
HAL Id: tel-00767699
https://theses.hal.science/tel-00767699

Submitted on 20 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantic Description of Humans in Images
Gaurav Sharma

To cite this version:
Gaurav Sharma. Semantic Description of Humans in Images. Computer Vision and Pattern Recog-
nition [cs.CV]. Université de Caen, 2012. English. �NNT : �. �tel-00767699�

https://theses.hal.science/tel-00767699
https://hal.archives-ouvertes.fr
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A picture is a poem without words

– Horace





Abstract

In the present thesis we are interested in semantic description of humans in images. We

propose to describe humans with the help of (i) semantic attributes e.g. male or female,

wearing a tee-shirt, (ii) actions e.g. riding a horse, running and (iii) facial expressions e.g.

smiling, angry.

First, we propose a new image representation to better exploit the class specific spatial

information. The standard representation i.e. spatial pyramids, has two shortcomings.

It assumes that the distribution of spatial information (i) is uniform and (ii) is same for

all tasks. We address these shortcomings by learning the discriminative spatial informa-

tion for a specific task. Further, we propose a model that adapts the spatial information

for each image for a given task. This lends more flexibility to the model and allows for

misalignments of discriminative regions e.g. the legs may be at different positions, in

different images for running class. Finally, we propose a new descriptor for facial expres-

sion analysis. We work in the space of intensity differences of local pixel neighborhoods

and propose to learn the quantization of the space and use higher order statistics of the

difference vector to obtain more expressive descriptors.

We introduce a challenging dataset of human attributes containing 9344 human images,

sourced from the internet, with annotations for 27 semantic attributes based on sex,

pose, age and appearance/clothing. We validate the proposed methods on our dataset of

human attributes as well as on publicly available datasets of human actions, fine grained

classification involving human actions and facial expressions. We also report results on

related computer vision datasets, for scene recognition, object image classification and

texture categorization, to highlight the generality of our contributions.

Keywords

Computer vision • Image understanding • Semantic attributes • Human attributes • Facial

analysis • Image classification • Face verification • Expression classification • Discrimina-

tive saliency
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Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Problem addressed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Automatic image understanding . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Image representation . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.3 Overview of related computer vision literature . . . . . . . . . . . 12

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1 Motivation

Internet has become a gigantic source of rich multimedia content. The emergence of

cheap and easy to use digital cameras and websites, hosting practically unlimited amount

of user generated videos and images, has led to an explosion in the amount of digital

content online. To give an idea of the scale, about 48 hours of video are uploaded every

minute to Youtube, which makes about 8 years of video per day1, and Facebook had

almost 90 billion photos, with 200 million more uploaded every day, in early 20112.

Another major source of digital video is surveillance. Numerous digital cameras, esti-

mated in millions for some countries3, are working round the clock in many different

public as well as private places e.g. streets, airports, supermarkets. Which means that

millions of digital images are generated every second as a result of surveillance.

1http://www.youtube.com/faq, accessed July 23, 2012
2http://www.quora.com/How-many-photos-are-uploaded-to-Facebook-each-day, data provided by

a Facebook Photos engineer on Jan 25, 2011, accessed on July 23, 2012
3http://en.wikipedia.org/wiki/Mass_surveillance, accessed on July 23, 2012
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Many of the internet videos and images feature important events and activities in the lives

of the users (e.g. vacations, weddings, graduations) and as people are the main subject of

surveillance, a large amount of this digital visual data is human focused.

The presence of huge amount of human focused images (and videos) underlines the need

of methods to automatically analyze these images. Such methods could be applied to

numerous tasks e.g. organizing images, inferring about images, and retrieving images

based on descriptions. In particular inferring high level semantic knowledge about the

person in a still image is of wide interest. In web scale databases, this would allow for

indexing and searching of images and video with high level queries e.g. you could search

for a ‘young woman wearing shorts and running’ or ‘kid riding a bike and smiling’. In

surveillance scenarios, such capability can prove very useful as generally people can only

describe the suspects approximately. So if the database has been indexed for the semantic

content of the frames the system can quickly retrieve a ‘middle aged man wearing a

jacket’. Figure 1.1 illustrates the point with example images.

1.2 Problem addressed

In the present thesis we address the task of semantic description of humans in images.

If we parse short sentences which describe humans e.g. Figure 1.1, we are very likely

to have the humans as the subjects, actions as the verbs e.g. ‘running’, ‘sitting’, and at-

tributes and emotions as complements e.g. ‘is a girl’, ‘is wearing shorts’, ‘is happy’, ‘is

angry’. Hence, we propose to semantically describe humans with the help of high level

concepts based on actions, attributes and face expression. We pose the problems as su-

pervised classification (see next section) where we have images annotated with their ac-

tions/attributes/expressions and we predict similar properties for new test images. In the

following we first give an overview of the computer vision technology to analyze images,

then discuss briefly the works related to the present thesis, to set the context. Finally, we

proceed to present the main contributions made in this thesis.

1.3 Automatic image understanding

Automatic image understanding is a major research problem in computer vision. The

goal is to analyze an image and be able to make inference based on it e.g. given an image

of a person, infer what is she doing (e.g. [19, 20, 21, 35, 40, 41, 42, 74, 106]). Earlier

most of such inference was based on text analysis methods [80] and relied on the (noisy)

annotations that came with the image. These annotations could be the tags added by

the user or the caption for the image or just the text surrounding the image on a web

page. This is changing fast and computer vision technologies that analyze the content
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Figure 1.1: Semantic description of humans in still images can be based on various aspects

such as overall appearance (e.g. wearing shorts, jacket, tee-shirt), sex (male or female)

or based on the action the person is performing (e.g. running, riding a bike) or based on

expressions inferred from just the face of the person (e.g. smiling, angry)

of the image, instead of the peripheral noisy text, and make inferences are replacing or

augmenting the past systems (e.g. [4, 5, 16, 18, 25, 27, 28, 31, 37, 45, 51, 50, 58, 68,

86]). Systems are now capable of analyzing images and retrieve information about them

e.g. Google Goggles4 can process an image of a landmark like Eiffel tower and retrieve

information about it such as its historical and cultural significance.

1.3.1 Supervised learning

The problem of automatic image understanding is usually posed as a supervised learning

problem [7, 22, 79] i.e. the system is given training images with annotations about their

properties and, when presented with a test image that it has never seen before, it has

to predict the presence or absence of similar properties. Supervised classification is one

type of supervised learning problems; here the task is to classify the images into one of

the classes e.g. given images of persons with annotations about their gender (i.e. ‘male’

or ‘female’ classes), the system classifies new images into one of these two classes. In

general, there can be more than just two classes e.g. human action recognition, is the

4http://www.google.com/mobile/goggles/

http://www.google.com/mobile/goggles/


10 Chapter 1. Introduction

person ‘riding a horse’ or ‘running’ or ‘sitting’ and the images can belong to more than one

class simultaneously. Formally, the goal of supervised classification is to learn a mapping,

colloquially called a classifier, which takes the numerical representation of an image as

input and maps it to a class (represented as a numeric value).

1.3.2 Image representation

The capability of a classification system depends on those of its two main components i.e.

the image representation and the classifier. On one hand, the image representation should

lead to similar representations for images of the same class, despite of the intra-class

variations, and dissimilar representations for those of different classes, despite of inter-

class similarity. While on the other, the classifier should be strong enough to perform

well, even when the representation scheme is only able to capture the (dis)similarities

relatively weakly.

Digital systems, like computers and digital cameras, represent and store images as two

dimensional matrices of pixels where each pixel is a vector of numeric values (usually

integers). If the image is grayscale, the vector is one dimensional with the only value

indicating the intensity of the pixel (between a fixed minimum value, usually 0, for black

and a fixed maximum value, usually 255, for white pixel). If the image has colors, assum-

ing the pixels are coded in Red-Green-Blue (RGB5), the vector is three dimensional with

each value similarly indicating the intensity of the red, green and blue colors respectively.

The final color of the pixel is obtained by mixing the RGB colors with those intensities.

Many vision systems, such as those doing face recognition6, work directly with the pixel

representation of the images (e.g. [3, 89]). They take the whole image as the input vector

(pixels stacked sequentially) to their learning system. This works in controlled scenarios,

where generally a cooperative subject is assumed and the face images are frontal and

well aligned. With such constraints, the images of the same person are numerically quite

similar and there is no (or easy to eliminate) background clutter to distract the classifier.

However, in the more general case of classification of images from uncontrolled environ-

ments e.g. images from internet taken in arbitrary conditions, the direct representation

with pixels leads to poor performance. In this case, the image description has to be de-

signed to be invariant to common variations in similar images e.g. different illumination

conditions resulting from images, of same subject, taken at different times of the day,

while being covariant w.r.t. the differences in images from different classes.

Towards achieving such invariances, image representation could be designed to capture

the global properties of images e.g. distribution of colors/edges/filter responses [92] or

5The pixels can be encoded in different color spaces, see http://en.wikipedia.org/wiki/Color_space
6Face recognition is the problem where given a face image the system has to identify the person from

among the database of known persons

http://en.wikipedia.org/wiki/Color_space
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could be designed to capture aspects localized in space e.g. histogram of oriented gra-

dients (HOG) computed over smalls blocks of pixels [18], derived from description of

shapes [4] or local gradients [2, 58]. Noting that many such diverse image representa-

tions, both global and local [57, 62, 112], have been used in computer vision systems, we

now describe the representations which have been quite successful and widely adopted

and are most relevant to the present work.

Bag-of-Features

Current state-of-the-art image classification systems follow methods inspired from text

document analysis and represent images with the so called Bag of Features (BoF) rep-

resentation [16, 86]. In the BoF approach, first, multiple local patches are extracted

from the image (either by random sampling or on a regular grid) and are represented

numerically, as vectors, by non-linear transformations of their pixels [2, 4, 58]. Such

transformations (e.g. Scale Invariant Feature Transform, SIFT [58]) are designed to be

invariant to common variations e.g. those caused due to changes in illumination and/or

affine transformations. The local patches from all the training images are then vector

quantized into a codebook of typical patches or the visual words, using some clustering

algorithm e.g. k-means. Finally, the image is represented as the histogram of assignments

of all its local patches over the visual words, analogous to the Bag-of-Words histograms

in text analysis.

Spatial pyramid

An important relaxation of the BoF representation is that it ignores the spatial information

as it considers the local patches without considering their spatial position in the image.

This is counter intuitive as the spatial information is expected to be important for visual

tasks, specially for human attributes. Many different methods have been proposed to

incorporate the spatial information into the BoF representation (we discuss them in ap-

propriate detail in the relevant chapters) but the most adopted method of doing so is the

Spatial Pyramid Representation (SPR) [50]. SPR works by dividing the image spatially

with uniform grids at multiple resolutions and then concatenate the BoF histograms of the

spatial cells with appropriate normalizations. Doing this encodes the rough spatial layout

into the overall representation. This simple way of incorporating spatial information has

proved to be very effective and efficient. SPR not only beats the simple BoF by a large

margin but also performs competitively against much elaborate methods.
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Local patterns

Another successful image representation is that using Local Binary Patterns [68] (and ex-

tension to Local Ternary Patterns [87]). The representation considers patterns of pixel

neighborhoods as small as 3×3 pixel patches. As the focus is on capturing the texture,

the local pixel patches are first made invariant to monotonic changes in intensities by

subtracting the center pixel from the rest. They are then represented as binary vectors

by thresholding the values at zero. The image is, finally, represented as a histogram over

uniform patterns i.e. patterns which have at most one 0-1 and at most one 1-0 transitions

in bits when viewed as a circular bit string, while all the non-uniform patterns are dis-

carded. The use of uniform pattern is based on the empirical observation that uniform

patterns are dominant among all the binary patterns. Despite of being very simple the

representation achieves very good performance for texture classification and has been

used successfully on facial analysis and object localization as well.

1.3.3 Overview of related computer vision literature

To set the general context in which the present thesis is developed, we now discuss a

representative sampling of computer vision tasks and methods.

Many interrelated computer vision problems like

• Categorization: Predict the classes e.g. ‘indoors’, ‘street’, ‘forest’, ‘beach’, to which

the images belongs,

• Semantic annotation: Suggest tags for images based on the semantics of the image

e.g. ‘sunny’, ‘christmas’, ‘police’,

• Segmentation: Label image regions which represent distinct components e.g. ‘sky’,

‘grass’, ‘building’,

• Object localization: Predict the positions and scales at which given objects, e.g. ‘dog’,

‘bottle’, ‘person’, appear in the images,

• Pose/viewpoint estimation: Predict the viewpoint or the pose of the object present in

the image,

etc. have lately attracted much research attention. All these tasks are important towards

achieving automatic understanding of digital images for indexing, searching, retrieval,

inferring semantic knowledge from the actual content of the images etc. Such capabilities

are, in turn, useful in many applications like forensics (e.g. face recognition, automatic

video surveillance), robotics (e.g. terrain identification for autonomous exploration) and

many other consumer applications (e.g. searching images in personal and public image

collections, duplicate image filtering).
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Recent works on object categorization and localization can be broadly divided into two

groups:

• The first group of methods describe the objects as a sparse collection of local fea-

tures. Fergus et al. [31] describe the objects with probabilistic generative models,

the Constellation of Parts models, and learn their parameters by maximizing the like-

lihood of the training images. In similar spirit, Leibe et al. [52] represent objects

with Implicit Shape models which are probabilistic extension of generalized Hough

transforms. They aim to learn the prototypical local appearances of object ‘parts’

along with their spatial arrangements.

• The second group of methods derive object representations based on statistics of

densely sampled local features. Different works propose different combinations of

local features and statistics. Local features aim to capture one of the many visual

properties e.g. appearance [2, 58], shape [4, 18] and texture [68, 87]. The statistics

used to describe the distribution of features vary from histograms [16, 86] to higher-

order Fisher scores [71, 72].

In practice, systems have to combine various features, capturing complimentary informa-

tion, to achieve state-of-the-art results [25, 90].

Many works report methods for pose estimation of articulated objects, especially humans.

They handle the task by learning a model over the different ‘parts’ of the object, encod-

ing their different aspects e.g. appearance and spatial arrangements. Pictorial structures

model, originally proposed by Fischler and Elschlanger [32], has motivated many success-

ful recent models [28, 29, 77, 76]. The main idea in these works is to model the object

as a star model over its different parts. In particular, Deformable Part models (DPM) [28]

have been very successful in object localization and have become a part of almost all state-

of-the-art systems [25]. DPM models objects’ parts and allow then to move (deform) to

accommodate the variability in deformable objects. This gives them the generating capa-

bilities to account for unseen poses of articulated objects. They are formulated as latent

Support Vector Machine (SVM) [28, 79] problem and are discriminatively trained in a

supervised manner. Extensions and adapted versions of DPM have also been proposed

for other tasks e.g. scene recognition [69], pose estimation [107], face detection and

landmark localization [116].

In the closely related task of human action recognition from images, works have reported

that using the traditional bag-of-features representations gives good results while the

DPM do not perform well [19]. Matching human pose for recognizing actions has also

been explored [106, 109]. Other works have exploited relations between the person and

objects [20, 74, 108, 110] with varying success.

We postpone further discussion of related methods, specific to our work, till the respective

chapters, and present our contributions in the following section.
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1.4 Contributions

The work presented in this thesis is mainly concerned with the image representation stage

of the vision system architecture.

Human actions and attributes can have highly localized discriminative characteristics e.g.

for wearing shorts we need to focus on the legs while ignoring the upper body7. To

leverage such locality, Chapters 2 and 3 concentrate on the improving the incorporation

of spatial distribution of discriminative information.

In spatial pyramid representation (SPR) the spatial partitioning is taken as uniform and

same for all classes. In Chapter 2 we propose to learn the spatial partitioning for a given

classification task. This addresses two limitations of SPR i.e.

(i) The learnt grids are able to better exploit the locality of the discriminative informa-

tion and

(ii) The grids can vary and adapt for the different tasks for which they are learnt.

Learning such spatial representations turn out to be favorable specially at lower vector

lengths.

Learning grids per task is interesting as it allows per class adaptation of spatial partitions

for capturing discriminative information. However, such information may vary slightly

among different images of the same class e.g. when looking for ‘bent arms’ two persons

may have arms bent differently in two different images. To address this issue, in Chapter

3, we propose to learn discriminative saliency per image for a given classification task.

Our saliency modeling does both per class and per image adaptation of discriminative

spatial information and hence, is more flexible and powerful.

Studying generic attributes for humans is a relatively recent topic in computer vision and

hence there are no standard datasets for benchmarking the methods. To fill this gap, as

another contribution, we propose a new challenging database of Human Attributes (HAT).

HAT database has more than nine thousand human images taken from unconstrained

images downloaded automatically from the internet. It contains annotations for twenty

seven human attributes based on sex, pose, age and appearance of the humans. We

present the dataset in detail in Section 2.3 of Chapter 2.

As the final contribution, in Chapter 4, we propose a new image representation, which we

call Local Higher-Order Statistics (LHS). LHS improves over local binary/ternary patterns

(LBP/LTP) in two ways,

(i) LBP/LTP perform a fixed quantization of the local pattern space by choosing to

quantize each coordinate into two/three bins by thresholding, and do a heuristic

7Relatively speaking, as there might be some correlation between shorts and certain types of upper body

clothes
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pruning of the space by discarding non uniform patters, while LHS learns the quan-

tization of the space from the data and

(ii) LBP/LTP use only low order statistics of the data i.e. histograms, while LHS uses

higher order statistics.

Thus, LHS leads to a more expressive representation which improves performance.
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2.1 Introduction

In visual classification tasks, the spatial information is important e.g. for predicting if a

person is ‘wearing a sleeveless t-shirt’ we should be focusing on the upper part of the

image, which is likely to contain the shoulders, instead of the lower part (see Figure

2.1). In this chapter, we address the problem of incorporating spatial layout information

relevant to a given classification task [83].
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Figure 2.1: In visual classification task the spatial information is important. Eg. for ‘coastal’

scene category the sky, beach/sea layout is similar across images, for ‘car’ object category

the cars are expected to appear in similar locations and scales and for ‘wearing a sleeveless

T-shirt’ attribute we need to look only at the upper part of the image.

Image representation is a fundamental problem in computer vision. Recent works have

established, somewhat surprisingly, the bag-of-features (BoF) representation [16] as be-

ing an effective representation for various computer vision tasks e.g. object recognition,

object detection, scene classification etc. Briefly, in the BoF approach local patches are

first described as feature vectors [58, 2], then they are vector quantized and the image is

represented as the histogram, of all its local patch features, over the quantization code-

book. This is parallel to the bag-of-words approach in text analysis and hence the name.

The main drawback of the BoF approach is the loss of spatial information in the coding.

As one would expect, the spatial information is important for visual classification tasks

and it has been recently shown [50, 55, 64, 75, 78, 113] that adding spatial information

to the standard BoF improves performance. Among these one of the most popular repre-

sentation incorporating spatial information is the Spatial Pyramid Representation (SPR)

by Lazebnik et al. [50]. SPR incorporates spatial information of the features by dividing

the image into uniform grids at different scales and then concatenating the BoF features

from the different grid cells with appropriate normalizations. Coupled with discrimina-

tive maximum margin based classifiers [79], it has become the standard representation
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and has been shown to perform competitively with more complex representations and

models for many tasks [8, 72, 105] including human action recognition [19].

However, the choice of spatial partitioning i.e. uniform grids (at different scales i.e. 2×2,

4×4), does not have any particular theoretical or empirical motivation i.e. there have been

no systematic exploration of the space of partitions and the grids have been derived out

of practitioners’ experience. The choice of partitioning is expected to be important for the

task e.g. a partition with prominently horizontal cells for ‘coastal scene’ (with beach, sea

and sky) and one with prominently vertical cells for ‘tall buildings’ (both of these classes

are part of the public benchmark Scene-15 dataset). Also, for cases where the discrimina-

tive information is localized, the grids could be relatively finer in the important regions.

We would expect it to be specially important for the recognition of human attributes in

human centered images e.g. in case of the ‘wearing shorts’ attribute, the partitioning in

the middle part of the human is expected to be discriminant.

In this chapter we propose to learn the spatial partitioning for a given classification task.

We define the space of grids (Section 2.2.1) as the set containing grids generated by

recursive splitting of grid cells by axis aligned cuts (starting with the full image as the

only cell). We then formulate the classification problem (Section 2.2.2) in the maximum

margin framework and perform optimization over both the weight vector and the grid

parameters. We propose an efficient approximate algorithm (Section 2.2.3, Alg. 2.1) to

perform the optimization and show experimentally (Section 2.4) that the learnt grids per-

form better than the standard SPR while leading to vectors smaller (as much as half) in

length to the SPR. We also introduce a challenging dataset (Section 2.3) of human at-

tributes (based on age, sex, appearance and pose) containing real world images collected

from image sharing site Flickr.com. We demonstrate the relevance of learning the grids

on such cases where the discriminating information is spatially localized.

2.1.1 Related works on spatial representations for BoF

The current state-of-the-art methods for object/scene recognition are built upon the bag-

of-features (BoF) representation of Csurka et al. [16]. The representation works by ex-

tracting local features (e.g. SIFT [58], SURF [2]) from the images, vector quantizing them

(e.g. using k-means clustering) and then representing images as histograms over the quan-

tization codebook or the visual words. Thus, in the BoF representation the spatial layout is

completely discarded as the local features only describe appearances of the local patches

and have no spatial information.

Various methods have been proposed to incorporate spatial layout in the BoF representa-

tion. These methods can be grouped into roughly two classes. First, the methods which

encode position of local features relative to other local features and, second, those which

encode the absolute positions of the local features.
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Among the first class of methods, Savarese et al. [78] proposed to form a bag-of-word

representation over spatially close image regions, Liu et al. [55] used a feature selection

method based on boosting which progressively mines higher-order spatial features, while

Morioka et al. [64] proposed joint feature space clustering to build a compact local pair-

wise codebook and in another work [65] incorporated the spatial orders of local features.

Quack et al. [75] suggested finding distinctive spatial configurations of visual words using

data mining techniques.

In addition to pairwise relationships, images often have global spatial biases i.e. the com-

position of the images of particular object or scene category typically share common lay-

out properties. This is especially true for the recognition of attributes in human centered

images (see Figure 2.1).

A pioneering works in the direction of exploiting absolute spatial layout of features was

the Spatial Pyramid Representation (SPR) by Lazebnik et al. [50]. In SPR, the image is

divided into uniform grids at different scales i.e. 2×2, 4×4, and the features are concate-

nated over all cells with appropriate normalization. SPR, working at spatial level rather

than feature level, improved the BoF performance by a significant margin.

More recently, Yang et al. [104] showed that incorporating sparse coding into the SPR

improves performance. Cao et al. [11] projected local features of an image to different

directions or points to generate a series of ordered bag-of-features. Zhou et al. [113]

modeled region appearances with a mixture of Gaussian (MoG) density and used the

posterior over visual words for the image regions to generate so called ‘Gaussian maps’,

encoded by SPR. Very recently, Harada et al. [36] divided images into a regular grid, and

learned weight maps for the grid cells.

In practice, many state-of-the-art classification methods are based on the SPR [24, 25],

but the different parameters involved, the number of pyramid levels and the structure of

the grid at each level, are empirically adapted to the situation e.g. [50, 104] use up to 4

pyramid levels with uniform grids of 1×1, 2×2, 4×4 and 8×8, while the winner of Pascal

VOC 2007 competition, Marszalek et al. [60] followed by many others such as [114, 105],

use three pyramid levels with grids of 1×1, 2×2 and 3×1. The SPR parameters are chosen

in an ad-hoc manner and no work reports systematic construction of the representation.

The method proposed in this chapter addresses this issue and learns a representation

where the parameters are learnt for the given task.

2.2 Discriminative Spatial Representation

As discussed above, while the Spatial Pyramid Representation (SPR) [50] has been very

successful in the task of visual classification, the spatial grids are fixed and are the same

for all the classes, which is a significant limitation of the approach. We propose to learn
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Figure 2.2: In Spatial Pyramid Representation (SPR) [50] the spatial grids (i) are uniform

and (ii) are same for all tasks. We propose to learn grids adapted to the task, better capturing

the regions in a way that benefits the classifier performance.

the spatial partitioning for the given classification task, by defining a space of spatial grids

and learning the best grid over this space for the task. Learning such grids is expected to

be beneficial as they can help the classifier focus better on the regions which are relatively

more discriminant e.g. in Figure 2.2, the uniform grids treat both attributes, ‘wearing

sunglasses’ and ‘wearing a sleeveless T-shirt’, similarly and spatially uniformly while the

grids could be adapted, as illustrated, to focus on the important regions for the respective

tasks.

We use an image representation similar to the original Spatial Pyramid Representation

[50]. We represent images by quantizing SIFT [58] features using a dictionary learnt

with the k-means algorithm. The SIFT descriptors themselves are computed on patches

sampled densely, with overlap, over uniform grids at multiple scales. Given a spatial

partitioning of the image (e.g. uniform grid of 2 × 2) we construct spatial histogram for

the image and use it as the image representation.

We define a grid as a mapping g : I → Rd, where I is the set of all images and G is the

set of all possible spatial grids (we define this space in the next Section 2.2.1). Any grid g

thus maps an image I ∈ I to its spatial bag-of-features histogram g(I) ∈ Rd. We denote

the dot product between two vectors a and b as a · b.

We can write the scoring function, w.r.t. a linear hyperplane classifier with normal vector

w, as

f(I) = w · ĝ(I) + b, (2.1)

where ĝ(I) ∈ Rd is the histogram feature obtained by applying the best grid ĝ ∈ G,

learned for the task, to the image I ∈ I. Unlike spatial pyramid, we use only the fi-
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Figure 2.3: The formation of the spatial grid by successive splitting of cells; grid with depth

1 (left) to depth 4 (right)

nal grid obtained after optimization and not a pyramid as we expect the grid to adjust

its resolution depending on the spatial distribution of discriminative information for the

class.

2.2.1 The space of grids

Although, to incorporate spatial information, any partition of the image space with arbi-

trary number and type of curves could be considered, we work in a restricted but suffi-

ciently general space of grids. We consider all grids containing cells obtained with only

vertical and/or horizontal straight lines.

Formally, we define the space of grids G by construction. Starting with the full image as

the grid with one cell, we recursively split the cells further, into two parts each, with axis

aligned straight lines (Figure 2.3). Thus, the usual spatial pyramid grids of 2×2, 4×4 and

8×8 partitions are members of the considered space of grids G, and so is the finest grid

possible for a digital image i.e. one which isolates every pixel in the image.

We split the space of grids into disjoint parts as G = ∪k{Gk}, with each subset Gk con-

taining the grids obtained with exactly k successive splits. We call the number of splits

taken to obtain the grid as the depth of the grid and represent the grid as a set of cells

g = (g1, g2, . . . , gk+1) with gi = (xi1, y
i
1, x

i
2, y

i
2) ∈ R

4 representing the ith cell in the grid.

Here x, y ∈ [0, 1] are fractional multiples of the image width and height respectively. We

write gk for a grid g where we want to make explicit the depth k (note that a grid with

depth k has k + 1 cells, the full image is obtained with a grid of depth 0). In theory the

splits can occur continuously anywhere between 0 to 1 (in fractional multiple of image

height/width), while in practice they are quantized.

2.2.2 Learning the grids

We formulate the learning problem in a maximum margin framework, with slack vari-

ables,

min
w,g

1

2
||w||2 + C

∑

ξi (2.2)

s.t. yi(w · g(Ii) + b) ≥ 1− ξi, ξi ≥ 0,
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where i indexes over the set of training images. Here, along with optimization on the

separating hyperplane (normal) w ∈ Rd, we are optimizing on the grid g ∈ G. While

the w vector lies in the familiar d dimensional real space Rd, the space of grids G is new

and the issue now is how do we explore this space. To this end, we propose an efficient

approximate solution to the problem using block coordinate descent like iterations with

greedy forward selection. The block coordinate descent step helps us separate the opti-

mizations over w and g and the greedy forward selection, along with the definition of our

grid space, helps us optimize over the space of grids efficiently albeit approximately.

2.2.3 Dual form

The dual of the optimization problem (2.2) with Lagrange’s multipliers, α = {αi} for

separation constraints and µ = {µi} for constraints on non-negativity of slack variables

{ξi}, is a saddle point problem given by

min
w,g

max
α,µ

1

2
||w||2 + C

∑

ξi −
∑

i

αi[yi(w · g(xi) + b)− 1 + ξi]−
∑

i

µiξi (2.3)

s.t. αi ≥ 0, µi ≥ 0

The dual formulation allows us to propose an efficient approximate optimization strategy

(Alg. 2.1) based on two popular methods, block coordinate descent like iterations and

greedy forward selection. We treat the SVM parameters α and the grid parameters g as

two sets of variable on which we do block coordinate descent like iterations to find the

best grid for a fixed depth. To increase the depth of the grid we resort to greedy forward

selection, computing the next best split using gradient based optimization. The numerical

gradient is computed efficiently using integral histograms and matrix dot products.

In the block coordinate descent iterations, when the optimization is on the SVM parame-

ters and the grid is fixed, we recover the usual SVM dual optimization,

max
α

∑

i

αi −
1

2

∑

i,j

αiαjyiyj g(Ii) · g(Ij) (2.4)

s.t. 0 ≤ αi ≤ C and
∑

i

αiyi = 0,

where we have used standard algebraic manipulations e.g. Section 3.5 in [10].

2.2.4 Gradient based optimization for learning grid

Now we consider the block coordinate descent step where the SVM parameters are kept

constant. When we keep α constant, we use numerical gradient to optimize efficiently
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Algorithm 2.1 Computing the grid gK ∈ GK for the given classification task

1: Initialize the grid g0 ∈ G0 to be the full image.

2: for k=1 . . . K do

3: for all grid cells do

4: Initialize {s, α} by choosing s randomly and optimizing (2.4)

5: while convergence or maxiters do

6: Optimize (2.5) w.r.t. s (keeping α fixed) using the gradient in (2.7)

7: Optimize w.r.t. α (using efficient linear SVM solvers) keeping s fixed

8: end while

9: end for

10: gk+1 ← (gk, s∗), s∗ being the best grid cell split

11: end for

for the gird at the given depth. The coordinate descent step becomes an unconstrained

optimization problem with the objective

F (g) = −
1

2

∑

i,j

tij g(Ii) · g(Ij), (2.5)

where tij = αiαjyiyj are constants depending on the current α and the training labels

y and we have omitted terms not depending on g. When a further split is made the

new histogram differs only in the part of the image which was split (Figure 2.4). The

gradient of the objective function depends on the gradient of the linear kernel function

parametrized by the split parameter s. Considering two images Ii and Ij with histograms

g(Ii) = x and g(Ij) = y, we can write the kernel function between them as

ks(x, y) =

(

xs

xo

)

·

(

ys

yo

)

= xs · ys + xo · yo, (2.6)

where for histogram x = (xsxo)
T , xs is the part of the histogram which is affected by the

split while xo is the part which isn’t. Thus, we calculate the numerical gradient for the

kernel function, when we take a step from s to s′ (Figure 2.4), as

∆sks(x, y) = xs′ · ys′ − xs · ys

=
1

Nx

(

cx1 − cx∆
cx2 + cx∆

)

·
1

Ny

(

cy1 − cy∆
cy2 + cy∆

)

−
1

Nx

(

cx1
cx2

)

·
1

Ny

(

cy1
cy2

)

∝ (cx1 − cx∆) · (c
y
1 − cy∆) + (cx2 + cx∆) · (c

y
2 + cy∆)− (cx1 · c

y
1 + cx2 · c

y
2)

∝ (cx1 · c
y
1 − cx1 · c

y
∆ − cx∆ · c

y
1 + cx∆ · c

y
∆) +

(cx2 · c
y
2 + cx2 · c

y
∆ + cx∆ · c

y
2 + cx∆ · c

y
∆)− (cx1 · c

y
1 + cx2 · c

y
2)

∝ 2 cx∆ · c
y
∆ − cx1 · c

y
∆ − cx∆ · c

y
1 + cx2 · c

y
∆ + cx∆ · c

y
2 (2.7)

where, c1 c2 and c∆ are the histograms (un-normalized raw counts) of different parts

involving the split as shown in Figure 2.4. The gradient for objective function in (2.5) is



2.3. Database of Human Attributes (HAT) 25

� �

����������

		A

B
C

B
D

B
E

Figure 2.4: The histograms (raw counts) when a step is taken from the current split s to a

new split s′. c1 and c2 are the histograms for the two parts generated by split s and c∆ is the

histogram for the part between split s and s′.

the sum of these gradients, for all pairs, weighted by tij .

The first cost associated in computing the gradient is the calculation of the histogram c∆

for the changing part of the grid. The step sizes are quantized and hence the calculation

of the count histogram is accelerated using integral histograms for the grid induced by

the quantized step sizes. The second is the computation of the dot products of matrices,

which is also performed efficiently using optimized matrix algebra libraries.

The split can occur in any of the cells of the grid i.e. a depth d grid has d+1 cells and the

further split can occur in any of them. Since, we can’t consider the splits in the different

grid cells as being instances of a single variable, we run the one dimensional optimization

separately for every grid cell and take the cell split increasing the objective function the

most.

The other coordinate descent step involves training linear SVM which, owing to recent

progress, is also achieved efficiently. Hence, both the steps are fast and the overall opti-

mization is quite efficient in practice.

2.3 Database of Human Attributes (HAT)

We propose a new database of Human Attributes (HAT) for learning semantic human

attributes. The database is publicly available on the internet1. Our database contains

9344 images and has annotations for 27 attributes.

The images in the database were collected from the internet. To obtain a large number

of images we used an automatic program to query and download the top ranked result

images, from the popular image sharing site Flickr.com, with manually specified queries.

We used about 320 queries, chosen to retrieve predominantly images containing people

(e.g. ‘soccer kid’ cf. ‘sunset’). Appendix B gives the list of the queries used. We then ran

state-of-the-art person detector [28] to obtain the human images and removed the few

false positives manually.

1http://sharma.users.greyc.fr/hatdb/
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Figure 2.5: Illustration of the database creation process. A query is specified for searching

on Flickr and the top result images are saved. The images are then passed to the person

detection module and the person detections are then kept. The images here have been scaled

to the same height for better visualization.

The database contains a wide variety of human images in different poses (standing, sit-

ting, running, turned back etc.), of different ages (baby, teen, young, middle aged, elderly

etc.), wearing different clothes (tee-shirt, suits, beachwear, shorts etc.) and accessories

(sunglasses, bag etc.) and is, thus, rich in semantic attributes for humans. It also has

high variation in scale (only upper body to the full person) and size of the images. The

high variation makes it a challenging database. Figure 2.6 shows some example images

from our dataset and Figures 2.7, 2.8 and 2.9 show some example images for some of the

attributes (the images in the figures are scaled to the same height for visualization). Table

2.1 lists the various attributes present in our database along with the number of positive

and negative annotated images for each attribute.

The database has been divided into train, val and test sets. The models are learnt with

the train and val sets while the average precision for each attribute, on the test set,

is reported as the performance measure. The overall performance is given by the mean

average precision over the set of attributes.



2.3. Database of Human Attributes (HAT) 27

Figure 2.6: Example images from our database. The images are scaled to the same height for

better visualization.
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Figure 2.7: Example images for age based attributes from our database. The images are

scaled to the same height for better visualization.

2.4 Experiments and results

The motivation of these experiments is twofold: first, we show that optimizing the spatial

representation lead consistently to better results that the standard SPR, as demonstrated

on two popular databases (Scene 15 and Pascal VOC 2007). Second, we show that the

proposed representation is especially suited for the recognition of human attributes, prob-

lem for which we introduce a new database (presented above in Section 2.3).

2.4.1 Implementation details

We use the standard bag of features (BoF) with spatial pyramid representation (SPR)

[50] as the baseline. We use multiscale SIFT features extracted at 8 scales separated by a

factor of 1.2 and a step size of 8 pixels. We randomly sample 200,000 SIFT vectors from

the training images and learn a quantization codebook using k-means with 1000 clusters.

Finally, we use nonlinear SVM with histogram intersection kernel in a one-vs-all setting

to perform the classification. Note that we use formulation (2.4) to learn the grids which

is equivalent to using a linear kernel but we use nonlinear histogram intersection kernel

for training the final SVM to compare fairly with the SPR baseline. We now introduce the

other datasets we used and then proceed to give the results.
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Figure 2.8: Example images for appearance/clothes based attributes from our database. The

images are scaled to the same height for better visualization.
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Figure 2.9: Example images for sex and pose based attributes from our database. The images

are scaled to the same height for better visualization.

2.4.2 Datasets

Scene 15 database2 contains 15 classes of different scenes e.g. kitchen, coast, highway.

Figure 2.10 shows some example images from the dataset. Each class has 260 to 410 im-

ages and the database has a total of 4492 grayscale images. The problem is of multiclass

categorization and, like previous works, we train on 100 random images per class and

test on the rest. We do so 10 times and report the mean and standard deviation of the

mean class accuracy.

2http://www.featurespace.org/data.htm
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Table 2.1: The various attributes along with the number of positive and negative images for

them in our database of Human Attributes (HAT)

No. Attribute Positive Negative

1 Image of a female 4282 4664

2 Near frontal pose 7048 2219

3 Near side/profile pose 2119 7042

4 Person is turned back 922 8354

5 Only upper body visible 3752 5295

6 Person standing straight 4607 1367

7 Person running/walking 1264 7533

8 Person crouching/bent 177 6446

9 Person sitting 787 5750

10 Arms not along the body 5543 1788

11 Elderly person 546 7958

12 Middle aged person 4671 4521

13 Young college person 3364 5402

14 Teen aged kid 1541 7480

15 Small kid 1274 8057

16 Small baby 223 9121

17 Wearing a tank top 854 8470

18 Wearing a T shirt 3004 5870

19 Wearing casual jacket 766 8571

20 Wearing formal men’s suit 618 8696

21 Female in long skirt 436 7048

22 Female in short skirt 423 7029

23 Wearing short shorts 422 5203

24 Wearing a low cut top 1590 7572

25 Female in swim suit 234 9012

26 Female in wedding dress 121 9107

27 Wearing bermuda/beach shorts 672 4221

Pascal VOC 2007 database3 [23] has 20 object categories. It is a challenging database

of images downloaded from internet, containing 9963 images split into train, val and test

sets. Figure 2.11 shows some example images from the dataset. We use the train and val

sets to learn our models and report the mean average precision for the 20 classes on the

test set as the performance measure, following the standard protocol for this database.

2.4.3 Results

Comparison with standard SPR on Scene 15 and Pascal VOC 2007

Figure 2.12 shows the performance of the learnt grid and the uniform spatial pyramid

representation on the Scene 15 database. With our implementation, the spatial pyramid

3http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/
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Table 2.2: Table showing the classwise average precision for the human attributes with the

learnt grids at depths 0 and 4

No. Attribute Depth 0 Depth 4

1 Female 72.5 82.0

2 Frontal pose 90.1 91.3

3 Side pose 48.8 61.0

4 Turned back 49.5 67.4

5 Upper body 83.1 92.4

6 Standing straight 95.6 96.0

7 Running/walking 61.3 67.6

8 Crouching/bent 21.6 20.7

9 Sitting 52.2 54.6

10 Arms bent/crossed 92.0 91.9

11 Elderly 21.9 29.3

12 Middle aged 63.2 66.3

13 Young (college) 59.0 59.4

14 Teen aged 25.2 29.1

15 Small kid 33.5 43.7

16 Small baby 12.6 12.2

17 Wearing tank top 29.2 33.2

18 Wearing tee shirt 54.8 59.1

19 Wearing casual jacket 31.3 35.3

20 Formal men’s suit 44.4 48.2

21 Female long skirt 23.1 49.9

22 Female short skirt 27.3 33.7

23 Wearing short shorts 38.6 42.7

24 Low cut top 47.8 55.6

25 Female in swim suit 29.0 28.2

26 Female wedding dress 51.3 62.1

27 Bermuda/beach shorts 31.6 39.3

mAP 47.8 53.8

representation achieves a mean class accuracy of 73.7± 0.7 at pyramid level 0 (full image

i.e. 1 × 1), 78.5 ± 0.4 at level 1 (1 × 1 and 2 × 2) and 79.6 ± 0.6 at level 2 (1 × 1, 2 × 2

and 4× 4). The performance decreases for SPR if we go higher than this level. As shown

in Figure 2.12 the learnt grids achieve higher performance with comparable vector sizes

and outperform the SPR at depth as low as 4 (80.1± 0.6). The performance of the learnt

grids increases quickly with the depth and saturates at around a depth of 8 which is 0.4

times the length of best SPR (depth 21). Note that the vectors are computed similarly for

both representations and hence have similar sparsities i.e. the difference in vector sizes

translates directly into computational savings.

On the more challenging VOC 2007 database where objects appear at diverse scales, loca-

tions and poses, the learnt grids again outperform SPR at lower grid depths and perform

comparably at higher grid depths. The performance of most of the classes, and on a av-
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Figure 2.10: Some example images for the Scene 15 database [50]

Figure 2.11: Examples images from the Pascal VOC 2007 database [23]
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Figure 2.12: The performances of SPR and learnt grid at comparable vector lengths for Scene

15 database

Figure 2.13: The difference in AP for all the classes of the VOC 2007 database at a grid depth

of 4 with the learnt grid and the uniform spatial pyramid

erage is higher (50.8 vs. 49.5) for the learnt grids at depth 4 (Figure 2.13). Owing to the

unconstrained nature of the images in the database, the structural information is limited

in this database. Also, the metric used is average precision while we are optimizing on

accuracy in the maximum margin formulation. It would be interesting to formulate the

problem with average precision being maximized directly. We hope to pursue this further.

Recognizing human attributes

Table 2.2 shows the average precision of the the learnt grids for the different attributes

at grids of depth 0 and 4. The learnt grids perform better than the SPR on most of the

classes and also on a average. On some of the classes the improvement is quite high e.g.
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Relative dimension→ d=1 d=5 d=21

Attribute name Depth 0 Depth 4 Full SPR

Group 1

Running/walking 61.3 67.6 70.6

Sitting 52.2 54.6 58.4

Wearing tank top 29.2 33.2 36.8

Low cut top 47.8 55.6 59.6

Group 2

Side pose 48.8 61.0 60.1

Female 72.5 82.0 82.0

Female long skirt 23.1 49.9 50.2

Wearing tee shirt 54.8 59.1 60.1

Group 3

Small baby 12.6 12.2 12.4

Standing straight 95.6 96.0 96.4

Frontal pose 90.1 91.3 92.1

Arms bent/crossed 92.0 91.9 93.2

Table 2.3: We observe three groups of attributes. Group 1: The distribution of spatial in-

formation is very peaky in these and they gain performance when the resolution of the grid

increases to high levels. Group 2: The distribution of spatial information is relatively less

peaky compared to Group 1 and they gain performance when the resolution of the grid in-

creases to an intermediate level but do not gain performance at higher resolutions. Group 3:

The distribution of spatial information is almost flat and they do not gain any performance

upon increasing the resolution of the grids increases to high levels.

�������
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Figure 2.14: Learnt grids for VOC 2007 classes ‘bicycle’ and ‘cow’ and human attributes ‘arms

bent’ and ‘running’ overlayed on representative example images.
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49.9 vs. 42.7 for ‘Female wearing a long skirt’ and 62.1 vs. 51.9 for ‘Female in wedding

dress’. On an average also the learnt grids are better than the SPR (53.8 vs. 52.3).

Interestingly, we see three groups of attributes emerging from the experimental results

(Table 2.3). In the first group of attributes, the distribution of spatial information is very

peaky i.e. the discriminant regions are smaller and they gain performance when the depth

of the grid increases from 0 to 4 and also when it further increases. In the second group

of attributes, the distribution of spatial information is relatively flat, compared to the

first group, and they gain performance when the resolution of the grid increases to an

intermediate level but saturate there. In the third group of attributes, the distribution of

spatial information is almost flat and they do not gain any appreciable performance upon

increasing the resolution of the grids to more than one cell.

Visualizing the learnt grids

The grids learnt are interpretable in terms of spatial distribution of visual discriminant

information. Figure 2.14 shows the grids from two classes of VOC 2007 and two classes

of the human attributes database overlayed on representative example images from the

database. The grid learnt for bicycle class seems to focus on the wheels with square cells

in the middle and the bar with horizontal cells towards the top. The cells for the cow

class are predominantly horizontal capturing the contour of the cow. The grids for the

bent arm and running classes seem to focus on the pose of the hands and feet respectively.

2.5 Discussion and conclusion

The method proposed in this chapter builds on the Spatial Pyramid Representation of

[50] and addresses fundamental limitations of this approach i.e. the fixed structure of the

SPR and no class adaptation. We have proposed an efficient algorithm, based on a max-

imum margin framework, allowing to adapt the spatial partitioning to the classification

tasks considered. Furthermore, we have experimentally showed that our representation

significantly outperforms the standard SPR specially at lower vector length.

The experiments demonstrate that spatial information is very important for visual clas-

sification tasks. Our method is able to capture such information and adds performance

to the bag-of-features (BoF) representation. However, the proposed method models the

spatial information at the class level i.e. the grid learnt is w.r.t. a given classification task

and is the same for all the images. Thus, the way spatial information is added does not

natively allow the image parts to move in individual images. E.g. assuming that (a part

of) the grid for ‘running’ attribute captures the bent legs, ideally it should adapt itself to a

given image according to how the leg is positioned in that specific image. This relaxation,
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of learning the grid for the class without per image adaptation, is still justified as the

underlying representation for the cells is an orderless BoF histogram. Hence, given that

the coarseness of the grid proportional to the spatial variability in individual discriminant

regions, the representation is able to capture the informative part despite it moving for

different images.

Making the grids adapt to each image is an interesting idea which could be pursued in

a latent SVM [28] like framework. However, since the grids themselves are nontrivial to

handle in an optimization framework, in the next chapter we propose a new method in

the spirit of per image adaptation but with discriminative saliency maps instead of spatial

grids.
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3.1 Introduction

In the previous chapter we proposed a method which incorporates spatial information in

the bag-of-features (BoF) representation and demonstrated, experimentally, the benefits

of doing so. In the previous method the spatial information was learnt per class, while

in the present chapter we propose a method to incorporate spatial information, for the

classification task, and let it adapt to the given image for better modeling the per-image

spatial variation of similar discriminant information [84].

39
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Figure 3.1: Illustrating the importance of spatial saliency. A horse is salient for the ‘rid-

inghorse’ class. However, it is salient if it appears in the lower part of the image (e.g. left

image), but not if it appears in some other part of the image (e.g. right image).

The human visual system is capable of analyzing images quickly by rapidly changing the

points of visual fixation. Estimating the distribution of such points i.e. the visual saliency is

an important problem in computer vision [43, 47, 66, 99]. Initial works on visual saliency

detection addressed generic saliency, highlighting (generally interesting) properties e.g.

edges, contours, color, texture, building on the feature integration theory [47, 88]. For

visual discrimination, generic visual saliency should be adapted to include task specific

information. Many works [33, 34, 63], thus, define and compute saliency based on the

discriminative power of local features i.e. how much does a feature contribute towards

separating the classes. Such feature based discriminative saliency has been shown to be

important in automatic visual analysis.

Furthermore, in many visual classification tasks there is a spatial bias which complements

global feature saliency e.g. for the ‘coast’ class in scene classification, sky-like regions are

salient, not everywhere but in the upper part of an image. Thus, we argue that given a

class, visual saliency is attributed to different local regions based on their appearance and

their spatial location in an image i.e. a task specific spatial saliency is associated with each

image.

In the present chapter, we

(i) Extend the notion of discriminative visual saliency by including discriminative spa-

tial information and

(ii) Learn it, together with the classifier, to obtain a more discriminative image repre-

sentation for visual classification.

Contrary to previous works [33, 34, 43, 46, 47, 63] that use saliency of features, irrespec-

tive of their positions, we work with saliency of regions in space i.e. for the ‘riding horse’

class instead of saying ‘look for horse like features’ we say ‘look for horse like features in

the lower part of the image’. Figure 3.1 illustrates the point and Figure 3.2 shows saliency

maps obtained by our method.
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Figure 3.2: Example images and their spatial saliency maps obtained with our algorithm for

‘interacting with computer’, ‘taking photo’, ‘playing music’, ‘walking’ and ‘ridinghorse’ action

classes (higher values are brighter).

Our definition of saliency is closely coupled with learning the classifier, unlike previous

work which learn the saliency map and the classifier separately [33, 34, 70]. We learn the

classifier while simultaneously modeling saliency in an integrated max margin learning

framework. We formulate saliency in terms of local regions, and the learning based on

a latent SVM framework adapted to incorporate the saliency model. We show that our

saliency model improves results on three challenging datasets for

(i) Human action classification in still images [20]

(ii) Fined grained image classification i.e. persons playing vs. holding musical instru-

ments [111] and

(iii) Scene classification [50].

3.1.1 Related work on visual saliency and image classification

Visual saliency has been investigated in the computer vision literature in many different

ways. Salient local regions have been detected using interest points (e.g. [58, 61]) which

can be made invariant to image transformations (e.g. rotation, scale, affine) and, thus, can

be detected reliably and repeatably. They have been very successful for matching images

under different transformations [58, 61]. Such regions were also used to sample small

sets of salient patches from images for classification with bag-of-features representations

[16], but dense (regular or random) sampling has been shown to perform better [67] and

is currently the state-of-the-art [24].

Biologically inspired saliency, based on the feature integration theory [88], motivated

another line of work. Regions were marked as salient depending on the difference with

their surrounding area [43, 47], measured using low level features e.g. edges, texture,

contours. Such generic saliency was further adapted to discriminative saliency [33, 34,
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46, 63], where, given a visual classification task, saliency was defined by the capability of

the features to separate the classes.

Moosmann et al. [63] learn saliency maps for visual search to improve object categoriza-

tion. They construct the saliency maps by random sampling of image windows and classi-

fying them as object or background. Gao and Vasconscelos [33] formulate discriminative

saliency and determine it based on feature selection in the context of object detection

[34]. Parikh et al. [70] learn saliency in an unsupervised manner based on how well a

patch can predict the locations of others. Khan et al. [46] model color based saliency

to weight features for improving object detection. Harada et al. [36] learn weights on

regions for classification. However, they learn the weights per class i.e. the weights are

the same for all images. Yao et al. [111] learn a classifier with random forests. They mine

salient patches, for the decision trees, by randomly sampling patches and selecting the

most discriminative ones.

We model saliency based on the contribution of regions to classification i.e. our saliency

is discriminative. We do not discard features, but weight them using the saliency map,

which differs from e.g. [34, 67, 70]. Our model incorporates saliency modeling into

the learning of separating hyperplane in a max margin framework. Hence, our saliency

is more tightly coupled with the visual discrimination task unlike many previous works

where learning saliency and classifiers are separate steps e.g. [33, 34, 46, 70].

Recently, latent support vector machine (LSVM) classifiers have shown promise in many

visual tasks. Felzenszwalb et al. [28] use LSVM for part based object detection which has

become a standard component in state-of-the-art systems [24]. Bilen et al. [6] model the

position and size of the objects using LSVM for image classification. We adapt the LSVM

formulation to incorporate saliency modeling. In our model the image saliency maps are

latent variables and are thus integrated with classifier learning.

3.2 Discriminative Spatial Saliency

We define image saliency as a mapping

s : G → R, (3.1)

where G is a spatial partition of the image, c ∈ G is a region of the image and s(c)

gives the saliency of the region. Our method is general and can work with any spatial

partition of the images e.g. G can be the set of all image pixels, as in traditional saliency,

or a set of user specified regions. We choose G to be the set of cells obtained with a

spatial pyramid like uniform grid [50]. This is motivated by two reasons. First, we have

a variable corresponding to every element of G for every image and, since contemporary
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Figure 3.3: The images are represented by concatenation of cell bag-of-features weighted by

the image saliency maps.

visual discrimination datasets [19, 50, 108] have limited number of training images, using

very fine regions e.g. pixels would make the number of variables very large compared to

the training data. Second, the spatial pyramid, despite of its simplicity, is competitive

with methods using more complex spatial models [24]. Given our choice of G, we can

equivalently write a saliency map as an ordered list of real values i.e.

s = {sc|c ∈ G} (3.2)

where we use the row major order of the grid cells (Figure 3.3).

We work in a supervised binary classification scenario with given training images Ii ∈ I

and corresponding class labels yi ∈ {−1, 1}. Our model consists of three components,

(i) Separating hyperplane w,

(ii) Image saliency maps {si|Ii ∈ I} and a

(iii) Generic saliency map s̄, for regularizing the image saliency maps.

The saliency map of an image maximizes the classification score while penalizing its devi-

ation from the generic saliency map. Our full model is obtained by solving a max-margin

optimization problem with the image saliency maps as latent variables. We present our

model in the following sections.

3.2.1 Maximum margin formulation

Given a saliency map si = {sic|c ∈ G} for the ith image, we represent the image with

the saliency map weighted concatenation of bag-of-features (BoF) histograms for the grid

cells (Figure 3.3), i.e.

xi = [si1h
i
1 . . . s

i
ch

i
c . . .], (3.3)
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where hc is the BoF histogram for cell c ∈ G with appropriate normalization. As noted in

[97], normalization plays an important role, and we discuss it in more detail later.

We cast the problem in a maximum margin latent SVM framework with the image saliency

maps {si|Ii ∈ I} as latent variables. The optimization with hinge loss becomes

min
w

1

2
||w||2 + C

∑

i

max(0, 1− yif(xi,w)), (3.4)

where f is the scoring function (Sec. 3.2.2, Eq. 3.6).

Latent SVMs have been very popular recently in the computer vision community e.g.

Felzenszwalb et al. [28], Bilen et al. [6]. They lead to a semi-convex optimization i.e.

the objective function is convex if the latent variables for the positive examples are fixed

(Appendix A gives a brief overview of LSVM).

3.2.2 Image score

We score a given image as, omitting superscript i for brevity,

f(x,w) = max
s

wTx (3.5)

i.e. we allow the saliency map of the image to change to maximize its score w.r.t. the

separating hyperplane. However, this leads to the trivial solution of selecting the highest

scoring cell. To avoid this, we introduce a new variable, a generic saliency map, s̄. We

penalize the score proportional to the deviation of the image saliency map from s̄. This

regularizes the image saliency maps and gives smoother maps. The final score is thus

obtained as

f(x,w) = max
s

wTx− λ(s− s̄)T (s− s̄), (3.6)

where λ is the parameter controlling the trade off between maximizing the score by vary-

ing the saliency map and deviation of the image saliency map from s̄. We rewrite the first

term of the score as

wTx =

|G|
∑

c=1

sc

K
∑

k=1

w(c−1)·K+k hck = sTDwHT , (3.7)

where K is the size of BoF codebook,

H =













h1

h2

...

h|G|













(3.8)
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i.e. H is the concatenation of cell BoF histograms, with appropriate normalization, and

Dw =









w1 . . . wK 0
. . .

0 w(|G|−1)·K+1 . . . w|G|·K









. (3.9)

Normalization of the BoFs

As noted by Vedaldi et al. [97], in the context of linear classifiers, unnormalized his-

tograms favor (assign relatively larger scores to) larger regions, L1 normalization favors

smaller regions while L2 normalization is neutral and thus ideal. In our experiments,

the images are of different size and the grids, specified in terms of fractional multiples

of image width and height, results in different sized regions which makes normaliza-

tion important. Harzallah et al. [37] had also previously noted that normalizing each

cell separately instead of globally normalizing the whole descriptor gives slightly better

results. Our preliminary experiments resulted in similar conclusions and in our final im-

plementation we work with per-cell L2 normalized vectors. As a result of independent

normalization of each cell, H is fixed for every image and the optimization problem in Eq.

3.6 takes a closed form solution involving matrix operations and is very fast to compute.

3.2.3 Regularized formulation

By introducing s̄ into the formulation we have introduced another source of scaling. Ev-

erything else fixed, by scaling the magnitude of s̄ we can change the image scores (as the

saliency maps are multipliers in the score function). Thus, we can decrease the objective

value without making any generalizable progress. To control such scaling we augment

the objective function with a regularization term for s̄, which penalizes deviation from a

uniform map (which assigns unit weight to each cell) similar to the (individual levels of)

standard spatial pyramid, as

L(w, s̄) =
1

2
||w||2 +

γ

2
||s̄− 1||2 + C

∑

i

max(0, 1− yif(xi)). (3.10)

We now have one more parameter, γ > 0, to control the regularization of s̄. As the

scales of s̄ and w are different we can not expect similar regularization w.r.t. loss, i.e.

parameter C to work for both. Thus the model has three parameters for controlling

different regularizations γ, C, λ.

The parameter C (cf. the standard SVM parameter) and γ control the relative trade-offs

between constraint violation, margin maximization and regularization of s̄. The param-

eter λ controls the regularization of the saliency map for each image. To gain some
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Figure 3.4: We propose to use a block coordinate descent algorithm for learning our model

(Sec. 3.2.4). As in a latent SVM, we optimize in one step the hyperplane vector w keeping

the saliency maps of the positive images fixed and in the other step we optimize the saliency

keeping w fixed.

intuition about the parameter λ, consider the two limiting cases. In the first limiting case,

when λ → ∞, we have a highly smoothed model which forces all saliency maps to be

the same as the generic saliency. In the other limiting case, when λ is zero, we have no

smoothing and the saliency maps put all the weight on the best scoring cell per image.

3.2.4 Solving the optimization problem

We solve the problem with a block coordinate descent algorithm. We treat w and s̄ as

two blocks of variables and alternately optimize on one while keeping the other fixed.

Figure 3.4 illustrates the learning process. In each of the inner iterations we optimize

using stochastic gradient descent as detailed in Algorithms 3.1 and 3.2, where we use

(the stochastic approximations of) the sub-gradient w.r.t. w,

∇wL = w + C
∑

i

gw(x
i) (3.11)

gw(x
i) =

{

0 if yif(xi) ≥ 1

−yixi otherwise,
(3.12)

and sub-gradient w.r.t. s̄,

∇s̄L = γ(s̄− 1) + C
∑

i

gs̄(x
i) (3.13)

gs̄(x
i) =

{

0 if yif(xi) ≥ 1

2yiλ(s̄− si) otherwise.
(3.14)
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Algorithm 3.1 Stochastic gradient descent for w (s̄ fixed)

1: while t = 1 . . . T do

2: Specify learning rate lwt for iteration t
3: Choose a random training image Ii

4: Calculate the saliency map si iff yi = −1
5: if yif(xi,w) ≥ 1 then

6: w← w− lwt w

7: else

8: w← w− lwt (w− CNyixi)
9: end if

10: end while

Algorithm 3.2 Stochastic gradient descent for s̄ (w fixed)

1: while t = 1 . . . T do

2: Specify learning rate ls̄t for iteration t
3: Choose a random training image Ii

4: Calculate the saliency map si

5: if yif(xi,w) ≥ 1 then

6: s̄← s̄− ls̄tγ(s̄− 1)
7: else

8: s̄← s̄− ls̄t(γ(s̄− 1) + 2CNyiλ(s̄− si))
9: end if

10: end while

While keeping s̄ fixed we get a semi convex LSVM-like optimization [28] for w. Unfor-

tunately, that is not the case for the optimization of s̄ as, with w fixed, the hinge loss

for each example is concave w.r.t. s̄ (the coefficient of s̄T s̄ is −λ < 0). Thus, the total

hinge loss (being the maximum over one convex i.e. zero function, and multiple concave

functions i.e. per example hinge losses) is, in general, non convex and the algorithm will

converge to a local minimum for s̄. To make sure that it does not end up in a very bad

local minimum, we initialize w with a perturbed version of that learned using the baseline

SVM (same optimization with all components of s̄ and {si|Ii ∈ I} fixed to 1). Since we

are directly minimizing the primal we can expect approximations to generalize reason-

ably [13]. In practice, we find that the models computed by our implementation perform

well.

Parameters

We find initial learning rates lw0 and ls̄0 by performing preliminary experiments on a subset

of the full data and then we decrease the learning rates every iteration by dividing by the

iteration number i.e. lt = l0/t (as is common with stochastic gradient methods). We fix

C = 1 for all experiments (this gives similar results on average as with C obtained by

cross validation) and select λ and γ by cross validation on the training data.
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Nonlinearizing using a feature map

Recent progress in explicitly computing the feature maps [98] induced by different non

linear kernels allows us to address non linearity. The approach is to apply the non linear

map to compute the feature vectors explicitly, and work with linear algorithms in the

feature space.

We transform the histograms by taking their element-wise square roots i.e.

φ([h1, h2, . . . , hd]) = [
√

h1,
√

h2, . . . ,
√

hd]. (3.15)

It is known [98] that the product of the resulting vectors is equal to the Bhattacharyya

kernel between the original histograms. Hence, using the feature map is equivalent to

working with the non linear Bhattacharyya kernel, which has been shown to give better

results than the linear kernel. We L1 normalize the original histograms so that the feature

mapped vectors are L2 normalized.

3.3 Experimental results

We evaluate our method on three challenging datasets for

(i) Human action classification in still images [20],

(ii) Fine grained classification, of humans playing musical instruments vs. holding them

[111], and

(iii) Scene classification [50].

We first give the details of our implementation and baselines and then proceed to present

and discuss the results on the three datasets.

Bag-of-features implementation details

Like previous works [19, 111] we densely sample grayscale SIFT features at multiple

scales. We use a fixed step size of 4 pixels and use square patch sizes at 7 scales ranging

from 8 to 40 pixels. We learn a vocabulary of size 1000 using k-means and assign the SIFT

features to the nearest codebook vector (hard assignment). We use the VLFeat library [96]

for SIFT and k-means computation.
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Spatial pyramid (SP and overlapping SP)

We use a four level spatial pyramid but instead of the usual non overlapping cells with

uniform grids we expand the cells by 50% and let them overlap i.e. 2 × 2 cells are 3/4

of the height (width) instead of 1/2. We found that doing so provides better statistics

(less sparse histograms) for finer cells and improves performance. This is inspired by the

idea of ‘non sparsification’ of vectors [72]. We discuss this more in Sec. 3.3.4. Our initial

experiments gave similar results with classifiers trained on the full pyramid descriptor

and the weighted sum of descriptors from each level. We train classifiers for each level

separately and combine levels, for the baselines as well as our method, by the weighted

sum of classifier scores. The weights sum to one over all levels and are higher for finer

levels at resolution, similar to previous work [50].

Baselines

We use SP and overlapping SP, as baselines, with linear SVM trained without our saliency

model i.e. we fix all the saliency maps to be uniform in the optimization reducing it to

standard linear SVM with spatial BoF. The baseline results are obtained with the liblinear

[26] library.

Performance measure

The performance is evaluated based on average precision (AP) for each class and the

mean average precision (mAP) over all classes.

3.3.1 Willow actions

Willow actions1 [19] is a challenging database for action classification on unconstrained

consumer images downloaded from the internet. It has 7 classes of common human

actions e.g. ‘ridingbike’, ‘running’. It has at least 108 images per class of which 70 images

are used for training and validation and rest are used for testing. The task is to predict

the action being performed given the human bounding box. Like previous work [20], we

expand the given person bounding boxes by 50% to include some contextual information.

Figure 3.8a shows example images and their saliency maps obtained with our model and

Table 3.1 gives quantitative results on the Willow actions dataset. Our implementation

of the baseline spatial pyramid [50] achieves an mAP of 62.6% while that of a spatial

pyramid with overlapping cells improves by 2%. Our model obtains 65.9% which is the

state-of-the art result on this dataset. To compare with previous works, Delaitre et al. [20]

1http://www.di.ens.fr/willow/research/stillactions/
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Figure 3.5: Example images from the Willow Actions dataset [19].

Table 3.1: Results (AP) on actions dataset (Sec. 3.3.1)

Per-obj Baselines

inter. [20] SP [50] ov. SP Ours

inter. w/ comp. 56.6 49.4 57.8 59.7

photographing 37.5 41.3 39.3 42.6

playingmusic 72.0 74.3 73.8 74.6

ridingbike 90.4 87.8 88.4 87.8

ridinghorse 75.0 73.6 80.8 84.2

running 59.7 53.3 55.8 56.1

walking 57.6 58.3 56.3 56.5

mAP 64.1 62.6 64.6 65.9

obtain an mAP of 64.1% with a method modeling person-object interactions. Note that

they model complex interactions between objects and body parts while using external

data to train the several object and body part detectors.

Our method gives best results for four out of seven categories. The most significant im-

provement is obtained on the ‘ridinghorse’ class which has a strong spatial bias for horse

and grass in the bottom part of the image. The saliency map modeling effectively exploits

this (Figure 3.8a). The drop on ‘ridingbike’ class can be explained by the limitation of

the method to improve performance if the classifier is able to separate the training data

almost perfectly and/or if there is not enough training data (Sec. 3.3.4).

3.3.2 People playing musical instruments

People playing musical instruments (PPMI)2 [111] is a dataset emphasizing subtle differ-

ence in interactions between humans and objects (fine grained classification). It contains

2http://ai.stanford.edu/∼bangpeng/ppmi.html
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Figure 3.6: Example images from the PPMI dataset [108] with people playing (top row) and

people holding (bottom row) the musical instruments.

Table 3.2: Results (mAP) on Task 1 of PPMI dataset (Sec. 3.3.2)

Grouplet Rn. forest Baselines

[108] [111] SP [50] ov. SP Ours

36.7 47.0 45.3 46.6 49.4

Table 3.3: Results (mAP) on Task 2 of PPMI dataset (Sec. 3.3.2)

Grouplet Rn. forest Baselines

[108] [111] SP [50] ov. SP Ours

85.1 92.1 89.2 90.3 91.2

classes with humans interacting with i.e. either playing or just holding, 12 different mu-

sical instruments. There are two tasks for this dataset

(i) Task 1: 24 class classification, with the classes being the human playing and holding

the 12 instruments and

(ii) Task 2: 12 binary classifications, with each binary problem being that of human

playing vs. holding the instruments.

Figure 3.8b shows some example images and their saliency maps and Table 3.2 and 3.3

shows our results on the PPMI datasets for Task 1: 24 class multi-class classification and

Task 2: 12 binary classification problems respectively. For Task 1, the spatial pyramid

baseline achieves 45.3% and the overlapping spatial pyramid achieves 46.6% improving

by 1.3%. Our method achieves a mAP of 49.4% which is state of the art for the dataset. In

comparison to previous methods, we improve by 12.7% compared to Yao et al.’s Grouplet

[108] and by 2.4% compared to their Random Forest classifier [111]. For Task 2, the
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Table 3.4: Results (mAP) on Scene 15 dataset (Sec. 3.3.3)

Pyramid Baselines

level comb. SP [50] ov. SP Ours

1 74.9 ± 0.5 74.9 ± 0.5 -

1+2 77.9 ± 0.4 78.8 ± 0.5 85.1 ± 1.2

1+2+3 81.8 ± 0.6 82.6 ± 0.4 85.5 ± 0.6

1+2+3+4 81.9 ± 0.5 81.9 ± 0.3 84.6 ± 0.7

baselines are at 89.2% and 90.3% while our method achieves 91.2% compared to 85.1%

of Grouplet [108] and 92.1% of Random Forest classifier [111]. The Grouplet method

uses patches at only one scale which can perhaps explain its lower performance. Note

that the Random Forest classifier has a much higher complexity than our approach, as it

uses 100 decision trees. At each node of the tree they evaluate a linear SVM decision thus

effectively performing 100s of vector dot products, whereas our approach only has one

such computation. We perform slightly worse that the state of the art in Task 2 due to

performance saturation, see Sec. 3.3.4 for a discussion.

3.3.3 Scene 15

Scene 153 [50] is a dataset containing 15 scene categories, e.g. ‘beach’, ‘office’ (see Sec-

tion 2.4 for more description and example images). The task is multi-class classification

with the dataset split into 100 random images per class for training and the rest for test-

ing. Like previous works, we repeat the experiment 10 times and report the mean and

standard deviation of the performance achieved in each run.

Figure 3.8c shows some example images and their saliency maps and Table 3.4 show our

results on the scene 15 dataset for 15 binary one-vs-rest classification problems. Our tra-

ditional and overlapping spatial pyramid baselines achieve a performance of 81.8% and

82.6% resp. for 3 levels. Our method achieves 85.5% improving the better baseline by

2.9%. It is interesting to note that our method at a lower pyramid level of 2 already

beats the best baseline, at a higher pyramid level of 3, by 2.5%, which points to the

strong and coarse spatial bias in the dataset. The state-of-the-art method on this dataset

[101] achieves 88.1% (mean class accuracy). However, they combine 14 different low

level features. Our best result is comparable to Krapac et al. [48], who used a similar

setup as ours and achieved mAP of 85.6%. Note that they quantized features using dis-

criminatively trained decision trees outperforming k-means based quantization. In the

current paper, we have used k-means and arguably our results would improve further

using similar stronger quantization instead.

3http://www-cvr.ai.uiuc.edu/ponce grp/data/
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3.3.4 Overlapping cells and training saturation

We use overlapping cells for the spatial pyramid decomposition. As noted by Perronnin

et al. [72], when sparseness of the vectors increases, the performance of linear SVM

decreases. This is because the more robust distance with sparse vectors is L1 while linear

SVM corresponds to the L2 distance. To decrease the effect of sparsity we take overlapping

cells in the spatial pyramid partition by increasing the sizes of the cells by 50%. Figure 3.7

(top) shows the performances for different codebook sizes on the Willow actions dataset.

We notice that for larger codebook sizes of 500 and 1000 the overlapping SP performs

better than the non overlapping one but the difference is not significant for a codebook

size of 100. As the codebook size increases, but the number of features stays the same,

the sparsity of the histogram increases. Thus, pooling more features by increasing the

size of the cells performs better, as the sparsity of the histograms is decreased.

We can also observe that our approach does not gain much when the training data is well

separated i.e. the baseline SVM is saturated. This can occur when there is not enough

training data or the task is relatively easy. In saturated cases the number of vectors within

the margin (which effectively contribute towards refining the hyperplane), even for the

baseline, are only a few (< 100) and the saliency model is not able to derive more informa-

tion from so few examples. Figure 3.7 (bottom) shows the performance for the different

pyramid combinations for the Willow actions dataset. We observe that as the pyramid

level increases, the gap between the baselines and the proposed method decreases due to

increase in training saturation. The trend is similar for increasing codebook size, Figure

3.7 (top). This also explains why we get little or no improvement for the ‘ridingbike’ class

(Table 3.1) and the Task 2 of PPMI dataset (Table 3.3).

3.3.5 Qualitative results

Figure 3.8 shows example images from two classes for each of the three datasets together

with their saliency maps. We can observe that the saliency maps focus on those parts

of the images which we expect to be discriminative. For example, in the action class

‘ridinghorse’ the saliency maps give high weights to the lower regions which are expected

to be salient as they contain the horse and grassy texture which are highly correlated with

the class. The person (in the typical riding pose) is not weighted highly, because it might

be confused with ‘ridingbike’, stressing the discriminative nature of the maps.

Furthermore, per image adaptation can be seen in all the examples. In the ‘playingmusic’

class the maps follow the hands and the musical instruments and differ for every image.

A similar observation holds for ‘tallbuilding’ class where the middle part of the buildings

seems to be more discriminative probably because of predominant sky in the upper part

of many images.
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Figure 3.7: (Top) Evaluation (mAP) of the impact of the codebook size for a full pyramid rep-

resentation. (Bottom) Evaluation (mAP) of the impact of the pyramid levels for a codebook

size of 1000. The dataset is the Willow Actions [19].

The correlation between the locality of the task and the peaks in the maps is also clearly

visible. A strong contrast is apparent between the ‘playingmusic’ class of the Willow

actions dataset and the similar ‘violin’ and ‘erhu’ classes of PPMI dataset. In the actions

dataset the discrimination is against more general actions (e.g. ‘running’, ‘photographing’)

and hence the maps capture the instrument, the pose of the hands etc. and have relatively

spread out maxima. In contrast, for ‘violin’ and ‘erhu’ classes the maps have sharp peaks

as the task is to differentiate between holding vs. playing instruments. The maps here

quite accurately focus on the region of discriminative interaction between the person and

the instrument.
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Figure 3.8: Example images and their saliency maps (8 × 8 resolution) for images from two

classes for each of the three databases (higher values are brighter). Notice how the maps

adapt to the content of the image and highlight the spatially salient regions per image.
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3.4 Conclusions

In the present chapter, we presented a method for learning spatial saliency for images.

The learnt spatial saliency is discriminative and task specific. We showed experimentally

that the saliency modeling improves the image representation and, thus, the classification

performance. The saliency map help the classifier to focus on the important regions in

the image for the given classification task. Such local focus is important for visual tasks

where there is a spatial bias.

The method has wide applicability as was demonstrated with experiments on three chal-

lenging datasets. It improves over the baseline without spatial saliency and achieves

better or comparable results w.r.t. the state-of-the-art.
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4.1 Introduction

Human faces convey a lot of information about a person. Many semantic attributes about

humans can be inferred from the face alone e.g. those based on sex, facial appearance,

expression. In the present chapter we propose a new descriptor for facial analysis and

texture categorization [85] inspired by recent texture descriptors e.g. LBP/LTP.

Visual categorization under multiple sources of variations e.g. illumination, scale, pose, is

a challenging open problem in computer vision. While the community has spent a lot of

effort on object-category classification and object segmentation tasks [24] — leading to

very powerful intermediate representation of images such as the BoW model [53, 86] —

texture recognition has received relatively less attention despite its importance for several

computer vision tasks. Texture recognition is beneficial for many applications such as

mobile robot navigation or biomedical image processing. Texture analysis is also related

to facial analysis e.g. facial expression categorization and face verification as the models

57
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developed for texture recognition can, in general, be used successfully for face analysis.

Such tasks, similarly, find important applications in human computer interaction and in

security and surveillance applications. In this chapter we aim to catch up on this topic by

proposing a new model providing a powerful texture and face representation.

Earlier works on texture analysis were focused on the development and application of

filter banks e.g. [53, 17, 115]. They computed filter response coefficients for a number

of filters or wavelets and learned their distributions. However, later works disproved the

necessity of such ensembles of filters e.g. Ojala et al. [68] and Varma and Zisserman [94]

showed that it is possible to discriminate between textures using pixel neighbourhoods as

small as 3×3 pixels. They demonstrated that despite the global structure of the textures,

very good discrimination could be performed by exploiting the distributions of such pixel

neighbourhoods. More recently, exploiting such micro-structures in textures by represent-

ing images with distributions of local descriptors has gained much attention and has led

to state-of-the art performances [73, 1, 87, 14]. However, as we discuss later, these meth-

ods suffer from several important limitations, such as the use of fixed quantization of the

feature space as well as the use of heuristics to prune volumes in the feature space. In

addition, they represent feature distributions with histograms and hence are restricted to

the use of low order statistics.

In contrast to these previous works, we propose a model that represents images with

higher order statistics of local pixel neighborhoods. We obtain a data driven partition of

the feature space using parametric mixture models, to represent the distribution of the

vectors, and learn the parameters from the training data. Hence, the coding of vectors is

intrinsically adapted to any classification task and the computations involved remain very

simple despite the strengths. The approach is validated by extensive experiments, on four

challenging datasets i.e.

(i) Brodatz 32 texture dataset [93, 9],

(ii) KTH TIPS 2a materials dataset [12],

(iii) Japanese female facial expressions dataset [59], and

(iv) Labeled faces in the wild [39],

which show that using higher-order statistics gives a more expressive description and

leads to state-of-the-art performance.

4.1.1 Related works on texture analysis for image classification

Most of the earlier works on texture analysis focused on the development of filter banks

and on characterizing the statistical distributions of their responses e.g. [53, 17, 115],

until Ojala et al. [68] and, more recently, Varma and Zisserman [94] showed that statistics



4.1. Introduction 59

of small pixel neighbourhoods are capable of achieving high discrimination. Since then

many methods working with local pixel neighbourhoods have been used successfully in

texture and face analysis e.g. [87, 14, 56].

Local pixel pattern operators, such as Local Binary Patterns (LBP) by Ojala et al. [68],

have been very successful for local pixel neighbourhood description. LBP based image

representation aims to capture the joint distribution of local pixel intensities. LBP ap-

proximates the distribution by first taking the differences between the center pixel and its

neighbours and then considering just the signs of the differences. The first approximation

lends invariance to gray-scale shifts and the second to intensity scaling. Local Ternary

Patterns (LTP) were introduced by Tan and Triggs [87] to add restistance to noise. LTP

requires a parameter t, which defines a tolerance for similarity between different gray

intensities, allowing for robustness to noise. Doing so lends an important strength: LTPs

are capable of encoding pixel similarity information modulo noise. However, LTP (and

LBP) coding is still limited due to its hard and fixed quantization. In addition, both LBP

and LTP representations usually use the so-called uniform patterns: patterns with at most

one 0-1 and at most one 1-0 transition, when seen as circular bit strings. The use of

these patterns is motivated by the empirical observation that uniform patterns account

for nearly 90 percent of all observed patterns in textures. While it works quite well in

practice, it is a heuristic for discarding low occupancy volumes in feature space.

Most of the other recent methods, driven by the success of earlier texton based texture

classification method [53] and recent advances in the field of object category classifica-

tion, adopt bag-of-words models to represent textures as distributions of local textons

[94, 56, 49, 112, 95, 15, 38, 102, 103]. They learn a dictionary of textons obtained

by clustering vectors (e.g. based on either pixel intensities, sampled on local neighbour-

hoods, or their differences), and then represent the image as histograms over the learnt

codebook vector assignments. The local vectors are derived in multiple ways, incorporat-

ing different invariances like rotation, view point etc. . E.g. [49, 112] generate an image

specific texton representation from rotation and scale invariant descriptors and compare

them using Earth Movers distance. While [94, 68, 56, 95] use a dictionary learned over

the complete dataset to represent each image as histogram over this dictionary.

The motivations for this paper follow the conclusions that can be drawn from these related

works.

(i) As shown by [68, 94], and by all the recent papers that build on these, modeling

distributions of small pixel neighbourhoods (as small as 3×3 pixels) can be very

effective.

(ii) Unfortunately, all the previously mentioned approaches involve coarse approxima-

tions that prevent them from getting all the benefits of an accurate representation

of such small neighbourhoods, and
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(iii) All these methods use low-order statistics while using high-order moments can give

a more expressive representation.

Addressing these limitations by accurately describing small neighbourhoods with their

higher-order statistics, without coarse approximations, is the contribution of the present

paper.

4.2 The Local Higher-order Statistics (LHS) Model

As explained before, the proposed Local Higher-order Statistics (LHS) model intends to

represent images by exploiting, as well as possible, the distribution of local pixel neigh-

bourhoods. Thus, we start with small pixel neighbourhoods of 3×3 pixels and model the

statistics of their local differential vectors.

Local differential vectors

We work with all possible 3×3 neighbourhoods in the image, i.e. {vn = (vc, v1, . . . , v8)}

where vc is the intensity of the center pixel and the rest are those of its 8-neighbours.

We are interested in exploiting the distribution p(vn|I) of the these vectors, for a given

image, to represent the image. We obtain invariance to monotonic changes in gray levels

by subtracting the value of the center pixel from the rest and using the difference vector

i.e.

p(vn|I) ≈ p(v|I) where, v = (v1 − vc, . . . , v8 − vc). (4.1)

We call the vectors {v} thus obtained as the differential vectors.

Higher order statistics

The key contribution of LHS is to use the statistics of the differential vectors {v|v ∈ I} to

characterize the images. Instead of using a hard and/or predefined quantization, we use

parametric Gaussian mixture model (GMM) to derive a probabilistic representation of the

differential space. Defining such soft quantization, which can equivalently be seen as a

generative model on the differential vectors, allows us to use a characterization method

which exploits higher order statistics. We use the Fisher score method (Jaakkola and

Haussler [44]), where given a parametric generative model, a vector can be characterized

by the gradient with respect to the parameters of the model. The Fisher score, for an

observed vector v w.r.t. a distribution p(v|λ), where λ is parameter vector, is given as,

g(λ, v) = ∇λ log p(v|λ). (4.2)
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The Fisher score, thus, is a vector of same dimensions as the parameter vector λ. For a

mixture of gaussian distribution i.e.

p(v|λ) =

Nk
∑

c=1

αkN (v|µk,Σk) (4.3)

N (v|µk,Σk) =
1

√

(2π)d|Σk|
exp

{

−
1

2
(v − µk)Σ

−1
k (v − µk)

}

, (4.4)

the Fisher scores can be computed using the following partial derivatives (we assume

diagonal Σ for decreasing the number of parameter to be learnt)

∂ log p(v|λ)

∂µk

= γkΣ
−1
k (v − µk) (4.5a)

∂ log p(v|λ)

∂Σ−1
k

=
γk
2

(

Σk − (v − µk)
2
)

(4.5b)

where, γk =
αkp(v|µk,Σk)

∑

k αkp(v|µk,Σk)
(4.5c)

where the square of a vector is element-wise square. In the derivatives above we can see

that the information based on the first and second powers of the differential vectors are

also coded; these are higher order statistics for the differential vectors. After obtaining

the differential vectors corresponding to every pixel neighbourhood in the image, we

compute the image representation as the average vector over all of them. We normalize

each dimension of the image vector to zero mean and unit variance. To perform the

normalization we use training vectors and compute multiplicative and additive constants

to perform whitening per dimension [7]. We also incorporate two normalizations (on

image vector x) [72] i.e. power normalization,

(x1, . . . , xd)← (sign(x1)
√

|x1|, . . . , sign(xd)
√

|xd|), (4.6)

and L2 normalization,

(x1, . . . , xd)←





x1
√

∑

x2i

, . . . ,
xd

√

∑

x2i



 . (4.7)

The whole algorithm, which is remarkably simple, is summarized in Alg. 4.1. Finally, we

use the vectors obtained as the representation of the images and employ a discriminative

linear support vector machine (SVM) as the classifier in a supervised learning setup.

Relation to LBP/LTP

We can view LHS vectors as generalization of local binary/ternary patterns (LBP/LTP)

[68, 87]. In LBP every pixel is coded as a binary vector of 8 bits with each bit indicat-
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Algorithm 4.1 Computing Local Higher-Order Statistics (LHS)

1: Randomly sample 3×3 pixels differential vectors {v ∈ I|I ∈ Itrain}
2: Learn the GMM parameters {αk, µk,Σk|k = 1 . . .K} with EM algorithm on {v}
3: Compute the higher-order Fisher scores for {v} using equations (4.5)

4: Compute means Cd
µ and variances Cd

Σ for each dimension d
5: for all images {I} do

6: Compute all differential vectors v ∈ I
7: Compute the Fisher scores for all features {v} using equations (4.5)

8: Compute the image representation x as the average score over all features

9: Normalize each dimension d as xd ← (xd − Cd
µ)/C

d
Σ

10: Apply normalizations, equations (4.6) and (4.7)

11: end for

ing whether the current pixel is of greater intensity when compared to (one of the 8) its

neighbours. We can derive the LBP [68] by thresholding each coordinate of our differen-

tial vectors at zero. Hence the LBP space can be seen as a discretization of the differential

space into two bins per coordinate. Similarly, we can discretize the differential space into

more number of bins, with three bins per coordinate i.e. (−∞,−t), [−t, t], (t,−∞) we ar-

rive at the local ternary patterns [87] and so on. The use of uniform patterns (patterns

with exactly one 0-1 and one 1-0 transitions) only, in both LBP/LTP, can be seen as an

empirically derived heuristic for ignoring volumes in differential space which have low

occupancies. Thus, the binary/ternary patterns are arrived at with a quantization step

and rejection heuristic while in our case similar information is learnt from data.

4.3 Experimental Validation

The experimental validation is done on four challenging publicly available datasets of

textures and faces. We first discuss implementation details then present the datasets and

finally give the experimental results for each dataset.

As our focus is on the rich and expressive representation of local neighbourhoods, we use

a standard classification framework based on linear SVM. As linear SVM works directly

in the input feature space, any improvement in the performance is directly related to a

better encoding of local regions, and thus helps us gauge the quality of our features.

Implementation details

We use only the intensity information of the images and convert color images, if any, to

grayscale. We consider two neighbourhood sampling strategies

(i) Rectangular sampling, where the 8 neighboring pixels are used, and
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(ii) Circular sampling, where, like in LBP/LTP [68, 87], we interpolate the diagonal

samples to lie on a circle, of radius one, using bilinear interpolation.

We randomly sample at most 500,000 features from training images to learn Gaussian

mixture model of the vectors, using the EM algorithm initialized with k-means clustering.

We keep the number of components as an experimental parameter (Sec. 4.3.3). We also

use these features to compute the normalization constants, by first computing their Fisher

score vectors and then computing (per coordinate) mean and variance of those vectors

(Alg. 4.1). We use the average of all the features from the image as the representation

for the image. However, for the facial expression dataset we first compute the average

vectors for non overlapping cells of 10×10 pixels and concatenate these for all cells to

obtain the final image representation. Such griding helps in capturing spatial information

in the image and is standard in face analysis [30, 82]. We crop the 256×256 face images

to a ROI of (66, 96, 186, 226), to focus on the face, before feature extraction and do not

apply any other pre-processing. Finally, we use linear SVM as the classifier with the cost

parameter C set using five fold cross validation on the current training set.

Baselines

We consider baselines of single scale LBP/LTP features generated using the same sam-

plings as our LHS features. We use histogram representation over uniform LBP/LTP fea-

tures. We L1 normalize the histograms and take their square roots and use them with

linear SVM. It has been shown that taking square root of histograms transforms them to

a space where the dot product corresponds to the non linear Bhattacharyya kernel in the

original space [98]. Thus using linear SVM with square root of histograms is equivalent

to SVM with non linear Bhattacharyya kernel. Hence, our baselines are strong baselines.

4.3.1 Texture categorization

Brodatz – 32 Textures dataset1 [93, 9] is a standard dataset for texture recognition. It

contains 32 texture classes e.g. bark, beachsand, water, with 16 images per class. Each of

the image is used to generate 3 more images by

(i) Rotating,

(ii) Scaling and

(iii) Both rotating and scaling the original image.

Note that Brodatz-32 [93] is a more challenging dataset than original Brodatz and in-

cludes both rotation and scale changes. The images are 64×64 pixels histogram normal-

ized grayscale images. Figure 4.1 shows some example images from the dataset. We use

1http://www.cse.oulu.fi/CMV/TextureClassification
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Table 4.1: Results (avg. accuracy and std. dev.) on the different datasets.

(a) Rectangular sampling (8-pixel neighbourhood)

Brodatz–32 KTH TIPS 2a JAFFE E1 JAFFE E2

LBP baseline 87.2 ± 1.5 69.8 ± 6.9 86.9 ± 2.6 56.5 ± 21.0

LTP baseline 95.0 ± 0.8 69.3 ± 5.3 93.6 ± 1.8 57.2 ± 16.3

LHS (ours) 99.3 ± 0.3 71.7 ± 5.7 95.6 ± 1.7 64.6 ± 19.2

(b) Circular sampling (bilinear interpolation for diag. neighbours)

Brodatz–32 KTH TIPS 2a JAFFE E1 JAFFE E2

LBP baseline 87.3 ± 1.5 69.8 ± 6.7 94.3 ± 2.1 61.8 ± 24.1

LTP baseline 94.9 ± 0.8 71.3 ± 6.3 95.1 ± 1.8 60.6 ± 20.8

LHS (ours) 99.5 ± 0.2 73.0 ± 4.7 96.3 ± 1.5 63.2 ± 16.5

the standard protocol [14], of randomly splitting the dataset into two halves for training

and testing, and report average performance over 10 random splits.

KTH TIPS 2a dataset2 [12] is a dataset for material categorization. It contains 11 ma-

terials e.g. cork, wool, linen, with images of 4 samples for each material. The samples

were photographed at 9 scales, 3 poses and 4 different illumination conditions. All these

variations make it an extremely challenging dataset. Figure 4.2 shows some example

images from the dataset. We use the standard protocol [14, 12] and report the average

performance over the 4 runs, where every time all images of one sample are taken for test

while the images of the remaining 3 samples are used for training.

Table 4.1 (col. 1 and 2) shows the results for the different methods on these texture

datasets. We achieve a near perfect accuracy of 99.5% on the Brodatz dataset. Our best

method outperforms the best LBP and LTP baselines by 12.2% and 4.5% respectively

and demonstrates the advantage of using rich, higher-order, data-adaptive encoding of

local neighbourhoods compared to fixed quantization based LBP and LTP representations.

Brodatz dataset has variations in the scale and rotation of the textures and, hence, the

high accuracy achieved on the dataset leads us to conclude that texture recognition can

be done almost perfectly under the presence of rotation and scaling variations.

On the more challenging KTH TIPS 2a dataset, the best performance is far from saturated

at 73%. The gain in accuracy over LBP and LTP is 3.2% and 1.7% respectively. The

dataset has much higher variations in scale, illumination condition, pose etc. than the

Brodatz dataset and the experiment is of texture categorization of unseen sample i.e.

the test images are of a sample not seen on training. We again outperform LBP/LTP

demonstrating the higher discriminative power and the generalization capability of our

descriptor.

2http://www.nada.kth.se/cvap/datasets/kth-tips/



4.3. Experimental Validation 65

����� ���� �	�AB�CD��

E�F�� E���A�� ����	�

Figure 4.1: Example images from the Brodatz 32 texture dataset [93, 9]

��������

��	
	

�����	

���	 ��
��

Figure 4.2: Example images from the KTH TIPS 2a texture dataset [12]
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Figure 4.3: The images of the 10 persons in the neutral expression. The number below is the

categorization accuracy for all 7 expressions for the person (see Sec. 4.3.2).

4.3.2 Facial analysis

Expression classification

Japanese Female Facial Expressions (JAFFE)3 [59] is a dataset for facial expression

recognition. It contains 10 different females expressing 7 different emotions e.g. sad,

happy, angry. We perform expression recognition for both known persons, like earlier

works [54], and for unknown person. In the first (experiment E1), one image per expres-

sion for each person is used for testing while remaining are used for training. Thus, the

person being tested is present (different image) in training. While in the second (exper-

iment E2), all images of one person are held out for testing while the rest are used for

training. Hence, there are no images of the person being tested in the training images,

making the task more challenging. In both, we report the mean and standard deviation

of average accuracies of 10 runs.

Table 4.1 (col. 3 and 4) shows the performance of the different methods. On the first

experiment (E1) we obtain very high accuracies as the task is of recognition of expres-

sions, from a never seen image, of a person present in the training set. Our method

again outperforms LBP and LTP based representation by 2% and 1.2% respectively. On

the more challenging second experiment (E2) we see that the accuracies are much less

than E1. Our best accuracy is again better than the best LBP and LTP accuracies by 2.8%

and 4% respectively. Fig. 4.3 shows one image of each of the 10 persons in the dataset

along with the expression recognition accuracy for that person. We can see the very high

intra-person differences in this dataset, which results in very different accuracies for the

different persons and hence high standard deviation, for all the methods.

3http://www.kasrl.org/jaffe.html
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Figure 4.4: Example images (pairs of images of the same person) from the Labeled Faces in

the Wild [39] (aligned version [100]) face verification dataset

Face verification

Labeled Faces in Wild (LFW) [39] is a popular dataset for face verification by uncon-

strained pair matching i.e. given two real-world face images decide whether they are of

the same person or not. LFW contains 13,233 face images of 5749 different individuals of

different ethnicity, gender, age, etc. . It is an extremely challenging dataset and contains

face images with large variations in pose, lighting, clothing, hairstyles etc. . LFW dataset

is organized into two parts: ‘View 1’ is used for training, validation (e.g. for choosing the

parameters) while ‘View 2’ is only for final testing and benchmarking. In our setup, we

follow the specified training and evaluation protocol. We use the aligned version of the

faces as provided by Wolf et al. [100]4. Figure 4.4 shows example pairs of images of the

same person from the aligned version of the database.

We work in the restricted unsupervised task of the LFW dataset i.e.

(i) We use strictly the data provided without any other data from any other source and

(ii) We do not utilize class labels while obtaining the image representation.

We divide the 50×40 pixels resized images into 5×4 grid of 10×10 pixels cells. We com-

4http://www.openu.ac.il/home/hassner/data/lfwa/
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Figure 4.5: The accuracies of the method for different number of GMM components for Bro-

datz (left) and KTH TIPS 2a (right) dataset (see Sec. 4.3.3)
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pute the LHS representations for each cell separately and compute the similarity between

image pairs as the mean of L2 distances between the representations of corresponding

cells. We classify image pairs into same or not same by thresholding on their similarity.

We choose the testing threshold, as the threshold obtaining the best classification on the

training data. We obtain an accuracy of 73.4% with a standard error on the mean of

0.4%. This is the highest performance till date in the unsupervised setting for the dataset.

We compare with other approaches, including those based on LBP in Sec. 4.3.4.

4.3.3 Effect of sampling and number of components

Table 4.1 gives the results with (a) rectangular 3×3 pixel neighbourhood and (b) LBP/LTP

like circular sampling of 8 neighbours, where the diagonal neighbour values are obtained

by bilinear interpolation. Performance on the Brodatz dataset is similar for both the

samplings while that for KTH and JAFFE datasets differ. In general, the circular sampling

seems to be better for all the methods. We note that the variations and difficulty of

Brodatz dataset are much less than the other two datasets and hence is possibly well

represented by either of the two samplings. Thus, we conclude that, in general, circular

sampling is to be preferred as it seems to generate more discriminative statistics.

Fig. 4.5 shows the performance on the two texture datasets for different number of mix-

ture model components. As this number increases the vector length increases propor-

tionally. While lower number of components lead to a compact representation, larger

numbers lead to better quantization of the space and hence more discriminative repre-

sentations. We observe that the performance, for both the datasets, increases with the

number of components and seems to saturate after a value of 128. Hence, we report re-

sults for 128 components. For Brodatz dataset, we see that even with only 16 components

the method is able to achieve more than 99% accuracy, highlighting the fewer variations

in the dataset. For the KTH dataset we gain significantly by going from 16 to 128 com-

ponents (6.8 points) which suggests that for more challenging tasks a more descriptive

representation is beneficial.

4.3.4 Comparison with existing methods

Table 4.2 shows the performance of our method along with existing methods. On the

Brodatz dataset we outperform all methods and to the best of our knowledge report,

near perfect, state-of-the-art performance. Similarly, on the JAFFE and LFW datasets we

achieve the best results reported till date.

On the KTH dataset, Chen et al. [14] recently proposed features based on Weber law. They

report a performance of 64.7% with KNN classifier. Caputo et al. [12] reported 71.0%

with 3-scale LBP and non-linear chi-squared RBF kernel based SVM classifier. Here, we
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Table 4.2: Comparison with current methods with comparable experimental setup (reports

accuracy, see Sec. 4.3.4).

(a) Brodatz–32

Method Acc.

Urbach et al. [91] 96.5

Chen et al. [14] 97.5

LHS (ours) 99.3

(b) KTH TIPS 2a

Method Acc.

Chen et al. [14] 64.7

Caputo et al. [12] 71.0

LHS (ours) 73.0

(c) JAFFE

Method Acc.

Shan et al. [82] 81.0

Feng et al. [30] 93.8

LHS (ours) 95.6

(d) LFW (aligned)

Method Acc.

Javier et al. [45] 69.5 ± 0.5

Seo et al. [81] 72.2 ± 0.5

LHS (ours) 73.4 ± 0.4

use linear classifiers which, are not only fast to train but also, need only a vector dot

product at test time (cf. kernel computation with support vectors which are of the order

of number of training features). Note that their best results were obtained with complex

decision tree with non-linear classifiers at every node, with multi scale features. We expect

our features to outperform the features they used with similar complex classifier.

Table 4.1 shows our performance and that of competing unsupervised methods5. Our

method not only outperform the LBP baseline (LBP with χ2 distance)[45] by 3.9% but also

give 1.2% better performance than current state-of-the-art Locally Adaptive Regression

Kernel (LARK) features of [81]. The better performance of our features compared to

the LBP baseline and fairly complex LARK features on this difficult dataset once again

underlines the fact that local neighborhood contains a lot of discriminative information.

It also demonstrates the representational power of our features which are successful in

encoding the information which is missed by other methods.

Thus the proposed method is capable of achieving state-of-the art results while being

computationally simple and efficient.

4.4 Conclusions

We have presented a model, capturing higher-order statistics of small local pixel neighbor-

hoods, which leads to a highly discriminative representation of the images. We showed,

with experiments on two challenging texture datasets and two challenging facial analysis

datasets, that the model codes more information than competing methods and achieves

state-of-the-art results.

5results reproduced from webpage: http://vis-www.cs.umass.edu/lfw/results.html

http://vis-www.cs.umass.edu/lfw/results.html
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We have shown that local neighborhoods can give very good results by themselves and

combining them with more global features would be a promising direction which we will

explore in future.
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Chapter 5

Summary

In this thesis, we have presented methods for representing images for the tasks of human

attributes classification, human action classification and human facial analysis. Image

representation is a critical component of any vision system and has been an active re-

search problem in the community. We now summarize the contributions made in this

thesis and then present some directions of possible future work.

5.1 Discriminative Spatial Representation

In Chapter 2, we proposed to learn the spatial partitioning of the images to derive a more

discriminative image representation for a given task. The proposed method addresses

two limitations of the standard spatial pyramid representation (SPR) i.e.

(i) The grids learnt are adapted to the distribution of discriminative information and

are not, in general, uniform and

(ii) The grids are learnt discriminatively and are, in general, different for different tasks.

We showed that the method performs better than low dimensional SPR at comparable

vector lengths and achieves similar results, when compared to full SPR, with less than

half the vector length. The method has general applicability to other visual tasks where

the distribution of spatial information is not completely flat e.g. we demonstrated the

method on Scene recognition and object image classification as well.

Future work. We considered only one final grid as we expected the grids to adapt to

the content and hence adapt automatically to the modes in the distribution of discrimi-

native information, even if they occur at multiple scales. However, in more complicated

scenarios, similar interesting regions in different images e.g. attributes, objects, might

themselves be clustered at multiple scales due to the aspect of the human in the image

73
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e.g. ‘bent arm’ would be placed differently (absolute) in images with full human (head to

toe) and those with only upper body (head to waist). In such a case it might be interesting

to explore a mixture model like setting where multiple grids are learnt for the same task,

each tuned to the different groups of similar layout images. The best one or a weighted

combination of all of them may then be considered for the final decision.

Another extension could be a simple extension to spatio-temporal domain i.e. learn similar

partitions in the three dimensional domain of human analysis in videos. There the ‘grids’

will have three dimensional cell volumes as partitions instead of the two dimensional

spatial cells in the present.

5.2 Discriminative Spatial Saliency

In Chapter 3, we proposed a method to learn the discriminative saliency of images given

a classification task. We argued that the (discriminative) saliency of a region depends not

only on the content of the region but also on its absolute position in the image i.e. there

is a spatial component in discriminative saliency for a given visual task. We proposed

to learn such discriminative spatial saliency for classification. The proposed method ad-

dresses an important issue of adaptation of the representation per image, based on the

specific distribution of discriminative information in that image e.g. the representation

considers the fact that in two different images of persons with ‘bent arms’ the arms may

be positioned slightly differently. We showed that the method achieves better or compa-

rable results w.r.t. relatively more computationally expensive state-of-the-art methods on

public datasets of human actions and fine grained classification involving humans.

Future work. The method uses the uniform spatial partition to learn the saliency as

weighted combination of cell representations. Using learnt grids similar to those pro-

posed in Chapter 2 with the saliency learning would be an interesting extension. In this

approach the resolution of spatial quantization and the relative importance of different

spatial regions could be optimized simultaneously along with the classifier for a given

classification task. This is an interesting direction to follow.

Another extension could be, like for the previous method, having a mixture model like

formulation which accounts for the clustering of aspects of humans in images e.g. full

human images vs. images where only upper body of the humans is visible.
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5.3 Local Higher-Order Statistics

In Chapter 4, we proposed a new image representation based on higher-order Statistics

of local pixel neighborhoods. The proposed method addressed the following limitations

of Local Binary and Ternary Patterns (LBP/LTP).

(i) Instead of using a fixed quantization of space, as a result of quantizing each coordi-

nate into two/three bins in LBP/LTP, the proposed method learns the quantization

of the space,

(ii) The proposed method does not need to use heuristic based pruning of volumes with

low occupancy, which results from discarding the non-uniform patterns in LBP/LTP,

as all this is automatically learnt and,

(iii) The proposed method uses higher-order Statistics of the pixels while LBP/LTP use

only zeroth order counting statistics (as they are histograms).

We showed experimentally that the proposed method reaches state-of-the-art perfor-

mance in facial analysis tasks and also on texture recognition for which the original local

patterns were designed.

Future work. The work presented demonstrated that rich description of very small lo-

cal pixel neighborhoods can achieve very high performance, however, the overall global

structure is still missing. It would be interesting to combine this representation with those

exploiting a more global layout. It would also be interesting to explore the use of these

features in object detection as well, where LBP/LTP have already achieved some success.

5.4 Conclusion

In the present thesis we have mainly addressed the problem of image representation, with

a stress on human focused tasks.

Human focused visual data makes up a large chunk of the total visual data on the in-

ternet and that generated by surveillance. In the near future, it will be critical to have

good representations in order to be able to accurately analyze and understand images us-

ing automatic computer vision technologies. Analyzing human faces would also become

an important technology owing to its numerous important applications e.g. surveillance,

human computer interaction, medical applications etc.

Towards these goals, we have proposed image representations which extend the current

state-of-the-art either by better exploiting the spatial distribution of discriminative infor-

mation or by providing a rich description of highly local pixel neighborhoods. We have
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demonstrated, with experiments on challenging datasets, that our proposed methods per-

form better or comparable to the state-of-the-art methods. We have also demonstrated

the generality of the proposed methods by experiments on other computer vision datasets

e.g. scene classification and object image classification.

In addition to study the human attributes better we have proposed a challenging dataset

of human attributes with 9344 human images collected from unconstrained images auto-

matically downloaded from the internet. The database is annotated with the presence of

27 human attributes based on sex, age, appearance/clothes and pose.

We hope our contributions have advanced the computer vision technologies towards the

goal of semantic description of humans in images.



Appendix A

Latent Support Vector Machine

In this appendix, we give a brief overview of latent support vector machines (LSVM). We

encourage the reader to refer Felzenszwalb et al. [28] for a more complete description.

Consider a case where the representation of an example depends on the current value of

same latent variable z. Let us denote the representation of the example as xz where the

subscript emphasizes the dependence on z. In the following, we abuse the notation a bit

and use z to denote both the latent variable and its current value.

Now consider scoring the example w.r.t. a linear separating hyperplane w as

f(x) = max
z

wTxz. (A.1)

With such scoring, the model learning problem can be formulated, analogous to standard

SVM with hinge loss, as

min
w

1

2
||w||2 + C

∑

i

max(0, 1− yif(xi)), (A.2)

where i indexes the training examples. This problem is called the latent SVM problem.

Note that, in the case of only one possible value for the latent variable the problem comes

down to the standard linear SVM. A latent SVM problem is semi-convex, in the sense

that the objective function is convex (in w) for the negative examples and, in general,

non-convex for the positive examples.

Latent SVMs are usually learned with a simple learning strategy similar in spirit to the

block coordinate descent method. The learning consists of two alternating steps

(i) Optimize (the objective) by selecting the highest scoring latent values for the posi-

tive examples.

(ii) Optimize over w by fixing the latent variables for the positive examples.
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Both the steps are proved to always improve or maintain the value of the objective func-

tion. The learning process is sensitive to the initialization of w. A bad initialization could

lead to unreasonable values for latent variables which in turn would lead to a bad overall

model.

Usually, first step is solved with a search over the (usually discrete) latent variables, while

second step is solved by stochastic gradient descent using the, easy to compute analyti-

cally, sub gradient w.r.t. w [28].
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HAT database queries

To download images for our database of Human Attributes (HAT) (see Section 2.3 on

page 25), we manually designed queries as input to www.flickr.com and downloaded

the top result images. The following are the queries we used to download the images

from the internet.

party people girl with cap tshirt people football practice

people laughing curly hairs carrying an umbrella baseball kid

beach people wearing glasses umbrella girl baseball girl

market people guy with glasses umbrella guy baseball game

fest people girl with glasses high heel girl baseball park game

banquet people wearing shorts swimsuit fashion kids park play

prom people wearing jacket fashion beach kids swing

carnival people running kids swimwear wearing sweater

shopping mall people elderly lady long legs girl teen sunglass

dancing people elderly man girls in costumes sunglass hot

crazy people people hanging around costume party glasses kid

america people talking on cellphone hot pants geek glasses

europe people talking on phone beach shorts geek girl

mom running late jog blue eyes kid

dad marathon run strapless dress blue teen

sister atheletics black dress zoo trip kid

brother political rally pink skirt attitude girl

aunty student fair dancing crazy attitude guy

uncle dance fest disc party kid making faces

family volley game playing disc kid posing

happy girls jockey horse tennis girl old man walk

baby lawn party tennis guy old lady walk

small girl pool dance tennis match grand mother

small boy basketball game tennis serve grandpa

smart guy lunch party basketball play grandma

smart lady wine party basketball slam grandma party

couple happy office party cheerleading grandpa party
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wedding party dance party cheerleader girl cousin

conference people park kids cute skirt cousin playing

rock concert thailand tourists park picnic baby in lap

jazz concert india people eating icecream baby suit

piano concert france people surfing teen portrait

acoustic guitar people new york people enjoying the beach glasses cute

soccer people california people girl laughing glasses new

soccer singing people guy laughing joker party

cricket game walking the dog people laughing theme party

baseball game in pyjamas enjoying the sun college party

vacation couple tourist girls enjoying snow college prom

vacation people tourist guys girl jacket couple date

nice shades rome tourists guy jacket school kid

nice sunglasses china tourists snow jacket school boy

colored hair singapore tourists ski people school girl

asian people singapore people sledging school teen

asia people indonesia people rock climbing blonde teen

europe people new york police climbing girl blonde guy

new york people neighbors climbing guy funny kid

farm people arguing climbing helmet backpack

people watching wearing a hat bike helmet girl backpack girl

people in jeans old hat bike helmet guy backpack guy

formal people hat lady helmet sport kid school bag

walk on beach hat guy helmet kid charity teen

park stroll baseball cap wearing helmet man charity girl

people watching cap people firefighter man charity guy

wearing skirt married couple leather jacket girl charity people

wearing blue jeans wedding dress party hiking girl dinner teen

lipstick girl wedding dress hiking couple dinner kid

sports fans just married touring couple dinner family

people on a roll baby cute couple fighting family park

people enjoying baby boy singing girl family dance

people on vacations baby girl kidding girl family beach

tourists one year old kidding girl family party

cute girls second birthday teen girl family glasses

cute guys best man teen party family sunglasses

women best maid teen play friends party

men girl in a dress prom guys friends dance

traditional dress people girl dancing prom girls friends trip

traditional dance girl having fun prom couple friends walk

seashore walk guys dancing junior prom friends jump

pool party guys having fun senior prom friends beach

kids playing in the yard fat guy prom cute friends wed

soccer players skinny jeans evening dress girl friends marry

helmet riding blue jeans people sweet kid friends market

wearing shades girl posing siblings friends fun
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football guy posing siblings play friends play

baseball swimsuit girl player girl friends marathon

pubbing beach fun playing the guitar friends run

oktoberfest people beach bikini soccer kid athletics

egypt crowd long hairs girls school soccer friends convocation

picnic game short dress girls soccer friends friends college

street play short skirt girls football kids friends sleepover

pillow fight dotted dress football girl play friends night

bikers checked shirt football boy play friends nightout

guy with cap



82 Appendix B. HAT database queries



Appendix C

Publications

The following publications were made as a result of the work carried out for the thesis:

• Gaurav Sharma and Frédéric Jurie, Learning discriminative representation for im-

age classification, in British Machine Vision Conference, 2011 (Oral presentation)

• Gaurav Sharma, Frédéric Jurie, and Cordelia Schmid, Discriminative spatial saliency

for image classification, in Computer Vision and Pattern Recognition, 2012

• Gaurav Sharma, Sibt ul Hussain, and Frédéric Jurie, Local higher-order statistics

(LHS) for texture categorization and facial analysis, in European Conference on Com-

puter Vision, 2012
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Description Sémantique des Humains Présents dans des Images Vidéo

Dans cette thèse, nous nous intéressons à la description sémantique des personnes dans les images
en termes (i) d’attributs sémantiques (sexe, age), (ii) d’actions (court, saute) et d’expressions
faciales (sourire).
Tout d’abord, nous proposons une nouvelle représentation des images permettant d’exploiter
l’information spatiale spécifique à chaque classe. La représentation standard, les pyramides spa-
tiales, suppose que la distribution spatiale de l’information est (i) uniforme et (ii) la même pour
toutes les tâches. Au contraire notre représentation se propose d’apprendre l’information spa-
tiale discriminante pour une tâche spécifique. De plus, nous proposons un modèle qui adapte
l’information spatiale à chaque image. Enfin, nous proposons un nouveau descripteur pour
l’analyse des expressions faciales. Nous apprenons un partitionnement de l’espace des différences
locales d’intensité à partir duquel nous calculons des statistiques d’ordre supérieur pour obtenir
des descripteurs plus expressifs.
Nous proposons également une nouvelle base de données de 9344 images de personnes col-
lectées sur l’Internet avec les annotations sur 27 attributs sémantiques relatifs au sexe, à l’age,
à l’apparence et à la tenue vestimentaire des personnes. Nous validons les méthodes proposées
sur notre base de données ainsi que sur des bases de données publiques pour la reconnaissance
d’actions et la reconnaissance d’expressions. Nous donnons également nos résultats sur des bases
de données pour la reconnaissance de scènes, le classement d’images d’objets et la reconnaissance
de textures afin de montrer le caractère général de nos contributions.

Mot-clés: Vision par ordinateur; Apprentissage automatique; Illustrations, images, etc., –
Interpretations; Perception des visages

Semantic Description of Humans in Images

In the present thesis we are interested in semantic description of humans in images. We propose
to describe humans with the help of (i) semantic attributes e.g. female, elderly, (ii) actions e.g.
running, jumping and (iii) facial expressions e.g. smiling.
First, we propose a new image representation to exploit class specific spatial information. The
standard representation i.e. spatial pyramids, assumes that distribution of spatial information is
(i) uniform and (ii) same for all tasks. We propose to learn the discriminative spatial information
for a specific task. Further, we propose a model that adapts the spatial information for each
image. Finally, we propose a new descriptor for facial expression analysis. We work in the space
of intensity differences of local pixel neighborhoods and propose to learn the quantization of the
space and use higher order statistics to obtain expressive descriptors.
We introduce a challenging dataset of 9344 human images, sourced from the internet, with an-
notations for 27 semantic attributes based on sex, pose, age and appearance/clothing. We val-
idate the proposed methods on our dataset as well as on publicly available datasets of human
actions, fine grained classification involving human and facial expressions. We also report results
on related computer vision datasets for scene recognition, object image classification and texture
categorization, to highlight the generality of our contributions.

Keywords: Computer vision; Machine learning; Picture interpretation; Face perception

Discipline: Informatique et applications

Laboratoire: GREYC CNRS UMR 6072, Sciences 3, Campus 2, Bd Marechal Juin, Université de
Caen, 14032 Caen
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