N

N

Developing Component-Based Applications with a
Data-Centric Approach and within a Service-Oriented
P2P Architecture: Specification, Analysis and
Middleware
Ayoub Ait Lahcen

» To cite this version:

Ayoub Ait Lahcen. Developing Component-Based Applications with a Data-Centric Approach and
within a Service-Oriented P2P Architecture: Specification, Analysis and Middleware. Software En-
gineering [cs.SE]. Université Nice Sophia Antipolis; Université MoHammed V - Agdal-Rabat, 2012.
English. NNT: . tel-00766329v2

HAL Id: tel-00766329
https://theses.hal.science/tel-00766329v2
Submitted on 27 Feb 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-00766329v2
https://hal.archives-ouvertes.fr

UNIVERSITE DE NICE-SOPHIA UNIVERSITE MOHAMMED V

ANTIPOLIS AGDAL-RABAT
Ecole Doctorale Centre d’Etudes Doctorales
Sciences et Technologies de Sciences et Technologies de Rabat

I’Information et de la Communication

THESE
pour obtenir le titre de
Docteur en Sciences

de 1’Université de Nice-Sophia Antipolis
et de I’Universit€é Mohammed V Agdal
Spécialité : INFORMATIQUE

Présentée et soutenue par

Ayoub AIT LAHCEN

Developing Component-Based Applications with a Data-Centric
Approach and within a Service-Oriented P2P Architecture:
Specification, Analysis and Middleware

(Développement d’Applications a Base de Composants avec une Approche Centrée sur les Données et
dans une Architecture Orientée Service et Pair-a-Pair : Spécification, Analyse et Intergiciel)

soutenue le 15 décembre 2012

Jury
Président : Driss ABOUTAJDINE PES a1’Université Mohammed V Agdal-Rabat
Rapporteurs : Gilles ROUSSEL Prof. a I’Université Paris-Est Marne-la-Vallée
Mahmoud NASSAR PH a ’ENSIAS
Examinateurs : Mireille BLAY-FORNARINO Prof. a I’Université de Nice-Sophia Antipolis
Jacques PASQUIER Prof. a I’Université de Fribourg
Co-encadrant : Salma MOULINE PH a I’Université Mohammed V Agdal-Rabat

Co-directeur : Didier PARIGOT Chargé de Recherche, INRIA Sophia Antipolis

Acknowledgements

This doctoral thesis has been prepared in joint guardianship with Mohammed V Agdal Uni-

versity (at LRIT laboratory) and Nice Sophia Antipolis University (at INRIA Sophia Antipolis).

My first thank goes to my thesis advisors Prof. Driss ABOUTAJDINE (LRIT laboratory)
and Dr. Didier PARIGOT (INRIA Sophia Antipolis). Without the various help they provided
me, the achievement of this dissertation would have never been possible. I thank them for their
support, patience, and useful advices. I'm deeply grateful to Prof. Driss ABOUTAJDINE for
encouraging me during the final stages of my Master’s project to think about doing a PhD.
His enthusiasm to propel scientific research in Morocco is something that I admire and hope
to replicate throughout my career. I would also like to thank him for serving as my thesis
committee chair. Likewise, I owe a great debt to Dr. Didier PARIGOT, he provided me with
all that a PhD candidate could ever need. I greatly appreciate his willingness to guide me in
improving this work, especially through the countless stimulating discussions we had together.

His professionalism and friendship will always be appreciated.

I would like to thank Prof. Salma MOULINE (LRIT laboratory), my co-advisor, for giving
me useful suggestions and comments for the improvements of this work. I would also like to
highlight that she gave me great confidence by choosing me to teach, since my first PhD year,

Master’s courses in Component-Based Software Development.

I wish to express my thanks and gratitude to Prof. Gilles ROUSSEL (Paris-Est Univer-
sity), Prof. Mahmoud NASSAR (ENSIAS), Prof. Mireille BLAY-FORNARINO (Nice Sophia
Antipolis University) and Prof. Jacques PASQUIER (Fribourg University) for accepting to be
members of my thesis committee. Their valuable feedback and inspiring comments helped me

to improve this dissertation in several ways.

Special thanks go to Dr. Pascal DEGENNE (CIRAD), Dr. Danny LO SEEN (CIRAD), Dr.
Remi FORAX (Gaspard Monge Institut) and Dr. Olivier CURE (Gaspard Monge Institut). I
have collaborated with them on the STAMP project (a French research project aiming at devel-
oping a new modelling language for describing environmental landscapes and their dynamics).

It has been a great pleasure to work with them and I always have a feeling that what I learnt

and took away from STAMP project is much more than what I gave through my contribution.

The work related to this project is reported in Chapter 8.

To so many people in INRIA Sophia Antipolis who directly or indirectly helped me and
made it a great experience, I'm deeply grateful. Special thanks to my team Zenith and par-
ticularly to its head Dr. Patrick VALDURIEZ. To a pleasant group of colleagues with whom
I shared lively lunch discussions about numerous subjects, thank you for creating a cheerful
atmosphere and an endless succession of bursts of laughter: Alexandre CARABIAS, Anca
BELME, Hubert ALCIN, Dr. Alain DERVIEUX, Dr. Valérie PASCUAL and Dr. Laurent
HASCOET.

I thank all PhD students and staffs in LRIT laboratory, it was nice to be among them during
the months I stayed each year in Morocco. I'm pleased to have Brahim AKBIL as a colleague
and as a dear friend. My deepest gratitude and thanks to him for all the support he made
available throughout my doctoral studies. He is always helpful and enjoyable. Thank you
Brahim for this invaluable friendship. A particular thank goes to my Master’s classmates whom
are now PhD students in LRIT laboratory: Abdelkaher, Ahmed, Laila, Said. Thank you for all

the great moments we shared together. I wish you all the best.

I would like now to acknowledge and thank those who have provided me with their unlim-
ited support, encouragement, understanding and patience. They have been always there for me
and have helped me in every possible way. My immense gratitude to my parents, my brother
Soufiane, my sister Dina and her husband Nour Eddin, and of course, to their little boy Yassir
who has been a source of joy and great relaxation that made me forget the stresses of work. A

big thank to all of you for your never-ending love.

Résumé

Le développement d’applications avec une architecture Pair-a-Pair (P2P) est devenu de plus
en plus important en ingénierie du logiciel. Aujourd’hui, un grand nombre d’organisations de
tailles et secteurs différents compte d’une maniere croissante sur la collaboration entre mul-
tiples acteurs (individus, groupes, communautés, etc.) pour accomplir des taches essentielles.
Ces applications P2P ont généralement un comportement récursif que plusieurs approches de
modélisation ne peuvent pas décrire et analyser (ex. les approches basées sur les automates
a états finis). Un autre challenge qui concerne le développement d’applications P2P est le
couplage fort entre la spécification d’une part, et les technologies et protocoles sous-jacents
d’autre part. Cela force les développeurs a faire des efforts considérables pour trouver puis
comprendre des informations sur les détails de ces couches basses du P2P. De plus, ce cou-
plage fort oblige les applications a s’exécuter dans des environnements figés. Par conséquent,
choisir par exemple un autre protocole pour répondre a un nouveau besoin a 1’exécution devient
une tache tres difficile. Outre ces points, les applications P2P sont souvent spécifiées avec une
faible capacité a déléguer des traitements entre les pairs, et se focalisent surtout sur le partage
et le stockage de données. Ainsi, elles ne profitent pas pleinement de la puissance de calcul et

de traitement offerte par le réseau P2P sous-jacent.

Dans cette these, nous présentons une approche qui combine les principes du développe-
ment orienté composants et services avec des techniques issues des Grammaires Attribuées
et d’analyses de flot de données (techniques utilisées surtout dans la construction de compi-
lateurs) afin de faciliter la spécification, 1’analyse et le déploiement d’applications dans des
architectures P2P. Cette approche incorpore : 1) Un langage formel nommé DDF (de 1’anglais
Data-Dependency Formalism) pour spécifier les applications et construire leurs graphes de dé-
pendances de données. Un graphe de dépendances de données est nommé DDG (de 1’anglais
Data-Dependency Graph) et est défini pour étre une représentation abstraite de 1’application
spécifiée. i1) Une méthode d’analyse qui utilise le graphe de dépendances de données pour in-
férer et calculer diverses propriétés, y compris certaines propriétés que les model-checkers ne
peuvent pas calculer si le systeme présente un comportement récursif. ii1) Un intergiciel nommé

SON (de I’anglais Shared data Overlay Network) afin de développer et d’exécuter des applica-

tions dans une architecture P2P sans faire face a la complexité des couches sous-jacentes. Cela
grace essentiellement au couplage faible (par une approche orientée services) et a la fonction-

nalité de génération de code automatique.

Mots-clés : Spécification Formelle, Analyse Formelle, Dépendances de Données, Déve-
loppement de Logiciels a Base de Composants (CBSD), Architecture Orientée Services (SOA),
Pair-a-Pair (P2P).

Abstract

Developing Peer-to-Peer (P2P) applications became increasingly important in software de-
velopment. Nowadays, a large number of organizations from many different sectors and sizes
depend more and more on collaboration between actors (individuals, groups, communities,
etc.) to perform their tasks. These P2P applications usually have a recursive behavior that
many modeling approaches cannot describe and analyze (e.g., finite-state approaches). An-
other challenging issue in P2P application development is the tight coupling between appli-
cation specification and the underlying P2P technologies and protocols. This forces software
developers to make tedious efforts in finding and understanding detailed knowledge about P2P
low level concerns. Moreover, this tight coupling constraints applications to run in a change-
less runtime environment. Consequently, choosing (for example) another protocol at runtime
to meet a new requirement becomes very difficult. Besides these previous issues, P2P applica-
tions are usually specified with a weak ability to delegate computing activities between peers,
and especially focus on data sharing and storage. Thus, it is not able to take full advantages of

the computing power of the underlying P2P network.

In this thesis, we present an approach that combines component- and service-oriented de-
velopment with well-understood methods and techniques from the field of Attribute Grammars
and Data-Flow Analysis (commonly used in compiler construction) in order to offer greater
ease in the specification, analysis and deployment of applications in P2P architecture. This ap-
proach embodies: i) A formal language called DDF (Data-Dependency Formalism) to specify
applications and construct their Data-Dependency Graphs (DDGs). A DDG has been defined
to be an abstract representation of applications. ii) An analysis method that uses DDG to infer
and compute various properties, including some properties that model checkers cannot com-
pute if the system presents a recursive behavior. iii) A component-based service middleware
called SON (Shared-data Overlay Network) to develop and execute applications within a P2P
architecture without the stress of dealing with P2P low level complexity. Thanks to SON’s

automatic code generation.

Keywords: Formal Specification, Formal Analysis, Data-Dependency, Component-Based

Software Development (CBSD), Service-Oriented Architecture (SOA), Peer-to-Peer (P2P).

Associated Publications

This thesis is partially based on the following peer-reviewed publications:

International journals

- Ayoub Ait Lahcen, Didier Parigot, Salma Mouline. "A Data-Centric Formalism with
Associated Service-Based Component Peer-to-Peer Infrastructure”. Information and Software
Technology. Under review (modifications have been requested).

- Pascal Degenne, Danny Lo Seen, Didier Parigot, Remi Forax, Annelise Tran, Ayoub Ait
Lahcen, Olivier Curé and Robert Jeansoulin. "Design of a Domain Specific Language for
modelling processes in landscapes”. Ecological Modelling. Volume 220 (24), pages 3527-
3535, December 2009.

International conferences

- Ayoub Ait Lahcen, Didier Parigot. "A Lightweight Middleware for developing P2P Appli-
cations with Component and Service-Based Principles"”. The 15th IEEE International Compu-
tational Science and Engineering. December 2012, Paphos, Cyprus.

- Ayoub Ait Lahcen, Didier Parigot, Salma Mouline. "Defining and Analyzing P2P Appli-
cations with a Data-Dependency Formalism". The 13th International Conference on Parallel
and Distributed Computing, Applications and Technologies. December 2012, Beijing, China.

- Ayoub Ait Lahcen, Didier Parigot, Salma Mouline. "Toward Data-Centric View on Service-
Based Component Systems: Formalism, Analysis and Execution". Work in Progress Session of
the 20th EUROMICRO International Conference on Parallel, Distributed and Network-based
Processing. February 2012, Munich, Germany.

- Pascal Degenne, Ayoub Ait Lahcen, Olivier Curé, Remi Forax, Didier Parigot, Danny Lo
Seen. "Modelling with behavioural graphs. Do you speak Ocelet?". International Congress on
Environmental Modelling and Software. July 2010, Ottawa, Ontario, Canada.

- Olivier Curé, Rémi Forax, Pascal Degenne, Danny Lo Seen, Didier Parigot, Ayoub Ait
Lahcen. "Ocelet: An Ontology-based Domain Specific Language to Model Complex Domains".
The First International Conference on Models and Ontology-based Design of Protocols, Archi-
tectures and Services. June 2010, Athens, Greece. (Best paper award)

- Christophe Proisy, Elodie Blanchard, Ayoub Ait Lahcen, Pascal Degenne, Danny Lo
Seen, "Toward the simulation of the Amazon-influenced mangrove-fringed coasts dynamics
using Ocelet". International Conference on Integrative Landscape Modelling. February 2010,
Montpellier, France.

- Ayoub Ait Lahcen, Pascal Degenne, Danny Lo Seen, Didier Parigot, "Developing a
service-oriented component framework for a landscape modeling language"”. The 13th Inter-
national Conference on Software Engineering and Applications. November 2009, Cambridge,
massachusetts, USA.

Contents

I Opening 21
1 Introduction — in French 21
1.1 Vwed’ensemble 21

1.2 Motivations et problématiques 24
1.2.1 Spécificité des applications P2Po 24

1.2.2 Vers des analyses de flot de données pour les applications P2P 26

1.2.3 Une approche centrée sur les données pour les systémes a composants . 29

1.2.4 Exemple illustratif : 1a spécification du protocole Gossip 29

1.2.5 Le besoin d’un runtime orienté composants, services et P2P 31

1.3 Contributions 33
1.3.1 Des idées clés dans nos contributions 33

1.3.2 DDF: Un langage formel pour des applications P2P a base de composants 34

1.3.3 Analyse des spécifications DDF en explorant le flot de données 35

1.3.4 SON : Un middleware orienté composants, serviceset P2P 35

1.3.5 Evaluation de SON dans le contexte du projet STAMP 36

1.4 Organisation du manuscrito 36

2 Introduction - in English 39
2.1 OVerview e e e 39
2.2 Motivations and problem statements 42
2.2.1 Specificity of P2P applications 42

2.2.2 Towards Data-Flow Analysis of P2P applications 43

2.2.3 Exploring data-centric approach for component-based systems 46

2.2.4 Illustrative example: specifying Gossip protocol 46

2.2.5 Needs for component and service-oriented P2P runtime 48

2.3 Contributions L 50

231
232
233
234
235

Key ideas in our contributions L.
DDF: A formal language for component-based P2P applications
Analysis of DDF specification with data-flow principles
SON: A component- and service-oriented P2P middleware

Evaluation of SON in the STAMP project

24 Thesisoutline e e

IT Background and State-of-the-art

3 Paradigms and concepts

3.1 Componentorientationo

3.1.1
3.1.2
3.13

What is a component?
Component-Based Software Development (CBSD)

Componentmodels

3.2 Service-Oriented Architecture (SOA)

3.2.1
322

Definition and characteristics

Design principles

3.3 Peer-to-Peer (P2P) architecture

3.3.1
3.3.2

What is Peer-to-Peer?

Architecture designs Lo

4 Discussion of related approaches

4.1 Approaches for specification and analysis L.

4.2 Execution in P2P architecture through middlewares

III Our proposal: Formalism, analysis and runtime middleware

5 DDF: A formal language to specify component-based P2P applications

5.1 Why our formalism is inspired by the Attribute Grammars

5.2 Case study: Gossip protocol Lo

5.3 DDFspecifications

5.3.1
532

Interface

Component e e e

51
51
52
52
53

57

57
58
58
59
60
64
64
65
69
69
70

75
75
79

85

5.3.3 Behavior withdatadependency 100

534 System 107
5.4 Defining a simple generic P2P system 110
Analysis of DDF specification 115
6.1 Introduction 116
6.2 Data-Dependency Graph 116
6.3 Analysisexamples L 121
6.3.1 Detectionofdeadlocks 121
6.3.2 Dominance analysis 122
SON: A runtime middleware 127
7.1 OVervIew L o e e e 128
7.2 Service-oriented componentmodelo 132
7.2.1 The component interface description (CDML) 132
7.2.2 The deployment description (World) 133
7.3 P2P communicationmodel oL 134
7.3.1 The Components Manager (CM) 134
732 TheDHTmodule 135
733 ThePIPESmodule 135
7.4 Implementation e 137
7.5 Applications 137
7.5.1 Simple Georeferencing Tool (SGT) 138
7.5.2 Social-based P2P recommendation system (P2Prec) 142
Evaluation of SON in the STAMP project 145
8.1 Characteristics of the main research approaches in environmental modelling . . 146
8.2 The STAMP project e 148
8.2.1 Factual information on the project 148
8.2.2 Goalsoftheproject. 149
8.2.3 Our contributions in the project 149
8.3 Ocelet modelling language, 150
8.3.1 Oceletmainconcepts i 151
8.3.2 How these concepts work together 158

13

8.4 Application scenarios with SON asaruntime

8.4.1 Lotka Volterra model

8.4.2 Rift Valley Fever (RVF), a mosquito-borne disease

IV Closing

9 Conclusions and future works
9.1 Conclusions

9.2 Future works and perspectives
Bibliography

Abbreviations

14

171

171
171
174

177

193

List of Figures

3.1

5.1
5.2
5.3
54
5.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

Actors in Service-Oriented Architecture. 65
Annotated parse tree for 3« 5.o o L 89
Dependency graph for the tree of Figure 5.1. 89
Epidemic algorithm L L L 94
Services of a gossip component.o e 97
[llustration of an evolution of a P2P system. 113
Example of an internal dependency relation. 117
Example of an external dependency relation. 118
Internal Dependency Graph of therule r. 119
Internal Dependency Graph of therule r5. 119
Internal Dependency Graph of therule r;. 119
Internal Dependency Graph of therule). 119
An example of a Data-Dependency Graph. 120
Example of data which depend on themselves. 121
A Data Dependency Graph. 123
Dominator tree for the DDG of Figure 6.9. 124
Overview of SON middleware. 129
SON’s component structure.t 131
Overview of the development process. 131
Simple CDML of a component (node) in a Gossip system. 133
Example of a deployment descriptionfile. 134
Connection between instances of components. 134
Run-time architecture of SON middleware. 136
Using SON to implement a geo-recommendation application. 139

15

7.9 Screenshot of Provider GUI 140
7.10 Screenshot of Consumer GUL. 141
8.1 The Ocelet modelling and simulation framework. 151
8.2 Anillustration of a composite entity. 152
8.3 Concepts of the Ocelet language. 158
8.4 Predation relation writtenin Ocelet. 160
8.5 A simulation of the Lotka-Volterramodel. 161
8.6 Screenshot of the GUI of the Lotka-Volterra components. 162
8.7 The SON components of the simple pond dynamics model. 164
8.8 Deployment description file of the simple pond dynamics model. 166

16

List of Tables

5.1
5.2
5.3
54
5.5
5.6
5.7

Attribute Grammar productions of a simple multiplication calculator. 88
Part of a grammar couple for the while statement 91
The semantic rules block for the while statement 92
Component attributes. 100
Asynchronous events. Lo e 102
Synchronous event. L L 102
Behavior of a Gossip System constituted of two nodes (node, and node,). . . . 109

17

Part I:

Opening

Chapter 1

Introduction — in French

Sommaire

1.1 Vued’ensemble0 00ttt 21
1.2 Motivations et problématiques 24
1.2.1 Spécificité des applications P2P 24
1.2.2 Vers des analyses de flot de données pour les applications P2P 26
1.2.3 Une approche centrée sur les données pour les systémes a composants 29
1.2.4 Exemple illustratif : la spécification du protocole Gossip 29
1.2.5 Le besoin d’un runtime orienté composants, services et P2P 31
1.3 Contributionsttt i e e e 33
1.3.1 Des idées clés dans nos contributions 33

1.3.2 DDF : Un langage formel pour des applications P2P a base de com-
POSANLS e e 34
1.3.3 Analyse des spécifications DDF en explorant le flot de données . . . 35
1.3.4 SON : Un middleware orienté composants, services et P2P 35
1.3.5 Evaluation de SON dans le contexte du projet STAMP 36
1.4 Organisationdumanuserit, 36

1.1 Vue d’ensemble

Le développement d’applications avec une architecture Pair-a-Pair (P2P) est devenu de plus
en plus important en ingénierie du logiciel. Aujourd’hui, un grand nombre d’organisations de
tailles et secteurs différents compte d’une maniere croissante sur la collaboration entre mul-
tiples acteurs (individus, groupes, communautés, etc.) pour accomplir des taches essentielles.

Une architecture P2P est un concept ol chaque entité agit a la fois comme serveur et client

21

CHaPTER 1 : Infroduction — in French

dans un réseau P2P [Schollmeier, 2001]. Cela est completement différent des architectures
Client/Serveur ou une entité peut agir uniquement en tant que serveur ou client, sans étre ca-
pable de jouer les deux fonctions en méme temps. Ainsi, dans une architecture P2P, les roles
des différentes entités sont approximativement égaux et chaque entité fournit des services aux

autres en tant que pair.

Dans les systemes logiciels, en particulier ceux qui sont déployés sur des architectures P2P,
les données échangées sont nécessaires pour accomplir des taches de traitement et acheminer
des interactions entre les différentes entités du systeme. Néanmoins, la conception de systemes
logiciels se focalise généralement sur 1I’ordonnancement des activités de traitement et néglige
le flot de données. Une approche centrée sur les données fournit une méthode différente de voir
et de concevoir des applications logicielles. Elle permet de s’intéresser de plus pres au flot et a

la transformation de données tout le long du cycle de vie de 1’application.

Dans ce contexte, nous avons défini un graphe de dépendances de données nommé DDG
(de I’anglais Data-Dependency Graph). Ce graphe a été choisi pour former une représentation
abstraite de 1’application, et ce, pour les raisons suivantes. Premierement, elle ne représente
qu’un modele de flux de données (imposé par la dépendance entre les données). Deuxiemement,

DDG expose un niveau de détail suffisant pour effectuer des analyses de flot de données.

Dans cette these, nous présentons une approche qui combine les principes du développe-
ment orienté composants et services [Szyperski, 1998] [Huhns and Singh, 2005] avec des tech-
niques issues des Grammaires Attribuées (AGs) [Paakki, 1995] et d’analyses de flot de données
[Aho et al., 2006] (techniques utilisées surtout dans la construction de compilateurs) afin de fa-
ciliter la spécification, 1’analyse et le déploiement d’applications dans des architectures P2P.
Cette approche incorpore : i) Un langage formel nommé DDF (de 1’anglais Data-Dependency
Formalism) pour spécifier les applications et construire leurs graphes de dépendances de don-
nées. ii) Une méthode d’analyse qui utilise le graphe de dépendances de données pour inférer et
calculer diverses propriétés, y compris certaines propriétés que les model-checkers ne peuvent
pas calculer si le systéme présente un comportement récursif. iii) Un middleware nommé SON
(de I’anglais Shared data Overlay Network) afin de développer et d’exécuter des applications

dans une architecture P2P sans faire face a la complexité des couches sous-jacentes du P2P.

22

1.1 Vue d’ensemble

Le middleware SON est utilisé comme un environnement d’exécution qui gere les besoins
liés au P2P (comme la gestion de mécanismes de communications, de files d’attente ou de dif-
fusions de messages). La gestion de ces aspects est facilitée grace essentiellement au couplage
faible (par une approche orientée services) et a la fonctionnalité de génération de code automa-
tique. Cette génération de code réduit et simplifie les tiches de développeurs d’applications et

leur permet de se concentrer davantage sur la logique métier.

Le formalisme DDF fournit un ensemble d’opérations nécessaires pour spécifier et analyser
des applications P2P. DDF peut étre considéré comme un formalisme minimal et 1éger pour les
raisons suivantes. D’une part, 1’objectif de DDF est de construire formellement un graphe de
dépendance qui expose le bon niveau d’abstraction pour effectuer des analyses de flots de don-
nées. D’autre part, DDF n’est pas destiné a écrire le détail du code métier ou a €tre un langage
de programmation généraliste. Il a été plutdt pensé suivant les principes des langages dédiés
(DSL - de I’anglais Domain-Specific Language) [Mernik et al., 2005]. DDF est fortement ins-
piré des caractéristiques des grammaires attribuées, notamment parce que ces dernieres sont
capables non seulement de construire un graphe de dépendance similaire, mais aussi de cap-
turer naturellement un comportement récursif complexe (ce qui est tres fréquent dans le cas
d’applications P2P — voir Section 2.2.1) que de nombreuses autres approches ne peuvent pas

décrire ou analyser.

L’environnement d’exécution du middleware SON peut étre vu comme un ensemble de
composants en interaction. Ces interactions sont dues a des envois et des réceptions de services.
Lorsqu’un service est recu ou envoyé, des données peuvent étre échangées (par exemple, les
parametres de service, le résultat du service ou des données propres aux composants). La propa-
gation d’appels de services entre composants peut dépendre de données transportées par un cer-
tain service appelé antérieurement. Par conséquent, notre approche a pour vocation d’étendre
la spécification de services (qui définit souvent seulement les entrées et les sorties de compo-
sants) par la notion de dépendance. Cette notion capture non seulement les dépendances entre
les services, mais aussi les dépendances entre les données échangées (requises et fournies). En
définissant cette notion, il nous sera possible d’inférer le flot de données d’une composition/un

assemblage de composants et de construire un graphe de dépendance de données de I’ensemble.

23

CHaPTER 1 : Infroduction — in French

Une fois que le graphe de dépendance de données est construit a partir de la spécifica-
tion DDF, nous pouvons vérifier ou inférer plusieurs propriétés en analysant le flot de don-
nées. Dans le Chapitre 6, cela est illustré a travers deux exemples. Le premier exemple montre
comment résoudre le probleme de détection d’interblocage (deadlock en anglais) par une re-
cherche de circularité dans le graphe. Le deuxieme exemple montre comment calculer la re-
lation de dominance (entre données), en cherchant ’ensemble des dominateurs de chaque
nceud du graphe. D’autres analyses (inspirées de travaux faits autour des GAs, comme ceux
de [Parigot et al., 1996] et [Jourdan and Parigot, 1990]) peuvent étre effectuées. Par exemple,
en analysant I’ordre d’évaluation de données, il sera possible de déterminer formellement quels

services dans un systeme peuvent tre exécutés d’une maniere parallele ou incrémentale.

En plus de la construction du graphe de dépendance d’un systeme, notre formalisme DDF
est capable de capturer naturellement un comportement récursif grace a une spécification orien-
tée regles. Il est bien connu dans la théorie des langages formels que de tel comportement ne
peut pas étre capturé par des automates a états finis (FSA, de I’anglais Finite-State Automata)
[Aho et al., 2006]. Cela implique que les approches basées sur des FSA ne peuvent pas étre uti-
lisées pour décrire ou analyser des applications logicielles qui integrent de tels comportements,
en particulier, dans le contexte du développement a base de composants, ou un grand nombre
d’approches de modélisation sont basées sur des FSA. Deux des approches a composants les
plus connues, SOFA [Bures et al., 2008] et Fractal, [Bulej et al., 2008] souleévent clairement ce
probleme. Par exemple, dans [Bures et al., 2008], les auteurs précisent : “our approach cannot
treat behavior that cannot be modeled by a regular language (e.g. recursion)”. Ainsi, de telles
approches a composants ne sont pas adéquates dans le contexte de construction d’applications

P2P ou le comportement récursif est tres fréquent, comme expliqué dans la section suivante.

1.2 Motivations et problématiques
1.2.1 Spécificité des applications P2P

L’évolutivité et I’auto-organisation comptent parmi les propriétés importantes des applications

P2P. Cela en raison du trés grand nombre d’utilisateurs et de la spécificité de connexions entre

24

1.2 Motivations et problématiques

les différents noceuds (connexions bas débit, haut débit, non stable, etc.) [Ripeanu et al., 2002].
Pour soutenir I’évolutivité et I’auto-organisation dans ce type de réseau, un grand nombre d’al-
gorithmes et de protocoles P2P ont été développés. Ceux-ci sont souvent exécutés d’une ma-
niere récursive. Considérons, par exemple, le calcul de la réputation’ qui est un probléme d’une
grande importance dans les environnements P2P [Aberer and Despotovic, 2001] (un exemple
simple qui justifie cette importance est le cas ou, durant le téléchargement de fichiers avec un
logiciel de partage de fichiers en P2P, nous espérons que seulement des pairs fiables soient choi-
sis). Le calcul de la réputation repose sur une séquence de requétes envoyées pour obtenir des
informations concernant la fiabilité d’un pair A et les réponses correspondantes a ces requétes.
Ce calcul doit étre effectué d’une maniere récursive, car une réponse recue d’un autre pair B
résulte d’une requéte concernant la fiabilité de B. En plus, pour que le calcul soit correct, toutes
les réponses doivent étre recues dans le bon ordre, puisque la condition d’arrét peut dépendre
de cet ordre-la. Ces envois récursifs de requétes/réponses peuvent étre vus comme une suite
de parentheses bien formées si chaque requéte est remplacée par une parenthese ouvrante et
si chaque réponse correspondante est remplacée par une parenthese fermante. Par conséquent,
I’ensemble de ces séquences bien parenthésés est langage de Dyck®. Par exemple, la séquence
"(0)O)" est bien parenthésée, et est un mot de Dyck, alors que la séquence "())(" ne I’est pas.
Dans la théorie des langages formels, Il est bien connu qu’un langage de Dyck n’est pas un
langage régulier [Stanley, 2001]. Deés lors, il n’existe aucun automate a états finis qui reconnait

un langage de Dyck.

Ce type d’envois récursifs de requétes/réponses, présenté ci-dessus, peut étre bien spécifié
en termes de langages non contextuels ou d’automates a piles (discutés plus tard dans la Section
4.1). Cependant, il est tres fréquent que les protocoles P2P présentent un comportement récur-
sif plus complexe qui donne lieu a des structures contextuelles — des structures d’interactions
qui ajustent leurs comportements en fonction du changement de contexte. Pour illustrer cela,
considérons le cas ou quatre pairs voisins échangent des informations selon une interaction
correspondant a deux envois récursifs de requétes/réponses entrelacés. Ce type d’interaction

(a"b™c"d™) a une structure contextuelle et, par conséquent, il ne peut pas étre spécifié par un

"Nous notons ici que le calcul de la réputation présente un cas particulier de la diffusion d’informations et qu’il
peut étre effectué en utilisant le protocole Gossip présenté plus tard dans la Section 2.2.4.

2Un langage de Dyck D est un sous-ensemble de {x, y}* tel que si x est remplacé par une parenthése ouvrante
et y par une parenthese fermante, nous obtenons une séquence de parenthéses bien formées [Stanley, 2001].

25

CHaPTER 1 : Infroduction — in French

langage non contextuel [Aho et al., 1986].

En se référant aux travaux de recherche sur les Grammaires Attribuées [Parigot et al., 1996],
qui sont des langages sensibles au contexte, le comportement récursif des applications P2P peut
étre capturé en décrivant a la fois le flot de contrdle et le flot de données de chaque interac-
tion. En plus, une fois spécifié, ce comportement peut €tre analysé en utilisant des algorithmes
d’analyse de flot de données. En outre, la hiérarchie de Chomsky [Chomsky, 1956], qui est une

classification des langages formels, assure les inclusions suivantes :

type-3 G type-2 C type-1 S type-0

type-3 : Langages réguliers (reconnus par des automates a états finis).
type-2 . Langages non contextuels (reconnus par des automates a pile).
type-1 : Langages contextuels (reconnus par des machines de Turing non-déterministes).

type-0 : Langages récursivement énumérables (reconnus par des machines de Turing).

1.2.2 Vers des analyses de flot de données pour les applications P2P

1.2.2.1 Les model-checkers et la spécificité des applications P2P

Le model-checking est une technique automatisée qui, étant donné un modele a états finis
d’un systeme et une propriété formelle, vérifie systématiquement si cette propriété est satis-
faite pour (un état donné dans) ce modele [Baier and Katoen, 2008]. Il explore tous les états
possibles du systeme d’une maniere exhaustive. Le model-checking a été utilisé avec succes
dans des domaines différents tels que les systemes embarqués, la conception de matériels in-
formatiques et le génie logiciel. Malheureusement, tous les systémes ne peuvent pas tirer profit
de sa puissance. Une des raisons est que certains systemes ne peuvent étre spécifiés par un
modele a états finis, en particulier, dans le contexte d’applications P2P (comme c’est expliqué
ci-dessus). Une autre raison est que le model-checking n’est pas adapté pour des applications

qui manipulent intensivement des données (et qui sont souvent développées en utilisant le para-

26

1.2 Motivations et problématiques

digme P2P [Lee et al., 2007] [Ranganathan et al., 2002]). Le récent livre sur le model-checking
[Baier and Katoen, 2008] justifie clairement pourquoi la vérification d’applications manipu-
lant intensivement des données est extrémement difficile. En fait, méme s’il n’y a qu’un petit
nombre de données, I’espace d’état a analyser peut étre tres grand. Les auteurs du livre consi-

derent méme que ces deux raisons sont parmi les premieres limitations du model-checking :

“The weaknesses of model checking :

e [t is mainly appropriate to control-intensive applications and less suited for data-intensive
applications as data typically ranges over infinite domains.

e [ts applicability is subject to decidability issues ; for infinite-state systems, or reasoning
about abstract data types (which requires undecidable or semi-decidable logics), model

checking is in general not effectively computable.

”»

1.2.2.2 Vérification par analyse de flot de données

L’analyse de flot de données réfere a un ensemble de techniques qui inferent des informations
sur le flot de données le long des chemins d’exécution d’un systeme logiciel [Aho et al., 2006].
L’exécution d’un systeme logiciel peut étre vue comme une série de transformations de 1’état
du systeme (constitué a partir de ’ensemble des valeurs de toutes les variables du systeme).
Chaque exécution d’une instruction intermédiaire transforme un état d’entrée a un nouvel état
de sortie. On dénote les valeurs de flot de données, respectivement, avant et apres une instruc-

tion s par INPUTS[s] et OUTPUTS]s].

Pour analyser le comportement d’un systeme, il faut prendre en compte tous les chemins
d’exécution possibles dans le graphe de flot de données. Ainsi, résoudre un probléme d’analyse
de flot de données revient a trouver une solution a un ensemble de contraintes (appelées équa-
tions de flot de données) sur les INPUTS[s] et OUTPUTS[s], pour toutes les instructions s. Il

existe deux types de contraintes :

e Contraintes sémantiques : elles définissent la relation entre les INPUTS[s] et OUTPUTS[s],

pour chaque instruction s. Cette relation est généralement présentée comme une fonction

27

CHaPTER 1 : Infroduction — in French

de transfert f, qui prend la valeur de flot de données INPUTS|s] avant I’instruction et pro-
duit une nouvelle valeur de flot de données OUTPUTS][s] apres I’instruction. Autrement

dit, OUTPUTS|s] = f(INPUTS]s]).

e Contraintes du flot de contrdle : si un systéeme comprend les instructions sy, s>, ..., s, dans
cet ordre, alors, la valeur sortant de s; est la méme que celle entrant dans s;,;. Autrement

dit, INPUTS[s;y;] = OUTPUTS][s;], pour touti = 1,2,...,n— 1.

Par exemple, pour vérifier une propriété telle que la vivacité des variables, qui détermine
si une variable est susceptible d’étre utilisée dans un chemin du graphe de flot de données,
nous définissons les contraintes de vivacité des variables (c.-a-d., définir les équations de flot
de données spécifiant qu'une variable d est active (vive) en un point p si un chemin com-
mencant en p contient une utilisation de d). Ces équations peuvent étre résolues en utilisant
un algorithme itératif. La convergence de cet algorithme est assurée par le théoreme du point
fixe [Kam and Ullman, 1976] qui garantit qu’une solution unique de type point fixe existe pour
ces équations. Une fois calculée, la vivacité d’une variable est une information tres utiles. Par
exemple, apres 1’utilisation de la valeur d’une variable a un point donné de I’exécution, il n’est
pas nécessaire de garder cette valeur en mémoire si elle n’est pas utilisée ultérieurement, le long
d’un chemin d’exécution. Dans la Section 6.3.2, nous présentons un autre exemple (détection

de dominance) qui illustre plus en détail les principes de 1’analyse de flot de données.

Plusieurs d’autres propriétés peuvent €tre calculées a ce niveau d’abstraction (c.-a-d., le
graphe de flot de données), y compris certaines propriétés que les model-checkers ne peuvent
pas calculer si le systeme a un espace d’états infini (voir par exemple [Govindarajan et al., 1992]).
En outre, un grand nombre d’algorithmes a été proposé dans la littérature pour calculer ces pro-
priétés. Malheureusement, a ce jour, I’utilisation principale de ces algorithmes (et en général,
I’analyse de flot de données) reste dans le contexte de la construction de compilateur, en par-
ticulier, pour les algorithmes des grammaires d’attribuées, qui sont utilis€s pour des analyses

sémantiques dans la plupart des compilateurs.

Notre motivation dans ce contexte est de tirer avantage de ces algorithmes et techniques qui
ont déja prouvés leurs efficacités pour faciliter la spécification et I’analyse d’applications dans

des environnements P2P.

28

1.2 Motivations et problématiques

1.2.3 Une approche centrée sur les données pour systemes a composants

Le développement a base de composants [Szyperski, 1998] est devenu de plus en plus important
en génie logiciel. Cela est dii essentiellement au besoin d’utiliser les concepts de cette approche
pour implémenter des services et augmenter le niveau d’abstraction en facilitant la réutilisation,
I’extension, la personnalisation et la composition de services [Yang and Papazoglou, 2004].
Ainsi, les services sont encapsulés dans des composants avec des interfaces bien définies pour
étre réutilisés dans plusieurs nouvelles applications. Cependant, le flot de données qui permet
aux services d’accomplir des activités de traitements et qui guide les interactions entre compo-
sants, n’est souvent pas pris en compte, voir méme totalement négligé, alors que dans plusieurs
domaines de recherche tels que le Grid Computing, I’Informatique Décisionnelle et le P2P,
les données sont incorporées comme une part importante du développement de systemes. Ré-
cemment, dans le domaine émergent du Cloud Computing, ou tout est service, la gestion de
données a fait I’objet d’une attention remarquable et d’un grand intérét [Abadi, 2009], et cela

ne peut que croitre.

Notre motivation dans ce contexte du développement a base de composants est de permettre
aux données et de leurs flots d’étre facilement spécifiés, vus et analysés, en particulier dans des
environnements P2P. Alors que la plupart des approches a composants actuelles se focalisent
sur les aspects structurels et fonctionnels de la composition de composants, nous insistons sur le
fait que la modélisation du flot et la dépendance entre données a le méme degré d’importance.
Essentiellement, parce que les interactions entre composants sont guidées et acheminées par

les données échangées.

1.2.4 Exemple illustratif : la spécification du protocole Gossip

Afin de motiver et illustrer I’'intérét de notre approche, en particulier dans le contexte des ap-
plications P2P, nous expliquons notre formalisme a travers la spécification du protocole Gossip
[Voulgaris et al., 2005] [Jelasity et al., 2007]. Le protocole Gossip, appelé également protocole
épidémique, est un protocole bien connu dans la communauté du P2P. Il est utilisé principale-
ment pour assurer une diffusion/dissémination fiable de 1’information dans un systeme distri-

bué, d’une maniere tres similaire a la propagation des épidémies dans des communautés bio-

29

CHaPTER 1 : Infroduction — in French

logiques. Ce type de diss€émination est un comportement commun dans diverses applications
P2P, et selon [Jelasity, 2011], un grand nombre de protocoles distribués peuvent étre réduits au
protocole Gossip. Il existe différentes variantes du protocole Gossip. Toutefois, un template qui
couvre un nombre considérable de ces variantes a été présenté par Jelasity dans [Jelasity, 2011].

Dans notre exemple, nous nous basons sur cette template présentée ci-dessous :

Algorithm 1 Squelette de 1’algorithme Gossip (d’apres [Jelasity, 2011])

loop
timeout(T)
node < selectNode()
send gossip(state) to node
end
procedure onPushAnswer(msg)
send answer(state) to msg.sender
state < update(state, msg.state)
end
procedure onPullAnswer(msg)
state «— update(state, msg.state)
end

Pour modéliser ce protocole Gossip, nous considérons un ensemble de nceuds qui s’ activent
périodiquement a chaque pas de temps 7 et disséminent ensuite des données dans le réseau en
échangeant des messages. En fait, quand un nceud recgoit des données, il répond a I’expéditeur,
puis propage a son tour les données dans le réseau (en pratique, les données sont envoyées a un
sous-ensemble de nceuds sélectionnés selon un algorithme spécifique). En terme de services,
un nceud est un composant qui a deux activités : servir et consommer des données. Il existe
deux services d’entrée (de 1’anglais input services) pour 1’activité servir et de deux services de
sortie (de 1’anglais output services) pour 1’activité consommer. Ces services sont décrits dans

I’interface du noeud comme suit :

({answer(resp : String), gossip(info : String)}in,
{gossip(info : String), answer(resp : String)}ou)

Le service gossip est utilisé pour a la dissémination de données, alors que le service answer
est utilisé pour I’envoi de la réponse a I’expéditeur. Le comportement des services d’entrée

(Iactivité servir) inverse tout simplement les mémes étapes des services de sortie (I’activité

30

1.2 Motivations et problématiques

consommer). A partir de cette description de services, nous pouvons construire intuitivement
un graphe de dépendance simple entre les services. En fait, les services de sortie d’un nceud
node, sont connectés aux services d’entrée d’un autre nceud nodey, et ainsi de suite. Ce graphe
représente une partie du flot de contrdle, mais il n’offre pas une information tres explicite sur
le flot de données. Nous ne pouvons pas savoir quelles sont les dépendances entre les services

et entre les données dans un nceud.

Pour compléter I’interface d’un nceud x avec une description a la fois du flot de contrdle et
celui de données, notre formalisme DDF spécifie le comportement sous la forme de regles :
r; . timeout(T) — (gossip(state,), nodey)
ry : (gossip(statey), nodey), [onPush] — (answer(state,), node,)

r3 . (gossip(statey), nodey), [onPull] —
r4 . (answer(statey), node,) -

r; indique que le service interne timeout active node, a chaque pas de temps 7T, puis envoie
la donnée state, au node, par I’intermédiaire du service gossip. r, indique que node, regoit la
données state, du node,, puis répond node, en lui envoyant la donnée state, par I’'intermédiaire
du service answer si la condition onPush est satisfaite. onPush est une pré-condition (pour
simplifier les choses, nous ignorons dans cet exemple ces pré-conditions). r; indique que node,
regoit la donnée state, du node, par I’intermédiaire du service gossip. ry indique que node,

recgoit la donnée state, du node, par I’'intermédiaire du service answer.

En introduisant ces régles, le systéme peut étre vu comme un ensemble de composants ou
chacun de ces derniers a des entrées (partie gauche des regles) et des sorties (partie droite des
regles). Les entrées recoivent des données portées par des services, et apres un traitement, les
données résultantes peuvent étre envoyées a travers les sorties. Ainsi, nous pouvons extraire
un graphe de dépendances entre données de I’ensemble du systéme, en connectant les graphes

partiels de dépendance entre données de chaque composant utilisé dans ce systeme.

1.2.5 Le besoin d’un runtime orienté composants, services et P2P

Des technologies tres performantes ont été développées dans le contexte du P2P. Cependant, la
plupart de ces technologies ne sont pas exploitées dans le processus de développement d’appli-

cations en raison des limitations des approches de spécification utilisées. Une de ces limitations

31

CHaPTER 1 : Infroduction — in French

est le couplage fort entre la logique métier et les protocoles sous-jacents du P2P. Cela force les
développeurs a faire des efforts considérables pour trouver puis comprendre les détails de ces
protocoles. De plus, ce couplage fort contraint les applications a s’exécuter dans des environne-
ments figés. Ainsi, choisir (par exemple) un autre protocole pour répondre a un nouveau besoin
d’exécution devient tres difficile. Une autre limitation est que les applications P2P sont généra-
lement spécifiées avec une faible habilité a déléguer des activités de calcul/traitement a d’autres
pairs, et se focalisent en particulier sur le partage et le stockage de données. Par conséquent,

elles ne profitent pas pleinement de la puissance de calcul qu’offre le réseau P2P sous-jacent.

Une Architecture Orientée Services (SOA) est une forme d’architecture pour concevoir et
développer des applications avec un couplage faible. Son but principal est non seulement de
fournir un modele d’intégration flexible (en réduisant les dépendances), mais aussi un haut ni-
veau d’abstraction (en encapsulant les détails). Des lors, la capacité d’applications a évoluer et
a s’adapter aux nouveaux besoins augmente. Dans la littérature, SOA est souvent couplée avec
les principes du développement a base de composants pour proposer des intergiciels. Cepen-
dant, la plupart de ces derniers ne sont pas adaptés aux applications P2P. Une des raisons est
que ces intergiciels reposent sur des registres de services centralisés. Cet élément central dans
une architecture SOA peut provoquer un goulot d’étranglement et causer le blocage de tout le
systeme en cas de sa défaillance. Cela présente des risques de fiabilité et limite 1’évolutivité
d’applications. Une deuxieme raison est que ces intergiciels utilisent des protocoles de com-
munication qui ne sont pas adaptés aux environnements P2P. Par exemple, une application P2P
n’est pas obligée de fonctionner en utilisant un Systeme de Noms de Domaine (DNS, de I’an-

glais Domain Name System) parce que les pairs n’ont pas toujours une adresse IP permanente.

Dans cette these, nous présentons le middleware SON. SON étend les principes de SOA,
ainsi que ceux du développement a base de composants pour développer et déployer des appli-

cations dans une architecture P2P d’une maniére facile et efficace.

SON assiste les développeurs d’applications en leur fournissant un mécanisme de généra-
tion automatique de code. Ce code généré s’occupe de plusieurs aspects liés au P2P comme
la gestion de la communication, les files d’attente ou la diffusions de messages. En fait, I’ uti-

lisateur de SON implémente seulement le code métier correspondant aux services déclarés.

32

1.3 Contributions

Ensuite, I’outil de génération de code génere les composants correspondants ainsi que leurs
conteneurs associés. Le conteneur du composant incorpore toutes les ressources nécessaires

pour adapter le code implémenté a 1’environnement d’exécution P2P.

SON peut étre considéré comme un middleware générique et 1éger (avec 1’ensemble des
opérations nécessaires qui doivent étre présentes pour développer des applications P2P a base
de composants et services), et ce, pour la raison suivante. Dans la plupart des cas, les chal-
lenges auxquels les systemes P2P font face peuvent se réduire a un seul probleme : “How
do you find any given data item in a large P2P system in a scalable manner, without any
centralized servers or hierarchy ?” [Balakrishnan et al., 2003], SON a unifié la notion de pu-
blish/subscribe : il utilise une table de hachage distribuée (DHT, de I’anglais Distributed Hash
Table) [Rhea et al., 2004] non seulement pour publier et consommer des données, mais aussi

pour permettre de publier, découvrir et déployer dynamiquement des services.

1.3 Contributions

Le travail présenté dans cette these comporte quatre contributions majeures. Avant de donner
un résumé de chacune de ces quatre contributions, nous présentons d’abord dans la sous-section

suivante des idées clés sous-jacentes a ces dernicres.

1.3.1 Des idées clés dans nos contributions

Faire attention aux dépendances : Toute spécification informatique est exprimée dans un lan-
gage contenant des dépendances entre les données et entre les différentes étapes/pas de
la spécification. Les développeurs d’applications accordent généralement peu d’attention
a ces dépendances, en particulier, aux dépendances "non-directes" qui peuvent étre tres
difficiles a localiser sans une analyse automatisée. Dans de nombreux cas, une bonne ges-
tion de ces dépendances améliore considérablement le fonctionnement d’applications.
Par exemple, en réduisant le nombre de dépendances, plusieurs optimisations peuvent

étre réalisées (comme réduire le temps d’exécution ou I’espace mémoire utilisé).

Séparer ce qui est calculé du comment il est calculé : Grosso modo, les dépendances peuvent

33

CHaPTER 1 : Infroduction — in French

étre détectées et ajustées a trois niveaux : au moment de la spécification, au moment de
la compilation et a celui de I’exécution. Dans notre cas, nous nous intéressons aux dé-
pendances au moment de la spécification et avec I'idée de sé€parer, autant que possible,
ce qui est calculé du comment il est calculé. L’avantage de cela vient du fait que non pas
une seule mais plusieurs implémentations peuvent étre synthétisées a partir de la spéci-
fication, et ce, grace a I’analyse de dépendances entre données (par exemple, analyser

comment évaluer les données d’une maniere incrémentale, partielle ou parallele).

Faire face a la complexité des couches de bas niveau : L'un des principaux challenges lors
du développement d’applications en P2P est la nécessité de comprendre les protocoles
de bas niveau. Bien que ces protocoles utilisent diftérents procédés (structures de don-
nées et algorithmes) leur objectif sous-jacent reste le méme, celui de trouver une donnée
particuliere dans un réseau P2P, d’une maniere évolutive et efficace. Souvent, d’autres
exigences non fonctionnelles sont également prises en compte par ces protocoles. Par
conséquent, leurs complexités augmentent. Cela les rend difficiles a comprendre et a uti-
liser par les développeurs d’applications qui ne sont pas forcement des spécialistes de ces
protocoles. Les développeurs devraient avoir le choix de construire leurs applications au
sein d’une architecture P2P sans faire face a la complexité des couches de bas niveau.
Nous avons donc la conviction que 1’abstraction est un début de solution pour répondre
a ce besoin. En fait, les détails du bas niveau doivent étre présentés d’une fagon plus

abstraite a travers un modele de haut niveau, clair et facile a comprendre.

1.3.2 DDF : Un langage formel pour des applications P2P a base de com-
posants

Le langage DDF a été développé pour décrire formellement, en utilisant 1’approche a compo-
sants, des applications P2P et leurs comportements. En particulier, le comportement récursif
qui est tres fréquent dans le contexte du P2P et que beaucoup d’approches de modélisation ne
peuvent pas décrire et analyser (comme c’est expliqué dans la Section 1.2.1). DDF a été égale-
ment développé pour construire une représentation abstraite des applications spécifiées (c.-a-d.,
le graphe de dépendance de données). Cette abstraction expose le bon niveau de détails pour

effectuer des analyses de flot de données. Avec DDF, une application P2P est spécifiée comme

34

1.3 Contributions

un réseau de recouvrement (de I’anglais Overlay Network) entre pairs. Les pairs sont représen-
tés par des instances de composants. Chaque instance de composant agit a la fois en tant que
serveur (avec ses services d’entrée) et en tant que client (avec ses services de sortie). Chaque
instance est connectée a un nombre limité d’autres instances. Quand le réseau évolue dans le
temps, les instances peuvent continuellement chercher de nouveaux partenaires en utilisant un
protocole comme le protocole Gossip (voir Section 5.2). Dans le cas de DDF, nous suppo-
sons I’existence d’une infrastructure sous-jacente (comme le middleware SON) qui fournit aux
instances de composants les mécanismes nécessaires de communication et de stockage. Cela
nous évite de surcharger la spécification de haut niveau avec les détails liés a la spécificité du
réseau, et de traiter ces détails au niveau des couches basses, la ou se trouve la nécessité de
le faire. Ainsi, nous proposons une spécification simple qui peut étre implémentée dans des

environnements différents et dynamiques.

1.3.3 Analyse des spécifications DDF en explorant le flot de données

La premiere étape de cette analyse consiste a construire un graphe de dépendance de données
(DDG) a partir de la spécification DDF. Ensuite, la vérification d’une propriété revient a trou-
ver une solution a un ensemble de contraintes (appelées équations de flot de données) sur les
entrées et les sorties des nceuds du graphe. Dans le Chapitre 6, nous illustrons cela a travers
deux exemples. Le premier exemple consiste a vérifier si un systéme comporte un interblo-
cage (deadlock), ce qui revient a chercher si un nceud dépend de lui-méme dans le graphe. Le
deuxieme exemple concerne la propriété de dominance (entre données) qui a de nombreuses
applications en informatique (optimisation de codes, détection de parallélismes, etc.). Pour cal-
culer la propriété de dominance dans un graphe DDG, nous formulons le probleme comme
un ensemble d’équations de flot de données qui définissent un ensemble de dominateurs pour

chaque nceud du graphe. Ces équations sont résolues grace a un algorithme itératif.

1.3.4 SON : Un middleware orienté composants, services et P2P

Avec le middleware SON, I'utilisateur est capable non seulement de développer des applica-

tions avec une approche a base de composants et orientée services, mais aussi de profiter d’un

35

CHaPTER 1 : Infroduction — in French

mécanisme de génération automatique de code, qui réduit et simplifie plusieurs taches liées a
I’exécution en environnement P2P (comme la gestion de la communication, I’instanciation de
composants a distance, la découverte de services, etc.). Ainsi, les développeurs d’applications
sont assistés et peuvent se concentrer davantage sur la logique métier. En fait, I’utilisateur de
SON définit pour chaque composant un ensemble de services (d’entrée, de sortie et internes).
Puis, il implémente seulement le code correspondant, c.a.d. les méthodes associées aux ser-
vices définis. Ensuite, I’outil de génération de code génere le conteneur de composants qui
incorpore toutes les ressources nécessaires pour adapter le code implémenté a 1’environnement

d’exécution P2P.

1.3.5 Evaluation de SON dans le contexte du projet STAMP

STAMP (modelling dynamic landscapes with Spatial, Temporal And Multi-scale Primitives)
est un projet de recherche financé (en partie) par I’ Agence Nationale de la Recherche (ANR)
et coordonné par Danny Lo Seen (du CIRAD, un centre de recherche frangais qui répond, avec
les pays du Sud, aux enjeux internationaux de 1’agriculture et du développement). Nos contri-
butions dans le cadre du projet STAMP peuvent étre présentées en deux grandes phases. Dans
la premiere phase, nous avons participé a la spécification d’un langage de modélisation pour
décrire les paysages et leur dynamique. Ce langage est nommé Ocelet et est le résultat prin-
cipal de ce projet. Dans la seconde phase, nous avons défini pour Ocelet un environnement
d’exécution orienté composants et services en se basant sur le middleware SON. L’évaluation
de SON dans ce contexte consiste a implémenter des scénarios d’application issus du domaine
de la modélisation de I’environnement et de sa dynamique. L’ objectif est de montrer comment
SON (en particulier, la disponibilité dynamique de services au cours de 1’exécution) est capable
d’améliorer et de renforcer I’efficacité de ces applications simulant des dynamiques environne-

mentales.

1.4 Organisation du manuscrit

Ce manuscrit de these est organisé comme suit. Dans les chapitres 3 et 4, nous présentons

les principaux concepts des approches utilisées et nous discutons 1’état de I’art des travaux

36

1.4 Organisation du manuscrit

connexes. Dans le chapitre 5, nous introduisons le formalisme DDF et nous prenons comme
exemple illustratif la spécification du protocole Gossip. Dans le chapitre 6, nous présentons
comment les algorithmes d’analyse de flot de données peuvent étre utilisés pour vérifier les
applications spécifiées avec le formalisme DDF. Nous illustrons cela a travers deux exemples :
la détection d’interblocage et I’extraction de la relation de dominance. Dans le chapitre 7, nous
décrivons les concepts et le fonctionnement du middleware SON. Nous présentons aussi deux
prototypes implémentés avec ce dernier : SGT (Simple Georeferencing Tool) qui est une ap-
plication simple et 1égere dédiée a la collecte, le traitement et 1’affichage de données géoré-
férencées, et P2Prec (a social based P2P recommendation system) qui est un systeéme de re-
commandation social en P2P développé au sein de notre équipe de recherche pour le partage
de données a large échelle. Le chapitre 8 a pour but de présenter I’évaluation de SON dans le
cadre du projet STAMP. Cette évaluation consiste a implémenter des scénarios d’application
issus du domaine de la modélisation de 1’environnement et de sa dynamique. Deux scénarios
d’application ont été¢ implémentés : Lotka-Volterra qui simule 1’évolution d’un modele proie-
prédateur, et Rift Valley Fever (la Fievre de la Vallée du Rift) qui simule la propagation d’une
maladie transmise par des moustiques dans une zone de I’ Afrique de I’Ouest. Enfin, le chapitre

9 présente la conclusion et les travaux futurs.

37

CHaPTER 1 : Infroduction — in French

38

Chapter 2

Introduction - in English

Contents
21 OVEIVIEW . . . i i it it i it e et e e e ettt e 39
2.2 Motivations and problem statements 42
2.2.1 Specificity of P2P applications 42
2.2.2 Towards Data-Flow Analysis of P2P applications 43
2.2.3 Exploring data-centric approach for component-based systems 46
2.2.4 Illustrative example: specifying Gossip protocol 46
2.2.5 Needs for component and service-oriented P2P runtime 48
23 Contributionst i i e e e e 50
2.3.1 Keyideas in our contributions 50
2.3.2 DDF: A formal language for component-based P2P applications . . . 51
2.3.3 Analysis of DDF specification with data-flow principles 51
2.3.4 SON: A component- and service-oriented P2P middleware 52
2.3.5 Evaluation of SON in the STAMP project 52
24 Thesisoutlinec0iiiiiiiiiiinnnnnnns 53

2.1 Overview

Developing Peer-to-Peer (P2P) applications became increasingly important in software devel-
opment. Nowadays, a large number of organizations from many different sectors and sizes
depend more and more on collaboration between actors (individuals, groups, communities,
etc.) to perform their tasks. P2P architecture is the concept of an entity acting at the same
time as a server and as a client in P2P networks [Schollmeier, 2001]. This is completely dif-

ferent to Client/Server networks, within which the participating entities can act as a server or

39

CHAPTER 2 : Introduction — in English

as a client but cannot embrace both capabilities. Therefore, the responsibilities of entities are

approximately equal and each entity provides services to each other as peers.

In software systems, especially those that support P2P applications, data are required for
achievement of the computing activity and driving the interactions between software entities.
Nevertheless, software system design is usually based on computational aspects with data as
an afterthought. A data-centric approach provides a different way of viewing and designing

applications. It lets us focus on the flow and transformation of data through the software system.

In this context, we have defined a Data-Dependency Graph (DDG). It has been chosen as
an abstract representation for P2P applications for the following two reasons. Firstly, it repre-
sents only one data-flow model (dictated by the dependence between data) on the execution.
Further, DDG exposes the right level of detail—enough to perform Data-Flow Analysis (DFA)
[Aho et al., 2006].

In this thesis, we present an approach that combines component- and service-oriented devel-
opment [Szyperski, 1998] [Huhns and Singh, 2005] with well-understood methods and tech-
niques from the field of Attribute Grammars (AGs) [Paakki, 1995] and Data-Flow Analysis
(commonly used in compiler construction) in order to specify, analyse and deploy P2P appli-
cations. This approach embodies a component-based service middleware called SON (Shared-
data Overlay Network) to develop and execute P2P applications, and a formalism called DDF
(Data-Dependency Formalism) to capture the behavior of SON’s applications and construct

their Data-Dependency Graphs.

SON middleware is used as an execution framework to handle the P2P runtime requirements
(e.g., communication mechanisms, message queue management and broadcasting messages)
with an automatic code generation. This generation offers greater ease to application developers

and allows them to focus only on the business logic.

DDF formalism provides the necessary set of operations to specify and analyze P2P ap-
plications. DDF can be considered as a minimal and lightweight formalism for the following
two reasons. Firstly, the goal of DDF is to formally construct the dependency graph which

exposes the right level of detail to perform data-flow analysis. Secondly, DDF is not intended

40

2.1 Overview

to express business code or to be a general-purpose programming language. This is performed
according to Domain-Specific Language (DSL) [Mernik et al., 2005] principles. We note that
DDF is highly inspired by the main characteristics of the Attributed Grammars because they
are able not only to construct similar dependency graph, but also to naturally capture complex
recursive behavior (which is very frequent in P2P applications cf. Section 2.2.1) that many

other approaches cannot describe.

The runtime architecture of SON can be viewed as a set of interacting components. These
interactions are performed by receiving or sending service calls. When a service call is re-
ceived or sent, data can be exchanged (e.g., service parameters, service result and component
attributes). Moreover, the propagation of service calls from one component to another may
depend on the data carried by a certain service called earlier. Therefore, we want to extend
the specification of services that defines the inputs and outputs of components by the notion
of dependency. This notion captures not only the dependencies between services, but also the
dependencies between exchanged data (required and provided). By defining such notion, it
will be possible for a given composition/assembly of components to infer the data-flow and
construct a Data-Dependency Graph of the whole system. This notion of dependency between

services and between data is defined using DDF.

Once the Data-Dependency Graph is constructed from DDF specification, we can per-
form several data-flow analyzes. In Chapter 6, we illustrate that through two examples. The
first one shows how to treat the deadlock detection problem by searching for circularity in
the graph, while the second one computes dominance information by searching for domina-
tors for each graph node. Other analyzes (inspired from DFA and AGs literature (cf. e.g.,
[Parigot et al., 1996] [Jourdan and Parigot, 1990]) can be performed. For instance, by analyz-
ing the order of data evaluation, we will be able to determine formally which services in a

system can be executed in a parallel or incremental way.

In addition to the construction of the dependency graph of a system, our DDF formal-
ism is able to naturally capture recursive behavior by using a rule-based specification. It is
a well-known result from the formal language theory that Finite-State Automaton (FSA) can-

not capture such behavior [Aho et al., 2006]. This implies that FSA-based approaches used

41

CHAPTER 2 : Introduction — in English

to model software applications cannot describe and analyze it. In particular, in the context of
component-based development, a large body of component behavior modeling approaches can
be reduced to FSA. The well-known component models SOFA [Bures et al., 2008] and Fractal
[Bulej et al., 2008] clearly raise this issue. For instance, in [Bures et al., 2008] the authors say:
“our approach cannot treat behavior that cannot be modeled by a regular language (e.g. re-
cursion)”. Therefore, such component approaches are not adequate for P2P applications where

recursive behavior is very frequent as explained in the next section.

2.2 Motivations and problem statements
2.2.1 Specificity of P2P applications

Important properties of P2P applications are scalability and self-organization because of their
very large user base and the specificity of connections between different peers (e.g., low-
bandwidth connections) [Ripeanu et al., 2002]. To support scalability and self-organization
in such networks, a large number of P2P-specific algorithms and protocols have been de-
veloped. These algorithms and protocols are often executed recursively. Consider, for in-
stance, reputation computation' which is a problem of great importance in P2P environments
[Aberer and Despotovic, 2001] (a simple example justifying this importance is the case where,
while downloading files with a P2P file sharing software, we want to choose only reliable
peers). The reputation computation is based on a sequence of queries for getting the trust in-
formation about a peer A and their corresponding responses. Such computation should be per-
formed recursively since a response returned from another peer B is the result of a query about
the truthfulness of B. In addition, during this trust computation, we must receive all information
in the correct order since the cut-off might rely on that order. Such recursive call-backs can be
viewed as a sequence of well-formed parentheses if a query call is replaced by a left paren-
thesis and the corresponding response by a right parenthesis. Therefore, the set of sequences

describing these recursive call-backs is a Dyck-Language?. It is a well-known result from the

'We note that reputation computation presents a particular case of information dissemination and can be per-
formed using Gossip protocol presented in Section 2.2.4.

>The Dyck-Language D is the subset of {x, y}* such that if x is replaced by a left parenthesis and y by a right
parenthesis, then we obtain sequence of properly nested parentheses [Stanley, 2001].

42

2.2 Mootivations and problem statements

formal language theory that a Dyck-Language is not a regular language [Stanley, 2001]. Thus,

no Finite-State Automaton exists that accepts a Dyck-Language.

The kind of recursive call-backs presented above, which has a properly nested structure, can
be well defined in terms of Pushdown Automata or context-free languages (discussed in Section
4.1). However, it is frequently the case that P2P protocols present more complex recursive
call-backs which give rise to context-sensitive structures (interactive structures that adjust their
behavior when the context changes). Consider, for example, the case where four neighboring
peers exchange information according to an interaction that corresponds to two interleaved
recursive call-backs. Such kind of interaction (a"b™c"d™) is context-sensitive and cannot be

described by context-free languages [Aho et al., 1986].

Referring to the research work on Attribute Grammars [Parigot et al., 1996] which are
context-sensitive languages, the recursive behavior of P2P applications can be captured by
describing both control and data flow of each interaction. In addition, this behavior can be ana-
lyzed using DFA techniques. Furthermore, the Chomsky hierarchy of languages [Chomsky, 1956]

ensures the following strict inclusions:

type-3 C type-2 C type-1 C type-0
with:
type-3: Regular languages (recognized by Finite-State Automaton).
type-2: Context-free languages (recognized by Pushdown Automaton).
type-1: Context-sensitive languages (recognized by non-deterministic Turing machine).

type-0: Recursively enumerable languages (recognized by Turing machine).

2.2.2 Towards Data-Flow Analysis of P2P applications

2.2.2.1 Model checking and the specificity of P2P applications

Model checking is an automated technique that, given a finite-state model of a system and a for-

mal property, systematically checks whether this property holds for (a given state in) that model

43

CHAPTER 2 : Introduction — in English

[Baier and Katoen, 2008]. It explores all possible states of the system in an exhaustive manner.
Model checking has been successfully applied to a wide range of systems such as embedded
systems, hardware design and software engineering. Unfortunately, not all systems can take
advantage of its power. One reason for this is that some systems cannot be described as a finite-
state model. In particular, in the context of P2P applications (as explained above). Another rea-
son is that model checking is not suited for data-intensive applications (which, in many cases,
are developed using the P2P paradigm cf. e.g., [Lee et al., 2007] [Ranganathan et al., 2002]).
The recent book on model checking [Baier and Katoen, 2008] clearly shows why the verifica-
tion of data-intensive applications is extremely hard. Even if there are only a small number of
data, the state space that must be analyzed may be very large. The authors even consider that

this is one of the first weaknesses:
“The weaknesses of model checking:

e [t is mainly appropriate to control-intensive applications and less suited for data-intensive
applications as data typically ranges over infinite domains.

e [ts applicability is subject to decidability issues; for infinite-state systems, or reasoning
about abstract data types (which requires undecidable or semi-decidable logics), model

checking is in general not effectively computable.

”»

2.2.2.2 Verification by Data-Flow Analysis

Data-flow analysis refers to a body of techniques, which derive information about the flow of
data along software system execution paths [Aho et al., 2006]. The execution of a system can
be viewed as a series of transformations of the system state, which consists of the values of all
the data in the system. Each execution of an intermediate statement transforms an input state to
an output state. We denote these data-flow values before and after a statement s by INPUTS]s]

and OUTPUTS]s], respectively.

To analyze the behavior of a system, we must consider all the possible paths (i.e., sequences
of system states) through a flow graph that the system execution can take. Thus, solving a

problem in data-flow analysis is reduced to find a solution to a set of constraints (called Data-

44

2.2 Mootivations and problem statements

Flow Equations) on the INPUTS[s] and OUTPUTS]s], for all system statements s. There exist

two sets of constraints:

e Semantic constraints: they define the relationship between INPUTS[s] and OUTPUTS|s]
of each statement s. This relationship is usually presented as a transfer method f that takes
the INPUTS|s] before the statement and produces OUTPUTS|s] after the statement. That
is, OUTPUTS[s] = f;(INPUTS[s]).

e Control-flow constraints: If a system consists of statements s, 52, ..., S,, in that order,
therefore, the control-flow value out of s; is the same as the one into s;,;. That is,

INPUTS[5;4/] = OUTPUTS|s;], foralli=1,2,...n— 1.

For example, to verify a property such as liveness of data that determines whether a datum
is used in the future along some path in the flow graph, we shall set up the constraints for live-
ness of data (i.e., define the data-flow equations specifying that a datum d is live at a system
point p if some path from p to its end contains a use of d). These equations can be solved using
an iterative algorithm form a fixed-point solution. The convergence of the algorithm is assured
by the theory of iterative data-flow analysis [Kam and Ullman, 1976], which demonstrates that
a unique fixed point exists for these equations. Liveness information can be very useful. For
instance, if the result of a datum assignment in a software system is not used along any sub-
sequent execution path, then the assignment is considered as dead code that we can eliminate.
In Section 6.3.2, we provide an other example (detection of dominance) that illustrates in more

details the principles of data-flow analysis.

A broad range of other system properties can be computed at this level of data abstraction,
including some properties like safety and liveness that model checking cannot compute for
infinite state systems (cf. e.g., [Govindarajan et al., 1992]). In addition, several algorithms
have been proposed in literature to compute these properties. Unfortunately, to date, the most
dominant application of these algorithms, and more generally, Data-Flow Analysis, is in the
context of compiler construction. In particular, for Attribute Grammar formalism, which is

used to describe the semantic analysis in most compilers.

Our motivation in this context is to use the well-understood methods and techniques from

the field of AGs and DFA in order to construct an abstract representation for P2P applications

45

CHAPTER 2 : Introduction — in English

and then perform data-flow analyzes on it.

2.2.3 Exploring data-centric approach for component-based systems

Component-based Software Engineering (CBSE) [Szyperski, 1998] became increasingly im-
portant in software engineering. This emerges from the need to use CBSE concepts to imple-
ment services and raise the level of abstraction by easing packaging, reusing, extending, cus-
tomizing and composing services [Yang and Papazoglou, 2004]. Thus, services can be encap-
sulated and their interfaces can be exposed into cohesive components to assist in the creation of
new applications. Hence, component-based approach yields promising benefits such as service
composition, reusability and adaptation. However, the data manipulated by services to produce
actionable results and which drive component interactions are considered as an afterthought.
Whereas, the data are incorporated as an important part of the development of systems in sev-
eral research areas such as Grid Computing, Business Intelligence and P2P systems. Recently,
in the emerging Cloud Computing area, where everything is as a service, data management has

been receiving significant excitement and attention [Abadi, 2009], and this can only increase.

Our motivation in this context is to investigate the applicability of the data management for
software component systems by allowing run-time data to be specified, viewed and analyzed,
especially in P2P environments. While many of the current component approaches emphasize
the structural and functional aspects of component composition, we insist on modeling of flow
and dependencies of run-time data because the interactions between components are due to
exchanged data. Thus, it is our belief that data must be considered to be an integral part of

design and behavior specifications of component-based systems.

2.2.4 Illustrative example: specifying Gossip protocol

In order to motivate and illustrate that our approach is useful, especially in the context of P2P
applications, we explain our dependency formalism in an example that consists of a Gossip
protocol [Voulgaris et al., 2005, Jelasity et al., 2007]. Gossip protocol, also called epidemic
protocol, is well-known in the community of P2P. It is mainly used to ensure a reliable in-

formation dissemination in a distributed system in a manner closely similar to the spread of

46

2.2 Mootivations and problem statements

epidemics in a biological community. This kind of dissemination is a common behavior of var-
ious P2P applications, and according to [Jelasity, 2011], a large number of distributed protocols
can be reduced to Gossip protocol. There exist different variants of Gossip protocol. However,
a template that covers a considerable number of those variants has been presented by Jelasity

in [Jelasity, 2011]. In our example, we will rely on this template shown in Algorithm 2.

Algorithm 2 The gossip algorithm skeleton (from [Jelasity, 2011])

loop
timeout(T)
node « selectNode()
send gossip(state) to node
end
procedure onPushAnswer(msg)
send answer(state) to msg.sender
state «— update(state, msg.state)
end
procedure onPullAnswer(msg)
state < update(state, msg.state)
end

To model this Gossip protocol, we consider a set of nodes, which get activated in each T’
time units exactly once and then spread data in a network by exchanging messages. Basically,
when a node receives data, it responds to the sender and propagates the data to another node in
the network (in practice, the data are propagated to a subset of nodes selected according to a
specific algorithm). In terms of service, a node is a component that has two activities: serving
and consuming data. There are two input services for the serving activity and two output ser-

vices for the consuming activity. These services are described in the node interface as follows:

({answer(resp : String), gossip(info : String)}iy,
{gossip(info : String), answer(resp : String)}our)

The gossip service is for the propagation of data and the answer service is for sending a
response to the sender. The behavior of input services (serving activity) just mirrors the same
steps of the output services (consuming activity). From this description of services, we can
construct intuitively a simple dependency graph between services, i.e., output services of a
node, are connected to input services of node,, and so on. This graph represents a part of

the control flow but it is not very explicit about the data flow. In fact, we do not know the

47

CHAPTER 2 : Introduction — in English

dependencies between services and between data within a node.

To complete this interface with a description of both control and data flow, our formalism

specifies the behavior with a set of rules:

r; . timeout(T) — (gossip(state,), nodey)
ry . (gossip(statey), node,), [onPush] — (answer(state,), nodey)
r3 1 (gossip(statey), nodey), [onPull] —

r4 © (answer(statey), node,) —

where, r; indicates that the internal service timeout activates the node, in each T time and
then sends the data state, to node, through the service gossip. r, indicates that the node,
receives the data state, from node, and then responses by sending the data state, through the
service answer if the condition onPush is satisfied. onPush is a guard condition (to keep things
simple, we will ignore guard conditions in this example). r; indicates that the node, receives
the data state, from node, through the service gossip. ry indicates that the node, receives the

data state, from node, through the service answer.

By introducing these rules, the system can be viewed as a set of components where each
component has inputs (left side of the rules) and outputs (right side of the rules). The inputs
receive data carried by services, and after computation, these data can be sent through out-
puts. Therefore, we can extract a Data-Dependency Graph of the whole system by connecting
together the partial data dependency graphs corresponding to each component used in this sys-

tem.

2.2.5 Needs for component and service-oriented P2P runtime

There exist interesting technologies developed in the P2P context. However, most of these
technologies are not well exploited in application development process due to the limitations
of specification approaches used for P2P applications. One of these limitations is the tight
coupling between application specification and the underlying P2P technologies and protocols.
This forces software developers to make tedious efforts in finding and understanding detailed
knowledge about P2P low level concerns. Moreover, this tight coupling constraints applications

to run in a changeless runtime environment. Consequently, choosing (for example) another

48

2.2 Mootivations and problem statements

protocol at runtime to meet a new requirement becomes very difficult. Besides these previous
issues, P2P applications are usually specified with a weak ability to delegate computing activi-
ties between peers, and especially focus on data sharing and storage. Thus, it is not able to take

full advantages of the computing power of the underlying P2P network.

Service-Oriented Architecture (SOA) is an approach for designing and architecting loosely
coupled applications with services requested and consumed on demand. The main purpose
of SOA is to provide a flexible model of integration (by reducing dependencies) as well as a
higher level of abstraction (through encapsulations of details). Thus, the ability to align appli-
cations with new business requirements increases. In the literature, SOA are usually coupled
with CBSE principles to propose component-based service middlewares. However, most of
them are not adapted to P2P applications. One reason for this is that they rely on centralized
service registries/brokers. Such centralized element in a SOA might cause a bottleneck and
central point of failure. Thing that introduces reliability risks and limits application scalabil-
ity. Another reason is that they are based on communication protocols which are inadequate in
P2P environment. For instance, P2P systems are not forced to operate using a Domain Name

Service (DNS) because the peers might not have a permanent IP address.

In this thesis, we present SON middleware. It extends the principles of service-oriented
architecture as well as component-based development to support building applications within a

P2P architecture in an effortless and effective way.

SON middleware assists application developers by providing an automatic code generation
which handles several runtime requirements (e.g., communication mechanisms, message queue
management, broadcasting messages, etc.). In fact, SON’s user implements only the business
code corresponding to the declared services. Afterwards, a code generation tool generates the
corresponding components and their associated containers. The component container embodies

all resources needed to adapt the implementation code to the P2P runtime environment.

SON can be considered as a generic lightweight P2P middleware (with the necessary set of
operations that must be present to develop component and service-based P2P applications)
for the following reason. Since, in most cases, the challenges of P2P systems can be re-

duced to a single problem: “How do you find any given data item in a large P2P system in

49

CHAPTER 2 : Introduction — in English

a scalable manner, without any centralized servers or hierarchy?” [Balakrishnan et al., 2003],
SON has been unified the notion of publish/subscribe: it uses a DHT (Distributed Hash Table)
[Rhea et al., 2004] not only to publish and subscribe data, but also to enable dynamic service

publication, discovery, and deployment.

2.3 Contributions

The work of this thesis features four major parts of contributions. Before giving a summary of

each part in the last four subsections, we present first key ideas that underlie those parts.

2.3.1 Key ideas in our contributions

Pay attention to dependencies: Any software specification that is expressed in a language
contains some kinds of dependencies between data and between the steps of the spec-
ification. Software developers generally pay little attention to these dependencies, in
particular, to “non-direct” dependencies that they can be very hard to identify without a
computer analysis. In many cases, managing dependencies leads to direct improvement
in the application’s running time. For example, reducing the number of dependencies

may help to perform several optimizations (e.g., in execution time or memory usage).

Separate what is computed from how it is computed: Roughly speaking, there are three times
at which dependencies can be detected and adjusted: when software is specified, when it
is compiled, and when it is executed. In our case, we are interested in dependencies at the
specification level and we have chosen to separate, as far as possible, what is computed
from how it is computed. The advantage of this choice comes from the fact that not only
one but multiple implementations of the specification can be synthesized by analyzing

data dependencies (e.g., evaluating data in incremental, partial, or parallel way).

Avoid the stress of dealing with low level complexity One of the main challenging issues in
P2P application development is the need to understand low level protocols. Although low
level protocols use various schemes, data structures and algorithms, the underlying pur-

pose remains the same: find given data within a P2P network in a scalable and consistent

50

2.3 Contributions

manner. In many cases, other non-functional requirements are also taken in charge by
the protocols. Consequently, their complexity increases, which makes them difficult to
comprehend and use by non-specialist software developers. Software developers should
have the choice to build their applications within a P2P architecture without the stress
of dealing with P2P low level complexity. As such, we believe that abstraction is a so-
lution to simplify the development of P2P applications. The low level details should be

abstracted into clear and easy to understand model.

2.3.2 DDF: A formal language for component-based P2P applications

DDF (Data Dependency Formalism) is used as an underlying formalism for the work presented
in this thesis. It has been developed to formally describe component-based P2P applications
and their recursive behavior. This kind of behavior is very frequent in the context of P2P
and many modeling approaches cannot describe it, as explained in Section 2.2.1. DDF has
been also developed to construct an abstract representation (i.e., Data-Dependency Graph).
This abstraction exposes the right level of detail to perform data-flow analyzes. With DDF, a
P2P application is specified as an overlay network between peers. Peers are represented by
component instances. Each component instance acts both as a server (with its input services)
and a client (with its output services). Each instance is connected to a bounded number of
other instances. As the network evolves, instances can continuously seek after new partners
through a specific protocol, such as Gossiping (cf. Section 5.2). We assume the existence
of an underlying layer (SON infrastructure in our case) that provides to component instances
the necessary storage and communication mechanisms. These assumptions allow us to make
only very weak networking issues at the high level description and defer the additional ones
to the lowest level where they are needed. Thus, we provide a simple specification that can be

implemented in different environments with different low level assumptions.

2.3.3 Analysis of DDF specification with data-flow principles

The first step of this analysis is to construct a Data-Dependency Graph (DDG) from a DDF

specification. After that, verifying a property is reduced to find a solution to a set of constraints

51

CHAPTER 2 : Introduction — in English

(called data-flow equations) on the inputs and the outputs of the graph nodes representing data.
In this thesis, we illustrate that through two examples. The first example consists of checking
the property of deadlock freedom, which is reduced to find whether a node in the graph depends
on itself. The second example is about dominance property that has many applications in
computer science (code optimization, detection of parallelism, construct of hierarchical overlay
networks, etc.). To compute dominance information in a DDG, we formulate the problem as a
set of data-flow equations that defines a set of dominators for each graph node. These equations

are solved with an iterative algorithm.

2.3.4 SON: A component- and service-oriented P2P middleware

By using SON (Shared-data Overlay Network) middleware, the user is able not only to exe-
cute applications in component- and service-oriented model, but also to perform an effective
code generation to support P2P runtime requirement. Thus, software developers are assisted
and have greater ease in application development stage. These facilities allow them to focus
more on the business logic and defer to SON the management of the runtime (e.g., communica-
tion mechanisms, instantiation and connection of components, service discovery, etc.). In fact,
SON’s user defines for each component a set of services (input, internal and output). Then,
he only implements the code of the component, i.e., the methods that implement the defined
services. Afterwards, a code generation tool, called Component Generator, generates the com-
ponent container that embodies all resources needed to adapt the implementation code to the

P2P runtime environment.

2.3.5 Evaluation of SON in the STAMP project

STAMP (modelling dynamic landscapes with Spatial, Temporal And Multi-scale Primitives)
is a research project supported (in part) by the Agence Nationale de la Recherche (ANR) and
coordinated by Danny Lo Seen (from CIRAD, a French research centre working with develop-
ing countries to tackle international agricultural and development issues). Within the STAMP
project, we have contributed in two main ways. First, we have participated to the design and the

specification of an environmental modelling language called Ocelet, which has been the main

52

2.4 Thesis outline

result of this project. Second, we have defined for Ocelet a component and service-oriented
runtime based on SON infrastructure. The evaluation of SON in this context consists of imple-
menting application scenarios from the area of modelling environmental landscapes and their
dynamics. The objective is to show, how SON (i.e., especially the dynamic availability of ser-
vices in a service-oriented runtime) is able to improve and enhance the effectiveness of such

environmental dynamic applications.

2.4 Thesis outline

This thesis is organized as follows. In Chapters 3 and 4, we present some background concepts
and the state-of-the-art. In Chapter 5, the DDF formalism is introduced and illustrated through
the case-study Gossip protocol. In Chapter 6, we present how Data-Flow Analysis techniques
can be used to analyze applications specified with our DDF. We illustrated that through two
examples: deadlock and dominance detection. In Chapter 7, we describe the fundamental
concepts of SON middleware. Besides the conceptual issues, the chapter presents a summary
of the two prototypes: SGT (Simple Georeferencing Tool) which is a lightweight application
dedicated to collect, process and display georeferenced data, and P2Prec (a social based P2P
recommendation system) which is developed in our research team for large-scale data sharing.
Chapter 8 aims at presenting the results of the evaluation of the SON in the context of STAMP
project. The evaluation consists of implementing application scenarios from the area of mod-
elling environmental landscapes and their dynamics. Two application scenarios are presented:
Lotka-Volterra that simulates the evolution of a predator-prey model, and Rift Valley Fever that
presents a land-scape modelling experiment on the spread of a mosquito-borne disease in an

arid area in West Africa. Finally, Chapter 9 concludes and presents future work.

53

CuarTER 2 : Introduction — in English

54

Part 11:

Background and State-of-the-art

Chapter 3

Paradigms and concepts

Contents
3.1 Componentorientation 000ttt 58
3.1.1 Whatisacomponent? 58
3.1.2 Component-Based Software Development (CBSD) 59
3.1.3 Componentmodels 60
3.2 Service-Oriented Architecture (SOA)ttt 64
3.2.1 Definition and characteristics 64
322 Designprinciples 65
3.3 Peer-to-Peer (P2P) architecture ¢ vttt ittt 69
3.3.1 Whatis Peer-to-Peer? 69
3.3.2 Architecturedesigns 70

Before engaging in a discussion of existing related approaches (presented in the next chap-
ter), we aim here to familiarize the reader with some concepts from the field of software engi-
neering that are needed to comprehend the work presented in this thesis. These concepts are
presented in three sections. Section 3.1 defines the concept of a software component and gives
the principles of component-based development. It also presents the main characteristics of
some industrial and academic component models. Section 3.2 introduces Service-Oriented Ar-
chitecture (SOA), and presents its characteristics and its design principles. Finally, Section 3.3

gives an overview of Peer-to-Peer (P2P) architecture and presents some of its related designs

(i.e., centralized, decentralized and hybrid).

57

CHAPTER 3 : Paradigms and concepts

3.1 Component orientation
3.1.1 What is a component?

In its most general sense, a software component is an independently deliverable package of
reusable software services [Kaisler, 2005]. In the computer science literature, the term “com-

ponent” has many definitions. Here are a few commonly accepted ones:

- A component is a non-trivial, nearly-independent, and replaceable part of a system
that fulfills a clear function in the context of a well-defined architecture. A component

conforms to and provides the physical realization of a set of interfaces. [Kruchten, 1998]

- A software component is a unit of composition with contractually specified interfaces
and explicit context dependencies only. A software component can be deployed indepen-

dently and is subject to third-party composition. [Szyperski, 2002]

- A software component is a piece of self-contained, self-deployable computer code with

well-defined functionality and can be assembled with other components through its in-

terface. [Wang and Qian, 2005]

Kruchten suggests that, first, a component is non-trivial; it is functionally and conceptually
larger than a single class or a single line of code. Typically, a component encompasses the
structure and behavior of a collaboration of classes. Second, a component is nearly independent
of other components because it rarely stands alone. A given component collaborates with other
components and in so doing assumes a specific architectural context. Third, a component
is substitutable for any other component which realizes the same interfaces. This aspect helps
during development, where parts of a system can be stubbed, sketched, then replaced by mature,
robust implementations. Fourth, a component fulfills a clear function. A component is logically
and physically cohesive, and thus denotes a meaningful structural and/or behavioral chunk of a
larger system. It is not just some arbitrary grouping. Fifth, a component exists in the context of
a well-defined architecture. A component represents a fundamental building block upon which
systems can be designed and composed. Finally, a component conforms to a set of interfaces.

Thus, it may be substituted in any context wherein that interfaces apply.

58

3.1 Component orientation

Szyperski suggests' that a component has a technical part, with aspects such as indepen-
dence, contractual interfaces, and composition. It also has a market-related part, with aspects
such as third parties and deployment. This definition has several implications. For a compo-
nent to be composable with other components, it needs to be sufficiently self-contained. Also,
it needs to come with clear specifications of what it requires and provides. In other words, a
component needs to encapsulate its implementation and interact with its environment by means
of well-defined interfaces. For a component to be independently deployable, it needs to be well
separated from its environment and other components. A component, therefore, encapsulates
its constituent features. Also, as it is a unit of deployment, a component will never be deployed
partially. In this context, a third party is one that cannot be expected to have access to the

construction details of all the components involved.

Wang and Qian suggest that a component is a program or a collection of programs that can
be compiled and made executable. It is self-contained; thus, it provides coherent functionality.
It is self-deployable so that it can be installed and executed in an end user’s environment. It can
be assembled with other components so that it can be reused as a unit in various contexts. The
integration is through a component’s interface, which means that the internal implementation
of a component is usually hidden from the user. This definition differs from the previous ones
by the fact that it has been proposed to embrace a wide range of industrial component-based
approaches. Component approaches complying with it include JavaBeans and Enterprise Java
Beans (EJB) from Sun Microsystems (bought by Oracle), COM (Component Object Model),
DCOM (Distributed Component Object Model), and .NET components from Microsoft, and
CORBA (Common Object Request Broker Architecture) components from the Object Man-

agement Group.

3.1.2 Component-Based Software Development (CBSD)

Component-Based Software Development (CBSD) is also called component-based software

engineering (CBSE). Its main purpose is to break monolithic applications into reusable units

'Szyperski’s definition was first formulated at the 1996 European Conference on Object-Oriented Program-
ming (ECOOP) as one outcome of the Workshop on Component-Oriented Programming (Szyperski and Pfister,
1997).

59

CHAPTER 3 : Paradigms and concepts

(components) that can be implemented, distributed, and upgraded independently [Kaisler, 2005].
To achieve this, we need mechanisms for interoperability between components. Once compo-
nents can interoperate, we can combine them to develop larger and more complex applications
in an incremental way. Thus, CBSD improves software developers’ productivity and applica-

tion quality.

As suggested in [Leeb, 1996], component-based development has at least two key advan-
tages over traditional Object-Oriented Programming (OOP). First, components interoperate at
runtime. Therefore, they can be dynamically integrated in an application. Second, component
interfaces are separated from the implementation. Thus, it is possible to implement and update
components independently. To implement the code of a component, only the interface of that

component is needed.

At the implementation level, applications are generally sets of modules written in one or
more programming languages. Such modules come under various names (methods, procedures,
objects, packages, etc.), but they can all be seen as abstractions for components. However, they
are not sufficient to meet the goal of component-based development. One reason for this is
that the programming languages used to develop these modules only support a small set of
basic interconnection mechanisms (e.g., method invocation or shared global variables). The
programmer is then constrained to include additional functionalities to reduce dependencies

among application modules.

3.1.3 Component models

A component model consists of a set of rules to be followed in component development and
deployment [Jaffar-ur Rehman et al., 2007]. These rules might concern the way in which the
interfaces should be implemented, the component that must be packaged, and the documents
to be filled out to provide additional information on the component itself. Many different
component models have been defined and they can be put in two large groups: industrial group
and academic group. In the following sections, we briefly present three component models
that lead the scene in each group. More discussions about other academic ones related to our

approach can be found in the next chapter.

60

3.1 Component orientation

3.1.3.1 Academic models

SOFA 2.0 [Bures et al., 2006] is a typical academic component model. It uses hierarchical
components that can be either primitives or composites. It is a successor of the SOFA
component model [Plasil et al., 1998], which has the following features: ADL-based de-
sign, behavior specification using behavior protocols, generated connectors supporting
distribution of applications, and a runtime environment with dynamic update of compo-
nents. In SOFA 2.0, a component is primarily seen as a black-box. It has well-defined
interfaces and exists at design, deployment, and run time. Components are defined by
their frame and architecture. A frame enables to define a component via interfaces, while
an architecture implements at least one frame and specifies internal structure of the com-
ponent (its subcomponents and their composition). The specification is separated from
the implementation by using meta-model. The semantics of component composition is
defined trough Extended Behavior Protocols (EPB). Finally, deployment-related features

are specified separately in a deployment plan.

FRACTAL [Bruneton et al., 2006] is a general component model that is dedicated to imple-
ment, deploy, and manage software systems, in particular, operating systems and mid-
dleware. The main features of FRACTAL are the following: composite components
(that contain sub-components), in order to have various levels of abstraction; shared
components, in order to model and share resources while maintaining component en-
capsulation; Introspection capabilities, in order to control the execution of a system;
and re-configuration capabilities, in order to dynamically deploy and configure a sys-
tem. A FRACTAL component can be understood as being composed of a membrane that
supports interfaces to introspect and reconfigure its internal features, and a content that
consists of a set of other components. The membrane of a component can have external
and internal interfaces and is typically composed of several controllers (that usually play
the role of interceptors). In addition to component nesting, FRACTAL provides bindings
mechanisms to define the architecture of an application. Communication between com-
ponents is only possible if their interfaces are bound. FRACTAL supports two kinds of
binding: primitive and composite. A primitive binding is a binding between a client inter-

face and a server interface in the same address space (i.e., it can be implemented by direct

61

CHAPTER 3 : Paradigms and concepts

language references). A composite binding is a communication path between a certain
number of component interfaces. This allows to construct a distributed configuration of

FRACTAL components.

JAVA/A [Baumeister et al., 2006] is a programming language that forms an instance for a Java-
based architectural programming. JAVA/A integrates architectural notions into Java, and
provides an abstract component model. In contrast to interface-based component ap-
proaches, the primary distinguishing characteristic of JAVA/A component model is the
consistent use of ports as explicit architectural modelling elements [Knapp et al., 2008].
Ports allow application designers to segment the communication interface of components
and thus the representation of different views (faces) to other components. In addition,
ports are equipped with behavioral protocols to regulate message exchange according
to the desired viewpoint. Furthermore, the fact to strongly encapsulate behaviors com-
municating through ports fosters modular verification, which is one of the aims of the
JAVA/A approach. Another important aim of the JAVA/A is the representation of soft-
ware architecture entities in a programming language. JAVA/A then extends Java by
introducing keywords: port, required, provided, simple and composite component, and
assembly, and including port protocol descriptions as UML state machines. The JAVA/A
compiler transforms components into Java code that can be compiled to byte code using
a Java compiler. The generated Java classes are integrated into the JAVA/A component
framework, which provides operations that are common to all JAVA/A components (like

reconfiguration support).

3.1.3.2 Industrial models

Enterprise JavaBeans (EJB) [Panda et al., 2007] is an architecture that defines a program-
ming model for developing server-side Java applications. It provides an EJB container to
manage the life cycle of application components. When an EJB client requests a server
component, the container allocates a thread and submits the request to the appropriate
EJB component instance. The container manages all component resources and all in-
teractions between components and the external systems. The EJB component model

defines the structure of the component interfaces and the mechanisms through which a

62

3.1 Component orientation

component interacts with its container and with other components [Gorton, 2011]. The
EJB version 1.1 defines two main types of components, called session beans and entity
beans. Session beans are generally used for executing business logic and to respond to the
clients’ requests. In a model-view-controller architecture, session beans correspond to
the controller because they embody the business logic of a three-tier architecture. There
are two types of session beans, namely stateless session beans and stateful session beans.
A stateless session bean does not maintain a conversation with calling process. This
means that it does not keep any state information related to any client that calls it. Con-
trary to a stateless session bean, a stateful session bean maintains a conversation with
calling process; therefore it keeps state information about the client that calls it. On the
other hand, entity beans are generally used for representing business data. Data objects
in an entity bean are mapped to some data items in an associated database. Entity beans
are usually accessed through session beans, which provide the business level services
to the application clients. For further reading, we refer to the online EJB specification

[Oracle, 2012] that is continuously updated.

CORBA Component Model (CCM) [OMG, 2006] [OMG, 2002] is defined by the Object Man-
agement Group (OMG), which is an open membership, not-for-profit computer industry
standards consortium. CORBA (Common Object Request Broker Architecture) has been
proposed to enable software components written in different computer languages and
running on different computers to work together. In CORBA, a component is a basic
meta-type. The component meta-type is an extension and specialization of an object
meta-type. Component types are specified in IDL (Interface Definition Language) and
represented in an Interface Repository. A component is denoted by a component refer-
ence that is represented by an object reference. A component definition is a specialization
and extension of an interface definition. Although the current CORBA specification does
not provide mechanisms to support formal semantic descriptions, component definitions
are associated with a single well-defined set of behaviors. A component type encapsu-
lates internal representation and implementation, and it is instantiated to create concrete
instances with state and identity. Although the specification of components includes stan-

dard frameworks for implementation, these frameworks, and any assumptions that they

63

CHAPTER 3 : Paradigms and concepts

might involve, are completely hidden from the component clients.

OSGi [The OSGi Alliance, 2012] is a general-purpose Java framework that supports the de-
ployment of extensible and downloadable applications known as bundles. OSGi-compliant
devices can download, install or remove OSGi bundles. The management of the installa-
tion and the update of bundles is dynamic and scalable in the run time. OSGi framework
provides to the bundle developer the necessary resources needed to take advantage of in-
dependence and dynamic code-loading capability in order to effortlessly develop services
that can be deployed on a large scale in small-memory devices. In OSGi, a component
is a Java class contained in a bundle. The distinguishing aspect of a component is that it
requires the following artifacts within the bundle: 1) an XML document that contains the
component description; a Service-Component manifest header that names the XML doc-
uments with the component descriptions; and an implementation class which is specified
in the component description. Component configurations are activated and deactivated
under the control of SCR (Service Component Runtime - the actor that manages the com-
ponents and their life cycle). The decisions of SCR are based on the information specified
in the component’s description. This information consists of basic information about the
component like the name, type, implemented services and references. References are

dependencies which the component has on other services.

3.2 Service-Oriented Architecture (SOA)
3.2.1 Definition and characteristics

W3C Working Group defines Service-Oriented Architecture (SOA) as “a set of components
which can be invoked, and whose interface descriptions can be published and discovered”
[W3C, 2004]. The resources provided by these components are called services and a service
is defined as follow: “a service is an abstract resource that represents a capability of per-
forming tasks that form a coherent functionality from the point of view of providers entities
and requesters entities. To be used, a service must be realized by a concrete provider agent”

[W3C, 2004]. As illustrated in Figure 3.1, SOA relies on three actors: i) the Service Provider

64

3.2 Service-Oriented Architecture (SOA)

publishes on a Service Broker the service descriptions which specify both the available service
operations and how to invoke them (e.g., network protocol that must be used for the invocation,
software components required to establish the connection, etc.); ii) the Service Broker registers
the service descriptions and references; and iii) the Service Consumer discovers the services

by running a search on the Service Broker. It then establishes a connection with the provider to

[Service Broker]

Publish Find

invoke the service operations.

[Service Provider } > Service ConsumerJ

Bind

Figure 3.1: Actors in Service-Oriented Architecture.

3.2.2 Design principles

Principles help shape every aspect of our world. We navigate ourselves through various situ-
ations and environments, guided by principles we learned from our society and from our own
experiences. In the I'T world, many approaches encouraged the use of design principles so that
when you did something, you would “do it right” on a consistent basis. Often, though, their
use was optional or just recommended. They were viewed more as guidelines than standards,
providing advice that we could choose to follow. When moving toward a service-oriented
architecture, principles take on renewed importance primarily because the stakes are higher.
Instead of concentrating on the delivery of individual application environments, we usually
have a grand scheme in mind that involves a good part of the enterprise. A “do it right the first

time” attitude has therefore never been more appropriate [Erl, 2007].

To achieve this, Erl proposes in its book [Erl, 2007] eight SOA design principles: service
contracts, service coupling, service abstraction, service reusability, service autonomy, service
statelessness, service discoverability and service composability. In the following paragraphs,

we give a brief explanation (extracted from Erl’s book) for each of these design principles.

65

CHAPTER 3 : Paradigms and concepts

Service contract. As with many terms in the IT industry, “contract” is one that can have dif-
ferent meanings when associated with automation solutions. For example, it is relatively
common to view a contract as the equivalent of a technical interface. When it comes to
services within SOA, we have a slightly broader definition. A contract for a service (or
a service contract) establishes the terms of engagement, providing technical constraints
and requirements as well as any semantic information the service owner wishes to make
public. A service contract is always comprised of one or more technical service descrip-
tions designed for runtime consumption, but there are also cases when non-technical
documents are required to supplement the technical details. Both are considered valid

parts of the overall contract.

Loose coupling. Any part of an automation environment that’s separable has the potential (and
usually the need) to be coupled to something else for the sake of imparting its value. The
root of the term (couple) itself implies that two of something exist and have a relation-
ship. The most common way of explaining coupling is to compare it to dependency. A
measure of coupling between two things is equivalent to the level of dependency that ex-
ists between them. In SOA, we emphasize the reduction (“loosening”) of dependencies
(“coupling”) between the parts of a service-oriented solution, especially when compared
to how applications have traditionally been designed. Specifically, loose coupling in SOA
is advocated between a service contract and its consumers and between a service contract

and its underlying implementation.

Service abstraction. We can only assess and judge the value of something for which informa-
tion is made available to us. What we publish about a service communicates its purpose
and capabilities and provides details to potential consumers about how it can be program-
matically invoked and engaged. The information we don’t publish about a service pro-
tects the integrity of the coupling formed between it and its future consumers. By keeping
specific details hidden, we allow the service logic and its implementation to evolve over
time while continuing to fulfill its obligations in relation to what was originally published
in its contract. Service abstraction therefore raises post-implementation, organizational
issues (such as access control) that can also be part of a governance methodology. How-

ever, because it directly affects the service design process and specifically influences

66

3.2 Service-Oriented Architecture (SOA)

design-time decision points as to what should be published in the official service con-

tract, it is very much part of the service design stage as well.

Service reusability. There is perhaps no principle more fundamental to achieving the goals of
service-oriented computing than that of reusability. It can even be argued that several
of the other principles would not exist if the service-orientation paradigm did not place
such a core emphasis on fostering reuse. In theory, reuse is a pretty straight-forward
idea: simply make a software program useful for more than just one single purpose. The
reasons for doing so are also quite evident. Whereas something that is useful for a single
purpose will provide value, something that is repeatedly useful will provide repeated
value and is therefore a more attractive investment. The rationale is logical, but it also
brings to light the difference between something that is simple and something that is easy.

Reuse is a simple concept, but history has taught us that achieving reuse is not easy.

Service autonomy. Autonomy represents the ability to self-govern. Something that is au-
tonomous has the freedom and control to make its own decisions without the need for
external approval or involvement. Therefore, the level to which something is autonomous
represents the extent to which it is able to act independently. If a software program exists
in an autonomous runtime state, it is capable of carrying out its logic independently from
outside influences. It therefore must have the control to govern itself at runtime. The
more control the program has over its runtime execution environment, the more auton-
omy it can claim. Hence, for services to provide a consistently reliable and predictable
level of performance as members of a service inventory and as members of complex
compositions, they must exist as self-sufficient parts, i.e., possess a significant degree of

control over their underlying resources.

Service statelessness. A good indication that the design of an agnostic service was successful
is when it is reused and recomposed on a regular basis. This outcome emphasizes the
need to optimize the service processing logic so as to support the requirements of multiple
consumer programs while the service itself consumes as little resources as possible. As
the complexity of service compositions increases, so does the quantity of activity-specific

data that needs to be managed and retained throughout the lifespan of the composition.

67

CHAPTER 3 : Paradigms and concepts

Services required to process and hold this data while waiting for other services in the
composition to carry out their logic can tax the overall infrastructure. This is especially
the case when numerous instances of those services need to exist concurrently, further
compounding the drain on system resources. To maximize service scalability and to
make the most of whatever performance thresholds service inventories are required to
work within, services and their surrounding architecture can be designed to support the
delegation and deferral of state management responsibilities. This result in a service

design streamlined by leveraging a condition called statelessness.

Service discoverability. The concepts behind discovery are quite straight-forward. From an
architectural perspective, it is often desirable for individual units of solution logic to be
easily located. The process of searching for and finding solution logic within a specified
environment is referred to as discovery. A key aspect of discovery is that you may or
may not have been aware of the logic’s existence before you discovered it. By discover-
ing that something you want to build already exists, you avoid creating redundant logic.
By discovering that something you want to build does not yet exist, you can safely de-
fine the scope of your development effort. Discovery is often classified as an extension
of infrastructure and therefore associated with application architecture. For something
within the application to be discoverable, it needs to be equipped with meta-information
that will allow it to be included within the scope of discovery searches. An architectural
component that can adequately be discovered is considered to have a measure of discov-
erability. In term of service, discoverability information is essentially a combination of

the content in a service contract and meta-data in the corresponding service broker.

Service composability. If something is decomposed, it can be recomposed. In fact, composi-
tion is usually the reason something is decomposed in the first place. We break a larger
thing apart because we see potential benefit in being able to do things with the individual
pieces that we would not have the freedom to do were they to exist as just a whole. Apply-
ing this approach establishes an environment where solution logic exists as composable
units. As a result, there is the constant opportunity to recompose the same solution logic
in order to solve new problems. When we apply this rationale to the world of automation,

the implications become pretty clear. Why build one large program that can only perform

68

3.3 Peer-to-Peer (P2P) architecture

a fixed set of functions, when we can decompose that program into smaller programs that
can be combined in creative ways to provide a variety of functions for different purposes?
This is the basis of the separation of concerns theory supported in SOA through service

composition principle.

3.3 Peer-to-Peer (P2P) architecture
3.3.1 What is Peer-to-Peer?

Originally, the term peer-to-peer was used to describe the communication between two peers
and is analogous to a telephone conversation. A conversation through a telephone involves
two people (peers) which have equal status, communication between a point-to-point connec-
tion. Simply, this is what P2P is, a point-to-point connection between two equal participants

[Taylor and Harrison, 2004].

Historically, the Internet started as instances of P2P systems. Its challenge was to establish
connections among distributed machines using different network protocols and within a com-
mon network architecture. The first hosts on this network were some US universities, which had
independent computing sites connected with equal status, not in client/server or master/slave
relationship. From the beginning of the Internet until mid-nighties, internet network had one
model of connectivity. This model assumed that machines are always switched on and con-
nected with permanent IP addresses. However, with the development of the first global web
browser called Mosaic and the invention of the dial-up modem, a new model of connectivity
began to emerge because users would enter and leave the Internet frequently and unpredictably.

Therefore, the DNS system has been evolved to support assigning IP addresses dynamically.

Over time though and the improvement of software and hardware technologies, P2P has be-
gun to emerge as a class of applications that takes advantage of the second internet connectivity
model. This class of applications started by exploiting unused resources in the network such as
storage space, communication edges and available processors. Among the first proposed appli-
cations, we find Napster [Napster, 2012] launched in 1999, Gnutella [Gnutella, 2012] launched

in 2000, and Freenet [Freenet, 2012] launched in 2001. They were especially dedicated to

69

CHAPTER 3 : Paradigms and concepts

file sharing—users wanted to find certain files (e.g., music or video files) in the Internet net-
work and download them as soon as possible. Actually, P2P applications are not limited to
file sharing and are developed for various concerns like voice over IP, instant messaging, video
streaming and anonymous web browsing. Although these P2P applications relay on the same
P2P principles, they have been developed in different P2P architecture designs that we describe

in the next subsection.

3.3.2 Architecture designs

As presented by the IEEE Standards Association "architecture is defined by the recommended
practice as the fundamental organization of a system, embodied in its components, their re-
lationships to each other and the environment, and the principles governing its design and
evolution" [IEEE, 2000]. From this definition, architecture captures the structure of a system
in terms of components and how they interact. It also notes that architecture has a design
and evolution principles. In the P2P context, this corresponds to how the participating peers
(components), at the application level, connect among each other, and how they need to fulfill
their obligated tasks to maintain an evolving network [Kwok, 2011]. Hence, if we change how
peers connect, interact and evolve we may obtain different P2P architectures. Based on existing
P2P systems that have been developed, we can classify possible P2P architectures into three

categories: centralized, decentralized and hybrid.

3.3.2.1 Centralised P2P systems

Although P2P is usually considered as an opposite of the centralized client-server model, the
first generation of P2P systems (e.g., Napster) relayed on centralized architecture. Nevertheless,
in contrast to traditional client-server model, the central server(s) in P2P systems only keeps
meta-information about shared content (e.g., ID or IP addresses of peers where a content is
available) and manages global tasks (e.g., deals with updates in the network and coordinates
tasks among the peers) [Liu and Antonopoulos, 2010]. However, as in decentralized systems,
once a peer obtains its information and tasks, it can connect and interact directly with other

peers (without going through the central server(s) anymore).

70

3.3 Peer-to-Peer (P2P) architecture

Although P2P systems based on centralized architecture are pretty efficient since the inter-
action among peers is facilitated by central server(s), such systems usually fail to scale with the
increase of participating peers. The central server(s) rapidly become the performance bottle-
neck and the existence of single point of failure prevents from using network for many potential

applications [Galuba and Girdzijauskas, 2009].

3.3.2.2 Decentralised P2P systems

Due to the drawbacks of centralized P2P systems, decentralized P2P systems emerged and are
actually widely used. They rely on any central server and their all peers have equal status,
rights and responsibilities. Each peer has only a partial view of the network and offers content
(data/services) that might be relevant to only some queries peers. Thus, locating peers offering
content quickly is a critical and challenging issue. The main advantages of such systems are:
1) they do not have a single point of failure, ii) they can enjoy high scalability, performance,

robustness, and other desirable features [Vu et al., 2010].

There are two logical network topologies (overlay) in the design of decentralized P2P sys-
tems: structured and unstructured. The difference between these two topologies lies in how

queries are being forwarded among peers.

Unstructured P2P overlay is "an overlay in which a node relies only on its adjacent nodes for
delivery of messages to other nodes in the overlay. Example message propagation strate-
gies are flooding and random walk" [Buford et al., 2009]. In unstructured P2P overlays,
each node is responsible for its own content, and keeps a registry of neighbors that it may
forward queries to. Due to their simplicity, such overlays are pretty robust and withstand
failures. However, they do not provide any mapping between the identifiers of contents
and those of nodes [Vu et al., 2010]. This implies that: 1) finding contents is challenging
since it is difficult to predict which node maintains the queried content, ii) no guaran-
tee on the completeness is provided, unless to search in the entire network, and iii) no
guarantee on querying time is provided, except for the worst case (the entire network is
searched). Among the most famous systems built using unstructured P2P overlays, we

find Gnutella [Gnutella, 2012] and Freenet [Freenet, 2012].

71

CHAPTER 3 : Paradigms and concepts

Structured P2P overlay is: "an overlay in which nodes cooperatively maintain routing in-
formation about how to reach all nodes in the overlay” [Buford et al., 2009]. Com-
pared to unstructured ones, structured overlays provide a limited number of query mes-
sages needed to find any content in the overlay. This is especially important when the
content that we search is not popular or rarely available. To achieve this determinis-
tic routing, nodes are placed into a virtual address space, the overlay topology is or-
ganized into a specific geometry (e.g., ring, toruse and hypercube), and a converging
distance function that maps content and node identifier is defined for the routing algo-
rithm [Buford and Yu, 2010]. To support these functionalities, most of the structured
P2P systems rely on a Distributed Hash Table (DHT). A DHT is a particular instance of
structured P2P overlays and is defined as follows: "a DHT is a decentralized system that
provides the functionality of a hash table, i.e., insertion and retrieval of key-value pairs.
Each node in the system stores a part of the hash table. The nodes are interconnected in
a structured overlay network, which enables efficient delivery of the key lookup and key
insertion requests from the requestor to the node storing the key. To guarantee robustness
to arrivals and departures of nodes, the overlay network topology is maintained and the
key-value pairs are replicated to several nodes” [Galuba and Girdzijauskas, 2009]. Ev-
ery DHT defines its own key space. The P2P overlay uses the DHT keys for addressing
its nodes. Each node has a specific location in the key space and stores the key-value pairs
that are close to that location. The node’s routing table is initialized when the node joins
the overlay, using a specified bootstrap algorithm. Nodes periodically exchange their
routing table (as part of overlay maintenance). Thus, a request can be routed to the node
that maintains the desired content accurately and quickly. However, since the placement
of content is tightly controlled, the cost of maintaining the structured topology of the

overlay might be high, especially in a very large network environment [Vu et al., 2010].

3.3.2.3 Hybrid P2P systems

Centralized P2P systems are able to provide a reliable and quick content locating. However,
the systems’ scalability is affected due to the use of central server(s). Although decentralized

P2P systems are more adapted to deal with this aspect than centralized P2P systems, they need

72

3.3 Peer-to-Peer (P2P) architecture

a longer time in content locating. Thus, to maintain scalability as in decentralized P2P systems,

a hybrid design approach for P2P systems have been proposed.

The term hybrid is used in different disciplines and employed to characterize "anything
that is a mixture of two or more things" [Cambridge Academic Content Dictionary, 2008].
In the context of P2P systems, this term is used to describe an approach that combines both
centralized and decentralized architectures. Generally, hybrid P2P systems are realized using
two kinds of peers (ordinary and super peers) and/or two hierarchical tiers (the upper tier serves

the processing of the lower one) [Vu et al., 2010].

Super-peers are some peers that possess much more powerful capabilities and having more
responsibilities than other (ordinary) peers. Super-peers form an upper-level in a hybrid system
and are selected to act as servers for the ordinary peers such as in a centralized P2P system.
Thus, ordinary peers can benefit from much more services, especially during the resource lo-

cation process.

Hierarchical tiers in hybrid P2P systems are often in two levels. The upper level is dedicated
to process some services for the lower level. For instance, the hybrid P2P system BestPeer
[Ng et al., 2002] has a certain number of location independent global names lookup servers
(LIGLOs) that serve as an upper level in the system. This upper level generates a unique
identifier for the peers, helps peers to dynamically recognize their neighbors, and lets peers to
reconfigure their neighbors with certain metrics. However, LIGLO does not provide resource

location mechanisms.

In summary, hybrid P2P systems have several advantages and desirable functionalities that
help peers to evolve easily into the network. For example, they can provide functionalities to

optimize network topology, improve querying time and save system resource consumption.

73

CHAPTER 3 : Paradigms and concepts

74

Chapter 4

Discussion of related approaches

Contents
4.1 Approaches for specification and analysis 75
4.2 Execution in P2P architecture through middlewares 79

In this chapter, the main proposals of the scientific community related to the specification
and analysis of software systems together with the execution in P2P architecture through mid-
dlewares are collected and discussed. Section 4.1 provides an overview of the most commonly
used specification and analysis works, which are based on different approaches (like finite-state,
process algebras and data-flow approaches) and proposed in various contexts (like CBSE, net-
work protocol and database context). Section 4.2 does the same but for the most known works

that propose runtime environments in P2P architecture.

4.1 Approaches for specification and analysis

The power of the software system analysis approaches depends on the modeling technique
for the behavior of software systems. This behavior is usually modeled by Finite-State Au-
tomata (e.g., [Bures et al., 2008]). However, it may also be modeled by process algebras (e.g.,
[Allen and Garlan, 1997]), context-free languages (e.g., [Burkart and Steffen, 1992]), pushdown
processes (e.g., [Burkart and Steffen, 1994]), etc.

In the context of the component-based system, the finite state approaches usually use regular

languages to describe component behavior. However, these finite state approaches can only

75

CHAPTER 4 : Discussion of related approaches

handle bounded recursion (i.e., up to a certain depth) and limited abstraction of the data-flow.

To address this more explicitly, we discuss hereafter some of such approaches.

There is a large body of component models using various formal and semi-formal speci-
fications in the context of component-based systems. These specifications concentrate on dif-
ferent aspects of component modeling. Due to this diversity, we refer to [Rausch et al., 2008]
which provides an interesting study of state-of-the-art in component-based systems. Among
the component models discussed in [Rausch et al., 2008], KobrA [Atkinson et al., 2008] is a
UML-based method for describing components and component-based systems. It uses differ-
ent diagrams representing three projections: structural, functional and behavioral. KobrA is
not a formal language, but rather a set of principles for using mainstream modeling language.
It provides a certain degree of flexibility because anything that conforms to its principles can in
practice be accommodated within the method. Rich Services [Demchak et al., 2008] provides
an architectural framework that reconciles the notion of service with hierarchy (systems-of-
systems). It uses message sequence charts in order to specify component behaviors. This
allows the approach to model bounded recursion. rCOS [Chen et al., 2008] is an extended the-
ory of UTP (Unifying Theories of Programming) [Hoare and Jifeng, 1998] for object-oriented
and component-based programming. UTP combines the reasoning power of predicate calculus
with the structuring power of relational algebra. In rCOS approach, each component interface
has a contract. A contract only specifies the functional behavior in terms of predicates (pre and
post conditions) and a protocol defining the acceptable traces of method calls. The behavior is
specified by a state diagram and should be accepted by FSA. The protocol is specified by a se-
quence diagram. The reasons for having these two diagrams are different. In fact, the sequence
diagram allows generating CSP processes to deal with concurrency, when the state diagram has
an operational semantics which is easier to use for verification with model checking. SOFA
[Bures et al., 2008] is a hierarchical component model. It is dedicated to the development of
distributed application with dynamic update of components. It uses behavior protocols for the
specification of interaction behavior of components. This allows to verify the system archi-
tecture independently from the implementation, and the relation of the component model and
implementation. In order to fully automate behavior verification, a tool chain is used. It consists

of behavior protocols to Promela translator and the Spin model checker. However, behavior

76

4.1 Approaches for specification and analysis

protocols cannot treat behavior that cannot be specified by a regular language. Like SOFA,
Factal also uses behavior protocols to specify component behavior. Therefore, they have the

same limitation on the description of component behavior.

Since the finite state models are not providing an adequate abstraction of a system that
contains recursive call-backs, context-free model checking have been proposed. Among the
first works in this direction, we could mention [Burkart and Steffen, 1992], which presents an
algorithm that decides whether a property written in the alternation-free modal mu-calculus is
satisfied for context-free processes, i.e., for processes that are given in terms of a context-free
grammar or equivalently. In [Burkart and Steffen, 1994], pushdown processes are proposed
as a generalization of context-free processes to better support parallel composition. Push-
down processes are processes that can be (finitely) represented by means of classical Push-
down Automata. After introducing these two approaches, several models [Alur et al., 2005,
Benedikt et al., 2001, Esparza et al., 2000, Burkart and Steffen, 1997] for infinite-state systems
have been proposed especially to decrease checking complexity. But in the end, these models
are still closely related to context-free processes and pushdown processes, and usually have
the same expressiveness. In contrast to our approach, they cannot handle recursive call-backs

which gives rise to context-sensitive structures (cf. Section 2.2.1).

Process algebras such as CSP (Communicating Sequential Processes) or CCS (Calculus of
communicating systems) can be used as an alternative approach for verifying protocol confor-
mance. These algebraic approaches are more powerful than FSA and context-free grammars.
According to Milner [Milner, 1980], algebra appears to be a natural tool for expressing how
systems are built. However, in order to automate analysis, some constraints on the specification
language can be required. For instance, in [Allen and Garlan, 1997], the authors have been re-
stricted their use of the CSP notation in a way that processes will always be finite. Therefore,

the analysis of the behavior boiled down to a finite-state verification.

Compared to other works where component approach is dedicated to manipulate protocols,
Reussner [Reussner, 2002] presents the model of counter-constrained finite state machines. It
is an extension of finite state machines, specifically created to model protocols containing de-

pendencies between services due to their access to shared resources. However, Reussner does

77

CHAPTER 4 : Discussion of related approaches

not consider composition operators and does not provide an underlying discipline. Puntigam
[Puntigam, 2003] shows that it is possible to develop component interfaces specifying non-
regular protocols for the communication between components and the rest of a system. The
concepts proposed in this paper need support from a programming language. However, no

practically usable programming language supports these concepts.

Different data-flow based approaches have been proposed in the domain of system mod-
eling. In [Garousi et al., 2005], a control-flow analysis for UML 2.0 sequence diagrams is
presented. To define the control-flow, the authors propose an extended activity diagram meta-
model. [Yang et al., 2009] presents DFA-based algorithms to analyze BPEL programs and de-
tect their data-flow anomalies. These algorithms operate on a control-flow graph derived from
Activity Object Tree (AOT). The AOT is based on Eclipse Modeling Framework to express the
relationships among activities. [Zhou and Lee, 2006] proposes a causality interface for dead-
lock analysis in a concurrent model of computation called Dataflow. It shows that deadlock is
decidable for synchronous Dataflow models with a finite number of actors. [Cain et al., 2008]
presents an approach where a meta-model of an object oriented program’s runtime is con-
structed to manage DFA. This meta-model contains classes that represent the relationship be-
tween the program elements (e.g., classes, objects and methods) in order to create an abstract
representation for DFA. Like these different approaches, we also use DFA-based algorithms
to analyze the constructed systems. However, our approach is dedicated to component-based
P2P applications. It provides a formalism to capture their specific behavior (i.e., recursive call-
backs) and constructs an abstract representation (i.e., DDG) from which we can obtain multiple

implementations of the control logic by analyzing the order of data evaluation.

The principle of the transformation of an abstract representation is also present in other for-
mal systems. Many of those formal systems, such as A-calculus [Sheard, 1997], catamorphisms
[Launchbury and Sheard, 1995], hylomorphisms [Onoue et al., 1997] and other from category
theory, have been studied in previous works of Parigot (e.g., [Correnson et al., 1999]) and a
large comparison of these different formal systems can be found in [Duris, 1998] [Correnson, 2000].
These works show that those formal systems share a similar global structure. They abstract pro-
grams in some mathematical domain. Then, the transformed program is obtained by a backward

translation from the mathematical domain. For instance, the HYLO system [Onoue et al., 1997]

78

4.2 Execution in P2P architecture through middlewares

transforms a program into hylomorphisms and then performs partial data evaluation. After that,
these new hylomorphisms could be translated back into a program. However, these formal sys-
tems share a surprising constraint: the abstraction always relies on objects where recursive
structures or schemes are strongly preserved and cannot be easily modified. For example, with
A-calculus, the recursive calls are altogether defined in the structure of the A-terms. With hy-
lomorphisms, these recursion schemes are exactly pointed out by functors (a special type of
mapping in category theory) which are used as transformation parameters. Thus, transfor-
mations cannot freely restructure the abstract representation. Taking in mind these previous
studies, DDF has then been defined with the following distinctive characteristics: 1) allowing
parts of the control logic (even if it is recursive) to be described conceptually separated from
other parts by using the concept of rules; ii) the user describes what is to be done rather than
the details of how it is to be done; iii) from a single specification, multiple implementations can

be synthesized by analyzing the order of data evaluation.

Other works relevant in the context of our approach can be found in database and net-
work protocol communities. They are applied, for example, in [Alvaro et al., 2010] to the
Cloud Computing in order to raise the level of abstraction for programmers and improve
program correctness in a data-centric, declarative style. Another interesting approach is P2
[Loo et al., 2005]. It can be viewed as a synthesis of ideas from these two communities works
applied to overlay networks [Andersen et al., 2001]. P2 is a system that uses a declarative logic
language to express and implement overlay networks. It directly parses and executes such spec-
ifications into a data-flow program. The approach proposed in [Lin et al., 2011] seems to be
close to our work in the sense that it also passes through the construction of a dependency graph
to perform some optimizations. The difference between those works and our approach is that
they are not based on components, what usually drives them to specify into their models (e.g.,

relational algebras and rule-based specification) the whole application.

4.2 Execution in P2P architecture through middlewares

There has been a large body of related work carried out to develop P2P middlewares. This has

proposed increasingly novel approaches addressing application from many different domains

79

CHAPTER 4 : Discussion of related approaches

such as distributed sharing of data, video streaming and gossip communications. For example,
JavaPorts framework [Manolakos et al., 2001] aims to provide a set of tools that will enable
developing parallel applications on a network of heterogeneous workstations. A JavaPorts ap-
plication can be defined as a collection of interacting tasks using a Task Graph abstraction. In
this graph the nodes correspond to application Tasks. Tasks communicate using point-to-point
connections between peer ports. Expeerience [Bisignano et al., 2003] is a middleware provid-
ing support for mobile application developers exploiting P2P technology over ad hoc networks.
It has been developed in Java and is based on JXTA. It manages the discovery service, mul-
tiple interfaces, intermittent connectivity and code mobility. SpiderNet [Gu et al., 2004] is a
P2P service composition framework. It achieves service composition by supporting directed
acyclic graph composition topologies and considering exchangeable composition orders. Spi-
derNet provides failure recovery scheme that maintains a small number of dynamically selected
backup compositions to achieve quick failure recovery for realtime streaming applications.
Juno [Tyson et al., 2008] is a networking middleware dedicated to multimedia content distri-
bution (e.g., file sharing, video on demand and live streaming). It is designed in a component-
based manner and has been implemented using the OpenCOM [Coulson et al., 2008] compo-
nent model. Juno provides a configurable framework, allowing the middleware to be specialised
and adapted to a variety of environments. Kompics [Arad and Haridi, 2010] is a message-
passing component model that can be used for building P2P systems. Kompics provides a
framework to compose protocol layers in a similar way to Mace [Killian et al., 2007] and Wids
[Lin et al., 2005]. Mace is a language support for building distributed systems as C++ com-
ponents. It allows describing each layer of the distributed system as a reactive state transition
model. This state transition model enables model checking of the system implementation to
find both safety and liveness bugs. WiDS is a toolkit that provides several run-times to run P2P
protocols in different modes. In particular, in its simulation engine that helps to evaluate and

debug P2P protocols in a controllable environment.

The main characteristics that distinguish SON from the approaches outlined above can be

summarized as follow:

e Son’s applications are specified by a rule-based language that captures the recursive be-

havior of P2P applications. This kind of behavior is very frequent in the context of P2P

80

4.2 Execution in P2P architecture through middlewares

and many modeling approaches cannot describe it.

e More general abstraction for P2P applications can be induced from the specification
rules. This abstraction represents only one data-flow model (dictated by data depen-
dencies) on the execution. Further, it exposes the right level of detail to perform DFA.

e SON ensures that the target implementation and generated code fit well the behavioral
constraints contained in the specification rules.

e SON’s user implements only the code corresponding to the declared services. After-
wards, a code generation tool generates the containers of the components. The compo-
nent container embodies all resources needed to adapt the implementation code to the
run-time environment.

e SON can be considered as a generic lightweight middleware (with the necessary set
of operations that must be present to develop any kind of component-based P2P ap-
plications) for the following reason. Since, in most cases, the challenges of P2P sys-
tems can be reduced to a single problem: “How do you find any given data item in a
large P2P system in a scalable manner, without any centralized servers or hierarchy?"
[Balakrishnan et al., 2003], SON has been unified the notion of publish/subscribe: it uses
a DHT not only to publish and subscribe data, but also to enable dynamic service publi-

cation, discovery, and deployment.

81

CHAPTER 4 : Discussion of related approaches

82

Part I11:

Our proposal

Chapter 5

DDF': A formal language to specify
component-based P2P applications

Contents
5.1 Why our formalism is inspired by the Attribute Grammars
5.2 Casestudy: Gossipprotocolt ittt ittt
53 DDFspecifications v v vt vt v i vttt et e e e e e e
53.1 Imterface
532 Component i e e e e e e e e
5.3.3 Behavior with datadependency
534 System e e e e e e e e
5.4 Defining a simple generic P2Psystem

This chapter introduces a formal language to specify and analyze component-based P2P ap-

plications. Itis called DDF (Data Dependency Formalism) and used as an underlying formalism

for the work presented in this thesis. DDF has been essentially developed for the following two

reasons. Firstly, to formally describe the recursive behavior of P2P applications. This kind of

behavior is very frequent in the context of P2P and many modeling approaches cannot describe

it, as explained in Section 2.2.1. Secondly, to formally construct an abstract representation

(i.e., Data-Dependency Graph) for P2P applications. This abstraction exposes the right level of

detail to perform data-flow analyzes. Throughout this chapter, the DDF concepts are illustrated

and explained on a number of examples distilled from a case study that consists of a gossip

85

CHAPTER 5 : DDF: A formal language to specify component-based P2P applications

protocol [Voulgaris et al., 2005, Jelasity et al., 2007]. Gossip protocols, also called epidemic
protocols, are well-known in the community of P2P to ensure a reliable information dissem-
ination. This kind of dissemination is a common behavior of various P2P applications, and
according to [Jelasity, 2011], a large number of distributed protocols can be reduced to a gossip
protocol. Before presenting this case study and then the DDF specification, a short explication

is provided to show why Attribute Grammars have inspired us to develop DDF.

5.1 Why our formalism is inspired by the Attribute Gram-
mars

Many techniques and algorithms for Data-Flow Analysis (DFA) were introduced in Attribute
Grammars (AGs) literature. These techniques and algorithms are commonly used in com-
piler construction for performing optimizations from a program’s abstract representation (an
attribute-dependency graph induced by the Abstract Syntax Tree of the program). In a previous
work of [Parigot et al., 1996], it has been argued that in the term “Attributed Grammar” the
notion of grammar does not necessarily imply the existence of an underlying tree, and that the
notion of attribute does not necessarily mean decoration of a tree. Hence, Dynamic Attributed
Grammars (DAGs) have been presented by Parigot et al. as an extension to the AG formalism.
DAGs are consistent with the general ideas underlying AGs, thing that allows them to retain
the benefits of the results that are already available in that domain. In the same direction, we
define our formalism, which will allow us to construct a Data-Dependency Graph (DDG) for
component-based P2P applications and use the already developed DFA algorithms to perform
analyzes on it. To achieve this, we have inspired by the main characteristics of AGs and DAGs.

Those characteristics are briefly presented in the rest of this section.

Structural decomposition and declarative character

AGs were introduced by Knuth [Knuth, 1968] and, since then, they have been widely studied
[Deransart et al., 1988, Deransart and Jourdan, 1990, Paakki, 1995]. An AG is a declarative
specification that describes how attributes (variables) are computed for rules in a particular

syntax (i.e., it is syntax-directed). They were originally introduced as a formalism for describ-

86

5.1 Why our formalism is inspired by the A ttribute Grammars

ing compilation applications; they were intended to describe how to decorate a tree, and could
not be easily thought about in the absence of the structure (tree) representing the program to

compile. In this application area, AGs were recognized as having these two important qualities:

o they have a natural structural decomposition that corresponds to the syntactic structure
of the language, and
o they are declarative in that the writer only specifies the rules used to compute attribute

values, but not the order in which they will be applied.

Thus, a program can be described by AGs as a set of productions. Each production p

describes an elementary control-flow and has the following form:

p: X() - X], ...,Xn

Xy represents a node in a tree and X, ..., X, are its child nodes. For each production p we give a
set of semantic rules defining the computation of the synthesized attributes of X, and the inher-
ited attributes of X;.;.,. The synthesized attributes are the result of the attribute computation,
and may use the values of inherited attributes. Synthesized attributes are used to pass computed

information up the tree, while inherited attributes pass information down and across it.

Synthesized and inherited attributes

To illustrate the concept of synthesized and inherited attributes, Table 5.1 gives AG productions
that describe the computation of terms like 3«5 and 3«5 7. In this example (extracted
from [Aho et al., 1986]), each of the nonterminals 7 and F has a synthesized attribute val;
the terminal digit has a synthesized attribute lexval, which is an integer value returned by
the lexical analyzer. The nonterminal 7’ has two attributes: an inherited attribute ink and a
synthesized attribute syn. The semantic rules are based on the idea that the left operand of the
operator * is inherited. More precisely, the head 7" of the production 77 — * F' T inherits the
left operand of * in the production body. Given a term x * y * z, the root of the subtree for
*y * z inherits x. Then, the root of the subtree for * x inherits the value of x * y, and so on,
if there are more factors in the term. Once all the factors have been accumulated, the result is

passed back up the tree using synthesized attributes.

87

CHAPTER 5 : DDF: A formal language to specify component-based P2P applications

To see how the semantic rules are used, consider the annotated parse tree for 3 * 5 in Figure
5.1. The leftmost leaf in the parse tree, labeled digit, has attribute value lexval = 3, where the 3
is supplied by the lexical analyzer. Its parent is for production 4, F' — digit. The only semantic

rule associated with this production defines F.val = digit.lexval, which equals 3.

At the second child of the root, the inherited attribute 7”.inh is defined by the semantic rule
T'.inh = F.val associated with production 1. Thus, the left operand, 3, for the * operator is

passed from left to right across the children of the root.

The production at the node for 77 is 7" — * F T} (we retain the subscript 1 in the annotated
parse tree to distinguish between the two nodes for 7”). The inherited attribute 77.inh is defined

by the semantic rule T7.inh = T".inh X F.val associated with production 2.

With 77.inh = 3 and F.val = 5, we get T}.inh = 15. At the lower node for 77, the production
is T" — € . The semantic rule 7".syn = T".inh defines T).inh = 15. The syn attributes at the

nodes for 7” pass the value 15 up the tree to the node for 7', where T.val = 15.

Productions Semantic rules
(1) T—->FT T'.inh = F.val
T.val =T'.syn

(2) T - =FT; T|.inh = T'.inh X F.val
T'.syn =T|.syn

3B) T"—>e€ T{.syn =T’.inh

4) F — digit F.val = digit.lexval

Table 5.1: Attribute Grammar productions of a simple multiplication calculator.

Dependency graph

A dependency graph is used to determine an evaluation order for the attribute instances in a
parse tree. In other words, it helps to determine how the values of attributes can be computed.
An important number of DFA algorithms introduced in AGs literature are based on it. An edge

in a dependency graph from one attribute instance to another indicates that the value of the first

88

5.1 Why our formalism is inspired by the A ttribute Grammars

T.val =15
T .ohh=3
F.val=3 T .syn =15
N B / { hh =15
digit.lezval = 3 * Fval=35 T!.syn = 15
digit.lezval = 5 €

Figure 5.1: Annotated parse tree for 3 5. (from [Aho et al., 1986])

is needed to compute the second. This allows to express the constraints implied by the semantic
rules. To illustrate that, we consider the same example extracted from [Aho et al., 1986] and
we present in Figure 5.2 the dependency graph for the annotated parse tree of Figure 5.1. The
nodes of this dependency graph, represented by the numbers 1 through 9, correspond to the

attributes.

digit 2 lezval ¢

Figure 5.2: Dependency graph for the tree of Figure 5.1. (from [Aho et al., 1986])

Nodes 1 and 2 represent the attribute lexval associated with the two leaves labeled digit.
Nodes 3 and 4 represent the attribute val associated with the two nodes labeled F. The edges to
node 3 from 1 and to node 4 from 2 result from the semantic rule that defines F.val in terms of
digit./exval. In fact, F.val equals digit.lexval, but the edge represents dependence, not equality.
Nodes 5 and 6 represent the inherited attribute 7”.inh associated with each of the occurrences of

nonterminal 7”. The edge to 5 from 3 is due to the rule 7”.inh = F.val, which defines T".inh at

89

CHAPTER 5 : DDF: A formal language to specify component-based P2P applications

the right child of the root from F.val at the left child. We see edges to 6 from node 5 for 7”.inh
and from node 4 for F.val, because these values are multiplied to evaluate the attribute inh at
node 6. Nodes 7 and 8 represent the synthesized attribute syn associated with the occurrences
of 7’. The edge to node 7 from 6 is due to the semantic rule 7’.syn = T".inh associated with
production 3 in Table 5.1. The edge to node 8 from 7 is due to a semantic rule associated with
production 2. Finally, node 9 represents the attribute 7.val. The edge to 9 from 8 is due to the

semantic rule, 7T.val = T’.syn, associated with production 1.

Description of recursion and conditions with Dynamic AGs

Because of their historical roots in compiler construction, the notion of (physical) tree in AGs
was considered as the only way to direct computations. This is the main cause for their lack
of use and lack of expressiveness. Some works have attempted to respond to this problem by
proposing extensions to the classical AG formalism, for instance Higher-Order Attribute Gram-
mars [Swierstra and Vogt, 1991], Circular Attribute Grammars [Farrow, 1986], Multi-Attribute
Grammars [Attali, 1988] or Conditional Attribute Grammars [Boyland, 1996]. The main dif-
ference between these works and the one proposed by [Parigot et al., 1996] is the methodology
used to attack the problem. All of them, in a first step, propose a linguistic extension designed
to make the expression of a particular application easier (for instance, data-flow analysis for
Circular AGs) and, in a second step, wondered how this extension could be implemented. In
contrast, the approach [Parigot et al., 1996] was, first, to precisely characterize the intrinsic
power of the classical formalism and, thereafter, to derive the language extensions that allow
to fully exploit this power. The basic observation is that the notion of grammar does not nec-
essarily imply the existence of a (physical) tree. In fact, the proposed view of the grammar
underlying an AG is similar to the grammar describing all the call trees for a given functional
program or all the proof trees for a given logic program: the grammar precisely describes the
various possible flows of control. In this context, a production describes an elementary recur-
sion scheme (control flow), whereas the semantic rules describe the computations associated

with this scheme (data flow).

It is very important at this point to observe that all the theoretical and practical results on

AGs (in particular, the algorithms for constructing efficient attribute evaluators) are based only

90

5.1 Why our formalism is inspired by the A ttribute Grammars

on the abstraction of the control flow by means of a grammar and not at all on how its instances
are obtained at run-time. In consequence, two notions which comply with this view have been

presented by Parigot et al.:

o Grammar Couples allow to describe recursion schemes independently from any physical
structure and/or to exhibit a different combination of the elements of a physical structure.
A grammar couple defines an association between a dynamic grammar and a physical or
concrete grammar.

o Dynamic Attribute Grammars (DAGs) are defined on top of Grammar Couples. They
allow attribute values to influence the flow of control by selecting alternative dynamic

productions.

These extensions eliminate the major criticism against AGs, namely, their lack of expres-
siveness. As an example to illustrate that, let’s see how to describe the structure and dy-
namic semantics of the while statement. If STAT, COND respectively represent statements and
boolean conditions, Table 5.2 shows the productions for the while statement. In this example,
name: TYPE means that TYPE is the type of name. p € P, is the concrete production which
describes that a while statement is made of a condition and a body statement. p, and p, € Py
are two dynamic productions which respectively represent the recursive behavior of a while
structure (p,) as long as the condition is true and the termination case (p,) when the condition

becomes false.

Concrete production p € P,:
p: while : STAT — cond : COND body : STAT

Dynamic productions p, and p, € Py:
pr: w=while : STAT — cond = cond : COND
body = body : STAT w-rec = while : STAT,
p; . w=while : STAT — cond = cond : COND

Table 5.2: Part of a grammar couple for the while statement

Table 5.3 presents the semantic rules block describing the conditional semantic of our ex-

ample of the while statement. Attributes names are prefixed by 4. for inherited, and s. for

91

CHAPTER 5 : DDF: A formal language to specify component-based P2P applications

synthesized. The attribute env represents the execution environment of a statement and s.c

carries the value of the boolean condition.

{ h.env(cond) := h.env(w), // common semantic rule
{ (s.c(cond)), // boolean expression
{(w=while : STAT — cond = cond : COND
body = body : STAT w-rec = while : STAT,

h.env(body) := h.env(w) // true case:
h.env(w — rec) := s.env(body)
s.env(w) := s.env(w-rec) },

{w=while : STAT — cond = cond : COND, //false case:
s.env(w) := h.env(w) } } }

Table 5.3: The semantic rules block for the while statement

Attribute Grammars and our Data Dependency Formalism

Although AGs were introduced long ago, their lack of expressiveness has resulted in limited
use outside the domain of static language processing. With the notion of Dynamic Attribute
Grammars defined on top of Grammar Couples, it is possible to extend this expressiveness and
to describe computations on structures that are not just trees, but also on abstractions allowing
for infinite structures. In our work, we explore to take advantage of this to define a Data
Dependency Formalism. DDF is consistent with the general ideas underlying AGs. Hence,
we expect to retain the benefits of the results and techniques that are already available in AGs’

domain, in particular, those introduced for Data-Flow Analysis.

5.2 Case study: Gossip protocol

As presented in Section 2.2.4, a large number of algorithms and protocols have been developed
for P2P applications to support different properties. These algorithms and protocols usually
have a recursive behavior that many modeling approaches cannot describe and analyze. To
illustrate how our approach can deal with this issue, we have chosen to explain our Data De-

pendency Formalism in a case study that consists of a gossip protocol [Voulgaris et al., 2005]

92

5.2 Case study: Gossip protocol

[Jelasity et al., 2007]. In addition to the fact that gossip protocols present a recursive behavior,
our choice is especially motivated by the following other reasons. According to [Jelasity, 2011],
a broad range of distributed protocols can be reduced to gossip protocols, and those gossip pro-
tocols can help in the building of large-scale cloud computing systems, which are considered
the computing platform of the future by many actors in both research and industrial communi-

ties. The rest of this section presents such kind of protocols in more detail.

Gossip in human communities

Humans frequently try to find information about those around them. But interconnections in so-
cieties are complex, and it is impossible to be present at the same time in different places to get
this kind of information directly. Therefore, people pick it up through an intermediary, whether
or not they have the possibility and patience to confirm it later either directly or indirectly.
This phenomenon, called gossip (or rumor, which differs primarily by being speculative and
sometimes pertaining to events rather than people), is an important social behavior that nearly

everyone experiences, contributes to, and presumably intuitively understands [Foster, 2004].

To complement views of gossip as essentially a means for spreading and gaining informa-
tion, [Baumeister et al., 2004] proposes that gossip helps people learn about how to function
effectively within the complex and ambiguous structures of human social life. Gossip can thus
be understood as an extension of observational learning, in the sense that people can learn from
the success and failures of others outside of one’s field of vision and sometimes even outside

one’s circle of friends.

Gossip and epidemics

The first real application of gossip as a protocol in the context of computer systems was pre-
sented in [Demers et al., 1987]. In this paper, the authors recognize its power of spreading
information and propose a formal treatment to ensure that each replica of the database on
the Xerox Corporate Internet' (CIN) was up-to-date. They were originally inspired by the

way in which epidemics spread in a biological community. Thing that is closely analogue

'The worldwide CIN comprised several hundred routers connected by gateways and phone lines of many
different capacities. It also comprised thousands of workstations, servers and computing hosts.

93

CHAPTER 5 : DDF: A formal language to specify component-based P2P applications

to gossip. In fact, disease epidemics are contagious and spread from person to person when
a virus (that plays the role of a piece information) enters the body. Hence, the term epi-
demic algorithm/protocol is sometimes employed when describing a computer system in which
gossip-based information dissemination is used. Figure 5.3 based on the one proposed by
[Eugster et al., 2004] illustrates that. In this figure, a multicast source, represented by the black
circle, sends a message to be disseminated in a system of size n. Each infected process—each
process that receives the message—forwards it by default to a randomly chosen subset of other
processes. Afterward, each of these infected processes in turn forwards the information to an-
other random subset. Eventually, the message will reach all processes of the system with a high

probability after a certain number of rounds.

@ Multicast source

@ Processes infected during first round

s | © Processes infected during second round
| () Processes not yet infected

— Activated connections

— -+ (Connections not yet activated

Figure 5.3: Epidemic algorithm (based on a figure from Eugster et al. 2004).

Applications of gossip in computer systems

In the last years, epidemic/gossip protocols have been widely used to exchange information
(data) in large-scale P2P systems [Jelasity et al., 2007]. This has been motivated by the ca-
pacity of these protocols to ensure that information is reliably exchanged, even if the peers
dynamically join and leave the system, or the underlying network suffers from broken or slow

links.

Beyond disseminating information in distributed systems, gossiping can be generalized to

different applications for various domains such as resource management, overlay maintenance

94

5.2 Case study: Gossip protocol

and data aggregation. For instance, in the context of data aggregation, in which information
about a large distributed system needs to be gathered and expressed in a summary form, gos-
siping can be used as an efficient tool for computing aggregates, e.g., sums, averages and max-
imum of some attribute of the system nodes. We refer to [Kermarrec and van Steen, 2007] for

a survey on gossiping applications.

Gossip algorithm

In [Jelasity et al., 2007], the authors present a generic and simple gossip algorithm, which fac-
tors out the very abstraction of a peer-sampling service and captures many possible variants
of gossip-based protocols (the simple template presented in the Introduction relies on this al-
gorithm). For these reasons, we adopt exactly the same formulation of this gossip algorithm,

which we express using DDF in the next section.

In a gossip algorithm, each node in the network periodically exchanges information with
a subset of other nodes. In fact, every node maintains a local membership table providing a
partial view on the complete set of memberships and periodically refreshes the table using a
gossiping procedure. The table (view) is a list of ¢ node descriptors, where c is the size of the
list and is the same for all nodes. A node descriptor contains a node network address and an age
that represents the freshness of the given node descriptor. The list changes by means of usual
list operations (e.g., permute) that are defined on it. Therefore, the tables reflect the dynamics
of the system by continuously changing random subset of the nodes (in the presence of failure

and joining and leaving nodes).

The algorithm consists of two activities (serving and consuming) in each node: an active
client gets activated in each T time units exactly once and then initiates communications with
other nodes, and a passive server waits for and answers these requests. The behavior of the
passive server just mirrors the same stapes of the active client. In terms of DDF, each activity
corresponds to a pair of rules given in table 5.7. This table describes the behavior of a Gossip
System constituted of two nodes (node, and node,) and the associated methods (implementa-
tions) extracted from [Jelasity et al., 2007]. The detailed description of this system is formally

defined with DDF and presented in progressive manner throughout the next section.

95

CHAPTER 5 : DDF: A formal language to specify component-based P2P applications

5.3 DDF specifications

Our Data Dependency Formalism (DDF) is essentially dedicated to applications that can be
divided into autonomous components communicating to each other over channels. For this
purpose, we separate clearly computational activities and component interactions. Thus, we
distinguish two types of descriptions, grouped as syntactic and semantic descriptions. The
syntactic descriptions consist of a collection of input, output and internal services described
only by their signatures. The semantic descriptions consist of interaction rules that define not
only the valid sequences of service invocations, but also data exchange required for achieving
of the functional activities and driven the interactions between components. We call interface

the syntactic part and behavior the semantic part.

5.3.1 Interface

A service is a functional activity supported by a component. If the component provides a
service through its interface, the service is called input service; if the component requires a
service through its interface, the service is called output service. If the component provides a
service that is invoked only by itself, the service is called internal service. In a component, a

service call refers to an output service or an internal service.

An internal service represents a particular action of a component. To describe, for ex-
ample, time sequence (one component’s behavior occurs after some time), an internal service
timer(timeout : Int) can be used to represent a timer. This internal service timer has an argu-
ment timeout that can be set as an integer. Once timer.timeout is set, the component’s behavior

can only occur when timer.timeout == 0.

Formally, a service and an interface are defined as follow:

Definition 1 (Service). A service is a 3-tuple 6 =< type, name, arg >, where:

e type is the service type;
e name is the service name;

e arg is a set of the service arguments. O

96

5.3 DDF specifications

A service s is written as s(ay, ..., a,), its result is denoted by s$ and its arguments are denoted

by arg, with arg = (ap, ..., an).
Definition 2 (Interface). An interface is a 3-tuple I =< S;,,, Sour» Sins >, Where:
® Siu. Sou» Sins are a set of, respectively, input, output and internal services. O

Example 1 (Interface of a gossip component). According to Definition 2, the interface of a

gossip component (called Node) is expressed as Iyoge =< Sin, Sours Sine >, Where:

o S, = {gossip(buffer : Buffer), answer(buffer : Buffer)};
o S, = lanswer(buffer : Buffer), gossip(buffer : Buffer)};

o S = {timeout(T : TimeUnit)}. O

A gossip component has two activities: serving and consuming information (data). The
two input services are for the serving activity and the two output services are for the consuming
activity. The behavior of input services (serving activity) just mirrors the same stapes of output
services (consuming activity). The gossip service is for the propagation of data and the answer

service is for sending a response to the sender. Figure 5.4 illustrates these features.

timeout
- ‘-‘ (f
int
gossip gossip
““““““)E[Gossip D;m‘
Component
answer answer

Figure 5.4: Services of a gossip component.

5.3.2 Component

A component encapsulates data (attributes) with methods to operate on the component’s data.
Methods implement the services provided through the component interface. A service is imple-

mented by one method. A component contains the declaration of attributes whose values define

97

CHAPTER 5 : DDF: A formal language to specify component-based P2P applications

the state of its instances, along with the bodies of methods that operate on those attributes. A
method defined within a component can access only those attributes that are declared within

the component, along with any arguments that are passed to the method.

The component prohibits concurrent access to its methods. Only one method can be run
within the component at any one time. Consequently, the programmer does not need to code
this synchronization explicitly; it is built into the component. This technique is widely used in
operating systems [Silberschatz et al., 2008] to simplify reasoning about the implementation of

concurrent distributed applications.

During run time, a component might need inputs. When it receives an input, the component
will respond to this by executing its methods and/or changing its state (attributes). Otherwise,
without inputs, a component may produce an output and/or change its states. This output may

have an eventual response as an input.

Formally, a component is defined as follows:

Definition 3 (Component). A component is a 4-tuple C =< A, I, Imp, m >, where:

A is a set of typed attributes;

1 is an interface;

Imp is a set of methods (implementing the services provided through the interface). A

method is denoted F and defined in Definition 6;

m : {Si, Sour} — Imp is a function that maps each service s € (S;, U Sin:) of I to a compo-

nent method in Imp. O

An attribute may be chosen as a component state. State changes are caused by an input,
output or internal service. Thus, for the external environment, the input and output services
may describe a visible state change. These states may be used by guard conditions (defined in

Section 5.3.3) to control the component behavior.

A component may have multiple instances. An instance ¢; of a component C = (A¢, I¢c, Impc, m¢)

is denoted by ¢; : C.

98

5.3 DDF specifications

Example 2 (Gossip component). According to definition 3, a gossip component, called Node,

is expressed as Node =< A, I, Imp, m >, where:

o A = {view : List(IP : Address,age : Int), buffer : List, c : Int, push : Bool, pull : Bool,
T : Time, H : Int, S : Int};

o I = Inoae;

o Imp = {F;,(),F,0, F,0, Fr,0};

e m: {Sin’ Sout} - Imp o

An instance of the gossip component Node has an /P address to exchange services with
other instances of Node in a P2P network. Each instance maintains a view representing its
partial knowledge of the network membership. A view is a list of ¢ couples (IP, age). Attribute
c represents the size of the view and is the same for all instances. A couple (/P, age) contains
an /P address of an instance in the network and an age that represents the freshness of this

instance.

To reflect the dynamics of the system (joining and leaving instances), the gossip algorithm
(executed periodically on each instance and implemented by the methods {F, (), F;,(), F,(), F;,(}
that we explain later in this Chapter) updates the views by changing their random subset of the

instances.

In fact, once a running instance selects another instance to exchange membership informa-
tion with and the information has to be pushed (boolean attribute push is true), then the buffer
of the running instance is initialized with a fresh information (/P = Myaddress, age = 0). Then,
c/2 — 1 elements are selected randomly from the view (ignoring the oldest ones) and appended
to the buffer. The number of the oldest elements (as defined by their age) is H and is less
than or equal to ¢/2. H defines how aggressive the gossip algorithm should be when it comes
to removing links that potentially point to faulty instances (dead links). In other words, if an
instance is not alive, then its information will never get refreshed (and thus become old), and
therefore sooner or later it will get removed. The larger H, the sooner older elements will be
removed from the view. The buffer created this way is sent to the selected instance. If a reply
is expected then the boolean attribute pull is true. After removing the H oldest elements, the

S first elements are removed from the view. These S elements are exactly the ones that were

99

CHAPTER 5 : DDF: A formal language to specify component-based P2P applications

sent to the instance previously. If S is high, then the received elements will have a higher prob-
ability to be included in the new view. Since the same gossip algorithm is run on the receiver
side, this mechanism in fact controls the number of elements that are swapped between the two
instances. If S is low then both parties will keep many of their exchanged elements. We present
in Table 5.4 a summary of these attributes’ features and we refer to [Jelasity et al., 2007] for

more details.

Attributes ~ Explanations

view(IP, age) 1is alist of couples. Each couple contains an /P address of a
node in the network and an age that represents the freshness
of this node.

buffer is a temporal list used to store output or input information.
c is the size of the view.
push if it is true, then the information will be sent to the selected
instance.
pull if it is true, then a reply is expected.
H is the number of the oldest elements in the view and is less

than or equal to ¢/2. H defines how aggressive the algo-
rithm should be when it comes to removing links that po-
tentially point to faulty instances.

S is the number of elements that were sent to the selected in-
stance. If S is high, then the received elements will have a
higher probability to be included in the new view.

Table 5.4: Component attributes.

5.3.3 Behavior with data dependency

As in the grammar-based modeling methods which are well suited to describing the control
logic for the processing of data streams [Borger, 2000], the aim of our specification is to de-
scribe in a structured way what the control logic does while striving not to describe how the
control logic is computed or implemented. By what we mean describing the sub-behaviors
(called rules) of the control logic and by how we mean describing the lower-level implemen-
tation details (usually presented as states, transitions, encodings and other details of a FSA

controller).

100

5.3 DDF specifications

This choice to separate, as far as possible, what is computed from how it is computed
has been especially made in the grammar-based approaches for the following reasons. Firstly,
when the complexity of the control logic increases, describing the states and transitions of a
FSA controller implementing the control logic becomes problematic. FSA controller of even a
few states can have a large number of transitions and if some modifications should be made in
the control logic, the FSA can change considerably. Secondly, the lower-level specifying how

things are computed can be synthesized from the high-level control specification.

Typically, the synthesis begins with the construction of an abstract representation of the
design (Data-Dependency Graph in our case) and then a translation (or transformation) is per-
formed to obtain an initial FSA representation. In our case, and as in Attribute Grammars, we
look to have a data/attribute evaluator (which consists of a set of DFA algorithms) rather than
a FSA controller. The advantage of a data evaluator comes from the fact that not only one but
multiple implementations of the control logic can be synthesized by analyzing the order of data

evaluation (incremental, partial, total, parallel, etc.).

Thus, our method is based on describing the sub-behaviors of the control logic as a set
of rules. The total behavior of a design is described by composing together the rules using
compositional operators. Each rule links one input event to some output events (see Definition
6). When an input event is received, a rule will respond to this by executing computations,
changing values of its attributes or sending output events. In a rule, the input event is linked
to output events by a transition labeled by optional guard conditions. The guard conditions

indicate the circumstances under which a rule can be applied.
To keep the rule definition simple, we define first input and output event.

Definition 4 (Input Event). An input event v of a component C =< A, I, Imp, m > is an element

Of(Sin) Sim‘)- O

Definition 5 (Output Event). An output event v of a component C =< A, I, Imp,m > is an ele-

ment of (Sour U Sing)- O

Based on these events, a rule may specify four kinds of events (asynchronous events): re-

ceiving an input service, receiving an internal service, emitting an output service and emitting

101

CHAPTER 5 : DDF: A formal language to specify component-based P2P applications

an internal service. Table 5.5 gives some examples (with abbreviations) of such events.

Input Event — Output Events Informal meaning

si(args,)[Guards] — ... receipt of a service s;(args,), which is an
input or internal service.
e = 558 emission of a response s,$ of a service s,
which is an input or internal service.
.. = s3(argy,) emission of a service s3(arg,,), which is
an output or internal service.
s48[Guards] — ... receipt of a response s,$ of a service sy,

which is an output or internal service.

Table 5.5: Asynchronous events.

To take into account the synchronous events, we introduce a synchronization (a rendez-
vous) symbol T. Thus, when a service is called, the caller waits until the service response

returns. We describe this kind of event in table 5.6.

Input Event — Output Events Informal meaning

oo = s(args,) T emission of a service s;(args,), and wait-
ing for its result.

Table 5.6: Synchronous event.

In a rule r, we distinguish three types of data grouped as input, computed and output data.
The input data denote the known data used during the computation achieved by the method
implementing the service corresponding to the input event of r (this method is called F and it is
defined hereafter in Definition 6). The input data consist only of internal component attributes
and the arguments or result of the service causing the input event. The computed data consist
of the results of /" and the output data consist of the arguments or result of the service causing

the output event. The output data are presented as the union of the input and computed data.

Guard conditions act on the input data. They ensure that the input data are valid or conforms
to the conditions before applying the rule. They can be used, for instance, to ensure that two

events are mutually exclusive if they occur at the same time.

Formally, a rule is defined as follows:

102

5.3 DDF specifications

Definition 6 (Rule). A rule describes the behavior of a component C when it receives an input

event v. A rule is defined by a 4-tuple r =< L, Guards, R, E >, where:

o L ={v}withvisan input event. L represents the left side of the rule;

e Guards are the guard conditions, indicating the circumstances under which the input
event v can be executed. A guard condition consists on a set of Boolean expressions. An

input event v is executed if each Boolean expression is true;

e R={v,..,v,|Vie l.n,v;is an output event } U {D}. R represents the right side of the

rule;

e E is a semantic equation which has the following form :
(b, ...,by) = F(ay, ...,a,) 5.1

where F is a method that implements the service corresponding to the input event v and

defines the computation of the output data (b;) in terms of the input data (a;). O

Before giving the definition of the constraints on the equation E, we define first three sets

of data: Input Data ID,, Computed Data CD, and Output Data OD,.

Definition 7 (Input data /D, of a rule r). Let a rule r =< L, Guards, R, E > describes the be-
havior of a component C =< A, I, Imp, m > when it receives an input event v, the input data ID

of r are:

arg, UA if v=s(argy)
veL,ID, = (5.2)
{s$JUA if v=s$

O

Definition 8 (Computed data CD, of a rule r). Let a rule r =< L, Guards, R, E >, computed

data CD of r are the set of data resulting from the equation E:

CD, ={bg,...b, } (5.3)

103

CHAPTER 5 : DDF: A formal language to specify component-based P2P applications

Definition 9 (Output data OD, of arule r). Let a rule r =< L, Guards, R, E >, output data OD

of r are the data emitted by the output events of r:

args lf V= S(args)
OD, = 5.4
vg? {s$}) if v, = s$

Once these three sets of data are defined, the constraints on the semantic equation E of a

rule r can be defined as follows:
Definition 10 (Constraints of a semantic equation). The constraints to be satisfied by a semantic

equation E : (by, ..., b,) = F(ay, ...,a,) of a rule r are:

e Contraint (1): OD, elements can only be elements of the union of ID, and CD,:

OD, C ID, U CD, (5.5)

e Contraint (2): F only accepts ID, elements as inputs:

VieO..p, a; € ID, (5.6)

Example 3 (A behavior of the gossip component Node). The following rule r indicates that
the component Node receives the data buffer, from the outside through the service gossip and
then responses by sending the data buffer, through the service answer if the condition pull is

satisfied (pull == True):
r: gossip(buffery), [pulll — answer(buffer,) F,

In this rule, if the information has to be pulled (Boolean attribute pull is true), then the

method F, is executed. With the implementation of F, is as follows:

104

5.3 DDF specifications

(buffer,) = Fr(buﬁer»){
buffer = (MyAddress, Q)
view.permute()
view.moveOldestH()
buffer.append(view.head(c/2 — 1))
buffer, = buffer
answer(buffer,)
view.select(c, H, S, buffer,)
view.increaseAge()

During the execution of F,, a buffer is initialized with a fresh information. Then, ¢/2 — 1
elements are appended to the buffer. These elements are selected randomly from the view with-
out replacement, ignoring the oldest H elements. The buffer created this way is sent through
the service answer. Then, the received buffer, is passed to procedure select(c, H, S, buffer,),
which creates the new view based on the listed parameters and the current view. Finally, the

view is updated with new age.
The input data ID, of this rule are the union of the attributes {view, c, buffer, H, S} and the
argument buffer, of the input service gossip:
ID, = {view, c, pull, H, S} U {buffer,}
The computed data CD, are the data resulting from the execution of the method F,:

CD, = {buffer,, view}

The output data OD, consist of the arguments of the emitted service answer:

OD, = {buffer,} O

w,n

In right side R of a rule, output events (separated by ;") may be output service emitted to
different remote components, and each component is a process that can be executed separately.
This parallel relation between output events is nearly implicit. For example, r: s — s,

means services §; and s, do not have sequential relation.

This relation characterizes the activity of a unique rule. So, in order to characterize the

activity of a set of rules, we define three operations for rules:

105

CHAPTER 5 : DDF: A formal language to specify component-based P2P applications

(3 "

e Sequence operation “ ; ": Indicating a sequential order among rules. For example,
r1, r2; r3 means rule r; acts before r, and r, acts before ;3.
e Alternative operation ““ | ": Indicating an alternative choice concerning the output events

of a rule. For example,
r: s|Guards] — s;

| 52

means services s; and s, may have same chance to occur. This alternative can be con-

trolled by the guard conditions.

e Recursive operation “[]": Indicating that an internal service s will be called recursively.
This recursion can be controlled by the guard conditions. Thus, recursion operations
can be used to have repetition (loop) indicating that some rules will be executed n times

continuously. For example,

[r; : s|Guards] — s,
ry . S]$ i S]

means that the rule r; execute the internal service s if guard conditions are satisfied,
and then it calls the service s;. When the service s; response arrives, the rule r, calls the

internal service s, which will be executed again by r; if guard conditions are still satisfied.

Therefore, from the definition of an interface, a rule and rule operations, we have the fol-

lowing definition of a component behavior.

Definition 11 (Behavior). The behavior of a component C is a set of rules combined by se-

quence, alternative and recursion operations with respect to the following regular expressions:

B:=r"|[B"]1|{B"} 5.7
ra=r|r\r) (5.8)
O

Example 4 (The behavior of the gossip component Node). According to definition 11, the

behavior of the gossip component Node is Byyy. = {1}, 12, '3, 74}, Where:

106

5.3 DDF specifications

r; o timeout(T) — gossip(buffer;,)

ry . answer(buffer,,), [pulll —

r; . gossip(buffery,), [pulll —— answer(buffer;,), updateView(buffer,,,)
rqy . updateView(buffer,,,) -

=

~
BN

5.3.4 System

The component composition is based on connections among component instances. A connec-
tion between two instances occurs when one of them provides its interface and another instance
uses it. Hence, input (resp. output) services are connected to signature-matching output (resp.

input) services. There is a unique connection between two instances.

Once component instances are connected, the behavior of the entire resulting system is ob-
tained by composition of behaviors of participating instances. Since the component instance
behavior is a set of rules connected by sequence, alternative and recursive operations, the sys-

tem behavior can be again viewed as a set of rules connected by these same operations.
Formally, a system is defined as follows:

Definition 12 (System). A system is defined by a 2-tuple Sys =< Inst, Con > where:

e [nst is a set of component instances;

e Con = {(cj,c2)|(cy,c2) € Inst X Inst } is a set of connections between instances. O

Example S (A gossip system). According to Definition 12, a gossip system constituted of two

instances (node, and node,) is expressed as GossipSys = < Inst, Con >, where:

e [nst = {node, : Node,node, : Node};

e Con = {(node,,node,)).

Now, we define the system behavior from the behavior of each underlying component in-
stance. To achieve this, we associate the source and the destination instances to the events of

the rules. For example, let a rule r : v — v, v, describes the behavior of a component C when

107

CHAPTER 5 : DDF: A formal language to specify component-based P2P applications

receiving the input event v, where v € §;, and S;, € I¢, and let connections (c, ¢;) and (c, ¢)),
where ¢, ¢; and ¢; are instances of, respectively, C, C; and C; components. The rule r will
be transformed to (v, ¢;) — (vy,¢)), (v2, ¢;) if the source instance causing the input event v is ¢;
and the destination instances of the output events v; and v, are C; and C;, respectively. This
transformation is performed by a function, which specifies in each rule the source component

instance causing its input event and the destination component instances of its output events.

Definition 13 (Rule Transformation). Let a rule r =< L, Guards, R, E > describes the behavior
of a component C; when it receives a input event v € L, and let a connection (c;,c;) € Con,
where c; and c;j are instances of, respectively, C; and C; components. The transformation of r

when c; is connected 1o ¢; is r = 0(r) ¢, Where:

O'(I’)/C,._,Cj = o(r:v-o Vl---Vn)/c,-—mj

r: O-r(v)/c,-—mj - O-r(vl)/c,-—)cj---o-r(vn)/c,-acj

(5.9
with the transformation function o is defined as follows:
n/ci—c;
o 'V — VxlInstorV
(v,cj) if verLAveS;,(c)NSuic))
0r(Vjese; = ,¢j) i veErRAvVESu(c) N Sinlc)) (5.10)
%
O

Therefore, the system behavior is defined as follows:

Definition 14 (System Behavior). A system behavior B(Sys) is a set of rules combined by

sequence, alternative and recursion operations, where:

BSys)=] {B)iee, UBE))ea) (5.11)
(cicj)eCon

B(Cx)/c,\-—w_v = {O-(r)/c,\-—w_vlr € B(Cx) ArLe Sin(cx) N Sout(cy)} (512)

O

108

5.3 DDF specifications

Example 6. According to Definition 14, the behavior of the gossip system GossipSys = <

Inst,Con > (presented in example 5) is expressed as B(GossipS ys), where:

) B(GossszyS) = B(VlOdex)/nodeX—nwdey U B(HOdey)/nodey—modex
[] B(I’lOdex)/nodexﬁnodey = {I"f, l"g}
o B(nodey)/node_v_,,wdex = {r;, FX}

With r{, r5, ry and r; are specified as follow:

| Gossip System behavior | Hidden implementations

Server activity (node,)
ry - timeout(T) — (gossip(buffer,),node,) | (buffer,) = F, (){
p = view.selectPeer()
if(push)
buffer, = (myAddress,0)
view.permute()
view.moveOldestH()
buffer,.append(view.head(c/2 — 1))
gossip(buffer,)
else
buffer, = null
gossip(buffer,)
view.increaseAge()

}

ry : (answer(buffer,), node,) — F,,(buffery){
if(pull)
view.select(c, H, S, buffer,)

}

Customer activity (node,)
r; : (gossip(buffer,), node,), [pull] — (buffery) = F,,(buffer){

(answer(buffery), Node.) buffer, = (MyAddress, 0)
view.permute()
view.moveOldestH()
buffery.append(view.head(c/2 — 1))
answer(buffer,)

}

rz : (gossip(buffer,),node.), [-pull] — F,,(buffer){
view.select(c, H, S, buffer,)

view.increaseAge()

}

Table 5.7: Behavior of a Gossip System constituted of two nodes (node, and nodey).

109

CHAPTER 5 : DDF: A formal language to specify component-based P2P applications

5.4 Defining a simple generic P2P system

The idea of P2P is applied in various contexts, and P2P systems do not necessarily have several
characteristics in common; neither do they have to rely on a fixed set of attributes. There are no
major standardization initiatives that look at all aspects of P2P technology and computing. The
term P2P is defined by its usage and unique formal definition of P2P computing does not exist
[Mauthe and Hutchison, 2003]. However, there are a number of features many P2P systems

share as introduced in the following well-known and academically accepted definitions:

e The Gartner Group [Gartner Research Group, 2001] defines P2P computing as: “char-
acterized by direct connections using virtual namespaces, it describes a set of computing
nodes that treat each other as equals (peers) and supply processing power, content or ap-
plications to other nodes in a distributed manner, with no presumptions about a hierarchy
of control”.

o A brief concise definition of P2P computing is given in [Hofmann and Beaumont, 2005]:
“a set of technologies that enable the direct exchange of services or data between com-
puters".

e A more recent definition is given in [Taylor et al., 2009]: “The peer-to-peer (P2P) ar-
chitectural style consists of a network of loosely coupled autonomous peers, each peer
acting both as a client and a server. Peers communicate using a network protocol, some-
times specialized for P2P communication-such was the case for the original Napster and
Gnutella file-sharing applications. Unlike the client-server style where state and logic

are centralized on the server, P2P decentralizes both information and control.”

These definitions highlight the following elements that are fundamental to P2P computing
and common in describing P2P applications: i) direct exchange of resources between peers;
i1) each peer is independent and equivalent in functions; iii) there are no center servers or

controllers; iv) peers communicate using a network protocol.

In addition to these elements, we adopt the position proposed in [Barkai, 2002]: “One way
to derive a definition of purpose that is more inclusive, flexible, and extensible is this: There

are P2P technologies, and there is P2P computing". The P2P technologies allow peers to share

110

5.4 Defining a simple generic P2P system

resources and collaborate on computational tasks. This implies an abundance of supporting
technologies, such as discovery, remote resource management, security and more. P2P com-
puting is the use of P2P technologies. A resulting phenomenon is the creation of an overlay
community (of peers/components) that collaborates through resource (data, services, ...) shar-

ing. This is the immediate result and operational purpose of P2P computing.

As can be understood from the above definitions, the P2P system we define with DDF is
formed by establishing an overlay network between peers. Peers are represented by component
instances. The same notation is used to refer to the component instances as well as the peers
they represent. Each component instance acts both as a server (with its input services) and
a client (with its output services). Each component instance is used to store resources (data)
which are accessible through services. Each instance is connected to a bounded number of other
instances and has a unique identifier, such as an IP address. As the network evolves, instances
can continuously seek after new partners by implementing a specific algorithm such as Gossip
algorithm (specified in Section 5.2). Thus, the final structure of the P2P network depends
on the kinds of these searching algorithms. We assume the existence of an underlying layer
(SON infrastructure in our case) that provides to component instances the necessary lookup
service (like a DHT; cf. Section 7.3.2) and communication mechanisms (like JXTA; cf. Section
7.3.3). These assumptions allow us to make only very weak networking issues at the high level
description and defer the additional ones to the lowest level where they are needed. Thus, we
provide a simple generic definition that can be implemented in different environments with

different low level assumptions.

Formally, we have defined a P2P system by extending Definition 12, and while trying to
get closer to the one proposed by [Giesecke et al., 2005] because it was specified to be easily

augmented by other P2P functionalities. Thus, our definition of a P2P system is as follows:

Definition 15 (P2P system). A P2P system is defined by a 4-tuple P2PSys =< Inst, Con,7y, >:

e [nst is a set of component instances;
e Con = {(cy, c2)|(cy, c2) € Inst X Inst} is a set of connections between component instances;

e v :Inst — ID is a mapping function that maps each component instance c € Inst to its

111

CHAPTER 5 : DDF: A formal language to specify component-based P2P applications

identifier id € 1D, where ID is a set of identifier;

e 0 : T — Insty X Cony is a time mapping function that maps an instant t € T to the set of

instances and connections that are available in this instant. O

The time mapping function describes the evolution of the system over time. For example, if
a component instance c (a peer) joins the system at time #; and leaves at ¢;, then c is in the image
of t € [t;,¢;[. During the time interval [#;, ¢;[, c may open and close many connections to already
connected instances. These connections are also captured by the time mapping function and

are in the image of ¢ € [7;,1;[.

The time mapping function 6 may control several P2P features (e.g., reach a certain position
in the network topology, adapt to failures, etc.), but the way how it is incorporated into the
specification depends on the protocol implemented by the network peers. For instance, in
Gossip protocol, each peer maintains a local table view(ID, age) providing a partial view on the

complete set of memberships and periodically refreshes the table using a gossiping procedure.

To illustrate the evolution of a P2P system over time, we use an example similar to the one
proposed in [Giesecke et al., 2005]. The system consists of seven peers and ten connections.
For all instants ¢ € [#y, t;[the peers c; to ¢5 participate in the system (see Figure 5.5). c5 leaves
the system at #; and, therefore, its connections disappear as well. ¢4 had a connection to ¢s and
could ask ¢z about other peers. ¢z could send the ip., to c4, so that ¢4 opens a connection to ¢
at instant #,. At the same time, new two peers ¢g and ¢; enters the system with a connection
to c3 and c,, respectively. After f3, c; mediates connections to ¢;. Formally, this example is

defined as follows:
Inst = {c1, 2, ¢3, ¢4, Cs, C, €7}
Con = {con,, con,, consz, cony, cons, Cong, CON;, CONg, CONg, CON1o}.

ID = {ip¢,,iPeys IPess iPeys> iPess IPcqs iPers 13

Con \ con, con, COn3 Cconm, CONns CONg COM; CONg CONg CONpg
(Ci,Cj)‘ (c1,¢2) (€2,¢3) (c1,¢3) (€3,¢4) (C3,05) (cs,¢6) (c1,c4) (€3,C6) (€2,C7) (C1,C6)

112

5.4 Defining a simple generic P2P system

Inst o c) C3 C4 Cs Ce cy
v - . : ; P P P
ID Pey WPc, WPe3 WPy Pes P Py
T Instr Cony
[fo. 1] | c1,€2, 3,4, 05 cony, cony, cons, COny, CoNs, CONg
0: [ti, 6] | c1,¢2,C3,C4 cony, cony, CONz, CONy
(2, 53] | c1,¢2,€3,C4,C6,C7 | CONY, CONy, CON3, CONY, CONT, CONg, CONY
(13, t4] | c1,€2,€3,¢4,C6,C7 | CONY, CONy, CON3, CONY, CON7, CONg, CONg, CONY
Cs \
\ /C4 /C‘l o /04
Ca £ C3) ¢ / C3 € Ca
2 2 2 / Ca
\ / \ / Cg \ (9 \ /
) & [T)
Ito. il [ty tof [to. tal & [ts, taf ¢

Figure 5.5: Illustration of an evolution of a P2P system.

113

CHAPTER 5 : DDF: A formal language to specify component-based P2P applications

114

Chapter 6

Analysis of DDF specification

Contents
6.1 Introductionttt tiiineeenneeeeas 116
6.2 Data-Dependency Graphttt it nnnas 116
6.3 Analysisexamples 0 v it it it i e e e e e e e e e e 121
6.3.1 Detectionofdeadlocks 121
6.3.2 Dominance analysis 122

This chapter aims at presenting how we analyze application behavior specified with our
Data Dependency Formalism, presented in the previous chapter. The first step of this analysis
is to construct a Data-Dependency Graph (DDG) that we introduce in Section 6.1 and 6.2.
After that, verifying a property is reduced to find a solution to a set of constraints (called data-
flow equations) on the inputs and the outputs of the graph nodes. This is illustrated through
two examples presented in Section 6.3.1 and 6.3.2. The first example consists of checking the
property of deadlock freedom which is reduced to find whether a node in the graph depends on
itself. The second example is about dominance property that has many applications in computer
science (code optimization, detection of parallelism, construct of hierarchical overlay networks,
optimizing routing, memory usage analysis, etc.). To compute dominance information in a
DDG, we formulate the problem as a set of data-flow equations that defines a set of dominators

for each graph node. These equations are solved with an iterative algorithm.

115

CHAPTER 6 : Analysis of DDF specification

6.1 Introduction

As described in Section 2.2.2.2, Data-Flow Analysis refers to a body of techniques, which
derive information about the flow of data along program execution paths in order to infer or
compute some properties. To achieve this, we must first consider all the possible paths through
a flow graph that the program can take. Therefore, we have defined a Data-Dependency Graph
(DDG). It presents an abstract representation of a system. This abstraction exposes the right

level of detail to perform DFA.

The DDG models the flow of data values from the point where a data value is created, a
definition, to any point in a configuration where it is used, a use. A node in a DDG represents a
low-level operation on data. In most cases, nodes contain both definitions and uses. A directed
edge in a DDG connects two nodes (head and tail). The head defines a data value and the
tail uses it. The edges in the DDG represent interesting constraints on the control flow, i.e.,
a data value can be used only if it has been defined. This only implies a partial order on the
execution. Therefore, no total order among configuration operations is needed to be given by
the designer who often set it as an automaton to perform analysis. Moreover, it is possible
through a data-flow analysis on this graph to infer various data evaluation orders during run
time (e.g., total, parallel and incremental). Thanks to the theory of iterative data-flow analysis

based on a fixed-point theorem [Kam and Ullman, 1976].

6.2 Data-Dependency Graph

The Data-Dependency Graph is extracted from the semantic equations of the system by con-
necting together the Rule-Dependency Graphs corresponding to each rule used in this system.
The Rule-Dependency Graph of a rule r describes internal and external dependency relations

of input and output data, which are manipulated by the different services of r.

The internal relations are induced from the semantic equation of a given rule, which define
the computation of the output data in terms of the input data. Thus, Definition 16 defines the

internal dependency relation as follows:

116

6.2 Data-Dependency Graph

Definition 16 (Internal Dependency Relation). The internal dependency relation G;,(r) in

ID, X OD, of a rule r is defined as follows:

a, Gin(rya, ifandonlyif (..,a4..)=F(.,a,,..) 6.1)

Thus, a, depends on a,,, if g, is an argument in the semantic equation for a,.

Input Data Output Data

e Rt

8,—

Figure 6.1: Example of an internal dependency relation.

Figure 6.1 shows an example of an internal dependency relation where output data a; de-

pends on input data a; and a,.

The external relations of a rule r are related to the source and destinations of events present

in r. Therefore, we present the definition of external dependency relation as follows:

Definition 17 (External Dependency Relation). Let a rule r¢ describes the behavior of a com-
ponent instance e when it receives an input event, and let (v(a$, ..., ag),) beaneventinre. The

¢), e") depend on the position of this event

external relations induced from the event (v(aj, ..., a,

inre:

if W(af,...,a;),e)€r.L then Vkel.q, a,i/ Gou(r) a; (6.2)
if (W(aj,...,ap),e) €r.R then Vkel.q, aG.u(r) az’ (6.3)
O

Thus, a; depends on af{’, if @; is an argument in the input event received from e¢’. And afc'

depends on a;, if a,‘j’ is an argument in the output event emitted to ¢’.

Figure 6.2 shows an example of an external dependency relation where data of an input

event in rule 7 depend on data which are output in .

117

CHAPTER 6 : Analysis of DDF specification

Output Data Input Data
e| _aJ.EI_ __________ > alE_ e
Rule (r¢) S o] Rule (r¢)
la.® > as® |

Figure 6.2: Example of an external dependency relation.

When no confusion arises between the notions of relation and graph, we shall represent
them both by the same notation. Accordingly, we denote the Internal Dependency Graph of
a rule G;,(r) and the External Dependency Graph G,,(r). The union of these two graphs

represents the Rule-Dependency Graphs of r, which we denoted by G(r).

The Data-Dependency Graph, the graph of the whole system, is obtained from the union of

the Rule-Dependency Graphs and it is defined as follows:

Definition 18 (Data-Dependency Graph). Let Sys =< Inst, Con > be a system, the Data-Dependency

Graph of the system Sys is:

66y = |J (| GV Geutr) (6.4)

eclnst reB(e)

Example 7. To illustrate how to construct a simple Data-Dependency Graph, we consider the
push-pull version (boolean attributes push and pull are true) of the system GossipSys presented

in Example 5. As specified before, the behavior of GossipSys is B(GossipSys) = {r{,r},r,r,},

where:
r; . timeoui(t) — (gossip(buffer,), Node,) Fp
’5 . (answer(buffery), Node,) — Fy
r} . (gossip(buffer,), Node,) — (answer(buffer,), Node,), updateView(buffer,) F. ”
r; . updateView(buffer,) — Fr;

The Data-Dependency Graph of GossipSys at the end of timeout(t) is shown in Figure 6.7.
This graph is obtained from the union of the Internal Dependency Graphs of the rules r{, r}, r;

and r), which are presented in Figures 6.3, 6.4, 6.5 and 6.6, respectively.

118

6.2 Data-Dependency Graph

Figure 6.5: Internal Dependency Graph of the rule ;.

Figure 6.6: Internal Dependency Graph of the rule 7.

119

CHAPTER 6 : Analysis of DDF specification

Figure 6.7: An example of a Data-Dependency Graph.

120

6.3 Analysis examples

6.3 Analysis examples

6.3.1 Detection of deadlocks

In a component composition, services are often forced to wait for resources from other services
to finish execution. If the resources are not available, then the system may enter an infinite
wait state. Under the assumption that this issue is not caused by infinite loops, infinite wait
is always caused by deadlocks or starvations. A deadlock is a situation in which two or more
actions (services) are mutually waiting on each other to finish, while a starvation is a situation

in which an action is perpetually denied access to resources needed to make progress.

A system deadlock can be viewed as a circular dependency between data exchanged through
services. Therefore, the basis of our deadlock analysis is detecting possible circular dependen-

cies in the Data-Dependency Graph of the system.

Once the DDG is defined, we can induce if the system is deadlocked or not by searching for
circularity in the graph. In other words, we shall search for a datum which depends on itself.

An example of such as situation is given in Figure 6.8.

e
-~

ONONONO

Figure 6.8: Example of data which depend on themselves.

Formally, a deadlocked system is defined as follows:

Definition 19 (Deadlocked system). Let Sys =< Inst, Con > be a system and G(Sys) = U cpus(
U,epe)(G(1))) be the Data-Dependency Graph of Sys. Then Sys is said to be deadlocked if and

only if there exist a rule r € B(e), e € Inst such that G(r) contains a cycle. O

Now, we present an algorithm (Algorithm 3) which determines whether or not a system is
deadlocked. The first stage of our deadlock test algorithm is to construct the Rule-Dependency

Graph G(r) of each rule r in the behavior of each component in the system. This construction

121

CHAPTER 6 : Analysis of DDF specification

is achieved by connecting together the internal and external dependency graph of r obtained
as described above. After that, G(r) is added to the Data-Dependency Graph G(Sys) which is
initially empty. Once all rule graphs are added to G(Sys), we compute transitive closure of
G(Sys), which we denoted by G(Sys)*, in order to add induced dependencies. Those induced
dependencies allow us to determine whether or not a node (a datum) of the graph is circular.
If this is true, then we deduce that the system has a deadlock and a message with the rule that

contains the circular data is printed.

Algorithm 3 Deadlock test

Require: Sys =< Inst,Con >;G(Sys) := 0;

{---------- Construction of the system graph - - - ------- }
for all e € Inst do
for all r € B(e) such that r : (vg,e9) — (v, e1), ..., (v, e,) do
G(}") = Gim(r) U Gext(r);
G(Sys) := G(Sys) UG(r);
end for
end for

G(Sys) :=G(Sys)*;
foralle € E do
for all r € B(e) such that r : (vg, e9) — (vi,€1),...,(V,,e,) do
if G(Sys),, contains a cycle then
print Deadlock detected in rule r;
end if
end for
end for

6.3.2 Dominance analysis

Dominance analysis is a concept from graph theory, and it has many applications not only in
the real world, but also in computer science. In compilers, dominance analysis is mostly used in
code optimization, and it is performed over flow graphs representing the execution of programs.
One important task in this context is the optimization of loops since the execution of programs
tends to spend most of their time in their inner loops. In parallel computing, dominance analysis
is used to compute control dependences that identify those conditions affecting statement exe-

cution. Such information is critical for detection of parallelism [Srinivasan and Wolfe, 1992].

122

6.3 Analysis examples

In peer-to-peer applications, dominance analysis can be used to construct hierarchical over-
lay networks for more efficient index searching. It can also be used for optimizing routing
among a set of nodes by reducing the searching space for a route to the dominating nodes in
the set. Dominating nodes are a small set of nodes which are close to all other. Another field
where dominance analysis is applied is memory usage analysis. In this field, the dominator tree

(defined hereafter) is used to easily find memory leaks and identify high memory usage.

In a Data Dependency Graph, we say that node d; dominates node d;, written di dom dj, if

every path from the entry node of the graph to d; goes through d;.

(©
©,

Figure 6.9: A Data Dependency Graph.

To make this dominance notion concrete, we consider the Data Dependency Graph of Fig-
ure 6.9. In this graph, the nodes dy, d;, ds, and dg lie on every path from d to dg. Thus, Dom(dyg)

is the set {d0, d1, d5, d8}. The other sets of dominators for the graph are as follow:

Dom(dy) = {d0}
Dom(d,) = {dy,d,}
Dom(dy) = {do, dy,d>}
Dom(dz) = {dy, d,,d3}
Dom(dy) = {dy,d,d3,ds}
Dom(ds) = {dy,d,,ds}
Dom(dg) = {dy,d,,ds, ds}
Dom(d;) = {dy,d,,ds,d7}
Dom(dg) = {dy,d,ds, dg}

A useful way of presenting dominance information is a dominator tree, in which each node

123

CHAPTER 6 : Analysis of DDF specification

d dominates only its descendants [Aho et al., 1986]. For example, Figure 6.10 shows the dom-
inator tree for the DDG of Figure 6.9. We note here that d; is a child of ds, even though it is
not an immediate successor of ds in the DDG. This is because that each node d; in the tree has

a unique immediate dominator d; which is the last dominator of d; in the DDG.

Figure 6.10: Dominator tree for the DDG of Figure 6.9.

To compute dominance information in a DDG, we can formulate the problem as a set of
data-flow equations and solve them with an iterative algorithm. This algorithm is based on the

one proposed by [Allen and Cocke, 1972] who relied on the principles of data-flow analysis to

Algorithm 4 Iterative Dominator Algorithm
Require: G(Sys) := (N, E);

forallne N do
Dom(n) = N,
end for

changed = True;

while changed do
changed := False;
foralln e N do
temp = {l’l} U (ﬂmepreds(n) Dom(m)),
if temp # Dom(n) then
Dom(n) = temp;
changed := True;
end if
end for
end while

124

6.3 Analysis examples

guarantee termination and correctness.

Given a DDG = (N, E), where N is a set of nodes and E is a set of directed edges, the Dom

sets are defined by the following data-flow equations:

Dom(n) = {n} U (M Dom(m)) (6.5)
mepreds(n)
The initial conditions of the equations are: Dom(ng) = ngy, and Vn # ny, Dom(n) = N. preds
is a relation, defined over E, that maps each node to its predecessors in the graph. Algorithm
4 shows an iterative solution for these dominance equations. It initializes the Dom set for each

node, then repeatedly computes those sets until they stop changing.

125

CHAPTER 6 : Analysis of DDF specification

126

Chapter 7

SON: A runtime middleware

Contents
8 I 0) o ()
7.2 Service-oriented componentmodel00 ...
7.2.1 The component interface description (CDML)
7.2.2 The deployment description (World)
7.3 P2P communicationmodel 00000,
7.3.1 The Components Manager (CM)
732 TheDHTmodule
733 ThePIPESmodule
74 Implementation ittt enensntoesas
7.5 Applications i i i e e e e e e e

7.5.1 Simple Georeferencing Tool (SGT)

7.5.2 Social-based P2P recommendation system (P2Prec)

This chapter describes fundamental aspects of the SON (Shared-data Overlay Network)

middleware. SON is based on the concepts (i.e., component, service, interface, etc.) defined

and formalized in our DDF for developing and deploying component-based P2P applications.

This chapter addresses aspects referring to the structure of SON, its underlying component

model and communication model. Besides those conceptual issues, the chapter presents a sum-

mary of the prototypical implementation and shows how SON middleware can be used to sup-

port the development of component-based P2P applications through two examples: SGT (Sim-

127

CHAPTER 7 : SON: A runtime middleware

ple Georeferencing Tool) which is a lightweight application dedicated to collect, process and
display georeferenced data, and P2Prec (a social based P2P recommendation system) which is

developed in our research team for large-scale data sharing.

7.1 Overview

It is expected that the applications specified with our DDF formalism would need to run in dis-
tributed and ubiquitous environments. In this context, application components must be able to
communicate with each other through the network. In addition, they must be able to adapt ac-
cording to their evolution and execution environment. We say that the application (architecture)
is dynamic [McKinley et al., 2004]. To meet these constraints, we adopted a service-oriented
component approach to develop a middleware called SON (Shared-data Overlay Network),

available online [SON, 2011] as an open-source software.

SON is based on the concepts defined in the DDF for developing and deploying applica-
tions in a simple and effective way. SON combines three powerful paradigms: CBSE, P2P and
Service-Oriented Architecture (SOA) [Papazoglou and Heuvel, 2003]. As described in Section
3.2, SOA is a software architecture that uses services as fundamental elements for developing
applications. SOA is based on three actors: i) the Service Provider publishes on a Service
Broker the service descriptions which specify both the available service operations and how
to invoke them (e.g., network protocol that must be used for the invocation, software compo-
nents required to establish the connection, etc.); ii) the Service Broker registers the service
descriptions and references; and iii) the Service Consumer discovers the services by running a
search on the Service Broker. It then establishes a connection with the provider to invoke the
service operations. The SOA design principles (cf. Section 3.2.2) allows the development of
modular, loosely coupled and dynamic applications. Along this chapter, we show how these
SOA design principles can be integrated into our middleware while being separated from the

implementation code.

SON middleware is composed of a component model and a connection model (see Figure

7.1). The component model defines how to create and validate components. The connection

128

7.1 Overview

model provides not only local and distributed communication mechanisms, but also allows
different peers to publish and search resources. In this context, a resource represents a com-
ponent that provides or requires services, and a peer represents a set of locally interconnected

components.

Component model)

Container

Business Component
code description

J
/_ Communication model \

Components Manager (CM)

Publishing and Remote
discovery connection

Module module

(DHT) (PIPES)

/

Figure 7.1: Overview of SON middleware.

By using the DDF specifications, SON’s user is able not only to check the consistency be-
tween each DDF rule and the corresponding implementation, but also to perform an effective
code generation, i.e., the target implementation and generated code fit well the behavioral con-
straints contained in the DDF rules. In fact, the user defines for each component a set of services
(input, internal and output) and behavioral rules. Then, he implements the code of the compo-
nents, i.e., the method F that implements the service corresponding to the input event of each
rule (cf. Definition 6). Afterwards, a code generation tool, called Component Generator (CG),
checks whether the implementation of each method F is valid and fits well the constraints (cf.
Definition 10) contained in the corresponding DDF rule. Once the implementation is valid, the
CG generates a set of Java source files that implement the container of the component. These
Java files (see Figure 7.2) are compiled together with the implementation code to generate a
standalone and ready-to-use component. Thanks to the component container that embodies all
resources needed to adapt the implementation code to the run-time environment. In particular,

the generated container embodies:

129

CHAPTER 7 : SON: A runtime middleware

e mechanisms to instantiate, connect and run the component;

e a local facet for the business code developer who does not need to have a consistent
knowledge about the underlying infrastructure;

e a server facet that is connected to the local facet with a facade;

e a facade that transforms the output invocations in the local facet to an output service call

emitted by the server facet (and vice versa for the inputs);

scheduling mechanisms to control the execution of the service invocation queue.

Figure 7.3 shows the process that is followed to generate the container. It also shows how
the DDF rules are used and the way in which the process steps are performed (i.e., automatically

or manually).

During the execution, a particular component runs by default. This component, called
Component Manager (CM), supports the creation of components and establishes connections
between them. To make the connection between two components, the CM uses their two inter-
face description files to match the required and provided services for both components. This

matching works both ways.

They exist two configurations in SON middleware. The first configuration (local) can man-
age the local exchange between the components on the same peer. In this case, the CM manages
locally a list of components. The second configuration allows managing the publishing and dis-
covery of components in a P2P network. In this context, the CM delegates the management of
remote component lists to a DHT (Distributed Hash Table) [Rhea et al., 2004]. A DHT is a dis-
tributed system that provides mechanisms to collectively manage a mapping from hash values
(keys) to some kind of content (data values), without any centralized control or fixed hierarchy,
and with a little human assistance. DHTs were introduced in the research community of P2P
because, in most cases, the challenges of P2P systems (e.g., storage, connectivity, coordination
of resources, etc.) can be reduced to a single problem: “How do you find any given data item
in a large P2P system in a scalable manner, without any centralized servers or hierarchy?"

[Balakrishnan et al., 2003].

After the connection process, two components interact with each other directly without

going through the CM (cf. Section 7.3.3). The advantage of this environment is its dynamic

130

7.1 Overview

v Package Explorer ﬁ 'Eg Hierarchy; LL_, Project Exploler- . Navigatol; = '_:l, R
4 =5 inria.zenith.son.gossip r
4 [sre
4 [E gossip.resources
& gossip.cdml e Manual code
4 B3 gossip

[4] Activatorjava
[J] Gossip.java

4 ¥ generate/src
4 [H Gossip

. }J] ConnectToEventjava
.)] ConnectTolListenerjava
. MJ] DisconnectEventjava
. 1)) DisconnectListener.java
1J] ExitEvent.java
1J] ExitListener.java
1J] GossipAppFacadejava
1J] GossipAppFacadelnterface.java
- 4J] GossipContainer,java
- 41 InitDataEvent.java
. 1] InitDatalistener java
. 1) LogEventjava
- 1)) LogListener.java
J] LegUndoEvent,java

[0 Laallndalictanar iz

. =
@ —

Developer

m

—
-uq

- generated code

Figure 7.2: SON’s component structure.

|

Component implementationJ

(java file)
N —

Required

functionalities

Component
Interface
(.cdmll file)

w (w L3 Container
> Component

Generator Interface

H (_.cdmilfile) H

._[Implementation H

)
e

Component -

behavior rules : ;/
(.cdmll file) —ppr— (Data-Dependency Graph Component
K ' >
| R——— .

(_java files)

|

Mg

Verification Run-time of SON infrastructure
(Data Flow Analysis (See Figure 8)
algorithms)

Modeler

‘ Verification feedback | <

7= Edited by the operator

ﬁ Generated by SON's tool

L* Actually, edited by the operator.
(we would like to automate if)

Figure 7.3: Overview of the development process.

131

CHAPTER 7 : SON: A runtime middleware

aspect. In fact, during the execution, the components can dynamically join and leave the system
over connections established on the fly. The next sections present the different aspects of this

middleware in more details.

7.2 Service-oriented component model

As presented in [Liu et al., 2006], service-oriented component approach help developers to
build SOC applications by separating non-functional requirements from business logic. To im-
plement such applications, one must take into account standards, code distribution, deployment
of components and reuse of business logic. To cope with these changes, applications need to
be more open, adaptable and capable of evolving. We present in this section a service-oriented
component model based on: i) the component interface description, named CDML and ii) the

deployment description, named World.

7.2.1 The component interface description (CDML)

We have defined an abstract Component Description Meta Language, i.e., independent from
any component technology:

e To enable that the runtime environment can be taken into account without any modifica-
tion to the business code.

e To enable that an interface can dynamically be discovered and adapted.

e To add meta-information to a component. This is a generic approach to record infor-
mation dealing with several concerns such as deployment management and component

behavior (specified with DDF rules in our case).

When these mechanisms are included, The Component Generator can automatically produce
the non-functional code. That is to say the container that hides all the communication and
interconnection mechanisms like the transformation of a service call by a sending message, the
management of a queue of received messages, and the broadcasting of a message toward the

connected components. Those runtime operations are totally transparent for the designer.

132

7.2 Service-oriented component model

As an example, a simple CDML of a component in a Gossip system (specified with DDF
formalism in Section 5.2) is given in Figure 7.4. The input keyword corresponds to a provided
service definition, and the output keyword corresponds to a required service definition. The CG
can automatically generates an equivalent description in Web Services format (WSDL) when

generating the non-functional code.

<component name="node" type="Node" extends="abstractContainer"
<containerclass name="NodeContainer"/>
<facadeclass name="NodeFacade" userclassname="NodeImpl"/>

<input name="gossip" method="passiveGossip">
<attribute name="buffer" javatype="java.lang.String"/>
</input>

<input name="answer" method="passiveAnswer">
<attribute name="buffer" javatype="java.lang.String"/>
</input>

<output name="gossip" method="activeGossip">
<attribute name="buffer" javatype="java.lang.3tring"/>
</output >

<output name="answer" method="activeAnswer">
<attribute name="buffer" javatype="java.lang.String"/>
</output >
</component>

Figure 7.4: Simple CDML of a component (node) in a Gossip system.

7.2.2 The deployment description (World)

The deployment description file is used to describe the initial state of an application. It contains
a description of the components and connections that have to be created by the CM to launch
the application. Of course, after that, other components can ask to be connected with each
other dynamically as explained in the next subsection. A component instance is identified by
the couple (name of the component, name of the instance). For example, in Figure 7.5 the

instance (cmpl, cmpl-1) corresponds to an instance of component cmpl.

133

CHAPTER 7 : SON: A runtime middleware

<world>
<connectTo id src="ComponentsManager" type_dest="cmpl" id_dest="cmpl-1" />

<connectTo type src="cmpl" id src="cmpl-1" type dest="cmp2" id dest="cmp2-1" />
<connectTo type_ src="cmpl" id src="cmpl-1" type_ dest="cmp2" id dest="cmp2-2" />

</world>

Figure 7.5: Example of a deployment description file.

7.3 P2P communication model

7.3.1 The Components Manager (CM)

The Components Manager loads components, creates their instances and maintains a local list
of them. To establish connections between two instances, the CM uses their interfaces to con-
nect output connectors (vs. input) of the first one with input connectors (vs. output) of the
second one. When connected, the two component instances interact with each other directly
without going through the CM (see Figure 7.6). Connection management, which includes
creation or destruction of connection, occurs when the CM receives notifications announcing
changes in the component registry. These mechanisms allow an application to be built as in-
terconnected component instances which can adapt dynamically to their context. Thanks to
the CM that monitors the execution context and acts on the components by managing their

connections.

[Component Manager]

Container el Component

Y 1Business code Business code|

CDML CDML

Output connector Input connector

Figure 7.6: Connection between instances of components.

134

7.3 P2P communication model

In P2P mode, to know whether an instance is already created, the CM should not be lim-
ited to a local search. If the instance does not exist locally then the CM should also extend
the search to all connected CMs. For better modularity and information management, the CM
delegates the management of components and instances tables to the DHT module. The CM
has a policy to choose the effective connection. For example, a policy will favor local connec-
tions over distributed connections. Moreover, the CM structure allows to instantiate different
policies by using the Command design pattern [Gamma et al., 1995]. In fact, The request to
connect components is done in two steps. In the first step, the CM interrogates the local list
and DHT module on the presence or not of the instance of the destination. Each one responds
asynchronously to the CM. When the CM is in possession of all responses (even negative) then
in the second step, it selects according to its policy the module that handles the effective con-
nection. If in the first step, there is no positive response, the connection request is put on hold

until the CM receives a notification, such as a component has been started or discovered.

To publish, discover and connect components on the network, two modules are proposed
(see Figure 7.7). DHT module publishes and discovers components, and PIPES module con-

nects components that are deployed on remote peers.

7.3.2 The DHT module

DHT module manages remote component lists. In the current version, DHT module uses the
OpenChord implementation [Stoica et al., 2001], but nothing prevents from using other imple-
mentations. For this purpose, an interface was defined with the usual methods (put (key,value)
and get(key)) that can be expected from a DHT module. At each creation of a component
instance, the CM publishes into the DHT, the necessary information used by remote PIPES

modules to establish connection to this new created component instance.

7.3.3 The PIPES module

The PIPES module handles the communication between remote component instances. It opens
a TCP connection between peers. It is based on the concept of virtual pipes introduced into

the JXTA [Wilson, 2002], a communication technology that has been widely used within the

135

CHAPTER 7 : SON: A runtime middleware

Grid community. This concept allows passing through a single TCP connection, several logical
communications (virtual pipes) between peers. By using this abstraction, each component may
open a virtual pipe to read messages sent to it. A virtual pipe is identified by a Universally
Unique Identifier (UUID). This identifier is associated with the component instance name and

registered in the DHT as follows:
[Key: component instance Name, Value: UUID of the virtual pipe]
[Key: UUID of the virtual pipe, Value: UUID of the PIPES module]
[Key: UUID of the PIPES module, Value: IP + Port Number]

The second record associates the virtual pipe component with the PIPES module it belongs.
The third record associates the PIPES module with its IP address and port number. Thus, two

peers can find into the DHT all the information needed to connect their components.

A Componant _ B Proxy B Componant A Proxy
& 1 : ! '
B (e e T I (T OF od Bt
= s W o TP
send
send
=F
recieve

recieve

-—gl? Network

ConnectTo ConnectTo
Put Get Cnnnec-l TCP Protacel Connect Put, Get
DHT DHT
PIPES PIPES

L o L. &
\ o j’J M o j

Figure 7.7: Run-time architecture of SON middleware.

136

7.4 Implementation

7.4 Implementation

This approach has been fully integrated into the Eclipse environment [The Eclipse Foundation, 2003]
and implemented on top of OSGi [The OSGi Alliance, 2007]. Eclipse is built around a very
small extensible runtime core and its functionality, (including compilers, workbench, and sup-
port tools) consists of plug-ins that can be managed separately. That allowed us to integrate the

Component Generator (CG) into Eclipse as a plug-in.

The application programmer develops his Java code with Eclipse IDE, in the classic way.
Then, after defining the CDMLs, non-functional codes are generated using the CG plug-in to
obtain components usable by the SON middleware (see Figure 7.2). The OSGi service platform
provides a computing environment for applications, called bundles, to dynamically deploy ser-
vices in a centralized environment. It is also a small layer that allows multiple components
to efficiently cooperate in a single Java Virtual Machine (JVM) by managing aspects of local
service deployment. However, OSGi service platform leaves service dependency management

as a task for component developers, thing which is treated automatically in our case by the CM.

At the start of execution, the OSGi platform is launched, and the CM is started by default
as a bundle. In this context, two OSGi services are used and published. The first one, called
ContainerService, allows publishing the CDML when a component is started. The CM then
adds that started component to its table of available components. The second one, called,
ContainerProxy, allows publishing the component instance when it is created. The CM then
adds that new instance to its table of created instances. The CM can then manage the execution
in an extended environment unlike other classic Java application environments. Moreover,
installing a new bundle, registering a new service, or updating an existing component does not
need a restart of the JVM because the concerned components are notified of the new state and

adapt their connections accordingly through the CM.

7.5 Applications

In this section, we illustrate the practical use of SON middleware with two application scenar-

ios: 1) Simple Georeferencing Tool, ii) P2Prec: a social based P2P recommendation system for

137

CHAPTER 7 : SON: A runtime middleware

large-scale data sharing. For each of these applications, we briefly describe its principle and

how SON has been used.

7.5.1 Simple Georeferencing Tool (SGT)

Simple Georeferencing Tool (SGT) is a lightweight prototype implemented as an application of
SON middleware. It is only composed of three SON’s components. SGT is dedicated to collect,
process and display georeferenced individual level data. Georeferencing is relating information
to geographic location [Hill, 2006] and its scope includes the informal means of referring to
locations, which we use in ordinary discourse using placenames, and the formal representations

based on longitude and latitude coordinates and other spatial referencing systems.

The application of georeferencing extends to almost all fields of human activity, includ-
ing medicine, agriculture, petroleum exploration, government administration and historical re-

search.

Georeferencing tools include services to identify a location of a place, object or person, such
as discovering the nearest gas station or the whereabouts of a colleague or friend. They include
package and vehicle tracking services, location-based games and even marketing services. In
our case, we have chosen to explain our simple georeferencing tool SGT by using it as a geo-

recommendation application as described in the following scenario.

A simple application scenario: using SGT for Geo-recommendation

In cities all over the world, people search to discover new places, to describe their impressions
and to share their discoveries with their colleagues, family, and friends. SGT is used to create
and display a combined view of surrounding addresses along with recommendations based on
the experiences and tastes of other persons. Thus, when SGT users are far from home and need
information about new places (restaurants, movie theaters, museums, gyms, etc.), SGT’s search

engine can help them with the recommendations of locals in the surrounding area.

In this experimental scenario, SGT implementation consists in three SON’s components:

Provider, Consumer and Super-node. Provider component instances are used to expose the

138

7.5 Applications

georeferenced services to the network, while Consumer component instances are used by
service consumers. Each Super-node instance is responsible for serving a certain number of
Provider and Consumer instances by publishing georeferenced services and the associated rec-
ommendation, answering queries, and creating notifications. Super-node component embodies
the functionalities of SON’s communication model (see Section 7.3). Thus, and instead of
using a central server as the case of most georeferencing tools, Super-node instances form an
overlay network based on a DHT that offers a reliable, robust and scalable mechanism to store
and manage data using P2P principles. As indicated in Section 7.3.2, we use OpenChord as a

DHT implementation.

: get and/or add

service recommendations

P2P Geo-recommendation
application
implemented with SON

Components join and leave
dynamically

Other P2P Networks

Figure 7.8: Using SON to implement a geo-recommendation application.

Figure 7.8 gives a simple use case where provider users (a restaurant and a shop) use
Provider component instance (denoted by p) to publish their georeferenced services, while
consumer users use Consumer component instance (denoted by c) to get and add recommenda-

tions about those services. Provider and Consumer instances connect to the network through

139

CHAPTER 7 : SON: A runtime middleware

Super-node instances which are their access points.

Provider users are required firstly to add (through Provider GUI, see Figure 7.9) new places
on the map and submit some information about the services available in those places. Places

on the map can be a local, work zone, district, path, department, etc. The service information

contains a name and a brief description.

After that, for each georeferenced service, a key-value pair is stored in the DHT. The key is
calculated depending on the longitude and latitude coordinates of the region where the service
place is located. The value of a key has the following form: servicelnfo, point, point, point, ...

point, where each point corresponds to the longitude and latitude coordinates of the corners of

the polygon representing the service place.

Thus, a consumer user can discover the available services around him by running queries

in the DHT through the Consumer GUI (see Figure 7.10). Afterwards, the consumer user can

Provider
&« C | @ localhost:8080/Inria.SimpleGeoreferencingTool Provider/Provider.htm A,
~
Simple Georeferencing Toaol
Add new places
Tile | Add Zone | Add Pinpoint | Add Path | Load | Save |
h;u;::rI! . pou, O T o ¥ E ’% '-};"g fa% Befleville
o B z £ Madelgine & 2,
€] ™ ~chaiot % g 7 : ® iy
w2 A & =%
5% %'g'a,,?‘, Bonne-Nouvells é?‘ o =
= :
: Champs-Elys# ", 5 & E
: ! ; s, E
e Q g @ 3a Amm. %
a_f\%‘ & o 4 TLiniversité B & ‘Quarierde 2 Saint-Ambroise
E ”\,\‘0 Jarding du Xy Te Arr TerArr IHorloge B
Trocadére & = e Arr
Champ Paris 3
B de Mars * o ‘.;' mq;va"""'e
=] ° v)6““‘“ ; i Charonne
S E
Stan Fy
e, &
¢ S 2
& 7 e AT . :
. & ; Enter the service information.
2 % Jardin de:
4 3 Plantes . N . .
2 Javel 15¢ Ar. %, Service name: | Ayoub's Pizza Delivery L
g va
a ot ¥ o
L 8y
Ak %0 Py T Tt - =
“Raya) Description: We deliver excellent pizzas
. Saint-Lambeert L straight to your doo_r. We
iy X can guarantee youll be
enire Sportif T '9-”4-,9,.3 e back time and time again!
® e gt
R o Loy, ES 8 Call now on 0123456789
D i} o Butte-aux-cailles
org E5 O"""’fvs %
> Maison
0130 Parcde Blanche E} Cancel | Save
9 Vanves Moaisouris Cité florale ‘
D72 a1 = 'f-l S
] i |

Figure 7.9: Screenshot of Provider GUI .

140

7.5 Applications

add his own recommendations about a service. He can also subscribe to a desired service and

receive notifications about new recommendations added by other people.

We close by pointing out that the front-end part (Provider and Consumer GUI) has been
generated from a Java Servlet using Google Web Toolkit (GWT) [GWT, 2007]. Java Servlet
is a server-side web technology that serves user requests and receives responses from the busi-
ness code of the component. GWT is a development toolkit for building complex browser-
based applications without the developer having to be an expert in browser technologies (e.g.,
JavaScript, AJAX and XMLHttpRequest). GWT cross-compiler translates the Java source code
to standalone JavaScript files that are deeply optimized. These allow SON’s components to eas-

ily provide a web user interface that runs across all browsers, including those for mobiles.

Consumer
&« C | @ localhost:8081/Inria.SimpleGeoreferencingTool.Consumer/Consumer. htm A,

Simple Georeferencing Toaol

Get recommendations from other people and/or add yours!

Select a category, ex: Culture (Museums, Cinemas, . _:' Search

1 Widearea search(0): ||

Bd da 18 LEpee

Local search (.): W Nearest Search (+):

m

Al ke 17e Arr. z
% % <@
| & %W E % GeAm 0 B . N
o %, k0, ORI 2 o LA Select a service (or click onthe map) e
P S A oy E 0eAm. & % - :
& aue® S e
frech 9P - o = o m—
Z = 2 S Get description
| I'{; = Madeleine & i ! % |
= E-haillot 2 @ = %
B2 Rug o & % Get recommendations |
T e Beonne-Nouvelle & & !
p Champs-Elysées G, & 0.5(-,, -
" T T S e 3e AT, %, Add recommendations |
o E e 88 Universite o 4 . 0 & Quartier de E —
Jard = du e &0 AT I'Horloge &
Trog Béro Te Arr. ’ . = 1
. @
8 Champ * Paris ;
g Ede Mars e &
& =
=] S i
o Ui b ke
Sy, i * Odéon
& i .
£ < o) Se Arr Quinze-Vir
. o (3]
2 2 % Jardin des 28
3 %O‘U % Plantes’ |
4 | 1 +

Figure 7.10: Screenshot of Consumer GUI.

141

CHAPTER 7 : SON: A runtime middleware

7.5.2 Social-based P2P recommendation system (P2Prec)

In this section, we present a summary of the implementation of a prototype based on Gos-
sip protocol (specified with DDF formalism in Section 5.2). The prototype is called P2Prec:
a social-based P2P recommendation system. P2Prec was conceived in our research team
[Draidi et al., 2011b, Draidi et al., 2011a] and its web site is available online [P2Prec, 2011].

We refer to those references for further reading.

Locating contents based on contents ids in a P2P overlay network is now well solved. How-
ever, the problem with current P2P content-sharing systems is that the users themselves, i.e.,
their interest or expertise in specific topics, or their rankings of documents they have read, are
simply ignored. Consider, for instance, a scientific community (e.g., in bio-informatics, physics
or environmental science) where community members are willing to share large amounts of

documents (including images, experimental data, etc).

P2Prec is a social-based P2P recommendation system for large-scale content sharing. The
main idea is to recommend high quality documents related to query topics and contents hold

by useful friends (of friends) of the users, by exploiting friendship networks.

The recommendation model relies on a distributed graph, where each node represents a
user (peer) labeled with the contents it stores and its topics of interests. The topics each peer
is interested in are automatically calculated by analyzing the documents the peer holds. Peers
become relevant for a topic if they hold a certain number of highly rated documents on this
topic. A peer v becomes useful to a peer u, if u’s topics of interest and v’s relevant topics are
overlapped. To disseminate information about relevant peers, P2Prec rely on Gossip protocol as
follows. At each gossip exchange, each user u checks its gossip local-view to enquire whether
there is any relevant user v that is useful to u, and its friendship networks have high overlap
with ’s friendship network. If it is the case, a demand of friendship is launched among u and v.
Whenever a user submits a key-word query, this query is redirected to the top-k most adequate

friends by taking into account similarities, relevance, usefulness and trust.

We developed P2Prec as a SON application with two components: the LDA component for

the documents topics process and the P2Prec component for the recommendation process. For

142

7.5 Applications

instance, the services of the P2Prec component are the services for passive and active prop-
agation through gossip services (gossip and gossipAnswer services) and the queries services
(query and queryAnswer services). There are two OSGi configurations, the Bootstrap Server
(BS) configuration and the Client (the peer) configuration. To run the P2Prec application, the
BS must be started on a given machine (with a given IP address). This IP address will be used
as the entry point into the P2Prec network for new peers. At the startup time, a new peer must
first identify itself with the BS (connect service) and the BS is going to return the current set
of all topics (allTopics service). Then within the local peer’s LDA component and the current

topics, the topics of each document is computed locally.

After these steps, the peer can start the recommendation steps and documents discov-
ery without any connection with the BS. Indeed, the research of topics of a new document
(computeTopic(doc) service) and the computing of topics of a query (computeTopic(query) ser-
vice) can be made locally with the local peer’s LDA component. Depending on the evolution
of documents on the P2Prec network, the BS may update the set of topics of documents, and

inform the peers by broadcasting this new topic set (using the allTopics service).

143

CHAPTER 7 : SON: A runtime middleware

144

Chapter 8

Evaluation of SON in the STAMP project

Contents

8.1 Characteristics of the main research approaches in environmental mod-
elling i e e e e e e e e e e e e 146

82 TheSTAMPDroject v v v v i v i ittt it o et oo s oo s s 148
8.2.1 Factual information on the project 148
8.2.2 Goalsoftheproject. 149
8.2.3 Our contributions in the project 149

8.3 Ocelet modellinglanguagettt eeensas 150
8.3.1 Oceletmainconcepts oo 151
8.3.2 How these concepts work together 158

8.4 Application scenarios with SON asaruntime 159
8.4.1 Lotka Volterramodel 159
8.4.2 Rift Valley Fever (RVF), a mosquito-borne disease 163

This chapter aims at presenting the results of the evaluation of SON middleware in the con-
text of the STAMP project. The evaluation consists of implementing application scenarios from
the area of modelling environmental landscapes and their dynamics. The objective is to show
how SON middleware (especially the dynamic availability of services in a service-oriented
runtime) is able to improve and enhance the effectiveness of such environmental application
scenarios. At first, the main characteristics of today’s research approaches in environmen-
tal modelling are outlined in Section 8.1. Known limitations of these approaches have led to

the initiation of the STAMP project, whose objectives are summarized in Section 8.2. The

145

CHAPTER 8 : Evaluation of SON in the STAMP project

fundamental concepts of a modelling language (called Ocelet) developed to meet the STAMP
objectives are outlined in Section 8.3. Finally, two environmental application scenarios are
presented in Section 8.4: 1) the Lotka-Volterra model which is also called predator-prey model,
i) a land-scape modelling experiment that consists on the spread of a mosquito-borne disease
(Rift Valley Fever) in an arid area, in West Africa, where ponds, pastures, herds and mosquitoes

come into play.

8.1 Characteristics of the main research approaches in envi-
ronmental modelling

Computer modelling of systems in space and time is common practice in many scientific dis-
ciplines. It allows by simulation the verification of the knowledge one has of a system, and
therefore helps to better understand how the system works in some situations, while aiming
at predicting the behavior of the system in a variety of other situations. When the system
considered is an environmental landscape, for which full scale physical experimentation can
rarely be considered, modelling could be applied to help analyze a variety of important issues
facing society today, such as the degradation of natural ecosystems with loss of biodiversity,
the emergence and spread of new diseases due to changing environmental and climatic condi-
tions, or the uncontrolled urbanization and population migrations as expressions of deep social

transformations.

The modelling of spatial and non-spatial dynamics of landscapes have been carried out
in a large variety of not only thematic, but also methodological contexts. No less than five
paradigms or modelling formalisms — system dynamics (SD), discrete event (DE), cellular au-
tomata (CA), agent-based (AB) and geographic information systems (GIS) — are being used
[Burrough and Mcdonnell, 1998, Borshchev and Filippov, 2004, Bousquet and Le Page, 2004,
Ratze et al., 2007]. This diversity, while being a sign of an active research field, may also sug-
gest that the concepts used by modellers could be too diverse to be satisfactorily described
with any single formalism. For instance, while geared for manipulating spatial information,
GIS suffer from an intrinsic limitation of not properly handling time (e.g., [Langran, 1992]).

During the last two decades there have been major contributions to address the Time issue

146

8.1 Characteristics of the main research approaches in environmental modelling

in GIS (e.g., [Langran, 1992, Peuquet, 1994, Worboys, 1994, Claramunt and Thériault, 1995,
Yuan, 1999, Wachowicz and Wachowiez, 1999, Parent et al., 2006]). Adding Time as another
dimension to space proved however not to be just an implementation problem, and recom-
mendations were made that more theoretical and conceptual developments would be required
[Peuquet, 2001]. Likewise, formalisms that consider Time first (i.e., SD, DE) face the opposite
limitation with spatial information, where it is widely assumed the latter can only be treated
as either field or object models [Goodchild, 1992, Peuquet, 2001]. Improvements were sought
with coupled or hybrid models that capitalize on more than one of the formalisms: SD-DE
(e.g., [Zeigler, 1984]); AB-SD (e.g., [Duboz et al., 2003]); GIS-AB (e.g., [Brown et al., 2005,
Torrens and Benenson, 2005]); AB-DE (e.g., [Uhrmacher and Schattenberg, 1998]); AB-CA
(e.g., [Bousquet et al., 1998]); CA-DE (e.g., [Wainer and Giambiasi, 2005]). These works are
representative of what can be considered a highly active research domain, where research
communities assemble to address common thematic (e.g. landscape ecology, urban plan-
ning and management, spatial epidemiology), methodological (e.g. MAS-multi-agent sys-
tems, DEVS—discrete event system specification) as well as conceptual (e.g. object-field mod-
els of space (e.g., [Couclelis, 1992, Cova and Goodchild, 2002]), hierarchy and scales (e.g.,
[Wu, 1999]), data quality (e.g., [Devillers and Jeansoulin, 2006]), indeterminate boundaries

(e.g., [Burrough et al., 1996], time in GIS) issues.

In addition to the problem of choosing the appropriate modelling approach in a given con-
text, previous studies have stressed on the difficulties that modellers face when working from
conceptual models of dynamic landscapes to their simulation on a computer [Fall and Fall, 2001].
A general-purpose modelling language such as UML [OMG, 2007] appears unsuitable for two
main reasons: (i) it is not a directly executable specification: the execution model is only par-
tially implemented, such that the user must manually complete the produced code and (ii) the
concepts proposed are very general, and not readily configurable to the present case. One ap-
proach has been to develop domain specific languages (e.g. SME; [Maxwell and Costanza, 1997])
(SELES; [Fall and Fall, 2001]) (L.1; [Gaucherel et al., 2006]) that would allow domain experts
to concentrate on the conceptual model, while leaving to an associated software tool the trans-
formation of the model into an implementation that runs on a computer. In this way, domain

experts may develop models using a higher level language, instead of programming directly

147

CHAPTER 8 : Evaluation of SON in the STAMP project

with general-purpose languages like Java or C++. However, for such a large domain where
spatial, temporal and multi-scale issues are still actively being studied, a DSL that can support
research on modelling processes in landscapes has to be flexible, and especially so at the very
basic level where landscape features and their interactions are defined. For example, a DSL that
has originally been developed using a predefined spatial data structure (e.g. grid cells) may limit
modellers in situations where other structures are more appropriate [Gaucherel et al., 2006]. A

trade-off between ease of use and expressiveness of a DSL therefore seems inevitable here.

An interesting parallel can be made between, on one hand, landscape entities and their in-
teractions that need to be modelled, and on the other, software components and services that
emerged with the component model programming. Interacting features in a landscape in many
aspects behave like communicating software components, and it is not surprising that many no-
tions used when modeling processes occurring in landscapes, such as dynamics, delays, events,
response or agent behavior, are also present in the service-oriented computing (cf. Section 3.2).
In this study, we present an approach which has been developed for experimenting the modeling
of a variety of landscape situations, while taking advantage of the power of component-service

programming.

8.2 The STAMP project
8.2.1 Factual information on the project

The STAMP project (STAMP: modelling dynamic landscapes with Spatial, Temporal And
Multi-scale Primitives) is a research project coordinated by Danny Lo Seen (from CIRAD,
a French research centre working with developing countries to tackle international agricul-
tural and development issues). STAMP was supported (in part) by the Agence Nationale de
la Recherche (ANR) under Project No. ANR-07-BLAN-0121. The project partners are the
TETIS research unit (CIRAD; team leader: Pascal Degenne), the Zenith team of INRIA (team
leader: Didier Parigot), the Gaspard Monge Computer laboratory of Paris-Est University (team

leader: Olivier Curé) and the AMAP research unit (INRA, IRD; team leader: Daniel Auclair).

148

8.2 The STAMP project

8.2.2 Goals of the project

Each of the approaches discussed above in the previous section has demonstrated specific ben-
efits in different domains of application. However, research on environmental modelling re-
mains organized around tools that are not quite inter-compatible, in very dynamic but separate
research communities, whereas integration of different disciplines is crucial given the important

challenges facing societies today.

A known limitation of these approaches is the strong constraint relative to the format used
to represent spatial entities, urging the modeller to think in terms of grids, points, lines or poly-
gons. STAMP project attempt to overcome this constraint by exploring an approach based on
the use of modelling primitives. In the process, it was necessary to identify and define concepts
that are essential for modellers, then build a modelling computer language (called Ocelet),
together with the grammar and syntax needed to manipulate these concepts, and finally, to
develop the compiler and the environment/interface for building models and running simula-
tions. With Ocelet, the landscape is seen as a system composed of entities that interact through
relations. The language allows using pre-developed primitives to describe these entities, the

relations that link them, and to establish evolution scenarios of the system.

8.2.3 Our contributions in the project

Within the STAMP project, we have contributed in two main ways. First, we have participated
in the design and the specification of the Ocelet modelling language. Second, we have defined

for Ocelet a service-oriented component runtime, based on SON infrastructure.

Compared to similar existing languages (cf. Section 8.1), Ocelet language elements have
been designed to seek a balance between modelling facility in simpler situations and adequate
expressiveness in more complex ones, while taking advantage of the power of component-
service programming. The structure and the logic of the language, as well as the language ele-
ments, are introduced in Section 8.3. For further reading, we refer the reader to [Degenne et al., 2009]

and [Degenne et al., 2010].

In addition to landscape complexity that is difficult to address otherwise than by modelling,

149

CHAPTER 8 : Evaluation of SON in the STAMP project

landscape scientists (from different disciplines) face other difficulties when working from con-
ceptual models to their simulation and execution on a computer. Moreover, such highly dy-
namic applications must be able to adapt according to their own evolution during the execu-
tion. Beside, various businesses (the domain of landscape modelling) and technical challenges
(the management of dynamism and service interactions) complicate the ability to develop this
kind of applications. For these reasons, we have chosen to provide an Ocelet runtime that
would allow domain experts to concentrate on the conceptual model, while leaving to SON
middleware the transformation of the model into an implementation, which runs on a dynamic
execution environment. Thus, the modeler of an Ocelet application does not need to know how
the non-functional code (e.g., communication mechanisms, sending and receiving messages,
message queue management, etc.) is implemented. Furthermore, the encapsulation of Ocelet
elements in SON components allows the reuse of these elements in other landscape models.
Since SON has been presented in the previous chapter, we only highlight in Section 8.4 appli-
cation scenarios from the area of landscape modelling in order to demonstrate the capabilities
of the Ocelet runtime based on SON middleware. For further reading, we refer the reader to

[Ait Lahcen et al., 2009] and [SON, 2011].

8.3 Ocelet modelling language

Ocelet has followed DSL development procedures recommended by [Mernik et al., 2005]. Its
design had to meet two main requirements: 1) it has to provide concepts adapted for modelling
processes in landscapes, and ii) it must have underlying operational semantics that are able to
automatically generate code and run simulations corresponding to the models written with the

language. Around the language there is a modelling framework composed of
- a model building environment that enables syntax analysing and type verification,
- a code generator and compiler, and
- a program execution runtime based on SON infrastructure (see Figure 8.1).

Ocelet is designed around five main concepts: Entity, Service, Relation, Scenario and

Datafacer. We define hereafter how these concepts should be understood in the context of

150

8.3 Ocelet modelling language

Ocelet. Other common concepts such as argument, property, number are also used, but they do

not require specific descriptions.

Model building Code generation Runtime based on
with Ocelet SON infrastructure

(" N

S\rTadic Intermediate ialua cOML
reg Hnes -
Jjava

\. y, X 4
[i .) f]]) [SON communication|
Ec |pse_PIug|n - Eclipse Plugin: modules
X Editor) L Generator - o o o g
Eclipse Plateform Tiers | | Tiers Tiers

Figure 8.1: The Ocelet modelling and simulation framework.

8.3.1 Ocelet main concepts

Entity

Entities are basic modelling parts that can be put together to build a model. A whole model
is, as such, also an entity. An entity can contain other entities, and is then called a composite

entity. Entities that do not contain other entities are called atomic entities. A forest for example

can be modelled by a composite entity that contains tree entities which are part of the forest.

From a computer science point of view, an entity is a component: an independant piece
of code that can be connected to other components to build an application. Entities can per-
form operations called services. Entities being software components, they can dynamically be

connected through their services, even without knowing how they are designed internally.
Structure of an entity:
entity(name, property*, service*, entity®*, scenario®, relation¥®,
datafacer*)

151

CHAPTER 8 : Evaluation of SON in the STAMP project

That specification means that an entity can contain properties (property* means 0 or more
property), services, entities, scenarios, relations, datafacers, and a name. Figure 8.2 gives an

illustration of this concept.

Composite entity

Entity \
relation

i Scenario ! Datafacer

Services . . v

Figure 8.2: An illustration of a composite entity.

Service

A service is a functional description of how one can relate to an entity. It is thus a communica-
tion port of an entity. As arguments, service accept values from other entities, and describes the
capability of the entity to export values to other entities of the model. Services are published
outside the entity they belong to, meaning that it is possible to obtain a list of all the services

an entity provides.
Structure of a service:

service(name, argument®, result)

Relation

An entity can directly call a service available on another entity. It is the simplest link that can be
established betwen two entities. When modelling interacting landscape elements, relations of-

ten cannot be reduced to just a transfer of information between entities. Information sometimes

152

8.3 Ocelet modelling language

needs to be transformed according to the nature of the relation. Two aspects of the interactions
have to be considered: we have to indicate which entities are interacting with each other, as
expressed by an interaction graph, and at the same time describe what is happening when they

interact. In Ocelet, the concept of Relation integrates both of these aspects.

Relations as interaction graphs

An interaction graph not only defines who are in relation (graph structure) but also how
the elements relate (behaviour). When modelling the environment, we consider that working
directly on interaction graphs can be useful for at least two reasons. First, acting at the most
elementary level of the underlying data structure (a set of dynamic graphs) allows manipulat-
ing in a similar way different kinds of relations (aggregations, spatial, functional, ...). Second,
the state of the model at any given time can be analysed using graph analysis algorithms to
extract topological characteristics that emerge during the simulation. These may reflect some
specificities of the model that would hardly be visible otherwise. Such analysis algorithms
have for example been developed by [Batagelj and Mrvar, 1998], [Fuller and Sarkar, 2006] or
[Saura and Torné, 2009].

Interaction graph with dynamic structure and behaviour

Entities of a model can, at a given time, relate to each other in diverse ways. For example,
neighbourhood (where two entities are considered neighbours if they are close enough for a
given distance function), aggregation (where some entities are considered parts of a larger
composite entity), connectivity (where entities can reach each other if a communication route
exist between them), influence (where one entity can influence the behaviour of another one)
are in fact relations. For each relation, one can build a graph where the nodes are entities and

the relations between entities are the arcs.

In many environmental modelling cases the graphs needed are actually hypergraphs (each
arc may connect more than two nodes). Such hypergraphs can be built explicitly. For example,

if we have several groups of entities connected to each other in the form of simple graphs,

153

CHAPTER 8 : Evaluation of SON in the STAMP project

one can establish another graph connecting those groups to each other at a broader scale. In
that way, it is possible to consider the behaviour of entities within a group as well as between
groups. But one can also build hypergraphs implicitly. For example, in the case of a spatial
relation where an agricultural parcel is linked to each of its borders by one n-node arc, a graph
is built using arcs linking more than two nodes. Such n-node arcs based graphs are de facto
hypergraphs. Using n-node arcs can be a way to simplify the graph structure we have to ma-
nipulate in the model. Another aspect to take in consideration when modelling with interaction
graphs is their dynamic nature. During a simulation, some entities can be added to the model,
others can disappear, and individual relationships can be established or removed. This means
that the interaction graphs are dynamic, with evolving numbers of nodes and arcs, and have

changing graph topologies.

Attached to the graph are semantics that specify what happens between the linked entities
when they do interact: the kind of information they exchange, the actions one performs on the
other, the effects produced by the interaction on the entities and on the arcs involved. In many
types of environmental models, attaching behaviour to an interaction graph is not straightfor-
ward. Sometimes the graph structure is implicit (e.g. cellular automata based on tessellations)
and only the behaviour is specified. The programming work is then reduced but the specifica-
tion of the behaviour is seriously constrained by the implicit graph structure. In other cases the
graph structure is more versatile, and the arcs have to be tagged. At some other place in a pro-
gram the definition of 40w entities relate is written and depends on the tags placed on the graph.
A greater power of expression is obtained but the programming work is more difficult. In order
to get the best of both solutions, it would be necessary to manipulate the graph structure and

attach the behaviour semantics directly on that structure at a single place in the model’s code.

Roles and re-usability

It is rare when an environmental model is original in all its parts. The most common sit-
uation is to have some parts of the model that are similar to other already existing models.
Re-usability has been a key concern in software development and modelling tools as well. In

the case of behaviours attached to relation graphs, two situations can be considered:

154

8.3 Ocelet modelling language

e Re-usability of a relation graph topology: It can be interesting to have ready made rela-
tion graph structures such as the 3-neighbours situations found in triangulated irregular
network, the 4 or 8-neighbours situations found in grids, or also star and circular shaped
relationships just to name a few. Based on the well known characteristics of such struc-
tures, one could imagine a modelling tool that provides optimized implementations for

them to be used in different models.

e Re-usability of an attached behaviour: In that case we wish to be able to reuse the defi-
nition of how entities interact with each other when they do, in different modelling situ-
ations. To make the behaviour definition adaptable to a different context, the interaction
should not be specified using the entities relating with each other but using the role they
play. It would then be possible to attach a behaviour definition to a different relationship
graph where entities are able to play similar roles. It also means that a behaviour defined

once can be instantiated several times, on different graphs, even in one same model.

Finally, it can be noted that by designing a modelling tool with re-usability concerns as
described above, it becomes possible to build sub-model libraries (named primitives in Ocelet)

and make them available for a modellers community.

Modelling your point of view

At least two cases can be identified where the notion of point of view can take the form
of semantics attached to a graph. First, when specialists of several different fields work on
the same environmental model, they may share the same entities but need to describe interac-
tions between these entities differently according to their own expert view. The nodes of the
graph could be shared, but the arcs and the behaviour attached to those arcs would reflect their
different points of views on the model. Second, it happens that different entities of a model
have different points of view on their environment and would then have to interact accordingly
with that environment. Here again the nodes of a graph could be shared but the arcs and the

behaviour attached to those arcs could be specific to every point of view.

155

CHAPTER 8 : Evaluation of SON in the STAMP project

Relations are interaction graphs in Ocelet

The relation concept as defined in Ocelet is an interaction graph very close to what was
discussed above: it contains the information of who is in interaction and also of how they
interact. As relations have semantics attached to the arcs of their graph, they are constrained by
the type of entities that can be linked. The definition of a relation has to specify the role played

by the different entities involved, like for example:

relation RelationName[roleA, roleB] {...}

The statement above defines a relation of the most common kind: every arc of the graph
links two nodes. The nodes will be entities; one entity playing role A and the other role B.
Once defined, the relation must be instantiated, and which entities playing role A and role B

must also be stated for that instance:

myInstance = RelationName[EntityA, EntityB];

The fact that relations are defined using roles makes them reusable in different contexts.
A relation carefully designed with genericity in mind could then be used and adapted for sev-
eral different models. To establish connections and actually build the graph, the predefined
connect() and disconnect () services are available. For example, myInstance.connect(
lake,river) implies that 1ake is an instance of EntityA, river is an instance of EntityB
and an arc will be added to the relation graph between them. Ocelet allows to define relations
holding hypergraphs directly by specifying more than two roles in the declaration statement,

like for example: relation RelationName[roleA, roleB, roleC, roleD] {...}.

The how part is defined in the form of services that the modeller can write to precisely
describe what happens when the entities interact. The services are written in the declaration of

the relation, like in:

relation RelationName[roleA, roleB] {

service foo() { roleA.doSmthg(); roleB.setVal(roleA.getVal()); }

156

8.3 Ocelet modelling language

The definition above implies that the entities playing roleA for that relation must provide
the two services doSmthg () and getVal (), while the entities playing roleB must provide the
service setVal(). getVal() and setVal() must also return and accept compatible types.
These are verified when the relation is instantiated. One important point to note is that only one

call to the foo () service is necessary to activate all the arcs of the relation graph.

Scenario

A scenario gives a description of which actions and relations within a composite entity have
to be activated, and when. The relations in turn put selected entities in interaction in space
and time. The scenario therefore expresses the spatial and temporal internal behaviour of a
composite entity by managing the entities and relations it contains. For example, a ten year
evolution scenario embedded in a village entity could describe the extension of the village by a
few houses every year, taking in account population growth and several policy rules that govern

spatial expansion. The ten-year scenario could also be composed of yearly evolution scenarios.

Structure of a Scenario:

scenario(name, operation* , scenario®)

In practice, a scenario can be used to describe how an entity evolves undisturbed for a given time
period, and another scenario can contain the behavior of the same entity when a disturbance

event arises.

Datafacer

A datafacer is a device through which entities access data. The data can be in the form of an
external database or satellite image, but can also be internally generated, like in a logfile, during
model execution. The datafacer contains the necessary functions, developed for specific types
of data sources, to provide the services required by the entity to which it is attached. The other
entities of the model can interact with the Datafacer in a coherent manner whithout having to
deal with the details of how data access and queries are made. More formally, a datafacer is an

atomic entity that can be accessed directly by any entity in a model.

157

CHAPTER 8 : Evaluation of SON in the STAMP project

8.3.2 How these concepts work together

Modellers who understand the landscape "system" they study as interacting landscape elements,
should be able to express their understanding with Ocelet without much compromise. Land-
scape elements are modelled as entities, which in turn can contain other landscape elements
(entities). Interactions between landscape elements are modelled using relations. The latter are
not just "wires" for transferring information, but can also hold instructions on what to do when

entities are in relation, thus expressing the "nature" of the relations.

Entity Relation Scenario

L
@ [-

mann
. .

- Bepresents landscape elements -Holds an interaction graph - Operates actions
- Performs internal finctions - Activates interaction functions - Controls simmlation time
- Proposes services - Proposes services -Allows dynamic connections

Figure 8.3: Concepts of the Ocelet language.

The orchestration of the timing of the interactions between elements in a landscape (mod-
elled as entities contained in an entity) is carried out in a scenario attached to the landscape (see
Figure 8.3). The services of an entity express the behaviour of that entity as seen from outside.
Datafacers are a convenient way for entities in a model to access heterogeneous data sources

through a unique mechanism based on services, and in coherence with the rest of the language.

158

8.4 Application scenarios with SON as a runtime

8.4 Application scenarios with SON as a runtime

8.4.1 Lotka Volterra model

This section presents an execution scenario illustrating some requirements of landscape mod-
eling. It consists of the well-known prey-predator model introduced by Lotka and Volterra
[Lotka, 1925, Volterra, 1926, Murray, 2003] and that highlights the needs in terms of dynamic-
ity and service interaction. The model is based on a system of non linear differential equations
frequently used to describe the dynamics of ecological systems in which two species interact

and evolve during time, one is a predator and one is a prey:

dx _ _
{ g = x.(@ — By) &1
dt

= y(=y +6%)
where
a is an expression of the birth rate in the prey population
B is the death rate of prey due to predation
v represents the natural death rate in the population of predators

¢ is the rate of predator population growth per prey consumed

Using Ocelet, two entities (Rabbits for preys and Foxes for predators) and one relation (the
Predation relation) are defined; the time flow of the system is also described in a scenario (the
Evolve scenario). Ocelet is designed to promote separation of concerns and in the present case

the system of equations is split into the following parts:

e The birth rate of prey is calculated by the Rabbits entity through a birth() service.

e The natural death of predator is calculated by the Foxes entity through a natural_death()

service.

e The death rate of prey due to predation and the growth of predator population due to

predation have a meaning only if preys and predators meet in a model. They are hence

159

CHAPTER 8 : Evaluation of SON in the STAMP project

calculated in the Predation relation by two respective services, updatePrey() and up-

datePredator().

The Predation relation provides a connection mechanism. When two entities are connected
through it, it acts as an interposition object by providing the updatePrey() and updatePredator ()
services (see Figure 8.4 for the Ocelet code). This allows to enrich the connected entities
without requiring changes in them. The relations therefore offer better decoupling between
the business code (inside entities) and the connection code (inside relations). It is important
to note that the separation between business and connection codes allows to reuse already
developed relations with other entities, and in the same line, to consolidate a library of ready-

made relations to facilitate future model development.

This Lotka-Volterra Ocelet model is executed above our SON middleware as follows. For
each Ocelet concept: entity (Rabbits, Foxes), relation (Predation) and scenario (Evolve), that
the modeler specifies using an Eclipse plugin editor developed for this need, Java files contain-
ing the translated Ocelet code and CDML files describing the services (provided and required)
are generated as shown in Figure 8.1. A World file describing the initial state of the applica-

tion is also generated. The component generator will then create a container for every entity,

relation Predation(Predator, Prey) {
requires property number Predator.populationNbr;
requires property number Prey.populationNbr;
requires service Predator.updatePredPop (number) ;
requires service Prey.updatePreyPop (number);

service updatePredator() {
Predator. updatePredPop (delta * Predator.populationNbr *
Prey.populationNbr * dt);

service updatePrey () {
Prey.updatePreyPop(-(beta * Predator.populationNbr *
Prey.populationNbr * dt));

Figure 8.4: Predation relation written in Ocelet.

160

8.4 Application scenarios with SON as a runtime

relation and scenario. Each container encapsulates, in addition to the Java implementation and
the service descriptions, all non-functional resources needed during the execution (e.g., mech-
anisms to instantiate, connect and run the component). Thus, we get components ready to be
used or archived in the Java ARchive (JAR) files. The World file can then be used by the Com-
ponents Manager to load the packages of components, create the instances, and wait a signal
from the graphical user interface to start the simulation (see Figure 8.6). The interactions be-
tween predators and preys in the Lotka-Volterra model are therefore transformed into dynamic
service interactions between components in a manner completely transparent to the modeler.
The result of an interaction between 50 predators and 15 preys are shown in Figure 8.5 (with

a=0:1;=0:01;y=0:05;6=0:001).

Although this illustrative example may appear simple, the principal aim is to show how the
Ocelet runtime allows modelers to concentrate on the conceptual model, while leaving to SON
middleware the transformation of the model into a running application that take into account

the requirements claimed in the context of modelling landscape dynamics.

Lodka Voltera Model

e

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Time

=
=2
—
=
=
o
=]
=B

|— Prey — Predator |

Figure 8.5: A simulation of the Lotka-Volterra model.

161

t

the STAMP projec

m

Evaluation of SON

CHAPTER §

7 ydeid uonnoss ayl Mous _

Jaquiny uoneisy) oooook

1gndoghaldias

lgndodpaldies 0

oUBUAIS

CPOGPOLLELA G N0l B SILWU 158 palddodaieqdn
GRO8LFGL00LEL6 6P 940AUS }5a pIEUEYdOdIgU
GRO8LFGL00LEL6 6P 940AUD }53 PIEUEYdOIQU
GEO8LFG00LELE G 8IND[BI 158 UiESP ™ [BINIEU
BL¥5.001826 6 Inol € siw 158 paiddodaleqdn
969vFZ/SERBYZ06 6 8hoaus IS8 plEUSHdOdIQU
969¥YE/SERYZE6 G 9ionus }s8 pIeusydodigu
960FPZIGERPERE G 2IND(BI }S3 UEAP [BINjEY
PPZ.GERPZEA Y N0 B SIW 158 palddodaieqdn
PE20806708086 G 340AUS 158 pIEUaYdOdigu
7E89B06FIBIBE G aloAus 158 pIEUEYdOJIgU
¥GB9806FIB98E G 8INJ[E 158 LBAD [EINJEL
BO806YI8986 GF: Inol € siW 158 paiddodaleqdn
9¥BE09.PEL6E G 840AUS 158 pIEUEYdOZIQU
O¥BE09.PZ 166 G 340AUS 158 pIEUEYdOdIgU
0¥BE00/FPZLGE G 2INJ(ED 158 UIEAD [BINjEY
BE00FYELEA G 0N B SILW 158 palddodaieqdn
GZLEZOGRE G ahoaus 158 pUeUEydodigu
GZLEZOGRE G ahoaus 158 pUeuaydodigu
GZLEZIGEA Y. BINDIED IS8 LESD [EINJEU
GZLEZIGEE G N0l B SIW 153 paiddodaieqdn
0°0G: adoaus J5a pJeuaydodigu

0°0G: adoaus 158 pleuaydodigu

005 2NJ[E2 158 YESP [BINJEL

0°05: Inol & s 158 uonendodaqu

uonendod 2y} Jo uonoal

(1gnuonendod sequinuliandodpaldiesdsal
sadluas ndino
(soualayip Jaquinu)dodpaldaiepdn
(Juieap™[einjEy
(Handodpaldiab

(1gpuonendod Jaquinuigpdodpaldias
saoIas ndu|
lgnuonendod

saInqupy

ZGZPLGGIYL06E808L0°0- 1 faldaiepdn |-Zuide
81 6RIBEAGFOGEE T | Nal]sa uideqdodigu
¥6E08067I8098A 61 | NJ81 159 pIEUaydodiqu

— e lew uq

GYEE68ES0698100°0 : J0lEpaldalEpdn |-ZpIEUS)
8/1-6695686F05SE ¥ - nasliss uidedodigu
a¥BENOLPPZLEE BY | 1221153 pleuaydodigu

FZEOPGLIPLYPER0LEL00- | Aaldalepdn |-Zuide
J6/9296E09L00L6F) | naal}sa uidedodigu
9¥BENG PPZLER B - 1021158 pIEUaYdodiqu

- [ew uq

LEZG/E880148100°0 : J0jEpaldalepdn |-ZpIEua)
46/9896E99 L0046 ¥ - nasliss uidedodigu
GZLEZIGEE Y | 1281153 pleuaydodigu
IZLE0ZELEDLORZLRL0 0 faldaiepdn |-Zuide
526 F) . noallss uidedodiqu

GZLEZOGEE B - N081188 pleusydodigu

— e lew uq

GZLELBLO00 JojEpaIdalepdn |-ZpIBUS)
G8E¥) . noallss uidedodigu

0°0G : NJal)5 pieuaydodigu
GJ210°0- - haidaiepdn |-zuide

0'GL : naaslsa uidedodiqul

005G : No8J g8 pieuaydodigu

ESOLPEOZEFZOLE I | 2honua J5a uidedodigu
LYE0Z6EFZ0LE YL ol e SiW 15a faiddodaieqdn
GOBOOEE0ZI0LGZ6 T | adoaua 15 uideqdodigu
GOBOBEEOZATLEEE FL - 8INJEI 188 LG
B0899EE0ZI9 526 | © 8donus 158 uideTdodiqu
DECOZI9LGZE V) - Inol € siw iss Asigdodsiegdn
621 86909/660076 ¥ © 8loaus s uideqdodiqu
621 BG909.6600F6F] - 2INJ[EI 158 UNIG

621 8AI00LG600F6 T | ad0aua 158 Uideqdodigu
FO00LGE00FE 7L | Inol e S 158 Aalgdodaleqdn
B8/1-B696686F0GSE ¥ - 8ionus 188 uideTdodiqu
8.1 BE96686Y0G56FL - 8INJEI 158 LG
8/1-6696686F0GSE ¥ - 8ionus 188 uideTdodiqu
FOGE26Y0GG6 7L © Inol € S jsa faigdodaleqdn
J6/9896E09L0046'F) | adoaua 158 uidedodigu
L629896E991L00L6F] - 2INJ[EI 1S3 UNIG
J6/9896E00L0046'F) | adoaua 158 uideqdodigu
BOGEYILO0LE T - InolE siw isa Asigdodaiegdn
GBEt) 8doaus 1sa uidedodigu
GBE¥L - 8INJEI 188 Lg

G26] . aloaua 1sa wdedodiqu
G8ET) - Inol € siw jsa faiddodaieqdn
0'GlL : adoaua 1sa uidedodigu

[0Sl : 8n2ea1se ypig

05l inol e snwiss uonendodqu

suone|ndod ay) Jo uonnjonl

(Juandogdiaidieb

(lgndodpaidiab

(sauasayip 1equinu}dogpaidaiepdn
(sauasayip Jaqunu)dogpaldaiepdn
5a2Ias Indino
(1gruonendod Jaquinugpdodialgiandsal
(1qruonendod Jaquinuligndodpaidiandsal
(Jisidaiepdn|

(JJojepaldalepdn|

sadigas indu)

uonendod 2y} 1o uonnjoAl

(1gnuonendod seguinulopdogiaidiandsal
sad1uas Indino

(soualayip Jagquinu)dogiaidaiepdn

(upig

(gndodialdieb

(1gpuonendod Jaquinuigpdodialglas

sadaas indu)

Jgpuone|ndod

saInquIy

Screenshot of the GUI of the Lotka-Volterra components.

6

8

igure

F

162

8.4 Application scenarios with SON as a runtime

8.4.2 Rift Valley Fever (RVF), a mosquito-borne disease

The spatial and temporal distribution of mosquitoes responsible for various vector-borne dis-
eases are often linked to landscape dynamics, as mosquitoes require appropriate breeding sites
for their development. One important such disease is the Rift Valley Fever (RVF) which af-
fects both livestock and humans. In livestock, outbreaks are generally associated with mass
abortions and high mortality rates in young animals, and may result in important economic
losses. The transmission of the virus in the Sahelian region of North Senegal is related to
the dynamics of temporary ponds which are favorable mosquito larval habitats. The live-
stock production system of the region is extensive and during the rainy season, areas in the
vicinity of permanent or temporary ponds are used by transhumant herds for water and graz-
ing needs [Bah et al., 2006]. When trying to model the spread of the virus, present models,
mainly epidemiological, solve Ordinary Differential Equations (ODE) for different populations
of mosquito species [Gaff et al., 2007]. Most of the spatial nature of the complex problem is,
however, either ignored, or concealed in appropriate contact rate parameters that are difficult to
estimate. As far as we know, only few studies focused on the spatial dynamics of vectors and
the disease they may transmit [Tran and Raffy, 2006, Otero et al., 2008, Linard et al., 2009]. In
order to understand the dynamics of the disease in view of proposing control measures, any
important aspect of the problem must not be ignored: it would be necessary to model mosquito
populations according to pond dynamics and presence of livestock, and therefore also model
ponds, pastures, herds that move following availability of water and food, and the transmission
of the virus to the animals. The approach that we are exploring offers interesting possibilities
for modelling and running complex problem simulations by focusing on each part one by one,
without ignoring the interactions between the parts. In the next, we focus on some of these

possibilities.

Modelling and running simple pond dynamics

In and around a given pond, the presence and abundance of Aedes and Culex mosquitoes at
different life stages depend for a large part on the sequence and duration of wet and dry periods

for that pond. Here we start with a simplified model of pond dynamics that describes the evolu-

163

CHAPTER 8 : Evaluation of SON in the STAMP project

tion of water surface, given the pond’s shape and the quantity of water incoming or leaving the
pond. The positive and negative terms of a pond’s water budget are assumed to be only rainfall
and evaporation respectively. Other terms such as infiltration, run-off or water consumed by
animals have been ignored in this example, but could be included in a similar way. Therefore
to start with, the model is made of two atomic entities: Pond and Meteo. The functioning of
the model will rely on the relations between these entities, and on the scenario that describes

how these relations are expressed in time.

Pond component Meteo component

Implementation Implementation
CDML CDML

Input Services WaterExchange component Input Services
waterincome(...) rainfallf...)
evaporate(...) otherMeteoVar(...)

Output Services Implementation Output Services

A Ong

\ / %"D’-f::r%’ro
Do@f&r”’ef'.._) cDML
‘\) Input Services

\ updatePonds(...)
connect(...)
getConnexionx|)

Output Services
waterincome(...)
evaporate...)
rainfall...)

\ otherMeteoVarf...) /

Response of:
getConnexionx()

updatePonds...)
connect(...)
getConnexionx()

Evolve component

-~

Implementation

CDML
Input Services

Select(...)

Output Services
updatePonds(...)
connect(...)

\ getConnexionx|) /

Figure 8.7: The SON components of the simple pond dynamics model.

164

8.4 Application scenarios with SON as a runtime

The Pond entity only needs two services : waterlncome() and evaporate(). The first uses
rainfall to calculate the amount of water the pond receives, the second takes other meteorolog-
ical variables (solar radiation, wind speed, etc...) to estimate evaporation. These data would
be obtained from a Meteo entity which also provides two services: rainfall() and otherMeteo-
Var(). A waterExchange relation models how one pond entity updates its water budget given the
meteorological data obtained from a meteo entity. The relation is described as a one to one in-
teraction between a meteo and a pond. But when initializing a simulation, it is likely that many
instances pond; of the Pond entity will be created, each with different shapes and locations.
Typically, a series of calls to a waterExchange.connect(meteo,pond;) is needed to establish a
link between one instance of Meteo entity and every pond; entity through the waterExchange
relation. The evolve scenario will be executed for every time step of the simulation. That sce-
nario is based on a select statement that will apply the updatePond() service of the relation to all
the entities that had previously been connected. In other words, the series of calls to a connect()
statement creates an interaction graph between one meteo entity and many pond; entities, and
once that graph is built, a call to updatePond on the relation is enough to update all the ponds
present in that interaction graph. The purpose of the select statement is to provide a way to
activate only a subset of the interaction graph. For example, one can imagine a selection based

on spatial attributes that would call updatePond() on all the ponds located in a given area.

As shown in Figure 8.7, the pond dynamics model written in Ocelet is translated into a
SON application with four components. Each component corresponds to an element in the
model (i.e., Pond, Meteo, WaterExchange, Evolve) and embodies a Java implementation gen-
erated from the Ocelet specification code, a CDML file that exposes the input services, the
output services and the component container that embodies all resources needed to adapt the

implementation code to the runtime environment.

The initial state of the application is described in the deployment file World. It contains a
description of the component instances and connections that have to be created to launch the
application. A component instance is identified by the couple (name of the component, name of
the instance). As shown in Figure 8.8, WaterExchange_1 is instantiated from the relation com-
ponent WaterExchange and connected to the instances Pond_1 and Meteo_1, while Evolve_1

is instantiated from the scenario component Evolve and connected to WaterExchange_1. Of

165

CHAPTER 8 : Evaluation of SON in the STAMP project

<?xml wversion="1.0" encoding="IS0-8855-1"2>
<world>

<connectTo id src="ComponentsManager" type dest="Pond" id dest="Pond 1"/>
<connectTo id src="ComponentsManager"™ type dest="Meteo" id dest="Metec 1"/>
<connectTo id src="ComponentsManager" type_dest="Evolve" id_ dest="Evolve_ 1"/>
<connectTo id src="ComponentsManager" type_dest="WaterExchange"
id_dest="WaterExchange 1"/>

<connectTo id src="WaterExchange 1" type_dest="Pond" id dest="Pond 1"/>
<connectTo id_src="WaterExchange 1" type_dest="Meteo" id dest="Meteo_ 1"/>

<comnectTo id src="Evolve 1" type dest="WaterExchange"
id dest="WaterExchange 1"/>

</world>

Figure 8.8: Deployment description file of the simple pond dynamics model.

course, after that, other component instances can be created and connected with each other

dynamically during the execution as explained in Section 7.3.

When creating many instances of the Pond component, the specific shape and location of
each pond can be obtained from an existing GIS file (a shapefile for example). The initialising
scenario of the model needs to access the source of data through a Datafacer to obtain the
unique parameters of every Pond it creates. For the present example, the DHT module of SON
plays in the runtime the role of a Datafacer, it allows accessing to external data sources and
provides services that can be called by the different components. More precisely, the DHT
module gives some parameter settings, like the name and location of the shapefile, and some

metadata needed to access the right attributes from the file.

Dynamic deployment when extending an existing model

The simple pond dynamics model presented earlier can be made more realistic by improving the
description of its parts (which can be of different types: Pond, Meteo, WaterExchange, Evolve)
without changing the logic of the model. When studying the RVF problem, however, more
processes are also to be considered, among which, the dynamics of pastures, the displacement
of herds between ponds and grazing areas, the development of mosquito populations in the

ponds, and the transmission of the RVF virus. From the point of view of livestock management,

166

8.4 Application scenarios with SON as a runtime

it may be enough to know how the grazing areas and ponds are changing during the season.
As disease surveillance by veterinary services are mainly based on farmer reports, farmers can
only estimate an a posteriori risk of animals being infected near the ponds. The point of view
of the entomologist, with a good understanding of mosquito population dynamics in the ponds,
and that of the epidemiologist, with the knowledge of how the virus is transmitted, would be

needed to better estimate this risk.

The inclusion of the mosquito populations within the previous simulation can be done as
follows. Once the simple pond Ocelet model has been tested and considered satisfactory, new
mosquito population entities at different stages of their life cycle (egg, larva, pupa and imago)
can be added and pond entity can be augmented with services that interact with mosquito en-
tities. Then, the SON infrastructure generates the new components corresponding to mosquito
entities and updates the pond component to take into account the new services. After that,
these components can be dynamically integrated in the runtime without stopping neither the
execution nor the components which are not affected by the modifications. The only condition
is that the updated pond entity/component would provide, in addition to the new services, the
same services as the first version to make sure that it would seamlessly integrate and interact

with the rest of the components.

167

CHAPTER 8 : Evaluation of SON in the STAMP project

168

Part1V:

Closing

Chapter 9

Conclusions and future works

Contents
9.1 Conclusions. v v v it it it ettt i et et 171
9.2 Future works and perspectives v . v i 0 it ittt e e 174

This chapter presents the concluding remarks of this thesis along with perspectives for fu-
ture works. At first, Section 9.1 gives a summary of our major contributions, and then presents
current assumptions and limitations of the proposed methods and techniques. Subsequently,

Section 9.2 discusses the future work directions and their perspectives.

9.1 Conclusions

The main goal of this thesis is to facilitate the development of component-based applications
with a data-centric approach and within a service-oriented P2P architecture. To achieve this
purpose, we have proposed: i) a formal language, called DDF (Data Dependency Formalism),
to specify such applications; ii) an analysis method of DDF specification based on data-flow
principles; iii) a runtime middleware, called SON (Shared-data Overlay Network), for devel-
oping and deploying component-based services within a P2P architecture. The principle char-
acteristics, assumptions and limitations of these contributions are summarized in the following

points.

171

CuartER 9 : Conclusions and future works

The principle characteristics of our contributions are summarized as follow:

Related to DDF specification

Allowing parts of the control logic (even if it is recursive) to be described conceptually

separated from other parts by using the concept of rules;

The user describes what is to be done rather than the details of how is to be done;

From a DDF specification, we can construct an abstract representation (i.e., Data-Dependency

Graph). This abstraction exposes the right level of detail to perform data-flow analyzes;

e From a single specification, multiple implementations can be synthesized by analyzing

the corresponding Data-Dependency Graph.

Related to the analysis of the specification

e The proposed analysis helps to identify the dependencies between data and between the
steps of the specification, in particular, “non-direct” dependencies that can be very hard

to identify without a computer analysis;

e Managing such dependencies leads to direct improvement in the application’s running
time. For example, reducing the number of dependencies may help to perform several

optimizations (e.g., in execution time or memory usage);

e Several algorithms have been proposed in the field of AGs and DFA to infer and com-
pute a broad range of properties. Our proposed analysis method explores to use these

algorithms in the context of component-based applications.

Related to SON middleware

e SON middleware extends the principles of SOA as well as CBSE to support building

applications within a P2P architecture in an effortless and effective way;

e SON provides a component model hiding the management of the underlying network

issues to relieve software developers from P2P low level complicated tasks;

172

9.1 Conclusions

e SON’s user implements only the code corresponding to the declared services. After-
wards, a code generation tool generates all resources needed to adapt the implementation

code to the P2P runtime environment;

e SON has been evaluated in the context of the STAMP project. The objective was to show
how SON (especially the dynamic availability of services during runtime) is able to im-
prove and enhance the effectiveness of application scenarios from the area of modelling

environmental landscapes and their dynamics.

The following points summarize the assumptions and the limitations of our proposals:

Related to DDF specification

e Although the semantic equations of the DDF rules specify the value for each output
datum, in order to actually compute this value, the values of any input data that are
arguments of the defining semantic equation must first be available. Such dependency

relations restrict the order in which data can be computed.

e An important requirement in DDF is that the semantic equation of a rule should not have
side-effects, i.e., it should not access or change a datum in the system if this datum is
not in the set of input data of the rule. The reason for this restriction is that semantic

equations represent definitions of the data values, and not effects of an execution.

e The semantic equation of a rule has no side-effects, neither do function invocations.
These two conditions imply that the DDF specification is non-procedural. A disadvan-
tage of this type of specification is that exception handling cannot be guaranteed to work

effectively, because the control flow is not provided in explicit instructions.

Related to the analysis of the specification

e In extreme cases, a datum can depend on itself; such a situation occurs in ill-defined spec-
ification or when a system contains a deadlock. To resolve this problem, we search for

circularity in the Data-Dependency Graph of the system. This solution has been inspired

173

CuartER 9 : Conclusions and future works

from the attribute grammar theory, and it is known in this theory that the circularity test
increases exponentially. Fortunately, there are interesting approaches that can help to

deal with this problem in polynomial time [Deransart et al., 1988].

e The theory of AGs and DFA provide a wide range of algorithms to perform various
evaluation orders of data and to compute different properties. However, a reformulation
of these algorithms is needed. In particular, when software is built with independent
and reusable components. The reason is that the most standard approaches for data-flow
analysis do not take into account modular structure, and takes as input an entire program

treated as a homogeneous entity.

Related to SON middleware

e Non-functional requirements such as security, privacy, response time, recovery, etc. need
to be considered at some points in the lifecycle of all software systems. In the actual
release of SON middleware, such non-functional requirements have not been treated. A

simple reason for this is that they were not the first objective of SON.

e Some performance limitations in SON middleware rise from the fact that it relays on a
DHT. In fact, although a request can be routed to the node that maintains the desired
content quickly and accurately, the placement of content is tightly controlled. This im-
plies that the cost of maintaining the structured topology of the overlay might be high,

especially in a very large network environment [Vu et al., 2010].

9.2 Future works and perspectives

With the increasing interest in using component-based principles in software engineering, every
approach that may ease the development of component-based applications is valued. In this
thesis, we have established the foundations for a formalism, an analysis approach and a runtime
environment to facilitate building component-based applications within a service-oriented P2P

architecture. This work provides the basis for further research possibilities and, of course, gives

174

9.2 Future works and perspectives

rise to a number of development and enhancement tasks that need to be improved with future

efforts, in particular, those related to the limitations and the assumptions presented above.

One of the future tasks that we plan to work on first is finalizing the automatization of
DDF specification and analysis within SON middleware. In fact, we consider implementing a
graphical user interface to assist SON’s users during the specification of application behaviors.
This graphical interface will also provide the possibility to verify or compute some application
properties with pre-implemented data-flow analysis algorithms. In chapter 6, we have treated
deadlock and dominance detection problems and given the associated algorithms. However,
other analysis algorithms (inspired for example from the works of Parigot on Grammar-Flow
Analysis) can be reformulated to be used. For instance, by analyzing the order of data evalu-
ation, we will be able to determine formally which services in a system can be executed in a

parallel or incremental way.

Afterwards, we plan to extend our formalism by program transformation mechanisms in
order to optimize resource allocations (e.g., optimize CPU and memory usage by analyzing
the lifetime of data, while taking into account their functional dependencies and redundancies)
in large-scale data-centric applications, in particular, in the emerging Cloud Computing area,
where data management has been receiving significant attention. Another perspective field
where this future work (i.e., optimization of resource allocations) might be useful is the Green
Computing. In fact, environmental protection and energy-aware resource management have
become popular and important research topics at present [Hu et al.,]. In this direction, the
Green Computing is emerging as an indispensable part in sustaining the practice of protecting

the environment on both individual and collective levels.

175

CuartER 9 : Conclusions and future works

176

Bibliography

[Abadi, 2009] Abadi, D. J. (2009). Data management in the cloud: Limitations and opportu-
nities. /IEEE Data Eng. Bull., 32(1):3—-12.

[Aberer and Despotovic, 2001] Aberer, K. and Despotovic, Z. (2001). Managing trust in a
peer-2-peer information system. In Proceedings of the tenth international conference on
Information and knowledge management, pages 310-317, New York, NY, USA. ACM.

[Aho et al., 2006] Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2006). Compilers:
Principles, Techniques, and Tools (2nd Edition). Prentice Hall, 2 edition.

[Aho et al., 1986] Aho, A. V., Sethi, R., and Ullman, J. D. (1986). Compilers: principles,
techniques, and tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[Ait Lahcen et al., 2009] Ait Lahcen, A., Degenne, P., Lo Seen, D., and Parigot, D. (2009).
Developing a service-oriented component framework for a landscape modeling language.
In Proceedings of the 13th International Conference on Software Engineering and Applica-
tions(SEA’09), pages 178-185, Cambridge, Massachusetts, USA.

[Allen and Cocke, 1972] Allen, F. E. and Cocke, J. (1972). Graph Theoretic Constructs For
Program Control Flow Analysis. Technical report, IBM T.J. Watson Research Center, York-
town Heights, NY.

[Allen and Garlan, 1997] Allen, R. and Garlan, D. (1997). A formal basis for architectural
connection. ACM Trans. Softw. Eng. Methodol., 6:213-249.

[Alur et al., 2005] Alur, R., Benedikt, M., Etessami, K., Godefroid, P., Reps, T., and Yan-
nakakis, M. (2005). Analysis of recursive state machines. ACM Trans. Program. Lang.
Syst., 27:786-818.

[Alvaro et al., 2010] Alvaro, P., Condie, T., Conway, N., Elmeleegy, K., Hellerstein, J. M., and
Sears, R. (2010). Boom analytics: exploring data-centric, declarative programming for the

cloud. In Proceedings of the 5th European conference on Computer systems, EuroSys 10,
pages 223-236, New York, NY, USA. ACM.

177

BIBLIOGRAPHY

[Andersen et al., 2001] Andersen, D., Balakrishnan, H., Kaashoek, F., and Morris, R. (2001).
Resilient overlay networks. SIGOPS Oper. Syst. Rev., 35:131-145.

[Arad and Haridi, 2010] Arad, C. and Haridi, S. (2010). Kompics: a message-passing compo-

nent model for building distributed systems.

[Atkinson et al., 2008] Atkinson, C., Bostan, P., Brenner, D., Falcone, G., Gutheil, M., Hum-
mel, O., Juhasz, M., and Stoll, D. (2008). Modeling components and component-based
systems in kobra. In Rausch, A., Reussner, R., Mirandola, R., and Plasil, F., editors, The
Common Component Modeling Example, volume 5153 of Lecture Notes in Computer Sci-

ence, pages 54-84. Springer Berlin / Heidelberg.

[Attali, 1988] Attali, 1. (1988). Compiling typol with attribute grammars. In Programming
Languages Implementation and Logic Programming, volume 348, pages 252-272. Springer-
Verlag. Orléans.

[Bah et al., 2006] Bah, A., Touré, 1., Page, C. L., Ickowicz, A., and Diop, A. (2006). An agent-
based model to understand the multiple uses of land and resources around drillings in sahel.
Mathematical and Computer Modelling, 44(5-6):513-534.

[Baier and Katoen, 2008] Baier, C. and Katoen, J.-P. (2008). Principles of Model Checking.
The MIT Press.

[Balakrishnan et al., 2003] Balakrishnan, H., Kaashoek, M. F., Karger, D., Morris, R., and
Stoica, 1. (2003). Looking up data in p2p systems. Commun. ACM, 46:43—48.

[Barkai, 2002] Barkai, D. (2002). Peer-To-Peer Computing: Technologies for Sharing and

Collaborating on the Net. Engineer-To-Engineer. Intel Press.

[Batagelj and Mrvar, 1998] Batagelj, V. and Mrvar, A. (1998). PAJEK - Program for large
network analysis. Connections, 21(2):47-57.

[Baumeister et al., 2006] Baumeister, H., Hacklinger, F., Hennicker, R., Knapp, A., and Wirs-
ing, M. (2006). A component model for architectural programming. Electronic Notes in
Theoretical Computer Science, 160(0):75 — 96.

[Baumeister et al., 2004] Baumeister, R. F., Zhang, L., and Vohs, K. D. (2004). Gossip as
Cultural Learning. Review of General Psychology, 8(2):111-121.

[Benedikt et al., 2001] Benedikt, M., Godefroid, P., and Reps, T. W. (2001). Model checking
of unrestricted hierarchical state machines. In Proceedings of the 28th International Collo-
quium on Automata, Languages and Programming,, ICALP *01, pages 652—-666, London,
UK. Springer-Verlag.

178

BIBLIOGRAPHY

[Bisignano et al., 2003] Bisignano, M., Calvagna, A., Modica, G., and Tomarchio, O. (2003).
Expeerience: a jxta middleware for mobile ad-hoc networks. In Peer-to-Peer Computing,
2003. (P2P 2003). Proceedings. Third International Conference on, pages 214 —215.

[Borger, 2000] Borger, E. (2000). Architecture design and validation methods. Springer-
Verlag New York, Inc., Secaucus, NJ, USA.

[Borshchev and Filippov, 2004] Borshchev, A. and Filippov, A. (2004). From System Dynam-
ics and Discrete Event to Practical Agent Based Modeling: Reasons, Techniques, Tools. In

Proceedings of the 22nd International Conference of the System Dynamics Society, pages
24-29.

[Bousquet et al., 1998] Bousquet, F., Bakam, L., Proton, H., and Page, C. L. (1998). Cormas:
Common-pool resources and multi-agent systems. In Proceedings of the 11th International
Conference on Industrial and Engineering Applications of Artificial In telligence and Expert
Systems: Tasks and Methods in Applied Artificial Intelligence, IEA/AIE 98, pages 826837,
London, UK, UK. Springer-Verlag.

[Bousquet and Le Page, 2004] Bousquet, F. and Le Page, C. (2004). Multi-agent simulations
and ecosystem management: A review. Ecological Modelling, 176(3-4):313-332.

[Boyland, 1996] Boyland, J. T. (1996). Conditional attribute grammars. ACM Trans. Program.
Lang. Syst., 18(1):73—108.

[Brown et al., 2005] Brown, D. G., Riolo, R., Robinson, D. T., North, M., and R, W. (2005).
Spatial process and data models: Toward integration of agent-based models and gis. Journal

of Geographical Systems, pages 25—47.

[Bruneton et al., 2006] Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., and Stefani, J.-B.
(2006). The fractal component model and its support in java: Experiences with auto-adaptive
and reconfigurable systems. Softw. Pract. Exper., 36(11-12):1257-1284.

[Buford et al., 2009] Buford, J., Yu, H., and Lua, E. (2009). P2P Networking and Applications.

Morgan Kaufmann Series in Networking. Elsevier/Morgan Kaufmann.

[Buford and Yu, 2010] Buford, J. F. and Yu, H. (2010). Peer-to-peer networking and appli-
cations: Synopsis and research directions. In Shen, X., Yu, H., Buford, J., and Akon, M.,
editors, Handbook of Peer-to-Peer Networking, pages 3—45. Springer US.

[Bulej et al., 2008] Bulej, L., Bures, T., Coupaye, T., Decky, M., Jezek, P., Parizek, P., Plasil,
E., Poch, T., Rivierre, N., Sery, O., and Tuma, P. (2008). Cocome in fractal. In Rausch,
A., Reussner, R., Mirandola, R., and Plasil, E., editors, The Common Component Modeling

Example, volume 5153 of Lecture Notes in Computer Science, pages 357-387. Springer
Berlin / Heidelberg.

179

BIBLIOGRAPHY

[Bures et al., 2008] Bures, T., Decky, M., Hnetynka, P., Kofron, J., Parizek, P., Plasil, F., Poch,
T., Sery, O., and Tuma, P. (2008). Cocome in sofa. In Rausch, A., Reussner, R., Mirandola,
R., and Plasil, F., editors, The Common Component Modeling Example, volume 5153 of
Lecture Notes in Computer Science, pages 388—417. Springer Berlin / Heidelberg.

[Bures et al., 2006] Bures, T., Hnetynka, P., and Plasil, F. (2006). Sofa 2.0: Balancing ad-
vanced features in a hierarchical component model. In Proceedings of the Fourth Interna-
tional Conference on Software Engineering Research, Management and Applications, SERA
’06, pages 40-48, Washington, DC, USA. IEEE Computer Society.

[Burkart and Steffen, 1992] Burkart, O. and Steffen, B. (1992). Model checking for context-
free processes. In Cleaveland, W., editor, CONCUR 92, volume 630 of Lecture Notes in
Computer Science, pages 123—137. Springer Berlin / Heidelberg.

[Burkart and Steffen, 1994] Burkart, O. and Steffen, B. (1994). Pushdown processes: Parallel
composition and model checking. In Jonsson, B. and Parrow, J., editors, CONCUR ’94:
Concurrency Theory, volume 836 of Lecture Notes in Computer Science, pages 98—113.

Springer Berlin / Heidelberg.

[Burkart and Steften, 1997] Burkart, O. and Steffen, B. (1997). Model checking the full modal
mu-calculus for infinite sequential processes. In Degano, P., Gorrieri, R., and Marchetti-
Spaccamela, A., editors, Automata, Languages and Programming, volume 1256 of Lecture

Notes in Computer Science, pages 419-429. Springer Berlin / Heidelberg.

[Burrough et al., 1996] Burrough, P., Frank, A., and Foundation, E. S. (1996). Geographic
Objects With Indeterminate Boundaries. GISDATA Series. Taylor & Francis.

[Burrough and Mcdonnell, 1998] Burrough, P. A. and Mcdonnell, R. A. (1998). Principles of
Geographical Information Systems. Oxford University Press, USA.

[Cain et al., 2008] Cain, A., Chen, T. Y., Grant, D. D., Kuo, F.-C., and Schneider, J.-G. (2008).
An object oriented approach towards dynamic data flow analysis (short paper). In Proceed-
ings of the 2008 The Eighth International Conference on Quality Software, QSIC *08, pages
163-168, Washington, DC, USA. IEEE Computer Society.

[Cambridge Academic Content Dictionary, 2008] Cambridge Academic Content Dictionary
(2008). Cambridge Academic Content Dictionary. Cambridge University Press.

[Chen et al., 2008] Chen, Z., Hannousse, A., Van Hung, D., Knoll, 1., Li, X., Liu, Z., Liu, Y.,
Nan, Q., Okika, J., Ravn, A., Stolz, V., Yang, L., and Zhan, N. (2008). Modelling with
relational calculus of object and component systems - rcos. In Rausch, A., Reussner, R.,
Mirandola, R., and Plasil, F., editors, The Common Component Modeling Example, volume

5153 of Lecture Notes in Computer Science, pages 116—145. Springer Berlin / Heidelberg.

180

BIBLIOGRAPHY

[Chomsky, 1956] Chomsky, N. (1956). Three models for the description of language. Infor-
mation Theory, IRE Transactions on, 2(3):113—-124.

[Claramunt and Thériault, 1995] Claramunt, C. and Thériault, M. (1995). Managing Time in
GIS: An Event-Oriented Approach. In Proceedings of the International Workshop on Tem-
poral Databases: Recent Advances in Temporal Databases, pages 23—42, London, UK, UK.
Springer-Verlag.

[Correnson, 2000] Correnson, L. (2000). SEmantique Equationnelle. Phd thesis, Ecole Poly-

technique.

[Correnson et al., 1999] Correnson, L., Duris, E., Parigot, D., and Roussel, G. (1999). Equa-
tional semantics. In Proceedings of the 6th International Symposium on Static Analysis,
SAS 99, pages 264-283, London, UK, UK. Springer-Verlag.

[Couclelis, 1992] Couclelis, H. (1992). People manipulate objects (but cultivate fields): Be-
yond the raster-vector debate in gis. In Proceedings of the International Conference GIS -
From Space to Territory: Theories and Methods of Spatio-Temporal Reasoning on Theories
and Methods of Spatio-Temporal Reasoning in Geographic Space, pages 65-77, London,
UK, UK. Springer-Verlag.

[Coulson et al., 2008] Coulson, G., Blair, G., Grace, P., Taiani, F., Joolia, A., Lee, K., Ueyama,
J., and Sivaharan, T. (2008). A generic component model for building systems software.
ACM Trans. Comput. Syst., 26:1:1-1:42.

[Cova and Goodchild, 2002] Cova, T. J. and Goodchild, M. F. (2002). Extending geographical
representation to include fields of spatial objects. International Journal of Geographical

Information Science, pages 509-532.

[Degenne et al., 2010] Degenne, P., Ait Lahcen, A., Curé, O., Forax, R., Parigot, D., and Lo
Seen, D. (2010). Modelling with behavioural graphs. Do you speak Ocelet? In Proceedings
of the International Congress on Environmental Modelling and Software (iEMSs), Ottawa,

Ontario, Canada.

[Degenne et al., 2009] Degenne, P., Lo Seen, D., Parigot, D., Forax, R., Tran, A., Ait Lahcen,
A., Curé, O., and Jeansoulin, R. (2009). Design of a domain specific language for modelling
processes in landscapes. Ecological Modelling, 220(24):3527 — 3535.

[Demchak et al., 2008] Demchak, B., Ermagan, V., Farcas, E., Huang, T.-j., Kruger, 1., and
Menarini, M. (2008). A rich services approach to cocome. In Rausch, A., Reussner, R.,
Mirandola, R., and Plasil, F., editors, The Common Component Modeling Example, volume

5153 of Lecture Notes in Computer Science, pages 85—115. Springer Berlin / Heidelberg.

181

BIBLIOGRAPHY

[Demers et al., 1987] Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S.,
Sturgis, H., Swinehart, D., and Terry, D. (1987). Epidemic algorithms for replicated database
maintenance. In Proceedings of the sixth annual ACM Symposium on Principles of dis-
tributed computing, PODC °87, pages 1-12, New York, NY, USA. ACM.

[Deransart and Jourdan, 1990] Deransart, P. and Jourdan, M., editors (1990). Attribute Gram-
mars and their Applications, International Conference WAGA, Paris, France, September

19-21, 1990, Proceedings, volume 461 of Lecture Notes in Computer Science. Springer.

[Deransart et al., 1988] Deransart, P., Jourdan, M., and Lorho, B. (1988). Attribute grammars:
definitions, systems and bibliography. Springer-Verlag, Inc., New York, NY, USA.

[Devillers and Jeansoulin, 2006] Devillers, R. and Jeansoulin, R. (2006). Fundamentals of
Spatial Data Quality. Geographical Information Systems Series. Iste.

[Draidi et al., 2011a] Draidi, F., Pacitti, E., and Kemme, B. (2011a). A P2P Recommendation
System for Large-scale Data Sharing. Transactions on Large-Scale Data- and Knowledge
Centered Systems, 6790(3):87-116.

[Draidi et al., 2011b] Draidi, F., Pacitti, E., Parigot, D., and Verger, G. (2011b). P2prec: a
social-based p2p recommendation system. In Proceedings of the 20th ACM international

conference on Information and knowledge management, CIKM ’11, pages 2593-2596, New
York, NY, USA. ACM.

[Duboz et al., 2003] Duboz, R., Ramat, E., and Preux, P. (2003). Scale transfer modeling:
using emergent computation for coupling an ordinary differential equation system with a
reactive agent model. Syst. Anal. Model. Simul., 43(6):793-814.

[Duris, 1998] Duris, E. (1998). Contribution aux relations entre les grammaires attribuées et

la programmation fonctionnelle. Phd thesis, Université de Marne la Vallée.

[Erl, 2007] Erl, T. (2007). SOA Principles of Service Design (The Prentice Hall Service-
Oriented Computing Series from Thomas Erl). Prentice Hall PTR, Upper Saddle River,
NJ, USA.

[Esparza et al., 2000] Esparza, J., Hansel, D., Rossmanith, P., and Schwoon, S. (2000). Ef-
ficient algorithms for model checking pushdown systems. In Emerson, E. and Sistla, A.,
editors, Computer Aided Verification, volume 1855 of Lecture Notes in Computer Science,

pages 232-247. Springer Berlin / Heidelberg.

[Eugster et al., 2004] Eugster, P. T., Guerraoui, R., Kermarrec, A.-M., and Massoulieacute;, L.
(2004). Epidemic information dissemination in distributed systems. Computer, 37(5):60-67.

[Fall and Fall, 2001] Fall, A. and Fall, J. (2001). A domain-specific language for models of
landscape dynamics. Ecological Modelling, 141(1-3):1-18+.

182

BIBLIOGRAPHY

[Farrow, 1986] Farrow, R. (1986). Automatic generation of fixed-point-finding evaluators for
circular, but well-defined, attribute grammars. In Proceedings of the 1986 SIGPLAN sympo-
sium on Compiler construction, SIGPLAN ’86, pages 85-98, New York, NY, USA. ACM.

[Foster, 2004] Foster, E. K. (2004). Research on gossip: Taxonomy, methods, and future di-
rections. Foster, 8(2):78-99.

[Freenet, 2012] Freenet (2012). https://freenetproject.org/.

[Fuller and Sarkar, 2006] Fuller, T. and Sarkar, S. (2006). Lqgraph: A software package for
optimizing connectivity in conservation planning. Environmental Modelling & Software,
21(5):750-755.

[Gaff et al., 2007] Gaff, H. D., Hartley, D. M., and Leahy, N. P. (2007). An epidemiological
model of Rift Valley fever. Electronic Journal of Differential Equations, 115:1-12.

[Galuba and Girdzijauskas, 2009] Galuba, W. and Girdzijauskas, S. (2009). Peer to peer over-
lay networks: Structure, routing and maintenance. In Liu, L. and Ozsu, M. T., editors,

Encyclopedia of Database Systems, pages 2056-2061. Springer US.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design

Fatterns: Elements of reusable object-oriented software. Addison-Wesley Publishing.

[Garousi et al., 2005] Garousi, V., Briand, L., and Labiche, Y. (2005). Control flow analysis
of uml 2.0 sequence diagrams. In Hartman, A. and Kreische, D., editors, Model Driven
Architecture - Foundations and Applications, volume 3748 of Lecture Notes in Computer

Science, pages 160—174. Springer Berlin / Heidelberg.

[Gartner Research Group, 2001] Gartner Research Group (2001). The emergence of dis-

tributed content management and peer-to-peer content networks.

[Gaucherel et al., 2006] Gaucherel, C., Giboire, N., Viaud, V., Houet, T., Baudry, J., and Bu-
rel, F. (2006). A domain-specific language for patchy landscape modelling: The brittany
agricultural mosaic as a case study. Ecological Modelling, 194(1-3):233-243.

[Giesecke et al., 2005] Giesecke, S., Warns, T., and Hasselbring, W. (2005). Availability sim-
ulation of peer-to-peer architectural styles. SIGSOFT Softw. Eng. Notes, 30(4).

[Gnutella, 2012] Gnutella (2012). www.gnutella.com.

[Goodchild, 1992] Goodchild, M. F. (1992). Geographical data modeling. Comput. Geosci.,
18(4):401-408.

[Gorton, 2011] Gorton, L. (2011). Essential Software Architecture (2nd ed.). Springer.

183

BIBLIOGRAPHY

[Govindarajan et al., 1992] Govindarajan, R., Yu, S., and Lakshmanan, V. S. (1992). Attempt-
ing guards in parallel: A data flow approach to execute generalized guarded commands.

International Journal of Parallel Programming, 21:225-268.

[Gu et al., 2004] Gu, X., Nahrstedt, K., and Yu, B. (2004). Spidernet: an integrated peer-to-
peer service composition framework. In High performance Distributed Computing, 2004.

Proceedings. 13th IEEE International Symposium on, pages 110 — 119.

[GWT, 2007] GWT (2007). Google Web Toolkit - Build AJAX apps in the Java language.
http://code.google.com/webtoolkit/.

[Hill, 2006] Hill, L. L. (2006). Georeferencing : the geographic associations of information.
Digital libraries and electronic publishing. MIT Press, Cambridge, Mass.

[Hoare and Jifeng, 1998] Hoare, C. and Jifeng, H. (1998). Unifying theories of programming.
Prentice Hall series in computer science. Prentice Hall.

[Hofmann and Beaumont, 2005] Hofmann, M. and Beaumont, L. R. (2005). Content Network-
ing: Architecture, Protocols, and Practice (The Morgan Kaufmann Series in Networking).

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[Hu et al.,] Hu,J., Deng, J., and Wu, J. A green private cloud architecture with global collab-

oration. Telecommunication Systems, pages 1-11.

[Huhns and Singh, 2005] Huhns, M. N. and Singh, M. P. (2005). Service-oriented computing
: Key concepts and principles. IEEE Internet Computing, 9:75-81.

[IEEE, 2000] IEEE, A. (2000). Ieee std 1471-2000, recommended practice for architectural

description of software-intensive systems. Technical report, IEEE.

[Jaffar-ur Rehman et al., 2007] Jaffar-ur Rehman, M., Jabeen, F., Bertolino, A., and Polini, A.
(2007). Testing software components for integration: a survey of issues and techniques:
Research articles. Softw. Test. Verif. Reliab., 17(2):95-133.

[Jelasity, 2011] Jelasity, M. (2011). Gossip. In Di Marzo Serugendo, G., Gleizes, M.-P., and
Karageorgos, A., editors, Self-organising Software, Natural Computing Series, pages 139—
162. Springer Berlin Heidelberg.

[Jelasity et al., 2007] Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.-M., and van
Steen, M. (2007). Gossip-based peer sampling. ACM Trans. Comput. Syst., 25.

[Jourdan and Parigot, 1990] Jourdan, M. and Parigot, D. (1990). Techniques for improving
grammar flow analysis. In Proceedings of the third European symposium on programming
on ESOP 90, pages 240-255, New York, NY, USA. Springer-Verlag New York, Inc.

184

BIBLIOGRAPHY

[Kaisler, 2005] Kaisler, S. (2005). Software Paradigms. Wiley.

[Kam and Ullman, 1976] Kam, J. B. and Ullman, J. D. (1976). Global data flow analysis and
iterative algorithms. J. ACM, 23:158-171.

[Kermarrec and van Steen, 2007] Kermarrec, A.-M. and van Steen, M. (2007). Gossiping in
distributed systems. SIGOPS Oper. Syst. Rev., 41(5):2-7.

[Killian et al., 2007] Killian, C. E., Anderson, J. W., Braud, R., Jhala, R., and Vahdat, A. M.
(2007). Mace: language support for building distributed systems. In Proceedings of the

2007 ACM SIGPLAN conference on Programming language design and implementation,
PLDI °07, pages 179-188, New York, NY, USA. ACM.

[Knapp et al., 2008] Knapp, A., Janisch, S., Hennicker, R., Clark, A., Gilmore, S., Hacklinger,
F., Baumeister, H., and Wirsing, M. (2008). The common component modeling exam-
ple. chapter Modelling the CoCoME with the Java/A Component Model, pages 207-237.
Springer-Verlag, Berlin, Heidelberg.

[Knuth, 1968] Knuth, D. E. (1968). Semantics of context-free languages. Mathematical Sys-
tems Theory, 2(2):127-145. Correction: sl Mathematical Systems Theory 5, 1, pp. 95-96
(March 1971).

[Kruchten, 1998] Kruchten, P. (1998). Modeling Component Systems with the Unified Mod-

eling Language. In International Workshop on Component-Based Software Engineering.

[Kwok, 2011] Kwok, Y. (2011). Peer-To-Peer Computing: Applications, Architecture, Proto-

cols, and Challenges. Computational Science. Taylor & Francis.

[Langran, 1992] Langran, G. (1992). Time in geographic information systems. Geocarto
International, 7(2):40.

[Launchbury and Sheard, 1995] Launchbury, J. and Sheard, T. (1995). Warm fusion: Deriv-
ing build-cata’s from recursive definitions. In on Func. Prog. Languages and Computer
Architecture FPCA’95, FPCA’95, pages 314-323. ACM Press.

[Lee et al., 2007] Lee, J., Lee, H., Kang, S., Kim, S. M., and Song, J. (2007). Ciss: An effi-
cient object clustering framework for dht-based peer-to-peer applications. Comput. Netw.,
51(4):1072-1094.

[Leeb, 1996] Leeb, A. (1996). A Flexible Object Architecture for Component Software. Mas-
sachusetts Institute of Technology, Department of Electrical Engineering and Computer Sci-

ence.

185

BIBLIOGRAPHY

[Lin et al., 2005] Lin, S., Pan, A., Guo, R., and Zhang, Z. (2005). Simulating large-scale p2p
systems with the wids toolkit. In Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems, 2005. 13th IEEE International Symposium on, pages 415 —
424,

[Lin et al., 2011] Lin, S., Taiani, F., Bertier, M., Blair, G., and Kermarrec, A.-M. (2011).
Transparent componentisation: high-level (re)configurable programming for evolving dis-
tributed systems. In Proceedings of the 2011 ACM Symposium on Applied Computing, SAC
11, pages 203-208, New York, NY, USA. ACM.

[Linard et al., 2009] Linard, C., Pon¢on, N., Fontenille, D., and Lambin, E. FE. (2009). A multi-
agent simulation to assess the risk of malaria re-emergence in southern france. Ecological
Modelling, 220(2):160 — 174.

[Liu et al., 2006] Liu,J., He, J., and Liu, Z. (2006). A strategy for service realization in service-

oriented design. Science in China Series F: Information Sciences, 49:864—884.

[Liu and Antonopoulos, 2010] Liu, L. and Antonopoulos, N. (2010). From client-server to p2p
networking. In Shen, X., Yu, H., Buford, J., and Akon, M., editors, Handbook of Peer-to-
Peer Networking, pages 71-89. Springer US.

[Loo et al., 2005] Loo, B. T., Condie, T., Hellerstein, J. M., Maniatis, P., Roscoe, T., and Sto-
ica, I. (2005). Implementing declarative overlays. In SOSP, pages 75-90. ACM.

[Lotka, 1925] Lotka, A. (1925). Elements of Physical Biology, page 460. Williams and
Wilkins, Baltimore, MD.

[Manolakos et al., 2001] Manolakos, E. S., Galatopoullos, D. G., and Funk, A. (2001).
Component-based peer-to-peer distributed processing in heterogeneous networks using java

ports. In Proceedings of the IEEE International Symposium on Network Computing and
Applications (NCA’01), pages 234—, Washington, DC, USA. IEEE Computer Society.

[Mauthe and Hutchison, 2003] Mauthe, A. and Hutchison, D. (2003). Peer-to-peer computing:
Systems, concepts and characteristics. Praxis der Informationsverarbeitung und Kommu-
nikation, 26(2):60—-64.

[Maxwell and Costanza, 1997] Maxwell, T. and Costanza, R. (1997). A language for modular
spatio-temporal simulation. Ecological Modelling, 103(2-3):105-113.

[McKinley et al., 2004] McKinley, P. K., Masoud, S. S., Kasten., E. P., and Cheng, B. H. C.
(2004). Composing adaptive software. IEEE Computer, 37(7):56-64.

[Mernik et al., 2005] Mernik, M., Heering, J., and Sloane, A. M. (2005). When and how to
develop domain-specific languages. ACM Computing Surveys, 37(4):316-344.

186

BIBLIOGRAPHY

[Milner, 1980] Milner, R. (1980). A calculus of communicating systems. Lecture notes in

computer science. Springer-Verlag.
[Murray, 2003] Murray, J. (2003). Mathematical Biology: I: An introduction. Springer.
[Napster, 2012] Napster (2012). http://www.napster.com.

[Ngetal., 2002] Ng, W. S., Ooi, B. C., Beng, N., Ooi, C., and lee Tan, K. (2002). Bestpeer:
A self-configurable peer-to-peer system. In Proceedings of the 18th International Confer-
ence on Data Engineering, ICDE’02, pages 272—, Washington, DC, USA. IEEE Computer
Society.

[OMG, 2002] OMG (2002). Corba component model 3.0 specification. Technical Report
Version 3.0, Object Management Group.

[OMG, 2006] OMG (2006). Corba component model 4.0 specification. Technical Report
Version 4.0, Object Management Group.

[OMG, 2007] OMG (2007). OMG Unified Modeling Language (OMG UML), Infrastructure,
V2.1.2. Technical report.

[Onoue et al., 1997] Onoue, Y., Hu, Z., Takeichi, M., and Iwasaki, H. (1997). A calculational
fusion system hylo. In Proceedings of the IFIP TC 2 WG 2.1 international workshop on
Algorithmic languages and calculi, pages 76—106, London, UK, UK. Chapman & Hall, Ltd.

[Oracle, 2012] Oracle (2012). Enterprise javabeans technology.
http://www.oracle.com/technetwork/java/javaee/ejb/index.html.

[Otero et al., 2008] Otero, M., Schweigmann, N., and Solari, H. (2008). A stochastic spatial
dynamical model for aedes aegypti. Bull Math Biol, 70(5):1297-325.

[P2Prec, 2011] P2Prec (2011). Social-based P2P recommendation system (P2Prec).
http://www-sop.inria.fr/teams/zenith/P2Prec.

[Paakki, 1995] Paakki, J. (1995). Attribute grammar paradigms - a high-level methodology in
language implementation. ACM Comput. Surv., 27(2):196-255.

[Panda et al., 2007] Panda, D., Rahman, R., and Lane, D. (2007). EJB 3 in Action. Manning
Publications Co., Greenwich, CT, USA.

[Papazoglou and Heuvel, 2003] Papazoglou, M. P. and Heuvel, W.-J. (2003). Service-oriented
computing. Communications of the ACM, 46(10):25-28.

[Parent et al., 2006] Parent, C., Spaccapietra, S., and Zimanyi, E. (2006). Conceptual Mod-
eling for Traditional and Spatio-Temporal Applications: The MADS Approach. Springer-
Verlag New York, Inc., Secaucus, NJ, USA.

187

BIBLIOGRAPHY

[Parigot et al., 1996] Parigot, D., Roussel, G., Jourdan, M., and Duris, E. (1996). Dynamic
attribute grammars. In Int. Symp. on Progr. Languages, Implementations, Logics and Pro-
grams (PLILP’96), volume 1140, pages 122—-136. Springers.

[Peuquet, 1994] Peuquet, D. J. (1994). It’s about Time: A Conceptual Framework for the
Representation of Temporal Dynamics in Geographic Information Systems. Annals of the
Association of American Geographers, 84(3):441-461.

[Peuquet, 2001] Peuquet, D. J. (2001). Making space for time: Issues in space-time data rep-

resentation. Geoinformatica, 5(1):11-32.

[Plasil et al., 1998] Plasil, F., Balek, D., and Janecek, R. (1998). Sofa/dcup: Architecture for
component trading and dynamic updating. In Proceedings of the International Conference
on Configurable Distributed Systems, CDS 98, pages 43—, Washington, DC, USA. IEEE
Computer Society.

[Puntigam, 2003] Puntigam, F. (2003). State information in statically checked interfaces.
In Eighth International Workshop on Component-Oriented Programming, Darmstadt, Ger-

many.

[Ranganathan et al., 2002] Ranganathan, K., lamnitchi, A., and Foster, 1. (2002). Improving
data availability through dynamic model-driven replication in large peer-to-peer communi-
ties. In Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing
and the Grid, CCGRID 02, pages 376—, Washington, DC, USA. IEEE Computer Society.

[Ratze et al., 2007] Ratze, C., Gillet, F., Muller, J., and Stoffel, K. (2007). Simulation mod-
elling of ecological hierarchies in constructive dynamical systems. Ecological Complexity,
4(1-2):13-25.

[Rausch et al., 2008] Rausch, A., Reussner, R., Mirandola, R., and Plasil, F. (2008). The Com-
mon Component Modeling Example: Comparing Software Component Models. Springer

Publishing Company, Incorporated, 1st edition.

[Reussner, 2002] Reussner, R. (2002). Counter-constrained finite state machines: A new
model for component protocols with resource-dependencies. In Grosky, W. and Plasil, F.,
editors, SOFSEM 2002: Theory and Practice of Informatics, volume 2540 of Lecture Notes
in Computer Science, pages 20—40. Springer Berlin / Heidelberg.

[Rhea et al., 2004] Rhea, S., Geels, D., Roscoe, T., and Kubiatowicz, J. (2004). Handling
churn in a dht. In Proceedings of the annual conference on USENIX Annual Technical
Conference, ATEC *04, pages 1010, Berkeley, CA, USA. USENIX Association.

188

BIBLIOGRAPHY

[Ripeanu et al., 2002] Ripeanu, M., Foster, 1., and lamnitchi, A. (2002). Mapping the gnutella
network: Properties of large-scale peer-to-peer systems and implications for system design.
IEEE Internet Computing Journal, 6:2002.

[Saura and Torné, 2009] Saura, S. and Torné, J. (2009). Conefor sensinode 2.2: A software
package for quantifying the importance of habitat patches for landscape connectivity. Envi-
ronmental Modelling & Software, 24(1):135-139.

[Schollmeier, 2001] Schollmeier, R. (2001). A definition of peer-to-peer networking for the
classification of peer-to-peer architectures and applications. In Proceedings of the First

International Conference on Peer-to-Peer Computing, P2P 01, pages 101—, Washington,
DC, USA. IEEE Computer Society.

[Sheard, 1997] Sheard, T. (1997). A type-directed, on-line, partial evaluator for a polymorphic
language. In Proceedings of the 1997 ACM SIGPLAN symposium on Partial evaluation and
semantics-based program manipulation, PEPM 97, pages 22-35, New York, NY, USA.
ACM.

[Silberschatz et al., 2008] Silberschatz, A., Galvin, P. B., and Gagne, G. (2008). Operating
System Concepts. Wiley Publishing, 8th edition.

[SON, 2011] SON (2011). Shared-data Overlay Network (SON) infrastructure. http://www-
sop.inria.fr/teams/zenith/SON.

[Srinivasan and Wolfe, 1992] Srinivasan, H. and Wolfe, M. (1992). Analyzing programs with
explicit parallelism. In Proceedings of the Fourth International Workshop on Languages

and Compilers for Parallel Computing, pages 405-419, London, UK, UK. Springer-Verlag.

[Stanley, 2001] Stanley, R. (2001). Enumerative combinatorics. Number vol. 2 in Cambridge

studies in advanced mathematics. Cambridge University Press.

[Stoica et al., 2001] Stoica, 1., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan, H.
(2001). Chord: A scalable peer-to-peer lookup service for internet applications. In Proceed-
ings of the 2001 conference on Applications, technologies, architectures, and protocols for
computer communications, SIGCOMM ’01, pages 149-160, New York, NY, USA. ACM.

[Swierstra and Vogt, 1991] Swierstra, S. D. and Vogt, H. (1991). Higher order attribute gram-
mars. In Attribute Grammars, Applications and Systems, pages 256—296.

[Szyperski, 1998] Szyperski, C. (1998). Component Software : Beyond Object-Oriented Pro-
gramming. ACM Press and Addison-Wesley, New York.

[Szyperski, 2002] Szyperski, C. (2002). Component Software: Beyond Object-Oriented Pro-
gramming. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition.

189

BIBLIOGRAPHY

[Taylor and Harrison, 2004] Taylor, 1. and Harrison, A. (2004). From P2P to Web Services and
Grids: Peers in a Client/Server World. Computer Communications and Networks. Springer.

[Taylor et al., 2009] Taylor, R. N., Medvidovic, N., and Dashofy, E. M. (2009). Software Ar-
chitecture: Foundations, Theory, and Practice. Wiley Publishing.

[The Eclipse Foundation, 2003] The Eclipse Foundation (2003). Eclipse Platform Technical

Overview.

[The OSGi Alliance, 2007] The OSGi Alliance (2007). OSGi service platform core specifica-

tion. http://www.osgi.org/Specifications.

[The OSGi Alliance, 2012] The OSGi Alliance (2012). OSGi enterprise specification.
http://www.osgi.org/Specifications.

[Torrens and Benenson, 2005] Torrens, P. M. and Benenson, 1. (2005). Geographic automata

systems. International Journal of Geographical Information Science, 19:4-385.

[Tran and Rafty, 2006] Tran, A. and Raffy, M. (2006). On the dynamics of dengue epidemics

from large-scale information. Theoretical Population Biology, 69(1):3 — 12.

[Tyson et al., 2008] Tyson, G., Mauthe, A., Plagemann, T., and El-khatib, Y. (2008). Juno:
Reconfigurable middleware for heterogeneous content networking. In In Proc. Sth Intl.
Workshop on Next Generation Networking Middleware (NGNM), Samos Islands, Greece.

[Uhrmacher and Schattenberg, 1998] Uhrmacher, A. M. and Schattenberg, B. (1998). Agents
in discrete event simulation. In Bargiela, A. and Kerckhoffs, E., editors, /0TH European
Simulation Symposium “Simulation in Industry — Simulation Technology: Science and Art”
(ESS’98), pages 129—-136, Nottingham, UK. The Society for Computer Simulation Interna-
tional (SCS), SCS Publications, Ghent.

[Volterra, 1926] Volterra, V. (1926). Fluctuations in the abundance of a species considered
mathematically. Nature, 118:558-560.

[Voulgaris et al., 2005] Voulgaris, S., Gavidia, D., and van Steen, M. (2005). Cyclon: Inex-
pensive membership management for unstructured p2p overlays. Journal of Network and
Systems Management, 13:197-217.

[Vuetal., 2010] Vu, Q. H., Lupu, M., Ooi, B. C., Vu, Q. H., Lupu, M., and Ooi, B. C. (2010).
Architecture of peer-to-peer systems. In Peer-to-Peer Computing, pages 11-37. Springer

Berlin Heidelberg.

[W3C, 2004] W3C (2004). Web Services Architecture, W3C Working Group Note.
http://www.w3.org/TR/ws-arch.

190

BIBLIOGRAPHY

[Wachowicz and Wachowiez, 1999] Wachowicz, J. M. and Wachowiez, M. (1999). Object-
Oriented Design for Temporal GIS. Taylor & Francis, Inc., Bristol, PA, USA.

[Wainer and Giambiasi, 2005] Wainer, G. A. and Giambiasi, N. (2005). Cell-DEVS/GDEVS
for Complex Continuous Systems. Simulation, 81(2):137-151.

[Wang and Qian, 2005] Wang, A. and Qian, K. (2005). Component-oriented programming.
John Wiley & Sons.

[Wilson, 2002] Wilson, B. J. (2002). JXTA. New Riders.

[Worboys, 1994] Worboys, M. F. (1994). A Unified Model for Spatial and Temporal Informa-
tion. The Computer Journal, 37(1):26-34.

[Wu, 1999] Wu, J. (1999). Hierarchy and scaling: Extrapolating information along a scaling
ladder. Canadian Journal of Remote Sensing, 25:367-380.

[Yang and Papazoglou, 2004] Yang, J. and Papazoglou, M. P. (2004). Service components for

managing the life-cycle of service compositions. Inf. Syst., 29:97-125.

[Yang et al., 2009] Yang, X., Huang, J., and Gong, Y. (2009). Static data flow analysis and
anomalies detection for bpel. In Test and Measurement, 2009. ICTM ’09. International

Conference on, volume 2, pages 18 -21.

[Yuan, 1999] Yuan, M. (1999). Use of a Three-Domain Repesentation to Enhance GIS Support
for Complex Spatiotemporal Queries. Transactions in GIS, 3(2):137-159.

[Zeigler, 1984] Zeigler, B. P. (1984). Theory of Modelling and Simulation. Krieger Publishing
Co., Inc., Melbourne, FL, USA.

[Zhou and Lee, 2006] Zhou, Y. and Lee, E. A. (2006). A causality interface for deadlock
analysis in dataflow. In Proceedings of the 6th ACM & IEEE International conference on
Embedded software, EMSOFT °06, pages 44-52, New York, NY, USA. ACM.

191

BIBLIOGRAPHY

192

Abbreviations

AG

CA

CBSE

CCM

CD

CDML

CG

CM

CORBA

CSP

DAG

DDF

DDG

DE

DFA

DHT

DNS

DSL

EJB

Attribute Grammar

Cellular Automata

Component-based Software Engineering
CORBA Component Model

Computed Data

Component Description Meta Language
Component Generator

Component Manager

Common Object Request Broker Architecture
Communicating Sequential Processes
Dynamic Attributed Grammar
Data-Dependency Formalism
Data-Dependency Graph

Discrete Event

Data-Flow Analysis

Distributed Hash Table

Domain Name Service

Domain-Specific Language

Enterprise JavaBeans

193

Abbreviations

FSA

GIS

GUI

GWT

ID

IDL

JAR

JVM

OD

oop

p2p

RVF

SD

SGT

SOA

SON

STAMP

UTP

UUID

Finite-State Automaton
Geographic Information Systems
Graphical user interface

Google Web Toolkit

Input Data

Interface Definition Language

Java ARchive

Java Virtual Machine

Output Data

Object-Oriented Programming
Peer-to-Peer

Rift Valley Fever

System Dynamics

Simple Georeferencing Tool
Service-Oriented Architecture
Shared-data Overlay Network
Spatial, Temporal And Multi-scale Primitives
Unifying Theories of Programming

Universally Unique Identifier

194

