. Le-produit-1, 9 mmoles) est dissout dans du méthanol (250 ml), du méthanolate de sodium est ajouté au milieu réactionnel jusqu'à pH= 9-10 Après 1 heure sous agitation et à température ambiante, la réaction est traitée par ajout d'amberlite IR120 jusqu'à pH=7. Le mélange est filtré. Le filtrat récupéré est évaporé à sec

J. and 2. Hz, 55 (d ; H1, J<1 Hz Hz, vol.4, issue.2, p.50

. Le-produit-22, 43 mmole) est dissous dans un mélange THF/H 2 O (9ml/2ml) et la PPh 3 est ajouté (340 mg ; 1,29 mmoles) La réaction est agitée pendant 12 heures. Le solvant est évaporé sous pression réduite et le brut est chromatographié sur colonne de silice avec un mélange d'éluant CH 2 Cl 2 /MeOH mg, pp.466-95

. Cq, 31,4086 (Cr ; Cm), CsCeCb, vol.387, issue.50, p.510824

. Le-produit-24, Le milieu est bullé pour permettre son dégazage grâce à l'utilisation d'un ballon de baudruche rempli d'argon. Une aiguille donnant sur l'extérieur permet aux vapeurs 124,56, Caro Cquat.CvCu, vol.55, issue.175, p.91154612146017, 1970.

B. Du, mg95 µmoles) et de l'acide polyéthylène glycol (n=42) (22 mg, p.95

. Le-produit-26, 168 mmole) est mis en solution dans 3 ml de THF, en présence de PPh 3 (133 mg ; 0,506 mmole) et de 40 µl d'H 2 O. Le mélange est agité pendant 24 heures à température ambiante. Le solvant est ensuite évaporé sous pression réduite

L. Produit and D. La, 40 µl ; 0,18 mmole) sont dissous dans 2 ml de MeOH Au bout de 10 minutes, le Boc 2 O (24 mg ; 0,11 mmole) dissous préalablement dans 1 ml de MeOH, est ajouté au milieu réactionnel Après 4 heures d'agitation sous argon, le milieu est lavé avec H 2 O (10 ml) et une solution de saumure (10 ml) Puis la phase aqueuse est extraite par 3 x 10 ml de CH 2 Cl 2 . Les phases organiques sont rassemblées, séchées sur MgSO 4 et filtrées. Le mélange est séché et passé sur colonne de silice avec un éluant cyclohexane mg, pp.84-71

. Le-produit-28, Le milieu est bullé pour permettre son dégazage grâce à l'utilisation d'un ballon de baudruche rempli d'argon. Une aiguille donnant sur l'extérieur permet aux vapeurs de solvants d'être évacuées. On retire le ballon d'argon et on ajoute du Pd/C (120 mg) Le milieu est mis sous atmosphère d'H 2 à 60 psi pendant 3 jours Le Pd/C est filtré sur célite et lavé plusieurs fois avec du THF, puis par un mélange CH 2 Cl mg, La phase organique est évaporée séchée. Le résidu est déposé sur colonne de silice avec un éluant CH 2 Cl 2 /MeOH, p.60

. Le-produit-29, mg ; 0,014 mmole) est dissous dans 1 ml de CH 2 Cl 2 . A 0°C, on ajoute 1 ml de TFA. On laisse sous agitation et sous argon pendant 2 heures à température ambiante. Le milieu est évaporé à sec pour donner le sel de TFA

L. Avec-de and . Diea, En parallèle, du Cy5-COOH est dissous dans 1 ml de CH 2 Cl 2 (9 mg ; 0,017 mmole), et du BOP (7 mg ; 0,017 mmole) est ajouté. Le milieu est laissé sous agitation pendant 10 minutes, puis le sel de TFA et la DIEA sont ajoutés. Le milieu est laissé une nuit sous agitation et sous argon, à l'abri de la lumière et à température ambiante mg, Le milieu est évaporé à sec et le résidu est chromatographié sur colonne de silice avec un mélange d'éluant CH 2 Cl 2 /MeOH, pp.14-86

M. Morita, T. Natori, K. Akimoto, T. Osawa, H. Fukushima et al., Syntheses of ???-monoglycosylcermaides and four diastereoisomers of an ?galactosylceramide, Bioorganic and Medicinal Chemistry Letters, issue.5, pp.699-704, 1995.

T. Kawano, T. Nakayama, N. Kamada, Y. Kaneko, M. Harada et al., Antitumor cytotoxicity mediated by ligand-activated human V alpha24 NKT cells, Cancer Research, vol.59, pp.5102-5105, 1999.

S. M. Tahir, O. Cheng, A. Shaulov, Y. Koezuka, G. J. Bubley et al., Loss of IFN-?? Production by Invariant NK T Cells in Advanced Cancer, The Journal of Immunology, vol.167, issue.7, pp.4046-4050, 2001.
DOI : 10.4049/jimmunol.167.7.4046

D. I. Godfrey, H. R. Macdonald, M. Kronenberg, M. J. Smyth, and L. Van-kaer, Opinion: NKT cells: what's in a name?, Nature Reviews Immunology, vol.11, issue.3, pp.231-237, 2004.
DOI : 10.1038/nri1309

P. Dellabona, E. Padovan, G. Casorati, M. Brockhaus, and A. Lanzavecchia, An invariant V alpha 24-J alpha Q/V beta 11 T cell receptor is expressed in all individuals by clonally expanded CD4-8- T cells, Journal of Experimental Medicine, vol.180, issue.3, pp.1171-1176, 1994.
DOI : 10.1084/jem.180.3.1171

F. M. Spada, Y. Koezuka, and S. A. Porcelli, CD1d-restricted Recognition of Synthetic Glycolipid Antigens by Human Natural Killer T Cells, The Journal of Experimental Medicine, vol.147, issue.8, pp.1529-1534, 1998.
DOI : 10.1093/intimm/8.11.1751

M. Kronenberg, TOWARD AN UNDERSTANDING OF NKT CELL BIOLOGY: Progress and Paradoxes, Annual Review of Immunology, vol.23, issue.1, pp.877-900, 2005.
DOI : 10.1146/annurev.immunol.23.021704.115742

T. Yoshimoto and W. E. Paul, Cd4(Pos), Nk1.1(Pos) T-Cells Promptly Produce Interleukin-4 in Response to in-Vivo. Challenge with anti-CD3, Journal of Experimental Medicine, issue.179, pp.1285-1295, 1994.

C. Carnaud, D. Lee, O. Donnars, S. H. Park, A. Beavis et al., Cutting edge: Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells, Journal of Immunology, vol.163, pp.4647-4650, 1999.

D. I. Godfrey and M. Kronenberg, Going both ways: Immune regulation via CD1d-dependent NKT cells, Journal of Clinical Investigation, vol.114, issue.10, pp.1379-1388, 2004.
DOI : 10.1172/JCI200423594

J. C. Mercer, M. J. Ragin, and A. August, Natural killer T cells: rapid responders controlling immunity and disease, The International Journal of Biochemistry & Cell Biology, vol.37, issue.7, pp.1337-1343, 2005.
DOI : 10.1016/j.biocel.2004.11.019

A. Bendalac, P. B. Savage, and L. Teyton, The Biology of NKT Cells, Annual Review of Immunology, vol.25, issue.1, pp.297-336, 2007.
DOI : 10.1146/annurev.immunol.25.022106.141711

R. C. Budd, G. C. Miescher, R. C. Howe, R. K. Lees, C. Bron et al., Developmentally regulated expression of T cell receptor beta chain variable domains in immature thymocytes, Journal of Experimental Medicine, vol.166, issue.2, pp.577-582, 1987.
DOI : 10.1084/jem.166.2.577

B. J. Fowlkes, A. M. Kruisbeek, H. Tonthat, M. A. Weston, J. E. Coligan et al., A novel population of T-cell receptor ????-bearing thymocytes which predominantly expresses a single V?? gene family, Nature, vol.329, issue.6136, pp.251-256, 1987.
DOI : 10.1038/329251a0

R. Ceredig, F. Lynch, and P. Newman, Phenotypic properties, interleukin 2 production, and developmental origin of a "mature" subpopulation of Lyt-2- L3T4- mouse thymocytes., Proceedings of the National Academy of Sciences, vol.84, issue.23, pp.8578-8582, 1987.
DOI : 10.1073/pnas.84.23.8578

M. Sykes, Unsual T cell population in adult murine bone marrow. Prevalence of CD3, CD4-CD8-and ?? TCR NK1.1 cells, Journal of Immunology, issue.145, pp.3209-3215, 1990.

H. Levitsky, P. T. Golumbek, and D. M. Pardoll, The fate of CD4-8-T cell receptor ?? thymocytes, Journal of Immunology, issue.146, pp.1113-1117, 1991.

Y. Makino, R. Kanno, T. Ito, K. Higashino, and M. Tanigushi, Predominant expression of invariant Va14 TCR a-chain in NK1.1 T cell populations, International Immunollogy, issue.7, pp.1157-1161, 1995.

A. Bendelac, M. N. Rivera, S. H. Park, and J. H. Roark, MOUSE CD1-SPECIFIC NK1 T CELLS: Development, Specificity, and Function, Annual Review of Immunology, vol.15, issue.1, pp.535-562, 1997.
DOI : 10.1146/annurev.immunol.15.1.535

S. Hong, D. C. Scherer, N. Singh, S. K. Mendiratta, I. Serizawa et al., Lipid antigen presentation in the immune system; lessons learned from CD 1 d knockout mice, Immunological Reviews, vol.25, issue.1, pp.31-44, 1999.
DOI : 10.1084/jem.189.1.103

S. H. Park, K. Benlagha, D. Lee, E. Balish, and A. Bendelac, Unaltered phenotype, tissue distribution and function of V??14+ NKT cells in germ-free mice, European Journal of Immunology, vol.30, issue.2, pp.620-625, 2000.
DOI : 10.1002/1521-4141(200002)30:2<620::AID-IMMU620>3.0.CO;2-4

D. I. Godfrey, S. Stankovic, and A. G. Baxter, Raising the NKT cell family, Nature Immunology, vol.172, issue.3, pp.197-206, 2010.
DOI : 10.1016/j.immuni.2006.06.017

M. Terabe, S. Matsui, N. Noben-trauth, H. Chen, C. Watson et al., NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway, Nature Immunology, issue.1, pp.515-520, 2000.

J. E. Gumperz, S. Miyake, T. Yamamura, and M. B. Brenner, Functionnaly distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining, Journal of Experimental Medicine, pp.625-636, 0195.

K. Benlagha, T. Kyin, A. Beavis, L. Teyton, and A. Bendelac, A Thymic Precursor to the NK T Cell Lineage, Science, vol.296, issue.5567, pp.553-555, 2002.
DOI : 10.1126/science.1069017

D. G. Pellicci, K. J. Hammond, A. P. Uldrich, A. G. Baxter, M. J. Smyth et al., A Natural Killer T (NKT) cell developpement pathway involving a thymusdependent NK1.1-CD4 CD1d-dependent precursor stage, Journal of Experimental Medicine, pp.835-844, 0195.

N. Y. Crowe, A. P. Uldrich, K. Kyparissoudis, K. J. Hammond, Y. Hayakawa et al., Glycolipid antigen drives rapid expansion and sustained cytokine production by NKT cells, Journal of Immunology, issue.171, pp.4020-4027, 2003.

M. T. Wilson, C. Johansson, D. Olivares-villagómez, A. K. Singh, A. K. Stanic et al., The response of natural killer T cells to glycolipid antigens is characterized by surface receptor down-modulation and expansion, Proceedings of the National Academy of Sciences of the United States of America, pp.10913-10918, 2003.
DOI : 10.1073/pnas.1833166100

S. Cardell, S. Tangri, S. Chan, M. Kronenberg, C. Benoist et al., CD1-restricted CD4+ T cells in major histocompatibility complex class II-deficient mice, Journal of Experimental Medicine, vol.182, issue.4, pp.993-1004, 1995.
DOI : 10.1084/jem.182.4.993

J. A. Berzofsky and M. Terabe, NKT Cells in Tumor Immunity: Opposing Subsets Define a New Immunoregulatory Axis, The Journal of Immunology, vol.180, issue.6, pp.3627-3635, 2008.
DOI : 10.4049/jimmunol.180.6.3627

M. Terabe, J. Swann, E. Ambrosino, P. Sinha, S. Takaku et al., A nonclassical non-V??14J??18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance, The Journal of Experimental Medicine, vol.58, issue.12, pp.1627-1633, 2005.
DOI : 10.1172/JCI200419836

K. J. Hammond, S. B. Pelikan, N. Y. Crowe, E. Randle-barrett, T. Nakayama et al., NKT cells are phenotypically and functionally diverse, European Journal of Immunology, vol.10, issue.11, pp.3768-3781, 1999.
DOI : 10.1002/(SICI)1521-4141(199911)29:11<3768::AID-IMMU3768>3.0.CO;2-G

G. Eberl, R. Lees, S. T. Smiley, M. Taniguchi, M. J. Grusby et al., Tissue specific segregation of CD1d-dependant and CD1d-independant NKT cells, Journal of Immunology, vol.162, pp.6410-6419, 1999.

E. Treiner and O. Lantz, CD1d and MR1-restricted invariant T cells: of mice and men. Current Opinion of Immunology, pp.519-526, 2006.

N. R. Cohen, S. Garg, and M. B. Brenner, Chapter 1 Antigen Presentation by CD1, Advances in Immunology, vol.102, pp.1-94, 2009.
DOI : 10.1016/S0065-2776(09)01201-2

A. P. Uldrich, O. Patel, G. Cameron, D. G. Pellicci, E. B. Day et al., A semi-invariant V??10+ T cell antigen receptor defines a population of natural killer T cells with distinct glycolipid antigen???recognition properties, Nature Immunology, vol.276, issue.7, pp.616-625, 2011.
DOI : 10.1038/ni1224

E. S. Trombetta and I. Mellmann, CELL BIOLOGY OF ANTIGEN PROCESSING IN VITRO AND IN VIVO, Annual Review of Immunology, vol.23, issue.1
DOI : 10.1146/annurev.immunol.22.012703.104538

P. Pierre, S. J. Turley, E. Gatti, M. Hull, J. Meltzer et al., Developmental regulation of MHC class II transport in mouse dendritic cells, Nature, vol.388, pp.787-792, 1997.

G. J. Randolph, V. Angeli, and M. A. Swartz, Dendritic-cell trafficking to lymph nodes through lymphatic vessels, Nature Reviews Immunology, vol.161, issue.8, pp.617-628, 2005.
DOI : 10.1038/ni962

S. Fujii, K. Liu, C. Smith, A. J. Bonito, and R. M. Steinman, The Linkage of Innate to Adaptive Immunity via Maturing Dendritic Cells In Vivo Requires CD40 Ligation in Addition to Antigen Presentation and CD80/86 Costimulation, The Journal of Experimental Medicine, vol.162, issue.12, pp.1607-1618, 0199.
DOI : 10.4049/jimmunol.167.11.6247

J. Banchereau and R. M. Steinman, Dendritic cells and the control of immunity, Nature, vol.392, issue.6673, pp.245-252, 1998.
DOI : 10.1038/32588

H. Cucak, U. Yrlid, B. Reizis, U. Kalinke, and B. Johansson-lindhom, Type-I interferon signaling in dendritic cells stimulates the development of lymph-noderesident T follicular helper cells, Immunity, pp.31-491, 2009.

M. J. Robinson, D. Sancho, E. C. Slack, S. Leibuntgut-landmann, and C. Reis-e-sousa, Myeloid C-type lectins in innate immunity, Nature Immunology, vol.281, issue.12, pp.1258-1265, 2006.
DOI : 10.1074/jbc.M203774200

H. Poeck, M. Wagner, J. Battiany, S. Rothenfusser, D. Wellisch et al., Plasmacytoid dendritic cells, antigen, and CpG-C license human B cells for plasma cell differentiation and immunoglobulin production in the absence of T-cell help, Blood, vol.103, issue.8, pp.3058-3064, 2004.
DOI : 10.1182/blood-2003-08-2972

M. J. Smyth, D. I. Godfrey, and J. A. Trapani, A fresh look at tumor immunosurveillance and immunotherapy, Nature Immunology, issue.2, pp.293-299, 2001.

D. M. Zajonc, C. Cantu, J. Mattner, D. P. Zhou, P. B. Savage et al., Structure and function of a potent agonist for the semi-invariant natural killer T cell receptor, Nature Immunology, vol.50, issue.8, pp.810-818, 2005.
DOI : 10.1093/intimm/13.7.853

M. S. Vincent, J. E. Gumperz, and M. B. Brenner, Understanding the function of CD1-restricted T cells, Nature Immunology, vol.4, issue.6, pp.517-523, 2003.
DOI : 10.1038/ni0603-517

M. Brigl and M. B. Brenner, CD1: Antigen Presentation and T Cell Function, Annual Review of Immunology, vol.22, issue.1, pp.817-890, 2004.
DOI : 10.1146/annurev.immunol.22.012703.104608

D. C. Barral and M. B. Brenner, CD1 antigen presentation: how it works, Nature Reviews Immunology, vol.200, issue.12, pp.929-941, 2007.
DOI : 10.1038/nri2191

B. G. Reddy, J. D. Silk, M. Salio, R. Balamurugan, D. Shepherd et al., Nonglycosidic agonists of invariant NKT cells for use as vaccine adjuvants ChemMedChem, pp.171-175, 2009.

E. Pál, T. Tabira, T. Kawano, M. Taniguchi, S. Miyake et al., Costimulation-dependent modulation of experimental autoimmune encephalomyelitis by ligand stimulation of V?14 NKT cells, Journal of Immunology, issue.166, pp.662-668, 2001.

M. K. Jenkins and R. H. Schwartz, Antigen presentation by chemically modified splenocytes induces antigen- specific T cell unresponsiveness in vitro and in vivo, Journal of Experimental Medicine, vol.165, issue.2, pp.302-319, 1987.
DOI : 10.1084/jem.165.2.302

F. Macian, F. Garcia-cozar, S. H. Im, H. F. Horton, M. C. Byrne et al., Transcriptional Mechanisms Underlying Lymphocyte Tolerance, Cell, vol.109, issue.6, pp.719-732, 2002.
DOI : 10.1016/S0092-8674(02)00767-5

Y. Zheng, Y. Zha, and T. F. Gajewski, Molecular regulation of T-cell anergy, EMBO reports, vol.2000, issue.1, pp.50-55, 2008.
DOI : 10.1038/ni1394

Y. Zheng, S. L. Collins, M. A. Lutz, A. N. Allen, T. P. Kole et al., A Role for Mammalian Target of Rapamycin in Regulating T Cell Activation versus Anergy, The Journal of Immunology, vol.178, issue.4, pp.2163-2170, 2007.
DOI : 10.4049/jimmunol.178.4.2163

P. Chappert and R. H. Schwartz, Induction of T cell anergy: integration of environmental cues and infectious tolerance, Current Opinion in Immunology, vol.22, issue.5, pp.552-559, 2010.
DOI : 10.1016/j.coi.2010.08.005

A. W. Thomson, H. R. Turnquist, and G. Raimondi, Immunoregulatory functions of mTOR inhibition, Nature Reviews Immunology, vol.147, issue.5, pp.324-337, 2009.
DOI : 10.1038/nri2546

S. Fujii, K. Shimizu, M. Kronenberg, and R. M. Steinman, Prolonged IFN-?????producing NKT response induced with ??-galactosylceramide???loaded DCs, Nature Immunology, vol.3, issue.9, pp.867-874, 2002.
DOI : 10.1038/ni827

V. V. Parekh, T. T. Wilson, D. Olivares-villagomez, A. K. Singh, L. Wu et al., Glycolipid antigen induces long-term natural killer T cell anergy in mice, Journal of Clinical Investigation, vol.115, issue.9, pp.2572-2583, 2005.
DOI : 10.1172/JCI24762DS1

P. Thapa, G. Zhang, C. Xia, A. Gelbard, W. W. Overwijk et al., Nanoparticle formulated alpha-galactosylceramide activates NKT cells without inducing anergy, Vaccine, vol.27, issue.25-26, pp.3484-3488, 2009.
DOI : 10.1016/j.vaccine.2009.01.047

K. Motoki, E. Kobayashi, T. Uchida, H. Fukushima, and Y. Koezuka, Antitumor Activities of Alpha-Monogalactosylceramides

. Diastereomers, Bioorganic and Medicinal Chemistry Letters, pp.705-710, 1995.

J. E. Gumperz, C. Roy, A. Makowska, D. Lum, M. Sugita et al., Murine CD1d-Restricted T Cell Recognition of Cellular Lipids, Immunity, vol.12, issue.2, pp.211-221, 2000.
DOI : 10.1016/S1074-7613(00)80174-0

L. M. Fox, D. G. Cox, J. L. Lockridge, X. Wang, X. Chen et al., Recognition of Lyso-Phospholipids by Human Natural Killer T Lymphocytes, PLoS Biology, vol.170, issue.10, p.1000228, 2009.
DOI : 10.1371/journal.pbio.1000228.s001

A. Adlercreutz, J. T. Weadge, B. O. Petersen, J. Duus, N. J. Dovichi et al., Enzymatic synthesis of Gb3 and iGb3 ceramides, Carbohydrate Research, vol.345, issue.10, pp.1384-1388, 2010.
DOI : 10.1016/j.carres.2010.02.006

D. Zhou, J. Mattner, C. C. Ill, N. Schrantz, N. Yin et al., Lysosomal Glycosphingolipid Recognition by NKT Cells, Lysosomal Glycosphingolipid Recognition by NKT cell, pp.1786-1789, 2004.
DOI : 10.1126/science.1103440

A. K. Stanic, D. Silva, A. D. Park, J. J. Sriram, V. Ichikawa et al., Defective presentation of CD1d 1-restricted natural V?14J?18 NKT lymphocyte antigen caused by ??Dglucosylceramide synthase deficiency, Proceedings of the National Academy of Sciences of the United States of America, pp.1849-1854, 2003.

Y. Li, S. Teneberg, P. Thapa, A. Bendelac, S. B. Levery et al., Sensitive detection of isoglobo and globo series tetraglycosylceramides in human thymus by ion trap mass spectrometry, Glycobiology, vol.18, issue.2, pp.158-165, 2008.
DOI : 10.1093/glycob/cwm129

A. Jahng, I. Maricic, C. Aguilera, S. Cardell, R. C. Halder et al., Prevention of Autoimmunity by Targeting a Distinct, Noninvariant CD1d-reactive T Cell Population Reactive to Sulfatide, The Journal of Experimental Medicine, vol.160, issue.7, pp.947-957, 0199.
DOI : 10.1038/35097097

K. Fisher, E. Scotet, M. Niemeyer, H. Koebernick, J. Zerrahn et al., Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells, Proceedings of the National Academy of Sciences of the United States of America, pp.10685-10690, 2004.
DOI : 10.1073/pnas.0403787101

M. M. Venkataswanny and S. A. Porcelli, Lipid and glycolipid antigens of CD1d-restricted natural killer T cells, Seminars in Immunology, vol.22, issue.2, pp.68-78, 2009.
DOI : 10.1016/j.smim.2009.10.003

H. Lotter, N. Gonzalez-roldan, B. Lindner, F. Winau, A. Isibasi et al., Natural killer T cells activated by a lipopeptidophosphoglycan from Entamoeba histolytica are critically important to control amebic liver abscess The crystal structure of human CD1d with and without alpha-galactosylceramide, PloS Pathogens Nature Immunology, issue.6, pp.819-826, 2005.

D. Wu, D. M. Zajonc, M. Fujio, B. A. Sullivan, Y. Kinjo et al., Design of natural killer T cell activators: Structure and function of a microbial glycosphingolipid bound to mouse CD1d, Proceedings of the National Academy Sciences of United States of America, pp.3972-3977, 2006.
DOI : 10.1073/pnas.0600285103

H. Iijima, K. Kimura, A. Uchimura, T. Shimizu, H. Ueno et al., Structure???activity relationship and conformational analysis of monoglycosylceramides on the syngeneic mixed leukocyte reaction, Bioorganic & Medicinal Chemistry, vol.6, issue.10, pp.1905-1910, 1998.
DOI : 10.1016/S0968-0896(98)00112-6

R. Gupta, Indian task force for celiac disease: Current status, World Journal of Gastroenterology, vol.15, issue.48, pp.6028-6061, 2009.
DOI : 10.3748/wjg.15.6028

N. Veerapen, F. Reddington, G. Bricard, S. A. Porcelli, and G. S. Besra, Synthesis and biological activity of ??-l-fucosyl ceramides, analogues of the potent agonist, ??-d-galactosyl ceramide KRN7000, Bioorganic & Medicinal Chemistry Letters, vol.20, issue.11, pp.3223-3226, 2010.
DOI : 10.1016/j.bmcl.2010.04.079

L. Barbieri, V. Costantino, E. Fatorusso, A. Mangoni, N. Basilico et al., Immunomodulatory ??-Galactoglycosphingolipids: Synthesis of 2'-Fluoro-2'-deoxy-??-galactosylceramide and an Evaluation of Its Immunostimulating Properties, European Journal of Organic Chemistry, vol.65, issue.15
DOI : 10.1002/ejoc.200500053

N. Veerapen, M. Brigl, S. Garg, V. Cerundolo, L. R. Cox et al., Synthesis and biological activity of ??-galactosyl ceramide KRN7000 and galactosyl (??1???2) galactosyl ceramide, Bioorganic & Medicinal Chemistry Letters, vol.19, issue.15, pp.4288-4291, 2009.
DOI : 10.1016/j.bmcl.2009.05.095

R. Raju, B. F. Castillo, S. K. Richardson, M. Thakur, R. Severins et al., Synthesis and evaluation of 3???- and 4???-deoxy and -fluoro analogs of the immunostimulatory glycolipid, KRN7000, Bioorganic & Medicinal Chemistry Letters, vol.19, issue.15, pp.4122-4125, 2009.
DOI : 10.1016/j.bmcl.2009.06.005

C. Xia, W. Zhang, Y. Zhang, W. Chen, J. Nadas et al., The Roles of 3??? and 4??? Hydroxy Groups in ??-Galactosylceramide Stimulation of Invariant Natural Killer T???Cells, ChemMedChem, vol.434, issue.11, pp.1810-1815, 2009.
DOI : 10.1002/cmdc.200900350

G. Xing, D. Wu, M. A. Poles, A. Horowitz, M. Tsuji et al., Synthesis and human NKT cell stimulating properties of 3-O-sulfo-a/b- galactosylceramides. Bioorganic and Medicinal Chemistry Letters, pp.2907-2916, 2005.

W. Zhang, C. Xia, J. Nadas, W. Chen, L. Gu et al., Introduction of aromatic group on 4???-OH of ??-GalCer manipulated NKT cell cytokine production, Bioorganic & Medicinal Chemistry, vol.19, issue.8, pp.2767-2776, 2010.
DOI : 10.1016/j.bmc.2010.11.061

T. Ebensen, C. Link, P. Riese, K. Schulze, M. Morr et al., A Pegylated Derivative of ??-Galactosylceramide Exhibits Improved Biological Properties, The Journal of Immunology, vol.179, issue.4, pp.2065-2073, 2007.
DOI : 10.4049/jimmunol.179.4.2065

X. Zhou, C. Forestier, R. D. Goff, C. Li, L. Teyton et al., Synthesis and NKT Cell Stimulating Properties of Fluorophore- and Biotin-Appended 6?????????-Amino-6?????????-deoxy-galactosylceramides, Organic Letters, vol.4, issue.8, pp.1267-1270, 2002.
DOI : 10.1021/ol025565+

T. Tashiro, R. Nakagawa, S. Inoue, M. Shiozaki, H. Watarai et al., RCAI-61, the 6???-O-methylated analog of KRN7000: its synthesis and potent bioactivity for mouse lymphocytes to produce interferon-?? in vivo, Tetrahedron Letters, vol.49, issue.48, pp.6827-6830, 2008.
DOI : 10.1016/j.tetlet.2008.09.074

M. Trappeniers, K. Van-beneden, T. Decruy, U. Hillaert, B. Linclau et al., 6???-Derivatised ??-GalCer Analogues Capable of Inducing Strong CD1d-Mediated Th1-Biased NKT Cell Responses in Mice, Journal of the American Chemical Society, vol.130, issue.49, pp.16468-16469, 2008.
DOI : 10.1021/ja8064182

S. Aspeslagh, Y. Li, D. Yu, E. Pauwels, N. Trappeniers et al., Galactose-modified iNKT cell agonists stabilized by an induced fit of CD1d prevent tumour metastasis, The EMBO Journal, vol.202, issue.11, pp.2294-2305, 2011.
DOI : 10.1038/emboj.2011.145

T. Tashiro, R. Nakagawa, T. Hirokawa, S. Inoue, H. Watarai et al., RCAI-56, a carboxylic analogue of KRN7000 : its synthesis and potent activity for natural (NK) T cells to preferentially produce interferon-?, Tetrahedron Letters, issue.48, pp.3343-3347, 2007.

T. Tashiro, R. Nakagawa, T. Hirokawa, S. Inoue, H. Watarai et al., RCAI-37, 56, 59, 60, 92, 101, and 102, cyclitol and carbasugar analogs of KRN7000: Their synthesis and bioactivity for mouse lymphocytes to produce Th1-biased cytokines???, Bioorganic & Medicinal Chemistry, vol.17, issue.17, pp.6360-6373, 2009.
DOI : 10.1016/j.bmc.2009.07.025

S. R. Morshed, T. Takahashi, P. B. Savage, N. Kambham, and S. Strober, ??-galactosylceramide alters invariant natural killer T cell function and is effective treatment for lupus, Clinical Immunology, vol.132, issue.3, pp.321-333, 2009.
DOI : 10.1016/j.clim.2009.05.018

J. Schmieg, G. Yang, R. W. Franck, and M. Tsuji, Superior Protection against Malaria and Melanoma Metastases by a C-glycoside Analogue of the Natural Killer T Cell Ligand ??-Galactosylceramide, The Journal of Experimental Medicine, vol.8, issue.11, pp.1631-1641, 0198.
DOI : 10.1046/j.1423-0410.2002.00217.x

G. Yang, J. Schmieg, M. Tsuji, and R. W. Franck, The C-glycoside analogue of the immunostimulant ?-galactosylceramide (KRN7000) : synthesis and striking enhancement of activity, Angewandte Chemie International Edition, issue.43, pp.3818-3822, 2004.

R. W. Franck and M. Tsuji, -Galactosylceramides:?? Synthesis and Immunology, Accounts of Chemical Research, vol.39, issue.10, pp.692-701, 2006.
DOI : 10.1021/ar050006z

URL : https://hal.archives-ouvertes.fr/hal-00607361

X. Li, T. Shiratsuchi, G. Chen, P. Dellabona, G. Casorati et al., Invariant TCR Rather Than CD1d Shapes the Preferential Activities of C-Glycoside Analogues Against Human Versus Murine Invariant NKT Cells, The Journal of Immunology, vol.183, issue.7, pp.4415-4421, 2009.
DOI : 10.4049/jimmunol.0901021

X. Lu, L. Song, L. S. Metelitsa, and R. Bittman, Synthesis and evaluation of an ?-Cgalactosylceramide analogue that induces Th1-biased responses in human natural killer T cells, ChemBioChem, issue.7, pp.1750-1756, 2006.

R. T. Dere and X. Zhu, The First Synthesis of a Thioglycoside Analogue of the Immunostimulant KRN7000, Organic Letters, vol.10, issue.20, pp.4641-4644, 2008.
DOI : 10.1021/ol8019555

Y. Chang, J. Huang, Y. Tsai, J. Hung, D. Wu et al., Potent immune-modulating and anticancer effects of NKT cell stimulatory glycolipids, Proceedings of the National Academy of Sciences, pp.10299-10304, 2007.
DOI : 10.1073/pnas.0703824104

A. E. Hogan, V. O-'reilly, M. R. Dunne, R. T. Dere, S. G. Zeng et al., Activation of human invariant natural killer T cells with a thioglycoside analogue of ?galactosylceramide, Clinical Immunology, 2011.

Y. Harrak, C. M. Barra, A. Delgado, A. R. Castano, and A. Llebaria, Galacto-Configured Aminocyclitol Phytoceramides Are Potent in Vivo Invariant Natural Killer T Cell Stimulators, Journal of the American Chemical Society, vol.133, issue.31, pp.12079-12084, 2011.
DOI : 10.1021/ja202610x

T. Lee, M. Cho, S. Ko, H. Youn, D. J. Baek et al., Synthesis and Evaluation of 1,2,3-Triazole Containing Analogues of the Immunostimulant ??-GalCer, Journal of Medicinal Chemistry, vol.50, issue.3, pp.585-589, 2007.
DOI : 10.1021/jm061243q

K. Fuhshuku, N. Hongo, T. Tashiro, Y. Masuda, R. Nakagawa et al., RCAI-8, 9, 18, 19, and 49???52, conformationally restricted analogues of KRN7000 with an azetidine or a pyrrolidine ring: Their synthesis and bioactivity for mouse natural killer T cells to produce cytokines, Bioorganic and Medicinal Chemistry, pp.950-964, 2008.
DOI : 10.1016/j.bmc.2007.10.008

M. Shiozaki, T. Tashiro, H. Koshino, R. Nakagawa, S. Inoue et al., Synthesis and biological activity of ester and ether analogues of ?-galactosylceramide (KRN7000) Carbohydrate Research, pp.1663-1684, 2010.

M. Trappeniers, R. Chofor, S. Aspelagh, Y. Li, B. Linclau et al., Synthesis and Evaluation of Amino-Modified ??-GalCer Analogues, Organic Letters, vol.12, issue.13, pp.2928-2931, 2010.
DOI : 10.1021/ol100934z

R. D. Goff, Y. Gao, J. Mattner, D. Zhou, N. Yin et al., Effects of Lipid Chain Lengths in ??-Galactosylceramides on Cytokine Release by Natural Killer T Cells, Journal of the American Chemical Society, vol.126, issue.42, pp.13602-13603, 2004.
DOI : 10.1021/ja045385q

K. A. Yu, J. S. Im, A. Molano, Y. Dutronc, P. A. Illiaronov et al., Modulation of CD1d-restricted NKT cell reponses by using N-acyl variants of ?- Galactosylceramides, Proceedings of the National Academy of Sciences, pp.3383-3388, 2005.

G. Velmourourgane, R. Raju, G. Bricard, J. S. Im, G. S. Besra et al., Synthesis and evaluation of an acyl-chain unsaturated analog of the Th2 biasing, immunostimulatory glycolipid, OCH, Bioorganic & Medicinal Chemistry Letters, vol.19, issue.13, pp.3386-3388, 2009.
DOI : 10.1016/j.bmcl.2009.05.042

M. Fujio, D. Wu, R. Garcia-navarro, D. D. Ho, M. Tsuji et al., Structure-Based Discovery of Glycolipids for CD1d-Mediated NKT Cell Activation:?? Tuning the Adjuvant versus Immunosuppression Activity, Journal of the American Chemical Society, vol.128, issue.28, pp.9022-9023, 2006.
DOI : 10.1021/ja062740z

Y. Chang, J. Huang, Y. Tsai, J. Hung, D. Wu et al., Potent immuno-modulating and anticancer effects of NKT cell stimulatory glycolipids, Proceedings of the National Academy of Sciences, pp.10299-10304, 2007.

P. Liang, M. Imamura, X. Li, D. Wu, M. Fujio et al., Quantitative Microarray Analysis of Intact Glycolipid???CD1d Interaction and Correlation with Cell-Based Cytokine Production, Journal of the American Chemical Society, vol.130, issue.37, pp.12348-12354, 2008.
DOI : 10.1021/ja8012787

Y. Lee, K. Lee, J. Lee, M. Kang, Y. C. Song et al., An ??-GalCer analogue with branched acyl chain enhances protective immune responses in a nasal influenza vaccine, Vaccine, vol.29, issue.3, pp.417-425, 2010.
DOI : 10.1016/j.vaccine.2010.11.005

R. M. Ndonye, D. P. Izmirian, M. F. Dunn, K. O. Yu, S. A. Porcelli et al., Synthesis and Evaluation of Sphinganine Analogues of KRN7000 and OCH, The Journal of Organic Chemistry, vol.70, issue.25, pp.10260-10270, 2005.
DOI : 10.1021/jo051147h

K. Miyamoto, S. Miyake, and T. Yamamura, A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells, Nature, vol.5, issue.6855, pp.531-534, 2001.
DOI : 10.1038/35097097

M. Michieletti, A. Bracci, F. Compostella, G. De-libero, L. Mori et al., Synthesis of ??-Galactosyl Ceramide (KRN7000) and Analogues Thereof via a Common Precursor and Their Preliminary Biological Assessment, The Journal of Organic Chemistry, vol.73, issue.22, pp.9192-9195, 2008.
DOI : 10.1021/jo8019994

N. A. Borg, K. S. Wun, L. Kjer-nielsen, M. C. Wilce, D. G. Pellicci et al., CD1d???lipid-antigen recognition by the semi-invariant NKT T-cell receptor, Nature, vol.18, issue.7149, pp.44-49, 2007.
DOI : 10.1038/nature05907

M. Rissoan, V. Soumelis, N. Kadowaki, G. Grouard, F. Briere et al., Reciprocal Control of T Helper Cell and Dendritic Cell Differentiation, Science, vol.283, issue.5405, pp.1183-1186, 1999.
DOI : 10.1126/science.283.5405.1183

J. Schmieg, G. Yang, R. W. Franck, N. Van-rooijen, and M. Tsuji, Glycolipid presentation to natural killer T cells differs in an organ-dependant fashion, Proceedings of the National Academy Sciences of United States of America, pp.1127-1132, 2005.

M. T. Liang, N. M. Davies, J. T. Blanchfield, and I. Toth, Particulate Systems as Adjuvants and Carriers for Peptide and Protein Antigens, Current Drug Delivery, vol.3, issue.4, pp.379-388, 2006.
DOI : 10.2174/156720106778559029

M. S. Mufamadi, V. Pillay, Y. E. Choonara, L. C. Du-toit, G. Modi et al., A Review on Composite Liposomal Technologies for Specialized Drug Delivery, Journal of Drug Delivery, vol.30, issue.16, p.939851, 2009.
DOI : 10.1023/A:1006137100444

O. M. Koo, I. Rubinstein, and H. Onyuksel, Role of nanotechnology in targeted drug delivery and imaging: a concise review, Nanomedicine: Nanotechnology, Biology and Medicine, vol.1, issue.3, pp.193-212, 2005.
DOI : 10.1016/j.nano.2005.06.004

R. H. Muller, K. Mader, and S. Gohla, Solid lipid nanoparticles (SLN) for controlled drug delivery ?????? a review of the state of the art, European Journal of Pharmaceutics and Biopharmaceutics, vol.50, issue.1, pp.161-177, 2000.
DOI : 10.1016/S0939-6411(00)00087-4

B. Heurtault, P. Saulnier, B. Pech, M. C. Venier-julienne, J. E. Proust et al., The influence of lipid nanocapsule composition on their size distribution, European Journal of Pharmaceutical Sciences, vol.18, issue.1, pp.55-61, 2003.
DOI : 10.1016/S0928-0987(02)00241-5

A. J. Baillie, A. T. Florence, L. R. Hume, G. T. Muirhead, and A. Rogerson, The preparation and properties of niosomes-non-ionic surfactant vesicles, Journal of Pharmacy and Pharmacology, vol.9, issue.Suppl. 36, pp.863-868, 1985.
DOI : 10.1111/j.2042-7158.1985.tb04990.x

P. Couvreur, B. Kante, M. Roland, P. Guiot, P. Bauduin et al., Polycyanoacrylate nanocapsules as potential lysosomotropic carriers: preparation, morphological and sorptive properties, Journal of Pharmacy and Pharmacology, vol.63, issue.1, pp.31-331, 1979.
DOI : 10.1111/j.2042-7158.1979.tb13510.x

S. V. Vinogradov, T. K. Bronich, and A. V. Kabanov, Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells, Advanced Drug Delivery Reviews, vol.54, issue.1, pp.135-147, 2002.
DOI : 10.1016/S0169-409X(01)00245-9

U. Boas and P. M. Heegaard, Dendrimers in drug research, Chemical Society Reviews, vol.33, issue.1, pp.43-63, 2004.
DOI : 10.1039/b309043b

J. Cheon and J. H. Lee, Synergistically Integrated Nanoparticles as Multimodal Probes for Nanobiotechnology, Accounts of Chemical Research, vol.41, issue.12, pp.1630-1640, 2008.
DOI : 10.1021/ar800045c

Y. L. Liu, M. K. Shipton, J. Ryan, E. D. Kaufman, S. Franzen et al., Synthesis, Stability, and Cellular Internalization of Gold Nanoparticles Containing Mixed Peptide???Poly(ethylene glycol) Monolayers, Analytical Chemistry, vol.79, issue.6, pp.2221-2229, 2007.
DOI : 10.1021/ac061578f

S. Iijima, P. M. Ajayan, and T. Ichihashi, Growth model for carbon nanotubes, Physical Review Letters, vol.69, issue.21, pp.3100-3103, 1992.
DOI : 10.1103/PhysRevLett.69.3100

P. Wick, M. J. Clift, M. Rosslein, and B. Rothen-rutishauser, A Brief Summary of Carbon Nanotubes Science and Technology: A Health and Safety Perspective, ChemSusChem, vol.68, issue.7
DOI : 10.1002/cssc.201100161

G. Storm and D. J. Crommelin, Liposome: quo vadis ? Pharmaceutical Science & Technology Today, pp.19-31, 1998.

A. Gabizon and D. Papahadjopoulos, Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors., Proceedings of the National Academy of Sciences of the United States of America, pp.6949-6953, 1988.
DOI : 10.1073/pnas.85.18.6949

T. M. Allen, Stealth liposomes avoiding reticuloendothelial uptake in Liposome in the Therapy of Infectious Diseases and Cancer, pp.405-415, 1989.

S. Sharma, N. Sharma, S. Kumar, and G. D. Gupta, Liposome : A review, Journal of Pharmacy Research, issue.7, pp.1163-1167, 2009.

H. Kamijuku, Y. Nagata, X. Jiang, T. Ichinohe, T. Tashiro et al., Mechanism of NKT cell activation by intranasal coadministration of alpha-galactosylceramide, which can induce cross-protection against influenza viruses, Mucosal Immunology, issue.1, pp.208-218, 2008.

N. Veerapen, F. Reddington, M. Salio, V. Cerundolo, and G. S. Besra, Synthesis of truncated analogues of the iNKT cell agonist, ??-galactosyl ceramide (KRN7000), and their biological evaluation, Bioorganic & Medicinal Chemistry, vol.19, issue.1, pp.221-228, 2011.
DOI : 10.1016/j.bmc.2010.11.032

J. M. Cheng, S. H. Chee, D. A. Knight, H. Acha-orbea, I. F. Hermans et al., An improved synthesis of dansylated ??-galactosylceramide and its use as a fluorescent probe for the monitoring of glycolipid uptake by cells, Carbohydrate Research, vol.346, issue.7, pp.914-926, 2011.
DOI : 10.1016/j.carres.2011.02.014

A. J. Ndakala, M. Hashemzadeh, R. C. So, and A. R. Howell, Synthesis of D-erythrodihydrosphingosine and D-xylo-phytosphingosine from a serine-derived 1,5- dioxaspiro[3.2]hexane template, Organic Letters, issue.4, pp.1719-1722, 2002.

P. Garner and J. M. Park, The synthesis and configurational stability of differentially protected .beta.-hydroxy-.alpha.-amino aldehydes, The Journal of Organic Chemistry, vol.52, issue.12, pp.2361-2364, 1987.
DOI : 10.1021/jo00388a004

H. Azuma, S. Tamagaki, and K. Ogino, -Serine, The Journal of Organic Chemistry, vol.65, issue.11, pp.3538-3541, 2000.
DOI : 10.1021/jo991447x

URL : https://hal.archives-ouvertes.fr/hal-00309399

N. Veerapen, E. A. Leadbetter, M. B. Brenner, L. R. Cox, and G. S. Besra, NKT Cells in the Production of Antilipid Antibodies, Bioconjugate Chemistry, vol.21, issue.4, pp.741-747, 2010.
DOI : 10.1021/bc9005255

D. Crich, F. Cai, and F. Yang, A stable, commercially available sulfenyl chloride for the activation of thioglycosides in conjunction with silver trifluoromethanesulfonate, Carbohydrate Research, vol.343, issue.10-11, pp.1858-1862, 2008.
DOI : 10.1016/j.carres.2008.03.002

S. Figueroa-perez and R. R. Schmidt, Total synthesis of ??-galactosyl cerebroside, Carbohydrate Research, vol.328, issue.2, pp.95-102, 2000.
DOI : 10.1016/S0008-6215(00)00092-6

O. Plettenburg, V. Bodmer-narkevitch, and C. H. Wong, Synthesis of ??-Galactosyl Ceramide, a Potent Immunostimulatory Agent, The Journal of Organic Chemistry, vol.67, issue.13, pp.4559-4564, 2002.
DOI : 10.1021/jo0201530

K. C. Nicolaou, R. E. Dolle, D. P. Papahatjis, R. , and J. L. , Practical synthesis of oligosaccharides. Partial synthesis of avermectin Bla, Journal of American Chemical Society, issue.106, pp.4189-4192, 1984.

M. Morita, K. Motoki, K. Akimoto, T. Natori, T. Sakai et al., Structure-Activity Relationship of .alpha.-Galactosylceramides against B16-Bearing Mice, Journal of Medicinal Chemistry, vol.38, issue.12, pp.2176-2187, 1995.
DOI : 10.1021/jm00012a018

M. J. Hadd and J. Gervay, Glycosyl iodides are highly efficient donors under neutral conditions, Carbohydrate Research, vol.320, issue.1-2, pp.61-69, 1999.
DOI : 10.1016/S0008-6215(99)00146-9

R. U. Lemieux, K. B. Hendricks, R. V. Stick, and K. James, Halide ion catalyzed glycosidation reactions. Syntheses of .alpha.-linked disaccharides, Journal of the American Chemical Society, vol.97, issue.14, pp.4056-4062, 1975.
DOI : 10.1021/ja00847a032

T. Toba, K. Murata, K. Nakanishi, B. Takahashi, N. Takemoto et al., Minimum structure requirement of immunomodulatory glycolipids for predominant Th2 cytokine induction and the discovery of non-linear phytosphingosine analogs. Bioorganic and Medicinal Chemistry Letters, pp.2781-2784, 2007.

T. Sakai, H. Ehara, and Y. Koezuka, Synthesis of NBD-alpha-galactosylceramide and its immunologic properties, Organic Letters, issue.1, pp.359-361, 1999.

Y. Vo-hoang, L. Micouin, C. Ronet, G. Gachelin, and M. Bonin, Total enantioselective synthesis and in vivo biological evaluation of a novel fluorescent BODIPY ?galactosylceramide, ChemBioChem, issue.4, pp.27-33, 2003.

D. Dubreuil, M. Pipelier, L. Micouin, T. Lecourt, V. Lacone et al., (WO2008047174A1) Alpha-Galactosylceramide analogs, their methods of manufacture, intermediate compounds useful in these methods, and pharmaceutical compositions containing them, pp.1-113, 2008.

C. Ren, Y. Tsai, Y. Yang, W. Zou, and S. Wu, ATCC BAA-400, The Journal of Organic Chemistry, vol.72, issue.14, pp.5427-5430, 2007.
DOI : 10.1021/jo070629l

Z. A. Szabo, M. Herczeg, A. Fekete, G. Batta, A. Borbas et al., Synthesis of three regioisomers of the pentasaccharide part of the Skp1 glycoprotein of Dictyostelium discoideum, Tetrahedron: Asymmetry, vol.20, issue.6-8, pp.808-820, 2009.
DOI : 10.1016/j.tetasy.2009.02.040

P. K. Upadhyay and P. Kumar, A Concise synthesis of (2S,3S,4S)-2- (Hydroxymethyl)pyrrolidine-3,4-diol (LAB1). Synthesis, pp.3063-3066, 2010.

K. B. Sharpless, W. Amberg, Y. L. Bennani, G. A. Crispino, J. Hartung et al., The osmium-catalyzed asymmetric dihydroxylation: a new ligand class and a process improvement, The Journal of Organic Chemistry, vol.57, issue.10, pp.2768-2771, 1992.
DOI : 10.1021/jo00036a003

T. Ishikawa, H. G. Fletcher, and . Jr, Synthesis and solvolysis of some D-glucopyranosyl bromides having a benzyl group at C-2, The Journal of Organic Chemistry, vol.34, issue.3, pp.563-571, 1969.
DOI : 10.1021/jo01255a018

C. Paget, T. Mallevaey, A. O. Speak, D. Torres, J. Fontaine et al., Activation of Invariant NKT Cells by Toll-like Receptor 9-Stimulated Dendritic Cells Requires Type I Interferon and Charged Glycosphingolipids, Immunity, vol.27, issue.4, pp.597-609, 2007.
DOI : 10.1016/j.immuni.2007.08.017

URL : https://hal.archives-ouvertes.fr/hal-00317178

E. Bialecki, M. Fernandez, E. Ivanov, S. Paget, C. Fontaine et al., Spleen-Resident CD4 and CD4 CD8alpha Dendritic Cell Subsets Differ in Their Ability to Prime Invariant Natural Killer T Lymphocytes, PLoS One, issue.6, p.26919, 2011.

F. Olson, C. A. Hunt, F. C. Szoka, W. J. Vail, and D. Papahadjopoulos, Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.557, issue.1
DOI : 10.1016/0005-2736(79)90085-3

F. J. Szoka and D. Papahadjopoulos, Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation., Proceedings of the National Academy of Sciences of the United States of America, pp.75-4194, 1978.
DOI : 10.1073/pnas.75.9.4194

D. E. Corpet, G. Parnaud, M. Delverdier, G. Peiffer, and S. Tache, Consistent and fast inhibition of colon carcinogenesis by polyethylene glycol in mice and rats given various carcinogens, Cancer Research, vol.60, pp.3160-3164, 2000.

A. K. Gupta and A. S. Curtis, Surface modified superparamagnetic nanoparticles for drug delivery: Interaction studies with human fibroblasts in culture, Journal of Materials Science: Materials in Medicine, vol.15, issue.4, pp.493-496, 2004.
DOI : 10.1023/B:JMSM.0000021126.32934.20

P. S. Uster, T. M. Allen, B. E. Daniel, C. J. Mendez, M. S. Newman et al., Insertion of poly(ethylene glycol) derivatized phospholipid into pre-formed liposomes results in prolonged in vivo circulation time, FEBS Letters, vol.2, issue.2-3, pp.243-246, 1996.
DOI : 10.1016/0014-5793(96)00452-8

D. Papahadjopoulos, T. M. Allen, A. Gabizon, E. Mayhew, K. Matthay et al., Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy., Proceedings of the National Academy of Sciences of the United States of America, pp.11460-11464, 1991.
DOI : 10.1073/pnas.88.24.11460

D. Santos, N. Allen, C. Doppen, A. Anantha, M. Cox et al., Influence of poly(ethylene glycol) grafting density and polymer length on liposomes: Relating plasma circulation lifetimes to protein binding, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1768, issue.6, pp.1367-1377, 1768.
DOI : 10.1016/j.bbamem.2006.12.013

S. Espuelas, C. Thumann, B. Heurtault, F. Schuber, and B. Frisch, Influence of Ligand Valency on the Targeting of Immature Human Dendritic Cells by Mannosylated Liposomes, Bioconjugate Chemistry, vol.19, issue.12, pp.2385-2393, 2008.
DOI : 10.1021/bc8002524

P. R. Taylor, S. Gordon, and L. Martinez-pomares, The mannose receptor: linking homeostasis and immunity through sugar recognition, Trends in Immunology, vol.26, issue.2, pp.104-110, 2005.
DOI : 10.1016/j.it.2004.12.001

C. E. Napper, K. Drickamer, and M. E. Taylor, Collagen binding by the mannose receptor mediated through the fibronectin type II domain, Biochemical Journal, vol.395, issue.3, pp.579-586, 2006.
DOI : 10.1042/BJ20052027

M. A. Sallusto, M. Cella, C. Danieli, and A. Lanzavecchia, Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products, Journal of Experimental Medicine, vol.182, issue.2, pp.389-400, 1995.
DOI : 10.1084/jem.182.2.389

A. J. Engering, M. Cella, D. Fluitsma, M. Brockhaus, E. C. Hoefsmit et al., The mannose receptor functions as a high capacity and broad specificity antigen receptor in human dendritic cells, European Journal of Immunology, vol.144, issue.9, pp.2417-2425, 1997.
DOI : 10.1002/eji.1830270941

R. R. Ingalls and D. T. Golenbock, CD11c/CD18, a transmembrane signaling receptor for lipopolysaccharide, Journal of Experimental Medicine, vol.181, issue.4, pp.1473-1479, 1995.
DOI : 10.1084/jem.181.4.1473

F. V. Castro, A. L. Tutt, A. L. White, J. L. Teeling, S. James et al., CD11c provides an effective immunotarget for the generation of both CD4 and CD8 T cell responses, European Journal of Immunology, vol.139, issue.8, pp.2263-2273, 2008.
DOI : 10.1002/eji.200838302

E. Ihanus, L. M. Uotila, A. Toivanen, M. Varis, and C. G. Gahmberg, Red cell ICAM-4 is a ligand for the monocyte/macrophage integrin CD11c, CD18: characterization of the binding sites on ICAM-4. Blood, pp.802-810, 2007.

C. L. Van-broekhoven, C. R. Parish, C. Demangel, W. J. Britton, and J. G. Altin, Targeting Dendritic Cells with Antigen-Containing Liposomes: A Highly Effective Procedure for Induction of Antitumor Immunity and for Tumor Immunotherapy, Cancer Research, vol.64, issue.12, pp.4357-4365, 2004.
DOI : 10.1158/0008-5472.CAN-04-0138

C. A. Janeway, Approaching the Asymptote? Evolution and Revolution in Immunology, Cold Spring Harbor Symposia on Quantitative Biology, vol.54, issue.0, pp.1-13, 1989.
DOI : 10.1101/SQB.1989.054.01.003

A. L. Blasius and B. Beutler, Intracellular Toll-like Receptors, Immunity, vol.32, issue.3, pp.305-315, 2010.
DOI : 10.1016/j.immuni.2010.03.012

S. Akira, S. Uematsu, and O. Takeuchi, Pathogen Recognition and Innate Immunity, Cell, vol.124, issue.4, pp.783-801, 2006.
DOI : 10.1016/j.cell.2006.02.015

A. Roth, S. Espuelas, C. Thumann, B. Frisch, and F. Schuber, Synthesis of Thiol-Reactive Lipopeptide Adjuvants. Incorporation into Liposomes and Study of Their Mitogenic Effect on Mouse Splenocytes, Bioconjugate Chemistry, vol.15, issue.3, pp.541-553, 2004.
DOI : 10.1021/bc034184t

K. A. Hogquist, S. C. Jameson, W. R. Heath, J. L. Howard, M. J. Bevan et al., T cell receptor antagonist peptides induce positive selection, Cell, vol.76, issue.1, pp.17-27, 1994.
DOI : 10.1016/0092-8674(94)90169-4

D. Santos, N. Allen, C. Doppen, A. M. Anantha, M. Cox et al., Influence of poly(ethylene glycol) grafting density and polymer length on liposomes: Relating plasma circulation lifetimes to protein binding, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1768, issue.6, pp.1367-1377, 1768.
DOI : 10.1016/j.bbamem.2006.12.013

A. Bendelac, P. B. Savage, and L. Teyton, The Biology of NKT Cells, Annual Review of Immunology, vol.25, issue.1, pp.297-336, 2007.
DOI : 10.1146/annurev.immunol.25.022106.141711

J. S. Thomann, B. Heurtault, S. Weidner, M. Braye, J. Beyrath et al., Antitumor activity of liposomal ErbB2/HER2 epitope peptide-based vaccine constructs incorporating TLR agonists and mannose receptor targeting, Biomaterials, vol.32, issue.20, pp.4574-4783, 2011.
DOI : 10.1016/j.biomaterials.2011.03.015

URL : https://hal.archives-ouvertes.fr/hal-00596925

I. Dufresne, A. Desormeaux, J. Bestman-smith, P. Gourde, M. J. Tremblay et al., Targeting lymph nodes with liposomes bearing anti-HLA-DR Fab??? fragments, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1421, issue.2, pp.284-294, 1421.
DOI : 10.1016/S0005-2736(99)00137-6

URL : http://doi.org/10.1016/s0005-2736(99)00137-6

C. L. Van-broekhoven, C. R. Parish, C. Demangel, W. J. Britton, and J. G. Altin, Targeting Dendritic Cells with Antigen-Containing Liposomes: A Highly Effective Procedure for Induction of Antitumor Immunity and for Tumor Immunotherapy, Cancer Research, vol.64, issue.12, pp.4357-4365, 2004.
DOI : 10.1158/0008-5472.CAN-04-0138

H. Hemmi, O. Takeuchi, T. Kawai, T. Kaisho, S. Sato et al., A Novel Toll-Like Receptor that Recognizes Bacterial DNA, Nature, vol.408, pp.740-745, 2000.
DOI : 10.1385/1-59259-305-4:039

B. Heurtault, P. Gentine, J. S. Thomann, C. Baehr, B. Frisch et al., Design of a Liposomal Candidate Vaccine Against Pseudomonas aeruginosa and its Evaluation in Triggering Systemic and Lung Mucosal Immunity, Pharmaceutical Research, vol.26, issue.2, pp.276-285, 2009.
DOI : 10.1007/s11095-008-9724-y

R. Ignatius, K. Mahnke, M. Rivera, K. Hong, F. Isdell et al., Presentation of proteins encapsulated in sterically stabilized liposomes by dendritic cells initiates CD8(+) T-cell responses in vivo, Blood, issue.96, pp.3505-3513, 2000.

M. Taneichi, Y. Tanaka, T. Kakiuchi, and T. Uchida, Liposome-Coupled Peptides Induce Long-Lived Memory CD8+ T Cells Without CD4+ T Cells, PLoS ONE, vol.12, issue.2, p.15091, 2010.
DOI : 10.1371/journal.pone.0015091.g005

M. Fernandez, E. Chang, J. Fontaine, J. Bialecki, E. Rodriguez et al., Activation of invariant Natural Killer T lymphocytes in response to the alpha-galactosylceramide analogue KRN7000 encapsulated in PLGA-based nanoparticles and microparticles, International Journal of Pharmaceutics, issue.423, pp.45-54, 2011.

K. Stirnemann, J. F. Romero, L. Baldi, B. Robert, V. Cesson et al., Sustained activation and tumor targeting of NKT cells using a CD1d???anti-HER2???scFv fusion protein induce antitumor effects in mice, Journal of Clinical Investigation, vol.118, pp.994-1005, 2008.
DOI : 10.1172/JCI33249

T. Iyoda, M. Ushida, Y. Kimura, K. Minamino, A. Hayuka et al., Invariant NKT cell anergy is induced by a strong TCR-mediated signal plus co-stimulation, International Immunology, vol.22, issue.11, pp.905-913, 2010.
DOI : 10.1093/intimm/dxq444

V. V. Parekh, S. Lalani, S. Kim, R. Halder, M. Azuma et al., PD-1/PD-L Blockade Prevents Anergy Induction and Enhances the Anti-Tumor Activities of Glycolipid-Activated Invariant NKT Cells, The Journal of Immunology, vol.182, issue.5, pp.2816-2826, 2009.
DOI : 10.4049/jimmunol.0803648

G. Rouser, S. Fkeischer, and A. Yamamoto, Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots, Lipids, vol.1, issue.5, pp.494-496, 1970.
DOI : 10.1007/BF02531316

M. Takayama, S. Itoh, T. Nagasaki, and I. Tanimizu, A new enzymatic method for determination of serum choline-containing phospholipids, Clinica Chimica Acta, vol.79, pp.93-98, 1977.

P. Bohlen, S. Stein, W. Dairman, and S. Udenfriend, Fluorometric assay of proteins in the nanogram range, Archives of Biochemistry and Biophysics, vol.155, issue.1, pp.213-220, 1973.
DOI : 10.1016/S0003-9861(73)80023-2