé comme
suit.

De fagon similaire a (1.10), une approximation extérieure de 'intersection
entre la bande de contraintes obtenue par le premier élément du vecteur de
mesure (yx/1) et I'ensemble prédit (X}) est calculée par :

X1 (M) = Prja(Ar) @ Hign (A) BT (1.18)

12
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avec Prj1 (M) = Apr—1 + M (yr — et Apr—1)

et Hin(\) = [(I = MeD)AH, ., (I = MNDF o).

Ensuite, on détermine l'intersection de cet ensemble X}, /1(A1) avec la bande
de contraintes obtenue par le deuxiéme élément du vecteur de mesure (y/2) :

Xij2(Ar, A2) = Brya(Aa, Ao) @ Hygpo(Ag, Ag) BT T2 (1.19)

avec Prja(A1, A2) = Pry1(Aa) + Ao (Yny2 — 3 Prj1(A1))
et Hk/2(>\1, )\2) = |:(I — AQC?)H}C/l()q) 0'2)\2:|.

Cette procédure est répétée jusqu’au dernier élément du vecteur de me-
sure (Yp/m,) conduisant a :

Xijny My oo Any) = Diosry Ay ooy Any ) ®

. 1.20
@Hk/ny<)\17 ERY )‘ny)Br+n$+ny ( )

avec

ﬁk/ny()\h ceey )\ny) == ﬁk/ny—1<)\17 ceey )\ny—l)+
+ >\ny (yk/ny - C;{yﬁk/ny—1<)\17 ceey )\nyfl)) (121)

et

TNy Ny

Hifny My oo Any) = [([—)\ Y Hmy (Moo Any1) Oy Any | (1.22)

En conclusion, I’ensemble contenant I'état a 'instant k est le suivant :

~

Xity oy Any) = De(Ay oo Any ) @ Hi (Mg, ooy Ay )BT (1.23)

avec Pr(A1y s Any) = Diyny (ALs - Any)
et Hk</\1, ceey )‘ny) = Hk,‘/ny(Ala ey /\ny)

Pour déterminer les vecteurs \;, i = 1,...,n,, trois approches sont pro-
posées dans ce chapitre et sont détaillées ci-dessous.

1.2.2.1 Approche ESO ("Equivalent Single-Output")

Dans cette approche, le systéme multi-sorties (1.7) est considéré comme
un ensemble de n, systémes mono-sortie indépendants. Donc, les vecteurs
Ay sont indépendamment calculés en résolvant n, problemes d’optimisation
(1.14) séparés. L’algorithme suivant décrit la procédure proposée.

13
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Algorithme 1.1.
1. Pour j =1,....,n,
Etape j : Calculer \; en utilisant la mesure y;/; ;
Fin.

2. L’ensemble contenant ’état est calculé par I'équation (1.23) avec les
vecteurs Ay,...,\,, connus.

1.2.2.2 Approche ESOCE ("Equivalent Single-Output with Cou-
pling Effect")

Pour réduire le conservatisme de la premiére approche, issu du couplage
possible entre les différentes sorties du systéme, une deuxiéme approche est
formulée par I’algorithme suivant.

Algorithme 1.2.
1. Etape 1 : Calculer A; en utilisant la mesure y;,, et (1.14);

2. Pour j =2,...,n,
Etape j : En utilisant la mesure y;/; et les vecteurs Ay, ..., A;_; calculés
aux étapes précédentes, calculer \; en résolvant :

max T
7—767P7Yj

sous les contraintes

( a-pg)r
U%—i—...—&-a?—l—const t T[ ~
(BP0 0o ... 0 B
x FT'F 0 ... 0 By
* * * 0]2- Bjis
| * * * * P ]
T>0

14
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avec |
J
B = (LI = AP
Z?l
By = ([ = Nl )PP
ey
B3 - (H<I - Aj-i—l—ic};l_i)O'lAl)TP (125)
i=1
B =((I - )\jcjr)(] — Aj*lcgﬂfl)Uj—QAj,Q)TP
Bjy = ((I = Ajej)ojahia)' P
Bjra = (034)" P
Fin.

1.2.2.3 Approche PMI (Inégalité matricielle polynomiale)

Dans les solutions pour les systémes multi-sorties proposées dans les pa-
ragraphes précédents, les vecteurs Ay, ..., A,, sont successivement calculés,
les résultats obtenus pouvant ainsi étre conservatifs. Pour surmonter ce pro-
bléme, une troisiéme solution qui calcule tous ces vecteurs en méme temps est
proposée. Cette nouvelle solution conduit a résoudre une Inégalité Matricielle
Polynomiale (PMI) :

max T
T757P7)‘1 7"'7)‘ny

sous les contraintes

( a-p)pP
a%+...+a%y+const =7l
BP0 0 .. 0 B ]
« FT'F 0 ... 0 Bs
2
* * * 072@ 42
| * * * .k P
T>0

\

avec les notations (1.25) (j = n,).

Ce probléeme d’optimisation est difficile & résoudre, mais une solution sous-
optimale peut étre trouvée en utilisant des techniques de relaxation. Dans
cette thése, ce probléme est résolu en utilisant la technique proposée par 62|

15
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qui ajoute des variables supplémentaires pour transformer le probléme PMI
en un probléme sous-optimal de type LMI.

1.2.3 Approche par intersection entre un polytope et
un zonotope (PAZI)

Dans les paragraphes précédents, ’ensemble contenant 1’état pour des sys-
témes multi-sorties est obtenu en utilisant les algorithmes étape par étape
(approche ESO, approche ESOCE et approche PMI). Ces algorithmes ne
calculent pas directement ’ensemble des états cohérents avec les mesures,
de plus l'ordre choisi pour la prise en compte des différentes mesures peut
influencer la précision de l'estimation. Ce paragraphe propose de calculer
I'intersection de l’ensemble des états cohérents avec les mesures (un poly-
tope) avec I'ensemble prédit (un zonotope). Ce probléme peut étre résolu en
utilisant la proposition suivante.

Proposition 1.1. Soit un zonotope Z = p ® HB" C R", un polytope Po =
01

{r e R" : |[Cx—d| < | :|deR" g, € Rty 7 =1,...,m} et une
Um

matrice A € R™™ on définit le vecteur p(A) = p + A(d — Cp) € R"™ et la

matrice H(A) = (I -AC)H  AX], avec ¥ = diag(o,...,0,) € R™™

une matrice diagonale. Une famille de zonotopes (paramétrisée par la matrice

A) contenant l'intersection du zonotope Z et du polytope Po est obtenu sous

la forme Z N Po C Z(A) = p(A) @ H(A)B"™+™.
De fagon similaire aux développements précédentes, I’ensemble prédit est

calculé par (1.9). Avec la définition de I'ensemble V', 'ensemble des états
cohérents X,, est un polytope décrit par :

01
Xy, ={zeR": |Co—y| < | ¢ |} (1.27)

On,

Alors, I'ensemble exact des états incertains est I'intersection entre le zonotope
X, et le polytope Xy, - En utilisation la Proposition 1.1, I'ensemble contenant
I'état du systéme multi-sorties (1.7) & 'instant & est une famille de zonotopes
paramétrisée par la matrice A comme suit :

Xp(A) = pr(A) @ Hy(A)B =t (1.28)
avec pr(A) = App—1 + Ayr — CApy—1)
et Hy(A) = [(I = AC)AH,_, (I —AC)F AY].
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La matrice A est calculée telle que le P-rayon de ’ensemble contenant
I’état soit non-croissant. Cette condition conduit a résoudre le probléme d’op-
timisation suivant :

max T
T’/B7P7Y

sous contraintes BMI :

( d-p)P =Tl

O’%-ﬁ-...-‘rU%y ~+const —

BP0 0 ATP_ ATCTYT

« FTF 0 FT'p_ FTCTyT
« o« YT YTy =0 (1.29)
* * * P

7>0

avec le changement de variable Y = PA.

Pour illustrer 'avantage de ’approche proposée, I'exemple suivant est
traité. Considérons le systéme linéaire multi-sorties suivant :

o -05 L for o
TR =01 14036 [0 01]“F

_[2 1), o2 o
Ye=11 1" T 0o o02|%

(1.30)

La perturbation et le bruit de mesure sont bornés par wy, v, € B2 L’état
initial est inconnu mais appartient a I’ensemlbe 3B%. L’approche PAZI est
comparée avec 'approche fondée sur la décomposition de valeur singuliére
(SVD) [37] et l'approche ESOCE. La Figure 1.6 montre que la taille de
I’ensemble contenant 1’état est diminuée & chaque instant en raison de la
condition sur le P-rayon. De plus, la comparaison de ’approche proposée
dans cette thése avec ’approche SVD montre une amélioration du temps
de calcul tout en gardant la méme précision d’estimation (Figures 1.7, 1.8,
Tableau 1.1).
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:| Ensemble prédiction
[ [ntersection avec v,

FIGURE 1.6 — Evolution de I’ensemble contenant 1’état obtenue par approche
PAZI
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FI1GURE 1.7 — Comparaison des limites de z; obtenues par plusieurs approches
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FIGURE 1.8 — Comparaison des limites de x5 obtenues par plusieurs approches

TABLE 1.1 — Temps de calcul pour 50 périodes d’échantillonnage

Approche Temps(seconde)
Approche PAZI (sans inclure I'optimisation hors-ligne BMI) 0.0468
Approche (avec 'optimisation hors-ligne BMI incluse) 0.2808
Approche SVD [37] 1.5444

1.3 Chapitre 4 : Commande prédictive robuste
fondée sur I’estimation ensembliste pour des
systémes incertains

La commande prédictive fondée sur l'estimation ensembliste construite au
chapitre précédent est présentée dans ce chapitre. La commande prédictive
est choisie en raison de ses avantages, en particulier sa facilité de mise en
oeuvre et sa capacité a traiter des contraintes. Cette commande est basée
sur un probléme d’optimisation résolu a chaque instant, sur un horizon fini
de prédiction, afin de déterminer une séquence de commandes dont seul le
premier élément sera appliqué au systéme. Fondée sur 1’horizon glissant, la
procédure est reprise a 'instant suivant. Deux techniques de commande pré-
dictive robuste développées dans ce chapitre pour des systémes affectés par
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des perturbations et des bruits de mesure sont présentées plus spécifiquement.
La commande robuste pour des systémes qui ont des paramétres incertains
reste un probléme ouvert a cause du probléme d’optimisation non convexe et
du manque de garantie de stabilité du systéme et de faisabilité de la loi de
commande.

Considérons le systéme incertain suivant :

yr = Cay, + vy (1.31)

{ Tpp1 = Axy, + Buy + Fuwy,
ou z, € R"™ est 'état du systéeme, y, € R™ est la mesure a 'instant k.
wi € R™ et v, € R™ représentent la perturbation et le bruit de mesure. Les
incertitudes et 1’état initial sont supposés bornés par des ensembles convexes :
wr € W, v, € Vand zg € X, avec W un zonotope contenant 1’origine, V' un
pavé et X, un zonotope.

Le system (1.31) subit des contraintes sur l'état et l'entrée : x, € X,
up € U, ou X et U sont des ensembles compacts, convexes et contenant
I'origine. Dans la suite, deux techniques de commande pour ce systéme sont
considérées.

1.3.1 Commande prédictive "boucle-ouverte"

Comme le systéme (1.31) est influencé par des incertitudes (wg, vg), 'état du
systéme est estimé en utilisant 1’estimation ensembliste par zonotopes pré-
sentée au Chapitre 4. Grace a la propriété de non-croissance de I'estimation
ensembliste présentée (1.13), la borne de l'erreur d’estimation n’augmente
pas dans le temps. Donc, la solution la plus simple est de négliger 1'erreur
d’estimation et de considérer I'état estimé comme ’état réel du systéme. Si
I’état estimé est dirigé vers le point de référence, 1’état réel converge vers
un ensemble contenant ce point. Ainsi, la fonction de cotit suivante de type
quadratique est choisie pour déterminer ’entrée du systéme :

N N-—1
Je = Z G+ — YIS + Z s — 1% (1.32)
i=1 =0

avec Upy; = CTpy; et Tpy,; le centre de 'ensemble zonotopique contenant
I’état a l'instant k£ 4 7. Les notations suivantes ont été également utilisées :
N T’horizon de prédiction, y,:ifz la sortie future souhaitée, uZifl I’entrée future
souhaitée. La matrice de pondération ) est une matrice symétrique définie

positive et la matrice de pondération R est définie positive. Le probléme
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d’optimisation doit inclure les contraintes suivantes sur l'entrée et I'état :

{uk_;_iGU,Z:O,...,N—l (133)

T € Xyi=1,...,N

Minimiser le critére (1.32) sous les contraintes (1.33) est un probléme d’op-
timisation convexe qui permet de déterminer la commande appliquée au sys-
téme (1.31).

1.3.2 Commande prédictive robuste a base de tubes
d’incertitudes

La commande prédictive "boucle-ouverte" est simple, mais elle ne garan-
tie ni la stabilité du systéme, ni la faisabilité du probléme d’optimisation.
Pour cette raison, une deuxiéme technique de commande prédictive & base
de tubes d’incertitudes est présentée dans ce chapitre. Dans cette approche,
le probléme d’optimisation de I'état réel du systéme est remplacé par le pro-
bléme d’optimisation de I’état nominal (I’état du systéme nominal qui n’est
pas affecté par des incertitudes). De plus, 'erreur d’estimation est prise en
compte dans la loi de commande afin de garantir la stabilité du systéme
commandé et la faisabilité de la loi de commande.

Si 'on note 7 le centre de ’ensemble zonotopique des états estimés a
I'instant £, alors on peut déduire 1’équation suivante :

Tpp1 = AZy + Bug + AYr1 — Yrt1)

1.34

avec A calculé par (1.29).3
Soit 'erreur d’estimation de l'observateur Zp = x, — Z. L'erreur d’esti-
mation a l'instant suivant Zp,q est calculée a partir des équations (1.31) et
(1.34).
Trp1 = (I — AC)ATy, + wyf (1.35)

avec wy € W = (I — AC)W & (—AV). En considérant que l'erreur d’esti-
mation initiale appartient a un ensemble initial 7o € S§, ’équation récursive
suivante Si,; = (A —ACA)S; ® W€ peut étre déduite a partir de la relation
(1.35). Comme la matrice A est calculée de sorte que 'ensemble des états

3La différence entre I'approche proposée dans cette thése et celle dans [100] est 1'uti-
lisation de l’estimation ensembliste a la place de lobservateur de Luenberger [100] afin
d’améliorer la vitesse de convergence de l'erreur d’estimation, donc la performance de la
commande.
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estimés soit non croissant, la séquence d’ensembles {S§} est monotone non
croissante.
L’équation de I'observateur peut maintenant étre réécrite comme suit :

i‘]ﬁ.l = Ai’k + Buk + w,ﬁo (136)

avec wi’ = AN(CAZy, + Cwy + v1). Comme Ty € S¢, on obtient I’équation
suivante :

W € W = ACASE ® ACW @& AV (1.37)

Comme la séquence des ensembles S}, est monotone non croissante et We°
dépend linéairement de S}, alors la séquence de l'ensemble W/’ est aussi
monotone non croissante.
Considérons maintenant le systéme nominal qui n’est pas affecté par des
perturbations :
Ty = Azy + Buyy, (1.38)

ol uy, est la commande appliquée au systéme nominal. Pour réduire l'effet des
perturbations, on souhaite que la trajectoire du systéme perturbé soit la plus
proche possible de la trajectoire du systéme nominal (i.e. soit située a I'inté-
rieur du tube des trajectoires possibles de rayon minimal). En appliquant la
commande prédictive robuste décrite ici, on peut montrer que la trajectoire
du systéeme nominal converge vers ’origine et le centre de I’ensemble des états
estimés converge vers un ensemble compact contenant l'origine et donc les
états réels convergent aussi vers un ensemble compact contenant 1’origine,
ce qui prouve la stabilité entrée-état. En appliquant la commande suivante
up = u, + K(Zp — x;,) au systéme, on peut déduire que la déviation entre
I'état nominal z;, et I'état estimé 7, (notée e, = Ty —x;,) satisfait la relation :

er+1 = (A+ BK)ep + wi? (1.39)

La matrice de retour d’état nominal K est choisie telle que A + BK soit
stable. Si a l'instant k la déviation e, € S;°, alors & l'instant £ + 1 on a
epy1 € Sp5q, avee Si4 = (A+ BK)Si* @ W

De fagon similaire a [100], la fonction de coiit suivante correspondant &
une stratégie prédictive robuste est minimisée afin d’obtenir la séquence de
commande :

z
L

l@kﬂ‘a Hkﬂ') (1-40)

N | —

1
Vi (zy,u) = §Vf(£k;+N) +

i

I
)

ou N est I'horizon de prédiction et u est la séquence de commandes :
u= {Qkaﬂk-}-la“'?@k—&-N—l} (1'41)
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La fonction de cott d’état [(x;,, u;,) et la fonction de cott terminale Vi (z,, y)
sont définies par :

l(&kauk) = %(Q{sz +Q£Rﬂk) (1 42)
Vi(zp, y) = 2zl  Prx '
Zk+N 2Lk+N* fLk+N

ou Py, ), R sont des matrices définies positives. Avec ces notations, les
contraintes variant dans le temps a I'instant k& sont :

Qk+i€Qk+i7i:Oa"'7N_1
£k+i Eik-}iv Z :Oa"-vN_ 1 (143)
Ty € Xy

aVGCQk+Z:U@K g?‘rl eth+Z:X@Sk+l

Considérons maintenant ’ensemble admissible de commande & 'instant
k avec I’état nominal x :

Un(zy) ={uw: Wy € Upryy iy € Xy T € Xy,
i=0,...,N—1} (1.44)

Pour déduire la commande du systéme, le probléme d’optimisation suivant
est résolu en ligne :

Vi (Zk) = min{ Vv (z, w) : u € Un(z}), T € 2, D S;°} (1.45)

Lp,u

La solution de ce probléme d’optimisation est donnée par la paire (Z*,u*) :

Ti(ZTg), w* (2x) = argmin{Vy(z;,u) : u € Un(zy), Tk € 2, & S°} (1.46)

£k¢ U

Ainsi la commande prédictive appliquée au systéme (1.31) a 'instant k est :
k() = U (k) + K (2 — 27,(2x)) (1.47)

ol U;(Zy) est le premier élément de la séquence u*(Zy).

Avec ces hypothéses et en utilisant cette loi de commande, nous pouvons
montrer que la paire (z, ) est pilotée de fagon robuste vers (S., S%), en sa-
tisfaisant toutes les contraintes. Malgré des résultats positifs de la commande
prédictive robuste a base de tubes d’incertitudes, son application dans le cas
de systémes avec incertitudes paramétriques (la matrice A a des incertitudes
par intervalle) reste un probléme ouvert & cause du manque de garantie de
la stabilité du systéeme et de la faisabilité de la loi de commande.
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1.4 Chapitre 5 : Application

Dans ce chapitre, les techniques d’estimation et de commande prédictive dé-
veloppées aux chapitres précédents sont appliquées a un systéme de suspen-
sion magnétique (Figure 1.9). Le systéme se compose d'un électro-aimant
fixe, pour lequel un courant d’alimentation variable permet de modifier la
force magnétique résultante, et d’'un pendule mobile, aimanté, attiré plus ou
moins fortement par la partie fixe. Le systéme est supposé avoir une symétrie
radiale parfaite et on s’intéressera ici uniquement & la commande sur ’axe
vertical de fagon a stabiliser le pendule autour de I'origine. La premiére par-

Electro-aimant
/'/-
=
A —
/fPendule
(—%//fPosition
inl \Origine
Axe
vertical L

FIGURE 1.9 — Maquette de la suspension magnétique

tie de ce chapitre consiste & modéliser ce systéme. Pour simplifier le calcul et
faciliter la visualisation, le systéme est modélisé sans la partie de puissance.
Le modéle non-linéaire du systéme de suspension magnétique est élaboré
sous forme d’équation différentielle. L’état x se compose de la position et de
la vitesse du pendule et la sortie mesurée est la position du pendule. Aprés
avoir établi ce modéle, le systéme est linéarisé autour de 1’origine et discrétisé
afin d’obtenir un modeéle linéaire discret. L’analyse de stabilité de ce modéle
montre que le systéme est instable en boucle ouverte ce qui correspond bien
au comportement physique du systéme. De plus, le systéme est soumis a
des contraintes sur I’état (la position et la vitesse du pendule) et I'entrée (le
courant d’alimentation).
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La deuxiéme partie développe I'implantation de la loi de commande pré-
dictive robuste fondée sur I'estimation ensembliste zonotopique. Comme le
systéeme est affecté par des perturbations et de bruit de mesure, I'estimation
ensembliste zonotopique est implantée afin d’estimer 1’état du systéme. En-
suite la loi de commande prédictive a base de tubes d’incertitudes est utilisée
afin de stabiliser le pendule autour de l'origine. Les résultats de simulations
sont montrés Figures 1.10, 1.11, 1.12. Ces figures montrent que le pendule
est stabilisé autour de l'origine, de plus les contraintes sur la commande et
I’état sont respectées.

Signal de commande
i

Ternps

FIGURE 1.10 — Signal de commande appliqué au systéme de suspension ma-
gnetique
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Position du pendule
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FIGURE 1.11 — Position du pendule obtenue par la commande prédictive a
base de tubes d’incertitudes

“itesse du pendule

FIGURE 1.12 — Vitesse du pendule obtenue par la commande prédictive a
base de tubes d’incertitudes
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1.5 Conclusion

Cette thése vise deux domaines fondamentaux de 1I’Automatique : I'estima-
tion et la commande. Dans ce but, les contributions principales de la théese
sont les suivantes. Premiérement développer une estimation ensembliste zo-
notopique fondée sur la minimisation d’un nouveau critére : le P-rayon de
cet ensemble zonotopique. Fondé sur 'approximation de l'intersection d’un
zonotope avec une bande de mesures, ce nouveau critére permet d’obtenir
un bon compromis entre la précision de l’estimation et la complexité du
calcul. Cette technique d’estimation est développée non seulement pour des
systémes mono-sortie, mais également pour des systémes multi-sorties. Plu-
sieurs contributions visent l'estimation des systémes multi-sorties (approche
ESO, approche ESOCE, approche PMI), une contribution majeure étant le
résultat de I'approximation de I'intersection d’un zonotope et d’un polytope
(approche PAZI). La deuxiéme contribution principale de la thése est le déve-
loppement d’une loi de commande prédictive robuste (sous contraintes, avec
des perturbations et bruit de mesure inconnus, mais bornés) par retour de
sortie fondée sur l'estimation ensembliste zonotopique.

Ce travail peut étre étendu en considérant ’estimation ensembliste zo-
notopique pour des systémes avec retard. De plus, les résultats développés
peuvent étre appliqués pour résoudre le probléme du diagnostic et de la com-
mande tolérante aux défauts. Un probléme intéressant a traiter dans le futur
reste de trouver une loi de commande prédictive a base de tubes de trajectoire
pour des systémes affectés par des incertitudes par intervalles.
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Chapter 2

Introduction

2.1 Context and motivations

The work of this thesis is found at the intersection of two major problems
in automatic control: state estimation and robust constrained control for
discrete-time uncertain systems subject to disturbances and measurement
noises. The goal of this thesis is to take into account uncertainties, distur-
bances, measurement noises and constraints to build a state estimation and
an output feedback control law which can guarantee the feasibility and the
stability of the closed-loop system in this specific context.

In the literature, when an uncertain system is subjected to disturbances,
there are two main ways to describe parameter uncertainties, disturbances
and noises acting on a dynamic system:

e Stochastic approach, which assumes that the disturbances, noises and
parameter uncertainties are unknown but its probability distributions
are known.

e Deterministic approach, which assumes that disturbances, noises and
parameter uncertainties are unknown but bounded by some convex sets.
The main advantage of the deterministic approach is that disturbances
and noises are supposed to be bounded and this is often simpler to ver-
ify than the criterion on the probability distribution. This is the main
reason why many authors [147], [126], [20] etc. have chosen the deter-
ministic approach to model the disturbances and the noises affecting
the system behavior. Based on this remark, the deterministic approach
has been chosen in this thesis to model the parameter uncertainties, the
disturbances and the measurement noises.
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Due to the presence of measurement noises, the system state, which is nec-
essary to build the control law, is not available. In this case the implemen-
tation of a state estimator is necessary. This state estimation problem can
be solved by different methods such as Luenberger observer |94, functionnal
observer [109], moving-horizon estimation [57|, set-membership estimation
[147], [126], [20] etc. In this thesis the set-membership estimation method
is chosen because of its ability to deal with uncertainties and disturbances.
The set-membership estimation has been applied to the problem of state
estimation of uncertain systems since 1960s [147], [126], [37], [2] etc. This
approach permits to obtain a set containing the real system state consistent
with the disturbances and measurement noises. With the development of ro-
bust control theory, the set-membership estimation technique is shown to be
suitable to deal with unknown but bounded uncertainties, disturbances and
measurement noises. If constraints are added to the previous problem, then
a predictive control feature should be added. This results in using robust
predictive control strategies based on set-membership estimation in order to
answer to the proposed problem. In particular, zonotopic sets will be used
due to its flexibility and low-complexity.

This thesis builds upon previous results on the zonotopic set-membership
state estimation [37], [2] and the output feedback Tube-based Model Predic-
tive Control [100]. The aim of the state estimation problem is to obtain a
small estimation set which contains the real state. The proposed method in
[37] computes a zonotopic outer approximation of the set of states based on
a Singular Value Decomposition of a matrix [140], which offers good perfor-
mance of the estimation. In [2], the authors proposed a method to compute
the zonotopic guaranteed state estimation based on two optimization prob-
lems. The first solution is based on the minimization of the volume of a
zonotope and offers a high accuracy estimation with a complex computa-
tion, while the second solution considers the minimization of the segments
of the zonotope and proposes a simple computation but with a deteriora-
tion of the estimation accuracy. For these reasons, the goal of this PhD
thesis is to propose a new method permitting to improve the estimation per-
formance, while keeping a low complexity level. Moreover, this zonotopic
set-membership estimation is proposed to replace the Luenberger observer in
the output feedback Tube-based Model Predictive Control [100]. This asso-
ciation permits us to improve the performance of the closed-loop system as
it will be shown in the future sections.
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2.2  QOutline and contributions of the thesis

In this section, the description of the main chapters (excluding this introduc-
tive chapter) is given with highlights on the main contributions.

e Chapter 1: This chapter offers a synthesis in French of the main
results presented in this thesis.

e Chapter 3: The goal of this chapter is to answer the question on how
to represent the uncertainties, the disturbances and the noises in the
deterministic approach. The chapter starts with a short description of
the deterministic approach in which the disturbances and noises are
assumed to be bounded by known convex sets. After that, some ba-
sic definitions and operations necessary to manipulate sets and matrix
computations are presented. As the disturbances are bounded by a con-
vex set, the next part consists in presenting a list of the most popular
families of sets which are used in the literature, with its advantages and
weak points. Due to the advantages of zonotope, the family of zono-
topic sets is further chosen to bound the disturbances and measurement
noises.

e Chapter 4: In this chapter, a zonotopic set-membership estimation is
proposed to solve the problem of state estimation for interval uncertain
systems subject to unknown but bounded disturbances and measure-
ment noises. This chapter proposes a new optimization criterion based
on the minimization of the P-radius of a zonotope (that will be defined
later on in this thesis) in order to obtain a zonotopic guaranteed state
estimation as a trade-off between the low computation complexity and
the performance of the state estimation. Moreover, this criterion per-
mits to guarantee the non-increasing property of the guaranteed state
estimation at each time instant; to the best of the authors knowledge,
this can not be found in the other approaches proposed in the liter-
ature. The chapter proposes a pedagogical structure in three steps.
It starts with the state estimation solution based on matrix inequali-
ties optimization and zonotopic outer approximation of the intersection
between a zonotope and a strip for single-output linear discrete time in-
variant systems subject to disturbances and measurement noises. Based
on this solution, in a second step the state estimation problem is ex-
tended to the case of single-output linear discrete-time variant systems
(i.e. it considers the case of systems with interval parametric uncer-
tainties). To solve this new problem, the maximum principle [122] is
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used. The case of multi-output systems leads to two different classes
of solutions:

— The first class is the direct application proposed for the single-
output systems for each output of the multi-output system lead-
ing to a conservative result. Several approaches belonging to this
first class will be developed and compared (Equivalent Single-
Output approach, Equivalent Single-Output with Coupling Effect
and Polynomial Matrix Inequality approach).

— The second class based on an original result on the zonotopic
approximation of the intersection between a polytope and a zono-
tope permits to improve the performance of the estimation while
considering all the output measurements in the same time.

e Chapter 5: The problem of robust predictive control is discussed in
this chapter, in the context of zonotopic set-membership estimation.
The performance of model predictive control is illustrated by many in-
dustrial applications. This large application is explained by its ability
to deal with disturbances and constraints acting on the system. Based
on the zonotopic set-membership estimation built in Chapter 4, two
predictive control laws are presented. The first control law is an open-
loop predictive control which has a simple implementation /structure
but does not guarantee the stability of the closed-loop system. To
offer a stability proof, a second controller which is a feedback predic-
tive control based on a tube of trajectories is proposed for the case of
linear discrete-time invariant systems with bounded disturbances and
measurement noises, subject to constraints. Moreover, when interval
parametric uncertainties are added, the optimization problem in the
first control law becomes non convex and the recursive feasibility in
the tube-based predictive control is lost. For these reasons, in this the-
sis we have chosen to apply a modified open-loop predictive control for
uncertain systems, the output feedback predictive control based on the
zonotopic set-membership estimation still remaining an open problem.

e Chapter 6: This chapter proposes an application of the proposed ap-
proaches to control a magnetic levitation system. The first step consists
in describing and modeling this non-linear unstable continuous-time
system subject to bounded disturbances, measurement noises and con-
straints. The proposed model is linearized around an equilibrium point
and discretized for a given sampling time. Based on this model, the
open-loop Model Predictive Control and the Tube-based Model Pre-
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dictive Control associated to the zonotopic set-membership estimation
are used to stabilize this system around the equilibrium point.

e Chapter 7: The last chapter resumes the developed work in this PhD
thesis and proposes some future directions both on theoretical devel-
opments and on real applications.

The work in this thesis has resulted in several accepted/submitted pub-
lications to prestigious international conferences and journals:

Published journal paper:

e V. T. H. Le, C. Stoica, D. Dumur, T. Alamo, E. F. Camacho, Com-
mande prédictive robuste par des techniques d’observateurs basées sur
des ensembles zonotopiques, Journal Européen des Systémes Automa-
tisés (JESA), no. 2-3/2012, pp. 235-250, DOI 10.3166/JESA.46.235-
250, ISSN 1269-6935, ISBN 978-2-7462-3957-9, 2012.

Submatted journal paper:

e V. T. H. Le, C. Stoica, T. Alamo, E. F. Camacho, D. Dumur, Zono-
topic guaranteed state estimation for uncertain systems, submitted to
Automatica (second review round), 2012.

Published conference papers:

e V. T. H. Le, T. Alamo, E. F. Camacho, C. Stoica, D. Dumur, A new
approach for guaranteed state estimation by zonotopes, Proceedings of
the 18th IFAC World Congress, Milan, Italy, pp. 9242-9247, 28 August
- 2 September 2011.

e V. T. H. Le, C. Stoica, D. Dumur, T. Alamo, E. F. Camacho, Robust
tube-based constrained predictive control via zonotopic set-membership
estimation, Proceedings of the 50th IEEE Conference on Decision and
Control and Furopean Control Conference, Orlando, Florida, U.S.A.,
pp. 4580-4585, 12-15 December 2011.

e V. T. H. Le, T. Alamo, E. F. Camacho, C. Stoica, D. Dumur, Zono-
topic set-membership estimation for interval dynamic systems, Pro-
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Chapter 3

Set theory for uncertainty
representation

In the control systems context, a mathematical model is frequently used
to describe the system behavior, offering the possibility to analyze and to
design control strategies for the considered system. The quality of the control
depends on the model accuracy, i.e. on how well the mathematical model
developed on the theoretical side agrees with results of repeated experiments.
But the mathematical model can not exactly represent the real system due to
a lack of knowledge or unreliable information of the system. To validate this
model some uncertainties can be added to the mathematical model. Moreover
perturbations influencing the real system have to be taken into account in
the mathematical model in order to ensure a similar behavior of the real
system and the mathematical model. The importance of uncertainties in
system design can be seen in [99], [9], [10] and the references therein. In the
literature, there are two ways to represent uncertainties: the statistical (or
stochastic) approach and the deterministic approach.

Stochastic approach: The uncertainty is modeled by a random process
with a known statistical property. This approach is widely used in different
scientific domains (e.g. economy [12], biology [143|, engineering [99]), espe-
cially when estimates of the probability distribution of the uncertain param-
eters are available. But in many applications, this probability distribution
of the uncertain parameters is not known; only bounds of this uncertainty
can be fixed. In this case the probabilistic assumption on the uncertainty
is not anymore validated, making this method not suitable for modeling the
uncertainties.

Deterministic approach: The uncertainty is supposed belonging to a
set: a classical (crisp) set (a set, wherein the degree of membership of any
object in the set is either 0 or 1) or a fuzzy set (a set, wherein the degree of
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membership of any object in the set is between 0 and 1). In the literature,
different families of classical sets are used depending on their accuracy and
their complexity. Usually, the accuracy and the complexity of the uncertain-
ties representation are inversely proportional, depending on the particular
problem related to the choice of a suitable geometric form. In the following
parts, some popular families of sets are presented with their advantages and
their weaknesses. Note that in this thesis only convex (classical) sets are
considered because of the role of convexity in the theory of optimization [19].

3.1 Basic set definitions

Before presenting the most known families of sets, some basic set definitions

and operations are introduced. These definitions are used along this thesis.

Definition 3.1. A set S C R" is called convex set if for any xq,x2,...,2, €
k k

S and any ag, @, ..., ar € RT such that > «; = 1, then the element 3 o,z

i=1 =1

isin S.
Definition 3.2. A conver hull of a given set S, denoted conv(S) is the
smallest convex set containing S.

Definition 3.3. A set S C R" is called a C-set if S is compact, convex and
contains the origin. This is a proper set if its interior is not empty.

Definition 3.4. Inclusion operator : X C Y, if and only if Vx € X, then
reyY.

Definition 3.5. Intersection operator : X NY ={z:z2€ X and z € Y'}.

Definition 3.6. The image of a set S under a map (projection) M is the
set M(S)={y:y=M(z),z €S}

Definition 3.7. The Minkowski sum of two sets X and Y is defined by
XeY={z+y:zeX,yeY}

Definition 3.8. The Pontryagin difference of two sets X and Y is defined
by XoY ={z:z4+ye X,VyeY}

Definition 3.9. Let X and Y be two non-empty sets, the distance of two
sets X and Y is defined as d(X,Y) = min{d(z,y) : x € X,y € Y'}.

Definition 3.10. Let X and Y be two non-empty sets. The Hausdorff
distance of these two sets X and Y is defined by the following expression
dy(X,Y) = max{dy(X,Y),dy (Y, X)}, with dy(X,Y) = maxmind(x, y).

zeX yey
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The Hausdorff distance permits to characterize the quality of the approxi-
mation of X by Y [65]. If X and Y have the same closure, then the Haursdoff
distance is equal to 0.

The following figure illustrates the difference between the "normal" dis-
tance (Definition 3.9) which is equal to 0 and the Hausdorff distance which
is different to 0 between the two sets X and Y.

Y X

Figure 3.1: Difference between the "normal" distance and the Hausdorff
distance between two sets X and Y

3.2 Basic matrix operation definitions

In this section, some matrix operations which are used in this thesis are
introduced.

Definition 3.11. A matrix M = MT € R™" is called a semi positive-
definite matriz (respectively semi negative-definite matrixz), denoted M > 0
(M =0),if 27’ Mz >0 (2" Mz < 0) for all non-zero vectors z with real entries
(z € R").

Definition 3.12. A matrix M = M7T € R™" is called a strictly positive-
definite matrixz (respectively strictly negative-definite matriz), denoted M > 0
(M =< 0),if 2 Mz > 0 (2T Mz < 0) for all non-zero vectors z with real entries
(z € R").
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Definition 3.13. A mathematical expression of the following form is called
Linear Matriz Inequality (LMI):

F(z)=Fy+ Y a;F; =0 (3.1)
i=1
where r = [xl To ... xn}T € R" is the vector of decision variables and
F;, 1 =0,...,n are given symmetric matrices.

The two following problems related to LMI are considered in this thesis:

1. Feasubility problem: Does it exist a solution z € R” such that the LMI
F(x) > 0 is feasible?

2. Optimization problem: Minimize a linear cost function b’z subjected
to the LMI constraint F'(z) > 0.

Definition 3.14. (Schur complement [24], [124]) Consider the following

LMI:
0) ()
{¢@>Rmﬂto (3.2)

where Q(z), R(x) are symmetric matrices and Q(z), R(z), S(x) are affine
on z, then this LMI is equivalent to:

0
S(2) R(z)-1ST(z) = 0 (3.3)

or

R(z) =0
{ — ST(2)Q(x)1S(2) = 0 (34)

Definition 3.15. A Bilinear Matriz Inequality (BMI) is defined by the fol-
lowing expression:

i=1

i=1 j=1
T " - T

where z = [xl To ... xn] ceR*"ifn>morax= [xl To ... xm] €

R™ if not, is the vector of decision variables and Fy, Fj, Fi; ¢,7 = 1,...,n

are given symmetric matrices.
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Definition 3.16. A Polynomial Matriz Inequality (PMI) is defined by the
following expression:

F(z)=2F >0 (3.6)
where z = [1 Ty .. Xp TP LTy .. T, .. :rmT € R" is the vector
of decision variables and ' = [FO F ... F, Fi1 F ... Fi, .. an],
with F, given symmetric matrices.

Note that LMI and BMI are just a particular case of PMI.

3.3 Interval set

A very simple way to define uncertainties is using the interval notion. This
is based on the idea of enclosing numerical errors into an interval. In many
cases obtaining the probability of occurrence of different uncertainties is not
possible. Therefore, it can be easier and thus suitable to bound the uncer-
tainties by intervals. Moreover, the interval analysis permits to simplify most
of the standard operations [107], [60], [68]. This approach is developed in
many domains such as identification, diagnosis, estimation etc. especially
when a short computation time is required.

Definition 3.17. An interval I = [a, b] is defined as the set {z : a <z < b}.

Definition 3.18. The center and the radius of an interval I = [a,b] are

respectively defined as mid(I) = % and rad(I) = 5.

Definition 3.19. An interval matriz [M] € "™ is a matrix whose elements
are intervals.

It means that each element M,;;, with i« = 1,...,n, j = 1,...,m of this
matrix is defined as the set M;; = {m;; : a;; < m;; < b;;}. In the matrix
space, the interval matrix is a hyper-rectangle and hence a convex set. Let
vert([M]) denote the set of all matrices A = [ay], with i = 1,...,n, j =
1,...,m such that a;; = a;; or s;; = b;;. Thus vert([M]) contains all the
vertices of the interval matrix [A/]. The notations mid([M]);; = % and

bij—

rad([M]);; = 25 define the coefficient of the center and the radius of an

interval matrix [M], respectively.
Definition 3.20. The unitary interval is denoted B = [-1,1].

Definition 3.21. The set of real compact intervals [a, b], where a,b € R and
a < b is denoted 1.

Definition 3.22. A boz ([ay,bi], ..., [an, ba])T is an interval vector.
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Definition 3.23. A unitary boxr in R”, denoted B", is a box composed by
n unitary intervals.

Consider two given intervals [v] = [z,7], [y] = [y,9]. If o denotes an
operation between the two intervals [z] and [y], then this can be formalized
as:

[Z]ofyl ={zoy:x € [z],y € [y]} (3.7)

The four basic operations of interval analysis are defined as follows:

4. [z]/ly] = [=] = [1/5,1/y], i 0 & [y]
Despite the simplicity of the interval analysis, a drawback of this approach
is that the computation results are sometimes conservative due to the de-
pendency effect (when a variable appears more than one time in a function)
and the wrapping effect (the growth of the domain representation due to
over-estimation at each sampling time) [107], [76], [68]. These two effects are
further analyzed via two examples.

Ezxzample 3.1. (Dependency effect) Consider a function fi(z,y) = = — y,
and a function fo(z) =z — x with z,y € [—1,1]. Using the interval analysis
we can find that the value domain of f; and fs is the same [—2,2], even
if the real value domain of f; is 0. This problem, called the dependency
effect, lies in the fact that the occurrence of the same variable x in the
function fs5 is independently considered. This can lead to a an important
over approximation of the result.

Ezxzample 3.2. (Wrapping effect) Consider two variables z and y belonging to
the unitary interval [—1, 1], and a function f(x,y) = [(1) _(1)'5] ) [ﬂ Figure
3.2 shows the exact solution (in red) of the function f and the result obtained
using the interval analysis (blue). Comparing these solutions, an important
over-approximation of the interval analysis solution can be noticed. If this
operation is repeated several times, the difference between the exact solution
and the solution of the interval analysis is more and more important. This
problem is called the wrapping effect.
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Interval analysis solution

|:| Exact solution

Figure 3.2: Wrapping effect in the interval analysis

3.4 Ellipsoidal set

A popular set which is used in a large class of applications in automatic
control due to its low complexity is the ellipsoidal set [126].

Definition 3.24. Given a vector ¢ € R" and a symmetric positive definite
matrix P, the ellipsoid E is defined as follows:

E={zcR": (v —c)'P Yz —c)<1} (3.8)

The vector ¢ € R" is called the center of the ellipsoid E and the matrix
P is called the shape matriz of the ellipsoid E. From this definition, the
complexity of an ellipsoidal representation is quadratic in the dimension of
the space [78] (expression (x — ¢)T P~ (z — ¢)).

Figure 4.3 proposes an example of ellipsoid with ¢ = {8} and P = E ﬂ .

Concrete studies on ellipsoids and their operations can be found in [24],
[78]. Despite the simple representation of ellipsoids, there are still some
drawbacks which lead to a conservative result, such as the ellipsoidal set
is not closed under some operations (sum, intersection etc.) and its low
flexibility in the shape form in comparison with polyhedral set which will be
presented in the next section.
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/téenter

XN D ........... . .......... .......... R gy ........... ...........

Figure 3.3: Ellipsoid

3.5 Polyhedral set

The polyhedral set is one of the most popular geometrical form used in
many fields such as control and optimization. A polyhedral set in a finite-
dimensional Euclidean space is the intersection of finitely many closed half-
spaces [151]. A bounded polyhedral is denoted as a polytope. Due to its
flexibility, polytopes offer a good approximation of any convex set [81], [26],
[127]. Another advantage of polytopes in comparison with ellipsoids is that it
is closed under the mentioned operations. Moreover, its dual representation
(half-space representation and vertex representation) permits to choose the
suitable form for a particular problem. The main disadvantage of polytopes
is related to its complexity depending on the number of vertices, which is not
fixed by the space dimension. Therefore, even if a polytope can well approx-
imate any convex set, the complexity can quickly increase with the number
of vertices even in a low space dimension. Despite this weak point, polytopes
are one of the most popular convex sets used in automatic control. In order
to formalize the notations, the main definitions of polytopes are summarized
below.

Definition 3.25. (Half-space representation) A polyhedral P € R™ can be
defined as the intersection of a finite number of half-spaces:

P={zxeR":H <K} (3.9)
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with H € R™*" K € R™. If P is bounded, then P is a polytope.

Figure 3.4 shows the half-space representation of a polytope with
~1—0.9996 0.0001 0.9728 0.5492 4
| —0.0296 1 0.2318 —0.8357| ’

K =[0.0233 1.7775 1.9766 0.7572]" (H,, K, are the i*"-column of matrix
H and K respectively).

H

DE A > S R iR PR PP :

1
-0.5

Figure 3.4: H-representation of polytope

Definition 3.26. (Vertex representation) For a finite set of points V =
{v1,v9,..., v} € R™ a polytope P can be defined as the convex hull of the
set V:

P = conv(V) = {a1v; + agvg + ... + @y, 1 a; € RT, Zai =1} (3.10)

i=1

Figure 3.5 shows the vertex representation of a polytope with
—0.0760| [1.6085| |1.9435 0.0034
V= {{ 1.7775 ] ’ [1.7773} ! [0.3713} ! l—0.9038 b The next theorem [151]
shows the equivalence of these two definitions permitting to choose a suitable
representation for a particular problem. For example, the proof that the poly-
topic set is closed under Minkowski addition is trivial when V-representation
is used but not trivial with H-representation.
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25 ...... R P SR Y ST I Y O P .............. PR ¢

Figure 3.5: V-representation of polytope

Theorem 3.1. (Equivalence of the two polytopic representations) [151] A
subset P € R" is the convex hull of a finite point set (a V-polytope) if and
only if it is a bounded intersection of half-spaces (a H-polytope).

This theorem shows that the H-representation can be transformed to the
V-representation of a polytope and vice versa. In the literature this problem
is well known as the vertex enumeration problem for the transformation of
a V-polytope to an H-polytope and the facet enumeration problem for the
transformation of a H-polytope to V-polytope. There exist algorithms to
solve these transformation problems, but they are time consuming (e.g. [42],
[47]). More details on polytopes can be found in [151], [23].

An example of the same polytope defined by H-representation and V-
representation is given in Figures 3.4 and 3.5.

Even if polytopes can well approximate any convex set, their applications
are limited due to their complexity. In the next section, another geometrical
form which offers a good compromise between complexity and flexibility is
presented.

3.6 Zonotopic set

In this thesis, zonotopes will be used to represent uncertainties due to the
flexibility, the reduced complexity and specially the efficient computation of
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linear transformation and Minkowski sum. Zonotopes are a special class of
convex polytopes, more precisely symmetric polytopes. Similar to polytopes,
zonotopes can be represented by the half-space representation and the vertex
representation. In addition, zonotopes can be represented by another forms
which will be detailed in the next sub-section.

3.6.1 Zonotope definition

Definition 3.27. (Generator representation) Given a vector p € R" and a
set of vectors G = {g1, g2, ..., gm} C R", m > n, a zonotope Z of order m is
defined as following:

Z=(pig1.g2 - gm) ={z €ER" 1z =p+ Y mgi—1< o<1} (3.11)
=1

The vector p is called the center of the zonotope Z. These vectors
g1, - .-, gm are called generators of Z. The order of a zonotope is defined
by the number of its generators (m in this case). The case of m < n is called
degenerated zonotope.

This definition is equivalent with the definition of zonotopes by the Min-
skowski sum of a finite number of line segments defined by ¢;B'.

Z = (p;g1, 92, 9m) =P B 1B & ... & g, B (3.12)
An illustrative example of a zonotope of third order in 2D and its gener-

ators is given in Figure 3.6 with p = [8] , g1 = [iﬂ , o = B] , g3 = E’] .

0
Figure 3.7 presents a 6 order centered ! zonotope in 3D (p = |0],
0

1 1 1 1 0 0
g1 = 1792: _1793: 0794: 0 y g5 = 1796: 1 )
0 0 1 —1 1 -1

These two examples show that the complexity of zonotopes (number of
vertices in 2D or facets in a bigger dimension) depends on the number of
generators and the dimension of the space. The complexity grows up rapidly:
the number of vertices of the zonotope is 6 in Figure 3.6 and 24 in Figure
3.7, when the number of generators is increased.

LA centered zonotope is a zonotope whose center is the origin.
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Figure 3.6: 3-zonotope and its generators in 2D

Figure 3.7: 6-zonotope in 3D

Another definition of zonotopes that is more convenient for the approach
considered in this thesis is the following.

Definition 3.28. (Hypercube linear projection) A zonotope of order m in R™
(m > n) is the translation by the center p € R™ of the image of an unitary
hypercube of dimension m in R” under a linear transformation. Given a
matrix H € R™™"™ representing the linear transformation, the zonotope Z is
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defined by:
Z=(p;H)=ps® HB™ (3.13)

The proposed definitions of zonotopes are equivalent if we consider the
matrix H = [gl go ... gm]. From now on, to simplify the manuscript, the
zonotope Z will be described by Z(p; H). The same zonotope in the Figure
3.6 is constructed using the hypercube linear projection. This zonotope is the

1 -1 1 1
image of 3D hypercube (with its eight vertices |1|, | 1 |, |—=1|, | 1 |,
1 1 1 -1
—1| [—1 1 -1
-1 1 —1|, |—1]) under the projection H in 2D (see Figure 3.8).

) ?

1 -1 -1 -1

Figure 3.8: 3-zonotope and its vertices in 2D

The generator representation of a zonotope can be converted to the V-
representation and also to the H-representation. These conversions are re-
lated to the Minkowski sum of two polytopes because the generator represen-
tation is equivalent to the Minkowski sum of a finite number of line segments,
which is a polytope. The conversion between the zonotopes representations
is studied by many authors such as [56], [131], [48], [125], [8].

The generator representation illustrates a significant advantage of zono-
topes: a complex geometrical form can be represented using a simple matrix.
The zonotope from Figure 3.7 with 24 vertices in 3D is represented by a
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3 x 6 matrix H. This leads to simplify the mentioned basic set operations
by simple matrix computation as presented in the next part.

3.6.2 Properties of zonotopes

This part focuses on the main properties of zonotopes that will be used along
this thesis.

Property 3.1. (Particular forms) Given a zonotope Z = HB™ € R". Due
to the properties of the matrix H, some particular forms of zonotope can be
obtained. If H is the identity matrix, then Z is the unit box. If H is diagonal,
orthogonal or invertible, then Z is a box, a hypercube or a parallelotope 2,
respectively.

Property 3.2. (Generators permutation) The permutation of the matrix
columns in the generators representation of a zonotope does not modify the
zonotope.

Proof This property results from the commutativity of Minkowski sum.
O

Property 3.3. (Sum of two zonotopes) Given two centered zonotopes Z; =
H,B™ € R" and Z; = H,B™ € R", the Minkowski sum of two zonotopes
is also a zonotope defined by Z = Z; & Z, = [Hl HQ} Btz

Proof From the definition of the Minkowski sum, it results in: Z;® Z, =
{H1z1+Hsz : 21 € B™ 25 € B™}, that can be further rewritten in a matrix

formulation as Z; @ Z, = {[Hl Hz] . [?] : [zl] € Bm1+m2} =7. O
2 2

Property 3.4. (Linear image of a zonotope) The image of a centered zono-
tope Z; = HiB™ € R" by a linear mapping K can be computed by a stan-
dard matrix product K - Z; = (K - H;)B™.

Proof By using matrix multiplication the proof is similar to Property
1.3. O

Property 3.5. (Zonotope inclusion or Multiplication of a zonotope by an
interval matriz) Consider a family of zonotopes represented by Z = p @
[M]B™ where p € R™ is a real vector and [M] € I"*™ is an interval matrix.

2A parallelotope is a special zonotope whose number of generators is equal to the
dimension of the space.
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A zonotope inclusion ((Z) is an outer approximation of this family defined
by:
O(Z) =p @ [mid([M]) rs(rad([M]))|B™*" (3.14)

with rs(rad(M)) a diagonal matrix and rs(rad(M)); = >0, [rad(M )l
1=1,...,n.

Proof 2] If z € Z, then it is clear that there exists b € B™ such that
z € p@ [M]b. Adding and subtracting mid([M])b leads to:

2 € (p+ mid([MIB)) @ ([M] — mid([M]))b
Note that the elements of [M] — mid([M]) satisty:
M;; — mid([M]);; = rad([M]);B
and thus this leads to:
([M] = mid([M])b) € rs(rad([M]))B".
Therefore the following expression holds:

z € (p +mid([M])b) @ rs(rad([M]))B™ C
C p®mid([M])B™ @ rs(rad([M]))B"™ = O(2).

3.6.3 Complexity reduction of zonotopes

This subsection discusses some techniques to reduce the complexity of a
zonotope. These techniques permit to limit the number of generators of a
zonotope, which is an important problem in the computation of zonotopes.
For example, if the problem of reachable set 2 is addressed using zonotopes,
the complexity of this zonotope increases at each sample time due to the
Minkowski sum operation. The complexity reduction problem leads to ap-
proximate a high order zonotope by a lower order one. In this part, the over
approximated way is presented leading to compute a reduced order zonotope
enclosing the initial zonotope.

3This is the problem of computing all states visited by trajectories of a system starting
from any xy € Xo.
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3.6.3.1 Interval hull method

Proposition 3.1. Considering a zonotope Z = p® HB™ € R", the smallest
box containing this zonotope is computed by:

box(Z) =p®rs(H)B" (3.15)
with rs(H) a diagonal matrix such that rs(H); = 7" [Hij|, i = 1,...,n.

Proof As a box is an axis aligned set, the over approximation of a zono-
tope by a box can be done by considering its extreme points in each direction.
The extreme point in direction 7 can be easily computed by p; + Z;"Il |Hj|.
All extreme points in all n directions are similarly computed and the smallest
box containing the zonotope Z is obtained as box(Z) =p & rs(H)B". O

This proposition provides a simple and fast over-approximation of a zono-
tope by a box. The result has a minimal complexity which is given by the
dimension of the space. However, the result obtained with this proposition
is conservative because the form of the zonotope is lost.

An example is proposed in the following in order to better illustrate this
proposition.

12 3
3 2 10

applying the interval hull approximation leads to a box (in blue) containing
the original zonotope (in red) (see Figure 3.9).

Exzample 3.3. Given a centered zonotope Z = HB® ¢ R?, H =

3.6.3.2 Parallelotope hull method

Proposition 3.2. Given a zonotope Z = p & HB™ € R" (m > n), an
over-approximation of this zonotope by a parallelotope is computed as:

Par(Z) =T -box(I' 'H) (3.16)

where ' € R™*" is an invertible matrix containing n columns taken from H.

Proof (8] This approach first transforms the coordinates of Z by the linear
mapping I'"! where the new coordinate axes are the column vectors of I'. In
these new coordinates, the zonotope is over approximated by a box using
the interval hull. This box is transformed back to the original coordinate
system, resulting in a parallelotope. The over-approximation is guaranteed
by the fact that the parallelotope is over-approximated in the transformed
coordinate system by the interval hull operator, such that it is also over-

approximated after the transformation to the original coordinate system.
O
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Figure 3.9: Intervall hull of a zonotope

FExample 3.4. The same zonotope as in Example 3.3 is taken in order to
compare the two approximation methods. In Figure 3.10 this zonotope (in
red) is over approximated by three different parallelotopes P;, P, P; due to
. : . 1 2 1 3 2 2
the different choice of the matrix I' (T'; = [3 2] BP— [3 1] N — {3 1} ).
Comparing the two examples (Figures 3.9 and 3.10), the over-approximation
by the parallelotope hull is less conservative than the one by interval hull,
but with a higher complexity (because n generators must be chosen among
m generators to have the best approximation: the blue parallelotope). Some
criteria to select the suitable generators are given in [107], [8].

3.6.3.3 Generators selection method

Proposition 3.3. (Cascade reduction) Given a zonotope Z =p@® HB™™ €
R" (m > n), with H a m-block matrix of n xn matrix (H = [Hy ... Hy,]),
let D(I) = [H, ... H,] be the matrix obtained by choosing [ blocks of H.
Choosing the biggest [ (2 < [ < m) for which || D(I—1)||ec > ||Hi|lco or I = 1 if
such an integer does not exist, this norm criterion is called fullness criterion
which imposes that the small parallelotope will be over-approximated more
frequently than the big parallelotope. Then an over-approximation of Z is
defined by:

ZCp®[rs(D()) Hyq ... Hp) (3.17)
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Figure 3.10: Parallelotope hull of a zonotope

This proposition is based on the representation of a zonotope by Minkowski
sum of parallelotopes. More details on this proposition and its performance
(a theoretical bound on quality of approximation) can be found in [75].

Proposition 3.4. (Criterion-based reduction) Given the zonotope Z = p &
HB™ € R" and the integer s, with n < s < m, denote H the matrix resulting
from the reordering of the columns of the matrix H by a criterion which will
be detailed in the in the following (H = [ﬁl D iLmD The zonotope is

rewritten as: Z =p & H,B* ™" ® HyB™ ™" where H, is obtained from the
first s — n columns of matrix H and H2 is the remainder of H. Then the
initial zonotope is over-approximated by a zonotope of reduced order s as
follows Z C pé® H,B*™ & QB", where QB" is the over-approximation of the
zonotope H,B" ™™,

This over-approximation can be a box using Proposition 3.1 or a paral-
lelotope using Proposition 3.2.

Proof Since a column of matrix H represents a segment of zonotope Z,
then a column permutation in matrix H does not modify the zonotope Z. It
means that Z = p@® HB™ = p® HB™. From the definition of matrix H and
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applying Property 3.3, it results in:

—p® HB* " @ H,B™"*t" = (3.18)
=P D ng87n D [iLsfnJrl s ]Alm} Bm78+n
Propositions 3.1 and 3.2 show that the zonotope [izs_nH - ﬁm] Bt

can be approximated by QB", where @) is a diagonal matrix (if an approxi-
mation using box is used) or a full matrix (if an approximation using paral-
lelotope is used). Therefore the following expression is true:

ZCpoHB " OQB" =pa [H, Q|B°

The quality of the approximation depends on:
1. the value of s which limits the complexity;
2. the criterion used to split the zonotope Z;

3. the approximation method (box or parallelotope) used for the zonotope
HZBm—s—n.

A big value of s means a high precision of the approximation but the
complexity remains high.
Two methods can be found in the literature to split the zonotope Z.

e The first approach consists in sorting the generators of the zonotope
in decreasing order of the Euclidean norm [37], [2], which is equivalent
to dispose the segments of zonotope from the longest to the shortest
segment. Then the longest segments which have a more important
role in the shape of the zonotope are kept and the contribution of the
shortest segments is over-approximated by a box or a parallelotope in
order to limit the complexity.

e Another criterion on sorting the generators is presented in [53] and
consists in reordering the columns of matrix H in decreasing order of
the term ||A;||1 — [|hi]|oo- The chosen generators (whose contribution is
approximated) are close to vectors with only one non-zero component
and are therefore well approximated by an interval hull.

An example is proposed in order to better illustrate the quality of different
proposed methods of complexity reduction.
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Ezample 3.5. Consider a centered zonotope Z = HB® € R?, with m = 8,

n = 2 and
I 0.9169 0.8936 0.3529 0.0099 0.2028 0.6038 0.1988 0.7468

~ 04103 0.0579 0.8132 0.1389 0.1987 0.2722 0.0153 0.4451|

This zonotope is approximated using Proposition 3.3 and Proposition 3.4
(in Proposition 3.4 the over-approximation by a box is used). Using the cas-
cade reduction, the value of [ is determined (I = 3). Figure 3.11 shows the
approximation of the initial zonotope using the cascade reduction. Figure
3.12 shows the over-approximation of the zonotope Z (Ziitia in red) ob-
tained using as criterion the Euclidean norm with different values of s (s = 4
represented in blue line, s = 5 plotted in red line). This example confirms
that the bigger value of s is, the better the approximation is.

Figure 3.13 compares the performance of the over-approximation of the
same zonotope Z based on the two criteria of the generators reordering and
selection: the Euclidean norm and the difference between the H; norm and
the H,, norm. The same value s = 6 is chosen for both cases. In this example,
the best approximation is obtained using the Euclidean norm-based criterion.
In this thesis, the over-approximation based on the Euclidean norm criterion
will therefore be used.

[

Cascade reduction

Figure 3.11: Complexity reduction of a zonotope using the cascade reduction

o4



Set theory for uncertainty representation

Zi.n.itial
Red (Z)

3_ ......... oo ........ e ........ Red,(Z)

2_ ..............
bé\l 1_ ..............
D_. ......................
Neomn Ry 000 e ) TR
s 0000000 ol ............................................

1 1 1 1 i 1 1 1 1 1

4 i 2 1 0 1 2 3 4 5

!

Figure 3.12: Complexity reduction of a zonotope using the Euclidean norm-
based criterion
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Figure 3.13: Complexity reduction of a zonotope: comparing two criteria
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3.7 Conclusion

The above chapter gave a general presentation of some popular convex sets
and their properties. The interval set and the interval analysis are strong
tools allowing to deal with uncertainties but their application is limited due
to the flexibility, the dependency effect and the wrapping effect. Even if
the ellipsoidal set is used by many authors due to its simplicity, its low
flexibility leads to a conservative computation result. The polytopic set can
approximate whatever convex set with a high precision but polytope can not
be used in fast processes due to its high complexity. The zonotopic set, a
special class of polytope, offers a good compromise between complexity and
flexibility (zonotope is a polytope, thus it is more flexible than an ellipsoid,
and due to the symmetry property it is less complex than a polytope). Due
to its interesting properties presented in this section, zonotopes will be used
to represent the uncertainties in the context of set-membership estimation in
the next chapters.
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Chapter 4

Set-membership estimation via
zonotope

4.1 Introduction

The choice of the appropriate mathematical model, which best describes the
behavior of a given plant, has received increased attention in the control sys-
tem literature. Mathematical models consist of several functions describing
the relations between the system inputs, outputs and the (internal) states
of the system at a given time instant. For example the states of the math-
ematical model of a motor can be the current, the velocity or the position
of the motor. In different automatic control applications such as control
systems, fault detection, knowledge about the system state is necessary to
study the system behavior and to determine the control action. In practical
applications, the measurement of the system states is not always available
(due to the cost of the sensor or the harsh environnement) or can be affected
by measurement noises (sometimes introducing a significant error relative to
the real values of the states). For this reason, if the system is observable, a
state estimator is set up to augment or replace measurement devices in the
control system. This estimator uses the knowledge of the system (mathemat-
ical model, input and output signals) to produce the estimated states. The
state estimator permits us to remove the sensor and thus, to reduce the cost
and improve the reliability of the system with good quality estimator. Since
the ’60s, this problem has been studied by many authors, leading to dif-
ferent estimation techniques such as Kalman filter [69], Luenberger observer
[94], set-membership estimation [147], [126], functionnal observer [109], [106],
moving-horizon estimation [57], [104], [67], [1]. Several popular approaches
discussed in the literature are listed below according to the choice of the
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system model:

e Luenberger observer: In the context of linear systems without un-
certainty, a Luenberger observer can be easily implemented [94], [95]
due to its simplicity and efficiency.

Consider a discrete-time-invariant linear system in the state-space rep-
resentation: !

{ Tp1 = Ay, + Buy, (4.1)

Y = Ol‘k + Duk

where z;, € R™ is the system state, up € R™ is the system input,
yr € R™ is the output measurement. The matrices A, B, C, D
have appropriate dimensions A € R"*"= B ¢ R"™*™ (' € R™*"
D € R™*™_ The system states can be estimated using the following
observer model:

Tpp1 = A2y + Buy, + L(yx — 9r) (4.2)
Ur = Cg + Duy, '
where Iy, U5 represent the state and output estimation at time k.
The estimation error e is then computed by:
k1 = Thi1l — Tpt1 (43)

= (A — LC’)ek

From the estimation error equation, it is proved that the estimation
error tends to O if the gains matrix L is chosen such that the matrix
A — LC is Schur stable (all its eigenvalues are inside the unit circle).

e Kalman filter: If uncertainties are taken into account in the math-
ematical model in the form of stochastic process, the Kalman filter
is presented as an effective solution [69]. A complete introduction of
the Kalman filter can be found in [99]. Consider a linear discrete-time
invariant system:

{ T, = Axp_y + Bug_y + wi— (4.4)

yr = Cag, + vy

where wy and v, represent the process and the measurement noises,
respectively. These disturbances and noises are assumed to be inde-
pendent, zero mean, with normal distribution and covariance @), R

IThe discrete-model is chosen due to its facility when systems are controlled via com-
puter.
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(wg ~ N(0,Q), vp ~ N(0,R)). The Kalman filter is simply an optimal
stochastic recursive estimator. At each time instant, it offers the value
of the estimated state z; and the error covariance matrix P, which is
a measure of the estimated accuracy of the estimated state. This is di-
vided into two steps: prediction and update. The prediction step uses
the estimated state at the previous time instant z_; and the knowl-
edge of the system (the matrices A, B and the input at the previous
moment uy_1) to produce a priori state estimation. In the update step,
this a priori state estimation is combined with the information from
the measurement to obtain a posteriori estimated state. This can be
summarized in the following algorithm.

Algorithm 4.1.

1. Prediction step:

— Compute the a priori state estimation z, = Azp_1 + Bug_1.

— Compute the a priori estimation error covariance:

P, = AP, AT + Q.
2. Update step:

— Compute the optimal Kalman gain:
K, = PkCT<OPkOT + R)_l.
This gain is determined by minimizing the mean square of the
estimation error. The detail of computation can be seen in
[99].

— Update the state estimate Ty = Z + Ki(yr — CTg).

— Update the estimate error covariance P, = (I — K;C)F;.

For the interested reader, a toolbox dedicated to this problem is de-
veloped. footnotemark . In the parametric uncertainty context, it is
well known that the performance of the proposed Kalman filter can be
degraded [27]. To ensure the convergence behavior in the presence of
modeling error, the robust Kalman filter is proposed, which guarantees
a bound of the performance of the Kalman filter [148], [134], [110],
[46].

e Set-membership estimation: When a system is modeled by the de-
terministic approach (uncertainties are bounded by some convex sets),

thttp://www.cs.ubc.ca/ murphyk/Software/Kalman /kalman.html.
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the set-membership estimation is a suitable solution for the state es-
timation problem. This technique has been developed in the last 35
years [147], [126], |20]. The estimator computes at each sample time
a set containing all the possible system states that are consistent with
the perturbations, the uncertainties and the measurement noise. Based
on the prediction and correction step, the procedure of this technique is
similar to the Kalman filter. While the Kalman filter deals with the av-
erage case, the set-membership estimation considers the worst case. For
this reason, this approach is also called the worst-case estimation. The
problem of set-membership estimation is that the complexity of this set
is increased in time. To overcome this problem, the geometry of these
sets has to be fixed a priori: e.g. polytopes (boxes, parallelotopes)
[145], [144], [32], [17], [50], [68], [71], [116], [118], [103]; ellipsoids [126],
[147], [20], |77], [51], [45], [113], [14], [13], |15]; zonotopes [115], [37],
[2], [3], [82]. Polytopes which were presented in the previous chapter
offer a good quality of approximation. In the linear context, polytopes
can be used for an exact representation of the variation domains of
the system state. However efficient results may be obtained only for
a reasonable number of vertices of the polytopes [145]. Due to the
low complexity, ellipsoids have been used by many authors but their
limited flexibility can lead to a conservative result of estimation. As
presented in the previous chapter, zonotopes which are used in many
automatic control applications such as reachability analysis [7], colli-
sion detection [59], identification [25], state estimation [115], [37], [2],
[3], fault detection [58], [66], [137] and fault diagnosis [40] offer a good
compromise between the complexity and the flexibility. Moreover, the
author of [75] shows that, by using zonotopes, the wrapping effect is
reduced leading to a more precise result of the estimation. As the de-
terministic approach is chosen to describe the modeling of the system,
the set-membership estimation is considered as a suitable solution. In
the next section, zonotopes are chosen to represent the set of all the
possible system states in the context of set-membership estimation due
to their advantages in comparison with other geometrical forms.

4.2 Problem formulation

To simplify the manuscript, the following linear discrete-time autonomous
system is considered (this system can be easily generalized to controlled sys-
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tem):
{ Tpy1 = Axy + Wi (4.5)

Y = Cl’k +Uk

where x;, € R™ is the state of the system, y, € R™ is the measured output
at sample time k, the matrices A and C' have appropriate dimensions A €
Rrexme ' € R™ > and this couple (C,A) is detectable. The vector wy, € R
represents the state perturbation vector and v, € R™ is the measurement
perturbation (noise, offset, etc.). It is assumed that the uncertainties and
the initial state are bounded by zonotopes: w, € W, v, € V and the initial
state belongs to a zonotope zy € Xy which can be large due to the lack of
knowledge on the system. The two zonotopes W and V are supposed to
be centered at the origin; if this assumption is not satisfied an appropriate
change of coordinates can be used to bring the center of the zonotopes to the
origin.

Consider the mathematical model (4.5) and these assumptions, the set-
membership estimation technique leads to compute at each sample time k
a domain of all the possible values of the unknown state x;. Similar to the
Kalman filter, the set-membership estimation algorithm is based on 3 steps:
prediction, measurement and correction 2. The guaranteed state estimation
is obtained in the correction step which is the combination of the state in-
formation from the prediction and the information from the measurement.
Before detailing this algorithm, some useful notations will be defined.

Definition 4.1. Given the system (4.5) and a measured output yg, the
measurement consistent state set at time instant k (the state set which is

consistent with the measured output y;) is defined as X,, = {z € R" :
(ys — Cz) €V},

Definition 4.2. Consider the system (4.5). The exact uncertain state set
Xy = (AXyr®@W)N X,,, k > 1 is equal to the set of states that are

consistent with the measured output and the initial state set Xj.

Thus, the exact uncertain state set X}, contains all the possible values of
the system state consistent with the measurement. In practice, the compu-
tation of the exact uncertain state set is difficult. Even if X, _; is assumed
to have a particular geometrical form (for example: zonotope, ellipsoid etc.),
it is not sure that at time instant k& the exact uncertain state set X} has the
same form. For this reason, in practice this set is approximated by an outer
bound (the zonotopic set will be used along this PhD thesis). The following
hypotheses are considered at the time instant k:

2In the Kalman filter, the measurement step is included in the correction step, in the
set-membership algorithm it is clear-cut for a better understanding.
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e An outer bound of the exact uncertain state set, denoted Xj_i, is
available.

e An output measurement y; is obtained.

Under these assumptions, a zonotopic outer bound X, of the exact uncertain
state set X can be estimated using the following algorithm.

Algorithm 4.2.

1. Prediction step: Given the system (4.5), compute a zonotope X; =
AXy_1 ® W (denoted predicted state set) that offers a bound for the
uncertain trajectory of the system.

2. Measurement step: Compute the measurement consistent state set X,
using the measurement yy.

3. Correction step: Compute an outer approximation X (denoted guar-
anteed state estimation set) of the intersection between X, and Xj.

Yk

Xy

Figure 4.1: Set-membership estimation algorithm

The general case of the proposed algorithm is illustrated in Figure 4.1.
At the time instant &, from the known guaranteed state estimation X;_; (the
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red set), the predicted state set X (the blue set) is determined. This set
is intersected with the measurement consistent state set X,, (the green set)
which is induced by the output measurement y;. Thus, at time instant k the
guaranteed state estimation X, (the red set) is the outer approximation of
this intersection.

To obtain a zonotope bounding the uncertain trajectory of the system in
step 1 of Algorithm 4.2, Properties 1.1 and 1.2 are used. The predicted state
set computation using zonotopes relies on a simple matrix computation and
is not subject to any approximation. However, this computation increases
the order of the zonotope at each step. In order to control the domain
complexity, a reduction step is implemented to bound a high-order zonotope
by a lower-order zonotope using the complexity reduction method presented
in Chapter 3.

In the literature, there are several authors interested in this estimation
problem [37], [38], [39], [2], [3]. In the linear context, the step 1 of the Algo-
rithm 4.2 is similar in these methods. Based on different methods to realize
the correction step (the intersection between the predicted state set and the
measurement consistent state set), two different approaches presented in the
literature will be further detailed: the Singular Value Decomposition-based
method [37], the optimization-based method [2].

4.2.1 Singular Value Decomposition-based method

This method was firstly proposed in [37|. The zonotope bounding the dis-
turbance is supposed to be a centered zonotope represented by W = FB"=.
In this presented method, the measurement noise is supposed to belong to
a centered parallelotope V', which can be described by V = ¥B", with
> € R™*™ an invertible matrix. With these notations, at each sample time
k there exists a vector b, € B"™ such that the measurement noise at time
instant k is computed by v, = Xbg.

Let us suppose that at the time instant & the zonotopic guaranteed state
estimation at k& — 1 is available: X, | = D1 D ]:Ik_lBr, r € R*. Us-
ing the mathematical model, the predicted state set X}, in the first step of
Algorithm 4.2, which contains the real state z, can be computed by:
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Xp=AXy W
= A(Pr—1 @ ﬁkleT) @ FB"
= App_1 ® AH,_B" ® FB™ (4.6)
= Apy_1 @ [AH,, F]B*"™
= pr & H,B"™"

with pk = Aﬁk—l and Ek = [A[:[k—l F} .

Remark 4.1. From further on, in this chapter, the notation % will be used
to specify the estimation of * and % will be used for the prediction of .

The guaranteed state estimation is obtained from the intersection between
the measurement consistent state set X,, and the predicted state set Xj.
The method proposed in [37] considers a slightly different approach in which
the measurement consistent state set X,, is not explicitly computed. This
method consists in decomposing the extended space R™*"= (called abstract
space in [37]) of X}, into two complementary sub-spaces using the singular
value decomposition: one sub-space is influenced by the measurement, while
the other sub-space is not influenced. Uniquely the outer approximation in
the sub-space containing the information coming from the measurement is
considered.

A prediction of the measurement at time instant k£ can be obtained from
the center of Xk,lz

Uk = Cpy (4.7)

The real measurement is given from (4.5):
yr = Cap + Lby, (4.8)

The difference between y, and g, reflects the supplementary information
coming from the measurement.

yk — Ui = C(zp — pr) + by, (4.9)

As ¥ is an invertible matrix, by multiplying (4.9) with 3! this is equivalent
to:
S ye — k) = 57 Clax — Pr) + by (4.10)

Denote n = X7 (y,— ) and M = ¥ 71C. Because the real state x;, belongs to

the predicted state set X; formulated by (4.6), there exists a value s € B™*"
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such that @, = p, + Hys. Thus, the following equation is verified:

n— by = M(x, — pr)
= M(pr + His — pi) (4.11)
= MI:[ks

Remark 4.2. The correction step focuses on the outer approximation of the
intersection between B"""* and the domain of possible values of s resulting
from the measurement equation (4.8).

The procedure proposed in [37] for computing the zonotopic guaranteed
state estimation is based on the Singular Value Decomposition (SVD) of the
matrix resulted from the product M Hj, € Rwx(r+ns),

Find the Singular Value Decomposition of M Hj:

T

MH, =USV" = [U; U] {501 8} {Eﬂ (4.12)
with UTU = I and VIV = I and S, a diagonal matrix with non-zero elements
which are the singular values of M H.

The initial measurement space is generated by Uy and U; and the abstract
space is generated by Vy and V; [37]. The sub-space generated by V; is the
kernel of M Hj, and is not influenced by the output measurement. The sub-
space influenced by the output measurement is generated by V;.

In fact, Vi and V; are the new base and, thus, in the new base, the vector

s can be decomposed as:

and & = Vs, 0y = V{T's with 8y, d; the coordinate of s in the new base.
With these new notations, the equation (4.11) is equivalent to:

n — by, = MH,(Vody + Vi61) (4.14)

Replace M H,, by its Singular Value Decomposition leads to:

n— by, = U151V (Vobo + Vi01) (4.15)

From the expressions UTU = I, VIV = I, it leads to U] U, = I, ViV =
I, VIVy =1, ViIVy = 0, V{'V; = 0. Thus, the equation (4.15) is equivalent
to:

Because b, is an interval vector, from the definition of zonotope, a sufficient
condition for the equation (4.16) or (4.11) is the following:

61 € Zy = Z(S7 Ul S;tulh) (4.17)
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From the equation (4.13), the images of s in the sub-space generated by V;
and the sub-space generated by V[ are shown by:

51 € Z(0;ViT), 8o € Z(0; V) (4.18)
Combining the results of (4.17) and (4.18), it leads to:
61 € Z1nZ(0; V), 6 € Z(0; V) (4.19)

The next step consists in finding the outer approximation of the intersection
between Z; and Z(0; VI'). This can be computed as the intersection of the
interval hulls of the two zonotopes Z; and Z(0; V') (i.e. the intersection of
two boxes) which is an easy work:

Z (Premp; Hiemp) = Z (ST U m;rs(STPUT)) N Z(05rs(V])) (4.20)

Coming back in the abstract space (4.13), the approximation of s can be
done by combining the information from (4.19) and (4.20):

S € Z(‘/iptemp; [%Htemp ‘/O‘/[)T}) (421>
Thus the guaranteed state estimation at time instant k£ is determined by:
Xk = Z(p + Hk‘/lptemp; [[_{k‘/lHtemp Hk‘/()‘/()T}> (422)

Detailed explanations about this algorithm can be found in [37], [39]. An
improved version of this algorithm which consists in replacing the intersection
of two boxes (4.20) by a zonotopic outer approximation of the intersection
between two zonotopes is presented in [38]. The singular decomposition
method permits to rapidly obtain a guaranteed state estimation but it can
not guarantee that the size of this guaranteed state estimation is optimized.
For this reason, another method based on the solution of an optimization
problem is presented in the next subsection.

4.2.2 Optimization based method

This method presented in [2] is based on the zonotopic approximation of the
intersection between a zonotope and a strip. The algorithm presented in 2]
is developed for single output systems(n, = 1 in (4.5)). The disturbances
are bounded by a centered zonotope W = FB"*. The measurement noise
is supposed to belong to a centered interval V = ¢B', ¢ € R*. With this
assumption, from the mathematical model (4.5) the output measurement can
be written in the form vy, = ¢’ x), + vi, with v, € V and ¢ € RY¥"=,
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Suppose the guaranteed state estimation at time instant £ — 1 is known
at time instant k (Xz_; = pr—1 ® Hx_B"). Similar to (4.6) the predicted
state set is determined as :

Xk = Apr_1 @ [A]:Ik_l F} B e = Dr D HkBT—H% (423)
In this case the measurement consistent state set is computed as a strip:
Xy = {lc"e =y < 0} (4.24)

The guaranteed state estimation X, can be obtained by intersecting the
predicted state set X with the measurement consistent state set Xy, As
X is a zonotope and Xy, is a strip, it is convenient to obtain a zonotopic
outer bound of the intersection of a zonotope and a strip. The following
proposition provides a family of zonotopes (parameterized by a vector \)
that contains the intersection of a zonotope and a strip. Denoting that this
method can be extended to the case of Multi-Output systems by considering
each measurement gives us a strip in the state-space, then the guaranteed
state estimation is obtained by repeating the intersection with each strip of
measurement.

Proposition 4.1. (|2]). Given the zonotope Z = p & HB" C R", the strip
S={reR":|c'x —d| <o} and the vector A\ € R", define:

e a vector p(A) = p+ A(d — cT'p) € R
e a matrix ]:[(/\) = [(I = A" H o) € R+,
then the following expression holds Z NS C Z()\) =p(\) ® f[()\)BH—l.

Proof Given an element x € Z N S, on one hand this means that z €
Z = p@ HB". Using the definition of a m-zonotope implies that there exists
a vector s € B" such that:
r=p+ Hs (4.25)
Adding and subtracting Ac’ Hs to the previous equality leads to the fol-
lowing expression:
r=p+A"Hs+ (I — X" )Hs (4.26)
On the other hand, z € ZN S leadstox € S = {x € R" : |z —d| < o}.
Thus, there exists a value o € [—1;1] such that ¢’z — d = ga. Taking into
account the form of the vector z given by (4.25) leads to ¢! (p+ Hs)—d = oa,
which is equivalent to ¢ Hs = d — ¢"'p + oa. Substituting ¢’ Hs in equation
(4.26), the following expression is obtained:

r=p+ANd—c"p+oa)+(I—A")Hs

4.27
=p+Ad—c'p)+ A oa+ (I —A\")Hs (4.27)
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After simple computations and using the notation defined in Proposition 4.1,
the following form is obtained:

2 =p\) + [(I=ATVH o) L‘j = p(\) @ H(N) {Z] (4.28)
and the following inclusion holds:
x=p(\) ® H(\) L‘j e p(\) @ HAB™ = Z()\). (4.29)

[
Using Proposition 4.1, the guaranteed state estimation at time instant k,
is the outer approximation of X N X,, , formulated by:

Xi(A) = pr(A) @ Hy(A\)BT 7=+ (4.30)

with ?k()‘) = App_1 + Myr — T Apr_1)
and Hy(\) = [(I = A\T)AH,_, (I - \D)F o).

This equation describes a family of zonotopes parameterized by the vector
A, which bounds the intersection between Xj and a X,,. The vector \ is
then determined in order to optimize the size of this zonotope Xk(A) In
the following, two size-based criteria developed in [2| to compute A will be
presented: the minimization of the segments of the zonotope X k(A) and the
minimization of the volume of the zonotope Xj()).

4.2.2.1 Minimizing the segments of the zonotope

In this approach proposed in [2], the vector A is computed such that the Sum
Of Squares (SOS) of the generators of the zonotope X (\) is minimized (i.e.
the SOS of the segments of the zonotope). This is equivalent to minimize
the Frobenius norm of the matrix H()). It is convenient to decompose this
matrix in the following form [2]:

H(\) = M+ xa” (4.31)

with M = [H O], al = [—CTH a}.
The Frobenius norm of H()) is computed by:

IHM1F = 1M + Aa"|[7
=tr((M* + aX") (M + Xa™))
=tr(M"M) +tr(aX" M) + tr(M* Xa™) 4 tr(aX"Xa®)  (4.32)
=2\"Ma + aa\" X + tr(M" M)
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The minimum of ||H()\)||% is obtained when d‘lﬁé/’\\)”% = 0. This means that:

dANTMa + aTa T\ + tr(MTM))

=0 4.33
o (4.33)
or:
2Ma +2a’a)* =0 (4.34)
The optimal value of vector A is then computed by:
-M
r=
aa (4.35)
_ HH"c
 THHTc + o?

This method permits a fast computation of the vector A which can be used
in fast real-time systems; however the result of approximation is sometimes
conservative as illustrated in [2].

4.2.2.2 Minimizing the volume of the intersection

In order to improve the performance of the guaranteed state estimation,
another criterion is proposed. The vector A is determined such that the
volume of the zonotope X (A) is minimized. The volume of a zonotope
Z =p® HB™ € R", with m > n is given by the following formula [132],

[105]:
()

VOZ(Z) =2" Z |d€t [Hsl(i) Hsz(i) Hsn(i)] | (436)
i=1

m
tween m elements, H; the ith column of H and s;(i) (j = 1,...,n and

with (n) the number of all the different ways of choosing n elements be-

n
1=1,..., )) denotes each one of different ways of choosing n elements
m

from a set of m. These integers satisfy 1 < s1(7) < s2(i) < ... < 8,(i) < m.
Using this formula to compute the volume of the zonotope Xk()\) =
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pr(A) ® ka()\)Br+"”+1 leads to:

Ng
=+ Ny

Vol(Xp(N) =2" > |1 c"A|det(D;)|+
=1
4.37
1 (4.37)
T+ Ny
+2" Z oldet [E; q;) gl o

=1

where D; is each of different matrices obtained by choosing n, columns of
matrix Hj, E; is each of different matrices obtained by choosing n, — 1
columns of matrix Hj, and ¢; is orthonormal to Im(E;) with ¢/¢; = 1 and
¢} E; = 0. The proof of this formula is presented in [2].

The vector A is chosen to minimize the volume of the zonotope computed
by (4.37). As the volume of Xj(\) is a convex function of A, the optimal
vector A* which minimizes the volume of X;()\) can be found by solving a
convex optimization problem. This volume based criterion gives an improved
result of the approximation in comparison to the segment based criterion.
But the complexity of the equation (4.37) leads to a considerable increase
of the computation time. Moreover, minimizing the volume of the zonotope
can lead to a very narrow zonotope (i.e. the uncertainty in some directions
can remain extremely large, even when the volume of the zonotope tends to
zero). For these reasons, in the next section an original approach will be
proposed, permitting to obtain a good result with a low complexity.

4.3 Minimizing the P-radius of the guaranteed
state estimation

These presented approaches have their advantages and their drawbacks. The
Singular Value Decomposition method and the minimization of the volume of
the zonotope lead to a good result with a complex online computation. The
minimization of the segments of the zonotope offers a fast online computation
time with a conservative result. For these reasons, a major challenge is to
design an efficient algorithm that has reasonable complexity and precision
and can be used not only for Single-Output systems but also Multi-Output
systems in the context of systems with interval uncertainties.

This section presents an original approach to obtain the guaranteed state
estimation based on the minimization of the P-radius of the zonotopic guar-
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anteed state estimation which will be defined in the next paragraph, offering
good trade-off between performance and low complexity when computing
an outer approximation of the exact uncertain state set using the zonotope-
based procedure proposed by Algorithm 4.2. The complex online computa-
tion of the Singular Value Decomposition method and the minimization of
the volume of the zonotope are replaced by an optimization problem solved
off-line. Moreover, this P-radius based method permits to guarantee the
non-increasing of the zonotopic guaranteed state estimation. The method is
developed in a first time for single-output systems. Two different cases of
the Single-Output linear discrete time systems (4.5) are analyzed: a known
evolution matrix A and a matrix [A] with coefficients subject to interval un-
certainties, respectively. A generalization to uncertain Multi-Output systems
is also proposed. Before detailing the proposed method, the definition of the
P-radius is presented as follows.

Definition 4.3. The P-radius of a zonotope Z = p @& HB™ is defined by
the following expression:

_ . 2
L = max(= — pl}3) (438)

where P is a symmetric and positive definite matrix (P = PT = 0).

This notation gives us a new criterion to value the quality of the estima-
tion. A small value of P-radius signifies a good quality of the estimation. The
P-radius definition is illustrated in Figure 4.2. This figure shows a centered

red zonotope Z; constructed by a linear image of a centered cube (p; = [8] )

1 2 3

3 9 1| and a centered blue zonotope constructed by

in R?, with H, = {

0 3 02 1
are L; = max(||z]|%) = 72, with z € Z, = p; @ HiB®, Ly, = max(||z||%) = 37,
: 1 : .

with 2 € Zy, = po @ H,B® and P = {O (1)1 The associated P-radius of Z;
is related to the red ellipsoid 27 Pz < L;, and the associated P-radius of 7,
is related to the blue ellipsoid 27 Px < L. From this figure, it can be seen
that if the zonotope is large, then the value of its P-radius and its related
ellipsoid are large and vice versa. The latter is introduced to characterize
the zonotope size by the associated P-radius that is more convenient than
the criteria used in different approaches (e.g. in the segment minimization
method or in the volume minimization method).

Py = [0] , Hy = [1 0.4 3}. The associated P-radius of these two zonotopes
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Figure 4.2: Zonotopes and ellipsoids related to the associated P-radius

4.3.1 Linear Time Invariant Single-Output systems

In this subsection, the P-radius based method is developed for linear discrete-
time invariant Single-Output systems with a fixed known A matrix: 3

Tp1 = Az + wy
{ yr = clap + vy, (4.39)
The disturbance is bounded by a centered zonotope w, € W = FB"® and
the measurement noise is bounded by a centered interval v, € V = oB' C R
with 0 € RT. The aim is to find a zonotopic guaranteed state estimation at
each sample time. Similar to the previous presented method, this set is the
outer approximation of the intersection of the two sets X,, and X;. With
the definition of V', the measurement consistent state set at time £ is defined
as a strip: X, = {x € R" : |cT2 — y| < 0}. As X is a zonotope and
Xy, is a strip, a family of zonotopes (parameterized by a vector \) which
contains the intersection between X}, and X, is computed using Proposition
4.1. The idea is to find the value of this vector A that minimizes the size of
the zonotopic approximation based on the P-radius minimization criterion
in order to overcome the drawbacks of the previous methods proposed in [2],

137].

3This is a particular case of (4.5).
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Supposing an outer approximation of the state set X k1 = Ph—1 oH r—1B"
at the time instant £ — 1 and the measured output y; at the time instant k,
the predicted state set X}, and the guaranteed state estimation are obtained
similar to the previous two optimization based methods:

Xp=Appr ® [AHy1 F]B™™™ =p, @ H,B (4.40)

Xe(N) = pe(N) @ H (W B! (4.41)

with pr(A) = Apr—1 + Myx — " Apy1)
and Hy(A) = [(I = AD)AH,1 (I = AD)F o).
Denote the P-radius of the state estimation set at the time instant k£ by

Ly = max(||x—pg||%). From the definition of the guaranteed state estimation
reXy

X}, in (4.41), it can be rewritten like Ly = max || Hy(\)2||%, with 2 € BT+,

Proposition 4.2. A symmetric positive definite matrix P = P = 0 and a
vector \ can be computed such that at each sample time the P-radius of the
zonotopic state estimation set X}, is not increased, more precisely the value
of L;. This means that the zonotopic state estimation set is non-increasing
in time.

This proposition on the non-increasing condition of the P-radius can be
visualized in Figure 4.3 where the blue zonotope is the guaranteed state esti-
mation at each iteration and the red ellipsoid ||z —pi||% < Ly is related to the
P-radius of the zonotopic state estimation set X Namely, the reader should
not fear the fact that the zonotope is partially out of the ellipsoid because
this ellipsoid is only a criterion to characterize the size of the zonotope.

A constructive proof of Proposition 4.2 is presented in the following. The
non-increase of the P-radius can be expressed by a mathematical formula-
tion as follows. The contractiveness of the P-radius, L, is ensured by the
expression Ly < SLj_1, with 8 € (0,1). Due to the presence of disturbances
and measurement noise, this condition is difficult to verify. A relaxation of
this condition can be L < SLi_ 1 + €, where € is a positive constant which
permits to bound the influence of disturbances and measurement noises. For
€ = max || F s||3 + o2, this leads to the following inequality:

Ly < BLy_y + max || Fs||3 + o2 (4.42)

with 8 € (0,1) and max || F's||3 + 02 > 0.

This inequality can be rewritten in an equivalent form:

max || (V2[5 < max §]| Hy_12[|p + max || Fs| + o (4.43)
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Zonotope
Iteration Iteration Iteration
k k+1 k+2

-

Ellipsoid related to P-radius of the zonotope

Figure 4.3: Evolution of the guaranteed state estimation

with 2 = [z7 T T)T}T ceB et 2 e B, s B™, ne B and 5 € (0,1).
Using the reverse triangle inequality [44] leads to a sufficient condition
for (4.43):

max(| B (M|} = Bl Her2llp — [|1Fs]l3 — o) <0 (4.44)
This is equivalent to the following inequality:
STHINPH (N2 — B2THE [ PH,_1z — s"TFTFs — 02 <0, Vz,s,1 (4.45)

Because 7 € B', which is equivalent to |n| < 1, the following expression
is obtained:
o*(1—n*) >0 (4.46)

Adding this positive term to the left-side of (4.45) leads to the following
sufficient condition for (4.45):
STHIY(NPH (N2 — B2"HI [ PH, 1z — s"FTFs — o+

4.47
fe(1— ) <0, Vasg D
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Right multiplying the expression of Hj, in (4.41) with the explicit form of
Z leads to:

Hy(N)2 = (I = M) (AH_1z 4 Fs) + o)n (4.48)

Denote § = Hj,_yz, then the inequality (4.47) can be written in the matrix

formulation:
T

0 All A12 A13 0
S * A22 A23 S SO, Vﬁ,s,n (449)

Ui * *  Agg n

with "%’ denoting the terms required for the symmetry of the matrix and the
following additional notations:

(A = (I = XD)A)TP(I — \cT)A - BP
Az = (I = A" )A)TP(I = A" F
Az = (I = A" AT Po
Aoy = (I = XYE)T'P(I — N\)F — FT'F (4.50)
Agz = (I — X")F)T PoX
| A3z = 0°ATPA -0

Using the Definition 3.11 of positive definite matrix allows to rewrite
(4.49) as

A A Agg 0
* AQQ A23 j 0, Vs 7é 0 (451)
* k A33 n

Multiplying (4.51) by —1, this is equivalent to:

_All _A12 _A13 0
* —AQQ —A23 i 0, Vs 7é 0 (452)
* * —A33 n

Using the explicit notations (4.50) and doing some manipulations in (4.52),
a matrix inequality is derived as:

BP0 0
« FTF 0| -
* x o2
(AT — ATcAT)P (AT — ATeAT)P] T
— [(FT = FTeAT)P| P~ |(FT — FTeAT)P| =0 (4.53)
M Po M Po
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Using the Schur complement definition (3.14), the expression (4.53) is
equivalent to the following matrix inequality:

LGP 0 0 ATP— AT¢yT
x FTF 0 FTpP—FTeyT
* * o2 YTq

* * * P

=0 (4.54)

with a change of variables Y = P\ with P € R™*" X € R™ and Y € R".
As the 2-norm is a convex function and W is a convex set, the term

max | F's||3, can be easily computed using the maximum principle [122].
seB"e

Thus the value of € = max || F's||3 + 02 can be obtained. Then the condition

(4.42) can be written as Ly < [Lr_; + €. At infinity, this expression is
equivalent to:
Lo = BLoo +¢ (4.55)

leading to:
€
Lo =—— 4.5

Let us consider an ellipsoid E = {z : 27 Pz < —£

1-8
to B ={x: xT%x < 1}. This ellipsoid is related to the P-radius of the
zonotopic guaranteed state estimation at infinity. To minimize the P-radius
(i.e. Loo) of the zonotope, one can find the ellipsoid of smallest diameter [24].
This leads to solve the following Eigenvalue Problem (EVP):

max 7
T’57P

subject to the BMI

} which can be normalized

(1-p)P
€
where I,,, € R™*" ig the identity matrix, 7 € R* and 8 € (0, 1) are scalar.
Then the smallest diameter is computed by \/2; [24].
Finally, to find the values of P = PT = 0 € R™*" and A € R™ the
following optimization problem must be solved:

Method 4.1. max 7
7.8,PY

=1l (4.57)

subject to
( (1— )P >_ 7_]'
BP0 0 ATP— ATcey?T
x FTF 0 F'P—-FTey?T

* * o2 YTo =0 (4.58)
* * * P
7>0
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Remark 4.3. As [ is a scalar variable, this optimization problem can be
efficiently solved by using a BMI solver (e.g. Penbmi [74]) or by executing
a simple search-loop on [ leading to a LMI problem. In this optimization
problem (4.58), the decision variables are: P = PT € R%=*" Y € R",
g € (0,1) and 7 € R*. Thus, the total number of the scalar decision variables
s M +n, + 2. The dimensions of the inequalities in (4.58) are n, X n,,
(3n, + 1) x (3n, + 1) and 1, respectively.

Remark 4.4. In [85], a modification of the problem (4.58) to avoid solving
a BMI optimization problem is presented. Instead of optimizing the value
of the P-radius, a minimum value of [ is searched which permits to have a
maximum decreasing speed of the P-radius. This criterion leads to a new
LMI optimization problem based on the bisection algorithm [28] on f:

Method 4.2. min f3

Be(0,1)
such that
max T
,P)Y
subject to
((A=BF «

4P 0 0 ATP— ATeyT
« FTF 0 FT'P— FTeyT

* x o2 Yo =0 (4.59)
* * * P
7>0

\

As [ is computed by a bissection algorithm, then it is not a decision
variable in (4.59). This means that, in this case, the matrix inequalities
(4.59) are LMIs.

In order to better undertand the proposed methods, an illustrative exam-
ple will be further presented.

Ezxample 4.1. Consider the following linear discrete-time invariant system:

11 6
Tt = [0 1] Tk +0‘02{ 1 }"’“ (4.60)
Y = [—2 1} zr + 0.2

with ||[vgllee < 1, |wklleo < 1. The values of v, and wy are generated by

random functions with Matlab®. The initial state belongs to the box 3B2.
The guaranteed state estimation must be determined at each time instant.
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Remark 4.5. The order of the m-zonotopes in each example in this chap-
ter is limited to m < 20 in the interest of a fast simulation. The over-
approximation of a high-order zonotope by a lower-order zonotope is done
using Proposition 3.4 with an Euclidean norm based criterion and the box
approximation method 3.6.3.1. A system of order 2 is chosen to reduce the
complexity of the computation and to facilitate the graphical visualization.

The BMI optimization problem (4.58) in Method 4.1 is solved by two
different solvers: the Penbmi solver and the LMI solver (mincz) of Matlab
with search loop on 3 (the step on 8is 1074, i.e. 5 =10"%:10"*: 1) which

—0.6205
—0.2842]' The
solution of the optimization problem (4.59) in Method 4.2 gives 5 = 0.0001,
A= :81388 . The number of scalar decision variables in the problems
(4.58) and (4.59) is 7 and 6, respectively. The dimension of these matrix
inequalities is 2 x 2, 7 x 7 and 1, respectively. The estimation performance
of Methods 4.1 and 4.2 are compared with the results obtained from the
minimization of the segments of a zonotope method and the minimization of

the volume of a zonotope method.

in this case give the same results with § = 0.4090, A =

6 _ ......... .......... ........................................................
4 _ ......... ......... .......................................
b s =2

k=3 :

5 n\ Nooid T T i
) _ ......... v A e . hepsimemessnocsnaigasay
4 ....................................... Smrme A sy

: [ IPrediction set

i ; : 7 : N F tirmation set
B B ........ SR g ........ Strip E
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Figure 4.4: Evolution of the guaranteed state estimation by Method 4.1
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Figure 4.5: Evolution of the guaranteed state estimation by Method 4.2

Figures 4.4 and 4.5 show the evolution of the predicted state set and the
outer approximation of state estimation set using Method 4.1 and Method
4.2, respectively. The outer approximations are rapidly reduced at each it-
eration. The reduction means that the guaranteed state estimation set (an
approximation of the real intersection) becomes more and more accurate at
each iteration (k = 1, k = 2, k = 3). Comparing these figures shows that
the guaranteed state estimation obtained by Method 4.2 is decreased more
rapidly than the one obtained by Method 4.1 due to the minimum value of
[ obtained by Method 4.2.

Figure 4.6 and its zoom (Figure 4.7) show the bounds on xs, obtained
by Method 4.1, Method 4.2 and the two methods developed in [2]. The
dash lines show the bounds of z,, obtained by the segment minimization
algorithm. The dash-dot lines represent the bounds of x, obtained by the
volume minimization algorithm, the solid lines represent the bounds of xo,
obtained by Method 4.1 and the dot lines represent the bounds of z,, ob-
tained by Method 4.2. The stars represent the real state x5, of the system.
These points are found inside the bounds of x5, confirming that this bound
is well estimated by each method. To compare the performance of these
methods, the bound’s width of states will be analyzed in the next figures.
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Figure 4.6: Bounds of x5 obtained by different approaches (Example 4.1)

i b

el ra L
i o fus]

The bounds of X

ta
b

18, I I I 1 1 I I I 1 I 1
445 45 455 46 465 47 475 48 485 49 495
Sample time k

Figure 4.7: Zoom of the bounds of x5 obtained by different approaches (Ex-
ample 4.1)
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Figure 4.8: Comparison of the bound’s width of z; obtained by different

approaches (Example 4.1)
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Figure 4.9: Comparison of the bound’s width of x5 obtained by different

approaches (Example 4.1)

To confirm the good performance of the P-radius based approach, Figure

81



Set-membership estimation via zonotope

4.10 compares the volume of the zonotopic guaranteed state estimation by
different approaches (the segment minimization, the volume minimization
and the P-radius minimization). The P-radius minimization gives a bet-
ter performance than the segment minimization and as good as the volume
minimization.

Method 4.1

""""" hlethod 4.2

—— —%alume minimization method
— — - Zegment minimization method

“olume of zonotope

= 1 1 1
10 15 20 25 30 35 40 45 50
Sarmple time k

Figure 4.10: Comparison of the volume of guaranteed state estimation ob-
tained by different approaches (Example 4.1)

Table (4.1) shows the computation time of different algorithms. These
results are obtained with an Intel Core 5 2.67 GHz. The BMI optimiza-
tion (4.58) is solved by Penbmi solver, the LMI optimization (4.59) is dealt
by LMI toolbox (mincx) of M atlab®, the volume minimization problem is
solved by the fminsearch function of Matlab and the segment minimization
problem is solved with a simple matrix computation. If the time used to
solve LMI optimizations is not taken into account, the computation time of
this method is the same as the computation of the segment minimization
but the performance of the estimation is better. Even if the LMI optimiza-
tions are taken into account, the computation time is 10 times less than the
computation time of the volume minimization method. This highlights the
advantages on the computation complexity of the proposed method.
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Table 4.1: Total computation time of Example 4.1 after 50 time instants

Algorithm Time(second)
Segment minimization 0.0468
Presented algorithm (without off-line optimization problem included) 0.0312
Method 4.1 (with off-line optimization (4.58) included) 0.9204
Method 2 (with off-line optimization (4.59) included) 0.6240
Volume minimization 10.0153

The segment minimization algorithm has an acceptable performance and
a very short computation time (only some computations to obtain A). The
volume minimization algorithm gives a better performance but it needs a
longer computation time (215 times more than for the segment minimization
method) because an optimization problem must be solved at each sample
time. The performance of the presented method can be comparable with
the performance obtained by the volume minimization algorithm but A is
computed at the beginning of the program and at each iteration the value of
A does not need to be recomputed leading to a reasonable online complexity.
In summary, the proposed P-radius based algorithms combine the advantage
of the volume minimization (performance) and of the segment minimization
(computation time). In addition, the P-radius based approaches allow to
overcome the problem of volume minimization due to a very narrow zonotope.
In the next part, the P-radius based technique is further developed to solve
the problem in the case of systems with interval parametric uncertainty.

4.3.2 Single-Output systems with interval uncertainties

Consider the following linear uncertain discrete-time varying system:

(4.61)

Tht1 = AZL'k + wy,
yp = Ly + vy,

With the same notations as in Subsection 4.3.1, the proposition 4.2 presented
in Subsection 4.3.1 can be extended in this case with the same assumptions
on W and V. An additional assumption is considered: the unknown matrix
A belongs to a Schur stable interval matrix [A] (i.e. all the matrices in the
interval matrix [A] are Schur stable [97], [112]). This assumption is not very
restrictive because in many applications the matrix A is given by a closed-
loop matrix A + BK, where A and B are the open-loop matrices and A
belongs to the interval matrix [A]. A stabilizing feedback gain K can be
computed by solving a LMI problem (98], [5].

The computation of the guaranteed state estimation can be easily mod-
ified in order to estimate the guaranteed bound of the state of the system
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(4.61). The vector A and the matrix P = PT = ( are computed such that at
each iteration the P-radius of the zonotopic guaranteed state estimation set
is non-increasing.

The problem can be formulated in a similar way as described in the previ-
ous subsection. The predicted state set X, and guaranteed state estimation
set Xk at time instant k are described as:

Xi = App—1 ® [AH,, F]B™ (4.62)

Xi(A) = pr(A) @ Hy(A\)B "= (4.63)

with the parametrized vector pr(\) = App_1 + Ayr — ¢T Apr_1) and the
parametrized matrix Hj,(\) = (I = AcT) [AH,, F] oAl]. Denote that the
difference between these equations and the equations (4.40), (4.41) in the last
subsection is that the matrix A is known in (4.40), (4.41) and unknown in
this case.

Similar to the procedure to obtain the BMI (4.54), the non-increasing
condition on the P-radius of the zonotopic guaranteed state estimation leads
to the following matrix inequality:

6P 0 0 ATP — ATy T
x FT'F 0 FT'P—FTeyT
* * o2 YTq

* * * P

=0 (4.64)

where A belongs to the interval matrix [A].

As [A] is a convex set, by using the maximum principle [122], if (4.64) is
true on each vertex of [A], then it is true for all A € [A]. In summary, the
vector A can be found by solving the following optimization problem:

max T
7,8,PY

subject to

((U=BP o o1

BP0 0 ATpP—ATcy™
x FT'F 0 F'P—FTceyT?

— 4.

\ * * o2 YTo =0 (4.65)
* * * P

L 7>0

for i = 1,...,29, where A; are the vertices of the interval matrix [A], ¢ is the
number of interval elements of [A] and Y = PA.

Remark 4.6. As A is unknown but belongs to the interval matrix [A], the
predicted state set X} can not be directly computed by the expression (4.62)
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at each iteration. This set is replaced by a zonotopic outer approximation
using the following property.

Property 4.1. Given an interval matrix [M] € I"™*? and a real matrix
N € RP*4 the center and the radius of the interval matrix defined by the
product [M]N are given by mid([M|N) = mid([M])N and rad([M]N) =
rad([M])|N|, where | N| designates the matrix formed with the absolute value
of each element of N.

Proof It is evident by using matrix multiplication. Also note that the
elements of the radius of an interval matrix are always positive. [

Using this property, a zontopic outer approximation of X}, is computed
as follows. The starting point is given by equation (4.62):

Xy, = Apy_1 & [AH,_, F]B™™= (4.66)

As A belongs to the interval matrix [A], an outer approximation of X}, can

be obtained by [A]px—1 & [[A]Hk,l F| B,

Using Property 4.1 the following expression is true:

[Alpr—1 € mid([A])pr—1 @ rs(rad([A])|pe—1])B™ (4.67)
In addition, Property 3.5 implies that:
[A|H1B" € [mid(JA])Hy_1 rs(rad([A])|Hy_1])] B™" (4.68)

The Minkowski sum of the last two expressions (4.67) and (4.68) leads
to:

[Alpr—1 @ [AlHy 1 B" C mid([A])pr—1 & rs(rad([A])|pr-1|)B™ &
& [mid([A])Hy—1 rs(rad([A])|Hy_1|))] B™™  (4.69)

Therefore, the zonotopic outer approximation of X, is:

Z(mid([A)pr—1; [mid([A) Hy—1 rs(rad([A])|Hy-1|) rs(rad([A])|pr—1) F])
(4.70)
This zonotope is formed by generators which depend on H kr—1 and pg_q1. As
A € [A] is a Schur stable matrix, the states of the system converge to a
set containing the origin and thus, the generator rad([A])|px_1| is bounded.
Moreover, the computation of vector A depends only on the vertices of the
interval matrix [A] and not X, and this outer approximation is done at each
time instant. Thus this implies that the approximation does not change the
non-increasing property of the guaranteed bound on the system states.
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Remark 4.7. The number of decision variables in (4.65) is the same as
in (4.58), the only difference is that the optimization problem (4.65) has
27 — 1 additional BMIs compared to (4.58). Even if the complexity of this
optimization increases exponentially when ¢ is increased, this optimization
is solved off-line and thus it does not limit the application of the proposed
method.

Ezxzample 4.2. Consider the following linear discrete time-variant system [2]:

0 —05 6
Thtl = [1 14 0.35} T 0'02[ | 1“’“

yp = [-2 1]ap + 0.2

(4.71)

with [6| < 1 the interval parametric uncertainty, ||vg|lco <1 and ||wg|loo < 1.
The values of §, v, and wy, are generated by the random functions of Matlab
In this example the number of parametric interval elements is equal to ¢ = 1.
The initial state belongs to the box 3B2.

Solving the optimization problem (4.65) by Penbmi solver gives =
—0.2137
0.1981, A\ = 0.5726
optimization problem (4.65) contains 2 BMIs constraints of size 2 x 2, 7 x 7
and one scalar LMI. Even if the number of BMIs in (4.54) has an exponential
dependency on the number of interval uncertainties, due to the capacity of
existing solvers, a system of order n, up to 50 can be considered. To facil-
itate the comparison of the result, we do not simulate the solution of the
optimization problem (4.59). The importance is to show that the P-radius
based approach can work in the context of interval parametric uncertainty
systems, thus the solution obtained from (4.65) is compared with the perfor-
mance of the segment minimization approach and the volume minimization
approach.
Figure 4.11 shows the evolution of the predicted state set and the outer
approximation of state estimation set at time instants £ = 1, k = 2 and
k = 3. Note that this estimation set is decreased at each sample time.

The number of scalar decision variables is 7, the
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Figure 4.11: Evolution of the guaranteed state estimation X, (Example 4.2)

The comparison of the bounds of z;, and x, in percent obtained via
the segment minimization of the zonotope, the volume minimization of the
zonotope and minimization of the P-radius of the zonotope is proposed in
Figures 4.14 and 4.15. These figures show a smaller bound obtained by the
P-radius based approach than the bound obtained by the segment minimiza-
tion approach and similar compared to the bound obtained by the volume
minimization approach. To better understand, the volume of the zonotopic
guaranteed state estimation is compared in Figure 4.16. This confirms the
good performance (a small bound on each state, a small volume of the guar-
anteed state estimation) of the proposed P-radius-based approach. On one
hand, the proposed approach is better than the segment minimization ap-
proach and comparable to the volume minimization approach. On the other
hand the computation time of proposed approach is significantly less than the
one of the volume minimization approach (see Table 4.2). Due to the effect
of the uncertainty in the system parameters, the computation time in this
example is increased in comparison to the Example 4.1 but it is denoted that
the increasing time is added to the off-line computation in the proposed ap-
proach and to the online computation in the volume minimization approach.
This remark gives us an important advantage related to the computation
complexity of the proposed approach recommanding the application of the
approach developed in this PhD thesis for fast time applications.
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The bounds of %

Proposed method
Proposed method
——=%aolume minimization method

— — ~%aolume minimization method
———Segment minimization method
Segment minimization method
4 | ) ) ) ) #+  Real state
“n 5 10 15 20 25 30 35 40 45 50
Sample time k

Figure 4.12: Guaranteed bound of z; obtained by different methods (Exam-
ple 4.2)
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Figure 4.13: Zoom of the guaranteed bound of z; obtained by different meth-
ods (Example 4.2)
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Figure 4.14: Comparison of the bound’s width of x; obtained by different
methods in percent (Example 4.2)
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Figure 4.15: Comparison of the bound’s width of x5 obtained by different
methods in percent (Example 4.2)
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Figure 4.16: Comparison of the volume of zonotopic state estimation set
obtained by different methods (Example 4.2)

Table 4.2: Total computation time of Example 4.2 after 50 time instants

Algorithm Time(second)
Segment minimization 0.0312
P-radius minimization (without off-line optimization (4.65) included) 0.0312
P-radius minimization (with off-line optimization (4.65) included) 0.9828
Volume minimization 10.3273

To recapitulate the advantages of each of estimation method, the table
4.3 classifies the complexity of the computation and the accuracy of the
estimation for each method from 1 to 4. The number 1 means the best
accuracy and the less complexity of computation. The number 4 means the
worst accuracy and the most complex from the computation point of view.
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Table 4.3: Table of recapitulation of different estimation approaches (Single-
Output case)

Algorithm Complexity | Accuracy
Segment minimization method 1 4
Volume minimization method 4 1
Method 4.1 2 2
Method 4.2 2 3

Example 4.3. To better understand the influence of the parameter un-
certainty on the performance of estimation, the same system with more
parametrric uncertainties in the matrix Ay is considered:

o = (040200 —054018] 0o [=6]
PET140205 14038, [TFTTTY 1 |TR (4.72)
Yr = [—2 1]xk + 0.2v;

The parametric uncertainties are bounded by —1 < §y,05,03,04 < 1.
The bound on the disturbance wy,, on the measurement noise v, and on the
initial state are the same as the Example 4.2. Figure 4.17 shows that in this
case, the non-increase of the zonotopic guaranteed state estimation based
on the P-radius minimization is always ensured. Moreover, by comparing
Figure 4.17 and Figure 4.16, the influence of parameter uncertainties on
the performance of estimation is illustrated: the volume of the zonotopic
guaranteed estimation in this example (4 parametric uncertainties) is larger
than the one in the Example 4.2 (1 parametric uncertainty); the complexity
of computation is higher which is reflected by a longer computation time
(Compare Table 4.4 and Table 4.2).

Until now the performance of the P-radius minimization approach is il-
lustrated in the case of Single-Output systems (Examples 4.1, 4.2, 4.3). To
complete the solution, the case of Multi-Output systems will be solved in the
next subsection.

Table 4.4: Total computation time of Example 4.3 after 50 time instants

Algorithm Time(second)
Segment minimization 0.0312
P-radius minimization (without off-line optimization (4.65) included) 0.0312
P-radius minimization (with off-line optimization (4.65) included) 1.0761
Volume minimization 11.0917
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Figure 4.17: Comparison of the volume of zonotopic state estimation set
obtained by different methods (Example 4.3)

4.3.3 Extension to Multi-Output uncertain systems

The presented estimation methodology is further extended to the case of
Multi-Outputs systems. The diagram proposed in Figure 4.18 recapitulates
the solution of the estimation problem for Multi-Output system where the
natural Single-Output extension is presented in this subsection and the di-
rect Multi-Output solution is described in the next subsection. Firstly, a
general procedure for Multi-Output system is described, allowing to intro-
duce new useful notations. Secondly, a simple but conservative solution con-
sists in decoupling the multi-output system in n, independent single-output
sub-systems. Thirdly, a sub-optimal solution (with reduced conservatism)
considers the coupling effect between the measurements offering a trade-off
between the computation complexity of the Multi-Outputs problem and the
accuracy of the estimation. Finally, a solution permitting to consider the
information of all measurements at the same time is proposed which leads to
a Polynomial Matrix Inequality problem. This PMI problem is solved using
the relaxation technique proposed in [62]. Note that all these three presented
solutions are original results.
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General procedure for
Multi-Output systems

Natural Single-Output extensions Direct Multi-Output solution
Idea: intersection strip & zonotope Idea: intersection polytope & zonotope

Independent Successive Unique coupled Multi-Output
Single-Output || coupled Single- Single-Output problem
problems Output problems based problem

(ESO approach) || (ESOCE approach) (PMI approach) (PAZI approach)

Figure 4.18: Classification of proposed solution for Multi-Output systems

4.3.3.1 General formulation

Considering the Multi-Output system (4.5), the guaranteed state estima-
tion set X) can be found by successively repeating the guaranteed state
intersection described in Subsection 4.3.1 for each component of the output
measurement vector yi, denoted yy/;:

(4.73)

T .
Yr)i = C; T+ V0 = 1,... 0y

Here ¢! is the i-th row of matrix C' and the noise vy/; is bounded by the
interval V; = 0;B', with 0; = ;. Thus, the measurement noise v; belongs
to a box V = diag(oy,...,0,,)B". If this assumption is not satisfied, an
outer approximation of V' by a box can be used. To simplify the manuscript,
a known matrix A is considered. The extension to the case of an interval
matrix [A] is similar to the Subsection 4.3.2 and hence immediate.

Supposing an outer approximation of the state set X = Dr—1 & H,_ B’
at the time instant k — 1, then the predicted state set at the next time instant
X}, can be computed as in (4.40). The exact estimation set will be obtained
after intersecting the predicted state set with the measurement consistent
state set of the measured output vector y; (as described in Algorithm 4.2).
In a general way, the outer approximation of this set can be found by using
the guaranteed state intersection as follows.

Similar to (4.41), an outer approximation of the intersection between the
strip created by the first component of the output vector (yz) and the
predicted state set (X}) is represented by:

Xk/l()‘l) = Prj1(A1) @ [‘A[/rg/l()\1)BT+”J”Jrl (4.74)
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Wherei Pe/1 (M) = Apr—1 + M (yrp — et Apr—1)

and Hyi(M) = [(I = McD)AH ., (I —MEDEF o]

Then this set X, /1(A1) is intersected with the strip obtained from the second
component of the measured output vector (yx/2) leading to:

Xija(AM, A2) = Drja(Ai, Ao) @ Hypa( Mg, Ag) B2 (4.75)

with ?k/2(>\17 A2) = D1 (A1) + Xo(yiy2 — &3 Prj1(A1))
and Hk/g()\l,)\g) = [(I — )\205)1{[1@/10\1) 0'2)\2}.

This procedure is repeated until the last component of the measured
output vector (y/n,) leading to the zonotopic guaranteed state estimation
set at time instant k:

Xk/ny<)\17 EES) )\ny) = ﬁk/ny()\lu ) Any)@

A 476
@ Hyjn, (M, -y Ag, )B4 (4.76)

with the recursive notations:

Dresny A1y o5 Any ) = Drjny—1( Aty oo Ay —1)+
+ >\ny (yk/ny — ngﬁk/ny—l()\la ceey Any—l)) (477)

and

Hijny s Mny) = (L= My YHy gy 1My oy Any—1) - Ony Ay | (4.78)

Ny Ny

Finally, the zonotopic guaranteed state estimation set at instant k is provided
by:

A

Xk(>\17 ) )\ny) = ﬁk()\lu ) Any) D ﬁk<)\17 ) )‘ny)BT+n$+ny (479)

with ?k()\l, s Any) = ﬁAk/ny()\l, s Any)
and Hy(A1, ..., Any) = Hin, (A5 Mgy )-

This procedure can be visualized in Figure 4.19 for the case of two out-
puts. Suppose at the time instant k& from the guaranteed state estimation set
Xi_1 the predicted state set is determined (represented by the green zonotope
X}.). Firstly, this set is intersected with the first element of the measured
output denoted by the red strip |¢f  — yg/1| < 1. Then this intersection
is approximated by the black zonotope X 51 by using Proposition 4.2. The
procedure is repeated with the second element of the measured output (the
strip |} @ — yis2| < 02). Proposition 4.2 is used again to obtain the outer
approximation of the intersection between X 51 and the second strip. The
guaranteed state estimation set is then the magenta zonotope X /2-

Further on, in the general case of n, outputs, three original procedures
are proposed to compute the vectors Ay,...; A, .
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Figure 4.19: State estimation for a two-output system

4.3.3.2 Equivalent Single-Output approach

In this approach, the system is considered as n, independent Single-Output
systems. This leads to independently compute the vectors Ay, ..., A,, by off-
line solving independently n, separate optimization problems (4.58) or (4.59).
This approach is named as Equivalent Single-Output approach (ESO). The
guaranteed state estimation is determined using the following algorithm:

Algorithm 4.3.
1. For j =1,...,n,
Step j: Using the strip of the measurement y;/; compute A;;
End.

2. The guaranteed state estimation is computed by the equation (4.79)
with the known vectors Aq,... A, .

Remark 4.8. This approach proposes a simple solution for the state estima-
tion of Multi-Output systems but this solution can lead to a conservative re-
sult due to the possible multi-outputs coupling effect. In the next subsection,
another solution is proposed to improve the performance of the guaranteed
state estimation.

4.3.3.3 Equivalent Single-Output with Coupling Effect approach

Secondly, to reduce the conservatism of the previous method, the following
procedure is proposed. Using yj/1, the predicted state set X; and method
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4.1, method 4.2 or (4.65) in the case of interval parametric uncertainty leads
to A1 and a smaller zonotope X} /. Intersecting this new zonotope with
the strip corresponding to /2 (supposing A; known from the previous step)

leads to Ay and another zonotope X k/2- This procedure is repeated until the
last component of the output vector yy/,, (supposing all the previous vectors
A1,y An,—1 to be known). This approach is called as Equivalent Single-
Output with Coupling Effect approach (ESOCE). The following algorithm
describes this off-line procedure.

Algorithm 4.4.
1. Step 1: Using the measurement y;,; and (4.65), compute Ay;

2. For j=2,...,n,
Step j: Using the measurement y,./; and the previous obtained vectors
AL, -y Aj1, compute \;.

End.

The computation of \; is detailed as follows. The guaranteed state esti-
mation set at Step j is computed as:

Xk/j()\la ceey )\J) — ﬁk/]()\l, ceey )\]) @ .Hk/j()\l, ceey )\j)BT+nz+j (480)

The non-increasing condition on the P-radius of the zonotopic estimation set
is applied leading to:

max || Hyy;2|| % < max B Hy_12||} + max||Fs|3 + 0 + .. + 07 (4.81)

with 2 = [27 T n ... nj]T € B € B", s € B™, n € B', and

g€ (0,1).
Using the reverse triangle inequality leads to a sufficient condition for
(4.81):

max([|Hyyi2|[b = Bl Heazl[p = | Fsll3 — of = . = 07) <0 (4.82)
Because n; € B", with i = 1,..., 7 the following expression is obtained:
I
[of . a2 (|:|—|:])=0 (4.83)
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Adding this term to the left-side of (4.82) leads to the following sufficient
condition for (4.82):

gTH PHyyz — B2 H \PHy_1z — " FTFs—

(4.84)

2 2 2 2
—oiny — ... —ojn; <0

Similar to the Subsections 4.3.1 and 4.3.2, the expression (4.84) is equivalent

to:
017 BP0 0 . 0 B[y
| x FTF 0 .. 0 B
2 0 B
M S S m| >0,v8,s,m1,....m; (4.85)
: * 0]2 Bjis :
_nj_ * P _77j_
with 6 = Hj,/;z and the notations:
J
B = (][ = Norscfun) TP
i=1
J
By = (][ = Nrscfun ) E)'P
ji:ll 4.86
By = (] [(I = Apracfi)on )P (4.86)
i=1

Bj = ((I = XAje) )T = Ajoac]_y)oja)j2)" P
Bji1 = ((I = Nje])ojax-1)"P
Bjys = (0;0))"P

Using the definition of positive definite matrix, and the minimization of the
P-radius, the following optimization problem is obtained:
max T

7—757]37)/]'
subject to

( a-g)p
0%-&-----&-0]2--&-5?1]3&%(1 || F's]|2 =l
(BP0 0 .. 0 B
x FTF 0 .. 0 By
*  x 0] 0 Bs |, (4.87)
* * * UJQ Bjio
| * * * P ]
L 7>0
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As the vectors Ay, ..., A\j_1 are computed in the previous steps, (4.86) is a

BMI optimization problem whose decision variables are Y; = P);, P = PT,
£ and 7.

Ezxample 4.4. The same dynamic system with the same assumptions as in
Example 4.2 is considered with a second output in order to compare the
performance in these two examples.

0 —05 6
Tk = {1 1+ 0.35} et 0'02[ | }“”“

-2 1 02 0
Y= { 1 1}x’“+ [0 0.2] U
In this example, the results obtained by the ESO approach in Subsec-
tion 4.3.3.2 and ESOCE approach in Subsection 4.3.3.3 are compared with
the results obtained by the segment minimization approach and the volume
minimization approach [2] applied for the multivariable case. The ESO ap-

—0.2137 0.3684
0.5726] and A, = {0.3570]' The

(4.88)

proach gives the correction factors A\ = [

correction factors computed by Algorithm 4.4 (ESOCE) are \; = [—0052712367]
0.2839
and A; = [0.5085 '

The simulation result shows a good performance of these proposed ap-
proaches as in the previous examples. The volume minimization approach
gives the best result of the estimation with an important online computa-
tion time. The segment minimization approach offers a fast computation
with a degradation of the guaranteed state estimation set. The proposed
approaches give good compromise solutions between the complexity of the
computation on one hand and the precision of the state estimation in the
other hand (Figures 4.22, 4.23, 4.24, Table 4.5).

Figure 4.20 shows the decrease of the zonotopic guaranteed state estima-
tion at each time instant (k = 1, k = 2, k = 3). Figures 4.22, 4.23, 4.24
show that the performance of the ESOCE algorithm is better than the one of
the ESO algorithm which confirms a less conservative result of the ESOCE
method.

Moreover, the simulation results show that in Example 4.4 one more
output is added which induces a better state estimation in comparison with
the results of Example 4.2 (compare with Figures 4.11, 4.20 and 4.16, 4.24,
respectively).
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Figure 4.20: Intersection Xk between the predicted state set X and the
measurement X,, using ESOCE approach
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Figure 4.21: Guaranteed bound of z; obtained by different methods
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Figure 4.22: Comparison of the bound’s width of x; obtained by different
methods in percent
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Figure 4.23: Comparison of the bound’s width of x5 obtained by different
methods in percent

100



Set-membership estimation via zonotope

1.4 T T T T
""""" ES0 method
5 — ES0CE method
132 I ~Wolume minimization method
— —— Segment minimization method
1 L. -
[1i} -
o =
E =
2 08r: =t
(=1 -3
b 5
B -
Z 06 : -
=
=3
>

=
e

ol
()

Sample time k

Figure 4.24: Comparison of the volume of zonotopic state estimation set
obtained by different methods
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Figure 4.25: Comparison of the bound’s width of x; with interchanged output
measurements
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Figure 4.26: Comparison of the bound’s width of x5 with interchanged output
measurements

Table 4.5: Total computation time of Example 4.4 after 50 time instants

Algorithm Time(second)
Segment minimization 0.0624
Presented algorithms (ESO and ESOCE) (without off-line optimization included) 0.0624
ESO algorithm (with off-line optimization included) 1.3884
ESOCE algorithm (with off-line optimization included) 1.4664
Volume minimization 27.2534

Figures 4.25 and 4.26 compare the performance of the estimation when
the order of taking into account the measurements is changed (the vector
1 is replaced by co and vice versa). The comparison leads to the following
conclusion: the order of taking into account the measurement can influence
to the performance of the estimation. Thus to obtain the best result of the
approximation in the case of Multi-Output systems, n,! different combina-
tions of output measurements must be tried and compared, and then, the
best solution must be chosen for the implementation. The Singular Value De-
composition method which is a method dedicated to Multi-Output system
has the same problem (4.12 is different when the rows of the C' matrix are
changed. Thus the performance of estimation is influenced). Note that for
systems with a large number of outputs this operation can be time consum-
ing. To overcome the conservativeness of these approaches, a new method is
proposed in the next subsection.
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4.3.3.4 Polynomial Matrix Inequality approach

In the previous approaches, the vectors A1, ..., A, are separately computed
which can lead to a conservative result. To overcome this problem, the
solution proposed now is to compute Ay, ..., A, in the same time. All the
vectors \;, with ¢ = 1,...,n,, are computed such that the condition on the
non-increasing property of the P-radius is ensured. This condition leads to
a similar inequality as (4.82), with the modification that j is replaced by n,,.

Similar to the ESOCE approach, the following optimization problem is

obtained: max T
T8, P AL, Ay,
subject to
( (1-p)P
0'%+...+0',21y+ max || Fs||3 =7l
- seB"x _
6P 0 0O ... 0 By
x FT'F 0 ... 0 B,
* x o2 0 B3 ~ 0 (4.89)
* * * aiy By, 42
| * * * P
L 7>0
with the notations:
By = ((J[( = Mnyrroich, 1) AP
i=1
By = ((J[(I = Anyacich 1 ))F)'P
i=1
ny—1
By = (][ = Aysiict, 1 i)orha)" P (4.90)

=1

(( ”y Cny )([ A”y—lcz; fl)any—2>\ny—2>TP
ny+1 = (([ )\nycn )Uny—lAny—l)TP
ny+2 (Uny ny)TP

As the vectors Ay, ..., A,, are the unknown variables, the optimization prob-
lem (4.89) is not any more a BMI optimization problem as the previous
subsection.

From the definition 3.15 of Polynomial Matrix Inequality, the problem
(4.89) is a PMI optimization problem. PMI problems can be solved using
several relaxation techniques [31], [61], [72], [64], [62]. In this thesis the
method presented in [62] which is the most recent technique, is chosen to
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solve the PMI optimization problem (4.90). This method is based on an
insertion of lifting variables to reduce the polynomial terms to linear terms.
By using these new variables, the PMI problem becomes a LMI problem,
which can be easily solved (see [62| for more details).

In the Polynomial Matrix inequality problem (4.89), with the notations
(4.90), the decision variables are: P = PT € R™*"= X, .. A, € R"™ and
the scalar § and 7. Thus the total number of scalar decision variables is:
ne(natl) 4 nyn, + 2. The degree of the PMI (4.89) is n, + 1. This PMI can

2
be solved by using the first order LMI relaxation methodology [62].

Example 4.5. To better understand, the first order LMI relaxation method
[62] is illustrated in the following example:

min(z? — 23)
1+2 1X2 1

subject to PMI: o | —a? — a2

=0

First, the following change of variables is done: 19 = x1, yo1 = 2,
Y20 = l’%, Yo2 = l’%, Y11 = T1x2.
Using these new variables, the PMI optimization problem is relaxed by the
following LMIs:
mxin(ygo — Yo2)
subject to LMIs:

I vi0 Yo

* Y20 11| =0

bk (4.91)
T+ yn Y10

=0
* 1 — 20 — Yo2

Using this technique, the PMI optimization (4.89) can be solved as in the
following algorithm:

Algorithm 4.5.

1. All the M + nyng + 2 scalar decision variables are denoted as fol-

lows: 7, ¥10..0, Y01..05 --» Y00..10, Yoo..01- For expression (4'89>, this
leads to 8 = Y100, P = Y01..0 --- Y00..1..0 AT = [yoo...l...o "'}7"'7
T _

Any = [yOO...l...O yoo...(n}-

2. The polynomial decision elements in (4.89) are rewritten as the result
of a change of variables based on the previous scalar decision variables
such as: y20.0 = ¥Y10..0 * Y10..0, Y11..0 = Y10..0 * Yo1..0 etc. In this way,
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expression (4.89) becomes a LMI. If the LMI relaxation of the PMI
optimization problem (4.90) is used, then the following LMI problem
must be solved (see [62] for more details):
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max T
subject to the LMIs

; - -

1 * *
Y10..0  Y20..0
M, = | Yor.0 Yi1.0 - * =0
: : : : (4.92)
| Y00..111 -+ Yoo...222 |
| M2 =0

where M, is called moment matrix and M, denotes the equivalent LMI
expressions obtained from the PMI in (4.89) using the new scalar de-
cision variables (y10..0, ¥20..0, €tc.).

Remark 4.9. Denote | = M + nyn, + 1. As the degree of the PMI in
(4.89) is n, + 1, then the dimensions of LMIs (4.92) are:

ny+l

o My: gxq, withg=1+1+(3)+..+ (=)

o My: ng X ng, (3n, +ny) X (3n, +n,) and 1 respectively.

The number of scalar decision variables in this optimization problem is @.

Remark 4.10. Using the relaxation method proposed in [62] permits to
relax the PMI optimization problem to a LMI optimization problem which
is easier to solve. Even if the obtained LMIs problem is solved off-line this
method leads to a large size LMI problem (see the size of matrix M; and the
number of scalar decision variables) which limits its application.

Example 4.6. Consider the following linear discrete time system:

0 —0.5 —6
(4.93)

-2 1
Yk = [ 1 1}%4-0-21%

with ||og]|ee < 1, ||wklleo < 1. The values of v, and wy, are generated by the
random functions of Matlab®. The initial state is unknown and belongs to
the box 3B2.

Y01000000  Y00100000 | T
s AL = [900001000 3/00000100}7

* Y00010000
/\g = [yoooooom yoogoogm}. Thus the dimensions of the LMIs of the consid-
ered optimization problem (4.92) are:

Denote 5 = y10000000, P = [
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o My: 37 x 37;

o My 2x2, 7x7and 1.

As | =8 and ¢ = 37, the total number of scalar decision variables of the LMI
problem (4.92) is 253 1 = 704, which is still reasonable for any LMI solver.

Figures 4.27 and 4.28 show the evolution of the predicted state set and the
outer approximation of the state estimation set at the time instant k =1, k =
8, respectively. Comparing these figures confirms the contractiveness of the
guaranteed state estimation. Figures 4.29, 4.30 show the obtained guaranteed
bounds on x; and x5, respectively. The real states (black star) are found
inside these bounds, which confirms good performance of the estimation.
Figure 4.31 shows the evolution of the zonotopic guaranteed state estimation.
Note that these guaranteed bounds and the volume of zonotope are decreased
in time leading to a more and more accurate estimation.

Table 4.6 shows the computation time of the PMI approach after 50
time instants. Even if the solution of the PMI problem is computed off-line,
the computation time of this approach is significantly increased due to the
big number of decision variables in the LMIs problem (4.92) (the reader can
compare Table 4.5 and Table 4.6). Even if the contractiveness property of the
guaranteed state estimation is always preserved, the proposed method gives
an unsatisfying result of estimation. The poor result of estimation obtained
in this example may be due to the relaxation method used to solve the PMI
optimization problem. To reduce the conservatism of this solution, a higher
order of the LMI relaxation (a higher order ofthe moment matrix M;) can
be used leading to a more complex LMI optimization problem than the first
order LMI relaxation (see [62]). In the recent paper [63], the author proposed
an inner approximation of the PMI set instead of the outer approximation
[62] used in this example which can lead to a less conservative result of the
guaranteed state estimation.

To conclude, Table 4.6 recapitulates the complexity and the performance
of the proposed approaches to solve the estimation problem for the Multi-
Output system, numbers from 1 to 5 being associated to each approach. The
number 1 means the best accuracy and the less complexity of the computa-
tion. The number 5 means the worst accuracy and the most complex from
the computation point of view.
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Figure 4.27: Guaranteed state estimation at the time instant £ = 1
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Figure 4.28: Guaranteed state estimation at the time instant k = 8
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Figure 4.29: Guaranteed bounds of x; by PMI-based approach
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Figure 4.30: Guaranteed bounds of x5 by PMI-based approach
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Figure 4.31: Evolution of the volume of the guaranteed state estimation
obtained by PMI-based approach

Table 4.6: Total computation time of Example 4.5 after 50 time instants

Algorithm Time(second)
PMI algorithm (without off-line LMI relaxed optimization included) 0.0780
PMI algorithm (with off-line LMI relaxed optimization included) 3436.1

Table 4.7: Table of recapitulation of different estimation approaches (Multi-
Output case)

Algorithm Complexity | Accuracy
Segment minimization method 1 4
Volume minimization method 4 1
ESO method 2 3
ESOCE method 2 2
PMI method D )

To avoid solving a PMI problem and its inconvenient related to its poor
performance due to the choice of the relaxation procedure, in the next part a
new solution will be proposed to avoid solving the PMI optimization problem.
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4.3.4 Polytope and Zonotope intersection approach for
Multi-Output systems

In the previous subsections, the guaranteed state estimation set is obtained
using step by step algorithms (ESO method, ESOCE method and PMI based
method). This means that the predicted state set intersects with the first
measurement leading to a zonotopic outer approximation of this intersec-
tion. Then this approximation is intersected with the second measurement
leading to a zonotopic outer approximation of this intersection and so on.
This step by step algorithm does not quite respect Algorithm 4.2, where the
measurement consistent state set induced by the measurement is intersected
with the predicted state set. Moreover, the order used to take into account
the different measurements is important. The different order used gives a
different result of the state estimation, thus all the possible re-arrangements
of the output vector components must be tested to find the optimum order.
All these tests lead to increased the computation complexity.

The new solution, called Polytope and Zonotope Intersection (PAZI),
proposed in this subsection consists in intersecting directly the measurement
consistent state set with the predicted state set. As each measurement is
represented by a strip |¢]z — yy/i| < 0y, the measurement consistent state
set is the intersection of n, strips or more precisely a H-polytope. As the
predicted state set is a zonotope, it is convenient to determine the intersec-
tion between a zonotope and a polytope. The problem of finding the inter-
section between a zonotope Z and a polytope P can be solved in an easy
way: the zonotope Z is transformed from the generator representation to the
H-representation. Then the intersection between Z and Po can be easily
computed using the Multi-Parametric Toolbox (MPT) [79]. This way gives
an exact computation of the intersection between the zonotope Z and the
polytope Po. Unfortunately, this intersection is not always a zonotope and
is represented by a polytope in the H-representation. In order to continue
the next step, an outer approximation of this polytope by a zonotope must
be found. In the literature, the approximation of a polytope by a zonotope
is studied by many authors; however this problem still remains complex (see
[141], [11], [59]). Therefore, to overcome this difficult problem, a an original
simpler way to have a zonotope represented by its generators characterizing
the intersection between a polytope and a zonotope will be presented below.

Proposition 4.3. Given the zonotope Z = p & HB" C R", the polytope
01
Po={zeR":|Cx—d < |:|}deR™ o, e R i=1,...,m) and

Om
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the matrix A € R™™ define a vector p(A) = p + A(d — Cp) € R™ and a

01 0 ... 0
~ 0 g2 ... 0

matrix H(A) = [ —AC)H  AX] with ¥ = |~ .| e Rmxm
0O 0 ... opm

a diagonal matrix . Then a family of zonotopes (parameterized by the matrix
A) that contains the intersection of the zonotope Z and the polytope Po is
obtained such as Z N Po C Z(A) = p(A) & H(A)B"™.

Proof Consider an element x € Z N Po, on one hand this means that
x € Z = p@ HB". Using the definition of a zonotope implies that there
exists a vector s; € B" such that:

x=p+ Hs; (4.94)

Adding and subtracting AC' H s, to the previous equality leads to the following
expression:

r=p+ACHs, + (I — AC)Hs; (4.95)
On the other hand, from z € Z N Po, it is inferred that:

01
re€Pp={zeR":|Cx—d < ||} (4.96)

Om

Thus, there exists a vector s, € B™ such that Cx — d = Y¥sy. Taking into
account the form of the vector x given by (4.94) leads to C(p+Hs;)—d = Yss,
which is equivalent to CHs; = d — Cp+ Xs,. Substituting C'H sy in equation
(4.95), the following expression is obtained:

r=p+Ad—Cp+Xss)+ (I —AC)Hs;

4.97
=p+A(d—Cp)+ASss+ (I — AC)Hs, (4.97)

After simple computations and using the notation defined in Proposition 4.3,
the following form is obtained:

x=p(A)+ [([ — ACH AE] Ej = p(A) ® H(A) Ej (4.98)

and the following inclusion holds:
z=p(A) @ H(A) Ej e p(A) @ H(A)B™™ = X(A). (4.99)
O

This proposition is illustrated in the following example.
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Ezxzample 4.7. Consider a centered zonotope Z(p; H) with p = [O O] and

H = 8;} 8; 8?] and a polytope Po described by the intersection of 3
o1 5 1 —0.1163

strips: |Cx —d| < |og|, with C = | =4 1|, d = [-0.2935|, 01 = 0.2,
o3 1 2 —0.6928

09 = 0.2 and o3 = 0.3.

Figure 4.32 shows a zonotopic outer approximation of the zonotope Z
and the polytope Po using Proposition 4.3. The matrix A is determined

using the minimization of segments of the zonotope which is simple to com-
0.1123 —0.1044 0.0035

0.1914 0.2646 0.2026
computation of A can influence on the quality of the approximation.

pute A = . As A is a free matrix, the method of

D_ﬁ_.é ............. .............. L : E

pabli I o 5
Zonotope d

il s L 28 Y oW e i

Figure 4.32: Outer approximation of the the intersection between a zonotope
and a polytope

Similar to the previous subsections, the predicted state set is computed
by (4.6). The measurement consistent state set X,, is a polytope described
by:

01
Xy, ={zeR":|Co—y| < | : |} (4.100)

On,
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Thus, the exact uncertain state set is the intersection between X}, (a zono-
tope) and X,, (a polytope). Using Proposition 4.3 the guaranteed state
estimation of the Multi-Output system (4.5) obtained by intersecting the
zonotope X and the polytope X,, is a family of zonotopes parameterized
by the matrix A:

Xi(A) = pr(A) & Hy(A)BT =t (4.101)

with p(A) = APt + Ay, — CAp_1)
and Hy(A) = [(I — AC)AHy_, (I — AC)F AY)].

This matrix A is computed such that the P-radius of the guaranteed
state estimation is non-increasing. Similar to the procedure in the previous
subsection this condition leads to the following optimization problem:

max T
T?ﬂ7P7Y

subject to

( (1-p)P =7l

2 2 2
oftton, + max |[Fs|l3

BP0 0 ATP_— ATCTYT

x F'F 0 FI'P—-FICTYT “ 0 (4.102)
* x  XIY YTy -
* * * P

7>0

\

with a change of variables Y = PA.

Remark 4.11. In this optimization problem (4.102), the decision variables
are: P = Pl ¢ R=xme Y ¢ R=*™ 3 € (0,1) and 7 € R. The total number
of the scalar decision variables is W+nxny+2. The dimensions of matrix
inequalities in (4.102) are n, X ng, (3n, +ny) X (3n, +ny), 1, respectively.
The dimensions of matrix inequalities and the number of scalar decision
variables of this method is similar to the other methods (ESO, ESOCE) but
the number of matrix inequalities is less than the one of ESO and ESOCE

methods.

Remark 4.12. The goal of computing all of the correction factors A; as
mentioned in the PMI approach is obtained by the proposed solution in
this subsection. Moreover, the number of scalar decision variables of this
optimization problem is significantly decreased in comparison with the one
of the relaxed LMIs obtained from the PMI approach.

The following schema recaps the proposed methods to solve the estimation
problem for Multi-Output systems.
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Example 4.8. Consider the following linear variant Multi-Output system:
S 0 —-0.5 o 0.1 O "
T 140357 T Lo 0.

-2 1 02 0
Y= [1 1}“’”” {0 0.2} ok
The disturbances and the noises are always considered bounded by wy, v
€ B?. The initial state is unknown but belongs to the box 3B?. The pro-
posed method PAZI will be compared with the Singular Value Decomposition
method [37], and the ESOCE method. Note that, the comparison is done

only with the Singular Value Decomposition method because in the literature
only this method can solve the case of Multi-Output systems.

(4.103)

The solution of the PAZI approach (4.102) obtained by Penbmi solver
. —0.3136 0.2678
gives 5= 0.0452, A= | 3591 0.5811
is A — [—0.2108} Ny — [0.2946]‘
0.5784 |’ 0.5420
The simulation results are shown in Figures 4.33, 4.34, 4.35. The guar-
anteed state estimation obtained by the PAZI method is quickly decreased
at each sample time (Figure 4.33). Figures 4.34 and 4.35 compare the per-
formance of the proposed method with the one of the Singular Value De-
composition method (Subsection 4.2.1 and [37]) and the one of the ESOCE
method. The bound obtained by the proposed method are smaller (com-
pared in percent) than the one obtained by the singular value decomposition
method with a reduced complexity of the computation (see Table 4.8). More-
over, this polytope intersection solution obtains a similar performance of the
estimation as the performance of the ESOCE method but the computation
time is significantly decreased (0.2808s and 1.4464s comparing the result of
Table 4.8).

and the solution of Algorithm 4.4

Table 4.8: Total computation time of Example 4.6 after 50 time instants

Algorithm Time(second)
Polytope and Zonotope Intersection algorithm (without off-line optimization included) 0.0468
Polytope and Zonotope Intersection algorithm (with off-line optimization included) 0.2808
Singular Value Decomposition algorithm [37] 1.5444
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|:| Prediction set

Figure 4.33: Evolution of the guaranteed state estimation obtained by PAZI
approach
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Figure 4.34: Comparison of the bound’s width of z; in Example 4.6 obtained
by different methods in percent
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Figure 4.35: Comparison of the bound’s width of x5 in Example 4.6 obtained
by different methods in percent

4.4 Conclusion

This chapter proposes an exhaustive methodology to compute a zonotopic set
containing all the possible states of the system that are consistent with the
uncertain model and the measurement noise at each sample time. The chap-
ter begins with the state of the art on the state estimation technique. When
the system is modeled by the deterministic approach, the set-membership
estimation using zonotopes is proposed as a suitable solution. A recall on
the zonotopic set-membership techniques presented in the literature is done.
The zonotopic set-membership procedures presented in this chapter are il-
lustrated in Figure 4.36, where the contributions of this PhD thesis have
been highlighted in red blocks. This permits to give a general view on the
advantages and the problems of each methodology.

The main part of this chapter consists in introducing a new methodology
to compute a zonotopic outer approximation of the exact uncertain state set
based on the minimization of the P-radius of this zonotopic guaranteed state
estimation. The proposed method permits to overcome the weak points of
the existent methods: minimization of the segments and of the volume of
the zonotope [2] and Singular Value Decomposition method [37]. The size of
this zonotopic guaranteed state estimation is non-increasing at each sample
time leading to a more and more accurate estimation after each time instant.
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The complexity of the computation is reduced by performing an off-line opti-
mization problem which is a major advantage for real-time applications. The
problem is firstly solved for the linear discrete time invariant system with
Single-Output. By using the maximum principle [122|, the proposed method
is extended to the case of Single-Output linear stable discrete-time systems
with interval uncertainties. Based on the result for Single-Output system,
the solution for Multi-Output systems is next developed. The simplest so-
lution should be to consider a multi-output system as a several separated
Single-Output systems. But this solution leads to a conservative result due
to neglecting the coupling effect of Multi-Output system.

Zonotopic set-membership estimation

SVD approach Optimization-based approaches
I I
P-radius Segments Volume
minimization minimization minimization
| |
Single-Output Uncertain Uncertain
systems Single-Output Multi-Output
systems systems
|
| |
Natural Single- Direct Multi-Output
Output extensions PAZI approach
I |
ESO ESOCE PMI
approach approach approach

Figure 4.36: Classification of the zonotopic guaranteed state estimation
methods

To improve the estimation performance, another solution is proposed.
Compute the correction factor \; (corresponding to the i-th measurement)
successively in the same way as in the first solution, while considering known
the previous correction factors Aq,...,\;_;. If all the correction factors \;
are computed at the same time, this leads to a PMI optimization problem
which is difficult to solve. The LMI relaxation approach proposed by [62]
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is further used to find a sub-optimal solution of this PMI problem, but the
size and the number of decision variables of the obtained LMIs can become
very large. In addition, the performances of the proposed methods depend
on the order of the measurement, and thus on the order of computing the
correction factors. The best results must be chosen from all the n,! possible
orders, increasing the time computing. The proposed solutions can solve
the Multi-Output problem but these methods do not directly compute the
measurement consistent state set X,, as mentioned in Algorithm 4.2, which is
a polytope (intersection of finite number of half-spaces). In order to overcome
the mentioned problems introduced by the Multi-Output system, another
new solution is proposed. This solution is based on the approximation of
the intersection of a polytope and a zonotope. Thus, in Subsection 4.3.4 an
improved result is presented which consists in a zonotopic approximation of
the intersection between a zonotope and a polytope. The simulation result
shows an improvement of the estimation performance and the computation
time compared to existing approaches.

Finally, the proposed set-membership estimation by zonotopes in this
chapter will be used in the context of output feedback control for uncertain
systems in the next chapter.
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Chapter 5

Model Predictive Control based
on zonotopic set-membership
estimation

5.1 Introduction

Model Predictive Control (MPC) can be considered today as a mature do-
main, both from the research and the industrial applications points of view.
The application of MPC can be found in many industrial processes (e.g.
petroleum industry [49], aerospace [21]), specially when the trajectory to be
tracked by the system is given in advance, such as the trajectory of a robot
arm [34]. The large application of MPC [117] is mainly due to an easy im-
plementation, a generic solution that can deal both with SISO and MIMO
systems and, the most important, to its ability to handle hard constraints,
which often appear when dealing with real plants [29], [54]. The strategy of
MPC can be decomposed into three steps:

1. Based on the appropriate system model the system output is predicted
at a future time horizon;

2. A control sequence is computed by optimizing an objective function on
the future behavior of the system, and then only the first element of
the control sequence is applied;

3. The horizon is receded into the future, and the computation is repeated
at the next time instant.

Due to the receding strategy, the MPC is also called receding horizon pre-
dictive control or moving horizon control. From this algorithm, it must be
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noticed that the role of the system model is important and thus the choice
of the model influences the performance of the MPC strategy. However, if
the performance of the controlled system is not "good enough", the system
modeling can be reworked in order to choose a better model [123].

The receding horizon control strategy is illustrated in Figure 5.1. The
future output is predicted over a horizon N, called the prediction horizon.
The control sequence of length N, (N, < N,)) is computed by minimizing an
objective function to track the reference trajectory. Then the first element of
the control sequence u(k) is applied to the system. The difference between
the MPC and the classical control is that in the MPC case, the control
law is determined from the future error between the system output and the
reference and in the classical control, the action is computed from the error
in the past. Thus, when the desired trajectory is known, the MPC technique
is more natural than the classical control.

Control
\A
L

Reference Future output

k-1 k e+l KN, k+N.

< >
Control horizon

dl
<

v

Prediction horizon

Figure 5.1: Strategy of Model Predictive Control

To better understand the principle of MPC, let us have a look on the
history of predictive control. That started at the end of 70’s. In the following,
a list of some popular algorithms of MPC is presented.

e Model predictive heuristic control (MHRC) or later known as Model
algorithmic control (MAC) is proposed in [121]. This technique is used
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to control a multivariable industrial process. The control which is based
on an impulse response model is computed by minimizing the tracking
error.

e Dynamic Matrix Control (DMC) proposed in [41] uses the step response
to predict the trajectory of the future output and then minimizes the
prediction error.

e Extended Horizon Adaptive Control (EHAC) is developed in [149] based
on a parametric process model. This strategy elaborates a control se-
quence in order to minimize the error between the reference and the
future output which is computed by solving a Diophantine equation at
a period of time after the process delay.

e Extended Prediction Self-Adaptive Control (EPSAC) proposed by De
Keyser and Van Cauwenberghe in [43] uses a discrete transfer func-
tion and a constant control signal while using a sub-optimal predictor
instead of solving a Diophantine equation used in EHAC method.

e Generalized Predictive Control (GPC) is one of the most popular ap-
proaches proposed in [35]. This technique is based on a Controlled
Auto-Regressive Integrated Moving Average (CARIMA) model which
can track both varying and constant future set-points. There are some
other predictive controllers based on the same idea such as: Predic-
tive Functional Control (PFC) [121], Multipredictor Receding Horizon
Adaptive Control (MURHAC) [90], Multistep Multivariable Adaptive
Control (MUSMAR) [55], Unified Predictive Control (UPC) [133].

e Constrained Receding Horizon Predictive Control (CRHPC) developed
by Clarke and Scatollini in [36] imposes an additional terminal equality
constraints on the output over a finite horizon beyond the prediction
horizon.

e State-space Model Predictive Control is a mature predictive control
technique [108] based on the use of a state-space model. This model
facilitates the stability study [70], [128], [101] and the generalization of
MPC to multivariable systems, non-linear systems and systems with
disturbances and measurement noises. Moreover, when the system
state is not available as mentioned in the previous chapter, it is more
convenient to implement a state estimation (Luenberger observer,
Kalman filter, set-membership estimation).
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Due to the existence of uncertainties in the mathematical model, the robust-
ness of the MPC became a key problem. The robust MPC in the presence of
uncertainties and disturbances is studied by many authors [30], [73], [146],
[96], [17] [101], [80], [102], [100], [33], [111], [135]. A simple way to deal with
the model uncertainty is to take into account these uncertainties in the op-
timization problem, it means that the online optimization problem on the
objective function is transformed into a min-max problem with constraints
(the worst case of the objective function is computed on the uncertainty
set and then this value of the worst case is minimized) [30]. In [73] and
[146], an upper-bound of the worst case is determined and then the min-
max problem is transformed to a LMI optimization problem. To simplify
the computation, [4] proposed a sub-optimal solution based on a quadratic
programming (QP) problem. Other ways to enhance robustness are based on
the deterministic model predictive control by ignoring the disturbances over
the prediction horizon [129], [33], [92], [102], [100]. These methods require
full knowledge of the state which usually cannot be reached due to measure-
ment noises acting on real systems. In [146], [100], the Luenberger observer
is implemented to estimate the system state. In the previous chapter, the
set-membership estimation has proven its efficiency in estimating the system
state in the presence of uncertainties. In addition, in [17], the author used
the set-membership estimation based on parallelotopes to estimate the state.
Due to the efficiency of the zonotopes, in this chapter the application of the
set-membership estimation using zonotopes in the context of robust MPC is
considered.

5.2 General set-up

Consider the general description of a Multi-Output linear discrete-time in-
variant system:
{ Lkl :Axk+Buk+ka (51)

Y = CQJk + g

where x;, € R" is the state of the system, y, € R is the measured output at
time instant k. The vector wy € R™ represents the state perturbation vector
and v, € R™ is the measurement noise. It is assumed that the uncertainties
and the initial state are bounded by the following sets: wp € W, v, € V
and zy € Xy, with W a zonotope containing the origin, V' a box and X, a
zonotope.

The system (5.1) is subject to state and input constraints: =z € X,
ur € U, where X and U are two compact and convex sets containing the
origin as an interior point. It is assumed that system (5.1) is stabilizable and
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detectable. In the sequel, two control techniques will be considered. First,
an open-loop model predictive control which is simple to apply is presented.
Despite its simplicity, this technique does not guarantee the stability and
the feasibility of the control law. For this reason, a feedback control based
on invariant tube of uncertain trajectories [100] is presented. This control
permits to improve the performance of the control system and it can also
guarantee the stability of the system and the feasibility of the control law.

5.3 Open-loop MPC design

In this section, a simple MPC control law is proposed to control the system
(5.1). Because the system (5.1) is subject to disturbances and measurement
noises, the system state is unavailable and is estimated using the zonotopic
set-membership estimation based on the P-radius minimization. Due to the
non-increasing property of the guaranteed state estimation based on the P-
radius optimization, the bound of the estimation error is non-increasing in
time. Thus, the simplest solution to control this system is to neglect the
estimation errors and to use the state estimation as if it were the true system
state. If the state estimation is controlled to steer to the desired point, then
the true state which belongs to the guaranteed state estimation converges to
a set containing this point.

As mentioned in the previous subsection, Model Predictive Control solves
online an optimization problem at each time instant and the performance
measure largely used in the MPC history is the quadratic norm [100], [33],
[92], [80]. By using this norm, the large deviation is penalized more than
the small deviation. In addition, due to the use of the quadratic norm, a
connection between predictive control and linear quadratic control (LQ) is
immediate. In MPC context, another norm can be used to formulate the
optimization problem: the 1-norm or the co-norm [30], [6]. The advantage of
using the 1-norm and oco-norm is that the optimization problem can be solved
using linear programming. However, using these norms leads sometimes to
a deterioration of the closed-loop performance [120]. Moreover, with the
development of powerful solvers the quadratic programming optimization in
the quadratic norm cost function can be easily solved.

The control objective is to have the system output following a desired
reference trajectory. To solve this tracking problem, define the following cost
function:

N N-1
To= Y Mesi =yl + D Muwss — w11 (5:2)
i=1 i=0

125



Model Predictive Control based on zonotopic set-membership estimation

with 7,.; = CZpy; and Tpy; the center of the zonotopic guaranteed state
estimation set at time instant k£ + ¢, IV the prediction horizon, y,:ifZ the de-
sired future output, uiifl the desired future input. The weighting matrix @)
is a symmetric positive definite matrix and the weighting matrix R a posi-
tive definite matrix. This optimization problem is subject to the following
constraints:

{Uk_:,_iEU,Z:O,...,N—l (53)

ﬂfk_t,_iEX,i:l,...,N

With the notations used in Chapter 4, suppose the guaranteed state estima-

tion at time instant k: )

The state constraint can be reformulated as follows.
As the estimated state &y, is the center of the zonotope Xy (i.e. &) = py),
there exists a value of s € B" such that:

Assume that the state constraint X is described in the H-representation
form: Hix < K;. Thus the condition x,1 € X can be rewritten as follows:

Tpy1 = Al‘k + Bup +w, € X (56)
Replacing z; by the expression (5.5) leads to:
Tpe1 = ATy + AHs + Bup +w, € X (5.7)

Using the H-representation of X, the condition z;,; € X is equivalent to
Hyzpy1 < K7, thus a sufficient condition for (5.7) is the following:

H,Bu, < K; — H AZ), — max HiAHs — max Hywy, (5.8)
S Wk

Due to the convex property of B and W, the terms max H; AH s and max H;wy,
s Wk

are easily computed using the maximum principle. Similar to this procedure,
the constraint xp.; € X can be described in the form of linear inequality on
Ugyi—1, with e =1,..., N — 1. The control applied to the system is the solu-

tion of the optimization problem min Jj subject to the constraint (5.3). This
Uk+ti

control law is illustrated in the next example.
Ezample 5.1. Consider the following system [17]:

o 1.6463 —0.7866 _ 1 —
yr = [0.1404 0] z, + vy
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The disturbance w; and the measurement noise v, are assumed to be
bounded: |[|wk|lco < 0.01, |vg| < 0.05. The initial state belongs to the box
0.25B%. The control objective is to make the output v, track the reference
y"*/ = 1. The weighting matrices in the cost function are Q = I, and
R = 0.1. The prediction horizon is N = 4. This system is subject to the
hard constraint:

—1 < [-1.9313 22121z, <3 (5.10)

Figure 5.2 illustrates the evolution of the zonotopic guaranteed state esti-
mation based on the P-radius minimization which is stabilized around the
equilibrium point. Figure 5.3 shows that the output system tracks well the
reference y™*/ = 1. Figure 5.4 shows that the system fulfills the state con-
straint (5.10) (the constraint value is between —1 and 3). Even if the result
simulation shows a good tracking performance the open loop MPC does not
have any stability guarantees for the controlled system or any feasibility proof
of the optimization problem (5.2). For this reason in the next subsection,
a different scheme of MPC with stability and feasibility guarantees will be
presented.

Figure 5.2: Evolution of the state estimation set
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Figure 5.3: Evolution of the system output and reference output
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Figure 5.4: Evolution of the constraint value in (5.10)
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5.4 Tube-based output feedback MPC design

Different to the proposed control law in the previous section, which is an
open-loop MPC control, in this section another MPC technique is proposed
based on feedback control, which can be less conservative specially when un-
certainties are present [89], [16], [18], [101]. In feedback MPC, the decision
variable is a control policy, which is a sequence of control laws. In this sec-
tion, a feedback MPC, called Tube-based Model Predictive Control (TMPC),
is presented. The idea of the TMPC is to construct a tube of all the possible
trajectories around the nominal trajectory ensuring robust constraints satis-
faction and stability guarantees of the controlled system, using invariant set
techniques. During the last years, the TMPC has been investigated by many
authors: [80], [33], [102], [92], [91], [100]. In the following part, the TMPC
developed in [102], [100] will be summarized. In this approach, the opti-
mization problem of the true system state is replaced by the nominal state
one (the state of the nominal system which is not influenced by disturbances
and measurement noises). In addition, the nominal state is considered as
a decision variable in the optimal control problem solved online. This con-
sideration permits to facilitate the proof of stability and attractivity of the
terminal set. Moreover, the complexity of the controller is similar to that
required for nominal MPC. This technique is developed for L'TT systems with
the hypothesis that the system states are known [102]. When the system
state is unknown, the state is estimated using an observer. Then the esti-
mation error is considered as unknown but bounded uncertainty which can
be taken into account in the control law. In [100] the Luenberger observer
is used to estimate the system state. The gain matrix of the Luenberger
observer plays an important role for the performances of the observer, and
thus the global performance of the controlled system. The main difficulty
comes from the fact that the choice of this gain matrix is not unique. For
this reason, in this section the set-membership estimation presented in the
previous chapter is chosen to replace the Luenberger observer to combine
with the TMPC. By using this zonotopic set membership estimation, the
bound of the error estimation is minimized and, thus, the performance of the
controlled system is improved.

Note that for pedagogical reason the same notations as in [100] have been
used. Consider now the system (5.1), due to the presence of the disturbances
and the measurement noise, the system state is estimated using the zonotopic
guaranteed state estimation presented in the previous chapter. The center
of the zonotopic guaranteed state estimation at time instant & is considered
as the estimation state at time instant k: z, = p,. Similar to the equation
(4.93) with the added control law ug, the dynamics of the estimation state
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is determined by the following equation:

Tpp1 = Az + Bug, + AYrs1 — Jrs1)

5.11

Replacing y41 = Cxpy1+vgs1, with zp 1 = Az, + Bug 4wy, this is equivalent
to:

.f]ﬁ_l = ALIAZ']C + Buk + A(OA.’ﬂk + CBuk + ka + Vi1 — CAJAfk — C’Buk)
= Aik + Buk + ACA(.I‘k — ka) + ACW}C + Avk+1
(5.12)

Denote the estimation error as T = x — Iy, from the equations (5.1) and
(5.12) the dynamics of the estimation error is described by:

.i.k-Jrl = ([ — AC)AZZ’k + w,i (513)

with wf = (I — AC)wy, — Avgy1. From the hypotheses wy, € W, v, € V, the
following expression holds:

W e We = (I — AC)W & (—AV) (5.14)

Consider that the estimation error at time instant k£ is bounded by a set S},
the equation (5.13) leads to the following recursive expression:

Fra1 € S5y = (I — AC)ASS @ W* (5.15)

In order to ensure the stability of the controlled system, the estimation error
must be taken into account in the control law. The main idea behind the
design of the TMPC control law comes from the non-increasing property of
the set Sp, ; which bounds the future estimation error. In the following, this
property is provided by the robust positive invariance of the set S, which
is defined in the following.

Definition 5.1. [22] A set Q is called robust positive invariant set for the
system zj41 = Axp + wy subject to the constraints (zg,wy) € (X, W), if
Axrp 4+ wp € Qand Q € X, YVw, C W and Vz, € €.

Thus, the mazimal robust positive invariant set €2,,,, for the same sys-
tem is the smallest robust positive invariant set that contains all the robust
positive invariant sets of this system. The minimal robust positive invariant
set Qin of the same system is the robust positive invariant set which is
contained in any robust positive invariant set of this system.
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Proposition 5.1. [100] If the set S§ is robust positively invariant for the
system (5.13), then the sets S§ are robust positively invariant for the sys-
tem (5.13), too. The set sequence {S;} is monotonic non-increasing and

converges in the Hausdorfl metric to a robust positively invariant set S5 =
(I — AC)ASE, @ We.

Denote that the original idea behind the use of the zonotopic set member-
ship estimation in this PhD work in comparison with the use of Luenberger
observer in [100] is that the matrix A is computed to optimize the size of the
set 5.

The observer equation can be rewritten as:

iﬁk-{-l = Ai’k + Buk + wgo (516)

with w§® = A(CAZy, + Cwi, + vg41). As T € S§, the following expression is
true:

W € W = ACASE & ACW & AV (5.17)

Because the set sequence {Sg} is monotonic non-increasing as presented in
Proposition 5.1 and W;° is linearly dependent on S, thus the set sequence
{W¢°} is monotonic non-increasing, too.

Consider now the nominal system which is not affected by disturbances:

Ty = Az + By, (5.18)

To counteract the disturbances, the trajectory of the real system is desired
to lie close to the nominal system trajectory. If the nominal system is steered
to the origin, then the center of the zonotopic state estimation as well as the
real state of the system are bounded by a compact set. In order to have
all the possible trajectories inside a tube around the nominal trajectory, a
control law u; can be defined as:

where w, is the control law applied to the nominal system (5.18) at time
instant k.

Combining (5.16) and (5.18), the error between the estimation state and
the nominal state denoted by e, = ) — z, satisfies the difference equation:

Ck+1 = Tp41 — Lpyq

5.20
= (Azy + Buy, + wy’) — (Azx), + Buy,) (5:20)

Replacing ug, by (5.19), ex41 can be further written as:
ekr1 = (A+ BK)ep + wi? (5.21)
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The gain matrix K is chosen such that the matrix A + BK is Schur stable.
Consequently, if at time k, ey lies in the set S;°, then e;y; lies in the set
1= (A+ BK)SpP @ Wee.

Proposition 5.2. [100] If ey belongs to an initial set S§°, then the set se-
quence {Sg°} converges to a robust positive invariant set S which satisfies
S = (A+ BK)SS @ W, If S§ is robust positive invariant for the sys-
tem (5.13) and S§° is robust positive invariant for the system (5.21) with
w§’ € Wg°, then the set sequence {S5°} is robust positive invariant for the
system (5.21) with wj® € W° and monotonic non-increasing (555, € S;°).

Based on the procedure proposed in [100], let us define S, = S§ & S§°.
Because S} and S;° converge to S, and S, respectively, then S} tends to
Seo = 8, B SL.

In this context, the robust TMPC can be summarized as follows. At time
k a state estimation set is computed and a nominal optimal control problem
is solved online. Define the cost function for the nominal system as:

=

N | —

1
Vn(zy,u) = §Vf(£k+N) + UTpyis Wpys) (5.22)

i

I
=)

where N is the prediction horizon and u is the control sequence:

u= {legk—i-l?"wgk-t,-N_l} (523)

The stage cost function [(z;,, u;,) and the terminal cost function Vy(z,, ) are
defined by:

1

{ Uz, uy) = §$£§Q£k + ui Ruy,) (5.24)
Vi(zpin) = 3%k v Praggn

where Py, @), R are positive definite matrices. With these notations, the time

varying constraints at current time k are:

Uy €EUprsyi=0,...,N -1
T € Xy i =0, N—1 (5.25)
Tpyn € Xy
with U, ; = USK S, (this tight constraint comes from the equation (5.19)),
Xpyri = X O Skys (this constraint comes from the fact that x, = z, + T +ex).
To ensure the feasibility and the stability of this control law, the following
conditions are assumed [100].

Assumption 5.1. Consider Sy = S5° @ S5 C X and KS§° C U.
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This condition is assumed in order to ensure that the initial condition
satisfies the constraint.

The terminal cost V; and the terminal constraint set X 5 are assumed to
satisfy the stabilizing condition [101] (Assumptions 5.2 and 5.3).

Assumption 5.2. X, is a proper C-set, is positive invariant for ., =
(A+ BK)z,, and satisfies X, C Xy and KX, C Uy.

Assumption 5.3. Vj(.) is a local control Lyapunov function for z;,,, =
(A+ BK)z;, for all z € X,. There exist constants c;, ¢; > 0 such that
crlz® < Vi(zy) < eolzy* and Vi ((A+ BK)zy,) + (24, Kz;) < Vi(zy). This
means that the Lyapunov function is decreased at the next sampling time.

Denote the set of admissible control sequences at instant k, with the
nominal state x,:

Un(zy) ={uw: wyy; €Upiyy Ty € Xopyiy Tpyn € Xy,
i=0,...,N—1} (5.26)

Then the nominal optimal control problem is:

Va(zy) = min{Viy(z;,u) : u € Un(zy)} (5.27)

At each time instant k, the feasible domain of z;:
X (k) = {zy - Un(zy) # 0} (5.28)
then X (k) C Xy(k+1).

Proposition 5.3. [100] There exists two constants ¢; and ¢y such that vz, €
Xy(k), k € N the following expressions hold:

L. Cl|£k| < Vz?r@k) < CQ‘£k|
2. VR(zpy) < Valzy) — alz)?

This proposition establishes the exponential stability at the origin for the
nominal system.
Consider now the optimization control problem solved online:

Vi (Zg) = min{Vy(z,,u) : u € Un(zy), T € 2,  S;°} (5.29)

Ty U

Let us consider the solution of this optimization problem:

2 (), u" (2) = argmin{Vy(zy,u) : u € Un(zy), T € 2, © S} (5.30)

Lp,U
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then using (5.19) the control law applied to the system is obtained:
kn(Tx) = g (3y) + K (T — 2" (2)) (5.31)

with 4} (Zy) the first element of the sequence u*(Zy).

Using this control law it can be proved that (xy,Zy) is robustly steered
to Ss X S exponentially fast satisfying all constraints [100]. This robust
TMPC control law is illustrated in the following example.

Ezxample 5.2. Consider a second-order system:

) 1,
LT g [TRT g TR (5.32)
ye =2 1o+

The disturbances and measurement noise are assumed to be bounded (w, v) €
W x V, where W = {w € R? : ||w|leo < 0.1} and V = {v € R : |v]| < 0.05}.
The state and control constraints are (zg,ux) € X x U, where X = {z €
R}? : zy € [-50,3],29 € [-50,3]} and U = {u € R : |u| < 9}. This system
must be stabilized around the origin while respecting the aforementioned
state and control constraints.

The weighting matrices in the cost function are @) = I, and R = 0.01.
The terminal cost Vj(z) is the value function 27 Pyz for the unconstrained
optimal control problem for the nominal system z, , = Az, + Bu, and
u, = Kz, is the associated Linear Quadratic Regulator (LQR) control
K = [—0.6029 —1.0567}. The initial sets S§, S° are computed using a
recursive algorithm to compute an outer approximation of the minimal in-

0
—15|" 55).
The prediction horizon is chosen N = 13 such that the optimization is feasible
at the initial time instant.

The terminal constraint set X (the black set depicted in Figure 5.7) is
the maximal positive invariant set for the system z,,, = (A + BK)z, under
the tighter constraints X y = X ©Sy and U, = US KS§ obtained using the
recursive algorithm proposed by [52]. This algorithm is based on a search
of the maximal value of ¢ such that (A + BK)"™!'z € X, subject to the
constraint (A + BK)*z € Xy, with k =0,...,t.

Figure 5.5 compares the state estimation sets of three approaches: the seg-
ment minimization, the volume minimization and the P-radius minimization.
The zonotopic guaranteed state estimation obtained by P-radius minimiza-
tion is non-increasing in time. This figure confirms the compromise of the

variant set [119]. The initial state belongs to the zonotope Z([
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P-radius minimization between the segment minimization and the volume
minimization.

25T

— P-radius minimization method
2L Segment minitnization method

Figure 5.5: Evolution of the zonotopic state estimation set

= P-radius minimization method
Segment minitnization method
_ WVolume minitnization method

DS_ ............ ‘ ............

Figure 5.6: Zoom of the evolution of the zonotopic state estimation set
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Figure 5.7 shows the tube trajectory of the system. The largest zonotope
(red) is the set T*(Zy, k) @ Sk. The real state is guaranteed to belong to this
tube section centered at the nominal state. The smaller zonotope (green) is
the set T*(Zy, k)@ 55°, the state estimation is guaranteed to belong to this set.
The smallest (blue) is the guaranteed state estimation set & & S§. Denote
that the red zonotope which is the section of the tube trajectory at each time
instant is the Minkowski sum of the blue zonotope and the green zonotope
Sk = S° @ S;. Due to the non-increase in time of the guaranteed state
estimation, the section of tube is non-increasing in time. This trajectory
is put in the box of the state contraint (Figure 5.8) in order to illustrate
that the system respects the constraint. Figure 5.9 shows the stability of
this output feedback system respecting the constraints. Due to the presence
of the uncertainty, the system state does not converge to the origin but it
converges, thus, to a set containing the origin.

Figure 5.7: Tube trajectory of the closed-loop system
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Figure 5.8: Tube trajectory of the closed-loop system fulfilling the state
constraints

Figure 5.9: Closed-loop response of the system
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5.5 Open problem for the control of systems
with interval parametric uncertainties

Even if promising simulation results are obtained through these examples,
the output feedback control of systems with interval parametric uncertainties
still remains an open problem due to the following difficulties.

In the case of open-loop control, if the A matrix has some interval el-
ements, the condition z,,; € X can not be formulated anymore as linear
inequalities on uy.;_ 1 as presented in the previous subsection and thus the
optimization problem (5.2) can not be solved. For example, when i = 1,
we have : xy.; = x,41 and the condition zp; = Az, + Bug +w, € X is
equivalent to:

H,Bu, < K; — max H,Ax), — max H,AHs — max Hywy, (5.33)

S Wi

Different to (5.8), the term max HyAHs is not easily computed due to the

,S
non convex problem. In addition, when ¢ > 1 the non convexity becomes
higher, thus it is more difficult to manipulate the state constraint condition.
In this case, a simple solution can be to use another cost function such
as:
T = (k1 — ¥ h)% Yk >0 (5.34)
with grr1 = C(mid([A])Zr + Bug) subject to the constraint x4, € X.
Suppose at time instant k£ the guaranteed state estimation is Xy = T @

HB", thus similar to (4.70) the real state at time instant k& + 1 will belong
to the set:

Xy = Z(mid([A]) + Bug; [mid((A)H  rs(rad([A])|H)) (A F]))
5.35
The condition 741 € X becomes X;,; € X, which is easy to formulate
similar to (5.8):
HBup < Ky — msale [mid([A])H rs(rad([A])|H|) rs(rad([A])|Zk]) F]s—
—Hlmid([A]).f'k
(5.36)

The control law is computed by minimizing the cost function (5.34) subject to the
constraint (5.36).

Remark 5.1. In the case of TMPC, due to the interval uncertainties in the A
matrix, the problem of finding the initial robust invariant set S§ as in Proposition
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5.1 is not evident. Thus the recursive feasibility of the optimization problem (5.29)
is not ensured due to the fact that S, ; may not be contained in S even if this
possibility of this problem is low.

Example 5.3. The open-loop control technique for systems with interval para-
metric uncertainties is illustrated in the following example. Consider the following
linear-discrete time varying system:

0+0.16; —0.54+0.16 1 —6
Ty1 = 1+0_15?1) 1+0.1542}xk+[1]%4_0'02[1}%

Y = [1 1]3% + 0.1vg

(5.37)

The disturbances and measurement noise are assumed to be bounded (w,v) €
W x V, where W = {w € R? : |w|jooc < 0.1} and V = {v € R : |v| < 0.05}. The
parameter uncertainties are bounded [0;] < 1,4 =1,...,4. The system is subject
to the state and control constraint z € X = 10B?, |ug| < 10. The initial state is
unknown but belongs to the box 3B2. The control objective is to make the output
yi, track the reference y¢f = 5.

Figures 5.10, 5.11 and 5.12 show that the system output tracks well the ref-
erence respecting the control constraint (Jux| < 10) and the state constraint xj, €
10B2. This example shows that despite the presence of interval parametric uncer-
tainties, the controlled system can satisfy the tracking problem. The problem of
finding a control law which has stability and feasibility guarantees for the parameter
uncertainties systems is still an open problem.

Cutput
Reference

i ; i : i i
1] 5 10 15 20 25 30 35 40 45 50
Sample tirme k

Figure 5.10: Evolution of the system output
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Figure 5.11: Evolution of the system state

Cantral signal

0 5 10 15 20 25 30 35 40 45 50
Sarmple time k

Figure 5.12: Control signal

140



Model Predictive Control based on zonotopic set-membership estimation

5.6 Conclusion

This chapter proposes a Model Predictive Control law based on the zonotopic set-
membership estimation, when the state is not available. It starts with a general
presentation of predictive control history. Due to its robustness and its ability to
deal with constraints, predictive control is more and more used to control uncer-
tain constraint system. When the state estimation is implemented, the simplest
scheme control is to consider the state estimation as the real state and to min-
imize a cost function. This solution is simple but it does not take into account
the estimation error when designing the controller. Even if the control law and
the state estimation are stable, due to the presence of uncertainties the stability of
uncertain closed-loop system can not be guaranteed using the separation principle.
For this reason, a feedback control law based on a tube of uncertain trajectories
(around the nominal trajectory) of the uncertain system is presented. This control
law considers the estimation error in the control problem using the invariant set
approach in order to guarantee the stability of the system. Based on these control
techniques, the control problem of systems with interval parametric uncertainties
is considered. The interval uncertainties lead to solve a non convex optimization
problem and thus the open-loop control can not be identical to the case of linear
time invariant system. A solution consists in modifying the cost function proposed
to solve this problem. For systems with interval uncertainties, the Tube-based
Model Predictive Control method can not guarantee the recursive feasibility of the
control law and thus the stability of the closed-loop system. For these reasons, the
problem of finding an appropriate control law for system with interval parametric
uncertainties subject to disturbances and measurement noise still remains an open
problem. In the next chapter, an application of the proposed set-membership esti-
mation and control techniques are presented to illustrate the performances of these
approaches, even if restricted configurations are considered (monovariable system
with disturbances and measurement noise).
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Chapter 6

Application

6.1 Introduction

In this chapter, the control and estimation approaches proposed in this thesis
will be applied to the model of a real system: the magnetic levitation system.
The goal is to test the zonotopic set-membership estimation and the association
between this estimation and the open-loop Model Predictive Control or the Tube-
based Model Predictive Control (TMPC). The chapter proposes first a general
description and the mathematical model of the magnetic levitation system. Based
on this model, in the next part the model predictive control law is built using the
zonotopic set-membership estimation. First, the simulation is done with the open-
loop Model Predictive Control method and then, the system is controlled by the
TMPC. The simulation results show that these predictive control methods based
on the zonotopic set membership estimation can stabilize this system fulfilling the
considered constraints, despite the disturbances and measurement noises acting on
the system.

6.2 System description

In this section, the general description of the magnetic levitation device will be
done. This system is composed of a mobile iron pendulum in a vertical magnetic
field created by a fixed electromagnet (Figure 6.1). This electromagnet is supplied
by a variable current which permits to vary the magnetic force and thus to vary
the vertical position of the pendulum. This system is assumed to have a perfect
radial symmetry.

The control goal is to stabilize the vertical position of the pendulum around
the equilibrium point. Figure 6.2 illustrates a general schematic block diagram
of the closed-loop system with z the position of the pendulum relative to the
sensor position center in an absolute reference frame, ¢ the current given by the
actuator. In the next part, the model of the magnetic levitation without the
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actuator is considered in order to simplify the computation and to mentain a simple

visualisation (i.e. 2D).

Electromagnet

T ? | -Pendulum

l | {—}//Position
]

re

. . [ —Position sensor
Vertical axis

Figure 6.1: Magnetic levitation system

Current offset

+

Reference u i
+
A Controller }—» Actuator Levitation
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c

Pendulum position

Measured position | S
ensor |

Figure 6.2: Block diagram of the closed-loop system

The force applied on the pendulum created by the electromagnet has the fol-
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lowing form:
_ i
2 (t)

with ¢ the current in the electromagnet, x the distance between the pendulum and
the electromagnet and c a constant. Using the fundamental relation of the pendu-
lum dynamics, the movement of the pendulum can be described by the following
differential equation:

Fin(t) (6.1)

ci(t)
z3(t)
where m is the pendulum mass and g is the gravitational constant. Replacing
x(t) = zg — z(t) in equation (6.2), with o = zg — [ (Figure 6.1), leads to:

—mi(t) = —mg +

(6.2)

ci(t)

mz(t) = —mg + (6.3)

Consider a small variation of z(¢) around the origin (with |z(t)| << zp) and
i(t) around ig (with i¢ the current at the equilibrium point, i(t) = ip + 41(¢) and
li1(t)| << ip a small variation around ip). Keeping only the first order terms, the
equation (6.3) is then approximated by:

6.4
ci(t)  2ci(t)z(t) (64)
~—mg 2 3
0 Lo
Writing the equation (6.3) at the equilibrium point (z(t) = 0), leads to:
2 mg=0 (6.5)
0

Replacing (6.5) and i(t) = ig + i1(¢) in equation (6.4), the following expression is
obtained: 0 ()20

clo ., cir(t)  2ci(t)z(t

o 5y = 1ll) | 26il0) (6.6)

2
9Ty Lo )

Because i1 (t) << ip, the following approximation can be done i(t) = iyg. Replacing
this approximation in the equation (6.6) leads to:

cio ., cii(t) = 2cigz(t)
— ()~ ——- + 5 (6.7)
9Ty ) T
or multiplying (6.7) by x—c‘% leads to:
i ., . 2ig
—Z(t) = i1(t) + —2(¢t) (6.8)
g o
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Based on this differential equation (6.8), the dynamics of the magnetic levita-
tion in continuous-time can be described as the following state-space representation:

i=|n olo+|o]u (6.9)
y = [1360 0]z !

where z = [xl mg] correspond to the position z and the speed of the pendulum
Z respectively, u corresponds to the electromagnet current i;(¢), y the position
measurement, g = 9,81(m/s?), xg = 0,019(m), ig = 0,436(A). As the magnetic
levitation system is a nonlinear system, this model is only a local model linearized
around the origin. The eigenvalues of the open-loop evolution matrix are 32.1346
and —32.1346. This means that the open-loop system is unstable, which confirms
the unstable physical behavior of the magnetic levitation system. Note that even if
the position is measured by a position sensor, due to the disturbances and measure-
ment noises the zonotopic set-membership estimation is implemented to estimate
not only the position but also the speed of the pendulum.

6.3 Control problem

As The system (6.9) is an unstable system in open-loop and, thus, the control
problem is to stabilize this unstable system around the origin under the follow-
ing constraints (z,u) € X x U, with X = {z € R? : z; € [-0.5;0.5](m),x2 €
[—10;10](m/s)} and U = {u € R : |u] < 5(A)}. The equation (6.9) is discretized
using the zero-order hold on the inputs with the sample time Ts = 0.1(s). The
obtained linearized discrete-time invariant system is the following:

Th+1 7 1308.8660 12.4526 8.6909 0.01
Yy = [1 O]xk + v

12.4526  0.3863 0.2495 0.001
Tk b Wk (6.10)

wy, and vy, are added to the model disturbances and measurement noise: w € W =
{fweR:|w <1},veV ={veR:|v <0.05(m)}. This control problem will
be solved using the two proposed control laws in Chapter 5: the open-loop Model
Predictive Control and the Tube-based Model Predictive Control.

The first simulation result consists in comparing the guaranteed state estima-
tion obtained by Method 4.2 in subsection 4.3.1, based on the minimization of the
P-radius of the zonotopic guaranteed state estimation with the volume minimiza-
tion method and the segment minimization method [2] at time instants £ = 1 and
k = 2 (Figure 6.4). In this example these methods give similar estimation results.
The minimization of the P-radius method has the same computation time as the
segment minimization method and smaller than the volume minimization method

(Table 6.1).
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Figure 6.3: Comparison of the zonotopic guaranteed state estimation ob-
tained by different approaches
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Figure 6.4: Comparison of the zonotopic guaranteed state estimation ob-
tained by different approaches with zoom
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Table 6.1: Total computation time of the estimation problem of the magnetic
levitation system after 50 time instants

Algorithm Time(second)
Segment minimization 0.0468
Method 4.2 (without off-line optimization included) 0.0312
Method 4.2 (with off-line optimization (4.59) included) 0.7488
Volume minimization 7.8469

The estimation results will be further used within a control law. First the
unstable magnetic levitation system is controlled using the open-loop Model Pre-
dictive Control based on the zonotopic set membership estimation. The weighting
matrices in the cost function (5.2) are chosen as Q = R = I. Thus the simula-
tion of the controlled systems is illustrated in Figures 6.5, 6.6, 6.7, 6.8. Figure 6.5
shows the evolution of the guaranteed state estimation, i.e. the evolution of the
position and the speed of the pendulum. The figures 6.6, 6.7, 6.8 show that the
constraints on the state and the control signal are fulfilled (|u| < 5, 1 € [-0.5;0.5],
x2 € [—10;10]). Due to the effect of the disturbance and the measurement noise,
the position of the pendulum can only converge around the origin, as shown in
Figure 6.7.
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Figure 6.5: Evolution of the guaranteed state estimation of the magnetic
levitation system
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Contral signal

Sample time k

Figure 6.6: Control signal of the closed-loop magnetic levitation system
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Figure 6.7: Pendulum position obtained by the open-loop MPC
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Figure 6.8: Pendulum speed obtained by the open-loop MPC

Second, the TMPC based on zonotopic set-membership estimation is used to
stabilize this system as follows. The weighting matrices in the cost function (5.22)
are chosen as identity matrices Q = R = I>. The terminal cost V() is the value
function QTP]@ for the unconstrained optimal control problem for the nominal sys-
tem x| = Az + By and u, = Kz, is the associated Linear Quadratic Regulator
(LQR). The initial sets S§ (the guaranteed state estimation at time instant k = 0),
S6° (the set contains the error between the estimation state and the nominal state
at time instant £ = 0) are computed using the result in [119] as presented in the last

0.1
—6.5
horizon is chosen N = 3 such that the optimization is feasible at the initial time
instant. The terminal constraint set X ; (the black set depicted in Figure 6.9) is the
maximal positive invariant set for the system x| = (A4 BK)z;, under the tighter
constraints Xy = X © Sy and Uy = U © KS§ with K = [—47.5680 —1.4807]
being the associated LQR, Sy = S5? ® S%.

Figure 6.9 and its associated zoom in Figure 6.10 illustrate the tube section
which bound the uncertain trajectory of the system. As the real system enters to
the terminal set after 2 instants, here only some tube sections can be seen because
after the time instant & = 2 these tubes section coincide. The red zonotope is
the set x*(Zk, k) ® Sk, which is in fact the tube bounding the real system. The
smaller zonotope (green) is the set * (2, k) ® S;°, which bounds the error between
the estimation state and the nominal state. The smallest (blue) is the guaranteed
state estimation set Z; @S¢, which is computed based on Method 4.2 in Subsection
4.3.1. The initial guaranteed state estimation is small because the robust invariant
condition on this set must be satisfied.

chapter. The initial state belongs to the zonotope Z( { } ,S5)- The prediction
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Figure 6.9: Tube trajectory of the controlled magnetic levitation system

Figure 6.10: Tube section bounding the system trajectory at the initial in-
stant time k£ =1
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Figure 6.11: Evolution of the guaranteed state estimation using the TMPC

Figure 6.12: Real state and nominal state of the closed-loop pendulum system
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Figure 6.13: Control signal of the closed-loop magnetic levitation system
computed by the TMPC
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Figure 6.14: Pendulum position controlled by the TMPC
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Speed of pendulum

Sample time k

Figure 6.15: Pendulum speed controlled by the TMPC

The evolution of the guaranteed state estimation (blue zonotope &) ® Sj) is
illustrated in Figure 6.11.

Figure 6.12 shows the stability of this output feedback system respecting the
constraints (X = {z € R? : 21 € [-0,5;0,5](m),z2 € [—-10,10](m/s)}). Figure
6.13 illustrates the control signal computed by the TMPC. This figure shows that
the control signal respects the control constraint u € R : |u| < 5(A). The pen-
dulum position (Figure 6.14) and the pendulum speed (Figure 6.15) also respect
the imposed constraints. It can be noticed that the nominal state (represented in
black) reaches the origin as in the stability proof of the TMPC technique. Due
to the bounded disturbances and measurement noises, the system state does not
converge to the origin but it converges to a set containing the origin (S in Figure
6.12).

6.4 Conclusion

This chapter proposes an application of the open-loop Model Predicitve Control
and the Tube-based Model Predictive control based on the zonotopic set mem-
bership estimation presented in this thesis for a magnetic levitation system. The
model of the magnetic levitation system is simplified in order to obtain a system
of 2 states which facilitate the visualization in 2D. The zonotopic set-membership
estimation problem for this system is solved using Method 4.2 proposed in Chapter
4. The estimation result obtained by this method is compared with the volume
minimization method and the segment minimization method. In order to illustrate
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its properties, the P-radius based estimation method is used for control purposes.
The control law is implemented using the open-loop Model Predictive Control and
the Tube-based Model Predictive Control. The simulation results show that the
control problem is solved (the system is stabilized, the constraints are respected).
The next chapter which is the last chapter of this PhD thesis presents some con-
clusions, the contributions of this thesis and some future directions both on theory
and practical applications.
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Chapter 7

Conclusion and future works

7.1 Contribution

This thesis proposes a robust predictive control technique for uncertain systems
subject to constraints in the presence of bounded disturbances and measurement
noises. The contributions of this thesis are divided into two main parts:

e The first part consists in developing a zonotopic set-membership estimation
for systems with interval parametric uncertainties in the presence of distur-
bances and measurement noises.

e The second part is based on the association of the proposed state estima-
tion with a Model Predictive Control law in order to robustly control the
considered system subject to state and input constraints.

In the first part, using the deterministic approach, disturbances and measurement
noises are assumed to be unknown but bounded by some zonotopes. Then a zono-
topic set containing all the possible system states that are consistent with the
uncertainties, the disturbances and the noises is computed at each time instant
using a set-membership estimation algorithm. One originality of this thesis is to
present a new optimization criterion to compute the zonotopic guaranteed state
estimation based on the minimization of the P-radius of the zonotopic estimation
set offering a good accuracy of the estimation with a reasonable complexity of the
computation. Using the P-radius based criterion in an original way leads to off-
line solve a Bilinear Matrix Inequality optimization problem [82]. To solve this
problem, the Penbmi solver [74] can be used. To overcome the use of Bilinear
Matrix Inequality solvers, in this thesis the contractiveness speed of the zonotopic
state estimation set is optimized leading to a Linear Matrix Inequality optimization
problem which can be easily solved [85]. This method is first developed for linear
time invariant systems subject to disturbances and measurement noises, then it is
extended to the case of systems with interval parametric uncertainties using the
maximum principle [83|. Another contribution of this thesis consists in proposing
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different strategies for the case of Multi-Output systems that have been presented
in [88] and [87] or submitted to [84]. The first proposed solution is based on the
direct extension of the adopted solution for the case of Single-Output systems.
This solution is shown to be conservative due to neglect the coupling effect of
Multi-Output systems. When the coupling effect is taken into account, the opti-
mization problem becomes a Polynomial Matrix Inequality problem which is non
convex and thus difficult to solve. In consequence, the proposed solution is to use a
relaxation technique [62] to transform this Polynomial Matrix Inequality problem
into a Linear Matrix Inequality problem which can be solved using Linear Matrix
Inequality solvers. This results have been published in [88]. But this relaxation
technique leads to an important increase of the number of scalar decision variables,
and, thus, limits the application of the proposed approach to large scale systems.
Moreover, the simulation result shows a poor estimation performance due to the
used of this relaxation technique. In order to improve the overall performance for
Multi-Output systems,, the next contribution of this thesis considers the zonotopic
outer approximation of the intersection between a zonotope and a polytope [87].
Using this result and the P-radius based optimization criterion leads to a signifi-
cant improvement both on the estimation performance and the complexity of the
computation in comparison with the previous proposed methods (the direct exten-
sion of Single-Output case and the Polynomial Matrix Inequality based method).
The comparative results are analyzed in different examples along the thesis.

The second part deals with the problem of robust control for constrained un-
certain system in the predictive control context. First, an simple solution based
on the open-loop predictive control is proposed. The proposed control law leads
to solve a quadratic optimization problem subject to constraints at each sample
time. Even if the simulation shows a good result, this solution does not have the
guarantees of stability and feasibility. A second solution is to use the Tube based
Model Predictive Control for systems with bounded disturbances and measurement
noises which build a tube trajectory of the real system around the nominal model.
This control technique permits to guarantee the stability of the controlled system.
When the system state is not available, the Tube-based Model Predictive Control
is usually associated to the Luenberger observer to obtain a state estimation [100].
The next contribution consist in using the Tube based Model Predictive Control
in the context of the zonotopic set-membership estimation [85], which permits to
improve the estimation performance and thus the performance of the controlled
system. To deal with the interval parametric uncertainties presence in the system
model, a modification of the cost function in the presented open-loop control is
proposed. The solution of the Tube-based Model Predictive Control associated to
the set-membership estimation is still an open problem. Finally, the application
of the proposed Tube-based Model Predictive Control to the magnetic levitation
system shows the effectiveness of the developed technique [86].
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7.2 Future works

Several directions are proposed for future developments of this thesis.

As presented in Subsection 4.3.3.4 applying the P-radius based zonotopic set-
membership estimation for Multi-Output linear discrete-time systems (with param-
eter uncertainties or not) subject to bounded disturbances and measurement noises
leads to solve a Polynomial Matrix Inequality optimization problem. Due to the
poor performance obtained by the relaxation Linear Matrix Inequality technique
[62] (outer approximation of the solution of the PMI optimization problem) applied
in this thesis, the first perspective consists in comparing the results obtained with
the relaxation procedure [62] with other existing techniques [64], [72], [31] or the
most recent work [63] which offers an inner approximation of the solution of the
PMI optimization problem. If the reader is interested by these results, another
direction to explore consists in developing new relaxation techniques that will lead
to other sub-optimal solutions of the initial Polynomial Matrix Inequality problem
in order to obtain a better performance of the estimation.

An interesting idea to pursue is the extension of the zonotopic set-membership
estimation for systems with time-delay and especially for systems with variable
time-delay [93]. If the delay can be taken into account in the mathematical model
as an interval parametric uncertainty [136], then the extension of this estimation
technique should not be too complicated.

In the case of Multi-Output systems, the set-membership estimation is obtained
using a multisensor system. Thus, a natural way to explore further is the fault
diagnosis problem of the multisensor system [138], [114] [142]. This problem can
be considered using the proposed zonotopic outer approximation of the intersection
between a zonotope and a polytope. If this intersection is zero it means that a fault
is detected. Then a continuing study which can be considered is the fault tolerant
control [139], [130], [150].

A different perspective is to build an efficient output feedback control law
(offering stability guarantees) which permits to control the system with interval
parametric uncertainties in the presence of disturbances, measurement noises and
constraints.

Finally, the application of the proposed work on a more complex system with
the experimental validation can be also considered.

159



Conclusion and future works

160



Bibliography

1

2]

3]

4]

[5]

[6]

7]

18]

19]

[10]

M. Alamir. Nonlinear moving horizon observers: Theory and real-time imple-
mentation. Lecture Notes in Control and Information Sciences, 363:139-179,
2007.

T. Alamo, J. M. Bravo, and E. F. Camacho. Guaranteed state estimation by
zonotopes. Automatica, 41:1035-1043, 2005.

T. Alamo, J. M. Bravo, M. J. Redondo, and E. F. Camacho. A set-
membership state estimation algorithm based on dc¢ programming. Auto-
matica, 44(1):216-224, 2008.

T. Alamo, D. R. Ramirez, D. Mutioz de la Pefia, and E. F. Camacho. Minmax
mpc using a tractable qp problem. Automatica, 43:693-700, 2007.

T. Alamo, R. Tempo, D. R. Ramirez, and E. F. Camacho. A new vertex
result for robustness problems with interval matrix uncertainty. Systems and
Control Letters, 57:474-481, 2008.

J. C. Allwright. Advances in Model-based predictive control. Oxford Univer-
sity Press, 1994.

M. Althoff, O. Stursberg, and M. Buss. Reachability analysis of linear systems
with uncertain parameters and inputs. In Proc. of the 46th IEEE Conference
on Decision and Control, volume 41, pages 726732, 2007. New Orleans, LA,
USA.

M. Althoff, O. Stursberg, and M. Buss. Computing reachable sets of hybrid
systems using a combination of zonotopes and polytopes. Nonlinear Analysis:
Hybrid Systems, 4(2):233-249, 2010.

J. M. Aughenbaugh and C. J. J. Paredis. Why are intervals and impreci-
sion important in engineering design? In Proc. of the Reliable Engineering
Computing Workshop, 2006. Savannah, USA.

B. M. Ayyub and G. J. Klir. Uncertainty modeling and analysis in engineering
and the sciences. Chapman and Hall/CRC, 2006.

161



BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

G. Barequet and S. Har-Peled. Efficiently approximating the minimum-
volume bounding box of a point set in three dimensions. Journal of Al-
gorithms, 38:91-109, 1999.

A. A. Batabyal. Dynamic and stochastic approaches to the environment and
economic development. World Scientific Publishing Company, 2008.

Y. Becis-Aubry, D. Aubry, and N. Ramdani. Multisensor set-membership
state estimation of nonlinear models with potentially failing measurements.
In Proc. of the 18th World Congress IFAC, pages 12030-12035, Milan, Italy,
2011.

Y. Becis-Aubry, M. Boutayebb, and M. Darouach. State estimation in the
presence of bounded disturbances. Automatica, 44(7):1867-1873, 2008.

Y. Becis-Aubry and N. Ramdani. State-bounding estimation for nonlinear
models with multiple measurements. In Proc. of the 2012 American Control
Conference ACC, pages 1883-1888, Montréal, Canada, 2012.

A. Bemporad. Reducing conservativeness in predictive control of constrained
systems with disturbances. In Proc. of the 37th IEEE Conference on Decision
and Control, pages 1384-1391, Tampa, USA, 1998.

A. Bemporad and A. Garulli. Output feedback predictive control of con-
strained linear systems via set-membership state estimation. International
Journal of Control, 73(8):655-665, 2000.

A. Bemporad and M. Morari. Robust Model Predictive Control: A Survey.
Robustness in Identification and Control, 245:207-226, 1999.

D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar. Convezr analysis and opti-
mization. Athena Scientific, 2003.

D. P. Bertsekas and I. B. Rhodes. Recursive state estimation for a set-
membership description of uncertainty. IEEE Transactions on Automatic
Control, 16(2):117-128, 1971.

R. Bhattacharya, G. J. Balas, M. A. Kaya, and A. Packard. Nonlinear re-
ceding horizon control of an f-16 aircraft. Journal Guidance Control and
Dynamics, 25(5):924-931, 2002.

F. Blanchini. Set invariance in control. Automatica, 35(11):1747-1767, 1999.

F. Blanchini and S. Miani. Set-theoretic methods in control. Birkhauser,
Boston, 2007.

S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear matriz in-
equalities in system and control theory. STAM, Philadelphia, 1994.

162



BIBLIOGRAPHY

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

J. M. Bravo, T. Alamo, and E. F. Camacho. Bounded error identification
of systems with time-varying parameters. IEEE Transactions on Automatic

Control, 51(7):1144-1150, 2006.

E. M. Bronstein. Approximation of convex sets by polytopes. Journal of
Mathematical Sciences, 153(6):727-762, 2008.

R. G. Brown and P. Y. C. Hwang. Introduction to random signals and applied
Kalman Filtering. John Wiley and Sons, 1997.

R. L. Burden and J. D. Faires. Numerical analysis. Brooks Cole, 2000.

E. F. Camacho and C. Bordons. Model predictive control. Springer-Verlag,
London, 2004.

P. J. Campo and M. Morari. Robust model predictive control. In Proc. of the
American Control Conference, pages 1021-1026, Minneapolis, USA, 1987.

G. Chesi, A. Garulli, A. Tesi, and A. Vicino. An Imi-based approach for
characterizing the solution set of polynomial systems. In Proc. of the 39th
IEEE Conference Decision and Control, pages 1501-1506, Sydney, Australia,
2000.

L. Chisci, A. Garulli, and G. Zappa. Recursive state bounding by parallelo-
topes. Automatica, 32:1049-1055, 1996.

L. Chisci and G. Zappa. Feasibility in predictive control of constrained linear
systems: the output feedback case. International journal of robust and non
linear control, 12:465—487, 2002.

D. W. Clarke. Application of generalized predictive control to industrial
processes. [EEE Control System Magazine, 122:49-55, 1988.

D. W. Clarke, C. Mohtadi, and P. S. Tuffs. Generalized predictive control,
part i: The basic algorithm; part ii: Extensions and interpretations. Auto-
matica, 23(2):137-160, 1987.

D. W. Clarke and R. Scatollini. Constrained receding horizon predictive
control. Proceedings IEE-D, 138:347-354, 1991.

C. Combastel. A state bounding observer based on zonotopes. In Proc. of
European Control Conference, Cambridge, UK, 2003.

C. Combastel. Observation de systémes non linéaires appliquée & un modéle
de bioréacteur. une approche ensembliste basée sur les zonotopes. Journal
Européen des Systéemes Automatisés, 38:933-957, 2004.

163



BIBLIOGRAPHY

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]
48]

[49]

[50]

[51]

C. Combastel. A state bounding observer for uncertain non-linear continuous-
time systems based on zonotopes. In Proc. of the 44th IEEE Conference on
Decision and Control, and the European Control Conference, Sevilla, Spain,
2005.

C. Combastel, Q. Zhang, and A. Lalami. Fault diagnosis based on the enclo-
sure of parameters estimated with an adaptive observer. In Proc. of the 17th
World Congress IFAC, pages 7314-7319, Seoul, Korea, 2008.

C. R. Cutler and B. C. Ramaker. Dynamic matrix control U a computer con-
trol algorithm. In Proc. of the Automatic Control Conference, San Francisco,

USA, 1980.

G. B. Dantzig. Fourier-motzkin elimination and its dual. Technical report,
DTIC document, 1972.

R. M. C. de Keyser and A. R. Van Cauwenberghe. FExtended prediction
selfadapted control. In IFAC Symposium on Identification and System Pa-
rameter Estimation, pages 1317-1322, York, 1985.

J. Douchet and B. Zwahlen. Calcul différentiel et intégral. Presses Polytech-
niques et Universitaires Romande, 2006.

C. Durieu, E. Walter, and B. Polyak. Multi-input multi-output ellip-
soidal state bounding. Journal of Optimization Theory and Applications,
111(2):273-303, 2001.

Y. K. Foo and Y. C. Soh. Robust kalman filtering for uncertain discrete-time
systems with probabilistic parameters bounded within a polytope. Systems
and Control Letters, 57(6):482-488, 2008.

K. Fukuda. Cdd/cdd+ reference manual, 1999.

K. Fukuda. From the zonotope construction to the minkowski addition of
convex polytopes. Journal of Symbolic Computation, 38(4):1261-1272, 2004.

C. E. Garcia, D. M. Prett, and M. Morari. Model predictive control : Theory
and practice U a survey. Automatica, 25(3):335-348, 1989.

A. Garulli and A. Vicino. Set membership localization of mobile robots
via angle measurement. [IEFEE Transactions on Robotic and Automation,

17(4):450 — 463, 2001.

L. El Ghaoui and G. Calafiore. Worst-case state prediction under structured
uncertainty. In Proc. of American Control Conference, pages 3402-3406, San
Diego, USA, 1999.

164



BIBLIOGRAPHY

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

E. G. Gilbert and K. T. Tan. Linear systems with state and control con-
straints: The theory and application of maximal output admissible sets.
IEEE Transactions on Automatic Control, 36(9):1008-1020, 1991.

A. Girard. Reachability of uncertain linear systems using zonotopes. In
Hybrid Systems: Computation and Control, March, 2005, volume 3414 of
Lecture Notes in Computer Science, pages 291-305. Springer, March 2005.

G. Goodwin, M. M. Seron, and J. A. De Donéa. Constrained Control and
Estimation: An Optimisation Approach. Springer, 2004.

C. Greco, G. Menga, E. Mosca, and G. Zappa. Performance improvement of
self-tuning controllers by multistep horizons: The musmar approach. Auto-
matica, 20:681-100, 1984.

P. Gritzmann and B. Sturmfels. Minkowski addition of polytopes: Com-
putational complexity and applications to grobner bases. SIAM Journal on
Discrete Mathematic, 6(2):246-269, 1993.

J. W. Grizzle and P. E. Moraal. Observer based control of nonlinear discrete-
time systems. In Proc. of the 29th IEEE Conference on Decision and Control,
pages 760-767, Honoluu, USA, 1990.

P. Guerra, V. Puig, and M. Witczak. Robust fault detection with unknown-
input interval observers using zonotopes. In Proc. of the 17th World Congress
IFAC, pages 55575562, Seoul, Korea, 2008.

L. J. Guibas, A. Nguyen, and L. Zhang. Zonotopes as bounding volume. In
Proc. of the Symposium on Discrete Algorithm, pages 803-812, 2005.

E. R. Hansen. Interval arithmetic in matrix computations. SIAM Journal
on Numerical Analysis: Series B, 2(2):308-320, 1965.

D. Henrion and J. B. Lasserre. Gloptipoly: Global optimization over polyno-
mials with matlab and sedumi. ACM Transactions on Mathematical Software,
29:165-194, 2002.

D. Henrion and J. B. Lasserre. Convergent relaxations of polynomial matrix
inequalities and static output feedback. IEFEE Transactions on Automatic
Control, 51(2):192 — 202, 2006.

D. Henrion and J. B. Lasserre. Inner approximations for polynomial ma-
trix inequalities and robust stability regions. Technical report, LAAS-report
11210, 2011.

C. W. J. Hol and C. W. Scherer. Sum of squares relaxations for polyno-
mial semidefinite programming. In Proc. Symp. on Mathematical Theory of
Networks and Systems, Leuven, Belgium, 2004.

165



BIBLIOGRAPHY

[65]

|66]

[67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

[77]

D. P. Hunttenlocher, G. A. Klanderman, and W. J. Rucklidge. Comparing
images using the hausdorff distance. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 15(9):850 — 863, 1993.

A. Ingimundarson, J. M. Bravo, V. Puig, T. Alamo, and P. Guerra. Robust
fault detection using zonotope-based set-membership consistency. Interna-
tional journal of adaptive control and signal processing, 23(4):311-330, 2008.

J. A. De Dona J. B. Mare. Moving horizon estimation of constrained non-
linear systems by carleman approximations. In Proc. of the 45th IEEE Con-
ference on Decision and Control, pages 2147-2152, San Diego, USA, 2006.

L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Interval analysis. Springer,
2001.

R. E. Kalman. A new approach to linear filtering and prediction problems.
Transactions of the ASME-Journal of Basic Engineering, 82(Series D):35-45,
1960.

S. S. Keerthi and E. G. Gilbert. Optimal infinite-horizon feedback laws for
a general class of constrained discrete-time systems: Stability and moving-
horizon approximations. Journal of Optimization Theory and Applications,
57(2):265-293, 1988.

M. Kieffer, L. Jaulin, and E. Walter. Guaranteed recursive nonlinear state es-
timation using interval analysis. International Journal of Adaptative Control
and Signal Processing, 2002.

M. Kojima. Sums of squares relaxations of polynomial semidefinite pro-
grams. Technical report, Department of Mathematical and Computing Sci-
ences, Tokyo Institute of Technology, 2003.

M. V. Kothare, V. Balakrishnan, and M. Morari. Robust constrained model
predictive control using linear matrix inequalities. Automatica, 32(10):1361—
1379, 1996.

M. Koé¢vara and S. Stingl. Pennon a code for convex nonlinear and semidefi-
nite programming. Optimization Methods and Software, 18(3):317-333, 2003.

W. Kiihn. Rigorously computed orbits of dynamical systems without the
wrapping effect. Computing, 61:47-67, 1998.

W. Kiihn. Toward an optimal control of wrapping effect. In International
Symposium on Scientific Computing, Computer Arithmetic and Validated
Numerics, pages 125134, 1998.

A. B. Kurzhanski and I. Valyi. Ellipsoidal calculus for estimation and control.
Birkhaiiser Boston, 1996.

166



BIBLIOGRAPHY

78]
[79]

[30]

[81]
[82]

[83]

[84]

[85]

[36]

[87]

[33]

[89]

[90]

A. A. Kurzhanskiy and P. Varaiya. Ellipsoidal toolbox manual, 2006-2007.

M. Kvasnica, P. Grieder, and M. Baoti¢. Multi-parametric toolbox (mpt),
2004.

W. Langson, . Chryssochoos, S.V. Rakovi¢, and D.Q. Mayne. Robust model
predictive control using tubes. Automatica, 40(1):125-133, 2004.

S. R. Lay. Convex sets and their applications. Wiley, New york, 1982.

V. T. H. Le, T. Alamo, E. F. Camacho, C. Stoica, and D. Dumur. A new
approach for guaranteed state estimation by zonotopes. In Proc. the 18th
World Congress IFAC, pages 9242-9247, Milan, Italy, 2011.

V. T. H. Le, T. Alamo, E. F. Camacho, C. Stoica, and D. Dumur. Zonotopic
set-membership estimation for interval dynamic systems. In Proc of the 2012
American Control Conference ACC, pages 67876792, Montréal, Canada,
2012.

V.T. H. Le, C. Stoica, T. Alamo, D. Dumur, and E. F. Camacho. Guaranteed
state estimation by zonotopes for systems with interval uncertainties. In
submitted to Automatica, 2012.

V. T. H. Le, C. Stoica, D. Dumur, T. Alamo, and E. F. Camacho. Robust
tube-based constrained predictive control via zonotopic set-membership es-
timation. In Proc. the 50th IEEE Conference on Decision and Control and
European Control Conference, pages 4580-4585, Orlando, USA, 2011.

V. T. H. Le, C. Stoica, D. Dumur, T. Alamo, and E. F. Camacho. Commande
prédictive robuste par des techniques d’observateurs basées sur des ensembles
zonotopiques. Journal Européen des Systéemes Automatisés, 2-3/2012:235—
250, 2012.

V. T. H. Le, C. Stoica, D. Dumur, T. Alamo, and E. F. Camacho. Guaranteed
state estimation by zonotopes for systems with interval uncertainties. In 2012
Small Workshop on Interval Methods, Oldenburg, Germany, 2012.

V. T. H. Le, C. Stoica, D. Dumur, T. Alamo, and E. F. Camacho. A poly-
nomial matrix inequality approach for zonotopic set-membership estimation
of multivariable systems. In Proc. of the 20th Mediterranean Conference on
Control and Automation, pages 18-23, Barcelona, Spain, 2012.

J. H. Lee and Z. Yu. Worst-case formulations of model predictive control for
systems with bounded parameters. Automatica, 33(5):763-781, 1997.

J. M. Lemos and E. Mosca. A multipredictor-based lq self-tuning controller.
In IFAC Symposium on Identification and System Parameter Estimation,
pages 137-141, York, UK, 1985.

167



BIBLIOGRAPHY

[91]

[92]

(93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

D. Limon, T. Alamo, J. M. Bravo, E. F. Camacho, D. R. Ramirez, D. Mu
noz de la Pefia, I. Alvarado, and M. R. Arahal. Interval arithmetic in robust
nonlinear mpc. Springer-Verlag, pages 317-326, 2007.

D. Limon, T. Alamo, and E. F. Camacho. Stability analysis of systems
with bounded additive uncertainties based on invariant sets: Stability and
feasibility of mpc. In Proc. of American Control Conference, pages 364369,
Anchorage, USA, 2002.

W. Lombardi, S. Olaru, and S. I. Niculescu. Invariant sets for a class of
linear systems with variable time-delay. In Proc. of the Furopean Control
Conference, Budapest, Hungary, 2009.

D. G. Luenberger. Observing the state of a linear system. IEEE Transactions
on Military Electronics, 8:74 — 80, 1964.

D. G. Luenberger. Observers for multivariable systems. IEEE Transactions
on Automatic Control, 11:190 — 197, 1965.

J. M. Maciejowski. Predictive Control. A unified approach. Prentice-Hall,
2000.

M. Mansour. Simplified sufficient conditions for the asymptotic stability of
interval matrices. International Journal of Control, 50(1):443-444, 1989.

W-J. Mao and J. Chu. Quadratic stability and stabilization of dynamic
interval systems. IEEE Transactions on Automatic Control, 48(6):1007-1012,
2003.

P. S. Maybeck. Stochastic models, estimation and control. Academic Press,
1979.

D. Q. Mayne, S. V. Rakovi¢, R. Findeisen, and F. Allgéwer. Robust output
feedback model predictive control of constrained linear system: Time varying
case. Automatica, 45:2082-2087, 2009.

D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M Scokaert. Constrained
model predictive control: Stability and optimality. Automatica, 36:789-814,
2000.

D. Q. Mayne, M. M. Seron, and S. V. Rakovi¢. Robust model predictive
control of constrained linear system with bounded disturbances. Automatica,
41:219-224, 2005.

N. Meslem, N. Ramdani, and Y. Candau. Using hybrid automata for set-
membership state estimation with uncertain nonlinear continuous-time sys-
tems. Journal of Process Control, 20(4):481-489, 2010.

168



BIBLIOGRAPHY

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

H. Michalska and D. Q. Mayne. Moving horizon observers. In Proc. I[FAC
Symposium Nonlinear Control System Design, pages 576-581, Bordeaux,
France, 1991.

H. Montgomery. Computing the volume of a zonotope. The American Math-
ematicals Monthly, 97:431, 1989.

J. B. Moore and G. F. Ledwich. Minimal order observers for estimating
linear functions of a state vector. IEEE Transactions on Automatic Control,
20(5):623-632, 1975.

R. E. Moore. Interval analysis. Englewood Cliff, New Jersey: Prentice-Hall,
1966.

M. Morari. Advances in model based predictive control. Oxford University
Press, 1994.

P. Murdoch. Observer design for a linear functional of the state vector. IEEE
Transactions on Automatic Control, 18(3):308-310, 1973.

K. Ohrn, A. Ahlen, and M. Sternard. A probabilistic approach to multivari-
able robust filtering and open-loop control. IEEE Transactions on Automatic
Control, 40(3):405-418, 1995.

S. Olaru. Contribution a U’étude de la commande prédictive sous contraintes
par approache geometrique. PhD thesis, Université de Paris Sud-Supélec,
2005.

O. Pastravanu and M. Voicu. Necessary and sufficient conditions for compo-
nentwise stability of interval matrix systems. IEEE Transactions on Auto-
matic Control, 49(6):1016-1021, 2004.

B. T. Polyak, S. A. Nazin, C. Durieu, and E. Walter. Ellipsoidal parameter or
state estimation under model uncertainty. Automatica, 40:1171-1179, 2004.

V. Puig. Fault diagnosis and fault tolerant control using set-membership ap-
proaches: Application to real case studies. Applied Mathematics and Com-
puter Science, 20(4):619-635, 2010.

V. Puig, P. Cuguero, and J. Quevedo. Worst-case estimation and simulation
of uncertain discrete-time systems using zonotopes. In Proc. of FEuropeen
Control Conference, Portugal, 2001.

V. Puig, J. Saludes, and J. Quevedo. Worst-case simulation of discrete linear
time-invariant interval dynamic systems. Reliable Computing, 9(4):251-290,
2003.

169



BIBLIOGRAPHY

[117]

[118]

[119]

[120]

121]

[122]

[123]

[124]

125

126]

[127]

[128]

[129]

[130]

S. J. Qin and T. A. Badgwell. A survey of industrial model predictive control
technology. Control Engineering Practice, 11:733-764, 2003.

T. Raissi, N. Ramdani, and Y. Candau. Set membership state and parameter
estimation for systems described by nonlinear differential equations. Auto-
matica, 40(10):1771-1777, 2004.

S. V. Rakovi¢, E. C. Kerrigan, K. I. Kouramas, and D. Q. Mayne. Invari-
ant approximation of the minimal robustly positively invariant set. [EFEFE
Transactions on Automatic Control, 50(3):406-410, 2005.

C. V. Rao and J. B. Rawlings. Linear programming and model predictive
control. Journal of Process Control, 10(2-3):283-289, 2000.

J. Richalet, A. Rault, J. L. Testud, and J. Papon. Model predictive heuristic
control : application to industrial processes. Automatica, 14(5):413-428,
1978.

R. T. Rockafellar. Convex analysis. Princeton University Press, 1970.

J. A. Rossiter. Model based predictive control. A practical approach. CRC
Press LLC, 2003.

C. S. Scherer and S. Weiland. Linear matrix inequalities in control.

S. Schon and H. Kutterer. Using zonotopes for overestimation-free inter-
val least-squaresUsome geodetic applications. Reliable Computing Springer,
11:137-155, 2005.

F. C. Schweppe. Recursive state estimation: Unknown but bounded errors
and system inputs. IEEE Transactions on Automatic Control, 13(1):22-28,
1968.

F. Scibilia, S. Olaru, and M. Hovd. On feasible sets for mpc and their
approximations. Automatica, 47(1):133-139, 2011.

P. O. M. Scokaert, D. Q. Mayne, and J. B. Rawlings. Suboptimal model
predictive control (feasibility implies stability). IEEE Transactions on Au-
tomatic Control, 44(3):648-654, 1999.

P. O. M. Scokaert and J. B. Rawlings. Stability of model predictive control
under perturbations. In Proc. of the IFAC Symposium on nonlinear control
systems design, pages 1317-1322, Lake Tahoe, CA, 1995.

M. M. Seron, J. A. De Don4, and J. Richter. Fault tolerant control using vir-
tual actuators and set-separation detection principles. International Journal
of Robust and Nonlinear Control, 22:709-742, 2011.

170



BIBLIOGRAPHY

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

P. Seymour. A note on hyperplane generation. Journal of Combinatorial
Theory, Series B, 61(1):88-91, 1994.

G. Shephard. Combinatorial properties of associated zonotopes. Canadian
Journal of Mathematics, 26:302—-321, 1974.

R. Soeterboek. Predictive Control. A unified approach. Prentice-Hall, 1992.

M. Sternad, K. Ohrn, and A. Ahlen. Robust hsy filtering for structured
uncertainty: The performance of probabilistic and minimax schemes. In
European Control Conference, pages 87-92, Rome, Italy, 1995.

C. Stoica. Robustification de lois de commande prédictives multivariables.
PhD thesis, Université de Paris Sud-Supélec, 2008.

C. Stoica, M. R. Arahal, D. E. Rivera, P. Rodriguez-Ayerbe, and D. Dumur.
Application of robustified model predictive control to a production-inventory
system. In Proc. the 48th IEEE Conference on Decision and Control and 28th
Chinese Control Conference, pages 3993—-3998, Shanghai, China, 2009.

F. Stoican. Fault tolerant control based on set-theoretic methods. PhD thesis,
Université de Paris Sud-Supélec, 2011.

F. Stoican, S. Olaru, and G. Bitsoris. A fault detection scheme based on
controlled invariant sets for multi-sensor systems. In Proc. of the 2010 Con-
ference on Control and Fault Tolerant Systems, pages 468-473, Nice, France,
2010.

F. Stoican, S. Olaru, M. M. Seron, and J. A. De Dona. A fault tolerant
control scheme based on sensor switching and dwell time. In Proc. the 49th
IEEE Conference on Decision and Control, pages 756-761, Atlanta, USA,
2010.

G. Strang. Linear Algebra and Its Applications. Brooks Cole, 2005.

O. Stursberg and B. Krogh. Efficient representation and computation of
reachable sets for hybrid systems. In Hybrid Systems: Computation and
Control, volume 2623 of Lecture Notes in Computer Science, pages 482—497.
Springer, 2003.

S. Tornil-Sin, C. Ocampo-Martinez, V. Puig, and T. Escobet. Robust fault
detection of non-linear systems using set-membership state estimation based

on constraint satisfaction. Engineering Applications of Artificial Intelligence,
25(1):1-10, 2012.

M. Ullah and O. Wolkenhauer. Stochastic approaches for systems biology.
Springer, 2011.

171



BIBLIOGRAPHY

[144]

[145]

[146]

147]

[148]

[149]

[150]

[151]

A. Vicino and G. Zappa. Sequential approximation of feasible parameter
sets for identification with set-membership uncertainty. IEEFE Transactions
on Automatic Control, 41:774-785, 1996.

E. Walter and H. Piet-Lahanier. Exact recursive polyhedral description of
the feasible parameter set for bounded-error models. IEEE Transactions on
Automatic Control, 34(8):911-915, 1989.

Z. Wan and M. V. Kothare. Robust output feedback model predictive con-
trol using off-line linear matrix inequalities. Journal of Process Control,
12(7):763-774, 2001.

S. H. Witsenhausen. Sets of possible states of linear systems given perturbed
observations. IEEFE Transactions on Automatic Control, 13:556-558, 1968.

L. Xie, Y. C. Soh, and C. E. de Souza. Robust kalman filtering for uncertain
discrete time systems. IEEE Transactions on Automatic Control, 39(6):1310—
1314, 1994.

B. E. Ydstie. Extended horizon adaptive control. In Proc. of the 9th World
Congress TFAC, Budapest, Hungary, 1984.

A. Yetendje, J. A. De Dona, and M. M. Seron. Multisensor fusion fault
tolerant control. Automatica, 47(7):1461-1466, 2011.

G. M. Ziegler. Lecture on polytopes. Springer, 1995.

172






Résumé :

L’objectif de cette these est d’apporter des répsr@sdeux problémes importants dans le domainauwaterhatique :
I'estimation d'état et la commande prédictive rebesus contraintes pour des systemes incertainse dasant sur
des méthodes ensemblistes, plus précisément lidexrmsembles zonotopiques. Les incertitudes adisaanle
systéme sont modélisées de facon déterminists, slet donc inconnues mais bornées par des ensecainieus.

Dans ce contexte, la premiére partie de la thégelagpe une méthode d’estimation afin d’élaborehaque instant
un ensemble zonotopique contenant I'état du systealgré la présence de perturbations, de bruitmesure et
d’incertitudes paramétriques définies par inteezalette méthode est fondée sur la minimisatiorPaayon d’un

zonotope, critere original permettant de caraaétsstaille de I'ensemble zonotopique et réalisganbon compromis
entre la complexité et la précision de I'estimati@ette approche est tout d'abord développée pEaisystemes
mono-sortie, puis étendue au cas des systemessuttigs, dans un premier temps par des extendiogstes de la
solution mono-sortie (le systéme multi-sorties eshsidéré comme plusieurs systémes mono-sortieg. &lrire
solution est ensuite proposée, qui conduit a résoud probléme d'optimisation de type Inégalitéstrideelles

Polynomiales en utilisant une méthode de relaxati@s approches précédentes n'étant que des eottende la
solution a une seule sortie, et malgré leurs béasltats obtenus en simulation, une démarche at@iliédiée aux
systemes multi-sorties, fondée sur l'intersectiotree un polytope et un zonotope, est finalementelbppée et
validée.

La deuxiéme partie de la these aborde la problé@matie la commande robuste par retour de sortiedasusystemes
incertains. La commande prédictive est retenueadwé son utilisation dans de nombreux domainesadfacilité de
mise en ceuvre et de sa capacité a traiter desagues. Parmi les démarches issues de la littéadtimplantation de
techniques robustes fondées sur des tubes detoiegeest développée plus spécifiguement. Le rec@urun
observateur ensembliste a base de zonotopes p&ametliorer la qualité de I'estimation, ainsi qaeperformance de
la commande, dans le cas de systemes soumis @rdesbptions et des bruits de mesure inconnus, looarss.

Dans une derniere partie, cette combinaison déiniaon ensembliste et de la commande prédictbuste est
testée en simulation sur un systéme de suspensignétique. Les résultats de simulation traduiserdamportement
tout a fait satisfaisant validant les structureotiques élaborées.

Abstract:

The aim of this thesis is answering to two siguifit problems in the field of automatic control: gtate estimation
and the robust model predictive control for undarsystems in the presence of input and state @nt, based on
the set-membership approach, more precisely retatednotopic sets. Uncertainties acting on théesysare modeled
via the deterministic approach, and thus they akmown but bounded by a known set.

In this context, the first part of the thesis preg® an estimation method to compute a zonotopeaioorg the real
states of the system, which are consistent withdibirbances, the measurement noise and the ahtgavametric
uncertainties. This method is based on the miniticizaof the P-radius of a zonotope, which is agioal criterion to

characterize the size of the zonotope, in ord@btain a good trade-off between the complexity enedprecision of
the estimation. This approach is first developedsiagle-output systems, and then extended to &se of multi-

output systems. The first solution for multi-outmytstems is a direct extension of the solution dimgle-output
systems (the multi-output system being consideredseveral single-output systems). Another soluirthen

proposed, leading to solve a Polynomial Matrix bnedy optimization problem using a relaxation teicjue. Due to
the fact that the previous approaches are jusnsixies of the solution for a single-output systemd despite their
good performance results obtained in simulationpeel approach dedicated to multi-output systensetbaon the
intersection of a polytope and a zonotope is findéveloped and validated.

The second part of the thesis deals with the proldérobust output feedback control for uncertaistems. Model
predictive control is chosen due to its use in margas, its ability to deal with constraints andartainties. Among
the approaches from the literature, the implemantadf robust predictive techniques based on tubésajectories is
developed. The use of a zonotopic set-membershipasn improves the quality of the estimation,vasl| as the
performance of the control, for systems subjecirtknown, but bounded disturbances and measurero&sg. n

In the last part, the combination of zonotopicreetmbership estimation and robust model predictorgrol is tested
in simulation on a magnetic levitation system. Hwaulation results reflect a satisfactory behavialidating the
developed theoretical techniques.



