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Mathématiques de Paris.

Finally, I would like to thank my PhD colleagues Celine Duval and Pierre Jacob for

the good times we had in the three years we shared the F14 office in the unbeloved annex

facing the Insee tower. Together with my PhD colleages Julyan Arbel, Guillaume Lep-

age and former Crest postdoc Robin Ryder, they taught me most of what I now know

about France. I would particularly like to thank them all for their patience and their

effort to improve my French. I keep great memories of conferences we went to together

and the many after-work-beers we shared with PhD colleague Giuseppe Benedetti in the

finest taverns of Malakoff.

Last, but not least, I want to thank Kerstin Steinberg for her enduring support and

encouragement throughout my thesis.

3





Summary

This thesis is concerned with Monte Carlo methods for sampling high-dimensional bi-

nary vectors from complex distributions of interest. If the state space is too large

for exhaustive enumeration, these methods provide a mean of estimating the expected

value with respect to some function of interest. Standard approaches are mostly based

on random walk type Markov chain Monte Carlo, where the equilibrium distribution

of the chain is the target distribution and its ergodic mean converges to the expected

value. While these methods are well-studied and asymptotically valid, convergence of

the Markov chain might be very slow if the target distribution is highly multi-modal.

We propose a novel sampling algorithm based on sequential Monte Carlo methodology

which copes well with multi-modal problems by virtue of an annealing schedule. The

usefulness of this approach is demonstrated in the context of Bayesian variable selection

and combinatorial optimization of pseudo-Boolean objective functions.

Chapter 1 The introductory section provides an overview of existing Monte Carlo

techniques for sampling from binary distributions and particularly reviews the standard

Markov chain Monte Carlo methodology which is frequently used in practice. We in-

troduce the notion of multi-modality and discuss why random walk type Markov chains

might fail to converge in a reasonable amount of time due to strong dependencies in

the distribution of interest. This motivates the work on novel Monte Carlo algorithms

which are more robust against multi-modality but still scale to high dimensions.

Chapter 2 We describe a sequential Monte Carlo approach as an alternative sampling

scheme which propagates a system of particles from an easy initial distribution, via

intermediate instrumental distributions towards the distribution of interest. While the

resample-move methodology comes from the standard toolbox of particle filtering (Del

Moral et al., 2006), the central innovation is the use of a Metropolis-Hastings kernel with

independent proposals in the move step of the algorithm. We achieve high acceptance

rates and thus very fast mixing owing to advanced parametric families which efficiently

approximate the intermediate distributions.
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Chapter 3 The performance of the proposed sequential Monte Carlo sampler depends

on the ability to sample proposals from auxiliary distributions which are, in a certain

sense, close to the current distribution of interest. This chapter contains the core work

of this thesis and elaborates on strategies to construct parametric families for sampling

binary vectors with dependencies. We work out practical solutions which can be incor-

porated in particle algorithms on binary spaces but also discuss approaches to modeling

random binary vectors which are beyond the immediate Monte Carlo application. The

practical scope of the proposed parametric families is examined in a numerical study on

random cross-moment matrices.

Chapter 4 The major statistical application for sampling binary vectors is Bayesian

variable selection for linear regression models where quantities like the posterior inclu-

sion probabilities of the predictors need to be computed. This chapter provides a brief

introduction to variable selection in the context of normal linear models, where the pos-

terior distribution is available in closed-form for a judicious choice of prior distributions

on the model parameters. We construct several challenging test instances from real

data, chosen to be considerably multi-modal, and compare the performance of the se-

quential Monte Carlo sampler to standard Markov chain Monte Carlo methods (George

and McCulloch, 1997).

Chapter 5 This chapter deals with ideas to extend the sequential Monte Carlo method-

ology to Bayesian variable selection in the context of generalized linear models with

binary response like logistic or probit regression models. In this case, the posterior

distribution is not available in closed-form, and the model parameters need to be inte-

grated out using either approximations or pseudo-marginal ideas in order to apply the

sequential Monte Carlo framework. Analogously to Chapter 4, we construct several test

instances from real data and compare the performance of the sequential Monte Carlo

sampler to the automatic generic sampler (Green, 2003) which is a trans-dimensional

Markov chain Monte Carlo sampling scheme.

Chapter 6 Stochastic optimization of pseudo-Boolean objective functions is a field

of major interest in operations research since many important NP-hard combinatorial

problems can be formulated in terms of binary programming. If the objective function is

multi-modal, local search algorithms often fail to detect the global optimum and particle

driven methods may provide more robust results. We discuss how the sequential Monte

Carlo sampler can be used in an optimization context and show how the cross-entropy

method by Rubinstein (1997) can be embedded in the sequential Monte Carlo framework.



In numerical experiments, we show that the parametric families proposed in Chapter 3

tremendously improve the performance of the cross-entropy method and compare the

particle driven optimization schemes to local search algorithms.

Chapter 7 We present some final remarks concerning particle algorithms on binary

state spaces and points out some interesting lines for further research.





Resumé

Cette thèse est consacrée à l’étude des méthodes de Monte Carlo pour l’échantillonnage

de vecteurs binaires de grande dimension à partir de lois cibles complexes. Si l’espace-

état est trop grand pour une énumération exhaustive, ces méthodes permettent d’estimer

l’espérance d’une loi donnée par rapport à une fonction d’intérêt. Les approches stan-

dards sont principalement basées sur les méthodes Monte Carlo à châıne de Markov de

type marche aléatoire, où la loi stationnaire de la châıne est la distribution d’intérêt et

la moyenne de la trajectoire converge vers l’espérance par le théorème ergodique. Bien

que ces méthodes soient bien étudiées et asymptotiquement valides, la convergence de la

châıne de Markov peut être très lente si la loi cible est fortement multimodale. Nous pro-

posons un nouvel algorithme d’échantillonnage basé sur les méthodes de Monte Carlo

séquentielles qui sont plus robustes au problème de multimodalité grâce à une étape

de recuit simulé. L’utilité de cette approche est démontrée dans le cadre de sélection

bayésienne de variables et l’optimisation combinatoire des fonctions pseudo-booléennes.

Chapitre 1 Cette section introductive donne un aperçu des techniques existantes de

Monte Carlo pour l’échantillonnage de vecteurs binaires. On y examine notamment les

méthodes de Monte Carlo à châıne de Markov qui sont fréquemment utilisées dans la

pratique. La notion de multimodalité y est introduite, suivie d’une discussion sur les

châınes de Markov de type marche aléatoire qui souvent ne convergent pas en un temps

computationnel raisonnable, en raison des fortes dépendances parmi les composantes de

la loi d’intérêt, ce qui motive le développement de nouveaux algorithmes de type Monte

Carlo qui soient plus robustes face à la multimodalité mais aussi utilisables en grande

dimension.

Chapitre 2 Nous proposons une technique d’échantillonnage alternative basée sur les

méthodes de Monte-Carlo séquentielles qui propage un système de particules à partir

d’une loi initiale simple, par des lois intermédiaires auxiliaires vers la loi cible. Alors

que la méthodologie resample-move provient de la bôıte à outils standard du filtrage

particulaire (Del Moral et al., 2006), l’innovation centrale est l’utilisation d’un noyau de

9



Metropolis-Hastings avec des propositions indépendantes dans l’étape de déplacement.

L’usage des familles paramétriques avancées qui approchent efficacement les lois in-

termédiaires et permettent d’atteindre des taux d’acceptation élevés nécessaires pour la

construction de châınes de Markov rapidement mélangeantes.

Chapitre 3 La performance de l’échantillonneur de Monte Carlo séquentiel dépend de

la capacité d’échantillonner selon des lois auxiliaires qui sont, en un certain sens, proche

à la loi de l’intérêt. Ce chapitre contient le travail principal de cette thèse et présente

des stratégies visant à construire des familles paramétriques pour l’échantillonnage de

vecteurs binaires avec dépendances. Nous proposons des solutions pratiques qui peuvent

être incorporées dans les algorithmes particulaires sur les espaces binaires, mais aussi des

approches de modélisation de vecteurs binaires aléatoires qui sont au-delà de l’application

immédiate de méthodes Monte-Carlo. L’intérêt pratique des familles paramétriques

proposées est examiné dans une étude numérique sur des matrices aléatoires de moments

croisés.

Chapitre 4 L’application statistique majeure pour d’échantillonnage de vecteurs bi-

naires est la sélection bayésienne de variables parmi des modèles de régression linéaire

où des quantités telles que les probabilités d’inclusion a posteriori des prédicteurs doivent

être calculées. Ce chapitre propose une brève introduction à la sélection de variables dans

le cadre de modèles linéaires normaux, où la distribution a posteriori est disponible sous

forme analytique pour un choix judicieux de la loi a priori sur les paramètres du modèle.

Nous construisons plusieurs instances de test exigeants sur données réelles, choisis pour

être considérablement multimodal, et l’échantillonneur de Monte Carlo séquentiel est

comparé avec des méthodes standards de Monte Carlo à châıne de Markov (George and

McCulloch, 1997).

Chapitre 5 Ce chapitre propose des idées pour étendre les méthodes de Monte Carlo

séquentielles à la sélection bayésienne de variables dans le contexte des modèles linéaires

généralisés à réponse binaire comme les modèles de régression logistique ou probit.

Dans ce cas, la distribution a posteriori n’est pas disponible sous forme fermée, et

les paramètres du modèle doivent être marginalisés à l’aide soit d’approximations, soit

d’approches pseudo-marginales afin d’appliquer l’algorithme de Monte Carlo séquentiel.

Par analogie au chapitre 4, plusieurs instances de test sur données réelles sont construites

et l’échantillonneur de Monte Carlo séquentiel est comparé à l’échantillonneur automa-

tique générique (Green, 2003) qui est une méthode de Monte Carlo à châıne de Markov

transdimensionnel.
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Chapitre 6 L’optimisation stochastique de fonctions pseudo-booléennes est un domaine

d’intérêt majeur en recherche opérationnelle car des nombreuses problèmes combinatoires

NP-complet peuvent être formulés en termes de programmation binaire. Si la fonction

objective est multimodale, les algorithmes de recherche locale ne parviennent souvent pas

à détecter l’optimum global et les méthodes particulaires peuvent donner des résultats

plus robustes. Nous détaillons comment l’échantillonneur de Monte Carlo séquentiel

peut être utilisé dans un contexte d’optimisation et comment la méthode de l’entropie

croisée de Rubinstein (1997) peut être intégré dans le cadre de l’algorithme Monte Carlo

séquentiel. Les expériences numériques montrent que les familles paramétriques pro-

posées dans le chapitre 3 améliorent considérablement la performance de la méthode

de l’entropie croisée. Finalement, les méthodes particulaires sont comparées aux algo-

rithmes de recherche locale.

Chapitre 7 La conclusion de cette thèse présente quelques remarques finales concer-

nant les algorithmes particulaires sur les espaces d’états binaires et des perspectives de

recherche pour intégrer les familles paramétriques dans d’autres applications.
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1. Introduction to sampling random

binary vectors

Resumé

Cette section introductive donne un aperçu des techniques existantes de Monte Carlo

pour l’échantillonnage de vecteurs binaires. On y examine notamment les méthodes de

Monte Carlo à châıne de Markov qui sont fréquemment utilisées dans la pratique. La no-

tion de multimodalité y est introduite, suivie d’une discussion sur les châınes de Markov

de type marche aléatoire qui souvent ne convergent pas en un temps computationnel

raisonnable, en raison des fortes dépendances parmi les composantes de la loi d’intérêt,

ce qui motive le développement de nouveaux algorithmes de type Monte Carlo qui soient

plus robustes face à la multimodalité mais aussi utilisables en grande dimension.

1.1. Introduction

In this chapter, we review standard Monte Carlo methods for sampling high-dimensional

binary vectors and motivate the work on an alternative sampling scheme based on se-

quential Monte Carlo (smc) methodology. Most of this discussion was published in

Schäfer and Chopin (2012). Standard approaches are typically based on random walk

type Markov chain Monte Carlo (mcmc), where the equilibrium distribution of the chain

is the distribution of interest and its ergodic mean converges to the expected value of

interest. While mcmc methods are asymptotically valid, convergence of Markov chains

may be very slow if the distribution of interest is highly multi-modal.

In Chapter 2, we propose a novel algorithm based on smc methodology which copes

well with multi-modal problems by virtue of an annealing schedule. This work ap-

proaches a well-studied problem from a different angle and provides new perspectives.

Firstly, there is numerical evidence that particle methods, which track a population of

particles, initially well spread over the sampling space, are often more robust than local

19
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methods based on mcmc, since the latter are prone to get trapped in the neighborhood

of local modes. We largely illustrate this effect in our simulation studies in Chapters 4,

5 and 6. Secondly, smc type algorithms are easily parallelizable, and parallel computing

for Monte Carlo algorithms has gained a tremendous interest in the very recent years

(Lee et al., 2010; Suchard et al., 2010), due to the increasing availability of multi-core

processing units in standard computers.

Thirdly, we argue that the smc sampler is fully adaptive and requires practically no

tuning to perform well. A Monte Carlo algorithm is said to be adaptive if it adjusts,

sequentially and automatically, its sampling distribution to the problem at hand. Impor-

tant classes of adaptive Monte Carlo are sequential Monte Carlo (e.g. Del Moral et al.,

2006), adaptive importance sampling (e.g. Cappé et al., 2008) and adaptive Markov

chain Monte Carlo (e.g. Andrieu and Thoms, 2008), among others. The choice of the

parametric family which defines the range of possible sampling distributions is critical

for good performance. We address this question in Chapter 3.

1.1.1. Notation

Throughout this thesis, vectors are denoted in italic and matrices in straight bold-faced

type. Sets, random variables and matrices are denoted by capital letters.

We write B := {0, 1} for the binary space. For b ≥ a, we denote by [[a, b]] := {x ∈ Z |
a ≤ x ≤ b} the discrete and by [a, b) := {x ∈ R | a ≤ x < b} the continuous interval.

We denote by d ∈ N the generic dimension and n ∈ N the generic sample size and define

the index sets D := [[1, d]] and N := [[1, n]] for ease of notation.

Let P(M) denote the power set and B(M) the Borel σ-field generated by the set

M . Let (Ω,A,P) be a probability space. A random variable X : Ω → X is defined

on a measurable space (X,X ) which in our case is either (Bd,P(Bd)) or (Rd,B(Rd)) or

countable products of these. We write X ∼ µ if µ = P ◦ X−1 and say that X has the

distribution µ. For a µ-integrable function f : X→ R, we denote by

µ(f) := Eµ (f(X)) :=
∫
X f(x)µ(dx)

the expected value of f with respect to µ; if f is the identity mapping, we write mµ for

the mean. Since this work is mostly concerned with sampling from measures defined on

the finite state space Bd, some technical difficulties arising in general measure theory can

be neglected. We do not distinguish between the probability measure µ : P(Bd)→ [0, 1]

and its mass function π : Bd → [0, 1], π(γ) = µ({γ}) but refer to both mappings by the

same symbol π; we also write πn instead of µ⊗n for the n-fold product measure.
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Generally, we let π denote the binary distribution of interest, (qθ)θ∈Θ a parametric

family of distributions and κ a Markov transition kernel. In a Bayesian context, we let

L denote the likelihood, p the prior distribution and π the posterior distribution, where

the arguments of the mass functions usually indicate the context, that is, for example,

p(θ) = N (0, 1) means that the parameter θ is a priori standard normal distributed.

1.1.2. Importance sampling

A non-zero mapping π̃ : Bd → [0,∞) defines a probability measure π ∝ π̃ on (Bd,P(Bd)),
where ∝ denotes equality up to a scaling factor. The goal is to sample from π in order

to approximate quantities like the expected value of f : Bd → R

π(f) = Eπ (f(X)) =
∑
γ∈Bd f(γ)π(γ) =

∑
γ∈Bd f(γ)π̃(γ)∑
γ∈Bd π̃(γ)

(1.1)

although the normalizing constant may be unknown. Even for moderate d ∈ N, the

state space is too large for exhaustive enumeration. In this case, one may resort to

Monte Carlo methods to provide an estimate π̂(f) of the intractable quantity π(f). If

we can draw independent and indentically distributed (iid) samples (X1, . . . ,Xn) ∼ πn,

we have an unbiased estimator

π̂niid(f) := n−1
∑n

k=1 f(Xk),

and π̂niid(f)
n→∞−→ π(f) a.s. by virtue of the strong law of large numbers. Generally,

however, we cannot draw independent samples from π. Let q denote an instrumental

or auxiliary distribution. For an independent sample (X1, . . . ,Xn) ∼ qn, we have an

asymptotically unbiased importance sampling (is) estimator

π̂nis(f) :=

∑n
k=1 f(Xk)w(Xk)∑n

k=1w(Xk)

of the expected value where w(γ) := π̃(γ)/q̃(γ) where q̃ ∝ q. The ratios of the (not

necessarily normalized) mass functions of the instrumental and the target distribution

are referred to as importance weights. The instrumental distribution has to verify

supp(π) ⊆ supp(q) to ensure that π̂nis(f)
n→∞−→ π(f) a.s. by virtue of the strong law

of large numbers, see Robert and Casella (2004, sec. 3.3). The asymptotic variance of

the estimator can roughly be approximated by

V[π̂nis(f)] ≈ Vπ[f(X1)]n−1
(
1 + Vq[w(X1)]/c2

)
,
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where c > 0 is some unknown normalizing constant (Liu, 1996a; Kong et al., 1994). The

last term on the right hand side can be estimated by

η̂−1 :=

∑n
k=1 w(xk)

2

[
∑n

k=1 w(xk)]2
≈ n−1

(
1 + Vq[w(X1)]/c2

)
(1.2)

where η̂ ∈ [1, n] is the so-called effective sample size (ess). Since η̂ is an estimate

for an approximation to an asymptotic quantity, it might be substantially misleading.

However, the ess is widely used in practice because it is easy to compute and does not

depend on f . The name stems from the common interpretation that the precision of an

is estimator π̂nis(f) is about the same as the precision of an iid estimator π̂
bη̂c
iid (f).

The instrumental distribution which minimizes the variance of the importance sam-

pling estimator is q∗ ∝ |f(·)| π̃. Typically, we cannot generate independent samples from

any distribution close to q∗ and have to rely on sub-optimal instrumental distributions

which often yield extremely inefficient importance sampling estimators.

1.2. Markov chain Monte Carlo

We introduce some notation and review a few well-known results from Markov chain

theory (see e.g. Meyn et al., 2009). A time-homogeneous Markov chain on the binary

space is a sequence of random variables (Xk)k∈N0 ∼ (pκn) which enjoys the Markov

property and is completely defined by its initial distribution p and its transition kernel

κ, that is

P (X0 = x0, . . . ,Xn = xn) = p(x0)
∏n

k=1 κ(xk | xk−1).

We denote by (pκn) the mass function of a chain up to time n ∈ N and by [pκn]

the marginal distribution of the chain at time n ∈ N which is obtained by repeated

application of the transition operator

[pκ] :=
∑
γ∈Bd p(γ)κ(· | γ).

In the sequel, we only consider aperiodic Markov chains which are irreducible and

therefore positive recurrent on a finite state space. Then the transition operator has a

unique fixed point

[πκ] = π (1.3)

referred to as the invariant or equilibrium distribution. The Markov chain is stationary

if and only if p = π. On finite spaces, the total variation (tv) norm of the measure π
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is given by ‖π‖tv := 1
2

∑
γ∈Bd |π(γ)|. The total variation distance between the marginal

and the equilibrium distribution of the Markov chain is bounded by

‖[pκn]− π‖tv ≤ λn2 c(p) (1.4)

where λ2 is the second-largest eigenvalue of the kernel and c(p) > 0 a constant depending

on the initial distribution. Note that λ2 < 1 since the Markov chain is aperiodic. For

a Markov chain to admit π as its unique equilibrium distribution distribution, it is

sufficient that for all x,γ ∈ Bd

π(x)κ (γ | x) = π(γ)κ (x | γ) . (1.5)

Equation (1.5) is also referred to as detailed balance condition and a Markov chain with

detailed balance is said to be reversible with respect to π.

A positive recurrent, irreducible and aperiodic Markov chain is ergodic (Robert and

Casella, 2004) which means that the measure-preserving dynamical system defined by the

probability space and the shift operator on the stationary Markov chain yields the same

quantities when averaged over the states visited by the chain as when averaged over all

states of the state space weighted according to their probabilities. Let (Xk)k∈N0 ∼ (πκn)

be an ergodic Markov chain and f : Bd → R a function. From the ergodic theorem, it

follows that

(n+ 1)−1
∑n

k=0 f(Xk)
n→∞−→ π(f) a.s.,

which generalizes the strong law of large numbers to random variables with Markovian

dependencies.

1.2.1. Markov chain Monte Carlo estimators

The idea of mcmc is to construct a transition kernel κ which admits the distribution

of interest π as unique equilibrium distribution. If we can sample a Markov chain

(X0, . . . ,Xn) ∼ (πκn), we have an unbiased estimator

π̂nmcmc(f) := (n+ 1)−1
∑n

k=0 f(Xk)

by virtue of the ergodic theorem for Markov chains. Typically, we cannot provide an

initial draw from the distribution of interest π since in this case we would prefer to

construct an estimator π̂niid based on independent samples. For a different initial distri-

bution p 6= π, the Markov chain (X0, . . . ,Xn) ∼ (pκn) is not stationary but (1.4) ensures
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that the equilibrium distribution is approximately obtained after b ∈ N steps. The first b

samples are then discarded as so-called burn-in period and the mcmc estimator becomes

π̂nmcmc(f) := n−1
∑n+b

k=b f(Xk).

The mcmc estimator is justified by asymptotic arguments. However, in practice it is

often hard to guarantee that the stationary distribution is indeed approximately reached

after b steps and that the sampled trajectory is indeed approximately ergodic after n

steps. How large we have to choose b and n to ensure a desired precision of the Monte

Carlo estimate depends on the mixing properties of the Markov kernel, that is the

dependence on the past of the trajectory.

1.2.2. Normalized estimators

Some authors (Clyde et al., 2011) argue that the equilibrium sampling approach using

mcmc might be sub-optimal on a large discrete state space, since the number of repeated

visits to a state is mostly zero or small and therefore a poor estimator of the frequency.

Consider the following improved estimator. Let (x0, . . . ,xn) denote a sample and

n(γ) =
∑n

k=0 δxk(γ)

the number of times the vector γ is in the sample. Further, let V = {x0, . . . ,xn} denote

the set of all vectors which where sampled. The mcmc estimator (1.2.1) can be written

π̂nmcmc(f) =
∑
γ∈V f(γ)

n(γ)

n+ 1

where the frequencies n(γ)/(n + 1) are estimates of the probabilities π(γ) ∝ π̃(γ) for

all γ ∈ V . We might therefore replace the estimated frequencies by their true values,

which looks somewhat like an is estimator

π̂nis∗(f) =
∑
γ∈V f(γ)

π̃(γ)∑
γ∈V π̃(γ)

(1.6)

with importance function π̃. Although biased, this estimator might even be more efficient

than the original one due to a Rao-Blackwellization effect. This raises the question

whether equilibrium sampling using mcmc methodology is the adequate approach for

sampling on binary space at all; Garćıa-Donato and Mart́ınez-Beneito (2011) provide an

interesting discussion and numerical experiments to investigate the merits of normalized

estimators.
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1.3. The Metropolis-Hastings kernel

Most transition kernels used in mcmc are some variant of the Metropolis-Hastings kernel,

κq (γ | x) := αq(γ,x)q(γ | x) + δx(γ)
[
1−

∑
y∈Bd αq(y,x)q(y | x)

]
where q(γ | x) is an auxiliary or proposal kernel and

αq(γ,x) := 1 ∧ π(γ)q(x | γ)

π(x)q(γ | x)
(1.7)

the Metropolis-Hastings ratio or acceptance probability. Obviously, it suffices to know

the mass functions of π and q up to a constant, since the unknown normalizing constants

cancel out in the Metropolis-Hastings ratio (1.7).

The name “acceptance probability“ stems from the sampling procedure: The tran-

sition to the proposal state Y ∼ q(· | x) is accepted with probability αq(Y ,x); the

chain remains at the current state otherwise. The Metropolis-Hastings kernel verifies

the detailed balance condition (1.5) and a proposal kernel with supp(π) ⊆ supp([δxq
n])

for all n > n0 ∈ N and x ∈ Bd ensures that the Markov chain is irreducible.

On discrete spaces accepting a proposal state does not necessarily imply that the

state of the chain changes since the current state might have been proposed again. We

distinguish between the acceptance probability (1.7) and the average mutation proba-

bility

µq(x) :=
∑
γ∈Bd\{x} κ(γ | x), (1.8)

since high acceptance probabilities alone do not indicate good mixing. This is particu-

larly true for random walk kernels on sampling problems with many local modes, as we

demonstrate in the numerical experiments in Chapters 4 and 6.

1.3.1. Random walk kernels

We review some of the Markov transition kernels typically used for mcmc on binary

spaces; this discussion has partially been published in Schäfer and Chopin (2012). Many

popular Metropolis-Hastings kernels on binary spaces perform a random walk, that is

they propose moves to neighboring states, where a natural neighborhood definition is

the k-neighborhood

Hk(x) := {γ ∈ Bd : |x− γ| ≤ k}. (1.9)
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There is a variety of ways to propose new states from Hk(x) and to choose the size of

the neighborhood k. A standard auxiliary kernel is

q(γ | x) =
∑
I⊆D

q(γ | x, I)
∑
k∈D

ψ(I | k)ω(k)

where ω is the distribution of the number k of components to be changed in the proposal,

ψ(· | k) is the uniform distribution on the set of all index sets I with cardinality k, and

q(· | x, I) is a Bernoulli distribution with mean mI for all components indexed by I and

a copy of xD\I for all other components. Explicitly the mass function is

q(γ | x) =
∑
I⊆D

∏
i∈D\I

δxi(γi)
∏
i∈I

[
mi(x)γi [1−mi(x)]1−γi

]∑
k∈D

k!(d− k)!

d!
δk(|I|)ω(k),

(1.10)

and sampling from q(· | x) is straightforward, see Procedure 1. In the following, we

discuss some special cases.

Procedure 1: Generic random walk kernel

Input: x ∈ Bd

u ∼ U[0,1], k ∼ ω, I ∼ ψ(· | k) = U{I⊆D||I|=k}
y ← x

for i ∈ I do yi ∼ mi(x)yi [1−mi(x)]1−yi

if
π(y)

π(x)

∏
i∈I

[
mi(x)

1−mi(x)

]xi−yi
> u then

return y

else
return x

end

Random scan Gibbs sampler

Suppose that ω = δ1. Moves from x are restricted to H1(x) which is referred to as

single site updating. The classic random scan Gibbs sampler draws an index i ∈ D and

samples the ith component from the full conditional distribution

πi(γi | γ−i) =
π(γ)

π(γi = 1,γ−i) + π(γi = 0,γ−i)
, (1.11)

which corresponds to setting

mi(x) = πi(1 | x−i), i ∈ D.

Alternatively, a deterministic scan sampler would iterate through σ(1), . . . , σ(d) for a

uniformly drawn permutation σ ∼ UPD where PD := {f : D → D | f is bijective} which
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may decrease the risk that the chain moves forth and back around the same local modes.

Let x̃(i) be a copy of x with x̃
(i)
i = 1 − xi for i ∼ UD. By construction, the acceptance

probability is

α(x, x̃(i)) =
π(x̃(i))π(1 | x−i)xi−x̃

(i)
i

π(x)π(0 | x−i)xi−x̃
(i)
i

= 1

while the average mutation probability is only

µ(x) =
1

d

∑
i∈D

π(x̃(i))

π(x) + π(x̃(i))
.

Metropolized Gibbs sampler

Suppose that ω = δ1. In comparison to the Gibbs sampler, we obtain a more efficient

chain in terms of mutation rates (Liu, 1996b) using the simple form

mi(x) = 1− xi, i ∈ D.

The scheme with deterministic flips is sometimes referred to as metropolized Gibbs, since

one replaces the full conditional distribution by a Metropolis-Hasting type proposal.

Since we always propose to change the current state, the acceptance probability becomes

α(x, x̃(i)) =
π(x̃(i))

π(x)
∧ 1, (1.12)

but the average mutation probability is

µ(x) =
1

d

∑
i∈D

[
π(x̃(i))

π(x)
∧ 1

]
and therefore higher than for the random Gibbs sampler. From the average mutation

probabilities, we may conclude that a Markov chain with deterministic flips moves,

on average, faster than the classical random scan Gibbs chain. This is particularly

important if the mass function π is expensive to compute.

Uniform block updating

Suppose that ω 6= δ1. Moves from x are not restricted to H1(x) which is often referred

to as block updating, since one proposes to alter a block of entries in the Metropolis-

Hastings step.
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One maximizes the average mutation rate, conditional on the event that a move is

accepted, by setting mi(x) = 1 − xi for all i ∈ I ∼ ψ(· | k) and k ∼ ω. The auxiliary

kernel simplifies

q(γ | x) =
d∑

k=1

δk(|x− γ|)
k!(d− k)!

d!
ω(k), (1.13)

which is a generalization of the metropolized Gibbs kernel to block updating. The

auxiliary kernel is symmetric in the sense that q(γ | x) = q(x | γ), and the Metropolis-

Hastings ratio (1.7) simplifies to [π(γ)/π(x)]∧1 where γ ∼ q(· | x) denotes the proposal.

Swendsen-Wang updating

Since the uniformly chosen update blocks do not take the distribution of interest into

account, these blind moves are rarely accepted for large blocks. For binary distribu-

tions from the exponential multi-linear family (see Section 3.5.1 for details), the special

structure of the mass function can be exploited to detect promising blocks.

Swendsen and Wang (1987) propose a sampling procedure that introduces a vector

of auxiliary variables u such that π(u | γ) is a distribution of mutually independent uni-

forms and π(γ | u) a distribution with components which are either fixed by constraints

or conditionally independent. Higdon (1998) suggests to parameterize and control the

size of the conditionally independent blocks to further improve the mixing properties.

Nott and Green (2004) attempt to adapt the rationale behind the algorithm to sam-

pling from a broader class of binary distributions. However, the Swendsen-Wang algo-

rithm is based on the exponential multi-linear structure of the distribution of interest

and the efficiency gain does not easily carry over to general binary sampling.

1.3.2. Metropolis-Hastings independence sampler

Suppose that ω = δd and mi(x) = mi for all i ∈ D. The auxiliary kernel (1.10) becomes

the product distribution

qum(γ) =
∏d

i=1 m
γi
i (1−mi)

1−γi , (1.14)

and does not depend on the current state x. The Metropolis-Hastings kernel with

independent proposals is referred to as the Metropolis-Hastings independence sampler.

The kernel q(· | x) simplifies to a distribution q which needs to verify supp(π) ⊆ supp(q)

to ensure that the Markov chain is irreducible. The acceptance probability is

αq(x,y) =
π(y)q(x)

π(x)q(y)
∧ 1. (1.15)
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Thus, the average acceptance rate and the average mutation rate

µq(x) =
∑

γ∈Bd\{x}

[
π(γ)q(x)

π(x)q(γ)
∧ 1

]
q(γ)

practically coincide on large sampling spaces. Obviously, in order to make this ap-

proach work, we need to choose q sufficiently close to π. For the Metropolis-Hastings

independence sampler, the average acceptance rate of the kernel

αq :=
∑
x∈Bd

∑
γ∈Bd

αq(x,γ)π(x)q(γ) (1.16)

can be bounded from below by the total variation distance 1− 2‖q − π‖tv. The second-

largest eigenvalue of the transition kernel is

λ2 = 1−minγ∈Bd(q(γ)/π(γ)),

and the constant in (1.4) is c(p) = [2π(x0)]−
1
2 for p = δx0 , see Diaconis and Hanlon

(1992) and Liu (1996a) for details on the eigenanalysis.

In most practical situations, the product proposal distribution (1.14) does not yield

reasonable acceptance rates. Proposition 3.2.8 in Chapter 3 states that even if the

distribution of interest π and the auxiliary distribution q both have the same mean

m ∈ (0, 1)d, the auto-correlation of the independent Metropolis-Hastings sampler heavily

depends on the second cross-moments. In other words, if the distribution of interest fea-

tures strong correlations between its components, the independent Metropolis-Hastings

sampler using a vector of independent Bernoulli variables as proposal is bound to suffer

from extremely low acceptance rates.

Therefore, to make a Metropolis-Hastings independence sampler work on Bd we have

to provide a parametric family (qθ)θ∈Θ which is richer than (1.14) and we need to calibrate

the parameter θ such that the distance between qθ and π is minimized. We come back

to this Markov kernel as essential part of the smc algorithm discussed in Chapter 2.

1.4. Adaptive Markov chain Monte Carlo

The Metropolis-Hastings sampler allows to incorporate any proposal kernel q which

satisfies supp(π) ⊆ supp([δxq
n]) for n > n0 ∈ N. But obviously not all choices yield good

mcmc estimators. In most practical cases, one identifies a suitable family of auxiliary

kernels (qθ)θ∈Θ but still faces the problem that the parameter θ needs to be calibrated

against the distribution of interest π. The obvious idea is to improve the choice of θ
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during the course of the algorithm which is then referred to as adaptive. The transition

kernels (κθ)θ∈Θ all admit π as invariant distribution but if we adapt the parameter θn+1

in function of the sampled trajectory (Xk)k∈N0 ∼ πκθ1 · · ·κθn , the chain becomes non-

stationary and looses its Markov property. This raises the question whether the ergodic

theorem still applies which justifies the mcmc estimator.

There has been a major interest in adaptive Markov chain Monte Carlo (amcmc)

in the recent years and convergence results have been established which hold on finite

spaces under very mild conditions (Roberts and Rosenthal, 2007). For further details on

amcmc we refer to Andrieu and Thoms (2008) and citations therein. In the following,

we review some amcmc algorithms for sampling on binary spaces and propose a few

extensions without going into details.

1.4.1. Adaptive metropolized Gibbs

An adaptive extension of the Gibbs sampler has been proposed by Nott and Kohn (2005).

The authors also provide a direct proof of convergence for their amcmc algorithms which

needs less preparation than the rather technical proofs for general state spaces (Roberts

and Rosenthal, 2007). The full conditional distribution is the optimal choice in terms

of acceptance rates, but oftentimes the chain does not move because the current state

has been sampled again; see the remark on the Gibbs sampler in Section 1.3.1. If the

mass function of the distribution of interest is expensive to evaluate the Gibbs sampler

is bound to waste a lot of computational time.

Nott and Kohn (2005) suggest to replace the expensive full conditional distribution

π(γj = 1 | γ−j = x−j) by a linear predictor. For the proposal kernel (1.10) let ω = δ1

and

mi(x) :=

[(
ψi −

W−ix−i
wi,i

)
∨ δ
]
∧ (1− δ),

where ψ is the estimated mean, W−1 the estimated covariance matrix and δ ∈ (0, 1/2)

a design parameter which ensures that pi(x) is a probability. Analogously to our vector

notation, W−i denotes the matrix W without the ith row and column. The estimates are

obtained from the past trajectory of the chain and updated periodically. The average

mutation probability is of the same order as that of the Gibbs kernel, but adaption

largely avoids computationally expensive evaluations of π: The non-adaptive Gibbs

sampler already requires evaluation of π to compute the sampling probability (1.11). In

contrast, the adaptive metropolized Gibbs sampler only evaluates π(γ) if x 6= γ for the

linear predictor proposal γ ∼ q(· | x).
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1.4.2. Adaptive random walk

Lamnisos et al. (2011) propose to calibrate the distribution of the number of bits to be

flipped on average, where they take ω = B(ζ, n) to be a binomial distribution with succes

probability ζ. Their work is motivated by the adaptive random walk algorithm developed

by Atchadé and Rosenthal (2005) for continuous state spaces where the variance of the

multivariate normal random walk proposal is adjusted to meet the (asymptotically)

optimal acceptance probability. However, in the context of binary spaces the major

problem practitioners are facing is multi-modality, see Section 1.5. The method proposed

by Atchadé and Rosenthal is designed for high-dimensional unimodal sampling problems,

and the rationale behind the design of the algorithm does therefore not necessarily carry

over to multi-modal discrete problems.

Deville and Tillé (2004) propose a method developed in the context of survey sam-

pling as a variance reduction technique for the Horvitz–Thompson estimator referred

to as the cube method, which allows to sample from the product family qum defined in

(1.14) conditional on a set of linear constraints. Their algorithm yields an alternative

random walk scheme which has, to our knowledge, not been proposed in the context

of amcmc on binary spaces. Instead of a random walk on the neighborhood (1.9), one

would perform a random walk on

Ka(x) = {γ ∈ Bd : |x| − a ≤ |γ| ≤ |x|+ a},

that is the neighborhood of models with a number predictors differing by less than a.

Given the current state x, we first draw the number of predictors k uniformly from the

set [[0 ∨ (|x| − a), d ∧ (|x| − a)]]. The proposal γ is drawn from qum conditional on the

event that |γ| = k, where the mean m needs to be adapted during the run of the mcmc.

The conditional sampling problem is not trivial, since the mean of each component

mi may be different. The name cube method stems from the idea to construct a vector

v ∈ Rd in the kernel of the linear constraints and determine the two facets of the hyper-

cube [0, 1]d it intersects. A random draw, with probabilities proportional to the distance

between the starting point m and the facets, determines one facet to be fixed, and the

iteration is repeated on the remaining hyper-cube [0, 1]d−1 until all facets are fixed. The

construction of the vectors may be deterministic which also allows to evaluate the mass

function which is necessary in the Metropolis-Hastings step. We refer to Deville and

Tillé (2004) for details on this technique.
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1.4.3. Adaptive independence sampler

The Metropolis-Hastings independence sampler is rapidly mixing if we can fit the aux-

iliary distribution (qθ)θ∈Θ to be sufficiently close to the target distribution π. Unfortu-

nately, we face a hen-and-egg problem since the non-adaptive Markov chain is likely to

mix very poorly but without any significant state space exploration we cannot reason-

ably adapt (κθ)θ∈Θ. A viable solution is to mix the Metropolis-Hastings independence

kernel κθ and a non-adaptive random walk kernel κrw

κ% = (1− %)κrw + %κθ

for some parameter % ∈ [0, 1]. The sampler proposes an independently drawn state with

probability %, which may be increased adaptively during the run of the mcmc after the

parameter of the proposal distribution θ has been adapted sufficiently.

1.5. Multi-modality

We briefly motivate why the mcmc methods discussed in Section 1.2 might fail to provide

reliable estimates of the expected value (1.1) if the distribution of interest π is strongly

multi-modal. There does not seem to be a precise mathematical definition of multi-

modality since this notion is somewhat diffuse.

We say that x ∈ Bd is a local mode of degree k if π(x) ≥ π(γ) for all γ ∈ Hk(x). We

call π a strongly multi-modal distribution if there is a significant collection M of local

modes of moderate degrees and mass function values π(x)� 2−d for all x ∈M . These

distributions are difficult to sample from using random walk mcmc methodology since

we have to ensure that the trajectory of the Markov chain covers all regions of interest

in order to appeal to the ergodic theorem.

1.5.1. Markov chains and multi-modality

Transition kernels of the symmetric type are known to be slowly mixing on multi-modal

problems. If we put most weight on small values of k, the Markov chain is bound to

remain in the region of a single local mode for a long time. If we put more weight on

larger values of k, the proposals will hardly ever be accepted unless we propose by chance

a state in the domain of another local mode. Obviously, there is a problem dependent

trade-off when choosing the distribution ω.
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Adaptive mcmc algorithms provide an astonishing speed-up over their non-adaptive

versions for high-dimensional sampling problems on continuous spaces and unimodal

distributions of interest. Still, it is a notoriously difficult problem to adapt an mcmc

sampler to a multi-modal sampling problem. Premature adaption might even worsen

the estimator by providing the impression of good mixing on just a subset of the state

space. There are more advanced mcmc algorithms which use parallel tempering ideas

combined with more elaborate local moves (Bottolo and Richardson, 2010, among others)

or self-avoiding dynamics (Hamze et al., 2011) to overcome the multi-modality problem.

However, these algorithms seem difficult to tune automatically.

1.5.2. Bayesian adaptive sampling

As an alternative to mcmc sampling, Clyde et al. (2011) develop the Bayesian adap-

tive sampling procedure which draws binary vectors without replacement and uses the

normalized estimator (1.6). The idea is to update the conditional probabilities to en-

sure that each binary vector is only sampled once. The algorithm starts sampling with

some initial mean m0 which is then updated using current estimate m̂n of the mean of

interest. The updating of the conditional probabilities is rather expansive and has to

be compromised in practice, meaning that the updating step cannot be performed after

every single sampling step. From a computational perspective this seems reasonable.

However, the critical problem is that the method does not sample from the distribu-

tion of interest but from a sequence of distributions qum̂n
with a mean m̂n that needs to

be estimated during the course of the algorithm. The authors’ claim that this sequence

is “close” to the target distribution is disputable. Even if the mean was correct, an

is estimator of π based on proposals drawn from qumπ might be quite inefficient in the

presence of strong multi-modality.

The rationale to produce a unique collection V of the most likely models leads to

stochastic search methods which identify a collection of local modes which may be av-

eraged according to their posterior mass. This has been proposed for inference in state

spaces which are clearly too large to achieve approximate ergodicity with standard mcmc

methods, see e.g. Hans et al. (2007). We discuss optimization algorithms on binary

spaces in Chapter 6.





2. The sequential Monte Carlo sampler

Resumé

Nous proposons une technique d’échantillonnage alternative basée sur les méthodes de

Monte-Carlo séquentielles qui propage un système de particules à partir d’une loi initiale

simple, par des lois intermédiaires auxiliaires vers la loi cible. Alors que la méthodologie

resample-move provient de la bôıte à outils standard du filtrage particulaire (Del Moral

et al., 2006), l’innovation centrale est l’utilisation d’un noyau de Metropolis-Hastings

avec des propositions indépendantes dans l’étape de déplacement. L’usage des familles

paramétriques avancées qui approchent efficacement les lois intermédiaires et permettent

d’atteindre des taux d’acceptation élevés nécessaires pour la construction de châınes de

Markov rapidement mélangeantes.

2.1. Introduction

In this chapter, we introduce a fully adaptive resample-move algorithm for sampling from

binary distribution using sequential Monte Carlo (smc) methodology. The material has

been published in Schäfer and Chopin (2012) and partially extended in Schäfer (2012b).

We discuss how to obtain estimates of expected values of the form (1.1) providing a self-

contained description of the smc framework. In particular, we propose some novel ideas

tailored to sampling on binary spaces. For a more general overview of smc methods we

refer to Del Moral et al. (2006).

The basic resample-move algorithm alternates importance sampling steps, resampling

steps and Markov chain transitions, to recursively approximate a sequence of distribu-

tions (πt)t∈N, using a set of weighted ‘particles’ (wt,Xt) which provide an empirical

representation of the current distribution. This sequence of distributions is chosen to

finally provide a particle system which approximates the distribution of interest π = πτ

and thus yield an estimator

π̂nsmc(f) =
∑n

k=1wk,τf(Xk,τ ), (2.1)

35
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where n is the number of particles. Under mild conditions, Chopin (2004) shows that

the estimator is consistent and asymptotically normal, in particular π̂nsmc(f)
n→∞−→ π(f)

a.s. The details of the smc sampler summarized in Algorithm 2 are discussed in separate

steps in the upcoming sections.

Algorithm 2: Resample-move

Input: f : Bd → R
for all k ∈ N sample xk ∼ p.
while do

α ← find step length(%,X) (Procedure 4)

w ← importance weights(α, π%,X) (Procedure 3)

% ← %+ α

if % ≡ 1 then return
∑n

k=1wkf(xk)

θ ← fit parametric family(w,X) (see Chapter 3)

X̂ ← resample(w,X) (Procedure 5)

X ←move(κθ, X̂) (Procedure 6)

end

2.2. Sequential Importance Sampling

The first ingredient of the smc sampler is a sequence of distributions (πt)t∈N that serves

as a bridge between some easy initial distribution and the distribution of interest. The

intermediary distributions πt are purely instrumental. The idea is to depart from a

distribution p with broad support and to progress smoothly towards π.

We construct a smooth sequence of distributions by judicious choice of an associated

real sequence (%t)
τ
t=0 increasing from zero to one. The most convenient and somewhat

natural strategy is a sequence of elements from the geometric bridge (Gelman and Meng,

1998; Neal, 2001; Del Moral et al., 2006)

π% ∝ p1−%π%, % ∈ [0, 1]. (2.2)

One could also take a sequences of from a family of mixtures π
(m)
% ∝ (1−%)p+%π but this

is computationally less convenient. We discuss some alternative choices for sequences

in the context of particular applications in Chapters 4, 5 and 6. The question how to

actually choose an appropriate sequence (π%t)t∈N from (π%)%∈[0,1] is addressed in the next

section.
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2.2.1. Importance weights

Following standard sequential Monte Carlo notation, we refer to

X = (x1, . . . ,xn)ᵀ ∈ Bn×d, w = (w1, . . . , wn)ᵀ ∈ [0, 1]n

with |w| = 1 as a particle system with n particles. We say the particle system (w,X)

targets a probability distribution q if the empirical distribution converges∑n
k=1 wk δxk

n→∞−→ q, a.s.

Suppose we have produced a sample x1,t, . . . ,xn,t of size n from πt. We can roughly

approximate πt+1 by the empirical distribution

πt+1(γ) ≈
∑n

k=1wt+1(xk,t) δxk,t(γ), (2.3)

where the corresponding importance function wt+1 is

wt+1(x) :=
ut+1(x)∑n

k=1 ut+1(xk,t)
, ut+1(x) :=

πt+1(x)

πt(x)
. (2.4)

As we choose πt further from πt−1, the weights become more uneven and the accuracy

of the importance approximation deteriorates. If we repeat the weighting steps until we

reach π, we obtain a classical importance sampling estimate with instrumental distribu-

tion p which is in most cases a very poor estimator. The idea of the smc algorithm is

to monitor the effective sample size (ess) estimate η̂n defined in (1.2) and intersperse

resample and move steps before loosing track of the particle approximation.

Procedure 3: Importance weights

Input: α, π, X = (x1, . . . ,xn)ᵀ

uk ← πα(xk) for all k ∈ N
wk ← uk/(

∑n
i=1 ui) for all k ∈ N

return w = (w1, . . . , wn)

2.2.2. Optimal step length

Given any sequence (πt)t∈N bridging the gap between p to π, we could repeatedly reweight

the system and monitor whether the ess falls below some critical threshold like one does

in particle filtering applications like target tracking. However, in the static context the

sequence (πt)t∈N = (π%t)t∈N comes from a family (π%)%∈[0,1], and one may exactly control

the weight degeneracy by judicious choice of the step lengths αt = %t+1 − %t.
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The ess after weighting η̂n(wt,α) is merely a function of α. For an unweighted particle

system Xt at time t, we pick a step length such that

η̂n(wt,α) = η∗, (2.5)

that is we lower the ess with respect to the current particle approximation by some fixed

ratio η∗ ∈ (0, 1) (Jasra et al., 2011; Del Moral et al., 2012). This ensures a ‘smooth’

transition between two auxiliary distributions, in the sense that consecutive distributions

are close enough to approximate each other reasonably well using importance weights.

We obtain the associated sequence (%t)t∈N by setting %t+1 = %t + αt where αt is a

unique solution of (2.5) which is easily obtained using bi-sectional search since η̂n(wt,α)

is continuous and monotonously decreasing in α, see Procedure 4. This is particularly

fast to compute for the geometric bridge since ut(x) = [π(x)/p(x)]αt .

For fixed η∗, the associated sequence (%t)t∈N is a self-tuning parameter but the number

of steps until termination of the smc algorithm is not known in advance and largely

depends on the speed parameter η∗ and the complexity of the sampling problem at

hand. In our simulations, we choose η∗ = 0.92 yielding good results on all example

problems of moderate dimension d ∼ 100. As the dimension of the sampling problem

increases, we have to progress more slowly and thus choose η∗ closer to one.

Procedure 4: Find step length

Input: %, X = (x1, . . . ,xn)ᵀ

l← 0, u← 1.05− ρ, α← 0.05

repeat
if η(α,X) < η∗ then u← α, α← (α+ l)/2

else l← α, α← (α+ u)/2

until |u− l| < ε or l > 1− %;

return α ∧ (1− %)

2.2.3. Resampling step

We replace the system (wt+1,Xt) targeting πt+1 by a selection of particles x̂1, . . . , x̂n

drawn from the current particle reservoir x1,t, . . . ,xn,t such that

E (n(xk)) = nwk,

where n(x) denotes the number of particles identical with x. Thus, in the resampled

system, particles with small weights have vanished while particles with large weights
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have been multiplied. For the implementation of the resampling step, there exist sev-

eral recipes. We could apply a multinomial resampling (Gordon et al., 1993) which is

straightforward. There are, however, more efficient ways like residual (Liu and Chen,

1998), stratified (Kitagawa, 1996) and systematic resampling (Carpenter et al., 1999)

which are variance reduction techniques that improve the smc estimator. We refer to

Douc et al. (2005) for a detailed comparison. In our simulations, we always used the

systematic resampling scheme, see Procedure 5.

Procedure 5: Systematic resampling step

Input: w = (w1, . . . , wn), X = (x1, . . . ,xn)ᵀ

v ← nw, i← 1, c← v1

sample u ∼ U[0,1]

for k = 1 to n do
while c < u do i← i+ 1, c← c+ vi

x̂k ← xi, u← u+ 1

end

return X̂ = (x̂1 . . . , x̂n)ᵀ

2.3. Adaptive move step

2.3.1. Fast-mixing kernels

The resampling step provides an unweighted particle system of πt containing multiple

copies of many particles. The central idea of the smc algorithm is to diversify the resam-

pled system by draws from a Markov kernel which admits the current target distribution

as invariant measure (Gilks and Berzuini, 2001). The particle x̂
(0)
k,t+1 is approximately

distributed according to πt+1, and a draw

x̂
(1)
k,t+1 ∼ κt+1(· | x̂(0)

k,t+1)

from a kernel with [πt+1κt+1] = πt+1 is again approximately distributed according to πt+1.

The last sample of the generated Markov chain (x̂
(0)
k,t+1, . . . , x̂

(s)
k,t+1) is, for sufficiently

many move steps s ∈ N, almost exactly distributed according to the invariant measure

πt+1 and independent of its starting point.

In order to make the algorithm practical,the transition kernel needs to be rapidly

mixing and diversify the particle system within just a few steps. The novel idea is to use

a Metropolis-Hastings independence sampler as described in Section 1.3.2. The proposal
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distribution is a parametric family (qθ)θ∈Θ which is, for a well-chosen parameter θ̂t+1s,

sufficiently close to πt+1 to allow for reasonable acceptance probabilities. The parameter

θ̂t+1 is estimated based on the current particle approximation (wt+1,Xt) of πt+1, as

proposed in Chopin (2002). The choice of the parametric family is crucial and further

discussed in Chapter 3. The locally operating Markov kernels reviewed in Section 1.2

are less suitable for the smc algorithm since they mix rather slowly. However, batches of

local moves can be alternated with independent proposals to ensure that the algorithm

explores the neighborhood of local modes sufficiently well.

2.3.2. Adaptive stopping rule

While we could always apply a fixed number s ∈ N of move steps, we rather use an

adaptive stopping criterion based on the number of distinct particles. We define the

particle diversity as

ζn(X) := n−1|{xk : k ∈ N}|. (2.6)

Ideally, the sample diversity ζn(X) should correspond to the expected diversity

ζn(π) := 1 ∧ n−1
∑
γ∈Bd 1{x∈Bd : cnπ(x)≥1}(γ),

where cn is the smallest value that solves
∑
γ∈Bdbcnπ(γ)c ≥ n. This is the particle

diversity we would expect if we had an independent sample from π. Therefore, if κt+1

is fast-mixing, we want to move the system until

ζn(X̂
(s)
t+1) ≈ ζn(πt+1).

Since the quantity on the right hand side is unknown, we stop moving the system as

soon as the particle diversity reaches a steady state we cannot push it beyond.

More precisely, we stop if the absolute diversity is above a certain threshold ζ∗ ≈ 0.95

or the last improvement of the diversity is below a certain threshold ζ∗∆ > 0. We always

stop after a finite number of steps but the thresholds ζ∗ and ζ∗∆ need to be calibrated

to the efficiency of the transition kernel. For slow-mixing kernels, we recommend to

perform batches of consecutive move steps instead of single move steps.

If the average acceptance rate α of the kernel as defined in (1.16) is smaller than ζ∗∆,

it is likely that the algorithm stops after the first iteration although further moves would

have been necessary. We could adaptively adjust the threshold ζ∗∆ to be proportional to

an estimate of the average acceptance rate; for our numerical experiments, however, we

kept it fixed to ζ∗∆ ≈ 10−2.
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Procedure 6: Adaptive move step

Input: X[0] = (x
[0]
1 , . . . ,x

[0]
n ) ∼ π̂t, κt with [πtκ] = πt

s← 1

repeat

for all k ∈ N sample x
(s)
k ∼ κ(· | x(s−1)

k )

until ζ(X(s))− ζ(X(s−1)) < ζ∗∆ or ζ(X(s)) > ζ∗

return X(s) = (x
(s)
1 . . . ,x

(s)
n )ᵀ

2.4. Remark on discrete state spaces

Since the sample space Bd is discrete, a given particle is not necessarily unique. This

raises the question whether it is sensible to store multiple copies of the same weighted

particle in the system. Let

n(γ) :=
∑

k∈N δxk(γ)

denote the number of copies of the particle γ in the system (w,X). Indeed, for par-

simonious reasons, we could just keep a single representative of γ and aggregate the

associated weights to w̃(γ) = n(γ)w(γ).

2.4.1. Impact on the effective sample size

Shifting weights between identical particles does not affect the nature of the particle

approximation but it obviously changes the effective sample size ηn(w) which is unde-

sirable since we introduced the ess as a criterion to measure the goodness of a particle

approximation. From an aggregated particle system, we cannot distinguish the weight

disparity induced by reweighting according to the importance function (2.4) and the

weight disparity induced by multiple sampling of the same states which occurs if the

mass of the target distribution is concentrated. More precisely, we cannot tell whether

the ess is actually due to the gap between πt and πt+1 or due to the presence of parti-

cle copies as the mass of πt concentrates which occurs by construction of the auxiliary

distribution in Section 6.1.1.

2.4.2. Impact on the resample-move step

Aggregating the weights means that the number of particles is not fixed at runtime.

In this case, the straightforward way to implement the move step presented in Section

2.3.1 is breaking up the particles into multiple copies corresponding to their weights and
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moving them separately. But instead of permanently splitting and pooling the weights

it seems more efficient to just keep the multiple copies.

We could, however, design a different kind of resample-move algorithm which first

augments the number of particles in the move step and then resamples exactly n weighted

particles from this extended system using a variant of the resampling procedure proposed

by Fearnhead and Clifford (2003). A simple way to augment the number of particles is

sampling and reweighting via

x
(1)
k ∼ qt+1(· | x(0)

k ), w
(1)
k = wkα, w

(0)
k = wk(1− α),

where α = αqt+1(x
(1)
k ,x

(0)
k ) denotes the acceptance probability (1.7) of the Metropolis-

Hastings kernel. We tested this variant but could not see any advantage over the stan-

dard sampler presented in the preceding sections. For the augment-resample type algo-

rithm the implementation is more involved and the computational burden significantly

higher. In particular, the Rao-Blackwellization effect one might achieve when replacing

the accept-reject steps of the transition kernel by a single resampling step does not seem

to justify the extra computational effort.

Indeed, aggregating the weights does not only prevent us from using the ess criterion,

but also requires extra computational time of O(n log n) in each iteration of the move

step since pooling the weights is as complex as sorting. In the context of estimating

an expected value, however, computational time is more critical than memory, and we

therefore recommend to refrain from aggregating the weights.
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Resumé

La performance de l’échantillonneur de Monte Carlo séquentiel dépend de la capacité

d’échantillonner selon des lois auxiliaires qui sont, en un certain sens, proche à la loi de

l’intérêt. Ce chapitre contient le travail principal de cette thèse et présente des stratégies

visant à construire des familles paramétriques pour l’échantillonnage de vecteurs binaires

avec dépendances. Nous proposons des solutions pratiques qui peuvent être incorporées

dans les algorithmes particulaires sur les espaces binaires, mais aussi des approches de

modélisation de vecteurs binaires aléatoires qui sont au-delà de l’application immédiate

de méthodes Monte-Carlo. L’intérêt pratique des familles paramétriques proposées est

examiné dans une étude numérique sur des matrices aléatoires de moments croisés.

3.1. Motivation

The preceding chapters motivated why parametric families are an important building

block of adaptive Monte Carlo algorithms. In this chapter, we elaborate on strategies

for constructing parametric families which are suitable sampling distributions within

and beyond the context of the sequential Monte Carlo sampler. Two major approaches

to constructing parametric families are presented, based on generalized linear models

or on multivariate copulas. We also review additive and multiplicative interactions

which are not suitable for general purpose Monte Carlo algorithms but give insight

in structural problems we face when designing parametric families. Finally, numerical

experiments were performed to compare competing approaches for sampling binary data

with specified mean and correlations in moderately high dimensions.

In the sequel, we summarize and discuss the conditions a parametric family q with

supp(q) = Bd should meet for successful integration into adaptive Monte Carlo algo-

rithms, pointing out three approaches of practical value. This material is mostly taken

from Schäfer (2012a).

43
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(a) For reasons of parsimony, we prefer a family of distributions with at most d(d+1)/2

parameters like the multivariate normal on continuous spaces.

(b) Given a sample (x1, . . . ,xn) from the distribution of interest π, one needs to compute

an estimate θ̂ under the model (x1, . . . ,xn) ∼ qnθ within a reasonable amount of

computational time.

(c) The family qθ∈Θ must allow to efficiently generate independent samples.

(d) In the context of an sequential Monte Carlo (smc) or Markov chain Monte Carlo

(mcmc) algorithm, the mass function qθ∈Θ(·) needs to be evaluated point-wise. Note,

however, that the cross-entropy (ce) method reviewed in Chapter 6 works without

this requirement.

(e) The family qθ∈Θ needs to be sufficiently flexible to reproduce important charac-

teristics of π, for example the mean and correlation structure, to ensure that the

calibrated family qθ̂ is sufficiently close to π.

The ultimate goal is to construct parametric families with d(d + 1)/2 parameters

which, like the multivariate normal, accommodate the full range of means and correla-

tions on high-dimensional binary spaces. In the following, we provide an overview of

three parametric families which seem useful in the context of adaptive Monte Carlo and

comment on the requirement list composed above.

3.1.1. Product family

The simplest non-trivial distributions on Bd are certainly those having independent

components. For a vector m ∈ (0, 1)d of marginal probabilities, consider the product

family

qum(γ) :=
∏d

i=1 m
γi
i (1−mi)

1−γi .

The product family meets most of the requirements. (a) The product family is

parsimonious with dim(θ) = d. (b) The maximum likelihood estimator m̂ is the sample

mean. (c) We can sample y ∼ qum by construction. (d) We can evaluate the mass

function qum(y) by construction. (e) However, the product family does not reproduce

any dependencies we might observe in the data X.

The last point is the crucial weakness which makes the product family impracti-

cal for particle algorithms on strongly multi-modal problems. For toy examples which

demonstrate this effect we refer to the applications in Sections 4.4.2 and 6.4.1.
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3.1.2. Logistic conditionals family

For a lower triangular matrix A ∈ Rd×d, consider the logistic conditionals family

q`A(γ) :=
∏d

i=1 `
(
aii +

∑i−1
j=1 aijγj

)γi [
1− `

(
aii +

∑i−1
j=1 aijγj

)]1−γi

where ` : R→ (0, 1), `(x) = [1+exp(−x)]−1 is the logistic function. The first component

γ1 is an independent Bernoulli variable; the ith component γi conditional on γ1:i−1 is a

logistic regression on the predictors γ1 . . . , γi−1.

The logistic conditionals family meets all of the requirements. (a) The logistic con-

ditionals family is sufficiently parsimonious with dim(θ) = d(d + 1)/2. (b) We can fit

the parameter A via likelihood maximization. The fitting is computationally intensive

but feasible. (c) We can sample y ∼ q`A by construction. (d) We can exactly evaluate

q`A(y) by construction. (e) The family q`A reproduces the dependency structure of the

data X although we cannot explicitly compute the marginal probabilities. The family is

sufficiently flexible to reproduce any feasible combination of marginals and correlation

structure.

3.1.3. Gaussian copula family

For a vector a ∈ Rd and a correlation matrix Σ ∈ Rd×d, we introduce the mapping

τa : Rd → Bd, τa(v) := (1(−∞,ai](v1), . . . ,1(−∞,ad](vd)),

and consider the Gaussian copula family

qna,Σ(γ) := (2π)−
d
2 det(Σ)−

1
2

∫
τ−1
a (γ)

exp
(
−1

2
vᵀΣ−1v

)
dv.

The Gaussian copula family meets most of the requirements. (a) The Gaussian

copula family is sufficiently parsimonious with dim(θ) = d(d+ 1)/2. (b) We can fit the

parameters a and Σ via method of moments. However, the parameter Σ is not always

positive definite. (c) We can sample y ∼ qna,Σ using y = τa(v) with v ∼ ϕΣ. (d) We

cannot easily evaluate qna,Σ(y) since this requires computing high-dimensional integral

expressions which is a computationally challenging problem in itself (see e.g. Genz and

Bretz (2009)). The Gaussian copula family is therefore less useful for smc samplers but

can be incorporated into the ce method analyzed in Chapter 6. (e) The family qna,Σ
reproduces the exact mean and, possibly scaled, correlation structure.
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3.2. Preliminaries on random binary vectors

In the sequel, we elaborate some theoretical background on random binary vectors and

provide a summary of known and novel results on modeling binary data with dependen-

cies. Most of the material has been published as technical report (Schäfer, 2012a) which

is under review for publication at the time this thesis is written.

3.2.1. Cross-moments and correlations

Before we discuss how to model dependencies in binary data, we introduce the notion

of cross-moments and derive some elementary properties.

Definition 3.2.1. For a set I ⊆ D, we refer to

mπ
I := Eπ

(∏
i∈I Xi

)
=
∑
γ∈Bd π(γ)

∏
i∈I γi

as the (absolute) cross-moment indexed by I.

Note that mπ
I = Pπ (XI = 1) which means that cross-moments and marginal proba-

bilities indexed by I ⊆ D are identical. Higher order cross-moments coincide with first

order cross-moments. The range of possible cross-moments is limited by the following

constraints.

Proposition 3.2.1. The cross-moments of binary data fulfill the sharp inequalities

max
{∑

i∈I mi − |I|+ 1, 0
}
≤ mI ≤ min{mK : K ⊆ I}. (3.1)

Proof. The lower bound follows from

|I| − 1 =
∑
γ∈Bd(|I| − 1)π(γ) ≥

∑
γ∈Bd

(∑
i∈I γi −

∏
i∈I γi

)
π(γ) =

∑
i∈I mi −mI ,

the upper bound is the monotonicity of the measure.

For the special case |I| = 2, Proposition 3.1 is a well-known result and has been

invoked in several articles dealing with correlated binary data. For the general case, we

remark that a mapping

f : [0, 1]|I| → [0, 1], fI(mi1 , . . . ,mi|I|) = mI ,

which assigns a cross-moment mI for I ⊆ D as function of the marginals mi for i ∈ I,

is quite similar to a |I|-dimensional copula and the inequalities (3.1) are exactly the

Fréchet-Hoeffding bounds (Nelsen, 2006, ch. 2).
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Definition 3.2.2. We say a d× d symmetric matrix M := (mij) with entries in (0, 1) is

a cross-moment matrix of binary data if M− diag(M)diag(M)ᵀ is positive definite and

condition (3.1) holds for all I ⊆ D with |I| = 2.

In the sequel we see how the cross-moment matrix relates to the notion of correlation.

Definition 3.2.3. For a set I ⊆ D, we define

uπI (γ) :=
∏

i∈I(γi −mπ
i )[mπ

i (1−mπ
i )]−1/2,

and refer to cπI := Eπ (uπI (X)) as the (generalized) correlation coefficient indexed by I.

A d× d positive definite matrix C with entries in [−1, 1] and diag(C) = 1 is not the

correlation matrix of a binary distribution for every mean vector m ∈ (0, 1)d. In fact, C

is a correlation matrix if and only if M = C·ssᵀ+mmᵀ is valid in the sense of Definition

3.2.2, where the dot means point-wise multiplication and s2
i := mi(1 −mi). Chaganty

and Joe (2006) elaborate alternative conditions for compatibility between correlations

and means, but these do not seem easier to express or to check.

In the context of binary data, the notion of “strong correlations” refers to correlation

coefficients which are at the boundary of the feasible range with respect to the mean

vector. Note that the absolute value of the correlation coefficient does, in itself, not tell

whether the correlation is easy or difficult to model. The following statement relates the

notions of uncorrelated and independent variables.

Proposition 3.2.2. Let X be a d-dimensional binary random vector. For d = 2, entries

are uncorrelated if and only if they are independent. For d ≥ 3, entries might be mutually

uncorrelated but not independent.

Proof. Let px1x2 := P (X1 = x1, X2 = x2). By definition p11 = m12 = m1m2. Further,

we obtain p10 = m1 −m12 = m1(1 −m2) and, analogously, p01 = (1 −m1)m2. Finally,

we have p00 = 1 + m12 − m1 − m2 = (1 − m1)(1 − m2). For d ≥ 3, let for instance

p000 = p011 = p101 = p110 = 1/4 and p100 = p010 = p001 = p111 = 0. The entries are

mutually uncorrelated, but not independent since p111 = 0 6= 1/8 = m1m2m3.

For some applications, it suffices to model structured dependencies, such as exchange-

able (cij = c), moving average (cij = c1|i−j|=1) or autoregressive (cij = c|i−j|) correlations

for i 6= j ∈ D. There is a long series of articles concerned with efficient approaches to

sampling binary vectors for structured correlations (Farrell and Sutradhar, 2006; Qaqish,

2003; Oman and Zucker, 2001; Lunn and Davies, 1998; Park et al., 1996). However, we

focus on the problem of sampling binary data with arbitrary cross-moment matrix M

which is a building block of general adaptive Monte Carlo algorithms.
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3.2.2. Representations and bounds

Proposition 3.2.3. Let f : Bd → R be some function and τ : R ⊇ V → π(Bd) a bijective

mapping. There are coefficients aI ∈ R such that

f(γ) = τ
[∑

I⊆D aI
∏

i∈I γi
]
.

Proof. We denote by 1(I) := (1I(1), . . . ,1I(d)) ∈ Bd the indicator vector of the index

set I. We thus have f(γ) = τ [
∑

I⊆D δ1(I)(γ)τ−1(f [1(I)])] and writing the Dirac delta

function as a product δ1(I)(γ) =
∏

i∈I γi
∏

i∈D\I(1− γi) we conclude the assertion.

In particular, every binary distribution admits a multi-linear representation. The

usefulness of this result is limited, however, since the coefficients of the expansion do

not easily relate to the notion of cross-moments. However, the following representation

by Bahadur (1961) allows to write a binary distribution in terms of its generalized

correlation coefficients.

Proposition 3.2.4. Let π be a binary distribution with mean m ∈ (0, 1)d. Then,

π(γ) = qum(γ)
[∑

I⊆D c
π
Iu

π
I (γ)

]
.

Proof. We give the proof by Bahadur (1961) using the notation introduced above. The

set {uπI : I ⊆ D} forms an orthonormal basis on F := {f : Bd → R} with respect to the

inner product

(f, g) = Equm (f(X)g(X)) =
∑
γ∈Bd f(γ)g(γ)qum(γ).

Therefore, every function f ∈ F has a unique representation f(γ) =
∑

I⊆D(f, uπI )uπI (γ).

Compute the inner products

(π/qum, u
π
I ) =

∑
γ∈Bd [π(γ)/qum(γ)]uπI (γ)qum(γ) = Eπ (uπI (X)) = cπI

to obtain the desired form π(γ)/qum(γ) =
∑

I⊆D c
π
Iu

π
I (γ).

This decomposition, first discovered by Lazarsfeld, is a special case of a more general

interaction theory (Streitberg, 1990) and allows for a reasonable interpretation of the

parameters. Indeed, we have a product family times a correction term 1+
∑

I∈Ik vI(γ) cI

where the coefficients are higher order correlations.

Using Proposition 3.2.4, we may bound the lp distance between two binary distribu-

tion with the same mean in terms of nearness of their correlation coefficients.
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Proposition 3.2.5. Let π and ω be binary distributions with mean m ∈ (0, 1)d. For an

exponent p ≥ 1,∑
γ∈Bd |π(γ)− ω(γ)|p ≤

∑
I⊆D 2(1−min{p,2})|I||cπI − cωI |p ≤ (1 + r)d − dr − 1,

where r = 21−min{p,2}maxI⊆D |cπI − cωI |p/|I|.

Proof. Since uπI = uωI for all I ⊆ D, applying Proposition 3.2.4 yields∑
γ∈Bbvsd |π(γ)− ω(γ)|p =

∑
γ∈Bd

∣∣qum(γ)
∑

I⊆D u
π
I (γ)(cπI − cωI )

∣∣p
≤
∑

I⊆D |cπI − cωI |p Equm (|uπI (X)|p) .

Using that xp−1 + (1− x)p−1 ≤ 22−min{p,2} for all x ∈ (0, 1), we obtain the bound

Equm (|uπI (X)|p) ≤
∏

i∈I [mi(1−mi)]
1/2[mp−1

i + (1−mi)
p−1] ≤ 2(1−min{p,2})|I|.

Finally, we have
∑

I⊆D 2(1−min{p,2})|I||cπI − cωI |p ≤
∑

I⊆D,|I|≥2 r
|I| = (1 + r)d− dr− 1, since

by definition cπI = cωI for all I ⊆ D with |I| ≤ 2.

Corollary 3.2.6. Let π and q be binary distributions with mean m ∈ (0, 1)d. The total

variation distance between π and q is bounded by 1
2

∑
I⊆D |cπI − c

q
I |.

Proposition 3.2.7. Let π and q be binary distributions with cross-moment matrix M.

Then we have
∑
γ∈Bd |π(γ)− q(γ)|p ≤ (1 + r)d − 1

2
d(d− 1)r2 − dr − 1.

Proof. Analogously to Proposition 3.2.5.

The last results merit a comment with regard to adaptive Monte Carlo algorithms.

The summand 1
2
d(d−1)r2 we have in Proposition 3.2.7 but not in Proposition 3.2.5 might

be interpreted as the gain in “closeness” of the proposal to the target distribution when

we compare a simple product model qum with m = mπ = mq and a more sophisticated

proposal distribution qM with M = Mπ = Mq. In the following result, we formalize

how the cross-moments of the proposal distribution affect the auto-covariance of the

Metropolis-Hastings independence sampler. This underpins the practical observation

that a proposal distribution which just matches the mean of the target distribution is

often not flexible enough to yield an efficient Markov kernel.

Proposition 3.2.8. Let π and q be binary distributions with mean m ∈ (0, 1)d and

denote by κ(γ | x) := q(γ)λq(γ,x) + δx(γ)[1 −
∑
y∈Bd q(y)λq(y,x)] the Metropolis-

Hastings kernel with invariant measure π and proposal distribution q where λq(·,x) is

defined in (1.7). The auto-covariance between (X1,X2) ∼ πκ is

Eκπ (X2X
ᵀ
1 )−mmᵀ =

1

2
(Mπ −Mq) + R

with R = (rij) where |rij| ≤
∑
γ∈Bd |π(γ)− q(γ)|.
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Proof. We plug the definition of the kernel into the expected value and obtain

Eπκ (X2X
ᵀ
1 ) =

∑
γ,x∈Bd

γixjκ(γ | x)π(x)

=
∑
γ,x∈Bd

γixjq(γ)λq(γ,x)π(x) +
∑
x∈Bd

xixj[1−
∑
y∈Bd q(y)λq(y,x)]π(x)

= mπ
ij +

∑
γ,x∈Bd

(γixj − xixj)q(γ)π(x)λq(γ,x)

= mimj +
1

2
(mπ

ij −m
q
ij) +

1

2

∑
γ,x∈Bd

(γixj − xixj) |q(γ)π(x)− q(x)π(γ)| ,

where we used 2q(γ)π(x)λq(γ,x) = q(γ)π(x)+q(x)π(γ)−|q(γ)π(x)− q(x)π(γ)|. The

triangle inequality∑
γ,x∈Bd

|q(γ)π(x)− q(x)π(γ)| =
∑
γ,x∈Bd

|q(γ)π(x)− π(γ)π(x) + π(γ)π(x)− q(x)π(γ)|

≤
∑
γ,x∈Bd

[|q(γ)− π(γ)|π(x) + |π(x)− q(x)|π(γ)] = 2
∑
γ∈Bd
|π(γ)− q(γ)| .

yields the bound on rij := 1
2

∑
γ,x∈Bd(γixj − xixj) |q(γ)π(x)− q(x)π(γ)|.

For a proposal distribution qM with M = Mπ = Mq, the auto-covariance first term

vanishes and the remainders |rij| are, on average, smaller as implied by Proposition 3.2.7.

3.3. Families based on generalized linear models

3.3.1. Definition

We want to construct a parametric family q for sampling independent random vectors

with specified dependencies. Sampling in high dimensions, however, requires the compu-

tation of conditional distributions q(γi | γ1:i−1), and it is therefore convenient to define

the parametric family directly in terms of its conditionals.

Definition 3.3.1. Let µ : R → [0, 1] be a monotonic function and A := (aij) a d × d
real-valued lower triangular matrix. We refer to

qµA(γ) =
∏d

i=1

[
µ(aii +

∑i−1
j=1 aijγj)

]γi [
1− µ(aii +

∑i−1
j=1 aijγj)

]1−γi
,

as the µ-conditionals family. By construction, it is easy to sample x ∼ qµA and evaluate

qµA(x) point-wise, see Procedure 7.
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Algorithm 7: Sampling via chain rule factorization

x = (0, . . . , 0), p← 1

for i = 1, . . . , d do

c← qµA(xi = 1 | x1:i−1) = µ(aii +
∑i−1

j=1 aijxj)

u← U ∼ U[0,1]

if u < c then xi ← 1

p←

p · c if xi = 1

p · (1− c) if xi = 0

end

return x, p

Proposition 3.3.1. Let µ : R → [0, 1] be a bijection and m ∈ (0, 1)d a mean vector.

For A = diag[µ−1(m)] we have qµA = qum.

Qaqish (2003) discusses the µ-conditionals family with a truncated linear link func-

tion µ(x) = min{max{x, 0}, 1}. The linear structure allows to compute the parameters

by simple matrix inversion; on the downside, the linear function is truncated and fails to

accommodate complicated correlation structures; see Section 3.6 for a numerical com-

parison. Qaqish (2003) elaborates on conditions that guarantee the linear conditionals

family to be valid for special correlation structures.

Farrell and Sutradhar (2006) propose a µ-conditionals family with a logistic link

function µ(x) = 1/[1 + exp(−x)]. However, they only analyze the special case of autore-

gressive correlation structure. The idea to model conditional probabilities by logistic

regression terms has also been suggested by Arnold (1996). In Section 3.5.1, we further

motivate the use of the logistic link function. In the following theorem, we formalize the

fact that this approach indeed allows to model any feasible combination of mean and

correlation structure.

Theorem 3.3.2. Let µ : R → [0, 1] be an increasing, differentiable bijection and M a

d× d cross-moment matrix. There is a unique d× d real-valued lower triangular matrix

A such that
∑
γ∈Bd q

µ
A(γ)γγᵀ = M.

Popular link functions that verify the condition include the logistic function with

µ(x) = 1/[1 + exp(−x)], the probit function with µ(x) = (2π)−1/2
∫ x
−∞ exp(−y2/2)dy,

the arctan function µ(x) = 1/2 + arctan(x)/π and the complementary log-log function

µ(x) = 1 − exp[− exp(x)], see McCullagh and Nelder (1989, sec. 4.3). We derive two

auxiliary results to structure the proof of Theorem 3.3.2.
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Lemma 3.3.3. For a cross-moment matrix M with mean vector m = diag(M), we have(
M m

mᵀ 1

)
> 0.

Proof. Note thatmᵀM−1m−(mᵀM−1m)2 = (M−1m)ᵀ(M−mmᵀ)M−1m > 0 because

the covariance matrix M −mmᵀ is positive definite. Dividing by mᵀM−1m > 0 we

obtain 1−mᵀM−1m > 0 which yields

det

(
M m

mᵀ 1

)
= det

[(
M 0

0ᵀ 1

)(
I M−1m

mᵀ 1

)]

= det(M)det

(
I M−1m

0ᵀ (1−mᵀM−1m)

)

= det(M)(1−mᵀM−1m) > 0.

Therefore, all principal minors are positive.

Lemma 3.3.4. Let µ : R → [0, 1] be a monotonic, differentiable bijection, and denote

by Bn
r = {x ∈ Rn | xᵀx < r2} the open ball with radius r > 0. Let π be a binary

distribution with cross-moment matrix M. We write m = diag(M) and m∗ = (mᵀ, 1)ᵀ

for the mean vector. There is εr > 0 such that the function

f : Bd+1
r →

d+1

×
i=1

(εr,m
∗
i − εr), f(a) =

∑
γ∈Bd

π(γ)µ(ad+1 +
∑d

k=1 akγk)

(
γ

1

)
is a differentiable bijection.

Proof. We set εr := max
⋃
i∈D∪{d+1}

{
mina∈Bd+1

r
fi(a), m∗i −maxa∈Bd+1

r
fi(a)

}
. For in-

dices i, j ∈ D ∪ {d+ 1}, the partial derivatives of f are

∂fi
∂aj

=
∑
γ∈Bd

π(γ)µ′(ad+1 +
∑d

k=1 akγk)×


γiγj (i, j ∈ {1, . . . , d})

γi (j = d+ 1)

γj (i = d+ 1)

1 (i = j = d+ 1).

We have ηr := mina∈Bd+1
r

minγ∈Bd µ
′(ad+1 +

∑d
i=1 aiγi) > 0 since µ is strictly increasing.

Then the Jacobian is positive for all a ∈ Bd
r ,

detf ′(a) = det

∑
γ∈Bd

π(γ)µ′(ad+1 +
∑d

i=1 aiγi)

(
γγᵀ γ

γᵀ 1

) ≥ ηd+1
r det

(
M m

mᵀ 1

)
> 0,

where we applied Lemma 3.3.3 in the last inequality.
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Proof of Theorem 3.3.2. We proceed by induction over d. For d = 1, A(1) is a scalar

and we define the µ-conditionals family qµA(1) via Corollary 3.3.1. Suppose that we have

already constructed a µ-conditionals family qµA(d) with d×d lower triangular matrix A(d)

and cross-moment matrix M(d). We can add a new dimension to the µ-conditionals

model qµA(d) without changing M(d), since

∑
x∈Bd+1

qµA(d+1)(x)xxᵀ =
∑
x∈Bd+1

qµA(d)(x1:d)xx
ᵀ
[
µ(ad+1,d+1 +

∑d
j=1 ad+1,jxj)

]xd+1

×

[
1− µ(ad+1,d+1 +

∑d
j=1 ad+1,jxj)

]1−xd+1

=
∑
γ∈Bd

qµA(d)(γ)

{
µ(ad+1,d+1 +

∑d
j=1 ad+1,jγj)

(
γγᵀ γ

γᵀ 1

)
+

[
1− µ(ad+1,d+1 +

∑d
j=1 ad+1,jγj)

](γγᵀ 0

0ᵀ 0

)}

=
∑
γ∈Bd

qµA(d)(γ)µ(ad+1,d+1 +
∑d

j=1 ad+1,jγj)

(
0 γ

γᵀ 1

)
+(

M(d) 0

0ᵀ 0

)

For reasons of symmetry, it suffices to show that there is a ∈ Rd+1 such that

f(a) =
∑
γ∈Bd

qA(d)(γ)µ(ad+1 +
∑d

i=1 aiγi)

(
γ

1

)
= M(d+ 1)·,d+1,

where the r.h.s. denotes the (d + 1)th column of the augmented cross-moment matrix.

There is ε > 0 so that M(d + 1)·,d+1 ∈ ×d+1
i=1 (ε,m∗i − ε) with m∗ = (diag[M(d)]ᵀ, 1)

which implies that a solution is contained in a sufficiently large open ball Bd+1
rε . We

apply Lemma 3.3.4 to complete the inductive step and the proof.

3.3.2. Maximum-likelihood

For a log-concave link function µ, one can easily fit the µ-conditionals family to weighted

data (w,X) by component-wise likelihood maximization. We provide a review of likeli-

hood maximization for generalized linear models with binary response in Section 5.2.1 in

the context of Bayesian variable selection. Here, we only work out the explicit procedure

for the special case of the logistic conditionals family since we advocate its use in the

context of the smc sampler developed in Chapter 2.
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For an index i ∈ D, let y(i) := X·,i denote the vector of observations, W := diag(w)

a diagonal matrix with weights and Z(i) := (X·,1:i−1,1) the design matrix. The log-

likelihood function for the weighted logistic regression is

log l(a) =
n∑
k=1

wk

[
y

(i)
k log[`(z

(i)
k,·a)] + (1− y(i)

k ) log[1− `(z(i)
k,·a)]

]
=

n∑
k=1

wk

[
y

(i)
k z

(i)
k,·a− log[1 + exp(z

(i)
k,·a)]

]
,

where we used that log[1− `(xᵀa)] = − log[1 + exp(xᵀa)] = −xᵀa+ log[`(xᵀa)]. Since

∂ log[1 + exp(xᵀa)]/∂a = `(xᵀa)x, the gradient of the log-likelihood is

s(a) =
n∑
k=1

wk

[
y

(i)
k z

(i)
k,· − `(z

(i)
k,·a)z

(i)
k,·

]
= (Z(i))ᵀW[y(i) − p(i)

a ],

where (p
(i)
a )k := `(z

(i)
k,·a). Since ∂`(xᵀa)/∂a = −`(xᵀa)[1 − `(xᵀa)]x, the observed

Fisher information matrix is

F (a) =
n∑
k=1

wk

[
`(z

(i)
k,·a)[1− `(z(i)

k,·a)]
]
z

(i)
k,·(z

(i)
k,·)

ᵀ = (Z(i))ᵀWdiag(q(i)
a )Z(i),

where q
(i)
a,k := `(z

(i)
k,·a)[1− `(z(i)

k,·a)]. We put a normal prior N (0, ε−1I) on the regression

parameters a to ensure that the likelihood function is convex, compare Section 5.2.1.

The Newton Raphson iteration simplifies to a(t+1) = a(t) + x(t) where x(t) is the vector

that solves
[
(Z(i))ᵀWdiag

[
q

(i)

a(t)

]
Z(i) + εI

]
x(t) = (Z(i))ᵀW[y(i)−p(i)

a(t) ]− εa(t). We might

choose a(0) = (0, `−1(xi)) as starting point, where xi denotes the weighted sample mean.

In the context of the smc sampler discussed in Chapter 2, better initial values might be

obtained from the parameter of the previous auxiliary distribution.

If the Newton iteration at the ith component fails to converge, we can either augment

the penalty term ε which leads to stronger shrinkage of the mean towards 1/2 or we can

drop some covariates γj for j ∈ [[1, i − 1]] from the iteration to improve the numerical

condition of the procedure. In practice, we also drop the predictors from the regression

model which are only weakly correlated with the explained variable, see Section 3.6.1.

In particularly difficult cases, we might prefer to set a = (0, `−1(xi)), where xi denotes

the weighted sample mean. This guarantees that at least the mean is correct which is

important since misspecification of the mean of γi obviously affects the distribution of the

components γj for j ∈ [[i+1, d]] which are sampled conditional on γi. Yet another way to

tweak the numerical properties is re-parameterization through swapping the component

i and another component j ∈ [[i+ 1, d]]. Later, we have to apply the inverse permutation

in the sampling algorithm to deliver the binary vector in the original order.
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Algorithm 8: ML fitting for a logistic conditionals family

Input: X = (x1, . . . ,xn)ᵀ, W = diag(w1, . . . , wn), A ∈ Rd×d

for i ∈ D do

Z← (X·,1:i−1,1), y ← X·,i, a
(0) ← Ai,1:i

repeat

pk ← `(Zk,·a
(t)) for all k ∈ [[1, n]]

qk ← pk(1− pk) for all k ∈ [[1, n]]

a(t+1) ← a(t) +
[
(Z(i))ᵀWdiag[q]Z(i) + εI

]−1 [
(Z(i))ᵀW [y − p]− εa(t)

]
until ‖a(t+1) − a(t)‖∞ < δ

Ai,1:i ← a

end

return A

3.3.3. Method of moments

If we have data available instead of cross-moments, we rather fit a µ-conditionals family

via component-wise likelihood maximization than by method of moments since the for-

mer is faster and can even be parallelized, see Section 3.3.2. Still, in some applications

we want to sample binary data with specified means and correlations, an example being

the evaluation of statistical procedures for marginal regression models (Qaqish, 2003).

Further, the practical range of cross-moments which can be sampled is a reasonable

criterion to compare the flexibility of competing parametric families, and we use this for

the numerical comparison in Section 3.6.

The proof of Theorem 3.3.2 suggests an iterative procedure to adjust the parameter

A to a given cross-moment matrix M. We add new cross-moments m ∈ (0, 1)d+1 to

the d× d a lower triangular matrix A by solving the non-linear equation f(a) = m via

Newton-Raphson iterations a(k+1) = a(k) − [f ′(a(k))]−1[f(a(k))−m] where

f(a) =
∑
γ∈Bd q

µ
A(γ)µ[(γᵀ, 1)a](γᵀ, 1)ᵀ

f ′(a) =
∑
γ∈Bd q

µ
A(γ)µ′[(γᵀ, 1)a](γᵀ, 1)ᵀ(γᵀ, 1)

For dimensions d > 10, the exact computation of the expectations becomes expensive,

and we replace f and f ′ by their Monte Carlo estimates

f̂(a) =
∑n

k=1 q
µ
A(γ)µ[(xᵀ

k, 1)a)](xᵀ
k, 1)

f̂ ′(a) =
∑n

k=1 q
µ
A(γ)µ′[(xᵀ

k, 1)a)](xᵀ
k, 1)ᵀ(xᵀ

k, 1)
(3.2)

where x1, . . . ,xn are drawn from qµA. Some remarks are in order.

If the smallest eigenvalue of M − diag(M)diag(M)ᵀ approaches zero or a cross-

moment mij approaches the bounds (3.1), the parameter aij may become very large
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in absolute value. The limited numerical accuracy available on a computer inhibits

sampling from such extreme cases. We might encounter non-convergence in the course

of the fitting procedure. In order to handle these problems, we set

mij(λk) := λkmij + (1− λk)miimjj, 0 = λ1 < · · · < λn = 1

for all j = 1, . . . , i − 1 and compute a sequence of solutions a(λk) to the sequence of

cross-moments m(λk). We stop if the parameters fail to converge which ensures that

the mean of the µ-conditionals family is always diag(M).

For the special case of the linear link function µ(x) = x, we obtain

f(a) =
[∑

γ∈Bd q
µ
A(γ)(γᵀ, 1)ᵀ(γᵀ, 1)

]
a =

(
M m

mᵀ 1

)
a

which always has a solution by virtue of Lemma 3.3.3; to construct a mass function,

however, we have to fall back to the truncated version µ(x) = min{max{x, 0}, 1}, and

the range of feasible cross-moments is hard to assess (Qaqish, 2003).

3.4. Families based on multivariate copulas

3.4.1. Definition

Instead of constructing a parametric family with explicit conditionals qθ(γi | γ1:i−1), we

could sample from an auxiliary parametric family ϕθ on Rd which allows to compute the

conditionals ϕθ(xi | x1:i−1).

Definition 3.4.1. For a vector a ∈ Rd and a parametric family ϕθ on Rd we define the

copula family

qca,θ(γ) :=
∫
τ−1
a (γ)

ϕθ(x)dx, τa(x) :=
(
1(−∞,a1](x1), . . . ,1(−∞,ad](xd)

)
.

We do not need to explicitly compute the copula, but, obviously, the range of de-

pendencies achievable with qca,θ depends on the flexibility of the family of copulas given

through the underlying auxiliary parametric family. For all I ⊆ D, the marginals are

mc
I =

∑
γ∈Bd q

c
a,θ(γ)

∏
i∈I γi =

∑
γ∈Bd,γI=1

∫
τ−1
a (γ)

ϕθ(v) dv

=
∫ ⋃
γ∈Bd,γI=1

{τ−1
a (γ)} ϕθ(v) dv =

∫
×di=1


(−∞,ai] i∈I

(−∞,∞) i/∈I

ϕθ(v) dv,
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which is the marginal cumulative distribution function of the auxiliary distribution.

For a d× d correlation matrix Σ, Emrich and Piedmonte (1991) propose the multi-

variate normal distribution

ϕnΣ(x) = (2π)−d/2 |Σ|−1/2 exp
(
−1

2
xᵀΣ−1x

)
as auxiliary parametric family. Alternatively, we could use a multivariate student’s t

distribution

ϕtΣ(x) = Γ ([ν + d]/2)[Γ (ν/2)(νπ)d/2 |Σ|1/2 (1 + 1
ν
xᵀΣ−1x)]−(ν+d)/2.

The point-wise evaluation of qca,Σ(γ) requires the computation of multivariate prob-

abilities, that is high-dimensional integrals with the respect to the density of the mul-

tivariate normal or student’s t distribution. This is a computationally challenging task

in itself, for details see Genz and Bretz (2009), and the copula families are therefore

not easily incorporated into the adaptive Monte Carlo algorithms which rely on Markov

transitions since these require computation of the mass function up to a constant.

3.4.2. Further copula approaches

Genest and Neslehova (2007) discuss in detail the potentials and pitfalls of applying

copula theory, which is well developed for bivariate, continuous random variables, to

multivariate discrete distribution. Yet, there have been earlier attempts to sample binary

vectors via copulas: Lee (1993) describes how to construct an Archimedean copula, more

precisely the Frank family (Nelsen, 2006, p.119), for sampling multivariate binary data.

We need to solve a non-linear equation for each component when sampling a random

vector from the Frank copula, and Lee (1993) acknowledges that this is only applicable

for d ≤ 3. For low-dimensional problems, however, there are faster methods which

enumerate the solution space Bd and construct explicit probabilities (Gange, 1995) which

allows to draw from an alias table (Walker, 1977).

3.4.3. Method of moments

Let Φ(x) denote the univariate and Φ(x1, x2, σ) the bivariate cumulative distribution

functions of the underlying auxiliary distribution where σ ∈ [−1, 1] is the correlation

coefficient. We may evaluate the bivariate cumulative distribution functions using fast
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series approximations; see Drezner and Wesolowsky (1990) for bivariate normal and

Genz and Bretz (2002) for bivariate student’s t distributions.

Given the cross-moments M with m = diag(M), we set ai = Φ−1(mi) for i ∈ D

to adjust the mean. In order to compute the parameter Σ which yields the desired

cross-moments, we solve

mij = Φ(ai, aj, σij)

for σij via bisectional search for all i, j ∈ D with i < j. The function Φ(ai, aj, σ) is

strictly monotonic in σ since for both the normal and the Student’s t bivariate cumulutive

distribution function, we easily verify ∂Φ(ai, aj, σ)/∂σ > 0. Modarres (2011) suggests

the bivariate Plackett (1965) distribution as a proxy which might provide a good starting

value σ0
ij ∈ (−1, 1). In the sequential Monte Carlo context, better initial values might

be provided by the parameter of the previous auxiliary distributions.

In the case of the normal copula family we might use the standard result on the

derivative ∂Φn(a1, a2, σ)/∂σ = ϕn(ai, aj, σ) (Johnson et al., 2002, p.255) and solve

mij = Φn(ai, aj, σij) for σij via Newton-Raphson iterations; see Procedure 9. How-

ever, the bivariate integral approximations are critical when σ comes very close to either

boundary of [−1, 1]. The Newton iteration might repeatedly fail when restarted at the

corresponding boundary σ
(0)
ij ∈ {−1, 1}, and we might need to fall back to bisectional

search which is always feasible.

While we always obtain a solution in the bivariate case, it is well-known that the

resulting matrix Σ is not necessarily positive definite due to the range of the elliptical

copulas which allow to attain the bounds (3.1) for d ≤ 2, but not for higher dimensions.

In that case, we can replace Σ by

Σ∗ = (Σ + |λ| I)/(1 + |λ|) > 0 (3.3)

where λ is smaller than any eigenvalue of Σ. Alternatively, we can project Σ into the

set of correlation matrices; see Higham (2002) and follow-up papers for algorithms that

compute the nearest correlation matrix in Frobenius norm.

3.5. Families based on other techniques

3.5.1. Multiplicative interactions

Consider the family of distributions which, under the constraints that π has given cross-

moments, maximizes the entropy

H(π) := −
∑
γ∈Bd π(γ) log[π(γ)].
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Algorithm 9: Fitting the normal copula family

Input: X = (x1, . . . ,xn)ᵀ, w = (w1, . . . , wn), Σ ∈ Rd×d

X←
∑n

k=1wkxkx
ᵀ
k

for i ∈ D do ai ← Φ−1(xii)

for i, j ∈ D, i < j do

repeat

σ
(t+1)
ij ← σ

(t)
ij −

Φ(ai, aj , σ
(t)
ij )− xij

ϕ(ai, aj , σ
(t)
ij )

until |σ(t+1)
ij − σ(t)

ij | < δ

σji ← σ
(t+1)
ij

end

if not Σ > 0 then Σ← (Σ + |λ| I)/(1 + |λ|)
return a, Σ

The following proposition is just a special case of a more general concept (Soofi, 1994).

Proposition 3.5.1. Let I ⊆ 2D be a family of index sets such that {mI : I ∈ I} is

a valid set of cross-moments. The maximum entropy distribution having the specified

cross-moments mI for I ∈ I has the form

q(z) = exp(ν +
∑

I∈I aI
∏

i∈I γi).

with normalizing constant ν := − log[
∑
γ∈Bd exp(

∑
I∈I aI

∏
i∈I γi)].

Proof. Define the Lagrange multipliers L(π,a) =
∑

I∈I aI [
∑
γ∈Bd π(γ)

∏
i∈I γi−mI ] and

differentiate ∂[H(π) + L(π,a)]/∂π(γ) = − log[π(γ)]− 1 +
∑

I∈I aI
∏

i∈I γi. Solving the

first order condition and normalizing completes the proof.

Maximum entropy solutions are a natural way to design parametric families. The

binary versions link to information theory (Soofi, 1994), log-linear theory for contingency

tables (Bishop et al., 1975, ch. 5) and graphical models (Cox and Wermuth, 1996, ch.

2). They also play a central role in physics and life science being the well-studied Ising

model on a weighted complete graph.

Definition 3.5.1. Let A be a d× d real-valued lower triangular matrix. We refer to

qeA(γ) = exp(ν + γᵀAγ),

as the exponential quadratic family with ν := − log[
∑
x∈Bd exp(xᵀAx)].

Proposition 3.5.2. If A = diag(a), then aii = `−1(mii) and qeA = q`A = qum.
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The exponential quadratic family appears to be the binary analogue of the multi-

variate normal distribution which is the maximum entropy distribution on Rd having a

specified covariance matrix (Kapur, 1989, sec. 5.1.1). Finding its mode is an NP-hard

optimization problem and intensively studied in the field of operation research (Boros

et al., 2007, for a recent review).

Proposition 3.5.3. The marginal distribution of the exponential quadratic family is

qeA(γ−i) = exp
(
ν + γᵀ

−iA−iγ−i + log
[
1 + exp(aii +

∑i−1
j=1 aijγj +

∑d
j=i+1 ajiγj)

])
.

Proof. Straightforward, since

qeA(γ−i) = qeA(γi = 0,γ−i) + qeA(γi = 1,γ−i)

= exp(ν + γᵀ
−iA−iγ−i)

[
1 + exp(aii +

∑i−1
j=1 aijγj +

∑d
j=i+1 ajiγj)

]
.

Proposition 3.5.4. The conditional distribution of the exponential quadratic family is

qeA(γi = 1 | γ−i) = `(aii +
∑i−1

j=1 aijγj +
∑d

j=i+1 ajiγj).

where `(x) := 1/[1 + exp(−x)] is the logistic link function.

Proof. Straightforward, since

qeA(γi = 1 | γ−i) =
exp(ν + γᵀ

−iA−iγ−i + aii +
∑i−1

j=1 aijγj +
∑d

j=i+1 ajiγj)

exp(ν + γᵀ
−iA−iγ−i)

[
1 + exp(aii +

∑i−1
j=1 aijγj +

∑d
j=i+1 ajiγj)

]

Definition 3.5.2. Let X ∼ q be a binary random vector. Define the conditional log

odd ratios

ωqij := log

[
P (Xi = 1 | Xj = 1,X−i,j)P (Xi = 0 | Xj = 0,X−i,j)

P (Xi = 0 | Xj = 1,X−i,j)P (Xi = 1 | Xj = 0,X−i,j)

]
Proposition 3.5.5. The exponential quadratic family has constant conditional log odd

ratios ω
qeA
ij = aij.

Proof. The log odd ratios can be written as

ωqij = `−1[P (Xi = 1 | Xj = 1,X−i,j)]− `−1[P (Xi = 1 | Xj = 0,X−i,j)],

and the result follows immediately from Proposition 3.5.4.

We can therefore read the parameters aij as Lagrange multipliers or, if i 6= j, as

conditional log odd-ratios. The constant conditional log odd ratios are the binary ana-

logue of the constant conditional correlations of the multivariate normal distribution

(Wermuth, 1976).
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Logistic conditionals approximation

Despite the numerous similarities to the multivariate normal distribution, we cannot

easily sample from the exponential quadratic family nor explicitly relate the parameter

A to the cross-moment matrix M. The reason is that the lower dimensional marginal

distributions are difficult to compute (Cox, 1972, (iii)) since the multi-linear structure is

lost. We denote by q`A the logistic conditionals family, that is the µ-conditionals family

with logistic link function `(x) := 1/[1 + exp(−x)]. The following result shows that the

logistic conditionals family is precisely constructed such that the non-linear term in the

marginals vanishes.

Proposition 3.5.6. Let A be a d× d lower triangular matrix. The logistic conditionals

family can be written as

q`A(γ) = exp
(
γᵀAγ −

∑d
i=1 log

[
1 + exp(aii +

∑i−1
j=1 aijγj)

])
.

Proof. Straightforward calculations yield

log q`A(γ) =
∑d

i=1 log
(

[`(aii +
∑i−1

j=1 aijγj)]
γi [1− `(aii +

∑i−1
j=1 aijγj)]

1−γi
)

=
∑d

i=1

(
γi log[`(aii +

∑i−1
j=1 aijγj)] + (1− γi) log[1− `(aii +

∑i−1
j=1 aijγj)]

)
=
∑d

i=1

(
γi `
−1[`(aii +

∑i−1
j=1 aijγj)] + log[1− `(aii +

∑i−1
j=1 aijγj)]

)
=
∑d

i=1

(
γi(aii +

∑i−1
j=1 aijγj)− log[1 + exp(aii +

∑i−1
j=1 aijγj)]

)
=
∑d

i=1

∑i
j=1 aijγiγj −

∑d
i=1 log[1 + exp(aii +

∑i−1
j=1 aijγj)]

= γᵀAγ −
∑d

i=1 log[1 + exp(aii +
∑i−1

j=1 aijγj)],

where we used log[1− `(x)] = − log[1 + exp(x)] in the third line.

Since we cannot repeat the marginalization for lower dimensions, we cannot assess

the lower dimensional conditional probabilities which are necessary for sampling. We

can, however, derive a series of approximate marginal probabilities that produce a lo-

gistic conditionals family which is, for low correlations, close to the original exponential

quadratic family. This idea goes back to Cox and Wermuth (1994).

Proposition 3.5.7. Let c1 + c2x + c3x
2 ≈ log[cosh(x)] be a second order approxima-

tion. We may approximate the marginal distribution qeA(γ−d) by an exponential quadratic

family exp(ν∗ + γᵀ
−dA∗γ−d) with parameters

ν∗ := ν + log(2) + c1 + 1
2
add, A∗ := A−d + (c2 + 1

2
)diag(a∗) + c3 a∗a

ᵀ
∗,

where a∗ := (ad1, . . . , ad d−1)ᵀ denotes the dth column of A without add.
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Proof. We write the marginal distribution of the exponential quadratic family as

qeA(γ−d) = exp
[
ν + γᵀ

−dA−dγ−d + 1
2
(add + aᵀ

∗γ−d) + log
(
2 cosh

[
1
2
(add + aᵀ

∗γ−d)
]) ]

.

using the identity

log[1 + exp(x)] = log
(

exp(1
2
x)
[

exp(−1
2
x) + exp(1

2
x)
])

= 1
2
x+ log

[
2 cosh(1

2
x)
]

and approximate the non-quadratic term by the second order polynomial

log[cosh(1
2
add + 1

2
aᵀ
∗γ−d)] ≈ c1 + c2a

ᵀ
∗γ−d + c3(aᵀ

∗γ−d)
2.

We rewrite the inner products aᵀ
∗γ−d + (a∗γ−d)

2 = γᵀ
−d [diag(a∗) + a∗a

ᵀ
∗]γ−d and rear-

range the quadratic terms.

We can iterate the procedure to construct a logistic conditionals family which is close

to the original exponential quadratic family. However, the function log[cosh(x)] behaves

like a quadratic function around zero and like the absolute value function for large |x|.
Thus, a quadratic polynomial can only approximate log[cosh(x)] well for small values of

x which means that exponential quadratic families with strong dependencies are hard

to approximate.

Cox and Wermuth (1994) propose a Taylor approximation which fits well around
1
2
add and works for weak correlations. The parameters are

c =
(

log[cosh(1
2
add)]),

1
2

tanh(1
2
add),

1
8

sech2(1
2
add)

)
.

Alternatively, we define sampling points x1, . . . , xn, compute yk = log cosh(1
2
add + xk)

and use the least squares estimate

c = [(1,x,x2)ᵀ(1,x,x2)]−1(1,x,x2)y.

This provides a better overall approximation, but the fit might be poor around 1
2
add.

3.5.2. Additive interactions

Taking τ the identity mapping in Proposition 3.2.3, we obtain a multi-linear represen-

tation

π(γ) =
∑

I⊆D aI
∏

i∈I γi,

but it seems hard to give a useful interpretation of the coefficients aI . We can con-

struct a more parsimonious family by removing higher order interaction terms. For

additive interactions, however, we face the problem that truncated representations do

not necessarily define probability distributions since they might be negative.
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Definition 3.5.3. For a symmetric matrix A we define the additive linear family

qaA,a0(γ) = ν(a0 + γᵀAγ), (3.4)

where ν := [2da0 +
∑
γ∈Bd γ

ᵀAγ]−1 and a0 = (−minγ∈Bd γ
ᵀAγ) ∨ 0.

This definition is of little practical value, however, since a0 is the solution of NP-hard

optimization problem, see Section 6.3.1. In virtue of the linear structure, we can derive

polynomial expressions for the cross-moments and marginal distributions.

Proposition 3.5.8. For a set of indices I ⊆ D, we can write the corresponding cross-

moment as

mI =
1

2|I|
+

∑
i∈I

[
2
∑

j∈D ai,j +
∑d

j∈I\{i} ai,j

]
2|I|(4a0 + 1ᵀA1 + tr (A))

.

Proof. We first derive two auxiliary results to structure the proof.

Lemma 3.5.9. For a set I ⊆ D of indices it holds that∑
γ∈Bd

∏
k∈I∪{i,j} γk = 2d−|I|−2+1I(i)+1I∪{i}(j).

Proof. For an index set M ⊆ D, we have the sum formula
∑
γ∈Bd

∏
k∈M γk = 2d−|M |.

If we have an empty set M = ∅ the sum equals 2d and each time we add a new index

i ∈ D \M to M half of the addends vanish. The number of elements in M = I ∪ {i, j}
is the number of elements in I plus one if i /∈ I and again plus one if i 6= j and j /∈ I.

Written using indicator function, we have |I ∪ {i, j}| = |I| + 1D\I(i) + 1D\(I∪{i})(j) =

|I|+ 2− 1I(i)− 1I∪{i}(j) which implies 3.5.9.

Lemma 3.5.10.∑
i∈D
∑

j∈D 21I(i)+1I∪{i}(j) ai,j = 1ᵀA1 + tr (A) +
∑

i∈I

[
2
∑

j∈D ai,j +
∑

j∈I\{i} ai,j

]
Proof. Straightforward calculations yield

21I(i)+1I∪{i}(j) = (1 + 1I(i))(1 + 1I∪{i}(j))

= (1 + 1I(i))(1 + 1I(j) + 1{i}(j)− 1I∩{i}(j))

= 1 + 1I(i) + 1I(j) + 1I(i)1I(j)

+ 1{i}(j) + 1I(i)1{i}(j)− 1I∩{i}(j)− 1I(i)1I∩{i}(j)

= 1 + 1{i}(j) + 1I(i) + 1I(j) + 1I×I(i, j)− 1I∩{i}(j),
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where we used 1I(i)1{i}(j) = 1I(i)1I(i)1{i}(j) = 1I(i)1I(j)1{i}(j) = 1I(i)1I∩{i}(j) in

the second line. Thus, we have∑
i∈D
∑

j∈D 21I(i)+1I∪{i}(j) ai,j

=
∑

i∈D
∑

j∈D
(
1 + 1{i}(j) + 1I(i) + 1I(j) + 1I×I(i, j)− 1I∩{i}(j)

)
ai,j

= 1ᵀA1 + tr (A) +
∑

k∈I
[
2
∑

l∈D ak,l +
∑

l∈I ak,l − ak,k
]

= 1ᵀA1 + tr (A) +
∑

k∈I

[
2
∑

l∈D ak,l +
∑

l∈I\{k} ak,l

]
The last line is the assertion of Lemma 3.5.9.

Using the two Lemmas above, we find a convenient expression for the cross-moment

mI =
∑
γ∈Bd(

∏
k∈I γk) ν(a0 + γᵀAγ)

= ν
[∑

γ∈Bd a0 +
∑
γ∈Bd(

∏
k∈I γk)

∑
i∈D
∑

j∈D γiγj ai,j

]
= ν

[
2d−|I|a0 +

∑
i∈D
∑

j∈D ai,j
∑
γ∈Bd(

∏
k∈I∪{i,j} γk)

]
(Lemma 3.5.9)

= ν
[
2d−|I|a0 +

∑
i∈D
∑

j∈D 2d−|I∪{i,j}| ai,j

]
= ν2d−|I|−2

[
4a0 +

∑
i∈D
∑

j∈D 21I(i)+1I∪{i}(j) ai,j

]
(Lemma 3.5.10)

= ν2d−|I|−2
[
4a0 + 1ᵀA1 + tr (A) +

∑
i∈I

[
2
∑

j∈D ai,j +
∑

j∈I\{i} ai,j

]]
Since m∅ = 1 by definition, we the normalizing constant is

ν = 2−d+2 (4a0 + 1ᵀA1 + tr (A))−1 ,

which allows us to write down the normalized cross-moments

mI =
1

2|I|
+

∑
i∈I

[
2
∑

j∈D ai,j +
∑

j∈I\{i} ai,j

]
2|I|(4a0 + 1ᵀA1 + tr (A))

.

The proof is complete.

Corollary 3.5.11. The normalizing constant is

ν = 2−d+2 (4a0 + 1ᵀA1 + tr (A))−1 ,

and the expected value is

EqaA,a0 (γi) =
1

2
+

∑d
k=1 ai,k

4a0 + 1ᵀA1 + tr (A)
.
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The mean mi is close to 1/2 unless the row ai dominates the matrix. Therefore, if the

parameter matrix A is non-negative definite, the marginal probabilities mi can hardly

take values at the extremes of the unit interval. While being somewhat limited in the

range of feasible parameters, the advantage of the additive linear family is that the

marginal distributions are available in analytical form.

Proposition 3.5.12. For the marginal distribution, it holds that

q
(1:k)
A,a0

(γ1:k) =
∑
x∈Bd−(k+1) qA,a0(γ1:k,x) = ν2d−k−2sk(γ1:k),

where

sk(γ1:k) = 4a0 +
∑k

i=1 γi

(∑k
j=1 γjai,j +

∑d
j=k+1 ai,j

)
+
∑d

i=k+1

∑d
j=k+1 ai,j +

∑d
i=k+1 ai,i.

From Proposition 3.5.12 it is straightforward to derive a recursive formula for the

marginal proababilities which allows to sample from the additive linear family. For

details see Procedure 10

Proof. We margin out the last component d. Let I = [[1, d− 1]],

q
(d−1)
A,a0

(γI)ν
−1 =

(
q

(d)
A,a0

(γI , 1) + q
(d)
A,a0

(γI , 0)
)
ν−1

= 2a0 + (γI , 1)ᵀA(γI , 1) + (γI , 0)ᵀA(γI , 0)

= 2a0 + tr (A [(γI , 1)(γI , 1)ᵀ + (γI , 0)(γI , 0)ᵀ])

= 2a0 + tr

(
A

[
2γIγ

ᵀ
I γI

γᵀ
I 1

])
Iterating the argument, we obtain for I = [[1, d− t]] and Ic := D \ I

q
(d−t)
A,a0

(γI)ν
−1 = 2ta0 + 2t−2 tr

(
A

[
4γIγ

ᵀ
I 2γI1

ᵀ
t

2 1tγ
ᵀ
I 1t1

ᵀ
t + It

])
Straightforward calculations yield

tr

(
A

[
4γIγ

ᵀ
I 2γI1

ᵀ
t

2 1tγ
ᵀ
I 1t1

ᵀ
t + It

])
= tr (A [(2γI ,1t)(2γI ,1t)

ᵀ + diag0I ,1t])

= [(2γI ,1t)
ᵀA(2γI ,1t) + tr (Adiag0I ,1t))]

=
[
4
∑

i∈I
∑

j∈I γiγjai,j + 4
∑

i∈I
∑

j∈Ic γiai,j +
∑

i∈Ic
∑

j∈Ic ai,j +
∑

i∈Ic ai,i

]
=
[
4
∑

i∈I γi(
∑

j∈I γjai,j +
∑

j∈Ic ai,j) +
∑

i∈Ic
∑

j∈Ic ai,j +
∑

i∈Ic ai,i

]
The proof is complete.
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Recall the remark on marginal distributions and moments we made in Section 3.2.1. For

γI = 1 we obtain

sI(1k) = 4a0 + 4
∑

i∈I(
∑

j∈I ai,j +
∑

j∈Ic ai,j)

+
∑

i∈Ic
∑

j∈Ic ai,j +
∑

i∈Ic ai,i

= 4a0 +
∑

i∈D
∑

j∈D ai,j +
∑

i∈D ai,i + 3
∑

i∈I
∑

j∈I ai,j

+ 2
∑

i∈I
∑

j∈Ic ai,j −
∑

i∈I ai,i

= 4a0 + 1ᵀA1 + tr (A) +
∑

i∈I

[
2
∑

j∈D ai,j +
∑

j∈I\{i} ai,j

]
,

and πI(1k) = ν2d−|I|−2sI(1k) is indeed the expression for the cross-moments in the proof

of Proposition 3.5.8.

Algorithm 10: Sampling from the additive linear family

x = (0, . . . , 0), m ∈ (0, 1), A ∈ Rd×d

u← U ∼ U[0,1]

if u < m then x1 ← 1, µ̃← m else x1 ← 0, µ̃← 1−m
p← µ̃

for i = 2 to d do

t← 2d−(i+2)(2 |x1:i−1|+
∑d

j=i aij)

µ← µ̃/2 + t, c← (µ/µ̃ ∨ 0) ∧ 1

u← U ∼ U[0,1]

if u < c then
xi ← 1

µ̃← µ

if c = 0 then p← 0 else p← pc

else
µ̃← µ̃− µ
if c = 1 then p← 0 else p← p(1− c)

end

end

return x, p

Method of moments

Given the cross-moments M with m = diag(M), we can determine a0 and a matrix A

such that the family qaA,a0 fits the desired cross-moments by solving a linear system of

dimension d(d+ 1)/2 + 1. We first use the bijection

τ : D ×D → [[1, d(d+ 1)/2]], τ(i, j) = i(i− 1)/2 + j
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to map symmetric matrices into R(d+1) d/2. Precisely, for the matrices A and M, we

define the vectors

ãτ(i,j) := aij, m̃τ(i,j) := mij, i, j ∈ D

and the weight matrix

s̃τ(i,j),τ(k,l) := 21{i,j}(k)+1{i,j,k}(l), i, j, k, l ∈ D.

Note that |ã| = 1ᵀA1+ tr (A). We then equate the distribution moments to the desired

moments and normalize such that

2d−2

[
I a0 +

1

4
S̃ã

]
= m̃, 2d−2(4a0 + |ã|) = 1.

The solution of the linear system(
ã∗

a∗0

)
= 2−d+2

[
1
4
S̃ 1

4 1ᵀ 1

]−1(
m̃

1

)

is finally transformed back into a symmetric matrix A∗. The function qaA∗,a∗0 might not

define a probability distribution, but for the average holds∑
γ∈Bd γγ

ᵀqaA∗,a∗0(γ) = M.

The weight matrix S̃ does not depend on the data, and we could therefore fit the pa-

rameter to different cross-moment matrices on the same space Bd extremely fast once

the weight matrix is build up in the memory.

3.6. Practical scope

In this section, we compare the µ-conditionals family with logistic, linear and arctan link

functions to the copula families with normal and student’s t auxiliary distributions. We

draw random cross-moment matrices of varying dimension and difficulty, fit the para-

metric families and record how well the desired correlation structure can be reproduced

on average.

3.6.1. Sparse families

The major drawback of any kind of multiplicative model is the fact that we have

no closed-form likelihood-maximizers, and therefore the parameter estimation requires
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costly iterative fitting procedures. We can considerably speed up the parameter estima-

tion if we work with a sparse version of the original parametric family which we might

estimate a lot faster than the saturated family. For a proposal distribution, it is partic-

ularly important to take the strong dependencies into account but it is usually sufficient

to work with very sparse families.

Instead of fitting the saturated model q(γi | γ1:i−1), we preferably work with a more

parsimonious regression model like q(γi | γCi) for some index set Ci ⊆ [[1, i − 1]], where

the number of predictors |Ci| is typically smaller than i−1. We solve this nested variable

selection problem using some simple, fast to compute criterion.

Given the weighted data w ∈ [0, 1]n, X ∈ Bn×d, we denote the weighted sample

cross-moments by X =
∑n

k=1wkxkx
ᵀ
k and the weighted sample correlation by

rij =
xij − xiixjj√

xii(1− xii)xjj(1− xjj)
.

For ε = 0.02, we define the index set

I := {i ∈ D | xii /∈ (ε, 1− ε) }.

which identifies the components which have, according to the data, a marginal proba-

bility close to either boundary of the unit interval. For the components i ∈ I, we do not

model any dependencies but draw them independently of the other components. De-

pendencies do not really matter if the marginal probability is excessively small or large,

but the components i ∈ I are prone to cause complete separation in the data or might

even be constant. For a µ-conditionals family, we set aii = µ−1(xii) and ai,−i = 0; for a

copula family, we set all correlation coefficients in the target correlation matrix to zero.

For the remaining components D \ I, we construct sparse families in the sense that

for δ ∈ (0, 1), we define the index sets

Ci := {j ∈ [[1, i− 1]] | δ < |rij|}, i ∈ D \ I,

which identify the components with index smaller than i and significant mutual asso-

ciation. For a µ-conditionals family, we model the conditional proababilities only with

respect to the components in Ci which means that q(γi | γ1:i−1) = µ(
∑

j∈Ci aijγj); for a

copula family, we set the correlation coefficients σij in the target correlation matrix to

zero for all j /∈ Ci.

In the context of the smc sampler, running algorithm on the examples in Section 4.5

with δ = 0 and δ = 0.075 reveals that a saturated logistic conditionals family achieves

about the same acceptance rates as a sparse one, while the latter needs dramatically less

computational time in the calibration step.



3.6 Practical scope 69

3.6.2. Random cross-moment matrices

We briefly discuss how to generate a valid random cross-moment matrix of binary data.

We easily sample the mean m = diag(M) ∼ U(0,1)d , but for the off-diagonal elements we

have to ensure that the covariance matrix M −mmᵀ is positive definite and that the

constraints (3.1) are all met. We alternate the following two steps.

• Permutations mij = mσ(i)σ(j) for i, j ∈ D with uniform σ ∼ US(D) where we denote

by S(D) := {σ : D → D, σ is bijective} the set of all permutations on D.

• Replacements mid = mdi ∼ U[ai,bi] for all i = σ(1), . . . , σ(d − 1) with uniform

σ ∼ US(D\{d}) where the bounds ai, bi are subject to the constraints det(M) > 0

and min{mii +mdd − 1, 0} ≤ mid ≤ max{mii,mdd}.

The replacement step needs some consideration. We denote by N the inverse of

the (d− 1)× (d− 1) upper sub-matrix of M and define τi := mdi

∑
i∈D\{d}mdjnij such

that det(M) = [1/det(N)](mdd −
∑

i∈D\{d} τi). If we replace mdi = mid by xi we have

to ensure that det[M(xi)] = det(M) + mdi(mdinii + 2τi) − xi(xinii + 2τi) > 0 which

means (xi + τi/nii) ∈ (−ci, ci) with ci := [τ 2
i /n

2
ii + det(M) + mdi(mdinii + 2τi)]

−1/2.

Therefore, the lower and upper bounds, ai := max{mii + mdd − 1, 0,−τi/nii − ci} and

bi := min{mii,mdd,−τi/nii + ci}, respect all constraints on xi. We rapidly update the

value of the determinant det[M(xi)] and proceed with the next entry.

We perform 10 · d permutation steps and run 500 sweeps of replacements between

permutations. The result is approximately a uniform draw from the set of feasible cross-

moments matrices. However, sampling according to these cross-moments might not

be possible in higher dimensions because the cross-moment matrix is likely to contain

extreme cases which are beyond the scope of the parametric family or not workable for

numerical reasons. We introduce a parameter % ∈ [0, 1] which governs the difficulty of

the sampling problem by shrinking the upper and lower bounds a and b of the uniform

distributions to a% := [(1+%)a+(1−%)b]/2 and b% := [(1−%)a+(1+%)b]/2, respectively.

Sampling binary data with specified cross-moment matrix

If 2d − 1 full probabilities are known, we easily sample from the corresponding multi-

nomial distribution (Walker, 1977). For a valid set of cross-moments mI , I ∈ I, Gange

(1995) proposes to compute the full probabilities using a variant of the Iterative Propor-

tional Fitting algorithm (Haberman, 1972). While there are no restrictions on the range

of dependencies, we have to enumerate the entire state space which limits this versatile

approach to low dimensions.
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In the sequel, we do not consider methods for structured correlations nor approaches

which require enumeration of the state space. First, we show how to compute the

parameter A of a µ-conditionals model for a given cross-moment matrix M. Secondly,

we review an alternative approach to sampling binary data with given cross-moment

matrix M based on the copula of an underlying auxiliary parametric family.

3.6.3. Computational results

Figure of merit

Let M be a cross-moments matrix and let M∗ denote the cross-moment matrix with

mean m = diag(M) and uncorrelated entries m∗ij = miimjj for all i 6= j ∈ D. For a

parametric family qθ, we define the figure of merit

τq(M) := (‖M−M∗‖ − ‖M−Mq‖)/‖M−M∗‖, (3.5)

where Mq denotes the sampling cross-moment matrix of the parametric family with

parameter θ adjusted to the desired cross-moment matrix M. The norm ‖·‖might be any

non-trivial matrix norm; in our numerical experiments we use the spectral norm ‖A‖2
2 :=

λmax(AᵀA), where λmax delivers the largest eigenvalue, but we found the Frobenius norm

‖A‖2
F := tr (AAᵀ) to provide qualitatively the very same picture.

We can roughly interpret τq(M) as the proportion of the correlation structure that

the parametric family is able to reproduce. The score τq(M) is negative if the parametric

family qθ performs worse than qum.

Setup

For fitting the logistic conditionals family when d > 10, we replace the exact terms

by Monte Carlo estimates (3.2) where we use n = 104 random samples. We estimate

the cross-moment matrix of the parametric family q by Mq ≈ n−1
∑n

k=1 xkx
ᵀ
k where

we use n = 106 samples from q. This concerns only the logistic and linear conditionals

families; for the copula families, we can explicitly compute the sampling cross-moments

as mq
ij = Φ2(µi, µj;σij), where Σ is the adjusted correlation matrix of the underlying

multivariate normal distribution made feasible via (3.3).

We loop over 15 levels of difficulty % ∈ [0, 1] in 3 dimensions d = 10, 25, 50, and

generate at each time 200 cross-moments matrices. We denote by τ1 ≤ · · · ≤ τ200 the

ordered figures of merit of the random cross-moment matrices. We report the median and
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the quantiles (τb(0.5−ω)nc, τd(0.5+ω)ne), depicted as underlying gray areas for 20 equidistant

values of ω ∈ [0.0, 0.5]. Figures 1-3 show the results grouped by parametric families;

the y-axis with the scale on the left represents the figure of merit τ ∈ [0, 1], the x-axis

represents the level of difficulty % ∈ [0, 1], and the [0.0, 0.5]-gray-scale on the right refers

to the level of the quantiles.

3.6.4. Discussion

While Theorem 3.3.2 states that a µ-conditionals family can encompass any feasible

mean and correlation structure, we cannot entirely turn this into practice. If the desired

correlations are difficult to model, the limited numerical accuracy on a computer does

not allow to exactly reproduce the correlation structure using a µ-conditionals family.

However, the scope of the copula methods presented in Section 3.4 is already limited by

their mathematical structure.

The copula families are guaranteed to have the correct mean but they are less flexible

than the conditionals families; besides, they do not allow for fast point-wise evaluation

of their mass functions. The student’s t family seems to outperform the normal family

on moderately difficult instances, while the latter seems to work relatively better on

difficult instances.

The truncated linear conditionals family is fast to compute but its quality deteriorates

rapidly with growing complexity. The logistic and arctan conditionals families seem

to perform equally well, the latter having slightly less outliers and betters scores on

moderately difficult instances. They are computationally demanding but by far the

most versatile option.

These findings confirm comparisons carried out against the backdrop of particu-

lar applications (Farrell and Rogers-Stewart, 2008; Schäfer and Chopin, 2012; Schäfer,

2012b), see Sections 4.4.2 and 6.4.1 for toy examples. In the following chapters on appli-

cations, we primarily use the logistic conditionals family as sampling distribution. The

advantage of the logistic over the arctan link function is that the logistic link function

yields concave likelihood-functions and component-wise likelihood-maximization can be

performed using standard methods like Newton-Raphson.
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Figure 3.1.: Logistic conditionals family
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Figure 3.2.: Arctan conditionals family
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Figure 3.3.: Truncated linear conditionals family
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Figure 3.4.: Student’s t copula family
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Figure 3.5.: Normal copula family
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4. Bayesian variable selection for

normal linear models

Resumé

L’application statistique majeure pour d’échantillonnage de vecteurs binaires est la

sélection bayésienne de variables parmi des modèles de régression linéaire où des quan-

tités telles que les probabilités d’inclusion a posteriori des prédicteurs doivent être cal-

culées. Ce chapitre propose une brève introduction à la sélection de variables dans le

cadre de modèles linéaires normaux, où la distribution a posteriori est disponible sous

forme analytique pour un choix judicieux de la loi a priori sur les paramètres du modèle.

Nous construisons plusieurs instances de test exigeants sur données réelles, choisis pour

être considérablement multimodal, et l’échantillonneur de Monte Carlo séquentiel est

comparé avec des méthodes standards de Monte Carlo à châıne de Markov (George and

McCulloch, 1997).

4.1. Introduction

We apply the sequential Monte Carlo (smc) sampler developed in Chapter 2 to Bayesian

variable selection in the context of normal linear models. The numerical examples are

taken from Schäfer and Chopin (2012).

Let Y denote the random quantity of interest or response and Z a d-dimensional

vector of covariates or predictors. For real valued response variables, the generic choice

is the linear normal model

h(y,z) = [σ
√

2π]−1 exp
[
−(y − α− βᵀz)2/(2σ2)

]
. (4.1)

In the sequel, we write h(y | z) instead of hY |Z(y | z) if the arguments of the conditional

density or mass function unambiguously indicate which distribution we are referring to.
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We denote by n the number of observation, by y ∈ Rn the vector of observed explained

variables and by Z ∈ Rn×d the design matrix of observed explanatory variables. We

always assume the observations to be independent, and the design matrix to be of full

rank with columns centered such that 1ᵀZ = 0.

4.1.1. Selection criteria

In variable selection, the idea is to identify a subset of all available predictors which

balances the explanatory power and the complexity of the model. In the regression

context, it is convenient to identify each model with a binary vector γ ∈ Bd where the

predictor Zi is in the model if and only if γi = 1. Usually, a criterion of goodness-of-fit

π̃(· | y,Z) : Bd → [0,∞)

is defined which allows to rank the models based on the observed data. These functions

rarely have any particular structure and tend to be quite multi-modal depending on the

correlation between the predictors. The normalized criterion π ∝ π̃ is a probability dis-

tribution, and Monte Carlo methods like Markov chain Monte Carlo (mcmc) discussed

in Section 1.2 can provide an estimate of

π(f | y,Z) =
∑
γ∈Bd f(γ) π(γ | y,Z), (4.2)

where f might be any quantity of interest. The most important examples are probably

f(γ) = βγ for the average regression coefficients and f(γ) = γ for the average inclusion

of the predictors. In a Bayesian context, π(· | y,Z) has an interpretation as the posterior

probability distribution and concepts like Bayesian model averaging (Hoeting et al.,

1999) or the median model (Barbieri and Berger, 2004) depend on methods which can

reliably estimate (4.2).

The convergence rates of mcmc based approaches slow down dramatically as the

dimension d grows and the multimodality of the target distribution increases. This mo-

tivates the use of the smc sampler described in Chapter 2 which we show to largely

outperform standard mcmc algorithms on difficult instances of Bayesian variable se-

lection in linear normal models (4.1) with about 100 predictors, see Section 4.5. We

exploit the fact that the smc sampler allows for straightforward parallelization and pro-

vide examples with 1500 predictors to underpin its potential for solving high-dimensional

problems in parallel computing environments.
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4.1.2. Bayesian variable selection

Later, we mainly concentrate on Bayesian variable selection approaches where the de-

rived criterion is the a posteriori distributions on the model space. We denote the

likelihood given the model by

L(y,Z | α,βγ , θ,γ) :=
∏n

k=1 h(yk, zk | γ, α,βγ , θ),

where α and β are the regression coefficients and θ denotes further nuisance parameters.

For a suitable prior distribution p on these nuisance parameters, the marginal likelihood

L(y,Z | γ) =

∫
L(y,Z | α,βγ , θ,γ)p(α,βγ , θ | γ)d(α,β, θ)

can be computed and via Bayes’ Theorem

π(γ | y,Z) ∝ L(y,Z | γ)p(γ)

one obtains an unnormalized version of the posterior distribution on the model space.

4.1.3. Penalized likelihood criteria

In a more Frequentist framework, one might rank the models according to some penalized

likelihood criterion. We briefly review two popular approaches for model selection.

The Bayesian information criterion (bic) was first proposed by Schwarz (1978) and

can be derived as the logarithm of a second degree Laplace approximation to the marginal

likelihood (4.1.2),

bic(γ) := logL(y,Z | γ, α̂, β̂γ , θ̂)−
|γ|
2

log n ' log π(γ | y,Z),

where α̂, β̂, θ̂ are the maximum-likelihood estimates of the nuisance parameters and n

the number of observations. The symbol ' means approximation up to an additive

constant. Asymptotically, the bic coincides with the Bayesian approach for certain

choices of the prior distributions.

The so-called Akaike information criterion (aic) developed by Akaike (1974) is based

on information theoretic reasoning and penalizes the complexity independently of the

number of observations,

aic(γ) := logL(y,Z | γ, α̂, β̂γ , θ̂)− |γ| .

The aic can be shown to asymptotically minimize the information loss in terms of

Kullback–Leibler divergence. There are also correction for finite sample sizes.
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4.1.4. Convex optimization

For linear normal models, an alternative to likelihood-based selection criteria are regu-

larized versions of least squares estimates,

β∗ = argminβ∈Rd [‖y − Zβ‖2
2 + p(β)] ,

where p > 0 is a penalty term. For certain continuous but non-smooth penalty functions

the coefficients are shrunk to zero which is a model selection procedure.

The least absolute shrinkage and selection operator (Tibshirani, 1996, LASSO) with

penalty function p(β) = θ |β| is probably the most prominent example of regularized

least squares for model selection. The minimization problem can be solved using con-

vex optimization techniques which allow to solve problems which are too large to be

efficiently treated using likelihood-based criteria. There are various variants and exten-

sions like the least angle regression (Efron et al., 2004, LARS), the elastic net (Zou and

Hastie, 2005) and the smoothly clipped absolute deviation (Fan and Li, 2001, SCAD)

algorithms which have been subject to intensive research in the recent years. See Celeux

et al. (2011) for a comparison of regularization techniques and Bayesian approaches.

4.2. Marginal likelihood

In this section, we review strategies to assigning prior distributions to the parameters of

the linear normal model which allow to obtain a closed-form expression for the marginal

likelihood where all parameters except for the model indicator are integrated out. The

linear normal model has the full likelihood

L(y,Z | α,βγ , σ2,γ) ∝ σ−n exp

[
− 1

2σ2
[(α1 + Zγβγ − y)ᵀ(α1 + Zγβγ − y)]

]
,

where the intercept α does not depend on the model since we assume the design matrix

to be centered. For an improper prior p(α) ∝ 1, the marginal likelihood becomes

L(y,Z | βγ , σ2,γ) ∝ σ−(n−1) exp

[
− 1

2σ2
[(y + Zγβγ − y)ᵀ(y + Zγβγ − y)]

]
,

that is α = y is just the least squares estimate where y := n−1yᵀ1 and y := y1. For

each model, we define the orthogonal projection

Π⊥γ : Rn → {Zγβγ | βγ ∈ R|γ|} ⊂ Rn, Π⊥γ := Zγ(Zᵀ
γZγ)−1Zᵀ

γ .

The residual, explained and total sum of squares are related through Pythagoras’ The-

orem ‖y+ Π⊥γy−y‖2
2 + ‖Π⊥γy‖2

2 = ‖y−y‖2
2. The coefficient of determination is defined

by R2
γ := ‖Π⊥γy‖2

2/‖y − y‖2
2.
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4.2.1. Hierarchical priors

For a judicious choice of prior distributions, there are analytic expressions for the

marginal likelihood (4.1.2) which allows to evaluate the posterior distribution π of each

model up to a constant. Then the prior takes the form

p(βγ , σ
2 | γ) = p(βγ | σ2,γ)p(σ2 | γ)

where the prior on βγ is multivariate normal p(· | σ2,γ) = N (0, σ2τΣγ) with dispersion

parameter τ > 0 and positive matrix Σγ , and the prior on the residual variance σ2 is

inverse-gamma p(· | γ) = I(a/2, ab/2) with a, b ≥ 0.

The typical choice for the covariance is either the identity matrix Σγ = Iγ where

we assume the correlation coefficients to be a priori independent, or the observed Fisher

information matrix Σγ = (Zᵀ
γZγ)−1. The marginal likelihood is

L(y,Z | γ) ∝
∣∣ΣγZ

ᵀ
γZγ + τ−1Iγ

∣∣−1/2
[ab+ ‖y − y‖2

2 − yΠγy)]−(n−1+a)/2.

where Πγ = Z(ZᵀZ + τ−1Σ−1
γ )−1Zᵀ denotes the projection under the prior.

4.2.2. Zellner’s prior

It is straightforward to see that the choice Σγ = (Zᵀ
γZγ)−1 has a computational ad-

vantage and an interesting interpretation. The projection under the prior is the scaled

orthogonal projection Πγ = sΠ⊥γ and the determinant is s−|γ|/2 where s = τ/(1 + τ)

denotes the shrinkage factor. Further, for a = b = 0 we observe that

‖y − y‖2
2 − syΠ⊥γy = ‖y − y‖2

2 + s‖Π⊥γy‖2
2 ∝ 1− sR2

γ ,

allowing to express the marginal likelihood in terms of the coefficient of determination

L(y,Z | τ,γ) ∝ (1 + τ)(n−1−|γ|)/2[1 + τ(1−R2
γ)−(n−1)/2].

The choice for the dispersion parameter may be τ = n in reason of the unit information

prior (Kass and Wasserman, 1996), τ = d2 based on the risk inflation criterion (Foster

and George, 1994) or τ = argmaxτ L(y,Z | τ,γ) for a local empirical prior (Hansen and

Yu, 2001). We refer to Liang et al. (2008) for a more thorough discussion.

Some authors advocate to put a suitable prior on the dispersion parameter which

provides thicker tails in the prior distribution and ensures that the posterior probabilities

are consistent (Zellner and Siow, 1980; Liang et al., 2008). The generic choice might
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be the inverse gamma prior I(a/2, ab/2) where the hyper parameters a = 1 and b = n

provide exactly a multivariate Cauchy prior on the regression parameters βγ . For the

inverse gamma prior, the marginal likelihood

L(y,Z | γ) =

∫
L(y,Z | τ,γ)p(τ)dτ

can be computed via numerical integration or by means of a Laplace approximation.

The latter is particularly fast to compute since there is an analytic expression for the

maximum of the integrand L(y,Z | τ,γ)p(τ). Liang et al. (2008) propose an alternative

hyper prior π(τ) = (a− 2)(1 + τ)−a/2/2 with a > 2 which allows to express the marginal

likelihood in terms of certain Gaussian hyper geometric functions.

4.2.3. Independent prior

The independent prior is computationally less convenient. We might define the product

bγ = Zᵀ
γ y and the Cholesky decomposition Cγ,τC

ᵀ
γ,τ = ΣγZ

ᵀ
γZγ + τ−1Iγ which allows

to write the posterior mass function as

π(γ | y,Z) ∝ τ |γ|/2
∏|γ|

i=1 c
(γ,τ)
i,i

[
ab+ ‖y − y‖2

2 − (C−1
γ,τbγ)ᵀC−1

γ,τbγ
]−(n−1+a)

.

If one wants a full Bayesian approach having a prior on the dispersion parameter, Zell-

ner’s prior is to be preferred for its computational efficiency, since for the independent

prior we cannot easily integrate out the dispersion parameter.

4.3. Priors on the model space

Typically, the prior distribution on the model space is

p(γ | m) = m|γ|(1−m)d−|γ|

for some common prior marginal inclusion probability m ∈ (0, 1). Some authors, e.g.

Nott and Kohn (2005), propose a conjugate Beta hyper prior m ∼ B(a, b) for a, b > 0

which yields p(γ) = B(a+|γ|−1, b+d−|γ|)/B(a, b) where B denotes the Beta function.

4.3.1. Prior on the model size

We propose to choose a uniform prior conditional on the size of the model and a binomial

hyper prior k ∼ B(m, d∗) on the size of the model which yields

p(γ) =
d∗∑
k=0

k!(d∗ − k)!

d∗!
mk(1−m)d

∗−kδk(|γ|)
k!(d− k)!

d!
,
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where d∗ ≤ d ∧ n is the size of the largest admissible model. If d > n one typically

restricts the analysis to models of size d. Generally, if the number of predictors is large

it usually suffices to only consider rather small models. The parameter m = d/d∗ is

chosen to yield a desired average model size d < d∗.

4.3.2. Main effect restrictions

In some statistical applications, we add interactions between two predictors by crossing

columns of the design matrix. The variable selection procedure remains the same, but

typically the interaction should only be included in the model if the corresponding main

effects are also present. For simplicity, we just consider two-way interactions and denote

the interaction variables by γ̃ij. For a variable selection problem of dimension d(d−1)/2,

we define the prior

p(γ) =
∏
i,j∈D

mγi
i (1−mi)

1−γi m̃
γ̃ijγiγj
ij (1− m̃ij)

1−γ̃ij ,

where m̃ij = mimjmij/(1 − mij + mimjmij) and mij = P (γij = 1 | γi = 1, γj = 1). In

particular, if mi = mij = 1/2 for all i, j ∈ D, the prior is the uniform distribution on the

constrained support {γ ∈ Bd(d+1)/2 | γij ≤ γiγj, i, j ∈ D}. In the numerical experiments

in Section 4.5, we show that adding these constraints makes the sampling problem even

more challenging.

4.4. Sequential Monte Carlo

In this section, we provide some remarks on the sequence of intermediate distributions

and the choice of the parametric families in the transition kernel against the backdrop

of Bayesian variable selection.

4.4.1. Intermediate distributions

The smc sampler as described in Chapter 2 uses a geometric bridge (2.2) to construct

the sequence of intermediate distributions. However, there are other natural possibilities

to obtain an auxiliary sequence of distribution in the context of variable selection.
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Data partition Chopin (2002) proposes a static smc sampler based on a sequence of

posterior distributions where data is added as %t increases. The auxiliary sequence is

πt(γ) = π(γ | y, z1, . . . ,zb%tnc),

where n is the total number of observations. The initial distribution π0(γ) = π(γ | y)

is the prior p(γ) on the model space. Note that for this scheme we cannot completely

control the step size which makes it more difficult to calibrate the algorithm.

Data orthogonalization Ghosh and Clyde (2011) propose an orthogonal data aug-

mentation scheme in the context of Gibbs sampling which could be incorporated into

an smc sampler. We can augment the data such that the design matrix Zo = (Zᵀ,Zᵀ
a)

ᵀ

has orthogonal columns, where Za denotes the extra rows of the design matrix. We let

yo = (yᵀ,yᵀ
a)

ᵀ where the pseudo-observations ya are drawn from the full model. This

setup leads to a sequence of posterior distributions based on a weighted sample

πt(γ) = π(γ | y,Z, (1− %t)ya, (1− %t)Za),

and for a uniform prior p(γ) = 2−d on the model space, we have an initial distribution

π0(γ) = π(γ | yo,Zo) with independent components. We could calibrate an optimal

step size for this sequence but obviously the bi-sectional search would be more involved

since each computation of the effective sample size in (2.5) requires evaluation of the

target function π%t+α(γ) for all particles.

Geometric bridge In our numerical studies, we stay with the geometric bridge (2.2)

for its computational simplicity which allows to perfectly control the step size of the

algorithm. Using the geometric bridge, we can start from any initial distribution p with

supp(π) ⊆ supp(p) which allows to sample from p and evaluate its mass function up to a

constant. Intuitively, the smc sampler converges faster if we choose an initial distribution

which is, in a certain sense, closer to the distribution of interest. However, numerical

experiments taught us that premature adjustment of p, for example using mcmc pilot

runs, leads to faster but less robust algorithms. For Bayesian variable selection, we

recommend to use the prior on the model space, see Section 4.3, as initial distribution

which seems the natural choice in this context.

4.4.2. Parametric families

We briefly motivate why we need a parametric family which can model dependen-

cies in order to make the Metropolis-Hastings independence sampler work in practice.



4.4 Sequential Monte Carlo 83

Figure 4.1.: True posterior mass function.
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Suppose we have a simple linear relation

Y = V1 + V2. For n = 100 and µ = 10,

we draw a sample of normal distributed

random variables

v1 ∼ N (−µ, In) , v2 ∼ N (µ, In) ,

and construct a vector of random observa-

tions y = v1 + v2. Further, we draw four

columns of predictors,

z1, z2 ∼ N
(
v1, (µ

2/4) In
)
, z3, z4 ∼ N

(
v2, (µ

2/4) In
)
.

The posterior distribution π(γ) = π(γ | y, Z), using the prior distributions as described

in Section 4.2.1, typically exhibits strong dependencies between its components due to

the correlation in the data.

Figure 4.2.: Approximations to the true posterior in Figure 4.1 by parametric families.
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(a) product family qm
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(b) logistic conditionals family qA

We now generate pseudo-random data X from π and fit both a product family qum and

a logistic conditionals family q`A. Looking at the corresponding mass function in Figure

4.2, we notice how badly the product family mimics the true posterior. This observation

carries over to larger sampling spaces.

An interesting way to further analyze the importance of reproducing the dependencies

of π is in terms of acceptance rates and particle diversities. The particle diversity defined

in (2.6) naturally diminishes as our particle system approaches a strongly concentrated

target distribution π. However, we want the smc algorithm to keep the particle diversity

up as long as possible to ensure that the particle system is well spread out over the entire

state space of interest.

In Figure 4.3, we show a comparison (based on the Boston Housing data set ex-

plained in Section 4.5.1) between two smc algorithms, using a product family and a
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Figure 4.3.: We compare the use of a product family to a logistic conditionals family as

proposal distribution of the Metropolis-Hastings kernel (1.15). We monitor

a typical run (% on the x-axis) of our sequential Monte Carlo algorithm and

plot the acceptance rates and particle diversities (on the y-axis).

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

o

o

o

o
o

o

o

o
o

o

o

o
o

o
o

o
o

o
o

o
o o o

o o o o o o o o o o
o o

o o
o

o o

o

o
o

o

o

product model
logistic regression model

(a) acceptance rates
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(b) particle diversities

logistic conditionals family as proposal distributions of the Metropolis-Hastings kernel

(1.15). Clearly, in Figure 4.4(a), the acceptance rates achieved by the product kernel

rapidly decrease and dwell around 5% for the second half of the run. In contrast, the

logistic conditionals kernel always provides acceptance rates greater than 20%. As a

consequence, in Figure 4.4(b), the particle diversity sustained by the product kernel

decreases at an early stage, while the logistic regression kernel holds it up until the very

last steps.
At first sight, it might seem odd that the acceptance rates of the logistic conditionals

kernel increase during the final steps of the algorithm. If we jump ahead, however,

and take a look at the results of the Boston Housing problem, see Figure 4.5(a), we

notice that quite a few marginal probabilities of the posterior π turn out to be zero,

which makes it easier to reproduce the distributions towards the end of the resample-

move algorithm. However, if we already decide at an early stage that a predictor has

marginal probability zero, we fail to ever consider models containing this predictor for

the rest of the algorithm. Therefore, the advantage of the logistic conditionals kernel

over the simple product kernel is that we do not completely drop any components from

the variable selection problem until the final steps.

4.5. Numerical experiments

For our numerical examples, we assume the regression parameters to be a priori inde-

pendent, that is Σγ = I|γ|. We follow the recommendations of George and McCulloch
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(1997) and use the hyper-parameters

a = 4.0, b = σ̂2
1, τ = 10.0/b (4.3)

for the inverse gamma prior on the residual variance, where σ̂2
1 is the least square estimate

of σ2 based on the saturated model. The rationale behind this choice is to ensure a flat

prior on the regression parameters βγ and to provide σ2 with sufficient mass on the

interval (σ̂2
1, σ̂

2
0), where σ̂2

0 denotes the variance of y.

In this section we compare our smc algorithm to standard mcmc methods based

on local moves as introduced in Section 1.2. These are standard algorithms and widely

used. There are other recent approaches like Bayesian adaptive sampling (Clyde et al.,

2011) or evolutionary stochastic search (Bottolo and Richardson, 2010) which also aim

at overcoming the difficulties of multi-modal binary distributions. However, a thorough

and just comparison of our smc approach to all other advanced methods is beyond the

scope of this thesis.

4.5.1. Construction of test instances

For testing, we created variable selection problems with high dependencies between the

covariates which yield particularly challenging, multi-modal posterior mass functions.

The problems are built from freely available datasets by adding logarithms, polynomials

and interaction terms. The mcmc methods presented in Section 1.2 tend to fail on these

problems due to the very strong multi-modality of the posterior distribution while the

smc approach we advocate in Chapter 2 yields very reliable results. In the following, we

briefly describe the variable selection problems composed for our numerical experiments.

Boston Housing The first example is based on the Boston Housing data set, originally

treated by Harrison and Rubinfeld (1978), which is freely available at the StatLib data

archive. The data set provides covariates ranging from the nitrogen oxide concentration

to the per capita crime rate to explain the median prices of owner-occupied homes.

The data has already been treated by several authors, mainly because it provides a

rich mixture of continuous and discrete variables, resulting in an interesting variable

selection problem. Specifically, we aim at explaining the logarithm of the corrected

median values of owner-occupied housing. We enhance the 13 columns of the original

data set by adding first order interactions between all covariates. Further, we add

a constant column and a squared version of each covariate (except for chas since it

is binary). This gives us a model choice problem with 104 possible predictors and

http://lib.stat.cmu.edu/datasets/boston_corrected.txt
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506 observations. By construction, there are strong dependencies between the possible

predictors which leads to a rather complex, multi-modal posterior distribution.

short name explanation

crim per capita crime

zn proportions of residential land zoned

for lots over 2323 m2

indus proportions of non-retail business acres

chas tract borders Charles River (binary)

nox nitric oxides concentration (parts per 107)

rm average numbers of rooms per dwelling

age proportions of owner-occupied units

built prior to 1940

dis weighted distances to five Boston

employment centres

rad accessibility to radial highways

tax full-value property-tax rate per USD 104

ptratio pupil-teacher ratios

b (Bk− 0.63)2 where Bk is the proportion

of the black population

lstat percentage of lower status population

Concrete Compressive Strength The second example is constructed from a less known

data set, originally treated by Yeh (1998), which is freely available at the UCI Machine

Learning Repository. The data provides information about components of concrete to

explain its compressive strength. The compressive strength appears to be a highly non-

linear function of age and ingredients. In order to explain the compressive strength, we

take the 8 covariates of the original data set and add the logarithms of some covariates

(indicated by the prefix lg). Further, we add interactions between all 13 covariates of

the augmented data set and a constant column. This gives us a model choice problem

with 79 possible predictors and 1030 observations.

short name explanation

c, lg c cement

blast blast furnace slag

fash fly ash

http://archive.ics.uci.edu/ml/machine-learning-databases/concrete/compressive/Concrete_Data.xls
http://archive.ics.uci.edu/ml/machine-learning-databases/concrete/compressive/Concrete_Data.xls
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w, lg w water

plast superplasticizer

ca, lg ca coarse aggregate

fa, lg fa fine aggregate

age, lg age age in days

Protein activity data The third example has originally been analyzed by Clyde and

Parmigiani (1998). Later, Clyde et al. (2011) used it as a challenging example problem

in variable selection and included the raw data in the R-package BAS available at CRAN

which implements the Bayesian Adaptive Sampling algorithm. In order to explain the

protein activity (prot.act1), we first convert the factors buf, ra and det into a factor

model. We enhance the 14 columns of this data set by adding first order interactions

between all covariates and a constant column. Note that some of the crossed columns

turn out to be constant zeros such that we obtain a model choice problem with 88

possible predictors and 96 observations. For reasons of consistency, we choose the priors

explained in the above Section 4.2.1 instead of Zellner’s prior used by Clyde et al. (2011).

short name explanation

det detergent

buf pH buffer

NaCl salt

con protein concentration

ra reducing agent

MgCl2 magnesium chloride

temp temperature

4.5.2. Comparison and conclusion

We do not think it is reasonable to compare two completely different algorithms in

terms of pure computational time. We cannot guarantee that our implementations are

optimal nor that the time measurements can exactly be reproduced in other computing

environments. We suppose that the number of evaluations of the target function π is

more of a fair stopping criterion, since it shows how well the algorithms exploit the

information obtained from π. Precisely, we parameterize the smc algorithm to not

http://cran.r-project.org/web/packages/BAS/index.html
http://cran.r-project.org/web/packages/BAS/index.html
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exceed a fixed number ν of evaluations and stop the Markov chains when ν evaluations

have been performed.

We compare the smc sampler to both the adaptive Markov chain Monte Carlo

(amcmc) of Nott and Kohn (2005) and the standard metropolized Gibbs (Liu, 1996b,

mcmc), see Section 1.2. For the mcmc, we draw the number of bits to be flipped from a

truncated geometric distribution with mean k∗ = 2, see Section 1.3.1. However, we could

not observe a significant effect of changes in the block updating schemes on the quality of

the Monte Carlo estimate. For the amcmc, we use δ = 0.01 and λ = 0.01, following the

recommendations of Nott and Kohn (2005). We update the estimates ψ and W every

2 × 105 iterations of chain. Before we start adapting, we generate 2.5 × 105 iterations

with a metropolized Gibbs kernel (after a discarded burn-in of 2.5× 104 iterations).

We run each algorithm 200 times and each time we obtain a Monte Carlo estimate

of the marginal probabilities of inclusion of all predictors. We visualize the variation of

the estimator by box-plots that show how much the Monte Carlo estimates have varied

throughout the 200 runs (Figures 4.4 to 4.9). Here, the white boxes contain 80% of the

Monte Carlo results, while the black boxes show the extent of the 20% outliers. For

better readability, we add a colored bar up to the smallest estimate we obtained in the

test runs; otherwise components with a small variation are hard to see.

The vertical line in the white box indicates the median of the Monte Carlo estimates.

The median of the smc runs correspond very precisely to the results we obtained by run-

ning a mcmc algorithm for a few days. Unquestionably, the smc algorithm is extremely

robust; for 200 test runs and for both data sets, the algorithm did not produce a single

major outlier in any of the components. This not true for either of the mcmc algorithms.

The size of white boxes indicate that adaptive mcmc works quite better than the stan-

dard mcmc procedure. However, even the adaptive mcmc method is rather vulnerable

to generating outliers. The large black boxes indicate that, for some starting points of

the chain, the estimates of some marginal probabilities might be completely wrong.

The outliers, that is the black boxes, in the amcmc and the mcmc plots are strikingly

similar. The adaptive and the standard Markov chains apparently both fall into the same

trap, which in turn confirms the intuition that adaption makes a method faster but not

more robust against outliers. An adaptive local method is still a local method and does

not yield reliable estimates for difficult binary sampling problems. Figure 4.9 suggests

that in constrained spaces adaption is difficult and might even have contra-productive

effects.

In Tables 4.4 to 4.9, we gather some key performance indicators, each averaged over

the 200 runs of the respective algorithms. Note that the time needed to perform 2.5×106
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evaluations of π is a little less than the running time of the standard mcmc. Thus, even

in terms of computational time, the adaptive mcmc can hardly compete with our smc

method, even if evaluations of π were at no cost. Note that the time measurements

refer to the running time of a pure Python implementation which has been improved

significantly since these results were published; see the Appendix on the software for

more details.

4.5.3. Assets and drawbacks

The smc and the mcmc algorithms both have extensions and numerical speed-ups which

make it hard to settle on a fair comparison. Advocates of mcmc methods might criticize

that the number of target evaluations is a criterion biased towards the smc approach,

for there are updating schemes which allow for faster computation of the Cholesky

decomposition given the decomposition of a neighboring model, see Dongarra et al.

(1979, chaps. 8,10). Thus, Markov chains which propose to change one component in

each step can evaluate π with less effort and perform more evaluations of π in the same

computational time.

On the other hand, however, the smc algorithm can be parallelized in the sense that

we can, on suitable hardware, run many evaluations of π in parallel during the move

step, see Procedure 6. No analogue speed-up can be performed in the context of mcmc.

Further, smc methods are more suitable than mcmc to approximate the evidence, that

is the normalization constant of the posterior distribution. We can exploit this property

to compare, for instance, generalized regression models with different link functions.

Although the numerical results are encouraging, we do not get something for nothing

using the smc sampler. Firstly, the implementation of our algorithm including the logis-

tic conditionals family introduced in Section 3.3 is quite involved compared to standard

mcmc algorithms. Secondly, simple mcmc methods are faster than our algorithm while

producing results of the same accuracy if the components of the target distribution are

nearly independent. Finally, the smc sampler cannot be used to average out further

nuisance parameters but requires a setup where the posterior distribution of the models

are available in closed form. In the following Chapter 5, we discuss extensions to the

smc sampler to deal with the latter problem.
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Figure 4.4.: Boston Housing data set. For details see Section 4.5.1.
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(a) smc ∼ 1.4× 106

evaluations of π
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(b) amcmc 2.5× 106

evaluations of π
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Table. Boston Housing data set. Averaged key indicators complementary to Figure 4.4.

smc amcmc mcmc

computational time 0 : 36 : 59 h 4 : 50 : 52 h 0 : 38 : 06 h

evaluations of π 1.36× 106 2.50× 106 2.50× 106

average acceptance rate 36.4% 29.1% 0.81%

length t of the chain xt 7.52× 107 2.50× 106

moves xt 6= xt−1 7.28× 105 2.07× 104
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Figure 4.5.: Boston Housing data set with main effect restrictions. For details see Sec-

tion 4.5.1.
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(a) smc ∼ 1.2× 106

evaluations of π
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(b) amcmc 2.5× 106

evaluations of π
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Table. Boston Housing data set with main effect restrictions. Averaged key indicators

complementary to Figure 4.5.

smc amcmc mcmc

computational time 0 : 18 : 05 h 4 : 33 : 20 h 0 : 14 : 13 h

evaluations of π 1.15× 106 2.50× 106 2.50× 106

average acceptance rate 20.79% 45.4% 1.20%

length t of the chain xt 8.01× 107 2.50× 106

moves xt 6= xt−1 1.13× 106 2.96× 104
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Figure 4.6.: Concrete Compressive Strength data set. For details see Section 4.5.1.
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Table. Concrete Compressive Strength data set. Averaged key indicators complementary to

Figure 4.6.

smc amcmc mcmc

computational time 0 : 29 : 01 min 2 : 02 : 06 min 0 : 43 : 17 min

evaluations of π 1.19× 106 2.50× 106 2.50× 106

average acceptance rate 30.7% 70.4% 7.20%

length t of the chain xt 2.43× 107 2.50× 106

moves xt 6= xt−1 1.76× 106 1.79× 105
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Figure 4.7.: Concrete Compressive Strength data set with main effect restrictions. For

details see Section 4.5.1.
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Table. Concrete Compressive Strength data set with main effect restrictions. Averaged key

indicators complementary to Figure 4.7.

smc amcmc mcmc

computational time 0 : 43 : 01 min 2 : 29 : 16 min 0 : 41 : 48 min

evaluations of π 2.42× 106 2.50× 106 2.50× 106

average acceptance rate 30.98% 61.1% 5.31%

length t of the chain xt 2.72× 107 2.50× 106

moves xt 6= xt−1 1.53× 106 1.32× 105
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Figure 4.8.: Protein data set. For details see Section 4.5.1.
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(b) amcmc 2.5× 106

evaluations of π
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Table. Protein data set. Averaged key indicators complementary to Figure 4.8.

smc amcmc mcmc

computational time 0 : 14 : 55 min 3 : 58 : 32 min 0 : 29 : 38 min

evaluations of π 6.17× 105 2.50× 106 2.50× 106

average acceptance rate 30.7% 60.7% 1.20%

length t of the chain xt 9.19× 107 2.50× 106

moves xt 6= xt−1 1.51× 106 3.03× 105
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Figure 4.9.: Protein data set with main effect restrictions. For details see Section 4.5.1.
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(b) amcmc 2.5× 106

evaluations of π
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Table. Protein data set with main effect restrictions. Averaged key indicators

complementary to Figure 4.9.

smc amcmc mcmc

computational time 0 : 14 : 45 min 3 : 32 : 06 min 0 : 30 : 21 min

evaluations of π 6.19× 105 2.50× 106 2.50× 106

average acceptance rate 26.65% 22.3% 1.20%

length t of the chain xt 1.07× 108 2.50× 106

moves xt 6= xt−1 5.56× 106 3.03× 105





5. Bayesian variable selection for

binary response models

Resumé

Ce chapitre propose des idées pour étendre les méthodes de Monte Carlo séquentielles

à la sélection bayésienne de variables dans le contexte des modèles linéaires généralisés

à réponse binaire comme les modèles de régression logistique ou probit. Dans ce cas,

la distribution a posteriori n’est pas disponible sous forme fermée, et les paramètres

du modèle doivent être marginalisés à l’aide soit d’approximations, soit d’approches

pseudo-marginales afin d’appliquer l’algorithme de Monte Carlo séquentiel. Par analo-

gie au chapitre 4, plusieurs instances de test sur données réelles sont construites et

l’échantillonneur de Monte Carlo séquentiel est comparé à l’échantillonneur automa-

tique générique (Green, 2003) qui est une méthode de Monte Carlo à châıne de Markov

transdimensionnel.

5.1. Introduction

We discuss the sequential Monte Carlo (smc) sampler developed in Chapter 2 can be

extended to Bayesian variable selection in the context of generalized linear models with

binary response. Compared to variable selection in normal linear models treated in the

preceding chapter, we face the problem that the marginal likelihood is not available in

closed-form.

Let Y denote the random quantity of interest or response and Z a d-dimensional

vector of covariates or predictors. A generalized linear model assumes that Y conditional

on Z = z has a density or mass function from the exponential family which can be

written in terms of a linear predictor and a link function µ such that

E (Y | Z = z) = µ(β0 + βᵀz),
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see McCullagh and Nelder (1989) for details. For binary response variables, the typical

model is

h(y,z) = µ(β0 + βᵀz)y[1− µ(β0 + βᵀz)]1−y (5.1)

where µ is sigmoid, log-concave and twice differentiable; important special cases are the

probit regression for µ(x) = (2π)−1/2
∫ x
−∞ exp(−y2/2)dy and the logistic regression for

µ(x) = 1/[1 + exp(−x)].

We denote by n the number of observation, by y ∈ Rn the vector of observed ex-

plained variables and by Z ∈ Rn×d the design matrix of observed explanatory variables.

We identify each regression model with a binary vector γ ∈ Bd where the predictor Zi is

in the model if and only if γi = 1. For convenience of notation, we write β̃γ = (β0,β
ᵀ
γ)ᵀ

for the vector of all regression parameters of the model indicated by γ.

5.1.1. Selection criteria

The remarks on penalized likelihood criteria made in Section 4.1.3 also apply in the

context of generalized linear models. However, unlike for linear normal models there

is no closed-form expression for the maximum likelihood estimators and maximization

has to be done numerically as described in Section 5.2.1. The convex optimization

techniques mentioned in Section 4.1.4 may also be extended to generalized linear models

with convex penalties which includes (5.1). For details, we refer to Friedman et al. (2010)

and citations therein.

5.1.2. Bayesian variable selection

In the following, we only consider Bayesian approaches to variable selection where the

selection criterion is the posterior distribution on the model space. The discussion on

the choice of prior distributions on the model space in Section 4.3 equally applies to

generalized linear models. The additional difficulty with respect to variable selection in

the context of normal linear models is the lack of conjugate priors which would allow to

obtain the marginal likelihood in closed-form. We denote the likelihood by

L(y,Z | β̃γ ,γ) :=
∏n

k=1 h(yk, zk | β̃γ ,γ),

and for suitable prior distributions on the regression parameters and the model space,

we obtain an unnormalized posterior distribution via Bayes’ Theorem

π(β̃γ ,γ | y,Z) ∝ L(y,Z | β̃γ ,γ)p(β̃γ | γ)p(γ).
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We discuss the choice of the prior on regression parameters in Section 5.2.2 but limit the

analysis to priors which yield posterior distributions that are log-concave in β̃γ given γ.

The computational challenge is to provide an estimate of

π(f | y,Z) =
∑
γ∈Bd f(γ)

∫
R|γ|+1

π(γ, β̃γ | y,Z)dβ̃γ , (5.2)

where f might be any quantity of interest. There are solution based on transdimensional

Markov chain Monte Carlo (mcmc) sampling schemes which allow to sample from the

joint distribution of the model and the regression parameters. We briefly review this

approach in Section 5.3. In order to make the smc sampler work for this kind of problem,

we may compute or approximate the marginal likelihood

L(y,Z | γ) =

∫
R|γ|+1

L(y,Z | β̃γ ,γ)p(β̃γ | γ)dβ̃γ

every time we evaluate the posterior distribution π(· | y,Z) on the model space and

proceed as in the preceding chapter on normal linear models.

5.2. Marginal likelihood

In the context of linear normal regression models, we can calculate a closed-form ex-

pression of the marginal likelihood up to a constant for a judicious choice of the prior

distributions, see Section 4.2.1. This is not possible for generalized linear models with

binary response. In order to compute the marginal likelihood

L(y,Z | γ) =

∫
L(y,Z | β̃γ ,γ)p(β̃γ)dβ̃γ

we might either resort to some approximation scheme or use a Monte Carlo estimate.

5.2.1. Maximum likelihood

We briefly review how to compute the mode of the likelihood function which is an

important ingredient of both the approximation and the Monte Carlo scheme. For

simplicity, we assume that µ is log-concave with an odd second derivative µ′′ which

ensure that the likelihood function is concave. In other words, let µ : R → [0, 1] be a

twice differentiable increasing bijection which satisfies

− [µ′(x)]2

1− µ(x)
≤ µ′′(x) ≤ [µ′(x)]2

µ(x)
, x ∈ R. (5.3)
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A sufficient condition for (5.3) is that µ′ is an even log-concave density function which

implies that µ is also log-concave and the second derivative µ′′ is odd. Popular examples

are the logistic and probit link functions.

We let y denote the vector of observations, Zγ the design matrix and let γ be the

binary vector encoding the model. For ease of notation, we define

ηk := β0 + zk,γβγ

for the linear predictor of the kth observation and let β̃γ = (β0,β
ᵀ
γ)ᵀ denote the vector

of the regression parameters including the intercept. The log-likelihood function of the

generalized linear model is

logL(y,Z | β̃γ ,γ) =
n∑
k=1

(yk log[µ(ηk)] + (1− yk) log[1− µ(ηk)]) ,

the gradient is

sγ(β̃γ) :=
∂ logL(y,Z | β̃γ ,γ)

∂β̃γ
=

n∑
k=1

(1, zk,γ)

[
yk
µ′(ηk)

µ(ηk)
− (1− yk)

µ′(ηk)

1− µ(ηk)

]
,

and the Hessian is

∂2 log logL(y,Z | β̃γ ,γ)

∂β̃γ∂β̃
ᵀ
γ

=
n∑
k=1

(1, zk,γ)ᵀ(1, zk,γ)

[
yk

[
µ′′(ηk)

µ(ηk)
− [µ′(ηk)]

2

[µ(ηk)]2

]

+ (1− yk)
[
− µ′′(ηk)

1− µ(ηk)
− [µ′(ηk)]

2

[1− µ(ηk)]2

] ]
.

The first order condition sεγ(β̃γ) = 0 is typically solved via Newton Raphson iterations

β̃(t+1)
γ = β̃(t)

γ + F−1
γ (β̃(t)

γ )sγ(β̃(t)
γ )

for some suitable starting point β̃
(0)
γ ∈ Rp where

Fγ(β̃γ) := −∂
2 logL(y,Z | β̃γ ,γ)

∂β̃γ∂β̃
ᵀ
γ

≥ 0, β̃γ ∈ R|γ|+1

denotes the observed Fisher information matrix. Note that condition (5.3) ensures that

Fγ(β̃γ) is positive semi-definite and the likelihood function therefore log-concave. This

guarantees the uniqueness but not the existence of the maximizer since the data might

suffer from complete or quasi-complete separation (Albert and Anderson, 1984) which

would cause the likelihood function to be monotonic. However, we can assure that the

likelihood function is strictly log-concave by assigning a suitable prior distribution to

the regression parameter β̃γ .
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5.2.2. Prior on the regression parameters

Firth (1993) recommends the Jeffreys prior for its bias reduction which can conveniently

be implemented via a data adjustment scheme (Kosmidis and Firth, 2009). For the sake

of simplicity, we work with a simple multivariate normal prior p = N (0, τΣγ) for a

dispersion parameter τ > 0 such that, up to a constant, the log-posterior distribution is

the log-likelihood function plus a quadratic penalty term which gives

π(β̃γ ,γ | y,Z) ∝ L(y,Z | β̃) exp

[
− 1

2τ
β̃ᵀΣ−1

γ β̃

]
.

The score and Fisher matrix under the prior are

spγ(β̃) := sγ(β̃)− τ−1Σ−1
γ β̃, F p

γ (β̃) := Fγ(β̃) + τ−1Σ−1
γ .

We should choose the dispersion parameter τ small enough to ensure numerical stability

of the maximization procedure but large enough to avoid an unnecessary shrinkage effect.

The normal prior ensures that likelihood function remains concave and maximization is

fairly straightforward; using heavy-tailed priors like student’s t distribution we would

loose this property.

5.2.3. Laplace approximation

Let L(y,Z | ·,γ) denote the likelihood with respect to the regression coefficients and let

β̃∗γ := argmaxβ̃γ∈R|γ|+1 L(y,Z | β̃γ ,γ)p(β̃γ)

be the penalized maximum-likelihood estimator under the multivariate normal prior p. A

second order Taylor expansion of log[L(y,Z | ·,γ)p] around β̃∗γ yields the approximation

log[L(y,Z | β̃γ ,γ)p(β̃γ)] ≈ logL(y,Z | β̃∗γ ,γ)− 1

2
(β̃γ − β̃∗γ)ᵀF p

γ (β̃∗γ)(β̃γ − β̃∗γ)

which allows to approximate the marginal likelihood by

L̂l(y,Z | γ) := L(y,Z | β̃∗γ ,γ)(2π)(|γ|+1)/2det[Fp
γ(β̃∗γ)]−1/2,

where the Fisher matrix under the prior F p
γ (β̃γ) is defined in the preceding section.

5.2.4. Pseudo-marginal sampler

The smc sampler is only designed to sample from distribution with support Bd, but

we might compute an unbiased Monte Carlo estimate of the marginal distribution each
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time we evaluate the posterior distribution. Since the regression parameters are a priori

assumed to be normal distributed, we can design an importance sampling (is) estimator

using the student’s t approximation

ϕtν(x) =
Γ[(ν + |γ|+ 1)/2]

Γ[ν/2](νπ)(|γ|+1)/2

∣∣∣Fp
γ(β̃∗γ)

∣∣∣1/2 [1 + 1
ν
(x− β̃∗γ)ᵀFp

γ(β̃∗γ)(x− β̃∗γ)
](ν+|γ|+1)/2

where ν ∈ N denotes the degrees of freedom, β∗γ the maximum likelihood estimator

and Fγ(β̃∗γ) the observed Fisher information under the prior p; see section 5.2.3. For a

sample v1, . . . ,vn from the instrumental distribution Tν(β̃∗γ ,F−1
γ (β̃∗γ)) we obtain the is

estimator

L̂mis (y,Z | γ) =
1

m

m∑
k=1

L(y,Z | vk,γ)p(vk)

ϕtν [vk | β̃∗γ ,F−1
γ (β̃∗γ)]

, (5.4)

which converges L̂mis (y,Z | γ)
m→∞−→ L(y,Z | γ) a.s. by virtue of the law of large numbers,

see Section 1.1.2.

Andrieu and Roberts (2009) generalize the gimh algorithm by Beaumont (2003) and

show that the mcmc estimator remains valid even if the density of the target function

in the acceptance probability of the Metropolis-Hastings kernel (1.7) is replaced by an

unbiased estimator. Chopin et al. (2011) propose an smc sampling scheme based on the

same rationale,

π̂n,msmc (f) =
n∑
k=1

wmk,τf(Xk,τ ),

where π̂n,msmc (f)
n,m→∞−→ π(f) a.s. which justifies the pseudo-marginal approach in the

context of the sampler proposed in Chapter 2.

The practical question arises, how many samples one should use for the is estimators

and how many particles for the smc sampler. It seems difficult to provide general

guidance. The number of samples necessary for the is estimator L̂mis (y,Z | γ) to provide

a certain precision depends on the model γ, and we propose to choose m such that the

effective sample size (ess) ηmis of the is estimator reaches at least some target value η∗is
at the final stage of the smc sampler.

If (%t)t∈N denotes the annealing schedule defined in Section 2.2.2, we choose the

sample size of the is estimator at time t such that the ess is at least %tη
∗
is. In other

words, the target ess of the is estimator increases during the run of the algorithm.

The rationale behind this choice is that less precision is necessary in the early stage

of the annealing smc. Numerical experiments show that using the full precision η∗is for

the whole run of the smc sampler considerably slows down the algorithm but hardly

improves the estimator.
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5.2.5. Corrected Laplace sampler

Computing an is estimator π̂(γ | y,Z) for each evaluation of the posterior distribution

is computationally quite costly. A faster alternative is to run the smc sampler with

respect to the Laplace approximation derived in Section 5.2.3 to obtain a sample

(X1, . . . ,Xn) ∼ π̂l(γ | y,Z) ∝ L̂l(y,Z | γ)p(γ).

Using the same ideas as developed in the preceding section on the pseudo-marginal

approach, we may compute an is estimator (5.4) for the marginal likelihood L̂mis (y,Z |
xk) for all k ∈ N and finally construct an is for the posterior distribution

π̂n,mis (f) :=

∑n
k=1 f(Xk)w

m
is (Xk)∑n

k=1w
m
is (Xk)

, wmis (γ) :=
L̂mis (y,Z | γ)

L̂l(y,Z | γ)
.

Naturally, this approach does not depend on the smc sampler, but the sample from

π̂l(γ | y,Z) may also come from a thinned Markov chain or other sampling schemes.

5.3. Transdimensional Markov chain Monte Carlo

5.3.1. Reversible jumps

If there is a closed-form expression for the integrated likelihood, the posterior distribution

is solely defined on a binary space and standard mcmc tools introduced in Chapter 1 are

straightforward to apply. In the case of variable selection for generalized linear models,

however, the mcmc procedure has to be defined on the joined space of the model and

the regression coefficients.

The typical way to deal with joined distributions π(θ,γ) defined on Rd+1 × Bd is

Gibbs sampling where one alternates sampling from the full conditional distributions,

that is π(θ | γ) and π(γ | θ). In the case of variable selection, however, the model γ is

completely defined by the vector of regression parameters θ = β̃γ , and the expression

π(γ | β̃γ) is therefore not meaningful. The appropriate state space for the variable

selection problem is ∪γ∈Bd(R|γ|+1 × {γ}) and mcmc methods dealing with these non-

standard spaces are referred to as transdimensional Markov chain Monte Carlo.

Green (1995) first proposes a solution called reversible jump mcmc which intro-

duces a diffeomorphism between models of different dimensions which have to verify a

dimension-matching condition to ensure detailed balance. This allows to derive the usual
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Metropolis-Hastings acceptance ratio which only involves the Jacobian of the between-

models diffeomorphism which comes from the standard change-of-variables formula. For

further details, we refer to Green (2003) who provides a constructive representation of

this idea in terms of auxiliary random variables.

The major practical problem of reversible jump mcmc is the lack of guidance on how

to construct the jump proposals and insufficient tuning is known to result in acceptance

probabilities which are prohibitively low. Brooks et al. (2003) elaborate a series of

techniques to construct jump functions and saturation schemes. Holmes and Held (2006)

propose an extension of the probit data augmentation approach by Albert and Chib

(1993) to logistic regression. The advantage of the data augmentation scheme is that γ

and βγ can be updated jointly conditional on the auxiliary variables which avoids the

problem of transdimensional moves. For a recent comparison of methods see Lamnisos

et al. (2009).

5.3.2. The automatic generic sampler

We briefly review a reversible jump mcmc scheme proposed by Green (2003) as auto-

matic generic sampler. Reversible jump type algorithms are known to need some tuning

to provide efficient kernels for a particular problem, and Green (2003) introduces the

automatic generic sampler as a generic approach which works particularly well if the

regression parameters are close to normality. In Section 5.4, we compare the automatic

generic sampler to the smc sampler combined with the pseudo-marginal technique.

The automatic generic sampler is summarized in Algorithm 11. The auxiliary kernel

q on the model space performs a swap move between two uniformly chosen components

with probability 1/3; it changes a uniformly chosen component with probability 2/3.

As before, we denote by β̃∗γ the maximum-likelihood under the prior and let C∗γ be

the Cholesky decomposition C∗γ(C∗γ)ᵀ = [Fp
γ(β̃∗γ)]−1 of the inverse Fisher matrix at the

mode. Tν denotes student’s t distribution with ν ∈ N degrees of freedom and ϕtν its

mass function.

5.4. Numerical experiments

For our numerical examples, we assume the regression parameters to be a priori inde-

pendent, that is Σγ = τI|γ| with dispersion parameter τ = n where n is the number

of observations. We use the prior distribution on the model space described in Section
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Algorithm 11: Automatic generic sampler

Input: f : Bd → R
x0 ←X0 ∼ p, u← U ∼ Tν(0, I|x0|), β̃x0 ← β̂∗x0

+ C∗x0
u

for k = 0 to n do
x′ ∼ q(· | xk), u′ ← u

if |xk| > |x′| then v ← u|x′|, u
′ ← u1:|x′|−1

if |xk| < |x′| then v ← V ∼ Tν(0, 1), u′ ← (uᵀ, v)ᵀ

β̃′ ← β̃∗
x′

+ C∗
x′

Pu′

α← π(x′, β̃′)

π(xk, β̃xk)

|C∗
x′
|

|C∗xk |
·


[ϕtν(v)]−1 if |xk| > |x′|

1 if |xk| = |x′|

ϕtν(v) if |xk| < |x′|
if α > U ∼ U[0,1] then

xk+1 ← x′, u← Pu′

else
xk+1 ← xk

end

end

return (n+ 1)−1
∑n

k=0 f(xk)

4.3.1 where the a priori expected model size d ∈ D was fixed to some reasonable value

and the maximum model size was chosen d∗ = 2d.

5.4.1. Construction of test instances

For testing, we created variable selection problems with binary response from datasets

which are freely available at the UCI Machine Learning Repository. In the following, we

briefly describe the variable selection problems composed for our numerical experiments.

Australian Credit Approval The first example comes from a credit card application,

originally treated by Quinlan (1987), where the goal is to determine the credit worthiness

from a set of predictors. The attribute names and values have been altered to protect

the confidentiality of the data. Missing values had been replaced by the modes of the

corresponding attributes. The original data set has 690 observations and 14 predictors

where we introduced additional dummy variables for the categorical factors V 4, V 5, V 6

and V 12 which yields a total of 34 covariates.

http://archive.ics.uci.edu/ml/datasets.html
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Wisconsin Prognostic Breast Cancer The second example is concerned with the prob-

lem of predicting whether a breast cancer is recurrent or not recurrent before 24 months.

In a series of publications, Wolberg et al. (1995) analyzed the data which includes only

those cases exhibiting invasive breast cancer and no evidence of distant metastases at

the time of diagnosis. The original data set has 198 observations (151 nonrecurrent and

47 recurrent) and 30 features which were computed from a digitized image of a fine

needle aspirate of a breast mass. They describe characteristics of the cell nuclei present

in the image. The mean, standard error, and “worst“ or largest (mean of the three

largest values) of these features have been computed for each image, resulting in a total

of 30 features. However, some predictors are collinear or exhibit positive correlations

beyond 0.99 which have been removed leaving a total of 29 predictors. Still, there are

considerable correlations between the covariates which provides a challenging sampling

problem.

short name explanation

time recurrence time if recurrent,

disease-free time if nonrecurrent

radius mean of distances from center

to points on the perimeter

texture standard deviation of gray-scale values

smoothness local variation in radius lengths

area area

smoothness local variation in radius lengths

compactness perimeter2 / area - 1.0

concavity severity of concave portions of the contour

concave points number of concave portions of the contour

symmetry symmetry

fractal dim “coastline approximation” - 1

tumor size diameter of the excized tumor in centimeters

lymph node number of positive axillary lymph

nodes observed at time of surgery

Musk data The third example is based on a data set aiming at classifying whether

a molecule is a muscle-specific kinase (musk) or not. Dietterich et al. (1997) use the

original data to compare several axis-parallel rectangle algorithms. The dataset describes

a set of 92 molecules of which 47 were judged by human experts to be musk and the
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remaining 45 molecules were judged to be non-musk. The 166 features which describe

the molecules depend upon the exact shape, or conformation, of the molecule. The total

number of observations is 476. As in the Wisconsin Prognostic Breast Cancer example,

some predictors are collinear or exhibit positive correlations beyond 0.99 which have

been removed leaving a total of 95 predictors. The strong correlations between the

covariates yield a challenging sampling problem.

short name explanation

df * distance features

oxy dis The distance of the oxygen atom in the molecule

to a designated point in 3-space.

oxy x X-displacement from the designatet point.

oxy y Y-displacement from the designated point.

oxy z Z-displacement from the designated point.

5.4.2. Comparison and conclusion

In this section, we provide a rough comparison between the pseudo-marginal smc from

Section 5.2.4, the corrected Laplace smc from Section 5.2.5 and the automatic generic

sampler from Section 5.3. In Section 4.5.2, we argued that for comparing completely dif-

ferent algorithms, pure computational time might not be the best criterion and preferred

to calibrate the algorithms in terms of evaluations of the target function π. In the con-

text of generalized linear models, we can hardly do the same since the automatic generic

sampler works on the joint distribution and the adapted smc samplers on the marginal

distribution of the posterior. Therefore, we calibrate the pseudo-marginal smc and the

automatic generic sampler to have approximately the same running time. The corrected

Laplace smc approach proposed in Section 5.2.5 runs with the same configuration as

the pseudo-marginal smc but is significantly faster.

We run each algorithm 50 times and each time we obtain a Monte Carlo estimate

of the marginal probabilities of inclusion of all predictors. We visualize the variation of

the estimator by box-plots that show how much the Monte Carlo estimates have varied

throughout the 50 runs (Figures 5.1 to 5.3). Here, the white boxes contain 80% of the

Monte Carlo results, while the black boxes show the extent of the 20% outliers. For

better readability, we add a colored bar up to the smallest estimate we obtained in the

test runs; otherwise components with a small variation are hard to see. The vertical line

in the white box indicates the median of the Monte Carlo estimates.
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Clearly, on grounds of our comparison we cannot state that an smc approach is

better or worse than a transdimensional mcmc algorithm, since both methods may

require a certain amount of problem-dependent tuning and good programming skills

to be efficient. However, we may conclude that the pseudo-marginal smc sampler is a

viable alternative to transdimensional mcmc and produces results of similar accuracy

for the same amount of computational time. The pseudo-marginal approach in a pure

mcmc context would certainly not work as well, since many more evaluations of the

target function were required.

Remember that the smc sampler can compute the estimates of the marginal pos-

terior in parallel and thus easily profit from parallel computing environments. Since

computation of the marginals is the computationally most intensive step, even simple

parallelization approaches lead to an enormous speed-up. We implemented a parallel

version of the sampler, but only used a single core for the numerical comparison. We

refer to the Appendix for details on the software.

We also observe that the corrected Laplace approximation of the full posterior as

proposed in Section 5.2.5 provides, from a practical point of view, a fast and rather

reliable alternative to transdimensional mcmc. This sampling scheme puts us back into

the smc framework discussed in Chapter 2, where the target distribution is available in

closed-form, but the sampler has to deal with multi-modality issues.

Figure 5.1.: Australian credit approval set. For details see Section 5.4.1. The aver-

age run time is about 16 minutes for the pseudo-marginal smc and the

automatic generic sampler.
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Figure 5.2.: Wisconsin Prognostic Breast Cancer data set. For details see Section 5.4.1.

The average run time is about 22 minutes for the pseudo-marginal smc and
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Figure 5.3.: musk detection data set. For details see Section 5.4.1. The average run

time is about 19 hours for the pseudo-marginal smc and the automatic

generic sampler.
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Resumé

L’optimisation stochastique de fonctions pseudo-booléennes est un domaine d’intérêt

majeur en recherche opérationnelle car des nombreuses problèmes combinatoires NP-

complet peuvent être formulés en termes de programmation binaire. Si la fonction ob-

jective est multimodale, les algorithmes de recherche locale ne parviennent souvent pas

à détecter l’optimum global et les méthodes particulaires peuvent donner des résultats

plus robustes. Nous détaillons comment l’échantillonneur de Monte Carlo séquentiel

peut être utilisé dans un contexte d’optimisation et comment la méthode de l’entropie

croisée par Rubinstein (1997) peut être intégré dans le cadre de l’algorithme Monte

Carlo séquentiel. Les expériences numériques montrent que les familles paramétriques

proposées dans le chapitre 3 améliorent considérablement la performance de la méthode

de l’entropie croisée. Finalement, les méthodes particulaires sont comparées aux algo-

rithmes de recherche locale.

6.1. Introduction

We apply the sequential Monte Carlo (smc) sampler developed in Chapter 2 to optimiza-

tion problems. The material has been accepted for publication in Schäfer (2012b). In

the context of combinatorial optimization, a mapping f : Bd → R is usually referred to

as a pseudo-Boolean function. This terminology stems from the definition of a Boolean

function f : Bd → B for logical calculation while the term binary function usually refers

to functions with two input variables. In this chapter, we discuss a unified approach to

stochastic optimization of pseudo-Boolean functions based on particle methods, includ-

ing the cross-entropy method and simulated annealing as special cases.

We point out the need for auxiliary sampling distributions, that is parametric fami-

lies on binary spaces, which are able to reproduce complex dependency structures, and

illustrate their usefulness in our numerical experiments. We provide numerical evidence

111
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that particle-driven optimization algorithms based on parametric families yield supe-

rior results on strongly multi-modal optimization problems while local search heuristics

outperform them on easier problems.

In the following, we discuss approaches to obtain heuristics for the pseudo-Boolean

optimization program

maximize f(x)

subject to x ∈ Bd
(6.1)

using smc techniques, and we refer to f as the objective function. Pseudo–Boolean opti-

mization is equivalent to many combinatorial problems arising, for example, in reliability

theory, design of integrated circuits, statistical mechanics, molecular conformation, op-

erations research and management science, computer aided design, traffic management

or machine scheduling. A large number of important combinatorial problems on graphs

can be be formulated as optimization of quadratic pseudo-Boolean functions, includ-

ing how to determine maximum vertex packings, maximum cliques, maximum cuts and

minimum coverings. For an excellent overview of applications of binary programming

and equivalent problems we refer to the survey paper by Boros and Hammer (2002) and

references therein.

The idea to use particle filters for global optimization is not new (Del Moral et al.,

2006, Section 2.3.1.c), but novel smc methodology introduced in Chapter 2 allows to

construct more efficient samplers for the special case of pseudo-Boolean optimization.

We particularly discuss how this methodology connects with the cross-entropy method

(Rubinstein, 1997), which is a well-established particle driven optimization algorithm

based on parametric families. The smc algorithm as developed in Chapter 2 is rather

complex compared to local search algorithms such as simulated annealing (Kirkpatrick

et al., 1983) or k-opt local search (Merz and Freisleben, 2002) which can be implemented

in a few lines. The aim of this chapter is to motivate the use of particle methods in the

context of pseudo-Boolean optimization and exemplify their usefulness on instances of

the unconstrained quadratic binary optimization problem.

We investigate the performance of the proposed parametric families in particle-driven

optimization algorithms and compare variants of the smc algorithm, the cross-entropy

method, simulated annealing and simple multiple-restart local search to analyze their

respective efficiency in the presence or absence of strong local maxima. We provide

conclusive numerical evidence that these complicated algorithms can indeed outperform

simple heuristics if the objective function has poorly connected strong local maxima.

This is not at all clear, since, in terms of computational time, multiple randomized

restarts of fast local search heuristics might very well be more efficient than compara-
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tively complex particle approaches.

6.1.1. Statistical modeling

For particle optimization, the common approach is defining a family of probability mea-

sures (π%)%≥0 associated to the optimization problem (6.1) in the sense that

π0 = UBd , lim
%→∞

π% = UMf
,

where US denotes the uniform distribution on the set S and Mf = argmaxx∈Bd f(x)

the set of maximizers. The idea behind this approach is to first sample from a simple

distribution, potentially learn about the characteristics of the associated family and

smoothly move towards distributions with more mass concentrated in the maxima. We

review two well-known techniques to explicitly construct such a family π%.

Definition 6.1.1. We call {π% : % ≥ 0} a tempered family, if it has probability mass

functions of the form

π%(γ) := ν% exp[% f(γ)], (6.2)

where ν−1
% :=

∑
γ∈Bd exp[% f(γ)].

As % increases, the modes of π% become more accentuated until, in the limit, all mass

is concentrated on the set of maximizers. The name reflects the physical interpretation

of π%(x) as the probability of a configuration x ∈ Bd for an inverse temperature % and

energy function −f . This is the sequence used in simulated annealing (Kirkpatrick et al.,

1983).

Definition 6.1.2. We call {π% : % ≥ 0} a level set family, if it has probability mass

functions of the form

π%(γ) := |L+
% |−11L+

%
(γ), (6.3)

where L+
% := {γ ∈ Bd : %[f(x∗)− f(γ)] ≤ 1} for x∗ ∈Mf .

Indeed, L+
% is the super-level set of f with respect to the level c = f(x∗) − 1/%, for

% > 0, and π%(γ) is the uniform distribution on L+
% . As % increases, the support of π%

becomes restricted to the points that have an objective value sufficiently close to the

maximum of the f . In the limit, the support is reduced to the set of global maximizers.

Figure 6.1 shows a toy instance of an objective function on a discrete state space

and two sequences associated to the optimization problem (6.1). The particle-driven

optimization algorithms are computationally more involved than local search heuristics
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Figure 6.1.: Associated sequences π%t for a toy example f : B4 → [−20, 20]. The colors

indicate the advance of the sequences from yellow to red. For simplicity,

we choose %t = t for t ∈ [[0, 16]].
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since we need to construct a sequence of distributions instead of a sequence of states.

We shall see that this effort pays off in strongly multi-modal scenarios, where even

sophisticated local search heuristics can get trapped in a subset of the state space.

6.1.2. Rare event simulation

While the tempered sequence is based on a physical intuition, the level set sequence

has an immediate interpretation as a sequence of rare events since, as % increases, the

super-level set becomes a ‘rare event’ with respect to the uniform measure. Rare event

simulation and global optimization are therefore closely related concepts and methods

for rare event estimation can often be adapted to serve as optimization algorithms.

Particle algorithms for rare event simulation include the cross-entropy method (Ru-

binstein, 1997) and the smc sampler (Johansen et al., 2006). The former uses the level

set sequence, the latter uses a logistic potential family

π%(γ) := ν% `(%[f(γ)− f(x∗)]),

where ν−1
% :=

∑
γ∈Bd `(%[f(γ) − f(x∗)]) and ` : R → (0, 1), `(x) = [1 + exp(−x)]−1

denotes the logistic function. Johansen et al. (2006) did not specifically design their

algorithm for optimization but their approach to static rare event simulation is closely

related to the particle optimization framework.
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6.2. Optimization algorithms

In this section, we briefly review some well-known heuristics for binary optimization. In

particular, we discuss how the smc algorithm introduced in Chapter 2 connects to the

cross-entropy method and simulated annealing. In Table 6.1, we provide the necessary

formulas for the tempered and the level set sequence introduced in Section 6.1.1.

Table 6.1.: Formulas of the importance function ut,α, the effective sample size ηn and

the acceptance probability λq for the tempered and the rare event sequences.

exp(%f) 1L+
%

ut,α(xk,t) eαf(xk,t) 1L+
%t+α

(xk,t)

ηn(wt,α)

[∑n
k=1 e

αf(xk,t)
]2∑n

k=1 e
2αf(xk,t)

|{xk,t | k ∈ [[1, n]]} ∩ L+
%t+α|

λqt+1(γ | xk,t) 1 ∧ eα(f(γ)−f(xk,t))

elog qt(γ)−log qt(xk,t)
1 ∧

1L+
%t+1

(γ)

elog qt(γ)−log qt(xk,t)

6.2.1. Sequential Monte Carlo

The smc algorithm proceeds as described in Chapter 2 but does not terminate when

% reaches exactly one. The iterations terminate if the particle diversity drops sharply

below some threshold δ > 0 which indicates that the mass has concentrated in a single

mode. For convenience, the optimization scheme is summarized again in Algorithm 12.

If the Markov kernel is of the Metropolis-Hastings type with proposals from a para-

metric family qθ, one might already stop if the family degenerates in the sense that only

a few components of qθ, say less than d∗ = 12, are random while the others are constant

ones or zeros. In this situation, additional moves using this parametric family are a

pointless effort. We either return the maximizer within the particle system or we solve

the subproblem of dimension d∗ by brute force enumeration. We might also perform

some final local moves in order to further explore the regions of the state space the

particles concentrated on.

For the level set sequence, the effective sample size is the fraction of the particles

which have an objective function value greater than maxγ∈Bd f(γ)− (%+α)−1, see Table
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Algorithm 12: Sequential Monte Carlo optimization

Input: f : Bd → R
for all k ∈ N sample xk ∼ UBd
repeat

α ← find step length(%,X) (Procedure 4)

w ← importance weights(α, π%,X) (Procedure 3)

% ← %+ α

θ ← fit parametric family(w,X) (see Chapter 3)

X̂ ← resample(w,X) (Procedure 5)

X ←move(κθ, X̂) (Procedure 6)

until ζn(X) < δ or qθ degenerated

return argmaxγ∈{x1,...,xn} f(γ)

6.1 and equation (6.3). The remaining particles are discarded since their weights equal

zero. Thus, the weighting and resampling steps collapse to ordering the particles xk

according to their objective values f(xk) and keeping the n(1 − β) particles with the

highest objective values. Consequently, there is no need to explicitly compute α as a

solution of (1.2).

6.2.2. Cross-entropy method

The cross-entropy method has been applied successfully to a variety of combinatorial

optimization problems, some of which are equivalent to pseudo-Boolean optimization

(Rubinstein and Kroese, 2004), and is closely related to the proposed smc framework.

Rubinstein (1997), who popularized the use of level set sequences in the context of the

cross-entropy method, refers to n(1 − β) particles with the highest objective function

values as the elite sample. Like in the smc sampler, these particles are used to fit the

next parameter of the auxiliary family.

However, the central difference between the cross-entropy method summarized in

Algorithm 13 and the smc algorithm outlined in Algorithm 12 is the use of an invariant

transition kernel in the latter. We obtain the cross-entropy method as a special case of

the smc sampler if we replace the kernel κθ by its proposal distribution qθ.

The smc annealing algorithm starts from a family of intermediate distributions

{π% : % ≥ 0} and explicitly schedules the evolution (π%t)t∈N which in turn defines the

proposal distributions (qθt)t∈N. The cross-entropy method, in contrast, defines the sub-

sequent proposal distribution

qθt+1 ≈ qθt1L+
%t+1
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without any reference sequence (πt)t∈N to balance the speed of the particle evolution.

In order to decelerate the advancement of the cross-entropy method, one might intro-

duce a lag parameter τ ∈ [0, 1) and use a convex combination of the previous parameter

θt−1 and the parameter θ̂t fit to the current particle system, setting

θt := (1− τ)θ̂t + τθt−1.

However, there are no guidelines on how to adjust the lag parameter during the run

of the algorithm. Therefore, the smc algorithm is easier to calibrate since the refer-

ence sequence (πt)t∈N controls the stride and automatically prevents the system from

overshooting.

On the upside, the cross-entropy method allows for a broader class of auxiliary dis-

tributions {qθ | θ ∈ Θ} since we do not need to evaluate qθ point-wise which is only

necessary for the computation of the Metropolis-Hastings ratio (1.7).

Algorithm 13: Cross-entropy method

Input: f : Bd → R
for all k ∈ N sample xk ∼ UBd
repeat

σ ← order such that xσ(1) ≤ · · · ≤ xσ(n)

% ← f(xσ(bβnc))

θ ← fit parametric family(xσ(bβnc), . . . , xσ(n)) (see Section 3.1)

for all k ∈ N sample xk ∼ qθ
until ζn(X) < δ or qθ degenerated

return argmaxγ∈{x1,...,xn} f(γ)

6.2.3. Simulated annealing

A well-studied approach to pseudo-Boolean optimization is simulated annealing (Kirk-

patrick et al., 1983). While the name stems from the analogy to the annealing process

in metallurgy, there is a pure statistical meaning to this setup. We can picture simu-

lated annealing as approximating the mode of a tempered sequence (6.2) using a single

particle. Since a single observation does not allow for fitting a parametric family, we

have to rely on symmetric transition kernels (1.13) in the move step.

There is a vast literature advising on how to calibrate the sequence (%t)t∈N, which in

this context is usually referred to as the cooling schedule, where a typical guideline is the
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expected acceptance rate of the Hastings kernel. One might adaptively choose (%t)t∈N

such that the empirical acceptance rate

αt−s:t := s−1
∑t

r=t−s αr

follows approximately a desired cooling schedule like c : [0, τ ]→ [0, 1], c(t) = (1+τ∆/τ)−5

where τ denotes the total running time and τ∆ the time elapsed while s ∈ N is some

reasonable lag parameter. There are variants of simulated annealing which use more

complex cooling schedules, tabu lists and multiple restarts, but we stick to this simple

version for the sake of simplicity. Algorithm 14 describes the version we use in our

numerical experiments in Section 6.4.4.

Figure 6.2.: The empirical acceptance probability is calibrated to follow c(x) = (1+x)−5

where x ∈ [0, τ ] is the progress of the simulated annealing algorithm.
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Algorithm 14: Simulated annealing optimization

Input: f : Bd → R, τ ∈ N
x ∼ UBd , x∗ ← x, t← 0, τ∆ ← 0 (time elapsed)

while t < τ do
sample γ ∼ UN1(x), u ∼ U[0,1]

if u < exp [% (f(γ)− f(x))] then x← γ

if f(x) > f(x∗) then x∗ ← x

adjust % such that αt−s:t ≈ (1 + τ∆/τ)−5

t← t+ 1
end

return x∗

6.2.4. Randomized local search

We describe a greedy local search algorithm which works on any state space that allows

for defining a neighborhood structure. A greedy local search algorithm computes the

objective value of all states in the current neighborhood and moves to the best state
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found until a local optimum is reached. The local search algorithm is called k-opt if it

searches the k-neighborhood defined in (1.9) (see e.g. Merz and Freisleben (2002) for a

discussion).

The algorithm can be randomized by repeatedly restarting the procedure from ran-

domly drawn starting points. There are more sophisticated versions of local search

algorithms exploit the properties of the objective function but even a simple local search

procedure can produce good results Alidaee et al. (2010). Algorithm 15 describes the

1-opt local search procedure we use in our numerical experiments in Section 6.4.4.

Algorithm 15: Randomized local search

Input: f : Bd → R, T ∗ ∈ R
x∗ ∼ UBd , T∆ ← 0 (time elapsed)

while T∆ < T ∗ do
x ∼ UBd
while x is not a local optimum do

x← argmaxγ∈N1(x) f(γ)

end

if f(x) > f(x∗) then x∗ ← x

end

return x∗

6.3. Application

6.3.1. Unconstrained Quadratic Binary Optimization

Proposition 3.2.3 states that any pseudo-Boolean function f : Bd → R can be written as

a multi-linear function

f(γ) =
∑

I⊆D aI
∏

i∈I γi, (6.4)

where aI ∈ R are real-valued coefficients. We say the function f is of order k if the

coefficients aI are zero for all I ⊆ D with |I| > k. While optimizing a first order

function is trivial, optimizing a non-convex second order function is already an NP-hard

problem Garey and Johnson (1979).

In the sequel, we focus on optimization of second order pseudo-Boolean functions to

exemplify the stochastic optimization schemes discussed in the preceding sections. If f

is a second order function, we rewrite program (6.1) as

maximize xᵀFx

subject to x ∈ Bd,
(6.5)
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where F ∈ Rd×d is a symmetric matrix. The program (6.5) is called an unconstrained

quadratic binary optimization (uqbo) problem; we refer to Boros et al. (2007) for a list of

applications and equivalent problems. In the literature the problem is also denominated

unconstrained quadratic Boolean or bivalent or zero-one programming (Beasley, 1998).

6.3.2. Particle optimization and meta-heuristics

Meta-heuristics are a class of algorithms that optimize a problem by improving a set of

candidate solutions without systematically enumerating the state space; typically they

deliver solutions in polynomial time while an exact solution has exponential worst case

running time. The outcome is neither guaranteed to be optimal nor deterministic since

most meta-heuristics are randomized algorithms. We briefly discuss the connection

to particle optimization against the backdrop of the unconstrained quadratic binary

optimization problem where we roughly separate them into two classes: local search

algorithms and particle-driven meta-heuristics.

Local search algorithms iteratively improve the current candidate solution through

local search heuristics and judicious exploration of the current neighborhood; examples

are local search Boros et al. (2007); Merz and Freisleben (2002), tabu search Glover et al.

(1998); Palubeckis (2004), simulated annealing Katayama and Narihisa (2001). Particle

driven meta-heuristics propagate a set of candidate solutions and improve it through

recombination and local moves of the particles; examples are genetic algorithms Merz

and Freisleben (1999), memetic algorithms Merz and Katayama (2004), scatter search

Amini et al. (1999). For comparisons of these methods we refer to Hasan et al. (2000)

or Beasley (1998).

The smc algorithm and the cross-entropy method are clearly in the latter class of

particle-driven meta-heuristics. The idea behind smc is closely related to the intuition

behind population (or swarm) optimization and genetic (or evolutionary) algorithms.

However, the mathematical framework used in smc allows for a general formulation

of the statistical properties of the particle evolution while genetic algorithms are often

problem-specific and empirically motivated.
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6.3.3. Particle optimization and exact solvers

If we can explicitly derive the multi-linear representation (6.4) of the objective function,

there are techniques to turn program (6.1) into a linear program. For the uqbo it reads

maximize f(x) = 2
d∑
i=1

i−1∑
j=1

fijxij +
d∑
i=1

fiixii

subject to x ∈ Bd(d+1)/2

xij ≤ xii

xij ≤ xjj

xij ≥ xii + xjj − 1

 for all i, j ∈ D.

(6.6)

Note that there are more parsimonious linearization strategies than this straightfor-

ward approach (Hansen and Meyer, 2009; Gueye and Michelon, 2009). The transformed

problem allows to access the tool box of linear integer programming which consist of

branch-and-bound algorithms that are combined with rounding heuristics, various relax-

ations techniques and cutting plane methods (Pardalos and Rodgers, 1990; Palubeckis,

1995).

Naturally, the question arises whether particle-driven meta-heuristics can be incor-

porated into exact solvers to improve branch-and-bound algorithms. Indeed, stochastic

meta-heuristics deliver lower bounds for maximization problems, but particle-driven al-

gorithms are computationally somewhat expensive for this purpose unless the objective

function is strongly multi-modal and other heuristics fail to provide good results; see

the discussion in Section 6.3.4.

However, the smc approach in combination with the level set sequence (6.3) might

also be useful to determine a global branching strategy, since the algorithm provides an

estimator for

γc := |L+
c |−1

∑
γ∈Bd γ 1L+

c
(γ),

which is the average of the super-level set L+
c := {x ∈ Bd : f(x) ≥ c}. These estimates

given for a sequence of levels c might provide branching strategies than are superior to

local heuristics or branching rules based on fractional solutions. A further discussion of

this topic is beyond the scope of this thesis but certainly merits consideration.

6.3.4. Construction of test problems

The meta-heuristics we want to compare do not exploit the quadratic structure of the

objective function and might therefore be applied to any binary optimization program.
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If the objective function can be written in multi-linear form like (6.5) there are efficient

local search algorithms (Boros et al., 2007; Merz and Freisleben, 2002) which exploit

special properties of the target function and easily beat particle methods in terms of

computational time.

Therefore, the use of particle methods is particularly interesting if the objective

function is expensive to compute or even a black box. The posterior distribution in

Bayesian variable selection for linear normal models treated in Chapter 4 is an example

of such an objective function. We stick to the uqbo for our numerical comparison

since problem instances of varying difficulty are easy to generate and interpret while the

results carry over to general binary optimization.

In the vast literature on uqbo, authors typically compare the performance of meta-

heuristics on a suite of randomly generated problems with certain properties. Pardalos

(1991) proposes standardized performance tests on symmetric matrices F ∈ Zd×d with

entries fij drawn from the uniform

qc(k) :=
1

2c
1[[−c,c]](k), c ∈ N.

The test suites generated by Beasley (1990, OR-library) and Glover et al. (1998) follow

this approach have been widely used as benchmark problems in the uqbo literature (see

Boros et al. (2007) for an overview). In the sequel we discuss the impact of diagonal

dominance, shifts, the density and extreme values of F on the expected difficulty of the

corresponding uqbo problem.

Diagonal

Generally, stronger diagonals in F corresponds to easier uqbo problems (Billionnet

and Sutter, 1994). Consequently, the original problem generator presented by Pardalos

(1991) is designed to draw the off-diagonal elements from a uniform on a different support

[[−q, q]] with q ∈ N.

The impact of the diagonal carries over to the statistical properties of the tempered

distributions (6.2) defined in the introductory Section 6.1.1. For the uqbo, the tem-

pered distributions are in the exponential quadratic family (3.5.1) and a strong diagonal

implies low dependencies between the components of the random binary vector. Section

3.5.1 elaborates how to approximate the exponential quadratic family by the logistic

conditionals family. One might accelerate the smc algorithm using p = q`A instead of

p = UBd as initial distribution. However, we did not exploit this option to keep the

present work more concise.

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/bqpinfo.html
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For positive definite F, the optimization problem is convex and can be solved in

polynomial time Kozlov et al. (1979); in exact optimization, this fact is exploited to

construct upper bounds for maximization problems (Poljak and Wolkowicz, 1995). In

statistical modeling, the auxiliary distribution

π(γ) :=
γᵀFγ

2d−2 (1ᵀF1 + tr (F))
,

is a feasible mass function for F > 0. Section 3.4 provides analytical expressions for all

cross-moments and marginal distributions without enumeration of the state space.

Shifts

The global optimum of the uqbo problem is more difficult to detect as we shift the

entries of the matrix F but the relative gap between the optimum and any heuristic

value diminishes. If we sample fij = f τij from a uniform on the shifted support

qc,τ (k) := U[[−c+τ,c+τ ]](k), c ∈ N, τ ∈ [[−c, c]],

we obtain a random objective function

fτ (x) = xᵀFτx
d
= xᵀ(F0 + τ11ᵀ)x = f0(x) + τ |x|2 ,

where
d
= means equality in distribution. Hence, with growing |τ | the optimum depends

less on F and the relative gap between the optimum and a solution provided by any

meta-heuristic vanishes. Boros et al. (2007) define a related criterion for τ ∈ [[−c, c]],

ρ̄ :=
1

2
+

τ + 2τc

2(τ 2 + c2 + c)
∈ [0, 1],

and report a significant impact of ρ̄ on the solution quality of their local search algorithms

which is not surprising.

Density

The difficulty of the optimization problem is related to the number of interactions, that

is the number of non-zero elements of F. We call the proportion of non-zeros the density

of F. Drawing fij from the mixture

qc,ω(k) = ω U[[−c,c]](k) + (1− ω)δ0(k), c ∈ N, ω ∈ (0, 1]

we adjust the difficulty of the problem to a given expected density ω.
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Note that not all algorithms are equally sensitive to the density of F. Using the

basic linearization (6.6), each non-zero off-diagonal element requires the introduction of

an auxiliary variable and three constraints. Thus, the expected total number of variables

and the expected total number of constraints, which largely determine the complexity

of the optimization problem, are proportional to the density ω.

On the other hand, many randomized approaches, including the smc sampler de-

veloped in Chapter 2, are less sensitive to the density of the problem in the sense that

replacing zero elements by small values has a minor impact on the performance of these

algorithms. Rather than the zero/non-zero duality, we suggest that the presence of

extreme values determines the difficulty of providing heuristic solutions.

Extreme values

The uniform sampling approach advocated by Pardalos (1991) is widely used in the

literature for comparing meta-heuristics. Certainly, particle-driven methods are com-

putationally too expensive to outperform local search heuristics on test problems with

uniformly drawn entries; Beasley (1998) confirms this intuition with respect to genetic

algorithms versus tabu search and simulated annealing. However, the uniform distribu-

tion does not produce extreme values and it is vital to keep in mind that these have an

enormous impact on the performance of local search algorithms.

Extreme values in F lead to the existence of distinct local maxima x∗ ∈ Bd of f in the

sense that there is no better candidate solution than x∗ in the neighborhood Hk(x
∗) even

for relatively large k. Further, extreme local minima might completely prevent a local

search heuristic from traversing the state space in certain directions. Consequently, local

search algorithms, as reviewed in Section 6.3.2, depend more heavily on their starting

value, and their performance deteriorates with respect to particle-driven algorithms.

We propose to draw the matrix entries fij from a discretized Cauchy distribution

Cc(k) ∝ (1 + (k/c)2)−1, c ∈ N (6.7)

that has heavy tails which cause extreme values to be frequently sampled. Figure 6.3

shows the distribution of a Cauchy and a uniform to illustrate the difference. The

resulting uqbo problems have quite distinct local maxima; in that case we also say that

the function f(x) is strongly multi-modal.
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Figure 6.3.: Histograms of a Cauchy C5 and a uniform U10 distribution.
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6.4. Numerical experiments

In this section, we provide numerical comparisons of algorithms and parametric families

based on instances of the uqbo problem.

6.4.1. Toy example

We briefly discuss a toy example to illustrate the usefulness of the parametric families.

For the quadratic function

f(x) = xᵀFx, F :=


1 2 1 0

2 1 −3 −2

1 −3 1 2

0 −2 2 −2

 , (6.8)

the associated probability mass function π(γ) ∝ exp(γᵀFγ) has a correlation matrix

R ≈


1 0.127 −0.106 −0.101

0.127 1 −0.941 −0.866

−0.106 −0.941 1 0.84

−0.101 −0.866 0.84 1

 ,

which indicates that this distribution has considerable dependencies and its mass func-

tion is therefore strongly multi-modal. We generate pseudo-random data from π, adjust

the parametric families to the data and plot the mass functions of the fitted parametric

families.

Figure 6.4 shows how the three parametric families cope with reproducing the true

mass function. Clearly, the product family is not close enough to the true mass function

to yield a suitable instrumental distribution while the logistic conditional family almost

copies the characteristics of π and the Gaussian copula family allows for an intermediate

goodness of fit.
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Figure 6.4.: Toy example showing how well the parametric families replicate the mass

function of the distribution π(γ) ∝ exp(γᵀFγ) as defined in (6.8).
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(a) True mass function π(γ)
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(b) Product family qm(γ)
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(c) Logistic conditionals family qA(γ)
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(d) Gaussian copula family qa,Σ(γ)

6.4.2. Random test instances

We generated two random test suites of dimension d = 250, each having 10 instances. For

the first suite, we sampled the matrix entries uniformly on [[−100, 100]] that is from the

distribution U100 := U[[−100,100]]; for the second, we sampled from a Cauchy distribution

C100 as defined in (6.7). For performance evaluation, we run a specified algorithm 100

times on the same problem and denote the outcome by x1, . . . ,x100.

Since the absolute values are not meaningful, we report the relative ratios

%k :=
f(xk)− worst solution found

best known solution− worst solution found
∈ [0, 1],

where the best known solution is the highest objective value ever found for that instance

and the worst solution is the lowest objective value among the 100 outcomes. We

summarize the results in a histogram. The first n bins are singletons bk := {%∗k} for the

highest values %∗1 > · · · > %∗n ∈ {%k : k ∈ [[1, 100]]}; the following n bins are equidistant

intervals b<k := [n−k
n
%∗n,

n−k+1
n

%∗n). The graphs show the bins b1, . . . , bn, b
<
1 , . . . , b

<
n in

descending order from left to right on the x-axis. The interval bins are marked with a

sign “<” and the lower bound. The y-axis represents the counts.

For comparison, we draw the outcome of several algorithms into the same histogram,

where the worst solution found is the lowest overall objective value among the outcomes.
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For each algorithm, the counts are depicted in a different color and, for better readability,

with diagonal stripes in a different angle. To put it plainly, an algorithm performs well

if its boxes are on the left of the graph since this implies that the outcomes where often

close to the best known solution.

6.4.3. Comparison of binary parametric families

We study how the choice of the binary parametric family affects the quality of the

delivered solutions. The focus is on the cross-entropy method, since we cannot easily

use the Gaussian copula family in the context of smc. For the experiments, we use

n = 1.2× 104 particles, set the speed parameter to β = 0.8 (or the elite fraction to 0.2)

and the lag parameter to τ = 0.5.

The numerical comparisons, given in Figures 6.6(b) and 6.6(a), clearly suggest that

using more advanced binary parametric families allows the cross-entropy method to

detect local maxima that are superior to those detected using the product family. Hence,

the numerical experiments confirm the intuition of our toy example in Figure 6.4.

On the strongly multi-modal instance 6.6(a) the numerical evidence for this conjec-

ture is stunningly clear-cut; on the weakly multi-modal problem 6.6(b) its validity is still

unquestionable. This result seems natural since reproducing the dependencies induced

by the objective function is more relevant in the former case than in the latter.

6.4.4. Comparison of optimization algorithms

We compare an smc sampler with parametric family, an smc sampler with single-flip

symmetric kernel (1.13), the cross-entropy method, simulated annealing and 1-opt local

search as described in Section 6.2.

For the cross entropy method, we use the same parameters as in the preceding section.

For the smc algorithm, we use n = 0.8 × 104 particles and set the speed parameter to

β = 0.9; we target a tempered auxiliary sequence (6.2). For both algorithms we use

the logistic conditionals family as sampling distribution. With these configurations, the

algorithms converge in roughly 25 minutes. We calibrate the smc sampler with local

moves to have the same average run time by processing batches of 10 local moves before

checking the particle diversity criterion. The simulated annealing and 1-opt local search

algorithms run for exactly 25 minutes.

The results shown in Figures 6.7(b) and 6.7(a) assert the intuition that particle

methods perform significantly better on strongly multi-modal problems. However, on
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Figure 6.5.: The cross-entropy method using different binary parametric families.
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the easy test problems, the particle methods tend to persistently converge to the same

sub-optimal local modes. This effect is probably due to their poor local exploration

properties.

Since particle methods perform significantly less evaluations of the objective function,

they are less likely to discover the highest peak in a region of rather flat local modes.

The use of parametric families aggravates this effect, and it seems advisable to alternate

global and local moves to make a particle algorithm more robust against this kind of

behavior. Further numerical results are shown in Figure 6.7 and Figure 6.8.
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Figure 6.6.: Comparison of stochastic optimization algorithms on two uqbo problems.
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6.5. Discussion and conclusion

The numerical experiments carried out on different parametric families revealed that the

use of the advanced families proposed in this paper significantly improves the perfor-

mance of the particle algorithms, especially on the strongly multi-modal problems. The

experiments demonstrate that local search algorithms, like simulated annealing and ran-

domized 1-opt local search, indeed outperform particle methods on weakly multi-modal

problems but deliver inferior results on strongly multi-modal problems.

Using tabu lists, adaptive restarts and rounding heuristics, we can certainly design

local search algorithms that perform better than simulated annealing and 1-opt local

search. Still, the structural problem of strong multi-modality persists for path-based

algorithms. On the other hand, cleverly designed local search heuristics will clearly beat
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Figure 6.7.: Comparison of stochastic optimization algorithms. 10 problems with ob-

jective function f(x) = xᵀFx and fij ∼ C100 for i, j ∈ [[1, 250]]
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Figure 6.8.: Comparison of stochastic optimization algorithms. 10 problems with ob-

jective function f(x) = xᵀFx and fij ∼ U100 for i, j ∈ [[1, 250]]
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smc methods on easy to moderately difficult problems.

The results encourage the use of particle methods if the objective function is known

to be potentially multi-modal and hard to analyze analytically. We have to keep in

mind that multiple restarts of rather simple local search heuristics can be very efficient

if they make use of the structure of the objective function. For 25 minutes of randomized

restarts, the heuristic proposed by Boros et al. (2007), which exploits the fact that the

partial derivatives of a multi-linear function are constant, practically always returns the

best known solution on all test problems treated to create Figures 6.7 and 6.8.



7. Conclusion and outlook

Resumé

La conclusion de cette thèse présente quelques remarques finales concernant les algo-

rithmes particulaires sur les espaces d’états binaires et des perspectives de recherche pour

intégrer les familles paramétriques dans d’autres applications.

7.1. The independence sampler

The core work of this thesis is the thorough review of parametric families as a building

block of adaptive Monte Carlo algorithms on binary sampling spaces. The sequential

Monte Carlo (smc) sampler with independent proposals based on these families has been

shown to be rather robust when sampling from challenging multi-modal distributions of

interest in the context of different applications. Admittedly, the implementation of the

smc sampler is rather involved compared to most Markov chain Monte Carlo (mcmc)

methods, and this kind of methodology might be unnecessary on fairly easy sampling

problems. Still, the smc sampling scheme is very reliable, easy to tune and perfectly

parallelizable.

The most important insight to be gained from this work is that a Metropolis-Hastings

independence sampler with proposals drawn from an adaptive logistic conditionals family

has excellent mixing properties and scales astonishingly well even to high dimensions.

The “curse of dimensionality” which typically impedes the use of independent proposals

does not seem to apply to binary spaces where we may construct parametric families to

approximate even high-dimensional distributions of interest reasonably well.

The central problem is how to learn about the target distribution to be able to

fit the parametric family. In this thesis we have proposed an annealing schedule in

combination with an smc sampler. However, there are other techniques coming from the

tool box of adaptive Markov chain Monte Carlo (amcmc) on binary spaces which may
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also incorporate the Metropolis-Hastings independence sampler proposed in this thesis.

This is particularly interesting since independent proposals allow for parallelization of

the mcmc sampling scheme, see Section 7.3.

7.2. Scaling to higher dimensions

For testing, we also treated variable selection problems from association studies in plant

genetics by courtesy of Willem Kruijer (Biometris Plant Sciences Group at Wageningen

University) with 2000 predictors on a 64-cpu cluster using a parallelized version of

the smc sampler. The results were as reliable as for the test problem in Section 4.5

with about 100 predictors. These test runs are part of a comparison study for variable

selection problems in the context of plant breeding which is on-going research. The

results are still premature and therefore not included in this thesis.

The lesson to be learned from high-dimensional problems with more than 1000 pre-

dictors is that we do not need to work with an exponential number of particles just

because the state space grows exponentially. In high dimensions, the reliability of the

smc sampling scheme can hardly be improved by using more particles but mostly de-

pends on the number of resample-move steps we perform to stabilize the particle system.

The central goal is to ensure that the particle system does not loose track of the inter-

mediate distributions. This is obviously more difficult to achieve as the dimension of the

sampling space increases and we need to choose the speed parameter η∗ introduced in

equation (2.5) higher in order to follow the evolution of the intermediate distributions

more closely. Generally, in high dimensions, the smc estimator (2.1) is usually more

efficient for the same amount of computational time if we use fewer particles but allow

for more intermediate steps. This observation holds true for both Bayesian variable

selection and pseudo-Boolean optimization.

7.3. Parallel computing

From a practical point of view, the possibility to parallelize the smc sampler is even

more interesting than its robustness against multi-modality when it comes to treat high-

dimensional problems. Most researchers who process variable selection problems in

applied fields have multi-core desktop computers, access to some kind of cluster or to

a cloud computing service but there are few options to fully take advantage of these

environments. The prototype implementation of the smc sampler used for the numerical
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studies in this thesis has shown the potential of our approach. Further improvements

and better implementations of the smc algorithm may shift the interest of practitioners

towards particle methods for Bayesian variable selection.

The smc sampler has the structural advantage that it may profit from as many cores

as there are available in the computing environment. This is not true for random walk

mcmc approaches. For example, parallel tempering algorithms obviously benefit from

parallel computing, but there is a limit to the number of parallel chains which are useful

to improve the mixing of the reference chain. If we have 8 cpus we may run 8 parallel

chains; if we have 256 cpus available, we might still run 8 parallel chains if a finer

temperature ladder does not improve the algorithm. However, in a pure amcmc setup,

the Metropolis-Hastings independence sampler based on the logistic conditionals family

allows to fully benefit from parallel computing environments, since sampling proposals

and evaluating the posterior mass function may be parallelized and sampling from the

chain boils down to the Metropolis-Hastings acceptance step.





Software

The numerical work in thesis was completely done in Python 2.6 using the SciPy package

for scientific programming by Jones et al. (2001). Performance critical code was moved

into C extensions written in Cython 0.14.1, a language which allows to tune Python

code into plain C performance by adding static type declarations (Behnel et al., 2011).

All graphs were generated using the R scripting language for statistical computing. The

simulations were run on a 64 cpu cluster with 1.86 GHz processors.

The software and the variable selection problems processed in this thesis are made

available along with some documentation at

http://code.google.com/p/smcdss.

The sequential Monte Carlo (smc) and Markov chain Monte Carlo (mcmc) samplers

for Bayesian variable selection are configured using an INI-file and may be run in a

shell. There is support for automatic parallel computing on multiple cpus based on the

Parallel Python package by Vitalii Vanovschi.

For more convenient and self-explanatory use, we provide a simple graphical user

interface written using the portable Tkinter module. The gui allows to edit and organize

the configuration files, monitor the performance of the samplers, create graphs in pdf

format (calling R) and launch multiple external threads of the samplers.
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Glossary

Notation Description

x ∈ Xd vector of dimension d.

xM ∈ X|M | sub-vector indexed by M ⊆ D.

xi:j ∈ Xj−i sub-vector indexed by {i, . . . , j} ⊆ D.

x−i ∈ Xd−1 sub-vector xD\{i}.

‖x‖∞ maxi∈D |x|i.
|x|

∑d
i=1 |xi|.

‖π‖tv
1
2

∑
γ∈Bd |π(γ)|.

f ∝ g f = cg for some constant c > 0.

x ∨ y Maximum. x ∨ y = max{x, y}.
x ∧ y Minimum. x ∧ y = min{x, y}.

A = (aij) Matrix A.

Aᵀ Transpose of matrix A.

A−1 Inverse of matrix A.

|A| Determinant of A.

diag[a] Diagonal matrix with main diagonal a.

|x| Absolute value of x.

1M(x) Indicator function of set M .

|M | Number of elements in the countable set M .

P(M) Power set {S ⊆M}.
B(M) Borel σ-field {S ⊆M | S is a Borel set}.
supp(f) Support {f(x) 6= 0 | x ∈ X}.

B Binary space {0, 1}.
N Set of natural numbers.

Z Set of integer numbers.

R Set of real numbers.

[[a, b]] {x ∈ Z | a ≤ x ≤ b} for a, b ∈ Z with b ≥ a.

[a, b) {x ∈ R | a ≤ x < b} for a, b ∈ R with b ≥ a.
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Notation Description

D Index set [[1, d]].

N Index set [[1, n]].



Acronyms

Notation Description

aic Akaike information criterion.

amcmc Adaptive Markov chain Monte Carlo.

bic Bayesian information criterion.

ce Cross-entropy.

ess Effective sample size.

iid Independent and indentically distributed.

is Importance sampling.

map Maximum-a-posteriori.

mcmc Markov chain Monte Carlo.

musk Muscle-specific kinase.

smc Sequential Monte Carlo.

tv Total variation.

uqbo Unconstrained quadratic binary optimization.
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