
HAL Id: tel-00767537
https://theses.hal.science/tel-00767537v1

Submitted on 20 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Arithmetic operators on GF(2m) for cryptographic
applications: performance - power consumption -

security tradeoffs
Danuta Pamula

To cite this version:
Danuta Pamula. Arithmetic operators on GF(2m) for cryptographic applications: performance -
power consumption - security tradeoffs. Computer Arithmetic. Université Rennes 1, 2012. English.
�NNT : �. �tel-00767537�

https://theses.hal.science/tel-00767537v1
https://hal.archives-ouvertes.fr

N° d’ordre : 2012REN1E011 ANNÉE 2012

�

THÈSE / UNIVERSITÉ DE RENNES 1

sous le sceau de l’Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1
Mention : Informatique

École doctorale Matisse

présentée par

Danuta Pamula
préparée à l’unité de recherche IRISA (UMR 6074)

Institut de Recherche en Informatique et Systèmes Aléatoires
Équipe CAIRN - ENSSAT

et
L’École Politechnique de Silésie à Gliwice

Faculté d'Automatique, Électronique et Informatique,
Institut d’Électronique

Intitulé de la thèse :
Opérateurs
arithmétiques sur
GF(2m): étude de
compromis
performances-
consommation-
sécurité.

Thèse soutenue à Gliwice, Pologne
le 17 Décembre 2012
devant le jury composé de :

Aleksander NAWRAT
Professeur à l'École polytechnique de Silésie / président

Liam MARNANE
Professeur Université de Cork / rapporteur

Tadeusz LUBA
Professeur à l'École polytechnique de Varsovie /
rapporteur

Romuald ROCHER
Maître de Conférences Université Rennes 1 - IUT Lannion
/ examinateur

Arnaud TISSERAND
Chargé de Recherche CNRS / directeur de thèse

Edward HRYNKIEWICZ
Professeur à l'École polytechnique de Silésie / co-
directeur de thèse

Silesian University of Technology

Faculty of Automatic Control, Electronics and Computer Science

Institute of Electronics

University of Rennes 1

IRISA

A DISSERTATION

Arithmetic operators on GF (2m) for cryptographic
applications: performance - power consumption -

security tradeoffs

Author:

Danuta Pamuła

Supervisors:

dr hab. inż. Edward Hrynkiewicz,

prof. nzw. w Politechnice Śląskiej (PL)

Arnaud Tisserand,

CNRS researcher, HDR (FR)

Submitted in total fulfillment of

the requirements of the degree of

Doctor of Philosophy

under a Cotutelle agreement with

Silesian University of Technology (PL)

and University of Rennes 1 (FR).

Gliwice 2012

Acknowledgements

I would like to thank Professor Edward Hrynkiewicz and Arnaud Tisserand, my research su-

pervisors, for their patient guidance, enthusiastic encouragement and useful critiques of this

research work.

Contents

Nomenclature viii

1. Introduction 1

1.1. Modern cryptology - basics, goals, applications and threats 7

1.1.1. Cryptology basics . 7

1.1.2. Symmetric cryptography (Secret-Key Cryptography) 10

1.1.3. Asymmetric cryptography (Public-Key Cryptography) 11

1.1.4. Modern cryptosystems - application, requirements, security (robustness) . 14

1.2. Dissertation overview . 16

2. Elliptic curves over finite fields - application to cryptography (overview) 19

2.1. Elliptic curves and cryptography . 19

2.1.1. Elliptic curves . 20

2.1.2. Elliptic Curve Cryptography . 23

2.2. Finite Fields . 26

2.2.1. Binary finite field extensions GF (2m) . 29

2.3. Problem definition . 29

2.4. Thesis formulation and research objectives . 31

3. Arithmetic operators on GF (2m) 33

3.1. Finite Field Addition . 35

3.2. Finite Field Multiplication . 36

3.2.1. Two-step algorithms . 37

3.2.2. Interleaved algorithms . 56

3.2.3. Summary, conclusions and comparison . 66

4. Physical security of ECC cryptosystems 69

4.1. Physical security of hardware GF (2m) arithmetic operators 74

4.1.1. Security level verification, problem identification 77

4.1.2. Proposed countermeasures, circuit modifications 80

4.1.3. Conclusions . 89

5. Summary and Conclusions 91

iii

List of Figures

1.1. Typical plain (not secured) communication model 8

1.2. Secure communication model . 9

1.3. Secret-key cryptography communication model 10

1.4. PKC communication model . 12

1.5. Security layer model [8, 98] . 17

1.6. ECC cryptosystem layers . 17

2.1. Elliptic curves over R. 21

2.2. Elliptic curves over Fp. 21

2.3. Addition and Doubling of a point on E(K) . 23

3.1. Idea of circuit performing shift-and-add method for m = 4 43

3.2. Classic divide-and-conquer approach . 46

3.3. Karatsuba-Ofman approach . 46

3.4. Illustration of AL matrix partitioning for m = 233 59

3.5. Illustration of AH matrix partitioning for m = 233 60

3.6. Illustration of R partitioning matrix for m = 233 60

3.7. Illustration of Mastrovito matrix partitioning for m = 233 63

4.1. Differential power analysis principle [80] . 71

4.2. Useful (left) and parasitic (right) transitions. 75

4.3. Activity counter architecture for a 1-bit signal s(t) (control not represented). . . 76

4.4. Useful activity measurement results for random GF (2m) multiplications with clas-

sical algorithm (left). Extract for a single representative multiplication (right). . 78

4.5. Useful activity measurement results for random GF (2m) multiplications with

Montgomery algorithm (left). Extract for a single representative multiplication

(right). 79

4.6. Useful activity measurement results for random GF (2m) multiplications with

Mastrovito algorithm (left). Extract for a single representative multiplication

(right). 79

4.7. Useful activity measurement results for random GF (2m) multiplications with

modified classical algorithm. 80

v

4.8. Useful activity measurement results for random GF (2m) multiplications with

Montgomery algorithm. 81

4.9. Illustration of Mastrovito matrix partitioning for m = 233 82

4.10. Useful activity measurement results for random GF (2m) multiplications with

4 versions of modified Mastrovito algorithm. 83

4.11. Random start sequence generator based on 4-bit LFSR. 84

4.12. Data dependency on activity variations curves for Mastrovito multiplier 85

4.13. FFT analysis results for unprotected and protected versions of multipliers (top:

classic algorithm, middle and bottom: Mastrovito algorithm for various versions). 86

4.14. Useful activity measurement results for 2P operation for unprotected (top figure)

and protected (bottom figure) GF (2m) operators. 87

4.15. Comparison of activity traces and current measurements for:

Mastrovito multiplier unprotected version – 5 multiplications in a row and pro-

tected version (uniformised) – 3 multiplications in a row 88

vi

Nomenclature

[k]P scalar point multiplication

Fq finite field

AT efficiency factor

f(x) irreducible polynomial, field generator

GF (2m), F2m binary extension fields

GF (p), Fp prime field

m field size

ASIC Application Specific Integrated Circuits

DLP Discrete logarithm problem

DPA Differential Power Analysis

ECC Elliptic curve cryptography

ECDLP Elliptic curve discrete logarithm problem

FFT Fast Fourier Transform

FFT Fast Fourier Transform

FPGA Field Programmable Gate Arrays

FSM finite state machine

HDL Hardware Description Language

LFSR Linear feedback shift register

LUT lookup table

MSB most significant bit

NIST National Institute of Standards and Technology

NP-hard non-deterministic polynomial-time hard

PKC Public Key Cryptography

RSA Rivest-Shamir-Adleman

SCA Side Channel Attack

vii

SECG Standards for Efficient Cryptography Group

SFM Spectral Flatness Measure

SPA Simple Power Analysis

viii

1. Introduction

Digital systems and Internet are nowadays spanning most domains of our lives. They are respon-

sible for communication between people, institutions, for controlling airport systems, transport

systems, managing medical systems, etc. Digital systems start to appear everywhere and are

responsible for more and more important and confidential processes. We are flooded with digital

data, which are not always easy to authenticate, manage and secure. Generally majority of com-

mon users of digital systems do not care much about authentication, confidentiality, integrity and

security of their data. They are still little aware of possibilities of stealing, tampering or using

their digital data or what is worse their digital identity (identity fraud is a serious threat [90]).

They are even less aware of consequences resulting from such abuses or negligence of security

matters [90, 63].

Fortunately security awareness slowly increases mainly due to rapid development and increase

of number of services performed in a digital way. People start to perceive the meaning (necessity)

of securing data. Everyone wants to securely perform banking transactions, safely sign impor-

tant documents, protect confidential data (tax, medical, etc.) or just safely shop online. On

the other hand, nobody wants to be bothered about securing data and nobody wants that the

process will in any way interrupt normal work of a system. Luckily most system developers have

information security awareness and tend to equip digital systems and communication channels

with efficient security mechanisms, depending on application and requirements. The security of

a system has to be very often verified because although users start to take precautions and new

ways for securing data are developed, new ways of stealing and tampering data also appear.

The science, which provides us with means to secure data, is called cryptography [66, 99].

Cryptography dates back to ancient times [43]. It was used to cipher messages to prevent adver-

saries from reading it. First ciphers were very naive but usually sufficient due to the fact that

most people were illiterate. As centuries passed and elementary education became a standard,

ciphers had to become more and more sophisticated. Nowadays, cryptography has to exploit

properties of NP-hard mathematical problems (see [6] on computational complexity) to provide

us with new means of data security. The mathematicians working on encryption algorithms

constantly adapt them to arising needs and computer scientists create new information secu-

rity systems employing them (for more details see [91]). With development of new technologies

designers tend to create faster and more efficient cryptographic systems. Unfortunately as the

technical and theoretical possibilities of securing data increase, the number of ways of tamper-

ing communication and recovering secret and hidden data also increases. In fact cryptography,

treating about concealing the secret, is just one branch of a wider science: cryptology. The

1

other branch of cryptology, evolving simultaneously is cryptanalysis, which concerns breaking

the ciphers and data security (see [100, 105]). Due to developments in cryptanalysis, modern

cryptographic systems suffer from more threats than their predecessors. They have not only to

be mathematically secure but also physically secure.

At first it was sufficient to employ a simple, secure, mathematically unbreakable cryptographic

algorithm. Then it occurred that with development of computational power of computer systems

and new means of communication (Internet, wireless communication), the mathematical security

of most algorithms should be revised, and either new algorithms should be developed or their

parameters have to be changed [99]. After managing the problems of algorithms’ mathemati-

cal security, it was proven that there exist other ways of extracting secrets from cryptographic

systems. Cryptanalysts came up with idea to eavesdrop work of digital cryptographic systems

developed to secure data [68]. They propose to analyse power trace, current signatures, execu-

tion time and other leaking information, concerned useless, in order to correlate them directly

with the secret or with operations executed on secret in the cryptographic system.

Unfortunately their approach for recovering the secret was successful [53] and nowadays it

is not only sufficient to employ mathematically secure cryptographic algorithms but also to se-

cure their implementations as well as systems and devices performing cryptographic operations

against adversaries. It implies that safe and mathematically unbreakable algorithm is not enough

to secure the data; one needs also to secure hardware or software solutions against information

leakage. It is proven that it is possible to record power trace, current trace or electromagnetic

emissions, or observe execution time and by analysis of obtained information deduce secret data.

Such approach is called side-channel analysis or side-channel attack (SCA), see [103]. Until very

recently, information leaking from the device during its work was concerned as useless noise and

designers did not especially bothered to decrease or control it. Fortunately, now security systems

developers/researchers are aware that every information “leaking” from the cryptographic device

can be useful to the attacker. To avoid loss of secret data developers analyse the behaviour of

their devices in order to make them secure against eavesdropping. New ways of securing data

and cryptographic processors are being developed making attackers job harder. Simultaneously

methods for secret data retrieving also develop, decreasing the strength of added security issues

(countermeasures) [105].

There are few families of possible side-channel analysis attacks [88] depending on which side

channel the attacker is exploiting. To retrieve secret the attacker analyses timings of the op-

eration, power consumed by the device or the character of electromagnetic radiations. The

side-channel analysis attacks are so called passive attacks, they are based on the information

eavesdropped during circuit work, they do not interfere with the device. There exist also active

attacks in which the attacker manipulates cryptographic device and/or its environment, see [7].

Usually the attacker tries to insert errors (fault-injection attacks) in device work, tries to force

unnormal behaviour of the device or manipulates clocks to observe changes in device behaviour

which may give information about secret.

2

In our researches we are motivated by the possibility of ensuring more powerful physical se-

curity of cryptographic systems especially against power analysis attacks. There are still many

ideas for countermeasures to verify and there are still units of cryptographic systems, which were

not considered during security level evaluation, i.e. for which no countermeasures against SCA

were yet provided. We aim at fulfilling parts of those security gaps.

Adding countermeasures against SCA is not a trivial task [35]. Some may overload crypto-

graphic device and degrade its performance. Some countermeasures may protect against one

type of SCA but may make the other type more feasible to succesfully perform [26]. The ideal

countermeasures are such that do not decrease the overall performance, efficiency and do not

increase the cost of the cryptographic system too much. The cryptographic systems are already

complex circuits due to the fact that they employ a lot of arithmetic computations on large

numbers. Thus overloading them with useless subcircuits generating additional activity may

cause serious decrease of efficiency, especially in terms of area. Moreover adding noise to blind

the operations performed is speculative because there exist effective denoising methods in signal

processing, see [87]. Additionally the noise adding countermeasures are insufficient as an au-

tonomous countermeasures. They can serve as an additional protection element [60].

Thus we are motivated by a possibility of increasing the security of cryptographic system

in such a way that it will not result in degradation of its efficiency and overall cost increase.

What is more we want to increase the overall efficiency of cryptographic system and decrese its

cost. To be able to achieve our goals we first have to propose very efficient computation units

dedicated to work in cryptographic systems and then try to insert the countermeasures in such a

way that elaborated efficiency of our units will not decrease. That way we presume we may im-

prove overall cryptographic system performance (by increasing efficiency of its basic units) and

cryptographic system security (by inserting necessary countermeasures against eavesdropping).

Utilising reconfigurable circuits, for instance Field Programmable Gate Arrays (FPGAs) [46,

37], as a target platforms for our cryptographic devices seems to provide a lot of possibilities in

our field of research. Such circuits allow for quick evaluation of proposed solutions and inserted

countermeasures. They are relatively cheap, flexible and provide a great mean for prototyp-

ing circuits before implementation in more expensive Application Specific Integrated Circuits

(ASIC). Another advantage of FPGA solution is that it is much harder to successfully attack

them than a solution implemented on microprocessors, due to for example sequential and pre-

dictable nature of operation of a microprocessor.

Cryptographic systems rely on arithmetic operations and complex mathematics, they exploit

certain mathematical problems, which are infeasible to solve. There exist two types of modern

cryptographic systems, utilising: secret-key cryptography or public-key cryptography (PKC).

Our work concerns the second type, the public-key cryptography. There are three most widely

used types of PKC systems. They are divided regarding the mathematical problem their secu-

rity is based on. The most commonly exploited problems are [36]: integer factorisation problem

3

(e.g. RSA system), discrete logarithm problem (e.g. ElGamal system) and elliptic curve dis-

crete logarithm problem (Elliptic Curve Cryptography system). We have decided to consider

in our research security and efficiency of cryptographic systems based on elliptic curve discrete

logarithm problem; that is Elliptic Curve Cryptography (ECC) [36] systems. The ECC is very

advantageous especially due to the fact that it operates on much smaller numbers than for ex-

ample RSA , in order to provide the same level of security. This fact should create the possibility

to propose much more efficient cryptographic hardware solutions.

The elliptic curve cryptography concerns/exploits mathematical properties of elliptic curves

defined over finite fields. Main ECC protocols operations are performed on points of such elliptic

curves. To perform those operations (curve-level operations) one needs to perform operations

on the coordinates of elliptic curve points, i.e. on the elements of the underlying finite field.

Due to this, the operations on the elements of finite fields are the ones on which really the work

of any ECC protocol depends. The efficiency of finite-field computation units is crucial for the

efficiency of ECC systems.

There exist many ways of protecting the operations performed on points of elliptic curves

(curve-level operations) or operations performed by ECC cryptographic protocols, see [26]. How-

ever there are not yet known any means for securing the operations in the underlying finite field

(field-level operations). According to the fact that efficiency and work of ECC systems depend

on the performance of the operations performed in finite fields [97], we find that security of

whole system may also depends on the finite field arithmetic units security. The motivation for

our research is the possibility to increase the security and efficiency of whole ECC system via

securing and improving finite-field arithmetic operators responsible for performing vital compu-

tations in ECC systems.

For breaking ECC, many SCAs [80] have been proposed. To protect circuits against those at-

tacks researchers propose various countermeasures, or protections, see [39]. Moreover, specific

protections at the arithmetic level (curve-level operations arithmetic) have been proposed. For

instance, addition chains allow performing only one type of operation, point addition, during

scalar multiplications [14]. In [15] randomisation techniques are used. But these protections are

at the curve-level not the finite-field one. At the moment the means and effects of protecting

finite-field arithmetic operators are not yet exploited. It seems that if except just securing curve

level operations of the ECC processor we will secure also arithmetic operators, which efficiency is

crucial for curve-level operations, we can make our cryptographic system more difficult to break

(to attack successfully). We presume that leaking information are much harder to analyse and

to correlate with a secret when the basic arithmetic units operations are secured against eaves-

dropping. Our objective is to protect cryptographic devices as much as possible against some

SCAs. Usually the only thing, which stops cryptanalysts from recovering secret data (breaking

the device), is insufficient computational power of available computer systems. The more coun-

termeasures and protections the more computational power needed to break the system.

4

Summing up, we recognise the following problems to analyse and to solve. First problem

concerns the efficiency of ECC systems. Its efficiency strongly depends on the efficiency of

finite-field arithmetic operators. Thus we need to perform research, which will allow us to come

up with very efficient hardware finite-field arithmetic units. In order to provide solution to this

problem and elaborate our own efficient algorithm easily translatable to hardware it is necessary

to analyse as many existing algorithms as possible.

There are two types of finite fields over which elliptic curves are defined to serve cryptographic

purposes. Prime fields GF (p) and binary extension fields GF (2m) [36]. Binary extension fields

GF (2m) allow for carry-free operations. Thus we may avoid taking care of long carry chains.

According to many sources GF (2m) fields are more suitable for hardware solutions, i.e. [111, 47].

Thus we have decided to focus on GF (2m) rather than GF (p) arithmetic operators. Generally

there are two operators defined in a field: addition and multiplication. All other operations (i.e.

squaring, inversion) can be implemented by means of addition and multiplication. Addition in

a binary field is very simple, it is a bitwise XOR operation. However managing large operands

even during such a simple operation may yield problems. ECC applications require performing

operations on operands of size 150-600 bits [32]. Multiplication is more complex and furthermore

it is a modular operation (modulo specific irreducible polynomial generating the field). It means

that we need not only to perform multiplication but also reduce obtained result. There are

many multiplication algorithms and their improvements presented in literature, however most

are just theoretically evaluated. This means that proposed mathematical improvements might

not give desired enhancements when implemented in hardware. In our work we are motivated

by a possibility of finding such modifications of algorithms, which may yield real hardware im-

provements, i.e. energy and area savings, design acceleration (speed-up). Our goal is to provide

such algorithms, which will be suitable for efficient implementation in hardware.

Second problem, which influences the structures of elaborated algorithms, is the need to se-

cure algorithms’ implementations against physical attacks (here we consider SCA). As stated

by Micali and Reyzin in [68], when they first defined group of physical attacks, “computation

and only computation leaks information”, thus our goal is that our computations leak as small

amount of information useful to an adversary as possible. In fact we are not able to prevent

electronic device from leaking information, however we may make the leaking information as

useless as possible by controlling the behaviour of our devices to a feasible extent. We want

that our solutions are as robust as possible to side channel attacks. We focus on preventing

successful power analysis attacks due to the fact that they are the most popular types of SCA

attacks, i.e. they receive a lot of attention from researchers and cryptanalysts [61]. Moreover

according to [61] they are very powerful and can be conducted relatively easy.

The thorough analysis of finite field operations algorithms should reveal the possibilities of

securing them. It should reveal their features, advantages and potentialities for inserting coun-

5

termeasures. In order to counteract to possible attacks, we have to propose modifications at

algorithm level as well as at the architecture level. The goal is to propose them in such a way

that resulting overhead will be sensible and that they will be transferable to other hardware

architectures (ASICs).

As mentioned developers usually add protections in ECC systems at curve-level operations and

as proven such protections usually secure only against certain families of physical attacks [53].

For example the device strongly secured against timing attacks can be very weak against power

attacks and otherwise [79]. In this research, we are strongly motivated by the presumption that

securing all computations performed in ECC system (finite-field operations, curve-level oper-

ations, protocol operations) allows creating a system strongly secure against most families of

side-channel attacks.

Third problem, which needs to be investigated, is the trade-off between security issues and

efficiency. On one hand we want the device to be very secure but on the other it still has to

be very efficient. If we overload operators with security issues (countermeasures) their speed

may drastically decrease and their size/cost may dramatically increase. However if we insert

not enough countermeasures, cryptographic system might be easily attacked. The elaborated

efficient hardware arithmetic operators units should allow for inserting countermeasures with-

out adding much overheads to the solution (without degrading performance of the solution and

increasing its cost). The impact of added countermeasures on the parameters and behaviour of

the solution should be very carefully evaluated. If a countermeasure degrades speed too much or

causes an explosion of its size, it should be either avoided and substituted by other or thoroughly

reconsidered (and possibly improved).

The alongside problem, having impact on all the others, is the size of data to be manipulated

by the operators. As they need to serve ECC purposes they need to operate on numbers of size

approximately 150-600 bits [32]. Large binary vectors are not easy to handle and what is more

sometimes they may cause synchronisation and routing problems, i.e. be the cause of hazards

or strange delays. Usually with growth of operands size, the operator solutions grow and their

speed decrease, so our objective is to provide very efficient solutions for arithmetic operators

working on vectors of large sizes.

In the following sections some cryptography basics, necessary to understand the purpose of

our researches, will be presented.

6

1.1. Modern cryptology - basics, goals, applications and threats

In this section a short introduction to cryptography is presented. We provide brief overview of

most popular cryptographic techniques and more detailed description of the techniques to which

our researches will apply.

We introduce also cryptanalysis and describe briefly code breaking techniques. The short

introduction to those topics is necessary to understand the objectives of our researches. More

detailed introduction to some attacks is presented in Chapter 4.

1.1.1. Cryptology basics

Cryptology comprises cryptography and cryptanalysis. To introduce reader to our problem we

present briefly both branches. We give here classical definitions. Presently cryptology domain

concerns not only mathematics but also computer science. This is due to the fact that the

modern cryptology deals with digital data and digital systems. Nowadays to use cryptographic

techniques it is necessary not only to know a secure mathematical algorithm but also to effi-

ciently implement it in a digital system.

Cryptography

Cryptography is a branch of cryptology treating about information security. It provides means

for securing communication and information exchange in presence of adversaries.

Definition 1.1.1. (according to [66, 99]) Cryptography is a study of mathematical* tech-
niques related to aspects of information security such as confidentiality, data integrity, entity
authentication and data origin authentication. Cryptography treats about prevention, detection
of tampering and other malicious activity of which physical and digital data can suffer.
*modern cryptography as mentioned above concerns also computer science discipline

Modern cryptography concerns the following four security objectives [66, 99]:

• confidentiality (privacy) - no information can be extracted by unauthorised entity from

messages send over unsecured channel or data stored on unsecured media (in unsecured

area/zones);

• authentication - a process by which one may ascertain for example data origin; comprises

entity authentication and data origin authentication;

• data integrity - ensures that a message has not been tampered with (altered in unauthorised

way);

• non-repudiation - the message is bound to the sender, i.e. the receiver can be sure that it

comes from the sender and the sender cannot deny sending it;

The most popular cryptographic tools for providing information security are symmetric cryp-

tography and asymmetric cryptography. Both comprise algorithms, which security bases on

intractability of underlying mathematical problems and on security of a secret key. Short expla-

nation of some basics of those algorithms is presented in next subsections.

7

Cryptanalysis

The second, equally interesting, branch of cryptology is cryptanalysis.

Definition 1.1.2. (according to [66, 99]) Cryptanalysis is a study of mathematical* techniques
related to analysis of secured communication, ciphers and cryptographic systems in order to
discover their weaknesses, which may allow retrieving secret data. Modern cryptanalysis treats
about breaking mathematical systems as well as physical devices implementing them. It validates
cryptographic system security and points out the features, which need to be improved.
*modern cryptography as mentioned above concerns also computer science discipline

Cryptanalysts study breaking codes, breaking cryptographic systems and recovering the secret.

We may say that their task is to validate a cryptographic system. To prove that it is breakable

in any way or to confirm its security level. Before popularisation of digital systems, the aim

of cryptanalysts was just to find a way to solve an intractable mathematical problem. Nowa-

days when underlying mathematical problems are really hard to solve and the ability to solve

them usually depends on available computing power, the cryptanalysts seek for other, easier,

complementary and less expensive, ways of recovering the secret. Due to the fact that physical

documents are being replaced by digital ones, to secure and handle them researchers/designers

tend to provide efficient digital systems, either software or hardware, implementing cryptographic

algorithms. Hence the cryptanalysts turn their interest to observation of designed devices and

systems implementations in order to find cheaper and more effective ways of recovering secrets.

Unfortunately for system designers it occurred that by observation of the behaviour of a device

implementing cryptographic system: power consumption, time of execution, electromagnetic

emissions, it is possible to break the system [68, 5]. It was proven that plenty of information

leaking from the system might be useful to a cryptanalyst (an adversary, eavesdropper). Thus

in order to create secure cryptographic system, it is necessary not only to find secure algorithm

but also to be aware of possible information leakage advantageous to an adversary [4, 61].

Communication model

Figure 1.1 shows a typical communication model. In this model entity A communicates with

Figure 1.1.: Typical plain (not secured) communication model

8

entity B. Entity E tries to tamper the communication either by stealing exchanged messages,

altering them or destroying them. The goal of cryptography is to secure communication between

A and B against actions of E. The goal of cryptanalysis is to find a way to tamper the secured

communication or to retrieve secret data (M, key).

Secure communication model

The model is illustrated on Figure 1.2. In secure communication model entity A, before trans-

Figure 1.2.: Secure communication model

mitting the message to B, enciphers it. Upon receiving the ciphered message (ciphertext) entity

B must decipher it to be able to read it. It should be infeasible for E to tamper the commu-

nication or to decipher message sent by A. This infeasibility should be ascertained by proper

cryptographic techniques. Nowadays the most popular techniques for securing communication

are key-based techniques. Key-based means that their security depends on secrecy of the key.

The cryptographic problem in this model (Figure 1.2) is how to effectively encipher the mes-

sage (plaintext) to have it deciphered by B but not by E. The idea of key-based algorithm is to

rely entirely on the secrecy of a key. In such algorithms the encryption/decryption process is

done in the following way:

plaintext
K
−→ ciphertext

K
−→ plaintext.

Let Ki ∈ keyspace, plaintext be denoted by M , ciphertext (ciphered plaintext) by C. Let us

also denote encryption by E and decryption by D. Thus (see [66]):

EKe
(M) = C

DKd
(C) = M,

where EKe
denotes encryption with key Ke and DKd

decryption with key Kd.

Entity A transforms plaintext M (message) into a ciphertext, using encryption key Ke and

transmits the ciphertext to B. Entity B receives ciphertext C and transforms it back to plaintext

M, again using a key, this time decryption key Kd (somehow correlated with Ke). Depending

on how we define, correlate and distribute the pair of keys we may distinguish two different

key-based cryptographic techniques: symmetric cryptography and asymmetric cryptography.

9

1.1.2. Symmetric cryptography (Secret-Key Cryptography)

In symmetric-key cryptography, called also secret, single, one-key [66], we perform (see also

Figure 1.3):

1. Key exchange / key distribution

2. EKe
(M) = C

DKd
(C) = M,

where Ke can be calculated from Kd and otherwise [66]. In fact in this cryptographic scheme

usually Ke = Kd = K.

In symmetric-key cryptography, before starting to communicate, A and B have to exchange

Figure 1.3.: Secret-key cryptography communication model

secret key via some secured channel, see step 1 on Figure 1.3. The key must remain secret as long

as communication has to remain secret. The problem of secure key distribution and management

is crucial for symmetric key cryptography. It leads to many other problems and although secret-

key cryptography is very efficient, due to key management problems it cannot be safely used in

all communication schemes, especially in secure communication over the Internet. What is more

secret-key cryptography does not fully implement all abovementioned cryptographic objectives

(i.e. authentication, non-repudiation) [66].

The most popular symmetric-key cryptography algorithms are [36]:

• Data Encryption Standard (DES), Triple DES,

10

• Advanced Encryption Standard (AES),

• RC4 stream cipher (Rivest Cipher 4),

• Message Authentication Codes (MAC/HMAC).

Even though secret-key cryptographic techniques are characterised by high efficiency they cannot

be used before the key is safely exchanged. To overcome this problem public-key cryptography

was proposed [22, 67].

The secret-key cryptography is out of scope of our researches thus we do not present the

algorithms in more details. For further reading we suggest NIST (National Institute of Standards

and Technology) standards or [99, 66].

1.1.3. Asymmetric cryptography (Public-Key Cryptography)

Public-key cryptography (PKC) was introduced in 1975 by Diffie, Hellman [22] and Merkle [67]

as an attempt to solve problems arising in secret-key cryptography. Definition according to

Diffie and Hellman [22] is presented below (see also Figure 1.4):

Definition 1.1.3. [22] A Public-Key Cryptosystem is a pair of families {EK}K∈{K} and

{DK}K∈{K} of algorithms representing invertible transformations,

EK : {M} → {M}

DK : {M} → {M}

on a finite message space M , such that

• for every K ∈ {K}, EK is the inverse of DK

• for every K ∈ {K} and M ∈ {M}, the algorithms EK and DK are easy to compute,

• for almost every K ∈ {K}, each easily computed algorithm equivalent to DK is computa-

tionally infeasible to derive from EK ,

• for every K ∈ {K}, it is feasible to compute inverse pairs EK and DK from K.

In public-key communication model, communicating entities avoid exchanging secret key. In-

stead of one secret key, which is hard to distribute (transmit) securely, the entities A, B use a

pair of keys. One, which is private (secret) and not transmitted; and the other, which is public

and can be distributed freely. Each entity has its own pair of keys (Ke, Kd). The public-key

communication scheme is as follows:

1. Key distribution

2. EKe
(M) = C

DKd
(C) = M

where Ke 6= Kd and Ke (public key) can be calculated from Kd (secret key) but Kd cannot be

calculated from Ke. Only the entity which wants to communicate distributes its public key.

11

Figure 1.4.: PKC communication model

Everyone can encipher messages using key Ke but only the owner of paired key Kd is able to

decrypt and read them. According to Figure 1.4 the communication is conducted as follows. If

entity B wants to securely communicate with entity A, it generates the pair of keys (Ke, Kd).

It keeps Kd for itself and sends Ke to entity A. Upon receiving Ke from B, A is able to send

encrypted messages to B. In order to send the message to B, A encrypts it using Ke. Entity B,

receives encrypted message sent by A and in order to read it, decrypts it using key Kd. That

way no one except B can read message encrypted with Ke key. In case of digital signature public

key Ke is used by entity A for verification of B’s signature (B’s document received).

The property and simultaneously the requirement for PKC key security states that it should

be computationally infeasible to compute the private key Kd from public key Ke and otherwise.

The public key is used to encrypt messages and only private key can be used to decrypt them.

Thus if it would be feasible to compute Kd knowing Ke it would be possible to break the system

and make communication unsecure.

Although the public-key cryptography solves the problem of key management and distribution,

it is slower and much harder to implement efficiently than secret-key cryptography (see Table 1.1

for comparison). Thus it is popular to use PKC for secret key exchange and later proceed with

communication secured with symmetric cryptography techniques. The key pair generation is a

crucial point of asymmetric cryptography. The pair should be generated in such a way that it is

12

Table 1.1.: Comparison of secret- and public-key cryptography

Secret-Key Cryptography Public-Key Cryptography

Advantages Disadvantages Advantages Disadvantages

high efficiency
key distribution problem solves key distribution lower efficiency,
key management problem problems higher cost

lower cost
cannot fully implement fully implements all due to more complex

authentication and cryptographic objectives computations and
non-repudiation longer keys

infeasible to inverse the process. The private key is believed to be safe as long as a mathematical

problem involved in its derivation is believed to be intractable. The following mathematical

problems, infeasible to solve for certain sizes of arguments, form bases for security of private

key:

• Integer factorisation problem

• Discrete logarithm problem (DLP)

• Elliptic curve discrete logarithm problem (ECDLP)

Regarding the underlying mathematical problems one can distinguish three groups of algo-

rithms. The most popular algorithms based on integer factorisation problem are RSA public-key

encryption and signature schemes [54]. ElGamal cryptographic schemes [23] exploit discrete log-

arithm problem. The last group of algorithms based on elliptic curves exploiting ECDLP [36]

problem is of most concern to us. Thus in Chapter 2 we provide more detailed description of

elliptic curve cryptographic techniques and schemes.

In our researches we have decided to focus on ECC because it is proven that it can be more

efficient than RSA [109, 56, 36], which is the most popular PKC scheme. In key-based cryp-

tography where security depends on a key the infeasibility of computing it from publicly known

data is crucial. It is recognised that the abovementioned mathematical problems are feasible to

solve for some arguments (usually small but also for certain types of arguments). To make the

problems infeasible to solve the mathematicians proposed the arguments to be primes of specific

sizes. For too small primes the accessible computational power is enough to solve the problems in

reasonable time. The safe, suitable for cryptographic purposes, argument (key) sizes are given in

cryptographic standards (e.g. NIST , SECG . The standards are often verified by cryptanalysts

and updated if the computational power, which continuously grows, becomes enough to break

the cryptographic algorithm secured with a key of a certain size or if new type of attack, which

makes retrieving the secret feasible, appears. The key sizes, for which RSA achieves the same

security level as ECC, are much bigger than the ones required for ECC. For example, RSA key

size of 3072 bits gives equivalent security level as ECC key of size 256 bits [109]. More detailed

comparison of different key-based techniques and their security levels depending on the key size

13

is presented below.

Comparison of security strength of different cryptographic key-based techniques

Table 1.2 (according to [109]) confirms and explains the abovementioned advantages and dis-

advantages of all presented types of cryptographic techniques. We can clearly see why one

technique is more efficient than the other. The key sizes for symmetric encryption algorithms

are much smaller than the ones used in asymmetric encryption schemes. It is especially visible

when we compare key sizes of RSA with symmetric key sizes. The difference between key sizes

providing equivalent security strength for ECC and symmetric algorithms is much smaller. That

feature makes ECC very attractive. With smaller keys the computations are simpler and faster,

thus also the computational devices are smaller and less demanding.

Table 1.2.: Comparison of key sizes [109]

security (bits) symmetric encryption algorithm
minimum size (bits) of Public-Key
DSA/DH RSA ECC

80 Skipjack 1024 1024 160
112 3DES 2048 2048 224
128 AES-128 3072 3072 256
192 AES-192 7680 7680 384
256 AES-256 15360 15360 512

1.1.4. Modern cryptosystems - application, requirements, security (robustness)

Definition 1.1.4. (according to [66, 99]) Cryptosystem is a set of cryptographic algorithms

with all possible ciphertexts, plaintexts, keys and key management processes. It is a set of cryp-

tographic techniques (primitives) used to provide security services for communication over unse-

cured channel.

Nowadays we perceive cryptosystem as an embedded digital system implementing crypto-

graphic primitives in order to provide information security. Before digital information era,

security of information depended on the manner in which we have sealed our document, on type

of media we have used to record and pass the message, and usually on communication channel

(messenger, furnisher). Due to digitalisation of data and popularity of digital techniques and

networks high percent of confidential transactions became digital. The electronic cash transac-

tion, electronic confidential documents exchange (tax data, health data), communication with

banks and important offices, it all becomes more and more popular. With growth of popularity

of digital data exchange, grows the need to secure such communications. The digital documents

exchange is usually done over Internet, which is a very demanding, unsecured communication

channel. The cryptographic techniques evolve to fulfill the arising requirements and their im-

plementations adapt to new conditions.

14

Applications The applications of digital cryptosystems spread many domains. The first and the

most popular is securing data exchange in communication over Internet. The number of services

possible to do over Internet still grows. The most popular ones are: messages exchange (e-mail),

banking transactions (electronic credit and debit card transactions, bank account management),

all transactions involving electronic cash, e-commerce, digital signatures, business transactions,

communications with offices (e.g. tax office) and many many more.

Other applications involve not only data exchange but also data storing. The digital data

importance grows. Many people and companies start to rely mostly on digital documents and

data, instead of keeping many useless paper copies. Many jobs now are performed using com-

puters and many people’s job depends on the security of data stored either on hard drives or

somewhere over Internet. We start to deposit our data on external servers thus they can be

more vulnerable to unauthorised actions. The so called “cloud computing” service providing

computing power and storage capacity, becomes very popular. Therefore our data should be

secured/encrypted before transmitting/depositing it somewhere over the Internet. The loss or

unauthorised alteration of such data may cause huge problems to a company and similarly to a

common user.

What is more, many offices and institutions tend to digitalise their databases, e.g. to ease the

access to it. In hospitals and clinics the vital medical data have to be secured properly to avoid

stealing or tampering. The same applies to tax offices, the tax data need to be secured properly

to avoid embezzelments.

Another problem to which cryptosystems can be applied is a wireless communication. Number

of wireless applications communicating grows rapidly thus also the demands for its quality, i.e.

speed, range, security. Wireless communication is especially easy to eavesdrop or tamper. To do

this the adversary does not even need to have direct access to the communicating entities [74].

What is more, nowadays, with modernisation of healing techniques, there arise a need to se-

cure medical appliances. Besides usual medical apparel hard to disturb without direct access to

them, there were developed a microchip devices delivering drugs [42], which can be used instead

of regular injections. Such a device is implanted in a patient and is responsible for oozing out

the right dose of a drug in proper time intervals. If the microchip work would be disturbed due

to external malicious actions, it could cause irreversible damage of one’s health.

Finally, the most obvious application: military application. Cryptosystems apply to almost

all areas in military domain. They are responsible for securing information exchange between

governments, for distribution of confidential orders, etc. They provide means for securing remote

controls of military equipment (for example: rocket launcher), for securing flow of information

between units in order to avoid being eavesdropped or discovered and many, many more.

Requirements Depending on the application the requirements vary. However the digital cryp-

tosystem should always fulfill the following objectives in order to serve any application.

The proper cryptosystems should be:

15

• very efficient (fast, small, not very demanding when it comes to power consumption)

• mathematically robust (they should use up-to-date specifications of cryptographic systems)

• physically robust (they should be secure against eavesdropping and tampering)

• adaptable (they should properly work in given environment - depends on application)

Characteristics of a good cryptosystem:

• theoretical/mathematical security - hardness of underlying mathematical problem,

• key length - the smaller the key the easier and more efficient the computation,

• speed-efficiency of encryption/decryption process,

• implementation - efficiency of implementation,

• scalability - ”the unit can be reused or replicated in order to generate long precision result

independently of the data path precision for which the unit was originally designed” [8]

• interoperability - ability to exchange information with external sources.

• physical security - security against side channel attacks, security of a device

Robustness Security strength of an cryptographic algorithm depends on quality of the algo-

rithm and underlying mathematical problem, length of the key and nowadays also on quality

of the implementation of the algorithm or we may say robustness of the cryptographic device

(device performing cryptographic operations). The cryptanalysts describe the security of the

system using the notion of level of security. Level of security is usually given in terms of the

amount of work (number of operations), using the best methods currently known, needed to be

performed to break the system [66].

Figure 1.5 presents different layers of a cryptosystem. Each of these layer should be somehow

secured in order to obtain a secure communication scheme. For us the most interesting is the

bottom layer. For ECC it can be divided further, see Figure 1.6. It can be divided into three

parts (sub-layers):

• [k]P sub-layer - multiplication of the base point of the curve by a large scalar [k] (key,

secret),

• 2P , P + Q (doubling, addition) - operations on points of the curve,

• arithmetic operations in GF (2m) - operations on coordinates of the points, on elements of

the underlying field.

There are already known techniques for securing the first two sub-layers. On some we were

working together in IRISA laboratory (Lannion, France) with other PhD student Thomas

Chabrier [15]. However there are not yet known any propositions for securing at the arith-

metic level the operations performed on the elements of the underlying field.

1.2. Dissertation overview

In the next chapter, we will provide a short introduction to elliptic curves for use in cryptography

and elliptic curve cryptography techniques. Then we will explain the arithmetic in finite fields

16

Figure 1.5.: Security layer model [8, 98]

Figure 1.6.: ECC cryptosystem layers

and provide more details about binary extension fields GF (2m). Finally we will formulate the

main thesis we want to prove with our researches. Third chapter contains detailed description

of hardware arithmetic operators elaborated during the researches. Followingly the subsequent

chapter introduces the side channel attacks, especially the power analysis attacks and presents

our ideas for securing the previously described hardware arithmetic operators against them.

Eventually we summarise our work, draw conclusions and present future prospects.

17

2. Elliptic curves over finite fields -

application to cryptography (overview)

In this chapter we present brief overview of the most important, from cryptographic point of

view, properties of elliptic curves and finite fields. We present their application to modern

cryptography, which is of most interest to us. We give a short overview of the application of

finite fields to elliptic curve cryptography. We will try to show what is the impact of finite-field

arithmetic operators on ECC system, how important those operators are for the computations

performed by the ECC system.

All presented here elliptic curve theory is based on [49, 102, 55, 10, 65]. Finite field description

is written according to [59, 58, 64, 96, 48]. Those sets of references contain complete knowledge

about elliptic curves and finite fields.

2.1. Elliptic curves and cryptography

Elliptic curves were studied long before they were introduced to cryptography. In 1985, indepen-

dently Neal Koblitz [49] and Victor Miller [69] proposed to use them in public-key cryptographic

systems due to their specific properties. It occurs that the problem on which the security of

most popular public-key techniques depends, i.e. the discrete logarithm problem (DLP), de-

fined for elliptic curves (ECDLP) is more complex than in usual case (in case of DLP). Elliptic

curve cryptography techniques were popularised in 90’s. Their use in security applications have

been approved and recommended by many. Their attractiveness lies especially in fact that to

achieve the same security level as RSA, they require much smaller keys i.e. they operate on

much smaller numbers, see Table 1.2 in Chapter 1 on page 14 for comparison. The smaller are

the numbers on which the arithmetic units operate the simplest (the smallest, the fastest) the

final cryptographic device.

In the following sections we briefly introduce elliptic curve arithmetic, then present their appli-

cation to security schemes. The ECDLP problem, guarding security of ECC protocols, will also

be explained along with the description of few ECC security schemes.

Understanding elliptic curve arithmetic is not necessary to be able to provide efficient GF (2m)

arithmetic units. However it is crucial when we want to add protections against SCA to those

units. We ought to be conscious, which operations need to be secured and in what way they can

be insecure or vulnerable to attacks.

19

2.1.1. Elliptic curves

Definition 2.1.1. (according to [24]) An elliptic curve E over a field K can be defined by

Weierstrass equation of the form:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, (2.1)

where a1, a3, a2, a4, a6 ∈ K.

The following quantities are related to E:

∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6

j =
c3
4

∆
for ∆ 6= 0

b2 = a2
1 + 4a2

b4 = 2a4 + a1a3

b6 = a2
3 + 4a6

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4

c4 = b2
2 − 24b4.

Element ∆ is called discriminant of E and determines whether the Weierstrass equation is

singular or not, j is its j-invariant. The quantities bi and ci are defined to simplify the definition

of ∆. K is called the underlying field and can be the field R of real numbers, Q rational numbers,

C complex numbers or Fq finite field. If E is defined over K then it is defined over any extension

of K. An elliptic curve E defined over a field K can be also denoted as E/K.

The set of points of an elliptic curve E defined over any extension L of field K forms an

abelian group and is defined in the following way:

E(L) =
{

(x, y) ∈ L× L : y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6 = 0 ∪ {∞}

}

,

where ∞ is a point at infinity. The elliptic curve over K is the set of points (x, y) satisfying a

Weierstrass equation. Depending on the underlying field K, the equation 2.1 can be simplified.

During our researches, we focus on elliptic curves defined over finite fields of characteristic 2

(GF (2m)). For GF (2m) the basic Weierstrass equation defining elliptic curve may be simplified

as follows from Definition 2.1.1.

Definition 2.1.2. If K is a finite field of characteristic 2 (K = GF (2m)) then E/K can be

defined by:

E1 : y2 + cy = x3 + ax + b, for a = 0,∆ = c4 6= 0 (supersingular curve) (2.2)

20

or

E2 : y2 +xy = x3 +ax2 + b, for a 6= 0,∆ = b 6= 0 (non-supersingular curve) (2.3)

All the arithmetic principles of elliptic curves are best visualised geometrically on elliptic curves

defined over R. Below we present graphs of curves defined over R (Figure 2.1) as well as curves

defined over prime finite fields (Figure 2.2). The exemplary curves were plotted using SAGE.

E1 : y2 = x3 − 5x + 4 E2 : y2 = x3 + 1

Figure 2.1.: Elliptic curves over R.

E1(F571) : y2 = x3 + 1 E2(F7919) : y2 = x3 + 7914x + 4

Figure 2.2.: Elliptic curves over Fp.

Group Law (according to [36]) The basic operation on elliptic curve group is point addition.

It is best explained geometrically with chord-and-tangent rule for elliptic curves defined over

R. Let P (x1, y1), Q(x2, y2), R(x3, y3) be three distinct points on E(K) (xi, yi ∈ K) such that

Equations 2.2/ 2.3 hold. Then

21

Additive identity

If P is the point at infinity, i.e. P = ∞, then −P = ∞ and P + Q = Q. Point ∞

(zero element) serves as additive identity of the group of points

Negatives

The negative −P is on the curve whenever P is. The point −P has the same

x-coordinate as P but negative y-coordinate, i.e. −(x1, y1) = (x1,−y1). The addition

P + (−P) gives as a result point at the infinity.

Addition of two distinct points P, Q (see Figure 2.3 left part)

Let R ∈ E(K) be the result of P + Q. To obtain R we draw a line through P and Q.

The third point, at which this line intersects E(K) is the reflection about x-axis of

the sum R.

Point addition algebraic formula for non-supersingular E(F2m) : y2 +xy = x3 +ax2 +b

x3 = λ2 + λ + x1 + x2 + a y3 = λ(x1 + x3) + x3 + y1,

where λ = (y1+y2)
(x1+x2)

Point addition algebraic formula for supersingular E(F2m) : y2 + cy = x3 + ax + b

x3 = λ2 + x1 + x2 y3 = λ(x1 + x3) + y1

where λ = (y1+y2)
(x1+x2)

Doubling P (see Figure 2.3 right part)

Let Q ∈ E(K) be the result of 2P operation. To obtain Q we draw a line tangent

to elliptic curve at P . The point, at which this line intersects E(K) is the reflection

about x-axis of the resulting point Q.

Point doubling algebraic formula for non-supersingular E(F2m) : y2+xy = x3+ax2+b

x3 = λ2 + λ + a = x2
1 + b

x2

1

y3 = x2
1 + λx3 + x3

where λ = x1 + y1

x1

Point doubling algebraic formula for supersingular E(F2m) : y2 + cy = x3 + ax + b

x3 = λ2 y3 = λ(x1 + x3) + y1 + c

where λ = (
x2

1
+a
c)

Point on elliptic curve can be represented using different types of coordinates. Each type

22

Addition P + Q = R Doubling 2P = R

Figure 2.3.: Addition and Doubling of a point on E(K)

has his advantages and disadvantages. For instance, projective coordinates does not require

inversion when performing operations on elliptic curve points [36]. All the above formulas are

derived for curves described by affine coordinates. For other types of coordinates: projective,

Jacobian, mixed, etc., those formulas are different [36].

For more details about elliptic curves we suggest reading [49, 102, 55, 10, 65].

2.1.2. Elliptic Curve Cryptography

The elliptic curve cryptographic techniques exploit properties of elliptic curves defined over

finite fields Fq. The elliptic curve cryptography schemes depend on the hardness of elliptic curve

discrete logarithm problem (below we present definition from [36]).

Definition 2.1.3. Elliptic Curve Discrete Logarithm Problem (ECDLP) [36]

Given an elliptic curve E defined over finite field Fq, a point P ∈ E(Fq) of order n, and a point

Q ∈ 〈P 〉, find the integer l ∈ [0, n− 1] such that Q = lP . The integer l is called the discrete

logarithm of Q to the base P, denoted l = logPQ.

Elliptic curve domain parameters D: q - field order; FR - field representation; S - seed;

a, b ∈ Fq, which define the equation of elliptic curve E; point P (xp, yp) ∈ Fq; order n of P ;

cofactor h = #E(Fq), to be used in cryptography are usually defined in standards (NIST [32],

SECG [92, 93]). Only for specific values of those parameters the cryptographic schemes resist

all known mathematical attacks on ECDLP.

23

Exemplary ECC security schemes The ECC is used in many cryptographic schemes. We will

provide some details of how some schemes work and give exemplary algorithms. Our goal is to

point out the operations in elliptic curve based security schemes, which are the attackers target.

The most important algorithm used in all types of public-key schemes is the key pair (Q, d)

generation, where Q is a public key and d is the corresponding private key. On the secrecy of

the key d depends the security of cryptographic techniques/schemes.

Algorithm 1 Key pair generation [36]

Input: Domain parameters D = {q, FR, S, a, b, P, n, h}.
Output: Public key Q, private key d.
1: Select d ∈R [1, n− 1]
2: Compute Q = dP
3: Return (Q, d)

The computation of d having Q and P is the elliptic curve discrete logarithm problem. As the

problem for properly chosen domain parameters D is intractable the security of d is ensured.

Signature scheme

Signature schemes are used to sign digital documents in the same way as handwritten signatures

are used to sign paper documents. With them we can provide the following security services:

authentication, data integrity and non-repudiation.

The signature scheme consists of the following steps [36]:

1. Domain parameter generation - to perform any of the next steps, we need set D =

{q, FR, S, a, b, P, n, h}; for cryptographic purposes those sets are defined in standards:

NIST [32], SECG [92, 93];

2. Key pair generation - generation of key pair {Q, d}, see Algorithm 1;

3. Signature generation - generation of a signature Σ of message m, using set D and private

key d (see Algorithm 2);

4. Signature verification - signature is verified, using set D, public key Q, and received sig-

nature Σ, in order to reject or accept incoming message m, see Algorithm 3.

One of the most popular scheme is Elliptic Curve Digital Signature Algorithm (ECDSA).

Algorithm 2 ECDSA signature generation [36]

Input: Domain parameters D = {q, FR, S, a, b, P, n, h}, private key d, message m
Output: Signature (r, s)
1: Select k ∈R [1, n− 1]
2: Compute kP = (x1, y1) and convert x1 to an integer x1

3: Compute r = x1 mod n. If (r = 0) go to step 1.
4: Compute e = H(m) // H is a hash function //
5: Compute s = k−1(e + dr) mod n. If (s = 0) go to step 1.
6: Return (r, s)

The other popular elliptic curve signature scheme is Elliptic Curve Korean Certificate-based

24

Algorithm 3 ECDSA signature verification [36]

Input: Domain parameters D = {q, FR, S, a, b, P, n, h}, public key Q, message m, signature
(r, s)

Output: Acceptance or rejection of the signature
1: Verify that r, s are integers in the interval [1, n− 1]. If verification=fail then return “reject

the signature”
2: Compute e = H(m) // H is a hash function //
3: Compute w = s−1 mod n
4: Compute u1 = ew mod n and u2 = rw mod n
5: Compute X = u1P + u2Q. If (X =∞) then return ‘reject the signature”
6: Convert the x-coordinate x1 of X to an integer x1; Compute v = x1 mod n
7: If v = r return (r, s)

Digital Signature Algorithm (EC-KCDSA). For more details see standards: ANSI X9.62 see [2],

FIPS 186-3 see [32], IEEE 1363-2000 see [3], ISO/IEC 15946-2 see [1].

Public-key encryption schemes

Public-key encryption schemes provide confidentiality service. It comprises the following steps [36]:

1. Domain parameter generation - to perform the scheme, we need set D = {q, FR, S, a, b, P, n, h};

for cryptographic purposes those sets are defined in standards: NIST [32], SECG [92, 93];

2. Key pair generation - generation of key pair {Q, d}, see Algorithm 1;

3. Encryption - encryption of a message m, using set D and public key Q, preparation of

ciphertext c, see Algorithm 4;

4. Decryption - either rejects the ciphertext as invalid or produces plaintext m using domain

parameters D, private key d, and received ciphertext c, see Algorithm 5; it is assumed that

D and Q are valid. The decryption algorithm always accepts (D, d, c) and outputs m if c

was indeed generated by the encryption algorithm on input (D,Q, m).

As an example we will provide algorithms used in elliptic curve analogue of ElGamal encryp-

tion scheme (see Algorithms 4, 5). Other popular elliptic curve based public key encryption

schemes are Elliptic Curve Integrated Encryption Scheme (ECIES), see [101], and Provably Se-

cure Encryption Curve Scheme (PSEC), see [78].

Algorithm 4 Basic ElGamal elliptic curve encryption [36]

Input: Domain parameters D = {q, FR, S, a, b, P, n, h}, public key Q, message m
Output: Ciphertext (C1, C2)
1: Represent the message m as a point M in E(Fq).
2: Select k ∈R [1, n− 1]
3: Compute C1 = kP
4: Compute C2 = M + kQ
5: Return (C1, C2)

Observing the structures of Algorithms 1, 2, 4, one can spot that if the values d, k will be known

25

Algorithm 5 Basic ElGamal elliptic curve decryption [36]

Input: Domain parameters D = {q, FR, S, a, b, P, n, h}, public key Q, ciphertext (C1, C2)
Output: Message m
1: Compute M = C2 − dC1

2: Return m

to an adversary the cryptographic schemes will not serve their purpose anymore. Knowing the

algorithm and those values an adversary will be able to negatively affect the communication.

Finding those values mathematically is equivalent to solving ECDLP problem, which is in-

tractable for certain sets of elliptic curve domain parameters. Unfortunately except theoretical

attacks, there exist physical attacks. By analysis of the behaviour of the device performing

cryptographic operations it is possible to discover the secret values, in ECC case, the values

such as the private key d or k (see algorithms in this section). Thus it is necessary to secure all

operations involving values d and k.

2.2. Finite Fields

The general theory of finite fields starts in the beginning of 19th century with works of Carl

Friedrich Gauss (1777–1855) and Evariste Galois (1811–1832). We will introduce the most

important algebraic theories. For a complete introduction to finite fields we suggest read-

ing [59, 58, 64, 96, 48]. The contents of this section are based on those references.

Groups [59]

Definition 2.2.1. A group is a set G together with binary operation * on G such that following

properties hold:

• ∗ is associative; for any a, b, c ∈ G a ∗ (b ∗ c) = (a ∗ b) ∗ c

• there is an identity (unity) element e ∈ G, such that for all a ∈ G: a ∗ e = e ∗ a = a

• for each a ∈ G, there exists an inverse element a−1 ∈ G such that a ∗ a−1 = a−1 ∗ a = e

If for all a, b ∈ G, a ∗ b = b ∗ a, then the group is called abelian (commutative).

Definition 2.2.2. A multiplicative group G is called cyclic if there is an element a ∈ G such

that for any b ∈ G there is some integer j with b = aj. The element a is called a generator of

the cyclic group, and we note G =< a >. Every cyclic group is commutative.

Definition 2.2.3. A group is called finite (resp. infinite) if it contains finitely (resp. infinitely)

many elements. The number of elements in a finite group is called its order. We shall write:

|G| for the order of the finite group G.

Rings [59]

26

Definition 2.2.4. A ring (R,+, ·) is a set R, together with two binary operations, denoted by

+ and ·, such that:

1. R is an abelian group with respect to +

2. · is associative - that is, (a · b) · c = a · (b · c) for all a, b, c ∈ R.

3. The distributive laws hold: that is, for all a, b, c ∈ R we have a · (b + c) = a · b + a · c and

(b + c) · a = b · a + c · a.

Element 0 (the zero element) is the identity element of the abelian group R with respect to

addition. Element −a is the additive inverse of a. Rings can be classified as follows:

Definition 2.2.5. Rings classification

1. A ring is called a ring with identity if the ring has a multiplicative identity - that is, if

there is an element e such that a · e = e · a = a for all a ∈ R.

2. A ring is called commutative if · is commutative.

3. A ring is called an integral domain if it is a commutative ring with identity e 6= 0 in

which ab = 0 implies a = 0 or b = 0.

4. A ring is called a division ring (or skew field) if the nonzero elements of R form a group

under · operation.

5. A commutative division ring is called a field.

Fields [59]

Definition 2.2.6. A field is a set F with two binary operations, addition and multiplication,

containing two distinguished elements 0 (zero element) and e (identity element) with 0 6= e.

A field F is an abelian group with respect to addition having 0 as the identity element. The

elements of F that are 6= 0 form an abelian group with respect to multiplication with e as the

multiplicative identity element, usually denoted by 1. Addition and multiplication are charac-

terised by the following distributive laws a · (b + c) = a · b + a · c, (b + c) · a = b · a + c · a.

Definition 2.2.7. Extension field

Let F be a field. A subset K of F that is itself a field under the operations of F will be called

a subfield of F . Then, F is called an extension (field) of K. If K 6= F , then K is a proper

subfield of F . If K is a subfield of the finite field Fp, p prime, then K must contain the elements

0 and 1, and all other elements of Fp by the closure of K under addition. It follows that Fp

contains no proper subfields.

Definition 2.2.8. Field as a vector space

If L is an extension field of K, then L may be viewed as a vector space over K. The elements

of L (“vectors”) form an abelian group under addition. Moreover, each “vector” α ∈ L can be

multiplied by a “scalar” r ∈ K so that rα is again in L (rα is simply the product of the field

elements r and α of L) and the laws for multiplication by scalars are satisfied: r(α+β) = rα+rβ,

(r + s)α = rα + sα, (rs)α = r(sα), and 1α = α, where r, s ∈ K and α, β ∈ L.

27

Definition 2.2.9. Existence and uniqueness

The order of a finite field is the number of elements in the field. There exists a finite field F

of order q if and only if q is a prime power, i.e., q = pn. If n = 1, then F is called a prime field.

If n = 2, then F is called an extension field. For any prime power q, there is essentially only one

finite field of order q; informally, this means that any two finite fields of order q are structurally

the same except that the labeling used to represent the field elements may be different. We say

that any two finite fields of order q are isomorphic and denote such a field by Fq.

Number of elements of a field. [59]

Theorem 2.2.1. Let F be a finite field. Then F has pn elements, where the prime p is the

characteristic of F and n is the degree of F over its prime subfield.

Proof. Since F is finite, its characteristic is a prime p according. Therefore the prime subfield

K of F is isomorphic to Fp and thus contains p elements.

Constructing finite fields. [59]

Starting from the prime fields Fp, we can construct other finite fields by the process of root

adjunction. If f ∈ Fp[x] is an irreducible polynomial over Fp of degree n, then by adjoining a

root of f to Fp we get a finite field with pn elements.

Bases of the finite field. [59, 36]

Definition 2.2.10. We regard a finite extension F = Fqm of the finite field K = Fq as a vector

space over K. Then F has dimension m over K, and if {α1, ..., αm} is a basis of F over K,

each element α ∈ F can be uniquely represented in the form

α = c1α1 + · · ·+ cmαm with cj ∈ K for 1 ≤ j ≤ m.

Definition 2.2.11. Let K be a finite field and F a finite extension of K. Then two bases

{α1, ..., αm} and {β1, ..., βm} of F over K are said to be dual (or complementary) bases if

for 1 ≤ i, j ≤ m we have:

TrF/K(αi, βj) =

{

0 for i 6= j

1 for i = j

Trace

The trace function TrF/K serves for a description of all linear transformations from F into K.

For more detailed information we suggest Chapter 3 of [58].

Definition 2.2.12. Let K = Fq and F = Fqm. Then a basis of F over K of the form

{α, αq, ..., αqm

} consisting of a suitable element α ∈ F and its conjugates with respect to K,

is called a normal basis of F over K.

28

2.2.1. Binary finite field extensions GF (2m)

The two most popular finite fields used in cryptography are prime fields GF (p), where p is

prime, and finite fields of characteristic 2 (binary extension field) GF (2m), denoted also by

F2m . The described research work in this thesis, concerns the second type of fields that is

binary extension fields GF (2m). Binary extension fields GF (2m) are considered advantageous for

hardware solutions because their elements are represented by polynomials (binary polynomials)

instead of integers and polynomial addition and modular reduction are regarded as simpler than

operations on integers [113].

To construct a binary finite field extension an irreducible polynomial f(x) over GF (2) of

degree m is used, it is assumed that α is its root, i.e. f(α) = 0. The irreducible polynomial is

of the form :

f(x) = xm + fm−1x
m−1 + · · ·+ f2x

2 + f1x + 1, (2.4)

where fi ∈ GF (2).

The field can be viewed as a vector space, which elements are represented with a use of

a specific basis. The most commonly used basis, of the form {1, α, α2, . . . , αm−1}, is called

polynomial (canonical) basis of the field. The elements of the finite field GF (2m) represented in

this basis are as follows:

A =
m−1
∑

i=0

aiα
i = am−1α

m−1 + am−2α
m−2 + · · ·+ a2α

2 + a1α
1 + a0α

0, (2.5)

where ai ∈ GF (2) = {0, 1} and α is a root of f(x). Thus we may say that all elements of

GF (2m) are polynomials of degree at most (m− 1).

2.3. Problem definition

This section will provide the reader with problems of our interest existing in described domain,

which for us seems worth solving. There are two main objectives when creating a cryptographic

system:

1. The system has to be very efficient in terms of speed, size (implementation cost), power

consumption, performance.

2. The system should be secure against attempts of stealing the secret data.

Efficiency of cryptographic system Modern cryptographic systems have numerous applica-

tions. In order not to negatively impact the performance of larger electronic systems they need

to be integrated with, they should be very efficient. By efficiency we mean that they are fast,

relatively small and effective. That they protect our data without slowing down other operations

and disturbing our work.

29

As the data size on which cryptographic systems operate constantly grows, we need to con-

stantly adapt existing cryptographic systems to arising needs. In ECC systems all operations

depend on the operations performed by finite-field arithmetic operators. If their performance

is inferior they negatively impact the work of the whole cryptosystem. Even if highly efficient

higher-level solution will be provided (see Figure 1.6 for what is a higher-level operation), the

system will fail due to poor performance of the most important modules: arithmetic operators.

It is not easy to create a really efficient solution. We have to take into account many things,

such as finite field elements representation, arithmetic operation algorithm, size of operands

(for ECC solutions they are of size 150–600 bits), if it is worth and possible to parallelise the

algorithm. It is necessary to find a trade-off between size and speed of a solution. It is possible

to create extremely fast solutions but huge and otherwise. The problem is to balance those two

parameters so that the overall efficiency/performance and cost will be satisfying.

Security of cryptographic system If we will implement the elliptic curve cryptographic system

according to requirements stated in the newest standards we can be sure that our cryptographic

system is safe against theoretical (mathematical) attacks. However as mentioned in the intro-

duction, there were developed attacks called side channel analysis attacks. SCA attacks exploit

the correlation between behaviour of the cryptographic device, such as power consumption,

emitted electromagnetic field, timing of the operation, and the secret data, such as private keys,

on which the device operates. The SCA is a very serious threat for a cryptographic system.

The weak implementations of cryptographic techniques allow even not well skilled adversary

to discover a private key. With the discovery of private key the whole communication system

becomes insecure.

Recently there have been proposed many methods for securing ECC systems, however they

focus on the top layers of the system; that is on operation [k]P (multiplication of the point on

a curve P by a scalar k) and primitive operations on points of elliptic curves (2P , P + Q). We

presume that securing just curve-level operations of ECC system is not enough. For simple side

channel analysis, where just one power trace sample is analysed, it is sufficient. However in case

of differential power analysis (where hundreds of samples are analysed) such countermeasures

may be too weak. We do not know any sources discussing countermeasures for finite field arith-

metic operators. The topic seems not yet exploited.

We presume it is necessary to secure all layers of a cryptographic system to make it really

secure. Because even if the upper layers of a cryptographic system are very secure, the informa-

tion leaking in lowest layer may significantly decrease the level of security of the whole system.

We find that implementing SCA countermeasures on each layer of ECC system should increase

much the level of the security of the cryptographic device.

Trade-off between objectives One may say that presented objectives for a cryptographic

system exclude one another. That, if we want to have efficient cryptosystem it cannot be loaded

with countermeasures because they would limit much its efficiency. On the other hand very

30

efficient cryptosystem without any countermeasure is useless nowadays. The problem is to find

a trade-off between efficiency of the system and its security, i.e. to find a way to secure the

system without degrading its elaborated efficiency.

2.4. Thesis formulation and research objectives

According to the formulated problems we may define the research objectives. The two main ones

are: to create efficient GF (2m) arithmetic operators and to make the operators secure against

some types of SCAs.

In order to create efficient GF (2m) basic arithmetic operators we have to familiarise ourselves

with details of operations on finite fields. Then it is necessary to perform a vast research and

choose most suitable basis to represent finite-field elements. Later we have to carefully study

existing algorithms for operations defined over GF (2m). Then we have to translate the most

promising ones to hardware and analyse meticulously their work in order to be able to create

our own solutions as efficient as possible.

The second objective is to secure the created arithmetic operators. There are many types of

SCAs, we have decided to secure our operators against family of power analysis attacks. The

power analysis attacks exploit the correlation between power consumed by the cryptosystem and

operations performed inside. We want to find effective algorithmic and architectural counter-

measures against those type of attacks.

Working on those two objectives we have to remember to verify the countermeasures impact

on the overall performance of arithmetic operators. If the countermeasure degrades much the

work of the solution then we have to rethink the countermeasure and either upgrade it or aban-

don the idea.

We have summarised all objectives of our research in the following plan:

1. Study of elliptic curve cryptography, finite fields, arithmetic operators, side channel attacks

and countermeasures.

2. Study of parameters of GF (2m) arithmetic operators - number representation, algorithms,

requirements.

3. Design and development of hardware GF (2m) arithmetic operators solutions.

4. Theoretical and practical evaluation of designed operators’ performances in FPGA circuit

- the operators’ efficiency is evaluated and if necessary improved until the results are

satisfying, and final versions of efficient operators are provided

5. Design and development of test environment for evaluating security of elaborated operators

- experiments using simulators, specific FPGA boards, FPGA dedicated internal signals

analysers, probes and oscilloscope.

6. Evaluation of security of designed arithmetic operators, elaboration of countermeasures.

7. Insertion and evaluation of countermeasures - evaluations of their efficiency, analysis of

their impact on the performance of the operators, if the results are not satisfying return

31

to previous point.

8. Proposition of efficient and secure basic GF (2m) arithmetic operators and their final eval-

uation.

9. Analysis, documentation and publication of obtained results.

Having identified the existing problems we may formulate now the main thesis we want to

prove with our researches. The thesis is as follows:

It is possible to create efficient and secure against some side-channel power anal-

ysis attacks GF (2m) arithmetic operators dedicated to reconfigurable hardware.

We find that it is possible to create very efficient GF (2m) arithmetic modules dedicated for

elliptic curve cryptosystems, working on operands of sizes up to 600 bits, and that it is possible

to secure them against information leakage without significant overhead. Moreover we claim that

it is possible to develop such countermeasures against power analysis attacks which would not

decrease significantly the performance of our elaborated modules but will significantly increase

their security against power analysis attacks.

The following chapters describe the researches conducted to prove our thesis.

32

3. Arithmetic operators on GF (2m)

There are two main operations defined in GF (2m): addition and multiplication. All other op-

erations (inversion, division, squaring, etc) can be performed using multiplication and addition.

The complexity of some operations depends on the representation of the elements of the field.

The most popular bases (for definition see Chapter 2, Section 2.2) used for representing ele-

ments in cryptographic applications are [36]: polynomial (canonical basis), normal basis and its

variations (optimal normal bases, gaussian normal bases), dual basis. Choosing right basis is

not a simple task. We have performed vast research on bases of finite fields elements taking into

account our target devices, results described in known literature obtained for each basis and the

application of developed finite fields arithmetic operators. The basic theory about each basis is

presented in Chapter 2, Section 2.2, here we will present the most popular applications of each

basis, its advantages, disadvantages and reasons why we have chosen the certain basis.

For our solutions we have chosen polynomial (standard, canonical basis). At first we have

eliminated from our choices the dual basis. Mainly due to the fact that it was mentioned in few

articles, such as [72], that it is not suitable for large m (field size). What is more all described

dual basis solutions were designed for very small m (up to 16). We have observed that dual basis

is used usually in error correcting codes applications, which does not require use of large finite

fields. It is usually used for smaller fields because it requires basis transformation operation,

which heavily depends on field generator (irreducible polynomial) form.

The hardest was to eliminate either polynomial or normal basis. Both standard and normal

basis seem to have properties suitable for assumed application of our arithmetic operators. Below

we present a summarised characteristics of those bases, and some comments found in literature.

Polynomial basis:

- characterised by regularity and simplicity (during implementation yields regular and simple

structures of the solution),

- clear and easy to understand from the mathematical point of view,

- the highest clock rate is achieved for polynomial basis solutions,

- multiplication in polynomial basis offers scalability,

- according to [45]: “The time and space complexities of bit-parallel canonical basis multipli-

ers are much better than that of multipliers based on the normal basis.”

Normal bases:

- squaring operation is very simple, it is just a rotation of vector elements,

- yields irregular structures,

33

- requires large area,

- it is claimed that for Optimal Normal Bases (ONB) [73] very fast solutions can be achieved,

- using ONBs, requires basis conversion from normal to optimal normal basis, which may

be costly.

The features of both bases presented here were collected during study of literature on the

subject. Some information contradict the other, thus it is hard to choose the right basis. Finally

we have decided to choose polynomial basis mainly due to the fact that it yields regular and

simple structures. As to this feature all known to us sources agree. We presume that for

hardware implementation it is much better when the structure is regular and simple. Otherwise

we may experience synchronisation, routing or hazard problems [85]. The more irregular and

complex architecture inserted into FPGA circuit the harder to control it.

Moreover according to [36], a very important position in literature on ECC : “Experience

has shown that optimal normal bases do not have any significant advantages over polynomial

bases for hardware implementation. Moreover, field multiplication in software for normal basis

representations is very slow in comparison to multiplication with a polynomial basis;”. However

we find that normal bases group maybe very promising and it would be worth analysing it in

the future.

The other important operators’ parameters are the field size m (operands size) and field generator

f(x). Designed arithmetic operators should serve ECC applications thus we will use the values

recommended in ECC standards [32]. The most recent values are presented in Table 3.1.

Table 3.1.: NIST recommended parameters [32]

field size m irreducible polynomial f(x)

163 f(x) = x163 + x7 + x6 + x3 + 1

233 f(x) = x233 + x74 + 1

283 f(x) = x283 + x12 + x7 + x5 + 1

409 f(x) = x409 + x87 + 1

571 f(x) = x571 + x10 + x5 + x2 + 1

We target all our solutions to Field Programmable Gate Arrays (FPGA), for simulation and

testing purposes we use Xilinx circuits. We will implement our operators in small Spartan-

3E XC3S1200E device [116] and one of the biggest FPGAs: Virtex-6 LX240T [20]. For test-

ing robustness against side-channel we also implement our circuits in Virtex-II Pro XC2VP7

FPGA [115] mounted on SASEBO-G board [94]. The elaborated solutions architectures are

described in VHDL, and synthesised, placed and routed, and implemented using Xilinx ISE 12.2

(for Virtex-6 and Spartan-3E) and ISE 9.2 (Spartan-3E, Virtex-II Pro) environments and their

tools. All the behavioral and post-route simulations are performed using built-in ISim simulator

or ModelSim simulator from Menthor Graphics. All the implementation results given in this

chapter are values predicted/calculated by Xilinx ISE environment.

34

3.1. Finite Field Addition

Addition is a very simple operation. In case of polynomial basis, it is a polynomial addition,

which can be viewed as a XOR operation of two m-bit binary vectors (m is a field size). Let a(x)

and b(x), two polynomials of size m, be the elements of GF (2m) and let c(x) be its sum and also

an element of the field. Addition of two polynomials is carried out under modulo 2 arithmetic,

i.e. to obtain c we have to perform the bitwise exclusive OR operation. This operation is regarded

as a very simple one due to the fact that we do not need to bother about carry propagation and

length of carry chains. On the other hand, if we perform very simple operation but on large

numbers, we may experience some problems. If we XOR large numbers the operation, although

simple, may take a lot of hardware resources.

Summarising, addition is rather fast operation however for large numbers it may take large

amount of area and should be well synchronised. In order to see if there exist real problems with

this operation we have designed few very simple operators.

It is very easy to paralellise this operation and it is possible to perform on-the-fly addition

while receiving consecutive parts of both operands with no need for storing them as well as the

result. In terms of efficiency the design of addition unit does not cause many problems. However

in terms of security the addition may be very problematic what will be shown in next chapter.

The ECC processor, in which the designed units will be built-in, assumes sending data over

buses in words (16, 32-bit words). According to this assumption we propose some addition

operator solutions.

We have studied the following cases:

1: Addition on-the-fly of a, b words, putting partial results in shifted register c (solution 1);

2: Addition on-the-fly of a, b words, putting partial results in memory block (solution 2);

3: Waiting for the whole a, b vectors, adding them at the end (solution 3);

The results we have obtained shown us that this operation is rather simple and should not gen-

erate a lot of problems. We do not present here values obtained for the solution 3. This solution

is really very simple, we may say that it is a translation of input signal to the output, thus it is

difficult to synthetise it to obtain some credible values.

Looking at the results presented in Table 3.2 it is easy to observe that addition in GF (2m)

is really simple. Our solutions are very small, around 20-30 LUTs and fast. With growth of

the size of input operands the area grows slightly, the same applies to the decrease of maximum

speed of the solution. However for solution 1 and the biggest field the frequency in comparison

for the smaller solutions drastically drops. In practice, in complete ECC system, addition is

usually performed parallely to other operations or interleaved with them due to its simplicity.

35

Table 3.2.: Addition solutions (Virtex-6)

field size solution 1 solution 2
m [LUT] [MHz] [LUT] [MHz]

163 21 771 26 562
233 21 771 26 562
283 22 767 28 560
409 22 767 28 560
571 24 578 31 558

3.2. Finite Field Multiplication

The second basic operation defined in finite field is multiplication. Multiplication in contrary to

addition is regarded as a complex operation.

Designing an efficient hardware algorithm for multiplication in binary finite field extensions

is one of the aims of this thesis, thus the thorough analysis of existing methods and solutions is

necessary. Our solutions will not be totally novel due to the fact that we base on old and known

mathematical theories. Our goal is to modify or merge the existing algorithms in order to fulfill

demanding cryptographic requirements. We also have to find the best way of translating the

algorithms to hardware and not losing much of their features. Our operators are aimed for ECC

applications thus they need to perform multiplication on large numbers (150–600 bits) and simul-

taneously be very fast and occupy reasonable amount of area of the target device. Moreover their

structures should be easily modifiable (flexible) to add countermeasures against physical attacks.

Finite field multiplication can be regarded as modular operation because it consists of two

steps: multiplication and reduction. In order to obtain the finite field multiplication result

we have to multiply operands and then reduce the product with use of field generator, so the

resulting element will be the element of the same field. Let a, b ∈ GF (2m), be the (m−1) degree

polynomials where a = a(x) =
(

m−1
∑

i=0

aix
i
)

= a0 + a1x + a2x + . . . + am−2x
m−2 + am−1x

m−1

and b = b(x) =
(

m−1
∑

j=0

bjx
j
)

= b0 + b1x + b2x + . . . + bm−2x
m−2 + bm−1x

m−1, and let f =

f(x) = 1+f1x+f2x+ . . .+fm−2x
m−2 +fm−1x

m−1 +fmxm be m degree irreducible polynomial

generating the field (for examples of irreducible polynomials used in cryptography see 3.1).

We want to perform:

c(x) = a(x)b(x) mod f(x) (3.1)

36

First we have to perform multiplication:

d(x) = a(x)b(x)

= a(x)
(

m−1
∑

i=0

bix
i
)

=
(

m−1
∑

i=0

bia(x)xi
)

=
(

b0a(x) + b1a(x)x + b2a(x)x2 + ... + b(m−1)a(x)x(m−1)
)

(3.2)

and then reduction [25] (the degree 2m− 2 polynomial d(x) is reduced iteratively by irreducible

polynomial f(x) of degree m):

d(2m−2) = d(x)

d(k−1) = d(k)(x) + f(x)d
(k)
k xk−m, m ≤ k ≤ 2m− 2,

(3.3)

where d(k) is a partial remainder and d(2m−2)(x) = c(x).

Generally GF (2m) multiplication algorithms can be divided in two groups: two-step algo-

rithms, in which we perform separately multiplication and reduction (in two consecutive steps),

and interleaved algorithms, in which we interleave/combine multiplication with reduction.

The most popular algorithms of both groups are presented and discussed below.

We have analysed many algorithms and their different versions to be able to take and combine

those features of the algorithms, which will allow us to create the most efficient algorithm ful-

filling, assumed requirements. Here we present only the most interesting results of our analysis.

3.2.1. Two-step algorithms

One of the most popular group of algorithms comprises two-step algorithms. Two-step because

to perform finite field multiplication we need to perform two separate steps: multiplication

d = ab and reduction c = d mod f . There exist many versions of two-step multipliers. They

combine different methods for multiplication and reduction in order to achieve the best, the

most efficient solutions.

In the following paragraphs, different methods for performing multiplication and reduction are

presented. Their features are thoroughly analysed in terms of hardware design and efficiency.

Finally the chosen combinations of multiplication and reduction are described and compared in

order to expose their advantages and disadvantages.

Multiplication step Here we will present the analysis of some widely known polynomial mul-

tiplication methods.

Schoolbook multiplication method (shift-and-add method). The simplest and the most

known polynomial multiplication method is so called schoolbook method (shift-and-add method).

Having two polynomials a(x) and b(x) of degree m−1 we obtain product d(x) of degree 2m−2 in

37

the way presented in Equation 3.2. We multiply polynomial a by each coefficient of polynomial

b, i.e. we successively shift the polynomial a by each coefficient of polynomial b, and add (XOR

in our case) the partial results. One may regard the a and b polynomials as two binary vectors.

Vector a, which is being shifted left (multiplied by 2n) by 2, 4, 8, etc., and vector b, which bits

decide if we should accumulate the particular shift of vector a or not. The illustrative example

for m = 4 is shown below:

a3a2a1a0

× b3b2b1b0

—————————————–
⊕ a3a2a1a0 ∧ b0

⊕ a3a2a1a0 ∧ b1

⊕ a3a2a1a0 ∧ b2

⊕ a3a2a1a0 ∧ b3

—————————————–
= d6d5d4d3d2d1d0

The method is very simple and allows creating regular combinatorial designs. However if we

want to use it to multiply large numbers it can be inefficient, especially regarding chip space

utilisation.

All basic polynomial multiplication algorithms are usually some kind of variations of this

method. The difference between variations usually lies in the way the operands are repre-

sented. There exists a simple vector version, matrix-vector version and divide-and-conquer

version (operands are partitioned). Different representations of operands strongly influence the

hardware structures elaborated to perform the multiplication. Some cause acceleration of the

solution but on the other hand they increase amount of resources used, some decrease the area

cost but also degrade speed of the solution. If we want to find the efficient solution, we always

have to look for some trade-off between resources occupied and time needed to execute the al-

gorithm. Different representations of operands let us also perceive new ideas of optimisation of

the basic algorithm.

In order to efficiently design hardware unit for a polynomial multiplier it is important to no-

tice the advantages of different mathematical algorithms and to find the tradeoffs between area

and speed of the elaborated solution. Unfortunately even the best theoretical optimisations and

simplifications of the algorithms do not give the expected efficiency increase when translated

to hardware. We have analysed many of the theoretical improvements by translating them to

hardware in order to see and maybe use their advantageous properties. However we were not

very satisfied with obtained results. In practice many of those improvements either yielded

hardware structures similar to original proposition or decreased efficiency of hardware solution.

In many cases it was not clear to what field sizes the algorithm improvements target. As we

would present, there exist improvements suitable only for certain field sizes, while for the other

they does not work as expected. However basing on the theoretical approaches presented in the

38

literature it is possible to extract the best parts, promising for hardware solution design, of all

the proposals and merge them to create an efficient hardware algorithm.

Matrix-vector approach. One of the most popular variations of the shift-and-add method

is its matrix-vector version [25]. There, polynomial a(x) is represented by a specific matrix A

of size (2m − 1) ×m, in which each column represents consecutive shifts left of a(x). Element

b(x) is represented by m size vector and product d(x) is also a vector but of size (2m− 1).

Instead of d(x) = a(x)b(x) we perform:

d = Ab =

d0

d1

...

dm−1

dm

dm+1

...

d2m−3

d2m−2

=

a0 0 0 . . . 0 0

a1 a0 0 . . . 0 0
...

...
.

. . .
...

am−2 am−3 am−4 . . . a0 0

am−1 am−2 am−3 . . . a1 a0

0 am−1 am−2
. . . a2 a1

0 0 am−1 . . . a3 a2

...
...

...
. . .

...
...

0 0 0 . . . am−1 am−2

0 0 0 . . . 0 am−1

b0

b1

b2

...

bm−3

bm−2

bm−1

(3.4)

As mentioned above and what can be observed comparing Equation 3.2 and Equation 3.4

each column of matrix A represents shifted vector a, index of column indicates how many times

vector a was left shifted. Further, as in case of shift-and-add method, bits of vector b denote

which column of matrix A (which shift of vector a) should be accumulated to obtain the prod-

uct vector d. We have implemented this algorithm in hardware in order to compare it with

the schoolbook version and concluded that they give basically the same implementation results.

However the matrix representation of a(x) reveals to us more ideas of optimisation of hardware

realisation. Combining elements of standard algorithm with the operands representation used

in matrix-vector approach allowed us creating an efficient algorithm for polynomial multiplica-

tion in GF (2m). The implementation results and more details concerning implementation are

presented below.

Divide-and-conquer algorithm and Karatsuba Ofman trick. One of the most popular

improvements of the classical multiplication method is Karatsuba-Ofman trick [44]. The trick

improves divide-and-conquer version of multiplication algorithm. Theoretically it decreases num-

ber of the most complex operations we have to perform to get product of a and b.

The aim of divide-and-conquer algorithms is to reduce large (hard) problem into a set of

smaller (easier) problems. In our case we partition input polynomials (multiplicands) so instead

of performing one multiplication of very large polynomials we perform many multiplications of

39

much smaller polynomials and finally combine the partial results. It is even possible to partition

our inputs into single coefficients, however this may not be very efficient.

The method assumes the following partitioning of the input parameters. For polynomials of

size m = 2t (m is even) we have:

a(x) = x
m

2 AH + AL = x
m

2 (x
m

2
−1am−1 + · · ·+ am

2

) + (x
m

2
−1am

2
−1 + · · ·+ a0)

b(x) = x
m

2 BH + BL = x
m

2 (x
m

2
−1bm−1 + · · ·+ bm

2

) + (x
m

2
−1bm

2
−1 + · · ·+ b0)

Hence one can denote multiplication as follows:

d(x) = a(x)b(x)

= (x
m

2 AH + AL)(x
m

2 BH + BL)

= xmAHBH + x
m

2 (AHBL + ALBH) + ALBL.

(3.5)

According to Equation 3.5 in order to multiply a and b one has to perform: four sub-multiplications

and three additions.

Karatsuba and Ofman [44] had modified the Equation 3.5 in such a way that the number of

needed sub-multiplications decreased. However the number of necessary additions, XOR opera-

tions, increased. The modified equation employing Karatsuba-Ofman trick is as follows:

d(x) = a(x)b(x)

= (x
m

2 AH + AL)(x
m

2 BH + BL)

= xmAHBH + x
m

2 ((AH + AL)(BH + BL)−AHBH −ALBL) + ALBL.

(3.6)

The number of necessary multiplications is now three and number of XOR operations needed is

six. It is assumed that multiplication operation is more costly than addition. If we operate

on single coefficients and we assume that multiplication equals to AND operation and addition

is equivalent to XOR operation than this assumption does not hold, especially in case of FPGA

circuit.

In theory when we build FPGA circuits on LUTs there is no difference if we use XOR or AND

gate because each of those gates can take one LUT if they yield the values of different outputs.

However if we assume that LUT size is finite (the function size, which can be implemented is

limited) then the XOR gates take more space. We have conducted some tests on this matter and

40

found that this is caused by the fact that however one describes the XOR gate in HDL (hardware

description language) it is always substituted by the combination of AND and OR gates. This can

be observed while inspecting technology schematics generated by the Xilinx ISE environment.

According to this the XOR function can be regarded as three gates plus inverters. Thus it is

obvious that it is more costly than a single AND gate. All that proves the opposite to what is

assumed; that is that XOR function is suggested to be the trivial operation, on the contrary it

appears to be a source of delay and space problems in the design.

Taking into consideration our observations we have decided to test the performances of ba-

sic divide-and-conquer algorithm (Equation 3.5) alongside with testing the algorithm involving

Karatsuba-Ofman trick (Equation 3.6).

The first obtained results confirmed our observations concerning addition and multiplication

complexity. The straightforward implementation of Karatsuba-Ofman optimisation for short bi-

nary vectors did not yield solutions more efficient than the algorithm with four multiplications,

on the contrary, first attempts for small input vectors (4-bit) had shown that the optimisation is

not efficient at all and yields bigger and slower designs. The advantage of Karatsuba-Ofman trick

could be observed starting from 16-bit input vectors as will be discussed later. The implemen-

tation analysis presented further will describe the practical effectiveness of Karatsuba-Ofman

optimsation.

The main problem, which occurs during the implementation of divide-and-conquer algorithms,

is how to wisely partition the polynomials (operands) to make the designed multiplier really effi-

cient. In order to find the most efficient partitioning, we had performed vast analysis of various

possibilities.

We have started our tests and analysis from implementation of small number multipliers.

We presumed that starting from implementations of large number multipliers might cause that

some algorithms’ properties will be invisible due to being masked by other problems existing in

extensive designs.

Multiplication step - hardware realisation. The presented multiplication algorithms can be

translated to hardware in two manners: straightforward as a combinatorial circuits or can be

partitioned to perform the multiplication steps sequentially. Combinatorial circuits are usually

very fast but also very extensive whereas sequential ones are slower, but better synchronised

and more compact. The best solution will be to combine combinatorial and sequential features.

In hardware it is important to find trade-offs between those two types of realisations in order

not to end up with extensive and very slow solutions.

To ease the comparison of elaborated solutions a new measure, the AT efficiency factor is

introduced.

Definition 3.2.1. The efficiency factor AT is the measure of efficiency in terms of execution

time of the operation and area taken by the circuit.

AT = (area × execution time)

41

It is a normalised product of area taken by the solution and the time needed to perform the

operation.

To calculate AT for combinatorial designs we have multiplied maximum delay value given

by Xilinx ISE environment by predicted area. In case of sequential designs we have multiplied

number of clocks needed to obtain result by minimal period given by ISE environment and by

predicted area. All the AT values were normalised to ease comparison.

During the primary analysis we have assumed that big number multipliers will be designed as

a combination of smaller number multipliers. We have presumed that such approach will yield

best results.

We begin our study of each algorithm for a very small input numbers (4-bit) and then observe

what are the best combinations and best sizes of primary multipliers when it comes to designing

bigger multipliers. Such approach seems advisable if one wants to create large number multipli-

ers of various sizes it should make the multiplier architectures scalable and flexible.

The first analysed multiplication method was the shift-and-add method. We have started from

the straightforward implementation and created pure combinational structures multiplying two

vectors. The simplest version of the circuit was a translation of Equation 3.2. To each bit of

resulting polynomial d a combination of XORed values were assigned as presented for m = 4 in

Figure 3.1.

We have started the analysis with implementation of 4-bit multiplier. The synthesis of the 4-

bit multiplier circuit yielded satisfying and promising results. Created design has quite regular

structure and works rather fast. It is compact (11 LUTs) and a total combinatorial path delay

is fairly low - around 7.7 ns (for Spartan-3E). With the doubling of the size of the input polyno-

mial the number of LUTs taken increases approximately 4 times. For 4-bit inputs the multiplier

circuit takes 11 LUTs, for 8-bit it is already over 40, then for 16 its nearly 200, thus for 32-bit

it is approximately 800 LUTs. According to this 256-bit multiplier will take over 52000 LUTs.

Spartan-3E has 17344 LUTs, which means that purely combinatorial design of 256-bit multiplier

far exceeds number of available resources. One may say that there are bigger devices available.

That is why as the second target FPGA we have chosen Virtex-6, which has 150720 LUTs, so

such multiplier will fit in but will occupy 1/3 of the chip. For bigger multiplier, 512-bit, the

design grows four times so probably it will have approx. 200000 LUTs, which exceeds also the

area of Virtex-6. Of course there exist still bigger chips, in Virtex-6 family of FPGAs the biggest

one has 566784 6-input LUTs, so that one will fit 512-bit combinational multiplier. However

building a design with the assumption that there is always newer and bigger FPGA, which will

fit it, is nonsense unless we always have huge amount of spare money to spend. Nowadays in

a world where one of the most important features of the device is the cost of its production,

the excessive, usually containing much redundancy, designs are useless. Additionally the routing

costs and delay problems are smaller if we connect the units inside the chip instead of connecting

the chips with some external buses. As a result of our study one may conclude that it is not wise

42

Figure 3.1.: Idea of circuit performing shift-and-add method for m = 4

to create purely combinatorial circuit for a large number multiplier. Although they are fast (the

combinatorial path delay increases slightly with the increase of the size of the input parameter,

around 0.5 ns or even less), for large inputs, they take a huge amount of hardware resources,

which makes them not suitable for integration with other units. The overall hardware cost will

be too big. Extensive designs cause also routing and synchronisation problems.

Thus we may conclude that big straightforward combinatorial multipliers are very area in-

efficient. However such regular structures seem to be very appropriate to be implemented in

FPGAs. Our next idea was to use small combinational multipliers to build bigger solutions.

The biggest implemented by us fully combinatorial multiplier was 32-bit multiplier. All ob-

tained results are presented in Table 3.3.

Because purely combinatorial circuit yields huge solutions for large sizes of input operands we

have decided to test what are the results and advantages of sequential solutions. The question

arising in this case was how to “sequence” (partition) the design to obtain a compact and fast

multiplier.

The first idea was to observe the purely sequential solution, which means to perform each

stage of Equation 3.2, each XOR operation, in a separate clock cycle. The primary size of input

operands was 4 bits as in previous cases. The resulting hardware structure in Spartan-3E is

very regular and can work with high frequencies, around 300 MHz. However such a solution

43

requires, for 4-bit inputs, more LUTs (35 LUTs) than the combinatorial solution. Such a result

is not surprising and could be predicted. What is surprising is the fact that for larger input

vectors its area increases almost similarly as in case of combinatorial circuits. Hence it requires

more space than the combinatorial circuit, simultaneously requiring more time to perform the

task. Probably it caused by the synthesizer settings which duplicate gates structures, instead of

reusing just one structure in each clock cycle (state of finite state machine).

Our next idea was to create the sequential circuit utilising the classical combinatorial multi-

plier units. We have analysed the behaviour of few 32-bit multipliers built as a sequential

combination of 16, 8 and 4-bit multipliers. To combine obtained partial results we have used

divide-and-conquer algorithm. 32-bit multiplier is still small in comparison to ones we ought

to create (150–600 bits), however it may show us what is the best way of partitioning input

operands in order to achieve the best efficiency. In the following equations Ai, Bi denote i-bit

A, B elements (vectors). Our first proposition was to create a circuit using sixteen times one

8-bit sub-multiplier according to the equation 3.7.

A32B32 = AH
16B

H
16 + AH

16B
L
16 + AL

16B
H
16 + AL

16B
L
16

= AHh
8 BHh

8 + AHh
8 BHl

8 + AHl
8 BHh

8 + AHl
8 BHl

8

+ AHh
8 BLh

8 + AHh
8 BLl

8 + AHl
8 BLh

8 + AHl
8 BLl

8

+ ALh
8 BHh

8 + ALh
8 BHl

8 + ALl
8 BHh

8 + ALl
8 BHl

8

+ ALh
8 BLh

8 + ALh
8 BLl

8 + ALl
8 BLh

8 + ALl
8 BLl

8 ,

(3.7)

Each expression of the form AIi
8B

Ii
8 symbolises one operation performed by the 8-bit sub-

multiplier. Second proposed solution uses four times one 16-bit sub-multiplier.

A32B32 = AH
16B

H
16 + AH

16B
L
16 + AL

16B
H
16 + AL

16B
L
16. (3.8)

Here each expression of the form AI
16B

I
16 symbolises one operation performed by the 16-bit

sub-multiplier. The last combination uses four 8-bit sub-multipliers four times. In the equa-

tion 3.7 each row of the form AIi
8 BIi

8 +AIi
8 BIi

8 +AIi
8 BIi

8 +AIi
8 BIi

8 symbolises operations performed

by one 8-bit sub-multiplier.

Those tests were made to see what is the best combination of sub-multipliers. The best result

was obtained for combination 3.8: the solution takes the smallest number of LUTs and can work

at high frequencies; what is more it needs small number of clock cycles to perform a, b multipli-

cation. We have compared that solution with the combinational one using four 16-bit units. In

terms of area taken the second solution seems to be much worse. Comparing AT efficiency fac-

tors (see Definition 3.2.1), for sequential solution we have ATseq = 2.213ns×6× 277 ≈ 3678 and

for combinational ATcomb = 12.076ns×789 ≈ 9527, we can see that sequential solution is overall

three times better than the combinational one. The solution using four 8-bit sub-multipliers

yields similar results to the one using one 16-bit unit, however we have to deal with more sub-

blocks. The worse solution happens to be the one using only one 8-bit unit. Mainly due to the

44

Table 3.3.: Schoolbook multiplication - implementation results (Spartan-3E)

Multiplier
Combinatorial delay [ns] /

area (4-1 LUT) ATMaximum frequency [MHz]
(# of clock cycles)

4-bit 7.68 ns 11 84
8-bit 8.9 ns 43 383
16-bit 9.4 ns 195 1833

32-bit, combinational,
12 ns 818 9816

four 16-bit multipliers
32-bit, sequential,

451 MHz (6 clks) 277 3685
one 16-bit multiplier: eq.3.8

32-bit, sequential,
451 MHz (14 clks) 318 9871

one 8-bit multiplier: eq.3.7
32-bit, sequential,

451 MHz (6 clks) 279 3712
four 8-bit multipliers: eq.3.7

fact that it needs the greatest number of clock cycles to compute the result. We have analysed

many more variations of 32-bit sequential multiplier reusing combinatorial multipliers, but those

presented seemed to be the most interesting from our point of view, for further analysis of big-

ger multipliers. The results of implementations for Spartan-3E FPGA are presented in Table 3.3.

Before starting the analysis of matrix-vector approach we have attempted to build bigger

multipliers employing just the schoolbook approach and divide-and-conquer methods. We have

built 64-bit multipliers and 128-bit multipliers but we were not very satisfied with results so we

have switched to analysis of matrix-vector approach.

On the other hand the analysis of 64-bit multipliers allowed us to see advantages of Karatsuba-

Ofman optimisation. In Table 3.4, we present results obtained for two 64-bit multipliers, built

from the same elements (built of 32-bit sub-multipliers, built of 16-bit sub-multipliers, which are

built of 8-bit combinational sub-multipliers). One multiplier combines all partial results using

standard divide-and-conquer approach (see Figure 3.2.1) and the other using Karatsuba-Ofman

trick (see Figure 3.2.1).

Table 3.4.: Classic divide-and-conquer technique and Karatsuba-Ofman trick comparison

64-bit multiplier
Area (LUTs) Maximal delay (ns) AT

Spartan-3E Virtex-6 Spartan-3E Virtex-6 Spartan-3E Virtex-6
Divide-and-conquer 2897 1782 14.25 3.79 41270 6746
Karatsuba-Ofman 1754 1424 13.37 5.13 23442 7301

According to the results presented in Table 3.4 it is clear that the design using Karatsuba-

Ofman trick is much faster and smaller than the one using standard version of divide-and-conquer

method.

45

Figure 3.2.: Classic divide-and-conquer approach

Figure 3.3.: Karatsuba-Ofman approach

The last multiplier built with use of pure combinational sub-multipliers was 128-bit multiplier.

The most efficient classic 128-bit multiplier designed, however we did not explored all possibil-

ities, was built of eight 16-bit sub-multipliers. The idea for this multiplier was to divide input

polynomials into 16-bit words. Thus for 128-bit inputs we had to use eight times eight 16-bit

sub-multipliers. That is in each clock cycle we multiply each 16-bit word of vector a by succes-

sive 16-bit words of vector b. Finally we combine all partial results. The constructed multiplier

has the parameters presented in Table 3.5.

Table 3.5.: Classic divide-and-conquer technique and Karatsuba-Ofman trick comparison

128-bit multiplier
Area (LUTs) Max.frequency (MHz) AT

Spartan-3E Virtex-6 Spartan-3E Virtex-6 Spartan-3E Virtex-6
2919 1561 288 775 101354 20142

The most advantageous feature of the circuit is that it needs only 10 clock cycles to perform

multiplication, thus it seems rather efficient in terms of speed.

46

Further analysis aimed at investigating how the area of combinatorial Karatsuba-Ofman de-

signs depend on the size of input polynomials. By analysis of 32, 64 and 128-bit multipliers we

saw that the design area grows almost 4 times for doubling of the size of the input arguments.

However in contrary to pure combinatorial schoolbook method solutions areas, which were each

time, multiplied by more than 4 (for large numbers the multiplication factor grows to 5), here

areas of multipliers grow by less than four. For example pure combinatorial 64-bit multiplier has

taken over 2000 LUTs but Karatsuba-Ofman multiplier took about 1750 LUTs. Nevertheless in

case of this approach the combinatorial path delay increases faster and for 64-bit multipliers it

is over 16 ns while in case of previous solution it is about 12 ns. The results for different sizes

of divide-and-conquer multipliers are compared in Table 3.6. Observing parameters of obtained

designs we can clearly see that Karatsuba-Ofman trick is efficient for large operands. Up to

16-bit input vectors it is visibly less efficient than classic divide-and-conquer method.

Table 3.6.: Divide-and-conquer methods implementations

Multiplier (basic unit) Type
Delay Area Efficiency
[ns] [LUT] AT

8-bit

4-bit combinatorial multiplier
dq 9 ns 45 405
KO 9.3 ns 46 427

16-bit
4-bit combinatorial multiplier dq 12.6 ns 158 1991

8-bit combinatorial multiplier
dq 10.3 ns 172 1772
KO 11.7 ns 159 1860

8-bit Karatsuba-Ofman multiplier KO 12.7 ns 170 2159
32-bit

(16-bit divide-and-conquer multiplier
dq 11.9 ns 518 6167

built of 8-bit combinational multipliers)
(16-bit Karatsuba-Ofman multiplier

KO 13.3 ns 429 5708
built of 8-bit combinational multipliers)

64-bit
(32-bit Karatsuba-Ofman multiplier)

KO 16 ns 1753 28048built of 16-bit Karatsuba-Ofman multiplier)
built of 8-bit combinational multiplier)

*(dq: classic divide-and-conquer, KO: Karatsuba-Ofman optimisation)

Next we have analysed what advantages yield matrix-vector approach.

Initially we have implemented the method straightforward for small multipliers, but for exam-

ple for 4 bits we have obtained exactly the same structure as in case of shift-and-add method.

Thus we have reanalysed the Equation 3.4 used in matrix-vector approach and came out with

new idea for structure of a multiplier. It seemed obvious that storing whole matrix A during

the computations and XORing its rows in the end would yield enormous solutions, especially in

the case of large operands. For example in case of 4-bit inputs, matrix A would be of size 6× 4

which could be regarded as six 4-bit vectors. So instead of having one 6-bit output vector and

47

two 4-bit inputs we have one 6-bit input and seven 4-bit inputs. Thus the redundancy here is

big. For example if m = 100 we would need 2m − 2 = 198 additional vectors. Our idea is to

store only two columns of the matrix A at a time, which in fact means working on two registers

representing matrix A columns. In the first we exchange values of consecutive columns of A and

in the second we accumulate partial results. We may actually regard one register as a column

of matrix A and the other as our product d. The solution is sequential and due to the fact

that we have to process each column of matrix A and we have only one register for storing its

values (we may use more registers to process more columns at a time) it requires for m-bit input

2m clock cycles to perform multiplication. The analysed implementation can multiply at most

600-bit operands. Exactly the same structure can be used for multiplying for example 2, 4 or

8-bit operands. Depending on how many bits of our “column” vectors we use Xilinx synthetiser

optimises the area taken by the solution. Table 3.7 presents parameters of matrix-vector designs

for few values of m.

Table 3.7.: Matrix-vector approach implementation results (Virtex-6)

m Area [LUT]
Maximal frequency

AT
[MHz]

32 230

520

28.3
128 838 412.2
163 1050 658.5
233 1490 1335.3
256 1632 1606.9
283 1820 1981
409 2617 4116.7
571 3644 8002.8
600 3707 8554.6

The solution can be optimised, for example number of clock cycles needed to obtain the result

could be minimised by increasing the area of the solution, i.e. increasing the number of matrix

A’s columns stored. We can also try to reuse small multipliers and combine partial results by

means of divide-and-conquer techniques. There exist many possibilities. So far the algorithm

was the easiest to implement efficiently. The resulting circuit was sequential. The structure as

in previous cases was regular and fairly simple.

Next we have analysed if it is possible to increase the efficiency of matrix-vector solutions

by utilisation of divide-and-conquer techniques, increasing number of “columns” used in com-

putation process or storing whole matrices. Obtained results with comments are presented in

Table 3.8.

It can be observed that inserted optimisations did not really increased the efficiency of the

designs. Some of them caused significant decrease of number of clock cycles needed to compute

the product, from 2m to m/2, however in the same moment they have increased area. Inter-

48

Table 3.8.: Modified matrix-vector multipliers: implementation results (Spartan-3E)

m
Area Max. frequency/delay

Description AT
[LUT] [MHz]/[ns]

15 132 205 MHz/30 clks
Simple solution,

19.3
2 columns used

15 324 218 MHz/8 clks
Optimised solution,

11.9
8 columns used

15 171 9.4 ns
Combinational solution,

1.6
whole matrices “stored”

64 511 228 MHz/128 clks
Simple solution,

286.88
2 columns used

64 984 223 MHz/64 clks
Uses three 32-bit

282.4
matrix-vector multipliers

64 1626 233 MHz/32 clks
Uses four 32-bit

223.3
matrix-vector multipliers

64 1299 225 MHz/32 clks
Optimised solution,

184.7
8 columns used

256 1955 231 MHz/512 clks
Simple solution,

4333.2
2 columns used

256 5070 217 MHz/128 clks
Optimised solution,

2990.6
8 columns used

256 2118 220 MHz/228 clks
Uses three 128-bit

2195
matrix-vector multipliers

512 3881 234 MHz/1024 clks
Simple solution,

16983.5
2 columns used

512 10983 198 MHz/256 clks
Optimised solution,

14200.2
8 columns used

512 10445 220 MHz/256 clks
Uses three matrix-vector

12154.2256-bit multipliers built of
three 128-bit matrix-vector units

512 6596 220 MHz/512 clks
Uses three 256-bit

15350.7
matrix-vector multipliers

esting seem the designs utilising three sub-multipliers and employing Karatsuba-Ofman trick.

Those ones need small number of clock cycles and do not need much more area than in case

of simple solution. In fact their efficiency factor AT is better then the one obtained for simple

matrix-vector solution.

To start the process of design of required NIST size, i.e. large size multipliers we have compared

our most efficient hardware solutions for classic and matrix-vector approach in order to decide

which design approaches are most worth utilising. We have considered designs of 32-bit, 64-bit

and 128-bit multipliers, see Table 3.9.

For us the most promising solutions are matrix-vector solutions utilising Karatsuba-Ofman

49

Table 3.9.: Comparison of classic and matrix-vector approach implementations results (Virtex-6)

Multiplier
Area Max. freq.(#clks)/delay

AT
[LUT] [MHz]/[ns]

32-bit
Three 16-bit multipliers

540 13.3 ns 7.2built of three 8-bit

combinational multipliers (KO)

matrix-vector multiplier 230 520 MHz (64 clks) 28.3
64-bit

Multiplier built of 32-bit

1424 5.13 ns 7.3
Karatsuba-Ofman units built of

16-bit Karatsuba-Ofman built of

8-bit combinational multipliers

matrix-vector multiplier 433 520 MHz (128 clks) 106.6
Karatsuba-Ofman multiplier built

810 535 MHz (64 clks) 96.9
of 32-bit matrix-vector units

Divide-and-conquer multiplier
1476 533 MHz (32 clks) 88.6

built of 32-bit mv multipliers

Matrix-vector multiplier
1112 520 MHz (32 clks) 68.4

(matrix divided into 4 parts)

128-bit
Multiplier built of eight 16-bit

1561 775 MHz (10 clks) 20.1
combinational multipliers

Matrix-vector multiplier 838 520 MHz (256 clks) 412.6
256-bit

Matrix-vector multiplier 1632 520 MHz (512 clks) 1606.9
Matrix-vector multiplier

4580 520 MHz (128 clks) 1127.4
(matrix divided into 4 parts)

Karatsuba-Ofman multiplier,
2009 535 MHz (228 clks) 856.2

(128-bit matrix-vector units)

512-bit
Matrix-vector multiplier 3268 463 MHz (1024 clks) 7227.7
Matrix-vector multiplier

8769 520 MHz (256 clks) 4317
(matrix divided into 4 parts)

Karatsuba-Ofman multiplier,

10357 528 MHz (256 clks) 5021.6built of 256-bit mv multipliers)

built of 3 128-bit mv multipliers

Karatsuba-Ofman multiplier
6026 535 MHz (512 clks) 5766.9

(256-bit multipliers)

50

optimisation, working on halved input operands. They occupy a reasonable amount of area and

they are quite fast. However according to Table 3.9 their AT coefficients are not always the best

ones, they are usually average. Examining closer the results we may also see that those solutions

which occupy more area can perform multiplication faster, and otherwise. Furthermore we find

that the solutions with average AT factors usually contain some trade-offs between space and

speed. In fact the designer always have to decide what parameter is the most important and

then decide which type of solution to choose.

Initially we have assumed that the best hardware solutions for large number multipliers are

the ones working on vectors of regular sizes. By regular we mean 32, 64, 128, 256, 512, i.e.

power of 2 sizes. Thus we have created such multipliers to have them as reference designs, i.e.

to compare them with multipliers of NIST (irregular, prime) sizes and to see if it is really better

(more efficient) to have redundant but regular multiplier or the one optimised for certain prime

size. We have assume that it is possible to perform multiplication of:

• m = 163, 233-bit vectors using 256-bit multiplier,

• m = 283, 409-bit vectors using 512-bit multiplier,

• m = 571-bit vectors using 1024-bit multiplier.

It can be observed that for m = 283 and 571 the redundancy is huge, thus in those cases we are

rather sure that optimised to recommended sizes solutions will give better results.

Table 3.10.: Classic approach implementations of 163-bit multiplier (Virtex-6)

Multiplier
Area Max. freq.(#clks)

AT
[LUT] [MHz]/[ns]

163-bit matrix-vector multiplier 1050 520 MHz (326 clks) 658.5
256-bit matrix-vector multiplier 1625 520 MHz (512 clks) 1600
163-bit multiplier built of three

1977 535 MHz (164 clks) 606
82-bit matrix-vector units

256-bit multiplier built of three
2009 535 MHz (228 clks) 856.2

128-bit matrix-vector units
163-bit multiplier built of two

2098 535 MHz(256clks) 1003.9128-bit matrix-vector multipliers
and one 64-bit matrix-vector unit
256-bit matrix-vector multiplier

4580 520 MHz (128 clks) 1127.4
(matrix divided into 4 parts)

We have started from 163-bit multipliers and obtained solutions with parameters presented

in Table 3.10. The best seems to be our multiplier based on Karatsuba-Ofman trick, utilising

three 82-bit matrix-vector multipliers. Quite nice results gives also simple matrix-vector 163-bit

multiplier. It is slower than modified version but much smaller, what is more its AT factor is

not much higher. Another conclusion, which can be drawn from the results is that “regular”

51

size solution does not give better results either in terms of area or in terms of speed. However

difference between 163 and 256 is rather big thus we could predict such comparison results.

Unfortunately another “regular” value close to 163 is 128 which is too small. We have also tried

to combine smaller “regular” size multipliers to create 163-bit multiplier (see 5th solution in Ta-

ble 3.10) however, as could be observed, the results were not very satisfying.

After evaluation of big number multipliers (see tables in this section for results) and mul-

tipliers, which can perform 163-bit multiplication, we have concluded that the best solutions

which can be achieved with classical methods, are multipliers based on three matrix-vector mul-

tipliers. In those solutions the sub-multipliers size is half the size of original input polynomial.

To combine partial results obtained from sub-multipliers we base on Karatsuba-Ofman trick.

Regarding those conclusions we have created multipliers of size 233, 283, 409, 571. The results

are presented in Table 3.11. Next we have switched to analysis of reduction methods to be able

to create complete finite field multipliers.

Table 3.11.: 233, 283, 409 and 571-bit multipliers (Virtex-6)

Multiplier
Area Max.freq.(#clks)

AT
[LUT] [MHz]

233-bit multiplier built of three
2625 520 MHz (234 clks) 1181.3

117-bit matrix-vector units
283-bit multiplier built of three

3381 535 MHz (284 clks) 1794.8
142-bit matrix-vector units

409-bit multiplier built of three
4834 535 MHz (412 clks) 3722.6

206-bit matrix-vector units
571-bit multiplier built of three

7095 522 MHz (572 clks) 7774.6
286-bit matrix-vector units

Reduction step Generally there exist two reduction methods. One method employs a classic

scheme, see Equation 3.3 on page 37, the other employs a specific reduction matrix R (see [25]).

However many variations of a classic method optimised for a specific irreducible polynomials

(trinomials, pentanomials, equally spaced polynomials) have been proposed (see [36]).

Classic reduction. The classical method in case of polynomials may be interpreted as follows:

we look for bits equal to 1 in the upper part of d(x), that is on positions: (2m − 2) down

to m, and step by step reduce vector d(x), XOR vector d(x) by appropriate shift of irreducible

polynomial f(x) (see Algorithm 6).

The drawback of this reduction method is that it is very time consuming (we need at least

m clock cycles to perform reduction). Utilising properties of special irreducible polynomials

one may optimise classical algorithm. The aim of optimisations is usually to decrease number

of sequential XOR operations needed to reduce polynomial d(x), thus to reduce time needed to

52

obtain result.

Algorithm 6 Classic reduction (our interpretation)

Input: d(x), f(x)
Output: c(x) = d(x) mod f(x)
1: for i = 2m− 2 to m do
2: if di = 1 then
3: e = shift f by (i−m) // producing shift of vector e //
4: d = d XOR e // reducing d //
5: end if
6: end for
7: return d

Reduction matrix method. [25] As in case of multiplication the matrix approach to reduction

was derived. To reduce the product we need special reduction matrix R. The reduction matrix

method allows significantly speeding up reduction process.

Having polynomial d(x) = a(x)b(x) = d0 + d1x + · · · + d2m−2x
2m−2 in order to reduce it we

partition it in two parts. The lower part containing the least significant bits of d : d(L)(x) =

d0 + d1x + · · · + dm−1 and the upper part containing the most significant bits of d: d(H)(x) =

dm +dm−1 + · · ·+d2m−2. Then representing both parts of d as vectors and using an (m×m−1)

matrix R, reduction is performed as follows:

c = d(L) + Rd(H). (3.9)

Reduction matrix R is defined in terms of irreducible polynomial f(x), generating the field.

Let fi and ri,j denote coefficients of f(x) and entries of reduction matrix R respectively. Let

rj = [r0,j , r1,j , ..., rm−1,j]
T denote the j-th column of matrix R; f = [1, f1, ..., fm−1]

T denotes

vector representing irreducible polynomial generating the field and let ↓ denote shift right (shift

down) of any vector. Then,

rj =

f for j = 0

rj−1[↓ 1] + rm−1,j−1f for j = 1, ..., (m− 2)
(3.10)

Thus we have :

c = d(L) + Rd(H) =

d
(L)
0

d
(L)
1
...

d
(L)
m−2

d
(L)
m−1

+

r0,0 r0,1 r0,2 . . . r0,m−3 r0,m−2

r1,0 r1,1 r1,2 . . . r1,m−3 r1,m−2

...
...

...
. . .

...
...

rm−2,0 rm−2,1 rm−2,2 . . . rm−2,m−3 rm−2,m−2

rm−1,0 rm−1,1 rm−1,2 . . . rm−1,m−3 rm−1,m−2

d
(H)
m

d
(H)
m+1
...

d
(H)
2m−3

d
(H)
2m−2

(3.11)

53

Matrix approach to reduction yields very good results in terms of hardware design. Many

researchers find it even advisable to perform multiplication in any way, using any method, and

then to reduce the result using reduction matrix R.

Reduction step - hardware realisation. We have started with analysis of classic not optimised

to irreducible polynomial reduction method. However knowing that it is not very efficient we

have created just one version of such reduction unit, just to be assured that its efficiency makes

it unworthy considering. Created solution (see first solution in Table 3.12 at the end of the

paragraph) is rather big and time inefficient. We find that it can be improved, especially in

terms of area. According to us also the number of clocks could be reduced but we presume that

the smallest number of clocks, which is possible to achieve is m.

Next we have started to optimise classic algorithm reducing product d(x) regarding irreducible

polynomials recommended for NIST’s fields. Usually for those fields there are defined gener-

ators with special properties, e.g. trinomials, pentanomials. Trinomials have only three and

pentanomials five coefficients equal to 1, which is very advantageous.

Our version of reduction algorithm for elements of field of size m = 233, optimised for trino-

mial f(x) = x233 + x74 + 1 (recommended in [32]), is as follows:

Algorithm 7 Reduction algorithm (optimised version for m = 233))

Input: d(x), f(x)
Output: c(x) = d(x) mod f(x)
1: e = d[2m− 2, ...,m] // assign part of vector d to e //
2: e1 = e× f
3: d1 = d XOR e1 // first reduction step //
4: e = d1[74 + (m− 1), ...,m] // assign part of new vector d to e //
5: e2 = e× f
6: c = d1 XOR e2 // second reduction step //
7: return c

Similar reduction algorithms optimised for trinomials can be found in [36].

It may seem that Algorithm 7 requires additional multiplications (line 2 and 5), however if one

of the operands is known in advance and number of its bits equal to 1 is very low, multiplication

is very simple. It can be substituted with few XOR operations. Moreover we do not need to reduce

those products. So instead of performing costly modular multiplication we perform simple set

of XOR operations.

Last implemented reduction unit was the one employing reduction matrix R. We propose two

types of such solution, sequential (synchronised) and combinational one. Results obtained for

all discussed types of reduction units, for field of size m = 233, are presented in Table 3.12.

As we can observe the non-optimised classical unit is the biggest and needs the greatest

number of clock cycles to perform reduction operation. Quite promising seems the solution

of optimised version of classical unit, especially in terms of speed. As mentioned, number of

54

operations necessary to be performed depends strongly on the form of irreducible polynomial

f(x). For m = 409 number of operations performed by this type of reduction unit remains the

same, for m = 233 and 409 it is possible to have trinomials. However for m = 163, 283, 571

number of operations performed increases to 14 (which is still small) due to the fact that for

those fields NIST defines pentanomials (there are no trinomials for those fields). Concluding, one

may say that optimisations regarding irreducible polynomials are highly recommended because

they improve much the overall efficiency of reduction unit.

Table 3.12.: Comparison of different types of reduction units for 233-bit multiplier (Virtex-6)

Reduction unit
Area Max.freq.(#clks)

AT
[LUT] [MHz]

Classical not optimised 3528 209 MHz (600 clks) 10128.2

Classical optimised 1165 571 MHz (8 clks) 16.3

Reduction matrix
466 1264 MHz∗ (2 clks) 0.74

(sequential)
Reduction matrix

233 1.13 ns 0.26
(combinational)

*the results are the one given by Xilinx ISE, in this case we presume that combining such unit with
other will not have impact on the speed

The most efficient seem to be solutions employing reduction matrix R. In fact that reduction

method is very simple. The reduction matrices for trinomials and pentanomials contain a lot of

zeroes (see exemplary matrix on Figure 3.6 for trinomial defined for m = 233). Thus the whole

complicated reduction operations are in fact a set of simple XOR operations. The more bits equal

to 1 the irreducible polynomial has the more XOR operations we have to perform. The proposed

reduction circuits integrate additional mechanisms serving data exchange and communication

with multiplier units.

When we use finite field operators for cryptographic purposes we are provided with secure

field sizes and irreducible polynomials (NIST) thus it is easier to optimise the reduction process.

What is more the recommended field generators are usually trinomials or pentanomials (they

contain either only three or five bits equal to 1) whose properties may really simplify reduction

process of large numbers.

Two-step finite field multipliers - proposed solutions, summary and comparison The anal-

ysis of multiplication and reduction allowed us to create the hardware solutions for complete

two-step GF (m) multipliers. Basing on the obtained results to create a complete GF (2m)

multipliers we have decided to use:

- as a multiplier unit: matrix-vector multiplier utilising three sub-multipliers of half the

original input size (m/2), employing Karatsuba-Ofman trick,

- as a reduction unit: classical optimised to irreducible polynomial reduction unit or the

55

one utilising reduction matrix R.

We present as exemplary the implementation results for our GF (2m) multipliers where m =

233. The results are presented in Table 3.13.

Table 3.13.: Complete classic GF (2233) multipliers (Virtex-6)

Multiplier Area Max.freq. # of clock AT
m=233 [LUT] [MHz] cycles normalised

multiplier block with classical reduction 3638 302 MHz 264 3.18× 103

multiplier block with matrix reduction 2862 302 MHz 238 2.25× 103

3.2.2. Interleaved algorithms

Another group of finite field multiplication algorithms comprises interleaved algorithms. In this

type of algorithms instead of performing separately multiplication and reduction we interleave

or combine the two operations. Classic interleaved method is based on the following idea:

c(x) = a(x)b(x) mod f(x) = a(x)
(

m−1
∑

i=0

bix
i
)

mod f(x) =
(

m−1
∑

i=0

bia(x)xi
)

mod f(x)

= b0a(x) mod f(x) + b1a(x)x mod f(x) + · · ·+ b(m−1)a(x)x(m−1) mod f(x)

(3.12)

As in previous two step methods we multiply a(x) by each coefficient of b(x), i.e. we shift a(x),

but here before accumulating the partial result we perform its reduction. We shift, reduce and

then accumulate each partial result. Thus finally we obtain a result, which is already reduced.

After theoretical analysis of the algorithm it was concluded that its complexity (number of

the operations we have to perform) is comparable with a complexity of shift-and-add method

combined with standard reduction. The only difference is that here we interleave shifting with

reduction. Additionally in previous case maximal number of reductions (divisions/XOR) we have

to perform is m/2− 1 here even regarding the fact that only half of the partial results have to

be reduced it may occur that the number of reduction operations will increase.

Apart this standard formulation of the interleaved multiplication there exist few popular algo-

rithms, which combine multiplication and reduction and by exploiting certain arithmetic prop-

erties they speed up a bit process of multiplication in GF (2m) field. The most worth analysing

methods according to us are multiplication with use of Mastrovito matrix and Montgomery

multiplication algorithm.

Mastrovito matrix approach. Mastrovito matrix method [62] is an extension of basic

matrix-vector approach (see previous section) where c(x) and b(x) are represented in form of

m size vectors and a(x) is transformed into (2m − 2) ×m matrix. In standard matrix-vector

approach we perform two steps:

56

1. Multiplication

d = Ab =

d0

d1

...

dm−1

dm

dm+1

...

d2m−3

d2m−2

=

a0 0 0 . . . 0 0

a1 a0 0 . . . 0 0
...

...
.

. . .
...

am−2 am−3 am−4 . . . a0 0

am−1 am−2 am−3 . . . a1 a0

0 am−1 am−2 . . . a2 a1

0 0 am−1 . . . a3 a2

...
...

...
. . .

...
...

0 0 0 . . . am−1 am−2

0 0 0 . . . 0 am−1

b0

b1

b2

...

bm−3

bm−2

bm−1

2. Reduction

d =

d0

d1

...

dm−1

dm

dm+1

...

d2m−3

d2m−2

⇒

d(L)

d(H)

⇒

a0 0 0 . . . 0 0

a1 a0 0 . . . 0 0
...

...
.

. . .
...

am−2 am−3 am−4 . . . a0 0

am−1 am−2 am−3 . . . a1 a0

0 am−1 am−2 . . . a2 a1

0 0 am−1 . . . a3 a2

...
...

...
. . .

...
...

0 0 0 . . . am−1 am−2

0 0 0 . . . 0 am−1

b0

b1

b2

...

bm−3

bm−2

bm−1

⇒

AL

AH

b

⇒ c = d(L) + d(H)R = ALb + AHRb (3.13)

57

In Mastrovito matrix method we perform only one step:

c = Mb, (3.14)

where M is so called Mastrovito matrix. Comparing Equation 3.13 and Equation 3.14 we can

see that Mastrovito matrix M is a combination of AL, AH and R matrices [25], that is:

c = Mb = (AL + AHR)b (3.15)

Matrix M construction and storage is very problematic. As it will be presented it strongly

affects area and speed of elaborated hardware solution.

There exist many approaches to handling matrix M . For example one may store whole matrix

M , however as we have pointed in previous section, such approach requires a lot of resources.

The smallest matrix used in ECC is matrix of size 163× 163 bits, which is 26569 bits, which is

rather big amount of data to store. Moreover matrix M entries depend on variable a value. Thus

we would have to create matrix M before each multiplication, which will add time overhead.

Another idea of handling M matrix is the one used to create the two-step GF (2m) multi-

plier multiplication unit. That is to work with vectors/registers of size (2m − 2) representing

columns of required matrix. In our case we have used two registers, one filled with contents of

consecutive columns of the matrix A (we have processed columns from left to right) and the

other accumulated partial results of multiplication. Varying number of vectors (columns) used,

the design behaviour and parameters can be easily changed.

Our new idea for handling matrix M is to partition it, i.e. matrices of which it constitutes, into

sub-matrices, to save area and ease optimisation and synchronisation of circuits. The entries of

sub-matrices of matrix M are supposed to be calculated on-the-fly during multiplication, from

parts of matrices AL, AH and R, i.e. from vectors a and f . Our approach may be regarded

as a variation of divide-and-conquer technique because we partition large problem of operating

on large matrices into a set of problems operating on much smaller matrices. We presume that

such manner of division may increase overall efficiency of elaborated circuits and may make the

designs flexible, easily adaptable to new tasks.

The chosen size of sub-matrices is 16×16 bits. It was chosen regarding the analysis performed

for two-step multipliers (see previous section). For sizes over 500 bits however, it may be wiser

to work with 32× 32 sub-matrices blocks.

As mentioned one of the advantages of block structure is its flexibility. In our interpretation

of Mastrovito proposition to perform multiplication we use 16-bit sub-multiplier units and we

control their work with use of finite state machine (FSM). The FSM controls reseting, start-

ing and switching-off the units. It also controls the order of sub-multiplications. Results of

sub-multiplications are independent of each other and can be calculated in arbitrary order. We

can group sub-matrices multipliers in different manners and that way easily change computing

58

time (number of clocks needed to perform the multiplication) or somehow the area occupied by

the design. We can group sub-matrices in rows spanning several rows of matrix M , we may

try to utilise sub-block multipliers as efficiently as possible, we may change the order of sub-

multiplications to adapt the circuit to our needs.

Partitioning into sub-blocks allows to simplify the multiplication operation. Observing the

structure and placement of vital entries (entries equal to 1) in matrices AL, AH and R we

may decrease number of operations, which have to be performed to obtain final solution. We

may omit in multiplication process operations on those sub-blocks whose multiplication result

by part of vector b will be always equal to zero. In fact we omit processing of sub-matrices,

which entries are all equal to zero. If we look closely at partitioned AL, AH and R matrices

(Figures: 3.4, 3.5, 3.6) we can see that there are a lot of zero blocks, blocks in which all entries

are equal to zero. Thus we will consider in processing only those sub-matrices, which may in-

fluence the final result (those which contain at least one non-zero elements). In fact AL and

AH matrices are triangular, they are almost half-filled with zeroes. Figures 3.4 and 3.5 show

illustrations of matrices partitioning for field of sizes m = 233, for other NIST sizes, matrices

AH and AL look similarly (they differ in number of sub-blocks). The R matrix is different for

each field due to the fact that its contents are derived from irreducible polynomial generating

the field. However matrices R for NIST fields are similar in number of non-zero blocks and their

placement. On Figures 3.4, 3.5, 3.6 all zero blocks are marked in gray. Getting rid of those

Figure 3.4.: Illustration of AL matrix partitioning for m = 233

blocks and operations performed on them allows us to save some clock cycles and area.

Proceeding in analysis we also observe that our proposed partitioning into 16×16 sub-matrices

59

Figure 3.5.: Illustration of AH matrix partitioning for m = 233

Figure 3.6.: Illustration of R partitioning matrix for m = 233

makes not only easier to spot zero blocks but also repeating blocks (marked with the same indices

on the figures) and thus to optimise the solution. By repeating we mean the ones with same

60

positioning of vital (depending on values of a, f) entries. Such observation minimises number of

different sub-multipliers we have to propose for calculation of each sub-product.

Unfortunately for most m’s (also for sizes recommended by NIST) the matrices will always

contain an “irregular” row and column. Irregular means that it is impossible to partition it

into 16× 16-bit blocks. That fact increases slightly area and decreases speed of design. But as

recommended field sizes are usually primes it is not possible to find such a partitioning, in which

all sub-matrices will have equal size.

Our basic algorithm for computing the result of a(x)b(x) mod f(x) works as follows: the

16× 16-bit sub-matrices are grouped into 16-bit wide rows spanning sixteen rows of matrix M

and for each such row 16-bit part of ab product is calculated. In order to save some space, sub-

matrices are not stored in the unit, they are calculated on-the-fly during computations basing

on parts of incoming a and b operands.

In order to provide the best solution we have analysed few variations of the unit. Initially we

have implemented equation c = ALb+AHRb. That is, the solution calculated separately results

for ALb and AHRb and eventually the two partial solutions were XORed to obtain final result

c. Resulting hardware unit is very efficient however it seems to be rather big. Thus to improve

overall efficiency of the solution we have implemented equation c = Mb. Instead of calculating

on-the-fly contents of sub-matrices AL and AHR we are providing on-the-fly contents of M ’s sub-

matrices to sub-multipliers. Such approach has visibly improved area of the solution. Results

for both solutions are presented in Table 3.14. It is possible in both cases to modify number

of clock cycles needed to perform the operation. Number of clock cycles can be modified by

varying the order and way, in which sub-multiplier units are utilised. Initially we have grouped

them into rows spanning sixteen rows of M (AL and AHR) consisting up to fifteen sub-blocks,

but the sub-matrices may be grouped into longer or shorter chains.

Table 3.14.: Mastrovito matrix approach solution

Virtex-6
(AL + AHR)b Mb

XC6VLX240T

area(A)[LUT] 5014 3760
max.frequency 297 MHz 276 MHz

time of execution
65 75

(T)[clock cycles]

efficiency AT 1097 1021

Computations of multiplication results of each sub-matrix are controlled by means of finite

state machine. At first the FSM had 15 states (for m = 233, there are 15 blocks in a matrix M

row) and we have used separate sub-units for calculation of each 16-bit of final result. Each 16-bit

61

part of final result is calculated in separate clock cycle, according to the following equations:

c0 = (AHR(0,0) + AL
(0,0))b0 + (AHR(0,1) + AL

(0,1))b1+

· · · + (AHR(0,m/16) + AL
(0,m/16))bm/16

c1 = (AHR(1,0) + AL
(1,0))b0 + (AHR(1,1) + AL

(1,1))b1+

· · · + (AHR(1,m/16) + AL
(1,m/16))bm/16

...

cm/16 = (AHR(m/16,0) + AL
(m/16,0))b0 + (AHR(m/16,1) + AL

(m/16,1))b1+

· · · + (AHR(m/16,m/16) + AL
(m/16,m/16))bm/16,

(3.16)

where ci denotes 16-bit chunk of final result c(x). Additionally we have to compute partial

results for “irregular row and column” and combine it with previously obtained values. Last row

equation:

cm/16+1 = (AHR(m/16+1,0) + AL
(m/16+1,0))b0 + (AHR(m/16+1,1) + AL

(m/16+1,1))b1+

· · · + (AHR(m/16+1,m/16+1) + AL
(m/16+1,m/16+1))bm/16+1.

(3.17)

Last column parts:

cm/16+1
0 = (AHR(0,m/16+1))bm/16+1

cm/16+1
1 = (AHR(1,m/16+1))bm/16+1

...

cm/16+1
m/16 = (AHR(m/16,m/16+1))bm/16+1,

(3.18)

The second version of our Mastrovito multiplier was optimised according to the fact that some

16 × 16-bit sub-blocks structures are similar. Thus we have used only one of each type of

sub-multiplier. We have decreased that way the number of instantiations of sub-units but

increased the number of states of the controlling FSM. Figure 3.7 shows matrix M partitioning

for m = 233. There are marked blocks requiring same sub-multiplier unit. In total in our new

solution, for m = 233, we need seven different simple sub-multipliers, before we have utilised

eleven sub-multipliers.

On the Figure 3.7 we may observe, which blocks may be multiplied with use of the same

sub-multiplier unit (one with corresponding names).

It is easy to observe that there exist many variations of the order of sub-multiplications,

which may be very useful for physical security purposes, see Chapter 4. We can create longer

multiplication controllers (finite state machines), increase or decrease number of instantiation of

sub-multipliers or change the order of multiplications.

We have performed small analysis of variations of our solution and in terms of efficiency we

found that solution containing longer finite state machines but single instances of each sub-

62

Figure 3.7.: Illustration of Mastrovito matrix partitioning for m = 233

multiplier gives the best results, especially in terms of area. However we have not tried even half

of possible combinations of sub-units thus there may exist more efficient versions of our design.

The most efficient solution, obtained after few experiments, takes 3760 LUTs and can work with

frequencies up to 276 MHz, number of clocks needed to perform the operation is 75.

Montgomery multiplication algorithm. The second most popular interleaved multiplica-

tion method is Montgomery method [71]. The algorithm is constructed in a specific way in order

to avoid most costly operations. Instead of performing c(x) = a(x)b(x) mod f(x) it performs

c(x) = a(x)b(x)r−1(x) mod f(x). (3.19)

The Montgomery method assumes operating on Montgomery versions of the operands through-

out the chain of operations and recovering original (proper) value at the end of computation.

For fair comparison with other multiplication solution we present the complete multiplication

process needed to obtain proper product.

To obtain the complete result of modular multiplication a(x)b(x) mod f(x) we must run the

Montgomery algorithm (see Algorithm 8), twice, at first for a(x)b(x) and then for the obtained

result d(x) and fixed value r2(x) mod f(x). Thus operation c(x) = a(x)b(x) mod f(x) comprises

in fact two steps:

63

1. d = MontMult(a, b)

2. c = MontMult(d, r2 mod f)

Utilising Montgomery method for chain of computations to perform multiplication we run

MontMult(a, b) once (we perform just first step). At the end of computations we perform

second step to recover from Montgomery representation. The algorithm for Montgomery multi-

plication (MontMult(a, b)) is presented below.

Algorithm 8 Montgomery multiplication algorithm (MontMult(a, b)) [50]

Input: a(x), b(x), r(x), f(x), f ′(x)
Output: c(x) = a(x)b(x)r−1(x) mod f(x)
1: t(x) = a(x)b(x)
2: u(x) = t(x)f ′(x) mod r(x)
3: c(x) = [t(x) XOR u(x)f(x)]/r(x)
4: return c

To utilise the algorithm we need three additional values, which depend on the value of the

irreducible polynomial. We need polynomials r(x), r2(x) mod f(x), f ′(x). Element r(x) is a

fixed element. Requirements for element r(x), given by Montgomery, are as follows:

• it should be an element of the field,

• it should be relatively prime and gcd(r(x), f(x)) = 1.

According to [50] for best results for field GF (2m) it is chosen to be a simple polynomial xm. To

find polynomials r−1(x) and f ′(x) we use Bezout’s identity: since r(x) and f(x) are relatively

prime there exist also polynomials r−1(x) and f ′(x) such that r(x)r−1(x) + f(x)f ′(x) = 1. For

cryptographic application irreducible polynomials are defined in standards. Thus for given m

we calculate r(x), r2(x) mod f(x), f ′(x) and store them, we do not need to precalculate those

vectors before each multiplication.

The most complicated in the Algorithm 8 is first operation where we need to perform multipli-

cation of two large binary vectors. In the second line we also need to perform multiplication but

this time we may substitute it with few XOR operations because we know f ′(x) in advance. What

is more it has, for irreducible polynomials recommended by NIST, low number of coefficients

equal to 1, thus the operation gets really simple. In the modulo operation in this line we just

cut out all elements of order higher or equal to m due to the fact that r(x) = xm. In third line

we can again substitute multiplication with a chain of simple additions. The division operation

in this line is a simple shift right by m positions.

Summing up we may say that the algorithm combines multiplication and reduction steps.

However it is not easy to distinguish standard reduction and standard multiplication processes

and it is impossible to separate them. Although looking at the complete algorithm for finite

field multiplication (see Algorithm 9) one can observe that in fact in its first line we perform

multiplication and all the remaining operations are responsible for reduction.

It is easy to observe that if the irreducible polynomial is unknown/variable we need to add

to our solution units, which will precalculate additional values needed. In fact that operations

64

maybe much more complicated than multiplier itself. Knowing irreducible polynomial, which is

the case for typical cryptographic applications, we may perform optimisations and forget about

additional precomputations. That way we gain a lot on efficiency. The Montgomery method

based algorithm calculating the modular product c(x) is given in Algorithm 9.

Algorithm 9 Modular multiplication algorithm based on Montgomery method [50]

Input: a(x), b(x), r(x), f(x), f ′(x), r2(x) mod f(x)
Output: c(x) = a(x)b(x) mod f(x)
1: // MontMult(a, b) //
2: t(x) = a(x)b(x)
3: u(x) = t(x)f ′(x) mod r(x)
4: d(x) = [t(x) XOR u(x)f(x)]/r(x)
5: // MontMult(d, r2 mod f) //
6: t(x) = d(x)(r2(x) mod f(x))
7: u(x) = t(x)f ′(x) mod r(x)
8: c(x) = [t(x) XOR u(x)f(x)]/r(x)
9: return c

To perform multiplication in second line of Algorithm 9 we have used multiplier based on

shift-and-add method but different from the one proposed previous section. For m = 233 we

partition vector b into 16-bit words (we add bits equal to 0 on MSB positions if necessary),

multiply sequentially a by all parts of vector b (we need to perform 15 multiplications) and

sequentially cumulate partial results. In Table 3.15 we compare the performance of Montgomery

solution utilising such multiplier and utilising multiplier based on matrix-vector approach (see

Section 3.2.1). To construct full finite field multiplier based on Montgomery method we may use

different types of multipliers but we have to remember that they strongly influence the solution.

In fact large binary vector multipliers perform half of the calculations (or even more) required

by the complete Montgomery finite-field multiplier.

Table 3.15.: Montgomery finite field multipliers (m = 233)

Virtex-6 area max.freq # of clock
multiplier used

AT
XC6VLX240T [LUT] [MHz] cycles normalised

Solution 1 3197 338 270
Shift-and-add multiplier

2554combining 233x16-bit multipliers

area: 2308 LUT, max.freq: 323MHz

Solution 2 3730 302 244
Matrix-vector multiplier

3014built of three 117-bit multipliers

area: 2625 LUT, max.freq: 302MHz

All other multiplications needed to perform the algorithm, multiplication by r(x), r2(x) mod

f(x), f ′(x), f(x) are simpler due to the fact that we know the values of those operands. Thus we

may substitute those multiplications with short chains of XOR operations as already mentioned.

Summing up, knowing the irreducible polynomial generating the field we may say that the

65

algorithm comprises a set of very simple operation. The only difficulty here is that we operate

on large numbers, thus we have to manage large binary vectors.

3.2.3. Summary, conclusions and comparison

Comparing our solution with already existing ones is not easy. Available literature does not

always contain all necessary data. The designs are usually not fully described. Many references

does not contain practical results but theoretical description, i.e. evaluation of predicted number

of gates used and probable delay. As the solution depends not only on the algorithm used but also

on the way it is described in HDL it is not easy to say, which solutions are the best. Even if we

would try to implement other described just theoretically algorithms we may get different results

than predicted and probably achieved by the inventors. In Table 3.16 we present our exemplary

solutions. In Table 3.17 we present the solutions found in accessible literature. Looking on both

tables we may conclude that our units are rather fast and small.

Table 3.16.: Our exemplary solutions

Algorithms
area freq. clock

AT
[LUT] [MHz] cycles

Classical 1 3638 302 264 3.18
Classical 2 2862 302 238 2.25
Mastrovito 3760 297 75 0.95

Montgomery (full) 3197 338 270 2.55

We present in Table 3.16 implementation results for Virtex-6 device of first versions of our

finite field multipliers. We present all the solutions for exemplary field size m = 233. To ease the

comparison of our solutions we have calculated the AT factors. It seems that the best in terms

of efficiency is Mastrovito multiplier. The Mastrovito multiplier outperforms the rest mainly

due to the fact that it needs only 75 clock cycles to perform the multiplication.

In Table 3.17 there are presented results for other existing solutions we have found described

in literature. Unfortunately it is difficult to calculate the AT factor for them. Mainly due to

the fact that we have insufficient data. The other reason is that area is interpreted (not in all

cases) differently than in our work thus comparison of such AT factors maybe inadequate.

The second goal of our research is to secure the elaborated efficient arithmetic operators.

That is why their versions presented here are not fully optimised. We have left some space

(some “gaps”) for the countermeasures. What is more we have structured our designs in such a

way that would be possible to secure our operators. Some of those additional mechanisms may

occur to be useless however at this stage we will not suppress them. The final fully optimised and

secured operators will be described in consecutive chapters. Results presented in this chapter

have been published at conferences and in journal [82, 81, 83].

66

Table 3.17.: Existing solutions

Solution
Field size

Device Area
Max.freq. Execution time

m /delay /throughput

[21]
256 Virtex II

5267 LUT 44.91 MHz
5.75 us

1033 2000-6 23.07 us

[110] 1024
XCV2000E-6 4355 CLB 100.4 MHz -

XC40150XV-7 8339 CLB 44.4 MHz -

XC4VFX100-10 2793 CLB 150.5 MHz -

[27] 233 XC2V-6000-4 415 slices - 2.42 us

[75]
233 Stratix 3728 LE 4.04 ns 12 cycles

283 EP1S40F780C5 3396 LE 3.66 ns 20 cycles

[114] 233 Stratix 3353 LE 6.91 ns 16 clock cycles

by [75] 283 EP1S40F780C5 3118 LE 6.95 ns 20 clock cycles

[34] 233

37296 LUT 77 MHz -

XC2V-6000 11746 LUT 90.33 MHz -

FF1517-4 36857 LUT 62.85 MHz -

45435 LUT 93.20 MHz -

[95] 191 XCV2600E 8721 CLB slices - 82.4 us

[18] 88 Altera EP2S60 6644 ALUTS -

[30] 163

201,989 LUTs 241 -

Virtex 214,703 DFFs MHz

XCVL330 1471 LUTs 241 -

982 DFFs MHz -

[57]

283
1781 CLB 246.670 -

Virtex 4 2156 FF 3367 LUT MHz -

1132
XC4VFX140 25,955 CLB 248.447 -

32,578 FF 48,591 LUT MHz -

67

4. Physical security of ECC cryptosystems

Modern cryptographic devices suffer from more threats than their predecessors. The mathe-

matical cryptographic systems are now very secure. As claimed in [68], there exist a mathe-

matical/theoretical impassive barrier. Organisations such as NIST or SECG develop and issue

standards for cryptographic systems. Those organisations verify the security level of crypto-

graphic systems very often in order to provide up-to-date parameters of cryptosystems ensuring

certain level of security and maintaining the mathematical barrier.

In todays world mathematical cryptographic system needs to be implemented on some device

in order to be useful. The most popular devices used for cryptographic purposes are micropro-

cessors, VLSI circuits (FPGA, ASIC) or smart cards. Until very recently (beginning of 90’s), if

such device contained secure, according to standards, cryptographic system, it was considered

as unbreakable (i.e. safe). Nowadays the security of whole system relies not only on the security

of algorithms and protocols, but also on the security of their implementation [80]. It was found

that cryptographic devices leak information during their activity, i.e. they need certain time

to perform the operation, they consume specific amount of power and they emit electromag-

netic radiations. The leaking information was always considered as useless noise. Unfortunately

cryptanalysts observing work of implemented cryptographic systems noticed that the leaking

information maybe useful for discovering secret data/keys on which the cryptographic device

operates. It was presented that the information depends on the manipulated operands values.

The observation process is called side-channel analysis and is now a serious threat for modern

cryptosystems. Its main advantage is that it is rather cheap and in many cases does not require

direct access to the device [61, 76].

Side-channel attacks - an introduction Eavesdropping of devices is not a recent idea. For

years people have been eavesdropping mechanical devices such as safe locks. It is for example

possible to open mechanical lock through analysis of sound of the lock’s wheels dialed in a certain

manner. To do that the burglar must possess deep knowledge about lock being manipulated,

nevertheless then it is possible to open the lock without leaving a trace. Fortunately the digital

devices can counteract such attacks and if the developer of the device is aware of those threats

he will surely try to secure the device developed.

The notion of side-channel and the idea to eavesdrop information leaking from electric material

was proposed in 1918 by H.Yardley and his team [89, 108]. Later in mid-thirties IBM typewriter

was studied and the study indicated that the information leakage resulting from the device ac-

tivity cannot be neglected and constitutes a serious threat [89]. Afterwards in 70’s in USA, a

69

TEMPEST program [77] was initiated to counteract threats resulting from leaking information,

it concerned information leaking through the electromagnetic radiations. The early research was

concerned on the electromagnetic radiations mainly due to the fact that intercepting electro-

magnetic radiations did not require direct access to the spied device.

The idea of analysis of side-channel information leakage started to be attractive to crypt-

analysts of modern cryptosystems in the 90’s. Around this time most cryptographic systems

were standardised and it was even defined when there will be available enough computing power

to break the system working on certain size of keys. Around that time the mathematical se-

curity barrier was also set thus the cryptanalysts started to look for new ways of retrieving

secrets. Their interest turn to observation of implementations of cryptographic algorithms and

the side-channel information leakages.

According to [80] a side-channel can be explained as follows: A device can have different types

of outputs. If such outputs unintentionally deliver information (about the secret key), then the

outputs deliver side-channel information and are called side-channel outputs (or side-channels).

The analysis of side-channels information occurred to be a very efficient and in the same way

cheap manner of stealing the secrets thus it gained a lot of interest.

The most popular types of developed side-channel attacks are:

• timing attack - analyses the device running time [51],

• electromagnetic attack - analyses electromagnetic field emitted by the device during its

work [89],

• power analysis attacks - analyses power consumption of the device during its work [61, 52],

In our researches we focus on securing our arithmetic units against some power analysis at-

tacks, which seem to gain a lot of attention nowadays [61]. We find that our ideas for protections

against power analysis may be extended to protections against electromagnetic field analysis.

Power Analysis Attacks All the details presented here on power analysis attacks are based

on [61, 80, 52] and some recent summaries of those type of attacks, such as [26, 86].

The power analysis attacks and their effectiveness were introduced in 1998 by Kocher et al.,

in [52]. Below we present the idea of such attacks.

Power Analysis Attacks [61]

The attacks rely on the fact that instantaneous power consumption of a cryptographic

device is correlated with data being processed and operation being performed

Types of power analysis attacks (according to [53, 26]):

• Simple Power Analysis (SPA) [52], goal: reveal the secret using few power traces; attacks

exploit key-dependent differences (patterns) within a trace; “In SPA attacks, a device’s

power consumption is analysed mainly along the time axis. The attacker tries to find

patterns in a single trace.” [39]

70

• Differential Power Analysis (DPA) [52], requires many power traces, it is usually necessary

to physically possess a device to be able to obtain large set of traces; “In DPA attacks, the

shape of the traces along the time axis is not as important. DPA attacks analyse how the

power consumption at fixed moments of time depends on the processed data.” [39]

• Correlation attack [11], improved DPA attack; the measurements allow to predict at once

more than one bit (e.g. 4 bits); more optimised DPA,

• Template attack [16], requires to physically possess cryptographic device; attacker con-

structs a model of the wanted signal source including the characterisation of noise then he

compares it with measurement values; improved DPA,

• Refined Power Analysis (RPA) [33], improved DPA

• Carry-based attack [29]

• others

Main principles of the power analysis attacks [86]:

In order to perform power analysis attacks, the attacker analyses the attacked device’s power

traces. In SPA the adversary tries to deduce secret information by observation of variations and

repetitive patterns in the obtained power traces (usually a single power trace). In DPA and more

complex attacks the adversary requires a model of cryptographic device to be attacked. The

better the model, e.g. low-level descriptions (netlists), the more advantageous for the attacker.

The device model is used to predict certain intermediate values, depending on inputs, outputs

and secret key, which are assumed to appear during computation. The dependency of those

intermediate values on the secret key implies that it is possible to guess at least a part of the

key. Those intermediate values allow for creating a hypothetical power consumption model of

the attacked device. To reveal the part of the secret key depending on chosen intermediate

values the attacker compares hypothetical model with the measured one, for illustration of the

DPA attack idea see Figure 4.1. To perform DPA the adversary needs many power traces.

Figure 4.1.: Differential power analysis principle [80]

71

Summing up, according to [80], the simple side-channel analysis exploits the relationship

between the executed instructions and the side-channel output. Differential side-channel analysis

exploits the relationship between the processed data and the side-channel output.

Popular ECC curve operation level countermeasures The ECC systems and their main pro-

tocols are described in Chapter 2, there we have also mentioned which is the most vulnerable

to SCAs operation in ECC systems. The operation is a scalar point multiplication [k]P , mul-

tiplication of the point on the curve P by a large scalar k. Scalar k is usually the private key

or an ephemeral (secret) key. It has been shown that the scalar multiplication of a secret value

with a known elliptic curve point is vulnerable to simple and differential side-channel analysis.

A successful attack on this operation results in revealing scalar k (secret key) thus in breaking

the cryptographic system.

In order to perform [k]P operation one needs to perform a set of point addition (P + Q) and

point doubling (2P) operations. The simplest algorithm for performing scalar multiplication

[k]P is double-and-add algorithm, see Algorithm 10.

Algorithm 10 Double-and-add algorithm (right-to-left binary algorithm) [36]

Input: k = (kt−1, ..., k1, k0)2, P ∈ E(Fq)
Output: [k]P
1: Q←∞
2: for i = 0 to t− 1 do
3: if ki = 1 then
4: Q← Q + P
5: end if
6: P ← 2P
7: end for
8: return Q

Looking at the algorithm it appears obvious that straightforward implementation of double-

and-add is a very vulnerable algorithm. The type of operation performed in the algorithm

during each step depends on the value of k. Depending on the value of bit of secret k the

algorithm performs either point addition and point doubling or only point doubling. If those

operations have different power traces, which is usually the case, then the adversary analysing

power consumption of the device implementing such algorithm is able to deduce the secret key

easily. Seeing the sequence of performed doublings and additions the adversary is able to derive

the secret key.

For us the countermeasures for ECC systems against side-channel analysis have generally two

goals. One is to mask/hide sequences of doubling and addition operations, to make impossible

to deduce from power traces the operations performed. The second is to remove as much as

possible the dependency of manipulated operands values on the power consumption. There exist

and are still developed many countermeasures. There are hardware countermeasures and algo-

rithmic countermeasures. To protect against SPA there exist the following types of algorithmic

72

countermeasures [39]:

• unification of the addition formula [13, 12] or alternative parameterizations [40, 104, 9];

• insertion of dummy instructions or operations [19, 17];

• utilisation of “regularly” behaving algorithms (so called “atomicity”) [104, 79, 70, 13, 38, 28].

To protect further the device against DPA it is suggested to [39, 19, 41, 15]:

• randomise base-point P ,

• randomise/recode secret scalar k

All those countermeasures aim at goals described above. For example unification of addition

formula aims to unify addition and doubling in terms of number, order and type of finite-field

operations needed to perform 2P or P + Q. Other countermeasures manipulate the order of

sequence of 2P and P + Q operations needed to perform [k]P . For example, algorithm double-

and-add, see Algorithm 10, is modified to perform additional, dummy point addition each time

it is executed, see Algorithm 11: double-and-add always.

Algorithm 11 Double-and-add always algorithm [19]

Input: k = (kt−1, ..., k1, k0)2, P ∈ E(Fq)
Output: [k]P
1: Q0 ← P ; Q1 ←∞
2: for i = t− 1 to 0 do
3: Q0 ← 2Q0

4: Q1 ← Q0 + P
5: Q0 ← Qki

6: end for
7: return Q0

The DPA countermeasures “mask” the chain of 2P and P + Q operations by randomising

the base-point P or scalar k. There are either specific values added to P , k, which maybe

easily subtracted at the end, or there exist various methods for k recoding (NAF, DBNS). By

recoding the key the sequence of doublings and additions is randomised. With DBNS for exam-

ple it is possible to have lot of distinct chains of additions and doublings using the same key [15].

According to [39] preventing side-channel power analysis is a two step process. At first the

device needs to be secured against SPA and then against DPA. That way it should be impossible

to mount a successful power analysis attack on the device. For ECC many SCAs and various

countermeasures or protections against them (see [39]) have been proposed. For instance, ad-

dition chains allow performing only one type of curve-level operation (point addition) during

scalar multiplications [14]. In [15] randomized and very redundant representations of the scalar

k are used. All yet proposed protections are at the curve-level not the finite-field one.

Efficient and secure computation units for finite-field arithmetic are important elements of ECC

processors. It was already mentioned few years ago in [39] that “each elliptic curve operation

itself consists of a sequence of field operations. In most implementations, the standard sequence

73

of field operations in point addition differs from that in point doubling. Every field operation

has its unique side-channel trace. Hence, the sequence of field operations of point addition has

a different side-channel pattern than that of point doubling”. However nobody yet, according to

known references, tried to secure finite-field arithmetic operations against information leakage.

All the efforts were put to randomise or unify the sequences of those operations and curve-level

operations.

We find that securing finite-field arithmetic operations should increase the security of the ECC

system. It may even occur that some countermeasures of higher layers of cryptosystem (see

Chapter 2) will yield better results when mounted on secured arithmetic operators.

Our goal is to secure the operators in such a way that finally the sequence of finite field

operations needed to compute 2P or P +Q will yield either unified or random power traces. We

want that observing the sequence of e.g. finite-field multiplications it is impossible to distinguish

the beginning and end of a single multiplication thus to identify point addition or point doubling.

We find that it is possible to flatten/unify power consumption of finite-field arithmetic operations

and that it is also possible, in case of some algorithms, to randomise the current signature of

finite-field operation, i.e. each time a single operation is executed it will have different current

trace.

4.1. Physical security of hardware GF (2m) arithmetic operators

In this chapter, we investigate protections against some power analysis attacks at the field level in

GF (2m) multiplication algorithms and their architectures dedicated for ECC systems. All other

GF (2m) arithmetic operations needed to multiply points of elliptic curves, such as squaring or

inversion, can be performed with use of multiplication and addition in the field [96]. According

to this and the claim that finite-field arithmetic operators are crucial for ECC system, see Chap-

ter 2, it follows that finite-field multiplication operators are significant units of ECC system. The

finite-field addition operation is very simple and when implemented on reconfigurable circuits

it can be performed parallely to all other finite-field elements operations. Due to the fact that

the multiplication operation is very costly in terms of time and area and have to be performed

many time during scalar multiplication operation, we presume that it has a huge impact on the

operations performed in ECC system not only in terms of efficiency but also in terms of security.

In previous chapters we have proposed very efficient multipliers for GF (2m), in this chapter

we analyse the security of elaborated operators and propose protections and countermeasures

against some power analysis attacks. Those protections can be easily extended to protections

against electromagnetic attacks. The proposed security modifications are not autonomous coun-

termeasures for ECC systems but an additional protection element, which should enhance higher-

level (curve-level) countermeasures. Results presented in this chapter have been published at

WAIFI 2012 conference [84].

74

The cryptanalysts concern two types of power consumption leakage [80]:

• transition count leakage - related to the number of bits that change their state at a time.

• the Hamming weight (HW) leakage - related to the number of 1-bits, being processed at

a time.

Here we concern transition count leakage (Hamming distance = HW (t + 1)−HW (t)) due to

the fact that in VLSI circuits instantaneous power is linked with the number of useful transitions

in the operator. Useful transitions are the theoretical changes of bit state during the operation

(from one clock cycle to the next one). This is also called useful circuit activity. To estimate

information leakage in typical GF (2m) multipliers, we have accurately measured their useful

activity [84].

Power analysis based SCAs use possible correlations between internal secret values (e.g. keys)

and information leakage related to instantaneous power of the executed operations (see [61] for

details).

Definition 4.1.1. Instantaneous power at time t is PDD(t) = iDD(t) × VDD, where iDD(t)

is the instantaneous current and VDD is the power supply. Power consumption components are:

static power and dynamic power. See [112, Sec.4.4] for circuit-level details in CMOS circuits.

Static power does not depend on circuit activity and is not used in this work. Dynamic

power appears due to circuit activity: charging and discharging load/parasitic capacitances and

short-circuit currents. It strongly depends on the executed operations and data values. Dynamic

power variations are used as a source of information leakage for power attacks.

Dynamic power components are: useful activity and parasitic activity as illustrated on Fig-

ure 4.2. Useful (or theoretical) activity is due to complete and stable transitions required by

computations from one clock cycle to the next one (i.e. 0→ 1 and 1→ 0 for each bit). Parasitic

(or glitching) activity is due to non-useful transitions. For instance, in case of non-equal arrival

times for a gate inputs, the output may have multiple transitions before reaching a steady state.

in
p
u
t

lo
g
ic

re
g
.

x(t)

clk

x(t)

x(t+ 1)

00110101

01101011

5 useful

transitions

a b

z

cycle
1

0
a

1

0
b

1

0
z

parasitic transition on z

Figure 4.2.: Useful (left) and parasitic (right) transitions.

Parasitic activity in GF (2m) multipliers is small. This is not the case for all arithmetic

operators (e.g. operators in high-performance CPUs [106]). In GF (2m) arithmetic units, the

logical depth is small. Power consumption of memory elements (e.g. flip-flops) used in GF (2m)

75

multipliers is important compared to power consumption in logic gates. In this work, we only

focus on useful activity as a large contribution to iDD(t).

Several methods can be used to evaluate useful activity: cycle-accurate and bit-accurate

(CABA) simulation [31] of a low-level architecture description, electrical simulation or FPGA

emulation. Fast high-level behavioral simulation is not sufficient to catch cycle-accurate and

bit-level coding aspects. As the target operators have large operands (e.g. 160 to 600 bits for

ECC) and long computations, CABA simulation would be too slow. This is even more critical

with electrical simulation. Thus we use FPGA emulation for evaluating useful activity.

An activity counter was attached to each monitored signal [107] which counts the number

of useful transitions as illustrated on Figure 4.3. The D flip-flop and the XOR gate produce 1

for each useful transition between s(t + 1) and s(t). The k-bit counter accumulates transitions

counts (k depends on test vector length).

Figure 4.3.: Activity counter architecture for a 1-bit signal s(t) (control not represented).

Comparisons with electrical simulations in [107] show that this is reasonable assumption for

small parasitic activity. At the end of this chapter we compare FPGA emulations result with

current measurements to show that the assumption holds. We insert activity counters at the

output of each internal register and for each signal of the multiplier. Outputs of all XOR gates

(radix-1 representation of transitions number) are compressed into a binary value as the total

transitions count for cycle t. This value is monitored using ChipScope Pro tool from Xilinx.

ChipScope Pro enables observation of internal signals of FPGA device during its work. It is

possible to record the monitored value changes and analyse it later with other tools.

One of our goals was to design efficient finite-field multipliers in such a way that their ar-

chitectures can be easily modified to add protection against SCAs. We have analysed many

algorithms, with different variants, to be able to take and combine those parts, which will allow

us to create the most efficient algorithm fulfilling assumed requirements. The analysis and final

solutions are presented in Chapter 3. As a result of our study, we have prepared three efficient

GF (2m) multipliers based on three different algorithms: classical two-step, Montgomery and

Mastrovito algorithm. In this chapter we analyse the security and possibility of inserting vari-

ous countermeasures for each of those solutions. Using FPGA emulation, it is possible to quickly

76

and accurately evaluate useful activity in GF (2m) finite-field multipliers for large and relevant

test vectors (this cannot be done using “slow” software simulations). Activity counters do not

change the multiplier mathematical behavior. Moreover insertion of activity counters allowed

us to optimise some multipliers. For example in multiplier based on Montgomery algorithm we

were able to reduce the total number of registers used. Initially we had put in this architecture

some auxiliary registers and assumed that the synthesis tool will optimise the solution. However

it was not the case. After optimisation done by hand, the Montgomery multiplier unit is much

smaller than the one presented in Section 3.2.2.

Corresponding implementation results without and with activity counters are reported in

Table 4.1. The table reports huge area overhead and about a ÷3 frequency decrease due to

activity counters inserted. These overheads are very important, but they only appear during

evaluation not in final circuit. FPGA emulation leads to activity evaluation running at more

than 100 MHz (see Table 4.1) which would not be possible using software simulations.

Table 4.1.: FPGA implementation results of GF (2m) multipliers without (original operators)
and with (monitored operators) activity counters.

without activity counters with activity counters
Algorithms area freq. clock area freq. clock

LUT MHz cycles LUT MHz cycles

Classical 3638 302 264 11383 133 264

Montgomery (full) 2178 323 270 6100 121 270

Mastrovito 3760 297 75 5956 110 75

4.1.1. Security level verification, problem identification

For all experiments, random operands have been used with uniform and equiprobable distri-

bution for all bits. We have performed numerous experiments (corresponding to hundreds of

thousands clock cycles for each tested solution). The traces presented correspond to typical

traces. We find that even though it occurred that overall traces shape dependency on operand

random values is relatively small, using average trace is not possible since this may flatten the

activity variations and mask information leakage. Thus we have been evaluating our modifi-

cations by running modified multipliers for several various sets of experimental data. Here we

present representative traces.

All proposed hardware solutions are analysed for one of field sizes m = 233 recommended in

ECC standards (similar results are obtained for other field extension sizes).

The first analysed unit is the one based on classical algorithm. In Chapter 3 we have proposed

two classical multipliers, one with standard, optimised to irreducible polynomial reduction and

the other utilising matrix reduction. After collecting and analysing activity traces of those two

types of classic multipliers we have concluded that the reduction does not impact activity traces

very much. In fact the activity traces for both solutions are very similar, almost alike. Thus

77

we have decided to focus on only one classical multiplier, the one using standard, optimised to

irreducible polynomial reduction. We presume that this unit architecture can be more advanta-

geous for inserting countermeasures mainly due to the fact that the standard reduction requires

few steps. Figure 4.4 (left) presents useful activity measurement results for a typical sequence

of GF (2m) multiplications of random operands using classical algorithm.

One may observe that there is a high peak at the beginning of each multiplication. The peak

occurs due to the initialisation phase and loading of new operands values. Figure 4.4 (right)

presents an extract for a single representative multiplication (all random operands lead to the

similar overall shape). We have noticed that dependency of the shape of activity variation curves

on input data is rather low.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 500 1000 1500 2000 2500

n
u
m

b
e
r

o
f
tr

a
n
s
it
io

n
s

cycles
 1200 1300 1400

cycles

multiplication

initialization phase

Figure 4.4.: Useful activity measurement results for random GF (2m) multiplications with clas-
sical algorithm (left). Extract for a single representative multiplication (right).

Measurement results for a sequence of random GF (2m) multiplications using Montgomery

algorithm form are presented in Figure 4.5 (left) with an extract of a single representative

multiplication (right). The reported measurements are shown for complete multiplications with

final reduction (for conversion from Montgomery “representation”). We have provided comments

on that point in Chapter 3. One can observe that there is a large activity drop at the end of each

multiplication. We presume that it occurs due to the reduction step (recovery from Montgomery

representation) and multiplier control.

Figure 4.6 (left) presents useful activity measurement results for a typical sequence of random

GF (2m) multiplications using Mastrovito algorithm form with an extract for a single represen-

tative multiplication (right). The variations of the useful activity during a multiplication have

a very specific decreasing “step-wave” shape.

Measurements for all three multiplication algorithms show very specific shapes for useful

activity variations, which may lead to some information leakage. Those specific shapes provide

the attacker with strong temporal references of the operations time location. Based on these

references about field-level operations, higher-level operations (e.g. point addition and doubling)

can be guessed.

78

 0

 50

 100

 150

 200

 250

 300

 350

 400

 500 1000 1500 2000 2500

n
u
m

b
e
r

o
f
tr

a
n
s
it
io

n
s

cycles
 900 1000 1100

cycles

reduction phaseinitialization phase

Figure 4.5.: Useful activity measurement results for random GF (2m) multiplications with Mont-
gomery algorithm (left). Extract for a single representative multiplication (right).

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500

n
u
m

b
e
r

o
f
tr

a
n
s
it
io

n
s

cycles
 200 225 250

cycles

Figure 4.6.: Useful activity measurement results for random GF (2m) multiplications with Mas-
trovito algorithm (left). Extract for a single representative multiplication (right).

The analysis of the obtained activity variation traces and the architectures of our solutions

allowed us to came up with the following conclusions.

Peaks due to the initialisation phase at the beginning of operations in Figure 4.4 are not

related to the selected algorithm but to the implemented architecture and especially its control.

Resetting all internal registers generates a lot of activity and can give information about the

time borders of the operation. Then this specific different shape for the initialisation phase may

occur for other algorithms and architectures.

Activity drops at the end of operations in Figure 4.5 are due to low-complexity reduction step

for the considered irreducible polynomial compared to multiplication iterations complexity. We

reported measurements for complete multiplication (with final reduction) for fair comparison

with other algorithms. In practice, those drops should not appear since reduction is only used

at the end of a sequence of operations (with operands in Montgomery domain). However uni-

formising reduction step activity variations leads to uniformisation of activity variations of all

79

finite field operations, which is our goal.

The most problematic shape is the one for Mastrovito algorithm in Figure 4.6. The decreasing

“step-wave” shape is due to variation of the computations quantity in the algorithm. In next

section, we will present modifications of this multiplier at algorithmic and arithmetic levels to

reduce information leakage.

4.1.2. Proposed countermeasures, circuit modifications

Analysing the obtained activity variations curves, we can define modification objectives. First,

we have to suppress the peaks at the initialization phase. This is an architecture issue (i.e.

modification of the operator control). All multiplication algorithms may benefit from this type

of modification. Second, we have to take care of the activity drops during the reduction phase

of Montgomery algorithm. But as stated in previous section, this phase is only used at the

end of long sequence of operations in real ECC applications. Last, we have to make the “step-

wave” shape of useful activity variations of Mastrovito algorithm less distinguishable. All this

modifications aim at masking the multiplication operations. Aim at making impossible to localise

the operation in time. Below, we describe our modifications for each algorithm.

Classical two-step multiplication: The analysis shows that peaks at the beginning of each

multiplication occur due to circuit initialisation. To suppress them, we have modified multiplier

control and initialisation method. Initially to ensure the correct work of our circuit we have

been resetting all registers before the start of computation. We have been resetting all registers

also those not used at the beginning of multiplication process. Now we do not reset all registers

in the first cycle but we have spread the reset activity over several cycles. We reintialise/reset

register before it is used, if it is possible. What is more we have observed that not all registers

need to be reinitialised. Thus we have skipped their initialisation/resetting.

 0

 20

 40

 60

 80

 100

 120

 140

 500 1000 1500 2000 2500

n
u

m
b

e
r

o
f

tr
a

n
s
it
io

n
s

cycles

Figure 4.7.: Useful activity measurement results for random GF (2m) multiplications with mod-
ified classical algorithm.

Figure 4.7 shows useful activity measurements for a sequence of random multiplications using

80

the modified multiplier. To reduce activity variations, we have also optimised the reduction step

by reducing number of registers involved in reduction and merging all the steps of algorithm

presented in Algorithm 7 into a chain of XOR operations. In the modified multiplier the average

activity varies between 100 and 120 transitions (see Figure 4.7) while it was about 150 transitions

in the original one (see Figure 4.4). Our modifications reduce the number of active registers in

the operator thus they reduce also a little the power consumption of the operator. Comparing the

original operator’s useful activity variations (Figure 4.4) with variations of modified multiplier

(Figure 4.7), we can notice the absence of high initialisation peaks. For instance, between cycles

1500 and 2400 it is difficult to detect the executed operations boundaries.

Montgomery multiplication: If we do not consider the reduction step, we may say that the

activity variations of Montgomery multiplier are more or less uniform (see Figure 4.5). The

only thing, which may still give some information to the attacker is the initialisation phase.

Activity drops at this phase occur due to a specific way, in which the input data are fetched.

Like for classical algorithm, a modification of the initialisation control removes these drops.

Figure 4.8 shows Montgomery activity variations with improved control (bottom curve) and

without reduction (top curve).

Figure 4.8.: Useful activity measurement results for random GF (2m) multiplications with Mont-
gomery algorithm.

81

Mastrovito multiplication: The “step-wave” shape of useful activity variations of Mastrovito

multiplier in Figure 4.6 is specific and can provide the attacker with a lot of information. Our

objective is to modify the algorithm and the architecture in such a way that single multiplications

cannot be too easily distinguished.

It is clear that the “step-wave” shape occurs mainly due to unequal number of registers switch-

ing in one clock cycle. Thus we have investigated two types of modifications for Mastrovito

multiplier: “uniformisation” of the number of sub-multipliers’ registers used in each clock cycle

and “randomisation” of the starting times of the operator sub-multipliers. “Uniformisation” aims

at making approximately the same number of bits switch in one clock cycle and “randomisation”

at randomising number of bits switching in one clock cycle. We have derived many versions of

those two types of modifications.

In order to explain modifications we have performed to the initial solution we recall some

details of Mastrovito multiplier solution. Figure 4.9 presents the way we have divided matrix

M into sub-matrices (see Section 3.2.2). The boxes with same indices Mi denote blocks, which

can be multiplied by parts of vector b, using the same sub-multiplier unit.

Figure 4.9.: Illustration of Mastrovito matrix partitioning for m = 233

It can be observed that some sub-multipliers are used more than the others. In initial solution

we utilise one instance of each sub-multiplier (compare for example occurence of M0 and M3 on

Figure 4.9), thus if we start them all at the same time, the activity is higher at the beginning of

the operation (where all sub-multipliers are used) and lower at the end (almost all sub-multipliers

are already switched off).

Our first proposition for “uniformisation” is to make the utilisation, in one clock cycle, of the

number of sub-multipliers more uniform. We have tried not to change the total computation

time of original multiplier, i.e. the number of states of FSM controlling the sub-multipliers work.

82

The best obtained for this type of modification activity variation curve is shown on Figure 4.10,

see curve V1.

Figure 4.10.: Useful activity measurement results for random GF (2m) multiplications with 4 ver-
sions of modified Mastrovito algorithm.

Further, due to the fact that sub-multipliers use different number of different size registers,

we have tried to uniform number of registers used in one clock cycle. Finally we have tried to

consider not only number of registers used but also their sizes, thus the number of bits which

possibly switch in each clock cycle. We have performed various attempts and tests. Then due

to many dependencies between data we have decided to change number of states of control FSM

and increase number of sub-multipliers used. The results obtained were very promising however

we have found another problem. The other problem was the control of the circuit. We find that

it causes drops to 0 in certain points. We have tried to modify the control algorithm and the

idle, transient state (moment between the end of computation and the start of the new one) of

the multiplier in order to avoid those sudden drops to zero, which may give information about

operation time location. After unification of number of bits switching in one clock cycle and

83

modification of circuit control we have obtained activity variation curve V0, see Figure 4.10.

Our next objective was to randomise the starting moment of each sub-multiplier. This should

“spread more” the activity over the whole computation. In order to randomise the beginning

of sub-multiplications, we have used 8-bit LFSR (Mastrovito V2) and pseudo-random start

sequence generator based on 4-bit LFSR (Mastrovito V3), which initialisation values depend

on some bits of a and b operands. In order to avoid blocking the multiplier we exchange the

initialisation values (seed) many times at random moments throughout multiplication operation.

We have also tried other methods but the best, according to us, results so far were achieved

with use of our random start sequence generator based on 4-bit LFSRs, see Figure 4.11.

Figure 4.11.: Random start sequence generator based on 4-bit LFSR.

Due to the randomisation, the time needed to perform the complete multiplication, depending

on which sub-multiplier is started first, will either decrease or increase randomly. The average

number of clock cycles for Mastrovito V2 is 116 (minimal value: 98, maximal value: 126),

whereas for Mastrovito V3 average number of clock cycles needed is 80 (minimal value: 64,

maximal value: 108). Useful activity measurements for V2 (middle curve) and V3 (bottom

curve) modifications are presented in Figure 4.10. As one can observe on Figure 4.10, the

shapes of useful activity variations are more irregular and not easily predictable compared to

the curve for the initial version in Figure 4.6.

The presented analysis and modifications aimed at masking the characteristic shapes of finite

field multipliers activity variations curve. Additionally we have investigated the dependency on

values of operands on the activity variations shape. In Figure 4.12 we present how the change

of 1-bit and 16-bit in both operands affects the activity variation curves. As it can be observed

it is difficult to predict where the curve changes and the variations of shapes are very low.

Implementation results for the modified multipliers: All modified multiplication algorithms

have been implemented in FPGA. The corresponding results are reported in Table 4.2. Three

optimisation targets were used for the synthesis tool: balanced area/speed, area and speed

optimisations. In order to compare the modified multipliers to the original ones (see Table 4.1),

we report a comparison factor α such as modified = α×original both for area and frequency.

84

Figure 4.12.: Data dependency on activity variations curves for Mastrovito multiplier

Table 4.2.: Implementation results of GF (2m) multipliers with reduced activity variations.

balanced area speed #
Algorithms area freq. area freq. area freq. clock

LUT MHz LUT MHz LUT MHz cycles

Classical 2868 270 2778 228 3444 420 260
×α factor ×0.79 ×0.89 ×0.76 ×0.75 ×0.95 ×1.39 ×0.98

Montgomery 2099 323 2093 338 2099 423 264
×α factor ×0.96 ×1.00 ×0.96 ×1.05 ×0.96 ×1.31 ×0.98

Mastrovito v0 3889 225 3894 197 3933 308 48
×α factor ×1.04 ×0.75 ×0.97 ×0.66 ×1.05 ×1.04 ×0.64

Mastrovito v1 3463 414 3439 343 3489 384 75
×α factor ×1.09 ×1.39 ×1.09 ×1.15 ×0.93 ×1.29 ×1.00

Mastrovito v2 3700 306 3667 253 3717 388 avg. 116
×α factor ×1.02 ×1.03 ×0.98 ×0.85 ×0.99 ×1.3 ×1.55

Mastrovito v3 3903 319 3837 250 4335 375 avg. 80
×α factor ×1.03 ×1.07 ×1.02 ×0.84 ×1.15 ×1.26 ×1.07

85

Evaluation of activity variation reduction To evaluate our modifications we have used signal

processing tools. To do this the measured activity traces were transformed from time domain

to frequency domain using Fast Fourier Transform (FFT), see [87]. Figure 4.13 presents those

results for unprotected and protected versions of some of our multipliers. It represents the

mathematical power for each frequency bin. The same logarithmic scale is used for all versions.

One can observe an important reduction in the potential information leakage for all frequencies.

1

10

100

 0 0.2 0.4 0.6 0.8 1

p
o
w

e
r

(l
o
g
 s

c
a
le

)

normalized frequency

SFM=0.60

Classic unprotected

 0 0.2 0.4 0.6 0.8 1
normalized frequency

SFM=0.64

Classic protected

1

10

100

 0 0.2 0.4 0.6 0.8 1

p
o
w

e
r

(l
o
g
 s

c
a
le

)

normalized frequency

SFM=0.31

Mastrovito unprotected

 0 0.2 0.4 0.6 0.8 1
normalized frequency

SFM=0.41

Mastrovito protected v1

1

10

100

p
o
w

e
r

(l
o
g
 s

c
a
le

)

SFM=0.55

Mastrovito protected v2

SFM=0.58

Mastrovito protected v3

Figure 4.13.: FFT analysis results for unprotected and protected versions of multipliers (top:
classic algorithm, middle and bottom: Mastrovito algorithm for various versions).

86

In order to numerically compare solutions, we have computed the spectral flatness measure

(SFM) [87]:

SFM =
n
√

∏n
i=1 p(i)

1
n

∑n
i=1 p(i)

∈ [0, 1]

SFM is the ratio of the geometric mean to the arithmetic mean for a collection of n frequency

bins p(i) (power for frequency bin i). A SFM close to 1 indicates a spectrum with power well

distributed in all frequency bins (flat curve) while a SFM close to 0 indicates that power is

concentrated into a few bins (curve with peaks). SFM values are reported on Figure 4.13.

Improvement is limited for classic algorithm, but for Mastrovito, our modifications lead to

significant improvement (from 0.31 for unprotected version to 0.58 for the best protected version).

The obtained results are rather satisfying. We can see that there is a way to reduce information

leakage.

Lastly we have tried to implement point doubling operation, using Lopez-Dahab projective

coordinates for elliptic curve point representation, (for algorithm see [36] section 3.2.3) with our

basic finite-field operators to see if it is easy to distinguish the sequence of operations performed.

Figure 4.14 presents activity traces for calculation of double of elliptic curve point (2P) performed

by our protected and unprotected Mastrovito multiplier. Looking at the activity traces of

unprotected multiplier (upper trace) it is easy to notice each multiplication performed. This

information may allow distinguishing between point addition (P + Q) operation and doubling

(2P) operation, thus recovering the sequence of those operations and eventually retrieving the

secret key.

 100

 200

 300

 400

 0 50 100 150 200 250 300 350 400 450
cycles

Point doubling − Mastrovito protected

 0

 100

 200

 300

 0 100 200 300 400 500 600

nu
m

be
r

of
 tr

an
si

tio
ns Point doubling − Mastrovito unprotected

Figure 4.14.: Useful activity measurement results for 2P operation for unprotected (top figure)
and protected (bottom figure) GF (2m) operators.

87

Comparison of obtained activity traces with current measurements In order to finally eval-

uate obtained protection results the instantaneous current consumed by the device performing

finite-field operations was measured. We have measured current supplied to the Virtex-II Pro

device mounted on SASEBO-G side-channel attack standard evaluation board which allows for

taking such specific measurements with use of Lecroy Waverunner 104Xi-a oscilloscope and Tek-

tronix CT1 current probe. The measurement station is controlled by HP Z800 computing server.

To ease the measurements the FPGA board is supplied from low noise HP E3610A power supply.

Figure 4.15 shows comparison of multiplication activity traces obtained using activity counters

and the ones obtained by current probe measurement.

 0

 100

 200

 300

 0 50 100 150 200 250 300 350 400 450

nu
m

be
r

of
 tr

an
si

tio
ns

cycles

Mastrovito unprotected − activity traces

−0.02

 0

 0.02

 0.04

 0.06

 0.08

 0 100 200 300 400 500 600 700 800 900

cu
rr

en
t

cycles

Mastrovito unprotected − current measurements

 100

 200

 300

 400

 0 20 40 60 80 100 120 140 160 180

nu
m

be
r

of
 tr

an
si

tio
ns

cycles

Mastrovito protected − activity traces

−0.1

 0

 0.1

 0.2

 0 50 100 150 200 250 300 350

cu
rr

en
t

cycles

Mastrovito protected − current measurements

Figure 4.15.: Comparison of activity traces and current measurements for:
Mastrovito multiplier unprotected version – 5 multiplications in a row and pro-
tected version (uniformised) – 3 multiplications in a row

Analysing measurements results we can see that the activity traces obtained by observation

of internal switching are rather accurate. The evaluation of activity of multipliers done with

88

activity monitors and ChipScope seems to reflect the real activity of multipliers. Figure 4.15

presents activity traces for protected unprotected multiplier (top curves) and (bottom figures).

It is easy to observe that our modifications yielded desired results. Observing traces obtained

for protected multiplier it is hard to distinguish single multiplications.

4.1.3. Conclusions

Activity measurements analysis revealed that the implemented multiplication algorithms (clas-

sical, Montgomery and Mastrovito) lead to specific shapes for the curve of activity variations

which may be used as a small source of information leakage for some side channel attacks.

We have proposed modifications of selected GF (2m) multipliers to reduce this information

leakage source at two levels: architecture level by removing activity peaks due to control (e.g.

reset at initialisation) and algorithmic level by modifying the shape of the activity variations

curve. Due to optimisatons performed at a very low-level of a circut there is no significant area

and delay overhead.

Analysing activity traces obtained for protected multipliers we may conclude that proposed

modifications lead to masking the trace of multiplication operation.

89

5. Summary and Conclusions

In this work GF (2m) arithmetic operators dedicated to elliptic curve cryptography applications

have been studied. Conducted researches aimed at providing efficient and secure against some

side-channel power analysis attacks GF(2m) hardware arithmetic operators which can be

integrated in ECC processor.

The first goal was to provide efficient hardware arithmetic operators units. To do this we have

performed vast research on existing algorithms and their improvements/optimisations/variations.

The first requirement for the operators was that they should be dedicated to reconfigurable

hardware. Thus during the analysis we have implemented many of described finite field arith-

metic operations algorithms in order to notice their features which may be efficiently utilised in

hardware (such as: decomposition schemes, computation order, internal coding, operands repre-

senation, etc.). The second requirement was that they should serve ECC applications thus they

should operate on 150–600 bit numbers (i.e. large numbers) and should be efficient in terms of

speed, area and energy. The analysis allowed us to find and combine such features thus leading

to design of our own GF (2m) hardware arithmetic operators based on known algorithms and

dedicated to FPGA circuits (see Chapter 3).

Second goal was to evaluate the efficiency and overall cost of designed operators. The evalu-

ation aimed at providing final speed and area efficient GF (2m) arithmetic operators solutions.

The GF (2m) operators are vital part of cryptographic systems and their effectiveness strongly

impacts the effectiveness of the whole system. The designed operators should work as a part

of ECC system thus in order to do not degrade its performance they should be small and fast.

Comparing our hardware arithmetic operators to other solutions found in literature we may

conclude that we have succeeded in providing efficient and low cost operators which will not

degrade performance of the cryptographic system they will be part of (see Chapter 3).

The final goal of was to secure elaborated GF (2m) arithmetic units against some of popular

passive attacks: side-channel attacks. According to known sources no one yet attempted to

secure the lowest level operations of elliptic curve cryptographic systems that is the finite-field

operations. However there were developed many countermeasures against side-channel attacks

for protecting curve- and protocol-level operations neglecting information leakage existing at the

lowest level of ECC operations. We have chosen to secure the operators against some of power

analysis attacks which by observation of power consumed by the device performing cryptographic

operations aim at revealing the secret. However we presume that our countermeasures may

91

be extended to countermeasures against electromagnetic attacks. Before providing protections

we had to evaluate the security of previously elaborated efficient operators in order to identify

information leakage sources. The operators security was evaluated in two manners: using FPGA

emulation with activity counters on standard Xilinx FPGA board and monitoring of internal

signals using Chipscope; and by measurement with use of very fast LeCroy WaveRunner 104Xi-A

oscilloscope and high frequency Tektronix CT1 current probe of instantaneous current supplied

to the FPGA performing finite field operations mounted on SASEBO-G side-channel attack

standard evaluation board. The evaluation of security of the unprotected operators showed

specific activity trace shapes which may be used as a small source of information leakage. The

shapes may enable the attacker to localise operations time boundaries or identify the point

doubling (2P) or point addition (P + Q) operation and thus to reveal the secret. To avoid

information leakage in GF (2m) operators we have performed their algorithmic and architectural

modifications. In Chapter 4 we have presented and illustrated that inserted countermeasures

diminish significantly observed sources of information leakage in the operators. Both methods of

evaluation confirmed that after inserting the countermeasures it is difficult to distinguish specific

shapes of operations and what is more to localise their time boundaries.

Summarising, as a result of conducted researches the following original results were obtained:

• efficient in terms of speed and area GF (2m) hardware arithmetic operators dedicated

to ECC applications were proposed;

• successful protections against some power analysis side channel attacks for GF (2m)

hardware arithemtic operators were developed;

• the tradeoff between efficiency and security of GF (2m) hardware arithmetic operators

was found.

Concluding it can be claimed that we have succeeded in providing speed, area and energy

efficient GF (2m) hardware arithmetic operators dedicated to FPGA circuits and ECC appli-

cations. We have detected sources of information leakage in the operators and have modified

the operators to reduce the information leakage. Thus we claim that it is possible to create

not only efficient but also secure against some side channel power analysis attacks

elaborated GF (2m) arithmetic operators.

92

References

[1] ISO/IEC 15946-2: Information technology – Security techniques – Cryptographic tech-

niques based on elliptic curves – Part 1: Digital Signatures, 2002.

[2] ANSI X9.62:2005 Public Key Cryptography for the Financial Services Industry, The El-

liptic Curve Digital Signature Algorithm (ECDSA), 2005.

[3] Draft Standard for Specifications for Password based Public Key Cryptographic Tech-

niques (Revision of IEEE 1363-2000), 2007.

[4] R. J. Anderson and M. G. Kuhn. Tamper resistance: a cautionary note. In Proc. 2nd

USENIX Workshop on Electronic Commerce - Volume 2, WOEC’96, page 1, Berkeley, CA,

USA, 1996. USENIX Association.

[5] R. J. Anderson and M. G. Kuhn. Low Cost Attacks on Tamper Resistant Devices. In

Proc. 5th International Workshop on Security Protocols, pages 125–136, London, UK, 1998.

Springer.

[6] S. Arora and B. Barak. Computational Complexity - A Modern Approach. Cambridge

University Press, 2009.

[7] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache. Fault Injection Attacks on Crypto-

graphic Devices: Theory, Practice, and Countermeasures. Proceedings of the IEEE, pages

1–21, 2012.

[8] L. Batina, S. B. Örs, B. Preneel, and J. Vandewalle. Hardware architectures for public

key cryptography. Integration, the VLSI Journal, 34(1–2):1–64, May 2003.

[9] O. Billet and M. Joye. The Jacobi Model of an Elliptic Curve and Side-Channel Analysis.

In AAECC, pages 34–42, 2003.

[10] I. F. Blake, G. Seroussi, and N. P. Smart. Elliptic curves in cryptography. Cambridge

University Press, New York, USA, 1999.

[11] E. Brier, Ch. Clavier, and F. Olivier. Correlation Power Analysis with a Leakage Model.

CHES 2004, LNCS 3156. Springer, pages 135–152.

[12] E. Brier, I. Déchéne, and M. Joye. Embedded Cryptographic Hardware: Methodologies &

Architectures, chapter Unified addition formulæ for elliptic curve cryptosystems. Nova

Science Publishers, Inc., Commack, NY, USA, 2004.

[13] E. Brier and M. Joye. Weierstraß Elliptic Curves and Side-Channel Attacks. In Public

Key Cryptography, pages 335–345, 2002.

[14] A. Byrne, N. Meloni, A. Tisserand, E. M. Popovici, and W. P. Marnane. Comparison of

Simple Power Analysis Attack Resistant Algorithms for an Elliptic Curve Cryptosystem.

93

Journal of Computers, 2(10):52–62, 2007.

[15] T. Chabrier, D. Pamula, and A. Tisserand. Hardware implementation of DBNS recoding

for ECC processor. In Proc. 44th Asilomar Conference on Signals, Systems and Computers,

pages 1129–1133, Pacific Grove, California, U.S.A., November 2010. IEEE.

[16] S. Chari, J. Rao, and P. Rohatgi. Template Attacks. CHES 2002, LNCS 2523. Springer,

pages 51–62.

[17] B. Chevallier-Mames, M. Ciet, and M. Joye. Low-Cost Solutions for Preventing Sim-

ple Side-Channel Analysis: Side-Channel Atomicity. IEEE Transactions on Computers,

53(6):760–768, June 2004.

[18] Ch. W. Chiou, J.-M. Lin, Ch.-Y. Lee, and Ch.-T. Ma. Novel Mastrovito Multiplier over

GF (2m) Using Trinomial. In Proc. 5th International Conference on Genetic and Evolution-

ary Computing, ICGEC ’11, pages 237–242, Washington, DC, USA, 2011. IEEE Computer

Society.

[19] J.-S. Coron. Resistance against Differential Power Analysis for Elliptic Curve Cryptosys-

tems. CHES 1999, LNCS 1717. Springer, pages 292–302.

[20] Xilinx Corporation. Virtex-6 family overview (product specification), 2012.

[21] F. Crowe, A. Daly, and W. Marnane. A scalable dual mode arithmetic unit for public key

cryptosystems. In Information Technology: Coding and Computing (ITCC), volume 1,

pages 568–573, April 2005.

[22] W. Diffie and M.E. Hellman. New Directions in Cryptography. IEEE Transactions on

Information Theory, IT-22:644–654, 1976.

[23] T. Elgamal. A public key cryptosystem and a signature scheme based on discrete loga-

rithms. IEEE Transactions on Information Theory, 31(4):469–472, July 1985.

[24] A. Enge. Elliptic curves and their applications to cryptography: an introduction. Kluwer

Academic Publishers, Norwell, MA, USA, 1999.

[25] S. S. Erdem, T. Yanik, and C. K. Koc. Polynomial Basis Multiplication over GF(2m).

Acta Applicandae Mathematicae, 93(1-3):33–55, September 2006.

[26] J. Fan, X. Guo, E. De Mulder, P. Schaumont, B. Preneel, and I. Verbauwhede. State-of-

the-art of Secure ECC Implementations: A Survey on Known Side-channel Attacks and

Countermeasures. In HOST, pages 76–87, 2010.

[27] E. Ferrer, D. Bollman, and O. Moreno. A fast finite field multiplier. In Proc. 3rd Inter-

national Conference on Reconfigurable Computing: Architectures, Tools and Applications,

ARC’07, pages 238–246. Springer, 2007.

[28] W. Fischer, Ch. Giraud, E.W. Knudsen, and J.-P. Seifert. Parallel scalar multiplication

on general elliptic curves over Fp hedged against Non-Differential Side-Channel Attacks.

IACR Cryptology ePrint Archive, 2002:7, 2002.

[29] P.-A. Fouque, D. Réal, F. Valette, and M. Drissi. The Carry Leakage on the Randomized

Exponent Countermeasure. CHES 2008, LNCS 5154. Springer, pages 198–213.

94

[30] A. P. Fournaris and O. Koufopavlou. Applying systolic multiplication-inversion archi-

tectures based on modified extended Euclidean algorithm for GF (2k) in elliptic curve

cryptography. Computers & Electrical Engineering, Elsevier, 33(5-6):333–348, September

2007.

[31] A. Fraboulet, T. Risset, and A. Scherrer. Cycle Accurate Simulation Model Generation

for SoC Prototyping. In SAMOS, pages 453–462, 2004.

[32] P. Gallagher. FIPS PUB 186-3 Federal Information Processing Standards Publication

Digital Signature Standard (DSS), 2009.

[33] L. Goubin. A Refined Power-Analysis Attack on Elliptic Curve Cryptosystems. PKC 2003,

LNCS 2567. Springer, pages 199–211.

[34] C. Grabbe, M. Bednara, J. Teich, J. von zur Gathen, and J. Shokrollahi. FPGA designs

of parallel high performance GF (2233) multipliers [cryptographic applications]. In Proc.

International Symposium on Circuits and Systems (ISCAS), volume 2, pages 268–271,

May 2003.

[35] X. Guo, J. Fan, P. Schaumont, and I. Verbauwhede. Programmable and Parallel ECC

Coprocessor Architecture: Tradeoffs between Area, Speed and Security. CHES 2009,

LNCS 5747. Springer, pages 289–303.

[36] D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptography.

Springer, 2004.

[37] S. Hauck and A. DeHon. Reconfigurable Computing: The Theory and Practice of FPGA-

Based Computation. Morgan Kaufmann, November 2007.

[38] T. Izu and T. Takagi. A Fast Parallel Elliptic Curve Multiplication Resistant against Side

Channel Attacks. In Public Key Cryptography, pages 280–296, 2002.

[39] M. Joye. Advances in Elliptic Curve Cryptography, volume 317 of London Mathematical

Society Lecture Note Series, chapter Defenses Against Side-Channel Analysis, pages 87–

100. Cambridge University Press, April 2005.

[40] M. Joye and J.-J. Quisquater. Hessian Elliptic Curves and Side-Channel Attacks. CHES

2001, LNCS 2162. Springer, pages 402–410.

[41] M. Joye and Ch. Tymen. Protections against Differential Analysis for Elliptic Curve

Cryptography. CHES 2001, LNCS 2162. Springer, pages 377–390.

[42] J. T. Santini JR., M. J. Cima, and R. S. Langer. Microchip drug delivery devices. Patent,

07 2006. US 7070590.

[43] D. Kahn. The Codebreakers: The Comprehensive History of Secret Communication from

Ancient Times to the Internet. Scribner, December 1996.

[44] A. Karatsuba and Y. Ofman. Multiplication of Multi-Digit Numbers on Automata (in

Russian). Doklady Akad. Nauk SSSR, 145(2):293–294, 1962. Translation in Soviet Physics-

Doklady, 44(7), 1963, p. 595-596.

[45] R. Katti and J. Brennan. Low complexity multiplication in a finite field using ring repre-

sentation. IEEE Transactions on Computers, 52(4):418–427, April 2003.

95

[46] S. Kilts. Advanced FPGA Design: Architecture, Implementation, and Optimization. Wiley-

IEEE Press, 2007.

[47] Ch.H. Kim, S. Kwon, J.J. Kim, and Ch.P. Hong. A New Arithmetic Unit in GF (2m) for

Reconfigurable Hardware Implementation. In FPL, pages 670–680, 2003.

[48] N. Koblitz. A course in number theory and cryptography. Springer, New York, USA, 1987.

[49] N. Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation, 48(177):203–209,

1987.

[50] C. K. Koc and T. Acar. Montgomery Multiplication in GF(2k). Designs, Codes and

Cryptography, 14(1):57–69, April 1998.

[51] P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and

Other Systems. In CRYPTO, pages 104–113, 1996.

[52] P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In CRYPTO, pages

388–397, 1999.

[53] F. Koeune and F.-X. Standaert. A Tutorial on Physical Security and Side-Channel Attacks.

In FOSAD, pages 78–108, 2004.

[54] RSA Laboratories. PKCS #1 v2.1: RSA Cryptography Standard, 2002.

[55] S. Lang. Elliptic Curves : Diophantine Analysis. Springer, 1978.

[56] K. Lauter. The advantages of elliptic curve cryptography for wireless security . Wireless

Communications, IEEE, 11(1):62–67, 2004.

[57] H. Li, J. Huang, P. Sweany, and D. Huang. FPGA implementations of elliptic curve cryp-

tography and Tate pairing over a binary field. Journal of Systems Architecture, Elsevier,

54(12):1077–1088, December 2008.

[58] R. Lidl and H. Niederreiter. Finite fields. Cambridge University Press, 1983.

[59] R. Lidl and H. Niederreiter. Introduction to Finite Fields and Their Applications. Cam-

bridge University Press, 2nd edition, 1994.

[60] S. Mangard. Hardware Countermeasures against DPA - A Statistical Analysis of Their

Effectiveness. In Topics in Cryptology – CT-RSA, pages 222–235, 2004.

[61] S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing the Secrets of

Smart Cards. Springer, 2007.

[62] E. Mastrovito. VLSI Architectures for Computation in Galois Fields. PhD thesis, Depart-

ment of Electrical Engineering, Linkoping University, Sweden, 1991.

[63] E. McCallister, T. Grance, and K. Scarfone. Guide to Protecting the Confidentiality of

Personally Identifiable Information (PII). NIST Special publication 800-122, 2010.

[64] R.J. McEliece. Finite field for scientists and engineers. Kluwer Academic Publishers, 1987.

[65] A. Menezes. Elliptic Curve Public Key Cryptosystems, volume 234 of The Springer Inter-

national Series in Engineering and Computer Science. Springer, 1993.

[66] A. Menezes, S. Vanstone, and P.C. Van Oorschot. Handbook of Applied Cryptography.

CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 1996.

96

[67] R. C. Merkle. Secure communications over insecure channels. Commun. ACM, 21(4):294–

299, April 1978.

[68] S. Micali and L. Reyzin. Physically observable cryptography. Theory of Cryptography,

First Theory of Cryptography Conference (TCC), LNCS 2951. Springer, pages 278–296,

2004.

[69] V. S. Miller. Use of elliptic curves in cryptography. CRYPTO 1985, LNCS 218. Springer,

pages 417–426.

[70] B. Möller. Securing Elliptic Curve Point Multiplication against Side-Channel Attacks.

In Proc. 4th International Conference on Information Security (ISC), pages 324–334.

Springer, 2001.

[71] P. L. Montgomery. Modular Multiplication Without Trial Division. Mathematics of Com-

putation, 44(170):519–521, April 1985.

[72] S. Moon, J. Park, and Y. Lee. Fast VLSI arithmetic algorithms for high-security elliptic

curve cryptographic applications. IEEE Transactions on Consumer Electronics, 47(3):700–

708, August 2001.

[73] R. C. Mullin, I. M. Onyszchuk, S. Vanstone, and R. M. Wilson. Optimal normal bases in

GF (pn). Discrete Appl. Math., 22(2):149–161, February 1989.

[74] S. Murugiah and K. Scarfone. Guidelines for Securing Wireless Local Area Networks

(WLANs). NIST Special publication 800-153, 2012.

[75] A. H. Namin, W. Huapeng, and M. Ahmadi. Comb Architectures for Finite Field Multi-

plication in F (2m). IEEE Transactions on Computers, 56(7):909–916, July 2007.

[76] R. Newell. Design and Data Security in PLDs: When Security is Non-Negotiable. Security

Webinar, Microsemi corporation, 2012.

[77] NSA. TEMPEST series. http://cryptome.org/nsa-tempest.htm.

[78] T. Okamoto, E. Fujisaki, and H. Morita. PSEC: Provably Secure Elliptic Curve Encryption

Scheme. In IEEE P1363a, 2000.

[79] K. Okeya and K. Sakurai. Power Analysis Breaks Elliptic Curve Cryptosystems Even

Secure against the Timing Attack. Progress in Cryptology - INDOCRYPT 2000, LNCS

1977. Springer, pages 217–314.

[80] E. Oswald. Advances in Elliptic Curve Cryptography, volume 317 of London Mathematical

Society Lecture Note Series, chapter Side Channel Analysis, pages 69–86. Cambridge

University Press, April 2005.

[81] D. Pamula, E. Hrynkiewicz, and A. Tisserand. Multiplication in GF (2m): area and time

dependency/efficiency/complexity analysis. In Proceedings of 10th International IFAC

Workshop on Programmable Devices and Embedded Systems (PDES) , pages 43–48, 2010.

[82] D. Pamula, E. Hrynkiewicz, and A. Tisserand. Analiza algorytmów mnozenia w ciele

GF (2m). Pomiary Automatyka Kontrola (PAK) (Measurement, Automation and Moni-

toring) , 57(01/2011):58–60, 2011.

97

[83] D. Pamula, E. Hrynkiewicz, and A. Tisserand. Analysis of GF (2m) multipliers regard-

ing Elliptic Curve Cryptosystem applications. In Proceedings of 11th IFAC/IEEE Inter-

national Conference on Programmable Devices and Embedded Systems (PDES) , pages

252–257, 2012.

[84] D. Pamula and A. Tisserand. GF (2m) Finite-Field Multipliers with Reduced Activity

Variations. WAIFI 2012, LNCS 7369. Springer, pages 152–167.

[85] B. Pochopień. Arytmetyka systemów cyfrowych. Skrypty Uczelniane - Politechnika Śląska.

Wydaw. Politechniki Śląskiej, 2002.

[86] T. Popp, S. Mangard, and E. Oswald. Power Analysis Attacks and Countermeasures.

IEEE Design & Test of Computers, 24(6), 2007.

[87] J. G. Proakis and D. G. Manolakis. Digital Signal Processing. Prentice Hall, 1996.

[88] J.-J. Quisquater. Side channel attacks, State-of-the-art. CRYPTREC Report, 2002.

[89] J.-J. Quisquater and D. Samyde. A new tool for non-intrusive analysis of smart cards

based on electro-magnetic emissions, the SEMA and DEMA methods. Presented at the

rump session of EUROCRYPT’2000, 2000.

[90] S. Radack. Guide to protecting personally identifiable information. ITL Bulletin for April

2010.

[91] S. M. Radack. Security Metrics: Measurements to Support the Continued Development

of Information Security Technology. ITL Bulletin, January 2010.

[92] Certicom Research. Standards for efficient cryptography, SEC 1: Elliptic curve cryptog-

raphy, 2009. Version 2.0.

[93] Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters, 2010.

Version 2.0.

[94] Research Center for Information Security National Institute of Advanced Industrial Science

and Technology. Side-channel Attack Standard Evaluation Board. SASEBO-G. Specifica-

tion. Version 1.0 , 2008.

[95] F. Rodríguez-Henríquez, N. A. Saqib, and A. Díaz-Pérez. A fast parallel implementation

of elliptic curve point multiplication over GF(2m). Microprocessors and Microsystems,

28(5-6):329–339, 2004.

[96] F. Rodriguez-Henriquez, N. A. Saqib, A. Diaz-Perez, and C. K. Koc. Cryptographic Al-

gorithms on Reconfigurable Hardware. Signals and Communication Technology. Springer,

2007.

[97] E. Savas and C. K. Koc. Finite Field Arithmetic for Cryptography. IEEE Circuits and

Systems Magazine, 10(2):40–56, May 2010.

[98] P. Schaumont and I. Verbauwhede. A reconfiguration hierarchy for elliptic curve cryp-

tography. In Proc. 35th Asilomar Conference on Signals, Systems and Computers, pages

449–453, November 2001.

[99] B. Schneier. Applied cryptography (2nd ed.): protocols, algorithms, and source code in C.

98

John Wiley & Sons, Inc., New York, USA, 1995.

[100] B. Schneier. A self-study course in block-cipher cryptanalysis. Cryptologia, 24(1):18–33,

January 2000.

[101] R. Shipsey. ECIES. Project NESSIE report NES/DOC/RHU/WP3/007/c, 2001.

[102] J. H. Silverman. The Arithmetic of Elliptic Curves. Number 106 in Graduate Texts in

Mathematics. Springer, 1986.

[103] S.P. Skorobogatov. Side-channel attacks: new directions and horizons. In ECRYPT2

School on Design and Security of Cryptographic Algorithms and Devices, Albena near

Varna, Bulgaria, May 2011.

[104] N. P. Smart and P.-Y. Liardet. Preventing SPA/DPA in ECC systems using the Jacobi

Form. CHES 2001, LNCS 2162. Springer, pages 391–401, May 2001.

[105] Ch. Swenson. Modern cryptanalysis - techniques for advanced code breaking. Wiley, 2008.

[106] A. Tisserand. Low-power arithmetic operators. In C. Piguet, editor, Low Power Electronics

Design, chapter 9. CRC Press, November 2004.

[107] A. Tisserand. Fast and Accurate Activity Evaluation in Multipliers. In Proc. 42nd Asilo-

mar Conference on Signals, Systems and Computers, pages 757–761, Pacific Grove, Cali-

fornia, U.S.A., October 2008. IEEE.

[108] H. C. A. van Tilborg. Encyclopedia of Cryptography and Security. Springer New York,

Inc., Secaucus, NJ, USA, 2005.

[109] S. Vanstone. ECC holds key to next generation cryptography. [Online].Available:

http://www.design-reuse.com/articles/7409/ecchold-key-to-next-gen-cryptography.html,

March 2006.

[110] J. Wang and A. Jiang. A high-speed dual field arithmetic unit and hardware implemen-

tation. In ASIC, 2007. ASICON ’07. 7th International Conference on, pages 213–216,

October 2007.

[111] E. Wenger and M. Hutter. Exploring the Design Space of Prime Field vs. Binary Field

ECC-Hardware Implementations. In NordSec, pages 256–271, 2011.

[112] N.H.E. Weste and D. Harris. CMOS VLSI Design: A Circuits and Systems Perspective.

Addison Wesley, third edition, 2004.

[113] J. Wolkerstorfer. Dual-Field Arithmetic Unit for GF (p) and GF (2m). CHES 2002, LNCS

2523. Springer, pages 500–514.

[114] H. Wu, M. A. Hasan, I. F. Blake, and S. Gao. Finite field multiplier using redundant

representation. IEEE Transactions on Computers, 51(11):1306–1316, November 2002.

[115] Xilinx Corporation. Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data

Sheet (Product Specification), 2007.

[116] Xilinx Corporation. Spartan-3E FPGA Family: Data Sheet (Product Specification), 2009.

99

Résumé

1. Introduction

De nos jours, les systèmes numériques et l’Internet sont présents dans presque tous les do-

maines de notre vie. Ils sont responsables de communication entre les personnes, les institutions

et entre les gouvernements. Ils sont utilisés pour surveiller des systèmes de contrôle du trafic aé-

rien, du transport, des systèmes médicaux, bancaires, des marchés financier, militaires, etc. Nous

sommes inondés de données numériques, qui ne sont pas toujours faciles à identifier, autoriser,

sécuriser ou stocker. La plupart des utilisateurs réguliers de systèmes numériques ne connaissent

pas bien les effets de mauvaises manipulations de leurs données numériques ou de l’usurpation

de leur identité numérique.

L’identité numérique n’est pas traitée par la plupart des utilisateurs de systèmes à égalité

avec l’identité “réelle” représentée par une carte d’identité ou un passeport. Les effets de prise de

contrôle ou de la perte des deux identités sont presque identiques, mais la mauvaise utilisation

d’identité numérique peut avoir de conséquences encore plus sérieuses [21].

Heureusement, la conscience de la nécessité de protéger et de sécuriser les identités numériques

et les données augmente avec le nombre de services disponibles dans le réseau mondial (Inter-

net). Tout le monde veut faire des achats électroniques en toute sécurité sur Internet, gérer des

ressources bancaires sans crainte de détournement de fonds, signer des documents numériques

d’une manière propre à prévenir la falsification ou l’usurpation d’identité.

Les utilisateurs commencent à comprendre la nécessité de protection des données numériques

telles que les dossiers médicaux, fiscaux, financiers, des données personnelles, etc. À l’heure

actuelle, où la plupart des services et des tâches peuvent être réalisés sans quitter la maison en

utilisant des solutions numériques, la nécessité de sécuriser la transmission et le stockage des

données croît.

Un autre problème associé à la sécurisation des données est l’influence de mécanismes de sécu-

risation sur le fonctionnement du système, le transfert ou l’échange de données. Les mécanismes

de sécurisation de données (systèmes cryptographiques), qui ralentissent ou qui surchargent des

systèmes sont très souvent désactivés et ne sont donc pas utiles.

Pour protéger effectivement les systèmes numériques, leurs concepteurs doivent prendre en

compte non seulement l’efficacité ou robustesse des mécanismes de sécurité (contremesures), mais

aussi leur impact sur la performance du système (vitesse, besoins en mémoire et en énergie).

Malheureusement, avec l’augmentation de la sensibilisation à la sécurité des données et avec

1

le développement de nouveaux mécanismes de sécurisation, le nombre de techniques de vol,

d’interception et modification ou d’espionnage de données numériques augmente aussi.

La science qui étudie la sécurité de données est la cryptographie. Cryptographie est l’une

des branches de la cryptologie. La deuxième branche de la cryptologie est la cryptanalyse. La

cryptanalyse analyse des moyens de sécurisation proposés pour la cryptographie en vue d’évaluer

leur robustesse (en particulier faisant des attaques).

Actuellement, pour sécuriser des données, les propriétés de problèmes mathématiques NP-

difficiles et les variables spéciales qui rend la solution de ces problèmes très coûteux en temps et en

ressources, sont utilisés. Avec l’augmentation de la puissance de calcul des systèmes numériques,

certains problèmes mathématiques difficiles peuvent être résolu dans un délai raisonnable et pour

un coût raisonnable (par exemple quelques années de calcul sur une machine parallèle). Pour

augmenter la difficulté des problèmes, les mathématiciens proposent d’augmenter la taille des

nombres ou d’utiliser des nombres avec des propriétés spéciales telles que les nombres premiers.

Parce que les attaques mathématiques sont de plus en plus difficiles et plus coûteuses, de nou-

velles méthodes (moins chères, plus faciles) pour violer des systèmes cryptographiques ont été

proposées. Les cryptanalystes avaient commencé à s’intéresser aux dispositifs cryptographiques.

Par analogie avec certaines techniques d’ouverture de serrures mécaniques (par exemple pour

des coffres-forts), ils avaient tenté d’écouter le dispositif cryptographique au cours de son fonc-

tionnement et d’analyser des données obtenues afin de déterminer s’il est possible de violer le

système. Malheureusement les recherches de nouvelles techniques pour découvrir ainsi des se-

crets (données confidentielles, clés de chiffrement, etc.) étaient efficaces. Les cryptanalystes sont

capables de décomposer un algorithme cryptographique ou d’en découvrir le secret par l’analyse

de la consommation d’énergie du circuit ou de rayonnement électromagnétique.

Jusqu’à récemment, les fuites d’information de dispositifs numériques, telle que la consom-

mation d’énergie instantanée ou du champ électromagnétique émis, ont été considérés comme

un bruit négligeable, dont la réduction ou le contrôle n’a pas été correctement traité. À l’heure

actuelle, les créateurs des systèmes cryptographiques sont conscients des risques de fuites d’in-

formation et ils cherchent à éviter ou contrôler ces éléments.

Les attaques qui utilisent la fuite d’information de dispositifs numériques pour violer des

systèmes sont appelées attaques par canaux cachés (side-channel attacks - SCA). Ces attaques

peuvent être divisées en catégories en fonction des fuites qu’elles exploitent. Il y a des attaques

temporelles (timing attacks) qui analysent la durée des opérations, les attaques par analyse de

la consommation d’énergie instantanée (power analysis attacks) et les attaques par analyse du

rayonnement électromagnétique (electromagnetic attacks).

Les attaques par canaux cachés qui analysent la consommation d’énergie instantanée de dis-

positifs cryptographiques sont l’un des types les plus populaires d’attaques, dont beaucoup de

variantes ont été développées. Elles sont relativement faciles à réaliser, peu coûteuses et très ef-

ficaces. Développer des contre-mesures pour des systèmes cryptographiques contre les attaques

physiques n’est pas une tâche facile. Concernant la grande complexité des algorithmes/systèmes

2

cryptographiques, les dispositifs sont déjà assez complexes sans les contre-mesures ajoutées.

L’ajout de dispositifs de protection comme des éléments tels que des générateurs de bruit peut

rendre le dispositif encore plus complexe et lent, ce qui n’est pas acceptable. Additionnellement,

il existe des techniques efficaces pour filtrer des bruits. Ceci rend souvent inefficace cette contre-

mesure utilisée de façon autonome. Ce type de protection/contre-mesure peut être juste une

contre-mesure supplémentaire. Des contre-mesures ajoutés/developpés doivent être soigneuse-

ment évaluées pour qu’elles n’aient pas un impact négatif sur l’efficacité du système cryptogra-

phique (occupation des ressources et la vitesse d’opération).

Les deux systèmes cryptographiques les plus populaires sont des systèmes de cryptographie

symétrique (cryptographie à clé secrète) et systèmes de cryptographie asymétrique (cryptogra-

phie à clé publique). La sécurité de ces deux types de systèmes basés sur la sécurité de clés.

La sécurité de clés est assurée par des problèmes mathématiques d’une très grande complexité

(NP-difficiles) ne pouvant être résolus même avec une grande puissance de calcul dans un délai

raisonnable.

Dans cette étude, nous envisageons des solutions dédiées aux techniques de cryptographie à clé

publique (PKC). Dans PKC, la clé secrète (clé privée) peut être mathématiquement déterminée

par la résolution d’un problème NP-difficile, tel que :

– le problème de factorisation des grands entiers (système RSA 1) ;

– le problème du logarithme discret (DLP 2) (système ElGamal)

– le problème du logarithme discret sur une courbes elliptique (ECDLP 3) (système ECC 4 -

cryptographie sur les courbes elliptiques)

Dans ce travail, il a été décidé de se concentrer sur l’amélioration de l’efficacité et la sécurité

des systèmes ECC. Principalement car il a été prouvé qu’ECC peut être bien plus efficace que

RSA par exemple.

Les systèmes ECC sont considérés comme potentiellement plus efficaces en raison de la taille

des clés qui sont utilisées pour assurer certain niveau de sécurité. Par exemple RSA utilisant

des clés de 3072 bits fournit un niveau de sécurité équivalent à celle assurée par un système

ECC utilisant des clés de seulement 256 bits. La comparaison des tailles de clés qui assurent la

sécurité équivalente de differents systèmes cryptographiques est présentée dans la Table 1.

Les systèmes ECC utilisent des propriétés des courbes elliptiques définies sur des corps finis.

Les principales opérations des protocoles ECC sont effectuées sur des points de telles courbes.

Pour par exemple, pour pouvoir faire la somme de deux points de la courbe P + Q, il faut effec-

tuer des opérations sur les coordonnées des points P et Q. Les coordonnées de ces points sont

des éléments du corps finis sur laquelle la courbe est définie. Au vu de ces dépendances, nous

pouvons conclure que les opérations sur les courbes elliptiques dépendent fortement sur des opé-

rations sur les éléments des corps finis. Nous présumons que l’efficacité du système ECC dépend

1. Rivest-Shamir-Adleman

2. discrete logarithm problem

3. elliptic curve discrete logarithm problem

4. elliptic curve cryptography

3

Table 1.: Tailles des clés de différentes systèmes cryptographiques assurant un certain niveau
de sécurite [25]

.

sécurite min. taille (bit) de clé (PKC)
(bit) DSA/DH RSA ECC

80 1024 1024 160
112 2048 2048 224
128 3072 3072 256
192 7680 7680 384
256 15360 15360 512

aussi fortement de l’efficacité des opérations arithmétiques dans les corps finis. Pour améliorer

l’efficacité des systèmes ECC numériques, nous devrons proposer des opérateurs arithmétiques

sur les corps finis rapides et avec des surfaces de circuit limitées pour des implantations en ma-

tériel. Deux types de corps finis qui sont utilisés en cryptographie sur les courbes elliptiques :

les corps premiers GF (p) et les extensions du corps fini binaire GF (2m). Dans ce travail, il a été

décidé de considerer uniquement les extensions du corps fini binaire. Ces corps sont considérés

comme les plus appropriées pour des solutions matérieles du fait que leurs éléments peuvent être

représentées efficacement par des polynômes binaires, et non pas, comme dans le cas des corps

premiers par des grands nombres. De cette façon, on évite les problèmes liés aux propagations

de retenues.

Le premier objectif de la recherche était de développer en matériel des opérateurs arithmé-

tiques sur GF (2m) performants (rapides et avec une surface de circuit limitée). La deuxième

objectif est de rendre ces opérateurs plus robustes à certains attaques par canaux cachés de type

d’analyse de consommation d’énergie.

L’opération la plus importante et la plus fréquemment attaquée dans les protocoles ECC

est la multiplication scalaire d’un point de la courbe elliptique P par un très grand entier k,

généralement secret (souvent il s’agit d’une clé privée) : [k]P . Cette opération est réalisée sous

forme de chaîne d’opérations élémentaires sur les points de la courbe (P + Q, 2P). Le plus

simple des algorithmes pour la multiplication scalaire est un algorithme dit double-and-add, voir

l’algorithme 1.

Dans cet algorithme, l’addition de points de la courbe (ADD) est strictement dépendante de

la valeur du bit spécifique du scalaire secret k. Pour cette raison, quand il est possible de faire

la distinction entre la consommation instantanée pendant des opérations d’addition (ADD) et

de doublement (DBL), alors il est aussi possible d’une manière simple de découvrir le scalaire k

(Figure 1).

Les opérations P + Q et 2P sont effectuées sur les coordonnées des points de courbes ellip-

tiques. Les coordonnées des points des courbes elliptiques sont des éléments de corps fini, donc

nous concluons que l’activité électrique (consommation d’énergie) pendant les opérations sur les

éléments des corps finis, pourraient donner des informations à un attaquant l’aidant ainsi à faire

4

Algorithm 1 Algorithme double-and-add [9]

Input: k = (kt−1, ..., k1, k0)2, P ∈ E(Fq)
Output: [k]P
1: Q←∞
2: for i = 0 to t− 1 do

3: if ki = 1 then

4: Q← Q + P // ADD //
5: end if

6: P ← 2P // DBL //
7: end for

8: return Q

Figure 1.: L’exemple de SPA (analyse simple de consommation) d’algorithme 1

la distinction entre les opérations 2P et P + Q, et enfin l’aidant à decouvrir le clé secrète.

Notre tentative de sécuriser les opérateurs arithmétiques au niveau du corps fini est la pre-

mière à notre connaissance. Dans la littérature, ne sont présentées que des techniques pour

sécuriser les opérations au niveau de courbes elliptiques ou au niveau des protocoles ECC. Des

contre-mesures existantes utilisées comme contre-mesures autonomes sont généralement suffi-

santes pour protéger les dispositifs contre les attaques par l’analyse simple de consommation

(SPA), mais pour protéger ces dispositifs contre des attaques différentielles (DPA), il faut com-

biner plusieurs contre-mesures en plusieurs niveaux d’opérations. Les attaques SPA analysent

une seule signature (trace) de consommation du dispositif, alors que les attaques DPA analysent

un grand nombre de mesures (p. ex. quelques milliers) en utilisant un modèle fonctionnel du

dispositif et des méthodes statistiques. On présume que la sécurisation de tous les niveaux des

opérations de systèmes ECC devrait empêcher l’exécution fructueuse de telles attaques.

5

Pour cette raison, il a été décidé d’analyser et de réduire la fuite de l’information existant

dans les opérateurs arithmétiques. Il est supposé que la réduction des fuites d’information des

opérateurs arithmétiques peut améliorer la sécurité des systèmes ECC. Le troisième objectif,

strictement connecté aux deux précédents, est de trouver un compromis entre l’efficacité et la

sécurité des opérateurs. Généralement, plus on ajoute des contre-mesures (plus robuste est le

dispositif), moins efficace est le dispositif.

En tenant compte de tous les objectifs présentés, nous pouvons formuler la thèse de nos re-

cherches :

Il est possible de développer des opérateurs arithmétiques sur le corps fini GF (2m) en maté-

riel, efficaces et robustes contre les attaques aux canaux cachés qui analysent la consommation

d’énergie.

2. Recherches réalisés, problèmes rencontrés et les solutions

développées

2.1. Opérateurs arithmétiques sur GF (2m) en matériel.

Il existe deux opérations principales définies sur GF (2m) : addition et multiplication. Toutes

les autres opérations division, inversion, etc.) peuvent être vues comme une chaîne d’additions

et de multiplications. Avant de réaliser le premier objectif (développement d’opérateurs arith-

métiques sur GF (2m) en matériel), il était nécessaire de trouver des paramètres/caractéristiques

des opérateurs qui nous permettent de développer des opérateurs efficaces.

Des paramètres vitaux pour les opérateurs arithmétiques sont : la base (représentation de

nombres), le polynôme irréductible f(x) (générateur du corps) et la taille de corps utilisé m

(taille des nombres sur lesquels les opérateurs vont opérer).

Le type de base utilisé dépend des applications des opérateurs. Les bases les plus populaires en

cryptographie sont : la base polynomiale, la base normale ou quasi-normale (Gaussienne GNB,

optimale ONB) et la base duale. Après avoir effectué une vaste analyse détaillée des propriétés

et applications de différentes bases, nous avons décidé d’utiliser la base polynômiale de forme :

{1, α, α2, . . . , αm−1}. En premier lieu, la base duale a été rejettée. Généralement, cette base est

utilisée pour des petits corps finis (m = 8, 16, 32) et dans nos recherches nous considérons des

corps avec m ∼== 150 − 600. Les bases polynomiale et normale ont des caractéristiques qui

pourront rendre nos opérateurs très efficaces. Finalement en considérant des opinions trouvés

dans la littérature (que la base polynomiale permet d’obtenir des solutions matérielles plus effi-

caces), nous avons décide d’utiliser la base polynomiale. Néanmoins nous envisageons d’analyser

l’utilisation des bases normales dans l’avenir.

Le deuxième paramètre important est la taille m du corps fini et du type de polynôme irre-

ducible f(x) utilisé. En vue d’applications ECC, il faut utiliser des tailles m et des polynômes

f(x) définis dans des standards cryptographiques comme ceux du NIST ou SEGC [7].

6

Toutes les solutions proposées sont dédiées aux circuits reconfigurables, en particulier aux

circuits FPGAs. Nous avons utilisé des circuits Xilinx : Spartan-3E XC3S1200E [29] et Virtex-6

LX240T [2]. Pour des évaluations de sécurité une carte SASEBO-G [22] avec un FPGA Virtex-II

Pro XC2VP7 [28] a été utilisée.

Opérateur d’addition. L’addition sur GF (2m) est une simple opération. Cette opération peut

être vue comme un simple XOR. D’un autre côté, même une simple opération mathématique

effectuée sur des éléments très grands peut causer des problèmes de synchronisation (qui peut

ralentir d’autres fonctions) et peut occuper beaucoup de ressources. Afin de vérifier l’impact

réel de l’opération d’addition sur d’autres composants de systèmes ECC, nous avons préparé

plusieurs types d’opérateurs d’addition.

Le processeur ECC, dans lequel nos opérateurs seront integrés, transfère des données en mots

(16, 32 bits). Pour cette raison, les solutions suivantes ont été proposées :

1 : Addition des mots d’entrée, les vecteurs a, b, et stockage des résultats partiels dans le

registre c (solution 1).

2 : Addition des mots d’entrée, les vecteurs a, b, et stockage des résultats partiels dans la

mémoire (solution 2).

3 : Attente des vecteurs a, b complets et addition des vecteurs reçus (solution 3).

Dans la Table 2, les résultats obtenus sont présentés. Les paramètres de la solution 3 ne sont

pas présentés en raison du fait que la solution est très simple, on peut dire qu’il s’agit d’une

translation des entrées vers les sorties du circuit.

Table 2.: Opérateurs d’addition (Virtex-6)

taille du corps solution 1 solution 2
m [LUT] [MHz] [LUT] [MHz]

163 21 771 26 562
233 21 771 26 562
283 22 767 28 560
409 22 767 28 560
571 24 578 31 558

Les résultats obtenus montrent que l’addition est une opération simple, ayant un effet négli-

geable sur les autres composants du système. Les solutions proposées sont petites (de 20 à 30

LUT) et rapides. Avec l’augmentation de la taille des vecteurs l’utilisation de ressources est plus

un peu plus importante et la vitesse baisse légèrement.

L’addition des éléments du corps fini dans les systèmes ECC est généralement effectuée en

parallèle avec d’autres opérations en raison du faible degré de sa complexité.

7

Opérateur de multiplication sur GF (2m). La multiplication dans un grand corps fini est une

opération complexe. Elle est considérée comme une opération modulaire, afin d’obtenir le pro-

duit de deux éléments du corps, il faut d’abord les multiplier, et ensuite réduire le produit

modulo le polynôme irréductible f(x). De cette façon, le résultat de la multiplication de deux

éléments du corps c(x) = a(x)b(x) mod f(x) est aussi un élément du même corps. On divise les

algorithmes de multiplication en deux groupes : les algorithmes à deux étapes et les algorithmes

entrelacés. Plusieurs d’algorithmes existent et leurs modifications ont été analysées en regar-

dant/cherchant leurs propriétés (traitement de données, représentation des données, manières

de paralléliser, etc.) qui pourront être utiles pour développer des multiplieurs matériels très ef-

ficaces/performants. Cette section résume les principaux résultats obtenus et conclusions tirées

de l’analyse des algorithmes décrits dans la littérature disponible.

Les solutions proposées ne seront pas totalement nouvelles car elles seront basées sur des

théories mathématiques bien connues. Le but de cette recherche est de modifier ou combiner

certaines des propriétés existantes dans le but de développer des algorithmes pour les opérateurs

matériels plus performants.

Algorithmes à deux étapes - des résultats les plus intéressants

Au cours de notre étude, nous avons examiné séparément des méthodes de multiplication et de

réduction.

Premier étape : multiplication. La méthode de la multiplication de polynômes la plus connue

est la méthode “shift-and-add”. Etant donnés deux polynômes a(x) et b(x) de degré (m − 1),

le produit d(x) de degré (2m − 2) est obtenu par multiplication du polynôme a(x) par chaque

coefficient du polynôme b(x). Plus simplement, on décale le polynôme a(x) et on additionne le

nouveau polynôme si le coefficient correspondant de b(x) est 1. Cette méthode est très simple et

permet de concevoir des circuits avec des structures régulières. Cependant, utilisé dans une forme

inchangée pour multiplier des très grands vecteurs, elle peut ne pas être très efficace, surtout en

termes d’utilisation de ressources matérielles. La plupart des algorithmes de multiplication de

polynômes sont généralement des variantes de cet algorithme. Les différences entre les différentes

versions s’appuient sur des méthodes de représentation des nombres, la façon de traiter les don-

nées, etc. Dans le cas de la multiplication de grands nombres, on utilise par exemple une méthode

de partitionnement des données de type “divide-and-conquer”, des représentations matricielles

des arguments, ou bien des moyens spécifiques de traitement de données. Les optimisations

les plus intéressantes semblent être : une méthode basée sur le principe “ divide-and-conquer”,

l’optimisation de Karatsuba-Ofman et la méthode matrice-vecteur.

Le principe de la méthode “divide-and-conquer” est de diviser un gros problème en petits

sous-problèmes. Dans notre cas, on divise le problème de multiplication de grands nombres en

un ensemble de plus petites multiplications, et ainsi de partitioner les vecteurs d’entrée en plus

petits vecteurs. Les produits partiels sont ensuite combinés pour obtenir le résultat final. La

variante la plus populaire et la plus utilisé est l’optimisation de Karatsuba-Ofman [10]. Elle

8

réduit le nombre des opérations nécessaires à effectuer afin d’obtenir le résultat final.

Dans la méthode matrice-vecteur [4], le polynôme a(x) est représenté par une matrice A de

taille (2m−1)×m, dans laquelle chaque colonne représente un nouveau décalage vers la gauche

du vecteur a(x) (a << 2). L’élément b(x) est représenté par un vecteur de taille m et le produit

d(x) et aussi un vecteur mais de taille (2m− 1).

Les représentations des nombres influent fortement sur les architectures des solutions maté-

rielles. Certaines permettent d’accélérer le fonctionnement du système, mais augmentent la quan-

tité des ressources matérielles occupées, d’autre diminuent de manière significative le nombre

des ressources utilisées, mais diminuent aussi la vitesse de la solution. Lors de la conception

d’architectures matérielles, il faut toujours trouver un compromis entre la taille de la solution et

la vitesse de fonctionnement. Afin de concevoir des opérateurs de multiplication efficaces, il était

nécessaire d’étudier un grand nombre de solutions existantes. Malheureusement, la majorité

des optimisations d’algorithmes présentés dans la littérature sont uniquement des considéra-

tions théoriques. Souvent, des optimisations théoriques présentées ont donné des résultats plus

mauvais ou similaires à des solutions originales plus simples. Nous avons réalisé et analysé un

grand nombre de solutions afin de trouver les propriétés des algorithmes qui peuvent être béné-

fiques pour le matériel. Une analyse détaillée des solutions différentes pour les multiplieurs a été

présentée lors de conférences nationales et internationales [17, 16, 18].

Pour faciliter la comparaison des solutions présentés, nous avons introduit un coefficient

AT (produit temps surface comme coefficient de performance), défini comme suit : AT =

(ressources×temps d’opération). Les résultats indiquent que les meilleures solutions pour les

algorithmes à deux étapes peuvent être obtenues en utilisant la méthode matrice-vecteur pour

la représentation des nombres et l’optimisation de Karatsuba-Ofman (optimisation “divide-and-

conquer”). Les résultats obtenus pour les opérateurs de multiplication pour les corps de tailles

233, 283, 409, 571 sont présentés dans la Table 3.

Table 3.: opérateurs de multiplication 233, 283, 409 et 571 bits (Virtex-6)

Multiplieur
Taille Max.f(#cycles)

AT
[LUT] [MHz]

233-bit opérateur composé de
2625 520 MHz (234) 1181.3

trois sous-multiplieurs 117 bits
283-bit opérateur composé de

3381 535 MHz (284) 1794.8
trois sous-multiplieurs 142 bits
409-bit opérateur composé de

4834 535 MHz (412) 3722.6trois sous-multiplieur 206 bits
571-bit opérateur compose de

7095 522 MHz (572) 7774.6trois sous-multiplieurs 286 bits

Deuxième étape : réduction modulo f(x). Généralement, il existe deux méthodes de réduction :

classique et matrice R. La première méthode, la méthode classique, est la méthode itérative.

9

La seconde deuxième utilise une matrice R de réduction [4]. Plusieurs optimisations ont été

proposées pour les deux méthodes, la plupart optimisent le nombre d’opérations nécessaires

pour calculer avec un polynôme irréductible spécifique f(x). Il existe des types particuliers de

générateurs de corps f(x) comme les trinômes, pentanômes ou par exemple des polynômes de

type ESP 5, qui permettent une simplification significative de l’algorithme de réduction. Dans

la thèse, nous proposons un moyen d’optimiser l’algorithme de réduction (en vue de polynôme

irréductible) qui réduit le nombre des opérations nécessaire à effectuer.

La deuxième méthode de réduction utilise une matrice specifique R [4]. Cette méthode peut

considérablement accélérer la réduction modulo f(x). La matrice de réduction R est définie par

le polynôme irreducible f(x). Il est généralement admis que la méthode de réduction utilisant

la matrice R est très efficace. Au cours nos recherches, la méthode était optimisée pour f(x).

Afin de comparer des méthodes de réduction, nous avons implémenté en matériel la version

classique, optimisée et la méthode utilisant la matrice R. Les résultats sont présentés dans la

Table 4. L’unité basée sur la méthode classique non-optimisée a besoin de beaucoup de cycles

Table 4.: Les résultats d’implémentation des algorithmes de réduction (m = 233) (Virtex-6)

Algorithme
Ressources Max. f(#cycles)

AT
[LUT] [MHz]

classique 3528 209 MHz (600) 10128.2

classique, optimisé 1165 571 MHz (8) 16.3

matrice R
466 1264∗ MHz (2) 0.74

(séquentiel)
matrice R

233 1.13 ns 0.26
(combinatoire)

* Les résultats présentés dans la table sont les résultats donnés par l’environnement Xilinx ISE, dans ce
cas, les résultats nous disent que les solutions après l’intégration avec d’autres circuits n’auront aucun

effet sur la vitesse du système.

pour effectuer l’opération, et occupe beaucoup de ressources. Dans le cas de l’algorithme op-

timisé, le nombre d’opérations nécessaires pour effectuer une reduction dépend de la forme du

polynôme irréductible. Pour m = 409 et m = 233, le nombre d’opérations nécessaires a effec-

tuer est le même. Pour m = 163, 283, 571, le nombre d’opérations nécessaires a effectuer croît

jusqu’à 14. En résumé, on peut dire que si le polynôme irréductible est défini, il est possible

d’optimiser la méthode de réduction.

La solution la plus efficace semble être la solution utilisant la matrice de réduction R. Pour

les polynomiaux irréductibles définis dans les standards/normes ECC, la matrice de réduction

R contient beaucoup de zéros. La solution la plus efficace semble être la solution utilisant la

matrice de réduction R. Pour cette raison, une opération compliquée et qui prend beaucoup de

5. equally spaced polynomials

10

temps peut être remplacée par un chaîne d’opérations XOR. Seulement les éléments non-nuls du

polynôme irréductible nécessittent des opérations XOR.

Résumé de l’analyse des algorithmes à deux étapes. L’analyse a abouti à la conception d’opéra-

teurs de multiplication sur GF (2m). En analysant les résultats obtenus, il a été décidé que les

meilleures composants pour créer un opérateur performant sont :

- multiplieur : solution utilisant la méthode matrice-vecteur, composé de trois sous-multiplieurs

utilisant l’optimisation Kartasuba-Ofman (partition des vecteurs en deux (m/2± 1)) ;

- circuit de réduction : solution utilisant l’algorithme classique optimisé avec le polynôme

irréducible ou la solution utilisant la matrice de reduction R optimisée pour le polynôme

irréducible.

Les résultats des implémentations des opérateurs de multiplication sur GF (2233) sont présentés

dans la Table 5.

Table 5.: Opérateurs de multiplication GF (2233) (Virtex-6)

Multiplieur Ressources Max. f # cycles
AT

m=233 [LUT] [MHz] d’horloge

opérateur + réduction classique 3638 302 264 3.18× 103

opérateur utilisant matrice R 2862 302 238 2.25× 103

Algorithmes entrelacés (interleaved) - des résultats les plus intéressants

Dans ce type d’algorithmes, l’opération de multiplication est effectuée en alternance avec la

réduction. Les algorithmes les plus intéressants de ce groupe semblent être : l’algorithme utilisant

la matrice de Mastrovito et l’algorithme de Montgomery.

L’algorithme utilisant la matrice de Mastrovito. L’algorithme utilisant la matrice de Mastrovito

est une extension de la méthode matrice-vecteur. Dans cet algorithme, à la place de deux étapes

de multiplication et réduction on calcule : c = Mb, où M est la matrice de Mastrovito.

La matrice de Mastrovito est composée de la matrice A (représentant a(x)) et de la matrice

de réduction R [4]. À la suite de la recherche, une optimisation efficace de l’algorithme a été

développée. Nous avons proposé d’au lieu d’opérer sur et de stocker la matrice entière M , de

la partitionner en sous-matrices (sous-blocs) de la taille 16 × 16 bits. Un exemple de partition

de matrice M pour le corps m = 233 est présenté en Figure 2 Les sous-matrices et la partie

corespondante du vecteur b sont multipliées par des unités spécifiques de sous-multiplieurs.

Chaque type de sous-matrice (même index en Figure 2) nécessite/demande un type spécifique

de sous-multiplieur.

En plus, les coefficients des sous-matrices sont calculés pendant la multiplication. Ainsi on évite

de stocker une grande quantité de données. Le processus de multiplication de toutes les sous-

matrices est contrôlé par automate fini (FSM). Pour trouver la meilleure solution matérielle basée

sur la conception de Mastrovito, nous avons implementé et analysé des nombreuses variantes

11

Figure 2.: Illustration de partition de matrice de Mastrovito pour m = 233

de ce type de solution. Nous avons modifié le nombres des états d’automate fini, le nombre de

sous-multiplieurs de différents types utilisés, etc. En raison de l’énorme quantité de variantes de

cette solution, nous n’avons pas testé toutes les modifications possibles. Pour conclure, l’analyse

a révélé que la solution la plus efficace utilise l’automate fini avec plus d’états, mais en utilisant

une seule sous-unité pour chaque type de sous-multiplieur (il est par exemple aussi possible

d’utiliser un automate fini avec moins d’états et plusieurs unités sous-multiplieurs de même

type).

Table 6.: Solutions utilisant la matrice de Mastrovito

Virtex-6
(AL + AHR)b Mb

XC6VLX240T

ressources(A)[LUT] 5014 3760
max.f 297 MHz 276 MHz

durée des opérations
65 75

(T)[nb. cycles]

AT 1097 1021

L’algorithme de Montgomery. La deuxième solution, aussi très populaire, pour les algorithmes en-

trelacés est l’algorithme de Montgomery [14]. La méthode suppose que pendant plusieurs opéra-

tions, pendant la chaîne des opérations de multiplication, on opère sur des nombres en représenta-

tion de Montgomery. Dans la représentation de Montgomery, pour effectuer la multiplication mo-

dulaire c(x) = a(x)b(x) mod f(x), nous effectuons l’opération c(x) = a(x)b(x)r−1(x) mod f(x),

où r(x) est un paramètre spécifique. Si r(x) est convenablement choisi, l’opération de multi-

12

plication devient simple. Pour recevoir le “vrai” résultat de multiplication sur corps fini, il faut

effectuer la réduction de Montgomery (retrouver la représentation classique à partir de la repré-

sentation de Montgomery). Pour effectuer une seule multiplication, en utilisant cet algorithme

il faut utiliser l’algorithme deux fois (deux exécutions de cet algorithme donne le résultat de

multiplication modulaire sur le corps fini). L’algorithme complet, pour effectuer une seule mul-

tiplication dans le corps GF (2m), est présenté ci-dessous, voir l’algorithme 2.

Algorithm 2 Multiplication modulaire - méthode de Montgomery [11]

Input: a(x), b(x), r(x), f(x), f ′(x), r2(x) mod f(x)
Output: c(x) = a(x)b(x) mod f(x)
1: t(x) = a(x)b(x)
2: u(x) = t(x)f ′(x) mod r(x) // MontMult(a, b) //
3: d(x) = [t(x) XOR u(x)f(x)]/r(x)
4: t(x) = d(x)(r2(x) mod f(x))
5: u(x) = t(x)f ′(x) mod r(x) // MontMult(d, r2 mod f) //
6: c(x) = [t(x) XOR u(x)f(x)]/r(x)
7: return c

L’algorithme utilise trois coefficients additionnels : r(x), r2(x) mod f(x), f ′(x). L’élément r(x)

selon [11] pour GF (2m) est un simple monôme xm. Si le polynôme f(x) est défini auparavant,

des coefficients constants f ′(x) et r2(x) mod f(x) peuvent être calculés.

La Table 7 présente des résultats obtenus pour les implémentations de la méthode Mastrovito.

L’opération le plus complexe de cet algorithme, la multiplication de deux grands vecteurs a, b,

s’effectue en étape deux (ligne deux de l’algorithme 2. Par conséquent, la multiplication de deux

grands vecteurs a, b a un impact significatif sur la vitesse et l’occupation de ressources.

Table 7.: L’algorithme de Montgomery - solutions (Virtex-6)

ressources max.f #
multiplieur AT

[LUT] [MHz] cycles

1 3197 338 270
233-bit operateur compose de

2554233x16-bit sous-multiplieurs

ressources : 2308 LUT, max.f : 323MHz

2 3730 302 244
233-bit operateur compose de

3014trois 117-bit sous-multiplieurs

ressources : 2625 LUT, max.f : 302MHz

2.2. Résume et conclusions

La comparaison des solutions proposées avec des solutions existantes n’est pas facile. La do-

cumentation disponible ne contient pas toujours toutes les données nécessaires. Les solutions ne

sont pas toujours complètement décrites, il manque la durée des opérations, la vitesse, ou il y a

des unités differentes. Dans de nombreux articlesm des performances de dispositifs sont evaluées

13

seulement théoriquement. Parce que les résultats de l’implementation dépendent non seulement

de l’algorithme utilisé, mais aussi sur la manière dont il est décrit dans le langage HDL, notre

implémentation des algorithmes trouvés dans la litterature peut donner des résultats différents

de ceux obtenus par leurs auteurs. La Table 8 présente les paramètres des solutions proposées à

la suite de nos recherches

Table 8.: Multiplieurs sur GF (2233) proposées

Algorithme
Ressources f cycles

AT
[LUT] [MHz] d’horloge

Classique 1 3638 302 264 3.18
Classique 2 2862 302 238 2.25
Mastrovito 3760 297 75 0.95

Montgomery (complet) 3197 338 270 2.55

La Table 9 présente les paramètres des solutions trouvées dans la littérature disponible. En

comparant le contenu de ces deux tables, nous pouvons conclure que les solutions proposées à la

suite de nos recherches sont assez rapides et nécessitent des quantites raisonnables de ressources.

3. Sécurisation de opérateurs arithmetiques matérielles sur

GF (2m)

Le deuxième objectif de la thèse est de protéger des opérateurs arithmétiques contre des

attaques par analyse de la consommation d’énergie. Les résultats présentés ci-dessous ont été

présentés lors de la conférence WAIFI 2012 [19]. Les attaques par analyse de la consommation

considère deux types de fuite d’information :

– la fuite résultant du nombres de transitions - nombre de bits qui changent leurs états dans

une unité de temps,

– la fuite résultant du changement de la distance Hamming HW - nombre de bits avec état

1, traités dans une unité de temps,

Parce que la consommation instantanée des circuits VLSI est liée au nombre de transitions

qui se produisent dans une unité de temps, nous avons considéré la fuite résultant du nombre de

transitions utiles qui se produisent pendant le fonctionnement de système (Hamming distance =

HW (t+1)−HW (t)). Etant des transitions utiles, nous considérons le nombre de transitions des

bits et signaux pendant les opérations arithmétiques. Nous nous focalisons sur des changements

qui se produisent entre deux cycles d’horloge. Les transitions utiles étant définies, nous allons

l’appeller l’activité utile du système. Pour identifier la source des fuites d’information qui existent

dans les unités développées, nous avons d’abord proposé des moyens d’évaluation, puis nous

avons effectué une analyse approfondie.

14

Table 9.: Solutions trouvées dans la littérature

m Circuit ressources
Max.f

T
/delai

[3]
256 Virtex II

5267 LUT 44.91 MHz
5.75 us

1033 2000-6 23.07 us

[26] 1024

XCV2000E-6 4355 CLB 100.4 MHz -

XC40150XV-7 8339 CLB 44.4 MHz -

XC4VFX100-10 2793 CLB 150.5 MHz -

[5] 233 XC2V-6000-4 415 slices - 2.42 us

[15]
233 Stratix 3728 LE 4.04 ns 12 cycles

283 EP1S40F780C5 3396 LE 3.66 ns 20 cycles

[27] 233 Stratix 3353 LE 6.91 ns 16 clock

by [15] 283 EP1S40F780C5 3118 LE 6.95 ns 20 clock

[8] 233

37296 LUT 77 MHz -

XC2V-6000 11746 LUT 90.33 MHz -

FF1517-4 36857 LUT 62.85 MHz -

45435 LUT 93.20 MHz -

[23] 191 XCV2600E 8721 CLB - 82.4 us

[1] 88 Altera EP2S60 6644 ALUTS -

[6] 163

201,989 LUTs 241 -

Virtex 214,703 DFFs MHz

XCVL330 1471 LUTs 241 -

982 DFFs MHz -

[12]

283

1781 CLB 246.670

2156 FF MHZ -

Virtex 4 3367 LUT

1132

XC4VFX140 25,955 CLB 248.447

32,578 FF MHz -

48,591 LUT

Dans les attaques par analyse de la consommation, l’attaquant essaie de trouver les corrélations

qui existent entre la consommation instantanée du dispositif cryptographique et les données sur

lesquelles la dispositif exerce ses opérations [13].

Afin d’évaluer le niveau de sécurité des opérateurs (évaluation de l’activité utile) la méthode

suivante a été proposée. Il était proposé de surveiller chaque registre et signal en utilisant un

moniteur d’activité [24].

Un moniteur d’activité compte le nombre des transitions des bits de la manière suivante : la

bascule D mémorise l’état précédent du signal et la porte XOR compare l’état actuel du signal

avec l’état mémorisé. La porte XOR donne en sortie 1 si il y a eu une transition. Le nombre des

15

transitions est compté par un compteur k bits. La taille de compteur k dépend du nombre des

signaux à regarder.

Compte tenu la spécificité des circuits VLSI, il s’avère que la méthode d’évaluation de l’activité

du système avec des moniteurs d’activité donne des résultats très similaires à ceux obtenus en

faisant une mesure de courant en utilisant une sonde et une oscilloscope [24]. Après avoir examiné

les sources existantes de fuites d’information et des façons de les réduire, nous présentons une

comparaison entre les données obtenues en utilisant la méthode des moniteurs et les données

obtenues par la mesure de courant instantané consommé par le dispositif.

À la suite de nos recherches, nous avons proposés trois types des opérateurs arithmétiques sur

GF (2m) : classique, Mastrovito et Montgomery. La sécurite de ces opérateurs a été évaluée et

les modifications pour augmenter la sécurite ont été proposées.

3.1. Vérification du niveau de sécurité, l’identification du problème, les

modifications proposées

Nous avons effectué un grande nombre de tests en utilisant beaucoup de d’ensembles différents

de données aléatoires avec une distribution uniforme de zéros et de uns. Les résultats présentés

ici sont des résultats typiques/représentatifs. Il est noté que la correlation entre les courbes des

activité obtenues et les données est petit. Malhereusement il était impossible de moyenner des

résultats en raison du fait que cela pourrait fausser les résultats, par exemple par l’aplatissement

ou l’unification de la courbe d’activité. La thèse présente l’analyse pour m = 233, pour les autres

tailles de corps définis dans les normes, les résultats sont similaires.

Solution avec l’algorithme classique Nous avons proposé deux solutions classiques : une

utilsant la réduction classique optimisée et la deuxième utilisant la matrice de réduction R.

Après avoir analysé des échantillons de l’activité pour les deux types de solutions, il a été

constaté que la réduction n’a pas d’impact significatif sur la forme de la courbe d’activité. Les

solutions pour les deux courbes sont presque identiques (pour les mêmes données de test). Ainsi,

il a été décidé d’analyser la solution en utilisant des méthodes de réduction classique optimisée.

La figure 3 (figure du haut) montre l’activité de l’unité non sécurisée pour une séquence de mul-

tiplications effectuées sur des arguments aléatoires. Il est facile d’observer une source potentielle

des informations utiles pour l’attaquant, une caractéristique qui peut faciliter la détermination

des limites temporelles des opérations individuelles de multiplication, ou la détermination du

nombre d’opérations de multiplication qui ont été réalisées.

Au début de chaque opération, il y a un accroissement soudain de l’activité, ce qui permet

de déterminer le début d’opération de multiplication. Cet accroissement soudain de l’activité

se produit par l’initialisation/réinitialisation du dispositif, par le manière dont les valeurs des

arguments sur lesquels opère le dispositif sont rechargés.

Pour éviter un accroissement soudain de l’activité provoqué par l’initialisation, le contrôleur

et la manière de réinitialiser l’operateur ont été modifiées. Auparavant, la réinitialisation et

16

 0

 50

 100

 150

 200

 250

 300

 350

 400

 500 1000 1500 2000 2500

n
u
m

b
e
r

o
f
tr

a
n
s
it
io

n
s

cycles
 1200 1300 1400

cycles

multiplication

initialization phase

 0

 20

 40

 60

 80

 100

 120

 140

 500 1000 1500 2000 2500

n
u

m
b

e
r

o
f

tr
a

n
s
it
io

n
s

cycles

Figure 3.: L’activité utile de la solution classique

le rechargement des valeurs de tous les registres utilisés étaient faites au début de multiplica-

tion. Maintenant des registres remettent à zéro leur contenu immédiatement avant l’utilisation.

Comme cela, le processus d’initialisation est réparti sur plusieurs de cycles d’horloge ce qui

évite des changements des valeurs de tous les registres dans une unité de temps. La Figure 3,

la partie inférieure, presente l’activité des operateurs avec les modifications proposées. Lors de

nos recherches, nous avons developé plusieurs maniéres différentes pour l’initialisation. Dans le

document, nous presentons l’activité pour la meilleure modification obtenue. Les modifications

effectuées ont permis de repérer d’autres manières d’optimiser des operateurs et d’apporter des

nouvelles améliorations. Comme nous pouvons l’observer, le nombre de transitions a diminué,

maintenant elle varie de 100 à 120 transitions, dans la version non modifiée elle a varie de 100 à

150 transitions. Les optimisations qui menent à une réduction du nombre de transitions réduisent

légèrement la consommation d’énergie. L’analyse de la forme de la courbe d’activité obtenue pour

la version sécurisée de l’opérateur montre un manque de croissance d’activité caractéristique. De

plus, dans un intervalle entre 1500 et 2400 cycles, il est difficile de déterminer les bords temporels

des opérations consécutives, il est difficile de déterminer le nombre de multiplications faites.

Solution basée sur l’algorithme de Montgomery L’activité de solution non protégée basée

sur l’algorithme de Montgomeryest presenté dans la Figure 4 (figure du haut). Pour comparer

17

 0

 50

 100

 150

 200

 250

 300

 350

 400

 500 1000 1500 2000 2500

n
u
m

b
e
r

o
f
tr

a
n
s
it
io

n
s

cycles
 900 1000 1100

cycles

reduction phaseinitialization phase

Figure 4.: L’activite utile de solution basé sur l’algorithme de Montgomery.

de façon adéquate la solution basée sur l’algorithme de Montgomery avec d’autres solutions,

nous montrons ici des résultats obtenus pour le multiplieur complet. Chaque multiplication se

termine par la conversion depuis la représentation de Montgomery.

Dans le cas de cette solution, on peut observer une diminution de l’activité à la fin de l’opé-

ration de multiplication. Il a été constaté que cette baisse est due à l’opération de conversion

de la représentation et due au contrôleur du multiplieur, qui arrête le multiplieur pour rechar-

ger de nouvelles valeurs des arguments. Dans la partie inférieure de la Figure 4, il est presenté

l’activité du multiplieur complet avec un contrôleur amélioré (improved control), et l’activité du

multiplieur avec un contrôleur amélioré et sans la conversion de la représentation Montgomery

18

(without reduction). Si on néglige la conversion de la représentation de Montgomery, on peut

observer que l’activité de solution est assez uniforme. L’activité ne contient pas les baisses dras-

tiques ou des accroissements de l’activité qui pourraient aider à localiser des opérations dans le

temps.

La solution utilisant la matrice de Mastrovito La Figure 5 (en haut) montre l’activité du

multiplieur qui utilise les propriétés de la matrice Mastrovito.

L’activité du multiplieur a une forme très particulière de “dents de scie”. Cette forme très

particulière peut fournir à un attaquant beaucoup d’informations utiles. Il était nécessaire de

modifier l’architecture de l’opérateur pour réduire ces variations spécifiques d’activité. Pour

l’architecture de l’opérateur conçu (division sur les sous-matrices) nous avons proposé deux

types des modifications : uniformisation (aplatissement) d’activité et randomisation d’activité

(chaque multiplication aura une activité relativement différente). La première modification devra

rendre plus difficile de localiser la début et la fin des opérations, et la deuxième devra rendre

plus difficile la détermination de type d’opération effectué.

Il est évident que la forme de l’activité se produit en raison d’un nombre inégal de bits qui

changent d’état dans une unité de temps. Le but de l’uniformisation est d’égaliser le nombre de

bits qui changent d’état dans une unité de temps. Le but de randomisation et de randomiser

le nombre de bits qui changent d’état dans une unité de temps. Nous avons proposé plusieurs

modifications qui mènent à une uniformisation ou à une randomisation. Dans ce résumé, nous

présentons des résultats les plus intéressants.

Le meilleur résultat obtenu pour l’uniformisation, sans modifier le nombre des états de la

machine d’états (FSM) est présenté dans la figure 5, avec la courbe V1. Après avoir modifié le

FSM, le nouveau moyen d’uniformiser l’activité est présenté par la courbe V0. À la suite des

modifications réalisées pour randomiser l’activité, nous avons obtenu des courbes V2 et V3. De

plus, la randomisation fait varier la durée de multiplication. Pour les modifications représentés

par la courbe V2, le nombre de cycles d’horloge pour réaliser une multiplication varie de 98 à

126. Dans le cas de la courbe V3, le nombre cycles varie de 64 à 108.

Le but des modifications effectuées était de masquer des formes caractéristiques des opérations

de multiplication. Pour vérifier le niveau de sécurité qui résulte de ces modifications, nous avons

effectué quelques variantes populaires de cryptanalyse de consommation. Par exemple, nous

avons analysé la corrélation entre la forme de la courbe de l’activité et un changement d’un ou

plusieurs bits de données sur lesquelles nous opérons. Nous avons également analysé des chaînes

d’opérations nécessaires pour effectuer des opérations telles que 2P ou P + Q. Les résultats de

l’analyse de chaîne d’operations nécessaires pour effectuer 2P pour des versions originales et

sécurisées sont présentés dans la figure 6.

De plus, pour évaluer des contre-mesures, nous avons utilisé les outils du domaine de traitement

du signal (FFT). En utilisant la transformée de Fourier rapide, nous avons transformé des

19

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500

n
u
m

b
e
r

o
f
tr

a
n
s
it
io

n
s

cycles
 200 225 250

cycles

Figure 5.: L’activite des solutions basées sur la conception de Mastrovito (4 versions).

données obtenues dans le domaine temporel vers le domaine fréquenciel. Après nous avons calculé

la mesure de planéité spectrale (SFM) [20]. La figure 7 présente les valeurs obtenues. Plus

la valeur de SFM s’approche de 1 plus la représentation spectrale de l’activité s’atténue. En

observant ces résultats, il est possible de remarquer une amélioration significative de l’uniformité

de la distribution d’énergie pour la solution sécurisée basée sur Mastrovito.

20

 100

 200

 300

 400

 0 50 100 150 200 250 300 350 400 450
cycles

Point doubling − Mastrovito protected

 0

 100

 200

 300

 0 100 200 300 400 500 600

nu
m

be
r

of
 tr

an
si

tio
ns Point doubling − Mastrovito unprotected

Figure 6.: L’activité utile pour l’opération 2P réalisée par l’opérateur original ou sécurisée

Comparaison des courbes d’activité obtenues avec des mesures de courant La dernière

étape de la vérification de sécurité était de comparer des courbes d’activité obtenue avec des

mesures de courant. Nos différents multiplieurs ont été implémentés dans un circuit Virtex-

II sur une carte SASEBO-G (side-channel attack standard evaluation board). En utilisant un

oscilloscope rapide LeCroy Waverunner 104Xi-a et sonde Tektronix CT1, nous avons mesuré

le courant instantané qui est utilisé par le circuit pendant la multiplication. Pour éliminer le

bruit autant que possible, nous avons utilisé une alimentation à faible bruit HP E3610A. La

figure 8 montre une comparaison entre les mesures obtenues à partir de moniteurs d’activité et

les mesures de courant. Les deux premières figures (haut) montrent les résultats pour l’opérateur

non sécurisé. Les deux autres figures montrent les résultats pour l’opérateur sécurisé.

L’analyse des résultats permet de conclure que la méthode proposée pour évaluation de l’ac-

tivité (moniteurs d’activité) reflète bien l’activité “réelle” (courant mesuré dans le circuit). Dans

la table 10, nous présentons les résultats d’implementation obtenus pour des opérateurs sé-

curisés. Pour faciliter la comparaison des opérateurs, nous avons introduit le coefficient α :

sécurisé = α× non-sécurisé.

4. Résumé et conclusions

L’objectif de cette recherche était de proposer des opérateurs arithmétiques matériels pour le

corps fini GF (2m) efficaces et résistants à certaines attaques par canaux cachés de type analyse

de consommation d’énergie.

Le premier objectif était de développer des opérateurs arithmétiques sur GF (2m) efficaces, dé-

diés aux circuits reconfigurables (FPGA) et des applications cryptographiques (systèmes ECC).

Afin de réaliser cet objectif, une analyse approfondie des solutions existantes, pendant laquelle

21

1

10

100

 0 0.2 0.4 0.6 0.8 1

p
o
w

e
r

(l
o
g
 s

c
a
le

)

normalized frequency

SFM=0.60

Classic unprotected

 0 0.2 0.4 0.6 0.8 1
normalized frequency

SFM=0.64

Classic protected

1

10

100

 0 0.2 0.4 0.6 0.8 1

p
o
w

e
r

(l
o
g
 s

c
a
le

)

normalized frequency

SFM=0.31

Mastrovito unprotected

 0 0.2 0.4 0.6 0.8 1
normalized frequency

SFM=0.41

Mastrovito protected v1

1

10

100

p
o
w

e
r

(l
o
g
 s

c
a
le

)

SFM=0.55

Mastrovito protected v2

SFM=0.58

Mastrovito protected v3

Figure 7.: Analyse FFT d’activité utile des opérateurs originaux et sécurisés

nous avons implémenté et vérifié plusieurs propositions d’optimisation, a été effectuée. Il a été

supposé que les opérateurs doivent être rapides, de petite taille (occuper une quantité raison-

nable de ressources matérielles) et doivent pouvoir traiter des très grands nombres (150–600

bits). Nos recherches nous ont permis de trouver, combiner et d’améliorer les caractéristiques

des solutions existantes qui permettent de concevoir des opérateurs conformes aux exigences

supposées.

22

 0

 100

 200

 300

 0 50 100 150 200 250 300 350 400 450

nu
m

be
r

of
 tr

an
si

tio
ns

cycles

Mastrovito unprotected − activity traces

−0.02

 0

 0.02

 0.04

 0.06

 0.08

 0 100 200 300 400 500 600 700 800 900

cu
rr

en
t

cycles

Mastrovito unprotected − current measurements

 100

 200

 300

 400

 0 20 40 60 80 100 120 140 160 180

nu
m

be
r

of
 tr

an
si

tio
ns

cycles

Mastrovito protected − activity traces

−0.1

 0

 0.1

 0.2

 0 50 100 150 200 250 300 350

cu
rr

en
t

cycles

Mastrovito protected − current measurements

Figure 8.: Comparaison d’activite utile et les mesures de courant pour solution basée sur Mas-
trovito :
pour des versions non sécurisée et sécurisée (uniformisation)

Table 10.: Les résultats d’implémentation des opérateurs sécurisés

Algorithme
ressources f cycles
LUT (×α) MHz (×α) d’horloge (×α)

Classique 2868 (×0.79) 270 (×0.89) 260 (×0.98)

Montgomery 2099 (×0.96) 323 (×1.00) 264 (×0.98)

Mastrovito v0 3889 (×1.04) 225 (×0.75) 48 (×0.64)

Mastrovito v1 3463 (×1.09) 414 (×1.39) 75 (×1.00)

Mastrovito v2 3700 (×1.02) 306 (×1.03) avg. 116 (×1.55)

Mastrovito v3 3903 (×1.03) 319 (×1.07) avg. 80 (×1.07)

23

Le deuxième objectif était de sécuriser les opérateurs arithmétiques développés contre cer-

taines attaques par canaux cachés de type analyse de consommation d’énergie. Selon les sources

connues de la littérature, notre tentative est la première pour sécuriser les opérations au niveau

d’opération le plus bas de l’ECC, les opérations sur des éléments des corps finis, sur laquelle

les courbes utilisées sont définies. Jusqu’à présent, seulement des protections pour sécuriser les

niveaux supérieurs d’opérations des systèmes ECC, telles que les opérations sur les points de

courbes elliptiques, ont été proposée dans la litérature.

Les sources potentielles de fuites d’information ont été identifiées de deux manières : par

l’utilisation de moniteurs d’activité et d’outil ChipScope et en mesurant le courant instantané

consommé par le dispositif à l’aide d’une carte SASEBO-G et d’un équipement spécialisé. À

partir de l’analyse des résultats obtenus, il a été conclu que les courbes d’activité de solutions non

sécurisés ont des formes très spécifiques. Ces formes spécifiques peuvent permettre d’identifier des

opérations sur les points des courbes elliptiques, comme 2P ou P + Q. Afin de réduire les fuites

d’information, nous avons introduit/proposé des modifications structurelles et des algorithmiques

utilisés dans les opérateurs. Des modifications ont été effectuées à très bas niveau pour éviter la

dégradation des performances des opérateurs.

Le troisième objectif poursuivi en parallèle avec le deuxième était de trouver un compromis

entre la performance et la sécurité des opérateurs. Si des protections avaient eu un impact très

négatif sur l’efficacité des opérateurs, il aurait été nécessaire de les modifier ou de les abandonner.

La table 10 présente des paramètres des opérateurs protégés.

Pour conclure, à la suite de nos recherches, nous avons atteint les résultats originaux suivants :

– des opérateurs arithmétiques sur GF (2m) efficaces en matériel dédiés aux systèmes ECC

ont été proposés ;

– des moyens pour sécuriser ces opérateurs arithmétiques contre certaines attaques par canaux

cachés de type analyse de consommation ont été proposés ;

– un compromis entre l’efficacité des opérateurs et l’efficacité des contre-mesures a été trouvé ;

Les résultats obtenus ont confirmé la validité de la thèse formulée.

24

Bibliographie

[1] Ch. W. Chiou, J.-M. Lin, Ch.-Y. Lee, and Ch.-T. Ma. Novel Mastrovito Multiplier over

GF (2m) Using Trinomial. In Proc. 5th International Conference on Genetic and Evolutio-

nary Computing, ICGEC ’11, pages 237–242, Washington, DC, USA, 2011. IEEE Computer

Society.

[2] Xilinx Corporation. Virtex-6 family overview (product specification), 2012.

[3] F. Crowe, A. Daly, and W. Marnane. A scalable dual mode arithmetic unit for public

key cryptosystems. In Information Technology : Coding and Computing (ITCC), volume 1,

pages 568–573, April 2005.

[4] S. S. Erdem, T. Yanik, and C. K. Koc. Polynomial Basis Multiplication over GF(2m). Acta

Applicandae Mathematicae, 93(1-3) :33–55, September 2006.

[5] E. Ferrer, D. Bollman, and O. Moreno. A fast finite field multiplier. In Proc. 3rd Inter-

national Conference on Reconfigurable Computing : Architectures, Tools and Applications,

ARC’07, pages 238–246. Springer, 2007.

[6] A. P. Fournaris and O. Koufopavlou. Applying systolic multiplication-inversion architec-

tures based on modified extended Euclidean algorithm for GF (2k) in elliptic curve crypto-

graphy. Computers & Electrical Engineering, Elsevier, 33(5-6) :333–348, September 2007.

[7] P. Gallagher. FIPS PUB 186-3 Federal Information Processing Standards Publication Di-

gital Signature Standard (DSS), 2009.

[8] C. Grabbe, M. Bednara, J. Teich, J. von zur Gathen, and J. Shokrollahi. FPGA designs

of parallel high performance GF (2233) multipliers [cryptographic applications]. In Proc.

International Symposium on Circuits and Systems (ISCAS), volume 2, pages 268–271, May

2003.

[9] D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptography. Sprin-

ger, 2004.

[10] A. Karatsuba and Y. Ofman. Multiplication of Multi-Digit Numbers on Automata (in

Russian). Doklady Akad. Nauk SSSR, 145(2) :293–294, 1962. Translation in Soviet Physics-

Doklady, 44(7), 1963, p. 595-596.

[11] C. K. Koc and T. Acar. Montgomery Multiplication in GF(2k). Designs, Codes and Cryp-

tography, 14(1) :57–69, April 1998.

25

[12] H. Li, J. Huang, P. Sweany, and D. Huang. FPGA implementations of elliptic curve cryp-

tography and Tate pairing over a binary field. Journal of Systems Architecture, Elsevier,

54(12) :1077–1088, December 2008.

[13] S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks : Revealing the Secrets of

Smart Cards. Springer, 2007.

[14] P. L. Montgomery. Modular Multiplication Without Trial Division. Mathematics of Com-

putation, 44(170) :519–521, April 1985.

[15] A. H. Namin, W. Huapeng, and M. Ahmadi. Comb Architectures for Finite Field Multi-

plication in F (2m). IEEE Transactions on Computers, 56(7) :909–916, July 2007.

[16] D. Pamula, E. Hrynkiewicz, and A. Tisserand. Multiplication in GF (2m) : area and time de-

pendency/efficiency/complexity analysis. In Proceedings of 10th International IFAC Work-

shop on Programmable Devices and Embedded Systems (PDES) , pages 43–48, 2010.

[17] D. Pamula, E. Hrynkiewicz, and A. Tisserand. Analiza algorytmów mnozenia w ciele

GF (2m). Pomiary Automatyka Kontrola (PAK) (Measurement, Automation and Moni-

toring) , 57(01/2011) :58–60, 2011.

[18] D. Pamula, E. Hrynkiewicz, and A. Tisserand. Analysis of GF (2m) multipliers regarding

Elliptic Curve Cryptosystem applications. In Proceedings of 11th IFAC/IEEE International

Conference on Programmable Devices and Embedded Systems (PDES) , pages 252–257, 2012.

[19] D. Pamula and A. Tisserand. GF (2m) Finite-Field Multipliers with Reduced Activity

Variations. WAIFI 2012, LNCS 7369. Springer, pages 152–167.

[20] J. G. Proakis and D. G. Manolakis. Digital Signal Processing. Prentice Hall, 1996.

[21] S. Radack. Guide to protecting personally identifiable information. ITL Bulletin for April

2010.

[22] Research Center for Information Security National Institute of Advanced Industrial Science

and Technology. Side-channel Attack Standard Evaluation Board. SASEBO-G. Specifica-

tion. Version 1.0 , 2008.

[23] F. Rodríguez-Henríquez, N. A. Saqib, and A. Díaz-Pérez. A fast parallel implementation

of elliptic curve point multiplication over GF(2m). Microprocessors and Microsystems,

28(5-6) :329–339, 2004.

[24] A. Tisserand. Fast and Accurate Activity Evaluation in Multipliers. In Proc. 42nd Asilomar

Conference on Signals, Systems and Computers, pages 757–761, Pacific Grove, California,

U.S.A., October 2008. IEEE.

[25] S. Vanstone. ECC holds key to next generation cryptography. [Online].Available :

http ://www.design-reuse.com/articles/7409/ecchold-key-to-next-gen-cryptography.html,

March 2006.

[26] J. Wang and A. Jiang. A high-speed dual field arithmetic unit and hardware implementa-

tion. In ASIC, 2007. ASICON ’07. 7th International Conference on, pages 213–216, October

2007.

26

[27] H. Wu, M. A. Hasan, I. F. Blake, and S. Gao. Finite field multiplier using redundant

representation. IEEE Transactions on Computers, 51(11) :1306–1316, November 2002.

[28] Xilinx Corporation. Virtex-II Pro and Virtex-II Pro X Platform FPGAs : Complete Data

Sheet (Product Specification), 2007.

[29] Xilinx Corporation. Spartan-3E FPGA Family : Data Sheet (Product Specification), 2009.

27

RESUMÉ DE LA THÈSE EN FRANÇAIS

Dans la cryptographie à clé privée l'arithmétique joue un rôle important. En particulier,
l'arithmétique des corps finis doit être très rapide étant donnée la quantité de calculs effectués
en nécessitant des ressources limitées (surface de circuit, taille mémoire, consommation
d'énergie) mais aussi tout en offrant un bon niveau de robustesse vis à vis des attaques
physiques. L'objectif de cette thèse etait d'étudier, comparer, concevoir en matériel et enfin de
valider expérimentalement et théoriquement des opérateurs arithmétiques matériels pour la
cryptographie sur courbes elliptiques (ECC) sur des extensions du corps fini binaire (GF(2m)) à
la fois performants, peu gourmands en énergie et robustes d'un point de sécurité contre les
attaques physiques par canaux cachés (p.ex. mesure de la consommation d'énergie).
Des travaux effectues aboutissent à la proposition d'opérateurs de multiplication performants
(rapides, surface de circuit limitée) dans une architecture modulaire (pouvant être adaptée à des
besoins spécifiques sans perte de performance). Les calculs requis par ces opérateurs sont
complexes car les éléments du corps sont grands (160-580 bits) et la multiplication s'effectue
modulo un polynôme irréductible. En plus la thèse presente des modification et l'optimisation
des opérateurs pour les rendre plus robustes à certaines attaques par canaux cachés (de type
mesure de consommation) sans perte de performance. Sécurisation d'opérateurs arithmétiques
pour ECC au niveau des calculs sur le corps fini est particulièrement intéressant car c'est la
première proposition de ce type. Ce travail complète un état de l'art en protections aux niveaux
supérieurs (courbes, protocoles).

RESUMÉ DE LA THÈSE EN ANGLAIS

The efficiency of devices performing arithmetic operations in finite field is crucial for the
efficiency of ECC systems. Regarding the dependency of the system on those devices we
conclude that the robustness of the system also depends on the robustness of the operators. The
aim of conducted researches described in the dissertation was to propose efficient and robust
against power analysis side-channel attacks hardware arithmetic operators on GF(2m) dedicated
to elliptic curve cryptography (ECC) applications. We propose speed and area efficient
hardware solutions for arithmetic operators on GF(2m). Designed units are flexible and operate,
due to assumed applications, on large numbers (160-600 bits). Next we propose algorithmic
and architectural modifications improving robustness against side-channel power analysis
attacks of designed solutions. The final goal described was to find a tradeoff between security
of arithmetic operators and their efficiency. We were able to perform such modifications
increasing robustness of designed hardware arithmetic operators, which do not impact
negatively overall performance of the operator.
The attempt to protect the lowest level operations of ECC systems, the finite field operations, is
a first known attempt of that type. Till now researches described in literature on the subject did
not concern the finite field level operations protections. They considered only protections of
curve or ECC protocol level operations. Proposed protections contribute and we may say
complete already developed means of protections for ECC systems. By combining protections
of all levels of operation of the ECC system it is assumed that it is possible to make the system
very robust against side-channel power analysis attacks.

