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1 Huntington’s disease

1.1 Overview and introduction to the disease

Huntington’s disease (HD) is a neurodegenerative disorder first characterized as a hereditary, late-
onset form of chorea by George Huntington in 1872 (Huntington, 2003). In his work (Figure 1), the
description of the clinical aspects of HD is remarkably complete. The adult onsets, relentless
progression, fatal outcome, mental involvement alongside the movement disorder are all
recognized.
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Figure 1. The title page of George Huntington’s original paper "On Chorea". (1872).

In 1968, Milton Wexler started the Hereditary Disease Foundation (HDF) when his wife was
diagnosed with HD. The HDF enrolled a number of scientists to work in the disease. The discovery
of the gene responsible for HD was achieved by Nancy S Wexler, Milton Wexler’s daughter. In
1976 the team conducted a twenty yearlong study in a Venezuelan town near Lake Maracaibo in
which they collected blood samples and documented different individuals to work out a common
pedigree. This work led to the development of a chromosomal test to identify potential sufferers.
The HDF recruited and supported a large group composed for more than 100 scientists from all
over the word named the Huntington Disease Collaborative Research Group (HDCRG). In 1993 the
group reported the discovery of the gene responsible for HD and of its associated mutation (The
Huntington’s Disease Collaborative Research Group, 1993).

1.2 Neuropathology

The histopathology in HD is characterized by the atrophy of the caudate and putamen in the basal
ganglia, as well as the cerebral cortex, reducing brain weight by up to 25-30% (Aylward, 2007;
Rosas et al., 2002; Vonsattel & DiFiglia, 1998)(Figure 2).
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Figure 2. Atrophy of the striatum and cortex in HD brain. Post mortem brains from a HD patient (left) and healthy individual (right).
Particularly evident is the loss of cells in the caudate (c) and putamen (p), resulting in enlarged lateral ventricles in HD brain.

The most affected neurons are GABAergic type Il medium spiny projection neurons, which
constitute about 80% of striatal neurons, and large neurons in layers lll, IV, and V of the cortex
(Hedreen et al., 1991). Interestingly, striatal interneurons are not affected (Zucker et al., 2005).
Medium spiny neurons receive glutamatergic signals from the cerebral cortex, thus defects in the
basal ganglia-thalamocortical pathways involved in motor control may contribute to the
choreiform disorders seen in HD (Albin et al., 1990). Globus pallidus, thalamus, subthalamic
nucleus, substantia nigra, white matter, and the cerebellum can be markedly affected (Vonsattel &
DiFiglia, 1998). Recent work has also indicated that the hypothalamus can be significantly
atrophied in HD patients (Kassubek et al., 2004; Politis et al., 2008).

The most commonly used grading system to assess the severity of HD degeneration is based on
macroscopic and microscopic criteria. The pattern of striatal degeneration in post mortem tissues
classifies HD cases into five different severity grades going from 0, as a non discernible
neuropathology, to 4, with 95% of neuronal loss in caudate nuclei (Vonsattel et al., 1985).

Most clinical features of HD can be attributed to central nervous system (CNS) degeneration, but
some aspects of the disease could be linked to defects outside the CNS (Figure 3). Indeed, weight
loss, skeletal-muscle atrophy, cardiac failure, osteoporosis, testicular atrophy and dysfunction of
blood-derived cells are observed in patients (Van Der Burg, 2009). These features of the disease
are clinically important as they reduce quality of life and, in some cases, correlate with disease
progression and contribute to early death.
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Figure 3. Peripheral pathology in patients with Huntington’s disease. (Adapted from Van Der Burg et al., 2009).

1.3 Symptoms

HD symptoms comprise adult-onset personality changes, generalized motor dysfunctions, and
cognitive decline. The peak age of adult-onset HD is between 35 and 50 years. A small percentage
of patients (10%) develop symptoms before age 20. This corresponds to the juvenile variant of the
disease usually resulting from paternal transmission. Early onset is associated with increased
severity as well as with a more rapid disease progression (Beighton & Hayden, 1981).

In the early stages, HD is associated with progressive emotional, psychiatric, and cognitive
disturbances such as anxiety, irritability and depression. Choreiform movements and loss of motor
coordination are observed. Commonly reported symptoms in HD include progressive weight loss,
alterations in sexual behaviour, and disturbances in the wake-sleep cycle that occur very early in
the course of the disease and may partly be explained by hypothalamic dysfunction (Politis et al.,
2008). With the progression of the disease patients show motor speech disorder (dysarthria) and
difficulty in swallowing (dysphagia). Decreased movement referred as hypokinesia are also
present. In the later stages, HD is characterized by progressive dementia, or gradual impairment of
the mental processes involved in comprehension, reasoning, judgment, and memory (Rosenblatt,
2007). Motor problems worsen reaching a final phase of inability to initiate movements (akinesia).
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Patients with advanced HD become unable to care for themselves. Life-threatening complications
may result from injuries related to serious falls, poor nutrition, infection, choking, and
inflammation. Death occurs 15-20 years after onset of the first symptoms. At present, there is no
cure. The majority of therapeutic strategies currently used in HD are designed to ameliorate the
primary symptoms of HD condition (see Annexe IV). Treatments or drugs have limited benefits,
and do not delay or halt disease progression.

A top priority in the HD field is the identification of biological markers, or biomarkers. Several
candidate HD biomarkers have emerged during the last years (see Annexe IV). A combination of
clinical, neuroimaging, and biochemical biomarkers will be necessary to enhance the accuracy,
specificity, and sensitivity in tracking disease onset and progression. Moreover, biomarkers will be
important to assess the efficiency of future HD treatments.

1.4 The HTT gene and the mutation

In 1983, after Nancy Wexler expedition to Venezuela, the HD gene was mapped on the tip of
chromosome 4 (Gusella et al., 1983). Since then, 4p16.3 was identified as the most likely position
of the HD gene (Bates et al., 1991; MacDonald, Haines, et al.,, 1989; MacDonald, Cheng, et al.,
1989; Snell et al., 1992). The HDCRG published the discovery of a new gene called IT15 (interesting
transcript 15) with a polymorphic CAG (cytosine-adenine-guanine) triplet expansion in the first
exon (The Huntington’s Disease Collaborative Research Group, 1993). When researchers examined
this region of IT15 in non-HD controls, they found that the number of CAG repeats varied from 6 to
35. Analysis of the same region in the IT15 gene in individuals with HD showed that those always
had 40 or more CAG repeats. It was concluded that the trinucleotide repeat expansion was
responsible for HD. The IT15 gene is now renamed the HTT gene (HTT) because of the name
assigned to the protein. The discovery of the causal HD gene has stimulated research, and work is
now focusing on molecular mechanisms of disease.

The gene encoding HTT in vertebrates is composed of 67 exons spanning over 170 kb (Figure 4).
(CAG), repeats are located in the first exon. Normal alleles are polymorphic for the CAG repeat,
containing 11 to 35 CAG repeats. When the repeats reach 41 or more the disease is fully penetrant
(Mcneil et al., 1997; Rubinsztein et al., 1996). Incomplete penetrance happens with 36—40 repeats
| am not sure about this range, we need to check: these individuals do not develop HD but are at
risk of transmitting the disease to their children, known as “genetic anticipation”. This
phenomenon is explained by the fact that the expanded CAG repeats are not stable and tend to
expand from generation to generation specifically when the disease gene is inherited from the
father (Ranen et al., 1995). Extremely large CAG repeats of 60 or greater are often associated with
a disease onset during childhood or adolescence (juvenile).
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Figure 4. Human HTT gene. The 5' end of HTT has a sequence of (CAG), repeats. 35 or less repeats are not associated with the disorder.
Pathological threshold is defined by 41 or more CAG repetitions. Incomplete penetrance happens with 36 to 41 repeat. 60 or more
repeats are often associated with a juvenile onset (before 20 years old). HTT is located on the short (p) arm of chromosome 4 at
position 16.3.

There is a strong inverse correlation between CAG repeats length and age at onset of motor
symptoms (Andrew et al., 1997). A recent work shows that normal allele CAG length, interaction
between expanded and normal alleles and presence of a second expanded allele do not influence
age at onset of motor manifestations, indicating that the rate of HD pathogenesis leading to motor
diagnosis is determined by a completely dominant action of the longest expanded allele (Lee et al.,
2012). However, the number of CAG repeats accounts for about 60% of the variation in age of
onset and disease manifestations. This observation suggests the existence of environmental and
genetic modifiers. Several studies revealed that a large set of genes distinct from the HD locus
itself could contribute to modify disease onset and progression (Chattopadhyay et al., 2003; Jian-
liang Li et al., 2003; Wexler, 2004). All of these modifiers relate to various mechanisms implicated
in HD pathology as excitotoxicity, dopamine toxicity, metabolic impairment, transcriptional

deregulation, protein misfolding, and oxidative.

Most of the patients are heterozygous for the mutant allele. Homozygous cases of the disorder
show the same age of onset of the disease that heterozygous HD cases, but the rate of progression
can be enhanced (Squitieri et al., 2003).

Of note, other neurodegenerative diseases are also caused by an abnormal CAG expansion in a
single causative gene. This results in protein aggregation, late-onset neurodegeneration, and
selective vulnerability of a subset of neurons. This includes nine other diseases with expansions in
polyQ tracts: spinal and bulbar muscular atrophy (SBMA), dentatorubral and pallidoluysian
atrophy (DRPLA), and spinocerebellar ataxias (SCA) 1,2,3,6,7,12,17.

1.5 Normal HTT

1.5.1 Overview

HTT gene encodes huntingtin protein (HTT), a large soluble protein with a molecular weight of
350kD (Figure 5). (CAG), are translated in a glutamine tract. HTT has little homology to other
proteins but is well conserved from D. melanogaster to mammals, suggesting a central role in cell
homeostasis. Three putative domains of HTT have been identified in multialignment
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corresponding to human HTT amino acids 1-386 (HTT1), 683-1,586 (HTT2), and 2,437-3,078
(HTT3). In particular, comparison of more divergent orthologs and quantification of evolutionary
pressure on the three blocks revealed that the NH,-terminal fragment (HTT1) is the most recently
evolved part of HTT, while the COOH-terminal part represents the most conserved portion among
all animals, from sea urchin to insects and mammals (Zuccato etal., 2010). HTT is a 350kDa protein.
This high molecular weight hampers the production of crystals and mass spectrometry studies to
elucidate its structure. Up to date, there are no clear data on the structure of the protein.

1.5.2 Expression and structure

HTT is ubiquitously expressed throughout the body; higher levels are found in brain and testis. In

the brain, HTT can be found at highest levels in the cerebellar cortex, the neocortex, the striatum
and hippocampus (Trottier et al., 1995). At subcellular levels, HTT has a large distribution. HTT is
associated with a variety of organelles, including the nucleus, endoplasmic reticulum (ER), Golgi
complex, and mitochondrion (Hilditch-Maguire et al., 2000; Hoffner et al., 2002; Kegel et al., 2002;
Panov et al., 2002; Strehlow et al., 2007). HTT is also found within neurites and at synapses, where
it associates with various vesicular structures such as clathrin-coated vesicles, endosomal
compartments and microtubules (MT) (Difiglia et al., 1995; Hilditch-Maguire et al., 2000; Hoffner
et al., 2002; Velier et al., 1998).
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Siles for ubiquitination and sumoylation, Ubiquitination maintains Hit
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Figure 5. HTT amino acid sequence. (Q), indicates the polyglutamine tract, which is followed by the polyproline sequence (P),; the red
emptied rectangles indicate the three main groups of HEAT repeats (HEAT group 1, 2, 3). The small green rectangles indicate the
caspase cleavage sites and their amino acid position (513, 552, 586), while the small pink triangles indicate the calpain cleavage sites
and their amino acid positions (469, 536). Boxes in yellow: B, regions cleaved preferentially in the cerebral cortex; C, regions of the
protein cleaved mainly in the striatum; A, regions cleaved in both. Posttranslational modifications: ubiquitination (UBI) and/or
sumoylation (SUMO) sites (green); palmitoylation site (orange); phosphorylation at serines 13, 16, 421, and 434 (blue); acetylation at
lysine 444 (yellow). The nuclear pore protein translocated promoter region (TPR, azure) is necessary for nuclear export. (Adapted from
Zuccato et al., 2010)
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At NH, terminus, glutamine stretch in human HTT begins at the 18" amino acid. A recent study
suggests that the (Q), tract may modulate a normal function of HTT (Zheng et al., 2010). In vitro
studies on fibroblasts indicated that the (Q), contributes in modulating longevity and energy
status. Moreover, mice lacking (Q), stretch live significantly longer than wild-type mice.

In mammals, the (Q), region is followed by a polyproline ((P), or polyP) stretch. It was suggested
that the (P), function may reside in the stabilization of the (Q), tract by keeping it soluble (Steffan
et al., 2004). This domain, together with Src homology 3 (SH3) region, would be implicated in
protein-protein interaction.

HTT is also enriched in consensus sequences called huntingtin, elongation factor 3, protein
phosphatase 2A, and TOR 1 (HEAT) repeats that are organized into protein domains important for
protein-protein interactions. The repeats are well conserved in HTT through evolution. A recent
study of HEAT repeats number and distribution revealed a total of 16 HEAT repeats in HTT, which
are organized into 4 clusters (Tartari et al., 2008). Recombinant full-length HTT purified from insect
cells has high helical content, is an elongated molecule, and remains intact despite extensive
proteolytic nicking (Li et al., 2006). This preliminary characterization of HTT is consistent with a
structure composed entirely of HEAT repeats, folded via a continuous hydrophobic core into a
single superhelical solenoid.

A functionally active COOH-terminal nuclear export signal (NES) sequence and a less active nuclear
localization signal (NLS) are present in HTT, which might indicate that the protein (or a portion of
it) is involved in transporting molecules from the nucleus to the cytoplasm (Xia et al.,2003). In
concordance with this, it has been show that the nuclear pore protein TPR has a role in the nuclear
export of N-terminal HTT (Cornett et al., 2005). PolyQ expansion reduces this nuclear export to
cause the nuclear accumulation of HTT.

HTT is subjected to several post-translational modifications that regulate its wild-type functions
but also participate to HD pathology. This will be discussed in chapter 1.8 of this manuscript.

1.6 Functions of wild-type HTT

HTT ubiquitary expression and widespread subcellular localization does not facilitate the
determination of its functions. However, identification of HTT interactors (see Annexe lIlI) and
development of different animal models (see Annexe | and IlI) put on evidence the following
proposed roles for normal HTT.
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1.6.1 Embryonic development

HTT is required for normal embryogenesis, as knock-out (KO) mice for HTT (Hdh -/-) die at an early
developmental stage, E7.5. The basis of this effect appears to be increased apoptosis in the
embryonic ectoderm shortly after the onset of gastrulation (Duyao et al., 1995; Nasir et al., 1995;
Zeitlin et al.,, 1995). The inactivation of HTT gene (htt) does not reveal a phenotype in D.
melanogaster embryos; htt is dispensable for D. melanogaster development but is crucial for aged
adults (Zhang et al., 2009). This discrepancy might be due to intrinsic differences between mouse
and fly embryogenesis as early lethality in mouse is likely to result from the absence of HTT in
extraembryonic tissues (Dragatsis et al., 1998). In agreement with this hypothesis is the
observation that mice deleted for Htt in adult stages show neurodegeneration (Dragatsis et al.,
2000) and, HTT-ko adult flies show a compromised mobility and reduced viability (Zhang et al.,
2009).

Conditional inactivation of the Htt gene in the midbrain and hindbrain in Wnt1 cell lineage results
in congenital hydrocephalus (Dietrich et al., 2009). These results implicate HTT also in the
regulation of cerebral spinal fluid (CSF) homeostasis.

To bypass the early lethality induced by the absence of HTT and analyze the role of the latter after
gastrulation, mice expressing less than 50% of the normal of the protein were generated. These
mice present defects in the formation of the precursor of the epiblast, as well as malformations of
the cortex and striatum, and die shortly after birth (White et al., 1997). Analyses of chimeras
created by blastocyst injection of Htt -/- ES cells suggest that HTT plays a specific role in neuronal
survival, neuroblasts need to synthesize HTT if they are to progress in development and
differentiation (Reiner et al., 2001; Reiner et al., 2003).

Finally, studies using developing zebrafish showed that a reduction in Htt levels affects the
formation of most of the anterior regions of the neural plate (Henshall et al., 2009).

These data indicate that HTT is required at different steps of embryonic development and that its
total absence or 50% reduced presence generates a very early phenotype in mice.

1.6.2 Antiapoptotic

Overexpression studies have demonstrated that HTT has a role in maintaining cell viability in
response to acute toxic stimuli and excitotoxicity. Wild-type HTT can suppress apoptosis in vitro in
response to exogenous toxic stimuli such as 3-nitropropionic acid, which selectively damages the
striatum, presumably by preventing activation of proaspase-9 (Rigamonti et al., 2000, 2001).
Similarly, HTT can protect against excitotoxicity after quinolic acid injection in vitro and in vivo, by
mediating apoptosome complex activity and inhibiting caspase activation downstream of
cytochrome-c release (Rigamonti et al., 2000; Leavitt et al., 2006). Cells depleted of wild-type HTT
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are more sensitive to apoptotic cell death and show increased level of caspase-3 activity, with
respect to control cells (Zhang et al., 2006). HTT is also implicated in anti-apoptotic pathways due
to its interaction with HIP1, which reduces HIP1 and Hippi’s ability to mediate procaspase-8
cleavage and apoptosis (Gervais et al., 2002).

More recently, the anti-apoptotic role of HTT has been highlighted also in non mammalian models.
In fact, apoptotic cell death is observed in zebrafish embryos in which Htt is knocked-down by
morpholino technology (Diekmann et al., 2009). Htt morpholino-injected zebrafish show a
massively increased cell death as indicated by caspase-3 activity especially in the
midbrain/hindbrain region of the developing zebrafish embryo. This increased apoptosis is
accompanied by a severe underdevelopment of the CNS.

1.6.3 Pro-survival factor

Several studies have shown that HTT regulates the cellular levels of brain-derived neurotrophic
factor (BDNF) (Gauthier et al.,, 2004; Zuccato et al., 2001). BDNF is a neurotrophin that is
particularly important for the survival of striatal neurons and for the activity of the cortico-striatal
synapses. However, striatal neurons depend on the supply of BDNF from the cortical afferents
(Baquet et al., 2004) . Indeed, BDNF is produced by cortical neurons and transported to striatal
neurons. Wild-type HTT regulates both BDNF transcription and intracellular dynamics. HTT was
found to bind a BDNF transcription repressor element, REST/NRSF, and retain it in the cytoplasm
permitting transcription of BDNF (Zuccato et al., 2001, 2003). HTT has also been shown to regulate
BDNF delivery from the cortex to the striatum by promoting its transport through its interaction
with HAP1 (Gauthier et al., 2004; Wu et al., 2010).

Further studies revealed that wild-type HTT is a substrate for the serine/threonine kinase Akt.
Upon IGF-1 activation, Akt phosphorylates a number of substrates thus activating prosurvival
pathways by stimulating the expression of prosurvival genes, whereas death genes such as BAX or
Bcl-2 are repressed. In particular, Akt mediates prosurvival effect through HTT phosphorylation.
Akt directly phosphorylates HTT at serine 421 (Emilie Colin et al., 2008; Zala et al., 2008). This
phosphorylation stimulates BDNF anterograde transport in wild-type conditions. In HD, by
rescuing the deficient BDNF transport, phosphorylation of serine 421 reduces mutant HTT-induced
toxicity.

HTT has also been implicated in the stress response system because phosphorylation of HTT by
CDKS5 in response to DNA damage prevents HTT from inducing p53 dependent apoptosis (Anne et
al.,, 2007). Additionally, phosphorylation of the N17 region of HTT regulates nuclear entry and
association with chromatin in response to heat shock (Atwal et al., 2011).
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1.6.4 Synaptic activity

Synapses are essential to neuronal function. Wild-type HTT interacts with cytoskeletal and
synaptic vesicles proteins essential for exo- and endocytosis at the synaptic terminals, thus
participating in the control of synaptic activity in neurons (Smith et al., 2005). HTT is localized post-
synaptically with PSD-95 (post-synaptic density 95), a membrane-associated guanylate kinase
(MAGUK) protein that binds the NMDA and kainate receptors at the postsynaptic density (Fan et
al.,, 2009; Sun et al.,, 2001). HTT is also localized pre-synaptically through its interactions with
synaptic vesicles, HIP1, and HIP14, suggesting roles in synaptic signaling and vesicle recycling
(Stowers et al., 2007; Waelter et al., 2001). Furthermore, HTT can bind to PACSIN1/syndapin,
syntaxin, and endophilin A, which collectively play a key role in synaptic transmission, as well as in
synaptic vesicles and receptor recycling (Smith et al., 2005).

1.6.5 Transcriptional factor

(Q),, and (P), regions have been demonstrated to form polar zipper structures and interact with
DNA directly, suggesting HTT may function as a transcriptional activator (Gerber et al., 1994;
Perutz et al.,, 1994). Several studies have shown interactions between HTT and various
transcription factors such as the cAMP response-element binding protein (CBP) (Mccampbell et al.,
2007; Steffan et al., 2000), p53 (Mccampbell et al., 2007; Steffan et al., 2000), Sp1, TAFII130
(Dunah et al., 2002), N-CoR, and Sin3A (Boutell et al., 1999; Luthi-Carter et al., 2000). By binding to
these trancription factors, HTT was reported to act as a transcription activator or repressor.

HTT activates the transcirption of genes encompassing RE1 sequence, a conserved 21-23 base pair
DNA Repressor element 1 (also known as the neuron-restrictive silencer element, NRSE). This
sequence is recognized by the RE1-silencing transcription factor (REST; also known as neuronal
restrictive silencing factor, NRSF) transcriptional regulator, which acts as a transcriptional silencer
(Cattaneo et al., 2005). Thus wild-type HTT has a broad role in regulating neuronal gene
transcription: cells and mice expressing increased wild-type levels also show higher levels of
MRNAs transcribed from RE1/NRSE-containing neuronal genes (Zuccato et al., 2003). In particular,
BDNF exon Il promoter contains a RE1 sequence. Wild-type HTT thus promotes Bdnf transcription
because it sequesters the available REST/NRSF in the cytoplasm, thereby preventing it from
forming the nuclear co-repressor complex at the RE1/NRSE nuclear site and allowing gene
transcription (Zuccato et al., 2003).
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1.6.6 Axonal and vesicular transport

The function of HTT as a facilitator of long- and short-range transport along MT is documented in
mammalian cells, D. melanogaster and mouse models. Much of the information gleaned from
analysis of HTT interacting proteins suggests a role in intracellular transport (Figure 6).

Yeast two-hybrid screens have implicated HTT in binding HAP1 (X. J. Li et al., 1995), which is
involved in axonal transport via its interaction with kinesin (Mcguire et al., 2006), dynein
(Engelender et al., 1997; Rong et al., 2007), dynactin subunit plSOG’”ed (Li et al., 1998) and HIP1 and
HIP14, which have roles in endocytosis (Kalchman et al., 1997; E E Wanker et al., 1997), suggesting
a role for HTT in various aspects of MT and actin based intracellular transport. Dynactin is an
essential co-factor for the transport of membranous organelles by the minus-end-directed
microtubule motor cytoplasmic dynein.

4

1 550

117
Huntingtin E.ll {
T T "
Huntingtin in HD >36 Q e ix s o
— = Dynein ,L

HAP1
{ > (Dynactin

Figure 6. Schematic of HTT. The N-terminal membrane localization signal (aal-18) is shown in green and the polyglutamine repeat
region (beginning at aal7) is shown in red. The light blue region (aal172-372) has been shown to associate with acidic phospholipids at
the plasma membrane. The site of palmitoylation of Cys214 by HIP14 is indicated by a blue lollipop and phosphorylation of Ser421 by

Akt is indicated by a yellow lollipop. The myosin VI linker protein optineurin is known to associate with the N-terminal region of HTT.

HAP1 interacts with the N-terminal region of normal HTT and the expanded polyglutamine repeat found in mutant HTT has been shown
to enhance binding. HAP1 also interacts with the plus-end-directed MT motor kinesin and dynactin. The minus-end-directed MT motor
dynein interacts with HTT (aa600-698) and with the dynein activator dynactin. HAP40, an effector of the small GTPase Rab5, binds to
the C-terminal region of HTT (Adapted from Caviston & Holzbaur, 2009).
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Additionally, we and others have shown a direct interaction between HTT and dynein. The
HTT/dynein interaction was initially described by yeast two-hybrid system. This interaction was
functionally validated in cell culture, by demonstrating that reduced HTT expression leads to
disruption of Golgi stacks, a hallmark dynein-mediated defect (Caviston et al., 2007; Pardo et al.,
2010). Mapping experiments identify a binding site for the dynein intermediate chain to residues
601-698 of HTT. Immunoprecipitation of endogenous proteins from brain extract with an anti-
dynein antibody demonstrates the co-precipitation of a complex that includes cytoplasmic dynein,
dynactin, HTT, kinesin and HAP1 (Caviston et al., 2007; Colin et al., 2008). In line with this, full-
length versions of HTT lacking the interaction domain for dynein (A-DYN) and HAP1 (A-HAP1) fail
to transport BDNF vesicles in neuronal cells (Pardo et al., 2010). These observations will be
discussed in detail in the results section 5 of this thesis.
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HTT has been suggested to act as a ‘molecular switch’ in controlling anterograde and retrograde
transport of BDNF (Figure 7). Experiments in cell culture measuring transport of BDNF
demonstrate that phosphorylation of serine 421 (S421) favors anterograde transport, while
unphosphorylated S421 favors retrograde transport (Colin et al., 2008). A similar ‘switching’
mechanism has been attributed to HTT by its interaction with HAP40, a Rab5 associated protein,
suggesting that HTT functions to transfer endosomes from MT to F-actin tracks (Pal et al., 2008;
Peters & Ross, 2001). HTT has also been implicated in actin-based transport by its interaction with
optineurin, which may physically link HTT to the actin motor myosin-VI (Sahlender et al., 2005).

Interestingly, ablation of HTT phosphorylations at S1181/51201 leads to increased anterograde
and retrograde velocities via an increased attachment of motor proteins and BDNF vesicles to MT
(Ben M’Barek et al., manuscript in preparation).
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Figure 7. Proposed model of the directionality switch induced by phosphorylation of HTT. HTT binds to HAP1 and to the dynein
complex. HAP1 interacts with p1506'”e'1 and kinesin-1. When HTT is not phosphorylated, the kinesin-1 interaction with motor complex is
weak, kinesin-1 is detached from MTs and vesicles leading to retrograde transport. When HTT is phosphorylated, the kinesin-1
association with motor complex is increased and kinesin-1 is recruited to vesicles, therefore inducing a switch to anterograde transport.
(Adapted from Colin et al., 2008).

A recent publication indicates that wild-type HTT is essential for protein trafficking to the
centrosome and normal ciliogenesis. Ciliogenesis is regulated by an HTT-HAP1-peri-centriolar
molecule-1 (PCM1) pathway. Depletion of HTT or HAP1 leads to dispersion of PCM1 from
centrosomes and reduced ciliogenesis in cells (Keryer et al., 2011).

Fast axonal transport (FAT) requires consistent energy over long distances to fuel the molecular
motors that transport vesicles. A recent study from our laboratory (Zala et al., manuscript in
preparation) shows that FAT depends on glycolytic but not on mitochondrial ATP. Indeed, FAT
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would use ATP that is directly generated on vesicles from glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) and phosphoglycerate kinase (PGK) activities. GAPDH is a very abundant
protein present both in the cytoplasm and the nucleus and localizes on fast moving vesicles within
axons. Consistent evidence show that would HTT scaffolds GAPDH on vesicles with depletion of
HTT reducing GAPDH attachment to vesicles.

1.7 Mutant HTT and its down-stream effect: HTT-mediated toxicity

Down-stream amino acid 17, HTT has a polymorphic (Q),/(P), rich domain. The abnormal
expansion of (Q), (polyQ) stretch encoded by the nucleic acids (CAG), causes HD. HD is an
autosomal dominant disorder. This suggests that the mutation leads to a toxic gain of function.
Accordingly, several cellular and animals models were developed by over-expressing mutant HTT.
But there is evidence that a loss of protective function of HTT could act synergistically with the
gain of toxic functions (Figure 8). Mutant HTT is found in both the nucleus and the cytoplasm of
HD brain (Benn et al., 2005; Gutekunst et al., 1999). Hypothesis about the nuclear effects of
mutant HTT focuses mainly on transcriptional dysregulation, while toxicity of HTT in the cytoplasm
involves ubiquitin/proteasome dysfunction, aberrant caspase activity and cell death, synaptic
dysfunction, excitotoxicity, mitochondrial dysfunction, autophagy and impaired axonal transport.
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Figure 8. Key cellular pathogenic mechanisms in HD. (A): the mutation in HTT causes a conformational change of the protein that
leads to partial unfolding or abnormal folding of the protein, which can be corrected by molecular chaperones. Full-length mutant HTT
is cleaved by proteases in the cytoplasm. In an attempt to eliminate the toxic HTT, fragments are ubiquitinated and targeted to the
proteasome for degradation. However, the proteasome becomes less efficient in HD. Induction of the proteasome activity as well as of
autophagy protects against the toxic insults of mutant HTT proteins by enhancing its clearance. (B): NH2-terminal fragments containing
the polyQ strech accumulate in the cell cytoplasm and interact with several proteins causing impairment of calcium signaling and
homeostasis (C) and mitochondrial dysfunction (D). (E): N-terminal mutant HTT fragments translocate to the nucleus where they impair
gene transcription or form intranuclear inclusions. (F): the mutation in HTT alters vesicular transport and recycling. (Adapted from
Zuccato et al., 2010).
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1.7.1 Cleavage by caspases and nuclear translocation

HTT is found cleaved in cellular and mouse HD models and in HD patients. The cleavage events
occur both in normal and mutant huntingtin, but the latter is more susceptible to proteolysis and
generates N-terminal fragments that are found in the cytoplasm and nucleus of neuronal and non
neuronal cells.

HTT cleavage is a key event in the pathology. Indeed, inhibition of HTT cleavage prevents
neurodegeneration and toxicity in vivo (Gafni et al., 2004; Graham et al., 2006). Further
supporting the importance of mutant HTT cleavage, expression of different N-terminal fragments
with expanded polyQ is sufficient to induce a HD-like pathology, whereas longer fragments are less
toxic in cellular and animals models (de Almeida et al., 2002; Karpuj et al., 1999; Lunkes et al.,
1998; Saudou et al., 1998).

Several consensus cleavage sites have been identified in HTT (Figure 5). Caspases 1,3,6,7 and 8 as
well as calpain can cleave HTT in vivo and in vitro (Difiglia, 2002; Gafni et al., 2004; Gafni & Ellerby,
2002; Hermel et al., 2004; Mende-Mueller et al., 2001). In particular, studies have strengthened
the evidence for a role of caspase-6-mediated cleavage in the disease process. Activation of
caspase-6 may be a primary event in the proteolytic process of mutant HTT. This would then lead
to the activation of additional proteolytic caspase activities (for example, to activation of caspase-
2 and -3), exacerbating neurodegeneration and contributing to the appearance of the disease
phenotype.

Once HTT is cleaved, N-terminal fragments are translocated to the nucleus. This nuclear
translocation of mutant HTT induces neuronal apoptosis (Saudou et al., 1998) Accumulation of
small N-terminal fragments could be in part a result of a diminution in the interaction of HTT with
the nuclear pore protein TPR (translocated promoter region) in a mutant context (Cornett et al.,
2005). The decreased mutant HTT-TPR interaction would reduce the export toward the cytoplasm
of mutant fragments.

PTM are suggested as important regulators of huntingtin proteolysis (see below). In fact, HTT
phosphorylation at S434 by Cdk5 prevents the cleavage of the protein, while phosphorylation at
S421 reduces huntingtin cleavage by caspase-6 and the nuclear accumulation of caspase-6
fragments (Luo et al., 2005; Warby et al., 2005, 2009).

1.7.2 Aggregation and toxicity

Progressive accumulation of abnormal protein aggregates associated with neuronal loss is a
common molecular event observed in al polyQ diseases, but also in other neurodegenerative
diseases such as Parkinson’s disease (PD), Alzheimer disease (AD) amyothrophic lateral sclerosis
(ALS). HTT fragment length and amount, as well as the length of the (Q),, are critical factors in
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determining the aggregation process (Chen et al., 2002; Hackam et al., 1998; Li et al., 2001; Li et
al., 1998).

Two major aggregation pathways are in competition with each other and explain how the polyQ
expansion can facilitate aggregation: The first pathway is mediated by aggregation of the polyQ
stretch. PolyQ aggregation displays kinetics of nucleated-growth polymerization with a prolonged
lag-phase required for forming an aggregation nucleus, followed by a fast extension phase during
which additional polyglutamine monomers rapidly join the growing aggregate (G. Bates, 2003;
Paoletti et al., 2008; Erich E Wanker, 2000). The second pathway depends on the first 17 N-
terminal amino acids and involves intermediate structures. It is characterized by the formation of
oligomers having the first 17 amino acids of the protein in their core and polyQ sequences
exposed on the surface (Thakur et al., 2009).

Toxicity of nuclear mutant HTT aggregates is still under debate. However, the field is reaching a
consensus. The absence of correlation between nuclear aggregates and cell death show that HTT
inclusions are not pathogenic per se but rather an attempt of the cells to sequester toxic soluble
fragments (Arrasate et al.,, 2004; Gutekunst et al., 1999; Saudou et al., 1998). In agreement,
inhibition of ubiquitination increases mutant HTT toxicity while decreasing aggregates formation.
However, while aggregates are not directly responsible for the induction of cell death they are
physically interfering with key cellular functions such as intracellular transport and transcription
thus leading to neuronal dysfunction.

Misfolded mutant HTT could impair with chaperone and proteasome systems. This would lead to
the accumulation of misfolded or damaged proteins and aggregates formation, inducing a cellular
stress response that leads to cell death. Indeed, earlier studies have provided evidence that
misfolded toxic polyQ HTT protein induces a global impairment of the ubiquitin—proteasome
system (UPS) that is pathogenic in HD (Bennett et al., 2005). However, other studies showed an
accumulation of polyubiquitinated proteins in HD in the absence of a general UPS impairment
(Bett et al., 2006; Bett et al., 2009; Bett et al., 2009; Maynard et al., 2009). This suggested that the
UPS is generally functional in HD, but that pathogenic HTT may impair selectively the
ubiquitination process of specific substrates. A recent study from our lab exposed that HTT binds
to B-catenin and to the destruction complex by interacting with -TrCP and axin. The presence of
an abnormal polyQ expansion in mutant HTT leads to a decreased binding to B-catenin therefore
impairing the binding of B-catenin to the destruction complex and subsequently resulting in -
catenin accumulation (Godin et al., 2010). Finally, recruitment of chaperones to polyQ aggregates
would induce mutant HTT accumulation with an abnormal conformation (Hay et al., 2004).

1.7.3 Transcriptional deregulation

DNA transcription is a highly regulated cellular process that is impaired in HD, resulting in altered
levels of expression for a number of genes. Both wild-type and mutant HTT have been shown to
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interact with a range of transcription factors, giving rise to the hypothesis that abnormal
interactions between mutant HTT and proteins involved in transcription lead to transcriptional
deregulation, which is an early event in HD pathogenesis (Sugars & Rubinsztein, 2003)

Wild-type and polyQ HTT are cleaved by caspases, resulting in N-terminal fragments that enter the
nucleus and alter transcription (Difiglia et al., 1995; Steffan et al., 2000). PolyQ tracts and
glutamine rich regions are common in transcription factors, arguing that wild-type HTT may act in
a similar manner, and the expanded polyQ could alter its endogenous interactions with
transcription factors and DNA.

Wild-type HTT is known to bind the RE1-silencing transcription factor/neuron-restrictive silencer
factor (REST/NRSF) complex (Figure 9). This interaction is likely mediated by HAP1, dynactin, and
the REST/NRSF-interacting LIM domain protein (RILP) (Shimojo, 2008). The interaction between
HTT and REST/NRSF is reduced in HD, allowing translocation of REST/NRSF into the nucleus. This
reduces the transcription of BDNF, as well as of many other neuronal genes under the control of
the REST complex, which is a global regulator of neuronal gene transcription (Zuccato et al., 2007,
2008; Zuccato & Cattaneo, 2007).
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Figure 9. The transcription factor REST/NRSF binds to RE1/NRSE elements in neuronal gene promoters such as in the BDNF gene. Wild-
type HTT sustains the production of BDNF by interacting with REST/NRSF in the cytoplasm, thereby reducing its availability in the
nucleus to bind to RE1/NRSE sites. Under these conditions, transcription of BDNF and of other RE1/NRSE regulated neuronal genes is
promoted. Mutant HTT fails to interact with REST/NRSF in the cytoplasm, which leads to increased levels of REST/NRSF in the nucleus.
Under these conditions, REST/NRSF binds avidly to the RE1/NRSE sites, suppressing the transcription of BDNF and of other RE1/NRSE
regulated neuronal genes. (Adapted from Zuccato et al., 2010).

TAFII-130, a cofactor for CREB dependent transcription accumulates in mutant HTT nuclear
aggregates (Figure 10). PolyQ tract, impairs the soluble association of TAFII130 with Sp1, and
directly interfers with the binding of Sp1 to DNA (Dunah et al., 2002; M. Shimohata et al., 2005; T.
Shimohata et al., 2000). A role for Sp1l is supported by the downregulation of two relevant gene
promoters in cell models: dopamine D2 receptor and nerve growth factor receptor. Sp1 disruption
appears to occur early in human HD pathogenesis, being detectable even in presymptomatic grade
1 postmortem tissue (Dunah et al., 2002; M. Shimohata et al., 2005; T. Shimohata et al., 2000).
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Figure 10. Mutant HTT represses transcription of Spl-dependent promoters (i.e., dopamine receptors D1 and D2 genes) by abnormally
interacting with specific transcription cofactors such as Sp1 itself, TFIIF, and TFII130. (Adapted from Zuccato et al., 2010).

Transcriptional dysregulation in HD is also linked to energy deficits (Figure 11). Particularly, mutant
HTT inhibits expression of PGC-1a, a master regulator of mitochondrial biogenesis and function, by
interfering with CREB/TAF4 at the PGC-1a. promoter (Cui et al., 2006).
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Figure 11. The transcription factor cAMP-responsive element (CRE)-binding protein (CREB) binds to DNA elements that contain a CRE
sequence, as in the promoter of the PGC1-a gene, a master regulator of genes involved in mitochondrial function and energy
metabolism. Mutant HTT interferes with CREB and TFIID, leading to reduced activation of PGC1-a gene, reduced PGC1-a. protein levels,
and consequently, downregulation of its mitochondrial target genes. (Adapted from Zuccato et al., 2010).

The transcription of genes involved in cholesterol and lipid metabolism was also reported to be
affected in HD. HD cells showed reduced sterol responsive element binding protein (SREBP)
nuclear translocation and reduced activity of a SRE-reporter gene in the presence of mutant HTT
(Figure 12) (Valenza et al., 2005). These results imply that less SREBP reaches the transcriptionally
active sites in the nucleus causing reduced expression of SRE-regulated genes involved in
cholesterol and lipid metabolism.
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Figure 12. SREBP binds to SRE to regulate the transcription of genes involved in the cholesterol biosynthesis pathway. Under
physiological conditions, SREBP is transported from the endoplasmic reticulum to the Golgi region, where it is cleaved to obtain a
fragment that enters the nucleus and activates cholesterogenic genes. In the presence of mutant HTT, this mechanism is impaired,
which leads to the reduced expression of SREBP-dependent genes and decreases the biological effects of cholesterol biosynthesis.
(Adapted from Zuccato et al., 2010).

Mutant HTT may also cause transcriptional deregulation by inhibiting the action of histone
acetylases such as CBP, p300, and P/CAF through binding of the expanded polyQ tract to
acetyltransferase domains (Steffan et al., 2001) (Figure 13). Acetylation of histones through
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histone acetyltransferase activity facilitates unwinding of chromatin, rendering it transcriptionally
active; conversely, inhibition of histone acetylase (HAT) activity results in repression of gene
transcription. In agreement, administration of histone deacetylase (HDAC) inhibitors rescues
neurodegeneration in cellular, fly, and mouse models of HD (Ferrante et al., 2003; Hockly et al.,
2003; Steffan et al., 2001).
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Figure 13. Levels of histone acetylation at specific lysine residues are determined by concurrent reactions of acetylation (Ac) and
deacetylation, which are mediated by histone acetylases (HATs) and histone deacetylases (HDACs). Histone acetylation is vital for
establishing the conformational structure of DNA-chromatin complexes suitable for transcriptional gene expression. Mutant HTT leads
to disruptions in HAT and HDAC balance, leading to general transcriptional repression. (Adapted from Zuccato et al., 2010).

1.7.4 Excitotoxicity

Excitotoxicity occurs from either overactive glutamate release, reduced glutamate uptake by glial
cells, or glutamate hypersensitivity of NMDA receptors (NMDAR) or downstream signaling
pathways in the striatal cells. As striatal cells depend on glutamatergic activation from cortical
cells, excitotoxicity is an appealing mechanism to explain mutant HTT-mediated toxicity in striatal
cells. Early evidence for this came from human patient brain slices demonstrating reduced NMDAR
binding specifically in the striatum (Young et al., 1988). YAC128 mouse models expressing full-
length mutant HTT also display excitotoxic sensitivity in striatal cells (Benn et al., 2007).

Possible mechanisms for this effect include changes in NMDAR protein levels or post-translational
modifications (Ali & Levine, 2006; Cepeda et al., 2001). Defective glutamate clearance from the
synaptic cleft by glia has also been suggested as a possible cause of excitotoxicity. The transporter
GLT1, a glial glutamine transporter, appears down-regulated in mouse models of HD, increasing
levels of glutamine in the synaptic cleft (Estrada-Sanchez et al. , 2009). Mutant HTT induced
excitotoxicity could also be the result of a decrease interaction with PSD-95. PSD-95 recruits
NMDA receptors and facilitates their activation, but in a HD pathological context, PSD-95 is not
properly recycled and NMDA receptors become hypersensitive (Sun et al., 2001).

In addition to glutamate, other neurotransmitter systems that control the activity of the
corticostriatal synapse contribute to render striatal neurons more sensitive to excitotoxic stimuli
(Bamford et al., 2004). Adenosine A2 receptors (A2AR) and cannabinoid receptors (CB1R) are
particularly abundant on the corticostriatal terminals, where, when activated, they increase
glutamate release. A crucial input to the striatum comes from the substantia nigra pars compacta,
whose fibers represent the main striatal source of dopamine. Dopamine can directly regulate
glutamate release from corticostriatal terminals by stimulating the D2 receptors (D2R) located on
the cortical afferents

34



Impaired clearance of glutamate from the synaptic cleft may contribute to enhance excitotoxic
neurodegeneration in HD (Tzingounis & Wadiche, 2007). Glial cells may play important roles
through cell-cell interactions. For example, decreased glutamate uptake in glial cells by GLT-1, the
Na‘dependent glial transporter of glutamate, contributes to increased neuronal vulnerability and
neuronal excitotoxicity in neurons.

1.7.5 Mitochondrial-based defects, energy and trafficking

Many studies have indicated that mitochondrial dysfunction may contribute to neurodegenerative
diseases, including HD. Mitochondria are the ‘powerhouses’ of the cell, generating adenosine-5'-
triphosphate (ATP) and maintaining cellular homeostasis. Neurons have intense energy demands
that are met by mitochondria: ATP is essential in neurons to fuel ionic pumps and ATP-dependent
enzymes (Johri et al., 2011). Mitochondria also buffer intracellular calcium levels and sequester
apoptotic factors, playing a vital role in neuronal function and survival. Dysfunction of
mitochondria can lead to metabolic insufficiency, oxidative damage, excitotoxicity, and
neurodegeneration (Hollenbeck & Saxton, 2005).

There is extensive evidence for bioenergetic deficits and mitochondrial dysfunction in HD: such as
a pronounced weight loss despite sustained caloric intake; nuclear magnetic resonance
spectroscopy showing increased lactate in the cerebral cortex and basal ganglia; decreased
activities of oxidative phosphorylation (OXPHOS) complexes Il and Ill, and reduced aconitase
activity in the basal ganglia; abnormal mitochondrial membrane depolarization in patient
lymphoblasts; abnormal ultrastructure of mitochondria in cortical biopsies obtained from patients
with both juvenile and adult-onset HD; pathologic grade dependent reductions in numbers of
mitochondria in HD postmortem brain tissue; and in striatal cells from mutant HTT knock-in mice:
both mitochondrial respiration and ATP production are significantly impaired (Johri & Beal, 2012).

HD patient post mortem brain slices and mouse models demonstrate decreased levels of cAMP
and ATP/ADP ratios, indicating defective mitochondrial energy metabolism (Gines et al., 2003).
Positron emission tomography (PET) imaging in the striatum of patients during presymptomatic or
early stages of HD revealed increased oxygen over glucose utilization, suggesting early defects in
glycolysis (Powers et al., 2007). The R6/2 mouse model shows increased oxygen consumption and
increased uncoupling protein-2 mRNA levels in the brown adipose tissue, which suggests
inefficient coupling of the electron transport and ATP synthesis (van der Burg et al., 2008).
Similarly, HD patients often demonstrate severe chorea-independent weight loss (Djoussé et al.,
2002). Defects in the mitochondrial respiratory chain complex Il and Ill have been observed
specifically in the caudate and putamen, but not cerebellum or cortex of HD patients (Brennan et
al., 1985; Gu et al., 1996; Tabrizi et al., 1999). Together these results point to cell specific defects
associated with mitochondrial energy production in areas of the brain prone to
neurodegeneration in HD. Because many of these effects are seen pre-symptomatically, defects
may represent early events in pathogenesis which could provide useful targets for therapeutics.
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Mitochondria must be positioned properly to serve the needs of the cell. In neurons, mitochondria
are delivered to and remain in areas of the axon where metabolic demand is high, such as
synapses, active growth cones and branches, nodes of Ranvier, distal initial segments, myelination
boundaries and regions of demyelination or axonal protein synthesis (Hollenbeck & Saxton, 2005).
Long-distance fast axonal transport of mitochondria requires MTs. Mitochondrial movement
implicate motor proteins of the kinesin superfamily in anterograde organelle transport and those
of the dynein family in retrograde transport (Hollenbeck, 1996). Mitochondrial transport defects
have been demonstrated in several models of HD. Results suggest aggregation-independent
defects owing to a role for wild- type HTT in mediating fast axonal transport of mitochondria (Li et
al., 2010; Trushina et al., 2004) as well as aggregation-dependent defects resulting from large HTT
aggregates blocking axonal transport in neuritic processes (Lee et al., 2004).

1.7.6 Intracellular transport alteration

Many studies have highlighted a potential role for defective axonal transport in neurodegenerative
diseases. Neurons rely on fast axonal transport (FAT) to transport vesicles, organelles, nucleic
acids, and signalling molecules between the cell body and the synapse via microtubule tracks
(Schliwa & Woehlke, 2003). HTT is found predominantly in the cytoplasm of neurons and is
enriched in compartments containing vesicle-associated proteins (Velier et al.,, 1998).
Accumulating data on roles for HTT in endocytosis, endosomal motility and axonal transport have
led to an emerging model for HTT as an integrator of transport along the cellular cytoskeleton
(Caviston & Holzbaur, 2009)(see also chapter 1.6.6 of this manuscript).

Mutant HTT expression has been shown to alter axonal transport of mitochondria (Lee et al., 2004,
Sinadinos et al., 2009), synaptic vesicles (Lee et al., 2004), neurotrophic factors such as BDNF
(Gauthier et al., 2004), and other organelles (Chang et al., 2006).

The alteration of axonal transport observed in HD is linked, at least in part, to a defect in HTT
function in transport. This was shown in particular for the vesicular transport of BDNF (Charrin et
al., 2005). BDNF is an important factor in HD. It is produced in the cortex and transported to the
striatum, the major site of degeneration in HD, where it supports neuronal differentiation and
survival. Normal full-length HTT stimulates BDNF transport. The mutant form has lost this ability,
leading to reduced BDNF support and thus to increasing susceptibility of striatal neurons to death.
This phenotype is mediated by HAP1, which interacts with huntingtin and with the p150°“¢
subunit of dynactin. HTT normally interacts with plSOG’“ed via HAP1 and stimulates BDNF transport.
In contrast, when HTT contains an abnormal polyQ expansion, it interacts more strongly with HAP1
and p15OG’“ed, leading to the detachment of the molecular motors from the microtubules and thus
to less efficient transport of BDNF vesicles (Charrin et al.,, 2005; Gauthier et al., 2004).
Phosphorylating mutant HTT at S421 completely restores its ability to transport BDNF-containing
vesicles. Mutant HTT phosphorylation leads to a restoration of the interaction properties between
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HTT and the molecular motors and a recovery of HTT and p15 capacities to interact with MTs
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(zala et al., 2008). Gene replacement experiments, leading to a complete silencing of endogenous
HTT and exogenous expression of a full-length form of wild-type or mutant HTT (pARIS-HTT), were
used to assess vesicular transport in cellular models (Pardo et al., 2010). In this context, mutant
HTT failed to correctly reassembly the Golgi apparatus after MT depolymerisation and to stimulate
the dynamic of BDNF containing vesicles. These results support the notion of HTT as a scaffold
protein linking vesicles and MTs and promoting the association and regulation of components of
the molecular motor machinery, including HAP1 and the motors dynein or kinesin.

N-terminal HTT fragments and their aggregates accumulate in axonal processes and terminals (Li,
et al., 2000) and cause axonal transport defects (Gunawardena et al., 2003; Lee et al.,, 2004,
Szebenyi et al., 2003; Trushina et al., 2004), which subsequently induce neuronal death. Alteration
in transport could then be due to a physical blockage of vesicles but could also involve the titration

Glued

by mutant huntingtin aggregates of motor proteins (particularly p150 and kinesin heavy chain)

from other cargoes and pathways.

1.7.7 Synaptic dysfunction

A specialized function of neurons involves transmission and reception of signals across the
synaptic cleft. Evidence of both pre- and postsynaptic dysfunction is observed in HD, and could
underlie cognitive and motor symptoms of the disease.

After synaptic vesicle fusion to the plasma membrane and neurotransmitter release, endocytosis is
necessary to recycle vesicle membranes and may also capture retrograde signals from the
postsynaptic cell. Neurotransmitter release may be affected by abnormal associations between
mutant HTT with binding partners involved in endocytosis, binding more strongly to HAP1,
PACSIN1, endophilin B1b, and SH3G13, and more weakly to HIP1 and HIP14 (Smith et al., 2005).
Decreased synaptic vesicle density and neurotransmitter release are seen in a transgenic HD
mouse model corresponding to a diminution in the association of HAP1 with vesicles (H. Li et al.,
2003). This decreased synaptic vesicle density was also reported to result from high levels of
mutant HTT in presynaptic terminals (Difiglia et al., 1995).

Postsynaptic defects in HD may arise from impaired interaction between mutant HTT and the
postsynaptic density protein PSD-95, a protein that plays a key role in regulation of synaptic
plasticity and synaptogenesis (Che et al., 2000). Mutation of HTT decreases its interaction with
PSD-95, leading to NMDA receptor oversensitivity and excitotoxic cell death (Sun et al., 2001).
Other receptors are also affected by expression of mutant HTT. Metabotropic glutamate receptors
or mGIluR2 and 3 receptors and dopamine receptors are downregulated, and alpha-amino-3-
hydroxy-5-methyl-4-proprionate (AMPA), kainate, and dopamine D1 and D2 receptors all exhibit
decreased ligand binding in R6/2 mice (Cha et al., 1998). The mGLuR receptor interacts with
optineurin. Mutant HTT expression leads to an increase in optineurin binding to mGLUR and
increased antagonism of mMGLUR signalling (Anborgh et al., 2005).
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Electrophysiological evidence for synaptic pathology in HD include long-term potentiation (LTP)
defects in hippocampal slices from R6/2 HD mice (Murphy et al., 2000), YAC HD mice (Hodgson et
al., 1999) and knock-in mice (Usdin et al., 1999). LTD defects were also reported in R6/1 HD mice
(Milnerwood et al., 2006). Finally, striatal neurons from R6/2 mice exhibit more depolarized
resting potentials, which may indicate removal of the voltage-dependent magnesium block of
NMDA channels and vulnerability to excitotoxic neurodegeneration (Raymond et al., 2011).

1.8 Post-translational modification

Studying the post-translational modifications (PTM) of HTT has proven to be a potent tool to
analyze HTT functions in health and HD.

Phosphorylations: There are various known phosphorylation sites in HTT (Figure 5).

IkappaB kinase (IKK) complex, previously shown to directly interact with HTT, phosphorylates HTT
S13 and may activate phosphorylation of S16. Phosphorylation of these residues promotes
modification of the adjacent lysine residues and targets wild-type HTT clearance by proteasomal
and the lysosomal pathways. The presence of a polyQ expansion reduces the efficiency of this
phosphorylation and mutant HTT clearance (Thompson et al., 2009). Furthermore, stress-induced
phosphorylation of residues S13 and S16 can modulate nuclear entry, subnuclear localization and
toxicity (Atwal et al., 2011). Phosphorylation of S16 reduces the interaction of HTT with the
nuclear pore protein TPR, thus reducing its nuclear entry (Havel et al., 2011).

HTT is phosphorylated at S421 upon IGF1/Akt pathway activation (Humbert et al., 2002). Akt is
able to counteract the proapoptotic properties of mutant HTT in vitro and in vivo (Humbert et al.,
2002; Pardo et al., 2006; Warby et al., 2005). S421 phosporylation plays a key role in vesicular
transport: when phosphorylated at S421, mutant HTT is as efficient as wild-type HTT in vesicular
transport, thus leading to increased neuronal survival (Zala et al., 2008). In addition,
phosphorylation of wild-type HTT is also important in physiological conditions as it acts as a
molecular switch dictating the anterograde versus retrograde directionality of vesicles (Emilie
Colin et al., 2008). Further studies have shown that phosphorylation of S421 results in reduced
nuclear accumulation of caspase-6 cleavage fragments by reducing the activity of caspase-6 (Havel
et al,, 2011; Warby et al., 2009).

HTT is phosphorylated at S434 by cyclin-dependent kinase 5 (Cdk5), which reduces mutant HTT
cleavage, aggregation, and cell death (Luo et al., 2005). Moreover, increase in the activity of Cdk5
in response to DNA damage results in the phosphorylation of other HTT serines, serines 1181 and
1201. These phosphorylations are crucial to regulate neuronal cell death through the p53 pathway
(Anne et al., 2007). Mice models for the absence or constitutive phosphorylation at these sites
show that absence of phosphorylation of wild-type HTT at S$1181/1201 reduces
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anxiety/depression-like behaviors through increased hippocampal neurogenesis (Ben M’Barek et
al., manuscript in preparation).

More systematically, the phosphorylation sites of full-length HTT were mapped by mass
spectrometry (Schilling et al., 2006). Additional phosphorylation sites were identified at positions
533-5-6, 2076, 2653 and 2657 (Schilling et al., 2006). More work is needed to explore their
regulatory effects.

SUMOylation, ubiquitination, acetylation and palmitoylation:

N-terminal HTT fragments of HTT can also be modified by small ubiquitin-like modifier (SUMO)-1
or ubiquitin at lysine residues. SUMOylation of HTT stabilizes N-terminal fragments, reduces
aggregation, increases nuclear localization, and increases neurodegeneration in a D. melanogaster
model of HD (Steffan et al., 2004). Ubiquitination of lysines K6, K9, and K15 targets HTT to the
proteasome for degradation. However, misfolded forms of HTT are not effectively degraded by
this pathway, leading to global defects in the ubiquitination-proteasome pathway that can result
in increased levels of pro-apoptotic proteins (Jana et al., 2001).

Acetylation of mutant HTT at lysine 444 has been shown to increase its trafficking to
autophagosomes, decreasing overall levels and improving cell viability (Jeong et al., 2009). HTT is
also palmitoylated at cysteine-214 by its copartner, HTT- interacting protein 14 (HIP14, a palmitoyl
transferase) (Yanai et al., 2006). The palmitoylation of HTT is consistent with its proposed role in
regulating vesicular trafficking, since palmitoylated proteins are often involved in the dynamic
assembly of the components that control vesicle trafficking and synaptic vesicle function.
Expansion of the polyQ tract in HTT results in decreased palmitoylation, which contributes to the
formation of inclusion bodies and enhanced neuronal toxicity.)

1.9 Mechanisms of cell death

Mutant HTT cell death was reported to be linked to two major pathways: autophagy and apoptosis
(detailed below). Signs of necrosis were also observed in HD. In particular, calpain activation was
reported in HD cellular and mouse models, being its activation a feature of necrosis. Moreover,
calpain cleaves HTT in smaller fragments that are toxic (Gafni et al., 2004; Gafni & Ellerby, 2002).
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1.9.1 Autophagy

Autophagy is a dynamic cellular pathway involved in the turnover of proteins, protein complexes,
and organelles through lysosomal degradation. The integrity of postmitotic neurons is heavily
dependent on high basal autophagy compared to non-neuronal cells as misfolded proteins and
damaged organelles cannot be diluted through cell division. Moreover, neurons contain
specialized structures for intercellular communication, such as axons, dendrites and synapses,
which require the reciprocal transport of proteins, organelles and autophagosomes over
significant distances from the soma. Defects in autophagy affect the intercellular communication
and subsequently, contribute to neurodegeneration (Son et al., 2012).

Accumulation of mutant HTT activates the endosomal-lysosomal system and contributes to an
autophagic process of cell death (Kegel et al.,, 2000). Mammalian target of rapamycin (mTOR)
sequestration in mutant HTT aggregates has been observed in cell and mice models, as well as in
human HD brains (Ravikumar et al., 2004). The sequestration of mTOR impairs its kinase activity
and induces autophagy. This autophagy protects against polyglutamine toxicity, as rapamycin
attenuates HTT accumulation and cell death in cell models of HD and inhibition of autophagy has
the opposite effects. Using cellular and mouse models of HD and cells from HD patients, a primary
defect in the ability of autophagic vacuoles to recognize cytosolic cargo, was identified in HD cells
(Martinez-Vicente et al., 2010). Autophagic vacuoles form at normal rates and are adequately
eliminated by lysosomes, however, they failed to efficiently trap cytosolic cargo in their lumen.

Another mechanism underlying the intracellular accumulation of mutant HTT involves beclin 1: an
essential protein for the formation of autophagosomes and cytosol- to-vacuole vesicles. Mutant
HTT recruits beclin 1 and impairs the beclin 1-mediated long lived protein turnover (Shibata et al.,
2006). Thus, the sequestration of beclin 1 in the neuronal population expressing mutant HTT might
further reduce beclin 1 function and autophagic degradation of mutant HTT. Wild-type HTT
protein has been proposed to act as an endoplasmic reticulum (ER) sentinel, regulating autophagy
in response to ER stress. As a result, cells expressing mutant HTT may have perturbed ER function
and have increased autophagic vesicles (Atwal & Truant, 2008).

The initial increase in autophagic vacuoles and autophagy observed in HD models may represent
an attempt to remove mutant HTT protein and over time the autophagy machinery becomes
dysfunctional, leading to neurodegeneration. Thus, therapeutic induction and recovery of
autophagy may enhance the clearance of mutant HTT protein and reduce its toxic effect in HD
neurons (Son et al., 2012).
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1.9.2 Apoptosis

Mutant HTT also leads to cell death/degeneration through activation of caspases, which initiate
and execute the apopototic program of cell death. Signs of cell death, such as DNA fragmentation,
have been observed in HD brain (Dragunow et al., 1995; Portera-Cailliau et al., 1995; Thomas et
al., 1995), with the degree of fragmentation positively correlated with polyQ expansion length
(Butterworth et al., 1998). Activation of caspases is observed in HD striatum (Ona et al., 1999;
Sanchez et al., 1999) and in mutant HTT expressing lymphoblasts (Maglione et al., 2006). An
increase in caspase-1 activity is also observed in presymptomatic and early symptomatic
transgenic HD mice, while inhibition of caspase-1 activity slows disease pathology (Ona et al.,
1999). This indicates that caspase-mediated cell death may play a key role in initiation and
progression of HD pathogenesis.

Normal and mutant HTT are both cleaved into N-terminal fragments by caspase-1 and caspase-3
(Goldberg et al., 1996; Wellington et al., 2002; Wellington et al., 2000). In a positive feedback loop,
increased nuclear entry of N-terminal mutant fragments then upregulates caspase-1 expression,
leading to more HTT cleavage. Caspase-1 may then activate caspase-3, which can execute the
apoptotic program (S-H Li et al., 2000). Additionally, the initiator caspases-8 and -10 are auto-
activated through sequestration into mutant HTT aggregates (Sanchez et al., 1999; U et al., 2001),
while cytochrome c release from dysfunctional mitochondria found in HD activates caspase-9, also
triggering cascades leading to apoptosis (Kiechle et al., 2002).

Proteolysis of HTT at the caspase-6 cleavage site is a crucial and rate-limiting step in the
pathogenesis of HD. Activated caspase-6 is present in the brains of pre-symptomatic and early-
grade human HD patients, as well as murine HD models. Intriguingly, activated caspase-6 levels
correlate with CAG size in human HD brains and inversely correlate with age of disease onset
(Graham et al., 2010). There is growing evidence in favor of the cleavage at the 586 amino acid
caspase-6 site in mutant HTT being involved in an amplification loop for caspase-6 activation in HD
(Graham et al., 2011). Caspase-6 clives and activates caspase-3, and down-stream activation of
caspase-3 results in cell death (Graham et al., 2010; Hermel et al., 2004).

Other mechanisms are involved. For example, overexpression of mutant HTT in a rat hippocampal
neuronal cell line induced c-Jun N-terminal kinases (JNK) activation and apoptotic cell death (Liu,
1998). It has also been suggested that the presence of an abnormal polyQ expansion in HTT affects
its interaction with pro-apoptotic factors. For instance, mutant HTT promotes translocation of the
pro-apoptotic factors Smac/Diablo and HtrA into the cytosol with subsequent reduction in levels of
cytosolic Inhibitor of Apoptosis Protein-1 (IAP1) and X-linked inhibitor apoptosis (XIAP) (Goffredo
et al., 2005). Levels of IAP1 and XIAP are decreased in HD brain tissues (Goffredo et al., 2005).
Finally, mutant HTT binds more efficiently to p53 than wild-type HTT (Bae et al., 2005). This
enhanced binding leads to the increased level of nuclear p53 thus promoting its transcriptional
activity in neuronal cultures and in HD mice. Indeed, protein levels of the p53 targets, Bax and
Puma, are significantly elevated by mutant huntingtin.
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2 Mitosis

2.1 Overview

One key feature of living cells is their ability to proliferate. With the goal of creating two
genetically identical daughter cells, cell division culminates in the equal segregation of sister
chromatids. Mitosis represents the last stage in the life of an individual cell.

2.2 Cell cycle

The eucaryotic cell cycle is traditionally divided into four sequential phases: G1, S, G2, and M
(Figure 14). G1, S, and G2 together are called interphase. In a typical human cell proliferating in
culture, interphase might occupy 23 hours of a 24 hour cycle, with 1 hour for M phase. DNA
duplication occurs during S phase (S for synthesis). After S phase, chromosome segregation and
cell division occur in M phase (M for mitosis). M phase involves a series of dramatic events that
begin with nuclear division. Most cells require much more time to grow and double their mass of
proteins and organelles than they require to replicate their DNA and divide. To allow more time
for growth, extra G (G for gap) phases are inserted in most cell cycles: a G1 phase between M
phase and S phase and a G2 phase between S phase and M. The two gap phases also provide time
for the cell to monitor the internal and external environment to ensure that conditions are
suitable and preparations are complete before the cell commits itself to the major upheavals of S
and M phases. The G1 phase is especially important in this respect. Its length can vary greatly
depending on external conditions and extracellular signals from other cells. If extracellular
conditions are unfavourable, for example, cells delay progress through G1 and may even enter a
specialized resting state known as GO (G zero). If extracellular conditions are favourable and
signals to grow and divide are present, cells in early G1 or GO progress through a commitment
point near the end of G1 known as Start (in yeasts) or the restriction point (in mammalian cells).
After passing this point, cells are committed to DNA replication, even if the extracellular signals
that stimulate cell growth and division are removed (Alberts et al., 2002).
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Figure 14. The cell cycle. The cell grows continuously in interphase, which consists of three phases: DNA replication is confined to S
phase; G1 is the gap between M phase and S phase, while G2 is the gap between S phase and M phase. In M phase, the nucleus and
then the cytoplasm divide. (Adapted from Alberts et al., 2002).

There are two classes of cell cycle regulatory molecules: cyclins and CDKs. CDKs have been
proposed as cell cycle engines, driving cells through the cell cycle. Cyclins form the regulatory
subunits and CDKs the catalytic subunits of an activated heterodimer. When activated by a bound
cyclin, CDKs phosphorylates target proteins to orchestrate coordinated entry into the next phase
of the cell cycle. Different cyclin-CDK combinations determine the downstream proteins targeted.
CDKs are constitutively expressed in cells whereas cyclins are synthesised at specific stages of the
cell cycle, in response to various molecular signals (Nurse, 2000).

Mitosis is divided in different phases (Figure 15). At prophase, replicated chromosomes condense
and the mitotic spindle consisting of MTs assembles between the two centrosomes that have
separated and move to opposite directions. After nuclear envelope breakdown (NEB)
chromosomes attach to the spindle MTs via their kinetochores and undergo active movement
towards an equilibrium position between the two spindle poles, thereby aligning at the equator of
the spindle (prometaphase). Spindle poles are interacting with the chromosomes through spindle
MTs, but also with the actin cortex of the mitotic cell through astral MTs. A complete equilibrium
is reached in metaphase, with kinetochores of sister chromatids attached to MTs from opposite
poles. The sister chromatids finally separate and are slowly pulled towards the poles (anaphase),
where a new nuclear envelope reassembles around them during telophase. Eventually, the mother
cell constricts due to increased acto-myosin contractility at the cell equator giving rise to two
daughter cells.
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1. Prophase 2. Prometaphase 3. Metaphase

5. Telophase 6. Cytokinesis

Figure 15. Mitosis and cytokinesis. 1) Prophase. Duplicated centrosomes migrate around the nucleus. 2) Prometaphase. The nuclear
envelope breaks down allowing MTs to move chromosomes to the equator. C) Metaphase. Sister chromatids face opposite poles at the
equator. 4) Anaphase. Chromatids are moved to opposite poles. Pole-pole spacing increases. 5) Telophase. Nuclear envelopes
reassemble around decondensing segregated sisters. 6) Cytokinesis. A barrier between the daughter cells develops and constricts the
spindle mid-zone into a structure called midbody. The two daughter cells are separated. (Adapted from Alberts et al., 2002).

2.3 The mitotic spindle

During mitosis, the mitotic spindle ensures the separation of the genetic material and positions
the cytokinesis furrow, therefore coordinating karyokinesis and cytokinesis. The mitotic spindle is
an elongated dynamic structure consisting of three classes of MTs (Figure 16) nucleated from
spindle poles: kinetochore-fibers (K-fibers) attach to the chromosomes to separate sister
chromatides at anaphase; interpolar MTs form an antiparallel array between the spindle poles and
are implicated in positioning the furrow at cytokinesis; and astral MTs dynamically anchor the
mitotic spindle to the cortex and also participate in furrow positioning.
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Figure 16. The three subclasses of spindle MTs. (A) Schematic metaphase spindle, showing its three different MT subclasses:
interpolar MTs (orange), K-fibers (red) and astral MTs (green). The ‘+’ indicates the plus-ends of the MTs. (B—D) Representation of the
three kinds of spindle MTs and their dynamic properties. Astral MTs have dynamic properties that are similar to those of the interpolar
MTs. K-fibers are less dynamic and undergo a constant polewards tubulin flux (arrows). Ty, is average half-life. (Adapted from Meunier
& Vernos, 2012).

Spindle MTs dynamically grow and shrink through the addition and removal of tubulin dimers, a
property referred to as ‘dynamic instability’. MT dynamic instability allows probing for microtubule
anchor sites, and can be coupled to spindle positioning force generation. Spindle positioning
typically involves pulling-forces exerted on astral microtubules, which can be generated by plus-
end depolymerization of astral MTs that remain attached to the cell cortex, cortically-attached MT
minus-end directed motor activity or translocation of MT plus-ends by attachment to actin-based
motors. Regulation of MT dynamic instability is critical for correct spindle positioning (Siller & Doe,

2009).

2.4 Positioning of the mitotic spindle

2.4.1 Spindle orientation in development and tissue organization

Cell division orientation during animal development serves to correctly organize shape tissues and
create cellular diversity. The underlying cellular mechanism is oriented cell division (OCD). OCD
serves two purposes: first, to elongate cell sheets and shape tissues and, second, to generate
cellular diversity. In order to achieve these two mutually non-exclusive functions, the orientation
of the mitotic spindle has to be controlled. Depending on the developmental context, extrinsic
signals or intrinsic cues control the correct orientation of the mitotic spindle. Cell geometry is
another determinant of spindle orientation (Gillies & Cabernard, 2011).
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Organ shape depends on the coordination between cell proliferation and the spatial arrangement
of cells during development. At the same time, cell division is coordinated with cell growth to
determine the number of cells and the size of multicellular organisms (Goranov & Amon, 2010).
The processes by which the cells are systematically distributed can be accomplished either by
random division of cells that later migrate locally to new positions (cell allocation) or through
polarized cell division (Baena-Lépez et al., 2005).

Most divisions in an organism are symmetric, and many have a stereotypical orientation. Cell
division orientation is the main ‘driving force’ for tissue elongation. OCD may contribute to tissue
elongation by two distinct mechanisms: (1) cell growth is isotropic and tissue elongation occurs by
positioning daughter cells along the axis of elongation; (2) and cell growth can be anisotropic
either due to an increase of cortical tension perpendicular to the tissue elongation axis or to a
global anisotropic constraint along the tissue elongation axis. The two models are not mutually
exclusive: OCD itself might generate a local elongation of neighboring cells, and this elongation
might in return trigger an anisotropic cell growth (Morin & Bellaiche, 2011).

Cell division orientation can be switched during development to contribute to tissue
morphogenesis. The switch from symmetric, proliferative divisions towards asymmetric,
diversifying divisions occurs in several different cell types. A clear example is mammalian skin
epidermis (Figure 17). In mice, it has been shown that the stratification of the epidermis consists
of two phases: a proliferative, amplification phase in which symmetric divisions increase the
surface area of the epithelium, followed by an asymmetric division phase generating distinct
molecular identities (Lechler & Fuchs, 2005; Williams et al., 2011). Thus, stratification occurs
through a change in the division axis of dividing cells. Further studies revealed that epidermal cells
are not committed to one type of division but can change between symmetric and asymmetric
divisions (Poulson & Lechler, 2010).

E12

o @ —

A ol el e ®|®

Figure 17. Switching the division axis to generate cellular diversity. Mouse epidermis. At embryonic day 12, basal cells divide
preferentially within the plane of the epithelium (grey arrows). From embryonic day 15.5 onwards, perpendicular asymmetric cell
divisions occur, producing differentiating siblings (yellow). Intrinsic cues (green) are diffusely localized (light green throughout the cell)
in symmetrically dividing basal cells but becomes asymmetrically localized (green crescent) from embryonic day 15.5 onwards, inducing
asymmetric cell division. (Adapted from Gillies & Cabernard, 2011).

OCD axis is strongly associated with tissue elongation, but, other mechanisms like anisotropic cell
growth, cell-cell rearrangements and apoptosis have been demonstrated to shape tissues as well
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(Rauzi et al., 2008; Su & O’Farrell, 1998; Toyama et al., 2008). Future studies will clarify the specific
contribution of each mechanism in different tissues and organisms.

2.4.2 Spindle orientation in cell fate specification

The ability of dividing cells to produce daughter cells with different fates is an important
developmental mechanism conserved from bacteria to fungi, plants and metazoan animals.
Spindle orientation can influence the generation of symmetric or asymmetric cell fates depending
on cell-intrinsic polarity cues and cell-extrinsic cues.

Two mechanisms are possible for asymmetric outcomes of the daughter cells: asymmetric
distribution of intrinsic fate determinants during mitosis (asymmetric cell division or ACD) or
placement of equal daughter cells (symmetric cell division or SCD) into different
microenvironments providing extrinsic differentiation signals. Those extrinsic signals can be as
simple as changes in substrate stiffness (Engler et al., 2006).

ACD is often proposed to be composed of three steps: (1) a cell polarity axis is specified; (2) cell
polarization is translated into the asymmetric localization of cell fate determinants; and (3) the
mitotic spindle aligns with the cell polarity axis, thereby leading to the segregation of fate
determinants in only one daughter cell.

ACD has mostly been studied in invertebrate systems such as D. melanogaster neuroblasts (NBs)
(Figure 18) and C. elegans zygote (Figure 19). D. melanogaster NB model exemplify how intrinsic
polarity cues can align the mitotic spindle, whereas C. elegans zygote illustrates the down-stream
effects of an extrinsic signal (fertilization) in asymmetric localization of determinants.

D. melanogaster NBs are cells that delaminate from the ventral neuroectoderm during
embryogenesis. In embryos, NBs undergo up to 20 rounds of asymmetric cell division to generate
the neurons of the larval nervous system, and they become quiescent at the end of
embryogenesis. During the larval stages of development, NBs re-enter the cell cycle and continue
to divide asymmetrically to generate the neurons of the adult fly brain (Ito & Hotta, 1992). Type |
NBs divide into a large cell that remains a NB and a smaller ganglion mother cell (GMC); the GMC
subsequently divides into two terminally differentiated neurons (Figure 18a). During mitosis, NBs
orientate their mitotic spindle along the apical-basal axis, defined by polarity complexes
asymmetrically distributed along the cell (Figure 18b). Apical cortical complex is formed from late
interphase/early prophase onward, and basal determinants are localized slightly after. These
complexes provide astral MT anchoring activity and mitotic spindle pulling forces that will
orientate the mitotic spindle. As a consequence, daughter cells inherit different fate determinants
to self-renew or differentiate (Knoblich, 2010; Morin & Bellaiche, 2011)
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Figure 18. ACS in D. melanogaster NBs. a) Type | NBs divide asymmetrically, resulting in an apical self-renewed NB and a basal GMC.
The GMC divides terminally into two neurons. b) Schematic NB showing the apical (orange, yellow, pink) and basal (light blue, green)
polarity complexes. Mitotic spindle orients along the apical-basal axis. Cell fate determinants are asymmetrically inherited by daughter
cells. (Adapted from Knoblich, 2010).

The fertilized C. elegans one-cell embryo is elongated along the anterior-posterior axis (Figure 19).
Upon fertilization, the movement initiated by the sperm centrosome starts when the entire
cortical actin cytoskeleton moves towards the anterior pole. Sperm centrosome and cortex
interaction allow cortical cues accumulation at the posterior cortex, while proteins that are initially
uniformly distributed, concentrate at the anterior side after fertilization. These cortical cues are
translated in mechanical forces pulling on astral MTs. The two pro-nuclei and their associated
centrosomes form the nucleus centrosome complex in the posterior half of the zygote. The
centrosomes align perpendicular to the anterior-posterior axis. Before the first mitosis, the
nucleus centrosome complex moves to the cell centre in a posterior to anterior direction and
rotates 90° to align the centrosome pair along the anterior-posterior axis (Siller & Doe, 2009). The
first cell division generates a large anterior blastomere (AB) and a smaller posterior one (P1) which

are both endowed with distinct cell fate determinants (Knoblich, 2010; Morin & Bellaiche, 2011).
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Figure 19. Spindle orientation and positioning in the C. elegans zygote. Polarization starts after fertilization. Sperm centrosome
creates movements of actomyosin and anterior-posterior asymmetric localisation of cortical cues. Mitotic spindle aligns along the
anterior-posterior axis. The first cell division generates an anterior AB cell and a posterior P1 cell. (Adapted from Knoblich, 2010).
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2.5 Key players in mitotic spindle orientation

2.5.1 Cell shape

120 years ago, applying mechanical forces on sea urchin embryos, which trigger a cell shape
deformation, revealed that cells tend to divide along their long axis: the so-called ‘Hertwig rule’
(Hertwig, 1893). This pushed forward the notion that mitotic spindle orientation originates from a
mechanical regulation, whereby the cells are able to sense their shape or the applied stress (Figure
20). The divisions of, for example, the yeast S. pombe, mouse oocytes and of mammalian cells
cultured in vitro seems to follow this rule (Moseley & Nurse, 2010; Piel & Tran, 2009; Théry &
Bornens, 2006). Many animal cells, especially cultured mammalian cells, drastically change
geometry during mitosis and round up, whereas others, such as blastomeres of early developing

animals, maintain their stereotypical shape throughout interphase and mitosis (Minc & Piel, 2012).

However several exceptions to the Hertwig rule have been found for cells in tissues, where the
polarized cell cortex overrides the influence of the cell shape: In dorsal tissue elongation during
zebrafish gastrulation cell division axis is dominated by planar cell polarity (PCP) signalling and
does not follow the Hertwig rule (Gong et al., 2004). In the mouse epidermis mitotic spindles align
either along the cell's longest axis or perpendicular to it, both under the control of cell—cell
junctions (Lechler & Fuchs, 2005).

Figure 20. Cell shape controls mitotic orientation. (A) Drawing by O. Hertwig of the confined frog embryo after its first division
illustrating Hertwig’s rule (Hertwig, 1893). (B) Without apparent interactions with the cell boundary, we might expect the small mitotic
spindle in a large cell to position randomly, but it orients according to Hertwig's rule. (C) Fibronectin micropatterns in various
geometries results in well-defined mitotic spindle orientations (D) determined by actin-rich retraction fibers (green). DNA (blue),
positions of spindle poles (red arrowheads). (E) Computational modeling predicts the expected orientation based on adhesion pattern
shape (Théry et al., 2007). (Adapted from Shah, 2010).
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2.5.2 Cell-cell junctions (cadherins) and focal adhesions (integrins)

Cadherins: In multicellular organisms, cell-cell contacts that are mediated by classic cadherins are
essential in many fundamental processes, including morphogenesis, maintenance of tissue
integrity, wound healing and cell polarity (Kobielak & Fuchs, 2004). These cadherins (for example
E-cadherin) possess an extracellular segment that consists of five distinct Ca®* binding domains, a
transmembrane domain and a conserved cytoplasmic domain, which binds [-catenin. The
extracellular part interacts with cadherins on the surface of neigbouring cells to form adherens
junctions (Figure 21). The cytoplasmic tail binds indirectly to the actin cytoskeleton. Thus classic
cadherins are good candidates to transmit extracellular information to the cytoskeleton inside the
cell. In addition to their function as connectors, adherence junctions actively regulate and organize
the actin cytoarchitecture (Kobielak & Fuchs, 2004).
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Figure 21. Localization and molecular structure of adherence junctions. a) Electron micrograph and corresponding schematic depict
the main types of intercellular junction in epithelial cells: tight junctions, adherens junctions and desmosomes. b) Molecular structure
of an adherens junction. (Adapted from Kobielak and Fuchs 2004).

In some model systems such as D. melanogaster germline stem cells (GSCs), mitotic spindles are
oriented toward the adherens junction formed between stem cells and the niche component
(Inaba et al., 2010; Yamashita, et al., 2003). This has led to speculation that the adherens junction
might provide a polarity cue for spindle orientation. Such orientation leads to asymmetric stem
cell division, with one daughter of the stem cell division staying within the niche and the other
being displaced away from the niche. In non-stem cell systems, abundant evidence shows that
adherens junction components, including E-cadherin and B-catenin, are responsible for spindle
orientation. For example, in epithelial cells of D. melanogaster embryos, spindle poles are closely
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associated with the adherens junctions present between neighboring cells, leading to orientation
of spindles parallel to the epithelial surface and ensuring symmetric cell division (Lu et al., 2001).
In D. melanogaster NBs, spindle orientation correlates with contact with epithelial cells, implying
that the adherens junction is involved in spindle orientation. In addition, E-cadherin is
concentrated at the interface between the NB and GMCs (Siegrist & Doe, 2006). More recently,
the E-cadherin/adherens junction was shown to be sufficient to polarize mammalian cells in
culture (Desai et al., 2009; Dupin et al., 2009), though centrosomes were oriented away from the
adherens junctions in these cases.

Integrins: Focal adhesions are large, dynamic protein complexes through which the actin
cytoskeleton of a cell connects to the extracellular matrix (ECM) (Figure 22) (Petit & Thiery, 2000).
A complex interplay between the actin cytoskeleton and cell adhesion sites (Figure 23) leads to the
generation of membrane protrusions and traction forces. External stimuli that control cell
migration are transduced into intracellular biochemical signals through the interactions of
transmembrane integrins that bind to ECM proteins, growth factors that bind to their related cell-
surface receptors, or mechanical stimuli (such as shear stress that promote deformation of the
actin cytoskeleton) (Mitra et al., 2005).

Actin stress fibre

Focal contact
DFDLE\H‘E

Plasma

membrane
m i
hoc] W

| Extracellular matrix

Figure 22. Molecular architecture of focal contacts. The extracellular matrix, integrins (a- and B-transmembrane heterodimeric
proteins) and the cell cytoskeleton interact at sites called focal contacts. The composition of a focal contact is constantly varying
depending on external cues and cellular responses. (Adapted from Mitra et al. 2005).

The connection to ECM is mediated by heterodimeric a—p integrins that possess a binding domain
for ECM proteins (e.g. fibronectin, laminin, collagens, vitronectin), a transmembrane domain and a
binding domain for the focal adhesion protein talin (Figure 22). Integrin activity is conformationally

regulated by proteins that bind to its 3-tail (Geiger et al., 2009; Mitra et al., 2005).
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Focal adhesions contain over 100 different proteins, which suggests a considerable functional
diversity (Geiger et al., 2009). Indeed focal adhesion signalling (Figure 23) plays essential roles in
important biological processes including cell migration, cell proliferation and survival, cell
differentiation and gene expression (Geiger et al., 2009; Mitra et al., 2005; Petit & Thiery, 2000).

The importance of integrin/focal adhesion signaling in oriented cell division has been
demonstrated in vivo in D. melanogaster and mouse models: In D. melanogaster ovarian follicular
epithelium, spindle alignment parallel to the basement membrane is required to keep the integrity
of the monolayer. This symmetric division depends on integrins and ensures that both daughter
cells remain adhered to the basement membrane to prevent inappropriate stratification
(Fernandez-Mifian et al., 2007). Accumulating evidence suggests that adhesion molecules
participate in spindle orientation in some stem cell models, including mammalian neuronal stem
cells and skin stem cells (Lechler & Fuchs, 2005; Loulier et al., 2009; Marthiens et al., 2010; Taddei
et al., 2008), both of which require integrins for correct spindle orientation. Integrin signaling is
also essential for spindle orientation in cultured cells: In Hela cells spindles orient parallel to the
fibronectin substrate (Mitsushima et al., 2009; Toyoshima & Nishida, 2007a, 2007b). This
orientation is perturbed if cells grow on poly-lysine substrates (onto which integrins cannot bind)
or if B1 integrin functioning is inhibited by siRNA or function-blocking antibodies.
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Figure 23. Actin cytoskeleton-focal adhesion interplay. Feedback loops that interconnect the actin machinery and integrin-mediated
adhesions. Step 1: forces generated by actin polymerization affect the mechanoresponsive network (actin-linking module, the receptor
module, the associated actin-polymerizing module and the signalling module). Step 2: integrated response of the entire system affect
actin cytoskeleton. Step 3: Stimulation of the signalling module activates small G proteins. Step 4: activated G proteins affect actin
polymerization and actomyosin contractility through cytoskeleton-regulating proteins. Step 5: as a result, the force-generating
machinery is modulated. (Adapted from Geiger et al., 2009).
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2.5.3 Microtubules: overview

MTs are involved in a large number of processes, such as protein and organelle transport, cell
polarity, cell shape, cell motility and cell division. They are assemblies of a- and - tubulin
heterodimers (Figure 24). The orientation of the a- and B-tubulin heterodimers within the MT
confers an intrinsic polarity that is defined by a minus-end (where a-tubulin is exposed) and a
plus-end (where B-tubulin is exposed). Interestingly, each end has distinct dynamic properties and
the plus-end is the dominant site for the addition of tubulin subunits and MT elongation. MTs are
dynamic filaments that undergo successive cycles of growth and shrinkage, called dynamic
instability. A large number of factors are involved in mechanisms that favour MT stabilization or
destabilization. Dynamic instability allows the cell to regulate the parameters of MT dynamics and
to reorganize its MT network. This occurs, for example, during cell division, when MTs form the
mitotic spindle. As the cell commits to divide, MTs nucleated by the centrosomes become shorter
and more dynamic; this leads to the disassembly of the interphase MT network. In addition, after
nuclear envelope breakdown, the chromosomes direct de novo MT assembly and a separate
mechanism drives MT amplification. The local stabilization and organization of these centrosomal
and non- centrosomal MTs lead to the assembly of a bipolar spindle that aligns the chromosomes
on the metaphase plate and segregates them into the two daughter cells (Gatlin & Bloom, 2010;
Tanenbaum & Medema, 2010; Walczak et al., 2010; Walczak & Heald, 2008).
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Figure 24. MT dynamics. a) MTs are polarized structures composed of a- and B-tubulin heterodimer subunits assembled into linear
protofilaments. A single MT is comprised of 10-15 protofilaments that associate to form a 24 nm wide hollow cylinder.

A third tubulin isoform, y-tubulin, functions as a template for the correct assembly of MTs. Polymerization of GTP bound a-tubulin
dimers attach preferentially to the fast growing plus end. Once incorporated into the microtubular structure the GTP hydrolyses
creating a protecting GTP cap at the plus end. Loss of the GTP cap promotes microtubule depolymerisation. b) MTs undergo periods of
polymerization and depolymerization and interconvert randomly between these states. Conversion from growth to shrinkage is termed
‘catastrophe’, whereas the switch from shrinkage to growth is called ‘rescue’. (Adapted from Conde & Caceres, 2009).
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MT dynamics and function are modulated by interactions with other proteins, microtubule motor
proteins and non-motor microtubule-associated proteins (MAPs). The two major families of
microtubule motors are the kinesins and dyneins. The heterogeneous group of non-motor MAPs
comprises proteins that stabilize MTs (for example, the neuronal proteins tau, MAP1 and MAP2)
but also severing proteins, such as spastin and katanin, which destabilize the microtubule lattice
(Janke & Bulinski, 2011). Another group of intensively studied MAPs is that of the MT plus end-
tracking proteins (+TIPs): MT growth and catastrophe are regulated by proteins that specifically
attach to the plus- or minus-ends of MT. Plus-end proteins (e.g. EB1) accumulate around the MT
plus tip, thereby forming a cap structure that favours filament growth, reduces catastrophe
frequencies and recruits further proteins (Akhmanova & Steinmetz, 2010; Steinmetz &
Akhmanova, 2008). Plus-end proteins are also required to connect proteins present in the actin
cytoskeleton or at the plasma membrane to transduce polarization cues from the actin to the
microtubules network (Akhmanova & Hoogenraad, 2005; discussed in chapter 2.5.5).

In animal cells, MTs are primarily emanating from the centrosome which organizes most of the
MTs in interphase. Centrosome consists of a pair of centrioles linked together through their
proximal regions by a matrix consisting in part of large coiled-coil proteins of the pericentrin
family, which anchor other matrix components. The centrioles contain cylindrical arrays of triplet
MTs organized with nine-fold radial symmetry and the proximal region is structurally similar to the
basal bodies of cilia and flagella (Azimzadeh & Bornens, 2007). MTs are nucleated in the matrix
associated with both mother and daughter centrioles, but only the mother centriole is able to
anchor them (Piel et al., 2000). MTs are nucleated by the y-tubulin ring complex (y-TuRC). y-tubulin
is present throughout the cell cycle in the matrix, close to the proximal walls of centrioles. Its
levels increase dramatically prior to mitosis, concomitantly with the recruitment of MT-associated
proteins required for mitotic spindle formation. Following their nucleation by the y-TuRC, MTs are
either released into the cytoplasm or recaptured and anchored at the centrosome. The subdistal
appendages of the mother centriole are thought to be a major site for MT anchoring, and this
activity requires ninein. PCM1 and plSOG'“ed subunit of the dynactin complex also seem to play an
important role in collaboration with the MT-associated protein EB1 to anchor MT at the
centrosome (Azimzadeh & Bornens, 2007).

2.5.4 Microtubule post-translational modifications

Cells generate distinct MT subtypes through expression of different tubulin isotypes and through
PTM, such as detyrosination and further cleavage to A2-tubulin, acetylation, polyglutamylation
and polyglycylation (Figure 25). Recent advances draw a clearer picture of the importance of
tubulin PTMs in diverse MT functions.
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Figure 25. Tubulin PTMs. Schematic representation of the a-tubulin—B-tubulin dimer and its associated modifications. The C-terminal
tails of both tubulins are represented as amino acid sequences. Both a-tubulin and B-tubulin can be modified by polyglutamylation and
polyglycylation on different E (glutamic acid) residues within those tails. Together with detyrosination at the C-terminus and the follow-
up removal of the penultimate E residue (which generates A2-tubulin), these modifications are specific to the C-terminal tails of tubulin.

Acetylation (Ac) of Lys40 is localized at the amino-terminal domain of a-tubulin. (Adapted from Janke & Bulinski, 2011).

Studies of cultured cell lines with PTM-specific antibodies demonstrated that detyrosination,
acetylation and polyglutamylation are enriched in the mitotic spindle, but less so in astral
microtubules of the spindle (Bobinnec, Khodjakov, et al., 1998; Bobinnec, Moudjou, et al., 1998;
Gundersen & Bulinski, 1986; Piperno et al., 1987). During cytokinesis, the midbody also shows high
levels of these PTMs. These observations indicate that specific patterns of tubulin PTMs could
mediate specialized functions of MT subsets during cell division. For example, they might
participate in the stabilization of k-fibres that connect the spindle poles with the chromosomes,
thus explaining their less dynamic behaviour (Zhai et al., 1995). The importance of
polyglutamylation in cell division is consistent with the observed increase in polyglutamylase
activity at the onset of mitosis (Regnard et al., 1999).

Detyrosination and polyglutamylation may control distinct aspects of mitotic spindle or midbody
functions. The tyrosination state of a-tubulin regulates the activity of the depolymerizing motor
mitotic centromere- associated kinesin (MCAK), which is essential for proper chromosome
segregation in anaphase (Peris et al., 2009). Thus, detyrosination could be an essential regulator of
chromosome segregation. Accordingly, tubulin detyrosination regulates CAP-Gly proteins
recruitment at MT plus-end. Mislocalization of these proteins correlate with defects in both
spindle positioning during mitosis and cell morphology during interphase (Peris et al., 2006).

Polyglutamylation induces enzymatic microtubule severing and might therefore be critical for
controlling the length of the mitotic spindle via katanin-mediated microtubule severing (Lacroix et
al., 2010; Sonbuchner et al., 2010). Similarly, polyglutamylation may also ensure timely abscission
during cytokinesis by controlling spastin-dependent severing (Connell et al., 2009). The emerging
picture is that the temporal and spatial control of tubulin PTMs may restrict the functions of
multiple MT-interacting proteins during cell division.
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MTs from neurons carry elevated levels of PTMs. Biochemical and immunological analyses of
tubulin in mammalian brain tissue or cultured neurons demonstrated enrichment for
detyrosinated, acetylated, and polyglutamylated tubulin, as well as for A2-tubulin. High levels of
PTMs were observed in centrioles as well as in cilia and flagella (Janke & Bulinski, 2011).

2.5.5 Microtubule plus-end tracking proteins (+TIP)

In mammalian cells, MT minus-ends are often stably anchored, whereas the plus-ends are highly
dynamic and stochastically switch between phases of growth and shrinkage. Cells possess a
complex protein machinery that associates with the MT plus-ends, involved in several function
such as: regulation of MT dynamics, linking MT-ends to cellular structures, generation of pushing
and pulling at MT-ends and recruitment of signalling factors. MT end-binding proteins can be
divided into MT destabilising factors, which include Kin | kinesins and MT plus-end-tracking
proteins (+TIPs) (Akhmanova & Hoogenraad, 2005).

MT plus-end tracking proteins (+TIPs) are a structurally and functionally diverse group of proteins
that are distinguished by their specific accumulation at MT plus-ends. Despite this diversity, they
often colocalize and share common activities, and are therefore difficult to classify according to
functional aspects. However, +TIPs can be classified in different families according to their
structure (Figure 26).
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Figure 26. Structural classification of +TIPs. Ranging in size from a few hundred up to thousands of residues, +TIPs are multi-domain
and/or multi-subunit proteins. +TIPs comprise combinations of a limited set of evolutionarily conserved modular binding domains,
repeat sequences and linear motifs. Five families of +TIPs were identified: EB proteins, CAP-Gly proteins, SxIP proteins, TOG proteins
and motor proteins. There are other +TIPs that cannot be grouped in one of the five classes (other proteins). (Adapted from
Akhmanova & Steinmetz, 2010).
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EB proteins: End-binding (EB) family proteins contain a highly conserved N-terminal domain that
adopts a calponin homology (CH) fold that is responsible for MT binding (Hayashi & lkura, 2003).
The C-terminus of EB proteins harbours an a-helical coiled-coil domain that mediates parallel
dimerization of EB monomers. It further comprises the unique EB homology (EBH) domain and an
acidic tail encompassing a C-terminal EEY/F motif (Komarova et al., 2005). EB proteins are now
generally accepted to represent core components of +TIP networks because they autonomously
track growing MT plus ends independently of any binding partners (Akhmanova & Steinmetz,
2008; Bieling et al., 2008; Dixit et al., 2009). Moreover, EB proteins directly associate with almost
all other known +TIPs and, by doing so, target them to growing MT plus-ends.

CAP-Gly proteins: The cytoskeleton-associated protein glycine-rich (CAP-Gly) domain is a small
globular module that contains a unique conserved hydrophobic cavity and several characteristic
glycine residues. Prominent examples are the CLIP proteins (CLIP170 and CLIP115) and the large
subunit of the dynactin complex p15OG’“ed (Steinmetz & Akhmanova, 2008). CAP-Gly domains use
their hydrophobic cavity to confer interactions with MT and EB proteins by specifically recognizing
C-terminal EEY/F sequence motifs (Weisbrich et al., 2007). CLIPs and p1506'“ed contain coiled-coil
domains that mediate their homotypic association and result in the formation of parallel dimers. A
single CAP-Gly domain of CLIP-170, together with the adjacent serine-rich region, can track
growing MT ends (K. K. Gupta et al., 2009). The most evolutionarily conserved property of CAP-Gly
proteins is their capacity to interact with tubulin monomers, tubulin dimers and/or MT. CLIPs
stabilize MTs by preventing catastrophes or by stimulating rescues. In addition, CLIP170
participates in the plus-end recruitment dynein: CLIP170 associates with MT and EB through its
CAP-Gly motifs, p15OG’“ed binds to the C-terminal of CLIP170 and is recruited to the plus ends, and
dynein associates with dynactin (Coquelle et al., 2002; Galjart, 2005). Together with dynein,
CLIP170 is also present at the kinetochores of mitotic cells, where it might participate in MT
capture (Tanenbaum et al., 2006).

SxIP proteins: The major group of +TIPs is the group of the so-called SxLP proteins. It comprises
large and complex, often multi-domain proteins containing low-complexity sequence regions that
are rich in basic, serine and proline (basic-S/P) residues. They share the small four-residue motif
Ser-x-lle-Pro (SxIP, where x denotes any amino acid), which is specifically recognized by the EBH
domain of EB proteins (Honnappa et al., 2009; Kumar & Wittmann, 2012). Important examples of
this diverse class of +TIPs are the adenomatous polyposis coli (APC) tumour suppressor, the
spectraplakin microtubule—actin crosslinking factor (MACF) and the MCAK (Akhmanova &
Steinmetz, 2010). It has been proposed that the SxIP motif acts as a general microtubule tip
localization signal (MtLS) (Buey et al., 2012; Honnappa et al., 2009). Detailed knowledge on MtLSs
is expected to help predicting the +TIP proteome in different species and can lead to the discovery
of novel +TIPs.

TOG proteins: Proteins with tumour-overexpressed gene (TOG) or TOG-like domains include
members of the XMAP215/Dis1 family and CLIP-associating proteins (CLASPs). Tandemly arranged
TOG domains mediate binding to tubulin and are probably responsible for MT growth-promoting
activity of these proteins (Slep, 2009). Additional domains, such as SxIP motifs in CLASPs, are
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required for targeting of these proteins to MT plus-ends and other subcellular sites. Moreover,
CLASPs are MT-stabilizing proteins that can mediate the interaction between distal MT-ends and
the cell cortex (Goodson & Folker, 2006; Lansbergen et al., 2006).

Motor proteins: Both MT plus- and minus-end directed motor proteins can track growing MT-ends.
Examples are the MT-depolymerising kinesin 13 family members, such as MCAK) and cytoplasmic
dynein. Sequences outside the microtubule-binding motor domains, like the SxIP motif of MCAK
(Honnappa et al., 2009), might be needed for the microtubule tip-tracking behaviour of these
proteins.

Other +TIPs cannot be grouped in one of the five classes above mentioned. For example the Dam1
complex is found in yeast but not in higher organisms. Other examples are the S. cerevisiae protein
Kar9 and the highly conserved cytoplasmic dynein accessory factor lissencephaly-1 protein (Lis1)
(Akhmanova & Steinmetz, 2010). LIS1 comprise an N-terminal LIS homology (LISH) domain and a C-
terminal WD40 repeat-containing B-propeller domain. MT end tracking by LIS1 protein seems to
require the ability of the B-propeller domain to target CLIP170, dynein and dynactin, rather than
microtubules directly (Akhmanova & Steinmetz, 2008; Coquelle et al., 2002; Vallee & Tsai, 2006).

+TIPs can bind to the plus-ends of depolymerizing MTs ends or to the tips of stable MTs. However,
most +TIPs decorate only growing MT plus-ends, which indicates that certain aspects of MT
dynamics regulate their local accumulation (Figure 27). The likely reason for +TIP accumulation at
growing MT ends is a structural difference between the end and the remainder of the tube. In
vivo, minus-ends never grow in cells. This difference could be the presence of the GTP cap at the
end of the freshly polymerized MTs or some specific protofilament arrangement (Coquelle et al.,
2009). Most +TIPs exhibit a weak affinity for the MT lattice and it is possible that some of them use
one-dimensional diffusion along MTs to arrive at the tips. Some +TIPs can be transported to
growing tip of MTs by kinesins (Carvalho et al., 2004; Carvalho et al., 2003). +TIPs can track the
ends of growing microtubules in a non-autonomous manner. For example, hitchhiking on MT
bound EB proteins. Others recognize more complex binding sites that encompass domains of both
EB proteins and tubulin (Akhmanova & Steinmetz, 2010; Bieling et al., 2008; K. K. Gupta et al.,
2010; Honnappa et al., 2009) (Figure 27a). The idea that +TIPs can either recognize growing plus
ends or co-polymerize with tubulin implies that individual +TIPs are transiently immobilized at the
growing MT ends. Dissociation of +TIPs from MT ends can occur spontaneously or can be driven by
structural changes in the MT lattice: a mechanism known as treadmilling (Akhmanova &
Steinmetz, 2008; Carvalho et al., 2003)(Figure 27b). This mechanism has not found support in the
in vitro reconstitution studies using EB and CLIPs but might still apply to some other proteins
(Bieling et al., 2008; Dixit et al., 2009).
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Figure 27. Mechanisms of microtubule plus-end tracking. a) +TIPs can arrive at the MT tips by diffusion in the cytoplasm or along the
MT lattice. Alternatively, they can also be transported to MT plus-ends by kinesins. In all these cases, +TIP accumulation at the MT ends
can be caused by their preference for a specific structural or chemical property associated with MT polymerization. The affinity of some
+TIPs for the MT end may depend on their binding partners (hitchhiking). Finally, some +TIPs might co-polymerize with tubulin. b) +TIPs

that recognize a specific structure at the growing MT end (or co-polymerize with tubulin) might be immobilized at the ends until this
structure is converted into the regular MT lattice (treadmilling; visualized in green). Alternatively, +TIPs may exchange rapidly at their
binding sites at the MT ends, while these binding sites decay over time during MT lattice maturation. (Adapted from Akhmanova &
Steinmetz, 2008).

Differential regulation of +TIP association with MT ends throughout the cell can give individual
MTs a specific identity, either as a result of specific motor-based loading, regional control of post-
translational modifications or intramolecular interactions. Therefore, different microtubule
populations that are required for particular processes, such as cell division, polarity and
differentiation, can be formed (Akhmanova & Steinmetz, 2008).

2.5.6 The actin cortex

Actin is the monomeric subunit of two types of filaments in cells: microfilaments, one of the three
major components of the cytoskeleton, and thin filaments, part of the contractile apparatus in
muscle cells. In vertebrates, three main groups of actin isoforms, a, 3, and y have been identified.
The a actins, found in muscle tissues, are a major constituent of the contractile apparatus. The 3
and vy actins coexist in most cell types as components of the cytoskeleton, and as mediators of
internal cell motility (Doherty & McMahon, 2008). The dynamic network of polar actin filaments
represents a key element of cell cytoskeleton. It is for example important for mechanical stability,
cell polarization, migration and cell division.

Globular (G)-actin monomers can associate to form helical filaments called filamentous (F)-actin.
F-actin is asymmetric and the two extremities retain different kinetic characteristics (Figure 28).
Actin monomers assemble much more rapidly at the ‘barbed-end’ compared to the ‘pointed-end’.
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Monomeric actin binds either ATP or ADP. ATP monomers assemble at a far higher rate than ADP
ones. Following assembly on a treadmilling filament, ATP is hydrolysed to ADP and this induces a
change in the filament conformation, resulting in a less stable form at the pointed end, which
depolymerizes. A treadmilling filament therefore contains ATP- bound subunits at the barbed end,
whereas the ones at the pointed end are ADP-bound. Many proteins bind to actin and influence its
dynamics or state: actin-binding proteins (ABPs). Among ABPs, some link actin filaments in a loose
network (crosslinking proteins) or in a tight bundle (bundling proteins), or anchor filaments to
membranes. Others bind to the barbed end of the filament and prevent further elongation
(capping proteins), whereas some cause fragmentation of filaments (severing proteins) or might
favour the depolymerization of pointed ends. ABPs also regulate the addition of monomers by
sequestering them or favouring ADP/ATP exchange (Revenu et al., 2004).
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Figure 28. Structure and dynamics of actin filaments. G-actin monomers can associate to form helical filaments. These filaments (F-
actin) are asymmetric and highly dynamic, continuously polymerizing and depolymerising, structures. Numerous proteins bind to actin
thereby regulating its dynamics. (Adapted from Revenu et al., 2004).

Numerous proteins are known to dynamically control actin polymerization and organization: for
example the Arp2/3 complex can initiate actin branching. Fascin, a-actinin and formins bundle
filaments, whereas the protein fimbrin shows crosslinking activity. Reorganization of the actin
structures requires furthermore the disassembly of preexisting actin filaments. This is achieved
through the action of the cofilin family of proteins, which catalyse the severing of ADP-actin
filaments (Chhabra & Higgs, 2007; Revenu et al., 2004).

In interphase, actin filaments assemble into different structures: they can form branched networks
in membrane protrusions (lamelliopodia), align parallel to build cables (stress fibres, filopodia) and
they can closely attach to the cell’s membrane, being the main structural element of the cell
cortex. Due to their organization and molecular composition lamellipodia are rather soft and
flexible (Laurent et al., 2005). They are located at adhesive sites and arise when the growing actin
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meshwork pushes the membrane forward. Stress fibres are rigid and highly contractile (Peterson
et al., 2004; Rotsch & Radmacher, 2000), since myosin 2 motor proteins bridge the bundled actin
filaments and move them in relation to each other. Stress fibres connect to the substrate via focal
adhesions (Figure 29).
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Figure 29. Actin organizes into different structures in the cell. Two regions can be distinguished in a migrating cell: an actin-rich region
(red) comprising actin bundles organized into filopodia, a dense actin meshwork forming a ruffling lamellipodia; and the region where
actin structures are essentially limited to stress fibers (thick red lines), anchored to the substrate via focal adhesions (blue dots). MTs

are depicted in green. MTOC is microtubule-organizing center. N is the nucleus. (Adapted from Etienne-Manneville, 2004).

Local assembly and disassembly of these structures is regulated in response to a variety of intra- or

extra-cellular stimuli through the Rho family of small GTPases: Rho, Rac and Cdc42. Rac controls

actin polymerization and thereby lamelipodia formation, whereas Rho regulates stress fibres
assembly and contractility (DeMali & Burridge, 2003; Etienne-Manneville & Hall, 2003; Ridley &

Hall, 1992). Rac and Rho are thus antagonists and it has been demonstrated that Rac inhibits Rho

activity to avoid locally counteracting activities (Nimnual et al., 2003). Cdc42 promotes the

formation of actin-rich, finger-like membrane extensions (filopodia) and activates Rac in

fibroblasts (Etienne-Manneville & Hall, 2002).

2.5.7 Spatial reorganization of the mitotic cell

In animal cells, the interphasic actin cytoskeleton undergoes dramatic changes at the onset of
mitosis, since the whole structure needs to be disassembled and reformed to ensure proper cell
rounding (Kunda & Baum, 2009; Théry & Bornens, 2006). The transformation of an object into a
sphere can be performed either by a volume increase or an area reduction. It has been shown that
during mammalian cell rounding in mitosis, the cell volume is reduced (Boucrot & Kirchhausen,
2008). This is made possible by an important cell surface reduction. A large part of the surface is
endocytosed and transformed in small internal vesicles (Boucrot & Kirchhausen, 2007). Another
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part of the surface is folded in many small membrane spikes, wrinkles and fibers that have been
observed in electronic microscopy (Théry & Bornens, 2008).

Mitotic rounding force depends both on the actomyosin cytoskeleton and the cells’ ability to
regulate osmolarity. The rounding force itself is generated by an osmotic pressure. It has been
shown show that in cells, osmotic pressure is balanced by inwardly directed actomyosin cortex
contraction. Thus, by locally modulating actomyosin-cortex-dependent surface tension and
globally regulating osmotic pressure, cells can control their volume, shape and mechanical
properties (Stewart et al., 2011).

When entering mitosis, lamellipodial formation stops and the whole actin cytoskeleton gets
severed by cofilin. Cofilin activity is subsequently inhibited in prometaphase through
phosphorylation by LIM kinase and by interaction with AIP/WDR1 (Fujibuchi et al., 2005). This
inactivation appears to be important, as continuous severing by cofillin causes the instability of the
actin cortex and inhibits cell rounding (Fujibuchi et al., 2005; Kaji et al., 2008). After cofilin
inactivation new filaments form, elongate and organize close to the cell surface via
Ezrin/Radixin/Moesin (ERM) family proteins. The latter have been proposed to align actin
filaments parallel to the plasma membrane due to their actin filament and transmembrane
receptor binding domains, thereby driving cell rounding (Kunda & Baum, 2009; Théry & Bornens,
2008). Simultaneously to the actin reorganization the cell weakens its adhesion to the substrate
(Figure 30). However, the cell does not loose completely contact with the substrate. Retraction
fibres are formed during cell rounding connecting the mitotic cell body to remaining anchoring
site. These fibres contain stationary parallel actin bundles pointing with their barbed ends away
from the cell body. They furthermore contain Ezrin that probably crosslinks the actin bundles to
the surrounding membrane (Kunda & Baum, 2009; Théry et al., 2005; Théry & Bornens, 2008).

The resulting shell of cross-linked and membrane associated actin provides the basis for proper
spindle assembly and/or orientation as has been shown by numerous experiments for in C.
elegans (Cowan & Hyman, 2007), Drosophila S2 cells (Carreno et al., 2008; Kunda et al., 2008) and
mammalian cells in vitro (Fink et al., 2011; Théry et al., 2005; Toyoshima & Nishida, 2007b).
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Figure 30. The cell cortex and spindle positioning. a) in epithelial cells, spindle orientation is determined by cortical
cues that orientate it either parallel (symmetric) or perpendicular (asymmetric) to the plane of division, depending on genes expressed.
This probably occurs by altering the way cortical cues are read by astral MTs. b) In adherent animal cells, spindles usually align parallel
to the substrate. At onset of mitosis, cells retract their margins, leaving thin actin cables attached to the substrate. These cables define
cortical marks within the cell cortex. Astral MTs then read these cues in the rigid, rounded mitotic cell cortex to assemble, orientate and
position the mitotic spindle. Actin structures in red, MTs in dark green, DNA in blue, adhesion molecules in yellow, cortical cues in light
green. (Adapted from Kunda & Baum, 2009).

2.5.8 Cortex polarization

Spindle alignment along the predetermined axis requires both astral microtubules and the actin
cytoskeleton and is believed to involve dynein-dependent microtubule pulling forces functioning
at the cell cortex (Laan et al., 2012).

Cdc42 is required for proper spindle positioning in polarized cells such as budding yeast and the C.
elegans zygote, which both undergo asymmetric cell division (Gotta et al., 2001). Two new
pathways for spindle orientation under the control of Cdc42 in non-polarized Hela cells have been
described: Cdc42 would regulate integrin dependent spindle positioning parallel to the substrate
by controlling actin cytoskeleton organization and the cortical polarization of the lipid second
messenger phosphatidylinositol (3,4,5)-trisphosphate (Ptdins(3,4,5)P3). Both pathways lead to the
accumulation of the dynein/dynactin motor complex at the equatorial cortex plane in metaphase
(Mitsushima et al., 2009; Toyoshima et al., 2007).

In many animal cells the Par complex is required to establish cortical polarity that directs spindle
positioning. It consists of three proteins: partitioning defective 3 and 6 (Par-3 and Par-6) and the
atypical protein kinase aPKC. Par-3 is required for the polarized cortical localization of Par-6 and
aPKC. Par-6 regulates the kinase activity of aPKC. aPKC finally regulates cortical polarity by
phosphorylating target proteins (Siller & Doe, 2009). The Par complex localizes to the anterior
cortex in the C. elegans zygote and to the apical cortex of epithelial cells, including epidermal and
neuronal progenitors in invertebrates and vertebrates.
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Par-dependent spindle positioning is mediated through polarized localization of the NuMA family
of proteins and the Dynein-Dynactin motor complex (Markus & Lee, 2011) (Dynein-Dynactin will
be discussed in the section 2.5.9). NuMA (lin-5 in C. elegans and mud in D. melanogaster) encodes
a large coiled-coil protein with multiple interaction partners, and was initially discovered and
intensely studied for its role in mitotic spindle assembly in vertebrate cells in culture (Radulescu &
Cleveland, 2010). The first hint at a possible role for NuMA in spindle orientation came from the
discovery of its association with the vertebrate Partner of Inscuteable (Pins, also known as mPins,
LGN, and GPSM2) (Du & Macara, 2004), whose homologs in D. melanogaster (Pins) and C. elegans
(GPR-1 and GPR-2, thereafter referred to as GPR-1/2) are involved in ACD (Colombo et al., 2003;
Gotta et al., 2003). Thus, Inscuteable (Insc) couples cortical cell polarity and spindle orientation
(Figure 31).
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Figure 31. Linking cortical polarity and spindle orientation. Detail of the cortex of a dividing D. melanogaster NB. Note the presence of
the evolutionary conserved Par complex (red) responsible for cortex polarization by recruiting the Gai/Pins/Mud complex (yellow). The
latter complex interacts with astral microtubules and motor proteins and can thereby transmit the cortex polarization to the mitotic
spindle. (Adapted from Siller & Doe 2009).

2.5.9 Microtubule-actin interaction in mitosis

The interaction between the microtubule network, that builds up the spindle and organizes the
chromosomes, and the stiff actin cortex, that gets polarized due to external cues, is achieved by
several evolutionary conserved protein families. These proteins not only bind and stabilize MTs,
but also exert forces on them.

The APC protein has been shown to interact with MTs directly and indirectly via EB1 protein,
which is located at the microtubule plus-ends (Dikovskaya et al., 2001; Etienne-Manneville & Hall,
2003). APC is often recruited to the actin cortex where APC-EB1 interaction is thought to stabilize
microtubules (Dikovskaya et al., 2001). The importance of APC and EB1 for spindle orientation has
been demonstrated in symmetric division of the D. melanogaster neuroepithelium (Lu et al., 2001)
and for asymmetric stem cell divisions (Quyn et al., 2010; Yamashita et al., 2003). In both cases
APC polarization is achieved by its recruitment to adherens junctions and thus depends on their
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distribution. Accordingly, EB1 siRNA knockdown in cultured cells resulted in the absence of astral
MTs and therefore in spindle misorientation (Toyoshima & Nishida, 2007b).

Besides getting stabilized, astral MTs are often actively pulled towards the cortex by motor
proteins. These pulling forces drive spindle positioning in yeast, worms, insect and mammalian
cells (Knoblich, 2001; Siller & Doe, 2009). Emerging data from diverse model systems have led to
the prevailing view that, during mitotic spindle positioning, polarity cues at the cell cortex leads to
the recruitment of NuMA and cytoplasmic dynein. The NuMA/dynein complex is believed to
connect, in turn, to the mitotic spindle via astral MTs, thus aligning and tethering the spindle.

Dynein is an evolutionary conserved motor protein complex that uses ATP hydrolysis to move

towards MTs minus-end, thus towards the spindle poles in mitosis. Dynein associates with the

clied subunit, which increases dynein processivity

Glued

multiprotein dynactin complex, through the p150
and tethers dynein to its cargo proteins (Schroer, 2004). p150 uses its CAP-Gly domain to
accumulate at MT plus-ends and at mitotic kinetochores, where contributes to dynein function.
p150°“* is also present at the centrosome where its CAP-Gly domain participates in anchoring MT

minus-ends (Steinmetz & Akhmanova, 2008) (Figure 32).
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Figure 32. The dynein—dynactin complex. The dynein molecule, itself a complex of heavy (HC), intermediate (IC) and light chains,
interacts with the plSOG'“Ed subunit of the dynactin complex through its intermediate chains (arrow). The most prominent component
of the dynactin complex is a short filament of the actin-related protein Arpl. (Adapted from Schliwa & Woehlke, 2003).

The dynein/dynactin complex and its regulators (Lis1/Nde/Ndl) have been proven essential for
mitotic spindle positioning in many systems (Siller & Doe, 2008, 2009). Lisl is required for the
targeting of dynein to MT plus-ends and consequently the cell cortex. Lis1 may be important to
maintain dynein at the plus-end by keeping the motor in an ‘off’ state, thus preventing it from
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walking toward the minus-end (Markus & Lee, 2011; O’Connell & Wang, 2000). Ndl, a NudE-like
protein, and Ndl are required for the normal wild-type frequency of dynein targeting to astral MT
plus-ends. NdI may stabilize or enhance the efficiency of Lis1 binding to dynein at the plus-end (Li
et al., 2005).

Being fixed at the cell cortex and simultaneously moving along microtubules, dynein motor
complexes effectively generate pulling forces that move MTs towards the cortex. This process is
more efficient when coordinated with slow MT plus-end depolymerization to avoid counteracting
forces due to microtubule pushing against the cortex (Laan et al., 2012; Moughamian & Holzbaur,
2012; Siller & Doe, 2009).

The mammalian protein NuMA links the dynein/dynactin-LIS1 complex to the cortically polarized
LGN protein. NuMa couples therefore dynein motor activity to cortex polarity cues (Du & Macara,
2004; Siller & Doe, 2009).

2.6 Determination of the division plane

After separation of sister chromatids in telophase, the mother cell constricts giving rise to two
daughter cells. To ensure equal partitioning of the genetic material, different mechanisms have
evolved (Oliferenko et al., 2009).

In eukaryotes, mainly two mechanisms exist for determining the constriction site of the mother
cell: mitotic apparatus independent positioning in yeast, and mitotic apparatus dependent
positioning in animal cells.

The cleavage plane in animal cells is dictated by the position and orientation of the mitotic spindle
at late anaphase (Burgess & Chang, 2005; Rappaport, 2005); although exceptions have been
recently reported for NB asymmetric divisions in D. melanogaster (Cabernard et al., 2010) and C.
elegans (Ou et al., 2010). Basically, astral MTs connect the centrosome to the actin cortex and the
central spindle, consisting of overlapping MT bundles at the cell midzone after chromosome
segregation (Oliferenko et al., 2009). It is widely accepted that these MTs control cortical
contractility by maintaining active gradients of the small GTPase Rho which is crucial for cleavage
furrow induction (Drechsel et al., 1996). Thereby GTP- bound, active Rho triggers F-actin assembly
(Watanabe et al., 1997) and activates myosin Il (Kimura et al., 1996) at the cell equator which
causes cortical constriction.

Three mechanisms for cleavage plane positioning have been proposed (Figure 33):

(a) The cortex contractility at the equatorial zone is stimulated by the central spindle (central
spindle stimulation). A number of proteins important for cytokinesis are known to accumulate at
the central spindle during anaphase (Oliferenko et al., 2009), for example the kinesin-like protein
MKLP1 that causes Rho activation.
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(b) The cortex contractility is stimulated at the equatorial zone where subpopulations of stable
astral MTs from the two poles converge. These MTs are thought to deliver stimulating factors
(astral MTs stimulation).

(c) Astral MTs inhibit cortex contractility opposite to the spindle poles (polar relaxation). This
results in the establishment of a gradient of cortical tension with the highest tension at the
equator leading to its constriction (Paluch et al., 2006).
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stimulation
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Figure 33. Models for cleavage plane positioning in animal cells. After chromosome segregation, the overlapping MT bundles at the
cell midzone known as the central spindle specify the cleavage plane. In certain cell types, astral MTs stimulate cleavage furrow
formation at the division site, whereas in some cases, astral MTs inhibit cortical contractility at the cell ends to promote cleavage
furrow formation at the division site. (Adapted from Oliferenko et al., 2009).

Simultaneous inhibition and stimulation of cortical contractility could be achieved by different
subsets of astral MTs, mainly varying in their stability (Foe & von Dassow, 2008; Murthy &
Wadsworth, 2008): Stable MTs contacting the equatorial midzone could deliver Rho —activating
proteins (like MKLP1) whereas astral MTs contacting the polar regions are highly dynamic and
therefore too unstable to deliver the factors. Has been proposed that MTs specify the cleavage
plane by directing the formation and spatial extent of a highly localized zone of RhoA activity
(Bement et al., 2005).

The three proposed mechanisms are redundant and it has been shown that they work together to
ensure the fidelity of the division site (Bringmann & Hyman, 2005).
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3 Neural development

3.1 Overview

Neural development is the process that generates, shape, and reshapes the nervous system (NS),
from the earliest stages of embryogenesis to the final years of life. The NS is an organ system that
consists in two parts: the central nervous system (CNS) and the peripheral nervous system (PNS).
NSs are found in most multi-cellular animals, but vary greatly in complexity. Defects in neural
development can lead to cognitive, motor, and intellectual disability, as well as neurological
disorders. The development of the NS proceeds in three phases: first, nerve cells are generated
through cell division; then, having ceased dividing, they send out axons and dendrites to form
profuse synapses with other, remote cells so that communication can begin; last, the system of
synaptic connections is refined and remodelled according to the pattern of electrical activity in the
neural network (reviewed in Albert et al., 2002).

During development, neural stem cells (NSCs) give rise to all the neurons of the mammalian CNS.
They are also the source of the two types of macroglial cell in the CNS, astrocytes and
oligodendrocytes. NSCs exist not only in the developing NS but also in the adult NS of all
mammalian organisms, including humans (Gage, 2000). The adult brain show high neuroplasticity.
Neurogenesis continues into adult life in restricted germinal layers. During adulthood, the two
major locations of neurogenesis are the sub-ventricular zone (SVZ) adjacent to the lateral
ventricules and the sub-granular zone (SGZ) in the dentate gyrus of the hippocampus.

3.2 Brain development

3.2.1 Neural tube formation

The nervous system is derived from the ectoderm, the outermost tissue layer of the embryo
(reviewed in Albert et al.,, 2002). The mesoderm, middle layer, forms muscles and bones. The
endoderm, inside layer, forms the epithelial lining of multiple systems. The neuroectoderm
appears and forms the neural plate along the dorsal side of the embryo (Figure 34). This neural
plate is the source of the majority of all neurons and glial cells. The neural plate wraps in on itself
to make a hollow neural tube. The neural tube gives rise to both the spinal cord and the
brain. Neural crest cells are also created during neurulation. Neural crest cells migrate away from
the neural tube and give rise to a variety of cell types, including pigment cells and neurons. Signal
proteins secreted from the ventral and dorsal sides of the neural tube act as opposing
morphogens, causing neurons born at different dorsoventral levels to  express
different gene regulatory proteins. The notochord, a midline structure, is apparently responsible
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for inducing the development of the brain and spinal cord. The notochord itself is mesodermal
tissue and eventually gives rise to the vertebral column and cranium, which enclose and protect

the brain and spinal cord.
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Figure 34. The neural tube. Scan electron micrograph showing a cross section through the trunk of a 2-day chick embryo. The neural tube is
about to close and pinch off from the ectoderm; at this stage it consists (in the chick) of an epithelium that is only one cell thick. (Adapted from
Albert et al., 2002).

3.2.2 Brain development

There are four subdivisions of the neural tube that will each eventually develop into distinct
regions of the CNS by division of NSCs: The prosencephalon, the mesencephalon,

the rhombencephalon and the spinal cord (Figure 35).
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Figure 35. Diagram depicting the main subdivisions of the embryonic vertebrate brain. The encephalon begins to form when
the neural tube swells and subdivides, first into the three primary vesicles (the prosencephalon, mesencephalon and
rhombencephalon), and then into the five secondary vesicles (the telencephalon, diencephalon, mesencephalon, metencephalon and
myelencephalon) (Extracted from File:EmbryonicBrain.svg; author Nrets,).



The telencephalon is the most rostral of the secondary vesicles. Two buds emerge from either side
of its rostral portion to form the two telencephalic vesicles and will form the two cerebral
hemispheres. Another pair of vesicles will become the olfactory bulbs and other structures that
contribute to the sense of smell. The neurons of the telencephalon wall proliferate to form three
distinct regions—the cerebral cortex, the basal telencephalon, and the olfactory bulb. The axons of
these neurons will constitute the cortical white matter and corpus callosum. In the the remaining
space between the telencephalon and the diencephalon on either side, the two lateral ventricles
form, while the third ventricle forms in the space at the centre of the diencephalon.

The diencephalon also differentiates into distinct areas: the thalamus and the hypothalamus. On
either side of the diencephalon also develop the optic vesicles. The optic vesicles lengthen and
fold inward to form the optic peduncles and optic cups, which will give rise to the retinas and
the optic nerves.

Compared with the prosencephalon, the mesencephalon undergoes far less transformation. The
metencephalon differentiates into two major structures: the cerebellum and the pons. The
myelencephalon forms the medulla oblongata. Lastly, the central canal, which persists while the
medulla is forming, becomes the fourth ventricle. The entire portion of the neural tube that lies
caudal to the five secondary vesicles becomes the spinal cord.

3.3 Neurogenesis

Vertebrate embryonic neurogenesis is a highly dynamic process during which a limited number of
NSCs produce a highly diverse number of glial and neural cell types. NSCs are initially found as a
single layer of neuroepithelial cells (NESCs) forming the neural tube. These cells first undergo a
phase of massive proliferation, during which their number increases exponentially through
symmetric divisions. Later on, the system switches to a neurogenic mode during which
neuroepithelial progenitors start to divide in an asymmetric manner to self-renew and produce a
more committed progeny (Figure 36).
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Figure 36. NSCs in developing and in the adult brain. Neuroepithelial cells in early development divide symmetrically to generate more
neuroepithelial cells. As the developing brain epithelium thickens, neuroepithelial cells elongate and convert into radial glial (RG) cells.
RG cells divide asymmetrically to generate neurons directly or indirectly through intermediate progenitor cells (nIPCs). RG cells have
apical-basal polarity: apically, RG contact the ventricle, where they project a single primary cilium; basally, RG contact the meninges,
basal lamina, and blood vessels. At the end of embryonic development, most RG begin to detach from the apical side and convert into
astrocytes while olPC production continues. A subpopulation of RG retain apical contact and continue functioning as NSCs in the
neonate. Type B cells continue to function as NSCs in the adult. IPC, intermediate progenitor cell; MA, mantle; MZ, marginal zone; NE,
neuroepithelium; nIPC, neurogenic progenitor cell; olPC, oligodendrocytic progenitor cell; RG, radial glia; SVZ, subventricular zone; VZ,
ventricular zone. (Adapted from Kriegstein & Alvarez-Buylla, 2009).

3.3.1 Progenitors cells

The neural plate is initially formed by a single layer of progenitor cells, theNESCs, which form the
neuroepithelium (Figure 36). NESCs have epithelial characteristics and are highly polarized along
their apico-basal axis with apical attachments to the ventricular surface and a basal fiber
connecting the pial (basal) surface. The neuroepithelium is pseudostratified, with NESC nuclei
found all along the apico-basal axis. These nuclei undergo interkinetic nuclear migration (INM),
moving back and forth between the apical and basal sides of the tissue during their cell cycle, and
undergoing mitosis at the ventricular surface. NESCs have a small apical domain, forming the
ventricular surface and a large baso-lateral domain. These two membrane domains are separated
by tight junctions preventing lateral diffusion of apical proteins. Before the onset of neurogenesis,
NESCs undergo a phase of massive proliferation by symmetric division allowing the expansion of
the neural progenitor cell population (Peyre & Morin, 2012). At the onset of neurogenesis, they
switch to an asymmetric mode of divisions allowing self-renewal and neuron generation (Gotz &
Huttner, 2005).

Simultaneous with the beginning of neurogenesis, NESCss acquire characteristics associated with
glial cells and are then called radial glial cells (RGCs) (Figure 36). They repress the expression of
epithelial markers and start to express astroglial markers. Newly-born neurons use RG basal fibers
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as a migration scaffold toward cortical layers. This results in progressive cortical thickening and
basal fiber elongation. Tight junctions evolve into adherens junctions delimited by a Zona
Occludens 1 (ZO-1) domain and higher amount of N-cadherin (Aaku-Saraste et al., 1996). These
junctional complexes anchor the RGCs to each other and to the ventricular surface, they also allow
the recruitment of cytoplasmic proteins such as Par3, aPKC, Par6 (Joberty et al., 2000), as well as,
B-catenin and d-catenin (Ho et al., 2000; Zhadanov et al., 1999). It is important to note that neural
progenitor cells form a continuum from early development (NESC) through neurogenesis (RGC)
and into adulthood (adult stem cells) (Merkle et al., 2004). As they maintain an apical attachment
and divide apically, NES and RG cells are more generally called apical progenitors (APs).

Neurons derive from asymmetric division of RGCs either directly in a process called direct
neurogenesis, or indirectly, through the production of intermediate progenitors (Figure 37).
Indirect neurogenesis was first revealed in the neocortex by the identification of monopolar neural
progenitor cells migrating basally in the SVZ to divide (Haubensak et al., 2004; Miyata et al., 2004;
Noctor et al., 2004). These cells are called basal progenitors (BP) or intermediate progenitors (IP)
(Figure 36). IP differ from RGC at the morphological and molecular levels. When produced by
asymmetric division of a RGC, IP retract their apical attachment and basal extension, do not exhibit
hallmarks of apico-basal polarity and migrate basally before they undergo mitosis (Attardo et al.,
2008; Noctor et al., 2008). In their majority, RG-cderived IPs divide once symmetrically to give rise
to two neurons (Noctor et al., 2004). This population of IP cells is a transit amplification
compartment that allows indirect neurogenesis to increase the number of neurons (Lui et al.,
2011).

It has been known that primates develop an additional germinal zone (outer subventricular zone
or 0OSVZ) outside of the SVZ during brain development (Figure 37). Recently, these progenitors
were identified as a new subtype of self-renewing progenitors named outer RGC (0RGCs) (Hansen
et al.,, 2010). These cells maintain some RGC properties, such as the ability to self-renew, RG
marker expression and the basal process. However, they do not possess an apical process or apico-
basal polarity, nor do they undergo INM (Fietz et al., 2010; Hansen et al., 2010). Similar to RGCs,
oRGCs divide asymmetrically to self-renew and produce the more committed cells (Hansen et al.,
2010). oRG-like cells also exist in other species, including ferret (intermediate radial glial cells,
IRGC) and mouse (outer VZ progenitor cells, oVZ cells), during the middle to late neurogenic stage
(Fietz et al., 2010; Reillo et al., 2011; Shitamukai et al., 2011; Wang et al., 2011). The number of
oRG cells is correlated with brain size, which is larger in animals with bigger brains (e.g., humans,
monkeys, and ferrets) and smaller in the animals with smaller brains (e.g., mice and rats).
Therefore, oRG cells are thought to be the key to the evolution of brain size (Lui et al., 2011; Reillo
et al,, 2011). However, the mechanism of their production and maintenance is largely unknown.
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Figure 37. Comparisons of mouse and human cortical germinal zones. Similar progenitor cell types reside in the mouse (left) and
human (right) developing cortex. These include the RGCs (brown), which divide at the ventricular surface to generate either an IPC
(orange), an oRG progenitor cell (purple) or a neuron (blue) while also renewing themselves (circular arrows). The mouse and human
0OSVZ or oRG progenitor cells both lack contact with the ventricular (apical) surface but maintain their pial (basal). However, the human
cortex differs from that of the mouse in two respects. First, human but not mouse has a cytoarchitectonically distinct extra germinal
zone, the OSVZ (dark green), that is separated from the ISVZ by an inner fiber layer. Second, oRG cells in mouse generate neurons
directly through self-renewing asymmetric division, whereas human oRG cells generate neurons through transit-amplifying cells (that is,
IPCs). (Adapted from Molnar et al., 2011).

3.3.2 Molecular control of neurogenesis

Regulation pathways of the transition from one progenitor stage to the next (e.g. from NESC to
RGC, or from RGC to IP) have been identified. A small number of ‘proneural genes’, which encode
transcription factors of the basic helix-loop-helix (bHLH) class, are both necessary and sufficient, in
the context of the ectoderm, to initiate the development of neuronal lineages and to promote the
generation of progenitors that are committed to differentiation (Bertrand et al., 2002).

An essential role of proneural proteins is to restrict their own activity to single progenitor cells.
Proneural genes inhibit their own expression in adjacent cells, thereby preventing these cells from
differentiating. This is achieved through activation of the Notch signalling pathway (Bertrand et al.,
2002). The Notch signalling pathway and its main effectors, the Hes proteins, have a role in
keeping progenitors undifferentiated and insulating them from specification signals, so that
progenitors that escape Notch inhibition at different times acquire distinct fates (Guillemot, 2005).
However, Notch signalling does not appear to straightforwardly maintain all progenitor cells, since
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Notch activation has been shown to promote RGC identity (Yoon & Gaiano, 2005). Notch signalling
is activated by the cell-cell interaction between Notch-expressing cells and Delta-expressing cells.
The Notch receptor is mainly expressed in the RGCs and is distributed along the entire cell
membrane. A Notch ligand, Delta-like 1, is specifically and transiently expressed in the
differentiating cells, particularly in the VZ (Yoon & Gaiano, 2005). It is most likely that Notch-Delta
interaction efficiently occurs at the apical side of the VZ. IPCs and migrating neurons along the
basal process of RGCs are also thought to contribute Notch-Delta interactions and maintain RG
proliferation (Lui et al., 2011; Yoon et al., 2008). However, oRGCs that are located outside of the
VZ require Delta from their sibling cell, which appears to interact with the sister oRG cell body
(Shitamukai et al., 2011).

Numb is an intracellular inhibitor of Notch. In mice, loss of Numb leads to severe defects that
differ dramatically depending on when Numb activity is eliminated in the cortex (Fishell &
Kriegstein, 2005, 2003). This indicates that Numb and Numb-like have complex roles in
neurogenesis that may involve interactions with additional pathways besides Notch.

Whnt signalling is also central to regulate neural stem cell activity. In the cortex, a stabilized form of
B-catenin promotes either the self-renewal (Chenn & Walsh, 2002) or the neuronal differentiation
of progenitors (Hirabayashi et al.,, 2004), depending on when it is expressed during cortical
development, suggesting that a timing mechanism modifies the response of cortical progenitors to
the Wnt pathway (Hirabayashi & Gotoh, 2005). The fibroblast growth factor (FGF) signalling
pathway has also been shown to modify the response of cortical progenitors to B-catenin,
mediating a switch from proliferation (in the presence of FGF2) to neuronal differentiation (in its
absence) (Israsena et al., 2004). FGF signalling promotes self-renewal, possibly through activation
of Olig2 (Hack et al.,, 2004), and induces the RG phenotype, suggesting possible interactions
between Notch and FGF signalling pathways in maintaining this progenitor population.

REST/NRSF, a factor known to repress neuronal genes in non-neuronal cells, turns out to be
another important regulator of neuronal lineage progression (Ballas et al., 2005). The transition
from pluripotent stem cells to neural stem cells and then to neurons involves a progressive
reduction of REST binding to neuronal promoters. Moreover, the timing of neural gene expression
may be regulated by differential affinity of REST binding sites (Ballas et al., 2005).

Once neurogenesis is achieved, gliogenesis is initiated by several developmentally regulated
gliogenic signals, such as FGF2 (Figure 38). These signals activate glial differentiation and, in
parallel, inhibit neurogenesis through various mechanisms: activation of proneural inhibitors,
degradation of proneural protein and repression of proneural gene transcription. Notch signalling
has been shown to have a gliogenic activity and is likely to act, in part, by inhibiting proneural gene
activity (Bertrand et al., 2002).
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Figure 38. Role of vertebrate proneural genes during the neurogenic and gliogenic phases of neural development. Proneural proteins
accumulate at high level in progenitor cells, resulting in the activation of a neuronal-differentiation pathway, the inhibition of glial
differentiation, and cell-cycle arrest. Notch signalling (lateral inhibition) downregulates and/or inhibits proneural genes in other cells
that are thereby prevented from entering the neuronal pathway. Gliogenesis is initiated by several developmentally regulated gliogenic
signals (e.g. FGF2). These signals activate glial differentiation and inhibit neurogenesis. Stem cells persist in the adult brain. (Adapted
from Bertrand et al., 2002).

3.3.3 Cell division of neural progenitors and cell fate

At the onset of neurogenesis, progenitor cells switch from symmetric to asymmetric divisions in
order to produce committed neural cells. The orientation of the axis of division has been shown to
be correlated with the choice between symmetric and asymmetric modes of cell division in a
number of systems (Peyre & Morin, 2012).

Ventricular NE progenitors harbour a small cortical apical domain and a basal-lateral domain that
includes a thin and extended basal process connected to the pial surface of the tissue (Figure 39).
During an initial proliferative phase, NE progenitors amplify their pool through symmetric
(proliferative) divisions. Recent studies using zebrafish provide some clues to understanding NE
cell divisions during the proliferative stages (Alexandre et al., 2010). In zebrafish development
both apical and basal processes are able to re-establish themselves, even after the epithelial
structure is asymmetrically segregated. Re-extension of the basal process has also been observed
in the early neurogenic stage in mice, whereas it is rarely observed in the middle-to-late stage
(Miyata et al., 2004; Shitamukai et al., 2011). NE progenitors later switch to a neurogenic phase
during which they divide asymmetrically to renew RGCs and produce a more committed daughter
cell, which migrates basally.

RGCs maintain their marked apico-basal polarity and undergo asymmetric cell division to self-
renew and also to produce a daughter that is either a neuron or an IPC (Figue 38). Daughter neu-
rons often migrate along parental RG fibers and neuronal migration continues even while the
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guiding RG cell is dividing (Noctor et al., 2004, 2008). IPC frequently have multipolar processes and
do not appear to contact the ventricle or pial surface, but they do display a predilection to divide
with a cleavage plane parallel to the ventricular surface (Haubensak et al., 2004; Noctor et al.,
2004, 2008). IPCs undergo symmetrical divisions to produce two neurons or may divide
symmetrically to produce two additional IPCs (Haubensak et al., 2004; Miyata et al., 2004; Noctor
et al., 2004). Similar to RGCs, oRGCs divide asymmetrically to self-renew and produce the more
committed cells (Hansen et al., 2010).
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Figure 39. Division of neural progenitors. During an initial proliferative phase, NE progenitors amplify their pool through symmetric
divisions. RGCs generate neurons directly through asymmetric division, indirectly by generation of nIPCs and one or two round of
amplification. This additional amplification stage may be fundamental to increase cortical size during evolution. olPCs generate
oligodendrocytes. RGCs begin to detach from the apical side and convert into astrocytes. CP, cortical plate; 1Z, intermediate zone; MZ,
marginal zone; nIPC, neurogenic intermediate progenitor cell; RG, radial glia; SVZ, subventricular zone; VZ, ventricular zone (Adapted
from Kriegstein & Alvarez-Buylla, 2009).

Initial observations in the ferret neocortex suggested that apico-basal divisions are asymmetric
and neurogenic, whereas planar divisions are symmetric and proliferative. However, the vast
majority of neural progenitors divide with a near planar orientation even at stages where
asymmetric divisions predominate (Kosodo et al., 2004; Noctor et al., 2008). This suggested that
minor shifts in spindle orientation may regulate symmetric versus asymmetric division by causing
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the cleavage plane to respectively either bisect or bypass the apical domain, whose constituents
could act as cell fate determinant(s) maintaining the RG fate (Kosodo et al., 2004; Marthiens &
Ffrench-Constant, 2009).

Segregation of the apical membrane exclusively to one daughter cell normally occurs in no more
than 10-20% of apical divisions during the neurogenic stage (Asami et al., 2011; Konno et al.,
2008; Shitamukai et al., 2011). Because both daughters inherit the apical membrane during most
RGC divisions, structural asymmetry could be instead generated by the asymmetric inheritance of
the basal process in the majority of RGC divisions (Miyata et al., 2004; Shitamukai et al., 2011).
RGC fate has also been shown to be tightly correlated with inheritance of the basal process,
whereby the daughter cell that does not inherit the basal process mostly differentiates into
neurons or IP cells (Shitamukai et al., 2011; Shitamukai & Matsuzaki, 2012). In the majority of RGC
divisions, one daughter cell inherits the entire epithelial structure and maintains the capability to
acquire RGC identity, whereas the other cell inherits only the apical epithelial domain and is thus
committed to differentiate into a neuron or IPC.

A prediction of this model is that the loss of planar spindle orientation should favour asymmetric
divisions and lead to accelerated neurogenesis. Indeed, studies analyzing the loss of function of a
number of different genes have described a correlation between spindle orientation defects and
premature neuronal differentiation at the expense of RGCs in the cortex (Feng & Walsh, 2004;
Gauthier-Fisher et al., 2009; Godin, Colombo, et al., 2010; Yingling et al., 2008). However, in the
mouse cortex and in the chick spinal cord, the high proportion of oblique divisions resulting from
randomization of spindle orientation by Pins or NuMA loss of function did not accelerate
neurogenesis but caused the scattering of progenitors in the SVZ (Konno et al., 2008; Morin et al.,
2007; Peyre et al., 2011). Clonal fate analysis in vivo showed that these ectopic progenitors retain
the molecular signature of their ventricular counterpart, indicating that they have not changed
their identity (Konno et al., 2008; Morin et al., 2007; Shitamukai et al., 2011).

The “nuclear residence hypothesis” predicts that a signal influencing AP fate in an INM-dependent
manner should be highly polarized along the apical-basal axis. In the developing mouse cortex,
slowing-down of apical-to-basal INM by myosin Il inhibition has been found to result in a cell fate
change, in this particular case yielding more neurogenic IPs at the expense of proliferative APs
(Schenk et al., 2009; Taverna & Huttner, 2010). Thus, INM can control the exposure of AP nuclei to
proliferative versus neurogenic signals along the apical-basal axis, thereby also influencing AP fate.

3.3.4 Interkinetic nuclear migration

One aspect of NECs activity retained by RGCs is the complex mitotic behavior known as
interkinetic nuclear migration (INM). The NECs exhibit two remarkable features that, intriguingly,
are interrelated: pseudostratification and INM. Pseudostratification refers to the fact that
although all NECs extend from the apical surface of the neuroepithelium to the basal lamina
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throughout their cell cycle, their nuclei are found at various positions along this apical-basal axis
resulting in a multilayer appearance (Baye & Link, 2007; Miyata, 2008). INM refers to the fact that
mitosis of NECs occurs at (or very close to) the apical surface of the neuroepithelium, whereas S
phase usually takes place at a more basal location, with apical-to-basal nuclear migration in G1
and basal-to-apical nuclear migration in G2 (Baye & Link, 2007; Miyata, 2008). Hence, INM is
responsible for the pseudostratified appearance of the neuroepithelium. INM can be regarded as a
highly specialized form of the evolutionary conserved process of nuclear migration and positioning
(Taverna & Huttner, 2010).

The transformation from NE to RG cells is associated with a major change with regard to INM.
Whereas in NECs INM may extend over their entire apical-basal axis, INM in RGCs does not extend
into the portion of the cell that traverses the neuronal layers, but is confined to the portion of the
cell residing in the VZ and, when present, the SVZ (G6tz & Huttner, 2005).

A study reports evidence that inhibition of INM does not affect cell cycle progression. Specifically,
upon interference with INM in the developing mouse cortex using the myosin Il inhibitor
blebbistatin, no difference in the length of the various cell cycle phases and in progression through
mitosis of progenitors in the VZ was observed (Schenk et al., 2009). On a general note, the findings
that INM is dispensable for cell cycle progression of apical progenitors (NECs and RGCs) is not
surprising, given the existence of other neural progenitors that progress through the cell cycle
without INM, such as IPs (Taverna & Huttner, 2010). Notably, the converse does not hold true:
INM has been found to depend on cell cycle progression, as shown in several studies of developing
mouse cortex. Specifically, pharmacological treatments inducing S phase or G2/M arrest resulted
in concomitant inhibition of INM in the basal and apical region of the VZ, respectively (Baye & Link,
2007).

The localization of APs primary cilium and centrosomes at the apical plasma membrane, implies
that the INM during G1 is directed away from the centrosome (ab-centrosomal INM), and that
during G2 is directed toward the (by then duplicated) centrosomes (ad-centrosomal INM) (Figure
40). There is a lack of physical proximity between nucleus and centrosomes in APs in interphase.
This distinguishes APs from their progeny: IP, OSVZ progenitors and neurons, which also show
nucleokinesis but in which the centrosomes are located in the perinuclear area (Farkas & Huttner,
2008; Fietz et al., 2010; Hansen et al., 2010; Taverna & Huttner, 2010).

In basal-to-apical INM (ad-centrosomal), the AP nucleus is moved, as a cargo, along MT tracks
(Figure 40). As the orientation of MT is with their minus-ends toward the centrosome, such
nuclear movement would be expected to be mediated by minus-end-directed MT-based motor
proteins, such as dynein (Baye & Link, 2007). Evidence that this is so has come from studies of the
centrosomal proteins Cep120, TACCs, and Hook3 (Ge et al., 2010; Xie et al., 2007) and of the Lis1
protein (Gambello et al., 2003; Tsai et al., 2005). Upon reduction of Lis1 levels in the developing
rodent cortex, basal-to-apical INM is inhibited, and mitoses are no longer confined to the apical
surface but observed throughout the VZ. Further support for dynein motors mediating the basal-
to-apical INM has come from studies of the developing zebrafish CNS (Schroer, 2004). In the
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developing mouse cortex, SUN-KASH complexes mediate the coupling between the nucleus and
the centrosome and provide anchors in the nuclear envelope for cytoplasmic dynein/dynactin
during neuronal migration (X. Zhang et al., 2009). These studies provide compelling evidence that
the MT minus-end-directed dynein motor system is involved in basal-to-apical INM and that APs
possess a protein-protein interaction network that links the nucleus to microtubules via the dynein
motor system. Plus end-directed MT-based motors of the kinesin type may be involved in apical-
to-basal INM (ab-centrosomal). The outer nuclear envelope KASH-domain-containing protein
Syne2 interacts with kinesin complexes (X. Zhang et al., 2009) and the MTs in APs are oriented
parallel to the apical-basal axis, with the plus ends directed away from the centrosomes (Norden
et al., 2009), thus providing a possible track to move the nucleus via a plus end-directed motor.
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Figure 40. MT-based and Actomyosin-based INM. a) Ad-centrosomal, MT minus end-directed, dynein-based basal-to-apical INM in G2;
ab-centrosomal, MT plus end-directed, kinesin-based apical-to-basal INM in G1. b) Basal-to-apical INM in G2, and apical-to-basal INM in
G1, both driven by directional actomyosin constriction. (Adapted from Taverna & Huttner, 2010).

Actomysin plays also a role in basal-to-apical INM. Direct evidence comes from a study on the
zebra fish retina (Norden et al., 2009). During most of the cell cycle, nuclear movement is a largely
stochastic process. Persistent directed movement of the nucleus was observed only immediately
before and after mitosis. Pharmacological inhibition of myosin Il function prevented basal-to-
apical INM but not interference with dynactin and microtubule function. This work suggests that in
this system MT minus-end-directed dynein motors play only a minor role (Norden et al., 2009). It
was proposed that the actomyosin-based apical- to-basal INM is mechanistically different from the
MT-based basal-to-apical INM in that the nucleus is not moved as a cargo but, rather, via

directional myosin-lI-dependent constriction (Schenk et al., 2009).

It has been proposed that INM influences AP fate by determining the time the AP nucleus spends
at any given location along the apical-basal axis during the cell cycle.
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3.4 Mechanisms of mitotic spindle orientation in vertebrate neural
progenitor cells

Live imaging in the chick neuroepithelium has shown that the mitotic spindle initially forms with a
random orientation and that planar orientation is achieved through directed spindle rotation
during early metaphase (Peyre et al., 2011; Roszko et al., 2006). LGN is enriched in the lateral
membrane of both mouse and chick dividing neural progenitors (Konno et al., 2008; Peyre et al.,
2011) and this lateral distribution is necessary for the rotation and for planar orientation of the
spindle (Konno et al., 2008; Morin et al., 2007; Peyre et al., 2011) (Figure 41). LGN is recruited to
the cell cortex by GDP-bound Gaii subunits and recruits NUMA to the lateral cortex. Removing LGN,
NuMA, or Gai, as well as interfering with the LGN/Gai interaction, suppress spindle rotation
during metaphase and result in defects in final spindle orientation at anaphase. Conversely,
homogenization of the complex at the cell cortex by overexpression of Gai subunits results in
erratic spindle movements and random orientation. It is postulated that the restricted localization
of the LGN complex concentrates pulling forces at the lateral cortex to dictate the plane of cell
division. Interestingly, Lisl has been reported to be involved in planar spindle orientation
(Gauthier-Fisher et al., 2009; Yingling et al., 2008). Remarkably, both loss of LGN and of Lis1 result
in almost complete spindle randomization in apical progenitors (Konno et al., 2008; Morin et al.,
2007; Peyre et al.,, 2011; Yingling et al., 2008), suggesting that the cortically anchored LGN
complex, together with the dynein/dynactin complex, is the key player in the transmission of
forces from the cell cortex to astral MTs and the spindle.
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Figure 41. Mechanisms of mitotic spindle orientation in vertebrate neural progenitor cells. a) At the onset of mitosis the mitotic
spindle is formed with a random orientation relative to the cell’s apico-basal polarity (left). The spindle then undergoes a rapid
movement of rotation and aligns with the apical surface. This planar orientation is maintained until anaphase. The LGN complex
(purple) is enriched in a ring located at the lateral cell cortex where it concentrates pulling forces on astral microtubules (large
arrowheads). Outside of the ring, pulling forces are weaker or absent (small arrowheads), and this results in a force imbalance and
rotation of the spindle until it reaches a planar orientation. b) The LGN complex: Cortically anchored Gai-GDP subunits interact with
LGN and allow the recruitment of NuMA to the cell cortex. Together orient and maintain the mitotic spindle in a planar position. The
complex could interact with the Dyein/Dynactin complex via NUMA to generate pulling forces on the MTs (Adapted from Peyre &
Morin, 2012).
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In the mouse developing neocortex, where low levels of Insc are expressed, apico-basal and
oblique divisions are rare, and most cells divide in a planar fashion. Remarkably, in these cells, loss
of Insc function increases the number of planar divisions, while its overexpression favors oblique
and apico-basal divisions (Konno et al., 2008; Postiglione et al., 2011). Basal levels of Insc may
induce a background level of imprecision that could control the balance between divisions in
which the cleavage plane bisects or bypasses the apical domain in a stochastic manner (Postiglione
et al., 2011). Insc is enriched apically in dividing cells (Konno et al., 2008; Postiglione et al., 2011),
possibly in a Par3 dependent manner (lzaki et al., 2006). Insc may actively orient the spindle by
recruiting the LGN complex apically through the conserved Insc/LGN interaction (Izaki et al., 2006).
Specific defects in spindle orientation have not been reported in NE or RG cells lacking Par
complex members, although gain and loss of function of Par3 and Par6 affect the mode of division
(proliferative versus neurogenic) of mouse cortical progenitors (Costa et al. 2008; Bultje et al.
2009).

Adhesion complexes, such as adherens junctions, may help position LGN and NuMA. In mouse
RGCs, inhibition of B1-integrin at the apical cell surface as well as knockout of a2-laminin, resulted
in slightly more planar divisions than in the control situation (Loulier et al., 2009).

Any major defect in spindle assembly, such as the formation of mono or multipolar spindles is
likely to affect spindle orientation. Subtle defects in the molecular composition of spindle poles
and in the production of astral microtubules may have more relevant effects. For example, loss of
Lis1 (Yingling et al., 2008), Ndel (Yuanyi Feng & Walsh, 2004), HTT (Godin, Colombo, et al., 2010)
from spindle poles and Lfc and Tctex from spindle MTs (Gauthier-Fisher et al., 2009) results in
significant defects in spindle orientation and neurogenesis.
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4 Context of the project

HTT is a large and ubiquitously expressed protein. Addressing its normal function is a priority in
order to understand the pathology, HD. In this context, my PhD project was devoted to the
functional validation of a novel tool, pARIS-htt, and the description of HTT role during mitosis.

Generate and validate a HTT synthetic gene to study its normal functions in a full-length context

HTT large size has hampered studies using the full-length protein. Up to date, most of the models
for HD, including cell lines, flies, worms, zebrafishes, mice and rats, were generated using only the
Exon 1 of HTT. Taking into account that Exon 1 represents only 3% of the full-length HTT, the
development of a new tool that would permit the expression of the full-length protein and the
study of the function of wild-type HTT was crucial.

We designed a construction called pARIS-htt encoding the full-length protein with a wild-type
(23Q) or pathologic (100Q) expansion. We validated pARIS-htt using a Golgi reassembly assay. We
used Hela cells stably expressing GFP-mannosidase Il that permitted us to monitor the
dissambly/reassembly of Golgi particles after MT depolymerisation. Furthermore, we analyzed the
dynamics of BDNF-eGFP-containing vesicles in mouse neuronal cells using fast 3D
videomicroscopy. The requirements for HTT in the organisation and maintenance of the Golgi as
well as in vesicular dynamics are linked to the interaction between HTT and components of the
dynein/dynactin complex (Caviston et al., 2007; Colin et al., 2008; Gauthier et al., 2004; Zala et al.,
2008). For that reason, we also generated mutant versions of pARIS-htt unable to interact with
protein partners such as dynein and HAP1.

Investigate the role of wild-type and mutant HTT during mitosis

Given the predominant neurological signs and striking neuronal death in HD, most studies on HTT
function have focused on postmitotic neurons and have revealed major roles for HTT in
transcription, apoptosis protection and axonal transport. Nevertheless HTT is a scaffold protein
and has many interactors. Within the cell, HTT is found in the nucleus and in the cytoplasm, in
neurites and at synapses and it associates with various organelles and structures. In addition,
molecular motors implicated in vesicular transport and with which HTT interacts, are important for
correct spindle positioning during cell division.

As a first approach, we investigated the loss of function of wild-type HTT in dividing cells. We
depleted endogenous HTT from cells in culture using siRNAs. We measured the spindle angle and
the localization of important proteins involved in cell division: NuMa, dynein, p15OG’“ed. In vivo we
inactivated Htt gene, by in utero electroporation and genetic ablation, and measure the cleavage
plane of apical progenitors and their cell fate during corticogenesis. As a model of asymmetric cell
division, we used NBs from transgenic D. melanogaster.
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It has been reported that HTT polyQ mutation leads to disorganization of the centrosome and a
subsequent disruption of the cell cycle leading to aneuploidy, micronuclei and dysmorphic cells
(Sathasivam et al.,, 2001). Impaired adult neurogenesis was revealed in the DG of HD mouse
models (Phillips et al., 2005; Simpson et al., 2010). In contrast, embryonic neurogenesis in HD
condition has been poorly addressed. However, premanifest HD mutation carriers have smaller
intracranial adult brain volume compared with controls that could result from an abnormal
development (Nopoulos et al., 2010). Thus, it was a prioritary question for us to address the effect
of the polyQ expansion in HTT during cell division and embryonic neurogenesis.

First observations were done regarding MT dynamics in wild-type and polyQ conditions and
measuring the spindle angle. We used Hela cells transfected with wild-type and mutant HTT
constructs, neuronal cells lines derived from knock-in mice and mouse embryonic fibroblasts
(MEFs). Analysis of the localization and interaction of +TIP, such as EB3, p15OG’”5d, CLIP-170, and
dynein was also performed. We explored the role of HTT phosphorylation at S421 by Akt using
phospho-HTT specific antibodies and HTT point-mutants. Concerning embryonic neurogenesis, we
used HD mouse models to measure the cleavage plane of neural progenitors at different stages.
The cell fate of the newly generated cells was also studied. To conclude, we utilized D.
melanogaster models of HD and analysed NBs division.
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5 pARIS-htt: a new tool to study huntingtin functions

5.1 Study presentation

HTT is a multi-domain protein whose function is yet to be fully understood. This absence of
information is due in part to the difficulty of manipulating large DNA fragments by using
conventional molecular cloning techniques. Consequently, few studies have addressed the cellular
function(s) of full-length HTT and its dysfunction(s) associated with the disease.

We describe a flexible synthetic vector encoding full-length HTT called pARIS-htt (Adaptable, RNAi
Insensitive & Synthetic). pARIS-htt was designed with the aim to facilitate mutagenesis, tagging
and cloning into diverse expression plasmids. To achieve that, the cDNA coding for full-length
human HTT was modified. As a result, pARIS-htt is insensitive to four different siRNAs allowing
gene replacement studies, contains unique restriction sites (URSs) dispersed throughout the entire
sequence and multiple cloning sites (MCS) at the N and C-terminal ends and finally, is Gateway
compatible.

HTT regulates dynein/dynactin-dependent trafficking of vesicles, such as BDNF-containing vesicles,
and of organelles, including reforming and maintenance of the Golgi (Caviston et al., 2007,
Gauthier et al.,, 2004). Based on this, we used different cellular assays to validate pARIS-htt
constructs. We demonstrated that wild-type pARIS-htt compensates for the defect induced by
silencing endogenous HTT in Golgi apparatus reformation following reversible MT disturbance.
Similarly, it rescues the defective BDNF transport in absence of endogenous HTT. A mutant form of
pARIS-htt that contains a 100Q expansion as well as HTT devoid of either HAP1 or dynein
interaction domains are unable to rescue loss of endogenous HTT.

5.2 Articlel

Raul Pardo*, Maria Molina-Calavita*, Ghislaine Poizat, Guy Keryer, Sandrine Humbert and
Frédéric Saudou. pARIS-htt: an optimised expression platform to study huntingtin reveals
functional domains required for vesicular trafficking. Mol. Brain. 2010

*equal first authors
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PARIS-htt: an optimised expression platform to
study huntingtin reveals functional domains
required for vesicular trafficking
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Abstract

Background: Huntingtin (htt) is a multi-domain protein of 350 kDa that is mutated in Huntington's disease (HD) but
whose function is yet to be fully understood. This absence of information is due in part to the difficulty of manipulating
large DNA fragments by using conventional molecular cloning techniques. Consequently, few studies have addressed
the cellular function(s) of full-length htt and its dysfunction(s) associated with the disease.

Results: We describe a flexible synthetic vector encoding full-length htt called pARIS-htt (Adaptable, RNAI Insensitive
&Synthetic). It includes synthetic cDNA coding for full-length human htt modified so that: 1) it is improved for codon
usage, 2) it is insensitive to four different siRNAs allowing gene replacement studies, 3) it contains unique restriction
sites (URSs) dispersed throughout the entire sequence without modifying the translated amino acid sequence, 4) it
contains multiple cloning sites at the N and C-ter ends and 5) it is Gateway compatible. These modifications facilitate
mutagenesis, tagging and cloning into diverse expression plasmids. Htt regulates dynein/dynactin-dependent
trafficking of vesicles, such as brain-derived neurotrophic factor (BDNF)-containing vesicles, and of organelles,
including reforming and maintenance of the Golgi near the cell centre. We used tests of these trafficking functions to
validate various pARIS-htt constructs. We demonstrated, after silencing of endogenous htt, that full-length htt
expressed from pARIS-htt rescues Golgi apparatus reformation following reversible microtubule disruption. A mutant
form of htt that contains a 100Q expansion and a htt form devoid of either HAP1 or dynein interaction domains are
both unable to rescue loss of endogenous htt. These mutants have also an impaired capacity to promote BDNF
vesicular trafficking in neuronal cells.

Conclusion: We report the validation of a synthetic gene encoding full-length htt protein that will facilitate analyses of
its structure/function. This may help provide relevant information about the cellular dysfunctions operating during the
disease. As proof of principle, we show that either polyQ expansion or deletion of key interacting domains within full-

length htt protein impairs its function in transport indicating that HD mutation induces defects on intrinsic properties
of the protein and further demonstrating the importance of studying htt in its full-length context.

A\ J

Background

Huntingtin (htt) is a protein of 350 kDa that when
mutated causes Huntington's disease (HD). HD is a dev-
astating inherited neurodegenerative disorder character-
ized by the selective dysfunction and death of particular
neurons in the brain [1,2]. The causative mutation is an
abnormally expanded CAG tract in the 5'coding region of

* Correspondence: Frederic.Saudou@curie.fr
1 Institut Curie, F-91405 Orsay, France
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Full list of author information is available at the end of the article

the htt gene that is translated into a long polyglutamine
(polyQ) stretch in the N-terminal part of the protein. HD
occurs when there are more than the threshold of 36 glu-
tamines. The mechanisms leading to disease are not fully
understood but involve both the gain of new toxic func-
tions and the loss of normal htt function(s) [1-3]. For
example, loss of htt function in the transcription of brain-
derived neurotrophic factor (BDNF) and in its microtu-
bule (MT)-dependent transport participates in HD
pathogenesis [4,5]. We and others have contributed to the

. © 2010 Pardo et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
( BIoMed Central Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.
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identification and characterization of postranslational
modifications within htt that regulate the function(s) of
both the wild-type protein and the toxicity induced by the
mutant version. These findings demonstrate the impor-
tance of the protein context. The first identified modifica-
tion of htt was its phosphorylation at serine 421 (S421).
Htt S421 is phosphorylated by Akt and the Serum and
Glucocorticoid-induced kinase (SGK) and is dephospho-
rylated by calcineurin [6-9]. Phosphorylation at S421 is
abnormally low in disease [9-11]. Dephosphorylation of
S421 is associated with reduced htt function in the MT-
dependent transport of BDNF in neurons and may con-
tribute to the selective neurodegeneration in cases of HD
[12,13]. Htt is cleaved by several proteases, including cas-
pase 6 which may play a crucial role and modify disease
progression [14]. PolyQ-htt susceptibility to cleavage is
regulated by phosphorylation of serine 434 by Cdk5 [15]
and of serine 536 by an unidentified kinase [16]. Also, the
specific acetylation of mutant htt at lysine 444 leads to its
selective degradation by autophagy, thereby reducing tox-
icity [17]. Subcellular trafficking of htt and its association
with lipid membranes can be modified by palmitoylation
of cysteine 214 [18]. Palmitoylation-resistant mutants
accelerate formation of inclusions and neuronal toxicity.
Mass spectrometry experiments have identified addi-
tional phosphorylation sites in the central and carboxy-
terminal parts of the protein [16] which may be involved
in additional mechanisms regulating its cellular func-
tions. Sequence analysis revealed at least 36 HEAT (hun-
tingtin, elongation factor 3, PR65/A subunit of protein
phosphatase 2A and mTor) repeats dispersed throughout
the protein [19,20]. The presence of these domains and
the predicted structure of htt are consistent with a cellu-
lar role as a scaffold protein [21,22]. In agreement, more
than one hundred interactors have been reported in
yeast-two-hybrid screens using various htt fragments as
baits [23,24]. The protein sequence, including the central
and carboxy-terminal part of the protein, has been very
highly conserved throughout evolution. These various
observations all indicate the importance of the full-length
protein context when addressing htt functional studies.
They have also led to the emerging notion that under-
standing normal htt function is essential if we are going
to understand the pathogenic and regulatory events that
occur during disease progression in HD patients.

Various cellular and molecular biology techniques can
be used to study the function(s) of a particular protein
and its dysfunction(s) when mutated. Many of these tech-
niques require cloning the gene of interest into appropri-
ate vector(s) for subsequent characterization. This step
can be extremely laborious and time consuming espe-
cially when dealing with large proteins, like htt, and may
constitute a difficult technical obstacle for extensive func-
tional and genetic analyses. Because of this problem, and
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despite the very large number of publications concerning
HD since the cloning of the htt gene in 1993, most studies
have used only short N-terminal fragments of the htt pro-
tein and focused on the gain of toxic function elicited by
the polyQ stretch. Indeed, expression of short N-terminal
fragments (containing the pathogenic expansion), for
example the 89 amino acid fragment corresponding to
the exon 1, are sufficient to generate a neurological phe-
notype in mice and to induce the death of various cell
types [25]. Although these models reproduce some path-
ological features observed in HD patients, exon 1 encodes
less than 3% of the full-length htt protein; consequently,
such studies do not necessarily provide a complete image
of the function(s) of the protein and the dysfunction(s)
operating during HD. In particular, the translational
product of exon 1 does not contain important sites of
post-translational modifications, notably S421, L444 and
C214, that critically regulate mutant htt toxicity. In addi-
tion, events such as caspase 6 proteolysis of the full-
length protein are bypassed in such models. Also, func-
tional studies on the role of htt in MT-dependent trans-
port have shown that wild-type full-length htt, but not
short amino-terminal fragments such as that encoded by
exon 1, stimulates the transport of BDNF-containing ves-
icles [5]. These observations make clear the need for
appropriate tools to study wild-type and pathogenic htt in
its full-length protein context.

We report the construction and validation of a com-
plete synthetic htt gene with wild-type and mutant ver-
sions. We demonstrate that the wild-type htt encoded by
this gene has a positive effect in regulating the trafficking
of vesicles and organelles; the pathogenic mutant htt does
not. We exploited the versatility of this synthetic htt gene
to generate internal deletions and demonstrate that the
regions interacting with HAP1 and dynein are required to
mediate htt function in cellular trafficking. Thus, this
fully synthetic construct will be useful for investigations
of htt function and the pathogenic mechanisms underly-
ing HD.

Results

PARIS-htt, a synthetic cDNA encoding a tagged full-length

version of human huntingtin

We designed a synthetic cDNA covering the entire
sequence of human htt as part of a modular and versatile
plasmid expression platform to study the function(s) of
the protein. This system includes all the benefits of the
Gateway system from Invitrogen. We named this plat-
form pARIS-htt (Adaptable, RNAi Insensitive &Syn-
thetic). The sequence of human htt (GenBank access
NM_002111) was optimized for eukaryotic codon usage.
We also exploited the degenerate nature of the genetic
code to eliminate various restriction sites from the
sequence and introduce others, resulting in a synthetic
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DNA sequence with unique restriction sites every 1-1.5
kbp on average without modifying the amino acid
sequence encoded (GenBank access NP_002102)(Figure
1A). The overall construction strategy required first the
synthesis and cloning of eight fragments separately in the
vector pUC19. The full-length version of the htt gene was
then generated by assembling the eight fragments (Figure
1A). In the resulting construct, the entire sequence can be
divided into eight different fragments, each single frag-
ment being flanked by unique restriction sites.

The multi-cassette nature of pARIS-htt is advanta-
geous. Any desired mutation of the full-length context
can be generated in two steps. The first step is the intro-
duction of the desired mutation into the corresponding 1
to 1.5 kbp fragment in pUC19. The second step is to rein-
troduce the mutated fragment into the full-length htt
cDNA by conventional restriction enzyme digestion and
ligation. PolyQ expansion in the htt protein causes HD, so
we produced pARIS-htt versions with and without a
sequence encoding an abnormal polyQ stretch. We gen-
erated a pARIS-htt version encoding a pathogenic polyQ
expansion of 100Q by introducing alternate CAG-CAA
repeats, because the alternating codons are genetically
more stable [26]. The Notl site upstream from the
sequence encoding the first N-ter 17 amino acids and the
Sacl site downstream from that encoding the poly-pro-
line stretch (amino acid position 92) allow the introduc-
tion of a sequence encoding a synthetic N-terminal
fragment with CAG repeats of any desired size by simple
digestion with Notl/Sacl followed by insertion of a com-
patible cassette coding for the polyQ sequence of desired
length. We generated two different cassettes coding for
23 and 100Q.

To facilitate functional studies, the pARIS-htt con-
structs were designed to allow production of various
fusion proteins: tagging of the amino terminus of the
encoded protein with a 6x histidine-tag to allow protein
purification on Ni?* columns, and fusion to the mCherry
protein; the C-terminus was tagged with haemaglutinin
(HA) that can be used for immunoprecipitation or immu-
nohistochemistry, and a tetracysteine tag (TC-Tag) that
allows the fusion protein to be specifically recognized in
living cells by biarsenic labelling reagents such as FIAsH-
EDT, and ReAsH-EDT, [27,28]. The sequences encoding
the tags can be easily removed by using the unique NotI
and EcoRI restriction sites and multicloning sites (MCS)
at the two extremities (Figure 1A; sequences and vector
maps are provided in additional files 1 and 2). Another
important feature of pARIS-htt is its full compatibility
with the Gateway technology, which allows recombina-
tion-based cloning and all its benefits in terms of time
and simplicity. This property is provided by the inclusion
of the specific recombination sites attB1 and attB2 flank-
ing the htt coding sequence. First, the htt coding wild-
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type and mutant sequences were transferred to a general
donor plasmid (pDONR201, Invitrogen) to generate
Entry vectors in which pARIS-htt is flanked by attL
sequences (BP clonase reaction). These Entry vectors are
referred as follows: pARIS-htt-N[His-mCherry]Q23-
C[HA-TC] and pARIS-htt-N[His-mCherry]Q100-C[HA-
TC]. pARIS-htt sequences can then be transferred to the
desired destination vector though a second recombina-
tion (LR clonase reaction) to generate an expression
clone. Numerous commercially available destination vec-
tors can be used for straightforward expression of syn-
thetic human htt protein in diverse biological systems
(transient expression in mammalian cells, baculovirus-
mediated infection of insect cells, lentiviral-mediated
delivery to neural cells or expression in Drosophila mela-
nogaster).

PARIS-htt drives expression of full-length huntingtin and is
insensitive to siRNAs targeting the endogenous protein

To validate pARIS-htt constructs, we first generated a
pcDNA-based (pcDNA3.2-DEST, Invitrogen) expression
vector to drive pARIS-htt expression in mammalian cells.
The constructs pARIS-httP<DNA32_N[His-mCherry]Q23-
C[HA-TC] (pARIS-mCherry-httQ23) and pARIS-
httpeDNA32_N[His-mCherry]Q100-C[HA-TC]  (pARIS-
mCherry-httQ100) were used to transfect HEK cells and
protein expression was analyzed by immunoblotting with
various htt-specific antibodies recognizing different
epitopes within the protein, including htt-4C8 whose
epitope maps to positions 443-457 of the amino acid
sequence and the htt-2C1 antibody raised against the car-
boxy-terminal region (2788-2990) [29,30] (Figure 1A).
These two antibodies gave strong signals for the synthetic
htt constructs with migration shifts due to the presence
of the tags for pARIS-mCherry-httQ23 and that of the
expanded polyQ stretch for pARIS-mCherry-httQ100
(Figure 1B). pARIS-mCherry-httQ100 but not Q23 was
selectively recognized by antibody 1C2 that binds specifi-
cally to pathogenic polyQ expansions [31]. The synthetic
constructs containing a C-terminal HA tag were also effi-
ciently recognized by anti-HA antibodies. We next inves-
tigated whether expression of pARIS-htt in transfected
Cos7 cells could be detected by direct immunofluores-
cence due to its N-terminal mCherry fluorescent tag. The
fluorescent signals corresponding to pARIS-mCherry-
httQ23 and pARIS-mCherry-httQ100 were mainly cyto-
solic and colocalized with htt-4C8 staining (Figure 1C).
This localization is in agreement with previous studies
[29].

The pARIS constructs are suitable for use in gene
replacement strategies. Indeed, the sequence was modi-
fied to make it insensitive to various siRNAs that effi-
ciently silence human, rat or mouse htt (see Methods
section for the list of siRNAs that can be used and addi-
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Figure 1 pARIS-htt an Adaptable, RNAi Insensitive & Synthetic construct encoding human huntingtin. A) Schematic representation of pARIS-
htt. The entire coding sequence is divided into 8 different fragments, each fragment being flanked by unique restriction sites every 1-1.5 kbp and
cloned independently into a modified pUC19 backbone. A multi-cassette full-length htt plasmid (pARIS-htt) was generated by assembly of these 8
individual fragments. pARIS-htt construct was tagged with 6xHis followed by a mCherry on the amino terminus. The carboxy-terminal part contains
HA and tetracysteine (TC) tags. The synthetic construct is fully compatible with the Gateway technology thanks to the introduction of flanking attL
sites. (B) pARIS-htt triggers the expression of full-length htt in HEK cells. Cells mock transfected and transfected with pARIS-mCherry-httQ23 or pARIS-
mCherry-httQ100 were analyzed by western blot using antibodies raised against different regions of htt: the amino-terminal part (htt-4C8), the car-
boxy-terminal part (htt-2C1) or the pathogenic polyQ stretch (1C2). The exact epitopes for these antibodies are illustrated in (A). Expression of the
different constructs was detected using a high affinity anti-HA antibody. (C) Confocal images of Cos7 mock transfected cells and cells transiently trans-
fected with pARIS-mCherry-httQ23 or pARIS-mCherry-httQ100 constructs. Expression of pARIS-htt is detected as a cytosolic mCherry fluorescent sig-
nal which codistributes with htt-4C8 antibody staining. Scale bar 10 pm.
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tional file 1 for their positions within htt sequence). We
previously reported a similar strategy for replacing
endogenous htt with exogenous N-ter amino acid frag-
ments of htt [9,13]. Here, we significantly improved the
pertinence of this approach, because pARIS-htt allows
the re-expression of full-length htt versions in various
cellular contexts (human, mouse or rat cells) in which the
endogenous htt is silenced. As a proof of principle, we
specifically silenced endogenous htt in HeLa cells using a
human specific siRNA, siRNA-hu-htt-585, which is par-
ticularly effective for knocking-down htt expression in
cells of human origin (data not shown). HeLa cells were
transfected with control RNA (scRNA) or siRNA-hu-htt-
585 using lipofectamine, transfected 24 h later with
PARIS-htt constructs, and then incubated for an addi-
tional 24 h. Expression of both endogenous and exoge-
nous htt was analyzed by Western blotting (Figure 2A).
Production of endogenous htt was completely abolished
by the siRNA without affecting pARIS-mCherry-httQ23/
Q100, whose expression was detected using an anti-HA
antibody. Thus, pARIS-htt is fully insensitive to siRNAs
targeting htt and therefore can be used for replacement
strategy experiments in cells.

PARIS-htt can substitute endogenous huntingtin in a Golgi
reassembly assay

We exploited this RNAI insensitivity to develop a cellular
test and to validate pARIS-htt as a functional htt protein.
Htt is found in the Golgi apparatus (GA) [32-34]. In our
hands, a significant fraction of pARIS-mCherry-httQ23
was similarly localized in discrete sites in the GA (data
not shown). Knock-down of htt in cells results in the dis-
ruption of GA structure, leading to the suggestion that htt
plays an active role in the maintenance of the GA struc-
ture near the cell centre [34]. Studies in which microtu-
bules (MTs) were depolymerized or molecular motors
were inactivated indicate that MTs and minus end-
directed motors are also required to ensure the structural
integrity and the perinuclear localization of the GA [35-
40]. The requirement for htt in the organisation and
maintenance of the Golgi is linked to the interaction
between htt and components of the dynein/dynactin
complex [34]. We therefore set up a cellular test to assess
htt function in the transport of Golgi-derived vesicles.
We used HeLa cells stably expressing GFP-mannosidase
II, a key enzyme of N-linked glycan processing often used
as a medial Golgi marker [41]. As expected, silencing of
htt was associated with the disruption of the GA struc-
ture as shown by the dispersion of Ctr433, a marker of the
cis/median Golgi [42](Figure 2B). Most cells depleted of
endogenous htt displayed spread GA, which was in many
cases fully vesicular instead of being organized into com-
pact perinuclear stacks as observed in most control
(scRNA-treated) cells (Figure 2B). We next investigated
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the role of htt in MT-dependent assembly of the GA (Fig-
ure 2C-2E). To do so, we treated the cells with nocodazole
(NZ, 4 uM, 120 min) to allow complete depolymerization
of the MT network (Figure 2C, upper panel) and disper-
sion of the GA into numerous ministacks (Figure 2E,
upper row) that localize at the exit sites of the endoplas-
mic reticulum [43]. GA integrity was then analyzed 120
min after NZ washout (Figure 2E, lower row). In scRNA-
treated cells the Golgi structure became centrally reorga-
nized again, after NZ washout, concomitant with the ref-
ormation of the MT network (Figure 2C, lower panel). In
most if not all htt-silenced cells, the Golgi remained dis-
persed 120 min after NZ washout (Figure 2E, lower row)
despite the MT network being completely reconstituted
(not shown).

We next tested whether exogenous expression of
PARIS-htt could complement the loss of endogenous htt
for MT-dependent assembly of the GA. Expression of
endogenous htt was knocked-down by treatment with
siRNA-htt. Then, pARIS-mCherry-httQ23, insensitive to
the siRNA-htt used, was expressed and cells were treated
with NZ for 120 min (Figure 3A). We assessed the reas-
sembly of the GA 120 min after NZ washout. A signifi-
cant fraction of siRNA-htt-treated cells expressing
PARIS-mCherry-httQ23 could efficiently reorganize the
GA into stacks in the perinuclear region (Figure 3B).
Thus, pARIS-mCherry-httQ23 can substitute for endog-
enous htt to reassemble the GA into tight stacks.

The role of wild-type htt in GA maintenance has been
previously studied [34]. However, it is not known whether
pathogenic htt has altered functions in the reassembly of
Golgi-derived membranes. We therefore used the same
approach but with expression of pARIS-mCherry-
httQ100 in cells depleted of endogenous htt. After NZ
washout, the highly dispersed GA was unable to reassoci-
ate completely into a well-defined perinuclear structure
(Figure 3B). Next we developed a system to quantify GA
reassembly in this experimental model. We determined
the mean volume of Golgi particles before (t = 0) and 120
min after NZ washout (t = 120, figure 3C). NZ treatment
induced the complete disintegration of the GA into
numerous ministacks with a mean volume of 0.28 + 0.04
pum3. In control cells (scRNA), 120 min after NZ washout,
the mean volume per particle increased approximately 15
fold (4.13 + 0.77 pm3, p < 0.0001). In cells depleted of
endogenous htt, Golgi-derived vesicles completely failed
to cluster and fuse (siRNA-htt, t = 0 vs t = 120; p = 0.634,
NS). Expression of pARIS-mCherry-httQ23 in htt-
depleted cells completely restored the assembly of Golgi
ministacks (3.763 + 0.71 um3, t = 0 vs t = 120, p < 0.0001)
and their transport to perinuclear regions. By contrast,
PARIS-mCherry-httQ100 was unable to promote reas-
sembly of the GA (p = 0.432, NS). This experiment indi-
cates that synthetic-Q23 htt restores MT-dependent
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Figure 2 Huntingtin depletion impairs Golgi reformation after microtubule disruption. A) Hela cells were sequentially transfected with SCRNA
or siRNA-htt and pARIS-mCherry-httQ23/Q100 and finally analyzed by western blot using antibodies that recognize either endogenous and exoge-
nous htt (htt-4C8) or only exogenous htt (HA). Treatment with siRNA-htt (second lane) results in the complete silencing of endogenous htt. Compared
to endogenous htt, pARIS-htt displays lower mobility due to fusion with tags. Note that expression levels of pARIS-mCherry-httQ23/Q100 are not
modified by siRNA-htt treatment (lanes 4 and 6). a-tubulin is used as a protein loading control. (B) HeLa cells were transfected with scRNA or siRNA-
htt, fixed and processed for staining of a Golgi marker (Ctr 433) and a-tubulin. Unlike scRNA-treated cells, cells silenced for endogenous htt display a
dispersed Golgi phenotype but an intact MT network. (C) a-tubulin staining before and after nocodazole (NZ) treatment reveals that MT network is
entirely reformed 120 min after NZ removal in Hela cells. (D) A schematic description of the transfection protocol is summarized. (E) Hela cells stably
expressing GFP-mannosidase Il were transfected with scRNA or siRNA-htt and treated with NZ for 120 min to allow a complete MT depolymerization.
Golgi reformation was monitored 120 min after NZ washout. In scRNA-treated cells the GA becomes again centrally organized. However, cells deplet-
ed from endogenous htt still present a dispersed GA at the same time point. Scale bars 10 um.
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Figure 3 pARIS-mCherry-httQ23 but not pARIS-mCherry-httQ100 restores Golgi reassembly after endogenous huntingtin depletion. A)
Gene replacement experiments and Golgi reformation assays were performed adding back pARIS-mCherry-httQ23/Q100 in cells depleted from en-
dogenous htt following the protocol indicated in the scheme. (B) Representative images of cells expressing pARIS-mCherry-httQ23 (upper pannel) or
PARIS-mCherry-httQ100 (lower panel) at t=0and t = 120 after NZ washout. While cells expressing pARIS-mCherry-httQ23 completely reassemble the
GA into tight stacks, cells expressing pARIS-mCherry-httQ100 display scattered Golgi fragments that are unable to reassemble in the perinuclear re-
gion. (C) Quantification of the GA reassembly is presented as an analysis of mean Golgi particle volume (um?3) before and after NZ washout for different
treatments. Results were obtained from 3 independent experiments in which 280 cells were analyzed. One way ANOVA followed by Fisher's Post-hoc
test: ***p < 0.0001; NS non significant. All comparisons are t = 0 vs t = 120; SCRNA: 0.283 + 0.044 vs 4.126 + 0.771; siRNA-htt 0.073 + 0.008 vs 0.158 +
0.06; SIRNA-htt + pARIS-mCherry-httQ23: 0.222 + 0.035 vs 3.763 + 0.712; siRNA-htt + pARIS-mCherry-httQ100: 0.062 + 0.006 vs 0.171 £ 0.013.
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assembly of the GA in cells with no endogenous htt. More
importantly, it shows that the pathogenic polyQ expan-
sion impairs the htt function allowing Golgi reassembly.

The dynein/dynactin-interacting domains of huntingtin are
required for Golgi apparatus reassembly
Our findings indicate that physiological organization of
the GA requires wild-type htt and that this function of htt
is impaired by polyQ expansion. This is in agreement
with previous studies linking htt function to the dynein/
dynactin-dependent transport of organelles along MTs
[5,12,13,34]. Htt interacts with the dynein intermediate
chain (DIC) via a minimal interaction region mapping to
amino acid positions 536-698 of htt [34] and with dynac-
tin via HAP1 [44-46] with a minimal interacting region
corresponding to amino acids 171-230 of htt [47]. We
have previously shown that the htt/HAP1 complex is nec-
essary for vesicle transport along MTs. Depletion of
HAP1 through siRNA treatment impairs BDNF transport
along MTs in neuronal cells [5]. We have also shown that
expression of wild-type exon 1 of htt that lacks the HAP1
binding region, does not stimulate BDNF transport in
neuronal cells; by contrast, a 480 amino acid N-ter frag-
ment can stimulate such transport. Although informa-
tive, these experiments have limited relevance because,
due to the difficulty of manipulating full-length htt, they
are based on the expression of truncated forms with most
of the protein being deleted. Therefore, it is unknown
whether these domains are required within a full-length
htt context as mediators of htt regulatory function in the
dynein/dynactin complex.

To investigate the htt-dynein interaction, we generated
a version of pARIS-htt from which part of the dynein-
interacting region was deleted (pARIS-mCherry-httQ23-
Adyn). We used immunoprecipitation experiments to
test the ability of this deletion mutant to bind dynein. We
used an antibody raised against htt (htt-4C8) to pull-
down both endogenous and synthetic htt from non trans-
fected cells and from cells expressing pARIS-mCherry-
httQ23 (Figure 4A, upper panel). Under these conditions,
dynein co-immunoprecipitated with htt provided the
cells express either endogenous htt or pARIS-mCherry-
httQ23. Similarly, both endogenous and exogenous htt
were co-immunoprecipitated with dynein as shown by
the presence of a doublet band (Figure 4A, lower panel).
This doublet band was observed in cells transfected with
PARIS-mCherry-httQ23 but was absent from non trans-
fected cells and from cells expressing pARIS-mCherry-
httQ23 but silenced for endogenous htt. Silencing experi-
ments and re-expression of htt siRNA-insensitive con-
structs were then used to assess the interaction between
dynein and the various exogenous htt constructs. In par-
ticular, we tested the interaction between dynein and full-
length htt lacking the internal dynein-binding domain.
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Anti-htt antibodies could not immunoprecipitate dynein
from pARIS-mCherry-httQ23-Adyn expressing cells
silenced for endogenous htt (Figure 4B, upper panel).
Conversely, although endogenous htt was efficiently
immunoprecipitated by an anti-dynein antibody, pARIS-
mCherry-httQ23-Adyn was not (Figure 4B, lower panel).
This strongly indicates that pARIS-mCherry-httQ23-
Adyn lacking the dynein-interaction domain does not
bind dynein.

Next we studied the effect of the expression of pARIS-
mCherry-httQ23-Adyn on GA reassembly. Unlike in cells
expressing pARIS-mCherry-httQ23 (Figure 3B, upper
panel), GA stacks remained dispersed in cells expressing
PARIS-mCherry-httQ23-Adyn (Figure 4C). We then
quantified GA reassembly (as in Figure 3C) and found
that the GA clearly failed to reassemble following NZ
washout (Figure 4D). This demonstrates a strong defect
in the fusion of Golgi-derived mini-stacks in the presence
of pARIS-mCherry-httQ23-Adyn (siRNA-htt + pARIS-
mCherry-httQ23-Adyn, t = 0 vs t = 120; p = 0.4883, NS).
In summary, we show that the htt-dynein interaction is
required for the positive effect of htt on GA fusion and
transport.

Another mechanism by which htt may regulate the
dynein-dynactin complex involves the interaction
between htt and huntingtin-associated protein 1 (HAP1),
the first htt-interacting protein described. The associa-
tion between these two proteins is enhanced when htt
contains a pathogenic polyQ stretch [44]. HAP1 interacts
with dynactin [45,46] and plays a key role in MT-depen-
dent transport of organelles in concert with htt [5,12,48].
Since the minimal interacting region of htt for HAP1 has
been mapped to amino acid positions 171-230 of htt [47],
we generated a version of pARIS-httQ23 deleted for this
domain referred to hereafter as pARIS-mCherry-httQ23-
AHAPI1.

We analyzed whether the pARIS-mCherry-httQ23-
AHAP1 mutant could bind to HAP1. We co-transfected
HEK cells with GFP-tagged HAP1 and either pARIS-
mCherry-httQ23 or pARIS-mCherry-httQ23-AHAPI.
Co-immunoprecipitation experiments demonstrated that
the htt construct not containing the 170-268 amino acid
region did not bind to HAP1 (Figure 5A) and therefore
that this region is necessary for interaction between full-
length htt and HAP1. We next tested the effect of this
deletion on Golgi reassembly. Unlike cells expressing
PARIS-mCherry-httQ23, cells expressing pARIS-
mCherry-httQ23-AHAP1 could not reorganize the GA
even 120 min after NZ washout (Figure 5B), despite com-
plete reorganization of the MT network (not shown).
Quantification of the mean volume of Golgi-derived par-
ticles (Figure 5C) confirmed the substantial defect in the
fusion of GA ministacks in cells expressing pARIS-
mCherry-httQ23-AHAP1 (t = 0 vs t = 120, p = 0.63, NS).
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Figure 4 Htt requires dynein interacting domain to facilitate the transport of Golgi-derived vesicles. A) HEK cells were treated with scRNA or
SIRNA-htt prior transfection with pARIS-mCherry-httQ23. Cellular lysates were immunoprecipitated using htt-4C8 or anti-dynein (DIC) antibodies and
immunocomplexes were subjected to SDS-PAGE to detect either htt or dynein. Dynein co-precipitates with htt when htt-4C8 antibody is used to pull-
down endogenous and exogenous htt (Upper panel). Conversely, immunoprecipitation of dynein (lower panel) pulls down both endogenous and
exogenous htt (indicated by arrows, lower mobility band corresponding to pARIS-mCherry-httQ23). The same amount of mouse or rabbit IgG's were
used as internal immunoprecipitation controls. SN stands for supernatant; IP denotes immunoprecipitation. B) A deletion mutant lacking the minimal
dynein interaction domain, denoted as pARIS-mCherry-httQ23-Adyn, is unable to bind to endogenous dynein (lane 11). (C) Golgi reassembly was
monitored in Hela cells stably expressing GFP-mannosidase I, silenced for endogenous htt and expressing pARIS-mCherry-httQ23-Adyn as the only
cellular source of htt. Most of the cells expressing pARIS-mCherry-httQ23-Adyn failed to reassemble the GA after NZ washout, suggesting that htt-
dynein interaction is required to transport retrogradely Golgi-derived vesicles. Scale bar 10 um. (D) Quantification of the Golgi dispersion as the mean
volume per Golgi particle (um3) before and after after NZ washout for the different treatments. Results were obtained from 3 independent experi-
ments in which 192 cells were scored. One way ANOVA followed by Fisher's Post-hoc test: ***p < 0.0001; NS non significant. All comparisons t =0 vs
t=120; siRNA-htt 0.073 £ 0.008 vs 0.158 + 0.06; siRNA-htt + pARIS-mCherry-httQ23:0.222 + 0.035 vs 3.763 + 0.712; siRNA-htt + pARIS-mCherry-httQ23-
Adyn:0.073 £ 0.010 vs 0.244 + 0.072.
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Figure 5 Htt requires HAP1 interacting domain to facilitate the transport of Golgi-derived vesicles. A) HEK cells were transfected with pARIS-
mCherry-httQ23 or a deletion mutant for the minimal HAP1 interaction domain (denoted as pARIS-mCherry-httQ23-AHAP1) in the absence or pres-
ence of HAP1-GFP. Exogenous htt was immunoprecipitated (IP) from cell lysates using a HA antibody and immunocomplexes were analyzed for the
presence of HAP1-GFP. Immunoprecipitations with mouse IgGs were used as a specificity control. (B) Golgi reformation assays were done in Hela cells
stably expressing GFP-mannosidase Il as described previously. Representative image of a pARIS-mCherry-httQ23-AHAP1 expressing cell failing to re-
constitute the GA after NZ washout. Scale bar 10 um. (C) Quantification of the Golgi dispersion as the mean volume per Golgi particle (um3) before
and after NZ washout for the different treatments. Results were obtained from 3 independent experiments in which 190 cells were scored. One way
ANOVA followed by Fisher's Post Hoc test: ***p < 0.0001. NS, non significant. All comparisons t = 0 vs t = 120; siRNA-htt 0.073 £ 0.008 vs 0.158 + 0.06;
SIRNA-htt + pARIS-mCherry-httQ23: 0.222 + 0.035 vs 3.763 + 0.712; siRNA-htt + pARIS-mCherry-httQ23-AHAP1: 0.073 + 0.080 vs 0.159 + 0.060.
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Our results show the importance of HAP1 in the MT-
dependent transport of GA-derived vesicles.

Together, our results further extend the role of htt in
the maintenance of GA. Indeed, we demonstrate that the
capacity of htt to regulate the retrograde transport of dis-
persed Golgi vesicles to form highly organized stacks
around the perinuclear region requires a functional inter-
action between htt and both dynein and HAP1.

PARIS-httQ23 but not pARIS-httQ100, pARIS-httQ23-Adyn
nor pARIS-httQ23-AHAP1 promotes BDNF transport in
neuronal cells

MT-dependent transport of vesicles, such as BDNF, is
regulated by the association between htt and the dynein/
dynactin complex [5,12,13,34]. Wild-type htt has a posi-
tive effect on vesicular dynamics whereas this function is
lost in HD [5,12,13,34]. Therefore, the regulatory func-
tions of htt in vesicular trafficking can be evaluated by
comparing neurons that express wild-type htt or mutant
htt. We previously described the effect of wild-type and
pathogenic versions of htt on the dynamics of vesicles
that contain eGFP or mCherry-tagged BDNF [5,12,13].
These approaches are sensitive enough to be used to eval-
uate drugs that restore MT-dependent transport that is
altered during HD [5,9,12,13,49].

We analyzed the dynamics of BDNF-eGFP-containing
vesicles in mouse neuronal cells using fast 3D videomi-
croscopy followed by deconvolution. Videomicroscopy
was performed one day after electroporation of cells with
BDNF-eGFP alone or BDNF-eGFP with pARIS-
mCherry-httQ23 and pARIS-mCherry-httQ100, in con-
ditions in which no apparent toxicity was observed. The
combination of mCherry-htt and BDNF-eGEFP facilitated
identification of cells to be recorded during videoexperi-
ments. pARIS-mCherry-httQ23 showed a similar trans-
port function as wild-type htt, significantly increasing the
mean velocity of BDNF vesicles (1.132 + 0.030 pm/s com-
pared to the control value: 0.733 + 0.044 pm/s; ***p <
0.0001, figure 6A). The presence of pARIS-mCherry-
httQ100 did not stimulate BDNF transport (0.810 + 0.056
um/s). In cells expressing pARIS-mCherry-httQ100, the
pausing time, corresponding to the percentage of time
the vesicles spent without moving, was significantly lon-
ger than in controls (from 3.09 + 0.49% in control cells to
5.83 + 1.03%, figure 6B). The pausing time in cells
expressing pARIS-httQ23 was not significantly different
from control values (3.00 + 0.38%).

Htt function in MT-dependent transport of BDNF also
involves dynein/dynactin and HAP1. We therefore inves-
tigated BDNF dynamics in neuronal cells expressing
PARIS-mCherry-httQ23-Adyn or pARIS-mCherry-
httQ23-AHAP1. Relative to control values, pARIS-
mCherry-httQ23 increased BDNF trafficking in cells,
whereas each pARIS-mCherry-httQ23-Adyn and pARIS-
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Figure 6 pARIS-mCherry-httQ23 facilitates BDNF transport
through interaction with dynein and HAP1. A) Fast 3D videomicros-
copy was performed to analyze the dynamics of BDNF-eGFP-contain-
ing vesicles in mouse neuronal cells expressing BDNF-eGFP alone or
cotransfected with pARIS-mCherry-httQ23/Q100 or dynein/HAP1 de-
letion mutants. Overexpression of pARIS-mCherry-httQ23 recapitu-
lates the transport function of wild-type htt and significantly increases
the mean velocity of BDNF-containing vesicles compared to controls
values (BDNF transfection alone). Nor the polyQ version neither pARIS-
htt deletion mutants are able to stimulate the transport of BDNF con-
taining vesicles. The pausing time of moving vesicles is quantified in
(B). Mean overall velocity is indicated as pum/sec. Data were obtained
from three independent experiments (control: 4805 tracks from 39
cells; pARIS-mCherry-httQ23: 1970 tracks from 20 cells; pARIS-mCher-
ry-httQ100: 1670 tracks from 18 cells; pARIS-mCherry-httQ23-Adyn:
4603 tracks from 25 cells; pARIS-mCherry-httQ23-AHAP1: 4029 tracks
from 20 cells). Fisher's analysis: *P < 0.05; **P < 0.01, NS, non significant.

mCherry-httQ23-AHAP1 mutants reduced the mean
velocity (Figure 6A). Similarly, we also observed a signifi-
cantly longer pausing time of BDNF-containing vesicles
in cells expressing pARIS-mCherry-httQ23-Adyn or -
AHAP1 mutants than in cells expressing pARIS-
mCherry-httQ23 (Figure 6B). These findings further
extend the functional role of full-length htt as a key regu-
lator of MT-dependent transport of organelles in cells.
Furthermore, we clearly show that in mammalian neu-
ronal cells, in a physiological full-length protein context,
this positive function is mediated by two independent
domains of htt protein: the HAP1- and dynein-interact-
ing regions.

Discussion

There is currently substantial evidence consistent with
htt being a scaffold protein required for diverse cellular
functions, including various intracellular trafficking pro-
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cesses. Unravelling htt functions in different tissues and
how these functions are spatially and temporally tuned to
the needs of the cell (via a plethora of post-translational
modifications) is extremely complex. In particular, it
requires working in the context of the full-length protein.
Due in part to htt being a very large protein, this
approach has been technically difficult and most experi-
ments addressing htt function, toxicity or post-transla-
tional modifications have used short N-terminal
fragments of htt; many studies have been based on exon-
1 that corresponds to less than 3% of the protein. Here we
present a flexible platform to render working with the
full-length protein much more straightforward. Our
PARIS-htt platform can be used for the construction of
tagged and mutant versions of htt in a full-length context.
We successfully produced tagged versions of wild-type
and mutant htt in various cell lines and generated
mutants unable to interact with known protein partners:
dynein and HAP1 (pARIS-mCherry-httQ23-Adyn and
PARIS-mCherry-httQ23-AHAPI). In the absence of htt,
the GA is disrupted, indicating that htt is required to
maintain GA organization around the centrosome
[33,50]. Indeed, a fraction of htt localizes to the GA and
may serve to regulate the post-Golgi trafficking of pro-
teins [32]. We used this property to establish reconstitu-
tion experiments to validate our pARIS-htt constructs.
Our experimental model is based on the complete silenc-
ing of endogenous htt and the expression of various syn-
thetic htt constructs in HeLa cells stably expressing a
fluorescent GA-resident protein (GFP-mannosidase II).
We used NZ treatment and monitored subsequent reas-
sembly of the GA. In cells expressing pARIS-mCherry-
httQ23, the GA was completely reassembled 120 min
after NZ washout. By contrast, cells expressing any of the
three mutant pARIS-htt constructs (pARIS-mCherry-
httQ100, pARIS-mCherry-httQ23-Adyn or pARIS-
mCherry-httQ23-AHAP1) failed to reassemble their GA:
dispersed ministacks were observed, instead of tightly
organized GA around the cell centre, suggesting a defect
in the retrograde transport of Golgi-derived vesicles.
Quantification of the mean volume of Golgi-derived par-
ticles revealed a profound defect in the fusion events in
cells expressing any of the mutants, a defect which was
not observed in cells expressing pARIS-mCherry-httQ23.
These data are in agreement with previous results linking
htt function to the maintenance of the GA via dynein
[50]. We also validated pARIS-htt constructs for their
function in the MT-dependent transport of BDNF-con-
taining vesicles: pARIS-mCherry-httQ23 made a positive
contribution to transport whereas this function was lost
in neuronal cells expressing pARIS-mCherry-httQ100.
Interestingly, BDNF transport, as assessed by measuring
BDNEF vesicle velocities, was disrupted more strongly by
PARIS-mCherry-httQ23-Adyn and pARIS-mCherry-
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httQ23-AHAP1 than by pARIS-mCherry-httQ100.
These experiments demonstrate the requirement of the
dynein (633-672) and HAP1 (168-270) interacting
regions for htt function in the context of the full-length
protein. Furthermore, they suggest that htt regulates
vesicular trafficking via distinct but functionally impor-
tant domains. These results support the notion of htt as a
scaffold protein linking vesicles and MTs and promoting
the association and regulation of components of the
molecular motor machinery, including HAP1 and the
motors dynein or kinesin. In agreement with this view,
phosphorylation of htt at S421 regulates the recruitment
of kinesin-1 to the motor complexes thereby coordinating
the directionality of vesicular transport in cells [12].
Moreover, our results strongly suggest that pathogenic
polyQ expansions may influence the protein's conforma-
tion and its association with motor complexes.

The study of htt function(s) in health and disease is
complex, because the protein is widely distributed, but
the pathological mutant disables only a small subset of
neurons and does so only after many years. Numerous
questions concerning the cellular functions of wild-type
htt remain unanswered. The role of htt in the regulation
of vesicular trafficking is one of its best-described func-
tions [5,12,13,34] and is certainly not limited to its associ-
ation with dynein or HAP1. Indeed, the contribution of
htt to different membrane trafficking events involves
other protein partners, such as HIP-1 [51], HAP40 [52],
Rab8/optineurin [32,53] or Rab11 [54]. Determination of
the true contribution of the reported vesicular trafficking
defects to the pathology of HD will certainly require more
comprehensive studies. Any such studies would be
strengthened by working with the full-length protein, so
PARIS-htt constitutes a valuable expression platform for
future investigations.

Finally, the combination of yeast-two-hybrid tech-
niques with biochemical approaches led to the identifica-
tion of more than 100 non redundant htt-interactors.
These factors can be classified into different functional
groups, including proteins involved in cytoskeletal orga-
nization, signal transduction, synaptic transmission, pro-
teolysis and regulation of transcription or translation
[23,24,55]. It is important to validate these interacting
proteins as bona fide genetic modifiers, so that they can
then be used to provide insight into the normal function
of htt in neuronal and non-neuronal cells, and into the
molecular pathogenesis of HD. Here again, pARIS-htt
may be a valuable tool for use with other biological
approaches for exploring these issues.

Conclusions

We present a comprehensive set of vectors designed for
mutation/tagging and expression of full-length hunting-
tin. We hope this vector platform will be of value to the
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scientific community and facilitate functional and genetic
studies of htt in the near future.

Methods

Statistical analyses

InfoStat software version 2009 (InfoStat Group, FCA,
Cordoba National University, Argentina) was used for the
analysis of variance and followed by a post hoc LSD
Fisher's test. Data are expressed as mean +/- S.E.IM. *P <
0.05;**P < 0.01;***P < 0.001.

Constructs and siRNA

The plasmid encoding BDNF-eGFP was previously
described [5,56]. BDNF-eGFP shows cellular localization,
processing, and secretion properties indistinguishable
from those of endogenous BDNF. The plasmid encoding
for the huntingtin-associated protein 1 (HAP1) tagged
with GFP was a gift of XJ Li (Emory University, Atlanta,
USA). The siRNA targeting human huntingtin (siHtt-
hu585, Eurogentec, Seraing, Belgium) corresponds to the
coding region 279-298 of human htt mRNA (NCBI ref.
seq. NM_002111). The control RNA (scRNA, ATC-
GAGCTACCACGAACGCTT, Eurogentec) has a unique
sequence which does not match to any sequence in the
genome of interest.

Construction of pARIS-htt

PARIS-htt was engineered based on the cDNA of full-
lengh human htt using OptGene (Ocimum Biosolutions,
Hyderabad, India) gene optimizing tool. Gene synthesis
was performed by assembly of oligonucleotides using
proprietary in-house protocols of BaseClear BV (Leiden,
Netherlands). The original sequence was designed with a
polyglutamine stretch of 23 glutamines. Glutamine
repeats were encoded by alternate CAG/CAA codons to
provide more genetic stability. The first base on the start
translation codon is considered position number 1.

The pARIS-htt sequence has been rendered insensitive
to different siRNAs commonly used in our laboratory:
siHtt-1.1 AAGAACTTTCAGCTACCAA (human spe-
cific, position 275-293); siHtt-hu585 AACTTTCAGC-
TACCAAGAAAG (human specific, position 279-298);
siHtt-6: AAGCTTTGATGGATTCTAA (human specific,
position 474-492); siHtt-13: GCAGCTTGTCCAGGTT-
TAT (human, rat and mouse specific, position 1062-
1080). siHtt-hu585 was used in this study because it is
particularly effective to knock-down endogenous htt
expression in cells of human origin (referred as siRNA-htt
throughout the text).

The full-length engineered pARIS-htt construct was
entirely sequenced and inserted into HindIII/BamHI sites
of a pUC19 variant (Baseclear BV) for amplification. The
PARIS-htt sequence contains flanking attLl and attL2
sites to allow recombination into pDON201 donor vector
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(BP clonase reaction, Invitrogen, Carlsbad, USA). A sec-
ond recombination with pcDNA3.2-DEST (Invitrogen)
using LR clonase was necessary to generate a pcDNA3-
based destination vector. Recombinations were done in a
10 pl final volume following instructions provided by the
manufacturer. Amplification of the constructs was done
in TOP10 or DH5a E. coli strains (Invitrogen). A DNA
fragment of htt containing a polyQ stretch of 100 glu-
tamines was synthesized using alternative protocols by
Geneart AG (Regensburg, Germany) and inserted into
Notl/Sacl sites of pARIS-htt to replace the 23Q stretch.
Vector maps are available in additional file 1.

We use the following nomenclature to describe the first
step constructs in the Entry vector: pARIS-htt-N[His-
mCherry]Q23-C[HA-TC] and PARIS-htt-N[His-
mCherry]Q100-C[HA-TC]. These constructs were trans-
posed to pcDNA3.2 to generate pARIS-httPcDNA32.
N[His-mCherry]Q23-C[HA-TC] (pARIS-mCherry-
httQ23) and pARIS-httPcPNA32-N[His-mCherry]Q100-
C[HA-TC] (pARIS-mCherry-httQ100).

To generate the htt construct deleted for the dynein-
interacting domain, the deletion was first generated
within the F3 fragment (pUC19-F3A633-672), transposed
to Entry-based pARIS-htt by insertion of Sacll/Kpnl
(fragment 3) generating PARIS-htt-N[His-
mCherry]Q23-A633-672-C[HA-TC] and next transposed
to pcDNA3.2 to generate pARIS-httP<DNA32-N[His-
mCherry]Q23-A633-672-C[HA-TC] hereafter denoted
PARIS-mCherry-httQ23-Adyn. To generate the htt con-
struct deleted for the HAP1 binding domain, the deletion
was first generated within the F2 fragment (pUC19-
F2A170-268), transposed to Entry-based pARIS-htt by
insertion of Sacl/Sacll (fragment 2) generating pARIS-
htt-N[His-mCherry]Q23-A170-268-C[HA-TC] and next
transposed to pcDNA3.2 to generate pARIS-httpcDNA3.2.
N[His-mCherry]Q23-A170-268-C[HA-TC] hereafter
denoted pARIS-mCherry-httQ23-AHAPI. Requests for
constructs may be sent to the following e-mail address:
paris-htt.constructs@curie.fr.

Cell Culture

HEK and Cos7 cells were grown at 37°C in 5% CO2 in
Dulbeco's modified Eagle's medium (DMEM) supple-
mented with 10% bovine calf serum, 1% L-glutamine and
antibiotics (50 units/ml penicillin and 50 pg/ml strepto-
mycin). HeLa cells stably expressing GFP-mannosidase II
(gift of F. Perez, Institut Curie, Paris, France), were grown
at 37°C in 5% CO, and cultured in DMEM supplemented
with 10% bovine calf serum, 1% L-glutamine and 400 pg/
ml geneticin (Gibco, Carlsbad, USA). Mouse neuronal
cells, STHdh*/+ cells derived from immortalized striatal
progenitor cells were grown as previously described [57].
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Cell Transfection

For pARIS-htt expression analysis, HEK cells were trans-
fected with pARIS-mCherry-httQ23, pARIS-mCherry-
httQ100 or equivalent amount of empty vector, using the
calcium phosphate method [58]. Western blot analysis
was performed after 24-48 h.

For immunofluorescence experiments, Cos7 cells
seeded in 12-well plates with 18 mm coverslips were
transfected with pARIS-mCherry-httQ23, pARIS-
mCherry-httQ100 or equivalent amount of empty vector
using FUGENE reagent (Roche, Mannheim, Germany)
according to the manufacturer's instructions. Immunos-
taining was done after 48 h.

For gene replacement experiments, HeLa cells stably
expressing GFP-mannosidase II were seeded in 12-well
plates with 18 mm coverslips. Sequential transfection was
performed as following: attached cells were first trans-
fected using Lipofectamine 2000 (Invitrogen) with
siRNA-htt or scRNA. After 24 h, cells were transfected
again with pARIS-mCherry-httQ23, pARIS-mCherry-
httQ100, pARIS-mCherry-httQ23-Adyn or pARIS-
mCherry-httQ23-AHAPI. Cells were processed for west-
ern blotting or immunostaining 24 h after. DNA, siRNA
and Lipofectamine 2000 quantities were used according
to the manufacturer's instructions.

To perform co-immunoprecipitation experiments,
HEK cells were transfected using Lipofectamine 2000
with siRNA-htt as described above. After 24 h the cells
were transfected with pARIS-mCherry-Htt constructs
and/or HAP1-GFP using the calcium phosphate method.
Immunoprecipitation assays were performed after 24 h.

For videomicroscopy experiments mouse neuronal cells
were electroporated with Kit L Nucleofector according to
the supplier's manual (Amaxa, Kéln, Germany). BDNF-
eGFP and pARIS-htt DNA or equivalent amount of
empty vector were added to the electroporation mix.
After electroporation, cells were seeded in 12 well plates
with 18 mm coverslips.

Nocodazole treatment

Transfected HeLa GFP-mannosidase II cells were treated
with 4 uM nocodazole for 30 min at 4°C and 90 min at
37°C to allow a complete depolymerization of microtu-
bules. Cells were washed twice with DMEM prior to
methanol fixation (2 min at -20°C).

Antibodies

Anti-huntingtin antibodies used in this study htt-4C8,
htt-2C1 and 1C2 were previously described [29,31], a-
tubulin was from Sigma (St Louis, USA), high affinity
anti-HA and anti-GFP were from Roche, anti-dynein
intermediate chain (DIC) was from Chemicon (Billerica,
USA), secondary IgG-HRP antibodies were from Jackson
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ImmunoResearch (WestGrove, USA), the mouse mono-
clonal antibody against the cis/medial Golgi marker
CTR433 was previously described [42]. Alexa Fluor sec-
ondary antibodies used in immunofluorescence experi-
ments were from Invitrogen.

Western Blot

Transfected cells were harvested and lyzed in 50 mM
Tris-HCI, pH 7.5, containing 0.1% Triton X-100, 2 mM
EDTA, 2 mM EGTA, 50 mM NaF, 10 mM B-glycerophos-
phate, 5 mM sodium pyrophosphate, 1 mM sodium
orthovanadate, 0.1% (v/v) p-mercaptoethanol, 250 uM
PMSE, 10 mg/ml aprotinin and leupeptin. Cell lysates
were centrifuged at 20,000 g for 10 min at 4°C. Equal
amounts of protein were subjected to SDS-PAGE on 6%
polyacrylamide gels and transferred to nitrocellulose
membranes (Whatman, Dassel, Germany). Blocked
membranes (5% milk in TBS-0.1% Tween-20) were incu-
bated with mouse anti-huntingtin antibodies (htt-4C8,
htt-2C1), mouse anti-polyQ expansion (1C2), rat anti-
HA, mouse anti-GFP, mouse anti-DIC or mouse anti-a-
tubulin antibodies and washed three times with TBS-
0.1% Tween-20 for 10 min. Membranes were then
labelled with secondary IgG-HRP antibodies raised
against each corresponding primary antibody. After three
washes, the membranes were incubated with SuperSignal
West Pico Chemiluminescent Substrate (Pierce, Erembo-
degem, Belgium) according to the instructions of the sup-
plier. Membranes were exposed to Amersham
Hyperfilm™ MP (GE Healthcare, Buckinghamshire, UK)
films and developed.

Immunoprecipitation

Immunoprecipitations were performed as described [59]
with minor modifications. Cell lysis and wash of the
immunocomplexes were done in 50 mM of Tris 1 M (pH
8), 150 mM NaCl and 1% of NP40 containing protease
and phosphatase inhibitors. Briefly, transfected cells were
harvested and lyzed on ice. Lysates were centrifuged at
16,000 g (15 min at 4°C) and precleared (30 min at 4°C)
using protein A-Sepharose beads (Sigma). Cleared lysates
were incubated for 2-3 h at 4°C with protein A-Sepharose
beads conjugated to mouse htt-4C8, mouse DIC or rat
HA antibodies. Immunoprecipitates were washed three
times and analyzed by Western blot as described.

Immunofluorescence

After methanol fixation cells were blocked for 1 h at RT
with PBS-BSA 3% and incubated with primary antibodies
for 1 h prior staining with Alexa Fluor secondary anti-
bodies. Nuclei were stained with DAPI (Roche). The
mounting medium was 0.1 g/ml Mowiol 4-88 (Calbio-
chem, Darmstadt, Germany) in 20% glycerol.
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Image acquisition

Images on fixed samples were acquired at RT with a Leica
SP5 laser scanning confocal microscope equipped with a
63 x oil-immersion objective or with a Leica DM RXA
microscope with a PL. APO oil 63 x NA of 1.4 objective
coupled to a piezzo and a Micromax RTE/CCD-1300-Y/
HS camera controlled by Metamorph software (Molecu-
lar Devices, Sunnyvale, CA). Z-stack step was of 0.2 pm.
All stacks were treated by automatic batch deconvolution
using the PSF of the optical system, Meinel algorithm
with parameters set at 7 iterations, 0.7 sigma and 4 fre-
quencies.

Computer morphometric analysis of the Golgi apparatus
Images of fixed cells were acquired as described (see
above, image aquisition). Only HeLa cells stably express-
ing GFP-mannosidase II and transfected with our pARIS-
htt constructs were analyzed. Once deconvolved, images
were analyzed with Image] software using 3D object
counter plugin ([60]; available at http://imagej-
docu.tudor.lu/doku.php?id=plugin:analy-
sis:3d_object_counter:start). The quantification was
achieved tagging each identified object within the z-
stacks (around 30 z-stacks per image), treating each Golgi
particle as an individual object. Statistics about each
object were calculated, volume as: number of voxels of
the object x x calibration x y calibration x z calibration.
The overall measurements were obtained from 3 inde-
pendent experiments and analyzed to determine the
mean volume per particle for each condition.

Videomicroscopy

Mouse neuronal transfected cells were grown on glass
coverslips and mounted in a Ludin's chamber. The micro-
scope and the chamber were kept at 33°C. Live videomi-
croscopy was carried out using a Leica DM IRBE
microscope and a PL APO oil 100 x objective with a
numerical aperture of 1.40-0.70, coupled to a piezo device
(PI) and recorded with Photometrics CoolSNAP HQ2
camera (Roper Scientific, Trenton, NJ) controlled by
Metamorph software. Images were collected in stream
set at 2 x 2 binning with an exposure time of 50-150 ms
(frequency of 2 s) with a Z-step of 0.3 pum. Deconvolution
was performed as described for fixed samples. All
dynamic parameters of intracellular transport were
obtained from three independent experiments with a
total of about 1500-5000 measures from 18-39 indepen-
dent cells. Dynamics were characterized by tracking posi-
tions of eGFP vesicles as a function of time with an
especially developed plugin (available at http://

rsb.info.nih.gov/ij/plugins/track/track.html) for Image J.
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Additional material

Additional file 1 Sequences and maps of pARIS-htt constructs used in
the study. The file includes vector maps, DNA sequences, protein transla-
tion and additional information for pARIS-mCherry-httQ23/Q100 plasmids
in Entry vector. They were generated using Gene Construction Kit (Textco
BioSoftware, West Lebanon, USA) and Serial Cloner 2.0 (available at http://
serialbasics freefr/Serial_Clonerhtml.) software.

Additional file 2 Sequence text files of pARIS-htt constructs used in
the study. It includes sequences of pARIS-mCherry-httQ23/Q100 plasmids
in Entry and pcDNA vectors.
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5.3 Discussion

In the presented article “pARIS-htt: an optimised expression platform to study huntingtin reveals
functional domains required for vesicular trafficking” we report the validation of a synthetic gene
encoding full-length HTT protein that will facilitate analyses of its structure and function.

There is currently substantial evidence consistent with HTT being a scaffold protein required for
diverse cellular functions, including intracellular trafficking processes. Unravelling HTT functions in
different tissues and how these functions are spatially and temporally tuned to the needs of the
cell (via a plethora of post-translational modifications) is extremely complex. In addition, HTT is
widely distributed. Working in a HTT full-length context is crucial, however due in part to HTT
being a very large protein, this approach has been technically difficult. Most experiments
addressing HTT function, toxicity or PTM have used short N-terminal fragments of HTT. Many
studies have been based on exon-1 that corresponds to less than 3% of the protein. Working with
truncated forms of HTT leads to a restricted view of the function(s) of HTT as phosphorylations,
clivages and others PTM take place on the entire HTT sequence. Furthermore, these modifications
can occur at the same time to tightly regulate temporally and locally different cellular functions.
For example, phosphorylation by Akt at S421 has been show to modulate vesicular transport
directionality (Colin et al., 2008; Pineda et al., 2009) and Cdk5 phosphorylations at $1181/1201 to
regulate vesicles velocity (Ben M’Barek at al., in preparation). We can imagine these two
phosphorylations taking place simultaneously to satisfy specific cellular requirements. Modelling
the combinations of absence/constitutive phosphorylations at these sites has to be done on full-
length HTT with an easy to manipulate tool.

We generated pARIS-htt deletion mutants for the interaction domain of HTT with HAP1 and
dynein, two important HTT interactors in vesicular transport. As for the HD mutant condition,
these constructs induced reduced vesicular mean velocity and increased pausing time.
Interestingly, this was more accentuated in Adynein and AHAP1 than in the HD mutant condition.
These results demonstrate the requirement of the dynein and HAP1 interacting regions for HTT
function in a full-length context. We suggest that HTT regulates vesicular trafficking via distinct but
functionally important domains. Furthermore, HTT solely interaction with dynein or HAP1 was not
sufficient to rescue the lost of interaction with the other partner protein. This observation
reinforces the hypothesis of HTT being a central scaffold element in vesicular transport.

Here we present a flexible platform to work with the full-length protein much more
straightforward. Our pARIS-htt platform can be used for the construction of tagged and mutant
versions of HTT in a full-length context. We hope this vector platform will be of value to the HD
community and facilitate functional and genetic studies of HTT in the near future.
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6 Role of HTT during mitosis

6.1 Study presentation

Knock-out of HTT in mouse results in embryonic lethality at E7.5, demonstrating its indispensible
role during mammalian development.

In this study, we identified a previously undescribed role for HTT in mitosis. We found that HTT
localizes to the spindle pole where it participates to the recruitment of several key mitotic players
to the spindle apparatus. More interestingly, HTT is specifically required for modulating the
orientation of the mitotic spindle without changing other parameters of the cell cycle. Knocking-
down HTT by siRNA resulted in the mislocalization of dynein/dynactin complex and NuMA from
the spindle pole.

HTT is critically required by neural progenitors of the developing cerebral cortex. Depletion of HTT
by either siRNA interference or conditional knockout leads to significantly increased spindle
misorientation that is in favor of apical-basal cleavages. Such alteration of mitotic cleavage
orientation is correlated with the depletion of the progenitor pool and the increased production of
postmitotic cortical neurons. Interestingly, HTT function is conserved in D. melanogaster as
depletion of htt results in altered mitotic spindle orientation in embryonic NBs.

6.2 Articlell

Juliette D. Godin*, Kelly Colombo*, Maria Molina-Calavita, Guy Keryer, Diana Zala, Bénédicte C.
Charrin, Paula Dietrich, Marie-Laure Volvert, Frangois Guillemot, loannis Dragatsis, Yohanns
Bellaiche, Frédéric Saudou, Laurent Nguyen, and Sandrine Humbert. Huntingtin is required for
mitotic spindle orientation and mammalian neurogenesis. Neuron. 2010.

*equal first authors
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SUMMARY

Huntingtin is the protein mutated in Huntington’s
disease, a devastating neurodegenerative disorder.
We demonstrate here that huntingtin is essential to
control mitosis. Huntingtin is localized at spindle
poles during mitosis. RNAi-mediated silencing of
huntingtin in cells disrupts spindle orientation by
mislocalizing the p150%“¢? subunit of dynactin,
dynein, and the large nuclear mitotic apparatus
NuMA protein. This leads to increased apoptosis
following mitosis of adherent cells in vitro. In vivo
inactivation of huntingtin by RNAi or by ablation of
the Hdh gene affects spindle orientation and cell
fate of cortical progenitors of the ventricular zone
in mouse embryos. This function is conserved in
Drosophila, the specific disruption of Drosophila
huntingtin in neuroblast precursors leading to
spindle misorientation. Moreover, Drosophila hun-
tingtin restores spindle misorientation in mammalian
cells. These findings reveal an unexpected role for
huntingtin in dividing cells, with potential important
implications in health and disease.

INTRODUCTION

Mutation of huntingtin (htt) causes Huntington’s disease (HD),
a neurodegenerative disorder characterized by severe psychi-
atric, cognitive, and motor deficits and selective neuronal death
in the brain. The mechanisms leading to disease are not fully
understood, but increasing evidence suggest that in addition
to the gain of new toxic properties, loss of wild-type htt function
also contributes to pathogenesis (Borrell-Pages et al., 2006;
Cattaneo et al., 2005). Given the predominant neurological signs
and striking neuronal death in HD, most studies on htt function

392 Neuron 67, 392-406, August 12, 2010 ©2010 Elsevier Inc.

have focused on postmitotic neurons and have revealed major
roles for htt in transcription and axonal transport (Caviston
et al., 2007; Gauthier et al., 2004; Zuccato et al., 2001). Wild-
type htt interacts with microtubules, the dynein/dynactin
complex and kinesin to regulate the microtubule-dependent
transport of organelles in neurons (Caviston et al., 2007; Colin
et al., 2008; Gauthier et al., 2004; McGuire et al., 2006). However,
no studies have investigated the possible role of htt during
division. Indeed, htt is not restricted to differentiated neurons
but is found at high levels in dividing cells where it associates
to the centrosomal region and microtubules (Gauthier et al.,
2004; Gutekunst et al., 1995; Hoffner et al., 2002; Sathasivam
et al., 2001).

Spindle regulation is crucial to ensure the proper segregation
not only of chromosomes, but also of cell fate determinant fac-
tors. The orientation of the mitotic spindle involves several steps,
including the proper assembly and positioning of the spindle.
These two steps are controlled by various molecular compo-
nents. Among them, the dynein/dynactin complex ensures the
correct spindle formation and, when anchored at the cell cortex,
also generates pulling forces that are essential for proper cell
division (Busson et al., 1998; Carminati and Stearns, 1997;
Farkasovsky and Kuntzel, 2001; Nguyen-Ngoc et al., 2007;
O’Connell and Wang, 2000; Skop and White, 1998). During
mitosis, dynein and dynactin localize along spindle microtubules
with an enrichment at spindle poles (Fant et al., 2004). This loca-
tion at the spindle pole is linked to the dynein’s ability to move
toward the minus ends of microtubules. The dynein/dynactin
complex is thought to focus microtubule minus ends at
the spindle poles. In agreement with this idea, disrupting the
dynein/dynactin complex by the use of specific antibodies alters
spindle assembly (Merdes et al., 2000). Similarly, expressing the
p50/dynamitin subunit of dynactin prevents the formation of
a functional dynactin complex and subsequently impairs mitotic
spindle morphology (Echeverri et al., 1996; Merdes et al., 2000).
Finally, dynactin is required for spindle assembly in Drosophila
neuroblasts (Siller et al., 2005). These data implicate dynein/
dynactin as a central player in spindle pole organization.
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Htt facilitates the dynein/dynactin-mediated transport of
organelles along microtubules in neuronal cells. We thus investi-
gated whether htt could also function during mitosis. We found
that htt localized to the spindle poles during mitosis, from
prophase to anaphase. The downregulation of htt led to a defect
in spindle orientation reminiscent of the phenotype obtained from
the silencing of p150%®? subunit of dynactin. We showed that
siRNA targeting htt mislocalized p150%¢?, dynein, and the
large nuclear mitotic apparatus (NuMA) protein, an essential
player in mitotic assembly and maintenance (Radulescu and
Cleveland, 2010). Furthermore, htt was required for proper
spindle orientation and for cell fate determination of murine
neuronal progenitors in vivo. Finally, this role of htt was conserved
in Drosophila. Our study now establishes a link between htt,
proper spindle orientation, and neurogenesis in mammals.

RESULTS

Huntingtin Localizes to Spindle Poles during Mitosis

We analyzed the subcellular localization of htt in mouse neuronal
cells using various antibodies (Trettel et al., 2000) (Figure 1A). We
first used a polyclonal antibody, pAb SE3619. During interphase,
htt showed a punctuated distribution in the nucleus, reminiscent
of stainings previously described using other anti-htt antibodies
(Anne et al., 2007; Kegel et al., 2002) (Figure 1B). During mitosis,
htt was specifically located at the spindle poles, between
prophase to late anaphase. Htt staining was also observed at
the spindle midzone during anaphase (Figure 1B).

We then checked the specificity of the htt antibody by trans-
fecting cells with small interfering RNAs (siRNA) directed against
htt (si-htt1). This treatment led to a selective, and statistically
significant, reduction of signal intensity at the spindle pole
(Figures 1B-1D). We further confirmed the subcellular localiza-
tion of htt using several other anti-htt antibodies directed against
various epitopes of the htt protein (Lunkes et al., 2002) (Figures
1A, 1E, and S1). These antibodies showed htt to be concentrated
at the spindle poles particularly during metaphase, consistent
with our observations using the pAb SE3619 (Figures 1E and S1).

Huntingtin Modulates Mitotic Spindle Orientation

We next investigated the putative function of htt at spindle poles.
We transfected neuronal cells with scramble siRNA or si-htt1 tar-
geting the mouse htt sequence. We immunostained cells with an
antibody against y-tubulin to analyze in Z-series stacks the posi-
tion of the spindle poles with respect to the substratum plane
(Figures 2A and 2C). In control cells, the majority of the spindles
were properly oriented parallel to the substratum plane (~75%,
n = 66) (Figure S2A). In contrast, in 53% of htt depleted cells
(n = 89) the spindle was not correctly aligned (more than nine
stacks of 0.2 um between the two poles, AZ > 1.8 um). Spindle
misorientation was then measured during metaphase by deter-
mining the angle between the pole-pole axis (axis of the meta-
phase spindle) and the substratum plane (Figure 2D). Whereas
control cells show an angle mostly smaller than 10° (7.9° + 1.3,
n = 42), the average angle in si-htt1-transfected cells was signif-
icantly higher (20.4° + 3.8, n = 48), indicating aberrant spindle
orientation relative to the substratum (Figure 2E, right graph).
Spindle misorientation was also supported by the fact that the

proportion of cells showing a relative distribution of spindle
angles under 10° was markedly lower among si-htt1-transfected
cells (30%) than among control cells (70%). A significant propor-
tion (48%) of htt-depleted cells had spindle angles greater than
20° (Figure 2E). No correlation between spindle angles and cell
area in metaphase was observed (Figure S2B), indicating that
the changes in the spindle angle do not result from changes
in cell dimensions. To confirm these results, we reduced htt
levels using si-htt2 whose target sequence is located in the C
terminus (Figures 1A, 2B, and 2C). Similar results showing a
misoriented spindle when downregulating htt were obtained
(Figure 2F). Next we introduced an N-terminal 1301 amino acid
fragment of htt (Figures 2B, 2C, and 2F) (Anne et al., 2007).
The si-htt2 targeted the endogenous mouse htt and had no
effect on the expression of htt-1301 fragment (Figure 2B). This
N-terminal fragment restored the spindle orientation defect
observed with si-htt2 to the control situation (Figures 2C and
2F). Thus loss of htt leads to spindle misorientation and the htt-
1301 fragment recapitulates the function of htt during mitotic
spindle orientation.

Given that htt is also expressed in nonneuronal cells (Tao and
Tartakoff, 2001), we tested the possibility that the function of htt
in spindle orientation extended to other cell types. We analyzed
the role of htt in HelLa cells, which have been widely used to
study different aspects of mitosis (Figures S2C-S2F). Htt levels
were similar in HeLa and in neuronal cells (data not shown). Htt
was concentrated at the spindle poles during mitosis
(Figure S2C). Depletion of htt by RNA interference induced
a statistically significant increased percentage of HelLa cells
with misorientated spindles during mitosis (more than nine
stacks of 0.2 um between the two poles, AZ > 1.8 um) (Figures
S2D-S2F) as in neuronal cells (Figure 2; Figure S2A). These find-
ings suggest that htt ubiquitously regulates spindle orientation.

Huntingtin Is Required for the Recruitment of Dynein/
Dynactin and NuMA to the Spindie and for Its Positioning
What are the underlying mechanisms by which htt moni-
tors spindle orientation? We performed immunostainings for
a-tubulin to analyze the morphology of mitotic spindles and
astral microtubules. The general morphology of the spindle
and asters emerging from the poles were comparable in htt-
depleted and control mouse neuronal cells (Figure 3A). However,
si-htt1-treated cells exhibited smaller spindles (Figures 3A and
3B). The smaller spindles were correlated to the smaller size of
these cells (Figure 3C). As mitotic spindle and the formation of
asters are dynamic microtubule-based structures, we depoly-
merized microtubules with nocodazole and followed microtubule
regrowth after washout of the drug in si-htt1 and scramble RNA-
treated neuronal cells. Microtubules regrowth was allowed for 4,
8, 12, and 18 min (t = 0 and t = 12 min are shown in Figure 3D).
The nucleation at these different time points was similar in both
conditions (Figure 3D and data not shown). Further, the speed
of microtubule plus-end binding protein 3 fused to GFP (EB3-
GFP) comets was similar in si-htt1 and scramble-treated cells
(si-htt1: 0.23 £ 0.11 um/s, n = 18; scramble: 0.24 + 0.14 pum/s,
n = 17; mean = SEM). In conclusion, depletion of htt leads to
smaller mitotic spindle without affecting microtubule nucleation
and growth.

Neuron 67, 392-406, August 12, 2010 ©2010 Elsevier Inc. 393
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Figure 1. Huntingtin Localizes to Spindle Poles during Mitosis
(A) Schematic representation of htt.
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(B) Immunostaining of mouse neuronal cells with anti-y-tubulin and anti-htt (SE3619, red) antibodies and DAPI counterstaining.
(C) Lysates from scramble and si-htt1 RNA-treated cells are analyzed by immunoblotting using anti-htt (4C8) and anti-a-tubulin antibodies.

(D) Quantification of anti-htt (SE3619) signal at the spindle poles. ***p < 0.001.

(E) Immunostaining of metaphase mouse neuronal cells using 812, 4C8, and 2B4 htt antibodies.

All scale bars, 5 um. Error bars, SEM.

The p150%*¢? subunit of dynactin associates with cytoplasmic
dynein to regulate spindle orientation (Carminati and Stearns,
1997; Moore et al., 2008; Siller et al., 2005; Skop and White,
1998). Htt forms a complex with dynein/dynactin to stimulate
axonal transport in neurons (Gauthier et al., 2004). NuMA is
another essential component in mitotic spindle pole formation
(Merdes et al., 1996; Radulescu and Cleveland, 2010), which
was reported to interact with htt by yeast two-hybrid screening
(Kaltenbach et al., 2007). We first compared the phenotype
observed in htt-depleted cells to that induced by the silencing

394 Neuron 67, 392-406, August 12, 2010 ©2010 Elsevier Inc.

of p150%¢? (Figure 2A). Spindle misorientation was observed
to similar extends after silencing either htt or p150%¢“ with an
increase in the average spindle angle and distribution (Figures
2C-2E). As with htt depletion, in p150%“?-depleted cells, no
correlation between spindle angles and cell area in metaphase
was observed, while the spindle length was reduced (Figures
3B, 3C, 4B, and S2B). We also investigated whether the deple-
tion of htt affects the distribution of p150%“¢?, Consistent with
previous studies, p150%“®? was observed at the spindle poles
and at the spindle during mitosis (Figure 4A) (Busson et al.,
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Figure 2. Loss of Huntingtin Causes Spindle Misorientation

(A) Immunoblotting of scrambile, si-htt1, and si-p1 50%“? RNA-treated mouse neuronal cell extracts using anti-htt (4C8), anti-p1 50G¢9 anti-g-tubulin, and anti-B-
actin antibodies.

(B) Immunoblotting of extracts from scramble and si-htt2 RNA-treated mouse neuronal cells expressing htt 1301 N-terminal fragment (YFP-htt-1301) or empty
vector (YFP) using anti-htt (4C8), anti-a-tubulin, and anti-B-actin antibodies.

(C) Immunostaining of mouse neuronal cells treated as in (A) and (B) with y-tubulin and DAPI and Z-X projections (top) or Z-stacks (bottom). Scale bar, 10 pm.
(D) Scheme illustrating the measurement of the spindle angle o.

(E and F) Distribution and average of spindle angles of metaphase cells in mouse neuronal cells treated with scramble, si-htt1, or si- p150%“°? RNAs (E) and (F)
with scramble, si-htt2, scramble + YFP-htt-1301, and si-htt2 + YFP-htt-1301.

All graphs ***p < 0.001. Error bars, SEM.

1998). The depletion of htt resulted in partial mislocalization evaluated the effect of depleting htt on dynein and NuMA local-
of p150%t®d from the spindle poles (Figures 4A and 4E). izations. Dynein and NUMA were enriched at the spindle poles in
Conversely, the silencing of p150%°? induced a significant metaphase cells with NUMA showing a typical crescent shape
increase in the level of htt at spindle poles (Figures 4B and 4F), pattern (Figures 4C and 4D). When htt was depleted, these
demonstrating interplay between these two proteins. We next proteins were dispersed around the spindles poles.
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(A) Immunostainings of scramble or si-htt1 RNA-treated mouse neuronal cells with a-tubulin and DAPI counterstaining.

(B and C) Quantification of spindle length of metaphase cells. “*p < 0.01 and **p < 0.001.

(D) Effect of htt depletion on microtubule regrowth. Mouse neuronal cells transiently transfected with scramble or si-htt1 RNAs, treated with nocodazole for 1 hr
and incubated 30 min on ice are labeled using anti-a.-tubulin and anti-htt (SE3619) antibodies to visualize microtubules upon regrowth. White arrow shows centro-

somes and htt.
All scale bars, 5 um. Error bars, SEM.

Finally, we investigated the dynamic positioning of the spindle
by video-recording dividing HelLa cells stably expressing fluores-
cent core histone 2B (cherry) and a-tubulin (GFP) treated
with scramble or si-Huhtt RNAs (Steigemann et al., 2009)
(Figure 41 and Movie S1). The duration of mitosis was similar in
HelLa cells treated with si-Huhtt or scramble RNAs (si-Huhtt:
32.44 + 1.73 min, n = 18; scramble: 33.17 + 2.33 min, n = 8;
mean + SEM). Once reaching anaphase, the angles between
the pole-pole axis and the substratum plane were retrospectively
calculated each minutes and represented as a function of time
(Figure 4J). In HeLa cells treated with si-Huhtt, the mitotic spindle
angle to the substratum plane was more variable during mitosis
compared with the control. Calculation of the amplitude of
spindle angle also revealed a difference between both condi-
tions (Figure 4K) with the spindle pole showing more oscillations
before finding its final position in htt-depleted cells. Taken
together, these observations suggest that htt controls spindle
orientation by ensuring the proper localization of several key
components of the spindle and, as a consequence, the posi-
tioning of the spindle.

Huntingtin Regulates the Orientation of the Plane of Cell
Division

To investigate the consequences of htt regulation of spindle
orientation in cultured adherent cells, we performed time-lapse
recordings of dividing mouse neuronal cells. As previously

396 Neuron 67, 392-406, August 12, 2010 ©2010 Elsevier Inc.

described for other cells (Toyoshima and Nishida, 2007), we
observed two types of cell division: cells that divide in and
cells that divide outside the plane of the substratum (Figure 5A).
Forty-eight hours posttransfection, cells were video-recorded
for 20 hr, and the time-lapse sequences were analyzed to deter-
mine the frequency of each type of cell division. Most of the
divisions occur in the plane of the substratum (Figure 5A).
However, consistent with the role of htt in the proper orientation
of the spindle, we observed a higher number of cells dividing
outside the substratum plane in si-htt1-transfected cells than
in scramble-transfected cells (Figure 5B).

In cell culture, impairment of cell division relative to the
substratum plane can promote cell death through detachment-
induced apoptosis. We found an increased rate of postmitotic
cell death when htt was silenced (Figure 5C). Mitotic index
showed no significant difference between cells treated with
si-htt1 and scramble RNAs (Figure 5D). We also analyzed the
distribution of cells across mitotic phases based on chromo-
some configurations. As previously described, disturbing dynac-
tin resulted in a prometaphase arrest (Figure 5E) (Echeverri et al.,
1996). However, si-htt1-treated cells were distributed across all
mitotic phases showing no difference with the control situation.
Consistent with this, the duration of the mitosis was the same
in si-htt1 and scramble conditions (Figure 4l). These data sug-
gest that htt controls the plane of division of mitotic cells without
affecting their progression through the cell cycle.
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Figure 4. Loss of Huntingtin Perturbs
Molecular Motor Distribution at Spindle
Poles

(A and E) Immunostainings of metaphase mouse
neuronal cells treated with scramble or si-htt1
RNAs with anti-htt (SE3619), anti-p150%ed
antibodies, and DAPI counterstaining. Quantifica-
tion (E).

(B and F) Mouse neuronal cells are treated with
scramble or si-p150%“*® RNAs and immuno-
stained with anti-y-tubulin and anti-htt (SE3619)
antibodies and counterstained with DAPI. Quanti-
fication (F).

(C and G) Mouse neuronal cells treated as in (A)
and immunostained with anti-dynein and anti-htt
(SE3619) antibodies and counterstained with
DAPI (C). Analyses of dynein intensities in htt-
depleted cells at increasing distance from the
pole (C, graph). Full-width at half maximum
(G, FWHM) is used as an estimator of the dynein
signal spread.

(D and H) Immunostaining of metaphase mouse
neuronal cells treated as in (A) with anti-htt
(SE3619), anti-NuMA, anti-y-tubulin antibodies
and DAPI counterstaining. Quantification (H).
(I-K) HeLa cells stably expressing GFP-tubulin
and H2B-mCherry are transfected with scramble
or si-Huhtt RNAs and video-recorded for 2 hr.
() Z-X projection of representative example of
dividing cells for both conditions (from prophase
to anaphase). Images are collected every minute.
Position of each spindle pole is indicated with
yellow and white stars. (J) Representation of
angles between the pole-pole axis and the
substratum plane as a function of time. (K) Ampli-
tude of spindle pole movement.

All graphs *p < 0.05, **p < 0.01; (A-D) Scale bars
5 um, (I) 10 um. Error bars, SEM.

cell layers organized in an inside-out
manner (Gonczy, 2008; Knoblich, 2008;
Siller and Doe, 2009). To address whether
htt controls mitosis in vivo, we carried
out in utero electroporation-based trans-
fection of cortical progenitors from
E14.5 mouse embryos with GFP-ex-
pressing vectors and scramble or si-htt1
RNA. Two days after electroporation,
we analyzed mitotic cleavage planes in
GFP-expressing cortical progenitors, by

msi-Huhtt measuring the angle between a line

segregating the daughter chromosomes

and the surface of the VZ, also named

apical surface (Figures 6A-6C). This

method allows us to predict the cleavage

In Vivo Silencing of Huntingtin Modifies Spindle furrow position based on chromatin staining (Konno et al., 2008).
Orientation of Mouse Cortical Progenitors and Promotes Angles of the mitotic cleavage plane were comprised between
Neurogenesis in the Neocortex 72° and 90° in 68.8% of control GFP-labeled dividing cells.

During cortical development, progenitor cells located in the In contrast, silencing htt with si-htt1 resulted in a smaller
ventricular zone (VZ) undergo divisions to ultimately generate  percentage of dividing progenitors displaying mitotic angles
post-mitotic neurons that migrate radially to form successive between 72° and 90° (65%) and a greater proportion of cells
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Neuron
Huntingtin in Mitosis and Neurogenesis

©
()]
L
c
o
e —
3 41 min|
©
2 )
top view
ge]
8 @
c
2 —
-
(@]
0
£
- side view

B c D E _ ,
Oscramble msi-htt1 msi-p150Cied
£ 507 20~ 4 30+ - nshs
= = 175 ~ 35 95+« 8 :
S 40 S 15 5 3 @ ns
8 a0 g8 125 o 225 3 207 n " ns
& 2£ 10 2= 2 o 151
5 207 £ 75 ED 15 e 101 i
2 3° 5 -t &
E 10- S L2 £ 5]
£ 1 . 0.5
& 0 g o 0° o 2 @ 3 o
Oscramble  msi-htt1 06(\"}% @S}(\?’% %&\"’% @Q‘(\"’? 0&\'3"
(é‘ oé\é& (,\\Ql\' @(\ \@\
¢

Figure 5. Huntingtin Regulates the Orientation of Division in Cultured Cells

(A) Video recording of mouse neuronal cells reveals two cell populations: cells dividing in (well-oriented) and out of the substratum plane (misoriented). Scale bar,
10 pm.

(B) Cells transfected with scramble or si-htt1 RNAs are video-recorded for 20 hr. Cells are classified as in (A).

(C and D) Cells are treated as in (B) and the dividing cells are assessed for death after mitosis (C) or for mitotic index (D).

(E) Distribution of mouse neuronal cell transfected with scramble, si-htt1 or si-p150%“®® RNAs in each phase of cell cycle.

All graphs ns: not significant, *p < 0.05, **p < 0.01 and **p < 0.001. Error bars, SEM.

with a mitotic angle below 54° (27.5% versus 6.3% in scramble
condition). We also classified the dividing progenitors into three
groups according to the orientation of the cleavage plane to
the apical surface: vertical (60°-90°), horizontal (0°-30°), and
intermediate (30°-60°) (Figure S3A). As expected (Farkas and
Huttner, 2008; Konno et al., 2008), the majority of GFP-labeled
dividing cells displayed vertical cleavage planes (Figure S3B).
In comparison, a smaller percentage of dividing progenitors
transfected with si-htt1 exhibited vertical cleavage planes. To
confirm the absence of any off target effects, we performed
the same experiment with si-htt2 (Figures 6B, 6C, and S3B).
si-htt2 resulted in a statistically significant smaller percentage
of dividing progenitors displaying angles of the mitotic cleavage
plane between 72° and 90° (51.8% versus 68.8% in scramble
condition) and a greater proportion of cells with angles below
54° (21.5% versus 6.3% in scramble condition). Furthermore,

398 Neuron 67, 392-406, August 12, 2010 ©2010 Elsevier Inc.

introducing the htt-1301 fragment with si-htt2 led to a distribution
of mitotic angles comparable to that of the control situation
(scramble RNA, Figures 6B, 6C, and S3B). These results demon-
strate that depletion of htt by RNA interference in neuronal
progenitors in vivo leads to spindle misorientation with an
increase in the proportion of progenitors with intermediate and
horizontal cleavage planes.

Apical progenitors, produce neurons and glia (Gonczy, 2008;
Knoblich, 2008; Siller and Doe, 2009). A second type of progen-
itors, the basal progenitors, is generated from apical progenitors,
divides away from the VZ and generates neurons. The cleavage
plane of dividing progenitors may regulate cell fate of daughter
cells (Gauthier-Fisher et al., 2009; Marzesco et al., 2009). Thus,
spindle misorientation that results from the silencing of htt
in apical progenitors could impair such process. We electropo-
rated apical progenitors from E14.5 mouse embryos with
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Figure 6. In Vivo Silencing of Huntingtin Modifies Spindle Orienta-
tion and Cell Fate of Mouse Cortical Progenitors

(A and B) pPCAGGS-NLS-GFP is cotransfected with scramble, si-htt1, si-htt2 +
empty vector (0 CAGGS-LB-IRES-NLS-GFP), or si-htt2 + htt-1301 (pCAGGS-
htt-1301-IRES-NLS-GFP) in E14.5 embryos and brains are fixed at E16.5.
Coronal brain sections of E16.5 embryos are stained with antibodies for
GFP and nuclei are counterstained with DAPI. (A) Method of measurement
of mitotic spindle angle («) in anaphase cortical progenitors. Orientation of
the sister chromatids and the ventricular zone (dashed white line, VZ) are
shown, respectively, by yellow and blue lines. Cleavage plane is determined
to be positioned such that the distance between the two chromatids is halved
(dashed red line). The smallest angle between the cleavage plane and the

GFP-expressing vectors and a scramble or si-htt1 RNA. Intra-
peritoneal injections of BrdU were performed 1 day later to follow
the fate of cycling progenitors. BrdU and GFP-labeled cells
were then analyzed at E16.5 by immunohistochemistry using
progenitor cells (Nestin, Pax6, Tbr2) and neuronal (Tuj1) markers
(Figures 6D-6l). Electroporation of si-htt1 decreased the pool of
cycling progenitors (BrdU+/GFP+/Nestin+ cells: 46.4% versus
66.8% in control), including apical (BrdU+/GFP+/Pax6+ cells:
35.7% versus 54.8% in control) and basal (BrdU+/GFP+/
Tbr2+ cells: 40.3% versus 59.4% in control) progenitors as
compared with the control condition (Figures 6D-6G). The
decrease in cycling progenitors was not associated with an
increased cell death as determined by a cleaved caspase 3
staining (Figure S3D). Instead, we observed a strong increase
in the proportion of newborn postmitotic neurons with 39.1%
of BrdU- and GFP-labeled cells also positive for Tuj1 in si-htt1-
electroporated cells, as compared with 19.9% in the scramble-
electroporated cells (Figures 6H and 6l). We also determined
the proportion of BrdU- and GFP-labeled cells in different layers
of the E16.5 cortical coronal sections (Figure S3E). There was
no difference between the scramble RNA and the si-htt1 situa-
tions suggesting that htt depletion does not interfere with
neuronal migration. In summary, loss of htt expression in cortical
progenitors favors their neuronal differentiation at the expense
of their proliferation and maintenance in the VZ.

Inactivation of the Mouse Huntingtin Gene in Nestin Cell
Lineages Alters Cell Division and Cell Fate of Cortical
Progenitors

To unequivocally address the role of htt in the control of spindle
orientation of mouse progenitors, we inactivated the mouse Hadh
gene in Nestin cell lineages. Nestin-Cre/+ mice (Tronche et al.,
1999) were crossed with Hdh+/— mice (Zeitlin et al., 1995) and
double heterozygous Nestin-Cre/+; Hdh+/— males were then
crossed with Hdhflox/flox females (Dragatsis et al., 2000). We
then analyzed spindle orientation of dividing apical progenitors
in E14.5 wild-type and Nestin-Cre/+;Hdhflox/- mouse embryos
by measuring the cleavage plane orientation as before (Figures
7A-7C). In wild-type embryos, 65.1% of the progenitors divided
with angles of the mitotic cleavage plane ranging from 72° to 90°
(Figure 7C). In contrast, the lack of htt expression in Nestin cells

apical surface is calculated. (B) Progenitors are stained for GFP and htt
(4C8). Representative examples of each condition are shown. Scale bars,
10 um.

(C) Mitotic progenitors are distributed in five 18° intervals according to their
cleavage plane angle relative to the apical surface. Values are expressed as
a percentage of cortical progenitors within each interval. Mean angle («) and
number of measures (n) are shown.

(D and H) pCAGGS-NLS-GFP is electroporated with scramble or si-htt1 RNAs
in cortical progenitors from E14.5 mouse embryos. An intraperitoneal injection
of BrdU is performed at E15.5 and brains are analyzed at E16.5. Coronal brain
sections are stained with antibodies for BrdU, GFP (green), Nestin (D) and Tuj1
(H). Scale bars, 20 for two large left panels in both (D) and (H) and 10 um for
eight panels on right in both (D) and (H).

(E, F, G, and |) Quantification of the GFP-BrdU-Nestin (E), GFP-BrdU-Pax6 (F),
GFP-BrdU-Tbr2 (G), and GFP-BrdU-Tuj1 (l) -positive cells among the GFP-
BrdU-positive cells.

All graphs **p < 0.01 and ***p < 0.001. Error bars, SEM.
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resulted in 48.0% of progenitors displaying angles above 72°
while an increased proportion had angles below 54° (27.4%
versus 13.1% in wild-type progenitors). When classifying the
progenitors according to their cleavage planes (Figure S3A),
we observed less vertical cleavage plane in dividing progenitors
in Nestin-Cre/+;Hdhflox/- embryos compared with the wild-type
embryos (Figure S3C). Thus, knock-down of htt in Nestin
progenitors increases the proportion of progenitors with a
misalignment of the cleavage planes relative to the apical
surface. This recapitulates the phenotype observed after acute
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Figure 7. Nestin Progenitors Lacking Hun-
tingtin Show Altered Cleavage Plane Orien-
tation and Cell Fate

(A) Method of spindle angle () measurement in
apical progenitor. Sections of E14.5 embryo are
stained for DNA using DAPI. Orientation of the
sister chromatids and the ventricular zone (dashed
white line, VZ) are shown, respectively, by yellow
and red lines. VZ border is shown by differential
interference contrast microscopy. Cleavage plane
is shown by dashed blue line. The smallest angle
between the cleavage plane and the apical
membrane is calculated. Scale bar, 5 um.

(B) Coronal brain sections of wild-type (WT) and
Nestin-Cre/+;Hdhflox/- E14.5 embryos are stained
with DAPI. Representative examples are shown.
Scale bar, 5 pm.

(C) Dividing progenitors at E14.5 are distributed in
five 18° intervals according to their cleavage plane
angle relative to the apical surface. Values are
expressed as a percentage of cortical progenitors
within each interval. Mean angle (o) and number of
measures (n) are shown.

(D-1) An intraperitoneal injection of BrdU is per-
formed at E13.5 and wild-type (WT) and Nestin-
Cre/+;Hdhflox/- brains are analyzed at E14.5
(D, E, G, and H) or E18.5 (F, I, and J). Coronal brain
sections are stained with antibodies for BrdU,
pax6 (D), Tbr2 (E), or Tbr1 (F) and counterstained
with DAPI. Scale bars, 10 um (D and E) or 20 um
(F) (left) and 5 um (D and E) or 10 um (F) (enlarge-
ments, right).

(G-J) Quantifications of the BrdU-Pax6 (G), BrdU-
Tbr2 (H), BrdU-Tbr1 (1), and BrdU-NeuN (J) -posi-
tive cells among the BrdU-positive cells.
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H All graphs *p < 0.05, **p < 0.01. Error bars, SEM.
<0
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=R o depletion of htt in cortical progenitors
@ z using in utero electroporation (Figures
6A-6C and S3B).
To investigate the consequences of the
J lack of htt on neuronal differentiation of

g, cortical progenitors, we performed intra-

£ 50 peritoneal injections of BrdU at E13.5.
;;g Wild-type and Nestin-Cre/+;Hdhflox/-
X 20 ; brains were then analyzed by immunohis-
oo tochemistry using antibodies against

BrdU and markers of progenitor cells

(Pax6 and Tbr2) at E14.5 (Figures 7D

and 7E) or markers of postmitotic neu-

rons (Tbr1i and NeuN) at E18.5 (Fig-
ures 7F). The pool of cycling apical (BrdU+/Pax6+ cells: 45.3%
versus 60.9% in control) (Figures 7D and 7G) and basal progen-
itors (BrdU+/Tbr2+ cells: 22.8% versus 30.2% in control)
(Figures 7E and 7H) was decreased in Nestin-Cre/+;Hdhflox/-
brains as compared with the wild-type condition. Quantification
of the BrdU+/Tbr1+ and BrdU+/NeuN+ newborn neurons
revealed that depleting htt increased the proportion of differenti-
ated neurons as compared with the wild-type condition (BrdU+/
Tbr1+ cells: 38.3% versus 28.1% in control; BrdU+/NeuN+ cells:
57.8% versus 43.4% in control) (Figures 7F, 71, and 7J). These
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effects were not accompanied by an increased cell death or
migration defects (data not shown).

Collectively, our results demonstrate that htt ensures proper
spindle orientation and controls the fate of progenitors in the
developing mouse neocortex.

Drosophila melanogaster Huntingtin Regulates Spindle
Orientation in Larval Neuroblasts

To further establish the role of htt in spindle orientation, we
analyzed the function of htt in D. melanogaster neuroblasts, the
neuronal precursors of the central nervous system. Their mode
of division is a well-studied model for investigating the molecular
mechanisms involved in asymmetric cell division (Knoblich,
2008). Neuroblasts have apical/basal polarity and they align their
mitotic spindle with this axis giving rise to a larger apical cell,
which divides in a stem cell-like way, and to a smaller basal
cell (ganglion mother cell, GMC), which divides only once more
to ultimately generate differentiated neurons. This process
involves the differential sorting of several proteins to the apical
neuroblast (such as atypical protein kinase C, aPKC) and to
the basal daughter cells (such as Miranda) (Siller and Doe,
2009). Apical/basal spindle orientation is determined by centro-
some anchoring and migration (Rebollo et al., 2007, 2009; Rusan
and Peifer, 2007). Proteins such as Mud are essential for spindle
orientation by binding to PINS and to microtubules therefore
linking cortical polarity proteins to the mitotic spindle (Bowman
et al., 2006; Izumi et al., 2006; Siller et al., 2006).

We used the expression of two independent D. melanogaster
htt (dHtt) dsRNA under the control of the inscuteable-Gal4
(insc) driver, which expresses Gal4 expression in neuroblasts
(hereafter referred to as dHttRNAI(1) or dHttRNAI(2)) (Figures
8A-8C). We analyzed the effects of reducing htt on neuroblast
spindle orientation by immunostaining for Miranda and Centro-
somin in third instar larval brains. In insc-Gal4 neuroblasts,
Miranda was distributed at the basal cortex forming a crescent
at metaphase, the spindle bisecting the Miranda crescent (Fig-
ure 8A). In dHttRNAI(1) and dHttRNAIi(2) neuroblasts, Miranda
was still located at the basal cortical crescent at metaphase.
However, the mitotic spindle failed to bisect the Miranda cres-
cent in these cells. We quantified this defect by measuring the
angle between a line connecting the two centrosomes and
a line bisecting the Miranda crescent in metaphase neuroblasts
(Figures 8B and 8C). As observed in mud? mutant neuroblasts
(Figures 8A and 8C), decreased levels of htt in neuroblasts led
to an increase in the percentage of neuroblasts that display
abnormally positioned spindles with angles higher than 15°
(25%, n = 40; 16%, n = 44 for dHttRNAI(1) and dHttRNAI(2),
respectively, and 0%, n = 54 for insc-Gal4).

To ensure that the phenotype observed in dHttRNAI(1) and
dHttRNAI(2) neuroblasts is due to the specific loss of htt and
does not reflect off-target effects, we investigated spindle orien-
tation in neuroblasts of a recently generated Drosophila htt
knock-out model (Zhang et al., 2009) (Figures 8D and 8E).
In wild-type w’’"® animals, the measured angle was in majority
less than 15° (89%, n = 56). However in the dhtt-ko mutant flies,
spindles showed more oblique orientations with only 57% of
spindles with measured angles of 15° or less (n = 40). Also,
the spindle length was decreased in dhtt-ko dividing neuroblasts

compared with w’?"® and mud? neuroblasts (Figures 8F and 8G).

This agrees with our observations in mammalian neuronal cells
(Figures 3A and 3B).

Given the spindle orientation defect in metaphase neuroblasts
depleted for htt, we analyzed the positioning of Miranda during
telophase. We did not observe a missegregation of Miranda in
dhtt-ko flies (data not shown). We next investigated whether
depleting htt affected the number of neuroblasts. For this, we
immunostained larval brains with neuronal (Elav) and neuroblast
(Miranda) markers (Figure 8H). As expected, mud® mutants
showed excess neuroblasts in the posterior half of the larval
brain hemisphere and an increased brain size (Bowman et al.,
2006; Peng et al., 2000), while the number of neuroblasts in
this region was similar in the dhtt-ko and control flies (Figures
8H and 8l). We propose that dhtt-ko neuroblasts divide asym-
metrically by repositioning the spindle during telophase. A similar
correcting phenomenon was previously described for other
mutants (Bowman et al., 2006; Peng et al., 2000).

We also tested whether Drosophila htt could rescue the
spindle orientation defect in mammalian htt-depleted cells. We
expressed a construct encoding the N-terminal 620 amino
acid fragment of the Drosophila htt protein in mouse cells
treated with scramble or si-htt1 RNA (Figure 8J). Expression of
Drosophila htt significantly rescued spindle misorientation
defects in htt-depleted mammalian cells but had no effect in
control cells (Figure 8K). Overall, our data demonstrate that htt
controls spindle orientation in Drosophila and that this function
is evolutionarily conserved.

DISCUSSION

Huntingtin as a Scaffold Protein for the Dynein/Dynactin
Complex in Dividing Cells
Previous studies have established a role for htt in the regulation
of molecular motors. Htt forms a complex with dynein and
dynactin in neurons (Caviston et al., 2007; Gauthier et al.,
2004; Goehler et al., 2004; Li et al., 1998). Htt is required for effi-
cient axonal transport, with decrease in htt levels leading to
a reduced microtubule-dependent transport of vesicles (Cavis-
ton et al., 2007; Gauthier et al., 2004). The role of htt in the control
of the dynein/dynactin complex could extend beyond a role in
axonal transport as suggested by the fact that proper organiza-
tion of the Golgi apparatus requires htt (Caviston et al., 2007;
Strehlow et al., 2007). We now show that impairing the function
of htt or dynactin results in similar phenotypes during mitosis.
While the dynein/dynactin complex is required for the assem-
bly of spindle, it is also essential at the cell cortex to exert pulling
forces on astral microtubules (Busson et al., 1998; Carminati and
Stearns, 1997; Farkasovsky and Kuntzel, 2001; Nguyen-Ngoc
et al., 2007; O’Connell and Wang, 2000; Skop and White,
1998). The exact mechanisms by which dynein/dynactin com-
plexes are delivered to the cell cortex are not completely
understood, but the location of dynein/dynactin at the astral
microtubules plus ends involves at least the Bik1p/CLIP-170
and Pac1p/NudF/Lis1 proteins (Coquelle et al., 2002; Faulkner
et al., 2000; Lee et al., 2003; Sheeman et al., 2003). Consistent
with previous studies showing a reduction in dynein/dynactin-
dependent transport in the absence of htt (Caviston et al,
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Figure 8. The Function of Huntingtin during
Mitosis Is Conserved in D. melanogaster
Neuroblasts

(A) insc-Gal4, dHttRNAI(1), dHttRNAI(2), and muad?®
mutant neuroblasts of third instar larvae are
stained with Centrosomin (Cnn, arrowhead), the
mitotic marker phosphohistone H3 (PH3), and
Miranda. Scale bar, 5 pm.

(B) Schematic representation of spindle poles
(red) and Miranda crescent (green). The angle
(line arc) between the spindle pole (solid line) and
the middle of Miranda crescent (dashed line) is
measured for each metaphase.

(C) Quantification of spindle orientation relative to
Miranda crescent. Values are expressed as a per-
centage of neuroblasts within each angle intervals.
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(D) w8 and dhtt-ko neuroblasts of third instar
larvae are stained as described in (A). Scale bar,
5 um.

(E) Quantification of spindle orientation in w
and dhtt-ko neuroblasts as in (C).

(F and G) w8, dhtt-ko, and mud? neuroblasts of
third instar larvae are stained with Centrosomin
(Cnn), the mitotic marker phosphohistone H3
(PH3), and a-tubulin. Scale bar, 5 um. (G) Quantifi-
cations of spindle length in w'?’®, dhtt-ko, and
mud? neuroblasts.
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2007; Colin et al., 2008; Gauthier et al., 2004), our data suggest
that the microtubule-dependent transport of the dynein/dynactin
complex to the spindle is also reduced in htt-depleted cells.
Therefore, it is tempting to speculate that htt could participate
to the distribution of this complex at the cell cortex.

One attractive hypothesis is that htt functions as a scaffold
molecule that orchestrates the assembly of the dynein/dynactin
complex for distinct cellular functions (Caviston et al., 2007;
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(H and 1) w8, dhtt-ko, and mud? brains of third
instar larvae are stained with Elav and Miranda.
| Scale bar, 50 um. (l) Quantification of neuroblasts
(NB) number in the posterior brain hemisphere of

045 - third instar larvae.

%40— (J) Western blot analysis showing the expres-
@35 sion of a GFP-tagged N-terminal fragment of
530- Drosophila htt (GFP-dHtt620) in mouse neuronal
f 254 : cells treated with scramble or si-htt1 RNAs.

2 20 (K) Mouse neuronal cells are treated as in (J).

g 18 All graphs ns: not significant, *p < 0.05, **p < 0.01,
u:J 5] and ***p < 0.001. Error bars, SEM.
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Gauthier et al., 2004). During cell division,
this could extend to a complex also con-
taining NuMA (the D. melanogaster Mud

[Iscramble and C. elegans LIN-5 homolog) (Radu-
) lescu and Cleveland, 2010). Indeed,
Wsi-hitt NuMA was reported to interact with htt
gscramble by yeast two-hybrid screening (Kalten-
+ GFP-dHtt620  bach et al., 2007) and its localization
g Sttt is modified in the absence of htt.

+ GFP-dHtt620 | mammalian cells, NuMA by assembling

with dynein/dynactin is essential for
the organization of microtubules at the
spindle pole (Fant et al., 2004; Merdes
et al., 1996). Furthermore, NuMA and the Goloco-containing
protein LGN form a complex that regulates the interaction of
astral microtubules with the cell cortex (Du and Macara, 2004).

Huntingtin, an Evolutionary Conserved Protein

that Regulates Spindle Orientation

The precise spindle orientation is crucial for neuroepithelial stem
cell proliferation (NESC). This mechanism is tightly regulated by
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proteins such as Lis7 (Yingling et al., 2008). In utero electro-
poration was performed at E14.5, and we observed the same
phenotype in spindle orientation in acute and genetic depletion
conditions. Thus, we can exclude that the phenotypes analyzed
in mouse primarily derived from a defect during NESC divisions.
However, htt could also participate to spindle orientation in
NESC and therefore regulate neuronal development.

Although we show in this study that the function of htt in
spindle orientation is conserved between flies and mammals,
the phenotypes of flies and mice deleted for htt are different as
Hdh™'~ mice die during early embryogenesis (Duyao et al.,
1995; Nasir et al., 1995; Zeitlin et al., 1995), whereas dhtt-ko flies
show no obvious developmental defects (Zhang et al., 2009). As
proposed by Zhang and colleagues (Zhang et al., 2009), this
discrepancy might be due to intrinsic differences between
mouse and fly embryogenesis as early lethality in mouse is likely
to result from the absence of htt in extraembryonic tissues
(Dragatsis et al., 1998). In agreement with this hypothesis is the
observation that mice deleted for htt in adult stages show neuro-
degeneration (Dragatsis et al., 2000) and, dhtt-ko adult flies show
a compromised mobility and reduced viability (Zhang et al.,
2009). Moreover, as in mouse models, absence of htt in fly
increases the vulnerability to the presence of mutant htt (Leavitt
et al., 2001; Zhang et al., 2009) suggesting that crucial functions
are conserved between fly and mouse htt.

Asymmetric cell division is a key cellular event generating cell
diversity. It is tightly regulated through proper spindle orienta-
tion and segregation of cue determinants. Most of our under-
standing of the mechanisms that control spindle orientation is
based on studies of D. melanogaster, C. elegans, and mice
(Gonczy, 2008; Knoblich, 2008; Siller and Doe, 2009). Many of
the proteins involved in spindle orientation and symmetric/
asymmetric divisions are conserved in these species, including
those that regulate cell polarity, cell fate, and spindle alignment.
For example, LIN-5 in worms, Mud in Drosophila, and NuMA in
mammals use similar mechanisms to regulate spindle assembly
(Bowman et al., 2006; Knoblich, 2008). We demonstrate here
that htt is a key regulator of spindle orientation in mammals
and in flies. Is the role of htt in the regulation of the dynein/
dynactin complex also conserved in C. elegans? A putative
C. elegans ortholog of htt was recently identified (Palidwor
et al., 2009). However, mammalian and worm htt sequences
show only a low degree of similarity and there are no functional
data available for worm htt demonstrating such a conserved
function.

Role of Huntingtin in Determining Cell Fate

A direct link between the regulation of spindle orientation during
neural progenitors division and the fate of the daughter cells is
still under debate. Several proteins involved in spindle orienta-
tion control the subsequent generation and distribution of
neurons in the brain. Lfc, a Rho-specific guanine nucleotide
exchange factor, and its negative regulator Tctex-1 control the
genesis of neurons from cortical precursor cells by regulating
mitotic spindle orientation (Gauthier-Fisher et al., 2009; Mar-
zesco et al., 2009). One study has also found that adenomatous
polyposis coli APC is essential for the maintenance of radial glial
polarity and the correct generation and migration of cortical

neurons in mouse (Yokota et al., 2009). This could be linked to
its function in spindle pole orientation. Indeed, APC localizes
to kinetochores, spindles, and centrosomes and acts down-
stream of Akt in Drosophila to ensure correct chromosome
segregation and mitotic spindle orientation (Buttrick et al.,
2008). Studies on Nde1 have suggested a link between spindle
orientation and the proper construction of mouse brain (Feng
and Walsh, 2004). Nde1 is a lissencephaly gene 1 LIS1-interact-
ing protein. Ablation of Nde1 in mice causes a small cerebral
cortex resulting from mitotic defects and altered neuronal cell
fate. Finally, GBy subunits of heterotrimeric G proteins and
AGS3, a nonreceptor activator of GBy, regulate spindle orienta-
tion in cortical progenitor cells; impairing this signaling enhances
neuronal differentiation (Sanada and Tsai, 2005). In contrast,
ablating LGN results in randomized spindle orientation of mouse
cortical apical progenitors with little effect on neurogenesis
(Konno et al., 2008). As shown in the study by Konno et al.
and in our study, most of all cleavages of ventricular zone
progenitors are vertical. However, vertical cleavages can result
in either symmetric or asymmetric cell division. We show that
removing htt changes the nature of the division cleavages,
decreases the pool of cycling progenitors and increases neu-
ronal differentiation. A crucial determining factor of symmetric
versus asymmetric divisions is the distribution of the polarity
and adhesion membrane proteins of the apical complex (Konno
et al.,, 2008; Kosodo et al.,, 2004; Marthiens and ffrench-
Constant, 2009; Yingling et al., 2008). Further studies are
required to establish whether htt plays a role in such distribution
between daughter cells.

Htt is widely expressed in the early developing embryo where
it plays an essential role in several processes including cell
differentiation and neuronal survival. Inactivation of the mouse
gene results in developmental retardation and embryonic
lethality at E7.5 (Duyao et al., 1995; Nasir et al., 1995; Zeitlin
et al, 1995). Null homozygous embryos display abnormal
gastrulation associated with increased apoptosis. Additionally,
htt is essential for the early patterning of the embryo during
the formation of the anterior region of the primitive streak
(Woda et al., 2005). Finally, specific inactivation of htt in Wnt1
cell lineages leads to congenital hydrocephalus in mice further
establishing a role for htt in brain development (Dietrich et al.,
2009). Our data specifically show that htt is involved in neuro-
genesis. We observed similar phenotype when decreasing htt
levels by RNA interference in VZ progenitors by electroporation
at E14.5, or by genetic conditional removal of htt in these
progenitors at early steps of cerebral cortical neurogenesis.
The altered spindle orientation lowers the pools of both apical
and basal progenitors and promotes neuronal differentiation
of daughter cells. This may explain previous observations
showing that lowering the levels of htt in mouse results, in
addition to severe anatomical brain abnormalities, in ectopic
masses of differentiated neurons near the striatum (White
et al., 1997).

In conclusion, we demonstrate a function for htt protein in flies
and mammals. These results not only open new lines of investi-
gation for elucidating the pathogenic mechanisms in Hunting-
ton’s disease, but also identify htt as a crucial player in spindle
orientation and neurogenesis.
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EXPERIMENTAL PROCEDURES

Statistical Analyses

Statview 4.5 software (SAS Institute Inc., Cary, NC) was used for statistical
analysis. Data are expressed as mean + SEM. Complete statistical analyses
may be found in Supplemental Information.

Cell Lines and Transfection

Mouse neuronal cells and HelLa cells stably expressing GFP-tubulin and H2B-
mCherry were cultured as previously described (Steigemann et al., 2009;
Trettel et al., 2000). See Supplemental Information for culture and transfection
details.

Videomicroscopy Experiments and Analyses

Videomicroscopy was performed 48 hr after electroporation. Images were
collected in phase contrast using a coolSnap HQ camera (Ropper Scientific)
every min during 20 hr (33°C, 5% CO,). For determination of misorientation
percentage, films were visualized with Metamorph, and dividing cells were
classified into two groups: well-oriented or misoriented and numbered using
a special plug-in.

To quantify microtubule polymerization velocity, mouse neuronal cells were
grown on glass coverslips and mounted in a Ludin’s chamber. The microscope
and the chamber were kept at 33°C. Images with a Z-step of 0.3 um were
acquired with a X100 PlanApo N.A. 1.4 oil immersion objective coupled to
a piezo device (Pl). Images were collected in stream mode using a Micromax
camera (Ropper Scientific) set at 2 x 2 binning with an exposure time of
150 ms (frequency of one stack/s). All stacks were treated by automatic batch
deconvolution using the PSF of the optical system. Projections, animations,
and analyses were generated using Imaged software. Dynamics were charac-
terized by tracking positions of EB3 comets in cells as a function of time with
a special plug-in (F.P. Cordeliéres, IC, http://rsb.info.nih.gov/ij/plugins/track/
track.html).

To quantify mitosis duration and spindle oscillation during mitosis, images of
Hela stably expressing GFP-tubulin and H2B-mCherry were collected every
minute during 2 hr with xyzt acquisition mode using a Leica SP5 laser scanning
confocal microscope equipped with a x40 oil-immersion objective. Analysis
was done using ImagedJ. Dividing cells were resliced at the z axis. To quantify
the duration from the beginning of the prophase until the beginning of
anaphase, the number of frames between chromatin condensation and chro-
mosome separation (1 frame = 1 min) were scored. To quantify spindle oscil-
lation, the angle formed between the substratum plane and the virtual line
passing through spindle poles was measured. Spindle oscillation analysis
was performed during the 15 min previous to anaphase.

Cell Cycle Analysis

Mouse neuronal cells were electroporated with scramble, si-htt1, and
si-p150%e? RNAs. After 48 hr, cells were fixed in cold methanol at —20°C
for 5 min, washed in PBS, stained with anti-y-tubulin antibody and counter-
stained with DAPI. Cells were qualitatively assessed and binned into five cate-
gories: prophase, prometaphase, metaphase, anaphase, and telophase.

In Utero Electroporation

In utero electroporation was performed as described previously (Nguyen et al.,
2006) with minor modifications. See Supplemental Information for details.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Experimental Procedures, complete
statistical analyses, four figures, and one movie and can be found online at
doi:10.1016/j.neuron.2010.06.027.
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6.3 Discussion

Although some of HTT functions are linked to transcriptional activities in health and disease, HTT is
principally a cytoplasmic protein that associates with MTs and vesicles. HTT regulates intracellular
trafficking of various organelles, including vesicles, by interacting with the dynein/dynactin
complex. In the article “Huntingtin is required for mitotic spindle orientation and mammalian
neurogenesis” we unravel a novel HTT function during cell division.

We showed that HTT is localized at spindle poles and regulates proper localization of dynein,
p150°“*® and NuMa. Using video-microscopy in HTT depleted cells, we revealed that positioning of
the mitotic spindle parallel to the substrate plane is less efficient. As a result, cells are oriented
perpendicular to the substrate and post-mitotic cell death is increased. However, neither mitotic
index is affected nor the cell cycle by HTT silencing. Because HTT localization at spindle poles is
MT-dependent (Keryer et al., 2011), it is tempting to speculate that HTT is the protein responsible
for the distribution of the dynein/dynactin complex at spindle poles.

What is the underlying mechanism? HAP1 could play an important function given the fact that it
physically interacts with HTT, kinesin and p150°“*’ (Engelender et al., 1997; S.H. Li et al., 1998; X.
J. Li et al., 1995; McGuire et al., 2006). Thus, the dynein/dynactin complex can be transport along
astral MT to the cell cortex by a HTT-HAP1 dependent transport. The use of the already described
construct pARIS-htt-AHAP1 could help to answer this question.

+TIPs are important effectors for the recruitment of dynein/dynactin to MT plus-ends (Coquelle et
al., 2002; Kardon & Vale, 2009; Watson & Stephens, 2006) as well as MT PTMs (Janke & Bulinski,
2011; Peris et al., 2006, 2009). Future work is needed to elucidate the interplay between +TIPs,
dynein/dynactin localization and HTT.

Consistent with the results obtain in cellulo, silencing of HTT in AP at E14.5 resulted in a modified
cleavage plane. During cortical development, AP can divide in a symmetric fashion to expand the
pool of cycling progenitors, or asymmetrically to generate post-mitotic neurons. We found a
correlation between the cleavage plane and the neurogenic fate of the newly generated cells. By
removal of HTT from the system, the cleavage plane was shifted from mostly symmetric to
asymmetric, and a large number of +Tbr1, +Bllltub and +NeuN cells were found. Same results were
observed either by in utero electroporation of siRNAs against HTT or genetic ablation. Our data
specifically show that HTT is involved in neurogenesis. However, a direct association between the
regulation of spindle orientation during neural progenitors division and the fate of the daughter
cells is still under debate.

Another interesting finding of this work is that whereas the function of HTT in spindle regulation is
conserved, its role in progenitor fate control might be tissue context dependent. Depletion of D.
melanogaster HTT results in altered mitotic spindle orientation in NBs. Although D. melanogaster
HTT could rescue the spindle defect in mammalian cells depleted for HTT, the removal of HTT was
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surprisingly not sufficient to induce neurogenesis defects in NBs. These findings suggest that the
mechanism of HTT in mammalian neurogenic control may be mediated through a regulatory
module that has changed through evolution.

In conclusion, we demonstrate a conserved function for HTT in flies and mammals. These results
not only open new lines of investigation for elucidating the pathogenic mechanisms in HD, but also
identify HTT as a crucial player in spindle orientation and neurogenesis.
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7 Mutant HTT and mitosis

7.1 Study presentation

Identifying regulators of spindle orientation during cortical neurogenesis remains essential to
understand brain development and diseases. Huntingtin (HTT), the protein mutated in
Huntington's disease (HD), interacts with dynein and regulates spindle orientation by ensuring the

proper localization of dynein and the p150°“¢“

subunit of dynactin at the spindle pole. We found
here that HTT also regulates the localization of a CLIP170-dynein-p15OG’“ed complex at microtubule
(MT) plus-ends. In HD, CLIP170, dynein and p150°“* are delocalized from the MT plus-ends and
the integrity of the CLIP170-dynein-p150°“*® complex is affected. Interestingly, in the presence of
Akt the HTT-dynein interaction and the CLIP170-dynein-p150°“® complex are as in wild-type

situation resulting in the proper location of the CLIP170-dynein-p150°"¢*

complex at MT plus-ends.
As a physiological consequence of these observations, spindle orientation is altered in HD cultured
cells. As for the CLIP170-dynein-p150°“** complex, Akt rescues the defective spindle orientation
induced by mutant HTT and this effect occurs specifically through mutant HTT phosphorylation at
serine 421 (S421). Moreover, expressing mutant HTT in Drosophila melanogaster neuroblasts

leads to spindle misorientation that is restored by phosphorylation at S421.

7.2 Article Il
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RESULTS

Huntingtin localization at spindle poles and at MT plus-ends is altered in HD during
mitosis

We have previously shown that HTT localizes at spindle poles during mitosis (Godin,
Colombo, et al., 2010). Here, we aimed to address whether the presence of an abnormal
polyglutamine expansion in HTT would influence its localization. We analyzed the
localization of endogenous wild-type and mutant HTT using a polyclonal antibody, pAb
SE3619. We transfected STHdh™* and STHdh®%/%% striatal mouse cells derived from
Hdh?’? and mutant Hdh®1¥/1 mice with the MT plus-ends protein EB3-GFP (Trettel et
al., 2000). Wild-type and mutant HTT were found at the spindles poles during mitosis
(Figure 1A). Strikingly, we also observed HTT and mutant HTT at a location that could
coincides with MT plus-ends as co-localization with EB3-GFP was observed. Furthermore,
guantification of HTT signal at spindle poles revealed that in mutant cells this signal was
increased compared to wild-type, and localization at MT plus-ends was highly decreased
(Figure 1A).

We also addressed the distribution of dynein (DIC) and of the large subunit of the
dynactin complex p150°““? (Figures 1B and 1C) in STHdh'* and STHdh?0%A%9 celis.
Decreased DIC and p15OG’”edIeveIs were measured in polyQ-HTT expressing cells at spindle
poles. This is consistence with previous results obtained in HTT depleted cells (Godin,

Colombo, et al., 2010).
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Taken together, these results suggest that the abnormal polyQ expansion in HTT
not only modifies HTT distribution during mitosis, but distribution of motor proteins

involved in cell division as well.

MT dynamic instability is impaired in mouse embryonic fibroblasts from HD mutant
mice

Glued 3nd CLIP170 accumulate around the MT plus-ends, thereby forming

EB proteins, p150
a cap structure that favours filament growth, reduces catastrophe frequencies and
recruits further proteins (Akhmanova & Steinmetz, 2010; Steinmetz & Akhmanova, 2008).
This allows MTs to be dynamic filaments that undergo successive cycles of growth and
shrinkage, called dynamic instability. Here, we compared MT dynamics in the presence of
wild-type and mutant HTT (Figure 2A). We used mouse embryonic fibroblasts (MEFs)
generated from wild-type Hdh?’¥ and mutant Hdh® mice (Wheeler et al. 1999).
The measurement of EB3 comets velocity provides MTs growth rate. We individually
tracked MT plus-ends decorated with EB3-GFP in wild-type and mutant fibroblasts using
live cell imaging. No differences were found in EB3 comet velocity in wild-type (0.44
um/sec) or mutant MEFs (0.42 um/sec; p = 0.8024, t test) (Figure 2B).

Next, we analyzed the time spent by MTs exploring the area near the leading edge
(persistence time) by live imaging. MEFs were transfected with EB3-GFP and mCherry-a.-
tubulin. In wild-type MEFs, most MTs depolymerized upon contact with the membrane

(Figure 2B; 17.76 sec). In contrast, many MTs continued to grow tangential to the leading

edge after touching the membrane in MEFs expressing mutant HTT (64.75 sec; p<0.001, t
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test). The time spent by MTs close to the membrane (persistence time) was markedly
increased in HD MEFs as compared with wild-type MEFs.

Together these findings show that, while mutant HTT does not affect MT growth, it
reduces MT dynamics instability and leads to an abnormal MT persistence after

membrane contact.

p1506'“ed and CLIP170 Proteins Recruitment to MT plus-ends is Altered in HD

1l
Gl ued, the

Prominent examples of +TIPs are the large subunit of the dynactin complex p150
CLIP170 (cytoplasmic linker protein 170) and EB3 proteins. We addressed whether the
localization of +TIPs was modified in HD. We first transfected STHdh™* and STHdh%0%/a109
striatal mouse cells with EB3-GFP to identify MT ends (Figure 3) and used specific
antibodies to label endogenous CLIP170 (Figure 3A) and p15OG'”6d (Figure 3B). In STHdh*'*
cells endogenous CLIP170 and p15OG’“ed colocalized with EB3 in comet-like structures at
MT plus-ends as reaveled by linescan analysis. In contrast, mutant cells were essentially
devoided of CLIP170 (Figure 3A) and p150°““? (Figure 3B) comets. We quantified this
effect by selecting EB3-decorated MT ends and examining CLIP-170 and plSOG’”e‘j labeling.
The percentage of CLIP170 and p15OG’“ed per EB3 positive MT ends was determined
(Figure 2, graphs). In STHdh+/+, 83.1% of the MT plus-ends positive for EB3 were positive

for endogenous CLIP170 and 78% for p15OG’“3d. In contrast, in mutant STHh109/a109 cells,

the EB3/+TIPs ratio lowered drastically for CLIP170 (39.4%) as well as for p150°“¢ (52%).
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We then conclude that the localization of dynein, p15OG’“ed and CLIP170 at MT
plus-ends during mitosis is modified in HD context. These mislocalizations are not due to

impaired MT growth in mutant cells and likely reflects an influence of polyQ-HTT by itself.

The Dynein-p150°“*? Complex is Altered in HD

Glued and CLIP170 are mislocalized in HD context, we tested the

Since Dynein, p150
possibility that these proteins complex would be altered when HTT carries an abnormal
polyQ expansion (Figure 4A). We thus performed immunoprecipitations from protein
extracts of STHdh"* and STHAh®%”?% mouse cells. Inmunoprecipitation of endogenous DIC

Glued

led to the co-immunoprecipitation of p150 and, to a smaller extent of CLIP170. The

Glued \were markedly decreased in mutant cells

levels of immunoprecipitated p150
compared to wild-type, while the levels of CLIP170 were similar.

HTT interacts directly with the dynein intermediate chain (DIC) and indirectly with
p150°“¢? through HAP1 (Caviston et al. 2007; Pardo et al. 2010; Li et al. 1995). HTT was

Glued 3nd CLIP170 complex (Figure 4A). However, given

also present in the dynein, p150
that the levels of wild-type and mutant HTT in STHdh'"* and STHdh®%/41%9 ce|ls was not
comparable, we could not evaluate the relative level of HTT and mutant HTT pulled-down
by the anti-dynein antibody. To address this point, we exogenously expressed wild-type
and mutant HTT using a construct encoding the first 480 amino acids of HTT with a 17Q
non pathological expansion or a 68Q pathological expansion (Figure 4B). These HTT-480-

17Q and HTT-480-68Q constructs are tagged with GFP. Hela cells were transfected and

immunoprecipitations experiments were done using an anti-GFP antibody. HTT and

134



dynein were present in the same complex. Furthermore, the levels of endogenous dynein,
co-immunoprecipitated with htt480-68Q-GFP were lowered as compared to the wild-type
situation.

Together these data show that the dynein-p150°“¢“

complex is modified when HTT
is mutated. This may be linked to the altered interaction of HTT with dynein when HTT
carries an abnormal polyQ expansion.

Glued_cLIP170 Complex assembly and localization in HD

Akt Regulates the Dynein-p150
HTT binds to dynein and dynactin through HAP1 to promote vesicular transport along
MTs. In HD, alteration of the HTT-plSOG’”ed complex is accompanied by its detachment
from the MTs and a decreased vesicular transport (Zala et al., 2008). Interestingly, this
mechanism is regulated by phosphorylation of mutant HTT at serine 421 (S421) by Akt.
S421-phophorylated mutant HTT is as efficient as wild-type HTT to promote transport as it
rescues p15OG’”ed binding to MTs. We thus determine the effect of Akt on the DIC-
p15OG’”ed—CLIP170 complex (Figure 4A). We expressed a constitutively active form of Akt
(Akt c.a.) in STHdh** and STHdh®?/!% cells. We then immunoprecipitated DIC from protein
extracts of these cells. Strikingly, the presence of Akt c.a. led to an increased recruitment
of CLIP170 in the DIC immunoprecipitates in both STHdh"* and STHdh® /%% cells. This
recruitment was enhanced in mutant cells. Furthermore, in contrast to the situation in
STHdR®0%41% cals that do not express Akt c.a., we found similar levels of p150%“¢?

immunoprecipitated with DIC in wild-type and polyQ conditions when Akt c.a. was

expressed.
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We also exogenously expressed mutant HTT with a S421 to acid aspartic
substitution (S421D, HTT-480-68Q-S421D) in Hela cells (Figure 4B). This substitution
micmics constitutive phosphorylation at this site. We immunoprecipitated DIC from cells
expressing the variants of HTT. Mutant HTT showed a lower interaction with DIC as
compared to wild-type HTT. However, the interaction of polyQ-HTT carrying the S421D
mutation was similar to that of the wild-type HTT. This shows that the altered interaction
of HTT with dynein when HTT carries an abnormal polyQ expansion is rescued when S421
is phosphorylated. This rescued interaction could participate to the rescued dynein-
p1506’”ed-CLIP17O assembly in HD in the presence of Akt (Figure 4A).

We also determined the effect of Akt on the localization of dynein, p150°“* and
CLIP170 at MT plus-ends during. We cotransfected STHdh™* and STHdh®?1%9 cells with
EB3-GFP and Akt c.a. and immunostained for the presence of endogenous CLIP170 (Figure
3A) and pISOG’”ed (Figure 3B). In STHdh'* cells the MT plus-ends mislocalization of
CLIP170and p15OG’”ed was rescued by Akt c.a. with this situation ressembling the wild-type
situation (STHdh*'* cells).

We conclude that Akt rescues the altered DIC—plSOG'“ed—CLIP17O complex and the

mislocalization of dynein, p150°“*® and CLIP170 at MT plus-ends in HD.

PolyQ-HTT Leads to Mitotic Spindle Misorientation
We then asked whether the mutant HTT-induced modifications observed could impact on
mitotic spindle orientation (Figure 5). We first examined the position of the spindle pole

axis with respect to the substrate plane in STHdh"* and STHdh®%%2% celis (Figure 5A). Z-
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series stacks were acquired using 3D microscopy from cells immunostained for B-tubulin
and counterstained for DAPl. We measured the angle a formed between the pole-pole
axis and the substrate plane. Most of wild-type cells oriented their spindle axis parallel to
the substratum plane with angle smaller than 10° (8° + 1.1, n = 109). PolyQ-HTT expressing
cells showed a defective spindle positioning, with an higher average angle (17.8° £ 1.5, n =
117). A significant proportion of mutant cells had spindle angles greater than 40°. We also
analyzed spindle orientation in Hela cells expressing exogenously a wild-type or mutant
480 amino acid fragment of HTT (Figure 5B). Cells transfected with a pcDNA empty vector
or with 480-17Q-HTT behaved similarly with most of the spindle angles smaller than 10°
(control: 11.5° + 0.9, n = 107°; HTT-480-17Q: 11.3° + 1.2, n = 74). In HD conditions, the
mean angle a was markedly increased (HTT-480-68Q: 16.2° + 1.16, n = 89).

We confirmed these findings using printed micropatterns of fibronectin (Figure 6).
Indeed, cells in situ are sensitive to geometrical and mechanical constraints from their
microenvironment. While, these parameters are uncontrolled under classic culture
conditions, the so-called micropatterns approach allows to restrict the location and shape
of the substrate regions, in which cells can attach (Théry et al., 2005). We studied spindle
positioning in histone2B—mCherry transfected STHdh'"* and STHAh®%%% ce|| lines plated
on printed [L]-shaped patterns of fibronectin. The majority of mitotic spindles of wild-type
cells grown on [L]-shaped patterns divided with an angle of 45°, showing a constrained cell
division axis (Figure 6A). In contrast, there was a wider dispersion of spindle angles in
polyQ-HTT containing cells indicating an impaired control of spindle positioning. In

STHAh10%/0109 (g|| approximately 60% of spindles deviated by more than 15° from the
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mean angle compared with only 35% in STHdh''* cells (Figure 6B), indicating an impaired
control of spindle positioning in polyQ-HTT expressing cells.
These results show that the function of HTT as a regulator of spindle orientation

during mitosis is modified by the presence of a pathological polyQ expansion.

PolyQ-HTT-induced Spindle Misorientation is Rescued by Akt Phosphorylation of S421

Glued_CLIP170 Complex assembly and localization, we

As Akt impacts on the Dynein-p150
investigated the consequence of this kinase on mutant HTT-induced spindle
misorientation (Figure 7). We first transfected Akt c.a. in STHAh X009 ¢ (Figure 7A)
and analyzed spindle orientation as before in the different conditions (Figure 5). While the
mean spindle angle was 16.63° + 1.27 in STHdh209/A1%9 (g5 (n = 28), it was similar in
STHdh'* and STHdh®%”%9/akt c.a. cells (STHdh™*: 7.35° + 1.43, n = 21;
STHdh0%Q%9 Akt c.a.: 6.5° + 0.7, n = 48) (Figure 7A). Similarly, co-expressing Akt with
HTT-480-68Q in Hela cells rescued the defect observed in the presence of HTT-480-68Q
alone (Figure 7B). Thus expression of Akt is sufficient to rescue the spindle misorientation
defect observed in HD.

Akt phosphorylates HTT at S421 and this phosphorylation rescues the alteration of
the HTT/dynein interaction when HTT encompasses an abnormal polyQ mutation (Figures
3 and 4). We aimed to specifically investigate whether the effect of Akt on spindle
misorientation induced by mutant HTT involves HTT phosphorylation at S421. We

expressed mutant HTT with S421 to alanine (alanine is an unphosphorylatable amino acid,

S421A, (Humbert et al. 2002) and to aspartic acid (S421D) substitutions in Hela cells
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(Figure 7B). In HTT-480-68Q-S421A cells spindle was not properly oriented parallel to the
substratum plane. In sharp contrast, expressing HTT-480-68Q-5421D behaved as the wild-
type HTT-480-17Q with most of the cells showing a spindle aligned with the substratum
plane.

To unequivocally demonstrate that Akt mediates its effect on spindle orientation
through HTT S421 phosphorylation, we expressed Akt c.a. and mutant HTT or mutant HTT
carrying a S421 to alanine (S421A) mutation (Figure 7B). As seen before, spindle
orientation was altered in cells expressing mutant HTT and this was rescued to wild-type
situation by expression of Akt c.a.. However, Akt c.a. had no effect in cells expressing an
unphosphorylatable form of mutant HTT, showing that the effect of Akt occurs, at least in
part, through mutant HTT S421 phosphorylation.

Together our data demonstrate that Akt rescues spindle misorientation in HD by

phosphorylating polyQ-HTT at S421.

The conserved function of HTT during mitosis is lost when HTT is mutated in D.
melanogaster neuroblasts

To establish a physiological relevance of the role of HTT in spindle orientation, we
analyzed the effect of mutant HTT in D. melanogaster neuroblasts (NBs), the neuronal
precursors of the central nervous system. Their mode of division is a well-studied model
for investigating the molecular mechanisms involved in asymmetric cell division (Siller &
Doe, 2009). In asymmetric division, cells create an internal polarity axis and localize cell

fate determinants to one pole. Alignment of the mitotic spindle along the axis of polarity
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causes the determinants to segregate into one of the two daughter cells, making it
different from its sibling. NBs undergo repeated rounds of asymmetric division, generating
a larger apical cell that retains NB characteristics and a smaller, basal ganglion mother cell
(GMC) that divides only once more to generate two neurons (Siller & Doe 2009; Morin &
Bellaiche 2011). We have previously shown that HTT function during mitosis is
evolutionarily conserved in D. melanogaster NBs (Godin, Colombo, et al., 2010). Absence
of HTT in NBs increased the percentage of NBs that display abnormally positioned
spindles.

We used transgenic flies that express the first 548 amino acids of the human HTT
gene with either a pathogenic polyQ tract of 128 repeats (Htt>****-Q128) or a non-
pathogenic tract of O repeats (Htt>****-QQ) (W.C. M. Lee et al., 2004). This N-terminal motif
contains regions of strong homology between HTT isoforms from D. melanogaster to
humans and is more likely to faithfully mimic endogenous HTT. As a control we used wild-
type (W% flies. In order to analyse spindle orientation in NBs, we performed
immunostaining for Miranda, a multi-domain adaptor protein localized in the basal NB
cortex, Centrosomin (Cnn) a spindle pole marker and phospho-histone 3 (PH3) in third
instar larval brains. We quantified mitotic spindle alignment by measuring the angle
between the line connecting the two centrosomes (Cnn) and the line bisecting the
Miranda crescent in metaphase NBs (Figure 8A). In W**¥ and Htt>****-Q0 NBs, Miranda
was distributed at the basal cortex forming a crescent at metaphase, the line connecting
the pole-to-pole axis bisecting the Miranda crescent. In Htt>****-Q128 NBs, Miranda was

still located at the basal cortical crescent at metaphase. However, mitotic spindle
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alignment failed to bisect the Miranda crescent in polyQ NBs. W8 (10.54° + 2.4, n=20)
and Htt>***-Q0 (11.71° + 1.4, n=37) NBs mean angles were statistically different from
Htt>*°-Q128 (18.7° + 3, n=35) (Figure 8B).

We generated transgenic flies that express Htt>*#2°-Q128 with a S421D substitution
(Htt>*¥2-Q128-5421D). Mitotic spindle alignment in Htt>****-Q128-S421D (12.15° + 1.6,
n=41) NBs was similar to the observed in W**8 and Htt>****-QQ (Figures 8A and 8B).

Overall, our data demonstrate that HTT function in spindle orientation in D.
melanogaster NBs is altered in the presence of mutant HTT. As observed in cellulo, S421
phosphorylation of mutant HTT rescues the mitotic spindle misalighment phenotype

observed in mutant HTT expressing NBs.
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EXPERIMENTAL PROCEDURES

Statistical Analyses

Statview 4.5 software (SAS Institute Inc., Cary, NC) was used for statistical analysis. All
data herein described were performed in duplicate or triplicate. Data are expressed as
mean + S.E.M. *P < 0.05; **P < 0.01; ***P < 0.001. P values = 0.05 were considered non-

significant.

Cell lines and Transfection

Mouse neuronal cells derived from immortalized striatal progenitor cells, STHdh"* and
STHdh®0/109 \yere grown at 33°C with 5% CO, as previously described including 400
ug/ml geneticin (Trettel et al., 2000) and electroporated using cell line nucleofector kit L
(Amaxa) according to the manufacturer's instructions. Experiments were performed 48h
after transfection.

Mouse embryonic fibroblasts (MEFs) were prepared from E14.5 embryos following
standard procedures and cultured in Dulbeco's modified Eagle's medium (DMEM, Gibco)
supplemented with 10% bovine calf serum, 1% non-essential amino acids, 1M f-
mercaptoethanol, 1% L-glutamine and antibiotics (50 units/ml penicillin and 50 pg/ml
streptomycin). MEFs were maintained at 37°C with 5% CO,. MEFs were electroporated
using cell line nucleofector kit L (Amaxa) according to the manufacturer's instructions.

Experiments were performed 24h to 48h after transfection.

143



Hela cells were grown at 37°C in 5% CO, in DMEM (Gibco) supplemented with 10% bovine
calf serum, 1% L-glutamine and antibiotics (50 units/ml penicillin and 50 pg/ml
streptomycin). Cells were transfected using Lipofectamine 2000 (Invitrogen) according to

the manufacturer's instructions. Experiments were performed 48h after transfection.

DNA Constructs and siRNAs

Constructs encoding HTT-480-17Q, HTT-480-68Q, HTT-480-17Q-S421A, HTT-480-17Q-
S421D, HTT-480-68Q-S421A, HTT-480-68Q-S421D have been described previously
(Humbert et al. 2002; Saudou et al. 1998). These plasmids encode the first 480 amino
acids fragment of HTT with 17 or 68 glutamines and a serine-to-alanine mutation (S421A)
or a serine to aspartic acid mutation (S421D) at position 421. HTT-480-17Q-HA and HTT-
480-68Q-HA were previously described (Pardo et al., 2006). Constructs GFP-HTT-480-17Q,
GFP-HTT-480-68Q and GFP-HTT-480-68Q-S421D were previously described (Zala et al.,
2008). Constitutively active Akt (Akt c.a.; myristylated-DPH) tagged HA have been
described previously (Datta et al. 1997).

End-binding protein 3 (EB3)-GFP was described previously (Stepanova et al., 2003).
mCherry-o-tubulin was kindly provided by C. Janke (Institut Curie, France) and pBOS-
histone2B—mCherry—IRES—hygromycin by M. Piel (Institut Curie, France).

The siRNA targeting Akt (Akt1l and Akt2) was purchased from Cell Signaling Technology.
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Antibodies and Immunostaining procedures

The following antibodies were used: mouse anti-dynein intermediate chain (1:1000 for
immunoblotting and 1:100 for immunocytochemistry; Chemicon), anti-plSOG’”ed (1:1000
for Western blotting and 1:100 for immunocytochemistry; BD Transduction Laboratories),
rabbit anti-CLIP170 (1:3000 for Western blotting and 1:300 for immunocytochemistry;
(Coquelle et al., 2002), kindly provived by C Janke, Institut Curie, France), mouse anti-HTT
4C8 (1:4000 for Western blotting; Euromedex), mouse anti-polyQ expansion-HTT 1C2
(1:500 for Western blotting; Euromedex), mouse anti-a-tubulin (1:500 for Western
blotting and 1:1000 for immunocytochemistry; kindly provided by C. Janke; Institut Curie,
France), human anti-CREST (1:1000 for immunocytochemistry; Antibody Incorporated),
mouse anti-y-tubulin, GTU88 (1:1000 for immunocytochemistry; Sigma), mouse anti-y-
tubulin, GTU88 (1:100 for immunocytochemistry; Abcam), rabbit anti-y-tubulin, AK-15
(1:300 for immunocytochemistry; Sigma), mouse anti-Akt (1:1000 for Western blotting;
Cell Signaling Technology), rat anti-HA (1:1000 for Western blotting and 1:200 for
immunocytochemistry; Roche), rabbit anti-GFP (1:500 for Western blotting; Proteins and
Antibodies Laboratory; Institut Curie, France). Rabbit anti-phospho-HTT SE3619 antibody
was previously described (Godin et al., 2010). Briefly, SE3619 antibody was generated by
synthesis, coupling to keyhole limpet hemocyanin (Eurogentec) and injection into rabbits
of the following respective peptide: CGGRSRSGS[PO3H2]IVE (mouse huntingtin sequence
amino acid 414 to 424). Polyclonal antibody was obtained by affinity-purification of serum
using the appropriate peptide columns. The serum was filtered (0.22 um filter) and after

addition of 1 M tris (pH 8.0) up to a final concentration of 100 mM, it was applied to a
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sulfolink column (Pierce) coupled to the appropriate peptide. Retained antibody was
eluted with 100 mM glycine buffer (pH 2.7) and pH was neutralised with 1 M tris pH 9.
Antibody was concentrated (Vivaspin concentrator 10 000 MW, VivaScience) and stored in
50% glycerol. Anti-rat, anti-rabbit or anti-mouse HRP-conjugated secondary antibodies
were purchased from Jackson laboratories. AlexaFluor conjugated secondary antibodies
were purchased from Molecular Probes (Invitrogen).

In order to analyze +TIP localization at MT plus-end, STHdh”*and STHdh®% 2% ce|| were
electroporated with EB3-GFP and grown on glass coverslips for 48h. Cells were first fixed
using 1mM EGTA diluted in cold methanol (-20°C) for 10min and then in 4%
paraformaldehyde in PBS for 10 min at room temperature. Coverslips were washed in PBS
0,5% Triton X-100 (PBT 0.5%) for 5min, blocked 1h in 3% BSA, 0.1% Triton X-100 in PBS
(PBT 0.1%), and incubated with mouse anti-plSOG’”ed and rabbit anti-CLIP170 at room
temperature diluted in PBT 0.1% for 1h or over-night at 4°C. Anti-mouse AlexaFluor-555
and anti-rabbit AlexaFluor-555 were used as secondary antibodies.

To analyze phospho-HTT localization during mitosis, STHdh”*and STHdh®%7% ce|ls were
electroporated with Akt c.a. HA-tagged and grown in glass coverslips for 48h. Cells were
pre-lyzed 2 min in pre-warmed 0.5% Triton X-100-PHEM buffer before being fixed in cold
methanol (-20°C) for 5 min. Coverslips were incubated with rabbit anti-phospho-HTT
SE3619 and mouse anti-y-tubulin and rat anti-HA. Secondary antibodies used were anti-
rabbit AlexaFluor-555, anti-mouse AlexaFluor-488 and anti-rat AlexaFluor-647.

To visualize p15OG’“9d and dynein at spindle poles STHdh**and STHdh®%%41% cells were

first permeabilized 1 min in PHEM buffer containing 1% Triton X-100 and then fixed with
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4% paraformaldehyde in PHEM buffer for 20 minutes. Then cells were fixed for 5 min in
cold methanol (-20°C) and washed in PBT 0.1%. Cells were double immunostained with

mouse anti-p150°¢’

or mouse anti-dynein and rabbit anti-y-tubulin. Anti-mouse
AlexaFluor-555 and anti-rabbit AlexaFluor-488 were used as secondary antibodies.

To measure spindle orientation, STHdh”*and STHdh®%%21% ce|ls were fixed 5 min with
cold methanol (-20°C) and washed twice with PBT before immunostaining. The cells were
incubated with mouse anti-y-tubulin and human anti-CREST antibodies for 1 hr. Secondary
antibodies used were anti-mouse AlexaFluor-488 and anti-human AlexaFluor-647. Hela
cells were transfected with HTT-480 plasmids and grown on glass coverslips for 48h. Cells
were fixed in 4% paraformaldehyde and permeabilized for 5 min using PBT 0.5%.
Coverslips were incubated with mouse anti-HTT 4C8 and rabbit anti-y-tubulin. Secondary
antibodies used were anti-mouse AlexaFluor-555 and anti- AlexaFluor-647.

For all immunostainings, cells were counterstained with DAPI (Roche). The mounting

medium was 0.1 g/ml Mowiol 4-88 (Calbiochem, Darmstadt, Germany) in 20% glycerol.

Immunoblotting

Cells were harvested and lyzed in 50 mM Tris-HCI, containing 0.1% Triton X-100, 2 mM
EDTA, 2 mM EGTA, 50 mM sodium fluoride, 10 mM B-glycerophosphate, 5 mM sodium
pyrophosphate, 1 mM sodium orthovanadate, 0.1% (v/v) B-mercaptoethanol, 250 uM
PMSF, 10 mg/ml aprotinin and leupeptin, pH 7.5. Cell lysates were centrifuged at 20,000 g
for 15 min at 4°C. Equal amounts of protein were subjected to SDS-PAGE on

polyacrylamide gels and transferred to nitrocellulose membranes (Whatman, Dassel,
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Germany). Blocked membranes (5% milk in TBS-0.1% Tween-20 or 3% BSA in TBS-0.1%
Tween-20) were incubated with the following antibodies: mouse anti-HTT 4C8, mouse

Glied rabbit anti-CLIP170, mouse anti-

anti-polyQ expansion-HTT 1C2, mouse anti-p150
dynein, rat anti-HA, rabbit anti-Akt, mouse anti-GFP, mouse anti-b-actin or mouse anti-a-
tubulin and washed with TBS-0.1% Tween-20. Membranes were then labelled with
secondary IgG-HRP antibodies raised against each corresponding primary antibody. After
three washes, the membranes were incubated with SuperSignal West Pico
Chemiluminescent Substrate (Pierce, Erembodegem, Belgium) according to the

instructions of the supplier. Membranes were exposed to Amersham Hyperfilm™ MP (GE

Healthcare, Buckinghamshire, UK) films and developed.

Immunoprecipitation

STHdh+/+, STHdh?%%2% 3nd Hela cells were lyzed in 20mM Tric-HCI, containing 2mM
EDTA, 100mM NaCl, 10mM sodium fluoride, 50mM potassium phosphate dibasic, 2.5
sodium pyrophosphate, 0.25% Triton X-100, pH 7,5 on ice. Lysates at the concentration of
500 pg/ml were pre-cleared for 30min at 4°C using protein G-Sepharose beads (25ul;
Sigma) and next incubated over-night at 4°C with a preformed complex of protein G-
Sepharose beads (100 pl; Sigma) + antibody (1 pg). Beads were washed 3 times with lysis
buffer and boiled 10 min at 95°C in SDS loading buffer to be denaturated and Western

blot was performed as described.
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Images Acquisition and Analysis

Images were acquired using a Leica DM RXA microscope with a HCL PL APO CS oil 63 x NA
of 1.4-0.60 objective or a PL APO oil 100 x NA of 1.4 objective coupled to a piezzo and a
CooISNAP HQ camera controlled by Metamorph software (Molecular Devices, Sunnyvale,
CA). Z-stack step was of 0.2 um. All stacks were treated by automatic batch deconvolution
using the PSF of the optical system, Meinel algorithm with parameters set at 8 iterations,
0.8 sigma and 3 frequencies.

Spindle orientation in STHdh+/+, STHdh®0/A09 304 Hela cells stained for y-tubulin was
quantified using Imagel) software (http://rsb.info.nih.gov/ij/, NIH, USA). A line crossing
both spindle poles was drawn on the Z projection pictures and repositioned along the Z-
axis using the stack of Z-sections. The angle between the pole-pole axis and the
substratum plane was calculated using a home-made Imagel plug-in (Godin, Colombo, et
al., 2010).

Glued 5t spindle poles, cells were

For quantification of phospho-HTT, dynein and p150
double-stained for the protein of interest and y-tubulin. Quantification was achieved using
using 3D object counter plug-in (Bolte & Cordelieres 2006); available at
http://imagejdocu.tudor.lu/doku.php?id=plugin:analysis:3d_object_counter:start.  Total
volume and intensity of the particles were retrieved for further analysis.

Neuronal progenitors were imaged using a Leica SP5 laser scanning confocal microscope

equipped with a 63 x oil-immersion objective.
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Micropattern fabrication and analysis

L-shaped fibronectin micropatterns of 33 um long and 7 pum thickness were made as
described previously (Carpi et al. , 2012). Briefly, glass coverslips of 25mm @ (Marienfeld,
GmBH) were illuminated with deep UVs lamp (UVO cleaner, model 342-220, Jetlight) for 5
minutes followed by 1h RT incubation with 0.1 mg/mL of poly-L-lysine-g-
poly(ethyleneglycol) (PLL(20)-g[3.5]-PEG(2), Surface Solutions GmbH, Zurich). Pegylated
coverslips were washed 2 min in PBS, then rinsed twice 2 min in H,O. Synthetic quartz
mask bearing the motifs (Delta Mask, Toppan, Selba Tech) was illuminated for 5 min using
deep UVs lamp. Coverslips were next placed with the pegilated side towards the activated
face of the quartz mask and illuminated for 5 min using deep UVs lamp. Finally, coverslips
were incubated for 1h at RT with 25 pg/mL of fibronectin (Sigma) and fibrinogen-647
(Invitrogen).

STHdh9/A1%% 3nd STHAh™* cells were electroporated with histone2B—mCherry and
positive cells were selected with Hygromycin B (50 pg/ml) and subsequent fluorescence-
activated cell sorting (FACS). 150.000 to 250.000 STHdh** and STHdh?%%A1% cells were
deposited on printed coverslips 1 to 3 hours before video recording.

Individual cells on micropatterns were used to analyze the positioning of the metaphasic
plate. The angle was measured using Metamorph software (Molecular Devices, Sunnyvale,

CA).
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Live-cell imaging

Cell recordings on fibronectin micropatterns were done using a Leica DM IRB microscope
with a N PLAN 10 x NA of 0.25 objective coupled to a moving stage and a Photometric
CoolISNAP fx camera controlled by Metamorph software (Molecular Devices, Sunnyvale,
CA). Images were acquired every 3 min during 20h. Controlled temperature (37°C) and
CO; conditions (5%) were keep along the acquisition time.

For MT dynamics experiments, MEFs were transiently transfected with EB3-GFP and m-
Cherry-a-tubulin. Confocal video microscopy experiments were performed on a Nikon Ti
Eclipse inverted microscope (Nikon S.A, France) equipped with a CSU-X1 spinning-disk
head (Yokogawa, Japan) under controlled environment (regulated temperature and CO2
conditions; LIS, Switzerland). Images were collected with a 60x/1.4 objective. eGFP and m-
Cherry were respectively excited with a 491 and 561 nm laser, both being part of the
iLAS2 illumination device (Roper Scientific, France). Fluorescent emissions were selected
with a dual-band filter (ET GFP/mCherry, ref. 244375, Chroma Technology Corp.) and
captured on an Evolve 512x512 EM-CCD camera (Photometrics). A set of GFP and mCherry

images was acquired sequentially, each second.

Flies and Immunohistochemistry

D. melanogaster were maintained on standard medium at 18°C. Control W8 flies are a
kind gift from S Zhang and N Perrimon (Harvard Medical School, USA; Zhang et al. 2009).
UAS-Htt>*%°-Q0 and UAS-Htt>**-Q128 were generously provided by JT Littleton

(Massachusetts Institute of Technology, USA; Lee et al. 2004). UAS-Htt>****-Q128-5421D
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flies were generated from the cDNA for human Htt-Q128 kindly provided by F Maschat
(Institute of Human Genetics, France) where a point mutation at S421 was inserted using

PCR and subsequently subcloned into pUAST vectors.

The expression of Htt>*¥2-Q0, Htt>****-Q128 and Htt>****-Q128-5421D in D. melanogaster
was done under the control of the inscuteable-Gal4 (insc) driver, which drives Gal4

expression in neuroblasts. Flies were maintained at 25°C for the experiments.

For immunohistochemistry on D. melanogaster brains, third instar larvae were dissected
in PBS. The brains were collected and fixed in PBS containing 4% paraformaldehyde, 0.1%
triton X-100 for 20 min at room temperature and processed as described (Betschinger et
al. 2006). Briefly, brains were incubated overnight with mAb anti-Miranda (1:20; a kind gift
of F. Matsuzaki), pAb anti-centrosomin (1:500; a kind gift of T. Kaufman) and pAb anti-
phospho-histone H3 (1:2000; Upstate Biotechnology). After three washes in PBS Triton X-
100 0.1% (PBT), brains were incubated with mouse AlexaFluor-488, rabbit AlexaFluor-555
and DAPI for 1-2 hr at room temperature, washed again three times in PBT, incubated in
PBS/glycerol for 30 min and mounted in Glycerol/PBS-N-propylgalate. The pictures were
captured with a Leica SP5 laser scanning confocal microscope equipped with an X63 oil-
immersion objective. The spindle orientation was quantified using an home-built macro in
Imagel software (Godin, Colombo, et al., 2010), by measuring the angle between a line

connecting the two spindle poles and a line bisecting Miranda crescent.
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FIGURE LEGENDS

Figure 1. Huntingtin and molecular motor distributions are modified in HD

(A) Metaphase STHdh”* and STHdh?%”%% cells transfected with EB3-GFP are
immunostained using a a polyclonal antibody, pAb SE3619 against HTT.

(B, C) Immunostainings of metaphase STHdh** and STHdh®0%%9 cels with (B) anti-y-

tubulin and anti-p150%™“¢?

antibodies and (C) anti-y-tubulin and anti-dynein (DIC)
antibodies.
The left graphs corresponds to the quantification of (A) HTT, (B) p150°“*’ and (C) DIC

intensities at spindle poles. Results are shown as mean values + SEM. *p<0.05;

**%*p<0.001, t test. Scale bar 10pum.

Figure 2. Impaired MT dynamics in polyQ MEFs

(A) Videomicroscopy examination of MTs in Hdh?’? and Hdh®1YA11 MEFs expressing
mCherry-a-tubulin and EB3-GFP close to the leading edge of lamellipodial extensions.
Colored arrowheads indicate localization of the MT plus-ends at different time points.
Time is expressed as minutes:seconds.

(B) Measurement of the time spent by MTs exploring the area near the leading edge
(persistence time, right, ***p<0.001, t test) and EB3-comets velocity (mean velocity, left,
NS is p=0.8024, t test.) in Hdh®?Y and Hdh®1/%11 \MEFs. Results are shown as mean

values = SEM. Scale bar 10um.
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Figure 3. CLIP-170 and p1506’"ed localization at MT plus-ends is modified by mutant HTT
and regulated by Akt

(A, right) CLIP170 immunostainings of STHdh”* and STHdh®%2% ca|ls transfected with
EB3-GFP and Akt c.a. when indicated. High magnification of a region of interest from
STHdh** and STHAh0%/A1%9 ce|ls, Merged images show CLIP-170 in red and EB3 in green.
(A, middle) Graph of the line scan of fluorescence intensity (arbitrary units) of CLIP170
(red) and EB3 (green), starting at the end of the MT (distance 0) to 2.5 um inwards. (A,
left) Quantitative analysis of CLIP170 localization at MT plus-ends in STHdh™* and
STHAh®0/A1%9 cg s,

(B) p150°™“? immunostainings of STHdh™* and STHdh® %% cells transfected with EB3-
GFP and Akt c.a. when indicated. High magnification of a region of interest from STHdh™*
and STHdh®09/Q109 (g5, Merged images show p15OG’”ed in red and EB3 in green. (B,
middle) Graph of the line scan of fluorescence intensity (arbitrary units) of p15OG’”ed (red)
and EB3 (green), starting at the end of the MT (distance 0) to 2.5 um inwards. (B, left)

Quantitative analysis of p15OG’“ed localization in STHdh™* and STHAh®%/2% ce|[s,

Results are shown as mean values + SEM. ***p<0.001, t test. Scale bar 10um.

Figure 4. Mutant HTT affects CLIP170/p150°“** /dynein complex affinity, an effect that is

regulated by Akt

(A, left) Dynein immunoprecipitation (IP) (anti-DIC antibody) experiments from STHdh"*

and STHdh®0%/0109 cq| lysates. Endogenous levels of HTT, CLIP170, p15OG’”ed, DIC and a-

tubulin are shown in the input. Decreased interaction of dynein with p150G/“ed was
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observed in STHdh®0/109 cq||s compared to STHdh™* while CLIP170 levels were bearly
detectable. (A, right) Dynein immunoprecipitation (IP) (anti-DIC antibody) experiments
from STHdh™* and STHdh?%%2% ceis transfected with Akt c.a. Endogenous levels of HTT,
CLIP170, pISOG’”ed, DIC, a-tubulin and transfected Akt c.a. HA tagged are shown in the

Glued i STHIhA9/A1% (calls was observed

input. Equal interaction of dynein with p150
compared to STHdh**. CLIP170 levels were highly increased.

(B) Dynein immunoprecipitation (IP) (anti-DIC antibody) experiments from lysates of Hela
cells expressing HTT-480-17Q, HTT-480-68Q, HTT-480-68Q-S421D or GFP alone.
Endogenous HTT, DIC, B-actin and transfected levels of GFP-constructs are shown in the

input. Decreased interaction of DIC with HTT-480-68Q are restored when the mutant

point version was expressed HTT-480-68Q-5421D.

Figure 5. Mutant huntingtin causes spindle misorientation

(A, left) Immunoblotting of STHdh** and STHdh®0%2% ce|ls extracts using anti-HTT (htt-
4C8), anti-polyQ-HTT (htt-1C2) and anti-a-tubulin antibodies. Z-X projections of STHdh™*
and STHdh®%%2%9 ce|ls stained with anti-y-tubulin antibody (green) and DAPI. (A, right)
Distribution and average of spindle angles of STHdh"* and STHdh@10%/@109 metaphase cells.
(B, left) Hela cells transfected with HTT-480-17Q, HTT-480-68Q and the corresponding
empty vector are analyzed by immunoblotting for the presence of endogenous and
transfected HTT (htt-4C8) and a-tubulin. (B, right) Distribution and average of spindle

angles. Z-X projections of Hela cells stained with anti-y-tubulin antibody (green) and DAPI.
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Results are shown as mean values + SEM. ***p<0.001, t test; **p<0.01, one way ANOVA
followed by Fisher's Post-hoc test.

dh0109/0109 cells

Figure 6. Mitotic spindle positioning is altered in STH
(A, left) The distribution of mitotic angles in STHdh"* and STHdh®/2% cg|| population.
(A, right) Examples of time-lapse acquisition of STHdh** and STHdh®%1%9 ce||s during
mitosis. Time-lapse pictures were used to measure the positioning of the metaphasic plate
(H2B-mCherry).

(B) Percentages of misaligned spindles (spindle angle deviating by >15° from the mean

value) in STHdh** and STHdh®?/?% cells. Results are shown as mean values + SEM.

*p<0.05, t test. Scale bar 10um.

Figure 7. Akt phosphorylation at S421 rescue the mutant phenotype in spindle
orientation

(A, left) STHdh** and STHdh®0%2% cq|ls transfected with an empty vector or HA tagged
Akt c.a. are analyzed by immunoblotting using anti-HTT (htt-4C8), anti-HA and anti-B-actin
antibodies. Mean spindle angle measured at metaphase, of STHdh™* and STHdh®0%/2109
cells transfected with Akt c.a. or an empty vector. (A, right) Z-X projections of STHdh"*
and STHdh10%/0199 ce||s stained with y-tubulin (green) and DAPI.

(B) Mean spindle angle measured at metaphase, of Hela cells transfected with several
HTT constructs with or without Akt c.a.: HTT-480-17Q, HTT-480-17QA, HTT-480-17Q-

S421D, HTT-480-68Q, HTT-480-68Q + Akt c.a., HTT-480-68Q-S421A, HTT-480-68Q-S421A +

Akt c.a. and HTT-480-68Q-S421D.
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Results are shown as mean values + SEM. **p<0.05, t test. *p<0.05, one way ANOVA
followed by Fisher's Post-hoc test.

Figure 8. HTT function during mitosis is affected by polyQ expansion in D. melanogaster
neuroblasts

(A, left) Schematic representation of spindle poles (red) and Miranda crescent (green).
The angle between the spindle pole (solid line) and the middle of Miranda crescent
(dashed line) is measured for each NB in metaphase. (A, right) NBs of third instar larvae
from W, htt>***-0Q, htt>***-128Q and htt>****-128Q-5421D flies are stained with
Centrosomin (Cnn, white arrowhead), the mitotic marker phosphohistone H3 (PH3), and
Miranda. Quantification of spindle positioning angles relative to Miranda crescent. Values
are expressed as a percentage of NBs within each angle intervals.

(B) Mean of spindle positioning angle from W8, htt>***2-0Q, htt>****-128Q and htt>*®*-
128Q-S421D NBs.

Results are shown as mean values + SEM. *p<0.05, one way ANOVA followed by Fisher's

Post-hoc test. Scale bar S5um.
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7.3 Discussion and perspectives

We described that HTT plays a role in spindle orientation and mitosis (Godin, Colombo, et al.,
2010). Depletion of endogenous HTT leads to post-mitotic cell death in cultured cells and affects
the fate of neural progenitors in vivo. Moreover, HTT role is conserved in D. melanogaster.

The rational of this study “A mutant huntingtin/dynein/dynactin/CLIP170 pathway induces
defective spindle orientation and is regulated by Akt” was to elucidate the effect of HTT poly-
glutamine expansion during cell division. We have shown that HTT poly-glutamine expansion, the
cause of HD, leads to deficits in spindle positioning in dividing cells. This phenotype is linked to a
decreased localization of important proteins involved in mitosis at spindle poles and MT plus-ends.
Moreover, a diminution in the affinity of the complex formed by CLIP170/p15OG'“ed/dynein was
observed in a mutant context. Phosphorylation at S421 by Akt rescues the observed phenotype.

HTT has been proved to be a scaffold protein, required for diverse cellular functions, including
various intracellular trafficking processes. In particular, HTT physically interacts with HAP-1 (X. J. Li
et al., 1995; Pardo et al., 2010) and dynein (J P Caviston et al., 2007; Pardo et al., 2010). Dynein
associates with the multiprotein dynactin complex, through the p150°“** subunit (Schroer, 2004).
Under HD pathological conditions, the HAPl-pISOG'“Ed interaction is altered, leading to the
molecular motors being depleted from the MTs (Gauthier et al. 2004; S.H. Li et al. 1998).
Moreover, abnormal increased interaction of HTT with p150°““’ has been observed in cells,
leading to detachment of HTT and p150°“* from MT (Zala et al., 2008).

Astral MTs are actively pulled towards the cortex by motor proteins. These pulling forces drive
spindle positioning in yeast, worms, insect and mammalian cells (Knoblich, 2001; Siller & Doe,
2009). Emerging data from diverse model systems have led to the prevailing view that, during
mitotic spindle positioning, polarity cues at the cell cortex leads to the recruitment of NuMA and
cytoplasmic dynein/dynactin complex. The dynein/dynactin complex and its regulators are
essential for mitotic spindle positioning (Siller & Doe, 2008, 2009). CLIP170 participates in the plus-
end recruitment of dynein: CLIP170 associates with MT and EB through its CAP-Gly motifs and
plSOG'”ed binds to the C-terminal of CLIP170 and is recruited to the plus-ends (Coquelle et al., 2002;
Galjart, 2005). Together with dynein, CLIP170 is also present at the kinetochores of mitotic cells,
where it might participate in MT capture (Tanenbaum et al., 2006). We studied MT dynamics in
wild-type and polyQ-HTT expressing fibroblasts (MEF). While MT polymerization rate is not altered
in mutant fibroblasts as revealed by the measure of EB3-comets velocity, the time spent by
individuals MT exploring the cell cortex was markedly longer (persistence time). In addition, the
co-localization of plSOG'”ed and CLIP170 with EB3 is diminished. We found the colocalization ratio
of +TIP/EB3 at MT plus-ends significative lower in polyQ fibroblast compared to wild-type.
Furthermore, biochemical assays in which we pulled-down endogenous dynein revealed a
decreased affinity in the CLIP17O/p1506'“ed/dynein complex in STHdh®9/21%9 a5, We thus suggest
that normal localization of dynein, CLIP170 and p150%““? is altered when HTT is mutated, affecting
MT persistence time and anchoring to the cell cortex. We proposed a dynamic and transient
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CLIP17O/p1506’”ed/dynein complex at MT plus-ends, which integrity and affinity is regulated by
HTT. Mutant HTT would in turn detach HTT and p15OG’“ed from MT, hampering the recruitment of
CLIP170 and dynein to plus-ends.

In order to study the consequences of +TIPs mislocalization in polyQ-HTT expressing cells, we next
analyzed spindle orientation in cultured cells. The angle formed between the pole-to-pole axis and
the substrate plane was measured. STHdh®%2% givided with a misorientated spindle compared
to STHdh™* cells. Same result was observed in Hela cells transfected with a construct encoding for
a mutant form of HTT. These observations would indicate that the mechanism underlying spindle

misorientation in STHdh%0%/@10°

cells is the delocalization of +TIPs from MT plus-ends and from
spindle poles provoked by HTT mutation. Similarly, LIS1 is important for localization of its binding
partners NDEL1, dynein, and CLIP170 and this localization impacts on MT stability and capture at
the cell cortex (Yingling et al., 2008b). Futures studies will determine whether HTT and LIS1 act

through the same pathways to regulate spindle positioning.

HTT is phosphorylated at S421 upon IGF1/Akt pathway activation (Humbert et al. 2002) and a
progressive alteration of Akt has been shown during the pathological progression of HD (Colin et
al. 2005). S421 phosporylation plays a key role in vesicular transport. When phosphorylated, HTT
recruits kinesin-1 to the dynactin complex on vesicles and MTs (Colin et al. 2008). In particular,
HTT phosphorylation restores HTT-p150°“*’ interaction and modulates the HTT—p150%“*
association with MTs in vitro and in cells (Zala et al., 2008). We tested whether Akt
phosphorylation at S421 could rescue the phenotype observed in dividing cells in polyQ
conditions. In STHdh®%A109 ce||s expressing Akt, +TIPs and EB3 have the same level of
colocalization than in wild-type cells. In addition, in a biochemical assay where endogenous dynein

cled /dynein complex was obtained in

was pulled-down, comparable levels of CLIP170/p150
STHdh¥09/2109 g5 expressing Akt and wild-type cells. We confirmed these results in Hela cells
transfected to HTT contructs with point-mutations at S421. We can postulate that Akt plays a role
during mitotic spindle orientation through HTT phosphorylation at S421. Concordantly, Akt
regulates centrosome migration and spindle orientation in D. melanogaster embryos (Buttrick et
al., 2008). In cells, the phosphatidylinositol-3,4,5-triphosphate (Ptdins(3,4,5)P3) plays a crucial role
in the control of spindle orientation in a B1 integrin-dependent manner (Toyoshima et al., 2007).
Cdc42, a Rho family of small GTPases, is responsible for the activation of PI(3)K during mitosis and
distribution of cortical dynactin (Mitsushima et al., 2009). Akt is activated downstream PI(3)K. Cell
treatment with LY294002 and Wortmannin, two selective inhibitors of PI(3)K, induce spindle
misorientation (Toyoshima et al., 2007). All these observations draw a picture in which HTT, and its

phosphorylation at S421 by Akt, could act as key regulator of spindle orientation.

Previous studies in D. melanogaster NBs have shown the importance of certain proteins in the
correct alignment of the mitotic spindle and the distribution of apical/basal polarity cues. For
instance, NUMA holomog Mud regulates spindle orientation and cell fate of daughter cells
(Bowman et al. 2006; Siller et al. 2006). Moreover, Partner of Inscuteable (Pins; LGN in mammals)
have been show to regulate spindle orientation in S2 D. melanogaster cells in a
Mud/dynein/dynactin/LIS1 dependent manner (Johnston et al., 2009). We have proved HTT
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function in mitosis to be conserved in D. melanogaster NBs (Godin, Colombo, et al., 2010) as
absence of htt in NBs alters spindle orientation. Transgenic flies expressing an N-terminal fragment
of human HTT with a polyQ expansion recapitulates the same phenotype. Moreover, Akt
phosphorylation at S421 rescues the mitotic spindle misalignment. Further studies are necessary
to elucidate if this change in spindle positioning also affects the apico-basal axis of polarity.

We propose to further analyse the physiological relevance of our study using mouse models. As
discussed before (results section 5), work in a HTT full-length context is crucial. We started to
analyse cortical neurogenesis in Hdh® /211 knock-in mouse in which the mouse exon 1 of HTT
was replaced by human exon 1 (Wheeler et al. 1999). We measured the cleavage plane of
ventricular dividing cells at E9.5 and E14.5. At both stages, we observed an increased number of
NESC and RGCs dividing with a horizontal cleavage compared to wild-type condition. These
observations suggest that mutant HTT not only alters spindle orientation in cells in culture and in
NBs from D. melanogaster, but induces a shift in the mode of division of neural progenitors. Cell
fate analysis at E16.5 showed a reduction in the number of positive cells for Nestin and Thr2, with
a subsequent increase in the number of BllI-tubulin positive cells in HD mice. These preliminary
results indicate that the presence of mutant HTT increases the proportion of progenitors with
horizontal cleavage planes and favours their differentiation. In parallel, we are currently
performing in utero electroporation experiments of E14.5 embryos with different constructs
encoding wild-type and mutant HTT. In particular, this approach will allow us to address the in vivo
effect of phosphorylating S421. We will express mutant HTT constructs with a single point
mutation and determine spindle orientation of dividing progenitors and the cell fate of the
generated daughter cells.

In conclusion, we confirmed the function of HTT during mitosis and showed that the presence of
an abnormal polyQ expansion alters this function. These results open new lines of investigation for
elucidating the pathogenic mechanisms in HD. Indeed, the understanding of wild-type HTT
function and the study of the consequences of the polyQ mutation on this function will help to
elucidate the complex molecular mechanisms leading to this devastating disorder.
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8 GENERAL DISCUSSION

8.1 The importance of studying full-length HTT

Expression of HTT short polyQ N-terminal fragments, for example the 89 amino acid fragment
corresponding to the exon 1, are sufficient to generate a neurological phenotype in mice and to
induce the death of various cell types (Mangiarini et al., 1996). For this reason, most of the studies
in HD have been performed with a truncated form of HTT.

We described and functionally validated pARIS-htt, an innovative tool to facilitate HTT cloning and
analysis. We designed a cellular model to silence endogenous HTT and over-express pARIS-htt.
Shortly, we have shown that mutant form of HTT, as well as deletion forms for HAP1 and dynein,
failed to transport Golgi or BDNF-containing vesicles (Pardo et al., 2010).

BDNF vesicular trafficking is disrupted when HTT is mutated (Gauthier et al., 2004) by detachment
of molecular motor from MTs (Gauthier et al., 2004; Zala et al., 2008). HTT interacts with the
dynein intermediate chain (DIC) via a minimal interaction region mapping to amino acid positions
536-698 of HTT (J P Caviston et al., 2007) and with dynactin via HAP1 (Engelender et al., 1997; S.H.
Li et al., 1998; X. J. Li et al., 1995) with a minimal interacting region corresponding to amino acids
171-230 of HTT (Bertaux et al., 1998). We have show for the first time that HTT lacking dynein or
HAP1 interaction domains affects vesicular transport.

Does pARIS-htt-Adynein favour anterograde transport and pARIS-htt-AHAP1 retrograde transport?
Dynein is an evolutionary conserved motor protein complex that moves towards MTs minus-end
(Schliwa & Woehlke, 2003; Schroer, 2004). HAP1 has been shown to interact with the C-terminal
part of the kinesin light chain (KLC) (McGuire et al., 2006) and with p150°“*® and the heavy chain
of kinesin-1 through its coiled-coil domain (Engelender et al., 1997; S.H. Li et al., 1998). Futures
studies will be necessary to elucidate the effect of pARIS-htt-Adynein and pARIS-htt-AHAP1 in
vesicles directionality.

The role of HTT in the regulation of vesicular trafficking is not limited to its association with dynein
or HAP1. Indeed, the contribution of HTT to different membrane trafficking events involves other
protein partners, such as HIP-1 (Wanker et al., 1997), HAP40 (Pal et al., 2006), Rab8/optineurin
(Hattula & Peranen, 2000) or Rab11l (X. Li et al.,, 2009). Rab5 specifically associates with early
endosomes and regulates its motility along MTs. HTT forms a complex with a Rab5 effector that
induces a change in the cytoskeletal affinity of early endosomes (Pal et al., 2006). Actin-based
transport is most often used for short-range transport, and MTs are used for long-distance
transport. HTT promotes a change in endosome association from MTs to actin through an
interaction with HAP40. When there is an increase in cytoplasmic levels of HAP40, the early
endosome positive for Rab5 is able to associate with actin. When HAP40 levels are decreased,
Rab5-positive early endosomes bind to the MTs. Nevertheless, it remains unclear how the HTT—
HAP40 complex enhances the affinity of Rab5-positive vesicles for actin filament. Optineurin is a
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good candidate as it links HTT to the actin-based motor myosin VI (Sahlender et al., 2005). N-
terminal of HTT directly interacts with optineurin (Sahlender et al., 2005) and HAP40 binds to the
C-terminal region of HTT (Pal et al., 2006). Generation of HTT deletion mutants for the interaction
domain of optineurin and HAP40 would be of valuable interest to understand HTT role as a global
coordinator of cytoskeletal vesicular transport.

HTT is the substrate of various PTMs, such as phosphorylation, SUMOylation, ubiquitination,
acetylation and palmitoylation (discussed in the section 1.8) as well as calpains and caspases
cleavage (discussed in 1.7.1). Furthermore, HTT sequence has been conserved through evolution.
N-terminal fragment is the most recently evolved part of HTT, while the C-terminal part represents
the most conserved portion among all animals, from sea urchin to insects and mammals (Tartari et
al., 2008). In agreement, more than one hundred interactors have been reported in yeast-two-
hybrid screens using various HTT fragments as baits (Goehler et al., 2004; Kaltenbach et al., 2007).
Under these premises, the need of study HTT in a full-length context is essential.

8.2 HTT and mitosis

We have proved that HTT have a major role during cell division acting at spindle orientation level
(Godin et al., 2010; Molina-Calavita et al., in preparation) and that this function is altered in HD
(Molina-Calavita et al., in preparation).

8.2.1 HTT dynamic localization during cell division

HTT is present in the cytoplasm where it associates with MTs and with proteins of the molecular
motor machinery including dynein and HAP1 that interacts with p150°“*® and kinesin-1 (Caviston
et al., 2007; Engelender et al., 1997; Gauthier et al., 2004; S.H. Li et al., 1998; McGuire et al.,
2006). As well, HTT localizes at spindle poles in dividing (Godin, Colombo, et al., 2010) and non-
dividing cells (Keryer et al., 2011). This localization is MT dependent (Keryer et al., 2011) as shown
by nocodazol treatment and FRAP experiments. This dynamic shuttling might be essential in
transporting protein complexes to the centrosome. For example, absence of wild-type HTT or
polyQ mutation delocalized dynein and plSOG’”ed from the spindle poles (Godin et al., 2010;

Molina-Calavita et al., in preparation).

+TIPs accumulate at MT plus-ends and can be classified according to their structure (Akhmanova &
Steinmetz, 2010). EB protein represents the core components of +TIP networks. This small
molecule can individually track growing MTs (Akhmanova & Steinmetz, 2008; Bieling et al., 2008;
Dixit et al., 2009). CLIPs (CLIP115 and CLIP170) and p150°“* shares a globular CAP-Gly domain.
CLIPs stabilize MTs by preventing catastrophes or by stimulating rescues. In addition, CLIP170
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participates in the plus-end recruitment of dynein: CLIP170 associates with MT and EB through its
CAP-Gly motifs, plSOG’“ed binds to the C-terminal of CLIP170 and is recruited to the plus ends, and
dynein associates with dynactin (Coquelle et al., 2002; Galjart, 2005). We found that in polyQ
condition, EB3 localization and MTs growth rate, calculated by following EB3 positive comets, was
unchanged compared to wild-type. However, CLIP170 and p15OG'“ed were delocalized from MT
plus-ends. The affinity of the complex formed by CLIP170/p150°“*“/dynein is perturbed in a
mutant context. These observations draw a general picture in which HTT would be critical to the
recruitment of +TIPs.

We speculate that HTT could be also found at the cell cortex of dividing cells. In favour of this
hypothesis we found the complex linking astral MT plus-ends and cell cortex: NUMA and dynein.
HTT interacts with dynein (Caviston et al., 2007; Pardo et al., 2010) and NuMA (Kaltenbach et al.,
2007). In the absence of HTT, NuMA delocalizes from the spindle poles (Godin, Colombo, et al.,
2010). NuMA links the dynein/dynactin-LIS1 complex to the cortically polarized LGN protein.
NuMA couples therefore dynein motor activity to cortex polarity cues (Du & Macara, 2004; Siller &
Doe, 2009). Whether HTT participates to this coupling remains to be established. So far, in the
experimental conditions used in our study, | did not observed HTT at the cell cortex. This could be
linked to the fixation protocols for HTT maintenance at the cortex, or a rapid and highly dynamic
of HTT to and from the cortex. Futures studies will be necessary to investigate whether HTT co-
localized and interact with NuMA and LIS1 at the cell cortex during cell division.

8.2.2 HTT as a transport-mediator during mitosis

HTT function in vesicular transport has been the object of several studies. In particular, HTT
controls trafficking of vesicles via a dynein/dynactin-dependent pathway (Caviston et al., 2007;
Colin et al., 2008; Gauthier et al., 2004; Zala et al., 2008). HTT could mediate the transport of the
dynein/dynactin complex along astral MTs in a HTT-HAP1 dependent manner. In a mutant context,
HTT and molecular motors are detached from MT (Gauthier et al., 2004; Zala et al., 2008). Thus,
the absence of HTT or its polyQ mutation would then lead to a loss of dynein/dynactin from the
MT plus-ends and cell cortex.

Another potential interactor of HTT that could mediate its function during mitosis is Cdc42-
interacting protein 4 (CIP4). CIP4 is a Wiskott—Aldrich syndrome protein (WASp) interactor and
Cdc42 effector protein involved in cytoskeletal organization (Tian et al., 2000). CIP4 appears to be
involved in the binding of WASp to MTs (Tian et al., 2000). In fact, CIP4 interacts with the N-
terminal domain of HTT (Holbert et al., 2003). In this context, HTT could be involved in the
regulation of actin dynamics at the cell cortex, cell polarization and proper localization of the
dynein/dynactin complex. In favour of this hypothesis, it has been shown that Cdc42-PAK/BPix
modulates spindle orientation (Mitsushima et al., 2009) and p21-activated kinase 1 (PAK1)
localized at centrosomes during mitosis (Zhao et al., 2005). Interestingly, PAK1 interacts with HTT
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in vivo and in vitro (Luo et al., 2008). Hence, Cdc42 might regulate actin remodeling during mitosis
through PAK, BPix and HTT.

Finally in favor of a transport role for HTT during mitosis, it has been proposed that HTT controls
transport to the centrosome of proteins required for ciliogenesis. In the absence of HTT,
dynein/dynactin-dependent transport would be altered, leading to a reduction of PCM proteins at
the centrosome. In disease, the increased concentration of pericentriolar proteins is caused by the
loss of the dynamics of pericentriolar satellites that remain closely localized to the centrosome
(Keryer et al., 2011). Thus, HTT would be a transport-mediator in several cellular processes.

8.3 HTT and neurogenesis

8.3.1 HTT and corticogenesis

During mammalian corticogenesis, NESC proliferate symmetrically to expand. Progenitors then
undergo symmetric or asymmetric divisions. When the division is symmetric, the cells self-renew
and there is an expansion of progenitors. Conversely, during asymmetric division, there is
production of a progenitor cell and a neuron, which migrates to integrate into the future cortex.
The direction of the division depends on proper spindle orientation and segregation of cue
determinants (Konno et al.,, 2008; Kosodo et al.,, 2004; Marthiens and ffrench-Constant, 2009;
Yingling et al., 2008).

We have shown that inactivation of HTT in murine cortical progenitors changes the nature of the
division cleavages, thereby decreasing the pool of cycling progenitors and increasing neuronal
differentiation (Godin, Colombo, et al., 2010).

Several arguments support that mutant HTT impairs cell division and neurogenesis. In fibroblast
from a murine model of HD and in cell lines from HD patients a disorganization of the centrosome
and a subsequent disruption of the cell cycle leading to aneuploidy, micronuclei and dysmorphic
cells was reported (Sathasivam et al., 2001). Impaired adult neurogenesis was revealed in the DG
of HD mouse models (Phillips et al.,, 2005; Simpson et al., 2010). In contrast, embryonic
neurogenesis in HD condition has been poorly addressed. However, premanifest HD mutation
carriers have smaller intracranial adult brain volume compared with controls that could result
from an abnormal development (Nopoulos et al., 2010).

As described before in the results section, preliminary observations in HD mouse models suggest
and affected cleavage plane of neural progenitors and a change in the cell fate. Thus, it is tempting
to speculate that mutant HTT could induce early developmental deficit.
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8.3.2 Therole of HTT in cell fate

The link between orientation of cell division and differential fate acquisition has been studied in
ACD of D. melanogaster embryonic NBs (Bellaiche & Gotta, 2005; Siller & Doe, 2009; Yu et al.,
2006). These studies uncovered a role for inhibitory heterotrimeric G proteins (Gai) and their
regulators in controlling mitotic spindle positioning. In particular, Pins interacts with cortical GDP-
Ga.i (Schaefer et al., 2001). Hence, Pins seems to have a pivotal role in ACD, acting not only as a
signal but also as a physical bridge between spindle poles and the cell cortex.

Pins vertebrate homolog, LGN is localized at the cell cortex and at spindle poles (Du & Macara,
2004). In vivo studies in chick embryonic trunks showed that LGN is expressed in NECs, and
localizes to the cell membrane and spindle poles in metaphase and anaphase (Morin et al., 2007).
Removing LGN, NuMA, or Gai, as well as interfering with the LGN/Gaii interaction, suppress
spindle rotation during metaphase and result in defects in final spindle orientation at anaphase in
vivo (Konno et al., 2008; Morin et al., 2007; Peyre et al., 2011). Indeed, NuMA interacts with HTT
by yeast two-hybrid screening and mislocalizes from spindle pole in absence of HTT (Kaltenbach et
al.,, 2007). We can picture that HTT is important to regulate proper localisation of NuMA and
dynein/dynactin, and as a consequence, the localisation of LGN. These observations further
support the notion of HTT as a regulator of spindle orientation and the balance between
asymmetric and symmetric divisions in the developing cortex.

8.3.3 HTT and neuronal migration

Neuronal migration is a fundamental process for the development of laminary structures in the
mammalian brain, including the cortex, hippocampus, midbrain, and hindbrain (Feng & Walsh,
2001; J.W. Tsai et al.,2007; L.H. Tsai & Gleeson, 2005; Wynshaw-Boris, 2007).

After the transition of young neurons from multipolar to bipolar shape in the SVZ, they migrate
along the radial glial fibers across a long distance toward the pial surface. The leading edge of the
neuron extends along the radial glial fiber, and a swelling of the plasma membrane forms in the
leading process. The MT network is then pulled forward, and the centrosome moves steadily into
the swelling. Next, the nucleus is pulled by MTs toward the centrosome. Finally, the trailing
cytoplasmic region follows the nucleus and finishes soma translocation (J.W. Tsai et al., 2007; L.H.
Tsai & Gleeson, 2005). LIS1, Ndell, DCX, and the dynein complex have been shown to have critical
roles in coupling microtubules and the nucleus (Feng et al., 2000; J.W. Tsai et al., 2007).

Deletion of Ndel, a LIS1-interacting protein, induced neuronal migration defect and thinning of
the superficial cortical layers in mice (Feng & Walsh, 2004). Single Lis1 and Dcx mutants and
double Lis1 Dcx mutants showed neuronal migration defects during corticogenesis (Pramparo et
al., 2010).
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Given HTT interactors (as discussde before), HTT could be involved at several steps during the
migration process. As shown recently, Htt deletion disrupts migration of neurons in the developing
cortex (Tong et al.,, 2011). In particular, Htt shRNA abolishes normal cell migration from the
ventricular zone to the cortical plate and this effect is time-dependent. Interestingly, knockdown
of Htt in the cerebellum did not affect cell migration.

The mechanism underlying this phenotype has not been fully described yet. However, is tempting
to speculate that the dynein/dynactin complex and other +TIPs are involved.

We have shown that HTT is necessary to properly localize dynein, p150°“** and CLIP170, and when
HTT is mutated, these proteins are mislocalized (Godin et al.,, 2010; Molina-Calavita et al., in
preparation). Futures studies to address the effect of HTT mediated delocalization of +TIPs and
neuronal migration are necessary. For instance, delocalization of CLIP170 from the growth cones
in TTL-null mice induce a disruption of the cortico-thalamic loop and reduced cell numbers in the
cortical plate zone (Erck et al., 2005).

8.3.4 Is HD a cortical developmental disorder?

Disorders of cerebral cortical development are generally categorized by the developmental stage
that is disrupted (Barkovich et al., 1996). For example, impaired neurogenesis affects brain size
and results in “microcephaly” (small brain), and defective neuronal migration results in cortical
lamination defects.

Lissencephaly (smooth brain) is considered to be neuronal migration disorder (Dobyns & Truwit,
1995). Mutations in two genes, LIS1 (Lo Nigro et al., 1997; O. Reiner et al., 1993) and DCX (Gleeson
et al., 1998; des Portes et al., 1998), are responsible for most cases of classical lissencephaly (Kato
& Dobyns, 2003).

Heterozygous loss or mutation of LIS1 is sufficient to cause neuronal migration defect,
characterized by a smooth cortical surface, abnormal cortical layering, and enlarged ventricles
(Gupta et al., 2002). Mitotic spindle orientation in both NESCs and RGCs has been show to be
regulated by Lis1 (Yingling et al., 2008). The underlying mechanism is an impaired cortical MT
capture via loss of cortical dynein. Ndel is essential for mitotic spindle assembly and function and
is required for determining the mode and speed of cortical neural progenitor cell mitosis (Feng &
Walsh, 2004). Moreover, Ndel homozygous mutation results in a reduction in the size of the
cerebral cortex.

Loss of Dcx does not affect spindle positioning during NESCs expansion but does have effects on
RGCs, randomizing spindle orientation. Although the final cortical organization is preserved in Dcx
mutants, neuronal migration is slower with a multidirectional pattern of migration (Pramparo et
al., 2010). DCX binds ubiquitously to MTs in non-neuronal cells and its activity is essential for their
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bundling and stabilization (Gleeson et al., 1999). This function could be impaired in Dcx mutants
resulting in abnormal branching and change of direction during migration (Pramparo et al., 2010).

Lis1 and Dcx double mutants displayed a more severe randomization of the spindle during radial
glial mitotic divisions with abventricular divisions leading to increased cell-cycle exit and depletion
of the progenitor pool at the ventricular surface (Pramparo et al., 2010). Neuronal migration and
proliferation defects lead to a severe disorganization of the cortex.

For HD, it has been published that premanifest HD mutation carriers have smaller intracranial
adult brain volume compared with controls (Nopoulos et al., 2010). Furthermore, abnormal brain
structure has been documented in prodromal HD subjects decades prior to the onset of disease
(Paulsen et al., 2010). A difference in intracranial volume is unlikely to be caused by degenerative
process as intracranial volume, once determined by maximal brain growth in childhood, does not
change over time. Instead, an alternative explanation for this finding is that, in the subjects with
prodromal HD, the brain did not grow to its full capacity, raising the possibility of a global
abnormality in the process of brain development.

In a recent study, basic anthropometric measures of height, weight, body mass index (BMl), and
head circumference in children at risk for HD were evaluated (J. K. Lee et al., 2012). The head of
preHD children is disproportionately small and therefore, showing an abnormality of brain growth.
Furthermore, the significant association between longer CAG repeat length and smaller head
circumference highlights the direct genetic impact of expanded CAG repeat on this measure (J. K.
Lee et al., 2012).

We have shown in vivo that removal of Htt from progenitors cells at E14.5 leads to a change in the
cleavage plane with an increase in the proportion of progenitors with intermediate and horizontal
cleavage planes (Godin, Colombo, et al., 2010). This shift in the cleavage plane of progenitors
lowers the pools of both apical and basal progenitors and promotes neuronal differentiation of
daughter cells. Knockdown of Htt in neurons of the neuroepithelium at E12.5 impairs normal cell
migration in cerebral cortex and leads to caspase-mediated cell apoptosis (Tong et al., 2011). This
may explain previous observations showing that lowering the levels of Htt in mouse results, in
addition to severe anatomical brain abnormalities, in ectopic masses of differentiated neurons
near the striatum (White et al., 1997).

Using HD knock-in mouse models, we observed at E14.5 an increased number of RGCs dividing
with a horizontal cleavage compared to wild-type condition. Same results were obtained at E9.5 in
NESCs. Cell fate analysis showed a reduction in the number of positive cells for progenitors
markers such as Nestin and Tbr2, with a subsequent increase in the number of post-mitotic
neurons (BllI-tub+) (Molina-Calavita et al., in preparation). These preliminary results would suggest
an alteration in corticogenesis in mutant HTT condition. More work is needed to be done to
explain the consequences of this phenotype and how it contributes to HD pathogenesis.
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9 Annexe I: Rodent HD models
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10 Annexe II: Other HD models
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General features Neuropathology and Symptoms

Animal, Promoter, Nuclear Cell loss Neuronal Motor problems
Construct CAG inclusions dysfunction

Htn-Q150 Transgenic osm-10 Cytoplasmic  Cell death  Progressive Impaired ability to

worm, first 171 150 inclusions neuronal respond in the nose
(Faber et al., amino acids of degeneration, touch
1999) human HTT Dye-Filling defect  assay

neurons

Htt57Q128::GFP  Transgenic mec-3 Cytoplasmic  No Swelling of axonal Mechanosensory

worm, first 57 128 inclusions evidence processes defect at
(Parker et al., amino acids of cell the tail (Mec
2001) of human HTT death phenotype)

fused to GFP

General features Neuropathology and Symptoms
Animal, Promoter, Onset of Nuclear Cell loss Neuronal Motor
Construct CAG symptoms, inclusions dysfunction problems
survival

Q120 Transgenic  pGMR Onset of Multiple Cell death Degeneration

fly, first 170  (eye- degeneration  small shares of
(Jackson et amino acids  specific is determined aggregates  morphological photoreceptor
al., 1998) of human promoter) by the length features with  neurons

HTT 120 of the apoptosis

polyglutamine
tract

httex1- Transgenic ~ GAL4-UAS 70% lethality  Nuclear, Neuronal Cell  Progressive
93Q fly, exon 1 system and early cytoplasmic Death neuronal

of human 93 adult death and neuritic degeneration,
(Steffan et  HTT gene aggregates progressive
al., 2001) loss of

rhabdomeres
(eye)

Htt-Q128 Transgenic  GAL4-UAS Decreased Cytoplasmic Photoreceptor Loss of

fly, first 548 system lifespan and neuritic degeneration, motor
(Lee atal., aminoacids 128 aggregates defects in coordination
2004) of the membrane

human HTT excitability

gene and brain

activity







General features Neuropathology and Symptoms

Q102-GFP Zebrafish 102 Reduced viability Inclusion Apoptosis “cyclopic”
transiently of embryos body-like phenotype
(Schiffer et expressing aggregates
al., 2007) exon 1 throughout
of human HTT the body of

fused to GFP embryos







11 Annexe llI: Huntington’s disease signalling
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12 Annexe IV: HD therapeutic strategies and biomarkers
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13 Annexe V: Huntingtin is required for mitotic spindle
orientation and mammalian neurogenesis
(supplemental information)
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SUPPLEMENTAL FIGURES LEGENDS

Supplemental Figure S1, related to Figure 1. Huntingtin Distribution during Mitosis using
Different Huntingtin Antibodies Targeted against Distinct Regions. Immunostaining of
mouse neuronal cells with anti-y-tubulin (green), anti-htt 812 (red) (A), anti-htt 4E6 (red) (B)
antibodies and DAPI (blue) counterstaining. Huntingtin localizes at the spindle poles during

mitosis. Scale bar 5 um.
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Figure S1 Godin et al.



Supplemental Figure S2, related to Figure 2. Huntingtin Regulates Spindle Orientation
during Mitosis in Mouse Neuronal and HeLa Cells.

(A) Quantification of spindle orientation defect in mouse neuronal cells treated with scramble, si-
httl and si-p150°"* RNAs. Results are expressed as the percentage of cells with misoriented
spindle (more than 9 stacks of 0.2um between the two poles, AZ>1.8um).

(B) Spindle angles in metaphase cells are plotted as a function of cell area at midsection showing
no correlation between spindle angle and size of the mouse neuronal cells treated as in (A).

(C) Immunostaining of HelLa cells with anti-y-tubulin (green) and anti-htt SE3619 (red)
antibodies and DAPI (blue) counterstaining reveals that huntingtin localizes at the spindle poles.
(D) Lysates from si-ctrl and si-Huhtt RNAs treated HeLa cells are analyzed by immunoblotting
using anti-htt 4C8 and anti-a.-tubulin antibodies. Huntingtin levels are severely diminished in si-
Huhtt treated cells.

(E) Z-X projections of immunostaining of si-ctrl or si-Huhtt RNAs treated HelLa cells with -
tubulin (green) and DAPI counterstaining (blue). Z-X projections reveal a striking misorientation
of the mitotic spindle in metaphase cells depleted for huntingtin.

(F) Quantification of HelLa cells with a misoriented spindle orientation, defined as in (A).
(*P<0.05, ***P<0.001; see below for detailed statistical analyses and number of measures). Scale

bar 5 um.
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Supplemental Figure S3, related to Figures 6 and 7. Huntingtin Regulates Spindle
Orientation of Dividing Mouse Cortical Progenitors in vivo.

(A) Schemes representing dividing progenitors cells within three groups according to the
orientation of the cleavage plane to the ventricular zone (VZ): vertical (0-30°, left), horizontal
(60-90°, middle) and intermediate (30-60°, right).

(B and C) Analysis of the percentage of vertical, horizontal and intermediate cleavage planes
reveal an increase in the fraction of neuronal progenitors that show horizontal cleavage in
absence of huntingtin. This is restored to the control situation when re-expressing huntingtin (htt-
1301). Analyses are performed either in neuronal progenitors from (B) E14.5 embryos
electroporated with scramble RNA, si-httl RNA, si-htt2 RNA + empty vector or si-htt2 RNA+
htt-1301 (pCAGGS- htt-1301-IRES-NLS-GFP) or (C) from wild-type and Nestin-Cre/+;Hdh
flox/- E14.5 embryos.

(D) Cleaved-caspase3 immunostaining of coronal sections of E14.5 embryos electroporated with
scramble or si-httl RNAs reveal that huntingtin depletion in neuronal progenitors does not induce
cell death. Scale bar 20um.

(E) Distribution of GFP positive cells in subventricular (SVZ) and intermediate (1Z) zones of
E14.5 embryos co-electroporated with pCAGGS-NLS-GFP and scramble or si-httl RNAs. GFP
positive cells are scored in SVZ and 1Z, each divided in three equal bins. Huntingtin-depleted

cells are distributed as the control cells.
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Supplemental Figure S4, related to Figure 7. Cortical (co) and Striatal (st) cells are
Extensively Recombined in Nestin-Cre/+;R26R/+ embryos. X-gal staining with an eosin

counterstaining of E14.5 section of a representative Nestin-Cre/+;R26R/+ embryo.



Figure S4 Godin et al.



SUPPLEMENTAL MOVIE LEGEND

Supplemental Movie S1, related to Figure 4. Video-recording of HelLa cells stably
expressing GFP-tubulin (green) and H2B-mCherry (red) treated with si-ctrl (left panel) or si-
Huhtt RNAs (right panel). Time acquisition: 1 image/min. Playing 4 frames per second. Pole-
pole axis is represented by a white line (middle panel). Position of the pole-pole axis at each time
point shows an increased variability in huntingtin-depleted cells. t=0min corresponds to the

beginning of anaphase.

STATISTICAL ANALYSES

Figure 1D
Data are from three independent experiments: scramble: 29 cells, si-htt1: 31 cells
ANOVA F[1,58] = 22.811; T test ***p<0.0001

Figure 2E

Data are from four independent experiments: scramble: 42 cells, si-httl: 48 cells, si-p150: 48
cells

ANOVA F[2,135] =14.551; p***<0.0001

Fisher’s PLSD:

p-value
scramble, si-httl <0.0001
scramble, si-p150 <0.0001
si-httl, si-p150 0.5626

Figure 2F

Data are from three independent experiments: scramble: 55 cells, si-htt2: 184 cells, scramble +
htt-1301: 73 cells, si-htt2 + htt-1301: 64 cells

ANOVA F[3,372] =58.252; p***<0.0001

Fisher’s PLSD:

p-value
scramble, si-htt2 <0.0001
scramble, scramble+htt 0.9883
scramble, si-htt2+htt 0.1802
si-htt2, scramble+htt <0.0001
si-htt2, si-htt2+htt <0.0001

scramble+htt, si-htt2+htt 0.1461



Figure 3B

Data are from four independent experiments: scramble: 42 cells, si-httl: 48 cells, si-p150: 48
cells

ANOVA F[2,135] = 7.686; ***p = 0.0007

Fisher’s PLSD:

p-value
scramble, si-httl 0.0013
scramble, si-p150 0.0005
si-httl, si-p150 0.7839

Figure 3C

Data are from four independent experiments: scramble: 42 cells, si-htt1: 48 cells, si-p150: 48
cells

ANOVA F[2,135] = 0.338; p = 0.7137

Fisher’s PLSD:

p-value
scramble, si-httl 0.5522
scramble, si-p150 0.4268
si-httl, si-p150 0.8355

Figure 4E
Data are from 3 independent experiments: scramble: 20 cells, si-htt1: 44 cells,
ANOVA F[1,6] = 6.312; T test *p = 0.0325

Figure 4F
Data are from two independent experiments: scramble: 15 cells, si-p150: 9 cells
ANOVA F[1,29] = 8.291; T test *p = 0.0427

Figure 4G
Data are from three independent experiments: scramble: 37 cells, si-htt1: 55 cells
ANOVA F[1,90] = 5.953; T test *p = 0.0167

Figure 4H
Data are from three independent experiments: scramble: 116 cells, si-htt1: 81 cells
ANOVA F[1,195] = 8.816; T test **p = 0.0034

Figure 4K
Data are from three independent experiments: scramble: 6 cells, si-Huhtt: 23 cells
ANOVA F[1,27] = 4.982; T test *p = 0.0341

Figure 5B
Data are from four independent experiments: scramble: 731 cells, si-httl: 673 cells
ANOVA F[1,31] = 12.267; T test **p = 0.0014

Figure 5C
Data are from three independent experiments: scramble: 338 cells, si-htt1: 271 cells



ANOVA F[1,24] = 22.05; T test ***p<0.0001

Figure 5D
Data are from four independent experiments: scramble: 340 cells, si-htt1: 398 cells

ANOVA F [1,6] = 0.229; T test p = 0.6492

Figure 5E

Data are from three independent experiments: scramble: 1284 cells, si-htt1: 1143 cells, si-p150:
1135 cells

ANOVA F[14,30] = 17.693; ***p<0.0001

Fisher’s PLSD:

p-value
prophase
scramble, si-httl 0.5327
scramble, si-p150 0.5618
si-htt1, si-p150 0.9647
prometaphase
scramble, si-httl 0.1468
scramble, si-p150 0.0008
si-httl, si-p150 0.0343
metaphase
scramble, si-httl 0.2632
scramble, si-p150 0.0955
si-httl, si-p150 0.5656
anaphase
scramble, si-httl 0.9772
scramble, si-p150 0.9875
si-htt1, si-p150 0.9898
telophase
scramble, si-httl 0.8019
scramble, si-p150 0.1659
si-htt1, si-p150 0.1057
Figure 6C

Data are from: scramble: 6 embryos (64 cells), si-httl: 2 embryos (40 cells), si-htt2: 5 embryos
(56 cells), si-htt2 + htt-1301: 4 embryos (41 cells)

ANOVA F[3,197] = 4.006; **p = 0.0085

Fisher’s PLSD:

p-value
scramble, si-httl 0.0253
scramble, si-htt2 0.0044
scramble, si-htt2+htt-1301 0.8946

si-htt2, si-htt2+htt-1301 0.0157



Figure 6E
Data are from: scramble: 3 embryos (378 cells), si-htt1: 3 embryos (503 cells)

ANOVA F[1,14] = 22.429; T test ***p = 0.0003

Figure 6F
Data are from: scramble: 3 embryos (477 cells), si-htt1: 6 embryos (508 cells)

ANOVA F[1,20] = 16.762; T test ***p = 0.0006

Figure 6G
Data are from: scramble: 3 embryos (200 cells), si-htt1: 6 embryos (543 cells)
ANOVA F[1,20] = 8.556; T test **p = 0.0083

Figure 6l
Data are from: scramble: 3 embryos (262 cells), si-httl: 5 embryos (798 cells)
ANOVA F[1,16] = 10.665; T test **p = 0.0049

Figure 7C
Data are from: WT: 2 embryos (341 cells), Nestin-Cre/+;Hdh flox/-: 2 embryos (471 cells)

ANOVA F[1,810] = 28.759; T test ***p< 0.0001

Figure 7G
Data are from: WT: 2 embryos (3457 cells), Nestin-Cre/+;Hdh flox/-: 2 embryos (4884 cells)

ANOVA F[1,1] = 10.066; T test **p = 0.0056

Figure 7H
Data are from: WT: 2 embryos (4216 cells), Nestin-Cre/+;Hdh flox/-: 2 embryos (6275 cells)
ANOVA F[1,18] = 9.914; T test **p = 0.0056

Figure 71
Data are from: WT: 2 embryos (2085 cells), Nestin-Cre/+;Hdh flox/-: 2 embryos (3239 cells)
ANOVA F[1,13] =5.335; T test *p = 0.04

Figure 7J
Data are from: WT: 2 embryos (617 cells), Nestin-Cre/+;Hdh flox/-: 2 embryos (1497 cells)

ANOVA F[1,15] = -2.935; T test *p = 0.0102

Figure 8C

Data are from two independent experiments: insc-Gal4: 54 NBs, RNAI(1): 40 NBs, RNAI(2): 44
NBs, mud”:17 NBs

ANOVA F[3,151] = 7.720; ***p<0.0001

Fisher’s PLSD :

p-value
insc-Gal4, RNAI(1) 0.0139
insc-Gal4, RNAI(2) 0.0568
insc-Gal4, mud? <0.0001

mud?, RNAI (1) 0.0073



mud?, RNAI(2) 0.0016
RNAI(1), RNAI(2) 0.5550

Figure 8E
Data are from three independent experiments: w**® : 56 NBs, dhtt-ko: 40 NBs
ANOVA F[1,94] = 5.536; T test *p=0.0207

Figure 8G

Data are from three independent experiments: w''*%: 18 NBs, dhtt-ko: 29 NBs, mud?®:18 NBs
ANOVA F[2,62] = 7.192; **p=0.0016

Fisher’s PLSD :

p-value
w8 dhtt-ko 0.4375
w8 mud? 0.0101
dhtt-ko, mud? 0.0008

Figure 81

Data are from three independent experiments: w''*8: 18 NBs, dhtt-ko: 27 NBs, mud?®:19 NBs
ANOVA F[2,61] = 39.059; ***p<0.0001

Fisher’s PLSD :

p-value
w dhtt-ko 0.5459
w8 mud? <0.0001
dhtt-ko, mud? <0.0001

Figure 8K

Data are from three independent experiments: scramble: 86 cells, si-httl: 90 cells, scramble
+dHtt620: 90 cells, si-httl + dHtt620: 88 cells

ANOVA F[3,8] = 12.737; **p=0.0021

Fisher’s PLSD :

p-value
scramble, si-httl 0.0005
scramble, scramble+dHtt620 0.3464
scramble, si-htt1+dHtt620 0.4020
si-httl1, scramble+dHtt620 0.0018
si-httl, si-htt1+dHtt620 0.0015

scramble+dHtt620, si-htt1+dHtt260 0.9109

Supplemental Figure 2A
Data are from four independent experiments: scramble: 93 cells, si-httl: 89 cells, si-p150:101
cells
ANOVA F[2,11] = 28.195; ***p<0.0001
Fisher’s PLSD:
p-value
scramble, si-httl <0.0001
scramble, si-p150 0.0001



si-httl, si-p150 0.1404
Supplemental Figure S2F

Data are from three independant experiments: si-ctrl: 240 cells, si-Huhtt: 259 cells
ANOVA F[1,4] =19.828 ; T test *p=0.0112

SUPPLEMENTAL EXPERIMENTAL PROCEDURES

Constructs and siRNAs. The Drosophila Dm-620-huntingtin fragment (Dm-620-htt) was
provided by Drosophila Genomics Resource Center (DGRC, Indiana, USA). This fragment was
amplified by PCR using the following primers: Dm-620-htt-s (5’ cgcggatccgacaaatccaggtccagtge
3’) and Dm-620-htt-as (5’ cgcggatccggcetgetgcetgcetetttgetg 37). PCR product was digested by
BamHlI, ligated to pEGFP-C1 (Invitrogen) and sequenced. YFP-htt-1301-17Q and EB3-GFP
constructs were previously described (Anne et al., 2007; Stepanova et al., 2003). pEYFPC1 (BD
Biosciences Clontech, Palo Alto, CA) was used as control. To obtain pCAGGS-htt-1301-17Q
IRES-NLS-GFP construct, a PCR was done in order to insert a Smal site in YFP-htt-1301-17Q
construct, using it as a template with the following primers (Eurofins, MWG Operon): YFP-1301
mut Smal Cter-sens (5’ gaaatcctgcaggcatcccgggagggcgaattc 3°) and YFP-1301 mut Smal Cter-
antisens (5’ cagattcgccctcccgggatgecgtcaggattt 3°) The PCR product was inserted (Sacl/Smal;
Biolabs) in pPCAGGS-LB-IRES-NLS-GFP vector and sequenced.

The RNA oligonucleotides for siRNA (Eurogentec) were annealed and used at 2 uM in neuronal
cells and at 8uM in HelLa cells. The following pairs of oligonucleotides were used: Mohtt361-
sens (5’ ggaacucucagccaccaag 3’) and Mohtt361-antisens (5’ cuugguggcugagaguucc 3’) for
siRNA against mouse huntingtin (si-httl); Mohtt 4325-sens (5’ uuacugucuacuggauuc 3’) and
Mohtt 4325-antisens (5’ ugaauccaguagacagua 3’) for sSiRNA againt mouse huntingtin (si-htt2); si-

p150¢"“*_sens (5’ agaagucacucaagauuaa 3’), si-p150°"“*-antisens (5’ uuaaucuugagugacuucu 3°)



for SiRNA against mouse/ratthuman p150°"* (si-p150°™*%) and Huhtt585-sens (5’
aacuuucagcuaccaagaaag 3’) and Huhtt585-antisens (5° cuuucuugguagcugaaaguu 3’) for siRNA
against human huntingtin (si-Huhtt); scramble-sens (5 aucgagcuaccacgaacgc 3’) and scramble-
antisens (5’ gcguucgugguagcucgau 3°) for negative control siRNA (scramble). siRNA negative
control (si-ctrl) from Eurogentec (OR-0030-neg05) was used for HelLa cells experiments. The
huntingtin siRNAs were extensively used to target huntingtin function in dynein/dynactin
dependent transport along microtubules in cells without off-target effects, as shown in rescue

experiments and by the use of other siRNAs (Colin et al., 2008).

Cell lines and Transfection. Mouse neuronal cells derived from immortalized striatal progenitor
cells were grown as previously described including 400 ug/ml geneticin (Trettel et al., 2000) and
electroporated using cell line nucleofactor kit (Amaxa). Cells were spread in 10 cm? plate and in
glass coverslips for immunoblotting and immunofluorescence experiments respectively. For
rescue experiments, expression of fragment of human (YFP-htt-1301) or Drosophila huntingtin
(GFP-dHtt620) in mouse neuronal cells was achieved by co-electroporation of the YFP-htt-1301
or GFP-dHtt620 construct with scramble or si-htt. After 48 hr, cells were lyzed or fixed and
immunoprocessed. For microtubule polymerization analysis, mouse neuronal cells were first
electroporated with si-httl or scramble RNA and transfected the following day with
Lipofectamine2000 (Invitrogen) with EB3-GFP. Videomicroscopy was performed 48 hr after
electroporation.

HeLa cells stably expressing GFP-tubulin (green) and H2B-mCherry (red) were cultured as

previously described (Steigemann et al., 2009), plated on glass coverslips and transfected using



Lipofectamin2000 with scramble or si-Huhtt. After 48 hr, transfected cells were analyzed by

confocal videomicroscopy.

Antibodies and Immunostaining Procedures. Anti-huntingtin (anti-htt) antibodies used in this
study have been either previously described: mAb 2B4 (epitope 49-64, clone HU 2B4,
Euromedex) (Lunkes et al., 2002), mAb 4C8 (epitope 445-456, clone HU-4C8-As, Euromedex)
or generated for this study (pAbs 812 and SE3619). The pAbs 812 and SE3619 antibodies were
generated by synthesis, coupling to keyhole limpet hemocyanin (Eurogentec) and injection into
rabbits of the following respective peptides: MATLEKLMKAFESLKSF (mouse/human
huntingtin amino acid sequence 1 to 18) and CGGRSRSGS[POsH,]IVE (mouse huntingtin
sequence amino acid 414 to 424). Polyclonal antibodies were obtained by affinity-purification of
serum using the appropriate peptide columns. Briefly, the serum was filtered (0.22 um filter) and
after addition of 1 M tris (pH 8.0) up to a final concentration of 100 mM, it was applied to a
sulfolink column (Pierce) coupled to the appropriate peptide. Retained antibodies were eluted
with 100 mM glycine buffer (pH 2.7) and pH was neutralised with 1 M tris pH 9. Antibodies
were concentrated (Vivaspin concentrator 10 000 MW, VivaScience) and stored in 50% glycerol.
For immunofluorescence, the primary mouse antibodies used were: anti-a-tubulin DM1A (1:100;
Sigma), anti-a-tubulin-FITC conjugated (1:30; Sigma), anti-huntingtin 4C8 (1:500), anti-
p150%"* (1:100; BD bioscience), anti-intermediary chain 74.1 of mammalian cytoplasmic dynein
(1:200; MAB1618, Chemicon) and anti-y-tubulin GTU88 (1:100; Sigma). The primary
polyclonal antibodies used were: anti-huntingtin SE3619 (1:100), anti-huntingtin 812 (1:100),
and anti-y-tubulin (1:100; Sigma). Secondary antibodies used were goat anti-mouse and anti-

rabbit conjugated to AlexaFluor-488 or AlexaFluor-555 (Molecular Probes) at 1:200. Cells were



grown on glass coverslip transfected with various constructs or siRNA. To analyze huntingtin
localization during mitosis, cells were prelyzed 2 min in prewarmed 0.5% Triton X-100-PHEM
buffer before being fixed in anhydrous methanol at -20°C for 5 min and incubated with anti-
huntingtin 4C8, anti-huntingtin 4E6 or anti-huntingtin SE3619 and y-tubulin.

To visualize spindles, mouse neuronal cells were fixed with cold methanol with 5mM EGTA at -
20°C for 5 min, and then in 4% formaldehyde in PHEM for 10 min at room temperature, washed
in PBS, blocked in 1% BSA, 0.1% Triton X-100 in PBS, and incubated with an anti-o.-tubulin
antibody. To visualize astral microtubules, mouse neuronal cells were fixed in a solution of 3%
paraformaldehyde, 0.25% glutaraldehyde, 0.2% Nonidet P-40 in BRB80 for 10 min, treated with
0.1M sodium borohydride in BRB80 for 10 min, washed in BRB80, blocked in 0.2% Nonidet P-
40, 3% BSA in BRB80 and incubated with an anti-a-tubulin antibody.

p150¢"“® and dynein at spindle poles were visualized as follow: cells were first permeabilized 1
min in PHEM buffer containing 1% Triton X-100 and then fixed with 4% PAF in PHEM buffer
for 20 minutes. Then cells were fixed for 5 minutes in cold methanol (-20°C) and washed 3 times
before immunostaining (adapted from (Busson et al., 1998)). Cells were double immunostained
with anti-huntingtin antibodies (SE3619) and anti-p150%"* or anti-dynein for 1 hr and then with
anti-mouse AlexaFluor-555 and anti-rabbit AlexaFluor-488.

For NuMA staining cells were fixed 5 min with cold methanol (-20°C) and washed with PBS
before immunostaining. The cells were triple labeled with anti-NuMA (1:4000, human
autoimmune serum provided by N.Fabien), anti-htt (SE3619) and anti-y-tubulin antibodies for 1
hr, washed three times 10 min in PBS and incubated with Cy5 anti-human, anti-rabbit
AlexaFluor-555 and anti-mouse AlexaFluor-488 secondary labeled antibodies for 1 hr at room

temperature.



To assess microtubule re-growth, microtubules were completely depolymerized by treating cells
with 5 mM nocodazole for 1 hr at 37°C and 30 min on ice. After treatment, cells were washed
twice with CO, equilibrated medium. Microtubules were allowed to re-grow for different times
(4, 8, 12, 18 minutes). Cells were permeabilized in PHEM buffer containing 1% triton X-100 for
1 min and fixed with 4% PAF in PHEM buffer containing 0.025% glutaraldehyde, washed twice
with PBS and immunostained with anti-htt SE3619 and anti-o.-tubulin for 1 hr.

For all immunostainings, the slides were counterstained with DAPI (Roche) and mounted in
Mowiol. The pictures were captured either with a three-dimensional deconvolution imaging
system as previously described (Gauthier et al., 2004) or with a Leica DM RXA microscope
equipped with a 63x oil-immersion objective coupled to a piezzo and a Micromax RTE/CDD-
1300-Y/HS camera controlled by Methamorph software (Molecular Devices). Z-stack steps were

of 0.2 um. Images were treated with ImageJ (http://rsb.info.nih.gov/ij/, NIH, USA).

For western blot analysis, mouse neuronal cell extracts were prepared by scrapping cells in 1%
NP40 buffer supplemented with 1 mM vanadate, 5% aprotinin, 100 uM PMSF and 2 mM DTT,
sonicated, spinned at 10 000 rpm for 10 min at 4°C. Finally, the soluble fraction was collected for

immunoblotting analyses. The primary monoclonal anti-huntingtin 4C8, anti-p150°"

, anti-a-
tubulin (DM1A), anti-GFP (Roche) and anti-p-actin antibodies were used at 1:5000, 1:1000,
1:1000 and 1:2000 respectively and the secondary HRP-conjugated goat anti-mouse antibody

(Amersham) at 1:10 000.

Spindle Orientation Quantification and Image Analyses. The quantification of huntingtin or

p150°"* at the spindle poles was achieved by drawing a circle of constant size around the


http://rsb.info.nih.gov/ij/

spindle poles. Signal corresponds to the average pixel intensities detected within the area
substracted from the background and cytoplasmic pixel average intensities.

The quantification of NUMA at spindle pole was done using a home-built macro (ImageJ
software, see below for details). In order to analyze each pole separately, their coordinates were
determined using y-tubulin staining. On the NuUMA image, a circle (radius equal to half of pole-
pole distance) was drawn around the pole position, and image was cleared outside the circle.
Quantification of NuMA was performed on the resulting z-stacks (one for each pole) using 3D
object counter plugin (Bolte and Cordelieres, 2006); available at

http://imagejdocu.tudor.lu/doku.php?id=plugin:analysis:3d object counter:start. Total volume

and intensity of the particles were retrieved for further analysis.
Quantification of dynein at spindle pole was performed with ImageJ software using
Circular3DProfiler plugin (in house developed ImageJ plugin, available on request at

fabrice.cordelieres@curie.u-psud.fr). Briefly, on each z-stacks, intensities were retrieved within

spindle pole centered spheres of increasing radii. The differences of intensities between two
successive radii accounts for the dynein signal at a certain distance from the pole. Once
normalized, the latter parameter is plotted as a function of the distance. The plot being Gaussian-
like, the experimental curve was numerically adjusted to the theoretical one. The full-width at
half maximum was subsequently used as an estimator of the dynein signal spread.

Spindle orientation in mouse neuronal metaphase cells stained for y-tubulin and DAPI to
visualize the spindle poles and chromatin was quantified using Image] software

(http://rsb.info.nih.gov/ij/, NIH, USA). A line crossing both spindle poles was drawn on the Z

projection pictures and repositioned along the Z-axis using the stack of Z-sections. The angle


http://imagejdocu.tudor.lu/doku.php?id=plugin:analysis:3d_object_counter:start
mailto:fabrice.cordelieres@curie.u-psud.fr
http://rsb.info.nih.gov/ij/

between the pole-pole and the substratum plane was calculated by the ImageJ Plug-in. Spindle
lengths and cell lengths were quantified along the line that crosses both spindle poles.

In Drosophila neuroblasts, the spindle orientation was quantified using an home-built macro in
ImageJ software (see below for details), by measuring the angle between a line connecting the
two spindle poles and a line bisecting the crescent of Miranda.

In mouse neural progenitors, the spindle orientation was quantified using an especially developed
macro (ImageJ software, see below for details). Orientation of sister chromatids was first defined
by drawing a line connecting the top and the bottom of each chromatids. The cleavage plane was
defined as the line bisecting both chromatids orientation lines. The plane of the apical surface
was determined as a tangent line to the ventricular zone. Finally, the angle between the cleavage

plane and the apical surface was measured. Only the smallest angle was recorded.

Flies. D. melanogaster flies were maintained at 18°C. insc-Gal4 flies are from Bloomington
Drosophila Stock Center (Indiana, USA). mud? strain has been previously described (Siller et al.,
2006). UAS-dHttRNAI(1) flies are from Lawrence S.B. Goldstein (Gunawardena et al., 2003)
and UAS-dHttRNAI(2) (transformant 1D29532) strain was provided by Vienna Drosophila RNAI
Center (VDRC) stock center. dhtt-ko flies are a gift of S. Zhang and N. Perrimon (Zhang et al.,
2009). For the experiments assessing spindle orientation in dhtt-ko flies, we used, as previously
described (Zhang et al., 2009), w***® flies as controls, and both control and dhtt-ko flies were
maintained at 25°C.

For immunohistochemistry on D. melanogaster brains, third instar larvae were dissected in PBS.
The brains were collected and fixed in PBS containing 4% paraformaldehyde, 0.1% triton X-100
for 20 min at room temperature and processed as described (Betschinger et al., 2006). Briefly,

brains were incubated overnight with mAb anti-Miranda (1:20; a kind gift of F. Matsuzaki), pAb



anti-centrosomin (1:500; a kind gift of T. Kaufman) and pAb anti-phospho-histone H3 (1:2000;
Upstate Biotechnology). After three washes in PBS Triton X-100 0.1% (PBT), brains were
incubated with mouse AlexaFluor-488, rabbit AlexaFluor-555 and DAPI for 1-2 hr at room
temperature, washed again three times in PBT, incubated in PBS/glycerol for 30 min and
mounted in Glycerol/PBS-N-propylgalate. The pictures were captured with a three-dimensional
deconvolution imaging system as previously described (Gauthier et al., 2004) or with a Leica SP5
laser scanning confocal microscope equipped with a X63 oil-immersion objective and analyzed
using ImageJ.

For D. melanogaster spindle length measure, larval brains were dissected and incubated
overnight using pAb anti-centrosomin (1:500, a kind gift of T. Kaufman), pAb anti-phospho-
histone H3 (1:2000, Update Biotechnology) and mAb anti-a-tubulin (1:1000, clone DM1A,
Sigma) and stained for 1-2 hr with anti-mouse AlexaFluor-555, anti-rabbit AlexaFluor-488 and
DAPI. Images were adquired using a Leica SP5 laser scanning confocal microscope equipped
with a 63x oil-immersion objective. Spindle-spindle lengths in metaphasic neuroblasts were
measured using ImageJ.

For quantification of D. melanogaster neuroblasts, brains were dissected and incubated overnight
using pAb anti-miranda (1:1000; a kind gift of F. Matsuzaki), mAb anti-elav (1:100, DSHB,
University of lowa) and stained for 1-2 hr with anti-rabbit AlexaFluor-488 (Molecular Probes),
anti-mouse-Cy3 (Interchim) and DAPI (Roche). Images were acquired using a Zeiss LSM 710
laser scanning confocal microscope equipped with a 40x/1,3 OIL DICII PL APO. Miranda-
positive and elav-negatives neuroblasts in the posterior half of the larva brain hemisphere were

quantified using ImageJ.



Immunohistochemistry. For immunohistochemistry on electroporated mouse brain, 10 uM
sections of E16.5 brain were permeabilized in 0.1% Triton X-100 in PBS (PBT), blocked in PBT-
10% goat serum (Sigma) for 20 min at room temperature and incubated with anti-htt (4C8) and
polyclonal anti-GFP (Invitrogen, 1:1000) antibodies in PBT-10% goat serum overnight at 4°C.
The slices were washed in PBT and incubated with a rabbit AlexaFluor-488 as secondary
antibody. To define the identity of electroporated cells, mouse brain sections were incubated with
polyclonal anti-GFP serum and monoclonal anti-nestin (Rat401, BD Pharmingen, 1:200) or
monoclonal anti-Tuj1 (Class Il B-tubulin, MAB 1637, Chemicon; 1:50) overnight at 4°C in the
blocking solution. The slices were washed in PBT and incubated with AlexaFluor-488-
conjugated anti-rabbit 1IgG and AlexaFluor-555-conjugated anti-mouse 1gG antibodies. For
analysis of Pax6 and Thr2 distribution, mouse brain sections were briefly (1 min) boiled in
10mM sodium citrate solution, pH6.0, for antigen enhancement. Sections were then
permeabilized in PBS Triton X-100 0.3% (PBT3), blocked as above, incubated with a primary
chicken anti-GFP antibody (ab16901, Chemicon; 1:300) and polyclonal anti-Pax6 (PRB-278-
0100, Eurogentec, 1:300) or Thr2 (ab23345, Abcam, 1:300) antibodies overnight at 4°C. The
slices were washed in PBT3 and incubated with AlexaFluor-488-conjugated anti-chicken 1gG and
AlexaFluor-555-conjugated anti-rabbit 1gG antibodies. The brain sections were washed in PBT or
PBT3 and postfixed for 20 min in 4% paraformaldehyde in PBS (pH 7) at room temperature,
washed in PBS and incubated with HCI 2N for 30 min at room temperature followed by three
washes in PBT. The brain sections were then incubated with the blocking solution for 20 min at
room temperature and incubated with rat anti-BrdU (OBT0030, AbD Serotec, 1:300) for 1 hr in
the blocking solution. The sections were subsequently incubated with a Cy5-conjugated anti-rat

IgG antibody.



For cell fate analysis in wild-type and Nestin-Cre/+; Hdh flox/- E14.5 or E18.5 embryos, 7 pm
paraffin sections were boiled in 10 mM sodium citrate solution, pH6, for 10 min. Sections were
then permeabilized in PBT3, blocked as above, incubated with polyclonal anti-Pax6 (PRB-278-
0100, Eurogentec, 1:300), Thr2 (ab23345, Abcam, 1:300), Tbrl (ab31940, Abcam, 1:300) or
anti-NeuN (MAB377, Chemicon; 1:200) and rat anti-BrdU (OBT0030, AbD Serotec; 1:300)
antibodies overnight at 4°C. The slices were washed in PBT3 and incubated with AlexaFluor-
555-conjugated anti-mouse 1gG and Cy5-conjugated anti-rat 1gG antibodies.

The cell nuclei were stained with DAPI. All the slices were mounted in Mowiol. Neuronal
progenitors were imaged using a Leica SP5 laser scanning confocal microscope equipped with a

X63 oil-immersion objective.

In Utero Electroporation. In utero electroporation was performed as described previously
(Nguyen et al., 2006) with minor modifications. Briefly, uteri of anaesthetized timed-pregnant
mothers (14 days) with isoflurane in oxygen carrier (Abbot Laboratories Ltd, Kent, UK) were
exposed through a 1.5 cm incision in the ventral peritoneum. Embryos were carefully lifted using
ring forceps through the incision and placed on humidified gauze pads. pCAGGS-NLS-GFP (2
ug/ul) (gift from J. Briscoe, National Institute for Medical Research, London), prepared using
EndoFree plasmid purification kit (Qiagen Benelux B.V.) was mixed with 0.05% Fast Green
(Sigma) and scramble or si-httl RNAs (10uM) and, injected through the uterine wall into the
telencephalic vesicle using pulled borosilicate needles and a Femtojet microinjector (VWR
International). For rescue experiments, pPCAGGS-NLS-GFP (1 pg/ul) and pCAGGS-htt-1301-
17Q-IRES-NLS-GFP (3 pg/ul) were mixed with 0.05% Fast Green and si-htt2 RNA (10 uM)

and, injected as described above. For control experiment, pCAGGS-NLS-GFP (2 pg/ul) and



pCAGGS-LB-IRES-NLS-GFP (2 ug/ul) were used. Five electrical pulses were applied at 35V
(50 ms duration) across the uterine wall at 1s intervals using 5 mm platinum tweezers electrodes
(CUY650P5, Sonidel, Ireland) and an ECM-830 BTX square wave electroporator (VWR
International). The uterine horns were then replaced in the abdominal cavity and the abdomen
wall and skin were sutured using surgical needle and thread. Pregnant mice were injected with
buprenorphine (Temgesic®, Schering-Plough, Brussels, Belgium) and warmed on heating pad
until it woke up. The whole procedure was complete within 30 min. Two days following the
surgery, pregnant mice were sacrificed by neck dislocation and E16.5 embryos were collected
and fixed with 4% paraformaldehyde in PBS for 45 min at 4°C followed by a cryoprotection in
PBS containing 20% sucrose for 18 hr. 10 um coronal sections were cut on a cryostat (Leica CM
3050S) at -20°C and processed for immunohistochemistry. To analyze neurogenesis, E14.5
embryos were electroporated with GFP encoding plasmid and scramble or si-htt RNAs as
described above followed by an intraperitoneal injection of BrdU to the mother (100 mg/Kg body
weight) at E15. 24 hr after BrdU injection, E16.5 brains were collected, fixed, and prepared for

immunohistochemistry as described above.

Mice. The line of Nestin-Cre mice used in our experiments has been used successfully for
neuronal ablation (Tronche et al., 1999) and was purchased from The Jackson Laboratory (strain
name B6.Cg(SJL)-TgN(NesCre)1KIn). To evaluate the efficiency of the Nestin-Cre expression
and recombination in neuronal tissues, we characterized the Nestin-Cre transgene activity during
embryogenesis using the R26R reporter mouse strain (Soriano, 1999). In Nestin-Cre/+;R26R/+
embryos, LacZ expression throughout the embryonic neural tube was detected as early as E10.5

by whole-mount X-gal staining (data not shown). Analysis of X-gal stained sections at E14.5



confirmed that most cells of the cortex and striatum had recombined (Figure S4). Counts for
efficiency of recombination (recombined versus unrecombined cells; blue-stained versus non-
stained) were then performed at high magnification (40X) on sections derived from two E14.5
embryos. These analyses revealed that the frequency of recombined cells was in average 80-95%
in the developing cortex (data not shown).

For routine genotyping of progeny we used PCR analysis (30 cycles consisting of 45 sec
denaturation at 94°C, 45 sec annealing at 61°C, and 1 min extension at 72°C). The Hdh null allele
was detected using the primers Neo 3 (Neo reverse) 5’- AGAGCAGCCGATTGTCTGTTGT-3’
and Neo 6 (MC1 forward) 5’- AACACCGAGCGACCCTGCAG-3’, which generated a 130 bp
product. The cre transgene was detected using the primers Cre 1 (Cre forward): 5'-
CTGCCACGACCAAGTGACAGC-3 and Cre 2 (Cre reverse): 5-
CTTCTCTACACCTGCGGTGCT-3" to generate a 325 bp product corresponding to a portion of
the cre coding region. The Hdh floxed allele was detected using the primers pgk (pgk promoter
sequence): 5’-GCCCGGCATTCTGCACGCTT-3’ and Hdhprl3 (Hdh promoter sequence): 5’-
CTGTCTGGAGGTGATCCATGC-3’, which generated a 150 bp PCR product. For detection of
the R26R allele, the primers Lac 1 (LacZ forward) 5’-CGGCGGTGAAATTATCGATGAG-
3’and Lac 2 (LacZ reverse): 5’-ATCAGCAGGATATCCTGCACCA-3’were used to generate a

315 bp PCR product.

BrdU Injections and Paraffin Embedding. Hdhflox/flox females were crossed with Nestin-
Cre/+;Hdh+/- males, and checked for vaginal plug in the morning after the mating. Pregnant
females were given a single intraperitoneal injection of 100 mg/Kg BrdU at E13.5, and embryos

were dissected at E14.5 or E18.5 and processed for paraffin embedding. Briefly, embryos were



fixed in 4% paraformaldehyde in PBS, incubated for 24 hrs at 4°C in PBS containing 0.25 M

sucrose, 0.2 M glycine, dehydrated, cleared with toluene and embedded in paraffin.

Supplemental Experimental Procedures for Supplemental Figures

HelLa cells were maintained in Dulbecco Modified Eagle Medium (DMEM) with 10% bovine
calf serum and 1% glutamine. Oligofectamine (Invitrogen) was used to transfect si-ctrl and si-
Huhtt into Hela cells. Cells were spread in 10 cm?® plate and in glass coverslips, lyzed or fixed
after 48-72 hours and processed for immunoblotting and immunofluorescence experiments.
Imunoblotting, immunostaining and spindle orientation quantification were performed as
described for mouse neuronal cells.

Mouse neuronal cells were grown on glass coverslip, prelyzed 2 minutes in prewarmed 0.5%
Triton X-100-PHEM buffer before being fixed in anhydrous methanol at -20°C for 5 minutes and
incubated with anti-huntingtin 4E6 (epitope 1354-456, clone HU-4E6-As, Euromedex) (1:100) or
anti-huntingtin 812 and y-tubulin. Secondary antibodies used were goat anti-mouse and anti-
rabbit conjugated to AlexaFluor-488 or AlexaFluor-555 (Molecular Probes) at 1:200.

Staining of sections to visualize lacZ expression was performed as described (Hogan et al., 1994).
Embryos were first fixed overnight at 4°C in 0.1 M PIPES pH 6.9, 2 mM MgCl,, 5 mM EGTA
containing 0.2% paraformaldehyde, and then cryopreserved in PBS containing 30% sucrose and
2 mM MgCl,. They were then embedded in OCT compound (TissueTek), and frozen at -80°C.
Specimens were sectioned on a sagital plane (9 um thickness) in a cryostat and mounted on
superfrost slides (Fisher). Sections were stained with X-gal at 37°C overnight, washed with PBS,

and counterstained with eosin.



MACROS
Macro “spindle orientation in mouse neuronal progenitors”. This macro was developed on
site by J.D.Godin.

w=getWidth;
leftButton=16;
rightButton=4;
run("RGB Color");
setOption(""DisablePopupMenu™, true);
while (TiskeyDown("space™)){
roiManager("reset");
flags=0;
while (flags!=leftButton){
getCursorLoc(nltopx, nltopy, nltopz, flags);
showStatus("ADNL1 top (Click left)");
}
flags=0;
while (flags!=rightButton){
getCursorLoc(nlbottomx, nlbottomy, nlbottomz, flags);
showStatus("ADN1 bottom (Click right)™);
}
setForegroundColor(0, 255, 0);
drawLine(nltopx, nltopy, nlbottomx, nlbottomyy);
flags=0;
while (flags!=leftButton){
getCursorLoc(n2topx, n2topy, n2topz, flags);
showStatus("ADNL1 top (Click left)");
}
flags=0;
while (flags!=rightButton){
getCursorLoc(n2bottomx, n2bottomy, n2bottomz, flags);
showStatus("ADN1 bottom (Click right)™);
}
setForegroundColor(255, 0, 0);
drawLine(n2topx, n2topy, n2bottomx, n2bottomy);
pentel=(nltopy-nlbottomy)/(nltopx-nlbottomx);
pente2=(n2topy-n2bottomy)/(n2topx-n2bottomx);
oaol=nltopy- (nltopx * pentel);
0ao2=n2topy- (n2topx * pente2);
intersectiony=pentel1*((0ao2-0aol)/(pentel-pente2))+oaol;
intersectionx=(intersectiony-oaol)/pentel;
pentebissectrice=tan((atan(pentel)+atan(pente2))/2);
oaobissectrice=intersectiony- (intersectionx*pentebissectrice);
setForegroundColor(0, 0, 255);
drawLine(0, oaobissectrice, w, pentebissectrice*w+oaobissectrice);



flags=0;
while (flags!=leftButton){
getCursorLoc(nv1x, nvly, nvlz, flags);
showsStatus(*ventricule point 1 (Click left)™);
}
flags=0;
while (flags!=rightButton){
getCursorLoc(nv2x, nv2y, nv2z, flags);
showStatus(*'ventricule point 2 (Click right)™);
}
setForegroundColor(255, 255, 0);
drawLine(nv1x, nvly, nv2x, nv2y);
penteVZ=(nv1ly-nv2y)/(nv1x-nv2x);
angle=abs((atan(pentebissectrice)-atan(pente\VVZ))*180/P1);
setResult("angle", nResults, angle);
updateResults();
wait(250);

Macro “spindle orientation in Drosophila neuroblasts”. This macro was developed on site by
F.P. Cordelieres at the Institut Curie Imaging Facility.

radius=4;
deb=false;

in=getDirectory("where are the images?");
files=getFileList(in);

out=getDirectory("Where do you save the images?");

for (i=0; i<files.length; i++){
if(endsWith(files[i], "lif")){
open(in+files[i]);
getAngle();
close();

¥

function getAngle(){
row=nResults;
title=getTitle();
setResult("Label", row, title);
w=getWidth();
h=getHeight();
Stack.getDimensions(width, height, channels, slices, frames);



run("Z Project...”, "start=1 stop="+slices+" projection=[Max Intensity]");
Stack.setChannel(2);

setAutoThreshold();

setTool(8);

run("Threshold...");

waitForUser(*"(Option: Ajust the threshold)\nClick on the cell\nwith magic wand");

resetThreshold();

/IFit ellipse
List.setMeasurements;

x = List.getValue("X");

y = List.getValue("Y");

a = List.getValue("Major™);

b = List.getValue("Minor");
angle = List.getValue("Angle");
getVoxelSize(w, h, d, unit);

X=X/w;
y=y/h;
a=a/w;
b=b/h;

makeRectangle(0,0,0,0);

setTool(7);

modifiers=0;

while (modifiers!=48){
showsStatus(*'click on the left of the crescent (Miranda staining)");
getCursorLoc(xg, yg, z, modifiers);

}
wait(250);

modifiers=0;

while (modifiers!=48){
showsStatus(*'click on the right of the crescent (Miranda staining) ");
getCursorLoc(xd, yd, z, modifiers);

}
wait(250);

Stack.setChannel(1);

modifiers=0;

while (modifiers!=48){
showsStatus("Click on the upper spindle pole™);
getCursorLoc(xh, yh, z, modifiers);

¥
wait(250);



modifiers=0;

while (modifiers!=48){
showsStatus("Click on the lower spindle pole ");
getCursorLoc(xb, yb, z, modifiers);

}
wait(250);

Stack.setDisplayMode("'composite™);
run("RGB Color");
setForegroundColor(0, 0, 255);

drawEllipse(x, y, a/2, b/2, angle);

drawOval(x-radius, y-radius, 2*radius, 2*radius);

drawOval(xg-radius, yg-radius, 2*radius, 2*radius);
drawOval(xd-radius, yd-radius, 2*radius, 2*radius);
drawOval(xh-radius, yh-radius, 2*radius, 2*radius);
drawOval(xb-radius, yb-radius, 2*radius, 2*radius);

makeSelection("angle”, newArray(xg, X, xd), newArray(yg, y, yd));
setForegroundColor(0, 255, 0);
run("Draw");

List.setMeasurements;
angleArc=List.getValue("Angle")/2;
if (deb) setResult("Angle_arc"”, row, 2*angleArc);

makeSelection("angle”, newArray(xd, x, w), newArray(yd, y, y));
List.setMeasurements;

angleTmp=180-L.ist.getValue("Angle™);

if (deb) setResult("Angle_tmp", row, angleTmp);

if (yd<y){
angleArc=(angleArc-angleTmp);

}else{
angleArc=(angleArc+angleTmp);
}

if (deb) setResult("Angle_arc_apres", row, angleArc);

a=tan(angleArc*P1/180);
b=y-x*a;

setForegroundColor(0, 255, 0);
drawLine(0, b, getWidth(), a*getWidth()+b);



c=(yb-yh)/(xb-xh);
d=yb-xb*c;

setForegroundColor(255, 0, 0);
drawLine(0, d, getWidth(), c*getWidth()+d);

xInter=(d-b)/(a-c);

ylInter=a*xInter+b;

setForegroundColor(255, 255, 255);
drawOval(xInter-radius, ylInter-radius, 2*radius, 2*radius);

x1=(w-b)/a;
x2=(w-d)/c;

makeSelection("angle", newArray(x1, xInter, x2), newArray(h, yinter, h));
List.setMeasurements;

angleAxe =List.getValue("Angle™);

setForegroundColor(255, 255, 255);

run("Draw");

setResult("Angle_axe", row, angleAxe);

drawString(title+", "+(floor(angle*100)/100)+"A", 5, 25);

saveAs("Tiff", out+getTitle());

close();
close();
updateResults();
}
function drawEllipse(x, vy, a, b, angle) {

autoUpdate(false);

setLineWidth(1);

beta = -angle * (P1/180);

for (i=0; i<=360; i+=2) {
alpha = i*(P1/180) ;
X = x + a*cos(alpha)*cos(beta) - b*sin(alpha)*sin(beta);
Y =y + a*cos(alpha)*sin(beta) + b*sin(alpha)*cos(beta);
if (I==0) moveTo(X, Y); else lineTo(X,Y);
if (i==0) {ax1=X; ayl=Y;}
if (I==90) {bx1=X; byl=Y;}
if (i==180) {ax2=X; ay2=Y;}
if (i==270) {bx2=X; by2=Y;}

}

updateDisplay;

}



Macro “quantification at poles”. This macro was developed on site by J.D.Godin.

index=0;

limVol=50;

dir=getDirectory("Choose a Directory");
dest=getDirectory("Choose the output Directory");
dirAnalyseNuma=dest+"analyseNuma"+File.separator;
File.makeDirectory(dirAnalyseNuma);
dirAnalyseHtt=dest+"analyseHtt"+File.separator;
File.makeDirectory(dirAnalyseHtt);
dirResults=dest+"Results"+File.separator;
File.makeDirectory(dirResults);
obj=newArray("63x", "100x", "Without calibration");

Dialog.create("macro quantif at poles™);
Dialog.addNumber("number of canals", 4);
Dialog.addString("gammaTub”, " _w3FITC");
Dialog.addString("Htt", "_w2RHOD");
Dialog.addString("NuMa", " _w1CY5");
Dialog.addString("Nucleus”, "_w4DAPI");
Dialog.addChoice(""Objectif", obj);
Dialog.show();

n=Dialog.getNumber();
canalGammaTub=Dialog.getString();
canalHtt=Dialog.getString();
canalNuma=Dialog.getString();
canalDapi=Dialog.getString();
nObj=Dialog.getChoice();

pixX=1,
pixY=1;
pixZ=1,

if(nObj==0bj[0]){
pixX=0.1024;
pixY=0.1024;
pixZ=0.2;

}

if(nObj==0bj[1]){
pixX=0.0645;
pixY= 0.0645;
pixZ=0.2;



imgList=getFileList(dir);

ExpNumber=0;

for(i=0; i<imgList.length; i++) if(endsWith(imgList[i], "stk™)) ExpNumber++;
ExpNumber=ExpNumber/n;

/I to divide an image into two image - to work on half image
SpindlePole();

/lto decide which half images to analyse based on htt downregulation
GoForAnalysis();

/to apply 3D object counter to Numa Images
listimagesNuma=getFileList(dirAnalyseNuma);
AnalyseProteinAtPole(listimagesNuma, dirAnalyseNuma);

selectWindow("Results");
run(""Close");
TransferResult();

function SpindlePole(){

for(i=1;i<=ExpNumber; i=i+1){
titleNuma="Experiment"+i+canalNuma+".stk";
titleGammaTub="Experiment"+i+canalGammaTub+".stk";
titleHtt="Experiment"+i+canalHtt+".STK";
titleNumaSp1="Experiment"+i+canalNuma+"_spl.stk";
titleNumaSp2="Experiment"+i+canalNuma+"_sp2.stk";
titleGammaTubSpl="Experiment"+i+canalGammaTub+"_spl.stk™;
titleGammaTubSp2="Experiment"+i+canalGammaTub+"_sp2.stk™;
titleHttSp1="Experiment"+i+canalHtt+"_spl.stk™;
titleHttSp2="Experiment"+i+canalHtt+"_sp2.stk";

whereisthefileNuma=dir+titleNuma;
open(whereisthefileNuma);
whereisthefileTub=dir+titleGammaTub;
open(whereisthefileTub);
whereisthefileHtt=dir+titleHtt;
open(whereisthefileHtt);

w=getWidth;
h=getHeight;

selectWindow(titleGammaTub);

run("Duplicate...”, "title="+titleGammaTubSp1+" duplicate range=1-numberSlices");
selectWindow(titleGammaTub);

run("Duplicate...”, "title="+titleGammaTubSp2+" duplicate range=1-numberSlices");
selectWindow(titleNuma);

run("Duplicate...”, "title="+titleNumaSp2+" duplicate range=1-"+nSlices+" ");
selectWindow(titleHtt);



run("Duplicate...”, "title="+titleHttSp2+" duplicate range=1-"+nSlices+" ");

selectWindow(titleGammaTub);
tmp=FindSpindle3D();
sp1x=tmp[0];

sply=tmp[1];

splz=tmp[2];

sp2x=tmp[3];

sp2y=tmp[4];

sp2z=tmpl[5];

Xpp=(sp2x+splx)/2;
Ypp=(sp2y+sply)/2;
setBackgroundColor(0, 0, 0);
al=abs(sp1x-Xpp);
bl=abs(sply-Ypp);
ri=sqrt(al*al+bl*bl);
selectWindow(titleNuma);
makeOval(sp1x-rl,sply-rl,2*rl,2*rl);
run("Clear Qutside", "stack™);
wherewillbeSpl=dest+titleNumaSp1;
saveAs("tiff", wherewillbeSp1l);
selectWindow(titleGammaTubSpl);
makeOval(splx-rl,sply-rl,2*rl,2*rl);
run(""Clear Outside", "stack™);
wherewillbeTubSpl=dest+titleGammaTubSp1;
saveAs("tiff", wherewillbeTubSpl);

selectWindow(titleHtt);
makeOval(splx-rl,sply-rl,2*rl,2*rl);
run(""Clear Outside", "stack™);
wherewillbeHttSp1=dest+titleHttSp1;
saveAs("tiff", wherewillbeHttSp1l);

setBackgroundColor(0, 0, 0);
a2=abs(sp2x-Xpp);
b2=abs(sp2y-Ypp);
r2=sqrt(a2*a2+b2*b2);
selectWindow(titleNumaSp2);
makeOval(sp2x-r2,sp2y-r2,2*r2,2*r2);
run(""Clear Outside", "stack");
wherewillbeSp2=dest+titleNumaSp2;
saveAs("tiff", wherewillbeSp2);
selectWindow(titleGammaTubSp2);
makeOval(sp2x-r2,sp2y-r2,2*r2,2*r2);
run("Clear Outside", "stack™);
wherewillbeTubSp2=dest+titleGammaTubSp2;



saveAs("tiff", wherewillbeTubSp2);

selectWindow(titleHttSp2);
makeOval(sp2x-r2,sp2y-r2,2*r2,2*r2);
run("Clear Outside", "stack™);
wherewillbeHttSp2=dest+titleHttSp2;
saveAs("tiff", wherewillbeHttSp2);

run("Close All Without Saving");
run("Close");

function FindSpindle3D(){
run("Set Measurements”, "volume integrated_density centre_of mass
close_original_images_while_processing_(saves_memory) dots_size=5 font_size=10
redirect_to=none");
run("3D object counter...");
nParticules=nResults;
tableau=newArray(nParticules);
for(j=0; j<nParticules; j++){
tableau[j]=getResult("IntDen", j);
}
Array.sort(tableau);
maxl1=tableau[tableau.length-2];
max2=tableau[tableau.length-1];

for(j=0; j<nParticules; j++){

Int=getResult("IntDen", j);

if(Int==max1){
splx=getResult("XM", j);
sply=getResult("YM", j);
splz=getResult("ZM", j);
¥

if(Int==max2){
sp2x=getResult("XM", j);
sp2y=getResult("YM", j);
sp2z=getResult("ZM", j);

}
}
Tab=newArray(splx,sply,splz,sp2x,sp2y,sp2z);
return Tab;

¥

function GoForAnalysis(){
for(j=1;j<=ExpNumber; j=j+1){



titleNumaSp1="Experiment"+j+canalNuma+"_spl1.tif";
titleNumaSp2="Experiment"+j+canalNuma+"_sp2.tif";
titleHttSp1="Experiment"+j+canalHtt+"_spl.tif";
titleHttSp2="Experiment"+j+canalHtt+"_sp2.tif";

wherewillbeSpl=dest+titleNumaSp1;
open(wherewillbeSp1l);
wherewillbeSp2=dest+titleNumaSp2;
open(wherewillbeSp2);
wherewillbeHttSpl=dest+titleHttSp1;
open(wherewillbeHttSp1l);
wherewillbeHttSp2=dest+titleHttSp2;
open(wherewillbeHttSp2);
selectWindow(titleHttSpl);
waitForUser("downregulation htt");
Dialog.create("analyse");
Dialog.addCheckbox(*"Yes, | want to analyse this set of images", true);
Dialog.show();
analyseChoice=Dialog.getCheckbox();
if(analyseChoice==1){

selectWindow(titleNumaSp1);

saveAs("tiff", dirAnalyseNuma-+titleNumaSpl);

selectWindow(titleHttSpl);

saveAs("tiff", dirAnalyseHtt+titleHttSpl);

}

selectWindow(titleHttSp2);
waitForUser("downregulation htt");
Dialog.create("analyse");
Dialog.addCheckbox("Yes, | want to analyse this set of images", true);
Dialog.show();
analyseChoice=Dialog.getCheckbox();
if(analyseChoice==1){
selectWindow(titleNumaSp2);
saveAs("tiff", dirAnalyseNuma-+titleNumaSp2);
selectWindow(titleHttSp2);
saveAs("tiff", dirAnalyseHtt+titleHttSp2);
}
run("Close All Without Saving™);
}
}

function AnalyseProteinAtPole(listimages, dir){
numberlmagesToAnalyse=listimages.length;
for (i=0; i<numberImagesToAnalyse; i++) {



run("Set Measurements”, "volume integrated_density bounding_box dots_size=5
font_size=10 redirect_to=none");

if(i==0){
setBatchMode(false);
whereisthefile=dir+listimages[i];
open(whereisthefile);
selectWindow(listimages][i]);
title=File.nameWithoutExtension;
waitForUser("please note the threshold value™);
run("3D object counter...");
thrNuma=getNumber("threshold", 220);
saveAs("measurements”, dirResults+"Results"+title+".xIs");
run("Close All Without Saving™);
¥

else {
whereisthefile=dir+listimagesl[i];
open(whereisthefile);
selectWindow(listimagesli]);
title=File.nameWithoutExtension;
run("3D object counter...");
saveAs("measurements”, dirResults+"Results"+title+".xIs");
run("Close All Without Saving");

}

function TransferResult(){
list=getFileList(dirResults);
res=dirResults+"ResultFinal.xIs";
File.saveString("™", res);

for(i=0; i<list.length; i++){
if(endsWith(list[i], "xIs") && list[i]'="ResultFinal.xIs"){
index++;
table="";
if(index==1){
tmp=File.openAsString(dirResults+list[i]);
lines=split(tmp,™\n");

splitLine=split(lines[0],"\t");
table=splitLine[0]+"\t"+splitLine[1]+"\t"+splitLine[5]+"\t"+splitLine[20]+"\t"+splitLine[
21]+"\t"+splitLine[22]+"\t"+splitLine[23]+"\t"+splitLine[24]+"\n"+removeNumber(list[i],
tmp);
Yelse{

table="\n"+removeNumber(list[i], File.openAsString(dirResults+list[i]));



File.append(table, res);

function removeNumber(label, string){
lines=split(string,"\n");
for(i=1; i<lines.length; i++){
splitLine=split(lines[i],"\t");
volume=parselnt(splitLine[1]);
if(volume<limVol){
lines[i]="";

Yelse{

lines[i]=label+"\t"+splitLine[1]+"\t"+splitLine[5]+"\t"+splitLine[20]+"\t"+splitLin
e[21]+"\t"+splitLine[22]+"\t"+splitLine[23]+"\t"+splitLine[24];

}

string="",
for(i=1; i<lines.length; i++) if(lines[i]!'="") string=string+lines[i]+"\n";
return string;
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14 Annexe VI: pARIS-htt: an optimised expression platform
to study huntingtin reveals functional domains required
for vesicular trafficking (supplemental information)
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Full name : pARIS-htt-N[His-Cherry]Q23-C[HA-TC]
Used name : pARIS-mCherry-httQ23
vector : pENTRY
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23 Apr 2010 Restriction Map Data Page 1

Molecule: pPARIS-mCherry-httQ23, 12590 bps DNA Circular
Description:
File Name: PARIS-mCherry-httQ23.cm5, dated 23 Apr 2010
Printed: List of Sites in bps, sorted by Enzyme name.
Filter ON: cut N <=1
#sites --——-—- Bp position of recognition site -—-—-

Aatll 1 3900

Acc65l1 1 4061

Acclll 1 155

ATIII 1 7361

Agel 1 149

Apal 1 24

Ascl 1 133

Bglll 1 6692

BssHI'1 1 134

Bst11071 1 9695

BstBlI 1 5829

Ecl13611 1 1188

Eco521 1 907

EcoRl1 1 10344

Fsel 1 10434

Fspl 1 10443

Hpal 1 3

Kpnl 1 4061

Munl 1 4857

Ndel 1 10386

Notl 1 906

Nrul 1 10767

Pacl 1 141

PshAl 1 2102

Pspl14061 1 12457

PspOMmI 1 24

Pvul 1 11109

Sacl 1 1188

Sacll 1 2383

Sall 1 5862

Sbfl 1 548

Scal 1 6072

Sfil 1 8420

Sgfl 1 11108

SgrAl 1 878

Smal 1 10350

SnaBlI 1 10458

Spel 1 8156

Sphl 1 10452

Xbal 1 4821

Xhol 1 9206

Xmal 1 10350



attL1
1 gcgttaacgctagcatggatctcgggccccaaataatgattttattttgactgatagtgacctgttcgttgceaa

Ascl Pacl
75 caaattgatgagcaatgcttttttataatgccaactttGTACAAAAAAGCAGGCTGAAGGCGCGCCTTAATTAA
Agel  BspEl histidine tag alanine hinge mCherry

149 ACCGGTTCCGGACACCATGGCCCACCACCATCACCACCATGCCGCCGCTGCCGTGAGCAAGGGCGAGGAGG
1* M A H H H H H H A A A AV S K G E E
220 ATAACATGGCCATCATCAAGGAGTTCATGCGCTTCAAGGTGCACATGGAGGGCTCCGTGAACGGCCACGAGTTC
19 D N M A | | K E FMRF K V HME G S V NGH E F
294 GAGATCGAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGACCAAGGGTGG
44F E | E G E GE GR P Y E GT QTAIKL KV T K G G
368 CCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCTCAGTTCATGTACGGCTCCAAGGCCTACGTGAAGCACCCCG
68k P L P F A W D I L S P QF MY G S K AY V K H P
442 CCGACATCCCCGACTACTTGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGGAC
93*A D | P D Y L KL S F PEGFKMWERVMNF E D HsChery
516 GGCGGCGTGGTGACCGTGACCCAGGACTCCTCCCTGCAGGACGGCGAGTTCATCTACAAGGTGAAGCTGCGCGG
118 G G VvV V. T Vv T Q DS S L QD G E F |1 Y K V K L R G
590 CACCAACTTCCCCTCCGACGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCTCCGAGCGGATGT
142 T N F P S D G P V M Q K K T M GWE A S S E R M
664 ACCCCGAGGACGGCGCCCTGAAGGGCGAGATCAAGCAGAGGCTGAAGCTGAAGGACGGCGGCCACTACGACGCT
167 Y P E D G A L K G E | K Q R L K L K D G G H Y D A
738 GAGGTCAAGACCACCTACAAGGCCAAGAAGCCCGTGCAGCTGCCCGGCGCCTACAACGTCAACATCAAGTTGGA
192 E V K T T Y K A K K P V QL P G A Y NV N I K L D
812 CATCACCTCCCACAACGAGGACTACACCATCGTGGAACAGTACGAACGCGCCGAGGGCCGCCACTCCACCGGCG
216k | T S H N E DY T I vV F O Y F R A E G R H S T G
Not] ala hinge human huntingtin
886 GCATGGACGAGCTGTACAAGGCGGCCGCCGCGACCCTGGAAAAGCTGATGAAGGCCTTCGAGTCCCTC
241 G M D E L Y K A A A A T L E K L M K A F E S L quil
954 AAGTCCTTCCAGCAACAGCAACAGCAACAGCAACAGCAACAGCAACAGCAGCAACAGCAGCAA Stretch
264k K S F Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q qQ | 23
1017 CAGCAGCAACAACAGCCGCCACCGCCACCGCCGCCACCGCCGCCACCTCAGCTTCCTCAGCCG 100Q
285* Q Q Q Q Q P P P P P P P P P P P Q L P Q P
1080 CCGCCGCAGGCACAGCCGCTGCTGCCTCAGCCGCAGCCGCCCCCTCCGCCGCCCCCGCCACCA
306k P P Q A Q P L L P Q P Q P P P P P P P P P
Sacl
1143 CCCGGCCCGGCTGTGGCTGAGGAGCCGCTGCACCGACCAAAGAAGGAGCTCAGTGCAACTAAG
327F P G P A V A E E P L H R P K K E L S A T K
12006 AAAGACCGTGTGAATCATTGTCTGACAATATGTGAAAACATAGTGGCACAGTCTGTCAGAAAT
348F K D R V N H C L T | C E N | v A Q S Vv R N
1269 TCTCCAGAATTTCAGAAACTTCTGGGCATCGCTATGGAACTTTTTCTGCTGTGCAGTGATGAC
369k S P E F Q K L L G | A M E L F L L C S D D
1332 GCAGAGTCAGATGTCAGGATGGTGGCTGACGAATGCCTCAACAAAGTTATCAAGGCACTCATG SiHtt-6
390 A E S D V R M V A D E C L N K V 1 K A L M
1395 GACAGCAACCTTCCAAGGTTACAGCTCGAACTGTATAAGGAAATTAAAAAGAATGGTGCCCCT
411F D S N L P R L Q L E L Y K E | K K N G A P
1458 CGGAGTTTGCGTGCTGCCCTGTGGAGGTTTGCTGAGCTGGCTCACCTGGTTCGGCCTCAGAAA
432F R S L R A A L W R F A E L A H L V R P Q K
1521 TGCAGGCCTTACCTGGTGAACCTTCTGCCGTGCCTGACTCGAACAAGCAAGAGACCCGAAGAA
453k C R P Y L V N L L P C L T R T S K R P E E
1584 TCAGTCCAGGAGACCTTGGCTGCAGCTGTTCCCAAAATTATGGCTTCTTTTGGCAATTTTGCA
474F S vV Q E T L A A A V P K | M A S F G N F A
1647 AATGACAATGAAATTAAGGTTTTGTTAAAGGCCTTCATAGCGAACCTGAAGTCAAGCTCCCCC
495k N D N E | K Vv L L K A F | A N L K S S S P
1710 ACCATTCGGCGGACAGCGGCTGGATCAGCAGTGAGCATCTGCCAGCACTCAAGAAGGACACAA
516F T | R R T A A G S A V S | C Q H S R R T Q
1773 TATTTCTATAGTTGGCTACTAAATGTGCTCTTAGGCTTACTCGTTCCTGTCGAGGATGAACAC
537F Y F Y S W L L N Vv L L G L L V P Vv E D E H
1836 TCCACTCTGCTGATTCTTGGCGTGCTGCTCACCCTGAGGTATTTGGTGCCCTTGCTGCAGCAG
558|’STLLILGVLLTLRYLVPLLQQ
1899 CAGGTCAAGGACACAAGCCTGAAAGGCAGCTTCGGAGTGACAAGGAAAGAAATGGAAGTCTCT
579k Q V K D T S L K G S F G v T R K E M E vV S
1962 CCTTCTGCAGAGCAATTAGTGCAAGTCTACGAACTGACGTTACATCATACACAGCACCAAGAC |SiHtt-13

600 p s A E Q LV Q VY E L T L HHTQHQD
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2025 CACAATGTTGTGACCGGAGCCCTGGAGCTGTTGCAGCAGCTCTTCAGAACGCCTCCACCCGAG
621 H N V V T G A L E L L Q Q L F R T P P P E
2088 CTTCTGCAAACCCTGACCGCAGTCGGGGGCATTGGGCAGCTCACCGCTGCTAAGGAGGAGTCT

642 L L Q T L T A V G G I GG Q L T A A K E E S
2151 GGTGGCCGAAGCCGTAGTGGGAGTATTGTGGAACTTATAGCTGGAGGGGGTTCCTCATGCAGC
663* G G R S R S G S | Vv E L I A G G G S S C s

2214 CCTGTCCTTTCAAGAAAACAAAAAGGCAAAGTGCTCTTAGGAGAAGAAGAAGCCTTGGAGGAT
684 P V L S R K Q K G K VvV L L G E E E A L E D
2277 GACTCTGAATCGAGATCGGATGTCAGCAGCTCTGCCTTAACAGCCTCAGTGAAGGATGAGATC
70 D S E S R S D VvV S S S A L T A S V K D E 1

Sacll
2340 AGTGGAGAGCTGGCTGCTTCTTCAGGGGTTTCCACTCCAGGGTCCGCGGGGCATGACATCATC
7260 S G E L A A S S G V S T P G S A G H D I |
2403 ACAGAACAGCCACGGTCACAGCACACACTGCAGGCGGACTCAGTGGATCTGGCCAGCTGTGAC
747 T E Q P R S Q H T L Q A D S V D L A S C D
2466 TTGACAAGCTCTGCCACTGATGGGGATGAGGAGGATATATTGAGCCACAGCTCCAGCCAGGTC
768 L T S S A T D G D E E D I L S H S S S Q V
2529 AGCGCCGTCCCATCTGACCCTGCCATGGACCTGAATGATGGGACCCAGGCCTCGTCGCCCATC
789 S A V P S D P A M D L N D G T Q A S S P |
2592 AGCGACAGCTCCCAGACCACCACCGAAGGGCCTGATTCAGCTGTTACCCCTTCAGACAGTTCT
8o S Db S S Q T T T E G P D S A V T P S D S S
2655 GAAATTGTGTTAGACGGCACCGACAACCAGTATTTGGGCCTGCAGATTGGACAGCCCCAGGAT

831* E | v L D G T D N Q Y L G L Q I G Q P Q D
2718 GAAGATGAGGAAGCCACAGGTATTCTTCCTGATGAAGCCTCGGAGGCCTTCAGGAACTCTTCC
852 E D E E A T G | L P D E A S E A F R N S S

2781 ATGGCCCTTCAACAGGCACATTTATTGAAAAACATGAGTCACTGCAGGCAGCCTTCTGACAGC
873 M A L Q Q A H L L K N M S H C R Q P S D S
2844 AGTGTTGATAAATTTGTGTTGAGAGATGAAGCTACTGAACCGGGTGATCAAGAAAACAAGCCT
894+ S Vv D K F V L R D E A T E P G D Q E N K P
2907 TGCCGCATCAAAGGTGACATTGGACAGTCCACTGATGATGACTCTGCACCTCTTGTCCATTGT
915* ¢ R | K G D I G Q S T D D D S A P L V H C
2970 GTCCGCCTTTTATCTGCTTCGTTTTTGCTAACAGGGGGAAAAAATGTGCTGGTTCCCGACAGG
936¢* V R L L S A S F L L T G G K N V L V P D R
3033 GATGTGAGGGTCAGCGTGAAGGCCCTGGCCCTCAGCTGTGTGGGAGCAGCTGTGGCCCTCCAC
957 D V R V S V K A L A L S C V G A A V A L H
3096 CCGGAATCTTTCTTCAGCAAACTCTATAAAGTTCCTCTTGACACCACGGAATACCCTGAGGAA
978 P E S F F S K L Y K VvV P L D T T E Y P E E
3159 CAGTATGTCTCAGACATCTTGAACTACATCGATCATGGAGACCCACAGGTTCGAGGAGCCACT
999* Q Y V S D I L N Y | D H G D P Q V R G A T
3222 GCCATTCTCTGTGGGACCCTCATCTGCTCCATCCTCAGCAGGTCCCGCTTCCACGTGGGAGAT
10200 A I L C G T L I C¢C S 1 L S R S R F H V G D
3285 TGGATGGGCACCATTAGAACCCTCACAGGAAATACATTTTCTTTGGCGGATTGCATTCCTTTG
1041* W M G T | R T L T G N T F S L A D C | P L
3348 CTGCGGAAAACACTGAAGGATGAGTCTTCTGTTACTTGCAAGTTAGCTTGCACAGCTGTGAGG
1062 L R K T L K D E S S V T C K L A C T A V R
3411 AACTGTGTCATGAGTCTCTGCAGCAGCAGCTACAGTGAGTTAGGACTGCAGCTGATCATCGAT
1083* N C V M S L C S S S Y S E L G L Q L 1 1 D
3474 GTGCTGACTCTGAGGAACAGTTCCTATTGGCTGGTGAGGACAGAGCTTCTGGAAACCCTTGCA
1104* V. L T L R N S S Y W L V R T E L L E T L A
3537 GAGATTGACTTCAGGCTGGTGAGCTTTTTGGAGGCAAAAGCAGAAAACTTACACAGAGGGGCT
1125 E | D F R L V S F L E A K A E N L H R G A
3600 CATCATTATACAGGGCTTTTAAAACTGCAAGAACGAGTGCTCAATAATGTTGTCATCCATTTG
1146* H H Y T G L L K L Q E R V L N N V V | H L
3663 CTTGGAGATGAAGACCCCAGGGTGCGACATGTTGCCGCAGCATCACTAATTAGGCTTGTCCCA
1167» L G D E D P R V R H V A A A S L | R L V P
3726 AAGCTGTTTTATAAATGTGACCAAGGACAAGCTGATCCAGTAGTGGCCGTGGCAAGAGATCAA
1188 K L F Y K C D Q G Q A D P V V A V A R D Q
3789 AGCAGTGTTTACCTGAAACTTCTCATGCATGAGACGCAGCCTCCATCTCATTTCTCCGTCAGC
12000 S S vV Y L K L L M H E T Q P P S H F S V s
3852 ACAATAACCAGAATATATAGAGGCTATAACCTACTACCAAGCATAACAGACGTCACTATGGAA
123* T | T R | Y R G Y N L L P S I T D V T M E
3915 AATAACCTTTCAAGAGTTATTGCAGCAGTTTCTCATGAACTAATCACATCAACCACCAGAGCA
1251* N N L S R V | A A V S H E L I T S T T R A
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3978 CTCACATTTGGATGCTGTGAAGCCTTGTGTCTTCTTTCCACTGCCTTCCCAGTTTGCATTTGG

1272» L T F G €C C E A L C L L S T A F P V C I W
Kpnl

4041 AGTTTAGGTTGGCACTGTGGGGTACCGCCACTGAGTGCCTCAGATGAGTCTAGGAAGAGCTGT

1293 S L G W H C G v P P L S A S D E S R K S ¢C

4104 ACCGTTGGGATGGCCACAATGATTCTGACCCTGCTCTCGTCAGCTTGGTTCCCATTGGATCTC

1314+ T V. G M A T M | L T L L S S A W F P L D L
4167 TCAGCCCATCAAGATGCTTTGATTTTGGCCGGAAACTTGCTTGCAGCCAGTGCTCCCAAATCT
1335 S A H Q D A L | L AAG N L L A A S A P K S

4230 CTGAGAAGTTCATGGGCCTCTGAAGAAGAAGCCAACCCAGCAGCCACCAAGCAAGAGGAGGTC
1356* L R S S W A S E E E A N P A A T K Q E E V
4293 TGGCCAGCCCTGGGGGACAGAGCCCTGGTGCCCATGGTGGAGCAGCTCTTCTCTCACCTGCTG
1377# w P A L G D R A L V P M V E Q L F S H L L
4356 AAGGTGATTAACATTTGTGCCCACGTCCTGGATGACGTGGCTCCTGGACCCGCAATAAAGGCA

1398 K VvV I N I C A H V L D D V A P G P A I K A
4419 GCCTTGCCTTCTCTAACAAACCCCCCTTCTCTAAGTCCCATCCGACGAAAGGGGAAGGAGAAA
1419 A L P S L T N P P S L S P I R R K G K E K

4482 GAACCAGGAGAACAAGCATCTGTACCGTTGAGTCCCAAGAAAGGCAGTGAGGCCAGTGCAGCT
1440 E P G E Q A S V P L S P K K G S E A S A A
4545 TCCAGACAATCTGATACCTCAGGTCCTGTTACAACAAGTAAATCCTCATCACTGGGGAGTTTC
1461» S R Q S D T S G P V T T S K S S S L G S F
4608 TATCATCTTCCTTCATACCTCAAACTGCATGATGTCCTGAAAGCTACACACGCTAACTACAAG
1482 Y H L P S Y L K L H D V L K A T H A N Y K
4671 GTCACGCTGGATCTTCAGAACAGCACGGAAAAGTTTGGAGGGTTTCTCCGCTCAGCCTTGGAT
153 V. T L D L Q N S T E K F G G F L R S A L D
4734 GTTCTTTCTCAGATACTAGAGCTGGCCACACTGCAGGACATTGGGAAGTGTGTTGAAGAGATC
1524+ V. L S Q |1 L E L A T L Q D I G K C V E E |
4797 CTAGGATACCTGAAATCCTGCTTTTCTAGAGAACCAATGATGGCAACTGTTTGTGTTCAACAA
1545 L G Y L K S C F S R E P M M A T V C V Q Q
4860 TTGTTGAAGACTCTCTTTGGCACAAACTTGGCCTCCCAGTTTGATGGCTTATCTTCCAACCCC
1566 L L K T L F G T N L A S Q F D G L S S N P
4923 AGCAAGTCACAAGGCCGAGCACAGCGCCTTGGCTCCTCCAGTGTGAGGCCAGGCTTGTACCAC
1587 S K S Q G R A Q R L G S S S V R P G L Y H
4986 TACTGCTTCATGGCCCCGTACACCCACTTCACCCAGGCCCTCGCTGACGCCAGCCTGAGGAAC
1608 Y C F M A P Y T H F T Q A L A D A S L R N
5049 ATGGTGCAGGCGGAGCAGGAGAACGACACCTCGGGATGGTTTGATGTCCTCCAGAAAGTGTCT
1629* M V Q A E Q E N D T S G W F D V L Q K V S
5112 ACCCAGTTGAAGACAAACCTCACGAGTGTCACAAAGAACCGTGCAGATAAGAATGCTATTCAT

165 T Q L K T N L T S V T K N R A D K N A | H
5175 AATCACATTCGTTTGTTTGAACCTCTTGTTATAAAGGCTTTAAAACAGTACACGACTACAACA
1671 N H I R L F E P L V I K A L K QY T T T T

5238 TGTGTGCAGTTACAGAAGCAGGTTTTAGATTTGCTGGCGCAGCTGGTTCAGTTACGGGTTAAT
1692 C V Q L Q K Q V L D L L A Q L V Q L R V N
5301 TACTGTCTTCTGGATTCAGATCAGGTGTTTATTGGCTTTGTATTGAAACAGTTTGAATACATT

1713 Y ¢ L L D S D Q VvV F I G F Vv L K Q F E Y 1
5364 GAAGTGGGCCAGTTCAGGGAATCAGAGGCAATCATTCCAAACATCTTTTTCTTCTTGGTATTA
1734 E V G Q F R E S E A | I P N I F F F L V L
5427 CTATCTTATGAACGCTATCATTCAAAACAGATCATTGGAATCCCTAAAATCATTCAGCTCTGT
1755 L S Y E R Y H S K Q | I G | P K | I Q L C
5490 GATGGCATCATGGCCAGTGGAAGGAAGGCTGTGACACATGCCATACCGGCTCTGCAGCCCATA
1776# D G I M A S G R K A V T H A I P A L Q P I

5553 GTCCACGACCTCTTTGTATTAAGAGGAACAAATAAAGCTGATGCAGGAAAAGAGCTTGAAACC
1797 V. H D L F V L R G T N K A D A G K E L E T
5616 CAAAAAGAGGTGGTGGTGTCAATGTTACTGAGACTCATCCAGTACCATCAGGTGTTGGAGATG

1818 Q K E V vV V S M L L R L I Q Y H Q V L E M
5679 TTCATTCTTGTCCTGCAGCAGTGCCACAAGGAGAATGAAGACAAGTGGAAGCGACTGTCTCGA
1839F F | L VvV L Q Q C H K E N E D K W K R L S R
5742 CAGATAGCTGACATCATCCTCCCAATGTTAGCCAAACAGCAGATGCACATTGACTCTCATGAA
1860F Q | A D | I L P M L A K Q Q M H I D S H E
Sall
5805 GCCCTTGGAGTGTTAAATACATTATTCGAAATTTTGGCCCCTTCCTCCCTCCGTCCGGTCGAC
1881 A L G V L N T L F E | L AP S S L R P V D

5868 ATGCTTTTACGGAGTATGTTCGTCACTCCAAACACAATGGCGTCCGTGAGCACTGTTCAACTG
902 M L L R S M F VTP NT M A S V S T V Q L
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5931 TGGATTTCGGGAATCCTGGCCATTTTGAGGGTTCTGATTTCCCAGTCAACTGAAGATATTGTT

1923 W I S G I L A | L R Vv L I § Q S T E D 1 V
5994 CTTTCTCGTATTCAGGAACTCTCCTTCTCTCCGTATTTAATCTCCTGCACAGTAATTAATAGG
1944 L S R | Q E L S F S P Y L I S C T V I N R
6057 TTAAGAGATGGGGACAGTACTTCAACGCTAGAAGAACACAGTGAAGGGAAACAAATAAAGAAT
196¢5* L. R D G D S T S T L E E H S E G K Q I K N
6120 TTGCCAGAAGAAACATTTTCAAGGTTTCTATTACAACTGGTTGGTATTCTTTTAGAAGACATT
1986 L P E E T F S R F L L Q L V G I L L E D |

6183 GTTACAAAACAGCTGAAGGTGGAAATGAGTGAGCAGCAACATACTTTCTATTGCCAGGAACTA
2007 V. T K Q L K V E M S E Q Q H T F Y C Q E L
6246 GGCACACTGCTAATGTGTCTGATCCACATCTTCAAGTCTGGAATGTTCAGGAGAATCACAGCA
2028 G T L L M C L | H I F K S G M F R R | T A
6309 GCTGCCACTAGGCTGTTCCGCAGTGATGGCTGTGGCGGCAGTTTCTACACCCTGGACAGCTTG
2040 A A T R L F R S D G C G G S F Y T L D S L
6372 AACTTGCGGGCTCGTTCCATGATCACCACCCACCCGGCCCTGGTGCTGCTCTGGTGTCAGATA
2070 N L R A R S M | T T H P A L V L L W C Q I
6435 CTGCTGCTTGTCAACCACACCGACTACCGCTGGTGGGCAGAAGTGCAGCAGACCCCGAAAAGA
2001 L L L V N H T DY R W W A E V Q Q T P K R
6498 CACAGTCTGTCCAGCACAAAGTTACTTAGTCCCCAGATGTCTGGAGAAGAGGAGGATTCTGAC
2112 H S L S S T K L L S P Q M S G E E E D S D
6561 TTGGCAGCCAAACTTGGAATGTGCAATAGAGAAATAGTACGAAGAGGGGCTCTCATTCTCTTC

2133 L A A K L G M C N R E I V R R G A L 1 L F
6624 TGTGATTATGTCTGTCAGAACCTCCATGACTCCGAGCACTTAACGTGGCTCATTGTAAATCAC
2154# C D Y V C Q N L H D S E H L T W L I V N H
Bglll
6687 ATTCAAGATCTGATCAGCCTTTCCCACGAGCCTCCAGTACAGGACTTCATCAGTGCCGTTCAT
2175* 1 Q@ D L I S L S H E P P V Q D F I S A V H
6750 CGGAACTCTGCTGCCAGCGGCCTGTTCATCCAGGCAATTCAGTCTCGTTGTGAAAACCTTTCA
2196 R N S A A S G L F I Q A I Q S R C E N L S
6813 ACTCCAACCATGCTGAAGAAAACTCTTCAGTGCTTGGAGGGGATTCATCTCAGCCAGTCGGGA
2207 T P T M L K K T L Q C L E G I H L S Q S G

6876 GCTGTGCTCACGCTGTATGTGGACAGGCTTCTGTGCACCCCTTTCCGTGTGCTGGCTCGCATG
2238 AV L T L Y V D R L L C T P F R V L A R M
6939 GTGGACATCCTTGCTTGTCGCCGGGTAGAAATGCTTCTGGCTGCAAATTTACAGAGCAGCATG

2259 V. D | L A C R R V E M L L A A N L Q S S M
7002 GCCCAGTTGCCAATGGAAGAACTCAACAGAATCCAGGAATACCTTCAGAGCAGCGGGCTCGCT
2280 A Q L P M E E L N R I Q E Y L Q S S G L A

7065 CAGAGACACCAAAGGCTCTATTCCCTGCTGGACAGGTTTCGTCTCTCCACCATGCAAGACTCA
2301 Q R H Q R L Y S L L DR F R L S T M Q D S
7128 CTTAGTCCCTCTCCTCCAGTCTCTTCCCACCCGCTGGACGGGGATGGGCACGTGTCACTGGAA
2322 L S P S P P V S S H P L D G D G H V S L E
7191 ACAGTGAGTCCCGACAAAGACTGGTACGTTCATCTTGTCAAATCCCAGTGTTGGACCAGGTCA
2343 T V S P D K D W Y V H L V K S Q C W T R S
7254 GATTCTGCACTGCTGGAAGGTGCAGAGCTGGTGAATCGGATTCCTGCTGAAGATATGAATGCC
2364 D S A L L E G A E L V N R I P A E D M N A
7317 TTCATGATGAACTCGGAGTTCAACCTAAGCCTGCTAGCTCCATGCTTAAGCCTAGGGATGAGT
2385 F M M N S E F N L S L L A P C L S L G M S
7380 GAAATTTCTGGTGGCCAGAAGAGTGCCCTTTTTGAAGCAGCCCGTGAGGTGACTCTGGCCCGT
2406 E | S G G Q K S A L F E A A R E V T L A R
7443 GTGAGCGGCACCGTGCAGCAGCTCCCTGCTGTCCATCATGTCTTCCAGCCCGAGCTGCCTGCA
2427 V. S G T V Q Q L P A V H H V F Q P E L P A
7506 GAGCCGGCGGCCTACTGGAGCAAGTTGAATGATCTGTTTGGGGATGCTGCACTGTATCAGTCC
2448 E P A A Y W S K L N D L F G D A A L Y Q S
7569 CTGCCCACTCTGGCCAGAGCACTGGCACAGTACCTGGTGGTGGTCTCCAAACTGCCCAGTCAT
2460 L P T L A R A L A Q Y L V V V S K L P S H
7632 TTGCACCTTCCTCCTGAGAAAGAGAAGGACATTGTGAAATTCGTGGTGGCAACCCTTGAGGCC

249 L H L P P E K E K D I V K F V V A T L E A
7695 CTGTCCTGGCATTTGATCCATGAGCAGATCCCGCTGAGTCTGGATCTCCAGGCAGGGCTGGAC
2511 L S W H L I H E Q | P L S L D L Q A G L D

7758 TGCTGCTGCCTGGCCCTGCAGCTGCCTGGCCTCTGGAGCGTGGTCTCCTCCACAGAGTTTGTG
2532 C C C L AL Q L P G L W S V V S S T E F V
7821 ACCCACGCCTGCTCCCTCATCTACTGTGTGCACTTCATCCTGGAGGCCGTTGCAGTGCAGCCT
2553 T H A C S L I Y C€C V H F | L E A V A V Q P
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7884 GGAGAGCAGCTTCTTAGTCCAGAAAGAAGGACAAATACCCCAAAAGCCATCAGCGAGGAGGAG

2574+ G E Q L L S P E R R T N T P K A I S E E E
7947 GAGGAAGTAGATCCAAACACACAGAATCCTAAGTATATCACTGCAGCCTGTGAGATGGTGGCA
2595 E E V D P N T Q N P K Y | T A A C E M V A

8010 GAAATGGTGGAGTCTCTGCAGTCGGTGTTGGCCTTGGGTCATAAAAGGAATAGCGGCGTGCCG
20l E M V E S L Q S V L A L G H K R N S G V P
8073 GCGTTTCTCACGCCATTGCTAAGGAACATCATCATCAGCCTGGCCCGCCTGCCCCTTGTCAAC
2637 A F L T P L L R N 1 I I S L A R L P L V N
Spel
8136 AGCTACACACGTGTGCCCCCACTAGTGTGGAAACTTGGATGGTCACCCAAACCAGGGGGGGAT
2658 S Y T R VvV P P L V W K L G W S P K P G G D
8199 TTTGGCACAGCATTCCCTGAGATCCCCGTGGAGTTCCTCCAGGAAAAGGAAGTCTTTAAGGAG

2679 F G T A F P E | P V E F L Q E K E V F K E
8262 TTCATCTACCGCATCAACACACTAGGCTGGACCAGTCGTACTCAGTTTGAAGAAACTTGGGCC
270 F 1 Y R I N T L G W T S R T Q F E E T W A

8325 ACCCTCCTTGGTGTCCTGGTGACGCAGCCCCTCGTGATGGAGCAGGAGGAGAGCCCACCAGAA
2721 T L L G V L VvV T Q P L V M E Q E E S P P E
8388 GAAGACACAGAGAGGACCCAGATCAACGTCCTGGCCGTGCAGGCCATCACCTCACTGGTGCTC
2742 E D T E R T Q I N V L A V Q A I T S L V L
8451 AGTGCAATGACTGTGCCTGTGGCCGGCAACCCAGCTGTAAGCTGCTTGGAGCAGCAGCCCCGG
2763 S A M T vV P V A G N P A V S C L E Q Q P R
8514 AACAAGCCTCTGAAAGCTCTCGACACCAGGTTTGGGAGGAAGCTGAGCATTATCAGAGGGATT

2784 N K P L K A L D T R F G R K L S 1 I R G |
8577 GTGGAGCAAGAGATTCAAGCAATGGTTTCAAAGAGAGAGAATATTGCCACCCATCATTTATAT
280s V. E Q E I Q A M V S K R E N I A T H H L Y
8640 CAGGCATGGGACCCTGTCCCTTCTCTGTCTCCGGCTACTACAGGTGCCCTCATCAGCCACGAG
2826 Q A W D P V P S L S P A T T G A L | S H E
8703 AAGCTGCTGCTACAGATCAACCCCGAGCGGGAGCTGGGGAGCATGAGCTACAAACTCGGCCAG
2847v K L L L Q I N P E R E L G S M S Y K L G Q
8766 GTGTCCATACACTCCGTGTGGCTGGGGAACAGCATCACACCCCTGAGGGAGGAGGAATGGGAC
2868 V.S | H S VvV W L G N S | T P L R E E E W D

8829 GAGGAAGAGGAGGAGGAGGCCGACGCCCCTGCACCTTCGTCACCACCCACGTCTCCAGTCAAC
2889 E E E E E E A D A P A P S S P P T S P V N
8892 TCCAGGAAACACCGGGCTGGAGTTGACATCCACTCCTGTTCGCAGTTTTTGCTTGAGTTGTAT

291 S R K H R A G V D I H S C S Q F L L E L Y
8955 AGCCGCTGGATACTGCCGTCCAGCTCAGCCAGGAGGACCCCGGCCATCCTGATCAGTGAGGTG
2931 S R W I L P S S S A R R T P A I L | S E V

9018 GTCAGATCCCTTCTAGTGGTCTCAGACTTGTTCACCGAGCGCAACCAGTTTGAGCTGATGTAT
2952 V R S L L V vV S D L F T E R N Q F E L M Y
9081 GTGACGCTGACAGAACTGCGAAGGGTGCACCCTTCAGAAGACGAGATCCTCGCTCAGTACCTG
2973 v T L T E L R R V H P S E D E | L A Q Y L
Xhol
9144 GTGCCTGCCACCTGCAAGGCAGCTGCCGTCCTTGGGATGGACAAGGCCGTGGCGGAGCCTGTC
2994 V P A T C K A A A V L G M D K A V A E P V
9207 TCGAGGCTGCTGGAGAGCACGCTCAGGAGCAGCCACCTGCCCAGCAGGGTTGGAGCCCTGCAC
3015 S R L L E S T L R S S H L P S R V G A L H
9270 GGCGTCCTCTATGTGCTGGAGTGCGACCTGCTGGACGACACTGCCAAGCAGCTCATCCCGGTC

303 G VvV L Y v L E C D L L D D T A K Q L I P V
9333 ATCAGCGACTATCTCCTCTCCAACCTGAAAGGGATCGCCCACTGCGTGAACATTCACAGCCAG
3057 1 S D Y L L S N L K G I A H C V N I H S Q
9396 CAGCACGTACTGGTCATGTGTGCCACTGCGTTTTACCTCATTGAGAACTATCCTCTGGACGTA
3078 Q H VvV L VvV M C A T A F Y L I E N Y P L D V
9459 GGGCCGGAATTTTCAGCATCAATAATACAGATGTGTGGGGTGATGCTGTCTGGAAGTGAGGAG
3099 G P E F S A S | /I Q M C G VvV M L S G S E E
9522 TCCACCCCCTCCATCATTTACCACTGTGCCCTCAGAGGCCTGGAGCGCCTCCTGCTCTCTGAG
3120 S T P S | Il Y H C A L R G L E R L L L S E

9585 CAGCTCTCCCGCCTGGATGCAGAATCGCTGGTCAAGCTGAGTGTGGACAGAGTGAACGTGCAC
31417 Q L S R L D A E S L V K L S V D R V N V H
9648 AGCCCGCACCGGGCCATGGCGGCTCTGGGCCTGATGCTCACCTGCATGTATACAGGAAAGGAG
3162 S P H R A M A A L G L M L T C M Y T G K E
9711 AAAGTCAGTCCGGGTAGAACTTCAGACCCTAATCCTGCAGCCCCCGACAGCGAGTCAGTGATT
3183 K VvV S P G R T S D P N P A A P D S E S V I
9774 GTTGCTATGGAGCGGGTATCTGTTCTTTTTGATAGGATCAGGAAAGGCTTTCCTTGTGAAGCC

304 v A M F R V S V I F D R I R K G F P C F A
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9837 AGAGTGGTGGCCAGGATTCTGCCCCAGTTCCTAGACGACTTCTTCCCACCCCAGGACATCATG

322 R V. V. A R I L P Q F L D D F F P P Q D I M
9900 AACAAAGTCATCGGAGAGTTTCTGTCCAACCAGCAGCCATACCCCCAGTTCATGGCCACCGTG
346 N K V I G E F L S N Q Q P Y P Q F M A T V

9963 GTGTATAAGGTGTTTCAGACTCTGCACAGCACCGGGCAGTCGTCCATGGTCCGGGACTGGGTC
3267 V Y K V F Q T L H S T G Q S S M V R D W V Htt
10026 ATGCTGTCCCTCTCCAACTTCACGCAGAGGGCACCAGTCGCCATGGCCACGTGGAGCCTCTCC
3288 M L S L S N F T Q R A P V A M A T W S L S
10089 TGCTTCTTTGTCAGCGCGTCCACCAGCCCGTGGGTCGCGGCGATCCTCCCACATGTCATCAGC
339 ¢ F F V. S A S T S P W V A A | L P H V 1 S
10152 AGGATGGGCAAGCTGGAGCAGGTGGACGTGAACCTTTTCTGCCTGGTCGCCACAGACTTCTAC
3336 R M G K L E Q VD V N L F C L V A T D F Y
10215 AGACACCAGATAGAGGAGGAGCTGGACCGCAGGGCCTTCCAGTCTGTGCTTGAGGTGGTTGCA
3351 R H Q | E E E L D R R A F Q S VvV L E V V A
10278 GCCCCAGGAAGCCCATATCACCGGCTGCTGACTTGTTTACGAAATGTCCACAAGGTCACCACC
3372 A P G S P Y H R L L T C L R N V H K VvV T T

EcoRl  Smal HA tag Ndel TCtag
10341 TGCGAATTCCCCGGGTTTTACCCCTATGATGTGCCAGACTACGCCCATATGGGGGGGTTCTTG
3393 ¢ E F P G F Y P Y D V P DY A H M G G F L
Fsel Fspl Sphl  SnaBl attL2
10404 AATTGCTGTCCTGGCTGCTGCATGGAACCTGGCCGGCCATGCGCATAAGCATGCTACGTACACCCAG
3414# N C C P G C C M E P G R P C A
10471 CTTTCTTGTACaaagttggcattataagaaagcattgcttatcaatttgttgcaacgaacaggtcactatcagt
10545 caaaataaaatcattatttgccatccagctgcagctctggcccgtgtctcaaaatctctgatgttacattgcac
10619 aagataaaaatatatcatcatgaacaataaaactgtctgcttacataaacagtaatacaaggggtgttatgagce
10693 catattcaacgggaaacgtcgaggccgcgattaaattccaacatggatgctgatttatatgggtataaatgggce
10767 tcgcgataatgtcgggcaatcaggtgcgacaatctatcgcttgtatgggaagcccgatgecgccagagttgtttc
10841 tgaaacatggcaaaggtagcgttgccaatgatgttacagatgagatggtcagactaaactggctgacggaattt
10915 atgcctcttccgaccatcaagcattttatccgtactcctgatgatgcatggttactcaccactgcgatccccgg
10989 aaaaacagcattccaggtattagaagaatatcctgattcaggtgaaaatattgttgatgcgctggcagtgttcc
11063 tgcgccggttgcattcgattcctgtttgtaattgtccttttaacagcgatcgegtatttcgtctcgcectcaggeg
11137 caatcacgaatgaataacggtttggttgatgcgagtgattttgatgacgagcgtaatggctggcctgttgaaca
11211 agtctggaaagaaatgcataaacttttgccattctcaccggattcagtcgtcactcatggtgatttctcacttg
11285 ataaccttatttttgacgaggggaaattaataggttgtattgatgttggacgagtcggaatcgcagaccgatac
11359 caggatcttgccatcctatggaactgcctcggtgagttttcteccttcattacagaaacggctttttcaaaaata
11433 tggtattgataatcctgatatgaataaattgcagtttcatttgatgctcgatgagtttttctaatcagaattgg
11507 ttaattggttgtaacactggcagagcattacgctgacttgacgggacggcgcaagctcatgaccaaaatccctt
11581 aacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatccttttttt
11655 ctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgeccggatcaagagcet
11729 accaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgtccttctagtgtagecgt
11803 agttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggcet
11877 gctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcecggtc
11951 gggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagatacctacagce
12025 gtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcgga
12099 acaggagagcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgeccacct
12173 ctgacttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcect
12247 ttttacggttcctggccttttgctggeccttttgectcacatgttectttcctgegttatcccctgattctgtggat
12321 aaccgtattaccgctagccaggaagagtttgtagaaacgcaaaaaggccatccgtcaggatggceccttctgcetta
12395 gtttgatgcctggcagtttatggcgggcgtcctgecccgccaccctccgggecgttgcttcacaacgttcaaatc
12469 cgctcccggcggatttgtcctactcaggagagcgttcaccgacaaacaacagataaaacgaaaggcccagtctt
junction marker
12543 ccgactgagcctttcgttttatttgatgcctggcagttccctactctc
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Full name : pARIS-htt-N[His-Cherry]Q100-C[HA-TC]
Used name : pARIS-mCherry-httQ100
vector : pENTRY

Hpal
i Apal
:PspOMI
| ,Ascl
i iBssHII
i 1 Pacl
Psp1406l, E_Age| Notl

Pvul, CE EAcelll
Sgfl§ Pl g Sbfl+
/ /Eco52I
’ _Ecl136lI

Nrul,
SnaBl,
Sphl; ;
Fspl} i-sacl

Fsel i
Ndel it
Xmal }%
Smal 3%
ECORIY _.PshAl
.Sacll

Bst1107I...

12821 bps
Xhol
. Aatll

“ Acc65l
Kpnl

Sfil——— 6000
Spel ’

\
mCherry-httQ100

! BstBl
Sall
Scal

Bglll

gene : mCherry-httQ100

- start : 165
-end 10682
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23 Apr 2010 Restriction Map Data Page 1

Molecule: pARIS-mCherry-httQ100, 12821 bps DNA Circular
Description:
File Name: pPARIS-mCherry-httQ100.cm5, dated 23 Apr 2010
Printed: List of Sites in bps, sorted by Enzyme name.
Filter ON: cut N <=1
#sites --——-—- Bp position of recognition site -—-—-

Aatll 1 4131

Acc651 1 4292

Acclll 1 155

ATIII 1 7592

Agel 1 149

Apal 1 24

Ascl 1 133

Bglll 1 6923

BssHI'1 1 134

Bst11071 1 9926

BstBlI 1 6060

Ecl13611 1 1419

Eco521 1 907

EcoRl1 1 10575

Fsel 1 10665

Fspl 1 10674

Hpal 1 3

Kpnl 1 4292

Munl 1 5088

Ndel 1 10617

Notl 1 906

Nrul 1 10998

Pacl 1 141

PshAl 1 2333

Pspl14061 1 12688

PspOMmI 1 24

Pvul 1 11340

Sacl 1 1419

Sacll 1 2614

Sall 1 6093

Sbfl 1 548

Scal 1 6303

Sfil 1 8651

Sgfl 1 11339

SgrAl 1 878

Smal 1 10581

SnaBlI 1 10689

Spel 1 8387

Sphl 1 10683

Xbal 1 5052

Xhol 1 9437

Xmal 1 10581
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HUNTINGTINE ET MITOSE

La maladie de Huntington (MH) est une maladie neurodégénérative héréditaire
autosomique dominante. Elle résulte d’une expansion anormale de glutamines (polyQ)
dans la partie N-terminale de la protéine huntingtine (HTT; codé par HTT). La MH est
caractérisée par la dysfonction et la mort de cellules neuronales dans le cerveau,
entrainant "apparition de symptomes cognitifs, psychiatriques et moteurs, dévastateurs
chez les patients. De nombreuses études sur des modéles animaux et cellulaires montrent
que I'expansion polyQ dans la protéine mutante conduit a un gain de nouvelles fonctions
toxiques, ainsi qu’a la perte de fonctions neuroprotectives de la protéine sauvage.

Pendant ma thése, je me suis intéressée a la description et a la validation fonctionnelle
d’un nouvel outil pour étudier la HTT: pARIS-htt. pARIS-htt est un géne synthétique
construit pour faciliter le clonage et le marquage de la protéine HTT totale. En utilisant
différentes approches cellulaires, nous avons montré que pARIS-htt peut remplacer le réle
de la HTT endogene dans le transport de vésicules du Golgi ainsi que du brain derived
neurotrophic factor (BDNF). La version mutante de pARIS-htt ne peut pas restaurer cette
fonction. Parallélement, nous avons généré deux variants de pARIS-htt avec soit une
délétion dans la région d’interaction de la HTT avec la dynéine, moteur moléculaire se
dirigeant vers l'extrémité négative des microtubules, soit avec la huntingtin associated
protein 1 (HAP1), I'un de ses interacteurs. Dans les expériences de remplacement du géne,
aucun des deux mutants n’a restauré le transport vésiculaire.

Un autre aspect de ma thése a été d’étudier le réle de la HTT au cours de la mitose. Nous
avons mis en évidence I'importance de la HTT dans le contréle de I'orientation du fuseau.
Cette fonction est perdue lorque la HTT est mutée, mais restaurée lorsque celle-ci est
phosphorylée par Akt a la sérine 421. Le contr6le de l'orientation du fuseau est
particulierement important durant la neurogénése puisque cette orientation ainsi que le
mode de division sont impliqués dans la détermination des devenirs cellulaires. Cette
fonction de la HTT est conservée chez la D. melanogaster.

Cette étude a donc permis de mieux comprendre les fonctions de la HTT, et de proposer
de nouvelles cibles thérapeutiques pour traiter la MH.

Mots clés : maladie de Huntington, huntingtine, polyglutamines, transport intracellulaire, mitose,
neurogenese, Akt, phosphorylation, moteurs moléculaires.
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