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Abstract

The simulation of complex light effects such as depth-of-field, motion blur or
scattering in participating media requires a tremendous amount of computa-
tion. But the resulting pictures are often blurry. We claim that those regions
should be computed sparsely to reduce their cost. To do so, we propose a
method covariance tracing that estimates the local variations of a signal. This
method is based on a extended frequency analysis of light transport and per-
mits to build efficient algorithms that distribute the cost of low frequency parts
of the simulation of light transport.

This thesis presents an improvement over the frequency analysis of local
light-fields introduced by Durand et al. [47]. We add into this analysis of light
transport operations such as rough refractions, motion and participating media
effects. We further improve the analysis of previously defined operations to
handle non-planar occlusions of light, anisotropic BRDFs and multiple lenses.

We present covariance tracing, a method to evaluate the covariance ma-
trix of the local light-field spectrum on a per light-path basis. We show that
covariance analysis is defined for all the defined Fourier operators. Further-
more, covariance analysis is compatible with Monte Carlo integration making
it practical to study distributed effects.

We show the use of covariance tracing with various applications ranging
from motion blur and depth-of-field adaptive sampling and filtering, photon
mapping kernel size estimation and adaptive sampling of volumetric effects.

Résumé

Cette thèse présente une extension de l’analyse fréquentielle des light-fields lo-
caux introduite par Durand et al. [47]. Nous ajoutons à cette analyse l’étude
d’operateurs tels que la réfraction par des surfaces spéculaires et non-spéculaires,
le mouvement et les milieux participatifs. Nous étendons des opérateurs précéde-
ment définis pour permettre l’étude d’occlusions non planaires, des BRDFs
anisotropes et les lentilles multiples. Nous présentons l’analyse de la covariance
du transport de la lumière, une méthode pour estimer la matrice de covariance
d’un light-field local à partir de l’ensemble des opérations auquels est soumis
le light-field. Nous montrons l’application de cet outil avec plusieurs appli-
cations permettant le sampling adaptatif et le filtrage de flous de bougé ou
de profondeur de champ, l’estimation des tailles de noyaux de reconstruction
pour les photons et les photon beams ainsi que le sampling adaptatif des effets
volumiques.

iii





Acknowledgements

First, I would like to thank Nicolas Holzschuch and Cyril Soler for accepting
to be my supervisors during three years. I thank Nicolas for his patience
and calm while tempering me, and also for letting me steal cherries from his
garden. I thank Cyril for his mathematical rigor and presence, and also for
going searching mushrooms with me.

I thank all the members of the jury: Valérie Perrier, for accepting the role of
president and for her undergraduate lectures on Fourier transforms. Matthias
Zwicker and Mathias Paulin who accepted to review my manuscript. And
Wojciech Jarosz for all his interesting remarks and questions on the manuscript
and during my defense.

I thank my family for assisting me during three years and providing mo-
ments of rest aside research. My spouse, Charlotte, for being at my side every
day. My parents, Jacques and Elisabeth for their support. My sister and
brothers, Dominique, Pascal and Arnaud. My grand-mother, Reine.

I thank all my friends for their presence and encouragement. Jean-Luc,
Loïc, Pierre-Yves, Hugues and Sylvain may the crazy spirit of the Post’IT
team never stop.

I thank all the members of the Graphics group at Cornell for letting me be
part of it during six months. I express all my gratitude to Kavita Bala for her
warm welcome and the inspiring scientific discussions we had. I also thank the
member of MIT CSAIL and Fré́do Durand for receiving me during two weeks
at Boston.

Last but not least, I thank all the Artisians with whom I spent enjoyable
and scientific times. Thanks to Eric for all the ping-pong games, discussions
on science and bad faith duels. Thanks to Henri, Tiffanie, Kartic, Nassim,
François, Manu and Léo who never expressed their disappointment to share an
office with me. Thanks to Neigel for the cooking contest and for the deadline
night we had together with Charles, Pierre-Édouard for all his advises, Fabrice
for keeping the iMAGIS spirit alive, Jean-Dominique for all the chocolate he
provided for tea time, and Adrien who conviced me to do research.

v





Contents

Contents vii

List of Figures ix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Fourier Transforms . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Theory of Light Transport 7
2.1 A Model of Light Transport for Computer Graphics . . . . . . 7
2.2 Algorithms for Light Transport Simulation . . . . . . . . . . . 8
2.3 Noise reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Frequency Analysis of Light Transport 27
3.1 Paraxial Optic . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Frequency Analysis and Fourier Space . . . . . . . . . . . . . . 29
3.3 Operators on the Light-Field Function . . . . . . . . . . . . . . 37
3.4 Comparison with Differential Analysis . . . . . . . . . . . . . . 64

4 Representations of the Local Light-field Spectrum 67
4.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 The Covariance Matrix . . . . . . . . . . . . . . . . . . . . . . . 73
4.3 Occluder Spectrum Evaluation . . . . . . . . . . . . . . . . . . 85
4.4 Notes on Uni-modality . . . . . . . . . . . . . . . . . . . . . . . 88

5 Applications of Frequency Analysis of Light Transport 91
5.1 Image Space Applications . . . . . . . . . . . . . . . . . . . . . 91
5.2 Object Space Application . . . . . . . . . . . . . . . . . . . . . 100
5.3 Participating media . . . . . . . . . . . . . . . . . . . . . . . . 103

6 Conclusion 111
6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . 111
6.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Bibliography 115

A Detailed Proofs for Operators 133

vii



CONTENTS

A.1 Non-Planar Visibility Spectrum . . . . . . . . . . . . . . . . . . 133
A.2 Reparametrization onto Another Plane . . . . . . . . . . . . . . 134

B Covariances of Scattering 137
B.1 Phong BRDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
B.2 Henyey-Greenstein Phase Function . . . . . . . . . . . . . . . . 138

C Résumés en Francais 139
C.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
C.3 Théorie du Transport de la Lumière . . . . . . . . . . . . . . . 144
C.4 Analysis Fréquentielle du Transport de la Lumière . . . . . . . 145
C.5 Representations of the Local Light-field Spectrum . . . . . . . . 147
C.6 Applications de l’Analyse Fréquentielle du Transport de la Lumière148
C.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

viii



List of Figures

1.1 The rendering pipeline . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Examples of photo-realistic synthetic images . . . . . . . . . . . . 2
1.3 Real life examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Local Fourier transforms of an image . . . . . . . . . . . . . . . . . 4

2.1 Bidirectional path-tracing . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Metropolis Light Transport . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Virtual Point Lights . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Photon Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Photon Mapping surface estimators . . . . . . . . . . . . . . . . . 14
2.6 Illustration of importance sampling of a 1D distribution . . . . . . 17
2.7 Importance sampling when creating a light-path . . . . . . . . . . 17
2.8 Pre-filtering texture . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.9 Gathering methods for image space filtering . . . . . . . . . . . . . 21
2.10 Isotropic filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.11 Splatting methods for image space filtering . . . . . . . . . . . . . 23

3.1 Radiance variation with respect to Light-Paths . . . . . . . . . . . 27
3.2 Local parametrization of a light-field . . . . . . . . . . . . . . . . . 29
3.3 Local parametrization of a light-field . . . . . . . . . . . . . . . . . 30
3.4 Fourier transform of an image . . . . . . . . . . . . . . . . . . . . . 31
3.5 Fourier transform on an image . . . . . . . . . . . . . . . . . . . . 33
3.6 Multiplication with a window function . . . . . . . . . . . . . . . . 34
3.7 Operators: an example . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.8 Exposition of the different types of operators . . . . . . . . . . . . 38
3.9 Parametrization of the travel of a light-field in an empty space . . 40
3.10 Travel of a light-field in an empty space . . . . . . . . . . . . . . . 40
3.11 Frequency spectrum of a travel in empty space . . . . . . . . . . . 41
3.12 Partial occlusion of a local light-field. . . . . . . . . . . . . . . . . 41
3.13 Amplitude of the partial occlusion of a local light-field . . . . . . . 42
3.14 Non planar occluder approximation . . . . . . . . . . . . . . . . . . 43
3.15 Amplitude of the spectrum for a partially occluded local light-field 44
3.16 Non planar occlusion spectrum amplitude . . . . . . . . . . . . . . 45
3.17 Rotation of a local light-field frame . . . . . . . . . . . . . . . . . . 45
3.18 Projection of a local light-field frame . . . . . . . . . . . . . . . . . 46
3.19 Angular parametrization after a projection . . . . . . . . . . . . . 47
3.20 Influence of the curvature matrix . . . . . . . . . . . . . . . . . . . 48
3.21 The curvature operator . . . . . . . . . . . . . . . . . . . . . . . . 48

ix



List of Figures

3.22 Symmetry of the signal . . . . . . . . . . . . . . . . . . . . . . . . 49
3.23 Aligning frames with the equator of the spherical parametrization

for angular operations . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.24 Along the equator, angles are additives again . . . . . . . . . . . . 50
3.25 BRDF integration in the primal . . . . . . . . . . . . . . . . . . . . 52
3.26 Reflected local light-field . . . . . . . . . . . . . . . . . . . . . . . . 52
3.27 Fourier transform of GGX BTDF . . . . . . . . . . . . . . . . . . . 56
3.28 Convergence of light through a lens . . . . . . . . . . . . . . . . . . 58
3.29 Example of the lens operator for an in-focus point . . . . . . . . . 59
3.30 Scattering a beam . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.31 Scattering operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.32 Effect of motion on occlusion . . . . . . . . . . . . . . . . . . . . . 62
3.33 Effect of motion on positions and angles . . . . . . . . . . . . . . . 63

4.1 The bandwidth vector of the spectrum . . . . . . . . . . . . . . . . 68
4.2 The wedge function . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3 Application of the Wedge function: motion . . . . . . . . . . . . . 71
4.4 Application of the Wedge function: occlusion . . . . . . . . . . . . 71
4.5 Density estimation of the spectrum . . . . . . . . . . . . . . . . . . 72
4.6 The convolution operator for the density estimation . . . . . . . . 73
4.7 Covariance matrix as a frame . . . . . . . . . . . . . . . . . . . . . 75
4.8 Scattering as a low pass filter . . . . . . . . . . . . . . . . . . . . . 83
4.9 Validation with a moving textured plane . . . . . . . . . . . . . . . 84
4.10 Validation of the occlusion approximation . . . . . . . . . . . . . . 85
4.11 Comparison between covariance grid and cone grid . . . . . . . . . 87
4.12 Intersection of the tangent plane of a ray with a cone . . . . . . . 88
4.13 Uni-modal and multi-modal spectrum . . . . . . . . . . . . . . . . 89

5.1 Image space filtering application . . . . . . . . . . . . . . . . . . . 92
5.2 Slicing of the signal . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3 Monte-Carlo Integration, an overview . . . . . . . . . . . . . . . . 94
5.4 Monte-Carlo Integration in Fourier . . . . . . . . . . . . . . . . . . 94
5.5 Sampling as a packing optimisation . . . . . . . . . . . . . . . . . . 95
5.6 Unitary test: lens filters . . . . . . . . . . . . . . . . . . . . . . . . 96
5.7 Unitary test: motion filters . . . . . . . . . . . . . . . . . . . . . . 97
5.8 Unitary test: Shininess . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.9 Equal time comparison for the snooker scene . . . . . . . . . . . . 98
5.10 Inset comparisons for the snooker scene . . . . . . . . . . . . . . . 98
5.11 Results of the helicopter scene . . . . . . . . . . . . . . . . . . . . 99
5.12 Unitary test: Occlusion grid . . . . . . . . . . . . . . . . . . . . . . 99
5.13 Frequency Photon Mapping Pipeline . . . . . . . . . . . . . . . . . 100
5.14 Visualisation of estimated radii . . . . . . . . . . . . . . . . . . . . 101
5.15 Comparison of convergence . . . . . . . . . . . . . . . . . . . . . . 102
5.16 Close-up comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.17 L2 norm comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.18 The covariance grid: an example . . . . . . . . . . . . . . . . . . . 105
5.19 Image space accumulation of covariance grid elements . . . . . . . 105
5.20 Image Space Filtering of a Shaft . . . . . . . . . . . . . . . . . . . 106
5.21 Adaptive sampling along a ray for scattering integration . . . . . . 106
5.22 Result for the Sibenik cathedral . . . . . . . . . . . . . . . . . . . . 107

x



List of Figures

5.23 Filtering the beam radiance estimate . . . . . . . . . . . . . . . . . 108
5.24 Results for the soccer boy scene . . . . . . . . . . . . . . . . . . . . 109
5.25 Results for the single caustic scene . . . . . . . . . . . . . . . . . . 109

A.1 Flat-land definition of the projection . . . . . . . . . . . . . . . . . 134
A.2 Intermediate steps . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

C.1 Exemples d’images photo-réalistes . . . . . . . . . . . . . . . . . . 139
C.2 Exemples réels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
C.3 Transformées de Fourier locales . . . . . . . . . . . . . . . . . . . . 142
C.4 Variation de la radiance par rapport aux light-paths . . . . . . . . 145

xi





Data Used in this Manuscript

The following data where used to produce results for this document:

• Lena image (USC Signal and Image Processing Institue)
http://sipi.usc.edu/database/database.php?volume=misc

• Cornell box scene (Goral et al. [61])
http://www.graphics.cornell.edu/online/box/

• Suzanne model (Willem-Paul van Overbruggen)
http://www.blender.org/

• Snooker scene (Soler et al. [165])

• Helicopter scene (modeled by vklidu from BlenderArtists.org)
http://blenderartists.org/forum/showthread.php?228226-Damaged-Helicopter-(Merkur)

• Spot fog scene (Pharr and Humphreys [137])
http://www.pbrt.org/

• Sibenik cathedral scene (modeled by Marko Dabrovic)
http://graphics.cs.williams.edu/data/meshes.xml

• Cautics from the glass sphere scene (Jensen and Christensen [93])

• Soccer boy figurine scene (Sun et al. [169])

Copyrighted images used in this dissertation:

• Genesis by Axel Ritter (Figure C.1)

• Nobody is lucky in the same way by Vasily Bodnar (Figure C.1)

• Pianist by Timour Abdulov (Figure C.1)

• Fog by Ric Coles (Figure C.2(b))

• Detector eye by Madeleine Price Ball

xiii

http://sipi.usc.edu/database/database.php?volume=misc
http://www.graphics.cornell.edu/online/box/
http://www.blender.org/
http://blenderartists.org/forum/showthread.php?228226-Damaged-Helicopter-(Merkur)
http://www.pbrt.org/
http://graphics.cs.williams.edu/data/meshes.xml




Associated Material

The following publications are part of this thesis:

• Laurent Belcour and Cyril Soler. Frequency based kernel estimation for
progressive photon mapping. In SIGGRAPH Asia 2011 Posters, SA ’11,
pages 47:1–47:1. ACM, 2011. ISBN 978-1-4503-1137-3. doi: 10.1145/
2073304.2073357

• Mahdi M. Bagher, Cyril Soler, Kartic Subr, Laurent Belcour, and Nico-
las Holzschuch. Interactive rendering of acquired materials on dynamic
geometry using bandwidth prediction. In Proceedings of the ACM SIG-
GRAPH Symposium on Interactive 3D Graphics and Games, I3D ’12,
pages 127–134. ACM, 2012. doi: 10.1145/2159616.2159637

The following reference is currently in preparation for publication:

• Laurent Belcour, Cyril Soler, Kartic Subr, Frédo Durand, and Nicolas
Holzschuch. 5D Covariance Tracing for Efficient Depth of Field and Mo-
tion Blur. ACM Transactions of Graphics, 201X. Accepted with minor
modifications

The following reference is a work in preparation for submission:

• Laurent Belcour, Cyril Soler, and Kavita Bala. Frequency analysis of
participating media. Technical report, INRIA and Cornell University,
2012

xv





1 | Introduction

Rendering consists in the synthetic generation of digital pictures from a set
of virtual geometric primitives, lights, materials and camera. Such picture is
considered physically-based if it is generated following the principles of physics
(Figure 1.1). Thus, a physical simulation of the light transport in this virtual
scene has to be performed [48]. This simulation involves an intricate combina-
tion of integrals [96], over all paths followed by light (called light-paths). This
can be solved numerically using either Monte Carlo integration, kernel density
estimation methods or finite elements methods. Monte Carlo and kernel den-
sity estimation methods are widely used in modern rendering softwares [137].
Moreover, to include a large body of light phenomena, the simulation must pro-
vide various models for the interaction between light and the scene elements
(referred as scattering), and between light and the camera.

Figure 1.1 – In a photo-realistic rendering engine, an 3D scene is used as
input of a lighting simulation following principles of physics. The resulting
picture is post-processed and adjusted to be displayed on a media.

Although light transport is well understood, a complete simulation can
typically take days [85] for complex scattering models. We must keep in mind
that realistic rendering is just another tool for artists to express their creativ-
ity: simulation times should not be a restriction (Figure C.1). Indeed, artists
usually work iteratively by modifying a first draft until the desired emotion is
reached. Our goal is to provide tools for artists that permit to produce accu-
rate pictures, with a large range of light effects, while keeping rendering time
short to permit a large number of iterations.

1.1 Motivation

We start our analysis from artistic photographs. We focus on three different
effects: depth-of-field, motion blur and scattering in participating media (See
Figure C.2):

1



1.1. MOTIVATION

Figure 1.2 – Example of photo-realistic synthetic images. While the genera-
tion of the picture follows the laws of physics, it does not imply that the result
will be realistic. Furthermore, the complexity of the simulation should not be a
bottleneck for artists as what matters to them is creativity.

(a) Depth-of-field (b) Scattering in
participating media

(c) Motion blur

Figure 1.3 – Light phenomenons available to artists in photography are nu-
merous. Using a lens an artist can create a depth-of-field effect (a) to focus the
attention on a particular detail. Light interaction with non opaque medium,
such as fog, creates atmospheric scenes (b). Opening the camera shutter dur-
ing a long time generates motion blur (c) and enforces the feeling of motion.
Rendering synthetic images that mimic these phenomena remains a challenge.

Depth-of-field results from the convergence of photons (light particles) from
various places in the scene to a single point on the camera’s sensor. This effect

2



1.2. FOURIER TRANSFORMS

can be achieved with a lens and results in the blurring of elements that are not
on the focal plane. The focal plane is the region where there is no convergence,
and one point on the sensor correspond to one point on the scene. This effect
isolates the subject of the photograph from the background, or foreground
(Figure C.2(a)). While this effect results in blurry images (with less apparent
geometrical details), surprisingly it is more complicated to render an image
with depth-of-field than an image without it. This is due to the fact that the
area of simulation is bigger for a region out of the focal plane.

Motion blur results from the accumulation of light on a sensor with time. If
an object moves during the exposure of the sensor to light, a point on the object
will scatter light to different positions of the sensor, blurring the appearance of
the object along its motion (Figure C.2(c)). Motion blur requires simulating
the evolution of objects in time, and accumulating the scattering of light with
the moving objects onto the sensor.

Scattering in participating media diffuses the light in the volume, gen-
erating halos around lights (Figure C.2(b)). While those halos blur the shape
of the lights, scattering inside a foggy medium is more difficult than scattering
on surfaces as it adds extra dimensions to the simulation. Indeed for scatter-
ing on opaque surfaces we only need to simulate the light transport between
two dimensional surface elements while scattering inside a medium requires to
simulate the light transport between three dimensional regions of space.

The three light phenomena reviewed share the tendency to blur the content
of the image while being difficult to simulate. From a signal processing point of
view, the image produced with a blurring phenomenon contains less information
than the image produced without it. Thus, the quantity of information required
to reconstruct the signal should be lower. Our goal is to theoretically identify
blurry regions and to reconstruct the image with less computation than required
for the same image without blur (from the signal processing perspective). To
do so, we propose to study light phenomenons in a space where variations of
the signal are naturally expressed: the Fourier domain.

1.2 Fourier Transforms

The Fourier transform is a tool to express a signal in terms of amplitude with
respect to frequency (number of variation per unit cycle) rather than in terms
of amplitude with respect to position. It defines an alternative space in which
a signal can be studied (Figure C.3). For example, if the Fourier transform
of a spectrum is tight around the origin of the Fourier domain, the signal will
not exhibit many variations (Figure C.3, red inset). On the contrary, a Fourier
transform that spreads in the Fourier domain will exhibit an important amount
of variations (Figure C.3, green inset). Thus, the Fourier transform provides
us a tool to detect blurry regions.

Another domain where using Fourier transforms are interesting is numerical
integration (such as Gaussian quadrature or Monte-Carlo integrals). Numerical
integration propose to approximate the solution of an integral using a discrete

3



1.3. GOALS

Figure 1.4 – The Fourier transform of a signal depicts its variations. We
illustrate this notion using the Lena image. We select portions of the image and
display the Fourier transform in insets. Low frequency regions of the image are
compacted around the origin of the Fourier domain while high frequency regions
distribute in the Fourier domain.

sum. The elements of the sum are called the samples. The quality of the
approximation is a function of the number of samples used. But, for the same
number of samples, this quality varies for different integrand.

In fact, integration has an alternative formulation in the Fourier domain.
There, the source of error in numerical integration is well understood [33, 46].
From the knowledge of the integrand spectrum, we can predict the required
number of samples to obtain a perfect estimate of the integral. But, the inte-
grand’s spectrum is not known in practice.

1.3 Goals

The present work is motivated by the need to evaluate Fourier spectra. Indeed,
the knowledge of the integrand’s spectrum or of the image’s spectrum allows to
specify where the blur occurs or to define how many samples will be required to
calculate an integral. We want to bring such knowledge to the area of rendering.
But this has to be done for a complex set of lighting effects in order to be used
by artists. We separate our goals into three categories:

1.3.1 Frequency Analysis of Light Transport

Frequency analysis of light transport is the area of computer graphics seeking
to provide the knowledge of the integrand spectrum. This thesis is in the
continuity of pioneering works on this topic [47, 165, 49, 51, 50]. Our goal is
to enrich the set of effects analyzed. This is mandatory if we want our work to
be used by artists in the future.

1.3.2 Denoising Applications

When the required number of samples cannot be achieved, denoising algo-
rithms can remove part of the remaining noise. Those algorithms are often
driven by an estimate of the local variations. Frequency analysis can provide
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such knowledge. Our goal here is to provide algorithms to reconstruct smooth
regions from an incomplete simulation in order to reduce the time needed to
generate images.

1.3.3 Understanding Light Transport

Another goal of this thesis is to provide more understanding of the light trans-
port process. Studying the Fourier spectrum allows us to understand how
angular variations of the signal are blurred by diffuse reflection, how a lens
affects the convergence of light on the sensor, or how participating media blurs
the light, in a different perspective than previously stated.

1.4 Contributions

This dissertation presents the following contributions:

• We enrich the analysis of Durand et al. [47] on frequency analysis of
light transport. We define new operators such as volume scattering and
absorption. We generalize previous operators, such as lens, reflection and
occlusion (Chapter 3).

• We present the covariance analysis of light transport, a new analysis of
the covariance of the local radiance’s spectrum which is compatible with
Monte-Carlo integration (Chapter 4.2).

• We present two data structures in the form of voxel grids to evaluate an
approximation of the local occlusion of light by objects (Chapter 4.3).

• We present applications of the covariance matrix to validate our claim
that frequency information can allow optimizations for ray-tracing algo-
rithms (Chapter 5).

This dissertation is organized as follows: First, we will present the current
state-of-the-art for generating photo-realistic images using light-path integrals
(Chapter 2). Then, our contributions will be presented in three distinct chap-
ters. In the first one (Chapter 3), we will coherently present the frequency
analysis of light transport. This theoretical analysis will contain works we
build upon as well as our contributions. The second chapter (Chapter 4) will
study the tools provided to perform this analysis in a numerical integration
context. We will present there the covariance matrix, a versatile tool proposed
to overcome the limitations of previously proposed tools. The last contribution
chapter (Chapter 5) will present various algorithms to speed-up the rendering
of photo-realistic images from the knowledge of frequency information.
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2 | Theory of Light Transport

Light transport simulation requires the definition of what light is, how it
interacts with matter (called scattering), and how it interacts with a sensor. A
light transport model defines those elements. In this chapter, we will quickly
review different models available (Section 2.1) and focus on the model used in
physically based rendering: Geometrical optics. Then, from the integral defi-
nition of light transport, we will review the light-path integration algorithms
(Chapter 2.2). Finally, we will review noise reduction methods for those inte-
gration algorithms (Chapter 2.3).

2.1 A Model of Light Transport for Computer Graphics

The goal of photo-realistic image synthesis is to estimate the amount of light on
a virtual sensor. The corresponding physical quantity is the radiance (usually
noted L). It is defined as the energy passing per unit surface area, per unit
solid angle, per unit time for a particular wavelength.

Estimating the radiance emitted by a light source on a sensor, after in-
teracting with the world, requires a model for light-object and light-sensor
interactions. There exist several models to describe how light will interact
with its environment:

• Geometrical optics assumes that light is composed of corpuscles: photons.
Photons travel in the world along lines: photons paths. In a uniform
medium (or in vacuum), the photons travel in straight lines. Photons can
be absorbed, reflected and emitted by objects. The reflection of a photon
by a medium is called scattering. Scattering is described statistically
using a phase function (usually denoted ρ) which describe how much of
the absorbed photon is emitted in a particular direction.

• Wave optics models light as a wave. This model incorporates diffraction
effects that geometrical optics cannot model for example.

• Quantum electrodynamics describes the interaction of light and matter
using interactions between electrons and photons in space and time. This
model is derived from quantum physics which describes physical phenom-
ena at microscopic scale. This model incorporates Compton scattering
(change of the photon’s wavelength after a interaction) that wave optics
cannot describe for example.
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Geometrical optics is the model most commonly used in computer graphics.
It is commonly accepted because of its simplicity (intersection of straight lines
with geometrical objects) and because it captures most of the light effects
humanly perceptible.

2.2 Algorithms for Light Transport Simulation

In the geometrical optics model, the estimation of how much power a surface
or sensor receive is proportional to the density of photon paths arriving at this
particular location.

2.2.1 Radiance estimation as an integration

The interaction of light with opaque media, is described by the rendering equa-
tion (Equation 2.1). This formulation of the rendering problem was proposed
by Kajiya [96]:

L(x, ω⃗) = L0(x, ω⃗)

∫
ω′

G(x,y)ρ(x, ω⃗, ω⃗′)L(y, ω⃗′)dω′ (2.1)

Where L(x, ω⃗) is the radiance at position x in direction ω⃗, G(x,y) is called
the geometrical term and accounts for occlusion, and for the relative geometry
at position x and y. ρ(x, ω⃗, ω⃗′) is the scattering function at position x⃗ for
an incoming direction ω⃗ and an outgoing direction ω⃗′. For reflection scatter-
ing, the phase function is called BRDF (Bidirectional Reflectance Distribution
Function) [126]. For refraction scattering, the phase function is called BTDF
(Bidirectional Transmission Distribution Function). Because of its recursive
definition, the solution to the rendering equation lies in the computation of
a high dimensional function. In his thesis, Veach [176, Chapter 8] proposed
an alternative formulation of this integral: the light-path formulation. A light-
path is a set of points on the surface of objects, or inside participating media,
that form the virtual path that could be followed by photons. In this formu-
lation, the integration of radiance arriving at a particular position in space is
estimated by the integration of the density of light-paths (or photon paths)
connecting this position with the light sources of the virtual 3D scene:

Lj =

∫
l∈Ω

fj(l)dµ(l) (2.2)

Where Lj is the radiance value for pixel j, fi is the function giving the
radiance density for a particular light-path l in the set of all coherent light-
paths with associated measure dµ(l).

Light interaction inside non opaque volumes (e.g., smoke, clouds, water,
skin) with a homogeneous phase function is described by the Radiative Transfer
Equation, or RTE (See Ishimaru’s monograph [83]):

(⟨ω⃗,∇⟩+ c(x))L(x, ω⃗) = b(x)

∫
ω⃗′∈S2

ρ(ω⃗, ω⃗′)L(x, ω⃗′)dω⃗ +Q(x, ω⃗) (2.3)

In this equation L(x, ω⃗) is the radiance, ∇ is the diffrential operator, ⟨, ⟩
is the dot product, c(x) is the extinction coefficient, b(x) is the scattering
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coefficient, ρ(ω⃗, ω⃗′) is the phase function and Q(x, ω⃗) is the emission term when
the volume emits photons. The extinction coeffcient describes the proportion of
light that is not absorbed or scattered in another direction during its transport
in the medium at position x. The scattering coefficient describes the proportion
of incoming light that interacts with the media at position x.

This differo-integral equation can also be expressed as an integral of light-
paths [135]. It allows to combine the integration of participating media and
surface reflections in the same framework. Theoretical analysis showed that the
RTE can be solved by using integration of discrete light-paths [32]. Continuous
paths have to be used in the context of highly scattering medium. Tessendorf
[173] proposed the use of path integrals to solve the RTE for strong forward
scattering medium. It was later adapted to computer graphics by Premože
et al. [139].

2.2.2 Integration methods for high-dimensional integrand

Classical numerical integration methods, like Gaussian quadrature, become
intractable as the number of dimension grows (they converge in N− 1

d , where
d is the number of dimensions and N the number of samples). The number of
dimensions covered by the RTE is theoretically unbounded. Consequently, the
computer graphics community prefers to use statistical integration tools that
are independent to the number of dimensions.

In this section, we describe the two kinds of statistical integration methods
used in computer graphics: Monte Carlo integration and density estimation
methods.

2.2.2.1 Monte Carlo integration

Monte Carlo integration methods use principles of statistics to estimate the
integral of a density function. The idea is to look at the integrand as a proba-
bility density function (noted PDF). Our aim is to evaluate its mean value, or
expected value, which is proportional to the integral of the function. We can
do it numerically using random evaluations of the PDF:

Lj ≃
U

N

∑
li

fj(li) (2.4)

Where Lj is the radiance at pixel j, U is the area of integration (size of
the domain of definition), fj is the function giving the radiance contribution of
light-path li to pixel j. N is the number of samples drawn (the li) uniformly
over the domain of definition of fj .

Metropolis [117] gives a historical perspective as well as an intuitive expla-
nation of Monte Carlo methods.

Monte Carlo integration is independent from the number of dimensions for
convergence, as all the dimensions are explored independently. The resulting
error reduction with respect to the number of samples is in 1√

N
(where N is

the number of samples). This means that in order to statistically halve the
error of a given number of samples, it is required to run the simulation using
four times more samples.
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2.2.2.2 Density estimation using kernel method

Another Monte Carlo method to estimate the radiance at a given pixel is kernel
based density estimation.

Kernel based density estimation methods try to reconstruct a density func-
tion from a set of samples. At a position p, the value f(p) is estimated using
a kernel function K over the samples. In the original formulation, the density
of samples has to be proportional to the function to be reconstructed. Recent
works showed that is not mandatory if the sampling density is known and the
function f can be estimated at sample position. We use this method to re-
construct the radiance on the sensor. In this reconstruction, the integration
of light-paths is implicit. (See Silverman’s monograph for an introduction on
density estimation [164]):

fj ≃
1

Nhd

N∑
i=1

Kh,j(pi) (2.5)

Where pi are the samples used to reconstruct the density at position j, h
is the window width, d the dimension of the space and Kh,j(pi) is the kernel
function. The window should be estimated carefully as it will influence the
resulting appearance. A big radius will blur the results while a small radius
might not catch any samples leading to holes in the reconstruction.

2.2.3 Applications in Computer Graphics

To estimate light-path density, several algorithms have been proposed. We can
categorize them into two categories: Monte Carlo methods, and kernel meth-
ods. Beside the theoretical differences, those methods usually differ from where
they perform the integration. Monte Carlo methods estimate the radiance at
the sensor location while kernel based methods estimate the radiance in the
scene.

Methods presented here are often classified using unbiased and convergent
classes. An unbiased algorithm provides the correct answer statistically. Av-
eraging M results of independent run of the algorithm with N samples is
equivalent to running the algorithm with M ×N samples. We call the error
to the solution the variance. A convergent algorithm converges towards the
correct solution as the number of samples increase. The error to the solution
is decomposed into a variance term and a bias term. This classification is
interesting for a theoretical point of view. Practically speaking, this informa-
tion is of little help and the question of how much samples to draw stays, no
matter the class of the algorithm.

2.2.3.1 Monte Carlo Integration

We review here the different kind of Monte Carlo algorithms proposed until now
in computer graphics. Those algorithms are often coupled with a light-path
generation algorithm.
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Unidirectional Path Tracing: Kajiya was the first to introduce the in-
tegral formulation of Equation 2.1. He proposed to solve this integration of
the radiance using recursive ray-tracing [96] from the sensor to the light (re-
ferred by eye-path). The dual exploration scheme, light-path methods, follow
the propagation of photons. Light-path tracing has been proposed in the con-
text of radiosity textures where the connection to the eye is assumed to be
diffuse [5].

Bidirectional Path Tracing: Eye-path and light-path tracing methods have
their own strength. On one hand, light-path tracing is very good for creating
specular paths from the light source, but fails to connect specular paths to a
camera. On the other hand, eye-path tracing will perform well to generate
specular paths from the eye while failing to connect specular path to the light.
Bidirectional methods propose to alleviate these restrictions by combining those
two methods.

Figure 2.1 – Using a bidirectional path-tracing method allows to generate com-
plex light-paths like the path composed of a double refraction in the glass sphere
from the light l0 . . . l3 and the double refraction in the glass from the camera
e0 . . . e3. For that, we sample the light-path and the eye-path and connect the
two based on visibility.

The idea is to create concurrently both forward and backward paths and
to connect them to create full light to eye paths (see Figure 2.1 for an example
with a complex refraction). This method was first proposed by Heckbert [73]
who stored the radiance from light-path into radiosity textures and used eye-
path to evaluate the radiance at the sensor. Lafortune and Willems [104] and
Veach and Guibas [177] published concurrently methods to produce light-paths
from both directions

Metropolis Light Transport: Veach and Guibas [179] brought the Metropolis-
Hasting [67] sampling method to Computer Graphics. This genetic algorithm
generates light-paths as samples from mutations of a light-path seed (as illus-
trated with Figure 2.2). Mutations are accepted based on a defined probability
density function, proportional to the radiance. The distribution of light-paths
(after an infinite number of drawn samples) gives the energy distribution.
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Figure 2.2 – Metropolis light transport generate a Markov chain of mutation
(in dotted red) from a seed light-path (in black). The radiance will be given per
pixel by the density of mutated light-paths per pixel.

Defining mutations strategies for Metropolis is a challenge. As explained by
Veach and Guibas, the set of possible mutations should allow ergodic changes.
From a given light-path there should be a non zero probability of generating any
other light-path (carrying energy toward the camera) from the set of possible
mutations. Veach and Guibas [179] proposed a set of mutation based on typical
cases (e.g., moving a diffuse point, moving a caustic path, etc). Another work
on mutations was done by Kelemen et al. [97]. They looked at two kind of
mutations (local and global ones) on a virtual hyper-cube.

Pauly et al. [136] extended the set of possible light-paths to be used by
adding the theoretical foundation and mutation strategy for participating me-
dia. Segovia et al. [156] applied results from the applied statistic community on
generating multiple candidates per mutation pass to further reduce the variance
of the estimate.

Metropolis can also be used to generate light-paths for other integration
methods and give the user some intuitive control (e.g., a maximum density per
m2) using the acceptance function. Segovia et al. [157], Fan et al. [54] and
Chen et al. [23] used this technique to populate a scene with either virtual
point lights or photons.

Virtual Point Lights: Virtual point lights (or VPL) are used to fake indirect
illumination by adding more direct sources to the scene (Figure 2.3). This
technique produces forward light-paths and store the resulting hit points on
surfaces. Those hit points are then used as new light sources.

This idea was introduced by Keller [98] to bring global illumination effects
into real-time rendering engines. This work was extended to be fully opera-
tional in a global illumination renderer [183, 184, 127, 128]. The number of
VPL per pixel is evaluated based on a perceptive metric. The same metric
was used in an interactive setting using matrix clustering [70]. This solution
is approximate and issues arise with near-specular glossy BRDFs. Techniques
such as Virtual Spherical Lights [71] and combining global illumination from
VPL with traced local illumination [38] overcome those limitations.
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Figure 2.3 – Virtual point lights (VPL) are created using the same first pass
as photon mapping. The second pass differs as the algorithm integrate one
bounce illumination using stored light-paths’ end as primary sources.

2.2.3.2 Kernel Based Density Estimation

Kernel methods differ mostly from the definition of the kernel to be used, or
the domain in which the reconstruction is performed (either on surfaces, on
the screen or in the volume). In this section, we review the different kernels
type used in computer graphics. Then we will present derived methods such
as iterative density estimation and splatting methods.

Photon Mapping: Photon mapping is one use of kernel based density esti-
mation methods in the computer graphics community. Photon mapping is a
two step algorithm: first, light-paths are sampled and the intersections with
diffuse elements of the scene are stored in a data-structure: the photon map.
Then eye-paths are drawn and the intersections with diffuse surfaces are used
to estimate radiance based on a local kernel method centered on the hit point.

Figure 2.4 – Photon mapping uses a two pass algorithm. First, light-paths
(in black) are traced from the light sources and stored into a data structure:
the photon map. Then eye-paths are traced from the camera until they hit a
non-specular surface. Light-paths are created by accumulating the number of
stored light-paths close to the end of the eye-path.
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Jensen [92] described the photon mapping in the presented form. He added
another pass to reduce some low frequency noise: the final gathering. Kernel
estimation methods where pioneered (in Computer Graphics) by Chen et al.
[25] who used density estimation to estimate caustics on diffuse surfaces, and
Shirley et al. [162] who used density estimation for irradiance on adaptive
meshes.

Lastra et al. [109] proposed a better estimate of the incoming radiance using
photon rays instead of photon hits. This method is better at reconstructing
sharp borders for example as it estimates the photon flux on a disc area. Eval-
uation of disc intersection was later improved by Havran et al. [68] who used
a lazy evaluated kd-tree to store rays. The evaluation of the intersection in
Plücker coordinates due to the use of rays makes those techniques rather slow
compared to traditional point density estimation. Zinke and Weber [191] dis-
cretized the photon ray into photons points in space and perform integration
using half sphere rather than discs.

Another estimator was proposed by Hey and Purgathofer [79] who estimated
the density using the geometry surface in a cubic kernel area. This method
avoid the darkening of corner that arise with planar surface estimators. This
method needs to account for occlusion during the selection of surfaces since the
we are looking at a volume and no longer at a surface. Other methods used
polygons to perform the density estimation on a fine tesselation [182], or to
estimate a kernel shape adapted to the geometry [174]. Figure 2.5 sums up the
different density estimators for surfaces.

Figure 2.5 – Here we review the different density estimators proposed for
radiance estimation on surfaces. Jensen [92] used photon hits in a k-nearest
fashion (a). Lastra et al. [109] evaluated the light-field radiance on a planar
disc using photon rays (b). Zinke and Weber [191] discretized photon rays to
accelerate the density evaluation (c). Hey and Purgathofer [79] used the sur-
faces inside a cube perform the integration. Rays in green are not intersecting
the surface but also contribute to the estimator.
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Photon mapping also works for participating media [93]. Instead of storing
photons on surfaces, photons are also stored in the volume. Note that the kernel
are 3D spheres in such a configuration. However, beam shaped kernels [87] can
be preferred, as they increase the mean number of collected samples. Jarosz
et al. [89] replaced photon points by photon beams for participating media in
order to further accelerate convergence.

Photon Splatting The dual of the kernel density estimation method is to
distribute the photon energy on the surface, or in the medium using individual
kernels. This property is used to derive photon splatting techniques where the
photons’ kernels are rasterized on the screen [110, 17, 77, 90] or reverse photon-
mapping [69, 77] where the photon energy is distributed onto eye-paths. With
the power of graphics cards one obtains faster convergence, but the splat’s size
needs to adapt the geometry (e.g., occlusion, curvature). Part of this limitation
can be addressed using a progressive scheme [90].

Progressive Photon Mapping Progressive photon mapping (originally pro-
posed by Hachisuka et al. [65], then theoretically reformulated by Knaus and
Zwicker [99]) remove the storage issue of photon mapping (all photons have
to be stored in memory to perform density estimation) by breaking the algo-
rithm into iterations. At each iteration, a small number of photons is sent
into the scene and the density estimation is performed. Then, the photons are
discarded and we begin another pass. In this new pass, we reduce all the ker-
nels. This technique was pioneered by Boudet et al. [16] who iterated photon
passes. But the kernels were not reduced after each pass leading to a biased
result. Recent methods provided conditions on the radius reduction to satisfy
the convergence [65, 99].

Progressive photon mapping has been extended to other kinds of integration
than surface density estimation. The effect of participating media [90, 99] can
be integrated. Depth-of-field and motion blur effects are done using stochastic
integration [63, 99].

Since the kernel is reduced at each pass, we do not need to adapt the kernel
to the geometry. This error is converted into bias which decrease during the
rendering time thanks to the iterative scheme and radius reduction.

2.2.3.3 Coupling Monte Carlo and Density Estimation

Recent works proposed to couple the benefits of both methods [66, 59]. Bidi-
rectional path-tracing is modified to accept connection using vertex merging.
In this type of connection, light-paths and eye-paths that end close to each
other will form complete paths This merging step is inspired by the gathering
using kernel of photon mapping. The pure bidirectional and the vertex merging
statistics are combined to produce a more robust estimator.

2.3 Noise reduction

While obtaining an image faster requires a good implementation of these ren-
dering methods, it is not the only place where we can achieve better perfor-
mance (rendering quality per number of samples, or time). In this section, we
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will review classes of methods that decrease the noise present in the resulting
integral with the same number of samples. This exposé is not complete as we
only review methods in relation with this thesis:

• Importance sampling (Section 2.3.1) draws more samples in regions of
higher values.

• Stratification and Adaptive sampling (Section 2.3.2) adapt the number
of samples to draw in regions with more variations. This is done in
subspaces such as image space, lens space or time space.

• Filtering methods (Section 2.3.3) use already drawn samples and a filter
algorithm to estimate a smoother results.

• Caching methods (Section 2.3.4) reuse previously computed samples for
smoothly varying indirect illumination effects.

• Kernel methods (Section 2.3.5) have their own noise reductions methods.
Either the data-structure or the kernel can be adapted to reduce noise.

2.3.1 Importance Sampling

Definition: Several methods have been proposed in the applied statistic com-
munity to accelerate the convergence of Monte Carlo integrals. With impor-
tance sampling [95] the abscissa samples are not chosen uniformly in the inte-
gration domain, but they are drawn from an importance function.

Given that our samples are not drawn uniformly other the domain (but ac-
cording to distribution p), the integration of radiance (Equation 2.4) becomes:

Lj ≃
U

N

∑
li

fj(li)

pj(li)
where li ∼ pj (2.6)

To keep the estimate unbiased, we need to put conditions on the importance
function. For example, the importance function should always be strictly posi-
tive when the integrand is different from zero. This assumption allows to draw
samples anywhere on the support of the integrand.

Generating light-path with importance sampling: Light-paths are cre-
ated using importance sampling of the BRDF to be of a higher mean energy
(Figure 2.7). Eye-paths can also use importance sampling of BRDF, but Veach
and Guibas [178] showed that this could lead to a poor estimate. They com-
bine multiple importance functions (such as BRDF importance and light im-
portance) into the construction of the estimator and derive the corresponding
weights. Yet, using multiple importance functions can lead to poor perfor-
mances when only one importance function decrease significantly the variance
(as half the samples will significantly decrease the variance). Pajot et al. [134]
adapted the ratio of samples assigned to a given importance function per pixel
to overcome this limitation.
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Figure 2.6 – We illustrate the process of importance sampling a 1D distribu-
tion. From the target pdf (in blue), we draw samples (in red) those density is
equal to the pdf.

Figure 2.7 – When creating a light-path, one can use importance function
based on the BRDFs to create a light-path with a higher energy on average. The
red lobes represent the angular importance function for the reflected direction.
of the light-path in black.

Importance sampling BRDF: Most of the analytical BRDF models pro-
vide a way to perform importance sampling of outgoing directions ([7, 185, 106]
among others). Please refer to Montes Soldado and Ureña Almagro’s sur-
vey [123] for a broader view on importance friendly BRDF models. When it
is not possible, sampling patterns from another BRDF [8] or a quad-tree data
structure [122] can be used. Acquired materials require an alternate representa-
tion such as Wavelets [107, 115, 28, 29], decompositions into lower dimensional
factored terms [111], or rational functions [132].

Importance sampling light sources: We can importance sample distant
illumination models (e.g., environment maps). Generating a set a point with
distribution proportional to the intensity can be done using a quadrature rule
[100], median cut algorithms [40, 181], or a hierarchical Penrose tiling [129].
Donikian et al. [45] importance sampled clustered light sources and tracked
coherence within blocks of pixels.
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Importance sampling product of functions: Importance sampling the
product of the BRDF and the light function leads to better performances com-
pared to importance sampling only one or the other function. This target
distribution can be achieved by a warping the space in which uniform samples
are drawn. This can be done using product of Wavelets [27], or from hierarchi-
cal partition [30]. Bidirectional Importance Sampling [20, 186] and Importance
Resampling [172] allows to importance sample the product of illumination and
BRDF using rejection an resampling. Rousselle et al. [145] importance sample
the triple product of distant illumination, BRDF and visibility by using tabu-
lated maxima. The set of samples is refined using a local mean of the product.
Lafortune and Willems [105] used a 5D cache of radiance to importance sample
the product of visibility, light and BRDFs.

Importance sampling scattering: Several target density function can be
used to reduce the noise for scattering of light in participating media depending
on the lighting configuration. The angular domain can be importance sampled
for ray [127] or beam [128] light sources using an overestimate of the source
contribution. Samples can be distributed along a ray based on the distance
to the source or to get a constant angular density from the source point of
view [101]. Scattering functions such as hair [114] can benefit from importance
sampling [76]. Phase functions like Raleigh [57] have also been studied.

Nevertheless, building an importance function is a complicated task. As
shown by Owen and Zhou [131], even though one might find a good approxi-
mation of the function to integrate and use it as the importance function, a
close importance function can have an infinite asymptotic variance, leading
to bad convergence rates.

2.3.2 Stratification and Adaptive Sampling

Definition: Stratification and Adaptive sampling reduce variance by separat-
ing the space of integration into strata based on the variation of the integrand.
Stratification separates the domain into a set of N strata of equal variance and
performs one computation (either evaluating the color of a pixel, or evaluating
a sample) in each stratum. Adaptive sampling adapts the number of samples
to the position on the input space based on the variance of the integrand.

Image space stratification: Mitchell [120] analyzed the convergence of
stratification in image space. He reported that smooth regions converge in
N−2, while regions with a small number of edges converge in N−3/2 and highly
varying regions do not benefit from stratification.

Between traditional importance sampling and stratification: Agar-
wal et al.’s method [1] allows to remove some of the visibility variance using
first stratification due to visibility, and then importance sampling based on
intensity and stratum area.
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Image space adaptive sampling: An estimate of the variance (or of the
error) inside a pixel drives where to affect samples. Most of the algorithms use
an iterative scheme where previous passes refine the estimate. Dippé and Wold
[44] proposed an adaptive sampling algorithm, using the relative signal to noise
ratio between two sampling rates. Simplified human visual systems, from the
vision community, can be used to evaluate the perceptual differences between
samples. It requires a basis to store samples, either a Discrete Cosine Trans-
form [14], a Wavelet decomposition [15] or a Delaunay triangulation [55] of the
image. Mitchell [119] used the perceptual metric of contrast. Rousselle et al.
[146] used the Mean Square Error (MSE) estimate per pixel. Estimated vari-
ance from the samples can be used, extracted from a kD-tree [133], a Wavelet
decomposition [130], or a block structure [45]. This variance can be enriched
with depth information [22]. Sbert et al. [150] showed how to use information
theory to drive adaptive sampling. They used the notion of entropy of samples
(such as radiance value, hit point’s normal, . . . ) to estimate in which part of
the scene information was missing for reconstruction.

Close to our work, bandwidth of the local Fourier spectrum or gradient
information has been used to derive a sampling rate per pixel [47, 142]. These
methods rely on filtering collected regions.

Multidimensional adaptive sampling: Adaptive sampling can be done in
higher space than the image space. Hachisuka et al. [64] performed adaptive
sampling in the domain of image, lens and time to adaptively sample motion-
blur and depth-of-field effects. Engelhardt and Dachsbacher [52] proposed to
adapt samples along the eye ray in the context of single scattering integration.
The samples are refined around the discontinuity of the visibility function to
reduce variance in god rays.

Local Fourier spectrum analysis can be done in part of image, time, lens and
visibility. This frequency estimate can be used to drive adaptive sampling [47,
165, 49, 51, 50].

Adaptive sampling requires the definition of remaining error to sample a re-
gion more than another. This is tightly linked to the variations of the inte-
grand [120]. Most of the proposed methods rely on distance between samples
(either absolute, perceptual, ...). This estimate can be of low reliability if
the sampling is insufficient or the spatial distance between samples large [44].
Knowing how much the integrand varies locally around a given sample is of
particular interest.

2.3.3 Filtering

Filtering methods are related to the area of image noise reduction. Given an
input image, we can reduce noise using a per pixel filter (function performing
a weighted sum of neighboring pixels) that will suppress the noise from the
image (high frequency, low intensity part of the signal) while preserving edges
(high frequency, high intensity). Filtering methods can also be extended to
be used in higher dimension space such as light-path space, or on parts of the
integrand.
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There exist a large domain for these techniques in the signal processing
community (see Motwani et al. [124] or Buades et al. [19] for a survey on
such techniques). But as stated by Mitchell and Netravali [121], the ray trac-
ing community cannot use them directly as the noise distribution can change
depending on the position of the sample.

We differentiate three kind of filtering methods based on a algorithmic
criteria:

• Prior methods precompute filtered elements of the scene (such as textures,
BRDFs, . . . ) and adapt the filter size at runtime based on the integration
footprint.

• Gathering methods loop over the domain and accumulate sample infor-
mation based on a filter function.

• Splatting methods loop over the samples and assign to each point in the
domain a portion of its value based on a filter function.

2.3.3.1 Prior filtering methods

We present the idea of prior filtering methods (or pre-filtering methods). We
do not present a complete survey of the field as our motivation is transverse
to this domain (see Bruneton and Neyret’s survey for more information [18]).
Our goal is to perform integration with no prior knowledge of the integrand,
whereas prefiltering in its latest development pre-filters the complete scene [74].
Pre-filtering precomputes a filtered hierarchy, where higher levels correspond to
larger filters, and evaluate the correct level during the evaluation of the value.

Figure 2.8 – Pre-filtered texture can be used to avoid aliasing caused by high
frequency textures for example. In this case, sampling the texture would require
a fair amount of samples as it varies a lot (a). Using a pre-filtered hierarchy of
the texture (b) allow to avoid the high variations of the texture using an already
filtered texture in replacement. We need to have the ray’s footprint information.

Such methods require the knowledge of the footprint of a ray to evaluate
the corresponding level of filtering. This information can be computed using
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cone tracing [3, 125] or ray differentials [82]. We will see later that frequency
analysis can bring such information and what are the differences with other
methods (Section 3.4).

2.3.3.2 Gathering filtering methods

Gathering methods work as follows (Figure 2.9): for all the pixels in the image,
the algorithm estimates a reconstruction filter (or gathering kernel) and per-
forms the weighted average of the samples inside the filter based on a distance
from the pixel. For a given pixel p ∈ P , a kernel function h : R+ → R+, a
distance function from a pixel to a sample d : P×S → R+, and a set of samples
S:

Ip =
1

H

∑
s

h(d(s, p))s where H =
∑
s

h(d(s, p)) (2.7)

(a) Input samples (b) Reconstruction filters (c) Output image

Figure 2.9 – Given a set of samples (that can be distributed in all pixels (a)),
a gathering algorithm estimate a set of samples (b) and reconstruct a filtered
version of the image using a weighted sum of the samples belonging to a fil-
ter (c).

Isotropic filters rely on rotationally symmetric filter functions. Rousselle
et al. [146], for example, proposed to use a fixed set of isotropic filters to
estimate the variance per filter and then select the optimal filter and drive an
adaptive sampling algorithm.

Isotropic filters are limited because of the anisotropy of the integrand. For
example, they perform badly in presence of edges (Figure 2.10(a)). Anisotropic
filters on the other hand are better to filter edges (Figure 2.10(b)).

Anisotropic filters use a non-isotropic filter kernel. The idea is to adapt
the filter to the local variations of the function (Figure 2.10(b)). They use
more parameters than the color only, for example using the depth buffer and
the normal buffer in the distance metric of the filter. Dammertz et al. [36]
used an à-trous wavelet transform with bilateral weights. Shirley et al. [163]
filtered samples in a depth order with adaptive filter size per sample depending
on previously used filters.
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(a) Isotropic filters (b) Anisotropic filters

Figure 2.10 – Isotropic filters fail when the function to reconstruct is
anisotropic. Given a discontinuity of the integrand, the isotropic filters (a)
cover small areas near the discontinuities The anisotropic filters will perform
better as their areas are bigger (b).

Basis projection: The projection of a noisy input onto a basis with smooth
components allows to filter out the noise by reducing the influence of “noisy”
basis elements. For example, Meyer and Anderson [118], Chen et al. [26] used
PCA on the image and time domains to filter the noise from unconverged
animations. Overbeck et al. [130] used a Wavelet decomposition to remove
noise in the high frequency coefficients of the decomposition. Compressive
sensing allows to reconstruct a signal from a sparse input by imposing sparsity
on the basis used. It has been applied to denoising in the image plane using a
Wavelet basis [158, 159].

Bilateral filters: Durand et al. [47] used the bandwidth (Section 4.1.1) of
the local light-field to derive a bilateral filtering method in image space using
a sparse set of samples. In a first step, they predict bandwidth for all pixels
of the image. Then, they estimate a set of image samples with a density
proportional to the bandwidth. Finally, they reconstruct the image using a
bilateral filter which space width is proportional to the bandwidth prediction
and takes depth and normal information into account for reconstruction. Other
uses of bilateral filters include Bilateral upsampling of a low resolution buffer
of indirect illumination [144]. Correlation between the input random seeds
and the generated samples can be used as another dimension of the bilateral
filter [160].

Correlation between samples Ernst et al. [53] showed that, using Mitchell’s
filter on samples generated on the entire image, correlation effects could result
in filters being worst than averaging. Due to the coherence of samples inside
of a filter’s footprint, the result is unlikely to contain such artifacts.

Gathering methods need to estimate the noise present in the reconstruction
from the samples. This information has to be evaluated while preserving the
function’s variation (such as edges). As a result, those methods can blur too
much the image.
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2.3.3.3 Splatting filtering methods

Splatting methods are the dual of gathering methods. Instead of looping over
all the pixels in the image, they iterate over all the samples and evaluate all
the pixels covered by a filter centered on the sample (Figure 2.11).

(a) Input samples (b) Samples with
associated filters

(c) Ouput sampling
pattern

Figure 2.11 – Given a set of input samples on an image (a), the algorithm
estimate the splatting filter per sample (b) and reconstruction is done by calcu-
lating the integral of the filter over the pixel footprint (c).

Screen-space splatting: Rushmeier and Ward [147] splatted samples whose
values are far from the local mean value. The more distant the sample value is
from the mean, the wider the filter will be. While this method allows to diffuse
outliers from unconverged simulation, it can also blur converged regions where
the function has high variation.

Using edge information is useful in order to reconstruct an image from a set
of sparse points [62, 10]. These methods permit a reconstruction that is aware
of the principal source of high frequency in an image. McCool [116] used an
anisotropic diffusion method in screen space that preserved edges using depth
and normal information.

High dimensional splatting: Cline et al. [31] diffused energy from a given
light-path using Metropolis mutations. Here, splatting is not done in screen-
space, but in the light-path space. Distributed effects such as depth-of-field,
motion blur or soft shadows can be splatted (for direct illumination) in a higher-
dimensional space [112]. The idea is to look at the space where the effect is de-
fined and to splat samples along linear directions assuming a diffuse behaviour
of the last bounce. In the case of depth-of-field, the space of image and lens
is reconstructed from a sparse set of samples that are splatted along the first
order direction. This method can be extended to indirect illumination [113].
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Splatting methods need the knowledge of the splatting kernel size. It has to
adapt to the signal bandwidth and to the geometry. This is often inferred
from the samples [112, 113] or from other sources of information such as the
depth-map [10]. Local variation analysis can provide the knowledge of the
validity domain of a sample, and thus the size.

2.3.4 Cache methods

Caching methods (e.g., irradiance caching or radiance caching) use a data struc-
ture that sparsely stores indirect illumination information. Those methods are
used to get smoother estimate of low frequency global illumination effects in
movie production renderers [171]. Caching methods are related to high dimen-
sional filtering methods. We separate them from the mentioned section due to
large body of work present on this matter.

Irradiance caching: Caching irradiance relies on the fact that irradiance
is often smooth for mostly diffuse scenes. Cache entry consist of the color
and intensity of the diffuse component of indirect illumination at the cache
position. The cache require to define a bound of the irradiance gradient
to adapt the density of cache elements. This can be done using the s̈plit-
sphereäpproximation [188], or an estimate over a fixed number of samples over
the hemisphere [187]. Recently, Jarosz et al. [91] used the irradiance Hessian
to adapt the density of caches and to improve reconstruction. A volumetric
irradiance gradient for participating media can be derived [88, 143].

Radiance caching: Instead of storing a scalar value, radiance caching re-
quires to store a distribution of radiance over the hemisphere (usually using
spherical harmonics). It also require a new interpolation method for the cache
entries. Kr̆ivánek et al. [102] proposed to estimate the gradient assuming that
the incoming radiance to the cache point was diffuse. This method neglect oc-
clusion to evaluate the gradient and works for low frequency BRDFs [102, 103].
It is possible to account for the directionality of the signal using anisotropic
gradients [78]. Radiance’s gradient with participating media was also derived
by Jarosz et al. [88].

Gradient and Hessian estimations are at the core of the density evaluation
of caches elements. Those methods rely on a good approximation of those
quantities to optimize the size of the cache and its efficiency.

2.3.5 Noise reduction for kernel methods

Kernel based methods can benefit from more noise reduction methods than
those previously mentioned. One can modify the density estimator by modify-
ing the kernel or by modifying the distribution of photons.
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Filtering kernels: is done by adapting the kernel size to the integrand vari-
ation. The bias introduced by the kernel can be estimated using a k-nearest
search in the photon map [154] and then used to change the kernel size to
minimize it. Schjøth et al. [151] used an anisotropic diffusion filter for the ker-
nel. They derived an estimate of the irradiance gradient to adapt the kernel’s
shape. Spencer and Jones [167] used a hierarchical photon map to smooth low
frequency content.

Filtering photons: Spencer and Jones [166] removed noise from the density
estimation by performing a Lloyd relaxation step on the photon positions.
The photons are then distributed with local equi-distance between them. This
reduces the number of photon used in the k-nearest kernels, and filters the
radiance by diffusion. Suykens and Willems [170] reduced the storage density
by changing the weight of already stored photons when the photon map is
locally too dense. Jakob et al. [86] fit the photons to a hierarchichal Gaussian
mixture using an Expectation-Maximization algorithm.

Weber et al. [189] filtered the photon density in object and time space
using bilateral filters. This removes flickering in low sampling density regions
but does not account for angular variation of the reconstructed density (this
could be problematic for near specular surfaces visible from the camera).

Noise reduction techniques aim to compensate the defaults of the k-nearest
neighbors aggregation method, or for the lack of information in low density
regions. But modified kernels or filtered photon density have to adapt to the
variation of the function to be reconstructed. Local variations of the function
have to be evaluated.
Some algorithm try to reduce the number of samples in region of high energy
but of low variation. We postulate that importance sampling the variations of
the integrand rather than its intensity would be beneficial to photon mapping
and avoid the need to use those algorihtms.

2.4 Conclusion

We saw that radiative transport of photons can be modeled as an integration
problem. To evaluate this integral, we can either use Monte Carlo integration
or kernel density estimation algorithms. Those algorithms rely on random
samples: light-paths.

Those algorithms suffer from noise when the sample density is not sufficient
to capture the variation of the integrand. We saw various noise reduction
algorithms. Importance sampling alters the samples’ distributions to favor high
energy regions. Adaptive and Stratification algorithms distribute the number of
samples according to the complexity of the integrand. Those methods require
to estimate the variation based on a sparse set of samples as there is no notion
of variation of the integrand nearby a sample. Filtering algorithms smooth the
set of samples and are also derived from the samples’ statistics.

We aim to bring the integrand variation information to these algorithms.
For that, we need to define a notion of the instantaneous variation of the inte-
grand. We need to evaluate this information while raytracing. This information
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could then be used to adapt the sample density, derive filters adapted to the
integrand, or importance sample the integrand to distribute samples in high
variation regions. We also need this information to be anisotropic to permit
better reconstructions when filtering.

Not much has been done in the field of filtering noise in participating media.
Some image based techniques are general enough to handle it but they do
not take the physical process into account. We know that scattering acts as
a diffusion process [168] and thus blurs the radiance.

In the following chapters, we will first introduce an analysis of local varia-
tions of the radiance function of a light-path in order to characterize variations
of the final integrand using the Fourier transform (Chapter 3). Then, we will
propose a new anisotropic descriptor of the local variance: the covariance ma-
trix (Chapter 4). Finally we will propose applications of this tool to the two
kind of integration methods we presented, Monte Carlo and kernel methods
(Chapter 5).
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3 | Frequency Analysis of Light Trans-
port

In previous chapters we showed the need for local variation information in the
context of integration (Chapter 1). We reviewed radiance integration methods
using light-paths and remarked that they can benefit from local variation infor-
mation (Chapter 2). This chapter presents a theory to express local variations
of radiance around a light-path sample.

Figure 3.1 – We want to express the variation of the radiance function L for
small variations of its input argument l. For that, we need to define the local
variation of l, dl and to look at the variation of L on this subdomain.

Our goal is the following: given an input light-path l, we want to obtain the
local variations of the radiance function dL(l+ xdl) (Figure C.4). This theory
builds on two elements:

• Paraxial optics defines a local neighborhood around a ray. We use it to
express the local neighborhood of a light-path (Section 3.1).

• Fourier transform expresses a function using a dual one with arguments
in a frequency domain (Section 3.2). We use it to express the variations
of the radiance function in the paraxial domain.

In the first two sections, we will present Paraxial optics (Section 3.1) and
the Fourier transform (Chapter 3.2), the required tools for our analysis. The
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third section (Section 3.3) will present the frequency analysis of local radiance
(introduced by Durand et al. [47]). The Fourier transform will be used to
express the radiance function in the paraxial domain of rays along a light-
path. In the last section (Section 3.4), we will compare this frequency analysis
to other local variations analysis methods that use derivatives.

In this chapter we present the following contributions:

• We present the frequency analysis of light transport as a whole, in a 3D
setting. Previous publications often presented the theory in a simpler
2D setting. But it hides some complex parts of the analysis such as
equators alignment, or that convolution is along one angular dimension.

• We redefine some elements of the theory to make it more practical and
more general. We redefine the analysis of reflection, lens, occlusion and
motion.

• We add the analysis of refraction of light as well as scattering and
attenuation in the context of participating media.

3.1 Paraxial Optic

A light-path is defined as a list of chained rays. We analyse a light-path in a
space composed of neighbor rays close to the ray defining the light-path (we
call this ray the central ray). These rays are little perturbations of the central
ray. This representation is close to the definition of ray differentials [82] and to
Chen and Arvo’s differential of a specular light-paths [24], but we do not allow
the domain of analysis to be extended. For example ray differentials propagate
the angular extent of the derivative. If two highly curved surface are chained,
the spanned differential angle can be large. Instead, we control the variation
domain. We call local light-field (or light-field function) the radiance function
defined in this local domain.

3.1.1 Parametrization of a Ray Neighborhood

For a given position on a light-path, our light-field function is defined over a 5D
space, two dimensions define spatial variations, two dimensions define direction
variations and one dimension corresponds to time variations. The direction
components will be defined as angles measured from the central ray, along the
principal directions of the tangent space (Figure 3.2). They define a spherical
parametrization of angles, with the ray direction along the equatorial plane. In
the following, we will denote δ⃗r1 a 5D vector which spatial component will be
δ⃗x = (δx, δy), angular component will be δ⃗θ = (δθ, δϕ) and spatial component
will be δt. This parametrization comes from paraxial optics theory [60].

δ⃗r = (δx, δy, δθ, δϕ, δt) (3.1)

Figure 3.3, present our parametrization around a ray and an example of the
radiance function with this parametrization.

1δr represent a small value, not a differential. While it might be confusing at first, it
allows to separate small values from potentially large one in equations.
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Figure 3.2 – We parametrize the space of rays around a central ray (Z axis)
with a 2D position in the tangent plane (δx, δy) and a 2D angle in spherical
coordinates (δθ, δϕ) (The grey plane on the spherical parametrization is the
equatorial plane). We are interested in infinitesimal values of those parameters,
the dot product with a ray and the central ray will always be close to one.

3.1.2 Infinitesimal Analysis

We study infinitesimal variations of position δx, or angle δθ, or time d around
the central ray. It allows to perform first order simplifications in the analy-
sis. One common simplification we use is the linearisation of trigonometric
functions:

tan(δθ) ≃ δθ (3.2)

In such approximation, second order terms can be neglected. A correct way
of mathematically writing this would be f(u) = f(0)+u δf

δu +O(u2), (the O(u2)
regroup all the second order, and above, terms). Such approximation remains
accurates for small values: u ≪ 1. In this context, we do not distinguish
local rays parametrized with angles δθ from those parametrized with tangent
deviations from a unit distance δu = tan(δθ).

3.2 Frequency Analysis and Fourier Space

Frequency analysis of functions was introduced by Fourier to solve the heat
diffusion problem using what we call now Fourier series [56, p.159]. It was later
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Figure 3.3 – The local light-field parametrization is illustrated here. A given
position δ⃗r = (δx, δy, δθ, δϕ, δt) corresponds to a ray. We study the radiance
going through local rays in this parametrization. We can only present two axes
of the local space here.

extended, by Plancherel and Leffler [138] to general analysis of functions in L2

(what we call the Fourier transform), later to distributions by Schwartz [155],
and even to probability density functions, where it is called the characteristic
functional [175, Chapter IV.2]. In this thesis, we use functions with well defined
Fourier transform (L1 space or tempered distributions).

3.2.1 Fourier Transform

Given a function f (defined over argument x ∈ RN called the primal space),
the Fourier transform of f , noted F

[
f
]

(or f̂), is a function with definition:

F
[
f
]
(µ⃗) =

∫
x⃗∈RN

f(x⃗)e−2iπµ⃗T x⃗dx⃗ µ⃗ ∈ RN (3.3)

The space in which the Fourier transforms of functions are defined is called
the Fourier space, the Fourier domain, or the dual space. The input function
of a Fourier transform is called the primal function. The Fourier transform of
a function is sometimes called frequency spectrum of the primal function.

3.2.2 An example

Understanding Fourier transform is straightforward when we look at the re-
sulting spectrum. The resulting function has values in the complex domain,
which makes it difficult to analyze. We separate this complex signal into two
components: the amplitude (Figure 3.4(b)), and the phase (Figure 3.4(c)).

f̂(µ⃗) = ϱ(µ⃗)eiϕ(µ⃗) (3.4)

Where ϱ : RN → R+ is the amplitude and ϕ : RN → R is the phase.
The amplitude, ϱ(µ), represents the portion of energy from the primal func-

tion that correspond to the frequency µ. The phase, ϕ(µ), represents the shift
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(a) Input Lena image (b) Amplitude of the
Fourier transform

(c) Phase of the Fourier
transform

Figure 3.4 – We decompose an input 2D signal 3.4(a) into its amplitude (b)
and phase (b) components as described in Equation 3.4. The amplitude corre-
sponds to the energy assigned for a particular frequency. The phase corresponds
to the shift of a particular frequency.

associated with a given frequency µ. This can be intuitively explained using
the transform of a cosine function:

f(x) = cos(2πax+ p) (3.5)

F
[
f
]
(µ) =

1

2

(
δ(µ− a) + δ(µ+ a)

)
e2iπp (3.6)

The amplitude of the cosine’s spectrum is: 1
2

(
δ(µ− a) + δ(µ+ a)

)
, and its

phase is: 2πp. a regulates the frequency of the cosine (number of oscillations
per cycle) and is correlated with the amplitude. p regulates the shift of the
cosine and is correlated with the phase.

3.2.3 Properties

We present a short summary of different properties of the Fourier transform
of functions. This section is not exhaustive, we will only cover properties that
are of interest for our analysis. For more detailed examples, properties and
theorems, please refer to Gasquet and Witomski [58] for example.

3.2.3.1 Linear Operations

The Fourier transform of a linear transformation is a linear transformation.
Given a function f defined over a N -dimensional space f : RN → R. The
Fourier transform of this function is:

F
[
f
]
(µ⃗) =

∫
x⃗∈RN

f(x⃗)e−2iπµ⃗T x⃗dx⃗ (3.7)

The Fourier transform of f under the linear transformation A of the input
space (described by its matrix A), noted fA = f(Ax⃗), is:

F
[
fA

]
(µ⃗) =

∫
x⃗∈RN

fA(x⃗)e
−2iπµ⃗T x⃗dx⃗ (3.8)

=

∫
x⃗∈RN

f(Ax⃗)e−2iπµ⃗T x⃗dx⃗ (3.9)
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If the transformation matrix is invertible, we can proceed to a change of
variable y⃗ = Ax⃗ in the integral. All the linear transformation matrices we will
find in our analysis (rotation, symmetry, non-zero scale and shear) are indeed
invertible.

F
[
fA

]
(µ⃗) =

∫
y⃗∈RN

f(y⃗)e−2iπµ⃗TA−1y⃗|A−1|dy⃗ (3.10)

Now we want to express this Fourier transform in terms of the Fourier
transform of f (Equation 3.7). For that, we change the µ⃗ variable to ϕ⃗ =
µ⃗TA−1. This gives us:

F
[
fA

]
(µ⃗) =

1

|A|
F
[
f
]
(A−1T µ⃗) (3.11)

Where |A| is the determinant of the matrix A and A−1T , the inverse trans-
posed of A is the comatrix

An example: Rotation of the input signal We illustrate this property
in the case of a rotation transformation. Given a 2D signal parametrized by
(x, y) if we apply the rotation matrix defined by:

Rα =

[
cos(α) − sin(α)
sin(α) cos(α)

]
(3.12)

The dual operator on the frequency signal will be the same rotation (The
inverse and the transpose of a rotation are the same). The Figure 3.5 shows
the amplitude of the Fourier transform of the Lena picture with and without
a rotation of the input space.

3.2.3.2 Product and Convolution

The product and convolution are symmetrical operations with respect to the
Fourier transform. The Fourier transform of a product becomes a convolution
in the Fourier space. Similarly, the Fourier transform of a convolution is a
product in the Fourier space:

F
[
fg

]
= F

[
f
]
⋆ F

[
g
]

(3.13)

F
[
f ⋆ g

]
= F

[
f
]
F
[
g
]

(3.14)

We give the proof for the convolution theorem. The multiplication theorem
being symmetrical, its proof uses the same principles.

Proof: Given two functions f(x⃗) and g(x⃗) defined over RN , the convolution
of those two functions [f ⋆ g](x⃗) is:

[f ⋆ g](x⃗) =

∫
y⃗∈RN

f(y⃗)g(x⃗− y⃗)dy⃗ (3.15)
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(a) Input Lena image and amplitude of its Fourier transform

(b) Rotated Lena image and amplitude of its Fourier
transform

Figure 3.5 – We apply the rotation matrix defined in Equation 3.12 to the
Lena image and compute its Fourier transform. We display only the amplitude
and highlight the first principal direction of the spectrum in red. Note that we
removed the effect of the border discontinuity by multiplying the image by an
isotropic cosine function.

If we express the Fourier transform of the convolution using Equation 3.15,
we obtain:

F
[
f ⋆ g

]
(µ⃗) =

∫
x⃗

∫
y⃗

f(y⃗)g(x⃗− y⃗)dy⃗e−2iπµ⃗x⃗dx⃗

=

∫
y⃗

f(y⃗)

∫
x⃗

g(x⃗− y⃗)e−2iπµ⃗x⃗dx⃗dy⃗

(3.16)

Using a change of variable x⃗′ = x⃗− y⃗ and evaluating the inside integral, we
obtain the following equations:

F
[
f ⋆ g

]
(µ⃗) =

∫
y⃗

f(y⃗)F
[
g
]
(µ⃗)e−2iπµ⃗y⃗dy⃗

= F
[
f
]
(µ⃗)F

[
g
]
(µ⃗) (3.17)

Example: We provide an example of the multiplication of an input signal
with different window functions with increasing frequencies in Figure 3.6.
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Figure 3.6 – Multiplying a function with another is equivalent to the convolu-
tion of the Fourier transforms. In this example, an input function (a clamped
cosine function (a)) is multiplied by a power of cosine with respect to the dis-
tance to the center (power of 2 on the top row, power of 50 on the bottom row
(b)). The resulting functions (c) exhibit both the input function and the window
functions characteristics. The resulting amplitudes (d) show that for a window
function with a higher frequency, the input spectrum is convolved with a larger
kernel (as higher frequencies spread more in the Fourier domain).

3.2.3.3 Integration

Given a function f(x⃗) defined in a N -dimensional space, we express the Fourier
transform of the partial integration of f along one of its dimension as:

F
[ ∫

xi

f(x⃗)dxi

]
(µ⃗) =

[
F
[
f
]
(µ⃗)

]
µi=0

(3.18)

Where
[
f(x⃗)

]
xi=0

is the N − 1-dimensional function composed of the func-
tion f where the ith component is zero. This property is often referred as the
slice theorem.

The Fourier transform of a one dimensional function h for µ = 0 is the
integral along all dimensions of f . This term is called the constant component
(or DC).

F
[
h
]
(0) =

∫
x∈R

h(x)e−2iπ0xdx

=

∫
x∈R

h(x)dx (3.19)

3.2.4 Well defined space for Fourier transformation

In this section, we show that the Fourier transform can be performed on the
paraxial domain defined in Section 3.1. The Fourier transform is defined for
an infinite domain. But our analysis is correct on an infinitesimal portion of
the space. To ensure the well defined property of the Fourier transform, we
assume that the functions we are studying are defined on R5 but have values
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3.2. FREQUENCY ANALYSIS AND FOURIER SPACE

on the region of analysis only. We separate the spatial and temporal case from
the angular case:

Space and time: are kept local by multiplying the input primal function with
a window being null outside a region of interest. This mathematical
trick allows to keep the definition of the Fourier transform for our local
function.

Angles: to keep spaces consistent with one another we consider the tangent
space defined as δu = tan(δθ) ≃ δθ instead of angles. It allows to keep
the same Fourier transform definition for both space, angle and time.
Again, using a window function we keep our analysis local.

This use of window functions to keep the analysis to the first order in-
troduces a bias in our analysis. The windowing results in a convolution in
the Fourier domain of the input spectrum with the Fourier transform of the
window (as seen in Figure 3.6) which increases the frequency content of the
analyzed signal. But as we aim to estimate frequency conservatively this is not
an issue.

3.2.5 Why not Another Transform ?

The Fourier transform is not the only possible way to analyze local variations
of a function. In this section, we discuss several options that could be used
instead of the Fourier transform.

3.2.5.1 Wavelets transform

The Wavelets transform is a frequency transform local in both space and fre-
quency. Given a basis function ϕ(x), called the mother wavelet, we define the
child wavelet function for a frequency band of [1/a, 2/a] and a shift of b as:

ϕa,b(x) =
1√
a
ϕ

(
x− b

a

)
The wavelets transform of the signal f(x) is:

W
[
f
]
(a, b) =

∫
x∈R

f(x)ϕa,b(x)dx

We do not use wavelets transform for two reasons:

• The wavelets transform has more dimensions than the input signal. The
wavelets transform of a function defined over a five dimensions space has
a ten dimensions domain of definition.

• There is no simple equivalent of the convolution theorem for the wavelets
transform.
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3.2.5.2 Short Time Fourier Transforms

The short time Fourier transform (STFT) is defined as the Fourier transform
of a function with a sliding window:

T F
[
f
]
(t, µ) =

∫
x∈R

w(t− x)f(x)dx

As for the wavelets transform, those transforms add dimension to the re-
sulting spectrum. This is mandatory to locate the frequency content in the
input domain. Our analysis is built upon light-path samples which already
give a localization of the spectrum.

3.2.5.3 Hilbert-Huang Transform

The Hilbert-Huang Transform (HHT) is a decomposition of a signal into mode
functions with the same number of extrema and zero crossings than the input
signal. This transformation is done using an empirical search of the global and
local extrema of a function to characterize an envelope for the signal. This
empirical method cannot be fitted into our analysis.

3.2.5.4 Spherical-Harmonics basis

Spherical harmonics (SH) is a discrete frequency basis of functions defined
over the sphere. They are widely used in computer graphics to store distant
illumination such as environment maps. While SH could be used to express the
frequency content in the angular domain, they are non-local. It would require
a large number of coefficients to express the variation of radiance in a small
angular domain.

3.2.5.5 Derivatives

The derivative of the local radiance function with respect to our local parametriza-
tion could be exploited as a descriptor of the radiance variation. Moreover, the
derivative of a function is a purely instantaneous notion of variation. It is to
note that using derivatives (or gradient) restrict the number of information
about the local radiance function as the derivative is defined from the Fourier
transform by:

δf

δµi
(⃗0) =

∫
µ⃗∈RN

iµiF
[
f
]
dµ⃗ (3.20)

The resulting analysis would be to the first order in both space and varia-
tions.

Ramamoorthi et al. [142] derived operators defined by Durand et al. [47]
for the gradient and Hessian of the local radiance function. We will see later
(Section 4.2) a more detailed comparison of the two methods.

3.2.5.6 Summary

We summarize the different pros and cons for the presented transforms. We
separate into four categories:
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3.3. OPERATORS ON THE LIGHT-FIELD FUNCTION

• locality is fulfilled if the transform is compatible with our small domain
definition.

• well-defined is fulfilled if the transform can always be defined in our case
of study (positive 5D functions).

• small dimensionality is fulfilled if the transform does not add extra di-
mensions into the analysis.

• mathematical equivalent is fulfilled if there exists equivalences in the pri-
mal for convolution, multiplication and integration.

• richness is fulfilled if the transform allows to recover all the information
of the primal function.

The Fourier transform fulfill all the requirement for our analysis (Table 3.1).
Derivatives fulfill almost all of our requirement but cannot estimate all the
variations of the local radiance function at once. Each order of derivative
requires its own definition of the operations the signal undergoes.

Transform well-defined local dimensions equivalents richness
FT

√ √ √ √ √

WT
√ √ √

STFT
√ √ √ √

HHT
√ √ √

SH
√ √ √

Derivatives
√ √ √ √

Table 3.1 – We compare different transformations to find the best suited for
our analysis. We need a transform that is well-defined for any 5D function with
finite support, that supports local analysis, that does not add more dimensions
to the analysis and that has mathematical equivalents for the operations we will
study.

3.3 Operators on the Light-Field Function

We define operators on the light-field function that represent the different op-
erations it will undergo along the light-path. We note those operators using
bold fonts. These operators can be chained using a composition formula to
represent the evolution of the light-field for a given light-path (Figure 3.7):

LSDE → L(d1,d2) ◦Td1 ◦Rρd
◦Td2 ◦O ◦Td3 ◦Rρs ◦Td4

(
l
)

(3.21)

Here LSDE represents a light-path using Heckbert’s notations [73]. L(d1,d2),
Td, Rρ and O are functions we call operators that map a local light-field func-
tion into another after a physical process such as transport, visibility, reflection,
etc. The composed operator takes as input the local light-field of the source l
and it outputs the local light-field after all the operations.

This formulation is richer as it characterizes the local behaviour of light.
The operations are arranged in a reversed order compared to the light-path
notation to be consistent with a composition notation.
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3.3. OPERATORS ON THE LIGHT-FIELD FUNCTION

Figure 3.7 – We illustrate our operator notation with the light-path connect-
ing the light, the diffuse green wall, the specular box and the lens (in yellow).
Heckbert’s notation is represented in blue and specifies edges of the light-path.
Our operators (in yellow) characterize richer effects such as partial occlusions
of the local light-field, refraction in a lens, etc..

Figure 3.8 – We expose different types of operators. Given an input and output
parametrizations, the light in the local domain defined by the radiance transfer-
erd byall the variations of the input light-path that link the input parametriza-
tion to the output parametrization.

The list of operators we define for a light-path is given below. We illustrate
some operators in Figure 3.8.

• Travel defines the behaviour of radiance from different positions along
the same ray spaced by d meters. We write this operator Td (Sec-
tion 3.3.1).

• Occlusion defines the behaviour of radiance when it travels close to an
object while the central ray does not intersect it. We write this operator
O (Section 3.3.2).
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3.3. OPERATORS ON THE LIGHT-FIELD FUNCTION

• Reparametrizations define how to express our radiance function in
another local frame. Those operators are useful to express the radiance
on an object when an intersection occurs or when we want to take into
account moving occluders. We write those operators Rotα and Pα (Sec-
tion 3.3.3).

• Curvature reparametrization defines the local radiance function on
a curved surface based on the incoming local radiance function and on
the local curvature matrix of the surface at the point of intersection. We
write this operator CK (Section 3.3.4.2).

• Reflection, Transmission define how the local radiance function will
be affected by a reflection, or a refraction, on a virtually planar surface
based on the BRDF or BTDF ρ. We write those operators Rρ and Trρ
(Section 3.3.4.6 and Section 3.3.5).

• Lens defines how the local radiance function is modified when passing
through a thin lens. We give two definitions for this operator: one that
outputs irradiance on the sensor, the other that outputs radiance on
the sensor (allowing to chain multiple lenses). We write those operators
L(d1,d2), (Section 3.3.6).

• Participating media’s effect on the local radiance function is handled
by two operators: the attenuation operator A and the scattering operator
(associated with phase function ρ) Sρ. (Section 3.3.7).

• Motion allows to track the time variations of the local radiance function
by projecting it onto the static frame of a moving object. On this static
frame, we can apply all the operators described before and express moving
effects as a projection into the static frame. We project the input light-
field, apply a set of static operators and then project the result back onto
the frame of the light-path. We write this operator Mv⃗,r⃗ (Section 3.3.8).

3.3.1 Travel in free space

We assume that light travels along straight lines. Thus we avoid varying indices
or relativistic effects. When we want to express a light-field after a travel
distance of d meters, we need to take into account that rays that are not
parallel to the central ray will not intersect the tangent plane at the same
position after travel. Figure 3.9 expresses in 2D this deviation for a particular
position δx, δθ and a traveling distance of d meters.

The local light-field after a travel of d meters can be expressed using the
input local light-field with a transformation of the domain of definition:

Td

(
l
)
(δ⃗x, δ⃗θ) = l(δ⃗x− d tan(δ⃗θ), δ⃗θ) (3.22)

Given our infinitesimal assumption, a first order approximation of Equa-
tion 3.22 is:

Td

(
l
)
(δ⃗x, δ⃗θ) ≃ l(δ⃗x− dδ⃗θ, δ⃗θ) (3.23)
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Figure 3.9 – Given a ray with coordinates (δx, δθ) (we take 2D coordinates
for the clarity of the figure) with respect to the central ray. The coordinate
of this ray after a travel in a “free space” of d meters is (δx + d tan(δθ), δθ).
Thus the radiance function after a travel of d meters ld value at coordinate
(δx + d tan(δθ), δθ) is the value of the radiance function before the travel at
coordinate (δx, δθ).

Figure 3.10 – We show here the local light-field function at two different po-
sitions along a ray. Since the local light-field is 5 dimensional, we only display
slices of this function (the other components are set to zero).

We express this linear transformation using a matrix A. The matrix of the
shear is given implicitly by Equation 3.23:

A =


1 0 −d 0 0
0 1 0 −d 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (3.24)

The matrix used for the Fourier transform is defined as the comatrix of A
(Equation 3.11):

A−1T =


1 0 0 0 0
0 1 0 0 0
d 0 1 0 0
0 d 0 1 0
0 0 0 0 1

 (3.25)
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Figure 3.11 – We display slices of the Fourier amplitude. The shear effect is
visible on the spatio-angular slice. Indirect effects of the shear are visible in the
spatial slice as a part of the energy goes to the angular domain.

This shear in the primal space is expressed in the frequency domain by a
shear but with a symmetry on the dimensions it is applied to (Equation 3.23).
The travel transfers energy from the spatial domain to the angular domain:

Td

(
l̂
)
(Ω⃗x, Ω⃗θ) ≃ l̂(Ω⃗x, Ω⃗θ + dΩ⃗x) (3.26)

Figure 3.11 present the effect of travel on the amplitude of the local light-
field spectrum. The shear effect is noticeable in the angular slice. The effect of
energy transport from the spatial domain to the angular domain is visible in
the spatial slice (The tail of the distribution shrinks).

3.3.2 Partial Occlusion

As we are looking at a small neighborhood around a ray, we need to keep track
of partial occlusion in this space by the geometry. A nearby solid object will
occlude part of the light-field (Figure 3.12).

Figure 3.12 – Given that we are not looking at a punctual position on the light-
path domain, we have to look at the visibility function in this domain. Rays
in this neighborhood can intersect the geometry. In that case, the radiance
function has to be attenuated by the visibility function.
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Figure 3.13 – Planar approximation of the occluder does not capture the re-
ality correctly. This figure shows the angular effect of occlusion, and the corre-
lation it creates between space and angles. A constant input local light-field is
occluded by the box.

The general equation for occlusion is:

O
(
l
)
(δ⃗x, δ⃗θ) = v(δ⃗x, δ⃗θ) l(δ⃗x, δ⃗θ) (3.27)

Where v(δ⃗x, δ⃗θ) is the visibility function. This function is one if the position
δ⃗r is not occluded and zero if it is. For non-opaque occluders, the visiblity
function takes values between zero and one.

Planar occluder: In the initial formulation of Durand et al., the occlusion
is modeled by the multiplication of the light-field with a visibility function in
the spatial domain. This approach assumes that occluders are planar. Instead,
we define this process as a windowing of the signal where the window restricts
the signal in a region where it is unoccluded.

While these two visions have the same mathematical expression, they denote
different views. The first one looks at the light-field evolution along the ray
while the second one estimates the region of the light-field where the analysis
is still meaningful.

O
(
l
)
(δ⃗x, δ⃗θ) = v(δ⃗x) l(δ⃗x, δ⃗θ) (3.28)

Occlusion is defined in the primal as the product of the light-field with a
visibility function (or a window function). The equivalent operator in Fourier
is a convolution. The convolution of the light-field spectrum with the Fourier
transform of the visibility function extends the light-field spectrum along the
discontinuity direction (⊗(x,y) is the convolution in the spatial domain only):

O
(
l̂
)
(Ω⃗x, Ω⃗θ) =

(
v̂ ⊗(x,y) l̂

)
(Ω⃗x, Ω⃗θ) (3.29)

The planar approximation is incorrect even to the first order as it misses the
effect of occlusion in the angular domain and the resulting correlation between
the spatial and angular domain (Figure 3.13).
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(a) Configuration (b) Approximate visibility
function

Figure 3.14 – We model the correlation between space and angles using the
following configuration (a). Given a set of occluders, we analyse the resulting
occlusion bounding box. Close to Egan et al.’s [51] analysis, we define the
minimum and maximum distance of occlusion and look at the resulting visibility
function. We obtain a piece-wise rotated half-plane occluder (b).

Non planar occluder: Ramamoorthi et al. [142] derived a non-planar ap-
proximation for curved occluders. Lanman et al. [108] and Egan et al. [51, 50]
looked at the wedge signal defined by the min and max distant occluders (as-
suming that each occluder is planar). We propose here an occluder approx-
imation that accounts for non-planar occluders. Our approximation neglect
occluders’ curvature and leads to a more conservative estimate than the curved
approximation.

Given a set of occluders, and a ray passing next to them, we define the
visibility window using the minimum distance d from the occluders to the ray
and the minimum and maximum distances, tmin and tmax from the beginning
of the ray to the occluders (Figure 3.14(a)).

The visibility window is a piece-wise rotated half-plane function (Figure 3.14(b)).
We found the same type of visibility function in our experimentation (Fig-
ure 3.13).

We model the visibility function in the primal with the multiplication of
two rotated 1D sign functions. A 1D rotated sign function has the following
definition:

rt,d(δx, δθ) = 1 if δx+ tδy > −d

0 else

The resulting visibility function of a non-planar occluder is the product of
the two rotated sign functions shifted by the distance to the occluder:

v(δx, δθ) = rtmin,d(δx, δθ)rtmax,d(δx, δθ)

The resulting Fourier spectrum is the convolution of the individual Fourier
spectrum of the rotated sign functions:

v̂(Ωx,Ωθ) = r̂tmin,d(Ωx,Ωθ)⊗ r̂tmax,d(Ωx,Ωθ)
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Figure 3.15 – The effect of the partial occlusion of the local light-field travelling
near the grey box is analysed in the Fourier domain. The occlusion creates high
frequencies in the spatial domain and in the angular domain. The size and
depth of the occluder affects the correlation between the spatial and angular
domains.

If tmin ̸= tmax we get the following formula for the spectrum of the visibility
function (See Appendix A.1 for complete derivation):

r̂tmax,d ⊗ r̂tmin,d(Ωx,Ωθ) =
e2iπdΩx

4π2
(tmaxΩx +Ωθ)(tminΩx +Ωθ)

(tmax − tmin)2

(3.30)

The resulting spectrum is a wedge function 3.16. Contrary to Lanman
et al. [108] we do not need to estimate the occluder spectrum by multiple
slices. The spread of the minimum and maximum distance is similar to Egan
et al. analysis. It validates the use of the minimum and maximum slices to
approximate occluders.

3.3.3 Reparametrization on another plane

Any operation involving the intersection with an object (reflection, refraction)
will be described in its local frame. Thus we need to reparametrize our light-
field function in the local frame of the object.

Reparametrizing to a new local frame is a three steps process. First, we
rotate the frame of the light-field so that its X axis is along the intersection
between the tangent plane of the light-field and the tangent plane of the object
at the point of intersection (Figure 3.17). Second, we express the local light-
field on the tangent plane using a projection of the Y axis onto the local tangent
plane (Figure 3.18). Finally, we perform another rotation to align the light-field
X and Y axis to the local Xp and Yp axis.

3.3.3.1 Rotation

The rotation of a local X,Y plane of α radians around the central ray Z
(Figure 3.17)) is written:

Rotα
(
l
)
(δ⃗x, δ⃗θ) = l(RT

α δ⃗x, R
T
α δ⃗θ) (3.31)
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Figure 3.16 – The non-planar occluder approximation is a wedge function. It
explains why the planar slice approximation of occluders works [108, 51, 50].
Furthermore, we only need to provide the first and last slice of the occluder to
obtain a decent estimate of the occlusion. For this figure, we used tmin = 50cm
and tmax = 1m. We used d = 0 to have a real valued spectrum.

Figure 3.17 – The first step of a projection of the frame of our local light-field
(noted P1) onto the local frame of an object (noted P2) is to align the x⃗ vector
on the plane P2. This is done by a rotation of angle α, where α is the angle
between x⃗ and the intersection of P1 and P2 (noted IP1,P2 in this figure).

This linear transformation is formulated into one 5× 5 matrix on the input
parameters of the local light-field function:

Rα =


cos(α) − sin(α) 0 0 0
sin(α) cos(α) 0 0 0

0 0 cos(α) − sin(α) 0
0 0 sin(α) cos(α) 0
0 0 0 0 1

 (3.32)

This matrix is a compound of rotation matrices, its comatrix will be equal
to the original matrix, R−1

α
T
= Rα (Equation 3.11). This property allows to

write the Fourier equivalent operator in the same fashion:

Rotα
(
l̂
)
(Ω⃗x, Ω⃗θ) = l̂(RT

α Ω⃗x, R
T
α Ω⃗θ) (3.33)
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3.3.3.2 Projection

Projection aligns the last dimensions of the two local light-fields. This oper-
ator models a second order travel to the surface. The travel distance varies
with respect to the position on the input local light-field (Figure 3.18). To
compensate for the non alignment, half of the shear is in the light propagation
direction and the other in the opposite direction.

Figure 3.18 – The second step of a projection of the frame of our local light-
field (noted P1) onto the local frame of an object (noted P2) is to project the
‘vertical’ part of the signal (along the y⃗ axis and ϕ angle) onto P2. The linear
approximation of this operation is a scale of the spatial component of 1

y⃗.n⃗ .

We approximate this transport using a scaling of the spatial dimension
(Formal proof can be found in Appendix A.2). The resulting light-field on the
surface is:

Pα

(
l
)
(δx, δy, δθ, δϕ) = l(δx,

δy

cos(α)
, δθ, δϕ) (3.34)

This scaling results in an inverse scaling of the Fourier transform:

Pα

(
l̂
)
(Ωx,Ωy,Ωθ,Ωϕ) = cos(α)l̂(Ωx, cos(α)Ωy,Ωθ,Ωϕ) (3.35)

After the projection, the resulting light-field parametrization is no longer
orthogonal. The central axis is not perpendicular to the plane where the spatial
domain is defined. The angles with respect to the normal of the (x⃗, y⃗) plane
are α+ δθ and α+ δϕ (Figure 3.19).

This is not an issue as the constant angle α results in a shift of the Fourier
spectrum (See curvature operator 3.3.4.2).

3.3.4 Reflection

In this section, we characterize the local light-field after a reflection on a sur-
face. We denote incoming (or input) local light-field the local light-field before
reflection and outgoing (or output) local light-field the local light-field after re-
flection. Those local light-fields are defined on the same virtual plane tangent
to the surface. We analyse the influence of the local curvature of the surface
at the point of intersection on the input local light-field (Section 3.3.4.2). This
operation expresses the local light-field on the surface of the object. Opera-
tions such as BRDF integration are defined using directions pointing outwards
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Figure 3.19 – When we project the light-field on a plane, the spatial and
angular components are no longer in an orthogonal setting. The angles (δθ, δϕ)
are no longer measured with respect to the normal of the plane.

of the surface. To respect this definition, we apply a symmetry of the signal
(Section 3.3.4.3). Our angular parametrization (spherical parametrization) can
produce distortions if non infinitesimals angles are used, which is the case of
reflection. We describe how we can keep the analysis free of distortions (to first
order) by aligning the incoming and outgoing parametrization for any operator
defined over angles (Section 3.3.4.4). The integration of the signal with the
BRDF is done in two steps. We first apply the cosine term to the input local
light-field (Section 3.3.4.5) and then perform the multiplication and integra-
tion with the BRDF (Section 3.3.4.6). As an example, we present two types
of BRDF that reduce the multiplication and integration to a convolution: the
Phong and half-angle BRDFs. Finally, we perform an inverse curvature projec-
tion to obtain the local outgoing light-field on the tangent plane of the object.
This last operation will not be described as it is the first curvature operation
with the opposite curvature argument.

3.3.4.1 Local window of reflection/refraction

A local light-field incoming to a surface might reflect (or refract) close to the
border of the surface. In such context, a part of the signal might not be reflected
(or refracted). We multiply the input signal by a window which correspond
to the inverse visibility of the surface. This operator is equivalent to the local
occlusion operator with the difference that the former track local hits around
a non-occluded ray while the later track local misses around a reflected (or
refracted) ray.

3.3.4.2 Curvature reparametrization

The first order effect of non-planar surfaces to an incoming light-field is the
curvature. Curvature approximates the spatial deformation of the surface.
This deformation affects the local normal [37]. Figure 3.20 shows the influence
of a change of the curvature matrix on the surface.

The transport from the virtual tangent plane to the local surface of the
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Figure 3.20 – The matrix of curvature affects at the first order the shear
from the planar light-field to the object surface light-field. We show here some
examples of such a matrix.

radiance is expressed by (Figure 3.21):

Ck

(
l
)
(δx, δy, δθ, δϕ) = l(δx, δy, δθ +K(δx+ α), δϕ+Kδy) (3.36)

Figure 3.21 – The curvature operator flattens the input local light-field against
the local surface. While the positions are approximately equal (to first order),
the angles are modified with respect to their positions.

Here, K denotes the curvature matrix of the surface with respect to the
orientation of the light-field. α is the angle between the incoming direction
and the normal. The Fourier equivalent of this operator is the symmetrical
shear:

Ck

(
l̂
)
(Ω⃗x, Ω⃗θ) = e−2iπKαΩθ l̂(Ω⃗x −KΩ⃗θ, Ω⃗θ) (3.37)

3.3.4.3 Symmetry of the signal

BRDF operations are defined with respect to outward direction (even for the
incoming direction). We express the incoming light-field as an outward light-
field. To keep the parametrization right handed, we symmetries the x direction
(Figure 3.22).

We reverse the spatial parametrization of the input light-field:

Sym
(
l
)
(δx, δy, δθ, δϕ) = l(−δx, δy,−δθ, δϕ) (3.38)

The Fourier equivalent of this partial symmetry is:

Sym
(
l̂
)
(Ω⃗x, Ω⃗θ) = l̂(−Ωx,Ωy,−Ωθ,Ωϕ) (3.39)
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Figure 3.22 – Before the integration with the BRDF, we express the input
signal in the output frame. This corresponds to inverting x⃗in and z⃗in directions.

3.3.4.4 Aligning local neighborhoods

Our analysis is valid on local neighborhoods. Thus we need to avoid global co-
ordinates and define operations as relations between two neighborhoods. This
is especially true for BRDF operations as phase functions are defined over
global angles. To remove the need for a global analysis on angles, we need
to keep δθ and δϕ as infinitesimals. The solution proposed by Durand et al.
[47] is to look at aligned equators of the spherical parametrization for angles
(Figure 3.23).

(a) Unaligned equators from input and
output frames

(b) Aligned equators from input and
output frames

Figure 3.23 – Given an input local light-field ((a) in blue), and an output
local light-field ((a) in green), we rotate both frames to align the δθ angles to
make infinitesimal values additives without distortion (b).

For a given input neighborhood and a given output neighborhood, we rotate
the input and output neighborhoods to align the equatorial planes. Then, we
can describe angles as being on the equator of the same spherical parametriza-
tion, with δθ along the equator and δϕ orthogonal to it (Figure 3.24).

The rotation of the input local frame that aligns it with the output direction
is given as follows: If (x⃗i, y⃗i, z⃗i) is the input frame and o⃗ is the output central
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Figure 3.24 – If the parametrization of the BRDF, or BTDF, follows the
equatorial plane, we can use additive notations of angles. To first order, the
angular difference is α′ ≃ α− (δθ1 − δθ2)

ray, We project o⃗ on the input tangent plane:

o⃗t =
o⃗′t

||o⃗′t||

Where
o⃗′t = o⃗− ⟨o⃗, z⃗i⟩z⃗i

We obtain the rotation matrix of the tangent plane as:

R =

[
⟨o⃗t, x⃗i⟩ −⟨o⃗t, y⃗i⟩
⟨o⃗t, y⃗i⟩ ⟨o⃗t, x⃗i⟩

]
Compound of non-infinitesimal and infinitesimal angles: Some op-
erators reason on angular distances (e.g., Phong BRDF, Snell-Descartes law,
etc.). Given two local neighborhoods separated by the 2D angle θ⃗ = (θ, ϕ) de-
fined from the equator passing through the two central positions (Figure 3.24),
the resulting angular distance between the two central positions is θ radians2.
Given δ⃗θ1 = (δθ1, δϕ1) and δ⃗θ2 = (δθ2, δϕ2), the local angular components of
the local neighborhoods, the angular distance between those two positions is
given by the geodesic equality:

cos (θ′) = cos (θ − (δθ1 − δθ2)) cos (δϕ1 − δϕ2)

Given our small angles assumption, the last cosine can be neglected, the
resulting angle becomes:

θ′ ≃ θ − (δθ1 − δθ2) (3.40)

2This is a convention, we could derive similar property with ϕ. For that, it is only
required to align ϕ with the equator. We made this convention to use θ notation in the
Phong BRDF.
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3.3.4.5 Solid angle projection

The rendering equation (Equation 2.1) is defined over solid angle. We perform
the integration over the hemisphere by weighting the integral with clamped
cosine with respect to the normal of the surface. In a local frame aligned with
the normal direction, we write:

C
(
l
)
(δ⃗x, δ⃗θ) = l(δ⃗x, δ⃗θ)cos+(δθ + θin) (3.41)

θin is the incoming angle with respect to the normal. This operation be-
comes a convolution in the Fourier domain:

C
(
l̂
)
(Ω⃗x, Ω⃗θ) = l(Ω⃗x, Ω⃗θ)⊗

[
B1(Ωθ)δ(Ωx,Ωy,Ωϕ)

]
(3.42)

Where B1(Ωθ) is the Fourier transform of the clamped cosine, and δ(Ωx,Ωy,Ωϕ) =
δ(Ωx)δ(Ωy)δ(Ωϕ) is a multidimensional dirac distribution.

3.3.4.6 Integration with the BRDF

Isotropic reflection is defined as the convolution of the input signal with the
reflectance [47, 142]. The generalisation to anisotropic materials cannot be
modelled the same way. We present the general formulation of the output local
light-field after the reflection with the surface. We show that the isotropic case
reduces to a convolution as previously mentioned.

General case: Given an incoming light-field Lin(x⃗in, θ⃗in), incident to a pla-
nar surface with reflectance ρ(θ⃗in, θ⃗out), the reflected light-field Lout(x⃗out, θ⃗out)
is:

Lout(x⃗out, ϕ⃗out) =

∫
θ⃗

Lin(x⃗out, θ⃗in)ρ(θ⃗in, θ⃗out) cos(θin)dθ⃗in (3.43)

Given the main incoming angle θ⃗in and the main outgoing angle θ⃗out, we
are interested in local information. As we integrated the cosine factor into
the local light-field (Section 3.3.4.5), we only have to describe the relation
between the local incoming light-field lin(δ⃗x, δ⃗θin), the local outgoing light-
field lout(δ⃗x, δ⃗θout) and the local BRDF with respect to the central directions
ρθ⃗in,θ⃗out

3:

Rρ

(
l
)
(δ⃗xout, δ⃗θout) =

∫
δ⃗θout

l(δ⃗xout, δ⃗θin)ρθ⃗in,θ⃗out
(δ⃗θin, δ⃗θout)dδ⃗θin (3.44)

This expression is not a convolution. We use the integration formula (Equa-
tion 3.18) to obtain the Fourier equivalent of Equation 3.44:

Rρ

(
l̂
)
(Ω⃗xout, Ω⃗θout) =

[
l̂(Ω⃗xout, Ω⃗θin)⊗Ω⃗θin

ρ̂(Ω⃗θin, Ω⃗θout)
]
Ω⃗θin=0⃗

(3.45)

The BRDF operator is defined in a higher dimensional space which is then
sliced to obtain the outgoing light-field function. The convolution is defined
over the input angles only. Figure 3.25 shows an example of the BRDF opera-
tion in the primal using a 2D space of incoming and outgoing angles (θin, θout).

3In the remainder of the document, we assume BRDF and BTDF are defined with respect
to the main incoming and outgoing direction (θ⃗in, θ⃗out). We avoid writing the subscripts.
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Figure 3.25 – In the primal space, the integration with the BRDF can be seen
in the space of incoming and outgoing angles. First, the input angular part
of the local light-field (a) is multiplied with the BRDF (b). This function (c)
is then integrated along the incoming angle space to give the outgoing local
light-field (d).

Phong parametrization: Some BRDFs are described using the reflected
direction of the incoming direction. The reflected direction is symmetrical to
the incoming direction with respect to the normal of the surface. We start
by aligning the incoming local light-field with the normal and express the re-
flected local light-field. No reparametrization is needed as the incoming frame
is pointing outward of the surface (Figure 3.26).

Figure 3.26 – The reflected local light-field is defined as the reflection of the
incoming local light-field with respect to the normal. The parametrization is
unchanged by this operation.

Then, we align the equator of the reflected light-field with the outgoing
direction. Now the reflected local light-field and the outgoing local light-field
share the same parametrization, we can express the BRDF. It has the following
form:

ρ(δθr, δθout) = ρP (δθout − δθr)

The Fourier transform of this class of BRDF is:

ρ̂(Ωθr,Ωθout) = ρ̂P (Ωθout)δ(Ωθr +Ωθout)

Where δ(Ωθr + Ωθout) is the Dirac distribution. If we inject this form of
BRDF into the Fourier equation of the reflection of a local light-field (Equa-
tion 3.45), we obtain the convolution formulation [141, 142, 47], which Fourier
equivalent is a multiplication:

Rρ

(
l̂
)
(Ω⃗xout, Ω⃗θout) = l̂(Ω⃗xout, Ω⃗θout)ρ̂P (Ω⃗θout) (3.46)
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Half-angle parametrization: Other BRDFs can be expressed using the
half-angle parametrization [148]. Then, the BRDF is a function of the direction
halfway between the incoming and the outgoing direction. We handle such
BRDF with the following steps:

First we align the incoming local light-field equator with the outgoing direc-
tion. The half-angle local light-field share the same parametrization as it lies
on the equatorial plane. In this parametrization, the BRDF has the following
expression:

ρ(δ⃗θin, δ⃗θout) = ρ
( δ⃗θin + δ⃗θout

2

)
Its Fourier transform is the following. Note the scaling factor of 2 due to

the averaging of angles:

ρ̂(Ω⃗θin, Ω⃗θout) = 2 ρ̂(2 Ω⃗θout)δ(Ω⃗θin − Ω⃗θout)

For isotropic half-angle BRDFs, the phase function is defined with respect
to the angular distance between the normal and the half-angle. We align the
half-plane local frame with the normal to express the BRDF and rotate the
result back in the alignment of incoming and outgoing directions.

ρ(δ⃗θin, δ⃗θout) = ρh

(
R

( δ⃗θin + δ⃗θout
2

))
In the same way as Equation 3.46, we can express the BRDF operator as a

simple product between the incident local light-field spectrum and the BRDF
spectrum:

Rρ

(
l̂
)
(Ω⃗x, Ω⃗θout) = 2 l̂(Ω⃗x,−Ω⃗θout)ρ̂(2 Ω⃗θout) (3.47)

3.3.4.7 Spatially varying BRDFs

Textures We have defined the behaviour of light reflecting on homogeneous
surfaces on which the reflectance is the same. Most objects do have a spatially
varying appearance (like a wood block, a paper sheet, etc.). We add this effect
by multiplying the BRDF by a spatially varying, but uncorrelated signal: a
texture (Heckbert proposed a survey of texture mapping techniques. [72]).
Correlated effects, such as spatially varying roughness will be treated later.

We can apply a texture function to our signal before reprojecting to the
outgoing frame. Since the BRDF and the texture are uncorrelated, there is no
need to apply one before the other: The BRDF modifies the angular part of
the light-field and the texture its spatial part.

Tx
(
l
)
(δ⃗x, δ⃗θ) = t(δ⃗x)× l(δ⃗x, δ⃗θ) (3.48)

The translation of this multiplication is a convolution in the Fourier domain.
This operator spreads the spatial frequency of the texture to the outgoing light-
field:

Tx
(
l̂
)
(Ω⃗x, Ω⃗θ) =

(
t̂⊗Ω⃗x

l̂
)
(Ω⃗x, Ω⃗θ) (3.49)
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Varying roughness Another way to modify the appearance of a model us-
ing texture functions is to alter parameters of the BRDF based on the texture.
Roughness textures contain the value of the exponent (or the standard devi-
ation) of the Phong lobe (or normal distribution). These tools can be very
efficient to depict the effect of corrosion on a metallic surface for example.

These textures are correlation between space and angle. High variations of
the spatial roughness will impact the angular appearance. In the general case,
we assume that the BRDF is also a function of the spatial component:

Rρ

(
l
)
(δ⃗x, δ⃗θout) =

∫
δ⃗θin

l(δ⃗x, δ⃗θin)ρ(δ⃗x, θ⃗in + δ⃗θin, θ⃗out + δ⃗θout)dδ⃗θin

(3.50)
Like for the incoming angles, the formulation in Fourier space becomes a

convolution along the spatial and angular dimensions. The BRDF can be seen
as a 6D kernel:

Rρ

(
l̂
)
(Ω⃗x, Ω⃗θout) =

[
l̂(Ω⃗x, Ω⃗θin)⊗Ω⃗θin

ρ̂(Ω⃗x, Ω⃗θin, Ω⃗θout)
]
Ω⃗θin=0⃗

(3.51)

3.3.5 Refraction

Refraction is not part of the initial paper on Fourier analysis of light trans-
port. We define the behaviour of the local light-field refracted by a rough glass
surface. This operator replaces the BRDF operator when the material is re-
fractive. The curvature, symmetry and alignment have to be performed before
this operator.

As stated by Walter et al. [185], the refraction of rough surfaces is defined
with respect to the refracted specular ray. We first give a definition of the
specular refracted local light-field (Section 3.3.5.1). We need to add a window-
ing of the input light-field to model the extinction of light at the critical angle
(Section 3.3.5.2). Then we derive the integration of the BTDF (Section 3.3.5.3).

3.3.5.1 Specular transmission

The Snell-Descartes law for refraction describes how the angular part of a light-
field is affected by the interface. The relation between incoming and outgoing
angles is well known:

n1 sin(i1) = n2 sin(i2) (3.52)

Remind that we are looking at small neighborhoods of rays, our incoming
angles are thus i1+δi1 and the outgoing angles are i2+δi2. The Fresnel relation
between the incoming neighborhood and the outgoing neighborhood becomes:

n1 sin(i1 + δi1) = n2 sin(i2 + δi2) (3.53)

Which gives the following first order approximation:

δi2 ≃ n1 sin(i1)− n2 sin(i2)

n2 cos(i2)
+ δi1

n1 cos(i1)

n2 cos(i2)
(3.54)
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The Snell-Descartes law (Equation 3.52) still holds for the main incoming
angle i1 and the main outgoing angle i2. This supplementary condition cancels
the shift:

δi2 ≃ δi1
n1 cos(i1)

n2 cos(i2)
(3.55)

The formulation of the transmitted light-field from the incoming light-field
is thus:

Tr
(
l
)
(δ⃗x, δθ, δϕ) = l

(
δ⃗x,

n2 cos(i2)

n1 cos(i1)
δθ, δϕ

)
(3.56)

The translation of this operator in Fourier space is a phase shift and a scale
of the space.

Tr
(
l̂
)
(Ω⃗x,Ωθ,Ωϕ) =

n1 cos(i1)

n2 cos(i2)
l̂

(
Ω⃗x,

n1 cos(i1)

n2 cos(i2)
Ωθ,Ωϕ

)
(3.57)

3.3.5.2 Critical angle

There exists an incoming angle above which the Snell-Descartes law is no longer
applicable. This angle is called the critical angle θc. Since we are looking at
a neighborhood, we need to add the critical angle window of the transmission.
We add before the specular transmission scale a window function:

Tr
(
l
)
(δ⃗x, δθ, δϕ) = wθc−θi(δθ)l

(
δ⃗x,

n2 cos(i2)

n1 cos(i1)
δθ, δϕ

)
(3.58)

The window function wθext−θi(δθ) zeros when δθ > θext − θi. Rays with
angles greater than the critical angle are part of the local analysis of reflection
and belong to a different main light-path. This window restricts our analysis
to a smaller domain where analysis is still meaningful. The Fourier equivalent
is:

Tr
(
l̂
)
(Ω⃗x,Ωθ,Ωϕ) =

n1 cos(i1)

n2 cos(i2)
wθc−θi(Ωϕ)⊗Ωθ

l̂

(
Ω⃗x,

n1 cos(i1)

n2 cos(i2)
Ωθ,Ωϕ

)
(3.59)

3.3.5.3 Rough materials

When the surface is not microscopically planar, such as for microfacets ma-
terials, the distribution of normals is described statistically and must be inte-
grated to get the final radiance. After the refraction (Equation 3.56) we have
to perform the convolution with a BTDF characterized by the distribution of
normals:

Trρ
(
l
)
(δ⃗x, ⃗δθout) =

∫
⃗δθin

ρ( ⃗δθin, ⃗δθout) l(δ⃗x, ⃗δθin)d ⃗δθin (3.60)
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Note that we didn’t add the macrosurface normal into Equation 3.60 as we
suppose the normal to be the up direction of our virtual surface. We modulate
the BTDF in function of the sign instead of using it as a parameter.

The above equation is exactly like the BRDF integration (Equation 3.44)
with the notable difference that our angles are defined below the virtual surface.
Thus, the Fourier transform will have the same formulation of a convolution in
a 7D space, with a 4D kernel, followed by a slice:

Trρ
(
l̂
)
(Ω⃗x, Ω⃗θout) =

[
l̂(Ω⃗x, Ω⃗θin)⊗Ω⃗θin

ρ̂(Ω⃗θin, Ω⃗θout)
]
Ω⃗θin=0⃗

(3.61)

Spatially varying BTDFs are handled the same way. We did not recopy
Equation 3.50 and Equation 3.51 as they are identical.

Fourier transforms of BTDFs: Walter et al. [185] described the theoretical
model of rough refraction from the classical microfacets model. They proposed
to use the GGX distribution for the PDF of normals. de Rousiers et al. [39]
fitted isotropic Gaussians on the resulting BTDF. While this fitting is wrong
because of the anisotropy of the BTDF (Figure 3.27(a)), the Fourier spectrum
is isotropic in amplitude (Figure 3.27(b)).
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Figure 3.27 – GGX BTDFs are not isotropic for grazing angles (a), but the
amplitude of their Fourier transform is (b). The non-symmetrical informa-
tion is stored in the phase (c). We approximate the Fourier spectrum of GGX
BTDFs by Gaussians which standard deviation correspond to the inverse rough-
ness, much like de Rousiers et al. [39]. We used a glass index of n = 1.1, the
incoming angles are 0, π

6 , and π
3

We can approximate the amplitude with a Gaussian distribution. However,
phase does not have such an approximate formulation.

While de Rousiers et al. introduced an error in their isotropic fitting, note that
fitting the BTDF lobe (with an isotropic Gaussian) is equivalent to fitting the
amplitude of the Fourier transform. Thus, what they obtain is a BTDF that
has almost the same frequency response as the original one. Doing so, the
perception of blur in the rendered images with this fitted BTDF will be close
enough to the original BTDF for real-time applications.
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3.3.6 Lens

In this section we will cover the effect of a thin lens, in a paraxial setting, on
a local light-field. Lens systems can be studied using a Taylor expansion in
the spatio-angular domain [81] without the paraxial assumptions. While this
method allows to extract derivatives of the system, it requires a heavy post-
process to analyse the optical system. Furthermore, it assumes that there is
no occlusion inside the optical system.

The travel of a light field into a camera lens has been studied by Soler et al.
[165] who proposed to look at the integration on the sensor at the same time.
While this formulation captures the blurring effect of depth-of-field, it does
not provide the outgoing light-field. The angular integration on the sensor is
already performed. To get the light-field on the sensor, we may want to look
at what happens just after the lens. Figure 3.28 illustrates the behaviour of a
light rays through a lens.

3.3.6.1 Lens + integration operator

The integration of light field after its travel through a lens is modeled with the
following equation :

L(f,r)

(
l(δ⃗x)

)
=

∫
δ⃗θ

v(δ⃗x, δ⃗θ)l(δ⃗x, δ⃗θ) (3.62)

Where v(δ⃗x, δ⃗θ) is a binary valued function which equals one if the ray in
direction δ⃗θ from the position δ⃗x passes through the lens, and zero otherwise.

We will not derive the Fourier equivalent of this formula as it does not
follow the notion of operator we defined. The resulting operator would break
the possibility to compose other operators afterwards.

3.3.6.2 Small and Thin Lenses

We look at the effect of lens and travel in the camera on a neighborhood of a
ray to obtain a formula compatible with the definition of operator.

From an input local light-field arriving at the lens l(δ⃗x, δ⃗θ, t) we want to
characterize the local light-field at the sensor position oriented along the central
direction of the sensor and lens l′(δ⃗x, δ⃗θ, t).

When the light-field passes through the lens, its direction is locally changed
due to the curvature of the first interface, then it travels inside the lens, and
finally gets out of the lens with another curvature effect. Since the lens is
assumed to be thin, travel can be neglected between the two interfaces [60,
Chap II.4.1].

Then, the light leaves the lens and travels to the sensor. The light-field is
in or out of focus depending on the distance between the lens and the sensor.

L(d1,d2)

(
l
)
(δ⃗x, δ⃗θ) = l(δ⃗x+ d1(δ⃗θ + f δ⃗x), δ⃗θ + f δ⃗x) (3.63)

Where f is the focal length of the lens, and d1 is the distance from the
outgoing central position on the lens to the sensor position and d2 is the distance
of the plane in focus from the lens (Figure 3.28).
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Figure 3.28 – Light coming from the plane in focus converges at the focal
point after passing through the lens.

The Fourier equivalent of Equation 3.63 is:

L(d1,d2)

(
l̂
)
(Ω⃗x, Ω⃗θ) = l̂(Ω⃗x − fΩ⃗θ, Ω⃗θ − d1(Ω⃗θ + fΩ⃗x)) (3.64)

Example We illustrate this analysis in a 2D formalism for clarity (See Fig-
ure 3.29). Given a point in focus (with coordinate [δx, δθ] in the local light-
field), the position on the lens after travel will be:[

δxl

δθl

]
=

[
δx− d2δθ

δθ

]
(3.65)

Due to the travel shear. Using Equation 3.63 and Equation 3.65, we can
write the position on the sensor as:

δxs = δx− d2δθ − d1
(
δθ +

1

f
(δx− d2δθ)

)
= δx(1 +

1

f
) (3.66)

The influence of the angle δθ on the final spatial component of the local
light-field at the sensor vanishes. This indicates that the point is indeed in
focus.

3.3.7 Participating media

Participating media such as smoke, liquids, etc, are usually harder to incor-
porate into ray tracing based rendering engines as the formulation of radiance
coming to the camera is no longer defined per surfaces, but in a volume. In this
section, we propose operators working on our 2D orthogonal plane parametriza-
tion to handle the effect of both attenuation (Section 3.3.7.1) and scattering
(Section 3.3.7.2)4

3.3.7.1 Attenuation

We study the effect of volumetric attenuation of a density function σ(δx, δy, δz)
along a ray, for a travel distance d. Without loss of generality, we suppose that

4Emission can be expressed as an interaction of the medium, but we propose to model
emission with light sources and then apply operators.
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Figure 3.29 – For an in-focus diffuse point, the resulting angular influence
on the position vanishes due to the compensation of the travel shears and the
curvature shears.

the ray travels along δz. The attenuated light field is:

A
(
l
)
(δ⃗x, δ⃗θ) = l(δ⃗x, δ⃗θ)e−

∫ d
0

σ(δ⃗x,u)du (3.67)

Homogeneous medium: Considering the case where the attenuation func-
tion is constant, in the case of homogeneous media, the integral has an analyt-
ical form:

A
(
l
)
(δ⃗x, δ⃗θ) = l(δ⃗x, δ⃗θ)e−σd (3.68)

The Fourier transform is only affected in amplitude by this constant factor:

A
(
l̂
)
(Ω⃗x, Ω⃗θ) = e−σd l̂(Ω⃗x, Ω⃗θ) (3.69)

Non-homogeneous medium: When the density of particles is not constant
in space, the energy is not uniformly absorbed during the travel. This increases
spatial frequencies of the signal, which further propagates to the angular do-
main because of the travel of light.

We consider attenuation along ds, a small section of d. We consider it small
enough to derive a first order approximation of the attenuation5:

A
(
l
)
(δ⃗x, δ⃗θ) = l(δ⃗x, δ⃗θ)(1− dsσ(δ⃗x, δz)) (3.70)

Let σxy be the restriction of σ to the (x, y) plane. We adopt the notation
p(δx, δy) = 1− dsσxy(δx, δy). In the Fourier domain, we can write:

A
(
l̂
)
= l̂ ⊗Ω⃗x

p̂ (3.71)

In this equation, ⊗Ω⃗x
denotes a convolution over the spatial component

only. The effect of attenuation is therefore identical to occlusion, except that
5We assume that the mean free path is greater than the infinitesimal distance used in

the analysis: σm ≪ ds.

59



3.3. OPERATORS ON THE LIGHT-FIELD FUNCTION

the mask p = 1− dsσxy is a function taking arbitrary values in [0, 1] instead of
a binary function.

3.3.7.2 Scattering

We inspire from analytical formulations of beam-beam (or line-beam) integra-
tion [169, 89]. We assume having as input local light-field a finite size beam
(both spatial and angular), and that the attenuation is negligible within the
beam size. Those assumptions are compatible with the infinitesimal analysis.
In such case, the scattering is a double integral, one along the outgoing ray,
the other with the phase function (Figure 3.30).

Figure 3.30 – To compute the outgoing radiance of local direction δωo we
need to integrate along this ray (in red), for all the incoming local direction δωi

crossing it.

With the assumption that the phase function is isotropic, we perform the
scattering operator in two steps. First, we convolve the input local light-field
with the phase function taking into account the main outgoing direction (Fig-
ure 3.31 (b)). Second, we integrate along the outgoing ray (Figure 3.31 (c)).

(a) Input configuration (b) After angular
integration with the

phase function

(c) Output configuration

Figure 3.31 – The input configuration of the scattering operator. The in-
put local light-field (a) is first convolved with the phase function resulting in
an intermediate light-field with angular and spatial components unaligned (b).
Finaly, we integrate the spatial component in the outgoing frame along the
outgoing direction (c).
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3.3. OPERATORS ON THE LIGHT-FIELD FUNCTION

To integrate over the outgoing direction, it is necessary to have a volumic
definition of the local radiance. We will do the following derivations in flatland
to avoid too lengthy equations. As for the isotropic Phong BRDF convolution,
the convolution is done on one angular dimension only.

Volumic local radiance: We define a volume by considering radiance before
and after the central scattering location. We consider this volume infinitesimal
in all directions. The local volumic radiance function is then:

li(δx, δz, δθ) = li(δx+ δz tan(δθ), δθ)

Due to first order assumptions, the volumic radiance is constant with re-
spect to the depth δz:

li(δx, δz, δθ) ≃ li(δx, δθ)

We compute the local volumic outgoing radiance by integrating the product
of the local volumic incoming radiance with the phase function:

lo(δx, δz, δθ) =

∫
li(δx, δz, δθ

′)ρα(δθ
′, δθ)dδθ′

=

∫
li(δx, δθ

′)ρα(δθ
′, δθ)dδθ′ (3.72)

ρα is a local phase function. The scattering is defined with respect to α,
the angle between the two central rays. The local volumic outgoing radiance
is still independent of the depth.

Outgoing local radiance: We estimate the outcoming local radiance by
evaluating the volumic local radiance in the outgoing local frame and integrat-
ing along local rays:

lo(δx, δθ) =

∫
li(δx cos(α+δθ)+δz sin(α+δθ), δz sin(α+δθ)−δx sin(α+δθ), δθ)dδz

Using the infinitesimal analysis, we can rewrite scale with cosines: δx cos(α+
δθ) = δx cos(α)− δxδθ sin(α) ≃ δx cos(α).

lo(δx, δθ) =

∫
li(δx cos(α) + δz sin(α), δz cos(α)− δx sin(α), δθ)dδz(3.73)

We have to distinguish two cases here. One is the case where sin(α) ≃ 0.
In such a case, the depth integration can be neglected as the integrand is
constant in the integration domain. On the other case, it cannot be neglected
if the incoming and outgoing directions are not almost aligned.

Planar behaviour: In the case of forward scattering and backward scatter-
ing (|ωi.ωo| ≃ 1), we can approximate the volumic outgoing radiance as being
constant along the δz component. It results in the second integration having no
effect on the distribution of energy. In such a case, the outgoing local radiance
is then:

lo(δx, δθ) =

∫
li(δx, δθ

′)ρα(δθ, δθ
′)dδθ (3.74)
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The Fourier equivalent of this equation is:

Sρα(l̂)(Ω⃗x, Ω⃗θout) =
[
l̂(Ω⃗x, Ω⃗θin, Ω⃗θout)⊗Ω⃗θin

ρ̂α(Ω⃗θin, Ω⃗θout)
]
Ω⃗θin=0⃗

(3.75)

Non-planar behaviour: For non-forward and non-backward scattering, the
integration in depth cannot be avoided. We combine Equation 3.73 and Equa-
tion 3.73 to produce the relation between the incoming local light-field and the
outgoing local light-field:

lo(δx, δθ) =

∫ ∫
li(δz, δθ

′)ρα(δθ, δθ
′)dδθdδz (3.76)

The Fourier equivalent of this equation is:

Sρα(l̂)(Ω⃗x, Ω⃗θout) =
[
l̂(0,Ωy, Ω⃗θin, Ω⃗θout)⊗Ω⃗θin

ρ̂α(Ω⃗θin, Ω⃗θout)
]
Ω⃗θin=0⃗

(3.77)

3.3.8 Motion

Motion affects indirectly the local light-field as it has to be coupled with one of
the previsouly described operator (e.g., occlusion, reflection, ....). Figure 3.32
presents an example of the composition of motion and occlusion. We treat
occlusion as a projection of the local frame to a static setting. For example,
we will consider the occlusion operator on a frame attached to the occluder,
making the operator time independant. For that we add a time projection
before and after the operator.

Figure 3.32 – Motion affects occlusion by shearing its effect on the local light-
field. In this example, a cube is translating along the X component of the
world coordinates. It partially occlude the local light-field. The effect of motion
is visible on the x− t slice. But it is not observable on other slices as there is
no occlusion for t = 0.

When analysing the influence of motion on a light-field, we need to add the
time dimension in the analysis. We keep the infinitesimal analysis formulation
for the time dimension. The light-field function becomes l(δ⃗x, δ⃗θ, δt). In this
context, we assume that motion is linear. Under this assumption, we can show
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3.3. OPERATORS ON THE LIGHT-FIELD FUNCTION

that the motion operator is a linear shear from the motion dimension (either
space or angle) to the time dimension6. We illustrate the variables for a flatland
configuration in Figure 3.33.

(a) Configuration for motion (b) Intermediate step

Figure 3.33 – The effect of motion on positions and angles is illustrated here.
We study 2D coordinates (δx, δθ) and its transformation after a unit time mo-
tion : (δx′, δθ′). The tangential motion of space ot with respect to space o0 is
δxt. The non-tangential motion is δzt and the angular motion is δθt (a). To
obtain the value δx′ we need an intermediate step and compute the distance of
the photon at position (δx, δθ) after a travel of δzt meters along the Z axis with
respect to the time changing center ot (b).

We introduce an intermediate distance: d (Figure 3.33(b)). It is the position
of a photon at position (δx, δθ) after a travel of δzt meters with respect to the
moving center ot. d is given by the following formula:

d = δx+ tan(δθ)δzt − δxt

The new position δx′ is then:

δx′ = d(cos(δθt) + sin(δθt) tan(δθ
′))

We simplify this equation using the first order analysis:

δx′ ≃ δx− δxt

If we rewrite the moving frame position as the spatial velocity times the
infinitesimal time variable, δxt = v⃗xδt we get the following formula:

Mv⃗,r⃗

(
l
)
(δ⃗x, δ⃗θ, δt) = l(δ⃗x− v⃗δt, δ⃗θ − r⃗δt, δt) (3.78)

Given the shear behaviour of this operator, its translation in the frequency
domain becomes the symmetrical shear:

Mv⃗,r⃗

(
l̂
)
(Ω⃗x, Ω⃗θ,Ωt) = l(Ω⃗x, Ω⃗θ,Ωt + v⃗.Ω⃗x + r⃗.Ω⃗θ) (3.79)

6The notion of sheared transformation for motion has been first proposed by Egan et al.
[49] for various special cases of one bounce reflection. During this thesis, we generalized it
for any incoming light-field allowing it to be added to the set of operators [47].
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3.4. COMPARISON WITH DIFFERENTIAL ANALYSIS

Non tangential motions are neglected in this approach, due to the second
order nature of this phenomenon.

3.4 Comparison with Differential Analysis

In this section we review differential methods for ray tracing. We separate
this section from the previous work to provide a better comparison against
Fourier analysis of local radiance. We can differentiate two classes of work on
differential analysis. The first one looks at the differentials of structures used to
carry radiance: rays and light-paths. The second one analyses the differentials
of radiance or irradiance close to a ray, or near a point on a surface.

3.4.1 Comparison with ray differentials

Ray [82] and light-path [24] differentials are based on the analysis of specular
reflection and transmission. The differential of rays are studied with respect to
surface curvature, travel, etc. In a way, those ray differential methods look at
variation of a light-path with a constant radiance constraint [84]. This can have
benefits for performing analysis on specular paths [24, 84], filtering [82] (when
the light-path is traced backward, the input energy is the pixel characteristic
function), or estimating density reconstruction kernels [152, 153].

Our local first-order light-field analysis on the other hand allows to keep
track of the radiance variations on neighborhoods of rays. Ray differential
methods can be seen as analysis of iso-values of the radiance function. The
other notable difference is that no analysis window is defined in ray (or light-
paths) differentials. It follows that the space defined by the differential can
become extremely large.

3.4.2 Comparison with radiance and irradiance differentials

3.4.2.1 Irradiance differential

Irradiance differential has been well studied in the case of radiosity. There,
mesh segmentation is the main motivation [6, 80]. Holzschuch and Sillion
[80] also derived an error bound on the radiosity simulation from this study.
Irradiance differential regained interest with the irradiance caching commu-
nity [187, 103, 91] where it is used to derive the density of needed cache records.
Fourier analysis can be used for irradiance analysis. Local irradiance can be
obtain by slicing the local frequency spectrum in angle (we show an application
in Section 5.3).

3.4.2.2 Radiance differential

Ramamoorthi et al. [142] derived the propagation of differential information
(Gradient and Hessian) through operators defined by Durand et al. [47] (e.g.,
transport, occlusion and reflection). Two major differences are to note com-
pared to Fourier analysis.

First, they derived non planar occlusion differential using the occluder cur-
vature. This is not done in any of the Fourier based methods as most assume
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a planar occluder to constraint occlusion to be a spatial only phenomenon. We
showed the derivation of a non planar model, but neglected the curvature.

Second, they provided an analysis of the different terms inside the differen-
tial. For example, in the one bounce case, they showed how curvature affects
the illumination on the screen in a separable way. This has been used to per-
form retargeting, enhancement of rendering or even plausible deferred shading
rendering based on partial information [180]. Fourier methods provide a single
output to a given light-path, the local light-field spectrum. Radiance differen-
tial methods can an expansion (up to the second order) of the local-lightfield
which is sometimes easier to analyse.

While they can provide a separable formulation for one bounce illumination,
propagating complex light-paths would make separability intractable. In such
case, they could only provide propagation of the gradient vector or the Hessian
matrix. This is very similar to the bandwidth vector or to the covariance matrix
formulation (Those will be defined in Chapter 4).
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4 | Representations of the Local
Light-field Spectrum

We saw in Chapter 3 how to express the changes of a local light-field
spectrum when it undergoes an operation (e.g., travel, occlusion, reflection, ...).
In this chapter, we present tools to evaluate information of the local light-field
spectrum after a chain of operations. The evaluation of the entire spectrum
is too complex in the context of ray tracing, so we rely on descriptors. The
spatial extent and orientation of the signal’s spectrum are of practical interest
since they tell how much the signal varies and in which direction.

Occlusion’s spectrum is also too costly to evaluate in practice. We showed
in previous chapter that we can estimate an approximate spectrum from the
distance, depth and direction to the occluder (Section 3.3.2). We propose a
method based on a voxel grid to evaluate those quantities.

In this chapter we present the following contributions:

• A compact representation of the signal’s spectrum using the second mo-
ments matrix: the covariance matrix (Section 4.2). This representation
is fully integrated into the frequency analysis theory. We validate the
covariance matrix against measurements, and show that it correctly de-
picts information about the real local spectrum with comparisons to
measured spectra.

• Two data structures to evaluate local occlusion using voxel grids (Sec-
tion 4.3.2). Those structures are easy to integrate into existing ray-
tracer.

First, we will review previously proposed spectrum representations (Sec-
tion 4.1). Then, we will introduce and validate the covariance matrix (Sec-
tion 4.2). Finally, we will present and compare structures to estimate local oc-
clusion that are designed to work in a global illumination context (Section 4.3).

4.1 Previous Work

In this section, we present previously used representations of the local spec-
trum and emphasis that those tools are not fitted for anisotropic and global
illumination analysis.
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4.1.1 Bandwidth of the Spectrum

We define the bandwidth as a point corresponding to the 99th percentile of the
spectrum along its dimensions. It gives information about the spread of the
spectrum:

b⃗ = p⃗ ∈ R+5 such that
∫ p⃗

t=−p⃗

f (⃗t)dt⃗ = 0.99

∫ ∞

t=−∞
f (⃗t)dt⃗ (4.1)

Assuming the spectrum has finite support, this point defines a box in this
space which contains the spectrum (Figure 4.1). We call this point the band-
width vector1.

Figure 4.1 – The bandwidth of the signal is the point corresponding to the
99th percentile of the spectrum. It defines a box containing most of the energy
of the spectrum.

This tool (in a 2D setting2) has been used as a prior-analysis in Durand
et al.’s bilateral filtering method for rendering [47]. They derived the approx-
imation of the bandwidth after one bounce of infinite frequency angular light
source. They predicted the adaptive density for shading in screen space and
performed reconstruction on a small set of sample using a bilateral filter.

Bagher et al. [9] used it to estimate both the number of samples required
for integrating acquired materials and the number of shading evaluations in
screen space. To build the bandwidth buffer, they approximate the bandwidth
of the integral with the weighted average of the bandwidths of the incoming
rays.

4.1.1.1 Application of the Different Operators

The bandwidth propagation is build on its vector notation. Given a bandwidth
vector b⃗ = (bx, bθ)

T we describe the matrices for the linear operators, or the
direct transformation of the vector for non-linear effects. We only describe
operators present in the corresponding publication [9].

1The derivation of matrix operations for the bandwidth vector is part of the contribution
of this thesis (see [9]). But we present it as a previous work to emphasis on the covariance
matrix’s advantages.

2One dimension for space, one dimension for angle. The spectrum is supposed to be
isotropic in space and isotropic in angle

68



4.1. PREVIOUS WORK

Travel After a travel of d meters, the resulting bandwidth vector will be:

b⃗′ = Td b⃗

Where the 2D transport matrix is:

Td =

[
1 0
−d 1

]

Curvature After the virtual projection on a surface with a local maximum
curvature κ, the resulting bandwidth vector will be:

b⃗′ = Cκ b⃗

Since the derivation is done in 2D, there is no need for rotation of the
signal. We are looking at the maximum bandwidth per dimension. Thus,
the curvature matrix becomes a curvature coefficient κ, the maximum of the
diagonal elements of the curvature matrix. The 2D curvature matrix operator
is:

Cκ =

[
1 κ
0 1

]

BRDF and texture The resulting bandwidth vector after the reflection of
the input local light-field by the surface is:

b⃗′ =

[
bx + t

min(bθ,mθ)

]
Where t is the texture bandwidth and mθ is the BRDF bandwidth.

Scaling After the scaling (e.g., for projection) of the input spectrum, the
bandwidth vector of the new spectrum is:

b⃗′ = Pαb⃗

Where the scaling matrix is:

Pα =

[
α 0
0 1

]

4.1.1.2 Discussion

The bandwidth vector has a compact formulation that makes it practical. Fur-
thermore, the matrix formulation is interesting as it allows a clean algebraic
definition of the operators.

But the bandwidth vector does not capture anisotropy. The notion of band-
width of a Monte Carlo estimate is not theoretically sound (but it works for
the case of one bounce without visibility). It is thus not applicable for generic
applications with the motion operator.

69



4.1. PREVIOUS WORK

4.1.2 The Wedge Function

The wedge function was first introduced by Chai et al. [21] for image based
rendering using plenoptic sampling, then used by Egan et al. [49, 51, 50] in
the study of linear motion of shadows, texture, and occlusion. This tool gives
a better intuition of the bounding shape of the spectrum than the bandwidth
estimation when the spectrum studied is known to be bounded by two shears
of the same 1D input spectrum.

4.1.2.1 Definition of the Wedge Function

We take the example of the travel of the signal in space. We characterize, in
the Fourier domain, a geometrical bounding of the spectrum between distance
of travel d1 and d2 with d1 < d2. If the input signal is a dirac in angle and a
constant in space, we end up with a spectrum enclosed by the wedge function
(Figure 4.2).

Figure 4.2 – The wedge function defined as the space covered by a continuous
shear from d1 and d2. If the input spectrum is one dimensional, before the
shear, we can define a tight bound of the possible spectrum.

Egan et al. apply this analysis to the study of linear motions such as: texture
motion, shadow motion and environment maps rotations [49], and extended
this approach to directional occlusion analysis [51, 50]. Each analysis requires a
special case formula, but all resulting spectrum share the same wedge enclosing.
Having such knowledge of a tight bounding allows to define an optimal packing
of samples.

4.1.2.2 Applications

This wedge analysis relies on a particular configuration, namely continuous
shears, and cannot be extended to more general cases. This is why, contrarily to
other presented tools, we will not derive operators, but cite cases of application.

Motion of a diffuse textured object is studied in the space-time domain
(δx, δt). If f(δx, δt1) is the object radiance on screen at the starting posi-
tion, the translation of the object will result in the sheared radiance function:
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g(δx, δt) = f(δx+vδt, δt). If the motion is not uniform, the resulting spectrum
is enclosed inside a wedge area (v1, v2) where v1 is the minimum speed and v2
is the maximum speed. (Figure 4.3).

(a) Moving textured object (b) Associated wedge
function

Figure 4.3 – The wedge function describes the area in which the moving texture
object’s spectrum lies.

Occlusion consider the case of multiple planar occluders. If the occluders
are bounded in depth where d1 is the first occluder depth and d2 is the last
occluder’s depth the resulting occlusion spectrum is contained inside the wedge
(d1, d2) in the angle-space domain (Figure 4.4)

(a) A set of planar occluders (b) Associated wedge
function

Figure 4.4 – The wedge function describes the area in which the occluders
spectrum is enclosed.

4.1.2.3 Discussion

The wedge function is limited to special cases of light transport. In those
configurations, it is a powerful tool as its evaluation is simple. But we aim to
perform a generic analysis in a context of global illumination.

4.1.3 Density Estimation of the Spectrum

This method evaluates the spectrum using a density estimation approach.
Much like the photon mapping method, samples are drawn in the frequency
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domain with probability density equal to the input local light-field’s spectrum
(Figure 4.5). Samples are updated individually for each operation on the light-
field.

Figure 4.5 – The spectrum is densely sampled and the bandwidth is estimated
from this set of points.

Soler et al. [165] used this method to estimate the local light-field spectra
on the lens and on the sensor for a one bounce reflection assuming that the
incoming light-field before the reflection was of infinite angular frequency.

4.1.3.1 Application of the Different Operators

The operators are defined for sample positions p⃗i individually. To apply an
operator, one has to loop over all the samples and apply the individual operator.

Linear operations Linear operations are applied like for the bandwidth
operator. Each position is multiplied by the operator’s matrix:

p⃗′i = MOp p⃗i

Where MOp is the matrix of the operator.

Occlusion The convolution with the occluder’s window is done by summing
the spatial position of the sample with a random position o⃗ϵ drawn from the
PDF of the occluder.

p⃗′i = p⃗i + o⃗ϵ

This property comes from the fact that the random variable of the convo-
lution of two PDF is the sum of the individual random variables of the PDFs
(Figure 4.6).

BRDF The multiplication with the spectrum of the BRDF is done by clamp-
ing samples that are over the angular bandwidth of the BRDF, bθ. A sample
is discarded if the sample angular position piθ > bθ.
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Figure 4.6 – Convolution is done by moving the input positions (right fig-
ure) by random displacements along x (left figure) sampled from the occluder’s
spectrum (center figure).

4.1.3.2 Discussion

While it was not described in their paper (as they derived a 2D version of the
spectrum), the distribution of points expresses the anisotropy of the spectrum.
This information is needed for applications using the time operator as the
projected direction of motion influences the resulting operator.

But a lot of samples are required to obtain a decent estimator of the spec-
trum. The more bounces the light-path will make, the more samples it will
require since each BRDF operation removes some samples. It is thus not ap-
plicable for global illumination algorithms.

4.2 The Covariance Matrix

Our goal is to find a compact and efficient structure to determine the spread
and orientation of the spectrum after several bounces. None of the existing
methods is able to fulfill all of these criteria. We present a new structure: the
Covariance matrix that has a compact storage, allows a matrix formulation of
the operators, estimates anisotropy, as well as variance, of the local spectrum
and is compatible with Monte Carlo integration.

First, we will introduce the notion of covariance for density functions (Sec-
tion 4.2.1). We will introduce the covariance matrix and demonstrate that it
is the smallest set of information capable of estimating the covariance (Sec-
tion 4.2.2 and Section 4.2.3). We will define matrix equivalents for the opera-
tors (Section 4.2.4) and validate experimentally the covariance matrix estimate
with measured covariance matrix (Section 4.2.5). Finally, we will discuss the
relation between the covariance matrix and previous works on Gaussian beams
in the physics community (Section 4.2.6).

4.2.1 Covariance of Density Functions : Definition

The covariance of a probability density function (or pdf) f : RN → R with zero
mean for vector x⃗ ∈ RN against vector y⃗ ∈ RN is defined as:

covx⃗,y⃗(f) =

∫
t⃗∈RN

⟨⃗t, x⃗⟩⟨⃗t, y⃗⟩f (⃗t) dt⃗ (4.2)
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Where ⟨x⃗, y⃗⟩ denotes the dot product between x⃗ and y⃗. The covariance
is a generalisation of the variance to higher dimensions. When N = 1 and
x⃗ = y⃗ = 1, the covariance is the same as the variance.

Prokhorov [140] was the first to introduce the covariance of a measure us-
ing the integral form in real space. It was later generalized to probability
density functions defined over vector spaces as we can see in Vakhania et al.’s
monograph [175, Chapter III.2].

The covariance of a probability density function is the extension of the
second moment matrix for a random vector of finite dimension. Given a random
variable X with probability density function f with null expectation, the second
moment matrix (or covariance matrix of X) is defined as:

X = E(XXT ) (4.3)

An unbiased estimator of X is:

X̃ =
1

N

N∑
i=0

xix
T
i

→
N=∞

cov(f)

4.2.2 The Covariance Matrix

4.2.2.1 Definition

We are interested in the smallest set of information that defines the covariance
of a given function f for any pair of vectors (x⃗, y⃗). This is embodied by the
covariance matrix. The covariance matrix is a N×N matrix defined for a given
basis of RN , (e⃗i)i∈[1..N ].

Definition : The covariance matrix of a probability density function f :
RN → R, with respect to the basis (e⃗i)i∈[1..N ] is a N ×N matrix where:

i,j =

∫
t⃗∈RN

⟨⃗t, e⃗i⟩⟨⃗t, e⃗j⟩f (⃗t) dt⃗, ∀(i, j) ∈ [1..N ]2 (4.4)

In the rest of this thesis, we will use the canonical basis for the covariance
matrix and avoid talking about the basis used to define it.

4.2.2.2 What is the Covariance Matrix ?

A Frame Our space of study is RN which is Hilbertian, the covariance matrix
defines (if it is non degenerated) a frame of the space (Figure 4.7). An eigen-
decomposition of it results in N eigen-vectors being the principal directions of
the density function and of N eigen-values being the variances of the density
function along the associated vectors.

A Notion of Entropy The differential entropy of a PDF with covariance
is bounded by [34]:

h(f) ≤ 1

2
log

[
(2πe)N det()

]
(4.5)
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Figure 4.7 – When the covariance matrix has full rank, it defines a frame of
the RN space. The length of the frame’s vectors are the variances along those
vectors. Here we display the eigen-decomposition of the covariance matrix of
the amplitude of the Lena picture.

Where h(f) is the differential entropy, N is the number of dimensions of
the input domain of f and its covariance matrix. The differential entropy
extends, in information theory, the notion of entropy3 of random variables to
their associated PDF. For example, a high determinant of the covariance matrix
will result in a highly varying signal. Samples (light-path associated with this
portion of the space) will estimate the average value with a low certainty.

The Hessian matrix The covariance matrix of the amplitude is, up to a
sign change, equals to the Hessian of the light-field (Property 3).

4.2.3 Properties

Property 1. The covariance matrix is symmetric and its diagonal elements
are positive.

It results from the integral definition and the fact that we are looking at
the amplitude of the spectrum which has value in R+. It also means that the
frame defined by the covariance matrix is orthogonal.

Property 2. For any couple of vectors x⃗ ∈ RN , y⃗ ∈ RN the covariance of a
given function f for x⃗ against y⃗ is:

covx⃗,y⃗(f) = x⃗T
e y⃗e

Where is the covariance matrix of f with respect to the canonical basis (e⃗i)
and x⃗e is the projection of x⃗ on it.

This property is important since for any rotation in RN , we can find the
new covariance matrix in the new basis. The definition of the covariance matrix

3The entropy was defined by Shannon as the uncertainty of information in a message per
unit of information [161].
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defined with respect to the basis (ei) in the basis (e′i) (both are orthogonal and
normed) is:

′ = RTR (4.6)

Where R is the rotation matrix from (ei) to (e′i).

Proof. As (e⃗i) is a basis of RN we can define x⃗, and y⃗, using its decomposition
on this basis:

x⃗ =
∑
i

⟨x⃗, e⃗i⟩e⃗i (4.7)

covx⃗,y⃗(f) =

∫
t⃗∈RN

⟨⃗t, x⃗⟩⟨⃗t, y⃗⟩f (⃗t) dt⃗

=

∫
t⃗∈RN

⟨⃗t,
∑
i

xie⃗i⟩⟨⃗t,
∑
j

yj e⃗j⟩f (⃗t) dt⃗

=
∑
j

∑
i

xiyj

∫
t⃗∈RN

⟨⃗t, e⃗i⟩⟨⃗t, e⃗j⟩f (⃗t) dt⃗

=
∑
j

∑
i

xiyji,j

= x⃗T
e y⃗e

Property 3. The covariance of a particular direction against itself of the
Fourier transform of a function f̂ correspond to the second partial derivative
of f at the position where the covariance is computed.

covx⃗,x⃗(f̂) =
d2f

dx⃗2
(⃗0)

Proof. Multiplying a Fourier transform, f̂(µ), by iµ provides the Fourier trans-
form of the derivative of f . Given the covariance matrix definition (Equa-
tion 4.4), we see that it corresponds to the value of the second derivative at
the central position:

i,j =

∫
µ⃗∈RN

µiµj

∣∣f̂ |(µ⃗) dµ⃗

=

∫
µ⃗∈RN

∣∣∣F[ d2f

dxidxj

]∣∣∣(µ⃗) dµ⃗

=
∣∣∣ d2f

dxidxj

∣∣∣(⃗0)
Property 4. The covariance matrix of the weighted sum of two density func-
tions is the weighted sum of the respective covariance matrices of the density
functions.

(αf + βg) = α′(f) + β′(g)

Where α′ = α
||f ||

||αf + βg||
and β′ = β

||g||
||αf + βg||
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Proof.

i,j(αf + βg) =

∫
t⃗∈RN

⟨⃗t, e⃗i⟩⟨⃗t, e⃗j⟩
(
αf (⃗t) + βg(⃗t)

)
dt⃗, ∀(i, j) ∈ [1..N ]2

= α′
∫
t⃗∈RN

⟨⃗t, e⃗i⟩⟨⃗t, e⃗j⟩f (⃗t)dt⃗+ β′
∫
t⃗∈RN

⟨⃗t, e⃗i⟩⟨⃗t, e⃗j⟩g(⃗t)dt⃗

= α′
i,j(f) + β′

i,j(g)

Property 5. We can build a Monte Carlo estimate of the covariance matrix
using Property 4.

Proof. Let I be a function resulting from the integration of a positive function
f over one of its variable.

I(x) =

∫
y

f(x, y)dy

We would like to estimate the covariance matrix of I, but we only have
access to the covariance matrix of f .

i,j(I) =

∫
x

xixj
I(x)

||I||
dx

Where ||I|| =
∫
x
I(x)dx is the normalisation constant to ensure that I(x)

||I|| is
a pdf.

If we have only access to a Monte Carlo estimate of the function I, we
cannot estimate its covariance matrix. But we can provide a Monte Carlo
estimate of the covariance matrix of I from the Monte Carlo estimate of I.

i,j(I) ≃
∫
x

xixj

∑
yk

f(x, yk)

||I||
dx

=
∑
yk

1

||I||

∫
x

xixjf(x, yk)dx

=
∑
yk

||fk||
||I|| i,j

(fk)

Property 6. The covariance matrix of the convolution of two independent
density functions if the sum of the covariance matrices of the two functions.

(f ⊗ g) = (f) + (g) (4.8)

Proof. Recall that (f) ≃
∑

i xix
T
i , when x ∼ f (if f has zero mean). For this

proof, we use the property that a random variable whose PDF is a convolution
can be expressed as a product of uncorrelated random variables:

Xf⊗g = Yf + Zg
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If we express the unbiased estimator of (f ⊗ g), we obtain:

(f ⊗ g) =
∑
i∈N

xix
T
i

But we can express xi as a draw of two independent random variables yi
and zi:

(f ⊗ g) =
∑
i∈N

(yi + zi)(yi + zi)
T

=
∑
i∈N

yiy
T
i + ziz

T
i + yiz

T
i + ziy

T
i

The last terms
∑

i∈N yiz
T
i and

∑
i∈N ziy

T
i are the correlation terms and are

equal to zero. Thus the estimator of the covariance matrix of the convolution
is:

(f ⊗ g) =
∑
i∈N

yiy
T
i +

∑
i∈N

ziz
T
i

= (f) + (g)

Property 7. The covariance matrix of a density function whose input space
is linearly transformed is equal to:

′ = |A|ATA (4.9)

Where A is the linear transformation of the input space, and |A| is its
determinant.

Proof. Let fA be the transformed function from f such as fA(x⃗) = f(A−1x⃗):

i,j(fA) =

∫
t⃗∈RN

titjf(A
−1t⃗)dt⃗

= |A|
∫
t⃗∈RN

(At⃗)i(At⃗)jf (⃗t)dt⃗

= |A|
∫
t⃗∈RN

(∑
k

Ak,iti

)(∑
l

Al,jtj

)
f (⃗t)dt⃗

= |A|
∑
k

∑
l

Ak,iAl,j

∫
t⃗∈RN

titjf (⃗t)dt⃗

= |A|
∑
k

∑
l

Ak,iAl,j i,j(f)

= |A|(AT (f)A)i,j

Property 8. Given a density function f(x⃗, y) and its covariance matrix , the
covariance matrix of the density function g(x⃗) =

∫
y
f(x⃗, y)dy, is

(g) =
[ [Id 0

0 0

]−1 ]−1 (4.10)
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4.2. THE COVARIANCE MATRIX

We call (g) a sliced covariance matrix. The sliced covariance matrix along
dimension i, |i of the covariance matrix is defined as:

|i =
[
S−1
i

]−1 (4.11)

Where Si is the matrix composed of vectors of the remaining basis completed
by a null vector.

Si =



e⃗1
...

e⃗i−1

0⃗
e⃗i+1

...
e⃗n


(4.12)

Proof. We build this approximation by looking at the equivalent Gaussian, g.
We apply Fourier’s slice theorem (Section 3.2.3.3) on the equivalent Gaussian.
The equivalent Gaussian of the integrated signal is:

g|i(x⃗) = g(x⃗|i) where (x|i)j = xj if j ̸= i and 0 else (4.13)

This is equivalent to removing the ith column and row of the inverse matrix
in the Gaussian formulation:

g
(x⃗)=e−x⃗T −1x⃗(4.14)

But this affects the inverse of the covariance matrix. Thus to obtain the
reduced covariance matrix, we need to invert it, remove the ith column and
row and invert it again to obtain a sliced covariance matrix.

This property requires the covariance matrix to be non-degenerate.

4.2.4 Application to Light Transport Operators

4.2.4.1 Travel in Space

The shear is a linear operator. Any linear operator can be represented by its
product with the operator matrix (Property 7):(

Td(l̂)
)
= ST

d

(
l̂
)
Sd (4.15)

Where Sd is the transport shear matrix for a distance of d meters. This
matrix has the form:

Sd =


1 0 −d 0 0
0 1 0 −d 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (4.16)
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4.2.4.2 Occlusion

The covariance matrix of a convolution of two density functions is the sum of
their respective covariance matrices (Property 6). Given the covariance matrix
of the visibility spectrum O, the resulting covariance matrix is:(

O(l̂)
)
=

(
l̂
)
+O (4.17)

For example, under the planar occluder hypothesis, the occluder matrix is:

O =


Oxx Oxy 0 0 0
Oyx Oyy 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 (4.18)

4.2.4.3 Rotation and Scale

Rotation and scale are linear operators (Property 7):(
Rotα(l̂)

)
= RT

α

(
l̂
)
Rα (4.19)

(
Pa(l̂)

)
= ST

a

(
l̂
)
Sa (4.20)

Where Rα is the rotation matrix of α radian. This matrix has the form:

Rα =


cos(α) − sin(α) 0 0 0
sin(α) cos(α) 0 0 0

0 0 cos(α) − sin(α) 0
0 0 sin(α) cos(α) 0
0 0 0 0 1

 (4.21)

Sa is the scaling rotation matrix of factor a. This matrix has the form:

Sα =


1 0 0 0 0
0 a 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (4.22)

4.2.4.4 Cosine term

The cosine term operator is a convolution. We use the covariance convolution
formulation (Property 6) between the incoming light-field covariance and the
covariance of the spherical Bessel function of the first kind (noted B):(

C(l̂)
)
=

(
l̂
)
+B (4.23)
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4.2.4.5 Reflection

We present the matrix operator for isotropic Phong parametrized BRDFs.
This operator is the multiplication of the input light-field’s spectrum and the
BRDF’s spectrum. We approximate it using the formula for zero-centered
Gaussians multiplication. When we multiply two zero-centered Gaussians, the
resulting distribution is a Gaussian whose inverse covariance matrix is the sum
of input inverse covariance matrices.

We need to take extra care for this operator since the covariance matrices
might be low rank when the distribution is a Dirac along one dimension. We
use pseudo-inverses instead of inverses in our derivations (noted with a plus
sign). We approximate the resulting covariance matrix using:

(l̂ × ρ̂) ≃
[
(l̂)

+
+ (ρ̂)

+]+ (4.24)

Where (ρ̂) is the covariance matrix of the BRDF. For example, the covari-
ance matrix of a Phong lobe is (proof in Appendix B.1):

(ρ̂s) =


0 0 0 0 0
0 0 0 0 0
0 0 s

4π2 0 0
0 0 0 0 0
0 0 0 0 0

 (4.25)

This formulation is consistent with previous work on frequency analysis of
reflection [141].

4.2.4.6 Transmission

Specular transmission is handled by a convolution with the window kernel,
followed by a scale of the angular domain. Equation 3.58 is translated in terms
of covariance matrices by an addition with an angular block matrix followed
by a linear transform: (

Tr(l̂)
)
= ST

((
l̂
)
+W

)
S (4.26)

Where W , the covariance matrix of angular window is empty everywhere,
excepted for the second angular coordinate:

W =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 wΩϕ

0
0 0 0 0 0

 (4.27)

The scale matrix S is defined as:

S =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0 0 n1 cos(i1)
n2 cos(i2)

0

0 0 0 0 1

 (4.28)
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Rough refraction is done like the BRDF operator (Equation 4.24).

4.2.4.7 Lens

The two shears formulation (Equation 3.64) is a linear operator:

L(d1,d2)

()
= LTL (4.29)

Where L has the following formulation:

L =


1 + d1d2 0 d1 0 0

0 1 + d1d2 0 d1 0
d2 0 1 0 0
0 d2 0 1 0
0 0 0 0 1

 (4.30)

4.2.4.8 Attenuation

Attenuation has no effect on the covariance matrix if the medium is homoge-
neous. For varying density participating medium, we use the occlusion formula
(Equation 4.17).

4.2.4.9 Scattering

The scattering operator behaves like the BRDF operator (Equation 4.24). But
it requires the knowledge of the covariance of the phase function. In this thesis,
we study the Henyey-Greenstein phase function [75] (noted HG). The definition
of the HG function is:

ρg(α) =
1

4π

1− g2

(1 + g2 − 2g cosα)
3
2

This function is one dimensional as this scattering model is one dimen-
sional. The HG function has been proposed to model the scattering of light by
interstellar matter in the galaxy [75]. The reduced dimensionality of the phase
function means that the covariance matrix will also be one dimensional:

(ρ̂g) =


0 0 0 0 0
0 0 0 0 0
0 0 cov(|ρ̂g|) 0 0
0 0 0 0 0
0 0 0 0 0

 (4.31)

Property 9. The covariance of the HG phase function is (See Appendix B.2
for the proof):

cov(|ρ̂g|) =
3

4π

|g|(1 + |g|)
(1− |g|)4

(4.32)

Figure 4.8 shows the influence of the g parameter on the frequency content
of the scattered radiance. Increasing this parameter towards one reduces the
low-pass filter effect of scattering.
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Radiance, no medium Radiance, g = 0.5 Radiance, g = 0.8 Radiance, g = 0.9

Angular Covariance, Angular Covariance, Angular Covariance, Angular Covariance,
no medium g = 0.5 g = 0.8 g = 0.9

Figure 4.8 – We illustrate the low-pass effect of scattering. The scene is
composed of a square light source that diffuses light in a uniform volume with
a Henyey-Greenstein scattering distribution. The camera is placed towards the
light to show the extent of the diffusion. The greater the diffusion the less the
angular covariance. As we proved, scattering acts as a low pass filter over
angular frequencies. The color images show the θθ, θϕ and ϕϕ covariance
values mapped on the RGB channels (r =θθ, g =θϕ, b =ϕϕ.

4.2.4.10 Motion

The motion matrix operator is a linear shear operator. Its matrix is expressed
using a diagonal matrix with correlation terms performing the shear:

Mv⃗() = MT
v⃗ Mv⃗

Where the operator’s matrix is:

Mv⃗ =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
vx vy vθ vϕ 1


4.2.5 Validation of the covariance method

In this section, we present validation examples for the our covariance matrix
estimate. We designed a 5D light-field ray-tracer and compared the covariance
from simulation against our covariance estimate.

The first test scene is composed of a light source directed towards a trans-
lating diffuse checkerboard (Figure 4.9). The second test scene is composed
of a square light source directed towards a diffuse square receiver partially oc-
cluded by a rotated square blocker (Figure 4.10). For this test scene, we used
the cone grid to evaluate occlusion (Section 4.3.2.2).
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Figure 4.9 – A Gaussian light source illuminates a moving diffuse reflector
with a high frequency texture in the orthogonal direction to the motion. We
estimate the covariance at several locations (after the source, before reflection
and after reflection) using a light-field ray-tracer and compare the result to
our estimated covariance matrix. The results are close and differences can be
explained from the window function used before the Fourier transform of the
measured data.

Our covariance prediction are close to the measured covariance. The shear
in the time domain is correctly depicted by our prediction (Figure 4.9). The
equivalent Gaussian (in dotted) captures the complicated spectrum after the
reflection on the sliding reflector. The anisotropy of the signal after occlusion
is well estimated (Figure 4.10). The differences between the two matrices are
explained by the window function we used to compute the Fourier transforms
of the measured light-fields.

4.2.6 Comparison with Gaussian Beams

We emphasize on the novelty of the covariance matrix propagation. To our
knowledge, the closest work on matrix propagation of light information is Gaus-
sian beams analysis [2]. In this section, we give a short review of Gaussian
beams and highlight the differences between these two tools.

4.2.6.1 Definition of Gaussian beams

To analyse paraxial systems, geometrical optics often approximate the differ-
ential irradiance by a Gaussian function [42]: the Gaussian beam:

Ψ(x, z) =
4

π2

√
e−i(ϕ(z)−ϕ0)

ω(z)
e
−i kx2

2R(z)
− x2

ω2(z)
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Predicted covariance Measured covariance

Measured spectrum (log scale)

Figure 4.10 – We analyse a soft shadow cast by a tilted plane. The covariance
is estimated after the reflection by the diffuse plane. The resulting spectrum
exhibits the same orientation. The measured spectrum is estimated using a
windowing of the measured light-field. This windowing increases the frequency
content of the spectrum. We can see this difference on the plot (the cross) and
on the measured covariance.

Where x is the transversal dimension, and z is the axial dimension (in a 2D
setting). k describes the wavelength of the beam and R(z), ϕ(z), ϕ0 and ω(z)
describe the behaviour of the beam (dispersion, width and waist position).

The propagation of a Gaussian beam through an optical system can be stud-
ied using matrix multiplications [2]. A Gaussian beam propagating through a
thin lens keeps its Gaussian nature [43]. Those properties are interesting to
model and test optical systems.

4.2.6.2 Comparison with Covariance

Covariance matrices exhibit a richer set of information than Gaussian beams.
The former characterizes the spectrum of the radiance function while the later
characterizes the spatial distribution of irradiance.

Covariance matrix allows to analyse paraxial systems as the matrix op-
erators such as refraction and travel are dual of the paraxial operators [60].
Complex optical systems can be formulated using the set of operators as well
as multiple inputs systems thanks to the additivity of covariance. The later is
not possible with the definition of Gaussian beams.

4.3 Occluder Spectrum Evaluation

We saw various methods to represent or approximate the frequency spectrum of
the light-field function. Yet the occlusion operator requires the corresponding
representation of its frequency spectrum. We need to evaluate it during the
construction of the light-path.

We first review existing approaches of occlusion evaluation (Section 4.3.1).
Then we propose two new data structure to obtain local occlusion information
without altering the core of the ray-tracing engine (Section 4.3.2).
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4.3.1 Previous Work

Previously proposed approaches require either sampling of visibility (Section 4.3.1.1)
or its rasterization (Section 4.3.1.2).

4.3.1.1 Sampling Occlusion

Durand et al. [47] used a sampling of the visibility to estimate the occlusion
for directions on the hemisphere of a particular hit-point with the scene.

This method requires an appropriate sampling of the hemisphere and has
to be done for each ray (but it can be precomputed for eye rays). This is not
suited for a global illumination setting as visibility evaluation is a bottleneck.

4.3.1.2 Depth Map Discontinuities

Soler et al. [165] evaluated the visibility using a depth map. The visibility
is rasterized which is cheaper than Durand et al. [47]. The evaluation of the
directionality (when needed) is made using the gradient direction in the tile
used to detect the discontinuity (for example a 3× 3 pixels tile).

This method is not adapted for a general purpose, such as global illumina-
tion. Gathering local occlusion information for a given ray requires to rasterize
occluders.

4.3.2 Voxel Grids

We incorporate occlusion information into a spatial structure to evaluate it
during a marching step. The data structures are two voxel grids where voxels
store distribution information of the nearby occlusion.

The voxel grid has been developed for algorithms that look at multiple
reflections analysis or when a depth map cannot be evaluated (for environment
maps for example). This spatial structure subdivides the 3D scene into voxels
in which we compute a conservative approximation of the occlusion frequency
spectrum with the given spectrum representation.

During the covariance computation step, for a given ray, we ray march into
this grid, using ray marching [4], to estimate the minimum occlusion window.

4.3.2.1 Normal voxel Grid

During the covariance computation step, for a given ray, we ray march into
this grid, using ray marching [4], to estimate the minimum occlusion window.

Description: The normal voxel grid stores a Gaussian representation of the
normal density distribution (noted NDF) inside the voxels.

Construction: For each object inside the voxel grid, we sample positions
according to the area of objects. To each position we compute the associated
normal. We define its covariance matrix using a dirac function in the direction
of the normal. To obtain the covariance matrix of the normal distribution,
we sum the individual covariance matrices of the normals. We also store the
distance to the closest sample point with the center of the voxel.

86



4.3. OCCLUDER SPECTRUM EVALUATION

Evaluation of covariance is done by slicing from the 3D covariance matrix
of normals using the tangent plane of the ray’s direction. The matrix is inverted
and rotated to align the ray’s direction with the third component of the matrix.
Then, the 2D submatrix of the tangent plane is extracted and inverted to obtain
the covariance matrix of the occluder. From the normals’ covariance matrix N ,
and a ray’s direction d⃗, we define the occluder’s covariance matrix O as:

−1
O =

[
RT

d⃗ N
−1Rd⃗

]
1,2

(4.33)

This slicing is not equivalent to an integration, as we store a Gaussian
representation of the NDF and not a spectrum. It extracts the distribution of
direction inside the tangent plane of the ray.

Frequency leaking: Using a covariance matrix to represent the distribution
of normals smoothes it. This introduces leaking of frequency when evaluating
the covariance for ray pointing in directions close to the normal of a surface.
This leaking creates an undesirable effect: self-occlusion of surfaces (See Fig-
ure 4.11(a)). This self-occlusion is not problematic for one bounce illumination
applications but in a global illumination setting, the self-occlusion accumu-
lates leading to overestimation of occlusion. To avoid this effect, we introduce
another voxel grid: the cone voxel grid.

(a) Using a covariance voxel grid (b) Using a cone voxel grid

Figure 4.11 – Auto-occlusion (a) produces an overestimate of the local fre-
quency. Using a cone voxel-grid (b) allows to remove this issue.

4.3.2.2 Cone Voxel Grid

The cone grid stores the cone in which the NDF lies. This is a coarser rep-
resentation of the NDF, but in our experiences, it gives a cleaner frequency
estimate of the occlusion for the self-occlusion issue.

Definition: The cone grid stores a bi-cone in each voxel. A bi-cone is defined
with a mean direction and an aperture. To test if a ray is occluded by a nearby

87



4.4. NOTES ON UNI-MODALITY

cone, we test for the intersection between the cone and the orthogonal plane
of the ray. It allows to get rid of some self-occlusion issues (Figure 4.11(b)).

Construction: For each object inside the voxel grid, we sample normals. We
first construct the mean direction of the cone by computing the mean normal
and then calculate the extent of the cone using the normal with the smallest
dot product to the mean direction. We also store the distance to the closest
sample point with the center of the voxel.

Evaluation of covariance is done first by testing for intersection between
the orthogonal plane and the cone (Figure 4.12), then the mean direction is
projected onto the tangent plane to estimate the direction of occlusion. Finally,
we weight this matrix by the distance factor.

Figure 4.12 – We test the occlusion of a cone by intersecting the tangent plane
of the ray with the cone. The main direction c⃗ is then projected on the tangent
plane to evaluate the direction of occlusion.

4.4 Notes on Uni-modality

All representations of the spectrum presented in this chapter estimate a uni-
modal spectrum. This means that a spectrum consisting of several distinct
components will be treated as a whole (Figure 4.13). This is not a problem
in practice as we are interested in the complete spectrum. But it could be
interesting to separate near-diffuse and specular components of a signal for
example.

It is possible to perform a multi-modal analysis of the spectrum with co-
variance, assuming that different modes corresponds to different light-paths
(and that we have the knowledge of which mode a light-path correspond to).
The additivity of covariance allows to extract the different modes. But such
method would impose extra storage since multiple covariance matrices would
be required to estimate one spectrum.
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(a) Uni-modal spectrum (b) Multi-modal spectrum

Figure 4.13 – Our analysis is uni-modal. We obtain the information about the
complete spectrum using a covariance analysis for example (a). But a spectrum
can be composed of distinct frequency elements on which a multi-modal analysis
could be beneficial (b). In the case presented here, there is a low frequency
component around the DC and an anisotropic high frequency component with
a close to Gabor type.
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5 | Applications of Frequency Anal-
ysis of Light Transport

We showed how to derive local frequency content around a light-path us-
ing a set of operators on 5D radiance functions (Chapter 3). We adapted this
analysis into a set of computationally tractable operations on a generic rep-
resentation, the covariance matrix (Chapter 4). In this chapter, we look at
applications of the covariance matrix. We show its usefulness for both Monte-
Carlo integration and kernel density estimation algorithms and prove that it
can handle various light phenomena like depth-of-field, motion blur and par-
ticipating media.

In this chapter we present the following contributions:

We present applications of the covariance analysis. Those applications intend
to accelerate the convergence of either Monte-Carlo integration or kernel den-
sity estimation methods. More precisely, we present:

• A new image space adaptive sampling and filtered reconstruction al-
gorithm that takes anisotropic variations of the integrand into account
(Section 5.1).

• Methods to perform filtering in object space based on kernel density
estimation (Section 5.2).

• Methods to perform adaptive sampling of crepuscular rays and adaptive
filtering of photon beams using an estimate of the fluence spectrum
(Section 5.3).

5.1 Image Space Applications

To prove its usefulness, we use the covariance matrix (Section 4.2) to perform
adaptive sampling and reconstruct the resulting sparse set of samples with
gather filters. We benefit from the spatial, angular and temporal analysis by
filtering distributed effects (e.g., depth-of-field, motion blur, and soft shadows).

5.1.1 Algorithm

Our algorithm decomposes into four steps: First, we trace a small amount of
light-paths from the light to the camera and estimate the associated 5D covari-
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(a) Estimation of
covariance along a

path

(b) The covariance
buffer

(c) Samples, based
on estimated

density

(d) Anisotropic
filtering using the
covariance matrix

Figure 5.1 – We estimate covariance matrices from a set of light-paths (a).
We store them in a covariance buffer of the size of the screen containing one
covariance matrix per pixel (b). This covariance buffer predicts a required den-
sity of samples (c) and the associated filter (d). The number of required density
of samples can be below 1.

ance for each pixel of the image (Figure 5.1(a)). We store the resulting covari-
ance matrices in a covariance buffer. Then, we evaluate the covariance of the
2D image signal’s spectrum from the 5D covariance matrices (Figure 5.1(b)).
For each pixel, we estimate a sampling rate from the 5D covariance and a recon-
struction filter from the 2D covariance. We sample according to the estimated
density (Figure 5.1(c)). Finally, we reconstruct the final image with a gather
algorithm and the estimated filter (Figure 5.1(d)).

5.1.1.1 The covariance buffer

We store covariance in a 2D buffer with the same resolution as the picture. This
buffer contains a single covariance matrix per pixel. In a first pass, we accumu-
late a fixed number of covariance matrices per pixel (in the covariance buffer)
by sampling light-paths and estimating the associated covariance matrix at
the sensor position using our forward analysis (Figure 5.1(a)). We average the
matrices in the same pixel using the Monte-Carlo estimator of the covariance
matrix (Property 5).

5.1.1.2 Preintegration

We derive filters in the 2D space of the image to avoid higher dimensional data
structures for the samples. For that we express the covariance matrix of the
signal after integration with time and lens (Figure 5.2). In the primal, this is
done by integrating the input signal multiplied by the time shutter and lens
window:

l(x, y) =

∫
u,v,t

l(x, y, u, v, t)ws(u, v, t)dudvdt (5.1)

Where ws is the product of the lens window and the camera time shutter.
The equivalent in Fourier is a convolution with the window spectrum eval-

uated at the DC:
l̂(Ωx,Ωy) =

[
l̂ ⊗ ws

]
(0, 0, 0) (5.2)
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Figure 5.2 – We want to estimate the spectrum of the signal (here in space-
time) along the spatial axis, after integration of the time domain ((a) in blue).
We apply the slice theorem and evaluate the covariance matrix based on a Gaus-
sian approximation.

Given the covariance matrix of the 5D input light-field, the covariance ma-
trices of the resulting image on the sensor is estimated by summing the input
covariance matrices with the window covariance matrix and slicing them to
keep only the spatial components:

i,j =
[
+ws

]
0θ,0ϕ,0t

(5.3)

5.1.1.3 Sampling rate and Filter

Once the buffer is populated with 5D and 2D covariance matrices, we estimate
the required number of samples and the associated filter. We derive the number
of samples of a pixel using the associated 5D covariance matrix and derive
the filter using the 2D covariance matrix. Using the 2D covariance matrix to
derive sampling rate would require to integrate the time and lens for each image
sample. As we want to distribute the integration of those effects, we use the
5D sampling rate.

Sampling rate: To express Monte-Carlo integration in the Fourier domain,
we reformulate it as a two step process working on continuous functions [46].
Given an integrand f defined over a domain A and a distribution of samples
Sn, we rewrite the Monte-Carlo integration as:

In =
∑

xi∈Sn

wif(xi) =

∫
x∈A

Sn(x)f(x)dx (5.4)

Where wi is the weight associated with the sample xi, and Sn is either the
set of samples or the associated function defined as:

Sn(x) =
∑

xi∈Sn

wiδ(x− xi)

Figure 5.3 presents this concept for the integration of the Lena image. This
example assumes however that the sampling function is an infinite dirac comb.
To simplify the demonstration, we keep this hypothesis for the rest of the
demonstration.
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Figure 5.3 – Integration can be seen as a two step operation. Given an inte-
grand (a), given a sampling pattern (b), the resulting Monte-Carlo integral is
the integral of the product of those two functions. This continuous formulation
allows us to express it in the Fourier domain.

The Fourier equivalent of Equation 5.4 is the convolution of the two spec-
trum evaluated at the central position (also called DC term):

In =
[
f̂ ⊗ Ŝn

]
(0) (5.5)

We can interpret aliasing as pollution of the DC term by replicas of the
spectrum. This will happen if the samples are not close enough to capture the
frequency of the integrand (Figure 5.4).

Figure 5.4 – In the Fourier space, the integration becomes the convolution
between the spectrum of the integrand and the spectrum of the sampling function
evaluated at the DC.

We follow the idea of Egan et al. [49]: We assume that the sampling distri-
bution is a dirac comb with a given distance a between the samples. We need
to find the optimal a such that the number of samples is minimal and we avoid
aliasing (Figure 5.5).

For a given dimension, we need to have our dirac comb (in Fourier) to be
separated by the frequency width of the integrand. The covariance gives us this
information as it provides the variance of the spectrum along any axis. We use
this property to define a sampling rate per unit hypercube from the covariance
matrix. The total density of samples in a pixel times the shutter speed times
the lens size is given by the square root of the determinant of the covariance
matrix multiplied by a constant which converts the standard deviation into
spread:

N = k
√
|| (5.6)
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Figure 5.5 – From the analysis of Monte-Carlo integration in the Fourier
domain, we can see two constraints. Assuming we are sampling a dirac comb,
the distance between the samples affects the integration. Is the distance is below
the frequency extent of the integrand, we create aliasing. But we need to keep
the distance between samples as large as possible to reduce costs.

Since we separate our samples by the spread of the spectrum, the resulting
packed spectra overlap each other. But replicas do not overlap the DC term.
That is the necessary condition to avoid aliasing.

Filters: Using the 2D covariance matrices, we develop filters that smooth
the samples based on the estimated local frequency of the final image. We use
Gaussian kernels to smooth our samples because they allow simple derivation
of the filters. We derive a filter with the same spread and orientation as the
signal. The intuition behind this is that we filter the samples in regions where
the signal does not vary much. For high variation regions, we rely on adaptive
sampling to reduce aliasing.

We use filters with the same covariance matrix as the signal. Gaussians can
be formulated from the Mahalanobis distance with respect to the covariance
matrix. Furthermore the Fourier transform of a Gaussian is a Gaussian which
covariance matrix is inversed:

g(p⃗) = e−d(p⃗,) where d(, p⃗) = p⃗T−1p⃗

ĝ(µ⃗) =
1

||
e−πd(−1,p⃗)

d(, p⃗) is called the squared Mahalanobis distance of vector p⃗, with zero mean,
to the matrix . We assume that the covariance matrix C is invertible. It is not
always the case, but we have found in practice that adding small quantities to
the diagonal almost always leads to an invertible matrix.

The resulting filter for pixel with covariance matrix is then:

h(p⃗) = Ae−πp⃗T p⃗ (5.7)

We used a weighted average of the samples using the filter. It allows to avoid
the computation of constant A (present in the numerator and denominator):

I =
1∑

i h(p⃗i)

∑
i

h(p⃗i)l(p⃗) (5.8)

As for gathering methods, reconstructing the signal from a sparse set of
samples using filters produces a biased image. But it is to notice that since
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the kernels are adapted to the local spectrum of the resulting image, we have
a control over the bias. We will gather samples from regions where the signal
is not varying. This means that the overall bias is small.

5.1.2 Test Cases

We first validate this method using a set of sample cases emphasizing specific
behaviours such as change of curvature, shininess, etc.

In a first set of examples (Figure 5.6 and Figure 5.7), we present how the
filtering process behave in the presence of motion-blur and depth-of-field. The
filters adapt to the local smoothness of the image thanks to the frequency
estimation. Because of the combination of correlation and slicing, the resulting
2D filters from the 5D covariance matrix adapt to the effect. This could not
be presented without an anisotropic analysis.

(a) Small lens (b) Large lens

(c) Small lens filters (d) Large lens filters

Figure 5.6 – We compare the resulting image space filters for the same scene
of diffuse checkerboard with different lens size. A large lens creates a bigger
blurring of the out-of-focus region. We modify our code to enforce the texture
to have the maximum image space frequency in order to emphasis on the lens
effect.

Contrary to other image space techniques [146, 130], we do not need to
compare the samples between each other. Since the number of covariance paths
is smaller than the number of radiance samples (by an order of magnitude),
we avoid computational expenses during the reconstruction step. But at the
expense of a prior-analysis on light-paths.

5.1.3 Results

We compared our algorithm to a standard path-tracer. The snooker scene
(Figure 5.9) presents a traditional snooker table under a sky environment map.
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(a) Scene (b) Filters

Figure 5.7 – We compare the resulting image space filters for a scene composed
of diffuse checkerboard with motion along the y axis of the image. Large motion
will produce more stretched filters.

(a) Scene (b) Filters

Figure 5.8 – We compare the effect of shininess on filters spread on spheres
with material being the combination of a diffuse term and of a glossy lobe. For a
nearly specular lobe (b), the filters are small and do not overblur the image. In
contrast, for more smooth BRDFs, the filters spread more and diffuse samples
according to the light, curvature and BRDF (a).

The scene exhibits both low and high frequency materials (diffuse, glossy and
specular). Frequency information is computed using 15 covariance samples per
pixel. We limited the maximum number of primary rays per pixel to 100 for
our algorithm. We used a 200 voxels wide voxel grid for the occlusion detection.
We performed all computations on a Xeon W3520 at 2.66 GHz with 8GB of
RAM. Our algorithm takes advantage of parallel computing, with OpenMP,
for sampling both covariance rays and radiance rays.

We further compare the snooker scene in Figure 5.10 using insets of the
image. While the traditional ray-tracer still exhibits noise, our insets look
converged (But we are incorporating some bias in our solution due to the
filtering approach). The green inset shows that for complicated cumulated
effects such as combination of depth-of-field and highly varying shininess, our
algorithm was not able to filter out the noise completely. This is because we use
a threshold on the number of samples per pixel. The analysis tells us that more
samples would be needed here. This is extensible with a progressive algorithm
that would resample high frequency regions on demand.

The helicopter scene (Figure 5.11) shows a toy lit by a square light source.
The rotor of the helicopter is rotating around its axis creating motion-blur,
while the textured background of the scene exhibits depth-of-field effect. We
used 10 light paths per pixel to estimate the covariance and a maximum of
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(a) Equal time reference
using 512 samples per

pixel (25 minutes)

(b) Our algorithm (25
minutes)

(c) Reference with same
maximum number of

samples per pixel (3000
sample per pixel, 2 hours

25 minutes)

Figure 5.9 – The snooker scene rendered using our algorithm at the center,
with a path tracer using the maximum number of samples in a pixel used in our
algorithm at the right (same quality), and using the same amounts of time as
our algorithm at the left.

Figure 5.10 – We compare insets of the rendering of the snooker scene from
our method and from a path tracer using the same amount of time. We show
here that using filters allow to get a noise-less image.

200 samples for the reconstruction. Again, we compare our results with a path
traced image computed in the same amount of time.

These scenes demonstrate that our method saves computation time for the
low frequency parts of the scene. We report timings in Table 5.1.

5.1.4 Limitations

Using non locally defined covariances of BRDF’s spectrum over-estimates the
materials frequency. This is visible in Figure 5.8 where only the reflection
lobe should be at the maximum frequency. With more complex materials’
covariances, we could correctly estimate the low frequency part of the snooker
ball’s BRDFs.

We are limited in this application by the use of a covariance grid. The reso-
lution of the space compared to features size can lead to poor estimator of the
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Figure 5.11 – The helicopter scene rendered using our algorithm (a) and
compared with an equal time path traced rendering (b). We used 10 light-paths
per pixel to estimate the covariance and used a maximum of 200 converged
samples for the reconstruction.

Scene Our (covariance tracing / reconstruction) Reference
Snooker 25m (2m36 / 16s) 2h25m

Helicopter 29m (2m / 16s) x

Table 5.1 – Timing comparison between our algorithm and our reference tracer
for the snooker (Figure 5.9) and for the helicopter scene (Figure 5.11). The first
column shows the time needed by our algorithm. Inside the brackets we show
the covariance acquisition and the reconstruction timings. For the helicopter
scene, we don’t report the path tracer timing since we are doing equal time
comparison.

visibility. In such a case, our algorithm will over-estimate the occlusion effect.
This will influence the sampling rate and the reconstruction (Figure 5.12).

Figure 5.12 – We compare different resolutions of the voxel grid for a complex
occluder. Note how the coarse resolution grid leads to small reconstruction
filters in most of the image.

Furthermore, the voxel grid adds cost to our covariance tracing step since we
have to perform ray marching into this structure. We developed this structure
to prove that it is possible to add the covariance analysis into a standard path
tracer without altering the inner code.
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5.2 Object Space Application

In this section, we use covariance information to estimate kernels in photon
mapping (and progressive photon mapping) applications. We aim to reduce
noise in low variation regions. Using larger kernels in such regions improves
the quality of the estimate as more photons are gathered by the kernel while
preserving a low bias.

5.2.1 Estimation of the Kernel size for Photon Mapping

Photon mapping [92] and progressive photon mapping [65, 99] (PPM) are appli-
cations of kernel based density estimation [164]. Our idea is to take advantage
of information brought by the covariance matrix to define the kernel size. Ker-
nels should not be smaller than the frequency content of the density they are
reconstructing. We detail a method to estimate kernel radii based on covariance
matrices.

Other methods have looked at giving better estimates of high frequency
part of the photon map [152, 166, 170]. Those methods are complementary
to our work, we filter the photon map according to its local frequency, as the
low frequency parts of the scene will be the first to benefit from our analysis.
Hierarchical methods [167] are close to our work, but rely on the eye-ray foot-
print. Our method can estimate kernel larger than the eye footprint. Diffusion
methods [151] perform photon diffusion respecting edges. They rely on photon
statistics to define the diffusion gradients whereas our frequency estimate is a
feature of photons.

Figure 5.13 – We modify the classical progressive photon mapping pipeline
(in blue) and add a particular photon mapping step where photons carry co-
variance information (in green). The kernels are updated using this frequency
information.

We propose to look at an implementation of the Progressive Photon Map-
ping algorithm [65] (Figure 5.13 presents our pipeline). The derived radius can
be used in a classical Photon Mapping algorithm.

5.2.2 Error based kernel size estimation

In this section we propose to use the approximation of kernel based density
estimation’s error described in Silverman’s monograph [164, Chapter 4.3.1]:

ϵ(x) ≃ 1

2
r2α∇2

(
f
)
(x) (5.9)
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Here ∇2
(
f
)
(x) is the Laplacian of the radiance r is the size (radius) of the

kernel and α is a factor depending on the kernel used for the density estimation.
We use the Property 3 of the covariance matrix to estimate the Laplacian of

a density function. We want an error below a given threshold error ϵ0. Given
the knowledge of the local Laplacian, we can infer an approximate optimal
radius of collection r0:

r0 ≃
√

2ϵ0

α∇2
(
f
)
(x)

(5.10)

Given the equation of the radius (Equation 5.11), and the fact that we
can estimate the Laplacian of f at p from its covariance matrix (Property 3),
we derive the following equation, giving the radius based on the covariance
matrix and an error coefficient ϵ0 allowing for user control over the bias of the
reconstruction.

r0 ≃
√√√√ 2ϵ0

α
(
x,x

(f)(x) +y,y (f)(x)
) (5.11)

For this application, we used 2D covariance matrices assuming that the
signal is isotropic in space and isotropic in angle, with no motion. This permits
to keep covariance computation times short enough to compare the algorithms
at equivalent passes.

(a) Covariance accumulated in the hit
points

(b) Estimated filters using the
heuristic

Figure 5.14 – Covariance can be visualised as hit points map to pixels. We
show here the accumulated covariance at the surface of objects (a). The scene
is composed of a curved mirror on a diffuse surface. The light creates a caustic
and a soft shadow. We display estimated filters drawn on top of the final image
(b). The filters are small is the high frequency regions (caustic and shadow).

5.2.3 Results

As shown in Figure 5.15 our algorithm converges faster for low frequency parts
such as diffuse non-occluded regions or indirectly lit diffuse regions.
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Figure 5.15 – We compare against progressive photon mapping with our algo-
rithm for the convergence of an indirectly lit part of the scene. In the closeup,
we show that our algorithm produces a lower varying estimate at an earlier
stage of its execution.The images where produced using 100.000 photons per
pass and 25% of frequency photons to make timing comparable.

The frequency analysis permits to detect specific lighting situations, such
as a caustic focus point, which corresponds to a frequency spectrum with no
energy along the angular axis. As expected, the high frequency content in
the spatial domain at the focus point causes smaller reconstruction kernels
(Figure 5.16). In the caustic scene, the lower part of the caustic has high
frequency due to the facetting of the model.

Figure 5.16 – We compare the convergence of two regions of the caustic scene.
Those regions contain both high frequency and low frequency content. The low
frequency regions exhibit less noise than the high frequency ones.

For the equal amount of time, our algorithm exhibits less noise in diffuse
low frequency regions (Figure 5.17).
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(a) Our (b) PPM (c) L2 Comparison

Figure 5.17 – We compare the convergence for the caustic scene using the L2
norm for two equal time rendering. While the caustic region exhibits the same
amount of noise, the diffuse parts are converging faster.

5.3 Participating media

In this section, we present results for the application of our covariance analysis
for the integration of volumetric effects in the case of participating media (e.g.,
fog, clouds). First, we will present a data structure that reduces the cost of
covariance tracing by reusing covariance information from previous traced light-
paths: the covariance grid (Section 5.3.1). Then, we present three use of the
covariance grid: adaptive sampling and filtering in image space (Section 5.3.2),
adaptive sampling along a ray for one scatter illumination (Section 5.3.3), and
an improvement of the progressive photon beams algorithm [90] (Section 5.3.4).

5.3.1 Covariance grid

The covariance grid is a voxel grid that stores covariance information of the
fluence (energy per unit volume) inside a participating medium. We do not
store covariance information of radiance since this latter quantity is directional
and would require a quantization of directions. Such quantization would dra-
matically increase the memory footprint of the covariance grid, make it less
usable. Instead, we propose to store 3D covariance of fluence.

5.3.1.1 Definition

In each voxel p of the grid, we store a 3× 3 covariance matrix p, where entry
(i, j) is the ij-covariance of the Fourier transform of the local fluence in the
neighborhood of p:

(p)ij =

∫
ω

ωiωjF
[
I
]
(ω)dω (5.12)

The fluence I is defined as:

I(p) =

∫
d⃗∈S2

l(x, d⃗)dd⃗
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5.3.1.2 From Covariance of Radiance to Covariance of Irradiance

For a light-path and a position on this light-path, we can compute the covari-
ance of the local radiance. We show here how from a covariance matrix of
radiance we can obtain the spatial matrix of fluence.

Let be the covariance matrix at position p of a light-path l. We can
compute the 2D covariance of fluence on the orthogonal plane to the central
ray by looking at the integration over angles of the radiance, which is in the
Fourier domain a slice of the spectrum.

x⃗loc,y⃗loc
= |1,2 (5.13)

We assume the local fluence to be constant along z⃗loc, as infinitesimal anal-
ysis allows to do (the shear due to travel will be second order in this case).
The final 3D local covariance matrix of the fluence’s spectrum is then:

loc =

[
|1,2 0⃗

0⃗T 0

]
(5.14)

We note 0⃗ and 0⃗T the null column and row vectors used to complete the
2× 2 covariance matrix.

Note that this covariance matrix is defined in a local frame (x⃗loc, y⃗loc, z⃗loc).
We rotate it to express the local covariance in the global frame (x⃗, y⃗, z⃗).

5.3.1.3 Accumulating Local Irradiance’s Covariance Matrices

The last step is to accumulate different covariance matrices of the local fluence
to get an estimate of the global covariance matrix of fluence. This is possible
as the covariance is a property of an incoming light-path and thus can be
integrated over the light-path space.

p =
∑
d⃗∈S2

wd⃗p(d⃗) (5.15)

Where wd⃗ is the light intensity weight.

5.3.1.4 An example: A caustic from a glass sphere

The covariance grid stores the spatial covariance of fluence. As such, directional
high frequency regions are not represented in the orthogonal plane, but in the
global plane. As an example, Figure 5.18 shows the equivalent Gaussian of the
spatial covariance for a selection of point in a caustic created by a glass sphere
lit by a spot light.

5.3.2 Image Space Adaptive Sampling and Reconstruction
using the Covariance Grid

In this application, we accumulate covariance matrices on the image plane
by ray marching the covariance grid. The 3D covariance matrices are sliced to
extract a 2D covariance matrix in the local frame of the image. We add the eye
path attenuation and occlusion spatial covariance matrix before accumulating
on the screen.
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Figure 5.18 – A caustic is created using a sphere and a spot light. We analyze
three positions in the covariance grid and show the equivalent Gaussians on the
right. The upper figure is a diffuse part of the scene, it displays the minimum
covariance due to the grid analysis. The middle inset shows the spatial covari-
ance of a shadow. The elongated peak is in the direction of the visibility. Last is
a point inside the caustic. The caustic is a high frequency region where differ-
ent directions will accumulate high frequency. As such, the equivalent Gaussian
expands in all three directions.

Figure 5.19 – We accumulate spatial covariance matrices from the covariance
grid by ray marching. In each voxel, we slice the covariance of the fluence’s
spectrum and add the eye path attenuation and occlusion to it. The resulting
2D matrices are averaged using intensity weights.

We illustrate the accumulation using Figure 5.19. Given a camera shooting
eye rays with starting position p and direction d, we construct the accumulated
covariance matrix i,j with a weighted average of slices of spatial covariance
matrices along the ray c+td|x,y, t ∈ [0, dhit] to which we add the covariance of
the attenuation to the eye A(t).

The Figure 5.20 shows how the effect of a shaft is handled by our adaptive
method. Our method adapts the samples to favor crepuscular regions (such as
the shaft of the sphere). The border of the spot light creates a high frequency
region.

5.3.3 Adaptive sampling along a ray

To integrate the effect of the participating media into a ray tracer, we need
to add another integral dimension per ray bounce (counting eye rays as a
ray "bounce"). This integral accounts for the scattering of light from the
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(a) Reconstruction (b) Estimated filters (c) Estimated density

Figure 5.20 – A shaft created by a sphere lit by a spot light in an inhomo-
geneous volume with an exponentially varying density along the height. The
covariance grid’s size is 323.

scene sources along the ray. It is usually done by ray marching along the ray,
connecting the sampled position on the ray to light sources and adding this
contribution to the integral with correct attenuation factors.

We use frequency information to drive the sampling of positions along the
ray. We illustrate our method by the Figure 5.22. This method is similar to
the method proposed by Engelhardt and Dachsbacher [52] where god rays are
adaptively sampled with respect to the integrand discontinuity. Instead, we
look at the variance along the ray. This way we capture the discontinuity due
to occlusion (as it generates high variance spectra), we capture the variation
due to changing density and other effects such as convergence of photons in
the case of a caustic.

Figure 5.21 – We perform adaptive sampling along the eye-ray by resampling
regions of high variance. In a first pass, we estimate the covariance matrix
and scattered radiance for a sparse set of samples. Then, from the covariance
matrix, we estimate the variance of the incoming radiance along the eye-ray to
resample regions with high variation.

Since our algorithm takes advantage of adaptive sampling on the shadows
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boundaries, we are able to reduce the aliasing of light shafts caused by under-
sampling the high frequency regions that would occurs if we were not adapting
the samples along the eye ray. Figure 5.22 shows our results on the Sibenik
cathedral model where the rose windows are used to cast highly varying shafts
due to the fine geometry of the rose.

Adaptive sampling along eye path Total number of samples per pixel

Figure 5.22 – We present the result of integrating the shaft casted by the rose
windows in the Sibenik cathedral (modeled by Marko Dabrovic). We also show
the total number of samples used per pixel for our algorithm.

Our adaptive sampling strategy is based on the variance of the illumination.
Traditional algorithms [190] are based on the maximum variance of the density
in the medium along a light path. Therefore we avoid oversampling regions
with too-low energy.

5.3.4 Frequency Progressive Photon Beams

We build upon the existing work of Jarosz et al.’s progressive photon beams [90]
(referred as PPB) to illustrate the benefits of the frequency analysis. In the
progressive photon beam algorithm, photons are traced in the scene containing
a participating medium and the paths of propagation (called beams) are stored.
Then, rays are shot from the camera for each pixel, and the density of beams
along the ray is estimated using a 1D kernel (Figure 5.23). This is repeated
while decreasing kernel size until convergence is satisfactory.

5.3.4.1 Gathering photon beams

During the gathering pass, for each eye ray, we test its distance d to the beams
stored (See Figure 5.23). At the closest point to each beam along the ray, we
look into the covariance matrix, and estimate the ideal gathering radius rσ
using the error formula (Equation 5.11) but in a 1D setting. We gather that
beam only if:

d < max(ri, rσ)

107



5.3. PARTICIPATING MEDIA

Figure 5.23 – Given a camera ray (in green), and a beam, we use the ra-
dius, rσ, estimated by the covariance analysis, instead of the radius, ri of the
progressive photon mapping when ri is smaller. The effect is to gather more
beams in low frequency regions to decrease the variance of the estimate in those
regions.

Where, ri is the radius given by the photon beam method for pass #i. In
other words, we replace the gathering radius of progressive photon mapping
by a specific radius for each pair (eye-ray, photon beam) adapted to the local
variations of the signal. This adaptive radius computation prevents us from
decreasing the radius in regions of low bandwidth, and therefore reduces vari-
ance, while controlling the bias. We implemented this process in CUDA, which
allows us to compare our results to the implementation of PPB by Jarosz et al.
[90].

We validate our covariance computation step using classical test scenes such
as a caustic produced by a glass sphere (Figure 5.25) and the soccer boy (Fig-
ure 5.24) to illustrate particular high frequency setups such as occlusion or light
concentration. In both cases, our covariance framework correctly estimates the
high frequency regions. Note that we do not follow specular eye path to gather
beam, this explains the inner look of the soccer boy.

At equal computation time, we achieve a much better convergence in smoother
regions of the image, while we keep the equal convergence in high frequency
regions such as the caustic.

5.3.4.2 Discussion

We do not need to precompute the covariance grid. As for the frequency pro-
gressive photon mapping algorithm, we update it while tracing photon beams.
For each photon tracing pass, we allocate a fixed proportion of photons to carry
a covariance matrix (For our scenes, we chose 10% percent as the proportion).
The matrix is updated as the photon is reflected, refracted, and scattered and
the grid is updated using ray marching.

The main strength of the covariance estimation of kernel radii is to stop
the radius reduction when it passes below a frequency criterion. This allows
the estimate to converge faster in low-frequency regions. For high frequency
region, our estimation do not blur the beams resulting in the same convergence
than the classical progressive photon mapping algorithm.
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(a) Our method, 740s (b) Equal time PPB

Figure 5.24 – Complicated caustics are produced by a glass soccer boy figurine
(From Sun et al. [169]). Progressive photon beam is very effective to produce
converged volumetric caustics but is rather slow at generating smooth diffusion.
Our covariance grid algorithm is able to diffuse more beams in low frequency
parts of the screen, allowing to meet the stop criterion sooner there.

(a) Our method, 342 (b) Equal time PPB

Figure 5.25 – A glass sphere is lit by a diffuse point light. This setup creates
a caustic in the axis of the light and sphere centers.

Keeping a large radius slows down the selection process, when an accel-
eration structure such as a KD-tree [169] used. As the areas are bigger, it
increases the branching factor of the KD-tree search. In our CUDA implemen-
tation which follows the method described by Jarosz et al., there is no penalty
as there is no acceleration structure.
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6 | Conclusion

This dissertation explored a way to optimize the generation of synthetic
photo-realistic images. From a set of various light phenomenons (e.g., depth-
of-field, motion blur, scattering in fog), we derived the Fourier transform of
the mathematical formulation using the framework proposed by Durand et al.
[47]. We showed how to depict blurry regions and adapt the calculation for
various light transport algorithms in order to obtain faster convergences. In this
chapter, we review the presented contributions and propose future directions
of research.

6.1 Summary of Contributions

We presented the most complete, to date, analysis of light transport from the
perspective of local light-fields spectrum. This analysis expresses the changes
in intensity of local neighboring rays with respect to a given light-path. We
expressed this analysis in a united form, using a composition formulation that
chains the operators to define the final operator on a light-path. We generalized
previously defined operators:

• Occlusion for non planar objects. We showed that the wedge spec-
trum [108] estimated from multiples slices of the occluder can be ex-
plained by a conservative non planar occluder.

• Reflection, more precisely the integration with the BRDF. It is expressed
as a convolution in a six dimensional space followed by a reduction of
the number of dimensions. We showed that for one dimensional BRDFs
the resulting operator is a multiplication in a four dimensional space as
previously stated [47, 141].

• Lens for thin lenses. We presented an operator that allows to express a
chain of lenses. This operator defines the transport of light throught a
small lens using shears. This is simpler than the previous method which
used a Bessel multiplication [165].

• Motion. We provided a generalization of the motion operator (previously
defined for special cases [49]). We modelized motion as a change of
referential before local operations (i.e., reflection, refraction, . . . ).

We enriched the analysis with two new operators to handle the case of non-
thick participating media (e.g., smoke, air, water, . . . ) and rough refractive
surfaces:

111



6.2. PERSPECTIVES

• Attenuation. It models the absorption and out-scattering of light when
photons travel inside a non empty medium. We showed that this oper-
ator is related to the occlusion operator. Furthermore, the non opaque
visiblity can be approximated using the density gradient.

• Scattering. It models the in-scattering of light from a known direction.
We showed that, for the case of a 1D phase function, the operator is a
convolution in angle. If the main scattering angle is not close to zero, the
spatial frequency along the X axis vanishes.

• Rough refraction. It models the transmission of light inside a constant
index medium. We showed how to define Walter’s refraction model [185]
in a local light-field setting and proposed to approximate the BTDF’s
spectrum amplitude with Gaussian lobes.

We provided a new versatile tool to express the spectrum and estimate the
anisotropic variance of the spectrum in a ray-tracing application: the covari-
ance matrix. We build a Monte-Carlo estimate of this tool for complex lighting
effects. We proposed to use voxel grids to estimate the partial occlusion of
the local light-field. Those structures enable to perform frequency analysis for
global illumination effects.

We introduced the covariance grid, a tool to distribute a prior covariance
analysis for participating media. The covariance grid stores the covariance
matrix of the fluence’s spectrum. We showed the benefits of using it in various
application ranging from image space adaptive sampling and reconstruction to
filtering photon beam kernels.

We provided examples of use of the covariance analysis. Several improve-
ments on classical algorithm where demonstrated:

• Adaptive sampling and reconstruction. Covariance information permits
to do sparse adaptive sampling in the image space and to filter distributed
effects such as soft shadows, motion blur and depth-of-field.

• Kernel filtering. Photon mapping and its derivatives can benefit from the
covariance analysis as an optimal radius of gather can be derived.

• Adaptive sampling in light-path space. Non uniform sampling along eye
paths to integrate shafts can be done using the covariance grid. This
can be extended to other highly varying light effects in volume such as
caustics.

6.2 Perspectives

Towards completeness We did not completely succeed in our goal to pro-
vide a complete frequency analysis of light transport. Some lighting effects
present in current ray-tracers are missing:

• Phase function spectrums. We describe the spectrum of two phase func-
tions: the Phong BRDF and the Heynyey-Greenstein phase function.
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A large body of phase functions exits. To be complete, the frequency
analysis has to provide a spectrum for each one of them.

• BSSRDFs. Diffusion of light on surfaces is not part of the operators.
Yet, BSSRDFs are well studied in computer graphics. It is known that
scattering in such thick media produces a spatial and angular blur of the
signal [94, 41].

• Wave optics effects such as diffraction are not embodied inside our anal-
ysis. They are not part of the geometrical optics model. Yet, recent works
inside the graphics community approximate wave optics phenomenons [149,
35].

Our representation of the spectrum misses phase information. Phase of the
Fourier transform is rich in terms of information (Figure 3.4, and Figure 3.27).
While the lack of phase in our covariance analysis leads to an over estimate of
the spectrum, our experiments showed that we can provide a gain.

Applications of Covariance We did not cover all the possible applications
of the covariance matrix. Its genericity makes it a versatile tool to work with
light-paths. Other possible applications are:

• Irradiance caching is a promising area. The covariance matrix can bring
an estimate of the Hessian matrix. The second derivatives are used to
predict the density of radiance (or irradiance) caches [91].

• Information theory has application in computer graphics [160, 150]. The
covariance matrix give a local bound to the entropy of the signal which
has to be infered from the samples in previous works.

• Driving light-paths generation for photon mapping to draw photons based
on the frequency content of the integrand. In combination to our recon-
struction kernels, this would result in a better estimate of the high fre-
quency regions while preserving a good convergence of the low frequency
regions.

A limitation of covariance is its uni-modal form. A spectrum consisting
of different separated modes (such as a diffuse term and a separated specular
term) will be treated as a whole. Multi-modality analysis can be beneficial but
remain a hard task. It requires to keep track of a matrix per mode. This can
become intracktable as the number of bounces increases. Further research in
this direction would require to analyze the different type of multi-modal signals
present in rendering and to build a tool that account for the different modes.
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A | Detailed Proofs for Operators

A.1 Non-Planar Visibility Spectrum

We start from the definition of the partial visibility functions (Section 3.3.2):

rt,d(δx, δθ) = 1 if δx+ tδy > −d

0 else

The Fourier transform of a partial visibility function is (In this case rtmin,d):

r̂tmin,d(Ωx,Ωθ) =

∫
δθ

∫
δx

rt,d(δx, δθ)e
−2iπδθΩθe−2iπδxΩxdδxdδθ

=

∫
δx

∫ +∞

δθ=tminδθ−d

e−2iπδθΩθe−2iπδxΩxdδxdδθ

=

∫
δθ

e−2iπδθΩθ

[
e−2iπδxΩx

−2iπΩx

]+∞

tminδθ−d

dδθ

=
e2iπdΩx

2iπΩx

∫
δθ

e−2iπ(tminδθΩx+δθΩθ)dδθ

It gives us the following formula for the spectrum of the partial visibility
functions:

r̂tmin,d(Ωx,Ωθ) =
e2iπdΩx

2iπΩx
δ(tminΩx +Ωθ) (A.1)

r̂tmax,d(Ωx,Ωθ) =
e2iπdΩx

2iπΩx
δ(tmaxΩx +Ωθ) (A.2)

We calculate then the convolution of those two spectrum to obtain the
Fourier spectrum of the visibility function:

r̂tmax,d ⊗ r̂tmin,d(Ωx,Ωθ) =

∫
Ω′

x

∫
Ω′

θ

r̂tmin,d(Ω
′
x,Ω

′
θ)r̂tmax,d(Ωx − Ω′

x,Ωθ − Ω′
θ)dΩ

′
θdΩ

′
x

=

∫
Ω′

x

∫
Ω′

θ

[
e
2iπdΩ′

x
2iπΩ′

x
δ(tminΩ

′
x+Ω′

θ)

][
e
2iπd(Ωx−Ω′

x)

2iπ(Ωx−Ω′
x)

δ(tmax(Ωx−Ω′
x)+(Ωθ−Ω′

θ))

]
dΩ′

θdΩ′
x

To evaluate the nested integrals, we have to solve the following equation
system: {

tminΩ
′
x +Ω′

θ = 0
tmax(Ωx − Ω′

x) + (Ωθ − Ω′
θ) = 0

(A.3)
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A.2. REPARAMETRIZATION ONTO ANOTHER PLANE

It lead to the following equalities: Ω′
θ = −tminΩ

′
x

Ω′
x =

tmaxΩx +Ωθ

tmax − tmin

(A.4)

By evaluating the integrand at the position obtained from the system, we
obtain the formula of the convolution:

r̂tmax,d ⊗ r̂tmin,d(Ωx,Ωθ) =
e2iπdΩx

4π2
(tmaxΩx +Ωθ)(tminΩx +Ωθ)

(tmax − tmin)2

(A.5)

A.2 Reparametrization onto Another Plane

We assume that the incoming local light-field and the outcoming local light-
field are aligned. The problem of projection boils down to a flat-land problem
(Figure A.1).

Figure A.1 – The projection problem can be express in flat-land. Given an
incoming light-field δy, δϕ, the formulation of the new position δy′ on the pro-
jection plane is approximated by a scale.

To compute the value δy′ based on the inputs (δy, δϕ, α), we add interme-
diate steps: d, q and t (Figure A.2). First, we calculate length d:

d =
δy sin(α)

cos(α− δϕ)

We chain the calculation to find q and t, based on intermediate variables
expansion:

q = sin(δϕ)d

= δy sin(δϕ)
sin(α)

cos(α− δϕ)

t =
q

cos(α)

= δy sin(δϕ)
tan(α)

cos(α− δϕ)
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A.2. REPARAMETRIZATION ONTO ANOTHER PLANE

Figure A.2 – We add intermediate steps to evaluate the length δy′. We will
use a chain of right triangles to calculate d, q and then t based on the input of
our problem.

It gives us:

δy′ = δy
( 1

cos(α)
− sin(δϕ)

tan(α)

cos(α− δϕ)

)
Which can be linearized:

δy′ =
δy

cos(α)
(A.6)

Equation A.6 is only valid for α not close to π
2 . In such a context, the

linearization is not possible. But we can keep the division by a cosine approach
as the closer we get to π

2 , the more the signal will be stretched.
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B | Covariances of Scattering

In this appendice, we estimate the covariance of scattering functions. We ne-
glect here the windowing term of phase functions. This results in an over-
estimate of the local frequency content.

B.1 Phong BRDF

The Phong BRDF is defined with respect to the reflected direction. As defined
in 3.3.4.6, we can use the Fourier transform operator as a multiplication. The
Phong BRDF has the following formulation:

ρs(θ) =
s+ 1

2π
cos(θ)s (B.1)

Where s is the shininess of the material.
This function is one dimensional, we will only provide the σ2 of its Fourier

transform. Note that since the covariance is define over pdf s, we have to
normalize the Fourier transform. We define here F ′[ρs] as the normalized
Fourier transform. Assuming that s ≥ 2, we can write:

σ2 =

∫
µ∈R

µ2F ′[ρs](µ)dµ
=

1∣∣F[
ρs
]∣∣ ∫

µ∈R
µ2

∫
θ∈R

ρs(θ)e
−2iπµθdθdµ

=
1∣∣F[
ρs
]∣∣ ∫

θ∈R
ρs(θ)

∫
µ∈R

µ2e−2iπµθdµdθ

=
1∣∣F[
ρs
]∣∣ ∫

θ∈R
ρs(θ)δ

(2)(θ)dθ

=
1∣∣F[
ρs
]∣∣ ∫

θ∈R

( i

2π

)2
ρ(2)s (θ)δ(θ)dθ

=
1∣∣F[
ρs
]∣∣ − 1

4π2
ρ(2)s (0)

=
1∣∣F[
ρs
]∣∣ s(s+ 1)

8π3
(B.2)

We can obtain the norm of the Fourier transform of ρs using again the
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B.2. HENYEY-GREENSTEIN PHASE FUNCTION

Fubini double integral theorem:∣∣F[
ρs
]∣∣ =

∫
µ∈R

F
[
ρs
]
(µ)dµ

=

∫
µ∈R

∫
θ∈R

ρs(θ)e
−2iπµθdθdµ

=

∫
θ∈R

ρs(θ)

∫
µ∈R

e−2iπµθdµdθ

=

∫
θ∈R

ρs(θ)δ(θ)dθ

=
s+ 1

2π
(B.3)

(B.4)

Combining Equation B.2 and Equation B.4, we obtain the following covari-
ance for the Phong BRDF:

covθ,θ(ρs) =
s

4π2
(B.5)

B.2 Henyey-Greenstein Phase Function

We are interested in the covariance of the amplitude of the Fourier transform
of the HG function ρg. This function being a purely real even function, its
Fourier transform is purely real:

cov(|ρ̂g|) = cov(ρ̂g) =
∫ ∞

−∞
ω2F

[
ρg
]
(ω)dω

We use Fubini theorem on integration order change:

cov(|ρ̂g|) =

∫ +∞

ω=−∞

∫ +∞

θ=−∞
ω2ρg(θ)e

−2iπωθdωdθ

=

∫ +∞

θ=−∞
ρg(θ)

∫ +∞

ω=−∞
ω2e−2iπωθdωdθ

The Fourier transform of the power function xn is the nth derivative of the
delta distribution: ∫ +∞

f=−∞
ω2e−2iπωθdω =

−1

4π2
δ(2)(θ)

we have:

cov(|ρ̂g|) =

∫ +∞

θ=−∞
ρg(θ)

−1

4π2
δ(2)(θ)dθ

=
−1

4π2

dρg(θ)

dθ2
(0)

=
3

4π

|g|(1 + |g|)
(1− |g|)4
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C | Résumés en Francais

C.2 Introduction

Le rendu photo-realiste consiste en la generation d’images digitales a par-
tir d’un ensemble de primitives geometriques, de lumieres, de materiaux et de
camera virtuels. Ce procede doit suivre les lois de la physique (Figure C.1).
Il est donc necessaire d’effecture une simulation physique du transport de la
lumiere dans ce monde virtuel [48]. Cette simulation necessite le calcul nu-
merique d’integrales recursives [96]. De plus, il est necessaire de simuler bon
nombre d’effets lumineux. Cela requiert d’avoir definit les modeles mathema-
tiques de ces effets et de les avoir integre dans les modeles d’interaction entre
la lumiere la scene et la camera (scattering en anglais).

Figure C.1 – Examples d’images de synthèse photo-réalistes. Bien que la
génération des images suive les lois de la physique, cela n’implique pas pour
autant que le résultat sera réaliste.

Bien que la théorie du transport de la lumière est bien comprise, une sim-
ulation complète peut prendre des jours [85] pour des modèles d’interactions
complèxes. Nous devons cependant garder à l’esprit que le rendu basé sur la
physique n’est qu’un outil parmis d’autre pour les artists: les durées de simula-
tion ne devraient pas restreindre la créativité. Les artistes travaillent souvent
de façon itérative: une ébauche est modifiée de mombreuses fois pour qu’une
émotion soit transcrite dans un média. Notre but est de proposer aux artistes
des outils qui permettent de produire des images efficacement, quelque soit
la compléxité. Permettre des temps de calculs courts permet un plus grand
nombre d’itérations.
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C.2.1 Motivation

Nous commençons notre analyse à partir de photographies artistiques. Nous
analysons plus spécifiquement trois types d’effects: le depth-of-field 1, le motion
blur et le scattering dans les milieux participatifs (Figure C.2):

(a) Depth-of-field (b) Scattering

(c) Motion blur

Figure C.2 – Les phénomènes d’interaction de la lumières à disposition des
artistes sont nombreux. Avec une lentille, on peut créer un effet de depth-of-
field (a) pour attirer l’attention sur un endroit particulier. L’interaction de
la lumière avec des milieux non opaques comme le brouillard augmente le côté
dramatique d’une scène (b). Garder le shutter d’une caméra ouvert pendant
une durée suffisement longue permet de générer du motion blur (c) et renforce
l’impression de vitesse.

Le depth-of-field resulte de la convergence de photons (les particules de
lumières) de différentes parties de la scène en un point commun sur le capteur
photo-sensible d’une caméra. Cette effect est produit par une lentille et floutte
les éléments qui ne sont pas dans le plan focal. Le plan focal est la région dans
laquelle il n’y a pas de convergence et où un point sur le capteur correspond
à un unique point dans la scène. Cet effet isole le sujet de la photographie
de l’arrière plan (Figure C.2(a)). Bien que cet effet produise des images plus
floues, il est plus difficile de générer une image avec du depth-of-field qu’une

1Les termes techniques sont volontairement gardé en anglais

140



C.2. INTRODUCTION

image sans. Cela est due à la nécessitée de simuler le transfert de la lumière
dans la lentille.

Le motion blur est le résultat de l’accumulation de la lumière sur un capteur
au cours du temps. Si un objet se déplace pendant l’exposition du capteur à
la lumière un même point de l’objet transmet la lumière à différentes positions
du capteur, ce qui floutte l’apparence de l’objet le long de son mouvement
(Figure C.2(c)). Le motion blur nécessite de simuler l’évolution des objets dans
le temps, et d’accumuler la transmission de la lumière des objets en mouvement
sur le capteur.

Le Scattering dans les milieux participants diffuse la lumière dans le volume,
générant des halos autour des sources de lumière (Figure C.2(b)). Bien que ces
halos brouillent la forme des lumières, le transport radiatif à l’intérieur d’un
volume est plus difficile que le transport entre des surfaces.

Ces trois phénomènes lumineux ont en commun la tendance a floutter le
contenu de l’image générée et de compléxifier les calculs. Du point de vue du
traitement du signal, les images floues contiennent moins d’information que
les images nettes. Le nombre d’éléments d’information nécessaire à la recon-
struction du signal sera moindre. Notre but est d’identifier ces regions
floues et de reconstruire une image à partir d’une simulation par-
tielle. Pour ce faire, nous proposons d’étudier les phénomènes d’interaction
lumineuses dans un espace ou les variations d’un signal sont naturellement
exprimées: la transformée de Fourier.

C.2.2 La Transformée de Fourier

La transformée de Fourier est un outil pour exprimer un signal en terme
d’amplitude par fréquence (nombre de variation par cycle) plutôt qu’en terme
de d’amplitude par position. Elle définie un espace d’étude alternatif des sig-
naux (Figure C.3). Par exemple, si la transformée de Fourier d’un signal est
compact autour de l’origin de l’espace fréquentiel, le signal varie peu (Fig-
ure C.3, encadré rouge). Dans le cas contraire d’un signal étendu dans le
domaine fréquentiel, le signal varie fortement (Figure C.3, encadré vert). Par
conséquent, la transformée de Fourier permet d’évaluer les variation d’un sig-
nal.

On peut formuler l’intégration d’un signal dans le domaine de Fourier. Dans
ce contexte, l’origine du bruit résultant de l’intégration numérique est bien
comprise [33, 46]. A partir de la connaissance de l’étendue du spectre de
l’intégrande, le non chevauchement des répliques du spectre donne le nombre
d’échantillons requis pour l’intégration numérique. Néanmoins, cette étendue
du spectre n’est pas connue en pratique.

C.2.3 Buts

Le présent travail est motivé par le besoin d’évaluer le spectre de l’intégrande.
La connaissance de l’integrande ou du spectre de l’image permet de spécifier
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Figure C.3 – La transformée de Fourier d’une signal décrit ses variations.
Nous illustrons cette notion à l’aide de l’image de Lena. Nous utilisons une
selection de portions de l’image et affichons les transformées de Fourier locales
dans des encadrés. Les régions de faible fréquence sont compactées autour de
l’origin de l’espace de Fourier alors que les régions de haute fréquences sont
étendus dans cet espace.

les régions ou le flou apparait. Cette analyse doit être faite pour un ensemble
étendu d’effets lumineux pour donner aux artistes la liberté de créer. Nous
séparons nos but en trois catégories:

C.2.3.1 L’Analyse Fréquentielle du Transport de la Lumière

L’Analyse Fréquentielle du Transport de la Lumière est le domaine de l’informatique
graphique qui cherche à estimer le spectre du signal à intégrer. Cette thèse est
dans la continuité de travaux dans ce domaine [47, 165, 49, 51, 50]. Notre but
est d’enrichir l’ensemble des effects étudiées. Cela est nécessaire si nous voulons
que notre travail soit utilisé par des artistes dans le future.

C.2.3.2 Applications de Débruitage

Quand le nombre requis de samples ne peut pas être achevé, le bruit restant
peut être enlevé grâce à l’utilisation d’algorithmes de débruitage. Ces algori-
htmes utlisent souvent des estimateurs des varations locales. L’analyse fréquen-
tielle peut apporter un tel savoir. Notre but dans ce contexte est de proposer
des algorithmes pour reconstruire les régions peut variantes à partir d’une sim-
ulation incomplète et bruité pour permettre la création d’une image en un
temps réduit.

C.2.3.3 Compréhension du Transport Radiatif

Un autre but de cette thèse est de proposer un autre point de vue sur le
processus de transport de la lumière. L’étude de la transformée de Fourier
permet de comprendre comment les varations angulaires de la lumière sont
floutées par une réflection diffuse, comment une lentille affecte la convergence
de la lumière sur le capteur, ou comment le brouillard floute les lumières. Tout
cela dans une perspective différente.
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C.2.4 Contributions

Dans ce manuscript, nous présentons contributions suivantes:

• Nous enrichissons l’analyse de Durand et al. [47] sur l’étude fréquentielle
du transport de la lumière. De nouveaux operateurs sont définis comme
le scattering dans les milieu participatifs et l’absorption. Des operateurs
déjà définis, comme l’opérateur de lentille et d’occlusion, sont généralisés
(Chapitre 3).

• Nous présentons la matrice de covariance, un nouvel outil pour évaluer le
spectre local de la radiance. Cet outil est compatible avec l’intégration
de Monte Carlo et l’analyse fréquentielle (Chapitre 4.2).

• Nous présentons deux nouvelles structures de données volumiques pour
évaluer une approximation de l’occlusion locale (Chapitre 4.3).

• Nous présentons des applications de la matrice de covariance pour valider
notre hypothèse que l’information fréquentielle permet l’optimisation des
algorithmes de ray-tracing (Chapitre 5).

Ce manuscript est organisé comme suit: Dans une première partie, nous
présenterons l’état de l’art pour la génération d’images photo-réalistes suivant
la physique à partir d’intégrales de light-paths (Chapitre 2). Ensuite, nous
présentons nos contributions en trois chapitres distincts. Dans le premier,
(Chapitre 3), nous présenterons de façon cohérente l’analyse fréquentielle du
transport de la lumière. Cette analyse théorique contient des éléments déjà
existants dans la littérature mais aussi des contributions originales. Dans le
second chaptire, (Chapitre 4) nous étudirons les outils utilisés dans l’analyse
fréquentielle. Nous présenterons la matrice de covariance, un outil dévelop-
per pour remédier aux limitations des outils précédement proposés. Le dernier
chapitre (Chapitre 5) présentera divers algorithmes pour accélérer le rendu
d’images photo-réalistes à partir de la connaissance d’informations fréquen-
tielles.
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C.3 Théorie du Transport de la Lumière

La simulation du transport de la lumière nécessite de définir une description
de la lumière ainsi que de son interaction avec la matière. Un modèle du trans-
port de la lumière définit ces éléments. Dans ce chapitre, nous décrivons de
façon concise différents modèles à notre disposition (Section 2.1) dont celui util-
isé majoritairement en rendu basé sur la physique: l’Optique géométrique. Puis,
à partir de la définition intégrale du transport de la lumière, nous étudierons
les méthodes d’intégration à base de light-paths (Chapter 2.2). Enfin, nous
décrirons les différents algorithmes permettant de réduire le bruit pour les dif-
férentes méthodes d’intégration présentées Then, from the (Chapter 2.3).
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C.4 Analysis Fréquentielle du Transport de la Lumière

Dans les chapitres précédents, nous avons montré le besoin d’une analyse lo-
cal des informations de variation dans le contexte de l’integration (Chapitre 1).
Nous avons décrit les différentes methodes d’intégration à base de light-paths
et remarqué que comment ces méthodes pourraient bénéficier de l’analyse des
variations locales(Chapitre 2). Ce chapitre présente une théorie pour analyser
les variations locales de la radiance à partir d’un light-path.

Figure C.4 – Nous voulons exprimer la variation de la fonction de radiance
L pour de petites variations de ces paramètres noté l. Pour cela, nous avons
besoin de définir la variation locale de l, dl et d’analyser les variations de L
dans ce sous-domaine.

Notre but est le suivant: à partir d’un light-path l, nous voulons obtenir les
variations locales de la fonction de radiance dL(l + xdl) (Figure C.4). Cette
théorie se fonde sur deux éléments:

• L’optique paraxiale qui définie un voisinage local autour d’un rayon.
Nous utilisons cette théorie pour définir un voisinage d’un ligh-path (Sec-
tion 3.1).

• La Transformée de Fourier exprime une fonction à l’aide d’une fonction
duale avec des arguments dans un domaine fréquentielle (Section 3.2).
Nous l’utilisons pour exprimer les variations de la fonciton de raidance
dans le domaine paraxial.

Dans les deux premières sections, nous présenterons l’optique paraxiale (Sec-
tion 3.1) et la transformée de Fourier (Chapter 3.2), les outils nécessaires pour
notre analyse. La troisième section (Section 3.3) présentera l’analyse fréquen-
tielle de la radiance locale (introduite par Durand et al. [47]). La transformée
de Fourier sera utilisée pour exprimer la fonction de radiance dans le domaine
paraxial des rayons d’un light-path. Dans la dernière section (Section 3.4),
nous comparerons cette analyse fréquentielle à d’autres methodes d’analyses
locales qui sont basées sur les dérivées.

Dans ce chapitre, nous présentons les contributions suivantes:
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• Nous présentons l’analyse fréquentielle du transport de la lumière de
façon unifiée dans un context 3D. Les précédentes publications ont
souvent présenté la théorie dans un contexte 2D plus simple. Mal-
heuresement, cela cache certaines parties complexes de l’analyse comme
l’analignement du plan équatorial, ou que la convolution angulaire n’est
faite que dans une dimension.

• Nous redéfinissons certains éléments de la théorie pour la rendre plus
pratique et plus générale. Nous redéfinissons l’analyse de la réflection,
de la lentille, de l’occlusion et du mouvement.

• Nous ajoutons l’analyse de la réfraction ainsi que celle du scattering et
de l’atténuation dans le contexte des milieu participatifs.
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C.5 Representations of the Local Light-field Spectrum

Dans le Chapitre 3 nous avons vu comment exprimer les changements du
spectre du light-field local lorsque celui-ci est affecté par un operator (tel que le
transport, l’occlusion, la réflection, ...). Dans ce chapitre, nous présentons des
outils pour évaluer des informations sur le spectrum du light-field local après
une chaine d’opérateurs. L’évaluation du spectre complet n’est pas possible
dans notre contexte, c’est pourquoi nous utilisons des descripteurs. L’étendue
spatiale et l’orientation du spectre sont des informations d’intérêt car elles
permettent de savoir quel point le signal varie et dans quelle direction.

L’évaluation du spectrum de l’occclusion est aussi impossible dans notre
contexte. Nous avons montré dans le précédent chapitre qu’il était possible
d’estimer un specte approché à partir de la distance à l’object ainsi qu’a partir
de sa profondeur et direction (Section 3.3.2). Nous proposons une méthode
basée sur un grille de voxels pour évaluer ces quantités.

Dans ce chapitre, nous présentons le contributions suivantes:

• Une représentation compacte du spectre du signal utilisant la matrice
des seconds moments: la matrice de covariance (Section 4.2). Cette
représentation est complètement intégrée dans l’analyse fréquentielle.
Nous validons l’utilisation de la matrice de covariance en la comparant
à des mesures, montrant qu’elle prédit correctement les informations sur
le spectre réel.

• Deux structures de données pour évaluer l’occlusion locale utilisant des
grilles de voxels (Section 4.3.2). Ces structure sont faciles à intégrer
dans un raytracer existant.

Tout d’abord, nous décrirons les représentations proposées dans la littéra-
ture (Section 4.1). Ensuite, nous introduirons et validerons la matrice de
covariance (Section 4.2). Finalement, nous présenterons et comparerons des
structures pour evaluer l’occlusion locale qui permettent l’étude fréquentielle
dans un contexte d’illumination globale (Section 4.3).
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C.6 Applications de l’Analyse Fréquentielle du
Transport de la Lumière

Nous avons montré comment dériver le contenu fréquentiel local aux alen-
tours d’un light-path en utilisant un ensemble d’opérateurs définis sur des fonc-
tions de radiance 5D (Chapter 3). Nous avons adapté cette analyse en un en-
semble d’opérations sur une représentation générique, la matrice de covariance
(Chapter 4). Dans ce chapitre, nous présentons les applications de la matrice
de covariance. Nous montrons son utilité pour les algorithmes de Monte Carlo
ou les algorithmes d’estimation de densité et prouvons qu’elle est efficace pour
un bon nombre d’effets lumineux comme le depth-of-field, le motion blur ou
les mileux participants.

Dans ce chapitre, nous présentons les contributions suivantes:

Nous présentons des applications de la matrice de covariance. Ces applications
permettent l’accélération de la convergence des algorithmes de Monte Carlo
ou d’estimation de densité. Plus précisement, nous présentons:

• Un nouvel algorithme adaptatif de sampling et de filtrage prenant en
compte les variations anisotropic de l’intégrand (Section 5.1).

• Des méthodes pour effectuer un filtrage des photons en espace object
pour l’estimation de densité de type photon mapping (Section 5.2).

• Des méthodes pour effectuer un sampling adaptatif des rayons crepus-
culaires et un filtrage adaptatif des photon beams en utilisant un esti-
mateur de la covariance de l’irradiance dans le volume (Section 5.3).
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C.7 Conclusion

Dans ce manuscript nous avons exploré une façon d’optimiser la génération
d’images synthétiques suivant des principes physiques. A partir d’un ensem-
ble de phénomènes lumineux (tels que le flou de profondeur, flou de bougé et
la diffusion dans les milieux participatifs), nous avons dérivé des operateurs
mathématiques pour étudier les variations de la transformée de Fourier de la
radiance locale tel que proposé par Durand et al. [47]. Nous avons montré com-
ment detecter les régions floues et adapter les calculs de differents algorihtmes
de transport de la lumière pour obtenir des convergences plus rapides. Dans
ce chapitre, nous résumons contributions présentées.

Nous avons présenté l’analyse fréquencielle du transport de la lumière la
plus complète à ce jour. Cette analyse étudie les variations en intensité du
voisinage local d’un light-path. Nous avons exprimé cette analyse dans une
forme unifiée, qui permet l’utilisation d’un formule de composition pour définir
la transformation d’un light-path. Nous avons généralisé des opérateurs:

• L’occlusion pour des objets non planaires. Nous avons montré que l’approximation
en wedge [108] estimé par de multiples slices de l’objet pouvait être ex-
primé analytiquement par un estimateur conservatif de cet objet.

• La réflection, et plus précisement l’intégration avec la BRDF. Nous l’avons
étendu pour les BRDF anisotrope a une convolution dans un espace à six
dimensions suivie d’une réduction. Nous avons montré comment retrou-
ver les résultats sur les BRDF istropes à partir de ces formules [47, 141].

• Pour des lentilles minces, nous avons présenté un opérateur qui per-
met d’exprimer une chaine de lentilles mince. Cet operateur permet
d’exprimer le transport de la lumière dans un objectif en utilisant des
opérations linéaires simples tels que les shears.

• Mouvement. Nous avons proposé une généralisation des cas d’étude pro-
posé par [49] en un opérateur générique permettant l’étude du mouvment
de n’importe quel object.

Nous avons enrichi l’analyse avec trois nouveaux opérateurs pour gérer les
cas de réfractions, et les interactions avec un milieu partipatif.

• Atténuation. Elle modèlise l’absorption et le out-scattering de la lu-
mière par le mileu. Nous avons montré que cet opérateur est similaire à
l’opérateur d’occlusion. De plus, la visibilité non-opaque peut être ap-
proximée par l’utilisation du gradient de densité.

• Scattering. Il modèlise le in-scattering de la lumière dans une direction
connue. Nous avons montré que dans le cas des fonctions de phase 1D,
l’opérateur est une convolution angulaire et une intégration spatiale.

• Réfraction. Elle modélise la transmission de lumière à l’intérieur d’un
milieu transparent d’index de réfraction constant. Nous avons montré
comment utiliser le modèle de Walter et al. [185] pour un light-field local
et proposé d’approximé une l’amplitude du spectre de cette BTDF par
des lobes Gaussiens.
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Nous avons proposé un nouvel outil pour étudier le spectre et estimer son
anisotropie et la variance associée dans des applications de raytracing: la ma-
trice de covariance. Nous proposons un estimateur de Monte Carlo pour cet
outil pour les effets lumineux composés. Cela nous permet d’effectuer l’analyse
fréquentielle pour des effets d’illumination globale.

Nous avons proposé la grille de covariance, un outil pour distribuer le coût
de l’analyse de covariance dans le cas des milieux participatifs. La grille de
covariance contient la matrice de covariance du spectre de l’irradiance. Nous
avons montré les bénéfices de son utilisation dans plusieurs applications tels
que le sampling adaptatif et le filtrage de photon beams.

Nous avons décrit et validé des exemples d’utilisation de l’analyse de la co-
variance. Plusieurs algorithmes ont été proposés:

• Le sampling adaptatif et la reconstruction. L’information de covariance
permet d’effectuer un sampling sparse dans l’espace image et de filtrer
les effets de distribution tels que les soft shadows, le motion blur et le
depth-of-field.

• Le filtrage de noyaux. Le photon mapping et ses dérivés peuvent béné-
ficier de l’analyse de la covariance car un rayon optimal pour le gathering
peut être estimLe photon mapping et ses dérivés peuvent bénéficier de
l’analyse de la covariance car un rayon optimal pour le gathering peut
être estimé.

• Le sampling adaptatif en espace de light-paths. Le sampling non uniforme
le long des chemin de caméra pour intégrer les shafts peut être effectué
en utilisant la grille de covariance. Cela peut de plus être étendu aux
effets spéculaires tel que les caustiques.
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