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ABSTRACT

DEVELOPING AND TESTING
PERVASIVE COMPUTING APPLICATIONS:
A TOOL-BASED METHODOLOGY

Despite much progress, developing a pervasive computing
application remains a challenge because of a lack of conceptual
frameworks and supporting tools. This challenge involves cop-
ing with heterogeneous devices, overcoming the intricacies of
distributed systems technologies, working out an architecture
for the application, and encoding it into a program. Moreover,
testing pervasive computing applications is problematic because
it requires acquiring, testing and interfacing a variety of software
and hardware entities. This process can rapidly become costly
and time-consuming when the target environment involves many
entities.

This thesis proposes a tool-based methodology for developing
and testing pervasive computing applications. Our methodology
first provides the DiaSpec design language that allows to define a
taxonomy of area-specific building-blocks, abstracting over their
heterogeneity. This language also includes a layer to define the
architecture of an application. Our tool suite includes a compiler
that takes DiaSpec design artifacts as input and generates a
programming framework that supports the implementation and
testing stages.

To address the testing phase, we propose an approach and a
tool integrated in our tool-based methodology, namely DiaSim.
Our approach uses the testing support generated by DiaSpec to
transparently test applications in a simulated physical environ-
ment. The simulation of an application is rendered graphically
in a 2D visualization tool.

We combined DiaSim with a domain-specific language for
describing physical environment phenomena as differential equa-
tions, allowing a physically-accurate testing. DiaSim has been
used to simulate various pervasive computing systems in differ-
ent application areas. Our simulation approach has also been
applied to an avionics system, which demonstrates the generality
of our parameterized simulation approach.

KEYWORDS: Software Architecture, Domain-Specific Language,
Generative Programming, Testing, Simulation



RESUME

DEVELOPPER ET TESTER DES APPLICATIONS
D'INFORMATIQUE UBIQUITAIRE :
UNE METHODOLOGIE OUTILLEE

Malgré des progres récents, développer une application d’infor-
matique ubiquitaire reste un défi a cause d’'un manque de canevas
conceptuels et d’outils aidant au développement. Ce défi im-
plique de prendre en charge des objets communicants hétérogénes,
de surmonter la complexité des technologies de systémes dis-
tribués, de définir I’architecture d"une application, et d’encoder
cela dans un programme. De plus, tester des applications d’infor-
matique ubiquitaire est problématique car cela implique d’acqué-
rir, de tester et d’interfacer une variété d’entités logicielles et
matérielles. Ce procédé peut rapidement devenir cotiteux en
argent et en temps lorsque l'environnement ciblé implique de
nombreuses entités.

Cette these propose une méthodologie outillée pour dévelop-
per et tester des applications d’informatique ubiquitaire. Notre
méthodologie fournit tout d’abord le langage de conception Di-
aSpec. Ce langage permet de définir une taxonomie d’entités
spécifiques a un domaine applicatif, s’abstrayant ainsi de leur
hétérogénéité. Ce langage inclut également une couche per-
mettant de définir 1’architecture d"une application. Notre suite
outillée fournit un compilateur qui, a partir de descriptions Di-
aSpec, génere un canevas de programmation guidant les phases
d’implémentation et de test.

Afin d’aider a la phase de test, nous proposons une approche
de simulation et un outil intégré dans notre méthodologie out-
illée : I'outil DiaSim. Notre approche utilise le support de test
généré par DiaSpec pour tester les applications de maniere trans-
parente dans un environnement physique simulé. La simulation
d’une application est rendue graphiquement dans un outil de
visualisation 2D.

Nous avons combiné DiaSim avec un langage dédié permet-
tant de décrire les phénomenes physiques en tant qu’équations
différentielles, permettant des simulations réalistes. DiaSim a
été utilisé pour simuler des applications dans des domaines ap-
plicatifs variés. Notre approche de simulation a également été
appliquée a un systeme avionique, démontrant la généralité de
notre approche de simulation.

MOTs CLES : Architecture Logicielle, Langage Dédié, Pro-
grammation Générative, Test, Simulation
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INTRODUCTION

Pervasive computing applications are being deployed in a
growing number of areas, including building automation, as-
sisted living, and supply chain management. Numerous perva-
sive computing applications coordinate a variety of networked
entities collecting data from sensors and reacting by triggering
actuators. These entities are either software or hardware. To
collect data, sensors process stimuli that are observable changes
of the environment (e.g., fire and motion). Triggering actuators is
assumed to change the state of the environment.

Besides requiring expertise on underlying technologies, devel-
oping a pervasive computing application also involves domain-
specific architectural knowledge to collect information relevant
for the application, process it, and perform actions. Moreover,
such an application needs to implement strategies to manage a
variety of scenarios (e.g., fire situations, intrusions, and crowd
emergency-escape plans). Consequently, in addition to the chal-
lenges of developing any software system, a pervasive computing
system needs to validate the environment entities both individu-
ally and globally, to identify potential conflicts. For example, a
fire manager and an entrance manager could issue contradicting
commands to a building door to respectively enable evacuation
and ensure security. In practice, the many parameters to take
into account for the development of a pervasive computing ap-
plication can considerably lengthen this process. Not only does
this situation have an impact on the application code, but it also
involves changes to the physical layout of the target environment,
making each iteration time-consuming and error-prone.

Various middlewares and programming frameworks have been
proposed to ease the development of pervasive computing ap-
plications [21, 34, 58]. However, they require a fully-equipped
pervasive computing environment for an application to be run
and tested. As a result, an iteration process is still needed, in-
volving the physical setting of the target environment and the
application code.

In fact, the development of a pervasive computing system is
very similar to the development of an embedded system. Like a
pervasive computing system, an embedded system coordinates
a number of heterogeneous hardware components that can be
viewed as sensors (e.g., GPS and accelerometer) and actuators
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(e.g., displays and speakers). Some embedded systems are capa-
ble of discovering components dynamically, such as a smartphone
detecting bluetooth components. As in the pervasive comput-
ing domain, embedded systems developers need to anticipate
as wide a range of usage scenarios as possible to program their
support. Despite similarities, the embedded systems domain
differs from the pervasive computing domain in that it provides
approaches and tools to facilitate software development for a sys-
tem under design. Indeed, embedded systems applications can
be developed using programming frameworks, and tested and
debugged using emulators [3, 24, 33]. Hardware components are
simulated via software components that faithfully duplicate their
observable behavior. And, the embedded systems application
is emulated, executing as if it relied on hardware components,
without requiring any code change.

1.1 REQUIREMENTS

The study of embedded systems emulators gives us a practical
basis for identifying the requirements for pervasive computing
systems. We now examine these requirements.

COVERING THE APPLICATION DEVELOPMENT CYCLE Em-
bedded systems tools often cover the whole development cycle,
guiding and supporting the developer in each stage of the
development. For instance, the Android SDK [33] enables
to design an application in a manifest. It provides a Java
programming framework to support the development of Android
applications. Finally it provides an emulator to test and debug
the developed applications. For developing pervasive computing
applications, existing general-purpose design frameworks are
generic and do not fully support the whole development. To
cover this development cycle, a design framework specific to the
pervasive computing domain is needed. This domain-specific
design framework would improve productivity and facilitate
evolution. To make this design framework effective, the
conformance between the specification and the implementation
must be guaranteed [68, Chap. 9]. Finally, during the application
development, tools should enable a comprehensive testing of the
application.

ABSTRACTING OVER HETEROGENEITY Embedded systems
are required to coordinate heterogeneous devices (e.g., Android
systems can coordinate Bluetooth and Wifi devices). Likewise,
a pervasive computing application interacts with entities (e.g.,
webcams and calendars), whose heterogeneity tends to percolate
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in the application code, cluttering it with low-level details. This
situation requires to raise the level of abstraction at which entities
are invoked, to factor entity variations out of the application code,
and to preserve it from distributed systems dependencies and
communication protocol intricacies.

LEVERAGING AREA-SPECIFIC KNOWLEDGE Like embedded
systems, pervasive computing systems target a variety of appli-
cation areas, including home automation, building surveillance
and assisted living. Each area corresponds to specific pervasive
computing environments, consisting of a taxonomy of entities
dedicated to a given activity (e.., cameras, motion detectors and
alarms in the building surveillance area). Thus, knowledge about
the entities of each area needs to be shared and made reusable
because applications in a given area often share the same classes
of entities. Correspondingly, the related stimuli drastically vary
with respect to the target area. As a consequence, a simulation
tool for the pervasive computing domain is required to deal with
different application areas, enabling new types of entities and
stimuli to be introduced easily.

TRANSPARENT TESTING A key feature of most embedded
systems emulators is that they emulate the execution of an ap-
plication without requiring any change in the application code.
As a result, when the testing phase is completed, the application
code can be uploaded as is and its logic does not require further
debugging. The same functionality should be provided by a
testing tool for pervasive computing applications.

TESTING A WIDE RANGE OF SCENARIOS Some pervasive
computing applications address scenarios that cannot be tested
because of the nature of stimuli involved (e.g., fire and smoke).
In other situations, the scenarios to be tested are large scale in
terms of stimuli, entities and physical space they involve. These
situations would benefit from a simulation phase to refine the re-
quirements on the constituent entities of the environment, before
acquiring them. Regardless of the nature of the target pervasive
computing system, its application logic is best tested on a wide
range of scenarios, while the system is under design. This strat-
egy allows improvements to be made as early as possible in both
its architecture and logic.

SIMULATION RENDERER Like an embedded systems simu-
lator, one for pervasive computing systems needs to simulate
and visualize the physical environment. This simulation ren-
derer needs to take into account various features of the pervasive



INTRODUCTION

computing domain. Specifically, it should support visual repre-
sentations for an open-ended set of entities and stimuli, visual
support for scenario monitoring, and debugging facilities to nav-
igate in scenarios in terms of time and space. Some existing
approaches propose to visualize the simulation of pervasive com-
puting applications [4, 51, 53]. However, these approaches are
limited because they require significant programming effort to
address new pervasive computing areas. Furthermore, they do
not provide a setting to test applications deterministically. The
Lancaster simulator addresses this issue but does not support
scenario definition [50]. The PiCSE simulator provides a com-
prehensive simulation model and generic libraries to create new
scenarios. However, users have to manually specialize the simu-
lator for every new application area [59].

1.2 CONTRIBUTIONS

This thesis proposes an approach that covers the development
and testing of a pervasive computing application. It takes the
form of a tool-based methodology. The main contributions of
this thesis are :

A DESIGN-DRIVEN METHODOLOGY We introduce DiaSpec, a
design language dedicated to describing both a taxonomy of
area-specific entities and pervasive computing application archi-
tectures. This design language provides a conceptual framework
to support the development of a pervasive computing application.
The design is used to provide a dedicated programming support
to the developer for the subsequent stages of the development
cycle, namely the implementation and testing stages.

A TOOL-BASED METHODOLOGY We have built DiaSuite, a
suite of tools which, combined with our design language, pro-
vides support for each phase of the development of a pervasive
computing application, namely, design, implementation, and
testing. DiaSuite relies on a compiler that generates a program-
ming framework from descriptions written in the DiaSpec design
language.

A SIMULATION APPROACH To address the testing stage, we
propose an approach and a tool integrated in our tool-based
methodology, namely DiaSim. DiaSim enables a transparent
testing of pervasive computing applications in a simulated phys-
ical environment. It also allows the testing of applications in a
hybrid environment, combining real and simulated entities. Fi-
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nally, it provides a 2D graphical simulation renderer for visually
monitoring and debugging pervasive computing applications.

A PHYSICALLY-ACCURATE SIMULATION We have combined
DiaSim to Acumen [76], a domain-specific language (DSL) with
specialized support for describing continuous systems. The phys-
ical characteristics of a physical environment (e.g., temperature or
luminosity) are described and simulated using Acumen. This al-
lows us to test applications with DiaSim in a physically-accurate
environment.

VALIDATION OF THE SIMULATION APPROACH The general-
ity of our approach has been demonstrated by simulating applica-
tions in a variety of pervasive computing areas. The practicality
of DiaSim has been shown on a large-scale simulation of an en-
gineering school [38]. Finally, we have also evaluated DiaSim in
terms of scalability, performance and usability.

1.3 OUTLINE

The remainder of this dissertation is organized as follows :

— Chapter 2 introduces an overview of the approach presented
in this thesis. We first present an example of pervasive com-
puting application: a heating control system. This example is
used throughout this dissertation to illustrate our approach.
We then introduce the development paradigm underlying
our development methodology, namely the Sense-Compute-
Control paradigm. Finally, we present an overview of our
tool-based methodology for developing and testing perva-
sive computing applications.

— Chapter 3 presents the DiaSpec language used for design-
ing pervasive computing applications. DiaSpec allows to
design a taxonomy of entities from a pervasive computing
area. It also enables to design the architecture of pervasive
computing applications.

— Chapter 4 introduces the programming framework gener-
ated by the DiaSpec compiler from the application design.
This support is then used to develop the entities and the
application components defined in a DiaSpec design.

— Chapter 5 presents our approach for testing pervasive com-
puting applications. The underlying simulation model and
the simulation programming framework provided by our
approach are presented in this chapter.

— In Chapter 6, we first present the implementation of our
simulation approach, namely DiaSim. DiaSim is composed
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of two components: a scenario editor and a simulation ren-
derer. Then, we present a large-scale case study we tested
with DiaSim.

DiaSim is validated in Chapter 7. We first discuss the existing
works related to DiaSim. Then, DiaSim is evaluated with
respect to scalability, usability, and performance. Finally, we
discuss pragmatic issues involved in developing and using a
simulated environment.

Chapter 8 presents how a physically-accurate simulation can
be realized using DiaSim and the Acumen DSL. Acumen
is used to model and simulate the physical characteristics
of the simulated environment. A virtual experiment of our
heating control system is presented and evaluated in this
chapter. This experiment enables to compare the power and
comfort efficiency of different heating strategies.

Chapter 9 generalizes our simulation approach to an applica-
tion domain different from the pervasive computing domain,
namely the avionics domain. This chapter provides insights
as to how to use our simulation approach for testing any
application that uses the Sense-Compute-Control paradigm.
A thorough discussion of the works related to our methodol-
ogy is conducted in Chapter 10.

— Finally, Chapter 11 articulates the conclusions of this work.

We also discuss several possible directions for future works.



OVERVIEW

This chapter presents an overview of our tool-based method-
ology for developing and testing pervasive computing applica-
tions. This methodology has two main characteristics; it is (1)
design-driven and (2) tool-based. We first introduce a simple case
study: a heating control system. We use this case study throughout
this dissertation. Then, we present the Sense-Compute-Control
paradigm. This paradigm is used for architecting the applica-
tions developed with our methodology. Then, we show why
our methodology is design-driven through its flow of develop-
ment activities. We also provide an overview of each tool of our
methodology that supports these development activities. Finally,
we introduce an overview of our approach for testing pervasive
computing applications in a simulated physical environment.

2.1 CASE STUDY: A HEATING CONTROL SYSTEM

We illustrate our tool-based methodology with a case study
that takes place in one of the areas involved in building man-
agement applications, namely, the Heating, Ventilating and Air
Conditioning (HVAC) area. HVAC systems are responsible for
providing thermal comfort and acceptable indoor air quality to
the building occupants. These systems are a standard part of
mechanical engineering curricula, see for example [7]. HVAC
systems regulate multiple physical properties of a building. For
example, temperature and humidity must be regulated so that
the occupants feel comfortable. As well, carbon dioxide density
needs to be regulated for keeping an acceptable indoor air quality.
Finally, the amount of airflow introduced to an air-conditioned
zone must be controlled to remain pleasant for the occupants.
To regulate these multiple physical characteristics, HVAC sys-
tems interact with numerous devices. It retrieves information
from sensors such as temperature, humidity and carbon dioxide
sensors. It also controls heaters, humidifiers and ventilators to
provide comfort and acceptable indoor air quality to occupants.

In our case study, we focus on a specific part of a HVAC system:
the heating control system. This system regulates the temperature
in each room of a building depending on the room occupancy.
The building room occupancy is scheduled in a calendar, allow-
ing the heating control system to know in advance the occupancy
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planning of each room. The first functionality of this system is
to heat a room 15 minutes before a scheduled occupancy if the
room temperature is too cold. Thus, the room is at a comfort-
able temperature when the occupants arrive. The system also
manages the heating of rooms that are occupied unexpectedly.
The heating control system receives motion detection events to
detect unscheduled occupancy. Thus, if someone enters an unoc-
cupied room, the heating control system automatically turns on
the heaters.

2.2 SENSE-COMPUTE-CONTROL PARADIGM

Our methodology relies on the Sense-Compute-Control (SCC)
paradigm [15]. This paradigm originates from the sense/compute/-
control architectural pattern, promoted by Taylor et al. [68]. This
paradigm applies to applications that interact with an external
environment. Such applications are typical of domains such as
building automation, robotics, and autonomic computing.

As depicted in Figure 1, the underlying design pattern consists
of context components fueled by sensing entities. These compo-
nents refine (aggregate and interpret) the information given by
the sensors. These refined data are then passed to controller com-
ponents that trigger actions on entities. For example, the heating
control system senses the environment to acquire temperature
data. Then, the system uses this raw data to regulate the building
temperature accordingly. This temperature regulation is achieved
by acting on heaters.

raw data

Contexts

Sources

. context
. data

Physical

Entities |: Environment

Actions

Controllers

: orders

:Architecture

Figure 1: The SCC paradigm.

Like a programming paradigm, the SCC paradigm provides
concepts and abstractions to solve a software engineering prob-
lem. However, these concepts and abstractions are dedicated to a
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Area Application
Expert Architect

Implement | | Implement Implement Implement
entities tests tests components,
Entity Entity  Application Application|
Developer Tester Tester Developer

Taxonomy Run tests Run tests Architecture

Implementation

Implementation

Figure 2: Flowchart of the development activities of our tool-based
methodology. Multiple inputs for an activity require syn-
chronization; multiple outputs enable parallelization.

design style, raising the level of abstraction above programming.
Because of its dedicated nature, such a development paradigm
allows a more disciplined engineering process, as advocated by
Shaw [10, 65].

2.3 A DESIGN-DRIVEN METHODOLOGY

An entity is a concept specific to the pervasive computing do-
main. This concept points out the independence between (1) the
development of an entity taxonomy for an area, such as HVAC,
and (2) the development of a specific application that orchestrates
elements of a taxonomy. This independence leads to two distinct
design activities: entity taxonomy design and application design.
These design activities, as well as the subsequent implementation
and testing activities can be achieved in parallel. Figure 2 outlines
the development cycle associated to our methodology and illus-
trates the independence between these activities. In this figure, a
role is associated to each development activity. Even though these

11
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activities are related, they can be achieved by distinct experts in
parallel, given that these experts collaborate closely.

In our development methodology, the test implementation can
start in parallel with the software component implementation
as test implementation only needs information provided by the
architecture design and comments provided by the architect. Our
approach facilitates test-driven development methodologies (e. g.
agile software development [36]) where the test phase strictly
precedes the implementation phase. In this way, tests guide the
developers of the application.

Along this development life-cycle, our methodology offers
tools to assist the experts for each development activity. In partic-
ular, the specification is directly used for generating a dedicated
programming support.

2.4 A TOOL-BASED METHODOLOGY

Based on this development life-cycle and its identified roles,
Figure 3 depicts how our tool suite supports each phase of the

proposed methodology:
Q Q
é <specify> g g <specify> &
Area B Applicati
Expert Taxonomy Architecture Rchlrfi?elt;n

DiaGen
Code Generator

<use> <use>

Entity Application

Developer
PEr <use> 7 Entities Architecture Developer
Framework Framework
& / <use>‘[
<use> @ <use>

Simulated DiaSim Application
Entities Simulator Tester

<use>

Entity
Tester

Figure 3: Development support provided by the DiaSuite tools.

DESIGNING THE TAXONOMY Using the taxonomy layer of the
DiaSpec language, an expert defines an application area through a
catalog of entities, whether hardware or software, that are specific
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to a target area (stage @). A taxonomy allows separation of
concerns in that the expert can focus on the high-level description
of area-specific entities.

DESIGNING THE ARCHITECTURE Given a taxonomy, the ar-
chitect can design and structure applications (stage @). To do
so, the DiaSpec language provides an Architecture Description
Language (ADL) layer [47] dedicated to describing pervasive
computing applications. An architecture description enables the
key components of an application to be identified, allowing their
implementation to evolve with the requirements (e.g., varying the
implementation of the temperature regulation management to
optimize energy consumption).

IMPLEMENTING ENTITIES AND COMPONENTS We leverage
the taxonomy definition and the architecture description to pro-
vide dedicated support to both the entity and the application
developers (stages @ and @). This support takes the form of a
Java programming framework, generated by the DiaGen code
generator [14]. The generated programming framework guides
the developer with respect to the taxonomy definition and the
architecture description. It consists of high-level operations to
discover entities and interact with both entities and application
components. In doing so, it abstracts away from the underlying
distributed technologies, providing further separation of con-
cerns.

TESTING DiaGen generates a simulation support to test
pervasive computing applications before their actual deploy-
ment (stage ®). An application is simulated with DiaSim [11],
without requiring any code modification. DiaSim provides a
graphical editor to define simulation scenarios and a 2D-renderer
to monitor simulated applications. Furthermore, simulated and
real entities can be mixed. This hybrid simulation enables an
application to migrate incrementally to an actual environment.

DEPLOYING After the testing phase, the system administrator
deploys the pervasive computing application. To this end, a
distributed systems technology is selected. We have developed a
back-end that currently targets the following technologies: Web
Services, RMI [14], and SIP [5]. This targeting is transparent for
the application code. The variety of these target technologies
demonstrates that our development approach separates concerns
into well-defined layers. This separation allows to build eas-
ily new back-ends if necessary and to smoothly apply them to
already existing applications.

13
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MAINTENANCE AND EVOLUTION Our tool-based methodol-
ogy allows for iterative development of the taxonomy and ar-
chitecture. This approach allows changes in the taxonomy and
architecture during late phases of the cycle.

This dissertation focuses on the design, development and test-
ing stages of the development cycle of pervasive computing
applications. For this reason, we will not present the deployment
and maintenance stages of our methodology. Further information
on the support provided by our methodology for these two stages
can be found elsewhere [16].

2.5 TESTING PERVASIVE COMPUTING APPLICATIONS

As in any software engineering domain, testing pervasive com-
puting applications is crucial. However, this domain has specific
requirements that prevent generic testing tools from applying to
pervasive computing applications [59]. Indeed, pervasive com-
puting applications interact with users and with the physical
environment. Generic software testing tools do not cope with
neither the simulation of the physical environment, nor the simu-
lation of users in this physical environment.

Coping with these requirements makes the testing of pervasive
computing applications challenging. In fact, only a few existing
development approaches in the pervasive computing domain
address testing: existing development approaches often assume
that the system is partially or fully deployed. However, deploying
a pervasive computing application for testing purposes can be
expensive and time-consuming because it requires to acquire,
test, and configure all equipments and software components.
Furthermore, some scenarios are difficult to test because they
involve exceptional situations such as fire.

To cope with these issues, our methodology provides an ap-
proach and a simulator tool for testing pervasive computing
applications, named DiaSim. This tool is integrated with our
methodology, leveraging declarations provided at earlier develop-
ment stages. It provides graphical tools for editing simulation sce-
narios and executing pervasive computing applications against
these scenarios in a simulated physical environment. DiaSim
leverages the abstraction layer of the generated programming
framework for operating entities regardless of their nature (i.e.,
real or simulated). Thus, pervasive computing applications can
be executed in hybrid environments, combining real and sim-
ulated entities. This abstraction layer also allows a transparent
simulation of these applications. Thus, a tested application can



2.5 TESTING PERVASIVE COMPUTING APPLICATIONS 15

then be deployed in a real environment without requiring any
modification on its application code.
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DEVELOPING PERVASIVE
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DESIGNING AN APPLICATION

The first stage of our tool-based methodology is to design
a pervasive computing application. To this end, we provide a
design language dedicated to describing pervasive computing
applications: the DiaSpec design language. DiaSpec first allows
to describe the entities that compose a pervasive computing area.
It also provides an ADL layer to architect the components of a
pervasive computing application.

3.1 DESIGNING THE TAXONOMY

To cope with the growing number of application areas, Dia-
Spec* offers a taxonomy language dedicated to describing classes
of entities that are relevant to the target application area. An
entity consists of sensing capabilities, producing data, and ac-
tuating capabilities, providing actions. Accordingly, an entity
description declares a data source for each one of its sensing
capabilities. As well, an actuating capability corresponds to a
set of method declarations. An entity declaration also includes
attributes, characterizing properties of entity instances (e.g., lo-
cation, accuracy, and status). Entity declarations are organized
hierarchically allowing entity classes to inherit attributes, sources,
and actions.

An extract of the DiaSpec taxonomy for the heating control
system is shown in Figure 4. Entity classes are introduced by
the device keyword. Note that the same keyword is used to
introduce both software and hardware entities.

To distinguish entity instances, attributes are introduced using
the attribute keyword. Attributes are used as area-specific val-
ues to discover entities in a pervasive computing environment.
They also allow the tester and the system administrator to dis-
criminate entity instances during the simulation and deployment
phases. For example, hardware entities of our taxonomy extend
the abstract LocatedDevice entity that introduces the location
attribute.

The sensing capabilities of an entity class are declared by the
source keyword. For example, the MotionDetector entity defines
the detection data source (line 6). Sometimes, retrieving a data

1. The DiaSpec grammar can be found at http://diasuite.inria.fr/
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DESIGNING AN APPLICATION

source requires a parameter. For example, the schedule data
source of the Calendar entity maps an occupancy schedule to a
room. In this case, the source needs to be parameterized by a
location (line 18). Such parameters are introduced by the indexed
by keyword.

Actuating capabilities are declared by the action keyword. As
an example, the Heater declaration defines the Heat action inter-
face. This action may be invoked by an application to start or stop
the heating (line 14). The Heat interface is defined independently
in lines 24 to 27.

device LocatedDevice {
attribute location as Location;

}

device MotionDetector extends LocatedDevice {
source detection as Boolean;
}

device TemperatureSensor extends LocatedDevice {
source temperature as Temperature;

}

device Heater extends LocatedDevice {
action Heat;

}

device Calendar {
source schedule indexed by location as Location;

}

structure Location { room as String; }
structure Temperature { value as Float; }

action Heat {
on();
off();

}

Figure 4: Extract of the heating control system taxonomy. DiaSpec
keywords are printed in bold.

The taxonomy layer of DiaSpec is domain specific in that it
offers constructs corresponding to concepts that are essential
to the pervasive computing domain. This is illustrated by the
source and action constructs that directly correspond to the sens-
ing and actuating concepts. As such, our taxonomy layer offers
an abstraction layer between the entity implementation and the
application logic. Indeed, on the one hand, the entity developer
takes an entity declaration as a specification to which an entity
implementation must conform. On the other hand, the applica-
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tion architect can construct its specification on top of this set of
entity declarations, abstracting over the heterogeneity of these
entities.

We now present the architectural layer of the DiaSpec language,
which is built on top of this taxonomy layer.

3.2 ARCHITECTING THE APPLICATION

The DiaSpec language provides an ADL layer to define appli-
cation architectures. This layer is dedicated to the Sense/Com-
pute/Control architectural pattern. This architectural pattern is
commonly used in the pervasive computing domain [17, 21]. It
consists of context components fueled by sensing entities. These
components process gathered data to make them amenable to
the application needs. Context data are then passed to controller
components that trigger actions on entities.

Following this architectural pattern, the ADL layer of DiaSpec
allows the context and controller components to be defined and
the corresponding data-flow to be specified. Their definition
depends on a given taxonomy, specified in the previous step of
our methodology. Describing the application architecture allows
to further specify a pervasive computing application, making
explicit its functional decomposition.

We illustrate the ADL layer of DiaSpec with our heating control
system. The overall architecture of this application is displayed
in Figure 5 and all components are described in Table 1. At the
bottom of this figure are the entity sources, as described in the
taxonomy. The layer above consists of the context components
fueled by entity sources. These components filter, interpret, and
aggregate these data to make them amenable to the application
needs. Above the context layer are the controller components
that receive application-level data from context components and
determine the actions to be triggered on entities. At the top of
Figure 5 are the entity actuators receiving actions from controller
components.

The DiaSpec description of the architecture of the heating con-
trol system is presented in Figure 6. In this application, tempera-
ture values are provided to the AverageTemperature component,
declared using the context keyword. This component calculates
the average temperature for each room of a building. It pro-
cesses the average temperature using the temperature source
provided by the temperature sensors. This is declared using the
source keyword that takes a source name and a class of enti-
ties. To process the average temperature on a per-room basis,
this context is declared as indexed by Location. In doing so,

21
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Figure 5: Specification of the heating control system.

each calculated average temperature is associated with a location.
The Presence context determines whether a room is currently
occupied from the information provided by motion detectors.
The RoomOccupancy context determines a more advanced room
occupancy than the Presence context. This occupancy takes into
account the information provided by the Presence context, as
well as the room schedule given by a calendar. Thus, the infor-
mation provided by RoomOccupancy allows to heat a room prior
to being occupied. When the occupancy of a room changes, the
HeatRegulation context is invoked. Depending on the current
temperature in this room, it may order a heat regulation to the
HeatRegulator controller, declared using the controller keyword.
The controller acts on Heater instances to regulate the tempera-
ture as required by the HeatRegulation context. This is declared
using the action keyword.

The heating control system architecture illustrates the domain-
specific nature of the DiaSpec ADL, providing the developer
with pervasive computing concepts. These concepts are high
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Type Component Responsibility

TemperatureSensor Provides the current temperature.

Entity MotionDetector Detects motion in a room.
(sensing) Calendar Provides the occupancy schedule of each
room.

AverageTemperature Computes the average temperature of each
room of the building.

Presence Aggregates the motion detection events and
notifies if a room is occupied.
Context RoomOccupancy Notifies if a room is occupied depending on
its occupancy schedule and its actual occu-
pancy status.

HeatRegulation Notifies if a room needs to be heated.

Controller HeatRegulator Controls heaters to start or stop heating the
rooms of the building.

Entity Heater Heating system located in every room

(actuating) of the building.

Table 1: Components of the heating control system.

context AverageTemperature as Temperature indexed by location as
Location {
source temperature from TemperatureSensor;

context Presence as Boolean indexed by location as Location {
source detection from MotionDetector;

context RoomOccupancy as Boolean indexed by location as Location {
source schedule from Calendar;
context Presence;

context HeatRegulation as Regulation indexed by location as
Location {
context AverageTemperature;
context RoomOccupancy;

controller HeatRegulator {
context HeatRegulation;
action Heat on Heater;

Figure 6: Architecture of the heating control system. DiaSpec key-
words are printed in bold.
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level, making an architecture description concise and readable. It
represents a useful artifact to share with application developers
and other stakeholders. Moreover, the DiaGen code generator
turns the role of this artifact from contemplative to productive,
guiding the implementation of the declared components.



IMPLEMENTING AN APPLICATION

DiaGen automatically generates a Java programming frame-
work from both a taxonomy definition and an architecture de-
scription. After outlining the implementation of DiaGen, we
briefly present a generated programming framework. This pre-
sentation is then used to explain how a developer implements
entities and the application logic on top of that framework.

4.1 PROGRAMMING FRAMEWORK GENERATOR

DiaGen generates a Java programming framework with respect
to a taxonomy definition and an architecture description. DiaGen
follows the design of typical code generators. As illustrated in
Figure 7, there are three main phases: (1) the parser, (2) the type
checker, and (3) the code generator.

The parser relies on the ANTLR [2] parser generator. Using
a parser generator allows to easily refine/extend the DiaSpec
language. The resulting Abstract Syntax Tree (AST) is then
type-checked, ensuring for example that the inter-component
communications conform to the architectural style (e.g., a con-
troller cannot communicate directly with the source of an entity).
The type-checker is implemented in Java, using visitors. Finally,
the code generator is in charge of producing the programming
framework from the AST. The generator is written using the
StringTemplate [66] engine. StringTemplate is a Java template
engine for generating source code, web pages, or any other for-
matted text output.

4.2 GENERATED PROGRAMMING FRAMEWORK

A generated programming framework contains an abstract class
for each DiaSpec component declaration (entity, context, and

Diaspec Parser Type- Code Programming
Declarations Checker Generator Framework

DiaGen

Figure 7: Structure of the DiaGen compiler.
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controller) that includes generated methods to support the imple-
mentation (e.g., entity discovery and interactions). The generated
abstract classes also include abstract method declarations to allow
the developer to program the application logic (e.g., triggering
entity actions).

Implementing a DiaSpec component is done by sub-classing
the corresponding generated abstract class. In doing so, the
developer is required to implement each abstract method. The
developer writes the application code in subclasses, not in the
generated abstract classes. As a result, in our approach, one can
change the DiaSpec description and generate a new program-
ming framework without overriding the developer code. The
mismatches between the existing code and the new programming
framework are revealed by the Java compiler.

A generated programming framework also contains proxies
to allow entities to be distributed over the network. This is
complemented by interfaces that allow the developer to interact
with entities transparently, without dealing with the distributed
systems details. Finally, a programming framework contains
high-level support to manipulate sets of entities easily, following
the Composite design pattern [31].

We now describe the process of implementing an entity, a
context component, and a controller component by leveraging
a generated programming framework. Along the way, we ex-
plain how the developer is guided by a dedicated programming
framework.

4.3 IMPLEMENTATION OF ENTITIES

The compilation of an entity declaration in the taxonomy pro-
duces a dedicated skeleton in the form of an abstract class de-
picted in Figures 8 and 9. We now examine the generated support
for each part of an entity declaration: attributes, sources, and
actions.

ATTRIBUTES Entities are characterized by attributes. These
attributes can be assigned values at runtime. Attributes are
managed by generated getters and setters in the abstract class.
For example, the MotionDetector entity has a location attribute
(inherited from LocatedDevice, Figure 4, line 2) that triggers the
generation of an implemented setLocation method (Figure 8,
line 12). In each subclass, the developer will use the setLocation
method to set the location of the motion detector. The initial value
for each attribute must be passed to the generated constructor
(Figure 8, line 4).
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// from line 5
public abstract class AbstractMotionDetector {

protected AbstractMotionDetector (Location location) {
super(...);
setLocation(location);

// from LocatedDevice, line 2

private Location location;

public Location getLocation() {return location;}
protected void setlLocation(Location location) {...}

// from MotionDetector, line 6
protected void setDetection(Boolean detection) {...}

Figure 8: The Java abstract class AbstractMotionDetector generated
by DiaGen from the declaration of the MotionDetector
entity (Figure 4, lines 5 to 7).

// from line 13
public abstract class AbstractHeater {

protected AbstractHeater (Location location) {
super(...);
setLocation(location);

// from LocatedDevice, line 2

private Location location;

public Location getLocation() {return location;}
protected void setlLocation(Location location) {...}

// from Heater, line 25
public abstract void on();

// from Heater, line 26
public abstract void off();

Figure 9: The Java abstract class AbstractHeater generated by Di-
aGen from the declaration of the Heater entity (Figure 4,
lines 13 to 15).
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SOURCES An entity source produces values for context com-
ponents. Support for this propagation is generated by DiaGen,
allowing the entity developer to invoke these methods to fuel
this process. For example, from the MotionDetector declaration
and its data source (Figure 4, line 6), the generated abstract class
(Figure 8) implements the setDetection (line 15) method. This
method is to be called by a motion detector implementation.

ACTIONS An action corresponds to a set of operations sup-
ported by an entity. It takes the form of a set of abstract methods
implemented by the abstract class generated for an entity declara-
tion. Each operation is to be implemented by the entity developer
in the subclass. This implementation bridges the gap between
the declared interface and an actual entity implementation. For
example, the generated Heater abstract class (Figure 9) declares
the abstract methods on and off (lines 15 and 18) that need to be
implemented in all subclasses.

The code fragment in Figure 10 is an implementation of a
MotionDetector entity that uses a camera to detect motion. The
CameraMotionDetector implementation of the motion detection
relies on a third-party library that interfaces networked cameras.
When a motion is detected by the third-party library (Figure 10,
line 13), the developer uses the setDetection method provided in
the generated abstract class AbstractMotionDetector (Figure 8,
line 15).

4.4 DEVELOPING THE APPLICATION LOGIC

The implementation of a context or controller component also
relies on generated abstract classes. The development of the ap-
plication logic thus consists of sub-classing the generated abstract
classes.

4.4.1  Implementation of Context Components

From a context declaration, DiaGen generates programming
support to develop the context processing logic. The implemen-
tation of a context component processes input data to produce
refined data to its consumers. The input data are either pushed
by an entity source or pulled by the context component. Both
modes are provided to the developer for each source declaration
of the architecture.

The code fragment in Figure 11 presents the implementation of
the AverageTemperature context (from Figure 6, lines 1 to 3). This
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public class CameraMotionDetector extends AbstractMotionDetector
implements MotionDetectionListener {

private Camera camera;

public CameraMotionDetector(Location location) {
super(location);
camera = new AxisCamera(‘‘cam3.bordeaux.inria.fr’’);
camera.addMotionDetectionListener(this);

}

// from the MotionDetectionListener interface.

// Called by Camera when a motion is detected

@Override

public void motionDetected(Camera camera) {
setDetection(true);

}

Figure 10: A developer-supplied Java implementation of a
MotionDetector entity. This class extends the gener-
ated abstract class shown in Figure 8. The implementation
relies on a third party library: motionDetected is a callback
method from the MotionDetectionListener interface.

is done by extending the corresponding generated abstract class
named AbstractAverageTemperature. The value provided by
this context is only pulled by the HeatRegulation context. Thus,
the developer only needs to override the method that is called
when the value is pulled, namely the getAverageTemperature
method. The developer is provided with a location index. This
allows this context to provide the average temperature for a spe-
cific location. The developer is also provided with a Discover
object. This object enables to discover the temperature sensors lo-
cated in a specific location. It also enables to pull the temperature
data for these temperature sensors, using the getTemperature
method. Finally, when the average temperature is calculated, the
developer returns this value. The generated framework takes
care of returning this value to the component that required it.

4.4.2  Implementation of Controller Components

A controller component differs from a context component in
that it takes decisions that are carried out by invoking entity
actions. A controller declaration explicitly states which entity
actions it controls. This information is used to generate an ab-
stract class for each controller component. This abstract class
provides support for discovering target entities and for invok-
ing their actions. From the declaration of the heat regulator
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public class AverageTemperature extends AbstractAverageTemperature

{
private static float DEFAULT_TEMPERATURE = 20;

@Override
public Temperature getAverageTemperature(Location location,
Discover discover) {
TemperatureSensorComposite sensors =
discover.temperatureSensorsWhere().location(location);
if (sensors.size > 0) {
int sumTemperature = 0;
for (TemperatureSensor sensor : sensors) {
sumTemperature += sensor.getTemperature().getValue();
}
float averageTemperature = sumTemperature / sensors.size();
return new Temperature(averageTemperature);
} else
return new Temperature(DEFAULT_TEMPERATURE) ;

Figure 11: A developer-supplied implementation of the
AverageTemperature context.

(Figure 6, line 19), DiaGen generates an abstract class named

AbstractHeatRegulator. Figure 12 shows an implementation for
this controller. When the HeatRegulator context produces a new

value, the onHeatRegulation method is invoked (line 4) in the

HeatRegulator implementation. The method starts by discover-
ing heaters present in a given location (line 5). It then turns on
or off these heaters depending on the received heat regulation by
invoking the remote methods on or off. This ability to discover

and command heaters from the heat regulator comes from the
architecture declaration (Figure 6, line 21).

public class HeatRegulator extends AbstractHeatRegulator {

@Override
public void onHeatRegulation(HeatRegulation regulation, Discover
discover) {
HeaterComposite heaters =
discover.heatersWhere().location(regulation.getLocation());
if (regulation.getType() == Regulation.START_HEATING)
heaters.on();
else if (regulation.getType() == Regulation.STOP_HEATING)
heaters.off();

Figure 12: Implementation of the HeatRegulator controller.
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4.5 ENTITY DISCOVERY

After having presented the programming support given by a
generated framework, we focus on a key mechanism to cope with
dynamicity, namely, entity discovery.

4.5 ENTITY DISCOVERY

Our dedicated programming framework provides support to
discover entities based on the taxonomy definition. Entity dis-
covery returns a collection of proxies for the selected entities.
This collection is encapsulated in a composite object that gath-
ers a collection of entities [31]. An example of such collection,
HeaterComposite, is returned in line 5 of Figure 12. Thanks to
this design pattern, the developer can process all elements of
the collection either explicitly by using a loop, or implicitly by
invoking a method of the composite, which is part of the gener-
ated programming framework. Lines 7 and ¢ in Figure 12 is an
example of an implicit iteration.

To help developers express queries to discover entities, DiaGen
generates a Java-embedded, type-safe Domain-Specific Language
(DSL), inspired by the work of Kabanov et al. [39] and by fluent
interfaces introduced by Fowler [29]. Existing works often use
strings to express queries, which defer to runtime the detection of
errors in queries. In our approach, the Java type checker ensures
that the query is well formed at compile time. This strategy con-
trasts with other works where the Java language is augmented,
requiring changes in the Java compiler and integrated develop-
ment environments, as illustrated by Silver [74] and ArchJava [1].

A method suffixed by Where is available for each device that can
be discovered. These methods return a dedicated filter object on
which it is possible to add filters over attributes associated with
the entity class. For example, the HeatRegulator abstract class de-
fines a heatersWhere method that returns a HeaterFilter. This
filter can be refined by adding a filter over the location attribute
inherited by the Heater in the taxonomy. This is done by calling
the location() method defined in the generated HeaterFilter
class. The parameter to this method is either a Location value
or a logical expression. If a Location value is passed, the discov-
ered entities are those with an location attribute equals to the
passed value. An example of the use of a value is given in the
HeatRegulator class shown in Figure 12. The onHeatRegulation
method selects heaters to operate. The call to heaterswWhere
(line 5) restricts the selection to screens located in the area where
the news should be published.

If a logical expression is chosen, the attributes of the selected
entities hold with respect to the logical expression. A logical ex-
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pression is made of relational and logical operators. For example,
the following query selects screens that are either located in room
1 0r 2

Location rooml, room2;

discover(
screensWhere().area(or(eq(rooml),eq(room2)))
)

This embedded DSL is both expressive and concise. It plays a
key role in enabling the developer to handle the dynamicity of
a pervasive computing environment without making the code
cumbersome.
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To address the testing stage, we propose an approach and a tool
integrated in our tool-based methodology, namely DiaSim. Our
approach uses the testing support generated by DiaSpec to trans-
parently test applications in a simulated physical environment.
In this chapter, we first describe the simulation model underlying
our simulation approach. Then, we present how to develop a sim-
ulation using the testing support generated by DiaSpec. Finally,
we detail how applications are tested with DiaSim.

5.1 SIMULATION MODEL

Let us now describe the key concepts of our approach to simu-
lating a pervasive computing system.

5.1.1  Stimulus Producers

Stimuli are changes of the environment that are observed by
the sensors of the pervasive computing environment. From a
simulation perspective, emitting environment stimuli may trigger
an entity data source (e.g., the detection source of a motion detec-
tor) that publishes events, that may eventually trigger actions on
actuators (e.g., turning on a light). Emitters of stimuli are called
stimulus producers; they are dedicated to a type of stimulus.

Every stimulus has a type that matches the type of one or more
data sources provided by entities. Additionally, every type of
stimulus is associated with a set of rules defining its evolution
in terms of space, time and value. Physical environment stimuli
are often modeled by mathematical definitions (e.g., with ordi-
nary/partial differential equations). Such a definition is typically
provided by experts of the application area or the literature in
related fields. For example, temperature stimuli required for test-
ing a heating control system can be modeled with heat transfer
formulas described in any thermodynamics books (e.g., [41]).

Other types of stimulus can be introduced by replaying logs of
measurements collected in a real environment. For example, to
design zero-energy building, extensive measurements are carried
out to log the variations in temperature, light and wind over a
one-year period [30]. This line of work contributes to building
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a rich library of measurements, facilitating simulation without
compromising accuracy.

However, measurement logs are not available in general for
simulation (e.g., fire simulation), requiring the definition of some
model to approximate a real environment, as accurately as neces-
sary. To achieve this goal, our approach is to define an approxi-
mation model with respect to each type of stimulus managed by
the sensors of an environment. For example, the simulation of
location-related sensors can be defined as processing Cartesian
coordinate stimuli. If location-related sensors report location
information at the granularity of a room, coarse-grain informa-
tion can be generated by the stimulus producers (e.g., a unique
Cartesian coordinate stimulus per room).

Because a type of stimulus can be consumed by different en-
tity data sources, stimulus producers are decoupled from the
simulated entities.

So far, we described stimuli as being directly processed by
entities. However, a type of stimulus can also influence the
evolution of other types of stimulus; such a type of stimulus is
called a causal stimulus. For example, fire could be declared as a
causal stimulus if we needed to model its resulting action on the
temperature stimulus. When a stimulus does not impact others,
it is called simple stimulus.

5.1.2 Simulated Entities

A simulated environment consists of stimulus producers and
simulated entities. Like a real entity, a simulated entity interacts
with a simulated environment by processing stimuli, performing
actions, and exchanging data with pervasive computing applica-
tions. An entity has two kinds of facets, each one playing a key
role in simulation: data source and action. The simulated version
of a data source mimics the behavior of a real data source, react-
ing to stimuli generated by the stimulus producers. For example,
the simulated version of a motion detector, when turned off, ig-
nores coordinate stimuli. Otherwise, when the motion detector is
on and receives coordinate stimuli matching its room, a motion
event is published with its room identifier.

An action provided by an entity typically modifies the state
of this entity as well as the observable environment context. For
example, invoking an action on a light to turn it on, changes the
light state and locally increases the luminosity. The simulated
version of a light thus needs to maintain its state (on/off) and to
create a stimulus producer to increase luminosity with respect to
an intensity specific to the light.
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In addition to defining their simulated versions, entities need
to be deployed. For example, the simulated Light entity needs
to be instantiated as many times as required to mimic the real
environment. In doing so, entity instances may be assigned
specific attribute values such as their location and luminosity
intensity in the light example.

As for context and controller components, they are insensitive
to whether or not entities are simulated. For example in our heat-
ing control system, the same implementation of a HeatRegulator
controller operates Heater instances, regardless of whether or
not they are simulated. As well, the Presence context will not in-
teract any differently with a simulated or a real MotionDetector
instance.

5.1.3 Physical Space

To complete the simulation of an environment, we need to
model the physical space (e.g., an office space, an apartment, a
building or a campus) and to make it evolve as the simulation
scenario unfolds. A simulated space allows us to model stim-
ulus propagation, according to pre-defined rules. As well, it is
annotated with the location for each entity instance whose real
version may impact the physical environment, whether they are
fixed, mobile and dynamically appearing.

The model of a physical space is decomposed into polygon-
shaped regions. This decomposition is hierarchical, breaking
down a physical space into increasingly narrow regions. For
example, a building consists of floors, each of which has corridors
and rooms, efc. Entity instances are positioned in the simulated
space, in accordance to the desired (or existing) physical setting
to be simulated. As an approximation, the intensity of a stimulus
is assumed to be uniform within a region.

Our overall simulation model is depicted in Figure 13. Stimulus
producers emit stimuli of various types according to a scenario.
The values of the stimuli can either be read from logs of mea-
surements or can be computed from an approximated physical
model. In place of data sources of real entities, data sources
of simulated entities process these stimuli and produce events.
The unchanged application reacts to these events by invoking
entity actions. In turn, actions change the simulated environment,
triggering stimulus producers.
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5.2 DEVELOPING A SIMULATION

Given the simulation model presented earlier, we are now
ready to develop the simulated version of entities and stimulus
producers, forming a simulation scenario.

5.2.1 Developing Simulated Entities

As presented in Chapter 4, the DiaSpec compiler generates a
dedicated programming framework from a DiaSpec description
to develop real entities. Besides this generated programming
framework, the DiaSpec compiler generates a simulation pro-
gramming framework to develop simulated entities. For each
entity class, a set of Java classes is generated for programming
real and simulated entities, as depicted in Figure 14: real entities
(e.g., R1) extend the € abstract class of the real programming
framework, whereas simulated entities (e.g., S,) extend the €’
abstract class of the simulation programming framework. A sim-
ulation programming framework inherits support provided by
the related real programming framework and adds simulation-
specific functionalities. For instance, it enables entities to receive
simulated stimuli and to trigger stimulus producers. Figure 15
shows a generated abstract class that is used for implementing
simulated motion detectors. To implement the simulated version
of an entity, the tester subclasses the corresponding abstract class.
For instance, Figure 16 shows the implementation of a simu-
lated motion detector named MySimulatedMotionDetector. The
related SimulatedMotionDetector abstract class contains an ab-
stract method to receive simulated detection events (receive) and
a concrete method to publish MotionDetection events (publish).

As illustrated by Figure 16, the implementation of a simulated
entity is often trivial. It only forwards the received stimuli. Thus,
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Figure 14: Correspondence between real and simulation program-
ming frameworks.

to simplify the tester task, the simulation layer of the generated
programming framework provides such implementations for all
the simulated entities. However, nothing prevents the tester from
implementing more sophisticated behaviors by extending the
corresponding abstract class.

1 public abstract class SimulatedMotionDetector extends
2 AbstractMotionDetector implements
SimulatedEntity {

3
4 public SimulatedMotionDetector(Location location) {
5 super(location);

6

8 @Override
9 public void receive(Stimulus stimulus) {

10 if (stimulus.getName().equals("detection")
11 receive((Boolean)stimulus.getEvent());
12 }

13
14 public abstract void receive(Boolean detection);
15}

Figure 15: Implementation of the generated SimulatedMotionDetec-
tor class.

5.2.2  Developing Hybrid Environments

Our approach permits real entities to be used in a simulated
environment, whenever desirable. This key feature enables real
entities to be incrementally added to the simulated environment,
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1 public class MySimulatedMotionDetector extends
2 SimulatedMotionDetector {

3
4 public MySimulatedMotionDetector(Location location) {
5 super(location);
6

}

8 @Override

9 public void receive(Boolean detection) {
10 publish(detection);

11 }

12 }

Figure 16: Implementation of a simulated MotionDetector entity

facilitating the transition to a real environment. Also, this strategy
enables to improve the rendering of a simulation by mixing real
entities. For example, a real LCD screen can be introduced in a
simulation to display messages that future users will read.

To examine how real entities are integrated in a simulated
environment, recall our inheritance strategy, as illustrated in
Figure 14. Because of this strategy, when a controller looks up
a given entity type, it receives the real entities, as well as the
simulated ones. Similarly, when a context subscribes to a data
source, it can interact with both real and simulated data sources.
This approach allows applications to be executed in a hybrid
environment. Furthermore, real and simulated entities can be
added dynamically, as the simulation of a pervasive computing
system runs.

5.2.3 Developing Stimulus Producers

The development of stimulus producers is facilitated by a sim-
ulation programming framework. This programming support
provides a generic StimulusProducer class that the tester can
use to create his own stimulus producers. Classes of stimulus
are defined from types of data sources defined in DiaSpec. For
example, the building management area includes stimuli of tem-
perature and motion detection. Several stimulus producers can
be attached to the same class of stimulus. For example, if a
room contains two heaters, each one has its own producer of
temperature stimuli. A stimulus producer defines the evolution
of a source of stimuli. For example, to simulate fire gaining
intensity, a stimulus producer gradually increases the intensity
of the emitted fire stimulus.

In our heating control system, we use this simulation program-
ming framework to produce motion events when simulated peo-
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public class MyAgentModel extends DiaSimAgentModel implements 1
AgentListener {

private static int RANGE = 5; 3
private StimulusProducer stimulusProducer; 4
5
public MyAgentModel(World world) { 6
super(world); 7
Source motionDetectionSource = new Source("MotionDetector", 8
"detection", "Boolean");
stimulusProducer = new 9
StimulusProducer(motionDetectionSource);
} 10
11
@Override 12
public List<DiaSimAgent> createAgents() { 13
List<DiaSimAgent> agents = super.createAgents(); 14
AgendaStimulusProducer studentAgenda = new 15
AgendaStimulusProducer(‘‘resources/studentagenda.xml’”);
AgendaStimulusProducer teacherAgenda = new 16
AgendaStimulusProducer(‘‘resources/teacheragenda.xml’”);
for (DiaSimAgent a : agents) { 17
agent.addAgentListener(this); 18
if (agent.getType().equals(‘‘Student’’) 19
agent.setAgendaStimulusProducer(studentAgenda); 20
else if (agent.getType().equals(‘‘Teacher’’) 21
agent.setAgendaStimulusProducer(teacherAgenda); 22
} 23
return agents; 24
} 25
26
@Override 27
public void agentMoved(Agent agent, String location) { 28
for (DiaSimDevice d : getDevices()) { 29
int distance = agent.distanceFrom(d.getPosition()); 30
if (d.getType().equals("MotionDetector") 31
&& distance < RANGE) 32
stimulusProducer.publish(true, location); 33
} 34
} 35
} 36

Figure 17: Implementation of the MyAgentModel class used in the
heating control system simulation. This class is responsible
for publishing motion detection events when simulated
people come within a range of a motion detector.
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ple move in the range of a motion detector. To illustrate the use of
the simulation programming framework, Figure 17 presents the
implementation of the class that publishes motion events. This
class extends DiaSimAgentModel. The DiaSimAgentModel class is
provided by the simulation programming framework and pro-
vides programming support for handling the simulated people of
the simulation. In this example, it is used to be notified when a
simulated agent moves in the detection area of a motion detector.
A stimulus producer is created in this class: stimulusProducer
(Figure 17, line 9). The simulation programming framework al-
lows to be notified when an agent moves by implementing the
AgentListener interface. When an agent moves, the agentMoved
method is called (Figure 17, line 28). Finally, when an agent
moves in the detection area of a motion detector, a motion detec-
tion stimulus is published (Figure 17, line 33).

Pervasive computing systems often interact with people. For
instance, our heating control system relies on the detection of
motion. To help introducing the behavior of simulated people,
we provide a class for defining the movements of the simulated
agents during the simulation: AgendaStimulusProducer. This
class is parameterized by an agenda describing where a simulated
agent will be located during the simulation (Figure 17, lines 15
and 16). This agenda allows to define time slots during which
the agent is in a specific location. This agenda is defined in XML.
Figure 18 presents an extract of the studentagenda.xml file used
in the MyAgentModel class (Figure 17, line 15). A simulated agent
can be associated with an AgendaStimulusProducer object (see for
example Figure 17, lines 20 and 22). Thus, this simulated agent
will automatically move during the simulation with respect to this
agenda. Though using an agenda to model the human behavior
is very limited, we can test a wide range of pervasive computing
applications with this basic support. The large-scale simulation of
engineering school presented in Chapter 6 simulates 200 people
with this simple support.

To summarize the relationships between the classes introduced
in this section, Figure 19 presents a class diagram of the im-
plementation of the heat regulator simulation. In this example,
every class except TemperatureStimulusProducer is provided to
the tester either by the generated DiaSpec framework, the simula-
tion programming framework, the generated emulation layer, or
Siafu. The tester may modify the simulated entity implementa-
tions (e.g., MySimulatedHeater) if he needs a more sophisticated
behavior as the one provided by default. He may also modify
the MyAgentModel class if he needs to send simulated stimuli
triggered by simulated agents. For instance, sending a simulated
detection stimulus when an agent is in the scope of a motion
detector would be implemented in the MyAgentModel class. It is



<?xml version="1.0"
<agenda>
<item>

<location>I 112</location>

<startTime>11/04/2011 10:30:00 GMT</startTime>

encoding="UTE-S8"?>

<endTime>11/04/2011 11:50:00 GMT</endTime>

</item>
<item>
<location>Hall</location>

<startTime>11/04/2011 11:50:00 GMT</startTime>

<endTime>11/04/2011 12:00:00 GMT</endTime>

</item>
[ ... 1

</agenda>

5.2 DEVELOPING A SIMULATION

Figure 18: Extract of the studentagenda.xml XML file.
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important to notice that the simulated entity implementations are
independent from the stimulus producers. The communication
between the stimulus producers and the simulated entities is han-
dled by the DiaSimSimulation class. For instance, it is possible
to modify the implementation of TemperatureStimulusProducer
without modifying the MySimulatedTemperatureSensor imple-
mentation. Thus, this independence between stimulus producers
and simulated entities would allow to compute temperature val-
ues from a thermal physical model instead of reading from logs
of measurements without any impact on the simulated entity
implementations.

5.3 TESTING SUPPORT

We now detail how applications are tested in the DiaSim sim-
ulator. DiaSim executes simulation scenarios, monitors simula-
tions, and supports application debugging.

5.3.1 Transparent simulation

A programming framework generated by the DiaSpec com-
piler provides applications with an abstraction layer to discover
entities. This entity discovery support is based on the taxonomy
definition. In particular, it includes methods to select any node in
the entity taxonomy. The result of this selection is the set of all en-
tities corresponding to the selected node and its sub-nodes. The
developer can further narrow down the entity discovery process
by specifying the desired values of the attributes. This situation
is illustrated in Figure 12. When a heat regulation is required in a
particular location, the HeatRegulator controller implementation
discovers the heaters located in this location and turns them on.
The discover parameter is used to achieve this entity discov-
ery. Using the value of regulation.getRegulation(), only the
heaters in this particular location are discovered.

Because of this abstraction layer, simulation is achieved trans-
parently: the same application code discovers and interacts with
entities, whether or not simulated. This transparent simulation
applies to all aspects of a pervasive computing application. For
another example, simulated data sources can be added to a per-
vasive computing system, without requiring any change in the
application code.
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5.3.2 Simulator architecture

The overall architecture of DiaSim is displayed in Figure 2o0.
It consists of an emulator to support the execution of pervasive
computing applications and a simulator of context to manage
stimuli. The simulator of context communicates the simulation
data to the monitor for rendering purposes.
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Figure 20: DiaSim architecture.

5.3.2.1 Executing simulation scenarios

An environment simulator generates stimuli as a given sim-
ulation scenario unfolds. It consists of stimulus producers and
a scenario manager that dispatches stimuli to the relevant enti-
ties. The scenario manager is a mediator, periodically querying the
stimulus producers to feed the data sources of simulated entities.
For example, the scenario manager collects stimuli of outdoor
luminosity and passes them to outside light sensors.

Actions can create changes to the simulated environment. To
do so, entities register new stimulus producers to the scenario
manager. For example, when fire is detected, a fire sprinkler
discharges water on a given region. Because water is declared as
a causal stimulus with respect to fire, it reduces the fire intensity.
When the application deactivates the fire sprinkler, the water
stimulus producer is stopped by the scenario manager.

5.3.2.2 Monitoring simulation

The scenario manager receives simulation data from stimulus
producers and simulated entities to keep track of the simulated
environment state. The scenario manager passes simulation data
to the monitoring engine that graphically renders simulation sce-
narios. The monitoring engine also accepts live user interactions,
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to pause the simulation or modify the scenario on-the-fly (e.g., by
adding new stimulus producers). Beyond the visual rendering of
a simulation, we propose additional functionalities to DiaSim to
further assist the user, as presented next.

5.3.3 Application testing support

Monitoring a simulation requires measuring, collecting and
rendering a stream of simulation data. Because of its volume,
simulation data often require to be approximated in order to be
rendered. To do so, the simulated environment is approximated
in space and time. Space approximation provides an idealized
map of the physical space, rendering the evolution of simulated
entities (e.g., alarm ringing, motion detection) and stimuli (e.g.,
fire spreading, people moving). Environments are also approxi-
mated in time, decoupling the rendering time from the real time.
As a result, the user often cannot follow the simulation in real
time. To focus on the sequence of events leading to an error, the
monitoring engine of DiaSim provides time shifting functionali-
ties, to replay part of a simulation. Raw data from the simulation
log can be directly browsed by DiaSim, like network traces by
network analyzers [27]. A simulation log contains information
about interactions between entities (i.e., time, source, destination,
interaction parameters) and between stimuli and entities (i.e.,
time, source, destination, class of stimuli, stimuli parameters).
Replays help to isolate bugs but do not ensure applications have
been fixed correctly. Reproducing exact testing conditions is re-
quired to validate a new version of an application. To do so, a
simulation scenario completely defines the simulated environ-
ment and its behavior, making testing conditions deterministic
and reproducible.
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Our simulation approach has been implemented in the DiaSim
tool. DiaSim is implemented in Java and consists of 15,000 lines
of code. In this chapter, we first present the two pieces of software
that compose DiaSim, namely the DiaSim scenario editor and
the DiaSim simulation renderer. Then, we present a large-scale
simulation that has been implemented to validate DiaSim.

6.1 IMPLEMENTATION

Simulating a pervasive computing application with DiaSim is
realized in two steps: (1) editing a simulated physical environ-
ment and simulation scenarios, and (2) executing a simulation to
test an application. To support these two steps, we developed two
pieces of software: a scenario editor, and a simulation renderer.
We describe these two tools in the remaining of this section.

6.1.1 DiaSim Scenario Editor

The first step to simulate a pervasive computing application
is to model the physical environment. This model can be used
to test multiple pervasive computing applications. The model of
the physical environment is realized in a graphical editor. This
editor allows to define the layout of a physical environment, in-
cluding structural characteristics (e.g., walls). Figure 21 shows
the simulated school building that we modeled for testing the
heating control system. In this example, an area has been de-
fined for each room, corridor, and hall of the simulated school
building. Then, using a DiaSim taxonomy, the tester defines and
positions the simulated entity instances in the simulated physical
environment. Figure 21 illustrates the configuration of simulated
entity instances in the school building. In this example, simulated
loudspeakers, screens, and badge readers are positioned in the
main school hall. Simulated loudspeakers are also located in each
corridor. Finally, simulated people are added to the simulation
using the editor.

The second step of the simulation scenario definition is the
configuration of stimulus producers. The DiaSim scenario editor
supports the definition of stimulus producers and their behavior,

47



48

DIASIM IMPLEMENTATION

B piasim Wizard X
][> Amene =
[ senice ¢ 5 Audtorium
o (3 Activty 8 Firesprinkler
o [ Application B Firesprinkier
o £ ContextSource H o Lisht
3 Device LightSensor
= Aduator MotionDetector
) ArCondionner Aol
@ wam =L
[ Displaysenice & (] BreakAreat
) poor ¢ [ BreakArea2
DFan @ #am =
¥ Fresprinkier BadgeReader
7 Lioht Loudspeak
Loudspeaker @ screen
@ screen = | 7 caBreakureas

¢ =3 Sensor BadgeReader
BadgeReader Loudspeaker
BreakDetector D screen
CO2Sensor o ] BreakAread
LightSensor [ Breakireas
MotionDetector o [ BreakAreat
SmokeDetector [ Breakarear
TemperatureSensor & I E001
) - CIE002
- cE003
- CIE00s
- E00s
€008
007
> E00s

D e

LT

Service: Screen
Location: BreakArea3

senadopctatr 5]

—0
L 5w 1w w0
o] I »

[ @ | [ @ @ e |

Figure 21: DiaSim scenario editor. The DiaSim editor is parameter-
ized by an entity taxonomy. The entities defined in the
taxonomy are displayed on the left panel of the graphical
user interface. The entities can be dragged and dropped on
the central panel to add simulated entity instances into the
simulated environment.

by allowing the user to define stimulus intensities in areas of
the simulated space at specific moments in time. For example, a
producer of motion stimuli simulates a user moving in a school
hallway at a given time. Alternatively, stimulus producers are
defined by a modeling function (e.g., a function defining the
outside luminosity for 24-hour period) or previously logged mea-
surements (e.g., class schedules or statistics on class attendance).

Finally, the simulation scenario is saved as an XML file. This
file can later be modified by the scenario editor.

6.1.2 DiaSim Simulation Renderer

The XML file of a scenario configures the DiaSim simulation
renderer with the defined scenario. We studied numerous ex-
isting simulators for pervasive computing environments. We
decided to use Siafu [45], a 2D-graphical context simulator. This
choice was motivated by two key features: (1) Siafu provides a
context simulation engine to model pervasive computing envi-
ronments, and (2) Siafu is written in Java and could thus be easily
interfaced with our tools. Thus, our simulator interfaces with
Siafu to use its rendering and time-control functionalities. On
top of a picture of the simulated space, the simulation renderer
displays entities and stimuli, as shown in Figure 22.
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The simulation renderer shows the state of the simulated en-
tities, by displaying a bubble of raw text above entities (e.g.,
when a data source publishes events) and/or modifying the vi-
sual representation of the entity (e.g., a yellow light is displayed
when turned on). To complement these macroscopic views, we
enriched Siafu’s rendering functionalities with Java and Web in-
terfaces, and audio streams. In the ENSEIRB simulation, clicking
on school LCD screens opens a Web interface showing what
is currently displayed on the simulated screen. We also used
this enriched programming support for simulating loudspeakers,
allowing them to play audio streams.
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Figure 22: DiaSim simulation renderer. The simulated environment
is displayed in the left part of the graphical user inter-
face. The red popups transparently displayed above the
simulated entities indicate that the entity has realized an
interaction. More information about the simulated people
and simulated entities can be found on the right of the
graphical user interface.

DiaSuite supports several distributed systems technologies,
including Java RMI [14], SIP [5] and Web Services. A back-
end defines the communication protocol used by the DiaSpec
components to communicate with each other. The simulation
back-end used by DiaSim is derived from the Java RMI back-
end. This strategy allows us to integrate remote real entities
and to distribute the workload over several different hosts when
numerous simulated entities are in play.
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6.2 APPLICATIONS

We applied our tool-based methodology to a real-size case
study: the management of a 13,500-square-meters building host-
ing an engineering school [38]. Six pervasive computing applica-
tions from different pervasive computing areas were developed
for this case study. The heating control system is one of these
applications. All these applications were simulated using DiaSim.
In this simulation, over 110 entity instances and 200 occupants are
simulated (e.g., staff and faculty members, students, and visitors)
with various behavorial pattern. We now briefly introduce these
applications.

NEWSCAST Newscast aims to provide general information to
users and to announce upcoming events with respect to their
preferences; an example is given by Ranganathan et al. [57] for
advertisement. This area requires devices to broadcast messages
(e.g., loudspeakers and screens). As well, users need to be iden-
tified to determine their preferences. This identification can be
achieved by various means such as short-range badge readers. A
variety of general and special-purpose information sources can
be integrated in a Newscast application. For example, a source
can consist of upcoming events. Another example of information
source can be the status of the place where the Newscast appli-
cation is run, enabling different Newscast policies (e.g., holidays
and workdays). In our case study, our Newscast application has
two functionalities. It first announces the upcoming classes to the
students using loudspeakers. Its second functionality is to display
customized information to the students using screens positioned
at various locations in the school building. The displayed pieces
of information are the latest news about the school, as well as the
class schedules. They are displayed with respect to the interests
of the students standing near each individual screen. For exam-
ple, the information displayed on a screen depends on the spoken
languages, specialty, courses, and extracurricular activities of the
students around it. The Newscast application detects the people
surrounding a screen using the Bluetooth technology.

ANTI-INTRUSION The anti-intrusion application relates to the
security area. The first functionality of this application is to turn
on the alarms of the building when an intrusion is detected. An
intrusion is detected using motion detectors located in every
room and corridor of the building. When a motion is detected,
the application verifies in the building occupancy schedule if the
building is open or closed. Thus, if a motion is detected when
the building is closed, the application turns on the alarms. The
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second functionality of this application is to warn the building
keeper by sending him an SMS when an intrusion is detected.
This SMS enables the keeper to know the exact location of the
intrusion.

ACCESS CONTROL The access control application also pertains
to the security area. It controls the access to the building rooms
that are secured by badge readers. The role of this application
is to determine whether it unlocks the door when someone uses
his badge for entering a room. Depending on the status of the
badge owner (e.g., student, teacher or building keeper) and the
room (e.g., classroom or server room), the application allows or
refuses to unlock the door when someone uses his badge. The
application retrieves the access control policies from a remote
database managed by the security manager of the building.

LIGHT MANAGEMENT The light management application re-
lates to the building automation area. This application has two
functionalities. It first manages the lighting of the building corri-
dors. The application periodically retrieves the current luminosity
level of the building corridors provided by light sensors. If the lu-
minosity level of a corridor is below a given threshold, then when
a motion is detected in this corridor, the application switches on
the corridor lights. If there is no more motion in the corridor
during 10 seconds, it turns off the lights. The second functionality
of this application is to manage the lighting of the building halls.
The halls have two lighting configurations depending on the
building status. Thus, the application is responsible for switching
the lighting configuration of the halls when the school opens
or closes. The application retrieves the building status from the
occupancy schedule already used in the heating control system.

FIRE MANAGEMENT Finally, the fire management application
pertains to the emergency management area. This application de-
tects when a fire starts using fire detectors spread throughout the
building. When a fire is detected, it turns on the water sprinklers
of the fire detection area. Like the anti-intrusion application, it
also turns on the building alarms and sends a warning SMS to
the building keeper.

The development and simulation of this real-size case study
has lead us to develop applications from several pervasive com-
puting areas. Using the DiaSim simulation tool, we were able to
test and debug these applications in a simulated platform. Using
the same application code, we were able to deploy these applica-
tions in our own offices for demonstration purposes, using the
same application code. This case study illustrates the usefulness
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of a simulation tool when developing pervasive computing appli-
cations. A more thorough validation of DiaSim is presented in
the next chapter.



DIASIM VALIDATION

DiaSim is validated in this chapter. We first evaluate DiaSim
with respect to its scalability, usability, and performance. Then,
we discuss pragmatic issues involved in testing pervasive com-
puting applications.

7.1 DIASIM EVALUATION

We now conduct an evaluation of DiaSim. To do so, we explore
three aspects. We first discuss the scalability of our simulation
tool. We then study the usability of DiaSim, before evaluating its
performance.

7.1.1  Scalability

In our large-scale case study presented in Section 6.2, using
simulation allowed us to validate the coordination logic at a large
scale, combining 110 entities, 6 stimulus producers, 200 people
and 6 applications. Some entities were coordinated and shared by
several applications (e.g., Calendar and MotionDetector). It was
thus essential to ensure the usability of these applications by pre-
venting potential conflicts. We also checked that the application
behavior met its requirements when the context of deployment
or execution changes (e.g., disappearing entities and moving indi-
viduals). For example, we improved the Newscast application by
making it less sensitive to people that do not stop long enough in
front of school LCD screens. We also optimized the air condition-
ing consumption by combining information about the building
occupancy and class schedules.

7.1.2  Usability

We have been using DiaSim as part of a course on software
architectures for three years. This course includes an 8-hour
lab consisting of twenty groups of three master’s level students.
These students have only followed an introductory course on
Java before our course and have basic knowledge of software
design and no exposure to the domain of pervasive computing.
The goal of our lab is to develop a Newscast application. It
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Task Completion Avg.
full part time
DiaSpec specification ~ 100% 0% 2h
Implementation 60% 40% 5h
DiaSim simulation 30% 0% 1h

Table 2: Results of a lab involving 60 Master’s level students.

requires devices to broadcast messages (e.g., loudspeakers and
screens), and devices to identify users (e.g., RFID badge readers).
The students have to (1) design the application with DiaSpec, (2)
implement it, and (3) simulate it with DiaSim.

The results of this lab are presented in Table 2. Due to the
short duration of the lab, last year, only 30% of the students
completed their implementation and had enough time to simulate
it with DiaSim. The students had to instantiate simulated screens,
simulated loudspeakers and simulated badge readers using the
DiaSim editor. They also had to add several simulated people
to the simulation. Then they had to create a stimulus producer
that sends simulated badge detection stimuli when a simulated
agent is getting close to a badge reader. We provided them with
an online tutorial to help them create their simulation®. It is
interesting to notice that these students only required on average
1 hour to simulate their application using DiaSim. Though the
simulation was simple, it allowed us to get feedback on the
usability of DiaSim. In particular, during this lab, simulated
people were added programmatically to the simulation. The
creation of the simulated people was complicated for the students.
Because of that feedback, we modified the DiaSim graphical
editor to allow simulated agents to be added graphically to the
simulated environment.

This experience demonstrates that students with modest knowl-
edge in software engineering are able to efficiently use DiaSim
in a short period of time. However, because the lab is short,
the students were only able to achieve a simple simulation. It
would be interesting to do another lab focusing especially on
the simulation. This would allow to request a more complicated
simulation to the students, giving us a more thorough evaluation
of the usability of DiaSim.

7.1.3  Performance

To study the overhead caused by DiaSim, we evaluated its
performance during the engineering school simulation. Our

1. http://diasuite.inria.fr/documentations/tutorial/
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goal is to collect measurements when DiaSim is applied to two
different simulation workloads: low activity and high activity.
The simulation has been executed on a laptop with a CPU Intel
Core 2 Duo 2.80 GHz and with 4 GB of RAM. The operating
system used by the laptop was Windows XP. The measurements
were realized with the JProfiler software.

CPU USAGE. We first evaluated the CPU usage during the sim-
ulation. The results of this evaluation are presented in Figure 23.
The CPU usage has first been evaluated when the activity is low
during the simulation. A low simulation activity is typically
during the night or when students are sitting in the classrooms.
Then, we evaluated the CPU usage during high activity periods.
There is a high activity during the breaks when students are
moving in the school. The CPU usage was evaluated with respect
to the simulation speed, which ranges from twice as fast as the
real time (simulation speed number 1 in Figure 23) to 360 times
as fast as the real time (simulation speed number 11 in Figure 23).

100
j j CPU usa‘ge (low activity) To—
CPU usage (high activity) --—>K---

ok

CPU usage (%)

Simulation speed

Figure 23: This graph represents the average CPU usage with respect
to the simulation speed. The CPU usage has been eval-
uated during a period of low activity for the simulated
agents and during a period of high activity.

This evaluation shows that simulating at a low speed uses less
than 20% of CPU. We can also see that simulating at a higher
speed requires more CPU. This is due to the graphical rendering
that requires to update more often its rendering. To use less CPU,
it is possible to disable the graphical rendering and only log
the simulation data. It prevents the tester from monitoring the
simulation graphically, but it allows him to execute the simulation
at a much higher speed while using less CPU.

MEMORY USAGE. To run the simulation, we allocated 1.4 GB
of maximum memory to the JVM. The memory is fully used
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Nb. of threads  Percentage

DiaSpec 244 96.06%

DiaSim 10 3.94%

Table 3: Distribution of the threads executed during the ENSEIRB
simulation.

during the simulation. This memory is mainly used by Siafu
(approximately 1.2 GB to store information concerning the motion
of the simulated agents. It uses this information to quickly
compute a path to graphically move a simulated agent from one
point to another. Thus, simulating fewer people enables to use
less memory.

THREAD DISTRIBUTION. We studied the threads used during
the simulation. In particular, we studied the thread distribution
between DiaSpec and DiaSim. Overall, the vast majority of the
threads are related to the DiaSpec runtime, DiaSim accounts for
less than 4%. The results of this study are presented in Table 3.

To conclude, it is important to notice that this simulation has
been executed on a three-year old laptop, not very powerful
compared to today’s computers. We would get much better per-
formance results if the simulation were run on a recent computer.
Nevertheless, it is possible to execute a large-scale simulation
comprising 200 simulated people and 110 simulated entity in-
stances with a modest computer.

7.2 DISCUSSION

We now examine pragmatic issues involved in developing and
using a simulated environment. We start by investigating the
performance issues involved in running large-scale simulations.
Then we discuss the potential pitfalls of our approach.

7.2.1 Performance

The simulation of physical spaces may involve lots of entities,
accurate simulation models, and rich simulation logic. This
situation calls for a scalable simulator.

To support compute-intensive simulation, DiaSpec enables
to distribute simulated entities and stimulus producers. This
distribution is naturally achieved using DiaSpec because DiaSpec
components communicate via a distributed systems technology.
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Our implementation of DiaSpec supports several distributed
systems technologies including a local software bus, Java RMI, SIP
and Web Services. The selection of this distributed technology is
done at deployment time and does not affect DiaSpec component
implementation. When the simulation back-end used by DiaSim
is Java RMI, the workload can be distributed over several different
hosts, enabling numerous entities and stimulus producers to be
introduced. A distributed technology also makes it possible
to perform hybrid simulation by integrating distributed, real
entities.

7.2.2 Pitfalls

A simulation consists of tested applications and the simulated
environment. The output of the simulated environment is the
input of the tested applications and vice versa. The complexity
of the simulated environment depends on the characteristics of
the real environment and how accurately it needs to be modeled.
These issues go beyond the scope of our generated simulation
support that is aimed to facilitate the programming of the sim-
ulated environment. Producing faithful stimuli and defining
meaningful simulation logic are left to the developer.

Specifically, the values generated by a stimulus producer need
to be faithful to some simulation model. The simulation model
must provide an accuracy that matches the granularity of the
situations to be tested. To define a stimulus producer, one option
is to replay data logged from entity data sources, whether or
not verbatim. Another option is to define a stimulus producer
using some domain-specific modeling function. Issues about the
correctness of the stimulus producer arise when either the logged
data are transformed or a domain-specific modeling function is
introduced. Beyond stimulus producers, emulated entity actions
may have an effect on the simulated environment (e.g., a light
impacts the luminosity). As a result, the stimulus producers need
to subscribe to all entity actions that may have an effect on the
values they generate.

To illustrate these issues consider the sun luminosity. It can
simply be defined by a mathematical function. However, its
impact on a building is difficult to model as it depends on the
number, size and location of windows, and the building structure.
Our approach does not help in defining an accurate model of this
situation; this is left to the simulation developer that must take
into account the simulation requirements.

Another source of inaccuracy may be created by the operations
that merge stimulus intensities produced by the same region of
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the physical space. For example, consider the luminosity in a hall
coming from the luminosity of the surrounding rooms. These
luminosity intensities are sent to the luminosity producer of the
hall, which merges them and passes the new intensity to the
hall light sensors. This merging operation is also user-defined;
to be meaningful its definition needs to rely on domain-specific
knowledge.

As one can see, taking into account the simulation requirements
and developing stimulus producers in Java can be laborious. It of-
ten requires to encode in Java mathematical formulas describing
the stimulus producer evolution. To reduce this complexity, we
have worked on easing simulation of natural phenomena [12]. To
do so, we leverage Acumen [76], a DSL for describing differential
equations. The differential equations defined with Acumen de-
scribe physical phenomena. With Acumen, we use off-the-shelf
physical environment models and formulas that are available in
textbooks and the research literature. Their correctness is exten-
sively documented and well established. Leveraging a physical
environment modeling language such as Acumen allows us to
both reduce the stimulus producer implementation complexity
and ensure the correctness of our stimulus producers. This work
is described in the following chapter.

Entities are emulated so that applications interact with them
without code modification. To be faithful, an emulated entity
should have an observable behavior that is equivalent to its real
counterpart. To do so, the data source of an emulated entity can
be programmed such that, for a given input, it produces the same
output as its real counterpart.
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Testing pervasive computing applications is a crucial tool for
eliminating poor designs, and developing a degree of confidence
in promising designs. But testing pervasive computing applica-
tions after deployment can be slow and prohibitively expensive.
Achieving the testing virtually by using simulation helps solving
these two issues. The effectiveness of this approach, however,
depends heavily on the accuracy with which we model both the
application and the physical environment interacting with the
application. Furthermore, building accurate simulation codes,
especially for physical environment, can be labor intensive and
can slow down the whole testing process of pervasive computing
applications.

Three technical challenges must be overcome in order to enable
an effective physically-accurate testing of pervasive computing
applications. The first is to accurately capture the distributed
and networked nature of the pervasive computing application.
The second is to accurately model the physical environment. The
third is to automatically map such models directly to executable
simulation codes.

Existing approaches only cope at most with one of the three
challenges raised by the physically-accurate testing of pervasive
computing applications. For instance, several projects simulated
devices using MATLAB/Simulink [60]. These projects focus on
the fine-grained modeling of these devices. They provide libraries
of digital components that can be used to model devices. How-
ever, they do not attempt to use analytically sound models of
the physical environment surrounding such devices. COMSOL
allows to accurately simulate the surrounding physical environ-
ment. For instance, it provides a heat transfer module and an
acoustics one. However, these simulations are based on the Finite
Element Method (FEM) and are prohibitively expensive for mod-
eling the physical environment of a whole building for example.
Other tools allow faster simulation of the physical properties.
Modelica is one of these tools. Modelica is an equation-oriented
modeling language. The main draw back is that modeling sys-
tems in Modelica that combine discrete and continuous behaviors
can be somewhat challenging.

We address the three technical challenges for achieving a
physically-accurate testing of pervasive computing applications.
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We address the first challenge by modeling the applications with
DiaSpec, which allows modeling distributed and networked per-
vasive computing applications. The physical environment as-
pects are modeled explicitly in Acumen [76], a domain-specific
language with specialized support for describing continuous
systems. The complete models, containing both Acumen and
DiaSpec components are mapped to executable codes. This is
achieved by combining Acumen’s simulation capability and Di-
aSim. Combining Acumen to DiaSim allows to address the two
remaining challenges.

In this chapter, we present our physically-accurate testing ap-
proach. We first present how the physical environment is mod-
eled using Acumen. We then explain how DiaSim and Acumen
were combined and executed in a same simulation. We then
illustrate the interest of a physically-accurate testing with a vir-
tual experiment of our heating control system. This experiment
shows how a physically-accurate testing can be used to analyze
different heating strategies of our heating control system. Finally,
we discuss the limitations of our approach that still need to be
overcome.

8.1 MODELING THE PHYSICAL ENVIRONMENT

The first step for a physically-accurate testing is to accurately
capture the properties of the physical environment. In our case
study, our heating control system regulates the temperature in a
building. A building is a multi-physics system involving multi-
ple interrelated physical characteristics. Physicists have already
defined these phenomena with mathematical definitions (e.g.,
with ordinary/partial differential equations). These analytical
descriptions are an ideal material to reuse in order to capture
the physical properties of a building. In this section, we first
explain the approach that we adopt to modeling heat transfer
and temperature change in a building. We then show how the
differential equations that capture this model are expressed in
Acumen.

8.1.1  Modeling Temperature and Heat Transfer in a Building

Human comfort and safety are highly sensitive to the tempera-
ture of the surrounding air. As a result, it is critically important to
accurately model the factors that impact temperature, including
appliances that can be used to control it, as well as the processes
by which the temperature of the air in a given room is changed.
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We present the models used in our study as a series of succes-
sive refinements of a basic model. All models are compartment
models, in that they treat each room as one state variable. The
basic model, as well as the refinements which include additional
terms, are all differential equations.

8.1.1.1  Heat Transfer.

Heat transfer is the rate at which heat moves through a medium
or from one medium to another, and is a topic studied exten-
sively in thermodynamics (e.g., [41]). Heat transfer between two
media is linearly proportional to the difference in temperature
between the two media. In addition, it is also affected by the
thermal resistance of the boundary between the two media. For
simplicity, we assign each room in a building one temperature
value. Reasonable values for the thermal resistance of building
walls, windows and doors can be determined using a reference
book in the heating and cooling domain [41].

Let us assume that all rooms are numbered. We will use the
subscripts i and k to refer to room numbers. Let Neighbors(i)
be the set of numbers representing the rooms neighboring room
i. Let T; denote the temperature of room 1.

To help introduce the reader to the notation and the equations
that define heat transfer in a building, we begin by assuming that
the only factor affecting temperature in a particular room is heat
from neighboring rooms. To express even this simple process, we
need some additional notation. In particular, we will also use the
following convention:

dT;
dt

Ci Thermal capacitance of room i g.o,c—,

Rate of temperature change in room i (°C.h~ "),

Rix  Thermal resistance of the boundary between
rooms i and k (°C.h.J~"). It takes into account
the heterogenous elements of this boundary
(e.g., walls, windows, doors).

The equation constraining the rate of change for each and every
room i is given by the equation:

dTy 1 T —T;
- — ) 8.
dt Ci . . Rik (8.1)
keNeighbors(i)

Because this equation is instantiated for each room, the whole
building is modeled by a set of such equations.
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8.1.1.2 Air-Conditioning Unit.

We now consider adding air-conditioning (AC) units to our
model. An AC unit consists of a heater and a cooler. We need
only to introduce four additional parameters:

Bh(i) The heater in room 1 is active
(1 if present and active, 0 o.w.),
P; Heater power (W),
B.(i)y The cooler in room i is active
(1 if present and active, 0 o.w.),
Qi  Cooler power (W),

The equation above only needs to be extended as follows:

dt C

dfy 1 Z Ty —T;

= R (8.2)

i keNeighbors(i)

1
e * By * Pi—Bery * Qi)
1

8.1.1.3 Occupants.

Occupants can be modeled as heat sources. The set of occu-
pants of room 1i is denoted Occupants(i). We only need one
additional parameter to incorporate this aspect of building;:

H; Heat dissipation of occupant number j (W),

Thus, the final equation can be expressed as:

dty 1 5 T —T
dt Ci keNeighbors(i) Rix
1
+ = * (Bn(i) * Pt — Bc(i) * Qi) (8.3)

Cy

1

jeOccupants(i)

Other heat sources, such as equipment, appliances, and lights,
were neglected for simplicity but will be included at a later stage.
Now, we are ready to present the actual Acumen code used in
the experiments we report on in the rest of this chapter.

8.1.2 The Heat Model in Acumen

By design, the Acumen modeling language enables direct spec-
ification and simulation of continuous and discrete systems. Our
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virtual testing framework only uses its continuous system model-
ing and simulation capability, and not its support for modeling
discrete behaviors.

Figure 24 presents the Acumen specification of the temperature
defined in Equation 8.3. The continuous section in Figure 24 spec-
ifies the temperature rate of change for each room of the building.
Equations in Acumen can refer to derivatives of variables. For
example, T’ refers to the first derivative of T. Finally, the bound-
ary conditions subsection allows one to define the initial state of
the physical environment. This initial state can be easily changed
by setting new boundary conditions. As can be noticed, defining
physical characteristics in Acumen is straightforward and has a
direct correspondance to equational definitions. Thus, Acumen
leverages standard mathematical notation used to define physical
phenomena.

(* Building topology, Room 0 corresponds to the outside x) 1
building=((0),(0,2),(0,1,3),(0,2)); 2
3
(* Temperature in each building room, TO is the outside 4
temperature x*)
T=(T0,T1,T2,T3); 5
6
(* Other variable definitions x*) 7
. 8
continuous 9
foreach room in length(building) begin 10
T'[room] = 1/C[room] * 11
((sum n < length(building[room]) in 12
((T[building[room][n]]-T[room]) / R_th[room][n]))
+ Bh[room]*P[room]-Bc[room]*Q[room] 13
+ (sum p < length(occupants[room]) in 14
H[occupants[room][p]l]));
end 15
16
boundary conditions 17
TO with TO(0) = 10; 18
(* We define the boundary conditions for all continuous 19

variables x)

20

Figure 24: Temperature specification in Acumen.

8.2 MAPPING THE MODELS INTO EXECUTABLE SIMULA-
TION CODES

The final technical challenge to enabling effective physically-
accurate testing of pervasive computing application is to auto-
matically map the models of both physical environment and
application to executable simulation codes. This section explains



64

PHYSICALLY-ACCURATE TESTING

how this mapping is done, and details how the simulations of
the physical models and DiaSpec models interact.

8.2.1  Execution of Physical Models

Physical models are directly mapped to executable code. The
process of mapping physical models to executable code is specific
to the modeling tool considered (e.g., Acumen [76]). Continuous
variables in a physical model are discretized with respect to a
user-defined step size. The user needs to properly set the step
size value so that an acceptable level of accuracy is obtained in
the simulation.

8.2.2  Physically-Accurate Simulation

The physical model and DiaSim simulations interact in two
ways. First, simulated sensors retrieve their sensed informa-
tion from the physical model. Second, simulated actuators may
modify the state of variables in the physical model. These two
interactions are achieved using a socket-based Java APIL. * While
editing the simulated pervasive computing application in the
DiaSim editor, the user specifies the physical model variables
sensed by each simulated sensor. He also specifies which vari-
able is modified by an actuator action and how it is modified.
Finally, we generate Java code for executing simulated devices
and interfacing these devices to the physical model.

83 MONITORING PHYSICALLY-ACCURATE SIMULATION

To help the tester to determine if an application behaves cor-
rectly, DiaSim provides monitoring and rendering functionalities.
In the case of virtual testing, we also provide tools for analyzing
the results after the completion of the physically-accurate testing.
During a simulation, we log the values of the continuous and
discrete variables. This allows to save the physical environmnent
state and the simulated device states at each simulation iteration.
At the end of a simulation, all logged variables are automati-
cally plotted. This plot can serve as a basis for analyzing events
that occured during the simulation. If the user is interested in
a more specific analysis (e.g., energy consumption of the active
devices), it is easy to create dedicated plots with tools such as
Gnuplot?. For example, we created Gnuplot scripts for reading

1. Thanks to Cherif Salama for providing this APL
2. http://www.gnuplot.info/



84 A VIRTUAL EXPERIMENT

8eno . Simulating House - Acumen Integration - Siafu

e~

—_—

a Agents 4 Places @ Overlays
Agnes e
@D Agres = e

n

Figure 25: 2D graphical rendering of a virtual house.

the logged variables and displaying the energy use and comfort
level achieved in Section 8.4.2.

84 A VIRTUAL EXPERIMENT

This section presents the analyses that enable our physically-
accurate testing framework. Pervasive computing applications
can first be evaluated using algorithmic variations. Indeed, multiple
algorithms for the same application can be compared. Virtually
testing these algorithms can help us find the most efficient one
with respect to the functionalities of the pervasive computing
application. This variation is facilitated by the DiaSpec approach,
as it confines the algorithmic variations to only some context
components. A second variation allowed is structural variation.
Multiple configurations of sensors and actuators can be tried to
choose the most efficient one. This variation is also facilitated by
DiaSpec, as the application logic does not need to be modified
when structural variations are applied.

To illustrate both types of variation, we evaluate our heating
control system deployed in a house. Figure 25 illustrates the
simulation of this system displayed in the DiaSim simulation
renderer. We apply algorithmic and structural variations to this
system for illustrating the usefulness of our physically-accurate
testing framework.

8.4.1  Global vs. Local Temperature Management

Multiple Regulating and Standards organizations define com-
fortable ranges of temperature depending on the indoor humidity
and the outside temperature. For instance, ASHRAE defines the
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comfortable humidity and temperature ranges in its “Thermal
Environmental Conditions for Human Occupancy” standard. We
use these values for evaluating our HVAC control algorithms.

Originally, to keep the temperature in the comfort zone, HVAC
systems had a single thermostat and regulated the temperature
everywhere using this single thermostat. We call this strategy
global temperature management. Global temperature management
is obviously not optimal, because the temperature can be differ-
ent in each room. To achieve finer grained, and more efficient
regulation, EnergyStar recommends managing the temperature
locally [25]. In this case, the building is divided in areas, each
area with its own thermostat. We call this strategy local tem-
perature management. To illustrate virtual testing, we set up an
experiment to evaluate the effect of applying this recommenda-
tion to the heating control system of a 3-room house. We then
observe the comfort and the energy use differences between these
two temperature management policies.

8.4.2 Heating Control System Evaluation

Both global and local regulations use the same regulation logic.
The only difference is the scope of this regulation. We name
Te—min and Tc_max, respectively the lowest comfortable temper-
ature and the highest comfortable temperature. Our regulator
needs to keep the temperature in a range [Tmin, Tmax]- If the
temperature is below Ty in, the HVAC system ventilates hot air. If
the temperature is above Ty, qx, the hot air stops being ventilated.
Obviously, the logic of our regulator is very simple and could be
refined. However, it is enough for illustrating the variations we
apply for testing this regulator.

In this virtual experiment, we use the temperature model pre-
sented in Section 8.1. In this model, our virtually tested HVAC
system has a heating power of 1500 Watts and a cooling power of
600 Watts. The calculated thermal resistance coefficients depend
on the windows, doors and walls that compose these boundaries.

8.4.2.1 Algorithmic Variation.

In this section, we test several algorithms for our temperature
regulator and choose the most efficient one with respect to its
energy use. Tmin and T qx are defined in Equation 8.4.
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Figure 26: Comparison of different algorithms for regulating the
temperature in terms of energy use.

Tmin =lc—min +ax (Tc—max - chmin)
Tmax :Tc—min +bx (chmax - Tc—min) (84)
a,be0,1]Janda<b

We test our HVAC system with different values of Tyin and
Timax over a period of one month. We decrease these two values
as long as comfort is provided 100% of the time. We choose
January because heating is critical during this month. The cho-
sen outside temperatures correspond to Bordeaux average tem-
peratures in January. We test three different algorithms. The
percentage of time when the hot air is ventilated is presented in
Figure 26. We see that these algorithmic variations bring differ-
ences in terms of heater time of use. A low range of temperature
results in less heating time. Since the heaters have the same
power, the differences in the time of use of these heaters allow
to evaluate the energy consumption gain. The third algorithm in
Figure 26 allows a 38% gain of energy use compared to the first
one.

8.4.2.2  Structural Variation.

We also test two different device deployments for comparing
global and local temperature regulation. The global configuration
consists of one temperature sensor in the living-room and one
heater in each room. The local configuration consists of one tem-
perature sensor and one heater in each room. We use the most
efficient algorithm from the previous section. We test our HVAC
system over the month of January. The comfort provided by these
two configurations is presented in Figure 27. Local temperature
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Figure 27: Comparison of the comfort provided by global and local
temperature management in the house.
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Figure 28: Comparison of the time of heating required by global and
local temperature management in the house.
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regulation provides perfect comfort to the three rooms of the
house. In comparison, global temperature regulation is not as
comfortable for the occupants. The bathroom temperature is com-
fortable for only 86% of the time. The percentage of time when
hot air is ventilated for the two types of regulation is presented
in Figure 28. We can see that global temperature management
ventilates more hot air than local temperature management. Our
physically-accurate testing framework allowed us to see that fol-
lowing the EnergyStar recommandation enables to get a better
comfort with less energy use from the HVAC system.

8.5 DISCUSSION

In this section, we discuss two important issues involved when
using a simulated environment, namely accuracy and validity.

8.5.1 Accuracy

The user needs to carefully choose the accuracy of his simu-
lation. The accuracy of the simulation depends on two parame-
ters: physical environment model accuracy and size of the time
discretization step. The temperature model we present in this
paper considers that each room has a single state. A smaller
discretization of the space would allow the simulation of the
physical environment to be more precise. However, a smaller
space discretization requires more computation.

Likewise, the size of the time discretization step impacts the
virtual testing accuracy. In our evaluation, we choose a discretiza-
tion step of one minute. A one minute accuracy is enough for
evaluating an HVAC system over a month. However, this crite-
ria needs to be carefully chosen depending on the tested smart
building application.

8.5.2  Experiment validity

As described in this chapter, our simulation approach enables
to test and compare different implementations and/or configu-
rations of pervasive computing applications. However, we still
need to validate our simulation framework to ensure that the
output of our simulations are valid. There are two approaches
to validate our simulator. The first approach is to compare a
simulated execution and a real execution of the same pervasive
computing application. To validate our simulation framework,
the simulation output needs to be sufficiently close to the reality.
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However, it is a complicated task to compare the simulation of
a pervasive computing application with the reality. First, we
would need to buy and deploy all the necessary devices, which is
time-consuming and expensive. Then, we would need to log data
of this deployment for a long period of time. For instance, we
would need to log data during at least one month if we wanted
to validate the experiment we present in this chapter.

A faster and simpler way to validate our simulation framework
is to compare our simulation framework with an already vali-
dated simulator. If we successfully show that, for a given initial
state of the physical environment, the simulation results are simi-
lar between the two executions, then this demonstrates that the
experiment realized in our simulator is valid. This is the strategy
that we plan on following in a future work to validate our sim-
ulation framework. We plan on implementing our temperature
regulation experiment in the EnergyPlus software [73]. Energy-
Plus allows to simulate the energy consumption of a building.
Among other physical properties, EnergyPlus models heating,
cooling and ventilation. This simulator has been thoroughly
tested and validated, the validation results are available online 3.
In this future work, we will interface our heating control system
with EnergyPlus and compare the EnergyPlus output with the
results presented in this chapter.

Though our simulation framework has been validated yet, it
gives the tester an idea of how his application behaves. This first
approximation is enough for allowing the tester to eliminate some
unefficient control algorithms, such as the global regulation algo-
rithm presented in this chapter. More fine-grained optimizations
of the application would require a validation of our simulation
tool. For instance, defining the most efficient heater location in
the house requires a precise simulation.

3. http://appsl.eere.energy.gov/buildings/energyplus/energyplus_
testing.cfm
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GENERALIZATION OF OUR SIMULATION AP-
PROACH

In this document, our simulation approach focuses on simu-
lating pervasive computing applications. However, the wider
the scope of DiaSpec, the more simulation aspects need to be
addressed. In this chapter, we first present extensions to DiaSpec
that can be simulated with our simulation approach. Then, we
present how our simulation approach can be applied to the
avionics application domain.

9.1 AN INTEGRATED APPROACH TO SIMULATION

Recent works in our research group have expanded the Dia-
Spec language in two directions: allowing end users to visu-
ally develop pervasive computing applications, and adding non-
functional concerns to a DiaSpec description.

TARGETING END USERS  Users from the home automation and
assisted living domains have shown interest in developing perva-
sive computing application themselves. However, our methodol-
ogy requires an area expert to define the entity taxonomy. It also
requires an application architect and Java developers. To address
these concerns, Drey et al. proposed Pantagruel [23], a visual
language allowing end users to develop pervasive computing
applications. Pantagruel directly generates DiaSpec specifications
and implementations. Our DiaSim simulation tool has been use-
ful to this end-user programming approach by providing a visual
way to test applications [22].

COVERING NON-FUNCTIONAL CONCERNS Recent works in
our research group have expanded the scope of DiaSpec to cover
non-functional concerns, extending the DiaSpec language and its
compiler. These extensions include (1) handling access conflicts
to resources of a pervasive computing system [37], (2) modeling
entity failures at the declaration level, enforcing their treatment
at the programming level [49], and (3) declaring performance
constraints, ensuring them at compile time and run time [32].
Each of these non-functional concerns expand the opportunities
of simulation. In fact, we successfully applied our simulation
approach to the avionics domain [13]. Specifically, we developed
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an aircraft guidance system, using stimulus producers for simu-
lating entity failures. We are planning to extend DiaSim with the
simulation of non-functional concerns that are now available in
DiaSpec. We present the application of the simulation approach
to the avionics domain in the following section.

9.2 REALISTIC SIMULATION OF AN AVIONICS SYSTEM

So far, we have presented a simulation approach for pervasive
computing applications. However, this simulation approach is
not specific to the pervasive computing domain. We demonstrate
in this section that our simulation approach is generic enough to
simulate an avionics system: a flight guidance application [13].

9.2.1 Flight Guidance Application

We applied our development methodology to a flight guidance
application. We now present a description of this application and
briefly introduce its DiaSpec design.

9.2.1.1 Description

The flight guidance application is in charge of the plane nav-
igation and is under the supervision of the pilot. For example,
the pilot can directly specify flight parameters (e.g., the altitude)
or define a flight plan. Each parameter is handled by a specific
navigation mode (e.g., altitude mode, heading mode). Once a
mode is selected by the pilot, the flight guidance application is
in charge of operating the ailerons and the elevators to reach the
target position. For example, if the pilot specifies a heading to
follow, the application compares it to the current heading, sensed
by devices such as the Inertial Reference Unit, and maneuvers
the ailerons accordingly.

9.2.1.2 DiaSpec Design

We now briefly describe the taxonomy of entities and the
architecture of our flight guidance application. Figure 29 presents
the design fragment of our application related to the heading
mode. The heading mode allows the aircraft to follow either a
heading defined by the pilot, or the heading to reach the next
waypoint in the flight plan.
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Figure 29: Specification of the flight guidance application application.

TaAXxONOMY  We first identify the entities that are required to
control the heading. The aircraft heading is provided by Inertial
Reference Units (IRUs). These units encapsulate accelerometers,
gyroscopes, and GPS sensors, and provide navigation data. To
allow the pilot to set a heading, we define a user-interaction entity,
namely Human-Machine Interface (HMI). Finally, controlling the
plane heading requires to act on the plane ailerons. These entities
are at the top and bottom of Figure 29. The InertialUnit entity
senses the position, the roll and the heading of the plane from
the environment. The NavigationHMI entity abstracts over the
pilot interaction and directly provides the target heading. The
RouteManager entity provides the next waypoint information.
Finally, the Aileron entity provides the Control interface to the
application.

ARCHITECTURE From bottom to top in Figure 29, the architec-
ture can be summarized as follows. The HeadingToWaypoint con-
text component computes a target heading to reach the next way-
point provided by the route manager. The IntermediateHeading
context component abstracts over the computation of the target
heading. Indeed, it can be computed either from targetHeading
directly provided by NavigationHMI or from the target heading
computed by HeadingToWaypoint. Given this heading and the
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current plane roll (i.e., its rotation on the longitudinal axis), the
TargetRoll context component computes a target roll. This tar-
get roll is used by AileronController to control the ailerons and
reach the target heading.

9.2.2  Simulation of the Flight Guidance System

The simulation is required in avionics as applications are con-
fronted to a wide range of potential scenarios. For example, it is
required to verify the behavior of the application in specific envi-
ronmental conditions, which are difficult to create (e. g. extreme
flight conditions). To be able to simulate our flight guidance
application, we generalized our simulation approach and pro-
vided a testing support that relies on a flight simulator, namely
FlightGear [54], to simulate the external environment. We chose
FlightGear as it is a widely used, realistic flight simulator in the
avionics domain.

9.2.2.1 Simulation Model in the Avionics Domain

To simulate SCC applications in the avionics domain, we ap-
plied the same simulation model as presented in Figure 13. The
simulation model of an avionics application is presented in Fig-
ure 30. We used FlightGear for simulating the aircraft and its
external environment. Thus, FlightGear provides simulated stim-
uli to our simulated entities. For instance, the roll angle, GPS
position, and heading of the simulated aircraft are provided by
FlightGear. Our simulation model also enables the actuators to
impact FlightGear. Thus, the ailerons of the aircraft, simulated in
FlightGear, are impacted when the Aileron entity is controled by
our flight guidance application. This allows our application to
control the simulated aircraft in FlightGear.

9.2.2.2 Interfacing FlightGear

FlightGear allows to read and write its current state using
socket connections. We used this FlightGear capability and de-
veloped a Java library to interface with FlightGear. The testers
can easily implement simulated versions of entities using this
library. Figure 31 presents an extract of the implementation of a
simulated InertialUnit entity.

The SimulatedInertialUnit entity is implemented by inher-
iting the AbstractInertialUnit class provided by the program-
ming framework. To interact with the simulated environment,
the entity implements the SimulatorListener interface. This in-
terface defines a method named simulationUpdated, which is
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Figure 30: Simulation model of an avionics application.

public class SimulatedInertialUnit extends AbstractInertialUnit
implements SimulatorListener {

public SimulatedInertialUnit(FGModel model) {
super();
model.addListener(this);

}

public void simulationUpdated(FGModel model) {
publishPosition(model.getInertialPosition());
}

[ ... ]
}

Figure 31: Extract of the implementation of a simulated Inertial-
Unit.

called periodically by the simulation library. The model parameter
allows to read /write the current state of the FlightGear simulator.
In Figure 31, the position of the plane is published by calling the
publishPosition method of the AbstractInertialUnit class.

9.2.2.3 Execution of the Simulation

Once the simulated entities are implemented, the flight guid-
ance application is tested by controlling a simulated plane within
FlightGear. Figure 32 presents a screenshot of our testing envi-
ronment. In the main window, the FlightGear simulator allows to
control and visualize the simulated plane. In the top-left corner,
the autopilot interface allows testers to select a navigation mode.
In this case, the "Route Manager" mode is selected to follow
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the flight plan defined via the map displayed in the bottom-left
corner.

We also leveraged FlightGear capabilities to simulate instru-
ment failures. Thus, the window in the top-right corner in Fig-
ure 32 allows to cause IRU failures. Finally, the window in the
bottom-right of the screenshot logs the application execution.

A video illustrating the development and simulation of this
flight guidance application is available online *.
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Figure 32: Screenshot of a simulated flight.

9.2.3 Conclusion

In this section, we showed how to generalize our simulation ap-
proach to the avionics domain. In fact, our simulation approach
may be applied to any application domain, as long as the DiaSpec
approach is used to design the application. When an application
is developed using DiaSpec, the tester has two options to simulate
the application. He can first develop his own stimulus producers
that fit the application domain he needs to target. However, devel-
oping stimulus producers of the physical aspects of a simulated
environment is a very complex task. Moreover, if the tester is not
an expert of the domain, the stimulus producers are unlikely to
be physically accurate. The second approach is to use an existing
simulator (e.g., FlightGear in the avionics domain) and imple-
ment simulated entities that interact with this simulator. The
drawback of this option is that interfacing these domain-specific
simulators may be complicated to implement. However, this
option allows to leverage the simulation capabilities of often very
powerful domain-specific simulators.

1. http://diasuite.inria.fr/avionics/51
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RELATED WORK

In this chapter, we study other existing approaches for devel-
oping and testing pervasive computing applications. We first
present the existing development methodologies that provide sup-
port for the entire development cycle, from the design stage to
the testing stage. Then, we present the development approaches
that target particular stages of the development cycle.

10.1 MODEL-DRIVEN ENGINEERING

Model-Driven Engineering (MDE) uses models and model
transformations to specify software architectures and generate
implementations [63]. The goal of these MDE approaches is to
raise the abstraction level in program specifications and generate
a working implementation from such a specification. UML 2.0
(Unified Modeling Language) has been widely accepted as an
architecture modeling notation [8] and as a second-generation
ADL [48]. Various development environments, relying on UML
and MDE, have been proposed (e.g., Enterprise Architect [26]).
These development environments cover the complete develop-
ment life-cycle. However, they do not target the specific features
of pervasive computing, leaving the customization work to the
architects and the developers.

PervML [64] customizes the MDE approach with respect to the
domain of pervasive computing by proposing a conceptual frame-
work for context-aware applications. This conceptual framework
relies on UML diagrams to model pervasive computing concerns.
For example, services are modeled with class, sequence, and state
transition diagrams, while locations are modeled with package
diagrams. Even though the conceptual framework proposed by
PervML is domain specific, it relies on generic notations and
generic tools, incuring an overhead for designers.

In contrast, DiaSpec designers only manipulate domain-specific
concepts and notations (e.g., entities, context and controller com-
ponents), facilitating the design phase. PervML, along with
most MDE-based approaches, require designers to directly ma-
nipulate OCL and UML diagrams. As reported in the litera-
ture, this manipulation becomes “enormous, ambiguous, and
unwieldy” [28, 55, 69]. In practice, these approaches demand an
in-depth expertise in MDE technologies.
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From UML diagrams, PervML provides a dedicated suite of
tools to generate a complete implementation. In contrast, DiaGen
provides a dedicated programming support to the developer,
but it does not automate the implementation stage. Moreover,
a strong advantage of using UML diagrams is that developers’
knowledge and existing tools are leveraged, such as the Eclipse
Graphical Modeling Framework (GMF).

Finally, PervML only offers rudimentary testing support, based
on device simulation. Contrary to our testing support, theirs does
not allow to test PervML applications in a simulated physical
environment, nor does it allow to have simulated people interact
with the applications.

10.2 ARCHITECTURE DESCRIPTION LANGUAGES

Architecture Description Languages (ADLs) are used to make
explicit the design of an application. Most ADLs are dedicated to
analyzing architectures; they provide little or no implementation
support. Archface [72] is the most recent instance of this line
of work. It is both a general-purpose ADL and a programming-
level interface. It proposes an interface between design and code.
However, the design support provided by Archface is generic.
Furthermore, Archface requires the software architect to have
some knowledge about the implementation layer to be able to
express the interface part of a design.

In contrast, our approach is domain specific and thus allows
domain experts to design their architecture without implementa-
tion knowledge. The design is then used to generate dedicated
programming support for the developer. For example, DiaGen
generates dedicated programming support to discover entities
based on the taxonomy definition. In Archface, a design is di-
rectly mapped into programming-level interfaces, ensuring the
conformance between the design and the implementation. How-
ever, unlike our approach, Archface does not provide dedicated
programming support. The testing stage is not covered by this
approach.

10.3 CONTEXT MANAGEMENT MIDDLEWARES

Numerous middlewares have been proposed to support the
implementation of pervasive computing applications. Schmidt
et al. [62], Chen and Kotz [17], and Dey et al. [21] have proposed
middleware layers to specifically acquire and process context
information from sensors. Henricksen et al. take this approach
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one step further by introducing a language to model the com-
putation of context information [35, 46]. However, none of these
middlewares provide tool support for the design phase, they only
provide design guidelines.

Although, context management middlewares provide program-
ming support for acquiring and processing context information
from sensors, they do not address the other activities pertaining
to a pervasive computing application (e.g., device actuation). The
other development stages are not covered by these middlewares.

10.4 PROGRAMMING FRAMEWORKS

The programming framework approach has been applied to the
domain of pervasive computing to facilitate the development of
applications by raising the level of abstraction. A representative
example is Olympus [58]. Olympus offers limited support for
the design stage: it mainly consists of guidelines related to the
concept of Active Space.

An Active Space represents a physical space enriched with
sensors and actuators. Virtual entities of an Active Space can
be described programmatically using high-level programming
interfaces, allowing the developer to focus on the application
logic. However, the programming support is not dedicated to
a specific description of an Active Space. Thus, the application
logic is implemented using generic datatypes, making the im-
plementation error-prone. In comparison, with our approach,
the developer is provided datatypes that are dedicated to the
application to be implemented.

Player is a framework and a middleware in the robotics commu-
nity, widely recognized as a standard for robot programming [18].
It has successfully been applied to pervasive computing appli-
cations in the kitchen environment [40]. Approaches such as
Player rely on a fixed programming framework, requiring it to
cover as much of the target domain as possible. This situation
results in large APIs, overwhelming the developer and requiring
boilerplate code to customize the programming framework to an
application area. In contrast, a DiaGen-generated programming
framework specifically targets one application, limiting APIs to
methods of interest to the developer. In principle, our code gen-
erator DiaGen could target these middlewares and programming
frameworks thus leveraging existing work.
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10.5 SIMULATORS

In this section, we study the existing simulation tools for the
pervasive computing domain. We also study simulators from
two simulation fields related to the pervasive computing domain:
context simulators and networked entities simulators. Finally,
we discuss existing approaches for achieving physically-accurate
simulation.

Pervasive Computing Simulators

Few simulators are dedicated to the testing of pervasive com-
puting applications. Stage and Gazebo are simulators dedicated
to the Player programming framework and have been used to
simulate a sensor-enriched kitchen [40]. Player is a programming
framework and a middleware created in the robotics domain
and widely recognized as a standard for robot programming [18].
Player allows to specify interfaces that define how to interact
with robotic sensors, actuators and algorithms. However, this
design support is very limited as it does not cover the design of
other application components. For instance, it does not allow to
design the controllers that coordinate robotic devices.

The Player programming support enables to develop a wide
range of robotic applications. However, this programming sup-
port only targets the robotic area. In contrast, our approach can
be used in any domain in which the SCC architectural pattern
applies (e.g., avionic, robotic, pervasive computing). Player ap-
plications can be simulated in a 2D graphical environment using
Stage, or in 3D using Gazebo. However, both simulators only
target the simulation of mobile robot. Moreover, they have to
be manually specialized for every new application area. In con-
trast, DiaSim relies on the DiaSpec descriptions to automatically
customize the simulation tools (i.e., the scenario editor and the
simulation renderer).

Other pervasive computing simulators include Ubiwise [4] and
Tatus [53] that are built upon 3D first-person game-rendering
engines, respectively Quake III Arena and Half-Life. They allow
the user to have a focused experience of a simulated environment.
However, these simulators are difficult to extend: the game-
rendering engine has to be modified to add new sensors and
actuators, or to simulate arbitrary context data.

The Lancaster simulator enables deterministic testing condi-
tions and emulation to test location-based applications [50]. How-
ever, libraries of actuators and sensors are not provided and
the development of new types of sensors and actuators is not
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supported. The PiCSE simulator addresses the problem of ex-
tensibility by providing generic libraries to create sensors and
actuators [59]. However all these approaches do not propose an
emulation framework to incrementally integrate real entities in a
simulated system.

Contrary to the other existing approaches, UbiREAL [51] pro-
vides an emulation framework that allows to combine simulated
and real entities. It also provides a 3D graphical renderer to sim-
ulate pervasive computing applications. However users have to
manually specialize the simulator for every new application area.
In contrast, DiaSim relies on DiaSpec to automatically customize
the simulation tools (i.e., the editor and renderer).

Context Simulators

Some simulators focus on the simulation of context [9, 45, 61].
The Generic Location Event Simulator publishes location infor-
mation, which can be used by location-based applications [61].
However, it is limited to location information. SimuContext [9]
and Siafu [45] are two other context simulators that go one step
further, enabling to define any context types. Siafu also graph-
ically renders simulated environments. However, as a context
simulator, Siafu does not provide any support to simulate entities
and applications.

Networked Entities Simulators

Various approaches propose to simulate sensor networks [42,
56, 67, 71] and could complement our approach. These simula-
tors provide a more comprehensive support for the simulation
of sensors compared to previous approaches. However, they
do not consider issues of application development and testing.
Network emulators that focus on network-related issues have
been proposed [20, 52] and could also complement our approach.

Physically-Accurate Simulation

Existing tools provide partial means to achieve physically-
accurate simulation.

Several projects focus on modeling and simulating pervasive
computing devices using MATLAB/Simulink [60]. These projects
allow a fine-grained modeling of these devices. They provide
libraries of digital components that the tester can use to model his
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devices. However, they do not allow an analytically sound sim-
ulation of the physical environment that impacts such devices.
Ptolemy [24] goes one step further than MATLAB/Simulink.
Ptolemy provides a library of computation models that the user
can compose for modeling and simulating embedded systems. Its
main contribution is to allow the simulation of systems that con-
tain heterogeneous computation models. Using Ptolemy would
be complementary with our approach. Ptolemy could be used for
defining the computation models of devices, whereas DiaSpec
describes the outside interface of these devices. However, the sup-
port provided by Ptolemy for modeling continuous systems is too
restricted for modeling the physical environment of a building.

Other projects focus on modeling the physical environment.
COMSOL [19] allows to accurately simulate the surrounding
physical environment. For instance, it provides a heat transfer
module and an acoustics one. However, these simulations are
based on the Finite Element Method and are too slow for model-
ing the physical environment of a whole building. Other tools
allow a faster simulation of the physical properties of a build-
ing. Modelica [70] is one of these tools, and is in fact a closely
related language to Acumen. The differences between the two
are primarily in Acumen’s support for binding time separation
and partial derivatives [76], but these are in fact orthogonal to
the models used here. For more sophisticated models of heat
transfer, however, partial derivatives are needed.

Our study of the other simulation approaches showed that
testing pervasive computing applications in a simulated physical
environment with existing tools is a very complex task. Our
approach is a step towards decreasing this complexity by using
DSLs to model and execute a pervasive computing application
and its surrounding physical environment. Indeed, these DSLs
provide the tester with a declarative and high-level support that
simplifies the testing of these applications.
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We have presented a tool-based methodology for developing
and testing real-size pervasive computing applications. Our
methodology provides support throughout the development life-
cycle of a pervasive computing application: design, implemen-
tation, simulation, and execution. First, the taxonomy of the
target area and the architecture descriptions are written in the
DiaSpec language. Then, the DiaGen compiler processes these
descriptions and generates a dedicated programming framework.
This framework raises the abstraction level by providing the
programmer with high-level operations for entity discovery and
component interactions.

For the testing stage, we have presented a novel approach to
simulating pervasive computing applications. We have extended
the DiaGen compiler so that it also generates a dedicated sim-
ulation programming framework and an emulation layer. The
generated emulation layer makes it possible for the same appli-
cation to be emulated or executed in a real environment. This
emulation layer also enables to have an application interact with
both real and simulated entities in an hybrid environment. Hy-
brid simulation allows real entities to be incrementally added in
the simulation, as the implementation and deployment progress.
The generated simulation programming framework provides sup-
port for developing the simulation logic. This logic comprises
the simulated entities and the producers of simulated stimuli. A
2D graphical environment is provided to the user to define his
simulated environment, simulation scenarios, and to monitor and
debug a simulated pervasive computing system. This approach
has been implemented in the DiaSim tool, and validated on a
large-scale simulation of an engineering school building. We
used Acumen’s simulation capability to simulate accurately the
physical environment. This allowed us to achieve a physically-
accurate simulation of pervasive computing applications. We
have evaluated DiaSim with respect to its scalability, usability
and performance.

Our methodology has been successfully applied to the devel-
opment of realistic pervasive computing applications in a wide
spectrum of areas. Finally, we have generalized our development
and testing methodology to a different application domain: the
avionics domain.
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11.1 ASSESSMENTS

We now assess our tool-based methodology with respect to our
initial objectives.

COVERING THE APPLICATION DEVELOPMENT CYCLE Our
methodology is based on tools to support the design, imple-
mentation and testing stages of the application development
cycle. The entities composing a pervasive computing area and
application architectures are described using the DiaSpec design
language. From this DiaSpec description, the DiaGen code
generator then generates a dedicated programming framework
to support the implementation stage. Finally, the DiaSim
simulator allows to test the application in a simulated physical
environment.

ABSTRACTING OVER HETEROGENEITY Our taxonomical ap-
proach has been successful at taming the heterogeneity of devices
and software components. This is demonstrated by the spectrum
of entities modeled to cover the areas of our case study and the
ease at implementing entities from their declarations. This ap-
proach also showed to be effective for reusing entity declarations
across areas.

LEVERAGING AREA-SPECIFIC KNOWLEDGE We provide the
area expert with the DiaSpec language to describe the knowledge
of a pervasive computing area in the form of a DiaSpec taxon-
omy. This area description is then leveraged by all the remaining
stages of the development cycle. The application architect uses
the entities of the taxonomy as building blocks for his applica-
tion architecture. The developer is provided with a dedicated
programming framework to easily implement these entities. Fi-
nally, our simulation approach for testing pervasive computing
applications is parameterized by this DiaSpec taxonomy:.

TRANSPARENT TESTING Our simulation approach makes it
possible for the same application code to be simulated or executed
in the real environment. We ensure a functional correspondence
between a simulated environment and a real one by requiring
both implementations to be in conformance with the DiaSpec
description of the pervasive computing area. Another benefit of
our simulation approach is that it allows the application to be
tested in hybrid environments, combining simulated and real
entities.
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TESTING A WIDE RANGE OF SCENARIOS DiaSim provides a
graphical editor to define simulation scenarios for testing perva-
sive computing applications. Moreover, DiaGen also generates
a simulation programming framework. This support provides a
default implementation of simulated entities and stimulus pro-
ducers. However, the tester may use this generated support to
implement specific simulated entities and stimulus producers.
These specific simulated entities and stimulus producers can then
be used in simulation scenarios for testing a pervasive computing
application.

SIMULATION RENDERER DiaSim provides a 2D graphical sim-
ulation renderer that enables the developer to visually monitor
and debug a pervasive computing application.

11.2 ONGOING AND FUTURE WORK

The works that we have presented are being expanded in
various directions.

Validating our Simulation Support

To validate our physically-accurate simulation support, we
plan on comparing it with the EnergyPlus simulator. EnergyPlus
is a simulator of building energy consumption, which has been
thoroughly tested and validated. Our goal is to show that, for
a given pervasive computing application, the simulation results
of the combination of DiaSim and Acumen are the same as
EnergyPlus. This would demonstrate that the virtual experiments
realized using DiaSim and Acumen are valid.

Simulating Non-Functional Properties

Recent works have extended the DiaSpec language and its
compiler to handle non-functional properties. These extensions
include (1) handling access conflicts to resources of a pervasive
computing system [37], (2) modeling entity failures at the declara-
tion level, enforcing their treatment at the programming level [49],
and (3) declaring performance constraints, ensuring them at com-
pile time and run time [32]. We plan to extend our simulation
support to allow the simulation of these non-functional prop-
erties. For instance, we would like to allow the tester to create
stimulus producers of entity failures to test how the application
reacts in case of entity failures.
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Adding Human Behavior Modeling

Numerous pervasive computing applications surround people
in their life. To help simulating this kind of applications, we
plan on connecting human behavior models to DiaSim. For
instance, human behaviors could be implemented in a multi-
agent simulation toolkit such as MASON [43]. Each agent would
represent a simulated person. Coupling DiaSim with human
behavior would allow the simulation of an evacuation plan in
case of a life-threatening situation. For example, the simulation of
the building occupants would enable to observe their behaviors
in case of fire.

Enhancing the system monitoring

A pervasive computing system may involve a large number
of entities and applications. Monitoring such a system rapidly
becomes excessively complicated. In particular, large-scale simu-
lations in which numerous events occur at the same time are hard
to monitor, even with graphical rendering and logs. To enhance
monitoring, we would like to add contracts to DiaSpec in the
form of pre- and post-conditions to entities, controllers, and con-
texts. These contracts would drive the rendering of a simulation
by drawing the tester’s attention when they are violated.

Enhancing the graphical renderer

The 2D graphical rendering provided by DiaSim allows to
easily monitor the simulated applications. However, the user
experience of these simulated applications would be improved
with a 3D graphical rendering. Indeed, users would be able to
test applications immersed in a simulated 3D physical environ-
ment. We plan to render simulations in 3D using Blender [6], an
authoring tool for creating 3D animations and video games.

Enhancing the Testing Support

We plan to simplify the testing phase by automatically gener-
ating a dedicated unit testing framework with mock objects [44]
from the DiaSpec description. In accordance with the architect,
a tester could then describe the desired behavior of each entity
and component separately, even before the implementation has
started. Each developer would then be able to assess the cor-
rectness of their implementations by running the tests. It would
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nicely complement our current testing support, as it only al-
lows to test the complete application and not each component
separately.

Verification

Another promising direction is to take advantage of architec-
tural invariants for guiding program analysis tools. Our gener-
ative approach could automatically add architectural invariants
as axioms to the model, facilitating verification. For example, we
are investigating the verification of safety properties by injecting
the architectural invariants from the DiaSpec specification in the
model checker JPF [75].

Empirical evaluation

We have showed that our tool-based methodology can be used
in a wide range of pervasive computing areas. This gives hints
of the usability of our methodology. We plan to conduct an em-
pirical evaluation based on a well-defined experimental method-
ology. In particular, we would like to evaluate the usability and
productivity gained by comparing our approach with existing
tool-based development methodologies for pervasive computing
applications.
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