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Résumé de thése

La thése propose des nouvelles techniques pour la classification et le démelange spectral
des images obtenus par télédétection iperspectrale. Les problémes liées au données (notam-
ment trés grande dimensionalité, présence de mélanges des pixels) ont été considerés et des
techniques innovantes pour résoudre ces problémes. Nouvelles méthodes de classification
avancées basées sur l'utilisation des méthodes traditionnel de réduction des dimension et
I'integration de l'information spatiale ont été développés. De plus, les méthodes de déme-
lange spectral ont été utilisés conjointement pour ameliorer la classification obtenu avec les
méthodes traditionnel, donnant la possibilité d’obtenir aussi une amélioration de la résolution
spatial des maps de classification grace a l'utilisation de 'information & niveau sous-pixel.
Les travaux ont suivi une progression logique, avec les étapes suivantes:

1. Constat de base: pour améliorer la classification d’imagerie hyperspectrale, il faut
considérer les problémes lices au données : trés grande dimensionalité, presence de
mélanges des pixels.

2. Peut-on développer méthodes de classification avancées basées sur 'utilisation des méth-
odes traditionnel de réduction des dimension (ICA ou autre)?

3. Comment utiliser les different types d’information contextuel typique des imagés satel-
litaires ?

4. Peut-on utiliser 'information données par les méthodes de démelange spectral pour
proposer nouvelles chaines de réduction des dimension?

5. Est-ce qu’on peut utiliser conjointement les méthodes de démelange spectral pour ame-
liorer la classification obtenu avec les méthodes traditionnel?

6. Peut-on obtenir une amélioration de la résolution spatial des maps de classification
grace a l'utilisation de U'information a niveau sous-pixel?

Les différents méthodes proposées ont été testées sur plusieurs jeux de données réelles, mon-
trant resultats comparable ou meilleurs de la plus part des methodes presentés dans la litter-
ature.
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Introduction 17

The work presented in this thesis deals with the classification of hyperspectral remote
sensing images. The main objective of the thesis is to propose advanced techniques able to
exploit the different kinds of information contained in a hyperspectral image, in order to
improve the classification of a scene, both from a quantitative point of view, by increasing
the performances provided by recently proposed techniques, and qualitative point of view,
obtaining thematic land cover maps at a finer resolution with respect to the analyzed scene.
Earth observation optical remote sensing involves the acquisition of information about the
surface of our planet without coming into physical contact with it. This is achieved trough
airborne and satellite sensors exploiting the properties of the observed materials, which ab-
sorb, reflect and emit electromagnetic radiation according to their intrinsic structure. The
main information which can be gathered from a remote scene can be divided into three types:

e Spectral information
e Spatial information
e Temporal information.

In case of image classification, that is the creation of thematic maps representing the land
coverage of the observed scene, the most important information is represented by spectral and
spatial data, while the temporal information is mainly used when change detection between
different acquisitions of the same area must be performed.

Recent advances in imaging spectroscopy, motivated by a desire to extract increasingly de-
tailed information about the material properties of pixels in a scene, made possible the devel-
opment of advanced sensors which can collect a detailed spectral signature of a scene covering
a wide range of wavelengths [1]. Hyperspectral sensors can simultaneously collect more than
a hundred spectral bands of an area with a very detailed spectral resolution (typically in
the order of few nanometers), and varying spatial resolution. A hyperspectral image can be
viewed as an image cube where the third dimension is the spectral domain represented by
hundreds of narrow, contiguous spectral bands corresponding to the spectral reflectance |2].
The wealth of information that resides in the spectral domain provides significant enhance-
ments relative to traditional panchromatic and multispectral imagery. The ability of imaging
sensors to acquire the reflectance spectrum of a pixel in a significant detail, leads to substan-
tial differences in the reflectance values of the pixels belonging to disparate materials on the
Earth’s surface. For example, there is the potential to classify scene elements with subtle
material differences as well as detect low contrast targets in complex background clutter [3].
However, when considering hyperspectral images for supervised classification, several draw-
backs should also be taken into account. The first and most important limitation, which limits
the possibility to apply traditional techniques used for the classification of other data types
is the so-called curse of dimensionality [4]. The analysis of the huge amount of information
contained in hyperspectral images poses some problems both from a theoretical and practical
point of view. From the theoretical viewpoint, there is the appearance of the Hughes’ phe-
nomenon: Given a certain number of training samples and a traditional supervised classifier,
if the number of spectral dimensions of the image are increased over a certain threshold, the
classification accuracy will inevitably decrease [4]. From the practical viewpoint, the analysis
of this huge amount of information requires a tremendous computational effort.

The second major drawback of hyperspectral images is the trade-off between spectral and
spatial resolution, which lead, in the case of satellite sensors, to a spatial resolution of tens
of meters [5]. The energy field arising from the Earth is, of course, finite in magnitude. The
data collection process must divide this finite quantity spatially into pixels. The power level
in each pixel can be divided up into a number of spectral bands. Given the finite nature of
the field, there is then a trade-off between these two, because as one moves to finer spatial
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resolution and spectral band intervals, less power is left to overcome the internal noise of the
sensor system. Thus a less precise measure can be made of the signal level arriving from the
surface. In the case of supervised classification, the low spatial resolution can lead to the
appearance of mixed pixels, which are pixels of the images occupied by more than a single
land cover class. These pixels cannot be classified without neglecting a (likely to be) impor-
tant part of the information provided by the spectral signature. The problem is still more
important since the new generation of satellite carrying hyperspectral sensors (like EnMap
and PRISMA) have a spatial resolution of about 30 m, making this problem an important
issue to analyze in order to provide efficient methods for the classification of acquired images.

The traditional approach to hyperspectral remote sensing classification was presented
in [2], and can be summed up as the application of feature selection / extraction technique,
in order to decrease the dimensionality if the data considering only informative features,
that will be used as input for the supervised classifier. Several dimensionality reduction
techniques were proposed over the last years, both supervised and unsupervised. The su-
pervised techniques use the information provided by the ground truth training samples to
estimate the most suitable features to separate the classes, while unsupervised do not rely
on such information. Standard unsupervised techniques are Principal Component Analysis
(PCA), Independent Component Analysis (ICA) [6]; supervised ones include Discriminant
Analysis Feature Extraction (DAFE), Decision Boundary Feature Extraction (DBFE), and
Non-parametric Weighted Feature Extraction (NWFE) |7,8|. It is preferable to use super-
vised transformations because the projection into the subspace minimizes a classification
error criterion. However, the performance of such methods is closely related to the quality
of the reference or training set. Consequently, unsupervised methods are of interest, but
since the minimization criterion is not related to the classification error, the projection is not
optimal for the purpose of classification. However, the aim of feature-reduction algorithms
is not necessarily classification, but also representation. Since PCA considers only second
order statistics, it may neglect important information which is not significant in terms of
variance. Some variations of the PCA algorithm were more recently proposed to overcome
such problems [9-12], but the analysis of methods exploiting higher order statistics could be
an interesting alternative.

A possible modification of this framework is the inclusion of contextual spatial information:
the algorithm considered for classification takes into account not only the spectral informa-
tion of the pixel, but also the spatial context in which the pixels is comprised. Markov
Random Fields (MRFs) are usually used within a statistical framework [13]. A survey of the
current techniques for the analysis of remotely-sensed data can be found in [14]. The use of
contextual information can be very useful, especially in case of high spatial resolution remote
sensing data. For hyperspectral imaging, high spatial resolutions are usually provided by air-
borne sensors, as the ROSIS sensor. High spatial resolution data contain a lot of contextual
information: for a given pixel we can extract the size, shape, and gray level distribution of
the structure to which it belongs [15]. This information will not be the same if the pixel
belongs to a roof or to a green area. This is also a way to discriminate various structures
made of the same materials. If spectral information alone is used, the roofs of a private house
and of a larger building will be different.

Feature reduction techniques and the investigation of contextual information has recently
been exhaustively investigated. However, the large number of works recently presented show
that there is still room for a significant improvement in these fields. In particular, the study
of dimensionality reduction techniques able to provide data related to the physical nature of
the data is a very important topic.

Moreover, recent advances in mathematical morphology applied to remote sensing data open
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new possibility for incorporating contextual information within the supervised classification
framework [15].

An important issue related to hyperspectral imaging is the low spatial resolution [5].
While the curse of dimensionality and the use of contextual information have been exten-
sively studied in the last years, the problems related to mixtures of classes have only been
little touched in the literature concerning supervised classification. However, widely used
data sets that can be considered as benchmarks in the remote sensing community, like the
AVIRIS Indian Pines data set, are known to be dominated by mixtures of classes rather than
pure pixels representing a single land cover type. A large number of mixed pixel techniques,
providing information about a scene at a sub-pixel level, were proposed in the literature. The
aim of such techniques is to provide a series of maps of abundance about the different land
cover classes. The possibility to incorporate these techniques into a supervised classification
framework remains however an almost unexplored topic. Previous efforts in this direction
were presented in [16,17], and show the interest of using jointly full pixel and mixed pixel
techniques for classification purposes, but an exhaustive investigation of the beneficial effect
provided by this additional source of information is required.

In summary, hyperspectral data can be seen as a very important instrument to obtain
accurate land cover maps, thanks to the great amount of spectral information which is helpful
for distinguishing very similar classes. However, in order to properly exploit all the different
types of information contained in such data, several challenges should be taken into account:

e The use of feature reduction techniques to avoid problems related to the unfavorable
ratio between number of training samples and dimensionality of the data.

e The possibility to include proper contextual information to improve the classification
results, in terms of accuracy.

e The exploitation of sub-pixel information, which can be helpful in case of low spatial
resolution and mixtures of classes, as is often the case with this kind of data.

In this thesis, advanced methodologies for the analysis and classification of hyperspectral
remote sensing data are proposed. Satellite images contain different sources of information:
The large number of spectral bands provides a detailed spectral description of each pixel
acquired by the sensor; the spatial structures observed in a scene make it possible to exploit
contextual information highly suitable for improving the accuracy of thematic maps. More-
over, sub-pixel information obtained by performing spectral unmixing is another important
source of data which can be helpful for accurate classification of pixels, especially in case of
moderate resolution sensors. The different experiments carried out in this work try to make
a complete analysis of the possibility to incorporate all these different types of information
within the classification process.

Particular attention is paid to the possibility of exploiting sub-pixel information for improv-
ing the quality of classification maps, due to the little investigation done in the literature
about on topic. An important point of this work, is the attempt to obtain results which
could be as general as possible, thus not being scenario-dependent. In order to achieve such
a result, a large number of hyperspectral data sets are analyzed, provided by four different
sensors (three airborne sensors and one satellite sensor), covering urban areas, agricultural
zones, geological scenarios. A total of eight different hyperspectral scenes were analyzed in
the different experiments, in order to assess the effectiveness of the approaches proposed.
The work is divided into three main parts and seven chapters:

I) The first part of the thesis is devoted to the investigation of classical feature reduction
- extraction techniques for the improvement of the classification accuracy. Particular
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attention is paid to the use of Independent Component Analysis (ICA), due to its
attractive properties. This part is divided into three chapters.

1. A general introduction of spectral feature reduction and spatial feature extraction
is given in Chapter 1. The reasons for making these approaches suitable for remote
sensing images are explained. Independent Components Analysis is described in
detail as a technique which could be possibly used as an alternative to PCA. The
objective is to reduce the dimension of the data without any ground truth for
classification, using conventional classifiers that are adversely affected by dimen-
sionality. The use of Morphological Profiles is also introduced, as a possibility to
extract spatial information techniques from the image with a sensor-independent
approach.

2. Independent Component Discriminant Analysis (ICDA) is presented in Chapter 2
as a classifier suited to the problem of classification of remote-sensing data. This
approach exploits the characteristics of ICA, which allows to obtain independent
components estimated from the spectral feature of a hyperspectral data set, to
obtain a state of the art Bayes classifier. The approach is tested by using four
hyperspectral data sets and the results are compared with those obtained by the
SVM, one of the most widely used approaches for remote sensing classification.
The comparison shows the comparative effectiveness of the proposed approach.

3. The use of spatial information to better describe structures in a urban environment
is investigated in Chapter 3. The possibility to exploit several types of Morpholog-
ical Attribute Profiles in combination with the use of ICA is investigated, and two
different types of multi-attribute classifiers are proposed. These classifiers provide
a fusion of the data and of the classifier output to improve the overall classification
accuracy. The proposed approach was tested on two very high resolution images,
acquired over a urban environment.

IT) The second part of this work investigates the use of sub-pixel information to provide
a better description of the hyperspectral scene containing mixed pixels. The use of
sub-pixel information is particularly useful when images containing mixed pixels, since
these images are hard to be represented with traditional techniques. Two chapters
compose this part:

4. When analyzing a moderate resolution image (for example, images obtained with
the AVIRIS satellite sensor, which has a 20 m/pixel resolution), several mixture of
classes can be found in the data. Techniques based on spectral unmixing, which
could provide information at a sub-pixel level, are likely to better represent this
kind of images, with respect to traditional techniques. Chapter 4 presents a num-
ber of dimensionality reduction chains based on the use of endmember extraction
algorithms combined with spectral unmixing techniques. The results obtained are
compared with those provided by traditional techniques such as PCA, ICA and
MNF.

5. When performing dimensionality reduction of hyperspectral images before clas-
sification, the main differences in terms of accuracy are provided by the type of
algorithm and by the number of features retained. This chapter aims at investigat-
ing these issues. A comparison of the main feature reduction techniques proposed
in the literature; both unsupervised and supervised, is proposed, and the influence
of the most suitable number of dimensions to retain is investigated.

ITT) The last part of this thesis explores the possibility to use sub-pixel information in order
to obtain a representation of the thematic maps which can be more precise in case of
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moderate spatial resolution. The traditional classification maps obtained by analyzing
hyperspectral data are not suitable when mixtures of classes can be found in the image.
If a pixel is jointly occupied by more than a single land cover class, it can not be
represented by a single label without loss of information. The issue is addressed in the
last two chapters, and a suitable alternative is proposed in order to obtain thematic
maps at a finer spatial scale.

6. A new technique is proposed in Chapter 6 to handle the problem of mixed pixels.
After retrieving pure spectral components by mean of endmember extraction or
unsupervised clustering methods, spectral unmixing is used to obtain the fractional
abundance of each land cover class. In order to obtain an improvement of the
spatial resolution of the thematic maps, the results are first upsampled and filled
with the results of the first step, and then a spatial regularization is applied to
correctly locate sub-pixels within the original pixel. The experimental results show
the interest of the proposed method from a qualitative and quantitative point of
view.

7. Chapter 7 shows a way to incorporate the super-resolution method proposed in
the previous chapter into a supervised classification framework. The base classifier
considered in this work is a probabilistic SVM. The assumption done is that the
pixel classified with a highest probability can be considered as pure pixels, while
the others are handled in a second step. The framework proposed in Chapter
6 is introduced at this point, by using an adaptive technique to compute, for
each pixel, the possible "endmember candidates" representing the classes which
could be contained within the pixel. Results show the possibility to jointly use
supervised classification and spectral unmixing in a single framework in order to
improve the classification accuracy of thematic maps.

The Appendices at the end of the manuscript present the data set analyzed in the work
and the indexes of performance considered for evaluating the validity of the proposed method-
ologies.

In summary, the main contribution of the thesis are:

e The investigation of advanced methods making use of both spectral and spatial informa-
tion, showing results in terms of accuracy comparable or better than the state-of-the-art
approaches proposed in the literature.

e The investigation of innovative feature reduction techniques based on spectral unmixing
concepts, to incorporate information about the (possibly) mixed nature of the training
samples and of the whole data set.

e The proposition of a new method allowing to obtain classification maps at a finer
spatial resolution, in a totally unsupervised way, to mitigate the problem of low spatial
resolution and presence of mixed pixels into the data set.

e The exploitation of sub-pixel information in supervised classification framework to im-
prove thematic maps from a qualitative and a quantitative viewpoint.
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Chapter 1

Feature Reduction - Extraction

Abstract

This chapter provides a theoretical introduction to the feature reduction/extraction techniques
which will be used in the first part of the thesis. Firstly, two spectral based techniques for fea-
ture reduction are presented, Principal Component Analysis (PCA) and Independent Compo-
nent Analysis (ICA). Theoretical differences are highlighted, and advantages provided by ICA,
which will allow one to integrate such a technique into advanced classification approaches, are
described. In the second part of the chapter, the details of two well known spatial based
techniques, usually considered for feature extraction, are depicted. Traditional mathematical
morphology approaches are compared to the use of attribute filters, which allow a better de-

scription of the image avoiding issues related to the image distortion.
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1.1 Introduction

Hyperspectral images are composed of hundreds of bands with a very high spectral resolu-
tion, from the visible to the infra-red region. The wide spectral range, coupled with an always
increasing spatial resolution, allows to better characterize materials and gives the ability to
pinpoint ground objects laying on the observed surface and to distinguish between spectrally
close ground classes, making hyperspectral imagery suitable for land cover classification [18].

The huge quantity of information and the high spectral resolution of hyperspectral images
give the possibility to solve problems which usually cannot be solved by multispectral images.
In classification of hyperspectral images, the higher dimensionality of the data increases the
capability to detect and distinguish various classes with improved accuracy. However, this
characteristic poses several significant issues, which need to be considered in the classification
process for this kind of images. For example, from a theoretical point of view, data have
a tendency to assume a super-Gaussian distribution and concentrate on the tails of the
distribution, and the assumption of normal distribution does not stand any longer. At the
same time, the quantity of data is very challenging for processing, and long computational
time are usually required to analyze a hyperspectral image. For the purpose of classification,
further problems are related to the curse of dimensionality. For instance, when a supervised
classifier is applied to classification problems in high-dimensional feature spaces, the Hughes
phenomenon [4] can be observed; that is, when the number of input features exceeds a given
limit for a fixed training sample size, the classification accuracy will decrease.

The possibility to exploit all the advantages provided by hyperspectral images is therefore
limited by the complexity of the data. On one hand, if compared to traditional remote sensing
images, a much higher quantity of information is available, which could allow to detect
very subtle differences between the materials of the observed scene. However, traditional
techniques seems to be not effective for the analysis of such data, due to the above mentioned
issues.

Dimensionality reduction in a high-dimensional data space can decrease the computa-

tional cost and may also improve the accuracy during the classification process [7,8]. Given
a hyperspectral data image, dimensionality reduction is usually achieved, in the spectral do-
main, in essentially two ways: feature extraction and feature selection [2]. Feature extraction
is to find the transformation from a higher dimension to a lower dimensional feature space
with most of the desired information content preserved [2,19]. This transformation can be
either a linear or nonlinear combination of the original variables and may be supervised, if
taking into account the ground truth data information, or unsupervised.
Alternative methods of feature extraction are based on the spatial properties of the analyzed
scene [20]. Recent developments of spatial based feature extraction approaches made possible
to analyze the objects observed within an image by taking into account characteristics like
the shape, the diagonal of the bounding box, or the moment of inertia [21]. All these features
may be very useful for the classification of remote sensing images, since objects belonging
to the same land cover classes will be likely to have similar feature values. For example,
if we consider a land cover class corresponding to "road" (or, if we consider materials, to
"asphalt"), it will be very likely that pixels belonging to this class show a high value of the
moment of inertia, due to the elongated shape of these objects. In this chapter, we will intro-
duce the mainly problematics related to spectral feature reduction (Section 1.2) and spatial
feature extraction (Section 1.3). Some Conclusions are drawn at the end of the chapter.
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1.2 Spectral Feature Reduction

Each pixel of a hyperspectral image is a vector which contains all the spectral information
provided by different spectral channels at different wavelengths. The dimensionality of the
vector depends on the number of spectral bands collected by the sensor and, in the case of
hyperspectral data, usually corresponds to few hundred of values. As pointed out in the
introductory section, this huge quantity of information allows better discrimination of land
cover material, but it also poses several critical issues, both from a theoretical and practical
point of view.

The behavior of the pattern in a hyper-dimensional space is rather different of what is intu-
itive for us, being used to bi- and three-dimensional spaces we use everyday. As pointed out
in [2,22]| geometric concepts that are self-evident in low dimensional spaces do not necessarily
apply in higher-dimensional space. Actually, is all the information contained in a hyperspec-
tral scene needed to a detailed analysis of the data? Hyperspectral sensors acquire images
on a wide spectral range, but they consider very narrow spectral channels, so that redundant
information may be contained in the data. Moreover, the useful information in hyperspectral
images is contained in a small part of the feature space, while a big part of the data does
not contain useful information. As a result of this, the number of features which can be used
as input for the classifier can be reduced, without any significant (or with very few) loss of
information.

As a matter of fact, feature selection / extraction techniques are usually performed as pre-
processing to hyperspectral data analysis [2]. Such processing can also be performed for
multispectral images, to enhance class separability or to remove a certain amount of noise.
One of the most widely used techniques for data compression and dimensionality reduc-
tion is the Principal Component Analysis, which estimates the data eigenvalues in order to
perform a projection into a new feature space where the maximum of the data variance is
preserved. However, since PCA considers only statistic up to the second order, it may be
not effective when used for hyperspectral data [14]. In order to overcome the well-known
problems connected to the nature of PCA, some variations of the algorithm were more re-
cently proposed [9-12|, making use of contextual information 23], or in order to improve
data visualization [24].

Independent Component Analysis has received increasing attention in the last years [25], |26],
[27]. This technique projects the data into a new space were the estimated components are
as independent as possible from a statistical point of view. Despite the interesting properties
of this method, when compared to PCA, the incorporation of ICA into more advanced clas-
sification approaches for hyperspectral image classification has only been tested in [10,28|.
In the following discussion, we introduce the well-known problems of hyperspectral data in
the spectral domain in order to highlight possible advantages provided by Independent Com-
ponent Analysis, which is the core method used in the next chapters. The mathematical
basis of PCA and ICA are then presented respectively in 1.2.2 and 1.2.3.

1.2.1 Problems with high dimensional data

In this section, classical problems encountered in high-dimensional space are presented.
We will mainly refer to previous works of the literature which investigated the high dimen-
sional data paradigm. A great quantity of theoretical information and experimental valida-
tions can be found in [2,22]. In the following, we will outline the main conclusions of the
mentioned works. An extensive discussion of mathematical background, which would be out
of the scope of this introduction, is omitted. However, a clear understanding of the following
statements is needed to introduce problematics related to high dimensionality data.
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1. Hughes effect: with a limited number of training samples, there is a classification
accuracy penalty as the number of features increases beyond a certain point [4].

2. It has been proven that for good estimation of the parameters, the required number of
training samples is linearly related to the dimensionality for a linear classifier and to
the square of the dimensionality for a quadratic classifier [29].

3. The second-order statistics play a more important role in classification: it has been
shown that when the dimensionality increases, considering only the variance of multi-
variate data led to significantly better classification results than considering only the
mean [30]. However, the variance itself is not enough to describe all the information
contained by hyperspectral data. When considering only the variance, important in-
formation residing in small part of the data space (that is, parts corresponding to low
amount of variance) can be neglected.

4. As pointed out before, data tend to have a super-Gaussian distribution, with concen-
tration of the information in the tails. In a corresponding way, uniformly distributed
data tend to concentrate on the corner of the simplex enclosing the information.

Points 1 and 2 are both critical in case of supervised classification of hyperspectral images.

Having a number of training samples equal to the square of the spectral channels is a condition
seldom verified, thus leading to overfitting phenomena. To alleviate such a problem, feature
reduction methods are often used, since the hyperspace in which data live is mostly empty,
and therefore the components of the image can be reduced without (or with few) loss of
information.
Points 3 and 4 should be taken into account when considering the approach to perform
feature extraction. As a matter of fact, they suggest that techniques based on second order
statistics like variance (e.g., Principal Component Analysis) may not be the most suitable
to retain all the useful information. Alternative techniques could be more interesting for
classification purposes. In this work, we will analyze Independent Component Analysis, due
to its attractive properties explained in Section 1.2.3.

1.2.2 Principal Component Analysis

Principal Component Analysis (PCA) is a classic technique in statistical data analysis.
PCA de-correlates the variables x1,...,z, of a given random vector x € R™. In order to
perform the dimensionality reduction, only a number of the first components, which span the
largest variance of the data, are retained. The variables of the projected vector y = Ptx are
uncorrelated with the other variables. This means that its covariance matrix » = Ely.yl]
is diagonal, where y. is the centered vector y. The computation of the covariance matrix can
be written as:

Yy = E[(y —my)(y —my)"]
= E[P'x — P'm,)(P'x — P'm,)] (1.1)
= P'E[(x —m,)(x —m,)|P
= P'3,P.

>, is a real-valued symmetric matrix of finite dimension. By the spectral theorem, ¥, can
be diagonalized by an orthogonal matrix M(M! = M~!): M~1S,M = %, (from (1.1)). By
identification, P is an orthonormal matrix which is found by solving the eigenvalue problem
with unitary norm condition on the eigenvectors (v):
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AV = Xyv
vl = L (1.2)

It turns out that P consists of the set of all eigenvectors v of ¥,, with one eigenvector
per column.

1.2.2.1 Reducing the dimensionality using PCA

The eigenvalues obtained represent the variance of the variable y, i.e., var(y;)— A;. They
are stored in decreasing order A\ > ... > A\, .Feature reduction is performed using the follow-
ing postulate: the greater the variance, the greater the contribution to the representation.
Thus, variables associated with high eigenvalues need to be considered and should remain
after feature reduction. The problem lies in selecting sufficient principal components so that
the reconstruction error is low. It can be shown [31] that the error in reconstruction, in the
mean square sense, of x using only the k first principal components is

MSE= Y \. (1.3)
i=k+1

Therefore, k is chosen in order to make the MSE fall below a given threshold t,.,, usually
5% or 10% of the total variance:

n
C A\
% < tpea. (1.4)

i1 i
Note this strategy is optimal for the purpose of representation [29]. As said in Section
1.2, PCA is an unsupervised algorithm whose objective is to represent the data in a lower
dimensional space without discarding meaningful information. It does not use a criterion
which is related to the classification error, and is, therefore, not appropriate as a dimensional
reduction technique where low classification error is the main objective.

1.2.3 Independent Component Analysis

The PCA algorithm can be understood as an algorithm finding the direction of space
with the highest sample variance, and moving on to the orthogonal subspace of this direction
to find the next highest variance, and iteratively discovering an ordered orthogonal basis
of highest variance. This is well adapted to normal processes, as their covariance is indeed
diagonal in an orthogonal basis. In addition, the resulting vectors come with a "PCA score",
i.e., the variance of the data projected along the direction they define. Thus when using PCA
for dimension reduction, we can choose the subspace defined by the first £ PCA vectors, on
the basis that they explain a given percentage of the variance, and that the subspace they
define is the subspace of dimension n that explains the largest possible fraction of the total
variance.

However, in the case of non-Gaussian processes, as class distributions are in hyperspectral
data, the variance may not be the quantity of interest. Although it is not optimal for
classification, the PCA is often used for such a task, due to its simplicity and ease of use.
In order to overcome the problem, Independent Component Analysis (ICA) is analyzed in
this work. ICA was first proposed as a blind source separation technique in [6,31], and was
immediately adopted in several fields of signal processing.

Due to its attractive properties, ICA is receiving a growing interest among the remote sensing
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community, for feature reduction and spectral unmixing [27,32,33|. ICA tries to minimize
all the dependencies of the retrieved components, using higher (than second) order statistics.
In the following, the ICA model is presented into more detail.

1.2.3.1 The ICA model

ICA consists of finding a linear decomposition of observed data into statistically independent
components. Given an observation model

x = As, (1.5)

where x is the vector of the observed signals, A a scalar matrix of the mixing coefficients and
s the vector of the source signals, ICA finds a separating matrix W such that

y = Wx = WAs, (1.6)

where y is a vector of independent components. This means that the value of any of the
components does not give any information about the value of the other components. ICA
basically makes three general assumptions, in order to make sure that its basic model can be
estimated [34]:

1. The components of y, estimated from the observed signal x, are statistically indepen-
dent. This is the basic principle required for ICA to be valid.

2. At most one signal has a Gaussian distribution. If more than one component have
a Gaussian distribution, we do not have enough information to separate mixtures of
Gaussian sources. In the case of two or more Gaussian distributions, the higher-order
cumulants are equal to zero. This information is essential in order to estimate the ICA
model, thus the algorithm cannot work under these conditions.

3. The unknown mixing matrix A is of full rank and invertible. This assumption is
equivalent to saying that the number of independent components is equal to the number
of observed mixture. It is done in order to simplify very much estimation, but it can
sometimes be relaxed.

Under these three assumptions (or at least the first two), the independent components and
the mixing matrix can be estimated, under some indeterminacies that will necessarily hold.
In fact, for (1.5) if both A and s are unknown, at least two ambiguities cannot be avoided.
First, the variances of independent components cannot be computed. In fact, any scalar
multiplier in one of the sources could always be cancelled by dividing the corresponding col-
umn of the mixing matrix. Due to this, the energy of the components can be at first fixed
by whitening in order to make all variances equal to unity, and consequently the mixing
matrix is adapted. Second, because of similar reasons, the independent components cannot
be ranked, because any change in their order will not change the possibility to estimate the
model. Since the method is well known in the signal processing community, we will not give
all the mathematical details of the ICA implementation. A detailed explanation of the basics
of ICA would be out of the scope of this section. However, in the next subsection, we briefly
review several possibilities which were proposed in the last years as a possibility to compute
independence. Moreover, we give some details of ICA Jade, which is the algorithm considered
in our experiments. We refer the reader interested in a complete explanation of the general
framework of ICA to references [31,35, 36].
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1.2.3.2 Independence measures

As is stated by its name, the theoretical concept on which ICA rests is independence.
Independence is a much stronger assumption than uncorrelatedness. Contrary to common
decorrelation methods, such as Principal Component Analysis (PCA) and Factor Analysis
(FA), which use information provided by a covariance matrix in order to retrieve uncorrelated
components, ICA considers higher (than second) order statistics. However, starting from
the probabilistic definition of independence, several practical independence criteria can be
defined. In addition to the basic concept of contrast functions, two of the most classical
criteria are based on nonlinear decorrelation and maximum non-Gaussianity:

e Nonlinear decorrelation. Find the matrix W so that the transformed components
g(yi) and h(y;) are uncorrelated, where g and h are some suitable nonlinear functions.
Possible non-linear functions can be derived through the maximum likelihood approach,
or based on the mutual information.

e Maximum non-Gaussianity. Find the local mazima of non-Gaussianity of a linear com-
bination under the constraints that the variance of y is constant and that its components
are not correlated (i.e., after prewhitening). Each local maximum gives one independent
component.

Classical algorithms, such as FastICA [37], Infomax [38] have been developed using the above
criteria. Another approach for the estimation of the Independent Components is JADE [39],
which makes use of 4th order cumulant tensors. In the following experiments, we have used
JADE as ICA algorithm to enforce independence, due to the effectiveness shown when dealing
with hyperspectral remote sensing data [40,41], and since it has provided in a preliminary
test better results than FastICA and Infomax.

Cumulant tensors can be considered as the generalization of the covariance matrix at or-
ders higher than the second order. If we consider a random vector x with a probability density
function (pdf) p(x), its characteristic function is defined as the inverse Fourier transform of
the pdf [42]

[e.9]

bw) =Elewp(un)} = [ expliop(x)dx (1.7)
—00

where j is equal to /—1 and w is the transformed row vector corresponding to x. Every pdf

corresponds to a unique characteristic function, and vice versa. Due to its attractive prop-

erties, the natural logarithm of the characteristic function is often considered, and provides

the second characteristic function, denoted ¥(w). Given the Taylor series expansion of the

characteristic function

jw

U(w) = g ak( k:!) (1.8)
k=0
the ath cumulant is defined as the derivative
d* U (w)
N3

_(_ 1.9
a = ()" S (19)

w=0
It can be shown that the second, and third order cumulants for a zero mean random vector
are |43]
cum(z,z;5) = E{zx;} (1.10)
cum(zg, x5, x) = El{zizje} (1.11)
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We refer the reader interested in a more detailed explanation of the cumulants and their
properties, to [44,45]. The fourth order cumulants contain all the information about the
fourth order statistics of the data. In the case the data are independent, all the cumulants
with two or more different indices are equal to zero.

The cumulant tensor is a linear operator defined by the fourth order cumulants cum(x;, z;, x, 2;),
in an analogue way to the case of a covariance matrix, which defines a linear operator. In
this case we have a linear transformation in the space of n x n matrices, instead of the space

of n-dimensional vectors. The space of such matrices is a linear space of dimension n X n, so

it is simple to define the linear transformation. The elements of this transformation can be
defined as:
Fi;j(M) = kalcum(xi,xj,wk,ajl) (1.12)
kl
where my; are the elements in the matrix M that is transformed.

Joint Approximate Diagonalization of Eigenmatrices (JADE) refers to one of the princi-
ples of solving the problem of equal eigenvalues of the cumulant tensor. As any symmetric
linear operator, the cumulant tensor has an eigenvalue decomposition. An eigenmatrix of the
tensor is, by definition, a matrix M such that

F(M) = AM, (1.13)

where A is a scalar eigenvalue.
Let us consider data which follow the ICA model, with whitened data

z=VAs=H"Ts (1.14)

where HT denotes the whitened mixing matrix. The eigenvalue decomposition allows one to
point out some interesting features of the cumulant tensor of z. Every matrix of the form

M = h,,hT (1.15)

is an eigenmatrix. The vector hy, represents here one of the rows of H, and thus one of
the columns of the whitened mixing matrix HT. Due to the independence of the sources,
the corresponding eigenvalues are given by the kurtosis of the independent components, and
all the other eigenvalues are zero. By determining these eigenvalues, we can obtain the
independent sources we are looking for. We refer the reader interested in a more detailed
explanation of the theoretical framework of JADE to [39].

1.2.3.3 Applying ICA to hyperspectral images

When applying ICA to hyperspectral images, two representations can be considered: spec-
tral and spatial mixture models. Roughly speaking, the spectral mixture model corresponds
to retrieve the independent spectral components of the image, while the spatial mixture
models provide a description of the material abundances which are ideally independent. If
we consider a hyperspectral data cube with Ny images of N, — (N, x N,) pixels obtained
from Ny frequency bands and for simplicity, assume raw vectorized images I(n, \x), with
1<n=(—-1)Ny+j <N, (where i and j are the initial row and column image indices)
is the spatial index and k, k = 1,..., Ny , is the spectral index for wavelength A, the two
representations can be described as follows:

e Spectral Mixture Model: Each pixel of spatial index n gives an observed spectrum of
Ny frequency samples, which is represented by the linear approximation:

Ne

I,(\g) =~ Za(n,p)(bp()\k)? Yn=1,...,N, (1.16)
p=1
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Figure 1.1: Principal Component Analysis vs. Independent Component Analysis: (a)-(d)
First four principal components, ROSIS University data set; (e)-(h) First four independent
components.
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where ¢,(\), forp=1,..., N, are the constituent reflectance spectra, and the number
N, is chosen according to the desired accuracy of the approximation. Denoting as I(\g)
the vectorized image (of dimension N, x N,), the (N, x N.) mixing matrix A and
d(Ax) = [p1(Ak), - .., ¢n.], this spectral mixture model is then expressed as:

Practically, this spectral model intends to approximate the spectrum of each pixel as a
sum of N, component spectra of the area corresponding to these pixel coordinates. If
ICA is used for the estimation, then the N, basis spectra ¢,, p =1,..., N, should be
statistically independent. Moreover, the p-th column of the matrix A is the unfolded
image associated to the basis spectrum ¢,. According to this model, we have N, x N,
— 50,000 sensors and a small number of samples Ny — 174, for estimating the large
matrix A which has N, x N, = 250,000 parameters (taking N. = 5).

e Spatial Mixture Model: This model assumes that for each wavelength \;, the measured
image I, (n) is a weighted sum of N, basis images, denoted I1,(n), p=1,..., N

3

L) = boypll(n),  Vk=1,...,N; (1.18)

In vector notations, denoting the matrix B and II(n) = [[I;(n),...,IIn.(n)]" , one
can write:

I(n)~B-II(n) (1.19)

Practically, this spatial model intends to approximate the whole image at each frequency
as a sum of N, basis images. If ICA is used for the estimation, then the NN, basis images
Il,, p=1,..., N, should be statistically independent. Moreover, the k-th column of
the matrix B is the spectrum associated to the basis image I[;. According to this
model, we have Ny = 174 sensors, and a very large number of samples IV, = 50,000 for
estimating the matrix B which has Ny — N, < 900 parameters (taking N. — 5).

In our work, we will consider the ICA spatial model, which allows a better representation of
the data without incurring in problems related to overfitting and matrix bad conditioning.
An example of independent components extracted from a hyperspectral image (compared
with the corresponding principal components) is shown in Fig. 1.1.

1.3 Spatial Feature Extraction

Dimensionality reduction techniques are helpful in avoiding problems related to the high
dimensionality of the data and increase classification performances. Another possibility to
improve the accuracy of land cover thematic maps is represented by the use of feature ex-
traction approaches.

In opposite to feature reduction algorithms, which project the data into a new feature space
to put there all the most interesting information, feature extraction techniques select the
information directly from the original data. These techniques can be applied either in the
spectral domain (only a subset or a non linear transformation of the original spectral channels
are considered as input for the classification, possibly the bands providing the most discrim-
inative features) and in the spatial context, in order to extract features related to shape,
texture and other spatial characteristics which characterize the objects of a remote sensing
scene. In this work we will investigate in more detail spatial feature extraction techniques,
mainly because of two reasons: i) Spatial feature extraction techniques can be jointly used
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with spectral feature reduction to improve the classification accuracy, which would not be
possible with spectral feature extraction algorithms; ii) The use of spatial information has
proven to be useful to boost classification accuracy of thematic land cover maps more than
spectral based techniques [15,46].

The exploitation of spatial information is still more important after recent advances in re-
mote sensor technology, which made available data with very fine spatial resolution (in the
case of airborne sensors like ROSIS and HYDICE, up to few meters). The finer the spatial
resolution, the larger the spectral variability of the pixels [47]. Therefore, the contextual
information provided by spatial based approaches is very important to improve classification
accuracy of supervised methods. However, also in case of coarse spatial resolution, objects
of interest can be characterized by their spatial features (for example, agricultural fields will
be likely to have a rectangular shape, independently of the sensor resolution), thus making
attractive the use of spatial based techniques.

The contextual information needs therefore to be extracted into structures and between
structures. Several techniques were proposed in the last years to extract spatial features
from remote sensed images. Mathematical Morphology provides a well-established theory for
analyzing the spatial relationship between sets of pixels [48,49]. Readers will find a review
of Mathematical Morphology applications in remote sensing in [50]. The characterization of
spatial information at different scales can be obtained by the application of Morphological
Profiles (MP) [10], which are particularly suitable for representing the multiscale variability
of the structures in the image, but it is not sufficient to model other geometrical features. To
avoid this limitation, the use of morphological attribute filters instead of the conventional op-
erators based on the geodesic reconstruction was proposed [51]. The application of attribute
filters in a multilevel way leads to the definition of attribute profiles (APs) [51], which permit
to model other geometrical characteristics rather than the size of the objects. Attribute Filter
operators can extract a great deal of structural information, such as:

- direction
- area
- moment of inertia

standard deviation

In the following, we will briefly introduces the basics of mathematical morphology and of
attribute filters. Then we will present the possibility to use this methodology on a multilevel
approach, by considering the concept of profiles. The main differences between the approaches
are highlighted, and previous work related with remote sensing are discussed.

1.3.1 Theoretical Notions of Mathematical Morphology

Mathematical Morphology is a theory for non-linear image processing. It aims to analyze
spatial relationships between pixels. In this section, basic notions of Mathematical Mor-
phology are presented. Readers interested in Mathematical Morphology can find additional
material in [48-50].

The basic morphological operators are erosion and dilation. When applying the erosion
(dilation) operator to an image, every pixel of the image will be replaced by the maximum
(minimum) value of the neighborhood defined by a spatial structure called structuring ele-
ment. Examples of SE are shown in Fig. 1.2. By combining erosion and dilation, opening
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Figure 1.2: Examples of structuring elements.

and closing by reconstruction can be obtained. Opening by reconstruction is an image trans-
formation that is increasing, idempotent and anti-extensive [49].

An opening by reconstruction consists of removing from a scalar image all the brighter con-
nected components on which the SE does not fit in, with respect to the gray level of the
neighboring regions. The use of opening transformation allows the appearance of distortion
in the image to be avoided, since it transforms the image by merging flat regions. Therefore,
the geometrical characteristic of the structures which are not removed are totally preserved,
while the complexity of the image is decreased. The dual operator is the closing by recon-
struction process. It removes from the original image all the dark connected components.
The mathematical definitions of opening and closing by reconstruction of a gray-level image
f are respectively given by:

YR(f) = RYE(F)], (1.20)

Vr(f) = R§18'(f)], (1.21)

where ¢’ and ¢° are the erosion and dilation with an SE of size i, respectively, Rfc and R; are
the geodesic reconstruction by dilation and erosion, respectively [50].

A main issue is how to properly select the size of the structuring element. Remote sensing
images contain object with totally different sizes, being therefore impossible to characterize
all the structures with a single structuring element. In order to overcome the problem, the
concept of morphological profiles was proposed as an interesting extension of mathematical
morphology, for the analysis of remote sensing images.

A morphological profile is a concatenation of closing profiles and opening profiles, which
form a sequence of closings and openings by reconstruction obtained by using SEs of different
sizes. The mathematical definition of a Morphological Profile is:

MP(z) ={tn(z,..., f(x),...,m(x))} (1.22)

and

= Yp_i(z) if 0<i<n
MP()={ = fl&) if i=n
= y(x) if n<i<2n
Thus, both the opening and closing profiles are computed with an SE of fixed shape
and increasing size. The MP is effective for investigating the structure interactions of the
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structures present in the image (i.e., objects in the surveyed scene) with the SE considered.
According to its definition, an MP can only handle a scalar image (e.g., one band).

1.3.2 Extended Morphological Profiles

The generalization of EMPs to hyperspectral data was first proposed in [10]. The basic
idea was to reduce the dimensionality of the data by using PCA, and to apply the trans-
formation on each of the principal components retained. The features extracted by the
transformation (i.e., eigenvectors ordered increasingly according to the values of the corre-
spondent eigenvalues), called principal components (PCs), are meaningful for representation
since they account most of the variance of the data in the original feature space. Thus, only
the first PCs are considered for the analysis, while the others are discarded. As a general
guideline, the number of the considered PCs should contain about 99% of the total variance
of the data. Subsequently, on each of the PCs, a full MP is computed. Thus, the EMP of ¢
PCs can be formalized by:

EAP = {AP(PCy), AP(PCy),..., AP(PC,)}, (1.23)

where ¢ defines the PC allowing to reach the threshold of 99% of variance. An example of
morphological profiles built from a single image component is shown in Fig. 1.3.

Although the EMP was successfully used for including the spatial information in the
classification of HR hyperspectral images, some drawbacks can be pointed out. The main
shortcomings of EMPs can be identified as: (i) the spatial information can be modeled only
through a small number of SE; (ii) the feature-extraction technique considered for reducing
the dimensionality of the original feature space; and (iii) the increase in the number of features
produced by the morphological transformations.

The first drawback mainly resides in the limited flexibility of the operators by reconstruction
based on a SE in extracting informative features suitable to model the spatial characteristics
of the objects. Obviously, a limitation in the capability of describing spatial features leads
directly to a reduction in the discrimination power of the analysis. This drawback is addressed
by the present work. The second limitation is related to the transformation used for reducing
the dimensionality of the data prior to the morphological processing. The EMPs are computed
on the few PCs extracted, which are suitable for the representation of the data, but might
not be the most discriminative for classification [29]. Finally, the issue of the increase of the
dimension of the feature space due to the computation of the EMP can be addressed again by
applying some feature-extraction techniques, as already presented by [10], or by considering
classifiers not sensitive to the curse of dimensionality.

In this work, the main emphasis is posed in the investigation of suitable techniques to preserve
and model the spatial and spectral information of a hyperspectral data set. The main concerns
regard therefore the first two drawbacks mentioned above.

1.3.3 Extended Attribute Profiles

A generalization of the concept of morphological operators by reconstruction leads to
the definition of Morphological Attribute Filters [52|. These filters remove from the original
image all the connected components that do not fulfill a given criterion, which can be defined
by evaluating any attribute extracted from the scene. The main advantage provided by these
filters is a great flexibility in the definition of the attributes. In fact, the attributes considered
can be purely geometric (e.g. area, length of the perimeter, image moments, shape factors),
textural (e.g. range, standard deviation, entropy), etc. Actually, an attribute can be any
measure computable on the regions of the connected components present in the image.
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Figure 1.3: (a) The original image. (b)-(c) Morphological image closings obtained using
respectively a 3x3 and a 5x5 square as structuring element. (d)-(e) Morphological image
openings obtained using respectively a 3x3 and a 5x5 square as structuring element. (f)-(g)
Attribute thinning obtained using as criterion the area of the object with a value of 100 and
200. (h)-(i) Attribute thickening obtained using as criterion the area of the object with a
value of 100 and 200.
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Analogously to the definition of EMPs, we can compute the APs on the ¢ PCs extracted
from the original hyperspectral data. This leads to the definition of the EAP:

AP(f) = {0 (s foem ()} (1.24)

In conclusion, we remind that EAP includes in its definition the EMP (because the
operators by reconstruction can be viewed as a particular set of morphological attribute
filters) and, thus, it can be considered as its generalization. The main advantage in using the
EAP instead of the EMP relies on the great flexibility given by the definition of the attributes
used in the processing for modelling the spatial features that need to be extracted.

1.4 Conclusions

In order to improve the classification accuracy of hyperspectral images, suitable pre-
processing techniques may be helpful to avoid problems related to the complex nature of
the data. This chapter provides an overall introduction of traditional feature reduction and
feature extraction techniques. In a first part, spectral based techniques, used to project
hyperspectral data into a lower dimensional space where most of the spectral information can
be retained, were presented. Two methods were described, Principal Component Analysis
and Independent Component Analysis, and the reasons which make ICA particularly suitable
in case of classification of hyperspectral remote sensing data were analyzed in detail. In the
second part of the chapter, spatial feature extraction techniques were analyzed. Traditional
morphological filters were introduced, and the concept of Attribute Filters and Profiles, an
extension of traditional morphological filters, was described.

In the next chapters, the incorporation of these techniques into advanced classifier frameworks
will be discussed, in order to obtain methods which can fully exploit the potentiality offered
by hyperspectral data.



Chapter 2

Independent Component Discriminant
Analysis

Abstract

In this chaper, Independent Component Discriminant Analysis (ICDA), a new classification
technique for hyperspectral remote sensing classification data is presented. The method ex-
ploits the advantages provided by Independent Component Analysis to build a state-of-the-art
classifier for high dimensionality data. The main concept is that, when projecting the data
into a class-centered independent space, multivariate (joint) probability distributions can be
easily approrimated as the product of univariate (marginal) probability distributions. There-
fore, a simple kernel density estimator can be considered to compute such probabilities, which
are then included into a Bayesian classifier to compute the classification results. Experimen-
tal assessment shows the comparative effectiveness of the proposed approach.
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2.1 Introduction

In the context of supervised classification, one of the most challenging issues is related to
the small ratio between the number of samples used for training and the number of features
of the data. As the dimension of the data space becomes higher, the number of training sam-
ples necessary to define the statistical behavior of the data increases exponentially 2], which
makes it impossible to obtain reasonable estimates of the class-conditional probability density
functions used in standard statistical classifiers. The first consequence is that increasing the
number of features of the data used as input of the classifier over a given threshold (which
depends on the number of training samples and the kind of classifier adopted), the classifica-
tion accuracy decreases, according to the so-called Hughes’phenomenon [4]. The drawbacks
connected with very high dimensionality of hyperspectral data made methods traditionally
used for land cover classification rapidly obsolete. Parametric classifiers widely used in pat-
tern recognition such as the Maximum Likelihood classifier |53] or the Bayes classifier [29,54|
model probability density functions for individual classes with parameters estimated from
the training samples. Such approaches were proven to be ineffective when used for classifica-
tion of hyperspectral data, due to unfavorable ratio between number of training samples and
dimensionality of the data.

These methods estimate the multivariate densities of land cover patterns by considering only
the mean and the variance values of the classes. When data distribution is not Gaussian,
and when a limited training set is available, these estimates can diverge a lot from the real
ones [55]. The use of non-parametric estimators like Parzen window and kernel density esti-
mators, which do not make any assumption about the data probability distribution, is not
effective in case of high dimensionality data, since important information can be hidden in
low density regions [56].

In this chapter we will present a simple and effective method for the classification of hyper-
spectral images, based on the use of Independent Component Analysis. The projection of the
data into an independent space allows one to estimate the multivariate probability densities
as product of the univariate, since all the joint dependencies are nullified. This way, a simple
Bayesian classifier with kernel density estimator can be used for estimation of classes, provid-
ing very good results in terms of classification accuracy. Comparative effectiveness is proven
by comparison with one of the most common classifier of hyperspectral images, the Support
Vector Machines (SVM). The remainder of the chapter is structured as follows. The next
section describes the state-of-the-art approaches recently proposed to overcome critical points
related to hyper-dimensionality. Section 2.3 describes the theoretical details of the proposed
approach Independent Component Discriminant Analysis, and Section 2.4 the validation on
real hyperspectral data sets. Conclusions are presented in the Section 2.5.

2.2 Supervised classification of high dimensional data in the
literature

It is well known that the probability of error achieved with a Bayes classifier is the best
that can be obtained [53], thus making Bayes classifiers attractive in pattern recognition.
Nevertheless, the construction of an optimal Bayesian classifier is very challenging when
dealing with high-dimensional data. These kind of data sets would require large training sets
in order to obtain accurate estimates of the density functions of the classes. To overcome
the problem of a small size of the labelled samples, when these classifiers are applied it is
often assumed that each class can be represented by a multivariate normal model depend-
ing on the mean and covariance matrix of the class-specific data. This assumption can be
accepted in the case of low input dimensionality, but it is usually far from the reality for
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hyperspectral remote sensing data, leading to low generalization capabilities for non-labelled
data and consequently to poor classification accuracies. Many efforts have been reported in
the literature to overcome the intrinsic problems of high-dimensional data [8,57-61|. The
main approaches that can be found in the literature are: regularization of the sample covari-
ance matrix; semisupervised classification for the exploitation of the classified (semilabelled)
samples; projection of the data into a lower dimensional space by preprocessing hyperspec-
tral data with feature selection/extraction. In order to reduce the small sample size problem
and mitigate the curse of dimensionality, several improved covariance matrix estimators have
been proposed to reduce the variance of the estimate [57,58|. The main problem involved by
this kind of estimators is the possibility that the estimated covariance matrices overfit the
few available training samples and lead to a poor approximation of statistics for the test set
and the whole image to be classified. Semisupervised classifiers give a rough classification
of the data using the information of the training set and then iteratively update the class
statistics according to the results of the classification [59]. The main drawbacks of this ap-
proach are the required high computational burden and the risk of overfitting, when a limited
number of training samples is available. Finally, another approach that has been proposed to
overcome the problem of high dimensionality of the data is to use feature reduction/selection
algorithms in order to reduce the dimensionality of the input space. Many techniques have
been proposed, such as Decision Boundary Feature Extraction (DBFE) [8], Projection Pur-
suit (PP) [60], Non-parametric Weighted Feature Extraction (NWFE) [61]. Nevertheless, the
higher computational time required or the inevitable loss of information introduced by these
techniques represent often an obstacle to obtain high performances, in terms of processing
time or classification accuracy.

Advanced classifiers, like Artificial Neural Networks (ANN) [62 64| and kernel based clas-
sifiers [65-69], have more recently been applied for hyperspectral data classification, because
they are distribution-free and do not make assumptions about the density functions of the
data. Multilayer Neural Networks [62]| suffer basically of two main limitations. The first
limitation is that the number and the size of hidden layers need to be set, which is not
a straightforward task. The second limitation is that a very large number of iterations is
sometimes needed to find a solution, making feature reduction a very useful step before the
classification process. RBF Neural Networks [63] overcome these shortcomings, but their
classification accuracy strongly depends on the selection of the centers and widths of the
kernel functions associated with the hidden neurons of the network. Kernel methods have
been widely investigated in the last decade for remote sensing and hyperspectral data anal-
ysis. Such methods show even a better performance than NN in terms of accuracies, also
providing good results in case of very limited training sets. During recent years, a number of
powerful kernel-based learning classifiers (e.g., SVM [66]|, KFD analysis [67|, support vector
clustering (SVC) [68], the regularized AdaBoost (Reg-AB) algorithm [69]) have been pro-
posed in the machine learning community, providing successful results in various fields. SVM
in particular have been widely investigated recently in the remote sensing community [70-73].
Camps-Valls and Bruzzone compared in [65] a number of these methods. SVM provided the
most attractive classifier when dealing with high dimensional data, providing very good re-
sults in terms of accuracy and robustness to common levels of noise. The main limitations
of SVM are the training time and the need to find the optimal parameters for the kernel.
The training time, though much smaller than other kernel methods, quadratically depends
on the size of the training set, and can be very large, especially when a large number of
labelled samples is available. The choice of the parameters of the kernel is usually done using
a cross-validation approach. Bazi and Melgani recently proposed a classification approach
based on Gaussian processes |74|, which showed results similar to SVM but with a bigger
computational burden. Due to the challenging problems of hyperspectral data classification,
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several approaches have recently been proposed to exploit also the spatial information of the
data [15,46].

The need for an accurate classification method for hyperspectral data is still an important
research topic. The use of Bayesian classifier is a very attractive possibility, thanks to the
possibility to incorporate any kind of complementary information which could help improv-
ing the performances, as long as it can be stated as a probability function. In the following,
we will review in detail the problems encountered by Bayesian classifier in high dimensional
data space, and we will proposed an effective alternative to overcome them. The resulting
algorithm, Independent Component Discriminant Analysis, is very efficient both in terms of
classification accuracy and computational burden.

2.3 Independent Component Discriminant Analysis

In this work, inspired by [75], a non-parametric method for discriminant analysis based
on the application of a Bayesian classification rule on a signal composed by independent com-
ponents is proposed for the classification of hyperspectral images. The main characteristics
of the method are the use of Independent Component Analysis (ICA) to retrieve independent
components from the original data and the estimate of the multivariate density in the new
data space computed with the ICA. The basic scheme can be represented as follows:

(Ag)

Xk — X (2.1)

™ (X) — f™(XE) = Hf“(XZ), (2.2)
(ALY

where A} is a proper transformation matrix which projects the data Xj centered on
the class k into an independent space, and A,;l is the back transformation allowing one to
estimate the multivariate probability distribution of the class k in the original space from the
probability distribution of the independent space.
When the data are projected in an independent space, the estimates of their multivariate
density function f™(X*) can be computed in a much easier way as the product of univariate
densities f*(X*). The use of ICA is an elegant way which allows us to overcome the problem
of the high dimensionality of input data, obtaining reliable estimates of the class conditional
densities which can be used to build a Bayesian classifier. A non parametric kernel density
estimator is used to compute the density function of each independent component. Finally,
the Bayes rule is applied for classification assignment. The main contributions of the work are
the following: first, we propose an in-depth experimental analysis to highlight the potential
of the method when used to classify hyperdimensional data. Second, we propose a simple
but effective approach to choose the number of independent components which have to be
retained for the classification process, in order to make the classifier suitable for hyperspectral
data analysis. Finally, we perform a detailed comparison with respect to the SVM, one of
the most used hyperspectral classifiers, considered as the one providing the best results.
The proposed method is a generalization of the quadratic discriminant analysis, where the
ability of ICA to retrieve components as independent as possible is exploited to estimate
the class-conditional joint densities fi(x) as the product of the marginal densities of the
transformed components. The joint densities, which are hard to estimate when dealing with
high dimensional data, can be computed in a much simpler way in an independent space.
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In the following, we will explain problems encountered by traditional Bayesian classifiers
when used for the classification of high dimensional data, and the theoretical basis of the
proposed approach allowing one to overcome such issues.

2.3.1 Bayes Classification

The risk incurred when performing a classification of a measured vector x into one of K
possible classes is given by:

R(l%\x) _ Zszl L(kvlg‘l)fk’(x)ﬁk (23)

Z?:1 Jr(X) Tk

where 7, is the a priori probability that a sample could belong to the class k, fi is the
class-conditional a priori density of class k, and L is the cost or loss incurred when assigning
the sample x, belonging to the class k, to the class k. In the case of hard classification (i.e.,
classification where only one class is selected), this cost can be expressed by the so-called
symmetrical loss function,

. 0 ifk==Fk
Lk, k) = .
(k. ) {1 if k£ k.

By choosing k such that the numerator of (2.3) is minimized, this leads to the so-called
Bayes decision rule. In the case of hard classification, the Bayes rule reduces to the following
rule: assign x to the class k such that

k = d(x) = argmax{f,(x)m,} k=1,. K. (2.4)

The design of the Bayes classifier is then determined by the conditional densities fx(x) and
by the prior probabilities ;. While the prior probabilities can be easily obtained from the
training set, following the relation

7 = Ni/N (2.5)

where Ny is the number of samples of the class k and N is the overall number of samples of
the training set, the determination of the class-conditional density is much more challenging.
Thanks to its analytical tractability, the Gaussian (or normal) multivariate density is the most
often used density for classification. However, multivariate estimation presents challenging
problems when dealing with very high dimensional data.

2.3.2 Multivariate density estimation

The general expression of a multivariate normal density in d dimensions is written as:

1

) = Gy,

exp| 50— )5 (x — o) (2.6)

where x is a d-component column vector, g is the d-component mean vector, 3 is the d
by d covariance matrix, |¥| and £ 7! are its determinant and its inverse. Finally, (x — u)7
denotes the transpose of (x — p). Some classification rules are derived by assuming that the
class-conditional densities are p-variate normal with mean vectors ), and variance-covariance
matrices 3y assumed to be non singular [76]. These two parameters are estimated from the
training samples according to:
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1
fry, = N, ; Xik (2.7)
1 &
Yk = Ne -1 z;(xik — ) (xi — )" (2.8)
=
where xj, = {x;1,7 = 1,..., N} are the training samples of the class k. This approach works

well when the class-conditional densities are approximately normal and good estimates can be
obtained from the training samples. However, it is highly affected by substantial divergence
from normal density and by a limited training set [55], as it is often the case for hyperspectral
remote sensing data.

In order to overcome problems linked to the above mentioned limitations, the parametric
approach to discriminant analysis has been extended to the case where nothing is known
about the densities fj except for some assumptions about their general behaviour [77]. The
idea is to apply a non-parametric density estimator to the training samples and then to
substitute the obtained estimates into the Bayes decision rule (2.4). This family of den-
sity estimators does not assume any prior knowledge about the distribution of the data,
like parametric estimators do. Many other non-parametric estimators can be found in the
literature, such as the histogram approach, k-nearest neighbour and the expansion by ba-
sis functions method [78]. Thanks to its properties in terms of computation and accuracy,
one of the most common procedure is to use multivariate kernel density estimator of the form:

Ny
= K{x - xq; Hy} (2.9)
i=1
where K denotes an unbiased kernel function and Hy is a diagonal covariance matrix. The
choice of the kernel used for the estimation can be very important. However, in case of
classification, different kernels can show similar trends [78|. In our experiments, we have
considered one of the most widely used kernel, the Gaussian one:

x2
K(§) = h\}%exp{ - ﬁ} (2.10)

Multidimensional density estimation is highly affected by the high dimensionality of the
data, and practically is not tractable when the dimension of the data is comparable with the
size of the training data, as it often happens in hyperspectral data analysis. In these cases,
the kernel K is substituted by the product of univariate GGaussian kernel function, leading to
estimates of the form [56]:

fe(x) = (2m) PIPHN; 1ZHexp{ th””) } (2.11)

=1 j=1

where hy; is the jth element of in the Hy diagonal matrix, x;; is the [jth observation of the
samples belonging to the class k, and

1
H=—=— (2.12)
P
Hj:l hi;
The main drawback of this approach is that some important information for the classification
process is not retrieved. In fact, it especially occurs when dealing with high-dimensional data
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where very important information for the classification process can be hidden in relatively low
density regions. Therefore, the estimation of the tails of the distribution becomes crucial in
order not to degrade the final results. Consequently, in such a case, a Gaussian kernel product
estimator can be inappropriate, due to the short tailed normal density. A new technique is
needed to estimate multivariate densities of hyperspectral data.

2.3.3 The approach of Amato

In [75], Amato et al. proposed an interesting approach to circumvent the problems of non-
parametric multivariate kernel density estimators, and used ICA to enforce independence
to the components of the analyzed data. In their approach, the components become as
independent as possible after a transformation based on ICA, which allows the estimation of
a multivariate density as the product of univariate densities, which is then fitted to normality
with the use of normal densities. Fig. 2.1 shows an example of univariate densities computed
in a real data set. The results obtained are finally substituted in the Bayes rule for the class
assignment. The basic steps of the approach are stated below:

1. Center the data on the k-class, for each class k = 1,..., K, and use the ICA to derive
the optimal transform Aj according to the training samples of the class.

2. Project the data using the computed transform and use an adaptive univariate kernel
density estimator to estimate the density of each component.

3. For a new observation x, the joint density of Y = Ajx is first computed for each class as
the product of the estimated marginal densities, since the components are independent.
The density of x can be then derived from that of Y with a simple change of variable.
The results are then substituted into the Bayes rule to obtain the final assignment.

In the rest of the chapter, we refer to the above approach as Independent Component Dis-
criminant Analysis (ICDA). Next section will show experimental evidence of the effectiveness
of the method.

2.4 Experimental results

2.4.1 Data sets

In order to have a representation of the possible scenarios provided by the hyperspectral
images as complete as possible (satellite/airborne sensors, urban /agricultural /geological area,
large /small /very small size of the training set), four hyperspectral data sets were considered
to evaluate the performances of the ICDA approach.

The complete description of the data sets is given in Appendix A. In the following,
however, we will briefly recall them for sake of completeness. The four analyzed data sets
are:

e ROSIS University data set: 103 bands in the spectral range from 0.43 to 0.86 pm, 610
by 340 pixels with spectral resolution of 1.3 m. There are nine land cover classes of
interest.

e AVIRIS Indian Pine data set: 220 bands in the spectral range from 0.40 to 2.50 pm,
145 by 145 pixels with spectral resolution of 20 m. There are sixteen land cover classes
of interest.
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Figure 2.1: Example of the univariate densities estimation (ROSIS University data set, class
1), computed on the first principal components (red line), and independent components (blue
line). Differences are due to the fact that, when projecting the data into an independent space,
all the joint densities are minimized, which is not true in the case of an uncorrelated space.
The advantage of using ICA is that these joint densities can not be easily estimated in high
dimensional spaces.



ROSIS Data Set

AVIRIS Indian Pine

AVIRIS Hekla

HYDICE Washington

No. Name Train | Test Name Train | Test Name Train | Test Name | Train | Test
1 Asphalt 548 6641 Alfalfa 20 54 Andesite lava 1970 50 973 Roof 10 3794
2 Meadow 540 | 18649 Corn-no till 20 1434 And. lava 1980 I 30 634 Road 10 376
3 Gravel 392 2099 Corn-min till 20 834 And. lava 1980 II 50 408 Trail 10 135
4 Tree 524 3064 Corn 20 234 And. lava 1991 1 50 500 Grass 10 1888
) Metal Sheet | 265 1345 Grass-Pasture 20 497 And. lava 1991 II 50 1446 Tree 10 365
6 Bare Soil 532 5029 Grass-Trees 20 747 And. lava moss cover 50 650 Water 10 1184
7 Bitumen 375 1330 Grass-Mowed 20 26 Hyaloclastite formation 50 292 || Shadow 10 o7
8 Brick 514 3682 Hay-windrowed 20 489 Lava tephra covered 50 354 - - -

9 Shadow 231 947 Oats 20 20 Rhyolite 50 658 - - -
10 - - - Soybean-no till 20 968 Scoria 50 663 - - -
11 - - - Soybean-min till 20 2468 Firn-glacier ice 50 360 - - -
12 - - - Soybean-clean t 20 614 Snow 50 268 - - -
13 - - - Wheat 20 212 - - - - - -
14 - - - Woods 20 1294 - - - - - -
15 - - - Bldg-Trees-Drive 20 380 - - - - - -
16 - - - Stone-Steel Tower 20 95 - - - - - -
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e AVIRIS Hekla data set: 157 bands (a spectrometer was not working when the image
was acquired), 560 by 600 pixels with spectral resolution of 20 m. There are twelve
land cover classes of interest.

e HYDICE Washington DC Mall data set: 191 bands in the spectral range from 0.40 to
2.40 pm, 1280 by 307 pixels with spectral resolution of 3.6 m. There are seven land
cover classes of interest.

For the ROSIS University data set, the standard training set provided with the data was
used, corresponding to about 10% of the labeled samples (a single training set was therefore
considered). In the other three cases, different training sets were randomly constructed from
the reference data with a total of respectively 320, 600 and 70 pixels (corresponding to 20,
50 and 10 samples per class). In order to increase the statistical significance of the test, the
experiments were repeated ten times with different training sets and the average accuracy
results are reported, along with the standard deviation. As it can be noticed, the small
size of available reference data poses major issues for the estimation of the data statistics,
representing a very challenging test for the Independent Component Discriminant Analysis.
A recapitulation of the training and test sets considered in the experiments can be found in
Table 2.1.

2.4.2 Influence and choice of the number of independent components

The presented method ICDA was used to classify the four data sets, and the results
of the experiments were compared with those obtained by a One versus One SVM, with a
Gaussian kernel and 10 fold cross-validation selection of the kernel’s parameter [79], applied
to hyperspectral image in the original spectral space (for comparison, Table 2.4 shows the
results obtained with the SVM into the feature space obtained by applying PCA or ICA; it
can be seen that results are similar to the original case). When applying ICDA, the number
of components considered to compute the density estimation has an influence both on the
final classification accuracy and on the computational burden. The maximum number of
independent components that can be used for the classification depends on the rank of the
covariance matrix obtained from the training samples of each class, and it is equal to the
number of training samples of a class. Since fi(z) has to be computed for each class k, and
the posterior probabilities of the different classes should be compared, all the multivariate
densities have to be defined in the same subspace. Therefore, the number of independent
components computed in step 1 of the presented algorithm should be the same for each
class. Therefore, when the covariance matrix obtained from the training samples of a class is
singular, that will decrease the maximum number of components which can be retained, and
it will influence all the classes. Because of the singularity of the covariance matrix of some
classes, the maximum number of components which can be retrieved in the case of AVIRIS
Indian Pine data set is 19, while it is 9 in the case of HYDICE DC Mall. A larger number of
components could be computed for the other two data sets. Figure 2.2 shows the variation of
the coefficient of agreement (Kappa), the average class accuracy, which represents the average
of the classification accuracies for the individual classes, and processing time with respect
to the independent components retained, for the four considered data sets. The Kappa
coefficient of agreement is a parameter that estimates the correct percentage classification
without considering the accuracy percentage that could be expected performing a random
classification [80].

Although the number of components has a large influence on the final results, it can be
seen that there is a wide region where ICDA outperforms SVM. In three among the four cases
(AVIRIS Indian Pine, AVIRIS Hekla and HYDICE DC Mall) once a minimum number of
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ICs is computed (in order to have enough information for the probability density estimation)
the accuracy is much better than for the SVM. In the case of the ROSIS data set, the trend
is not so linear, but again the choice of the number of ICs is not critical, i.e., we have a large
range of values for which ICDA performs better than SVM in terms of classification accuracy.
The difference of the behaviour of the ROSIS data set with respect to the others has to be
attributed to the way the training samples were collected. While in the other three cases
the samples were randomly selected from the reference data, in this case the training set was
composed by spatially close zones, thus granting a worse capability of generalization.
Nevertheless, the choice of the appropriate number of Independent Components used during
the classification process is a very important task, in order to obtain a good accuracy of
classification. In [75], the authors propose to retain the maximum possible number of IC’s.
This criterion is not always appropriate for hyperspectral data: the computation of so many
ICs can be very demanding from a computational viewpoint, and if the information provided
by the components is redundant, the increase of ICs can lead to a decrease of classification
accuracy, as pointed out in the first two columns of Figure 2.2. In order to choose the number
of ICs which has to be retained by the algorithm, we propose a simple but effective method.
We apply the ICDA to the training set, using the same samples for testing, by considering
a wide range of ICs to retain. The number of ICs which gives the best results is then used
to perform the whole data set classification. Since we just have to choose the number of ICs
which better characterize the classes of the image, we do not expect generalization problems,
as could appear when selecting kernel’s parameter of SVM. The cross-validation approach
has been discarded because of two reasons: 1) The very limited number of training samples of
some data sets can lead to misleading results; 2) Splitting the number of samples in the cross-
validation procedure influences the maximum number of components which can be retained.
It should be noticed that the number of features to retain has only a limited influence on the
final classification accuracy, as it is shown in Fig. 2.2.

Preliminary experiments have shown that the smallest and biggest values of ICs are not useful,
because they do not contain enough information or they have redundant features. In order
to avoid a large computational time, the range investigated was [10-30] in the case of ROSIS
and AVIRIS Hekla data sets, [10-19] for the AVIRIS Indian Pine and [3-9] for the HYDICE
data set (as explained earlier in this section, the maximum number of components which can
be selected depends on the rank of the covariance matrix obtained from the training samples
of each class). This way, a finer step can be used, avoiding too much computational effort.

2.4.3 Performance analysis

Table 2.3 presents a comparison between the results obtained by the SVM (applied to
the full feature space, where all the original spectral bands were considered) and the ICDA
(with the proposed method to choose the number of IC’s). The comparison is in terms of
overall accuracy (OA), that is the number of correctly classified test samples with respect
to the total number of test samples, average accuracy (AA) and the Kappa coefficient of
agreement (x). In all the considered data sets, the Kappa coefficient of agreement provided
by the ICDA is better in terms of accuracy than the corresponding result for SVM. The
ROSIS data set gives the only case where the average class accuracy of SVM is higher than
ICDA. In the three experiments where multiple training sets were considered, the standard
deviation was also computed. In two cases, the standard deviation obtained with the SVM
was smaller than for the ICDA. That happened for the AVIRIS Indian Pine and the HYDICE
data set, where very small training sets were selected. The best results were obtained with
a number of independent components retained which was varying for the different training
sets. Due to the small number of training samples, large variations were seen according to the
number of IC retained, also for small differences, thus leading to a higher value of standard
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Table 2.2: Statistical significance of the differences between the two classifiers. The first three
columns represent how many times SVM was performing significantly better, there were no
statistical differences, and ICDA was performing better. Differences are considered significant
if |Z| > 1.96

SVM better | No stat. differences | ICDA better || Mean Z
ROSIS data set

0 0 1 -7.66

AVIRIS Indina Pine data set

0 0 10 -13.20
AVIRIS Hekla data set
0 0 10 -10.83

HYDICE data set

0 1 9 -8.59

deviation. This phenomenon was less important for the AVIRIS Hekla data set due to the
larger number of training samples selected. As an example, Figures 2.3 and 2.4 show some
classification maps obtained with the SVM and with ICDA.

It has been observed in [81] that the comparison of two classification results in terms of
overall accuracy may be inappropriate, being explicitly based on an assumption that the two
sets considered are independent. This is not true in our experiments, where the samples used
for the training and test process of the two different classifications, are exactly the same. In
order to better evaluate the statistical significance of the difference between ICDA and SVM,
McNemar’s test was performed, which is based upon the standardized normal test statistic:

P fi2 — fa1 (2.13)

V2 — fa

where fio indicates the number of samples classified correctly by classifier 1 and incorrectly
by classifier 2. The difference in accuracy between classifiers 1 and 2 is said to be statistically
significant if |Z| > 1.96. The sign of Z indicates whether classifier 1 is more accurate than
classifier 2 (Z > 0) or vice versa (Z < 0). This test assumes related test samples and thus
is adapted to the situation at hand since the training and test sets were the same for each
experiment. The results of McNemar’s test [81] are shown in Table 2.2, and confirm the
conclusions of previous experiments.

Finally, the computational burden of SVM and ICDA was investigated. The processing
time of SVM quadratically depends on the size of the training set, and it is longer where
a large number of training samples is used. In opposite, ICDA has a very short training
time, due to the fast computation of density estimations of the training samples, and a
longer testing time, because these densities has to be calculated for each of the test samples.
Figure 2.2 shows in the third column how the processing time of ICDA varies according to the
number of Independent Component retained. As could be expected, SVM is computationally
less demanding than the ICDA when considering data sets with small or very small number
of training samples. The opposite situation occurs when medium/large training sets are
available; as in the case of ROSIS or AVIRIS Hekla data sets.



ROSIS Data Set

AVIRIS Indian Pine

AVIRIS Hekla

HYDICE Washington

Approach ‘ SVM ‘ ICDA SVM ICDA SVM ICDA SVM ICDA
OA 81.01% | 82.14% | 56.42 + 1.45% | 64.98 + 2.10% | 90.39 + 1.17% | 94.22 + 0.31% | 94.78 &+ 1.00% | 97.23+ 1.46%
Kappa coef. | 75.86% | 77.38% | 50.99 + 1.35% | 60.80 + 2.20% | 88.96 + 1.31% | 93.32 4+ 0.36% | 92.37 + 1.44% | 95.95+ 2.12%
AA 88.25% | 87.48% | 70.10 +£ 0.87% | 76.15 + 1.02% | 90.37 + 0.71% | 92.28 + 0.50% | 93.62 + 1.15% | 94.71+ 1.93%
Class 1 84.93% | 76.40% 84.44% 83.33% 88.36% 96.92% 96.38% 97.79%
Class 2 70.79% | 77.74% 36.79% 55.97% 87.25% 95.14% 99.16% 92.61%
Class 3 67.16% | 77.42% 40.67% 51.61% 88.24% 94.19% 96.79% 94.48%
Class 4 97.77% | 98.07% 72.31% 78.80% 84.94% 96.54% 98.41% 99.95%
Class 5 99.46% 100% 80.40% 84.87% 93.33% 86.11% 98.23% 98.15%
Class 6 92.83% | 88.86% 78.93% 92.53% 94.24% 98.56% 81.85% 88.73%
Class 7 90.42% | 91.35% 95.38% 96.15% 87.54% 96.06% 84.48% 90.69%
Class 8 92.78% | 82.02% 76.11% 90.43% 91.69% 79.54% - -
Class 9 98.11% | 95.35% 100% 100% 85.88% 87.29% - -
Class 10 - - 53.80% 57.25% 74.20% 80.20% - -
Class 11 - - 39.73% 49.78% 100% 100% - -
Class 12 - - 49.12% 60.07% 97.59% 98.19% - -
Class 13 - - 91.42% 99.15% - - - -
Class 14 - - 81.31% 92.30% - - - -
Class 15 - - 47.05% 51.89% - - - -
Class 16 - - 94.11% 90.53% - - - -
Pr. time 240 m 53 m 580 s 420 s 20 m 12m 36 s 66 s
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2.5 Conclusions

The incorporation of Independent Component Analysis into a Bayesian classifier frame-
work was presented in this chapter as a possible alternative for the classification of hyper-
spectral images. By minimizing all the statistical dependencies up to the fourth order, the
approach Independent Component Discriminant Analysis gives the possibility to estimate
the multivariate densities as the product of univariate. Experiments have been carried out
on four different real data sets. The results of the experiments showed the effectiveness of
ICDA, which provided better results than one of the state-of-the-art hyperspectral classifier,
the SVM. Moreover, ICDA presents several other advantages: i) its Bayesian nature allows
the integration of any kind of prior information in the classification process, as long as they
can be stated as a probability function; ii) it is suitable to be used jointly with spectral-spatial
techniques recently developed for SVM [15,46].

Although the classification accuracy obtained by the ICDA is influenced by the number of
components retained after applying ICA, this choice is not critical, since there is a large region
around the optimal number for such accuracy for which ICDA has similar results and out-
performs SVM in terms of classification accuracy. Moreover, a simple and effective technique
to choose the number of components to retain was proposed, providing results significantly
better than the SVM. The computational burden of ICDA is smaller with respect of the SVM
when a medium/large amount of training samples is available. The SVM is computationally
less demanding for small training sets, but in such cases time is not a critical issue.

The results obtained in this chapter suggest that Independent Component Analysis is an
effective tool for the representation of the spectral information contained into hyperspectral
remote sensing data, and the statistical properties of the method can be effectively exploited
to build a state-of-the art classifier. Further developments of this work lead to the investi-
gation of the possibility to incorporate contextual information present in the image, in order
to further improve the classification accuracy of thematic maps: Is it possible to exploit the
advantages offered by ICA integrating the complementary information provided by spatial
structures? The issue will be investigated in Chapter 3.
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Figure 2.2: Comparison of Kappa coefficient of agreement (first column), average class accu-

racy (second) and classification processing time (third) obtained with SVM (by considering
all the original spectral bands) and ICDA, with respect to different number of independent

components retained, for the four considered data sets. The rows correspond respectively to:
ROSIS, AVIRIS Indian Pine, AVIRIS Hekla and HYDICE data set.
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Figure 2.3: (a) Ground truth of the ROSIS data set (b) Classification map obtained with the
SVM (c) Classification map obtained with the ICDA.

Figure 2.4: (a) Ground truth of the AVIRIS Indian Pine data set (b) Training set n.3 (c)
Classification map obtained with the SVM (d) Classification map obtained with the ICDA.



Hekla Data Set

PCA (2) PCA (4) PCA (20) LDA (11) ICA (2) ICA (4) ICA (20)
OA | 81.03 £ 2.05 | 80.76 + 2.89 | 82.12 £+ 3.18 | 56.90 + 28.33 | 81.06 + 2.23 | 81.13 4+ 2.98 | 82.03 £ 2.95
AA | 7297 £ 3.11 | 75.63 £ 3.93 | 80.60 + 4.19 | 57.91 + 27.45 | 72.97 £+ 3.36 | 75.71 + 4.26 | 80.56 + 4.20
k| 78.02 £245 | 77.86 & 3.32 | 79.59 £+ 3.63 | 52.99 £ 29.33 | 78.86 £ 2.59 | 78.28 4+ 3.43 | 79.41 £ 3.38
AVIRIS Indian Pine
PCA (4) PCA (31) PCA (101) LDA (15) ICA (4) ICA (31) ICA (101)
OA | 62.36 £ 1.85 | 59.42 + 2.67 | 50.04 £2.32 | 9.82 £5.61 | 45.38 £ 3.45 | 62.13 & 2.00 | 65.48 £ 1.28
AA | 7421 £1.10 | 73.86 + 1.88 | 67.01 + 1.66 | 22.74 + 1.59 | 58.35 £+ 1.83 | 74.09 + 1.77 | 78.12 £ 1.02
k| 57.94 £1.97 | 54.78 & 2.86 | 44.52 £ 2.50 | 3.17 £ 0.37 | 39.22 £ 3.40 | 57.73 £ 2.25 | 61.41 £ 1.36
HYDICE Washington
PCA (24) PCA (47) PCA (-) LDA (6) ICA (24) ICA (47) ICA (-)
OA | 85.80 + 2.42 | 82.02 £+ 4.61 - - 84.00 £ 3.80 | 82.95 &+ 4.70 -
AA | 7845 £ 4.69 | 78.23 £ 6.39 - - 78.55 £ 3.99 | 78.32 + 6.92 -
k| 79.41 £+ 3.65 | 74.68 + 5.99 - - 77.31 +£4.93 | 75.52 + 6.62 -
ROSIS data set
PCA (4) PCA (15) PCA (44) LDA (8) ICA (4) ICA (15) ICA (44)
OA 70.19 76.43 73.21 77.67 69.95 76.29 73.33
AA 80.37 85.16 84.12 84.48 79.84 85.46 84.01
K 63.2 70.74 67.12 71.96 61.34 70.60 67.22
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Chapter 3

Integration of Spectral and Spatial
Information

Abstract

The combination of spectral based feature reduction technique and a spatial feature extraction
method is presented in this chapter. The good results provided by performing dimensionality
reduction with Independent Component Analysis are integrated with Extended Morphological
Attribute Profiles, which allow the extraction salient features from the data. Several spatial
features were tested, showing complementary results for the different data sets tested. Two
techniques which allow to exploit the all information provided by the different filters are also
proposed, providing an overall improvement of the classification accuracy.
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3.1 Introduction

Pixel-wise classification is the most used tool when trying to understand land cover with
hyperspectral imaging. As stated in the introduction of Chapter 2, a number of techniques
based on only the spectral content of the pixels were recently proposed, with or without
a pre-processing step to reduce dimensionality of the data and mitigate problems related
to overfitting. Pixel-wise classification enables an accurate characterization of the observed
scene considering only the spectral information, especially in case of "good classification
conditions" (number of training samples representative of the land cover classes, low amount
of noise at the sensor). However, the contextual information provided by spatial features
could be very important to improve the classification accuracy when these conditions are not
verified.

The importance of contextual information can be seen by performing a simple toy experiment
(Fig. 3.1). Figure 3.1 (a) shows a band of a hyperspectral image, while Figure 3.1 (b),
illustrates the same area, after the pixels have been randomly relocated. All the spectral
information is preserved in the latter image, but the contextual information is lost. If one
should declare which image contains more information, the intuitive answer would be for sure
3.1 (a). However, if trying to classify the two images with a pixel-wise classifier under the
same conditions of training, the results in terms of overall accuracy would be exactly the
same.

This simple example gives an idea of the quantity of information which is missed when using
non contextual classifiers. The exploitation of spatial characteristics can be very important
for improving accuracy, especially in the following cases:

e Noisy images: when a large quantity of noise corrupts a hyperspectral image, the
classification based only on spectral information could lead to a high error rate. The
use of contextual information could help avoid errors [82].

e Images with very high spatial resolution. It was proven that images with very high
spatial resolution are more sensitive to outliers (that are, pixels with anomalous values of
reflectance, which could be referred to direct reflectance rather than to sensor problems).
Also in this case, the exploitation of the neighboring pixels information can be helpful
for avoiding mistakes during the classification process [51].

e More generally, all the remote sensing images characterized by clear spatial structures,
can have a benefit when using spatial based techniques [83].

The exploitation of the spatial information is very important for the classification of high

resolution hyperspectral images, especially when considering urban areas and it is advisable
to consider geometrical features in the analysis in order to derive spatially accurate maps [84].
As a matter of fact, typical land cover classes present in urban images are characterized by
complementary spatial features. For example, classes like road will be likely to have an elon-
gated shape, while building and grass fields will probably be characterized by rectangular
shapes.
In this chapter, we propose a new classification chain to integrate the characteristics provided
by Independent Component Analysis with the contextual information extracted by Morpho-
logical Attribute Filter. As shown in the previous chapter, ICA maximizes the information of
the projected data contained in the original hyperspectral image, thus being attractive also
when very few components are considered. The use of Attribute Profiles allows to extract
several complementary spatial features from the image.
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Figure 3.1: Contextual information: (a) A single band of a hyperspectral image (b) The same
image, after a random shuffling of the pixels.

3.2 Related works

The spatial characteristics of the objects in the image can be modeled with several ap-

proaches. A number of techniques were proposed in the last years, based on clustering
techniques [85], spectral spatial kernel [86|, minimum spanning forest [46], conditional ran-
dom fields [87], and many others.
A widely used technique for extracting spatial features is based on mathematical morphol-
ogy [15]. Among all the operators belonging to this framework, morphological connected
operators [52] have proven to be suitable for extracting spatial information while preserving
the geometrical characteristics of the structures in the image (i.e., without distorting the bor-
ders). In [88]|, Morphological Profiles (MPs), a sequence of multi-scale connected operators,
were applied to high resolution hyperspectral images by reducing the high dimensionality
of the data by a Principal Component Analysis (PCA), and computing the profiles on the
highest ranked principal components according to the size of the eigenvalues (leading to the
definition of Extended Morphological Profiles, EMPs). Due to the limitations of PCA, when
extracting information sources from high dimensional data, it was proposed to perform an
Independent Component Analysis (ICA) before the computation of the MPs [28].

Analogously to the definition of EMP, the EAPs are obtained by computing Attribute
Profiles (APs) [51] to the first principal components extracted form a hyperspectral image.
The characterization of the spatial information obtained by the application of a MP is par-
ticularly suitable for representing the multi-scale variability of the structures in the image
but it is not sufficient to model other geometrical features. To avoid this limitation, the use
of morphological attribute filters instead of the conventional operators based on the geodesic
reconstruction was proposed |51|. The application of attribute filters in a multi-level way
leads to the definition of Attribute Profiles (APs), which permit to model other geometrical
characteristics rather than the size of the objects. Moreover, APs show interesting character-
istics when extended to hyperspectral images [21]. In greater details, analogously to [88], the
APs were applied to the first principal components extracted from a hyperspectral image,
generating an Extended Attribute Profile (EAP).

The aim of this chapter is to extend the work presented in [89] by presenting a technique
based on Extended Attribute Profiles and Independent Component Analysis. Moreover, two
approaches are investigated for combining the information extracted by EAPs computed with
different attributes.
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The chapter is organized as follows. In Section 3.3 the proposed classification technique
based on ICA and EAPs is presented. The experimental results are illustrated in Section 3.4.
Finally, conclusions are drawn in Section 3.5.

3.3 Proposed Classification Technique based on EAPs and ICA

The proposed approach is in two steps. In a first step, relevant spectral information
is extracted from the image and concentrated into few components. Then, each retrieved
components is analyzed by mean of attribute profiles to extract salient spatial information.
Extended Attribute Profiles (EAPs) are based on the concept of the Attribute Profile (AP),
which is a generalization of the widely used Morphological Profiles (MPs) [21]. Analogously
to the definition of the extended morphological profiles, EAPs are generated by concatenating
many APs computed on the components extracted by a PCA |51]|. Conversely, in the proposed
technique, the APs are computed on the ¢ independent components (ICs) extracted by a ICA
transformation applied to a multivariate image (e.g., the hyperspectral image):

EAP = {AP(IC), AP(IC), ..., AP(IC.)}. (3.1)

The AP is an extension of the MP, obtained by processing a scalar grayscale image f, ac-
cording to a criterion 7', with n morphological attribute thickening, (¢7) and n attribute
thinning (77 operators, instead of the conventional morphological filters by reconstruction:

AP(f) ={n (s foreim ()} (3.2)

Attribute filters are connected operators which operate on the connected components (i.e.,
regions of iso-intensity spatially connected pixels) that compose an image, according to a
given criterion [52|. In general, the criterion compares the value of an arbitrary attribute, attr
(e.g., area, volume, standard deviation, etc.) measured on the component C' against a given
reference value A\ (which is the filter parameter), e.g., T'(C) = attr(C) > A. If the criterion is
verified then the regions are kept unaffected, otherwise they are set to the graylevel of a darker
or brighter surrounding region, according to if the transformation performed is extensive (i.e.,
thickening) or anti-extensive (i.e., thinning), respectively. When the criterion considered in
the analysis is increasing (i.e., if it is verified for a connected component then it will be also
verified by all the regions brighter or darker, according to the transformation, including the
component) the attribute thinning and thickening operators are actually opening and closing
transformations. Non-increasing criteria do not have a unique definition when considering
grayscale images. In fact, different effects can be obtained by the operators with a non-
increasing criterion according to the filtering rule selected [90].

Attribute filters can be efficiently computed by taking advantage of the representation of the
input image as a rooted hierarchical tree of the connected components of the image. The tree
is obtained by the Max-tree algorithm [90]. The approach based on this data representation
is especially useful when computing an AP, since the image is converted to the tree only
once (this is the most demanding stage of the filtering) and processed several times with
the different criteria. An example of Extended Attribute Profiles computed on the first
independent component of the ROSIS University data set can be seen in Fig. 3.2

3.3.1 Approaches to Deal with Multiple EAPs

The choice of the most suitable attribute and range of thresholding values (As) for extract-
ing the information on the geospatial objects is certainly a complex task, especially when a
piori information on the scene is not available. A possible approach attempting to overcome
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Figure 3.2: Examples of Extended Attribute Profiles computed on the first independent
component of the ROSIS data set. Image at the top: first independent component. The four
following rows correspond respectively to: area, diagonal of the bounding box, moment of
inertia of Hu, standard deviation profile.
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this issue relies on the computation of EAPs with different kinds of attributes. However,
this leads to the problem of properly exploiting, in the analysis, the different information
extracted by the computed EAPs.

A straightforward approach would be to simply consider two or three filters, together (for
example, the two attribute filters providing the best classification accuracy in terms of per-
centage). In order to exploit the information of all the filters, we then proposed the Stacked
Vector Approach (SVA), which combines the EAPs by concatenating them in a single vector
of features (also called Extended Multi-Attribute Profile, EMAP [21]), see Fig. 3.3 (a).
However, even if complementary information can be extracted by considering different at-
tributes, great redundancy is present in the features extracted. Thus, it is advisable that a
classification algorithm with excellent penalization capability is used for classifying the fea-
tures in order to handle the increased dimensionality.

Another approach is the Fusion Approach (FA) that is based on the separate classification
of each EAP and on the fusion of the results obtained by the independent classifiers in order
to generate the final decision map, see Fig. 3.3 (b). In comparison to the SVA, the FA keeps
low the dimensionality of the data and increases the robustness of the results, especially if
the different EAPs generate complementary errors.

In this work, an SVM classifier is considered with the One Against One (OAQO) multiclass
strategy. The fusion rule considered when combining the results of the single classifiers relies
on the sum the votes of the classifiers applied to the four MPs, assigning each pixel to a class,
according to the majority voting scheme. The illustration of this method is shown in greater
detail by Fig. 3.4. Obviously, other decision criteria can be applied. The proposed approach
represents however a good trade-off between the simplicity of the fusion rule and the result
granted by the fusion technique.

3.4 Experimental Analysis

The experimental analysis was carried out on two hyperspectral images acquired over
the city of Pavia (Italy) by the ROSIS-03 (Reflective Optics Systems Imaging Spectrometer)
hyperspectral sensor. The two images have geometrical resolution of 1.3 m. The first one
shows the university campus (610x340 pixels) while the second one was acquired on the city
center (1096x489 pixels). In the following we will refer to the two data sets as "University"
and "Center" respectively. The original data are composed of 115 spectral bands, ranging
from 0.43 to 0.86 pum with a band of 4 nm. However, noisy bands were previously discarded
leading to 103 and 102 channels for the two images respectively. Nine thematic land-cover
classes were identified in the university campus: Trees, Asphalt, Bitumen, Gravel, Metal
sheets, Shadows, Self-blocking Bricks, Meadows, and Bare soil. For this data set, a total of
3921 and 42776 pixels were available as training and test sets respectively. In the center area
the thematic classes found were: Water, Tree, Meadow, Self-blocking Bricks, Soil, Asphalt,
Bitumen, Tile, and Shadow. The training and test sets for this data set were composed of
5536 and 103539 samples, respectively. The true color representation of the images and the
test sets taken as reference are shown in Fig. 3.5. A detailed description of the two data sets
can be found in the Appendix A.

In the analysis carried out, all the samples of the training set were used for the University
data set while for the Center data sets, only 50 samples (randomly chosen from the full
training set for each class) were considered. All the experiments conducted on the latter data
set were run ten times with a set of different training samples each time. From both the
two hyperspectral images four components extracted by PCA and ICA were considered. The
first four PCs contain more than 99% of the total variance of the data for both the data sets.
The components were rescaled to the range [0,1000] and converted to integer in order to be
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Figure 3.3: Proposed approaches for dealing with multiple EAPs (for further information on
the definition of the EAPs please refer to [21]). (a) Stacked Vector Approach (SVA) and (b)
Fusion Approach (FA).
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Figure 3.4: Fusion Approach, based on 1lvsl SVM classification. Each attribute filter is
classified separately; at the end of the process the matrices of votes are summed in order to
compensate the results.

Thematic classes for the University: Thematic classes for the Center:
B trees [ asphalt Bl bitumen [l water I trees [ asphalt
3 gravel Bl metal sheets 1 shadows M bricks [ bitumen B tiles
I meadows I bricks Bl bare soil [ shadows B meadows Bl bare soil

Figure 3.5: ROSIS Pavia data sets: True color representation and Test set for (a,b) University
and (c,d) Center.
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processed by the attribute filters. Four EAPs were computed by considering four different
attributes on the components extracted by PCA and ICA:

i) a, area of the regions (A, = [100 500 1000 5000]);

)
ii) d, length of the diagonal of the box bounding the region (Ay = [10 25 50 100]);
iii) 4, first moment invariant of Hu, moment of inertia [91] (A; = [0.2 0.3 0.4 0.5]);

)

iv) s, standard deviation of the gray-level values of the pixels in the regions (A\s = [20 30
40 50)).

The values of \ were selected by a preliminary analysis on the data in order to cover
uniformly the range of values assumed by the connected components in the investigated
images.

The area and the length of the diagonal of the bounding box extract information on the
scale of the objects. The moment of inertia and the standard deviation are not dependent on
the size dimension but they are related to the geometry of the objects and the homogeneity
of the intensity values of the pixels, respectively. Each EAP is 36-dimensional, i.e., it is
composed of four APs with 9 levels computed on each component extracted. In the sequel,
the notation EAP 4, denotes the EAP built with the attr attribute. The classification maps
are obtained by analyzing the features extracted by the extended profiles with an SVM
classifier with RBF kernel. The model selection in the training phase of the classifier was
based on a gradient descent method, which proved to be computationally less demanding
than the exhaustive investigation of the parameters on a grid approach, giving comparable
results [92]. Gradient descent SVM was chosen due to its computational efficiency and good
results in terms of classification accuracy. Moreover, the possibility to implement a 1vsl
approach led to the possibility of development of multi-filter Fusion Approach.

The thematic accuracies of the obtained maps (which are presented in Tables 3.1 and 3.2)
were assessed by computing the Overall Accuracy (OA), the Average Accuracy (AA) and the
Kappa coefficient (K) on the available reference data. The AA is computed by averaging
the values of Producer Accuracy for the thematic classes. The statistical significance of the
classification maps obtained by PCA and ICA and the same morphological processing was
evaluated with the McNemar’s test. All the results were statistically significant.

The obtained results are reported in Table 3.1. It is clear as, in most of the cases, by including
the features extracted by the EAPs in the analysis resulted in higher accuracies (up almost
17% of OA) than those obtained by considering only the spectral features. The ICA proved
to extract more informative components from the data, leading to better results than those
generated by the PCA in all the experiments. When considering the contribution of the single
EAPs, the EAPs built with area and the moment of inertia attributes performed the best
with the PCA and ICA, respectively. This proves how it can be difficult to select a priori
the most suitable attribute on the data. In these experiments, considering all the EAPs to-
gether, in the SVA architecture, with the ICA gives excellent results in terms of classification
accuracies. At the author best knowledge, these accuracies are higher than all those reported
in the literature for this data set without post-processing (see for example [46, 84,85, 93],
where the best results obtained in terms of s coefficient correspond to 91.48% and in terms
of Average Class Accuracy to 94.39%). In contrast, the SVA approach led to low accuracies
for the PCA. This can be due to the high variation in terms of accuracy showed by the single
EAPs (more than 20% of OA), which affects the overall performances of this approach. The
FA is performing well in average and has a robust behavior since in all the experiments the
accuracies obtained, when compared to those of the single EAPs, are slightly lower than the
best case (less than 2% of OA) and better than all the others. Considering the ICA instead
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of the PCA led to a significant improvement of the class accuracy up to more than 30% and
20% (class Gravel) for the SVA and FA approaches, respectively. The improved accuracies
obtained by the proposed technique are also confirmed by the higher precision shown in the
map obtained when considering the ICA and all the EAPs together (see Fig. 3.6¢). The
results presented in Table 3.1 and Fig. 3.6 were also presented in [89].

Table 3.2 reports the thematic accuracies obtained on the Center data set. Similar consider-
ations as for the University data set can be drawn. For this data set also, it is evident the
importance of including the spatial information, which led to an increase in terms of accuracy
with respect to considering the original hyperspectral data or the components obtained from
the dimensionality reduction technique. The best overall accuracy obtained by using the
EAPs, is higher of about 2% than those obtained by the original spectral features and the
first components. Considering the PCA and ICA transformations, the latter leads to the best
results in most of the cases (except for the single components extracted and for the EAP).
When looking at the performances obtained by considering the spatial features extracted by
the EAPs, one can see that the EAP with area attribute outperformed the other single EAPs
with PCA, while when considering the ICA the choice of the standard deviation performed
the best among the single EAPs. Moreover, when considering the SVA strategy resulted in
the best accuracies with the ICA preprocessing (which is slightly worse than the best EAP).
Again, the FA led to results over the average of the accuracies obtained by the single EAPs.
Several combinations of filters were also tested. The results, shown in Tables 3.3 and 3.4,
suggest that considering only the two or three filters providing the best results do not provide
any significant improvement in terms of classification accuracy, if compared to the multi-filter
approaches proposed in this work.

3.5 Conclusion

In this chapter, we have combined spectral feature reduction with spatial feature extrac-
tion to add contextual information during the classification process and further improve the
classification results which can be obtained by using Independent Component Analysis.

In greater details, from the hyperspectral image some independent components are extracted,
and different attribute profiles are computed for each one, leading to extended attribute pro-
files. The features obtained by the morphological processing are then classified with an SVM
classifier. Two approaches were proposed for considering the features extracted by the differ-
ent EAPs, one based on the concatenation of the EAPs and one based on the fusion of the
classification results obtained on the single EAPs. The experimental results obtained on real
hyperspectral data sets proved that the preprocessing of the hyperspectral data carried out
with ICA is more suitable than the PCA for modeling the different sources of information
present in the scene. Moreover, from the experiments and results, it was evident how impor-
tant the spatial features extracted by the EAPs are for classification. The concatenation of
the different EAPs gave excellent results in terms of classification accuracies (with respect to
other works present in the literature on these data sets). This approach did not perform well
only in one case with the PCA, i.e., when the single EAPs led to results significantly different
one to the other. (range of difference in the overall accuracies greater than 20%). However,
this effect did not occur with the ICA, where the obtained results were more uniform and all
statistical significant (according to the McNemar’s test). The approach based on the fusion of
the classification results with the majority voting strategy proved to have a robust behavior
leading to accuracies slightly lower than those of the best case obtained with a single EAPs
but better than all the others. The proposed technique proved the importance of including
the spatial information in the analysis of high resolution hyperspectral images. Even the
increase of the number of features produced by considering the EAPs was not an issue due
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Table 3.1: ROSIS University data set. Classification accuracies obtained according to the
described scheme. The first 4 columns represent the results of SVM applied to the single
EAPs. All means that the SVM is applied to the data obtained considering the outputs
of the four filters, together. Fusion is obtained with the sum of the votes of the first four
classifiers. The best results obtained for each dimensionality reduction method are underlined.
The best results by comparing PCA vs. ICA are in bold.

‘ Original ‘ 4 Comp. ‘ Area Diagonal Inertia Std ‘ All Fusion
Feat. | 103 [ 4 | 36 36 36 36 | 144 (144)
Principal Component Analysis

OA (%) 77.89 72.92 90.00 85.42 69.80 86.56 77.81 89.21

k (%) 72.34 66.25 87.06 81.24 63.22 82.82 71.08 86.06
AA (%) 85.78 81.55 92.04 89.55 82.48 91.15 86.84 92.04
Asphalt 7829% | 79.51% | 95.23%  89.26%  83.32% 91.57% | 88.34%  93.45%
Meadow 67.79% | 61.72% | 85.91%  80.84%  51.09%  79.91% 60.60%  85.06%
Gravel 60.21% | 51.50% | 57.12%  62.65%  54.69% 69.56% | 59.27% = 64.32%
Trees 98.47% | 97.91% | 99.71% 99.22%  95.46% 98.89% | 98.76%  99.41%
Metal Sheet | 99.48% | 99.48% | 99.70%  99.70%  99.26%  99.70% 99.70%  99.78%
Bare soil 86.68% | 73.29% | 92.62% 81.05% 77.73% 91.85% | 86.56% 89.76%
Bitumen 89.70% | 81.81% | 99.25% 97.37%  96.84%  97.82% 98.65%  99.02%
Bricks 91.50% | 88.86% | 98.89%  95.87%  89.84%  91.12% 92.94%  97.61%
Shadow 99.89% | 99.89% | 99.89%  100% 94.09%  99.89% 96.73% 100%

‘ ‘ Independent Component Analysis

OA (%) 77.89 74.64 91.26 87.94 93.57 87.69 94.47 91.69
Kk (%) 72.34 68.22 88.55 84.31 91.63 84.14 92.80 89.13
AA (%) 85.78 77.18 92.36 91.72 95.73 90.92 96.58 94.11
Asphalt 78.29% | 80.64% | 90.53%  90.54% 92.61%  90.05% | 92.84%  92.35%
Meadow 67.79% 64.63% | 91.37% 85.30% 90.96% 83.68% | 91.92% 90.42%
Gravel 60.21% 58.17% | 69.03% 85.23% 91.09% 66.89% 90.00% 85.71%
Trees 98.47% | 97.68% | 99.58%  98.86%  98.04% 97.52% | 99.54%  99.38%
Metal Sheet | 99.48% | 99.63% | 99.85% 99.85% 99.93% 99.85% | 99.93% 99.85%
Bare Soil 86.68% | 72.80% | 84.91%  74.21%  95.70% 88.79% | 97.91%  83.08%
Bitumen 89.70% 82.93% 98.95%  97.72% 99.32% 97.82% | 99.10%  99.02%
Bricks 91.50% 88.73% 98.75%  97.80% 99.00% 94.43% | 99.19% 98.48%
Shadow 99.89% | 99.58% | 98.20%  95.78%  95.56% 99.37% | 98.84%  99.47%
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Figure 3.6: ROSIS Pavia University data set. Classification maps obtained by: (a) PCA with
area attribute (EAP,), (b) PCA with FA, (c) ICA with SVA, and (d) ICA with FA.
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to the robustness of the SVM classifier. The results obtained by the proposed method has
shown to be the most accurate, when compared to the spectral-spatial classification tech-
niques recently proposed in the literature [46,84,85,93]. Moreover, since the use of attribute
filters allows to obtain a representation of the image based on complementary characteristics,
there is a high generalization capability in the proposed method, which is expected to show
interesting results also in a different context with respect to the one analyzed in this chapter
(urban area with very high spatial resolution).

As a matter of fact, spectral feature reduction and spatial feature extraction have proven to
be suitable methods to improve the classification accuracy of hyperspectral images. However,
a problem which was not address is the influence of low spatial resolution, which lead to the
presence of mixtures of materials in the scenes. The second part of this thesis will explore
the possibility to use sub-pixel information for a better representation of hyperspectral data
affected by such problem.
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Table 3.3: ROSIS University data set. Classification accuracies obtained with different com-

bination of filters

Principal Component Analysis
Area+Std  Area+Diago  Area+Diago+Std
OA (%) 90.25% 88.87% 89.46%
k(%) 87.33% 85.65% 86.33%
AA (%) 91.98% 91.58% 91.84%
‘ Independent Component Analysis
Area+Diago Area+Inertia Area+Diago+Std
OA (%) 90.86% 95.00% 94.09%
k(%) 87.98% 93.47% 92.30%
AA (%) 92.86% 96.77% 96.31%

Table 3.4: ROSIS Center data set. Classification accuracies obtained with different combi-

nation of filters

Principal Component Analysis

Area+Std  Area+Diago Area+Diago+Std
OA (%) | 98.52 + 0.19  98.32+ 0.21 98.45 + 0.21
k(%) | 97.46 £ 0.30 97.12+ 0.36 97.34 + 0.35
AA (%) | 97.24 £ 0.32 97.10+ 0.34 97.25 + 0.34
‘ Independent Component Analysis
Area+Diago  Area+Std  Area+Diago+Std
OA (%) | 98.54 + 0.15 98.66 + 0.17 98.65 + 0.15
k(%) | 97.50 £0.26 97.70 + 0.28 97.68 £+ 0.25
AA (%) | 97.36 = 0.23 97.50 £+ 0.32 97.52 + 0.27
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Chapter 4

Spectral Unmixing for Dimensionality
Reduction

Abstract

In this chapter, new feature reduction chains making use of sub-pizel information are proposed.
Feature reduction techniques have proven to be useful to solve the curse of dimensionality and
to improve the performances of supervised classification algorithms. However, they do not
handle the presence of mized pizels, that are pizels containing more than a single land cover
class, caused by low spatial resolution of satellite images. Mized pizels are a major issue
related to satellite hyperspectral data, and can severely affect classification accuracy. In order
to address the problem, the possibility to exploit sub-pizel information provided by spectral
unmizing methods s investigated in this chapter.
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4.1 Introduction

The first part of this thesis was devoted to the investigation of classical dimensionality
reduction techniques, and the possibility to use them for addressing issues affecting supervised
classification of hyperspectral images. The techniques presented in the first three chapters
adequately address the curse of dimensionality, and can be usefully proposed to alleviate
problems connected to the unfavorable ratio between number of samples used for training a
classifier and the dimensionality of the analyzed data.

However, the other major issue related to hyperspectral images, which is the low spatial
resolution affecting satellite images, due to physical constraints and to the trade-off which is
generally observed between spatial and spectral resolution, is not addressed. In the second
part of this thesis, the issue related to low spatial resolution are addressed. Figure 4.1
illustrates the problem connected with low spatial resolution. Every pixel of the image is
characterized by a single spectral signature; This signature however is often composed by the
mixture of several material spectral signatures [94|. Algorithms which do not consider such
a limitation could be severely affected in terms of classification accuracy.

The objective of this chapter is to propose methods performing dimensionality reduction,
by exploiting sub-pixel information contained in the image. These methods could provide
two main advantages, that are the improvement of discrimination capability when analyzing
highly mixed scene, as often happens with medium spatial resolution satellite images, and
the possibility to obtain features with a physical meaning.

In many studies, hyperspectral analysis techniques are divided into full-pixel and mixed-
pixel classification techniques [14,93,94|, where each pixel vector defines a spectral signature
or fingerprint that uniquely characterizes the underlying materials at each site in a scene.
All the feature reduction/extraction techniques presented in the first part of this thesis are
full pixels techniques. Full-pixel classification techniques assume that each spectral signature
comprises the response of one single underlying material. Often, however, this is not a realistic
assumption [5]. There are several reasons that may cause the appearance of mixed pixels:

e [f the spatial resolution of the sensor is not fine enough to separate different pure signa-
ture classes at a macroscopic level, several signatures can contribute to the reflectance
value of a single pixel, and the resulting spectral signature will be a mixture of the
individual pure spectra, often called endmembers in hyperspectral imaging terminol-

ogy [95].

e The Point Spread Function of the sensors, also in the case of advanced technology,
makes happen that a pixels will have contribution from its surrounding areas [96].

e When geological or mineral covered scenes are analyzed, there will be a probability of
mixtures at a microscopic level, also called intimate mixtures [97].

The presence of mixed pixels is not a minor issue when performing supervised classifica-
tion [98]. If a pixel is a mixture of two (or more) land cover classes, its statistical character-
istics will be different from the classes which it includes. The classification accuracy can be
therefore severely affected in this case, if using traditional full pixel methods for dimension-
ality reduction, as PCA or ICA shown in the first part.

In this chapter, we explore an alternative strategy focused on the use of spectral unmixing for
feature extraction prior to classification. The use of spectral unmixing, and sub-pixel scale
information, allows to better represent mixtures of classes.

The analysis of sub-pixels information to obtain fractional abundances maps of land cover
classes was extensively investigated since the first research carried out on spectral unmixing.
Spectral unmixing has been used in a large field of applications, such as cloud screening [99],



CHAPTER 4. SPECTRAL UNMIXING FOR DIMENSIONALITY
80 REDUCTION

Hyperspectral sensors measure
the spectrurm of the light
reflacted at each pixel

Reflactance

- Components of Spectrum

f ‘. _I. Green ‘egetation
+
‘l . Diry Wegetation
+

il s
+

1.9 pm
e nl Kaolinite

{NEMO Project Office, United States Nawvy)

0.4 pm 2.8 prm
Wiawvelength

Figure 4.1: Tllustration of the mixed pixels problem. When the spatial resolution is not fine
fine enough, mixture of materials can be found in the same pixel. Also in case of high spatial
resolution, mixed pixels can be found in the image

resolution enhancement of hyperspectral images [100], mapping forest heterogeneity [101]
and, more recently, also for hyperspectral image compression [102].

However, the possibility to exploit sub-pixel information to obtain dimensionality reduction
techniques and as a possible pre-processing step for supervised classification was only lit-
tle touched within these investigations. Previous efforts in this direction were presented
in [16,17], but the analysis of whether spectral unmixing can replace standard feature ex-
traction transformations remains an unexplored topic. Although classification techniques
often neglect the impact of mixed pixels in the provision of a set of final class labels, widely
used benchmark data sets in the literature —e.g. the AVIRIS Indian Pines scene— are known
to be dominated by mixed pixels, even if the associated ground-truth information is only
available in full-pixel form. Hence, the use of spectral unmixing presents distinctive features
with regards to other approaches such as PCA, MNF or ICA. First, it provides additional
information for classification in hyperspectral analysis scenarios with moderate spatial resolu-
tion, since the sub-pixel composition of training samples can be used as part of the learning
process of the classifier. Second, the components estimated by spectral unmixing can be
physically explained as the abundances of spectral endmembers. Third, spectral unmixing
does not penalize classes which are not relevant in terms of variance or SNR. Here, starting
from the initial background idea, we design different unmixing processing chains with the
goal of addressing three specific research questions:

1. Is spectral unmixing a feasible strategy for feature extraction prior to classification?

2. Does the inclusion of spatial information at the endmember extraction stage lead to
better classification results?

3. Is it really necessary to estimate pure spectral endmembers for classification purposes?

The objective of this chapter is to adequately answer to the above mentioned questions.
The remainder of this chapter is structured as follows. Section 4.2 provides an overall in-
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troduction about spectral unmixing. Section 4.3 describes the considered spectral unmixing
chains. Section 4.4 presents different experiments specifically designed to address the research
questions above and to provide a comparison between the proposed unmixing-based strategy
and other feature extraction approaches presented in the literature. Section 4.5 concludes
with some remarks and future research avenues.

4.2 Spectral Unmixing

Spectral unmixing is the procedure by which the measured spectrum of a mixed pixel is
decomposed into a collection of constituent spectra, or endmembers, and a set of correspond-
ing fractions, or abundances, that indicate the proportion of each endmember present in the
pixel. Endmembers normally correspond to familiar macroscopic objects in the scene, such
as water, soil, metal, or any natural or man-made material. Unmixing provides a capability
that is important in numerous tactical scenarios in which subpixel detail is valuable.
Mixing models attempt to represent the underlying physics that are the foundation of hyper-
spectral phenomenology, and unmixing algorithms use these models to perform the inverse
operation, attempting to recover the endmembers and their associated fractional abundances
from the mixed-pixel spectrum.

Two main models can be used to descripe a hyperspectral scene by mean of spectral un-
mixing. The first possibility is the linear unmizing, which assumes that the different land
cover classes have linear relationship and their reflectance is directly proportional to the area
occupied within the pixel. The second possibility is to use a non-linear model, assuming that
the materials are not lying side by side, but they are homogeneously distributed within the
pixels and mixed at a microscopic level.

In this work, the focus is posed on the linear mixing model. When performing supervised
classification, macro-land cover classes are analyzed. In such a case, the linear spectral un-
mixing approximation can be used without loss of important information. Moreover, the non
linear spectral model is much more expensive from a computational point of view. In the
following, after describing from a mathematical point of view the linear unmixing problem,
a general overview of the different methods proposed to retrieve endmembers and estimate
their abundances is provided.

4.2.1 Mathematical definition

Let us denote a remotely sensed hyperspectral scene with n bands by I, in which each
pixel is represented by a vector X = [x1,z9, - ,x,] € R”, where R denotes the set of real
numbers in which the pixel’s spectral response xj at sensor channels k = 1,...,n is included.
Under the linear mixture model assumption, each pixel vector can be modeled using:

p
X=> & - E.+n, (4.1)

z=1

where E, denotes the spectral response of endmember z, ®, is a scalar value designating
the fractional abundance of the endmember z at the pixel X, p is the total number of end-
members, and n is a noise vector. Two physical constrains can be imposed into the model
described in (6.1) [103]:
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p
d o.=1 (4.3)
z=1

The first equation represent the abundance non-negativity constraint, i.e., no negative abun-
dances are possible, while the second one is the abundance sum-to-one constraint, i.e., the
sum of all the materials fractions within a pixel must have the unity as result of the sum.

4.2.2 Endmember extraction

When performing spectral unmixing, there are two key tasks: endmember determination
and abundances quantification. The first task in linear spectral mixture analysis is to find an
appropriate suite of pure spectral signatures (endmembers), which are then used to model
at-sensor pixel spectra through a linear combination of endmember signatures. The selection
of endmembers can be performed in two ways: 1) by deriving them directly from the image
(image endmembers) or 2) from field or laboratory spectra of known target materials (library
endmembers); see [104] for a comparison between the two. The risk in using library end-
members is that these spectra are rarely acquired under the same conditions as the airborne
data. Image endmembers have the advantage of being collected at the same scale as the
data and can, thus, be more easily associated with features on the scene [94|. A number of
algorithms have been developed over the past decade to accomplish the task of finding ap-
propriate image endmembers for spectral mixture analysis. It should be taken into account
that the presence of pure class pixels in the image data depends on available sensor spatial
resolution. As a result, there may be cases where it is not possible for a certain algorithm to
find such pure pixels in a scene. In those situations, the fractional components found for the
mixed pixels are usually expressed in terms of other mixed pixels (the endmembers identified
by the algorithm) and not in terms of pure classes.

The data sets analyzed in this work are common benchmarks for supervised classification.
These images are composed by both pure and mixed pixels, also in case of highly mixed
scenes, like the AVIRIS Indian Pine data set, and pixels occupied by a single land cover
class can be easily found. For such a reason, the use of algorithms which search for the pure
components directly within the image were preferred to the use of spectral libraries.

During the last decade, several algorithms have been proposed for the purpose of autonomous/
supervised endmember selection from hyperspectral scenes. Besides the large number of
techniques proposed, there are two main groups of algorithms: geometrical and statistical
based algorithms. Geometric endmember determination techniques exploit the parallelism
between mixing models and the geometric orientation of hyperspectral data in multidimen-
sional spaces. Starting from the seminal work of Craig (minimum volume transform or
MVT [105]), try to find the minimum-volume simplex, i.e. the one that embraces the data
cloud as tightly as possible, a great number of techniques were proposed in the last years,
such as N-FINDR, Vertex Component Analysis, Orthogonal Subspace Projection. If a spec-
tral unmixing algorithm processes a mixed pixel by using statistical representations, then
the algorithm is statistical. The representations can be analytical expressions that represent
probability density function (parametric). An example of this family is the stochastic mixing
model [106], in which each endmember distribution has Gaussian form. Also in this case, a
large number of algorithms were proposed. A detailed description of these algorithms can be
found in [107,108]. However, also in these mentioned remarkable works, the impossibility to
have a very detailed comparison of all these methods was pointed out, because of the huge
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number of algorithms proposed in the last years and of the difficulty to evaluate the methods
on several data sets, because of the lack of knowledge about the scene at a sub-pixel level.
For such a reason, in this chapter several techniques were tested. The geometric based tech-
niques were preferred, due to their good behavior in terms of computational burden.

4.2.3 Abundances determination

Once the endmembers are extracted from the image, the abundance fractions of the
elements within each pixel should be determined. In the following, we will briefly review the
main technique proposed for abundances determination.

4.2.3.1 Linear Spectral Unmixing

The easiest way to estimate the abundances within a remote sensing image is through a
simple inversion. If we consider the noise vector n equal to zero in Equation 4.1, the abun-
dances of each endmember spectrum can be easily found once the matrix E, is known. This
technique is optimal for the computational burden, since it does not need any optimization
step. However, it does not assure the physical constrains 4.2. When using unconstrained
linear spectral unmixing, abundances lower than zeros or greater than unity will be likely to
appear in the results.

4.2.3.2 Fully Constrained Linear Spectral Unmixing

Several algorithms have been developed to handle the linear mixing model according
with the required physical constrains of abundance fractions, which are non negativity (all
the abundances must be greater than or equal to zero) and full additivity (the sum of the
endmember abundances within a pixel should be equal to one). Due to the efficiency from
a computational point of view, a common choice is to use a fully constrained least squares
(FCLS) algorithm, which satisfies both abundance constraints and is optimal in terms of least
squares error [109]. In concrete processing, the main problem is that the FCLS does not have
a closed-form mathematical solution due to the nonnegativity constraints; thus, a numerical
solution is always required. To calculate the FCLS solution, the non negativity constraint is
considered first. The idea is to minimize the LSE by estimating the nonnegative abundance
values, which is mathematically expressed as

min(z — Sa)T (z — Sa). (4.4)

By using Lagrange multipliers, a Lagrangian J is defined as

J = %(z —Sa)T(z—Sa)+\'(a—c) (4.5)

where a = ¢, each member of the unknown constant L.x1 vector c¢ is nonnegative to
enforce the non negativity constraint, and A is the Lagrange multiplier denoted by an Lx1
vector. The defined equation 4.4 allows the use of Lagrange multipliers because the non
negativity constraint has been substituted by equality constraints with the unknown vector
c. To calculate the estimate of a, we take the partial derivative of J with respect to a. Equa-
tion 4.5 contains two unknown parameters, i.e., the abundance estimates and the Lagrange
multipliers. Solving for these unknown parameters results in
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A= S'(z —Sa). (4.7)

By iterating through the equations 4.6, the numerical solution is provided for the non neg-
ativity constraint. To begin this iterative method, we set all the Lagrange multipliers to
zero and calculate the abundance. Note that this initial calculation is the unconstrained
least squares solution for the abundance values. From this solution, we find those abundance
values which are greater than zero and put them into the passive set P. The remaining non
positive abundance values are placed in the active set R. Equations 4.6 are iterated until all
Lagrange multipliers in the passive set are zero and all Lagrange multipliers in the active
set are either zero or negative. At this point, the Kuhn-Tucker conditions have been met,
and an optimal solution for the abundance values has been found [110]. It should be noted
that this solution only accounts for the non negativity constraint. To handle the sum-to-one
constraint, an easy modification of the aforementioned algorithm was developed to retain the
optimality guaranteed under the Kuhn-Tucker conditions for numerical optimization on a
finite computing machine. In the modification, the endmember matrix and pixel signatures
are extended such that

5= |17 ] (438)

is the new endmember matrix and

a= [ 51Z } (4.9)

is the new pixel signature, where ¢ is a constant (typically, 1 x 107?). The variable § controls
how tightly the solution will sum to one so that the smaller values provide a better solution,
but it may need a longer convergence time. The new endmember matrix and pixel signature
are then used in 4.8 and 4.9 to obtain an abundance solution that subjects to both the non
negativity and sum-to-one constraints simultaneously.

The solution obtained by the FCLS algorithm is the optimal one. By the FCLS algorithm,
the abundance of each endmember in each pixel can be obtained.

4.2.3.3 Partial Unmixing

Linear Spectral Unmixing and Fully Constrained LSU are the most widely used techniques
to determine endmember abundances. However, in case not all the endmembers contained
within a data set are recovered, or if the set of pure spectral signatures is different from
the set of interest, they could lead to misleading results. In such a case, partial unmixing,
which tries to determine abundances of each of the endmembers separately, could be more
appropriate. In this work, we will consider the Mixture Tuned Match Filter (MTMF), also
known as Constrained Energy Minimization (CEM). CEM is one of a number of inner product
measures that are used with hyperspectral data. That is to say, it calculates a weighted sum,
7 say, of the components of a multivariate, remotely sensed signal

Vv =wir1 + wako + ...+ WpTy = WEX (4.10)

where x is the n-dimensional signal of a multispectral pixel. Unconstrained spectral
unmixing (i.e., where we do not require the sum of the estimated cover fractions to add to
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Figure 4.2: Unmixing-based feature extraction chains #1 (spectral endmembers) and #2
(spatial-spectral endmembers).

unity) is another example of such a measure. If a constant term is included, we have a slightly
more general measure to characterize surface cover,

=10+ wx (4.11)

Unit-sum constrained spectral unmixing has this form [111], as does abundance estimation
based on regression of fractional abundance on the signal [112]. In the CEM matched filter,
the weight vector w is given by

w = (d'R™'d)"'d (4.12)

where d is a particular signal of interest and R is the matrix

1
R=— E T 4.13
m 4 > ( )
(r1,22,...,2Tmy) is the complete set of spectral signals for the image, m pixels in all. (Hence-

forth, brackets {} will be used to denote an average over all image pixels, so that for instance
R = {zz"}) i). The CEM minimizes the mean square value of 7 while forcing it to take the
value 1 for pixels matching the signal of interest. The idea is that its values are generally as
small as possible, except for pixels where the constituent of interest dominates. The treat-
ment of this method by Nielsen [113] is particularly elegant. The studies in [114] have shown
that the resulting value of ) can correlate well with the proportion of the cover type present.
Thus, it not only takes a low value when the cover type is absent, and the value of 1 when it
covers a pixel, but the intermediate values are monotonically related to the true cover pro-
portions. In [113] examples are given on AVIRIS data of "abundance" images obtained after
scaling the CEM results from 0 to 1. The formulation provided by Settle in [115] address the
two important questions of how well does the CEM approach correspond with the fractional
abundance of the cover type in a general mixed pixel, and to what extent can CEM be used



CHAPTER 4. SPECTRAL UNMIXING FOR DIMENSIONALITY
86 REDUCTION

to provide a true partial unmixing of a general mixed pixel, rather than an ad hoc measure
of similarity, deriving conditions for this to occur.

4.3 Unmixing-based Feature Extraction

As pointed out in the previous sections, the idea to exploit sub-pixel information through
spectral unmixing seems to be a very interesting possibility as an alternative dimensionality
reduction method. However, several major issues which should be carefully addressed, hold
in the framework. First and probably most important, the choice of the algorithms to be used
to realize the different chains. Section 4.2 showed presented a large number of techniques
proposed both for retrieve the pure spectral compoents of the image, and to estimate their
fractional abundances. Another very important issue is the number of features which need
to be computed: On one hand, several techniques were proposed in the last years to estimate
the dimensionality of hyperspectral data, which could be used to solve the problem. On the
other hand, if a supervised classification is to be performed, there is also the possibility to
take advantage of the prior information about land cover classes, and their number.

With these issues in mind, we have explored in this work a number of different feature
reduction chains based on spectral unmixing, which could adequately address the problems
just mentioned.

4.3.1 Unmixing Chain #1

In this subsection we describe our first approach to design an unmixing-based feature
extraction chain which can be summarized by the flowchart in Fig. 4.2. First, we estimate
the number of endmembers; p, directly from the original n-dimensional hyperspectral image
I. For this purpose, we use in this work two standard techniques widely used in the liter-
ature such as the HySime method [116]| and the virtual dimensionality (VD) concept [117].
Once the number of endmembers p has been estimated, we apply an automatic algorithm to
extract a set of endmembers from the original hyperspectral image [118]. Here, we use an or-
thogonal subspace projection (OSP) technique [119] which has been shown in previous works
to provide a very good trade-off between the signature purity of the extracted endmembers
and the computational time to obtain them. Preliminary experiments conducted with other
endmember extraction techniques, such as Vertex Component Analysis (VCA) [120] and N-
FINDR [121], have shown very similar results in terms of classification accuracy. Finally,
linear spectral unmixing (either unconstrained or constrained) can be used to estimate the
abundance of each endmember in each pixel of the scene, providing a set of p abundance
maps that are used to train a standard SVM classifier.

4.3.2 Unmixing Chain #2

In this subsection we introduce a variation of the unmixing-based feature extraction chain
which includes spatial preprocessing prior to endmember extraction in order to guide the
endmember searching process to those areas which are more spatially homogeneous. This
approach is represented in Fig. 4.2. The method computes, for each pixel vector, a scalar
spatially derived factor that relates to the spectral similarity of pixels lying within a certain
spatial neighborhood. This scalar value is then used to weigh the importance of the spectral
information associated to each pixel in terms of its spatial context. Two basics of the method
are that: 1) no modification of existing image spectral-based endmember extraction methods
is necessary in order to apply the proposed approach. ii) The preprocessing method enhances
the search for image spectral endmembers in spatially homogeneous areas. A complete de-
scription of the spatial pre-processing strategy can be found in [122]. As in the previous
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Figure 4.3: Unmixing-based feature extraction chain #3.

chain, the features resulting from the proposed (spatially enhanced) unmixing process are
used to train an SVM classifier with a few randomly selected labeled samples. The classifier
is then tested using the remaining labeled samples.

4.3.3 Unmixing Chain #3

Our main motivation for introducing a third unmixing-based feature extraction chain
is the fact that the estimation of the number of endmembers p in the original image is
a very challenging issue. Fig. 4.3 describes a new chain in which the endmembers are
extracted from the set of available (labeled) training samples instead of from the original
image. This chain introduces two important variations: 1) first, as a simplification to the
challenging estimation problem, the number of endmembers to be extracted is set as the total
number of different classes, ¢, in the training set; and 2) the endmember searching process is
conducted only on the training set, which reduces computational complexity. However, the
number of endmembers in the original image, p, is probably different than ¢, the number of
labeled classes. Therefore, in order to unmix the original image we need to address a partial
unmizing problem (in which not all endmembers may be available a priori). In this work it
was considered the constrained energy minimization (CEM) approach [123], which combines
linear spectral unmixing and statistical matched filtering. From matched filtering, it inherits
the ability to map a single known target without knowing the other background endmember
signatures. From spectral mixture modeling, it inherits the leverage arising from the mixed
pixel model and the constraints on feasibility.

4.3.4 Unmixing Chain #4

The fourth unmixing chain tested in our experiments represents a slight variation of the
unmixing chain #3 in which the spectral signatures used for unmixing purposes are not ob-
tained via endmember extraction but through averaging of the spectral signatures associated
to each labeled class in the training set. To keep the number of estimated components low,
only one component is allowed for each class. This averaging strategy produces c¢ signatures,
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Figure 4.4: Example of averaged training spectra, Indian Pine data set, Classes 1 to 9. Blue

lines: training samples. Red line: average spectrum.

each representative of a labeled class, which are then used to partially unmix the original
hyperspectral scene using MTMF. Fig. 4.4 shows an example of spectra extracted from the
Indian Pine data set.

4.4 Experimental Results

The experimental tests were conducted on two real hyperspectral data with medium
spatial resolution. The four unmixing chains proposed in Section 4.3 have been compared
with three classical algorithms for dimensionality reduction, PCA, ICA and MNF.

4.4.1 Hyperspectral Data

The first data set used in our experiments was collected by the AVIRIS sensor over
the Indian Pines region. The scene' comprises 145 lines by 145 samples and 220 spectral

! Available online: http://dynamo.ecn.purdue.edu/biehl/MultiSpec
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channels in the wavelength range from 0.4 to 2.5 pm, nominal spectral resolution of 10 nm,
and spatial resolution of 20 meters by pixel. After removing noisy and water absorption
bands, 202 channels were left. The ground-truth contains 16 land cover classes. The number
of pixels in the smallest class is 20, while the number of pixels in the largest class is 2468.

The second data set was collected by the AVIRIS sensor over the Kennedy Space Center?,
Florida, on March 1996. The portion of this scene used in our experiments has dimensions
of 292 x 383 pixels. After removing water absorption and low SNR bands, 176 bands were
used for the analysis. The spatial resolution is 20 meters by pixel. 12 ground-truth classes
where available, where the number of pixels in the smallest class is 134 while the number of
pixels in the largest class is 761.

4.4.2 Experiments
Experiment 1. Use of unmixing as a feature extraction strategy

In this experiment, we use the AVIRIS Indian Pines and Kennedy Space Center data sets
to analyze the impact of imposing non-negativity and sum-to-one constraints in abundance
estimation prior to classification. For the AVIRIS Indian Pines image, we construct ten small
training sets by randomly selecting 5%, 10% and 15% of the ground-truth pixels. For the
AVIRIS Kennedy Space Center, since the size of the smaller classes is bigger, we decided to
reduce the training sets even more and selected 1%, 3% and 5% of the available ground-truth
pixels. Then, the three considered types of input features (original, reduced and unmixing-
based) are built for the selected training samples and used to train an SVM classifier in which
two types of kernels: polynomial and Gaussian are used. The SVM was trained with each
of these training subsets and then evaluated with the remaining test set. Fach experiment
was repeated ten times, and the mean and standard deviation accuracy values were reported.
Kernel parameters were optimized by a grid search procedure, and the optimal parameters
were selected using 10-fold cross-validation. The LIBSVM library® was used for experiments.

Table 4.1 summarizes the overall classification accuracies obtained after applying the
considered SVM classification system (with polynomial and Gaussian kernels) to the features
extracted after applying the unmixing chain #1 (see Fig. 4.2) to the AVIRIS scenes. The
dimensionality of the input data, as estimated by a consensus between the HySime and
the VD concept, was p = 18 for the Indian Pines scene, and p = 15 for the Kennedy
Space Center scene. The chain #1 was implemented using two different linear spectral
unmixing algorithms [103]: unconstrained and fully constrained; due to better accuracy and
faster computation, only results for the unconstrained case are presented. The better results
obtained with the unconstrained linear spectral unmixing can be explained with the lower
number of constrains imposed to the components. Since the sum of all the features values
for a single pixel should be equal to one, the information of a feature is somehow dependent
from the information provided by the other components, thus decreasing the overall amount
of useful data. The results after applying the classification system to the original spectral
features, and to those extracted using traditional unsupervised methods proposed in the
literature (PCA, MNF and ICA) are also reported.

As shown by Table 4.1, the classification accuracy is correlated with the training set size
(the larger the training set, the higher the classification accuracy). The good generaliza-
tion ability exhibited by SVMs is demonstrated by the classification results reported for the
original spectral information, even with very limited training sets. The fact that MNF is
more effective than PCA and ICA for feature extraction purposes is also remarkable, since

2 Available online: http://www.csr.utexas.edu/hyperspectral /data/KSC/
http://www.csie.ntu.edu.tw/cjlin/libsym/
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- | -: | -

Figure 4.5: AVIRIS Indian Pine data set. First fifteen components extracted by using the
chain #1, fully constrained estimation of the abundances.
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Figure 4.6: AVIRIS Indian Pine data set. First fifteen components extracted by using the
chain #4, partial unmixing estimation of the abundances.



92

CHAPTER 4. SPECTRAL UNMIXING FOR DIMENSIONALITY
REDUCTION

Table 4.1: Classification accuracies (percentage) and standard deviation obtained after ap-
plying the considered SVM classification system (with Gaussian and polynomial kernels) to
three different types of features (original, reduced and unmixing-based) extracted from the
AVIRIS Indian Pines and Kennedy Space Center scenes(ten randomly chosen training sets)

Image AVIRIS Indian Pines

Type of | # of Polynomial kernel Gaussian kernel

feature | feat. 5% 10% 15% 5% 10% 15%

Original | 202 | 75.234+1.23 81.554+0.86 83.58+0.78 | 76.85+£0.45 83.58+0.35 86.7240.45
PCA 18 | 77.07£1.46 81.66+£0.88 83.11£0.52 | 78.01£1.18 82.94+0.51 84.65£0.79
MNF 18 | 82.97£1.93 87.41£0.31 88.38+0.57 | 84.73+0.77 88.72+0.45 90.69£0.29
ICA 18 | 76.63£1.27 81.00£0.71 82.944+0.36 | 76.92+£0.72 81.27£0.61 82.95+0.71

Ch. #1 18 | 74.56£1.04 79.20£1.12 80.97£0.50 | 75.58+0.85 80.79+0.36 82.31£0.59

Ch. #2 | 18 | 71.934+0.96 77.5840.92 79.314+0.33 | 73.25+£1.00 78.68+0.63 81.0740.30

Ch. #3 | 15 | 81.32+0.84 85.564+0.84 86.83+0.55 | 82.52+0.56 87.20+0.61 88.834+0.63

Ch. #4 | 15 | 82.36£1.09 86.87£0.59 87.97+0.57 | 83.38£1.05 88.62+£0.47 90.25+0.64
Image AVIRIS Kennedy Space Center

Type of | # of Polynomial kernel Gaussian kernel

feature | feat. 1% 3% 5% 1% 3% 5%

Original | 176 | 70.974£3.32 82.53+1.63 85.71+1.40 | 72.26£2.42 82.91£1.38 85.50%1.35
PCA 15 | 73.52+£3.69 83.26+£1.26 86.11+1.16 | 74.66+2.94 82.54+1.70 86.28+1.46
MNF 15 | 77.01£3.77 86.85£2.19 89.59+1.89 | 77.94+3.48 87.43£2.11 90.01£1.52
ICA 15 | 70.09£2.91 80.28£1.73 84.59+1.50 | 70.39+1.58 80.79+£1.60 84.58+1.58

Ch. #1 15 | 69.41+£2.64 78.62+1.58 82.84+1.17 | 69.02+5.40 79.08+1.46 83.53+1.25

Ch. #2 | 15 | 67.91£3.98 78.614+3.56 84.26+1.41 | 68.56+£4.70 83.86+1.89 83.86+1.22

Ch. #3 | 12 | 74.2843.23 85.374+1.30 87.884+1.57 | 75.02+4.13 84.92+1.97 88.47+1.38

Ch. #4 | 12 | 76.10£2.49 86.38+1.40 87.84+1.28 | 77.53£2.58 86.57+0.97 87.72+1.13
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Table 4.2: Statistical differences evaluated using McNemar’s test (polynomial kernel). The
table presents the value of Z: Differences are considered as significant at 95% of confidence
if |Z|>1.96.

‘ Indian Pine H Kennedy SC

5% 1%
Chain #3 Chain #4 Chain #3 Chain #4
PCA | -9.52 (0/0/10) -11.88 (0/0/10) || -2.09 (1/2/7) -5.73 (0/2/8)
MNF 5.22 (8/1/1) 2.05 (6/2/2) 3.08 (6/3/1) -0.58 (3/4/3)
ICA | -10.45 (0/0/10) -12.85(0/0/10) || -7.14(0/0/10) -8.82(0/0/10)
10% 3%
Chain #3 Chain #4 Chain #3 Chain #4
PCA | -9.24 (0/0/10) -12.40 (0/0/10) -2.61(1/2/7)  -5.14 (0/0/10)
MNF | 6.13 (10/0/0) 1.72 (5/4/1) 3.48 (6/2/2) 0.78 (5/1/4)
ICA | -17.37(0/0/10)  -20.26(0/0/10) || -7.14 (0/0/10) -8.82 (0/0/10)
15% 5%
Chain #3 Chain #4 Chain #3 Chain #4
PCA | -8.86(0/0/10) -11.40 (0/0/10) || -3.78 (0/1/9) -2.56 (0/4/6)
MNF | 5.23 (10/0/0) 1.35 (3/7/0) 2.42 (6/2/2) 4.04 (7/3/0)
ICA | -9.28 (0/0/10) -11.87 (0/0/10) || -5.08 (0/1/9) -5.29 (0/0/10)

the MNF has been more widely used in the context of spectral unmixing rather than clas-
sification (e.g. as a dimensionality reduction method prior to application of an endmember
extraction method). Most importantly, Table 4.1 also reveals that the use of unmixing chain
#1 as feature extraction strategy cannot improve the classification results provided by PCA,
MNF, ICA or the original spectral information. This is because endmember extraction is
generally sensitive to outliers and anomalies, hence a strategy for directing the endmember
searching process to spatially homogeneous areas could improve the final classification re-
sults. The influence of spectral anomalies on the chain #1 can be seen by looking at Fig.
4.5. A number of components (which represents the fractional abundances extracted with
OSP) provides useful information about a small part of the image, while neglecting all the
rest. This is caused by the fact that OSP estimate as endmember a pixel with an extreme
value of reflectance, which could be caused by a problem of the spectrometer or by an object
with very high reflectance power. The abundance of such a pixel will be maximum only in
the pixel where this anomaly is located, while does not provide any information about the
rest of the image (it can be noticed that at least four components of the overall 18 estimated
in this experiment for the AVIRIS data set suffer of this drawback, causing a major loss of
information for the supervised classification).

Experiment 2. Impact of including spatial information at the endmember ex-
traction stage

In this experiment we apply the unmixing chain #2 for feature extraction prior to classifi-
cation. As shown by Table 4.1, spatial preprocessing prior to endmember extraction can not
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lead to improved classification results with regards to the chain #1 and the original spectral
information. This is due to the spectral similarity of the most spatially representative classes
in our considered scenes. For instance, in the AVIRIS Indian Pines scene the corns and
soybeans were very early in their growth cycle at the time of data collection, which resulted
in low coverage of the soil (= 5%) [2]. Given this low canopy ground cover, the variation
in spectral response among different classes is very low and spatial information cannot sig-
nificantly increase discrimination between different classes. In order to address this issue,
a possible solution is to conduct the endmember extraction process in supervised fashion,
taking advantage of the information contained in the available labeled samples in order to
guarantee that a highly representative endmember is selected per each class.

Experiment 3. Impact of endmember purity on the final classification results

In a supervised endmember extraction framework, our first experiment is based on apply-
ing the unmixing chain #3 to select endmembers only from the available training samples.
Apart from reducing computational complexity (which in this case involves a search for ¢
endmembers in the pixels belonging to the training set), Table 4.1 reveals that this strategy
improves the classification results reported for the chains #1 and #2. However, in order to
make sure that only one endmember per labeled class is used for unmixing purposes, we also
apply unmixing chain #4 in which spectral averaging of the available training pixels in each
class is conducted in order to produce a final set of ¢ spectral signatures. Despite averaging
of endmembers can lead to degradation of spectral purity, it can also reduce the effects of
noise and/or average out the subtle spectral variability of a given class, thus obtaining a more
representative endmember for the class as a whole. This is illustrated by the classification
results for unmixing chain #4 in Table 4.1, which outperform those reported for most other
tested methods except the MNF. This indicates that, in a supervised unmixing scenario, the
use of spectrally pure signatures is not as important as the choice of signatures which are rep-
resentative of the available training samples. The improvement of the quality of information
provided by chain #4 can be seen by looking at Fig. 4.6. All the single components provide
an information about a spatially representative part of the image. In the case of chain #3,
this is due to the fact that, considering only the training samples as possible endmembers
for the OSP algorithm, most of the outliers are automatically discarded before the endmem-
ber selection process. Chain #4 further improves the results since every components gives
specific information about the spatial coverage of each class at a sub-pixel level, allowing to
better represent mixture of classes which may be caused by low spatial resolution.

Table II shows the statistical differences (average value of ten comparisons) between tra-
ditional dimensionality reduction methods and the unmixing chains #3 and #4, computed
using McNemar’s test [124] for the case of the polynomial kernel. The differences are sta-
tistically significant at a confidence level of 95% if |Z| > 1.96. For each couple of compared
feature extraction chains, we report also how many times each chain wins/ties/loses after
comparing the thematics maps obtained using the same training set. If the value of Z re-
ported for each entry of Table II is positive and larger than 1.96, the first compared chain
wins. By convention, the comparison is always performed with the first chain in a line of
Table IT and the second chain in a column of Table II. It can be noticed that unmixing chains
#3 and #4 always perform significantly better than PCA and ICA. MNF performs better
than chain #3, while the differences with chain #4 are in general not significant.

To conclude this section, Fig. 4.7 displays the best classification results (out of 10 runs)
obtained after applying the SVM trained with 10% of the available training samples to
each feature extraction strategy considered for the AVIRIS Indian Pines scene. As shown
by Fig. 4.7, both the MNF in Fig. 4.7(d) and the chain #4 in Fig. 4.7(h) provide the best
classification scores, with less confusion in heavily mixed classes.
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(b) Original image (84.27%)

) MINT

R9.41%)

(f) Chain #2 (79.64%)

(h) Chain #4 (89.26%)

(a) Ground-truth

(c) PCA (83.33%)

(e) Chain #1 (81.29%)

87.99%)

(

(g) Chain #3

Figure 4.7: Best classification results for AVIRIS Indian Pines (using SVM classifier with

Gaussian kernel, trained with 10% of the available samples per class).
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4.5 Conclusions and Future Research Lines

In this chapter, we have investigated several strategies to extract relevant features from
hyperspectral scenes prior to classification. For classification scenarios using SVMs trained
with relatively small subsets of labeled samples, our experimental results reveal that the
MNF greatly improves accuracies when compared to the more well known PCA and ICA
transformations, used as an unsupervised feature reduction tool prior to classification. Due to
the reduced dimensionality, classification using both the MNF and PCA subspaces generally
improved the overall accuracy when compared to using all the original pixel’s spectral curve.
Results indicate that the proposed unmixing-based feature extraction chains can provide an
alternative strategy to the PCA or MNF by incorporating information about the (possibly)
mixed nature of the training samples during the learning stage, with the potential advantage
of improved interpretability of features due the physical nature of the extracted abundance
maps. Although final classification accuracies are likely to be dependent on the particular
data set considered, the chains tested suggest higher accuracies with respect to traditional
methods, such as PCA and ICA, and comparable accuracies related to MNF.

Further research is needed to define an optimality criterion to design unmixing chains as a
feature reduction tool for classification purposes. A start point might be the chain #4 which
indicates that, in the context of a supervised unmixing scenario, the use of spectrally pure
signatures is not as important as the choice of signatures which are highly representative of
the available training samples. Further lines of research should be the attempt to mitigate
the sensitivity of spectral unmixing based chains to outliers and pixels with extreme value of
reflectance, and a careful investigation of the influence of the number of features extracted.
These issues will be the focus of Chapter 5.



Chapter 5

Investigation on the influence of the
number of features

Abstract

Previous chapters have proven the importance of dimensionality reduction for hyperspectral
1mages classification. A number of techniques were proposed, exploiting statistical properties
and sub-pizel information of the image. Independently from the method selected to compute
the dimensionality reduction, the number of components retained before the classification pro-
cess can have a large influence on the final results. In this chapter, a thorough analysis of
the issue is carried out. A number of feature reduction techniques, both unsupervised and
supervised, are analyzed, and tests are performed on four hyperspectral data sets, in order
to obtain results as general as possible. Moreover, a new technique based on unsupervised
clustering and spectral unmizing was proposed, showing low sensitivity to pizels with extreme
values of reflectance.
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5.1 Introduction

In the context of supervised classification, the good generalization capability of machine
learning techniques such as the support vector machine (SVM) [86] can still be enhanced by
an adequate selection of the number of features to be used for classification purposes [125],
especially if limited training sets are available a priori. The first four chapters of this thesis
have discussed the use of dimensionality reduction techniques, which can help mitigating the
problems connected to the unfavorable ratio between the (large) number of spectral bands
and the (limited) number of training samples available a priori, which results in the Hughes
phenomenon [126].

However, there are several issues still holding. Chapter 4 pointed out the importance of
considering sub-pixel information in order to improve the average class accuracies of classes
with very few training samples. This issue was investigated in the context of a set of newly
developed feature extraction techniques based on spectral unmixing concepts [127]. These
chains are intended to take advantage of the linear spectral unmixing model [94] in the char-
acterization of training samples during the classification process. Endmember extraction
algorithms have however demonstrated to be sensitive to the presence or outliers/pixels with
extreme values of reflectance, which are considered as pure spectra and used to build compo-
nents which are spatially representative in a small portion of the image. The consideration of
this type of components for classification leads to a decrease of the algorithm performances,
since they provide a small amount of information about the scene. Secondly, the choice of
the most adequate number of features needed for classification purposes remains an elusive
task. Such number depends mainly on the characteristics of the feature extraction algorithm
and on the size of the available training set, which opens the way for the incorporation of
supervised techniques for feature extraction in addition to more classic unsupervised ones. A
challenging problem in this context is how to estimate the dimensionality of a scene, in order
to retain the best possible number of features [128].

A traditional approach which is generally used for the identification of dimensionality is based
on a certain percent of explained variability (e.g., 95% or 99%) obtained after applying Prin-
cipal Component Analysis, as the threshold giving a stopping criterion [129]. However, these
thresholds are often crossed by the first two or three PCs, which is a much too low number for
a realistic dimensionality. A possibility is, of course, to set up higher thresholds, but a choice
of a specific threshold seems to be somewhat arbitrary. Even more importantly, by increasing
the percent of explained variability in a continuous fashion, one can end up with an arbitrary
dimension. Therefore, in effect, the decision about the dimensionality is transferred to the
decision about the percent of explained variability, without any clear guidelines.

The hyperspectral imaging community has tried to tackle the problem by subspace estima-
tion methods such as the hyperspectral subspace identification by minimum error (Hysime)
algorithm [116] or the virtual dimensionality (VD) concept [117]. More recently, a method
based on second moments which can be considered as alternative to VD was proposed in [130].
However, an investigation of whether the dimensionality estimates provided by those methods
can be related with the number of features needed to be retained prior to classification pur-
poses has never been conducted in the past. All these methods estimate the number of pure
materials signatures of the image. This number however could be different from the number
of features allowing to achieve the best results in terms of classification accuracy, when di-
mensionality reduction has to be performed. Moreover, whether different chains have similar
trends of results (for example, the maximum classification accuracy is obtained by keeping the
same number of components) is another unexplored topic. A preliminary attempt of compar-
ing different unsupervised dimensionality reduction techniques was presented in [131]. More
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work is however requested in order to extend the evaluation to a larger number of techniques
and to consider the possibility to use prior information which is always available in case of
supervised classification purposes.

By keeping in mind the results obtained in the last chapter, here two main contributions
are proposed. First, in order to mitigate the problem shown by spectral unmixing based algo-
rithms, which may be affected by outliers and pixels with extreme values of reflectance, a new
feature reduction chain is proposed. This chain is based on unsupervised clustering, in order
to obtain components with a more significant spatial coverage than in the case of spectral
unmixing chains. As a second contribution of this chapter, the issue of how many (and what
type of) features can be used effectively for SVM-based classification is investigated. For this
purpose, different types of feature extraction strategies (both unsupervised and supervised)
prior to SVM classification are considered and the ability of automatic techniques for di-
mensionality estimation (i.e., Hysime and VD) to determine the optimal number of features
that need to be retained for classification purposes is investigated. The study is conducted
using two different hyperspectral scenes collected by the Airborne Visible Infra-Red Imaging
spectrometer (AVIRIS) operated by NASA’s Jet Propulsion Laboratory [132].

The remainder of the chapter is organized as follows. In Section 5.2 the different feature
extraction techniques considered in experiments are described, along with the algorithms
considered to determine the dimensionality of a hyperspectral image. Section 5.3 presents
the experiments carried out. Section 5.4 draws some conclusions and future lines of research.

5.2 Processing Chains

This section provides an overview of the techniques used to extract features from the
original hyperspectral data, and to estimate the number of features containing useful infor-
mation for classification purposes. A detailed mathematical description of these techniques
is out of the scope of this work, since most of them are algorithms well known in the remote
sensing literature, so here only a short description of the conceptual basis is given. Feature
extraction techniques are divided into unsupervised approaches, if the algorithm is applied
on the whole data cube, and supervised techniques, if the information associated with the
training set of the data is somehow exploited during the pre-processing step.

5.2.1 Unsupervised feature extraction techniques

We consider in this work five unsupervised feature extraction techniques. Three of them
are classical algorithms proposed in the literature (PCA, MNF and ICA); the two remaining
are based on the exploitation of sub-pixelic information, in the version proposed in Chapter
4 and in a variant based on the use of clustering techniques.

- Principal component analysis (PCA), an orthogonal linear transformation which projects
the data into new coordinate system, such that the greatest amount of variance of the
original data is contained in the first principal components [14]. The resulting compo-
nents are uncorrelated.

- Minimum noise fraction (MNF), which differs from PCA in the fact that MNF ranks
the obtained components according to their signal-to-noise ratio [133].

- Independent component analysis (ICA), which tries to find components as statistically
independent as possible, minimizing all the dependencies in the order up to fourth [6].
There are several strategies that can be adopted to define independence (e.g., mini-
mization of mutual information, maximization of non-Gaussianity, etc.). In this work,
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among several possible implementations, we have chosen JADE [39] which provides a
good tradeoff between performance and computational complexity when used for di-
mensionality reduction of hyperspectral images.

- Unsupervised mizture-tuned matched filtering (MTMF,), which relies on the classic
MTMF [134] method —also known as constrained energy minimization (CEM) [123]-
in order to estimate fractional abundances of spectral endmembers extracted from the
original hyperspectral image using the orthogonal subspace projection (OSP) algo-
rithm [135]. Our main reason for using MTMF instead of other popular techniques for
abundance estimation such as fully constrained linear spectral unmixing (FCLSU) [103]
is the possibility to perform partial unmizing [134] in case not all endmembers are
properly estimated. In a study like the one proposed in this chapter, where the feature
extraction methods are evaluated for different numbers of components, partial unmix-
ing may be more suitable than traditional techniques for abundance estimation which
assume the presence of all endmembers in advance.

- K-Means MTMF (KM-MTMF,), which is based on the use of the K-Means algorithms
to perform an unsupervised clustering of the hyperspectral image. First, K-Means
clustering is performed, by searching for as many classes as the components we want
to retain after the pre-processing steps. The centroids of each cluster are considered as
the endmembers of the image, and then the feature reduction components are obtained
by applying the MTMF for the abundances estimation. The main objective of this
chain is to solve problems highlighted in Chapter 4 by endmember extraction based
algorithms, which are sensible to outliers and pixels with extreme values of reflectance.
By using an unsupervised clustering method, we expect to avoid the problem showed
by spectral unmixing methods, which sometimes extract endmembers with very high
value of reflectivity covering only few pixels.

5.2.2 Supervised feature extraction techniques

We consider five supervised feature extraction techniques. Two of them are techniques
previously presented in the literature, which exploit the spectral information of the pixel in
order to project the data into a feature space suitable for class separation. We investigate
also chains #3 and chain #4 presented in chapter 4 and a variation based on the use of
clustering techniques.

- Supervised MTMF (MTMFy), which is equivalent to MTMF,, but assuming that the
pure spectral components are searched by OSP in the training set instead of in the
entire original image. Our assumption is that training samples may better represent
the available land cover classes in the subsequent classification process [127].

- Supervised K-Means MTMF (KM-MTMF), as in the previous case, this is the su-
pervised counterpart of the chain (KM-MTMF,,). It differs only in the fact that the
clustering is performed only in the training samples, and not in the whole image.

- Average MTMF (AV-MTMF), which corresponds to the chain # 4 presented in Chapter
4. One endmember per class is obtained, by averaging the value of all the training
samples known in advance. When using this chain, the number of components can not
be varied, being always equal to the number of classes considered for classification.

- Discriminant analysis for feature extraction (DAFE), which tries to maximize the ratio
of the between-class covariance matrix and the within-class covariance matrix as a
criterion function to perform feature extraction. The transformation matrix obtained
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after the projection should therefore enhance the separability between different classes
[126].

- Non-parametric weighted feature extraction (NWFE), which is based on DAFE but
focusing on samples near the eventual decision boundaries that best separate the classes.
The main ideas of the NWFE are: 1) assigning different weights to every training
sample in order to compute local means, and 2) defining non-parametric between-class
and within-class scatter matrices to perform feature extraction [126].

Another technique proposed in the literature to project the data into a new subspace taking
into consideration the spectral characteristic of the training samples is the Decision Boundary
Feature Extraction (DBFE). In the following experiments the DBFE was not tested since it
could not be applied in case of limited /very limited training sets. As a matter of fact, DBFE
requires, in order to estimate the statistics used to project the data, a number of samples
(for each class) bigger than the number of dimensions of the original data sets. As it will be
shown in the sections, these requirement was not satisfied for most of the experiments carried
out in this work.

5.2.3 Dimensionality estimation techniques

Recently, several techniques were proposed to estimate the dimensionality of a hyperspec-
tral data set [116,117,130]. In order to have a comparison with the results obtained in our
experiments, three dimensionality estimation techniques widely used in the literature were
considered:

- Hyperspectral signal subspace identification by minimum error (HySime), which tries
to estimate the number of pure materials by estimating the signal subspace in the
hyperspectral image [116]. The method infers the data subspace by minimizing the sum
of the projection error power with the noise power which are, respectively, decreasing
and increasing functions of the subspace dimension.

- Virtual dimensionality (VD), which assumes that if a signal source is present in the data,
it should be possible to detect it in the relevant spectral band [117]. In essence, this
implies that the eigenvalues of both the data-correlation and covariance matrices have
to be computed. For a given false-alarm probability Pp the algorithm explores, based
on the Neyman-Pearson detection theory, how many times the test fails for all spectral
bands (that is, no signals are detected) and consequently determines the number of
spectral signatures.

- Principal component analysis-based dimensionality estimation (PCADE), which sim-
ply retains a number of components which corresponds to the principal components
spanning a percentage of the total variance of the data.

These techniques were not used to select a number of components in our tests, rather to
have a term of comparison with the trend pointed out by analyzing a wide range of number
of components retained. Another interesting issue investigated is if the dimensionality of
an image, as estimated by these methods, could correspond to the most suitable number of
features which should be computed in case of dimensionality reduction prior to supervised
classification.
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Figure 5.1: Overall and average accuracy plots obtained for the AVIRIS Indian Pines hyperspectral image with
different types and number of features (using an SVM classifier with Gaussian kernel and trained respectively
with 5% and 15% of the available samples per class).
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Figure 5.2: Overall and average accuracy plots obtained for the Kennedy Space Center hyperspectral image with
different types and number of features (using an SVM classifier with Gaussian kernel and trained respectively
with 1% and 5% of the available samples per class).
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Figure 5.3: Overall and average accuracy plots obtained for the AVIRIS Salinas and ROSIS University hyper-
spectral images with different types and number of features (using an SVM classifier with Gaussian kernel and
trained respectively with 5% of the available samples and 50 samples per class).
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Table 5.1: Number of features estimated by different techniques from two different hyper-
spectral images collected by AVIRIS.

Dimensionality est. | Indian Pines | Kennedy | Salinas | ROSIS
HySime 12 21 20 60
VD (Pr =1077) 29 26 19 14
VD (Pp =1079) 28 24 19 13
VD (Pp=107"7) 27 22 18 12
PCADE (99% var.) 4 3 4 4
PCADE (99.9% var.) 30 10 21 28

5.3 Experimental Results

5.3.1

Experimental setup

In our experiments we have tried to compare a large number of data set, in order to obtain
results as general as possible. Four different hyperspectral images were therefore analyzed in
this work:

- AVIRIS Indian Pines, collected over the Indian Pines region in Northwestern Indiana

on July 1992. The scene! comprises 145 lines by 145 samples and 220 spectral channels
in the wavelength range from 0.4 to 2.5 um, nominal spectral resolution of 10 nm, and
spatial resolution of 20 meters by pixel. Several spectral bands were removed from the
data set due to noise and water absorption, leaving a total of 202 radiance channels to
be used in experiments. The ground-truth contains 16 land cover classes. The number
of pixels in the smallest class is 20, while the number of pixels in the largest class is
2468.

AVIRIS Kennedy Space Center, collected over the famous NASA Center in Florida?
on March 1996. The portion of this scene used in our experiments has dimensions of
292 x 383 pixels. After removing water absorption and low SNR bands, 176 bands were
used for the analysis. The spatial resolution is 20 meters by pixel. 12 ground-truth
classes where available, where the number of pixels in the smallest class is 134 while
the number of pixels in the largest class is 761.

AVIRIS Salinas, collected over the Valley of Salinas, Southern California, in 1998. It
contains 217 x 512 pixels and 224 spectral bands from 0.4 to 2.5 pum, with nominal
spectral resolution of 10 nm. It was taken at low altitude with a pixel size of 3.7 m.
The data include vegetables, bare soils, and vineyard fields.

ROSIS University, collected over the Engineering School of the city of Pavia (Italy).
The image is composed by 610 x 340 pixels and 103 spectral bands, in the wavelength
range 0.4-0.86um. The ROSIS is an airborne sensor, granting a higher spatial resolution
with respect to satellite sensors like AVIRIS (the spatial resolution of this data set is
1.3 m/pixels).

For all the images, the feature extraction chains were applied prior to a supervised clas-
sification process performed by the SVM with Gaussian kernel. Kernel parameters were

! Available online: http://dynamo.ecn.purdue.edu/biehl/MultiSpec
% Available online: http://www.csr.utexas.edu/hyperspectral /data/KSC/
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optimized by a grid search procedure, and the optimal parameters were selected using 10-
fold cross-validation. The LIBSVM library® was used for experiments. For each feature
extraction method, the number of selected components was varied from 5 to 30. The number
of features to be retained was also computed by the HySime, VD and PCADE algorithms.
Since the main focus of the work was to evaluate the ability of the tested methods to perform
with small training sets, we selected a very small number of samples to perform the classifi-
cation. In the case of the Indian Pines data set we randomly selected 5% of each class and
used them to build the training set. For the Kennedy Space Center data set in which the
size of the smaller classes is bigger— we decided to reduce the training sets even more and
selected only 1% of the available ground-truth pixels for training purposes. For the other two
data sets (AVIRIS Salinas and ROSIS University), we have selected respectively 2% of each
class and 50 samples per class. However, in order to perform a preliminary investigation on
the influence of the training set size on the accuracy of the algorithms, we have tested also
larger training sets for the AVIRIS Indian Pine and the Kennedy Space Center. For these
images, an additional training set containing respectively 15% and 5% of each class labelled
samples was selected.

The overall and average classification accuracies were then computed over the remaining sam-
ples. Each experiment was repeated ten times in order to guarantee statistical consistence.

5.3.2 Analysis and discussion of results

The results shown in Table 5.2 and in Fig. 5.1, 5.2, suggest several considerations giving
a better understanding of feature reduction techniques. First and probably most important,
the use of supervised techniques for feature reduction is not always beneficial to improve the
overall classification accuracy, especially in case of limited training sets and statistical based
feature extraction approaches. For example, NWFE exhibits better results when compared
to traditional unsupervised techniques such as PCA or ICA. However, DAFE exhibits poor
results in the case of the Indian Pine data set (this method could not be computed for the
Kennedy Space Center data set since the very small number of selected training samples
did not allow us to estimate the statistics of the classes). The low performances obtained
by DAFE should be therefore attributed to the very small size of the training set and, in
the case of Indian Pine data set, to the fact that the land cover classes are spectrally very
close thus making it very difficult to separate them by using spectral means and covariance
matrices. Moreover, the importance of integrating the additional information provided by
the training samples is strictly connected with the nature of the considered approach. This
can be noticed when comparing the two proposed chains, MTMF and K-Means based, both
unsupervised and supervised. In the former case (OSP+MTMEF chain), the best results are
provided by the supervised approach, since when considering only the training samples as
possible endmembers which should be extracted with the OSP algorithm, the major draw-
back of the method (that is, the sensibility to outliers and pixels with extreme values of
reflectance) is overcome. At the contrary, the K-Means based algorithm shows better results
when used in unsupervised fashion. When trying to search a large number of cluster in a
very small training set, several problems appear, such as the bad conditioning of matrices
when computing the inverse (in the K-Means step), and the selection of very similar clusters,
leading to redundant information which affects the classification performances.
Overall, the experiments carried out in this chapter show that the two techniques providing
the best results are both unsupervised (KM, and MNF). A closer look at the results reveals
that K-Means based technique can be regarded as the most effective unsupervised feature
extraction method, while MTMF, can be regarded as the best supervised feature extraction

http://www.csie.ntu.edu.tw/cjlin/libsym/
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Table 5.2: Overall and average accuracies obtained in the best case observed in our exper-
iments (with the number of features retained in such case indicated in the parentheses) for

different feature extraction chains.

|

Indian Pines 5%

‘ Indian Pines 15%

Feature extraction OA AA OA AA
PCA 77.25% (20) | 70.59% (15) | 83.86% (20) | 80.37% (15)
ICA 76.84% (20) | 70.03% (15) | 83.52% (20) | 80.30% (15)
MNF 86.67% (10) | 83.31% (10) | 91.35% (10) | 89.04% (10)

MTMF,, 84.90% (10) | 80.12% (10) | 89.50% (10) | 86.65% (10)

KM, 87.18% (30) | 82.17% (20) | 91.61% (10) | 89.55% (20)

MTMF, 85.96% (10) | 82.57% (10) | 90.28% (10) | 87.76% (10)

KM, 85.08% (10) | 83.34% (10) | 90.19% (10) | 89.47% (10)

DAFE 72.48% (30) | 44.23% (25) | 74.92% (20) | 63.07% (20)

NWFE 79.76% (10) | 72.46% (5) | 86.11% (10) 78.80% (5)
[ Kennedy SC1% | Kennedy SC 5%

Feature extraction OA AA OA AA
PCA 75.54% (5) 68.92% (5) | 86.64% (10) | 82.37% (10)
ICA 73.88% (10) | 65.92% (5) | 86.36% (10) | 81.85% (10)
MNF 78.09% (15) | 79.23% (10) | 90.12% (15) | 87.69% (15)

MTMF,, 76.48% (10) | 69.13% (10) | 88.61% (15) | 85.48% (15)
KM, 79.53% (30) | 73.38% (10) | 89.10% (30) | 86.19% (25)
MTMF, 77.78% (10) | 70.80% (10) | 89.24% (15) | 86.79% (15)
KM, 76.48% (10) | 70.28% (15) | 88.74% (15) | 86.10% (15)
DAFE _ _ _ _
NWFE 73.17% (10) | 64.26% (5) | 85.66% (10) | 81.31% (10)

H AVIRIS Salinas 2% ‘ ROSIS Univ. 50 samples
Feature extraction OA AA OA AA
PCA 91.93% (10) | 95.48% (10) | 81.65% (15) | 84.78% (15)
ICA 91.72% (20) | 95.33% (10) | 81.39% (15) | 84.63% (15)
MNF 93.71% (15) | 96.60% (10) | 83.52% (5) 87.74% (5)
MTMF,, 93.27% (15) | 96.27% (10) | 83.16% (5) | 87.70% (5)
KM, 92.83% (30) | 96.18% (30) | 86.83% (20) | 88.15% (20)
MTMF, 92.67% (15) | 95.78% (10) | 81.41% (5) 86.16% (10)
KM, 92.58% (30) | 95.56% (25) | 85.34% (10) | 87.72% (10)
DAFE 87.48% (10) | 90.74% (10) | 73.88% (5) | 78.38% (5)
NWFE 92.28% (10) | 96.09% (10) | 81.40% (15) | 84.46% (15)
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method. Traditional supervised feature reduction methods exhibit lower accuracies. This can
be seen in Table 5.1, which reports the best obtained results after testing different numbers
of features (the optimal number of features is shown in the parentheses).

The second important issue addressed in this work is the possibility to estimate a prior:
the best possible number of features to retain when applying a dimensionality reduction al-
gorithm. At a first sight, it can be easily understood the difficulty of the task. Different
algorithms obtain better performances with different number of features. Moreover, in the
case of the AVIRIS Kennedy Space Center data set, the same algorithm obtains the best
classification accuracy with a number of features retained which varies according to the per-
centage of training samples considered. In general, an increase of the training set size allows
to extract useful information from features which are not considered as the most informative,
without incurring into the risk of caused by the curse of dimensionality, which could lead
to the Hughes’ phenomenon. Therefore, we can affirm that also if less informative features
contain important information for the classification task, the limitation of samples available
to train the classifier is a major limitation for exploiting such information.

The K-Means based unsupervised algorithm shows a more stable behavior in case of large
number of components retained prior to classification, while the other unsupervised algo-
rithms, once the best performance is reached, show a clear decrease in the results when
increasing the number of features retained. In the case of supervised algorithms, the decrease
of classification accuracy is faster, due to the appearance of problems connected to overfitting.
In such a scenario, the possibility to automatically estimate the most suitable number of fea-
tures to retain prior to classification seems to be an impossible task. Considering the three
algorithms analyzed in this work, the approach which better estimates the dimensionality of
the observed scene is the HySime, which in three of four cases gives a results close to the best
classification accuracy obtained with the unsupervised methods, while it fails when applied
to the ROSIS University data set. Quite opposite, the VD and PCADE methods (even after
being tested with different parameter settings) could not provide dimensionality estimates
able to maximize the overall classification accuracy for the different tested methods. More-
over, these methods suffer of the uncertainty due to the parameter which need to be set to
estimate the components (the probability of false alarm for the VD and the percentage of
variance spanned by the principal components).

5.4 Conclusions and future lines

In this chapter, we have investigated the issue of how many (and what type of ) features can
be used effectively for SVM-based classification of hyperspectral images. The study highlights
several aspects, such as the difficulty in determining an adequate number of features to be
retained, and the results provided by unsupervised and supervised feature extraction methods
when very few training samples are available. Future developments of this work will include
an investigation of additional techniques and hyperspectral image data sets.
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Chapter 6

Spectral Unmixing to improve the
spatial resolution of thematic maps

Abstract

The second part of this thesis showed the importance of taking into account the sub-pizel
information when classifying hyperspectral data.
classifying an image containing miztures of materials represents a thematic map which is
intrinsically biased by the fact that regions of the image containing several land cover classes
In this chapter, a new techniques taking into account
the issue is proposed. By making a joint use of spectral unmizing and spatial reqularization,

are represented with a single label.

classification maps with a finer spatial resolution are obtained.
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6.1 Introduction

Target and structure detection and image classification are two important tasks of image
processing, used in many application domains such as biomedical imaging and remote sensing
[23,136,137|. In these fields, low image spatial resolution can highly affect the performance of
the processing algorithms. Recent advances in sensor technology have made available images
characterized by a very detailed spectral information on a wide spectral range, particularly
suitable for these applications [138]|. As shown in the previous chapters, hyperspectral images
offers a huge quantity of spectral information from the visible to the infra-red region. For
every recorded pixel, the rich spectral information provides a complete spectral description
and a better characterization of the observed surface, thus resulting in a very powerful tool
for materials discrimination. The advantageous characteristic of high spectral resolution data
and the already planned civilian space missions which will make available in the next future
a huge quantity of hyperspectral data (amongst the others, PRISMA, planned by the Italian
Space Agency ASI in 2014, EnMap planned by German Space Agency DLR in 2014, Hyper-J
and HysplIRI, planned by the Japan Space Agency and NASA, respectively, in the next future,
besides the already on orbit sensors like the widely used Hyperion and AVIRIS [139], both of
NASA) increase the attention given to this kind of data. However, a common drawback of
hyperspectral sensors is the relatively low spatial resolution, which can vary from few to tens
of meters, especially in the cases of high altitude sensors or instruments covering wide areas.
There are many factors (such as imperfect imaging optics, atmospheric scattering, secondary
illumination effects and sensor noise) that degrade the acquired image quality and make the
development of new technology to improve the spatial resolution a very challenging task [5].

In the cases of structure detection and land cover classification, a low spatial resolution

leads to the problem of mixed pixels, e.g., pixels containing mixture of different materi-
als [140]. The usual assumption that every pixel of the image can be associated with a
unique class label is no longer verified, and mixed pixels cannot be correctly addressed by
traditional classifiers [141]. Sometimes, spatial structures become hard to detect, with a sub-
stantive loss of information.
Because of this reason, the spectral unmixing problem has a high importance also in the
analysis of hyperspectral images. The very high spectral resolution of this kind of data al-
lows one a detailed characterization of the spectral signatures of the objects present in the
investigated scene. This makes it possible to identify the abundances of constituents of a
given material within the resolution cell. In these conditions, conventional crisp (hard) clas-
sification methods preclude a proper analysis of the image as it is not possible to model the
sub-pixel abundances of each class in output from the classifier.

In this chapter, we address the problem of hard classification of pixels containing mixtures
of pure materials. The question we try to answer is: is it possible to exploit the rich spectral
information provided by hyperspectral data in order to obtain hard classification maps at a
finer resolution with respect to the input data? A number of techniques were proposed in
the literature to improve the spatial resolution of a hyperspectral image, but none of these
approaches tried to exploit the big amount of spectral information in order to improve the
resolution of a thematic map. The investigation of this issue is the objective of the chapter.
The remainder of the chapter is as follows. Section 6.2 provides an overall presentation of
different methods proposed in the literature to overcome problems related to low spatial
resolution of hyperspectral images. In Section 6.3, the general framework of the proposed
method is presented, and spectral unmixing is analyzed in detail. Section 6.4 is focused on
the different techniques used to obtain a map resolution improvement. Section 6.5 is devoted
to a toy experiment with synthetic data, where the effectiveness of the method is tested on a
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Pure pixel:
100% grass

Mixed pixel:
0% metal sheet
30% grass

. E
(b) ()
(d)

Figure 6.1: Tllustration of the problem of mixed pixels in remote sensing images: (a) When
the spatial resolution is not fine enough, several land cover classes can be found in the same
pixel. (b) In this case, a hard classification process cannot give an accurate information
about the pixel coverage, leading inevitably to a loss of information (in the example figure,
the classes of grass and metal sheet are considered for classification). (c¢) Spectral unmixing
can provide information at a sub-pixel level, computing the fractional abundances of a class
within each pixel. However, the supplementary information obtained does not result in a
resolution enhancement of the classification map. (d) The proposed method tries to handle
the problem by jointly using the ideas of spectral unmixing and unsupervised classification,
in order to obtain thematic maps at a finer scale, without needing any additional source of
information.
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scene where all the ground truth is known in detail. Experiments on two real hyperspectral
data sets are discussed in Section 6.6, while the conclusions are finally drawn in Section 6.7.

6.2 Related works

Several techniques have been proposed during the last years to deal with the problem
of mixed pixels and low spatial resolution of remote sensing images [94, 142 148|. These
techniques can be divided in three main groups. The first group includes techniques which
use high spatial resolution images jointly with the resolution images, in order to obtain a
fused image with high spectral and spatial resolutions [142-144]. The resulting image can
afterwards be used as input for classification. The main drawback of this approach, besides
the need for an accurate coregistragion of the two images, is the need for ancillary data which
is not easy to obtain.

The second group of techniques comprises super-resolution approaches independent from any
high spatial resolution data. Tatem et al. propose an algorithm based on the Hopfield Neu-
ral Network [149] which does not need any secondary source of data to realize the super
resolution mapping. This method has a good efficiency but suffers from high computational
cost. Gu et al. tackle the problem of high computational cost through a fast learning-based
algorithm to integrate the spatial and spectral information of hyperspectral images, back
propagation neural network and some ground truth information which is unassociated to the
considered test data [100]. The output of such techniques is a series of abundance maps at a
higher resolution. For each class considered, an abundance map is created.

Finally, several methods which classify images assuming the possibility of mixed pixels were
proposed in the last years. Examples of such techniques are soft classification algorithms [147],
which provide a set of images (one per class) expressing the degree of membership to the class,
and linear spectral mixture analysis (SMA) [94,150,151], which assumes every pixel to be
the weighted sum of some constituent spectra, also called endmembers. Similar methods
have been proposed for subpixel image labelling, based on the latest development of machine
learning [152,153]. These techniques can partially overcome the weakness of full pixel clas-
sification methods when analyzing mixed pixels, and they are suitable to be used for the
analysis of these scenarios. However, the final output is a classification map (or a series of
maps) representing the membership degree (or the abundance) of each pixel with respect
to a class. When trying to obtain a crisp output, the additional information provided by
fuzzyness is lost.

The work presented in this chapter tries to tackle the problem of mixed pixels from a differ-
ent viewpoint, in order to consider as input a hyperspectral image (HST) with a given spatial
resolution and obtain a thematic map where the distribution of the classes is depicted in a
classification map with finer spatial resolution. The main principle is to sufficiently mine the
data advantages of HSI by spectral unmixing and superresolution mapping and to integrate
the spectral and spatial information for resolution enhancement. One advantage of the pro-
posed method is that no supplementary source associated with HSI is needed. The idea is to
provide a unifying framework, able to address the problems highlighted here above, consid-
ering the rich information provided by hyperspectral data and exploiting the characteristics
of both unsupervised classifiers and spectral unmixing to address the quantification of pure
classes within mixed pixels, coupled with a spatial regularization which aims at correctly
locate sub-pixels from a spatial viewpoint. According to the authors best knowledge, this is
the first time that a similar unsupervised technique is proposed. Besides the novelty of the
method, a careful investigation of the variables having an influence on the final classification
accuracy is conducted, with particular attention to the well known problem of spectral vari-
ability. Preliminary results of this work were presented in [154], and encouraged to further
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develop the method.

6.3 Spectral Unmixing

The general scheme of the proposed methodology is shown in Fig. 6.2 and Fig. 6.4. The
first step is the determination of the classes within the image. Two approaches are proposed
in this work:

6.3.1 Source Separation based technique

The first approach retrieves the constituent endmembers of the image by mean of a source
separation technique. Let us denote a remotely sensed hyperspectral scene with n bands by I,
in which each pixel is represented by a vector X = [z, x9, -+ ,z,] € R™, where R denotes the
set, of real numbers in which the pixel’s spectral response xj at sensor channels k =1,....n
is included. Under the linear mixture model assumption, each pixel vector can be modeled
using:

p
X:Z(I)Z-Ez—i—n, (6.1)

z=1

where E, denotes the spectral response of endmember z, ®, is a scalar value designating the
fractional abundance of the endmember z at the pixel X, pis the total number of endmembers,
and n is a noise vector.

A number of techniques has been recently proposed to retrieve endmembers by mean of source
separation [108].

In [155], the Vertex Component Analysis (VCA) is proposed as an effective method for
extracting the endmembers which are linearly mixed. VCA makes use of the concept of or-
thogonal projection. Algorithms based on this concept, start by selecting the pixel vector
with maximum length in the scene as the first endmember. Then, they look for the pixel
vector with the maximum absolute projection in the space orthogonal to the space linearly
spanned by the initial pixel and labels that pixel as the second endmember. A third end-
member is found by applying an orthogonal subspace projector to the original image, where
the signature that has the maximum orthogonal projection in the space orthogonal to the
space linearly spanned by the first two endmembers. This procedure is repeated until the
desired number of endmembers p is found.

VCA, as opposed to the methodology previously described, exploits the fact that the end-
members are the vertices of a simplex and that the affine transformation of a simplex is also
a simplex. As a result, VCA models the data using a positive cone, whose projection onto
a properly chosen hyperplane is another simplex whose vertices are the final endmembers.
After projecting the data onto the selected hyperplane, the VCA projects all image pixels
to a random direction and uses the pixel with the largest projection as the first endmember.
The other endmembers are identified in sequence by iteratively projecting the data onto a
direction orthogonal to the subspace spanned by the endmembers already determined. The
new endmember is then selected as the pixel corresponding to the extreme projection, and
the procedure is repeated until a set of p endmembers is found [155].

In our work, we have selected VCA due to its good performances and the very low computa-
tional burden.
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Figure 6.2: Block diagram of the proposed approach. In a first step, thematic classes are
identified trough endmember extraction or unsupervised classification. Spectral unmixing is
used to compute abundances of classes within each pixel. After splitting pixels in a number
of sub-pixels and assigning them to a class according to the results of unmixing, a spatial
regularization is performed to obtain the final map.

6.3.2 Clustering based technique

Endmember extraction techniques are an easy way to retrieve endmembers, especially in
the case of images comprising mixed pixels. However, these techniques are in general sensible
to ’outliers’, e.g., isolated pixels with anomalous values of reflectance, which are detected as
extreme pixels and therefore endmembers. For such a reason, the second proposed technique
is an extension of a traditional unsupervised classifier (the K-means classifier) as a method to
detect classes composing the image, which is expected to be less sensitive to the issues related
to the presence of outliers. Given a set of observations x1, o, ..., z,, where each observation
is a d-dimensional real vector, K-means clustering aims to partition the n observations into
p sets 80 as to minimize the within-cluster sum of squares:

p
ming » Y |1x; — pil® (6.2)

i=1 x;€S5;

where p; is the mean of points in the cluster .5;.

The K-means classifier is first applied to the image. At the end of the classification pro-
cess, the centroids of the classes found by the algorithm are retained as constituent spectra
of the image.
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Figure 6.3: Examples of differences between source separation and unsupervised classification
based approach for classes identification in a 3-dimensional data space with 3 classes (data
set considered: ROSIS University, three principal components). Geometrical based source
separation algorithms, such as VCA, generally identify as endmembers the pixels which are
vertex of the simplex containing the data points (depicted as red 'x’ in the left hand side
figure). In opposite way, unsupervised classifiers separate the data into a specified number
of clusters, where the centroid represents the central value of the class-specific data cloud
(black ’'x’ in the right hand side figure). As it can be seen from the illustration, source
separation algorithms are generally sensitive to outliers (e.g., pixels with extreme value of
reflectance), which are often identified as endmembers. On the other hand, in case of highly
mixed scenes, the centroids depicted by unsupervised classifiers could correspond to mixed
pixels, this representing a problem for the proposed algorithm.

Once the endmembers are extracted from the image, the abundance fractions of the
elements within each pixel should be determined. Several algorithms have been developed to
handle the linear mixing model according with the required physical constraint of abundance
fractions, which are non negativity (all the abundances must be greater than or equal to
zero) and full additivity (the sum of the endmember abundances within a pixel should be
equal to one). Due to the efficiency from a computational point of view, a common choice
is to use a fully constrained least squares (FCLS) algorithm, which satisfies both abundance
constraints and is optimal in terms of least squares error [109]|. In concrete processing, the
main problem is that the FCLS does not have a closed-form mathematical solution due to
the nonnegativity constraints; thus, a numerical solution is always required.

6.4 Improving Spatial Resolution

Spectral unmixing is useful to describe the scene at a sub-pixel level, but can only pro-
vide information about proportion of the endmembers within each pixel. Since the spatial
location remains unknown, spectral unmixing does not perform any resolution enhancement.
Here, we investigate two super-resolution mapping techniques, which take advantage of the
information given spectral mixing analysis and use it to enhance the spatial resolution of
thematic maps.

First, we set an abundance threshold to determine if a pixel can be considered as 'pure’.
Since a single spectral signature can not represent extensively a class within the whole im-
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age, the abundance determination is negatively affected by spectral variability. Therefore, all
the pixels with mazimum abundance greater than this threshold are considered as entirely
belonging to the corresponding class. The other pixels are considered as mixed. Then each
pixel is divided in a fixed number of sub-pixels, according to the desired resolution enhance-
ment. Every sub-pixel is assigned to a class, in conformity with the fractional abundance
computed in the first step. For each pixel, the number of sub-pixels n; to assign to the class
1 is computed according to the equation:

abd; ) (6.3)

1/N?
where abd; is the fractional abundance of the class ¢ within the considered pixel estimated
with the FCLS, N x N is the total number of sub-pixels within each pixel, and round(x)
returns the value of the closest integer to x.
As mentioned before, a well known problem of hyperspectral images source separation and
spectral unmixing covering wide areas is that abundances determination is negatively related
to the intra-class spectral-variability [156], and the assumption that a single endmember could
extensively represent a class is generally far from reality. In other words, if we extract two
spectra of the same material in two different corners of the image, they will probably present
several differences, this having a negative effect if a single endmember is used for abundance
estimation. In order to investigate the influence of spectral variability on the final results,
we have tested two possible approaches. When using an endmember extraction algorithm to
retrieve the endmembers, the spectral signatures retrieved are used as ’endmembers’ in the
whole image, since such techniques retrieve the purest pixel of the images, which could be used
in the whole data set to determine abundances within mixtures. In the case of endmembers
that are extracted using clustering techniques, it is computed a preliminary ’classification
map’, where only the purest pixels are labeled (a pixel is considered as pure if its maximum
abundance is higher than a chosen threshold). Then, the abundances of unlabeled pixels
are re-computed by considering as 'endmember candidates’ only a number of pixels in the
spatial neighborhood of the considered mixed pixel. The endmember candidates are therefore
chosen among the pixels labeled as 'pure’ in the first step, in order to use local endmembers
and to handle the problem of spectral variability. This is done because endmember retrieved
by clustering techniques are more likely to be mixed or slightly mixed pixels, which can not
represent the correspondent class all in the whole image.

n; = round(

6.4.1 Simulated Annealing

The first approach to locate the sub-pixels is based on a simulated annealing mapping
function. The algorithm is used to create random permutation of these sub-pixels, in order to
minimize a chosen cost function. Relying on the spatial correlation tendency of landcovers, we
assume that each endmember within a pixel should be spatially close to the same endmembers
in the surrounding pixels. We assume that, if the same material can be encountered in close
pixels, it is more probable that form a single object rather than two isolated ones. Therefore,
the cost function C' to be minimized is chosen as the perimeter of the areas belonging to the
same class:

I N;

C=> > P (6.4)

i=1 j=1

where [ is the number of the classes, IV; is the number of connected components of the
class i, and P; is the perimeter of the connected component j, computed according to the
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Figure 6.4: Basic steps of the proposed resolution improvement method: (a) Spectral unmix-
ing provides information about abundance fraction within each pixel (b) Pixels are split into
N sub-pixels, according to the desired zoom factor, assigned to an endmember and randomly
positioned within the pixel (¢) Sub-pixels are re-located by Simulated Annealing or Pixel
Swapping. Simulated annealing performs random permutations of the sub-pixels position
until minimum cost is reached (in the proposed example, the perimeter cost function of fig-
ure (c) is the best possible solution, and clearly lower than the case shown in figure (b) ).
Pixel Swapping changes sub-pixel positions as shown in Fig. 6.5.

(a)

8-connected border pixels model [157].

Simulated Annealing (SA) is a well established stochastic technique originally developed to
model the natural process of crystallization [158]. This process is based on an analogy from
thermodynamics where a system is slowly cooled in order to achieve its lowest energy state.
More recently, SA has been proposed to solve global optimization problems [159], and it has
been used in various fields.

The basic idea of the method is that, in order to avoid to be trapped in local minima,
uphill movements, i.e. the points corresponding to worse objective function values could,
sometimes, be accepted by the following iterative procedure. As with a greedy search, it
accepts all changes that lead to improvements in the fitness of a solution. However, also
changes which lead to worse solutions can be accepted. The probability of accepting a
reversal is inversely proportional to the size of the reversal with the acceptance of smaller
reversals, being more probable. This probability also decreases as the search continues, or as
the system cools, allowing eventual convergence on a solution.

6.4.2 Pixel swapping

The second algorithm investigated is the so-called pixel-swapping algorithm, based on
the concept of sub-pixels attractiveness introduced by Atkinson in [160,161|. The original
algorithm takes as input the sub-pixels hard land cover maps obtained after converting the
fractional abundances of the classes and try to maximize the spatial correlation of same class
sub-pixels while preserving the proportional composition within a "low-resolution" pixel.
With respect to the original algorithm, three main differences are presented here:

- In [161], the fractional abundances are considered as a given information, while here
we compute them in the first step of the proposed algorithm.

- The original algorithm was proposed for two classes problems. Here, we apply it to a
multi-class classification problem.

The pixels swapping algorithm takes in consideration a weighted function representing
the ’attractiveness’ of a sub-pixel location. For each sub-pixel position ¢ within the pixel, the
attractiveness O; is represented by:
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Figure 6.5: Basic steps of the pixel swapping algorithm: (a) The hard sub-pixel values are
random located within each pixel. (b) Example of sub-pixel distribution for class 1 (¢) For
each sub-pixel location, the attractiveness O; is computed. In the example figure, sub-pixels
allocated to class 1 are represented in dark gray, sub-pixels allocated to other classes are
represented in light gray. (d) Within each pixel, the lowest attractiveness value of a sub-pixel
allocated to the considered class and the highest attractiveness value of a sub-pixel allocated
to another class are considered. If the first value is smaller than the second, the sub-pixels
are swapped. (e) Example of sub-pixels relocation after the first iteration.

O; = zn: A Z(X;) (6.5)
=1

where n is the number of neighboring pixels considered, Z(X}) is the binary value of the
class z in the j* sub-pixel location X (1 if the sub-pixel belongs to the class z, 0 otherwise),
and )\;; is a weight computed as

_hi'
Aij = exp ( . ”) (6.6)

where h;; is the distance between the sub-pixel locations ¢ and j, and « is a range
parameter of the exponential model. Several weighting functions were explored in [162] as
possible alternatives to the exponential function. The authors suggested that a simple Nearest
Neighbor model could provide comparable accuracy of more complex spatial models, such
as the exponential weighting function, with a much simpler model. Equation (6.5) becomes
therefore the simple sum of the values in the nearest sub-pixels positions:

0; = ZZ(XJ) (6.7)
=1

The method can be described as follows: within a pixel, for each class, the attractiveness
value O is computed for each sub-pixel position ¢ and class z. If the least attractive value
of a sub-pixel actually belonging to a class z is smaller than the most attractive value of
a sub-pixel belonging to another class, the two sub-pixels are swapped. This procedure is
repeated either for a previously fixed number of times or until a stopping criterion is reached.

6.5 Experiments on synthetic data

This section aims at giving an overall idea of the proposed method, when used for classi-
fying synthetic data. Because of this reason, only the endmember extraction based method
is considered, with Simulated Annealing sub-pixel mapping.

One of the main problem when dealing with spectral unmixing of real data is the difficulty
to assess the results obtained, especially in the case of abundance fractions estimation. If
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Figure 6.6: (a) Ground truth of the syntethic image created with reference spectra. (b)
Ground truth after down-scaling of a factor 3. Mixed pixels are shown in black (c) Image
obtained after source separation and random positioning of the elements (d) Final results
after simulated annealing optimization
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reference spectra can be easily obtained from a laboratory simulation or from n situ observa-
tions, to have a complete map of sub-pixels coverage and their fractional abundances is much
more difficult. This is the main reason that lead us to first consider synthetic data, where
all the spectra and the abundance fractions are known in a detailed way. In the following
example, we have created an image using spectra obtained from a library, in order to better
illustrate the working of the proposed method (for simplicity, we only show here the results
obtained with the spectral unmixing based endmember extraction with Simulated Annealing
sub-pixel location).

We have chosen 9 spectra from the USGS spectral library! [163], namely asphalt, brick, metal
sheet, roofing felt, water, dry grass, oak leaves, lichen and green slime. This library provides
a very detailed spectral description of the elements, with more than 2100 considered wave-
lengths. In order to consider as realistic as possible data, which could be comparable with
the data provided by the last generation hyperspectral sensors, we have downsampled the
original spectra of the library, so that each spectrum used in the experiment was composed
by 216 values in the 0.3-2.5 um range, which could roughly corresponds to the spectral range
and the amount of information of a real data. Despite most of these spectra are not closely
related, some of them have a very high spectral correlation making more difficult the source
separation process.

In this simulation, we have tried to perform an accurate simulation of data containing spa-
tial characteristic close to reality. In order to create a realistic fractional abundance map,
we have considered the ground truth of a widely used image in remote sensing application,
the AVIRIS Indian Pine image?. By considering the reference map of the AVIRIS data as
ground truth of our simulated scene, we have substituted the original spectral values with
those obtained after the convolution of the USGS library spectra. Therefore, every spectrum
will have a spatial distribution of a land cover class of the AVIRIS image (or, in some cases,
more than one, since the AVIRIS image contain 16 different classes, while in our experiment
we have only nine). No spectral variability is considered in this first experiment.

After creating the synthetic image of 144x144 pixels which will be used later to assess the
results of our method, we perform a down-scaling by substituting each 3x3 window of pixels
with its average value, obtaining a new image composed by 48x48 pixels, with the same
number of bands but a lower spatial resolution (of course, being a simulated imaged, the spa-
tial resolution is relative; however, we obtain an image covering the same area where mixture
of pixels are incorporated). This image will be the input data of the proposed approach, to
improve the spatial resolution of its classification map. The ground truths of the original and
filtered images are shown in figure 6.6, (a) and (b). In the image a majority of pure pixels
is present, but it also contains a number of areas with mixtures of materials (totally the
low resolution image contains 1722 pure and 582 mixed pixels). Due to the lack of spectra
variability this is not a particularly challenging scenario, but still it can show the possibility
offered by the proposed method.

Results are shown in Figures 6.6 (c)-(d), and in Table I. To have a quantitative assessment
of the proposed method, we performed a comparison between the original high resolution
image (figure 6.6a) and the image with enhanced resolution. The indicator that we have
evaluated are the following: The correspondence of the retrieved spectra with the spectra
used to build the image, the percentage of pixels which are not correctly retrieved after the
spectral unmixing step, the percentage of pixels which are not correctly located after the
Simulated Annealing step, and the percentage of mixed pixels (that are, pixels considered
as pure in the high resoltion image and mixed in the low resolution one) which are not
correctly located after applying SA.. More than 98% of the pixels are correctly located,

"http://speclab.cr.usgs.gov/spectral 1ib06/ds231 /datatable.html
% Available on-line: http://dynamo.ecn.purdue.edu/~Ibiehl/
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Table 6.1: Spectral unmixing for unsupervised classification: Performance obtained in the
different scenarios

Filtering window size 3x3 4x4
SNR Inf 50 dB | 30 dB 25dB
Mean spectra correlation 1 1 1 0.98

Pixel unc. labeled after SS | 0.15% | 0.83% | 1.80% | 2.51%
Pixel unc. postioned after SA | 1.89% | 6.40% | 7.31% | 8.82%
Mixed pixel unc. positioned | 7.50% | 17.86% | 19.47% | 24.02%

which correspond to the 92.8% of the mixed pixels. All the pure pixels are correctly labeled.
From this simple experiment, the effectiveness of the proposed method can be evaluated. We
can preliminary conclude that when the classes are correctly retrieved with spectral unmixing,
the proposed spatial regularization technique provides very good results.

6.5.1 Spectral variability

In order to search for more challenging scenarios, the image was down-scaled of a factor
4, and the influence of noise has been considered. The filtered image is therefore composed
by 1296 pixels, 818 pure and 478 mixed. Zero mean Gaussian noise is added to the original
signal, in order to obtain the desired SNR. Three different values of SNR have been tested:
50, 30 and 25 dB. When considering real hyperspectral images, the amount of noise is in
general much lower than the one tested here; however, the Gaussian noise is useful to try to
represent the spectral variability of real data, which is not considered in synthetic images.
The presence of noise could affect the source separation step. If the endmembers are not
correctly retrieved, the optimization step will start with wrong assumptions and inevitably
lead to a bad result. As it can be seen from Table 7.4, the overall error increases with the
noise, but still very good results are obtained. In the worst case, which is synthetic data with
zoom factor of 4 and SNR of 25 dB, more than 91% of the image pixels are correctly labeled
and positioned. Thus, the results obtained in the previous experiments are confirmed, stating
the validity of the proposed spatial regularization and of the whole method proposed.

6.6 Experiments on real data

The experiments on real images were conducted by considering two different hyperspec-
tral data. The first considered data set ROSIS data acquired over the University of Pavia,
Italy, with 103 bands, ranging from 0.43 to 0.86 um, with a 1.3 m spatial resolution. The
very high value of the spatial resolution, which is not common in traditional hyperspectral
satellite sensors, is due to fact that ROSIS is an airborne sensor. Here, we consider a small
segment (120x90 pixels) of the image, which contains several land cover classes. Figure 6.7
(a) shows a gray scale image of the 30th band of the scene. The main element of interest is
the metal sheet structure in the center of the image.

The second image analyzed in our experiments is an AISA KEagle dataset. It contains 252
bands ranging from 395 to 975 nm in the visible and NIR spectral range. The original spa-
tial resolution of the image was 2 m measured on ground, but in order to be treatable and
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Figure 6.7: ROSIS University data set experiment: (a) Data set used in the experiment, band
30, original spatial resolution (b) Data set used in the experiment, band 30, spatial resolution
degraded of a factor 3. (c) Fractional abundance map obtained with spectral unmixing
(VCA + FCLS) (d) K-means classification map, after post-processing (e) Proposed method
K-means+Spectral Unmixing classification map, after post-processing (f) Proposed method
VCA-+Spectral Unmixing classification map, after post-processing (g) Fractional abundance
map obtained with spectral unmixing (VCA + FCLS) (h) K-means classification map, after
post-processing (i) Proposed method K-means-+Spectral Unmixing classification map, after
post-processing (1) Proposed method VCA-+Spectral Unmixing classification map, after post-
processing.
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still useful for the purposes of land cover interpretation it was downscaled to 6 m ground
resolution while keeping the original spectral information as possible. The area is located
in Hungary and contains arable lands near to the city of Heves. The area is mainly useful
because of agricultural production. We considered a large subset of the image (400x500
pixels) containing six classes of interest.

The performances of the tested methods were evaluated in terms of overall accuracy (OA),
that is the number of correctly classified test samples with respect to the total number oftest
samples, average accuracy (AA), which represents the average of the classification accuracies
for the individual classes, and the single classes accuracy. In the case of the ROSIS University
experiment, where the classification of a single class is evaluated, the two accuracy indicators
are equivalent.

6.6.1 ROSIS data set

The experiments carried out on the ROSIS data set are intended to evaluate the use-
fulness of the proposed method as a tool for structure detection. Two different tests were
performed. The first one was on the original data, where all the pixels are considered as pure,
in order to see the behavior of the proposed algorithms in such a situation. In the second
experiment, the spatial resolution of the image was artificially degraded of a factor 3, so that
the obtained images have a spatial resolution of 3.9 m, which is a realistic assumption in the
case of airborne/satellite hyperspectral sensors. We introduce in this way a number of mixed
pixels, useful to evaluate the performance of our method in such a situation. In order to have
a comparison with a traditional unsupervised classification method, we have also classified
both images with a K-means classifier. The number of classes to select was set to b, after
applying the Virtual Dimensionality method (setting the probability of false alarm to 0.001).
Besides the number of classes, the only parameter which needs to be set in the proposed
method is the threshold to determine whether a pixel can be considered as 'pure’ after the
first step. Instead of choosing an absolute value, we considered the difference between the
two biggest abundances within a pixel, and set this value to 0.4. The decision to consider
a relative value as threshold was taken by considering the characteristics of hyperspectral
data, which are in general subject to high spectral variability. When performing spectral un-
mixing, endmembers which do not belong to a pixel could results in a small, but larger than
zero abundance, mainly because of spectral variability or noise influence. With the proposed
method, if a pixel contains two classes with abundances 0.65 and 0.35, it will be considered
as mixed. However, if several classes are included in the pixel, the largest abundance being
0.65 and the others smaller than 0.2, the pixel will be considered as pure, since we assume

Table 6.2: Classification accuracies for the ROSIS data set experiment. In this experiment,
only the producer accuracy for the main class of interest 'metal sheet’ is considered. (KM =
K-Means, SU — Spectral Unmixing, SA — Simulated Annealing, PS — Pixel Swapping, PP
= Post Processing)

ROSIS original ROSIS low resolution
Before PP After PP | Before PP After PP
K-Means 50.86% 50.71% 93.75% 96.46
KM-SU-SA 95.89% 96.91% 97.10% 98.35
KM-SU-PS 95.24% 96.29% 96.91% 98.02
VCA-SU-SA | 96.95% 99.91% 97.12% 98.78%
VCA-SU-PS 96.55% 99.76% 96.85% 98.43%
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that low abundances are related to spectral variability and noise.

The performance of the methods was evaluated on the classification of the metal sheet
structure present in the middle of the image. In order to have a quantitative comparison of the
results, in the case of low resolution data, the classification map obtained with the traditional
unsupervised classifier was evaluated by comparison with the low resolution ground truth
available, while the proposed methods is evaluated by comparison with the high resolution
ground truth data. However, we would like to highlight that all the methods take as input
the low resolution data. A simple post-processing was applied to the classification map, in
order to eliminate sparse pixels. For each pixel, a 3x3 window including its surrounding was
used, and the value set to the most represented class within the window.

Both from Table II and Fig. 6.7 can be noticed the improvement provided by the proposed
methods. Quite surprisingly, the K-means classifier provides better results in the case of
low resolution data (also if the spatial accuracy of the method is clearly lower). The reason
for this improvement is mainly due to two facts: 1) pixels labeled as "structure" in the low
resolution data are composed by the average value of 9 pixels of the original image, this
mitigating the problem of spectral variability 2) the number of pixels labeled as "structure"
are much less than in the original case, since all the samples which were averaged with pixels
belonging to other classes or unknown, were considered as mixed and therefore discarded
from the ground truth.

It is highly remarkable that the proposed method obtains comparable results in the two cases,
retrieving the metal structure as it is represented in the high resolution reference data. The
qualitative improvement can be easily seen in Fig. 7.

6.6.2 AISA data set

The second experiment was carried out on the AISA data set, after reducing the spatial
resolution of a factor 5. In spite of the high spatial resolution degradation, most of the pixels
of the data set are to be considered as pure, since the image is mainly composed by large
agricultural fields (high resolution ground truth represented in Fig. 6.8 (a)).

After the unsupervised classification, every cluster was assigned to the label of the class that
was better represented, taking care that each cluster was assigned to only one class. The over-
all classification accuracy was then computed along with the accuracies of the single classes
and the average class accuracies. As in the previous experiment, the K-means output map
was compared with the low resolution ground truth obtained after filtering (not considering
pixels which become mixed), while the proposed method was compared with the high reso-
lution ground truth. We want to stress that this type of comparison is highly unfavorable to
our method, which is expected to correctly classify pixels which are mixed in the input image,
and to correctly locate the obtained sub-pixels in order to have the same spatial distribution
of the original image, while for the K-means classifier these pixels are not considered in the
ground truth. The post-processing considered in the first experiment was applied also in this
case to eliminate isolated pixels in the classification maps.

The quantitative results are shown in Table III. Both proposed methods show better per-
formances in terms of overall classification accuracy. The use of spectral unmixing with
global endmembers results in a high percentage of mixed pixel, as it can be noticed from the
improvement obtained with the classification post-processing. Instead, the unsupervised clas-
sifier with local endmembers shows slightly better results in terms of average class accuracy
after the post processing step. The results of the experiment suggest that once the additional
information about sub-pixel class abundances is retrieved by mean of spectral unmixing, the
classification errors due to spectral variability can be easily corrected with a simple major
voting post-processing.
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Figure 6.8: ROSIS data set experiment: (a) Original ground truth (b) K-means classification
map, before post-processing (c¢) Proposed method K-means+Spectral Unmixing classifica-
tion map, before post-processing (d) K-means classification map, after post-processing (e)
Proposed method K-means-+Spectral Unmixing classification map, after post-processing (f)
Proposed method VCA+Spectral Unmixing classification map, after post-processing
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Figure 6.9: Variation of the overall classification accuracy versus the threshold parameter to
determine the purity of a pixel: (a) AISA data set (b) ROSIS low resolution data set. Red
bars: Simulated Annealing. Blue bars: Pixel Swapping.
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Table 6.3: Classification accuracies for the AISA data set experiment. (KM = K-Means,
SU = Spectral Unmixing, SA = Simulated Annealing, PS = Pixel Swapping, PP = Post
Processing).

AISA Data set - Before PP
K-Means KM-SU-SA KM-SU-PS VCA-SU-SA VCA-SU-PS

Overall Acc. 51.61% 75.72% 75.65% 59.69% 59.54%
Average Acc. | 61.37% 64.20% 64.15% 56.83% 56.41%
Class 1 93.75% 59.72% 59.21% 58.26% 58.11%
Class 2 56.41% 87.34% 87.32% 67.87% 67.88%
Class 3 95.83% 99.19% 99.11% 30.69% 30.60%
Class 4 59.15% 46.90% 46.91% 73.50 73.21%
Class 5 6.67% 7.08% 7.00% 51.19% 51.13%
Class 6 56.44% 85.03% 84.97% 58.96% 58.87%

AISA Data set - After PP
K-Means KM-SU-SA KM-SU-PS VCA-SU-SA VCA-SU-PS

Overall Acc. | 52.75% 76.24% 76.11% 70.57% 70.51%
Average Acc. | 65.60% 64.37% 64.21% 65.73% 65.70%
Class 1 100% 60.21% 60.22% 75.63% 75.61%
Class 2 55.75% 88.07% 88.01% 77.41% 77.40%
Class 3 100% 99.38% 99.38% 28.18% 28.12%
Class 4 71.83% 45.84% 45.64% 94.75% 94.75%
Class 5 6.67% 7.16% 7.18% 70.05% 70.06%
Class 6 59.09% 85.58% 85.50% 59.77% 59.60%

6.6.3 Discussion

The results obtained in the previous experiments prove that the proposed method has
a very high potentiality for the unsupervised classification of hyperspectral images with low
spatial resolution. In the case of highly mixed scene (as in the first considered data set, where
there is a large number of mixed pixels with respect to the size of the data set), endmember
extraction based methods provide better results. On the contrary, when the number of pure
pixels is much higher than the number of mixed ones, the characteristics of clustering based
methods have proven to be more suitable, as in the experiments conducted on the AISA
data. The two approaches tested for sub-pixel locations have shown to be equivalent in terms
of classification accuracy, with slightly better results provided by Simulated Annealing. In
the proposed method, the only parameter having an influence on the overall classification
accuracy obtained is the threshold to determine if a pixel can be considered as 'pure’. How
the classification accuracy changes by changing the value of the parameter can be seen in
Fig. 7.8. It can be noticed that the proposed method shows similar classification accuracies
for the three tested values. The parameters, although very important for the classification,
show a range of values for which the algorithms provide good results in terms of accuracy. As
could be expected, a high value of the comparative threshold to determine if a pixel can be
considered as 'pure’ provides slightly higher accuracies, since only the most reliable pixels are
labeled for the preliminary classification. By setting a low value of the threshold parameter,
the preliminary classification map will tend to be like a common hard classification map
obtained with a traditional classifier.
Regarding the computational burden, the two techniques considered to determine land cover
classes, are equivalent in terms of processing time. The main difference between the methods
tested in our experiments resides in the super-resolution algorithms used to locate sub-pixels.
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Figure 6.10 shows the value of the perimeter of connected areas (which is the cost function
considered in our experiments for Simulated Annealing) versus the number of iterations. It
can be noticed that the Pixel Swapping method reaches the stability condition after few
iterations (usually in the order of tens iterations), while Simulated Annealing, due to the
random permutations performed, needs a much higher number of iterations to reach the
same results. The computational burden required by Simulated Annealing is much higher
in the case of AISA data set, due to the larger number of pixels and the higher resolution
enhancement factor.

6.7 Conclusions

The unsupervised classification of hyperspectral images in presence of mixed pixels was
addressed. Two methods for structure detection and improvement of the spatial resolution of
classification maps were proposed. The method exploits the advantages of source separation,
unsupervised classifiers and spectral unmixing algorithms, in order to determine the frac-
tional abundances of the classes at a sub-pixel scale. A spatial regularization by Simulated
Annealing is finally performed to spatially locate the land cover classes within each pixel.
Experiments were carried out on a synthetic and two real data sets. The experimental re-
sults show that the proposed method clearly outperforms classical unsupervised classification
techniques when areas with mixtures of materials are located in the scene, providing excellent
results both from a visually and quantitative point of view. Further research will be devoted
to the investigation of advanced methods to better discriminate pure and mixed pixels, and
of the possibility of alternative techniques of spatial regularization.
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Figure 6.10: Perimeter of connected areas versus number of iteration for the two proposed
super-resolution algorithms: (a) AISA data set (b) ROSIS low resolution data set.
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Chapter 7

Spectral unmixing to obtain finer map
resolution

Abstract

The integration of the super-resolution method into the framework of supervised classification
15 discussed in this chapter. When training set is available, a probabilistic SVM can be used
to perform a preliminary classification. The results are the starting point to integrate the
proposed method to improve the spatial resolution of the classification map. Comparison with
a traditional SVM shows the effectiveness of the proposed method.
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7.1 Introduction

The spatial resolution of hyperspectral images has a large influence on the classification
accuracy which can be achieved. Although an increase of the spatial resolution does not
lead automatically to better performances, the low spatial resolution makes appear problems
connected to the presence of mixtures of materials [164]. In particular, the main assumption
on which conventional supervised classification techniques for hyperspectral imagery are based
is that the classes to be separated are discrete and mutually exclusive, i.e., it is assumed that
each pixel vector contains information of a single spectral class. Often, however, this is not
a realistic assumption. In particular, due to the tradeoff which is observed between spectral
and spatial resolution, most of the pixels collected by hyperspectral imaging instruments
contain the resultant mixed spectra from the reflected surface radiation of various constituent
materials at a sub-pixel level. The presence of mixed pixels is due to several reasons [5].
First, the spatial resolution of the sensor is generally not high enough to separate different
pure signature classes at a macroscopic level, and the resulting spectral measurement can be
a composite of individual pure spectra (often called endmembers in hyperspectral analysis
terminology) which correspond to materials that jointly occupy a single pixel. Second, mixed
pixels also result when distinct materials are combined into a microscopic (intimate) mixture,
independently of the spatial resolution of the sensor.

As pointed out in the previous chapters, one of the main limitation of remote sensing is
handling of the intrinsic scale of variation of land cover, often being finer than the scale of
sampling imposed by the satellite sensor |161|. The problem is particularly significant in the
case of multispectral imagery, due to the tradeoff which generally exists between spatial and
spectral resolution. A number of so-called full pixel techniques, based on the assumption that
each pixel corresponds to the spectral signature of one predominant land cover type, have
been proposed during the last decades for the classification of hyperspectral images [138,165].
These techniques are not suitable for the analysis of mixed pixels and will inevitably lead
to a high error rate when used for scenarios with a high number of sites with mixtures of
land cover classes. The issue of mixed pixels has been considered in several works. A widely
investigated approach is the use of soft classification techniques [147]. These classifiers do
not assign a pixel to only one class, but they produce a set of images (one per class) that
express for each pixel the degree of membership in the class in question [147]. However, the
membership degree does not necessarily reflect the fractional abundance of a class within a
mixed pixel, and the probability of a pixel to belong to one class does not necessarily corre-
spond to the fractional part of the pixel covered by the considered class.

Linear spectral mixture analysis (SMA) [94] is a soft classification technique explicitly de-
signed to address this problem. Following the spectral mixing model, the spectral signature
of a mixed pixel is assumed to be the weighted sum of some constituent spectra, also called
endmembers. Spectral unmixing is the procedure by which the measured spectrum of a
pixel is decomposed into a collection of endmembers, and a set of corresponding fractions, or
abundances, that indicate the proportion of each endmember within the pixel. A number of
techniques, exploiting both statistical and geometrical properties of the data, was proposed
over the last few years [108,150]. These techniques can partially overcome the weakness of full
pixel methods when analyzing mixed pixels. However, when used to obtain crisp classification
maps, the endmembers selection and the abundances determination are negatively affected
by spectral variability [166], and common hard classification methods are more suitable in
such a case [167].

The remainder of the chapter is organized as follows. Section 7.2 presents the idea of the
proposed approach. Section 7.3 presents in greater details the proposed approach. Section 7.4
shows the experiment on a synthetic data set, while Section 7.5 illustrates the experimental
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Figure 7.1: Tlustration of the problem of mixed pixels in remote sensing images: (a) When the spatial
resolution is not fine enough, several land cover classes lie in the same pixel. (b) In this case, a hard
classification process cannot give an accurate information about the pixel coverage, leading inevitably to a
loss of information (in the example figure, the classes of grass and metal sheet are considered for classification).
(¢) Spectral unmixing can provide information at a sub-pixel level, computing the fractional abundances of
a class within each pixel. However, the supplementary information obtained does not result in a resolution
enhancement of the classification map. (d) The proposed method tries to handle the problem by jointly using
the ideas of spectral unmixing and unsupervised classification, in order to obtain thematic maps at a finer
scale, without needing any additional source of information.

results on real hyperspectral data. Section 7.6 finally draws the conclusions.

7.2 Supervised super-resolution

In this chapter, a new supervised technique, which takes advantage of both probabilistic
classification and spectral unmixing mapping techniques, is proposed in order to handle the
issue of mixed pixels. The concept of sub-pixel mixing is also considered, in the attempt of
obtaining land cover maps with an improved spatial resolution. The idea of subpixel mapping
was first presented by Atkinson in [168]. He proposed to use the output of a soft classifica-
tion technique in order to obtain a super-resolution mapping, trying to maximize the spatial
correlation of the land cover classes to determine sub-pixels spatial locations. Since then, a
number of techniques focused on better estimating sub-pixel fractional abundances determi-
nation and obtaining land cover maps with higher spatial resolution have been proposed [169].
In this chapter, we propose the use of Simulated Annealing (SA) for this purpose, due to its
simplicity and ease of use. This method has shown good results in a number of optimization
and real problems, and its wide range of parameters grants a high flexibility with respect to
the analysed problem. In multi-hyperspectral remote sensing; it has successfully been used
for classification [148,170], and abundances estimation [171]. The method proposed in this
chapter is in three steps. In a first step, a coarse classification is performed, based on the
probabilistic output of an SVM. Every pixel can be assigned to a class, if the probability value
obtained in the classification process is greater than a chosen threshold, or be unclassified.
Pixels with a low probabilistic output are either mixed pixels or pixels hard to classify due
to spectral variability, and their classification is addressed in a second step. In the second
step, spectral unmixing is performed on the unclassified pixels by considering the preliminary
results of the coarse classification step and by applying a Fully Constrained Least Squares
(FCLS) method to every unlabeled pixel, in order to obtain the abundances fractions of each
land cover type. Finally, in a third step, spatial regularization by SA is performed to obtain
the resolution improvement. Experiments are carried out on synthetic and real hyperspectral
data sets. The results are excellent both numerically and visually and show that the proposed
method clearly outperforms traditional hard classification methods when the data contain
mixed pixels.
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Figure 7.2: Flow chart scheme of the proposed approach to obtain thematic maps at a finer
spatial scale in a supervised classification framework.

7.3 Methodology

The flow chart scheme of the proposed approach is presented in Fig. 7.2. The hyperspec-
tral data are used as input for the hard classification method, in order to obtain a preliminary
classification of all the pixels considered as "pure". The results of this step are the input
(along with the original hyperspectral image) for the spectral unmixing, so that an appro-
priate set of endmembers can be found and the negative impact of spectral variabiality on
the classification map minimized. In the last step, the results obtained are processed with a
Simulated Annealing algorithm. Based on the assumption of spatial correlation of the land
cover classes, SA is used to optimize a function where spatial proximity of pixels belonging
to the same land cover class are preferred to the opposite case.

7.3.1 Pixel-wise classification

The first step of the proposed method consists in performing a pixelwise classification
of the hyperspectral image, in order to obtain, for every pixel, a probability value for it to
belong to one of the land cover classes. The pixels with a probability higher than a chosen
treshold are considered as pixels where a single class is represented, and thus assigned to the
considered class. These pixels are going to provide a preliminary classification map, where
only the pixels containing a predominant land cover class are labeled. All the other pixels
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75% | 80% | 90%
25% | 20% | 10%

10% | 60%| 55%
85% | 40% | 40%

80% | 65% | 23%
10% | 35% | 77% MIX

(a) (f)

Figure 7.3: Basic steps of the proposed method: (a) A probabilistic classification map is computed
for each class. (b) The pixels with highest probability greater than a chosen treshold are considered
as pure and classified (in the figure, we set the treshold to 70%). The other pixels are considered
as mixed (MIX in the figure). (c¢) For each mixed pixel, a set of possible endmembers is selected,
considering the results of the preliminary classification. The other pixels, pure or mixed, are just
ignored. (d) Spectral unmixing provides information about the abundance fraction of a class within
each pixel. (e) Pixels are split into n sub-pixels, according to the desired zoom factor, assigned to
an endmember and randomly positioned within the pixel. The number of sub-pixels assigned to each
class reflects the fractional value estimated in the previous step. (f) Simulated annealing performs
random permutations of the sub-pixels position until minimum cost is reached.

are not labeled, and their classification will be addressed in a second step.

As long as it can provide a probabilistic output, every classifier can be used for the data
analysis. In this work, we propose to use a probabilistic Support Vector Machine (SVM)
classifier [172], due to the good performances shown in the classification of hyperspectral
data, also in case of limited training sets [15,173,174]. In the following, we give a short
description of the principles on which SVM is based. Due to the lack of space, we refer the
reader to [172] and [173] for further details on the theory of SVM and its application for
hyperspectral images classification.

7.3.2 Probabilistic Support Vector Machine

The SVM is surely one of the most commonly used kernel learning algorithm. It performs
robust non-linear classification of samples using the kernel trick [175]. The idea is to find a sep-
arating hyperplane in some feature space induced by the kernel function while all the compu-
tations are done in the original space [172]. Given a training set S = {(x!,91),..., (x%, y)} €
R™ x {—1;1} where vector x contains the band intensities and y the class label, the SVM
computes a decision function f(x) such that sign(f(x)) can be used to predict the label of any
test sample x. The decision function can be written as

fl@) =N yick(x',x7) + b (7.1)

and it is found by solving the convex optimization problem:

L
ot (et ~ed
max g ZOCZ ijZ:1 azajyzyjk(x , X ) (72)
subject to 0 § a; < C and 25:1 oy =0

where « are the Lagrange coefficients, %(xi, x;) = k(xi,%;)+6;;/C, k the kernel function,
C' a constant that is used to penalize the training errors, d;; a function such that § = 1if i=j, 0
— 0 otherwise. To be an acceptable kernel, k should be a positive semi-definite function [175].

In [176] Platt proposes approximating the posterior class probabilities P(y = 1|x) by a

sigmoid function:
1
P(y =1|z) = Pap(f (7.3)
( )~ ()= 1+ exp(Af + B)
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where f is an estimation of the decision function f(x) computed by the SVM, A and B two
parameters that need to be optimized. The best parameter setting (A*, B*) is determined by
solving the following regularized maximum likelihood problem (with Ny of the y;’s positive,
and N_ negative training samples):

zgljr,lB F(z) = Yt (tilog(p:) + (1 — t:)(1 — log(py)), (7.4)
where

iy =+l
=P 1 t; = Ny+2 .
pi A7B(fl)’ t { 1 if y=-1

i=1,...,1.

A detailed description of the method can be found in [176]. In this work, we have used an
improved implementation of the above algorithm [177], which is included in the LIBSVM
library [79].

In this first classification step, we consider two outputs:

1) A complete probability map, containing the probability estimates for each pixel to
belong to the assigned class.

2) A coarse classification map of the pixels considered as 'not mixed’, containing class
labels for the samples with a probability belonging to the class higher than a chosen
threshold.

It is not a straightforward task to choose the threshold to determine if a pixel should be
considered as pure or mixed. When labelling the pure pixels, we are interested in correctly
classifying most of the pure pixels, because of two already mentioned reasons: i) When
dealing with pure pixels, the full pixel methods work better than spectral unmixing, ii) this
preliminary classification will be the input of the second step, and a large number of correctly
classified pure pixel helps to provide suitable endmember candidates for the mixed pixels. For
this same reason, the misclassification of pure pixels could lead to critical issues and cause a
large error in the spectral unmixing step, thus a tradeoff is observed. The experiments carried
out to investigate this issue have shown that in general a high threshold (close to 80%) allows
to obtain a higher classification accuracy, since only the pixels which are reasonably sure to
belong to a class are labeled. However, the choice of this parameter is not crucial for the
classification accuracy of the proposed method, as it will be shown in the next sections.

7.3.3 Spectral Unmixing

After obtaining a coarse classification map, where some pixels considered as "pure" (due
to the high probability to belong to the assigned class) were classified, the labelling of the
other pixels is addressed in the second step.

Spectral mixture analysis (SMA) techniques have overcome some of the weaknesses of full
pixel approaches by using linear statistical modeling and signal processing techniques [94,108].
They are inherently either nonlinear techniques or linear techniques. Nonlinear mixed pixel
analysis estimate multiple scattering effects that may arise when the different materials form
intimate association at microscopic level [94]. Although they can be useful for some types
of analysis, in the majority of applications a linear mixing model can be considered without
significant loss of information [94]|. The key task in linear SMA is to find an appropriate set
of pure spectral constituents -called "endmembers" in hyperspectral analysis terminology-,



CHAPTER 7. SPECTRAL UNMIXING TO OBTAIN FINER MAP
142 RESOLUTION

Unmixed data

i

Stopping criterion =17

ino

Random perturbation
of a mixed pixel

i yes

yes

Decrease of cost > | Accept: p=1
function? —
no .
> Reject: p,
Accept: 1-p.

- @

Figure 7.4: Flow chart scheme of the proposed spatial regularization approach based on
Simulated Annealing.

which are then used to estimate the fractional abundances of each mixed pixel from its spec-
trum and the endmember spectra by using a linear mixture model.

In the Linear Mixture Model (LMM), the spectrum of a mixed pixel is represented as a linear
combination of component spectra (endmembers). The weight of each endmember spectrum
(abundance) is proportional to the fraction of the pixel area covered by the endmember. If
there are M spectral bands, the spectrum of the pixel and the spectra of the endmembers
can be represented by M-dimensional vectors. Therefore, the general equation for LMM is
described as a linear regression form

L
z:Zaisi+e:As+e (7.5)

i=1

where z is an M x 1 column pixel vector which describes the spectrum of the mixed pixel,
s = [s182...s1] is an M x L endmember matrix of material signature, s; (i = 1,2,...,L)
are the M-dimensional spectra of the endmembers, a is an L x 1 column vector and is
composed of abundance coefficients a; (i = 1,2,..., L), e is an M-dimensional error vector
accounting for lack-fit and noise effects, and L is the number of the endmembers. Due to
physical reasons, (7.5) has to respect the following constraints of non-negativity (abundance
fractions within a pixel cannot be negative) and sum to one (the sum of all the abundances
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fraction within a pixel must have 1 as a result):

a; Z 0 (76)
> ai=1. (7.7)

In recent years, several algorithms have been developed for automatic or semi-automatic
extraction of spectral endmembers directly from the image data and to determine their frac-
tional abundances within each pixel [150]. Assuming that ground truth is available, we do
not need to determine the endmembers composing the data, but simply the abundance of
each land cover type within the pixels. In this case, a major issue is how to handle the spec-
tral variability which affects the data. As shown in [156], soft classification of hyperspectral
images covering wide areas is negatively related to the intra-class spectral-variability, and the
assumption that a single endmember could extensively represent a class is generally far from
reality. The choice of appropriate endmembers is very important in order to correctly esti-
mate the fractional abundances. If the endmembers do not represent the land cover classes
well, the estimates of the sub-pixel coverage can be highly biased and lead to misclassification
errors.

In order to overcome this problem, we propose an adaptive approach to select the best end-
member candidates for each pixel. This approach is based on two main assumptions:

1. The spatial correlation of the classes, i.e., for each pixel, it is probable that the best
endmember candidates lie in the spatial proximity of the considered pixel.

2. The probabilistic output provided by the SVM, i.e., if a candidate is not spatially close
to the selected pixel, but the probabilistic value of the class to which it belongs is high,
it is presumably a good candidate.

For each mixed pixel which has to be classified, we consider a set of 10 different spectra,
that represent the endmember candidates. The reason for this choice is the above mentioned
spectral variability: It is hard to represent a class with a single endmembers. The following
experiment will show that this number can be varied within a wide range of values without
affecting the performances of the proposed method. These candidates are chosen from the
labeled samples of the training data and the results of the preliminary classification of step
one, considered as a set of pure pixels correctly classified. If one of the land cover classes
has a high probabilistic output (we consider a probabilistic output as high if its difference
from the threshold chosen at step 1 is smaller than 5%), at least five spectra of this class
are considered, otherwise all the 10 candidates are selected from the spectral signatures
spatially closest to the considered pixel, after the coarse classification step. Once the spectral
signatures representative of each class are extracted from the image, the abundance fraction of
the elements within each pixel should be determined. Several algorithms have been developed
for the linear mixing model according to the required constraints of abundances fractions.
The fully constrained least squared unmixing algorithm is a widely adopted practical solution
to avoid the appearance of theoretical problems, such as negative fractional abundances or
abundances that sum up to more than one. Due to its computational efficiency, we have
chosen this algorithm, which satisfies both abundance constraints and is optimal in terms
of least squares error [109]. After applying FCLS, we obtain the fractional abundances of
each endmember. Due to the fact that in many cases several endmembers represent the same
class, by summing the fractional abundances of all the endmembers belonging to the same
land cover class, we obtain the cover percentage of a class within a mixed pixel. It should
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be noted that not all the pixels to be classified in this second step are mixed, but there are
many 'pure’ pixels not labeled because of the low probability output provided by the SVM.
However, the proposed method allows to label them as 'pure’ pixels also in this second step.

7.3.4 Improving Spatial Resolution

Spectral unmixing is useful to describe the scene at a sub-pixel level, but can only provide
information about proportions of the endmembers within each pixel. Since the spatial location
remains unknown, spectral unmixing does not perform any resolution enhancement. In this
chapter, we propose a sub-pixel mapping technique, which takes advantage of the information
given by the spectral mixing analysis and uses it to enhance the spatial resolution of thematic
maps. Our proposed approach is as follows: In a first step, each pixel is divided in a fixed
number of sub-pixels, according to the desired resolution enhancement. Every sub-pixel is
assigned to an endmember, in conformity with its fractional abundance within the pixel. For
example, if we want to have a zoom factor of N, we have to divide each pixel into NxN
sub-pixels. For each pixel, the number of subpixels n to assign to the class ¢ is computed
according to the equation:

abd; )) (7.8)

1/N?
where abd; is the fractional abundance of the class ¢ within the considered pixel estimated
with the FCLS and round(x) returns the value of the closest integer to x.

A Simulated Annealing (SA) mapping function is then used, to create random permuta-
tion of these sub-pixels, in order to minimize a chosen cost function. Relying on the spatial
correlation tendency of landcovers, we assume that each endmember within a pixel should
be spatially close to the same endmembers in the surrounding pixels. Therefore, the cost
function C' to be minimized is chosen as the perimeter of the areas belonging to the same
class:

n; = round(

I N;
C=> > P, (7.9)

i=1 j=1

where [ is the number of the classes, IN; is the number of connected components of the
class ¢, and P; is the perimeter of the connected component j, computed according to the
8-connected border pixels model [157].

SA is a well established stochastic technique originally developed to model the natural process
of crystalization [158]. This process is based on an analogy from thermodynamics where a
system is slowly cooled in order to reach its lowest energy state. More recently, SA has
been proposed to solve global optimization problems [159], and it has been used in various
fields. The basic idea of the method is that, in order to avoid to be trapped in local minima,
uphill movements, i.e., points corresponding to worse values of the objective function could,
sometimes, be accepted for the following iteration. As with a greedy search, it accepts all
the changes that improve the solution. Changes degrading the solution can be accepted,
but with a probability that is inversely proportional to the size of the degradation (small
degradations are accepted with a higher probability). This probability also decreases as the
search continues, or as the system cools down, allowing eventual convergence to the optimal
solution.

An example of how SA spatial regularization works can be seen by looking at Fig.7.3, where
7.3 (e) represents the initial sub-pixel distribution and 7.3 (f) the optimal one. First, a mixed
pixed is selected, according to the information provided by the spectral unmixing step. Then,
a random permutation of the subpixels within the chosen pixel is performed by SA. If this
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Table 7.1: Simulated data set. Description of the pureness of each pixel. abd represents the
mazximum value of abundance within a pixel

Pureness Number of Pixels

abd>95% 7105
95%>abd>85% 828
85%>abd>75% 484
75%>abd>65% 576
65%>abd>55% 384

abd<55% 323

permutation leads to a decrease of the cost function (which is in our case the perimeter of
connected components, i.e., components belonging to the same class), the change is accepted.
Otherwise, as decribed above, the change will be probably rejected. The algorithm stops when
minimum cost is reached, that is when a previously fixed number of consecutively rejected
changes is reached (in our case, we set the number of consecutive operations to 100.000, since
it is large enough to avoid sub-optimal solutions and Matlab takes only a few seconds to
perfom this computation).

7.4 Experiments on simulated data

The first experiment was carried out on a synthetic data set. The advantage of using
a synthetic data set is the perfect knowledge that we have about the analysed image. This
experiment has two main aims: the first one is to verify the assumption that the pixels
classified by the SVM with a high probability value effectively correspond to ’pure’ pixels.
The second one is to validate the proposed method with a data set known in details, in
order to evaluate the performances under different conditions of mixtures. The creation of a
synthetic data set for classification purposes is not a trivial task, especially in this case where
the spatial information is very important to fully exploit the potentiality of the proposed
method. In order to build a data set as realistic as possible, we have considered a thematic
map of an AVIRIS image, taken over the area of San Diego, with 9 land cover classes. We
have created a hyperspectral data cube by substituting every class with a spectrum taken
from the USGS spectral library, available on-line [163]. The classes were chosen mainly from
the vegetation library, in order to make more difficult the discrmination. The chosen classe
were: shadow, asphalt, green grass, dry grass, maple, pine lodgepole, pine white, pinon and
rub. The original image created was 400 x 400 pixels. Gaussian noise was added in order to
reach a SNR of 30 dB. To have the possibility to analyse data sets where the ground truth
cover is known in details, and to evaluate the obtained results from a quantitative point of
view, we decided to use the original ground truth data only to compare the obtained results,
and to decrease the spatial resolution of the image by applying an 4 x 4 low pass filter, so that
we obtained an image of the same area with a resolution degraded of a factor 4. This way, we
have the possibility to test the proposed method on a data set know in details, where there
are pure, close to pure, and mixed pixels. The complete description of the data set is given
in Table 7.1. In order to compare the proposed approach with a common hard classification
method, the same data were also classified with an SVM wih Gaussian Kernel, One vs One
multiclass strategy and 10 fold cross-validation. Among the several multi-class strategies
available for the SVM, we have chosen the One vs One because of its good performances in
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Table 7.2: Results of the experiment on the synthetic data set. abd represent the mazimum
value of abundance within a pixel. The third column describes the average of the maximum
probability value within a group of pixels with the same purity degree. The last column
represents the number of pixels with a maximum probability value greater than 0.7, according
to their purity degree.

SVM | Proposed Method || Average Probabilistic SVM Output | Max(prob)>0.7
OA 88.21% 90.84% - -
K 87.34% 89.52% - -
AA 88.32% 90.25% - -
abd>95% 99.50% 99.50% 0.74 5317
95%>abd>85% || 92.25% 91.44% 0.68 328
85%>abd>75% || 79.57% 77.57T% 0.54 27
75%>abd>65% || 54.12% 61.17% 0.39
65%>abd>55% || 34.82% 50.33% 0.30 0
abd<55% 15.36% 40.22% 0.26 1

terms of robustness and computational burden [178]. The comparison of the low resolution
map obtained with SVM to the high resolution ground truth was not possible due to different
number of pixels of the two images. However, we know that every pixel of the low resolution
image corresponds to n x n pixels of the high resolution image. By comparing a pixel of the
low resolution classification map with the n x n corresponding in the high resolution ground
truth map, we can compute per-pixel classification accuracy. By doing this, we have to keep
in mind that in case of a mixed pixel the hard classification method will inevitably lead to an
error, because it will assign the corresponding high resolution n x n pixels to just one class,
considered as predominant within the mixed pixel. However, this is exactly the issue that
the proposed method is expected to address.

The performances of the two methods were compared in terms of overall accuracy (OA),
that is the number of correctly classified test samples with respect to the total number of test
samples, average accuracy (AA), which represents the average of the classification accuracies
for the individual classes, and the Kappa coefficient of agreement (k), that is a parameter that
estimates the correct percentage classification without the amount that could be expected
due to chance alone [80]. In addition to this, we have computed the number of mixed pixels
correctly classified, in order to show the performances of the two methods when dealing with
mixtures of classes, and the number of pixels correctly labeled after the spectral unmixing
step but incorrectly positioned after Simulated Annealing.

For each class, 2% of the labeled samples were selected for training the algorithm. The
threshold between pure and mixed pixels has been set to 0.7. In this approach, we have
decided to use a fix threshold rather than a relative one as in the previous chapter, because
of two main reasons: the higher number of classes and the increased robustness of the method,
which can rely on the information given by the training samples. Because of these reason,
the choice of an absolute threshold was considered. The results of the experiment are shown
in Table 7.2. The first three columns represent the results obtained on the entire data set
in terms of OA, k and AA, and show that the proposed method provide an improvement in
the overall accuracy classification. The second part of the Table II show a comparison of the
performance of the two methods over groups of pixels with different degrees of purity, varying
from pure pixels (where the predominant class has an abundance larger than 95%) to highly
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mixed pixels (where the predominant class has an abundance smaller than 55%). It can be
noticed that while in case of pure and close to pure pixels the results of the two methods are
quite similar, the proposed approach provided a dramatic increase of classification accuracy
for mixed and highly mixed pixels, where a traditional classifier completely fails while the
proposed method improves the accuracy of up to 35 percentage points. In order to evaluate
the correctness of the assumption that pure pixels are classified with a high probability value,
we have computed the mean probability of the mazimum value of each group of pixels and the
number of pixels of each group which are classified with a probability value higher than 70%
(two leftmost columns of Table 7.2). It can be easily noticed that the larger is the mazimum
value of abundance within the pixel, the higher is the probabilistic output provided by the
SVM. The 80% of pure pixels were classified with a probability larger than 0.7, while in case
of mixed and highly mixed pixels this quantity drops to 0.4%.

7.5 Experiments on real data

The experiments on real data were carried out considering three different data sets from
two hyperspectral images. The first two data sets are from an Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) image taken over NW Indiana’s Indian Pine test site in
June 1992. This image has been widely used in the remote sensing community for both
classification and spectral unmixing purposes, and thus represents an interesting benchmark
for the proposed method. According to [179], we considered for the first experiment a part
of the scene, consisting of pixels [31-116] x [27-94] for a size of 86 x 68, which contains four
labeled classes (the background pixels were not considered for classification purposes). We
will refer to this data set as the "Subset scene". The second experiment was carried out on
the whole AVIRIS data set. Sixteen land cover classes were considered. The original image
is composed by 145 x 145 pixels. The calibrated data are available online® with detailed
ground-truth information.

Finally, the third study site is the region surrounding the central-volcano Hekla in Iceland,
one of the most active volcanoes in the country. Since 1970, Hekla has erupted quite regularly
every 10 years, in 1970, 1980-81, 1991 and in 2000. The volcano is located on the South-
Western margin of the Eastern volcanic zone in South Iceland. Hekla’s products are mainly
andesitic and basaltic lavas and tephra. AVIRIS data that were collected on a cloud-free day,
June 17 1991, were used for the classification. The AVIRIS sensor operates in the visible, near-
and mid- infrared portions of the electromagnetic spectrum, its sensitivity range spanning
wavelengths from 0.4 um to 2.4 ym. As on the previous case, the sensor system has 224
data channels, utilizing four spectrometers, whereas each spectral band is approximately
10nm in width. During the image acquisition, spectrometer 4 was not working properly.
This particular spectrometer operates in the wavelength range from 1.84 pym to 2.4 pm (64
bands). These 64 bands were deleted from the imagery along with the first channels for all
the other spectrometers, and the remaining 157 data channels were left. A subset of 180 x
180 pixels has been used for this experiment. In order to address the issue of the random
choice of the training samples, for each data set we have repeated the experiment with ten
different training sets.

As in the previous experiment, due to the difficulty to have a perfect knowledge of the
fractional abundances of each land cover type, we decided to use the original ground truth
data only to compare the obtained results, and to decrease the spatial resolution of the image
by applying an n x n low pass filter, where n varies according to the considered data set.

"http://dynamo.ecn.purdue.edu/~bichl/
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Table 7.3: Information about the training and the testing set of the three considered data
sets. It has to be noticed that the training set is selected from the low resolution image used
as input of the method, while the test set is selected from the high resolution reference data
used for comparison.

AVIRIS Indian Pine Subset AVIRIS Indian Pine Complete AVIRIS Hekla
No. Name Train | Test Name Train | Test Name Train | Test
1 Corn-no till 20 1434 Alfa Alfa 4 54 Andesite lava 1970 24 672
2 Grass-Trees 20 747 Corn-no till 44 1434 And. lava 1980 I 126 3350
3 Soybean-no till 20 727 Corn-min till 25 834 And. lava 1980 1T 523 | 11916
4 Soybean-min till 20 1926 Corn 7 234 And. lava 1991 1 220 4709
5 - - - Grass-Pasture 15 497 And. lava 1991 11 279 6918
6 - - - Grass-Trees 23 747 | Lava tephra covered | 103 2310
7 - - - Grass-Mowed 4 26 Rhyolite 6 181
8 - - - Hay-windrowed 17 489 Scoria 51 1286
9 - - - Oats 4 20 Firn-glacier ice 42 1058
10 - - - Soybean-no till 32 968 - - -
11 - - - Soybean-min till 83 2468 - - -
12 - - - Soybean-clean t 19 614 - - -
13 - - - Wheat 5 212 - - -
14 - - - Woods 42 1294 - - -
15 - - - Bldg-Trees-Drive 12 380 - - -
16 - - - Stone-Steel Tower 4 95 - - -

This way, we know exactly the quantity of each class within a pixel, and we can use the low
resolution image obtained after filtering as input for the proposed method. The information
about the classes, the training and the test sets can be found in Table 2.1.

7.5.1 AVIRIS subset

The first experiment was carried out on the AVIRIS subset image. The goal of this
experiment is to illustrate the effectiveness of the method when used for the analysis of a
simple hyperspectral data set. In this subimage, composed by 86 x 68 pixels, there are
four classes with uneven number of labeled samples, namely, "Corn-notill", "Grass/Trees",
"Soybeans-no till", and "Soybeans-min". The complete description of the training and test
sets can be found in Table 2.1. A 3 x 3 low-pass filter was applied to the original image, so
that a new image with lower spatial resolution was obtained. The new image was composed
by 28 x 23 pixels, and it was used as input for the proposed method. The low resolution
image obtained after filtering and the ground truth can be seen in Fig. 7.5 (a-b). Twenty
pixels per class, considered as "pure" in the low resolution image, were randomly chosen and
used for training the SVM classifier.

The result of the classification with the SVM is presented in Fig. 7.5 (c). As it can be seen
from the classification map, the two main problems are represented by the mixed pixels, which
make hard to distinguish the border between different land cover areas, and the high spectral
variability, which results in a noisy classification map. The proposed method provides an
overall improvement for both issues (classification map shown in Fig. 7.5 (f)). It can be
seen at the top of the image that the border of the Corn-no till field (represented in light
blue in the map) is estimated with improved accuracy when compared to the traditional
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Figure 7.5: AVIRIS subset data: (a) Low resolution image (band 30) obtained after applying
a 3x3 filter to the high resolution image. (b) Ground truth of the high resolution image.
Unknown pixels are represented in black. (c) Classification map obtained with traditional
SVM. (d) Results of the preliminary classification. (e) Classification map obtained before
applying the spatial regularization. (f) Final classification map obtained with the proposed
method.
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SVM classification, thus assessing the effectiveness of the proposed approach also to provide
classification maps with a better spatial resolution. The problem of spectral variability is
also solved, since the classification map is much less noisy and, therefore, a lower number of
sparse pixels is observed.

The quantitative results obtained with the two methods are presented in Table 7.4, along
with the results of the other data sets. The proposed method provides an improvement of
the overall accuracy which is greater than 10%. As it will be in the other experiments,
the improvement of the classification accuracy of the mixed pixel with respect the SVM is
larger than for the whole data set. This demonstrates that the proposed method is effective
in improving the results of data sets with mixtures of land cover classes. To assess the
effectiveness of SA to locate sub-pixels in the classification map, we have also computed the
number of sub-pixels correctly classified after the spectral unmixing step, but incorrectly
located after the spatial regularization. In this case, we can see that the error due to bad
positioning of sub-pixels is extremely low.

7.5.2 AVIRIS complete

The second experiment was carried out on the whole AVIRIS data set. Sixteen land

cover classes were considered for classification. The original image is composed by 145 x
145 pixels, and it was used as reference data. After applying a 2x2 low pass filter, an image
composed by 72x72 pixels was obtained. The land cover ground truth can be seen in Fig.
7.6 (a). For training set, we have randomly selected, for each class, 15% of all the samples
which were considered as "pure" in the low resolution image (that would correspond to about
10% of pixels of each class in the high resolution image). To have the possibility to compare
the results of the proposed method with the available ground truth, we chose a zoom factor
equal to 2, lower than in the previous case. However, the higher number of classes and their
spectral similarity make this data set more challenging than the first one.
Figure 7.6 (b) and (e) shows the classification maps obtained with a conventional SVM
and the proposed method. Also in this case, an improvement can be clearly seen in the
classification maps, resulting in a less noisy map and an improved detection of the borders of
spatial structures (in this case, agricultural fields). To have a quantitative comparison of the
results obtained with the two methods, the overall accuracy of pixels correctly classified has
been compared. The mean overall accuracy obtained in the five experiments with the SVM is
72.31%. As in the previous case, the low value of accuracy is due to two main factors, which
are the impossibility of a common hard classification technique to distinguish different land
cover classes at a sub-pixel level, and the difficulty to handle the high spectral variability. The
proposed method obtained an average overall accuracy of 91.10%, showing the capability of
the proposed approach to better deal with the aforementioned two main issues. By comparing
Figure 7.6 (d) and (e), it can be noticed the effectiveness of the proposed spatial regularization
with Simulated Annealing.

7.5.3 Hekla data set

For the last experiment, we consider a subset of the Hekla data set, located in the top-left
corner of the scene. This subset is composed by 180 x 180 pixels, and it contains nine classes
of interest. Also in this case a 2x2 low pass filter was applied to the original image, leading
to a low resolution image of 90 x 90 pixels. Due to the insufficient availability of ground
truth to quantify the results provided by the proposed method, we have considered as ground
truth the classification map obtained by a spectral-spatial method, proposed in [46], where
the overall accuracy computed on the reference test set was close to 100%. Thus, also if we
have to keep in mind that the results are estimated by comparison with a classification map
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Figure 7.6: AVIRIS whole data set. (a) Ground truth data (b) Classification map obtained
with an one versus one SVM (training set 1) (c¢) Classification of the ground truth pixels (d)
Classification map obtained before applying the spatial regularization. (e) Final classification
map obtained with the proposed approach. (f) Classification of the ground truth pixels.

Figure 7.7: AVIRIS Hekla data set. (a) AVIRIS Hekla, band 80 (b) Classification map
obtained in [46]; (¢) Low resolution ground truth. In black are represented the mixed pixels
(d) Classification map obtained with the proposed approach after spectral unmixing (training
set 1, treshold 0.7) (e) Final classification map obtained with the proposed approach (f)
Classification map obtained with SVM



AVIRIS Indian Pine subset

AVIRIS Indian Pine complete

AVIRIS Hekla

Approach SVM Proposed Method SVM Proposed Method SVM Proposed Method
OA 78.22 + 0.94% | 90.65 + 2.41% | 72.31 + 1.64% | 91.10 + 1.42% | 69.19 + 2.10% | 81.71 + 2.34%
K 68.14 4+ 1.63% | 84.38 £ 3.76% | 67.53 = 1.78% | 88.84 + 1.65% | 63.96 = 1.91% | 76.23 + 2.36%
AA 81.47 £ 1.59% | 91.36 + 1.21% | 64.34 + 1.19% | 90.73 + 1.73% | 62.83 + 2.71% | 74.72 + 3.50%
Mixed Pixels 73.85% 88.13% 50.21% 72.77% 48.10% 67.65%
Spatial Error - 0.62% - 1.38% - 2.92%
Class 1 74.49% 87.21% 36.30% 88.15% 50.30% 52.98%
Class 2 99.24% 93.59% 61.83% 87.07% 89.22% 62.18%
Class 3 76.39% 93.67% 40.65% 79.21% 74.99% 85.84%
Class 4 75.74% 90.98% 26.24% 84.70% 90.27% 90.61%
Class 5 - - 82.45% 84.55% 42.89% 82.87%
Class 6 - - 90.63% 95.53% 78.96% 84.55%
Class 7 - - 76.92% 99.23% 50.82% 60.83%
Class 8 - - 93.54% 98.94% 34.37% 68.35%
Class 9 - - 80.00% 94.00% 53.68% 84.31%
Class 10 - - 51.51% 84.55% - -
Class 11 - - 85.41% 96.56% - -
Class 12 - - 36.03% 85.18% - -
Class 13 - - 66.79% 99.06% - -
Class 14 - - 92.92% 99.30% - -
Class 15 - - 44.47% 84.32% - -
Class 16 - - 63.79% 91.37% - -
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Figure 7.8: Variation of the overall classification accuracy versus the value of the parameter
treshold to determine if a pixel can be considered as 'pure’ for (a) AVIRIS Indian Pine subset
(b) AVIRIS Indian Pine complete (¢) AVIRIS Hekla data sets
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Table 7.5: Computational burden for the three data sets.

AVIRIS Indian Pine subset | AVIRIS Indian Pine complete AVIRIS Hekla
Approach SVM Proposed SVM Proposed SVM | Proposed
Classification 30 s 43 s 14 min 15 min 35 min | 37 min
Spectral Unmixing - 15s - 1.5 min - 2 min
Simulated Annealing - 50 s - 3 min - 4 min
Total elapsed time 30 s 88 s 18 min 23 min 35 min | 43 min

and not with a selected land cover ground truth map, this classification map seems to be a
reliable source of knowledge about the land class coverage of the area. The original image,
the classification map obtained in [46] and the obtained classification maps are shown in Fig.
7.7. 15% of the labeled pixels of the low resolution data were randomly selected from each
class and used to train the classifier, and the experiment repeated ten times with different
training sets.

The quantitative results in this experiment confirm those obtained in the previous ones: the
proposed method provides not only a better classification map from a qualitative point of
view, but also a large improvement of the overall accuracy of correctly classified pixels. Due
to the irregular spatial structures in which the land cover classes are grouped, the spatial
regularization method proposed in this chapter was expected to be less effective than in
the previous cases. The quantitative results agree with this supposition, also if the overall
accuracy is penalized by only 2 percentage points. More advanced techniques could be inves-
tigated in our future works, in order to have an improvement of the classification accuracy
of the mixed pixels.

7.5.4 Discussion about the choice of parameters and computational bur-
den

In the proposed method, the parameters having an influence on the overall classification
accuracy obtained (apart from the parameters of the SVM, which are automatically selected
through cross-validation) are the threshold to distinguish between pure and mixed pixels and
the number of ‘endmember candidates’ to consider for the spectral unmixing, in the second
step. How the classification accuracy changes by changing the value of the parameters can
be seen in Fig. 7.8. It can be noticed that the proposed method outperforms the traditional
SVM in terms of accuracy over the whole range tested, being the choice of the parameters not
crucial for the classification. As could be expected, a high value of the threshold to determine
if a pixel can be considered as ’pure’ provides a higher accuracy, since only the most reliable
pixels are labeled for the preliminary classification. By setting a low value of the threshold
parameter, the preliminary classification map will tend to be like the hard classification map
obtained with a traditional SVM, thus decreasing the interest of the proposed method.

The number of ’endmember candidates’ considered in the spectral unmixing step points out
the importance of the spatial information. The best results are in general obtained by con-
sidering a low number of candidates (which are the spatially closest to the considered pixel).
When setting a larger value of the parameter, endmember candidates spatially far from the
analyzed pixel can be selected, introducing useless information and thus leading to a slight
decrease in the classification accuracy.

The computational burden of the proposed method can be seen in Table 7.5. The training
of the SVM, which quadratically depends on the size of the training set, is the most com-
putationally expensive step of the proposed approach. The spectral unmixing step depends
on the number of the mixed pixel to unmix, while the Simulated Annealing regularization
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depends on the number of mixed pixels and on the zoom factor desired. When requiring a
larger zoom, the number of possible sub-pixel combinations grows exponentially, thus requir-
ing a heavier computational burden to reach the optimal configuration. In case of desired
zoom factor equal or higher than 4, the computational burden of the spatial regularization is
expected the be the most important.

7.6 Conclusions

Classification of hyperspectral images in presence of mixed pixels was addressed in this
chapter. A new method for the improvement of the spatial resolution of the classification
maps was proposed. The method exploits the advantages of both soft classification techniques
and spectral unmixing algorithms, in order to determine the fractional abundances of the
classes at a sub-pixel scale. After the fractional abundances have been determined, spatial
regularization by Simulated Annealing is finally performed to spatially locate the land cover
classes within each pixel. Experiments were carried out on three different data sets and show
that the proposed method clearly outperforms classical classification techniques when areas
with mixtures of materials are located in the scene, providing excellent results both from a
visually and quantitative point of view. Further research will be devoted to the investigation
of advanced methods to better discriminate pure and mixed pixels, and of the possibility of
alternative techniques of spatial regularization.
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The supervised classification of hyperspectral remote sensing data was addressed in this
thesis. The aim was to propose innovative technologies able to deal with the main issues
related to this kind of data, and to incorporate different sources of information. Two main
strategies were analyzed: the proposition of advanced techniques exploiting the spectral and
spatial information and the developments of approaches exploiting sub-pixel information esti-
mated from the data. For the first strategy, Independent Component Analysis was proposed
as a valid alternative for dimensionality reduction. Starting from this point, two important
approaches were proposed:

1. A statistical classifier exploiting the spectral information of hyperspectral data. In-

dependent Component Discriminant Analysis exploits the ability of ICA of projecting
the data into an independent space. By minimizing all the statistical dependencies up
to the fourth order, the proposed approach ICDA gives the possibility to estimate the
multivariate densities as the product of univariate densities. The method has proven
to be very effective both in terms of classification accuracy and computational burden
when compared to the Support Vector Machines.
The tests conducted with small amount of training samples showed the comparative
effectiveness of the method also in such a case, when the training set is well represen-
tative of the problem at hand. The method performed reasonably well also in case of
disjoint training and test sets, but in such a case the advantages provided over SVM
are less evident.

2. The second approach incorporated the contextual information provided by Morpho-
logical Attribute Filters in the classification framework. Based on the good results
obtained by the application of Morphological Profiles to remote sensing problems, sev-
eral attribute filters were tested, extracting information about the area, the diagonal
of the bounding box, the moment of inertia and the standard deviation of the objects.
The experiments have shown the importance of using the complementarity of the in-
formation. While single object could be well represented by their peculiar features, a
complex data scene needs differentiated information in order to be exhaustively repre-
sented. Indeed, the best results were always obtained by considering the multi-filters
approaches.

It has to be noticed that when all the filters were considered, the problems related to
the curse of dimensionality did not appear in spite of the unfavorable ration between
the number of training samples and the number of dimensions considered.

The second strategy tested in this work was the incorporation of sub-pixel information within
the classification framework. As a general conclusion, the joint use of full pixel and mixed
pixel techniques is desirable to improve the classification accuracy of hyperspectral images,
both from a quantitative and a qualitative point of view. More specifically, the approaches
developed in this work pointed out two main results:

1. Sub-pixel information can be usefully incorporate into a dimensionality reduction method
in order to mitigate problems related to the high dimensionality of the data but also
to the presence of mixed pixels within an image. Incorporating information about the
(possibly) mixed nature of the training samples during the learning stage resulted highly
beneficial for the classification accuracy, with the potential advantage of improved in-
terpretability of features due the physical nature of the extracted abundance maps.
The most suitable number of features to be retained is still an open question. The
methods proposed in the literature for estimating the dimensionality of a data set often
provide discordant results, and these results are not necessarily related to the most suit-
able number of features to be retained for classification. Although final classification
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results are highly dependent on the number of features retained, the chains tested in
this work suggest higher accuracies with respect to traditional methods, such as PCA
and ICA, and comparable or higher accuracies related to MNF.

2. The joint use of hard classification methods and spectral unmixing techniques can be
useful to obtain thematic maps at higher resolution than the original input data. This
possibility offers a new perspective for the analysis of data with moderate-low spatial
resolution. The proposed approach is based on the creation of abundance maps through
spectral unmixing, and the transformation of these maps into a classification map where
each original pixel is split into a number of sub-pixels labelled according the unmixing
results. Finally, a spatial regularization step is performed to correctly locate these sub-
pixels from a spatial point of view. The possibility to incorporate this approach into a
supervised classification framework was also discussed, showing very promising results
for the analysis of data sets containing mixed pixels.

There are many possible perspectives for pursuing this work. First of all, related to spectral-
spatial information of hyperspectral. With the improvement of computer technologies and
computing power, the use of kernel versions of traditional feature reduction techniques (for
example, Kernel ICA), could be analyzed. These approaches are very promising for extract-
ing a high amount of useful information from hyperspectral data, rather than concentrating
all the information into few first components. However, they require a big computational
burden, and their use can severely affect the computational efficiency of the classification ap-
proaches. However, the development of powerful machines and the use of parallel computing
framework can be very important to mitigate these shortcomings.

New techniques for integrating hard classification methods with mixed pixel techniques
could be developed as an advancement of this thesis. Experiments carried out in this work
showed the importance of considering sub-pixel information for obtaining accurate results.
However, the research is far from being exhausted. Here, the sub-pixel spatial information
was only considered as the land cover label of the neighboring pixels. In future works, it
could be interesting to consider the characteristics of the objects to which a pixel belongs, in
order to detect important information such as the distance from the border (pixels close to
the border of an object will be more likely to be mixed).

As a final conclusion of this thesis, the importance of integrating different sources of
information should be highlighted. In particular, considering the characteristic of new gen-
eration hyperspectral sensors which will be launched during the next years (such as EnMap
and PRISMA), the incorporation of sub-pixel information opens new perspective for image
analysis. Here, a pioneering attempt of developing techniques based on this rational was
investigated. In spite of the fact that results leave a lot of space for improvements, the
very interesting results obtained suggest that many possibilities exist for continuing on this
direction.
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Data sets

This chapter is dedicated to the description of the data used in this thesis. When a data
set is used for some experiment, a short introduction is provided in the manuscript. However,
in order to avoid repetitions, a complete description of all the data sets considered in this
work is only presented here. The spectral coverage and spatial resolution of each image, along
with the ground truth associated with the data, are detailed in the following.

A.1 ROSIS data sets

Airborne data from the ROSIS-03 (Reflective Optics System Imaging Spectrometer) opti-
cal sensor are used for the experiments. The flight over the city of Pavia, Italy, was operated
by the Deutschen Zentrum fur Luft- und Raumfahrt (DLR, the German Aerospace Agency)
in the framework of the HySens project, managed and sponsored by the European Union.
According to specifications the number of bands of the ROSIS-03 sensor is 115 with a spectral
coverage ranging from 0.43 to 0.86 um. The spatial resolution is 1.3 m per pixel. Two data
set were available: the University area and the Pavia Center.

A.1.1 University Area

The original data set is 610 by 340 pixels. Some channels (12) have been removed due
to noise. The remaining 103 spectral dimensions are processed. Nine classes of interest are
considered, namely: trees, asphalt, bitumen, gravel, metal sheet, shadow, bricks, meadow
and soil. The image was acquired around the Engineering School at the University of Pavia.
False color image is presented in Figure A.1.(a) and the available testing set in Figure A.1
(b). Testing and training set are detailed in Table A.1.

A.1.2 Center Area

The second ROSIS data set is the center of Pavia. The Pavia center image was originally
1096 by 1096 pixels. A 381 pixel wide black in the left part of image was removed, resulting
in a "two part" image. This "two part" image is 1096 by 715 pixels. Some channels (13)
have been removed due to noise. The remaining 102 spectral dimensions are processed. Nine
classes of interest are considered, namely: water, tree, meadow, brick, soil, asphalt, bitumen,
tile and shadow. False color image is presented in Figure A.1 (c) and the available testing
set in Figure A.1 (d). Testing and training set are detailed in Table A.1.
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Figure A.1: ROSIS data sets: (a) University data set, false color image (b) University test
set (c) Center data set, false color image (d) Center test set
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University Center
Class Samples Class Samples
No. | Name Train | Test Name Train | Test
1 | Asphalt 548 6641 Water 824 65971
2 | Meadow 540 | 18649 Tree 820 7598
3 | Gravel 392 2099 Meadow 824 3090
4 | Tree 524 3064 Brick 808 2685
5 | Metal Sheet | 265 1345 Bare Soil | 820 6584
6 | Bare Soil 532 5029 Asphalt 816 9248
7 | Bitumen 375 1330 Bitumen 808 7287
8 | Brick 514 3682 Tile 1260 | 42826
9 | Shadow 231 947 Shadow 476 2863
Total 3921 | 42776 Total 7456 | 148152

Table A.1: Information about training and test samples of the ROSIS (University and Center)
data sets

A.2 AVIRIS data sets

Four hyperspectral images provided by the Airborne Visible/Infrared Imaging Spectrom-
eter (AVIRIS) were used in this thesis. The AVIRIS sensor operates in the visible, near-
and mid- infrared portions of the electromagnetic spectrum, its sensitivity range spanning
wavelengths from 0.4 pm to 2.4 um. The sensor system has 224 data channels, utilizing
four spectrometers, whereas each spectral band is approximately 10nm in width. The spatial
resolution is 20 m by pixel.

A.2.1 Indian Pine

The first AVIRIS image was taken over NW Indiana’s Indian Pine test site in June 1992.
This image has been widely used in the remote sensing community for both classification and
spectral unmixing purposes, and thus represents an interesting benchmark for the proposed
method. The original image is composed by 145 x 145 pixels. It contains sixteen classes of
interest. Some works presented in the literature, as [179], have considered as data set only a
small part of the image , consisting of pixels [31-116] x [27-94] for a size of 86 x 68, which
contains four labeled classes (the background pixels were not considered for classification
purposes). We will refer to this data set as the "Subset scene". The calibrated data are
available online ! with detailed ground-truth information.

A.2.2 Hekla

The second AVIRIS image represents the region surrounding the central-volcano Hekla
in Iceland, one of the most active volcanoes in the country. Since 1970, Hekla has erupted
quite regularly every 10 years, in 1970, 1980-81, 1991 and in 2000. The volcano is located on

"http://dynamo.ecn.purdue.edu/~bichl/



164 APPENDIX A. DATA SETS

the South-Western margin of the Eastern volcanic zone in South Iceland. Hekla’s products
are mainly andesitic and basaltic lavas and tephra. AVIRIS data that were collected on a
cloud-free day, June 17 1991, were used for the classification. During the image acquisition,
spectrometer 4 was not working properly. This particular spectrometer operates in the wave-
length range from 1.84 pm to 2.4 pm (64 bands). These 64 bands were deleted from the
imagery along with the first channels for all the other spectrometers, and the remaining 157
data channels were left. The original data sets contains 12 land cover classes. In this thesis,
both the original image, and a subset of 180 x 180 pixels have been used.

A.2.3 Kennedy Space Center

The third AVIRIS data set was collected over the Kennedy Space Center, Florida, in
March 1996. The portion of this scene used in our experiments has dimensions of 292 x
383 pixels. After removing water absorption and low-SNR bands, 176 bands were used for
the analysis. Twelve ground-truth classes were available, where the number of pixels in the
smallest class is 134 while the number of pixels in the largest class is 761.

A.2.4 Salinas

The fourth AVIRIS data set used in experiments was collected over the Valley of Salinas,
Southern California, in 1998. It contains 217 x 512 pixels and 224 spectral bands from 0.4
to 2.5 pum, with nominal spectral resolution of 10 nm. It was taken at low altitude with a
pixel size of 3.7 m. The data include vegetables, bare soils, and vineyard fields. The upper
leftmost part of Fig. A.4 shows the entire scene (with overlaid ground-truth areas). The
upper rightmost part of Fig. A.4 shows the available ground-truth regions for the scene,
and the bottom part of Fig. A.4 shows some photographs taken in the field for the different
agricultural fields at the time of data collection.

A.3 HYDICE data set

Airborne data from the HYDICE sensor (Hyperspectral Digital Imagery Collection Ex-
periment) was used for the experiments. The HYDICE was used to collect data from flightline
over the Washington DC Mall. Hyperspectral HYDICE data originally contained two hun-
dred and ten bands in the 0.4-2.4 pm region. Noisy channels have been removed and the
set consists of 191 spectral channels. It was collected in August 1995 and each channel has
1280 lines with 307 pixels each. Seven information class were defined, namely: roof, road,
grass, tree, trail, water and shadow. False color images is presented in FigureA.5(a) and the
available testing set in Figure A.5 (b). Testing and training set are detailed in Table A.2.

A.4 AISA data set

The last image analyzed in our experiments is an AISA Eagle dataset. It contains 252
bands ranging from 395 to 975 nm in the visible and NIR spectral range. The original
spatial resolution of the image was 2 m measured on ground, but in order to be treatable
and still useful for the purposes of land cover interpretation it was downscaled to 6 m ground
resolution while keeping the original spectral information as possible. The area is located
in Hungary and contains arable lands near to the city of Heves. The area is mainly useful
because of agricultural production. In our experiments, we considered a large subset of the
image (400x500 pixels) containing six classes of interest.
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Figure A.2: AVIRIS Indian Pines data set: (a) False color image; (b) Ground truth data.

(a) (b)
Figure A.3: AVIRIS Hekla data set: (a) False color image; (b) Ground truth data.
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Table A.2: AVIRIS and HYDICE data sets ground truth information
AVIRIS Indian Pine AVIRIS Hekla HYDICE

No. Name Samples Name Test Name | Test
1 Alfalfa 54 Andesite lava 1970 1023 Roof | 3794
2 Corn-no till 1434 And. lava 1980 I 684 Road 376
3 Corn-min till 834 And. lava 1980 11 458 Trail 135
4 Corn 234 And. lava 1991 I 550 Grass | 1888
5 Grass-Pasture 497 And. lava 1991 II 1496 Tree 365
6 Grass-Trees 747 And. lava moss cover 700 Water | 1184
7 Grass-Mowed 26 Hyaloclastite formation | 342 || Shadow | 57
8 Hay-windrowed 489 Lava tephra covered 404

9 Oats 20 Rhyolite 708

10 Soybean-no till 968 Scoria 713

11 Soybean-min till 2468 Firn-glacier ice 410

12 Soybean-clean t 614 Snow 318

13 Wheat 212 - -

14 Woods 1294 - -

15 Bldg-Trees-Drive 380 -

16 || Stone-Steel Tower 95 - -
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Figure A.4: AVIRIS Salinas data set, ground truth and pictures of the different classes.
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(a) (b)

Figure A.5: HYDICE Washington DC Mall data set: (a) Original data, false color image;
(b) Ground truth.



Appendix B

Accuracy assesment

The estimation of the classification accuracy is based on the confusion matrix. From that
matrix it is possible to evaluate the exactitude of a given classification map by comparison
to the reference map. Several estimates, from global estimation to specific estimation are
extracted from the confusion matrix. They are detailed in the following as well as the
confusion matrix.

Definition 1 In the field of artificial intelligence, a confusion matriz is a visualization tool
typically used in supervised learning . FEach column of the matrixz represents the instances
i a predicted class, while each row represents the instances in an actual class. One benefit
of a confusion matriz is that it is easy to see where the system is confusing (i.e., commonly
mis-labelling one class as another).

An example of confusion matrix is given Table B.1 for a 3-classes problem. Cj; represents
the class ¢ and Cj; is the number of pixels assign to the class j by the classifier which are
referenced as class .

Definition 2 The overall accuracy (OA) is the percentage of correctly classified pizels:

NC ..
OA = % z 100 (B.1)
>ij° Cij

Definition 3 The Class Accuracy (or producer’s accuracy) (CA) is a measure how well a
certain area has been classified. It includes the error of omission which refers to the proportion
of observed features on the ground that are not classified in the map. The more errors of
omission exist, the lower the producer accuracy. It is derived by the number of correct pizels
i one class divided by the total number of pizels as derived from reference data:

ca = —Si 4 g (B.2)

Ne
> Cij
Definition 4 The average accuracy (AA) is the mean of class accuracy for all the classes

Cii

AA = 21—
YN CA;

x 100 (B.3)

An OA or an AA is closed to 100% (0%) means that the classification accuracy is almost
perfect (wrong). When a referenced set is unbalanced, the OA may not be representative
of the true performance of the classifier. For instance, if a class has very few number of
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Table B.1: Confusion Matrix, N is the number of referenced pixel and N, is the number of
classes.

Percentage | Classification data |
Reference data ‘ & ‘ Cy ‘ Cs ‘ Row total ‘ Producers’accuracy
Ne C
Cy Cii Ci2 Ci3 ZE\; Chi %
Cy Cxn C2 Cas >i < Ca 2%202,
N: C
Cs Cs1 C32 Cs3 > Cs; nyf?’cm
Column total Zf\[c Ca zva Cio Efvc Cis N ‘
) Ci C1 Ch1
User’s accuracy S SN Gy SN Gy

referenced pixels, its influence will be very low in the computation of the OA, while it will be
more influent in the AA since the mean is done the number of classes rather than the whole
number of pixels. Strong difference between OA and AA may indicate that a specific class is
wrongly classified with a high proportion.

Definition 5 The Kappa Coefficient (k) is a statistical measure of agreement. It is the
percentage agreement corrected by the level of agreement that could be expected due to chance
alone. It is generally thought to be a more robust measure than simple percent agreement
calculation since k takes into account the agreement occurring by chance.

Po_Pe
1-P,

where

P, = iZci.c.i (B.5)
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