Arithmetic operators on $\operatorname{GF}\left(2^{m}\right)$ for

 cryptographic applications: performance power consumption - security tradeoffsDanuta Pamuła

17th December 2012

1. Introduction

- Arithmetic operators on $G F\left(2^{m}\right)$ application, requirements
- Arithmetics in $G F\left(2^{m}\right)$ and elliptic curve cryptography
- Formulated thesis

Arithmetic operators on $G F\left(2^{m}\right)$ - applications

- Cryptography:
- symmetric: AES, ...
- assymetric: RSA, ... ,

Elliptic Curve Cryptography (ECC)

- error correcting codes
- computational biology (e.g. modelisation of genetic network)
- computational and algorithmic aspects of commutative algebra
- digital signal processing

Arithmetics in $G F\left(2^{m}\right)$ and ECC

Cryptosystem - requirements

speed/

operation time

size/area

power consumption

EFFICIENCY/PERFORMANCE

 SECURITYmathematical attacks

Security of ECC systems

Thesis

It is possible to create efficient and secure against some side-channel power ancilysis attacks $G F\left(2^{m}\right)$ arithmetic operators dedicated to reconfigurable hardware.
2. Arithmetic in $G F\left(2^{m}\right)$ - efficient and secure hardware solutions

- Basics
- Addition
- Multiplication
- Proposed solutions

Arithmetics in GF($\left.2^{m}\right)$

PARAMETERS

GNB, ONB - Gaussian/Optimal Normal Basis, NIST - National Institute of Standards and Technology, SECG - Standards for Efficient Cryptography 'Group

Addition in GF(2^{m})

Addlition $=$ XOR of binary polynomials

$$
\mathbf{c}=\mathbf{a} \times O R \mathbf{b}
$$

Propositions (data in processor are passed in words (16, 32-bit):
[1/2] Add every two incoming words of a, b, accumulate partial results in register c (1) or in BlockRAM (2);
[3] Wait for all words of a, b, add a and b;

$\left.$| field size | $(1)($ Virtex-6) | | (2)(Virtex-6) | |
| :---: | :---: | :---: | :---: | :---: |
| m | $[$ LUT $]$ | $[\mathrm{MHz}]$ | $[$ LUT $]$ | |$[\mathrm{MHz}] \right\rvert\,$

Multiplication in GF $\left(2^{m}\right)$

$$
c(x)=a(x) b(x) \bmod f(x)
$$

Multiplication - Mastrovito matrix approach

Idea:

$\mathrm{c}=\mathrm{Mb}$,

where M is a $m \times m$ Mastrovito matrix

Problems:
(1) Size of matrix $M(m=163,233,283,409,571)$
(2) Construction of matrix M (iterative algorithm, combination of matrices A and R)
(3) Storing matrix M
(4) Multiplication of matrix M by vector b

M	$0 \quad 1$	2	3	4	5	6	7	8	8	9	10	11	112		13	14	b	
0	M0 M	M0	M0	M0	M0	M0	0 M0		M0	M0	0 M1	1 M 1	1 M	M1	M1	1 M	b0	START
1	M0 M	M0	M0	M0	M0	M0	0 M0		10	M0	0 M0	0 M 1	1 M	1	M1	1 M	b1	
2	M0 M	M0	M0	M0	M0	M0	0 M0		M0	M0	0 M0	0 M0	0 M	M1	M1	1 Mc	b2	
3	M0 M	M0	M0	M0	M0	M0	0 M0		M0	M0	0 M0	M0	0 M	10	M1	1 Mc	b3	c_1=M0[M(0,0), b(0)]+...
4	M2 M	M2	M2	M4	M4	M4	4 M4		14	M4	4 M4	4 M4	4 M	4	M4	4 Mc	b4	c_2=MO[M(1,0),b(1)]+
5	M2 M	M2	M2	M2	M4	M4	4 M4		M4	M4	4 M4	4 M4	4 M	4	M4	4 Mc	b5	+M1[M(1,13),b(1)];
6	M0 M	M2	M2	M2	M2	M4	4 M4		44	M4	4 M4	4 M4	4 M	4	M4	4 Mc	b6	
7	M0 M	0 M2	M2	M2	M2	M2	2 M 4		M4	M4	4 M4	4 M4	4 M	14	M4	4 Mc		$2[\mathrm{M}(5,0), \mathrm{b}(5)]+$
8	M0 M	M0	M2	M2	M2	M2	2 M2		14	M4	4 M4	4 M4	4 M	14	M4	4 M		+M4[M(5,13),b(5)];
9	M0 M	M0	M0	M2	M2	M2	2 M 2		12	M3	3 M 3	3 M3	3 M	33	M3	3 Mc		
10	M0 M	0 M0	M0	M0	M2	M2	2 M 2		12	M2	2 M 3	3 M3	3 M	3	M3	3 Mc		
11	M0 M	0 M0	M0	M0	M0	M2	2 M 2		12	M2	2 M 2	2 M3	3 M	13	M3	3 Mc	b12	$\mathrm{c} _14=\mathrm{MR}[\mathrm{M}(14,0), \mathrm{b}(14)]+\ldots$
12	M0 M	0 M0	M0	M0	M0	M0	0 M2		12	M2	2 M 2	2 M 2	2 M	13	M3	3 M	b13	
13	M0 M	M0	M0	M0	M0	M0	0 M0		12	M2	2 M 2	2 M 2	2 M	12	M3	3 M	b14	
14	$\mathrm{MR}_{\mathrm{R}} \mathrm{N}$	$\mathrm{R}^{\text {MR }}$	MR	Mr	M_{R}	MR	${ }_{\mathrm{R}} \mathrm{M}_{\mathrm{R}}$	${ }_{\text {R }} \mathrm{M}_{1}$	MR^{1}	Mr	${ }_{\mathrm{R}} / \mathrm{MR}$	${ }_{\mathrm{R}} \mathrm{MR}^{2}$	$\mathrm{M}_{\mathrm{R}} \mathrm{M}$	MR^{1}	MR	${ }_{\mathrm{R}} \mathrm{MR}^{\text {c }}$		END

(1) Partition of M into submatrices 16×16 bit
(2) Construction of submatrices "on-the-fly" during multiplication, determiniation of submatrices with similar structures
(3) Specialised submultipliers for each submatrix type - submultiplier constructs required submatrix during multiplication
(4) The schedule of multiplication $M(i, j) b(i)$ is controlled by Finite State Machine (FSM)

Security of the operator - power (activity) analysis

activity monitor current consumption

Increasing security against power cryptanalysis

uniformisation randomisation

initialisation/reinitialisation

optimization

dummy operations

FSM sub-multipliers

BlockRam

Note/Constraint: mainly algorithmic modifications, strictly hardware modifications were not considered (portability of the solution)

Optimization

most optimizations/decomposition left to synthesis tool
Proposition: (optimization/decomposition (if possible) "by hand")

- removal of auxiliary/unnecessary registers;
- partitioning of very large registers and complex, sequential operations into smaller/easier(simpler) ones;
- merging sequential operations

BlockRam

only LUT blocks were used to implement solutions
Proposition: units were partially implemented in BlockRams according to some sources it dimnishes power consumption;

FSM

one FSM controling all submultipliers, many states (necessity of reutilisation of submultipliers)

Proposition:

- uniformisation: same number of states, unification of number of registers/bit switching in each state, changed order of submultiplications;
- randomisation: each instance/type of submultiplier is controlled by different FSM (additional FSMs), each FSM is started at different moment of multiplication process;
- less states, more instances of submultipliers used, more activity in one state (no submultiplier is idle in any state);
- avoiding idle states between consecutive multiplications;

M	$0 \quad 1$	2	3	4	5	6	7	8	8	9	10	11	112		13	14	b	
0	M0 M	M0	M0	M0	M0	M0	0 M0		M0	M0	0 M1	1 M 1	1 M	M1	M1	1 M	b0	START
1	M0 M	M0	M0	M0	M0	M0	0 M0		10	M0	0 M0	0 M 1	1 M	1	M1	1 M	b1	
2	M0 M	M0	M0	M0	M0	M0	0 M0		M0	M0	0 M0	0 M0	0 M	M1	M1	1 Mc	b2	
3	M0 M	M0	M0	M0	M0	M0	0 M0		M0	M0	0 M0	M0	0 M	10	M1	1 Mc	b3	c_1=M0[M(0,0), b(0)]+...
4	M2 M	M2	M2	M4	M4	M4	4 M4		14	M4	4 M4	4 M4	4 M	4	M4	4 Mc	b4	c_2=MO[M(1,0),b(1)]+
5	M2 M	M2	M2	M2	M4	M4	4 M4		M4	M4	4 M4	4 M4	4 M	4	M4	4 Mc	b5	+M1[M(1,13),b(1)];
6	M0 M	M2	M2	M2	M2	M4	4 M4		44	M4	4 M4	4 M4	4 M	4	M4	4 Mc	b6	
7	M0 M	0 M2	M2	M2	M2	M2	2 M 4		M4	M4	4 M4	4 M4	4 M	14	M4	4 Mc		$2[\mathrm{M}(5,0), \mathrm{b}(5)]+$
8	M0 M	M0	M2	M2	M2	M2	2 M2		14	M4	4 M4	4 M4	4 M	14	M4	4 M		+M4[M(5,13),b(5)];
9	M0 M	M0	M0	M2	M2	M2	2 M 2		12	M3	3 M 3	3 M3	3 M	33	M3	3 Mc		
10	M0 M	0 M0	M0	M0	M2	M2	2 M 2		12	M2	2 M 3	3 M3	3 M	3	M3	3 Mc		
11	M0 M	0 M0	M0	M0	M0	M2	2 M 2		12	M2	2 M 2	2 M3	3 M	13	M3	3 Mc	b12	$\mathrm{c} _14=\mathrm{MR}[\mathrm{M}(14,0), \mathrm{b}(14)]+\ldots$
12	M0 M	0 M0	M0	M0	M0	M0	0 M2		12	M2	2 M 2	2 M 2	2 M	13	M3	3 M	b13	
13	M0 M	M0	M0	M0	M0	M0	0 M0		12	M2	2 M 2	2 M 2	2 M	12	M3	3 M	b14	
14	$\mathrm{MR}_{\mathrm{R}} \mathrm{N}$	$\mathrm{R}^{\text {MR }}$	MR	Mr	M_{R}	MR	${ }_{\mathrm{R}} \mathrm{M}_{\mathrm{R}}$	${ }_{\text {R }} \mathrm{M}_{1}$	MR^{1}	Mr	${ }_{\mathrm{R}} / \mathrm{MR}$	${ }_{\mathrm{R}} \mathrm{MR}^{2}$	$\mathrm{M}_{\mathrm{R}} \mathrm{M}$	MR^{1}	MR	${ }_{\mathrm{R}} \mathrm{MR}^{\text {c }}$		END

Submultipliers

One instance for each type of submatrix/submultiplier

Proposition:

- using more than one instance of the same submultiplier;
- note: submultipliers were optimised during efficiency analysis (by hand), these are combinational circuits;

Dummy operation

In some states some submultipliers are idle, some registers are unused Proposition: dummy operations on unused registers;

Initialisation/reinitialisation

registers are resetted/reloaded at the beginning of multiplication Proposition:

- resetting/reloading just before use;
- filling with random values (not constant), instead of zeroes;

Algorithm (Virtex 6)	area LUT $(\times \alpha)$	f $\mathrm{MHz}(\times \alpha)$	clock cycles $(\times \alpha)$	AT
Mastrovito	3760	297	75	0.95
Mastrovito v0				
(uniformisation)	3889	225		
$(\times 1.03)$	22 $(\times 0.75)$	48 $(\times 0.64)$	0.83	
Mastrovito v1 (uniformisation)	3463 $(\times 0.92)$	414 $(\times 1.39)$	75 $(\times 1.00)$	0.63
Mastrovito v2	3700	306	avg.116	
(randomisation)	$(\times 0.98)$	$(\times 1.03)$ $(\times 1.55)$	1.35	
Mastrovito v3 (randomisation)	3903 $(\times 1.04)$	319 $(\times 1.07)$	avg.80 $(\times 1.07)$	0.97

$\alpha:$ secured $=\alpha \times$ original
$A T=$ area \times execution_time

5. Summary - results, comments, future prospects

Summarising, as a result of conducted researches the following original results were obtained:

- efficient in terms of speed and area $G F\left(2^{m}\right)$ hardware arithmetic operators dedicated to ECC applications were proposed:

Algorithm (Virtex 6)	Area [LUT]	f $[\mathrm{MHz}]$	clock cycles	AT
Classic 1	3638	302	264	3.18
Classic 2	2862	302	238	2.25
Mastrovito	3760	297	75	0.95
Montgomery (full)	3197	338	270	2.55

- successful protections against some power analysis side channel attacks for $G F\left(2^{m}\right)$ hardware arithmetic operators were developed;

- the tradeoff between efficiency and security of $G F\left(2^{m}\right)$ hardware arithmetic operators was found.;

Algorithm (Virtex 6)	area [LUT]	freq. [MHZ]	\# cycles
Classical	2868	270	260
$\times \alpha$ factor	$\times 0.79$	$\times 0.89$	$\times 0.98$
Montgomery	2099	323	264
$\times \alpha$ factor	$\times 0.96$	$\times 1.00$	$\times 0.98$
Mastrovito v0	3889	225	48
$\times \alpha$ factor	$\times 1.03$	$\times 0.75$	$\times 0.64$
Mastrovito v1	3463	414	75
$\times \alpha$ factor	$\times 0.92$	$\times 1.39$	$\times 1.00$
Mastrovito v2	3700	306	avg.116
$\times \alpha$ factor	$\times 0.98$	$\times 1.03$	$\times 1.55$
Mastrovito v3	3903	319	avg.80
$\times \alpha$ factor	$\times 1.04$	$\times 1.07$	$\times 1.07$

Solution	m	FPGA	Area	max.f	T
Crowe	256	Virtex II	5267 LUT	44.91 MHz	5.75 us
			37296 LUT	77 MHz	-
Grabbe	233	XC2V6000 FF1517-4	11746 LUT	90.33 MHz	-
		36857 LUT	62.85 MHz	-	
Rodriguez- Henriquez	195435 LUT	93.20 MHz	-		

Algorithm	m	FPGA	Area [LUT]	max.f [MHz]	T [us]
Classical mod	233	XC2V6000	4498	115	2.26
Montgomery			2099	129	2.04
Mastrovito v0			6387	183	0.26
Mastrovito v1			5154	107	0.7
Mastrovito v2			6364	113	1.02
Mastrovito v3			6387	100	0.8

Future prospects

- investigation of inversion, division in the field,
- investigation of other representations of elements of the field (basis) and its impact on the architecture,
- integration with ECC processor and further security evaluation
- hardware countermeasures: bus coding, clocks, special structures
- countermeasures against other types of side-channel attacks
- ...

Summary - results, comments, future prospects

