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Abstract. This PhD thesis is devoted to a theoretical study of polymer and ’polymer like’ systems in
strictly two dimensions.

Polymer systems in reduced dimensions are of high experimental and technological interest and present
theoretical challenges due to their strong non-mean-field-like behavior manifested by various non-trivial
universal power law exponents. We focus on the strictly 2D limit where chain crossing is forbidden and
study as function of density and of chain rigidity conformational and elastic properties of three system
classes: flexible and semiflexible polymers at finite temperature and macroscopic athermal polymers (fibers)
with imposed quenched curvature.

For flexible polymers it is shown that although dense self-avoiding polymers are segregated with Flory
exponent ν = 1/2 , they do not behave as Gaussian chains. In particular a non-zero contact exponent
θ2 = 3/4 implies a fractal perimeter dimension of dp = 5/4. As a consequence and in agreement with the
generalized Porod law, the intramolecular structure factor F (q) reveals a non-Gaussian behavior and the
demixing temperature of 2D polymer blends is expected to be reduced.

We also investigate the effects of chain rigidity on 2D polymer systems and found that universal behavior
is not changed when the persistence length is not too large compared to the semidilute blob size. The nature
of the nematic phase transition at higher rigidities, which is in the 2D case the subject of a long standing
debate, is also briefly explored. Preliminary results seem to indicate a first order transition.

Finally, motivated by recent theoretical work on elastic moduli of fiber bundles, we study the effects of
spontaneous curvature at zero temperature. We show that by playing on the disorder of the Fourier mode
amplitudes of the ground state, it is possible to tune the compression modulus, in qualitative agreement
with theory.

Résumé. Cette thèse de doctorat est consacrée à l’étude analytique et numérique de systèmes de polymères
et de fibres à deux dimensions.

Des systèmes de polymères confinés en films ultra-minces présentent un très grand intérêt technologique
et expérimentale et posent de nombreux défis théoriques en raison de leur fort comportement non-champ
moyen qui se manifeste par divers exposants critiques non triviaux. Nous nous concentrons sur la limite
strictement 2D où le croisement des châınes est interdit et nous étudions, en fonction de la densité et de la
rigidité des châınes, les propriétés élastiques et conformationnelles de trois classes de systèmes: polymères
flexibles et semiflexibles à température finie et polymères macroscopiques athermiques (fibres) à courbure
spontanée imposée.

Pour les polymères flexibles, il est démontré que bien que les polymères auto-évitants denses adoptent
des configurations compactes avec un exposant de Flory ν = 1/2, ils ne se comportent pas comme des châınes
gaussiennes. En particulier un exposant de contact non-nul θ2 = 3/4 implique une dimension fractale de
périmètre dp = 5/4. Par conséquence, en accord avec la loi généralisée de Porod, le facteur de structure
intramoléculaire F (q) révèle un comportement non-gaussien et la température de démixion des mélanges de
polymères 2D devrait être réduite.

Nous étudions également les effets de la rigidité des châınes sur les systèmes de polymères à 2D et
constatons que le comportement universel n’est pas modifié lorsque la longueur de persistance est beaucoup
plus petite que la longueur de confinement. La nature de la transition de phase nématique à haute rigidité,
qui est dans le cas 2D l’objet d’un débat de longue date, est également explorée. Des résultats préliminaires
semblent indiquer une transition du premier ordre.

Enfin, motivés par un travail théorique récent sur les modules élastiques de faisceaux de fibres, nous
étudions les effets de la courbure spontanée sur l’élasticité d’ensembles de fibres. Nous montrons que en
jouant sur le désordre des amplitudes des modes de Fourier de l’état fondamental il est possible de régler le
module de compression, en accord qualitatif avec la théorie.
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Notations

General

V , S, L volume, surface, perimeter length

d, ds,dp spatial dimension, surface dimension, perimeter dimension

ν inverse fractal dimension

ρ monomer density

Thermodynamics

T temperature .

P pressure

e, eint energie, interchain interaction energy per monomer

K compression modulus

B bending rigidity

gT dimensionless compressibility (∼ monomers per blob) gT = kBTρ/K

Polymers

N monomers per chain

~Re end-to-end vector

Rg radius of gyration

b effective bond length

ℓp persistence length

ξ blob size

Computational symbols

ε, kb,kθ energy parameteres for LJ, bonding and angular potentials.

nmon total number of monomers in simulation box.

Lbox box length

In this thesis kB is set to unity and we use Lennard-Jones units for representing our computational

results.
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Chapter 1

Introduction

1.1 Technological and experimental interest.

Polymer scientists have been exposed to the challenge of understanding polymer interfaces and polymers
at interfaces from the very beginning of polymer science.1 Indeed, plastics and polymer solutions are often
exposed to, or used at, solid, liquid or air interfaces. Such exposure induces noticeable changes in material
or solution behavior and the high affinity of polymers to solid interfaces, the relatively low perturbation of
the air-water interfacial tension2 or the intricate questions associated with the reduction of polymer flow
in sintered capillaries3 due to polymer adsorption, have been discussed from earlier times. Importantly,
scientific questions related to polymers and interfaces have often emerged from the different fields where
polymer technological applications developed.

Plastic surfaces and surfaces exposed to or coated by polymer solutions or polymer dense films are of
great relevance in the polymer industry.4–7 Thin films of polymers are used as adhesives, as a protection
against corrosion and as lubricants to name only a few. Polymers can also be found in different applications at
the liquid-air, the liquid-liquid or the liquid-solid interfaces where they play, amongst others, an important
role as stabilizers for droplets in emulsions, for suspensions of colloidal particles or in liposomal stealth
technology.8 Additionally, challenges in the plastic industry such as those posed by plastic coloring or gloss
preservation are related to the properties of solid polymer surfaces. In the biological realm, polymers play a
key role at the membranes interfaces by preventing for instance bio-recognition phenomena from non-specific
adhesion.9

The scientific and technological importance of this field has lead to its impressive development over the
last decades. The conjugated effort of experiments, numerical simulations and theory resulted in a com-
prehensive understanding of many aspects of polymers at interfaces. However, the recent trends in the
nanosciences have pushed polymer confinement and polymer-surface interactions to new levels of reduced
dimensionality.10 In many situations the polymers are effectively in a two-dimensional geometry, where the
width of the polymer layer is much smaller than the bulk polymer size or even comparable to the monomer
dimension. In such geometries, scarcely addressed in the polymer adsorption and polymer confinement liter-
ature, a number of new questions arise, related for instance to the non-crossability of strictly two dimensional
chains.11
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Figure 1.1: Experimental images (a-c) and numerical simulation snapshots (d-f) of 2D polymer chains,
from the dilute regime in the left to the dense regime on the right. a) and b) Conformations of strongly
adsorbed DNAs imaged by optical fluorescence.12 c) AFM images of cross-linked wormlike micelles of diblock
copolymers.13 d) to f) Our simulation results on strictly 2D flexible chains by MD simulations with a bead-
spring model. The non-overlapping, non-intersecting swollen polymer conformations can be seen in d). The
numbers in e) and f) refer to a chain index used for computational purposes. Some chains are still rather
elongated (e.g., chain 10 or 30) and the swollen chain statistics remains relevant on small scales. On larger
scales the chains adopt (on average) compact configurations with power-law exponents ν = 1/d and θ2 = 3/4
as discussed in details in Chap. 3. The chain segregation and the fractal nature of the chain perimeter in
the melt is well revealed in panel f). Only “chain 1” in the middle is fully drawn while for the other chains
only the perimeter monomers interacting with other chains are indicated.
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Figure 1.2: Snapshots of 2D semiflexible polymer systems from our simulations discussed in Chap. 4. Both
density and rigidity increase from left to right. Hairpins in dense configuration slow down the equilibration
dynamics and lead to strong hysteresis effects during the isotropic-nematic transition.

On the experimental side, recent efforts have provided new information on the static and dynamic
properties of ultra-confined chains.14–23 By the end of last century, Shuto and co-workers24, 25 have reported
measurements of chain conformation in thin polystyrene films by stacking multiple films on a single planar
substrate by a Langmuir-Blodgett film deposition technique. Using small angle neutron and x-ray scattering,
they found that the radius of gyration increased significantly along the direction parallel to the surface when
the film thickness becomes much smaller than the polymer Flory radius. Shortly after, Maier and Rädler12

investigated the conformations and self diffusion of single DNA molecules electrostatically bounded to lipid
bilayers using fluorescence microscopy – see Fig. 1.1a and 1.1b. They showed that the power law scaling of
the lateral chain extension agrees with predictions for self-avoiding walks in two dimensions, and that the
center-of-mass diffusion follows Rouse dynamics.

Thermodynamic properties of the 2D polymer layers have also been studied in conjunction with individual
chain conformations. Gavranovic et al

21 studied Langmuir monolayers of Poly(tert-butyl methacrylate) at
the air-water interface. At low surface densities, the behavior of the lateral pressure and of the surface
viscosity suggests that the chains behave as non interacting collapsed disks, while higher pressure eventually
saturates the surfaces driving into a multilayer state.

When the bending rigidity is large, as for instance for thick self-assembled polymers, the chains display
a finite semiflexibility, an intrinsic parameter which role has not yet been fully elucidated for strictly two-
dimensional systems. During the last decade, Wang and Foltz13 studied strictly 2D nanoropes obtained
by crosslinking micelles of copolymer diblocks – see Fig. 1.1c. Surprisingly, they observed that the chain
conformations studied by atomic force microscopy obey Gaussian statistics in the 2D dispersed state and
that in the dense state chains are strongly interpenetrated. The parameter space separating semi-flexible
polymers from fully rigid 2D systems remains largely unexplored. In this limit of very stiff molecules, one
recovers the typical phenomenology of phase transitions for rod-like molecules, albeit with 2D specificities.26
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Figure 1.3: A 2D stack of fibers with finite spontaneous curvatures resists to compression under a normal
force. Each fiber is on average confined within a distance D. The constitutive pressure curve, as D is reduced
from a contact value to maximum compression at D = 0, is a function of the nature of the disorder associated
with the spontaneous curvature distribution.

Questions intimately related to the organization and ordering of semi-flexible or rigid chains also arise in
athermal granular media. For long straight macroscopic rods, Philipse27 has for instance studied packings
of needles, matches or toothpicks and showed that the experimentally observed laws for random packing
volume fractions can be understood from a simple hypothesis about uncorrelated rod orientations. In quasi
two-dimensional containers, Galanis and collaborators28 investigated the organization of vibrated anisotropic
granular media. Vibration acts to create a random velocity distribution of the rods to which can be associated
an effective temperature. This experimental system allows thus to explore a “temperature”-density phase
space and to observe phenomena reminiscent of two-dimensional thermal behavior. Interestingly, the concept
of effective temperature arises also in macroscopic static fiber systems with non-straight shapes. In this
emerging field,29 the degree of disorder introduced by the random distribution of spontaneous fiber curvatures
reduces the fiber stack density and allows for a finite bundle compressibility, as recently evidenced in studies
of the ponytails,30 and as first suggested by Beckrich et al.31

In the experiments discussed above, the conformational and thermodynamic properties of two-dimensional
polymer systems, as well as the added effects of chain stiffness and spontaneous shape reveal a growing area
of polymer science where many questions still remain to be addressed. In the next paragraph we review the
current theoretical understanding of such systems.

4



1.2 Summary of relevant theoretical work.

It is well known32 that the phase behavior and the measurable properties of strongly confined systems may
drastically differ from those observed in the bulk. In the case of dense polymers, where the bulk properties
can be well described by mean-field theories,33 the strong reduction of one of the space dimensions leads to
a significant decrease of the number of interchain interactions and, consequently, to logarithmic corrections
to the mean-field behavior. For extreme confinements, polymers live effectively in two dimensions. In this
limit two principal theoretical classes of polymer systems may be considered: i) strictly 2D “self-avoiding
walks” (SAW) where chains do not cross and ii) partially “self-avoiding trails” (SAT) where chains can cross
each other with minimal vertical displacement and energy penalty. Semenov and Johner11 have theoretically
shown that these two classes should exhibit very different static and dynamical behavior.

The strictly 2D dilute limit was first considered theoretically by Flory,34 who predicted that the exponent
ν that describes the growth of polymer dimensions with polymer mass and determines the thermodynamic
properties of the polymer solutions, is significantly larger for single self-avoiding polymers in 2D than in 3D
(ν2D = 3/4, ν3D = 5/3). For strictly 2D melts, de Gennes35 proposed that chains segregate while displaying
an exponent ν similar to that of polymers in 3D melts, ν = 1/2. Using conformal map transformations, Du-
plantier36, 37 further investigated the conformations of strictly 2D chains, and predicted the critical exponents
associated with polymer conformation and thermodynamics in the dilute and in the dense regimes.

Many polymers display a finite bending rigidity which considerably modifies the behavior of dilute and
dense chain systems in two or three dimensions. For single macromolecules, changes in conformation are
theoretically accounted for by introducing the persistence length ℓp, the distance over which tangent-tangent
correlations decay. The semiflexible chain can thus be seen as a sequence of uncorrelated segments of length
ℓp, its global behavior being well described by flexible chain models with a renormalized monomer length.35

It is important to note that in three-dimensions the chain stiffness reduces considerably the probability
of intrachain interactions at short distances, excluded volume effects are only displayed by long enough
chains.38, 39 In two-dimensions, however, self-avoidance effects are much stronger resulting in full swollen
chains for all polymer lengths. If the persistence length largely exceeds the blob size, one expects with
increasing persistence length and density to observe a transition to an ordered nematic state. The nature of
this transition, well established in the bulk case is a matter of a long standing debate for 2D systems.40–42

The coupling between chain shape disorder, packing and conformation arises also in granular-like fiber
systems as discussed above. Here, statistical thermodynamics, that describes the effect of thermal disorder,
does not strictly apply. Instead, new statistical mechanics approaches need to be developed. Within this
context, Beckrich et al

31 pointed to a useful formal analogy between two-dimensional stacks of macroscopic
fibers with non-zero spontaneous curvature and the related thermal systems of smectic chains and mem-
branes. The analogy allows to compute experimentally relevant quantities as a function of the parameters
that describe the distribution of the fiber spontaneous shapes. For instance, these authors computed the
compression modulus of the fiber stack that determines the ponytail30 or rope cone shapes.31

1.3 Summary of previous numerical work.

Monte Carlo (MC), Molecular Dynamics (MD) and other numerical methods are well-established tools for
understanding the static and dynamic properties of polymer chains.32, 43, 44 An extensive literature has
been devoted to settle key questions in polymer science, pertaining either to dilute or dense systems. For
single (dilute) polymers, accurate predictions now exist for quantities such as the exponents associated with
the dependence of chain size with polymerization index, both in two and three dimensions, for flexible or
semiflexible chains with or without excluded volume interactions. For dense polymer systems numerical
simulations are more demanding, and the current push to new and more accurate simulations has been
driven by the need of equilibrated systems large enough to capture experimentally relevant behavior or to
eventually settle important theoretical questions.45–49

The question of the typical conformation of polymer chains in the two dimensional melt has been dealt
with by numerical simulations over the last three decades. Bäumgartner50 has measured the end-to-end

5



Figure 1.4: Schematic representa-
tion of the interactions accounted for
by our numerical simulation model.
HLJ represents the Lennard-Jones
repulsive interaction between non-
neighboring monomers, Hbond is the
connectivity potential between two
adjacent monomers and Hangle is the
angular potential that penalizes bend-
ing modes and encodes the ground-
state shape.

distance and the radius of gyration of chains simulated by MC methods. He found that the chains strongly
segregate and follow a Gaussian-like behavior with ν2D = 1/2 as predicted by de-Gennes. A few years later
Carmesin and Kremer51 obtained similar results using the Bond-Fluctuation Model (BFM), a lattice MC
algorithm for linear connected chains. Contrary to these authors, Ostrovsky et al

52 and Yethiraj,53 using
respectively different MC algorithms, reported that polymer chains in the melt do not completely segregate
and show significant interpenetration. Recent studies by Meyer et al

54 using MD simulations of a bead-spring
model, have revisited this problem and provided an extensive description for many of the conformational
properties of 2D polymer melts, that we will further discuss in Chap. 3. The behavior of thin polymer films
of finite width was also discussed recently by Cavallo and co-workers.55 It was shown that, in contrast to
Flory’s and Silberberg’s hypotheses and in agreement with Semenov and Johner,11 ultra-thin films where
the thickness H is smaller than the excluded volume screening length exhibit logarithmic deviations from
Gaussian predictions.

Semiflexibility adds an extra burden to the computing facilities, due to the very long relaxation times of
dense semiflexible systems. The nature of the 2D isotropic-nematic transition in dense semiflexible polymer
solutions and melts, for instance, has not yet been completely established. Baumgärtner56 and others57, 58

simulated semiflexible polymers on square lattices. In contrast to theoretical predictions, they did not find
a phase transition between an isotropic and a long-range, orientationally ordered state, only transitions
to ordered domains being observed. Dijkstra and Frenkel26 proposed that these controversial results stem
from the lattice structure of the previously simulated systems. Using an off-lattice model consisting of
infinitesimally thin hard segments connected by joints of variable flexibility they did observe a Kosterlitz-
Thouless type transition from the isotropic phase to a ‘nematic’ phase with quasi-long-range orientational
order.32

1.4 Our approach & main results

As we have seen above, semiflexibility, chain spontaneous shape, excluded volume and density play a role in
two-dimensional polymer systems that is neither fully explored in experiments and in numerical simulations,
nor completely understood from a theoretical perspective.

Pursuing extensive numerical work45–49 carried out in the ICS Theory and Simulation Group, we aim
at systematically characterizing the density crossover scaling of various thermodynamic and conformational
properties of flexible polymers in strictly two dimensions. Using the same computational tools, we also
investigate the effects of small persistence lengths on chain conformations in dilute solutions where local
stiffness is predicted to change prefactors only,59 and study the isotropic-nematic transition at higher densities
and rigidities. Finally, motivated by recent theoretical work31 of the ICS Membrane and Microforces Group,
we investigate the effects of non-zero spontaneous curvature on athermal chain bundles (fibers).

Being interested by universal power-law scaling and focusing on the limit of long chains, where the
specific physics and chemistry at the monomer level is non-relevant, we use a generic coarse-grained bead-
spring model60, 61 which is simple enough for efficiently simulate dense large-chain systems. Interactions

6
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at r ≪ R around the reference monomer n is pene-
trated by a long loop of the same chain as in panel (a)
or by another chain with a center of mass at a typical
distance R as shown in panel (b).

between beads are modeled by an effective Hamiltonian containing three terms:

H = HLJ + Hbond + Hangle (1.1)

with HLJ = 4ǫ
[

(σ/r)12 − (σ/r)6
]

+ ǫ for r/σ ≤ 21/6 the (truncated and shifted) Lennard-Jones (LJ)
potential44 representing the repulsive interaction between non-neighboring monomers. Hbond = kb(r − r0)

2

is the connectivity potential between two adjacent monomers and Hangle = kθ(θ−θ0)2 is the angular potential
that penalizes bending modes and encodes the ground-state shape.

By exploring the parameters space of this general model, we simulated three main classes of strictly
two-dimensional chain systems: i) flexible polymers, ii) semiflexible polymers and iii) athermal polymers
or macroscopic fibers. The two first thermalized classes were sampled using standard Molecular Dynamics
(MD).62 The third class of athermal chains was simulated by energy minimization methods.63

Flexible polymers. The first class of chain systems, obtained by omitting the angular term in the
general Hamiltonian, allows to investigate the impact of the non-crossability constraint on strictly 2D polymer
conformations. In this case, fully discussed in Chap. 3, the only free parameters at fixed temperature are
chain length and chain density.

In the limit of asymptotically long chains, a swollen typical conformation is progressively transformed
into a compact one, as the density increases from the dilute regime to the melt, an evolution illustrated by
the simulation snapshots d-f in Fig. 1.1. In the intermediate semi-dilute regime, chains can be seen as a
compact packing of blobs with g monomers, g decreasing as the density is incremented. We found that the
chain size scales with the reduced chain length N/g as predicted theoretically by classical density crossover
scaling à la de Gennes.34, 35

More importantly, our simulations reveal the central role of the contact exponent θ2 in determining the
chain conformations in strictly 2D polymer systems. The values of θ2 extracted from our simulations agree
very well with Duplantier’s theoretical predictions for the dilute and the melt limits.36, 37 θ2, defined as
the power-law exponent of the subchains size distribution, was also shown11 to be related to the fractal
dimension of the chains perimeter (The theoretical argument given by Semenov and Johner is sketched in
Fig. 1.5). This fractal character can be hinted from Figs. 1.1c and 1.1f, where the segregated polymers clearly
exhibit a non disk-like shape. The fractal nature of the chains perimeter can be shown to determine two
experimentally relevant properties: i) the form factor F (q) in the intermediate wave-vector regime, which
can be probed by scattering experiments, clearly displays a non-Gaussian behavior and ii) the probability
for interchain monomer-monomer contact is reduced with respect to its 3D counterpart, which is expected
to lead to improved mixing of polymers blends in 2D.

Semiflexible polymers. In Chap. 4 we present our results for the second class of systems, namely
semiflexible polymers, simulated by considering the full Hamiltonian Eq. 1.1, with vanishing spontaneous
angles θ0 corresponding to chains with straight ground-state shapes.

7



We investigate the stiffness effects on systems of semiflexible chains with polymerization index ranging up
toN = 1024. For these chains, much longer than those probed in previous numerical work,26, 56, 58, 64 we found
that scaling observed for fully flexible chains holds as long as the persistence length remains smaller then the
blob size.59 The equilibration dynamics at higher rigidities slows down rapidly, introducing strong hysteresis
effects as can be seen when different dynamical pathways are compared. The precise characterization of the
order and the location of the isotropic-nematic phase transition is thus difficult to be obtained. Preliminary
results, however, point to a first order transition.

Athermal fibers. Finally, by imposing a given distribution of θ0 values, we force finite spontaneous
curvature in our coarse-grained polymer Hamiltonian of Eq. (1.1), and study its effect on the mechanical
properties and on the conformations of macroscopic fiber stacks.

We report in Chap. 5 simulations of several fiber systems with different imposed quenched curvatures,
ranging from Gaussian distributed wavelengths at fixed amplitude to q-dependent amplitudes. We show
that the compressibility of the fiber bundles strongly depend on the degree of disorder of the ground state
of the individual fibers. We compare our results to recent theoretical work on the elastic moduli of fiber
bundles,31 and show that they can be qualitatively understood by the statistical physics concepts developed
in the context of thermal polymers and membranes.
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Chapter 2

Concepts and methods

Having introduced the motivations and the general context of our work in the previous chapter, we discuss
here the principal concepts and methods used to obtain our later results. We first review in details our
simulation coarsed-grained model and present the numerical methods that allow to compute the system evo-
lution as a function of time. We describe then how the configurations ensembles obtained by the simulations
process are treated in order to extract the relevant thermodynamic and conformational quantities.

2.1 Numerical tools

Coarse-grained polymer models. Theoretical and computational model building is an important
step in making scientific progress.32, 43, 44 Understanding the limiting cases of pure systems of long chains,
as they can currently only be realized in simulations of generic models, is a guideline for interpreting exper-
imental work.1, 59 The aim of this work is to clarify universal power-law scaling predictions in the limit of
large chain length N and low wavevector q where the specific physics and chemistry on the monomeric level
(such as the local chain stiffness) is only relevant for prefactor effects.59 This calls for the use of a generic
coarse-grained polymer model Hamiltonian which is sufficiently simple to allow the efficient computation of
dense large-chain systems which are consistent with the central assumptions of the theoretical studies by
Duplantier65 and Semenov and Johner:66 the chains must be strictly 2D SAW without chain intersections.

Effective Hamiltonian used. As in previous studies of the ICS Theory and Simulation Group45–49 our
numerical results are obtained by molecular dynamics simulations of monodisperse, linear and highly flexible
chains using (essentially) the well-known Kremer-Grest bead-spring model which has been successfully used
for a broad range of polymer physics problems.60, 61, 67 The non-bonded excluded volume interactions between
the effective monomers are represented by a purely repulsive (truncated and shifted) Lennard-Jones (LJ)
potential44

unb(r) = 4ǫ
[

(σ/r)12 − (σ/r)6
]

+ ǫ for r/σ ≤ 21/6 (2.1)

and unb(r) = 0 elsewhere. The Lennard-Jones potential does not act between adjacent monomers of a chain
which are topologically connected by a simple harmonic spring potential

ub(r) =
1

2
kb(r − lb)

2 (2.2)

with a (rather strong) spring constant kb = 676ǫ and a bond reference length lb = 0.967σ. Both constants
kb and lb have been calibrated to the “finite extendible nonlinear elastic” (FENE) springs of the original
KG model.60 Semiflexibility is included in our modelling approach by adding a stiffness potential

uθ(r) = kθ(θ − θ0)
2 (2.3)

9



with θ being the angle between adjacent bonds and θ0 the equilibrium angle in the ground state configuration.
The monomer massm, the temperature T and Boltzmann’s constant kB are all set to unity, i.e. β ≡ 1/kBT =
1 for the inverse temperature, and Lennard-Jones units (ǫ = σ = m = 1) are used throughout this PhD
report. The parameters of the model Hamiltonian make monomer overlap and chain intersections impossible,
as can be seen from the snapshots of chains presented in Fig. 2.1. (We have explicitly checked that such a
violation never occurs.) We simulate thus strictly 2D self-avoiding walks as required.

Sampling of configurations. Taking advantage of the public domain LAMMPS implementation (Ver-
sion 21May2008)67 the presented results for the flexible and semiflexible polymer systems (Chap. 3 and 4,
have been obtained by sampling the classical equations of motion by MD simulation using the Velocity-Verlet
algorithm with a time increment δt = 0.01. The constant (mean) temperature T = 1 was imposed by means
of a Langevin thermostat with a friction constant γ = 0.5.43, 44 Note that the strong harmonic bonding
potential (used to avoid chain intersections) corresponds to a tiny oscillation time τb = 2π

√

m/k ≈ 0.2.
Unfortunately, this is only about a factor 10 larger then our standard time increment δt. Obviously, this
begs the question of whether configurations with the correct statistical weight have been sampled. In order to
crosscheck our results we have in addition performed MC simulations which (by construction) obey detailed
balance,68 i.e. produce configuration ensemble with correct weights. The comparison of ensembles generated
with both methods shows that all configurational properties are (within the error bars) essentially identical.
The only difference is that at lower densities (ρ < 0.25) the MD method yields mean bond lengths which are
slightly too large for δt = 0.01. While this effect is irrelevant for the configurational properties, it matters
for the pressure P as further discussed in Sec. 3.2.2.

The results for the systems of athermal chains, in which energy rather than free-energy needs to be
minimized, were obtained by the standard quasi-static steepest-descent method.63 This energy minimisation
method consists of iteratively adjusting the monomer coordinates by moving along the direction of the total
force. The process is stopped if the energy difference between two succesive configurations is smaller then
εe = 10−8 or if the norm of the global force vector is less than εf = 10−8 or if the number of iterations is
greater then 107.

Parameter range. Some thermodynamic and conformational properties for flexible chains discussed
below are summarized in Table 2.1. While most of previous studies of the ICS Theory and Simulation
Group45–47 have focused on one melt density, ρ = 0.875, we scanned over a broad range of densities ρ. Note
that our largest chain length N = 2048 is about an order of magnitude larger than in previous computational
studies of dense 2D polymers: N = 59 by Baumgärtner in 1982,50 N = 100 by Carmesin and Kremer in
their seminal work in 1990,51 N = 100 by Nelson et al. in 1997,69 N = 32 by Polanowski and Pakula in
2002,70 N = 60 by Balabaev et al. in 2002,71 N = 256 by Yethiraj in 200372 and N = 256 by Cavallo et
al. in 2005.73, 74 To avoid finite system size effects the periodic simulation boxes contain at least M = 96
chains for the higher densities, e.g. for N = 2048 and ρ = 0.875 we have 196608 monomers in a box of linear
length Lbox ≈ 474 and for N = 1024 and ρ = 0.03125 we have 98304 monomers in a box of Lbox ≈ 1774.
Even more chains are sampled for shorter chains.

2.2 Some thermodynamic and mechanical properties of polymer

systems

We discuss briefly in this paragraph how various ensemble average properties have been computed.

Energy. The total mean interaction energy per monomer etot, discussed in Sec. 3.2.1 is directly calculated
for each configuration from the BSM Hamiltonian H = HLJ + Hbond + Hang described in Sec. 1.

Pressure. The isotropic pressure at a given density ρ for systems without periodic boundary conditions
can be obtained using
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ρ M enb eint P gT,N l Re

“

Re
Rg

”

2

∆2 nint gT ξ bN

0 1 1.6E-02 - 0 1024 0.970 179 7.1 0.62 0 ∞ ∞ ∞

1/128 24 1.6E-02 2.5E-07 6.1E-06 811⋆ 0.970 179 7.1 0.62 1.5E-05 3900⋆ 1955⋆ 13⋆

1/64 48 1.6E-02 9.6E-07 1.4E-05 500⋆ 0.970 177 6.8 0.61 0.4E-04 975⋆ 691⋆ 9.1⋆

1/32 96 1.6E-02 2.2E-06 7.7E-05 197⋆ 0.970 162 6.9 0.60 1.0E-04 244⋆ 244⋆ 6.5⋆

1/16 48 1.6E-02 3.7E-06 3.4E-04 67 0.970 150 6.5 0.58 3.8E-04 67 86 4.68
0.125 48 1.8E-02 3.0E-05 2.2E-03 17 0.969 120 5.9 0.54 0.2E-02 18.1 31 3.75
0.250 96 1.8E-02 1.9E-04 2.0E-02 3.7 0.969 88 5.5 0.53 1.2E-02 3.7 11 2.74
0.375 96 2.2E-02 6.5E-04 0.081 1.38 0.969 74 5.5 0.57 4.5E-02 1.7 5.9 2.21
0.500 192 2.9E-02 0.0018 0.23 0.50 0.969 63 5.3 0.54 9.8E-02 0.50 3.8⋆ 1.96
0.625 96 4.6E-02 0.0059 0.64 0.203 0.968 60 5.4 0.56 0.21 0.19 2.7⋆ 1.89
0.750 96 8.4E-02 0.0105 1.61 0.083 0.966 51 5.3 0.50 0.35 0.083 2.0⋆ 1.61
0.875 96 1.8E-01 0.0261 4.74 0.032 0.963 48 5.3 0.48 0.51 0.032 1.6⋆ 1.51

Table 2.1: Various properties as a function of monomer density ρ for flexible chains. The columns 2 - 11
refer to chains of length N = 1024: the number of chains per box M , the total non-bonded interaction energy
enb per monomer, the interaction energy eint per monomer between monomers of different chains (Sec. 3.2.1),
the pressure P (Sec. 3.2.2), the dimensionless compressibility gT,N = kBTρ/K discussed in Sec. 3.2.3, the
root-mean-squared bond length l, the root-mean-squared chain end-to-end distance Re (Sec. 3.3.1), the ratio
(Re/Rg)

2 discussed in Sec. 3.3.2, the aspherity moment ∆2 obtained from the eigenvalues of the inertia
tensor (Sec. 3.3.4) and the fraction of interchain monomer contacts nint for a cut-off parameter a = 1.56.
The bonding potential being very stiff, the bond length l is found to depend very little on density. The last
three columns summarize results for asymptotically long chains in the compact chain limit: the dimensionless
excess compressibility gT ≡ limN→∞ gT,N, the blob size ξ characterizing the density fluctuations obtained
assuming Eq. (3.16) to hold for all densities and the effective segment size bN ≡ limN→∞Re(N)/N1/d where
we have used that for the smallest densities bN ≈ 1.41/ρ1/2 holds (Fig. 3.6). Extrapolated values are indicated
by stars (⋆).

P =
1

V

[

NtkBT +

Nt
∑

i

ri • fi

]

. (2.4)

where V stands for the d-dimensional volume, i.e. the surface L2
box of our periodic simulation boxes, Nt is

the total number of atoms in the system, ri is the absolute position of the monomer i in space and fi the
total force acting on the monomer i. This form is of course not convenient for periodic boundary conditions
where the virial equation P = kBTρ + 〈W〉 /V with relative particles distances rij and interaction forces
fij between particles i and j should be used.43 For pairwise additive interactions, as is the case for our
flexible chain systems, the pair virial function W is associated to the bonded and/or to the non-bonded pair
potential u(r) :

W = −1

d

∑

i<j

w(rij) with w(r) = r
du(r)

dr
(2.5)

The density crossover scaling for our flexible systems is presented in figure Fig. 3.4 of Sec. 3.2.2. It can be
shown that in the case of semiflexible and rigid chains where the stiffness adds a three-body angular potential
Eq. 2.5 still holds.75

For anisotropic systems such as the pre-aligned rigid chains discussed in Chap. 5, the different components
of the stress tensor σαβ , with α, β = x, y, z, were computed by76

〈σ̂αβ〉 =

〈

1

V





∑

i<j

(

∂U

∂rij

)

rα
ijr

β
ij

rij
−

M
∑

i=1

miv
α
i v

β
i





〉

(2.6)

Here mi and vα
i are respectively the mass and the α velocity component of monomer i.

11



Figure 2.1: Snapshots of two chains
of length N = 2048. As expected
from theory,59 the chains are shown
to reveal swollen chain statistics with
power-law exponents ν = ν0 ≡ 3/4
and θ2 = θ2,0 ≡ 19/12. Dilute
chains are rather elongated as also
seen from the given aspherity parame-
ters ∆i further discussed in Sec. 3.3.4.
Inset: Short subchain showing that
the monomers do not (or only barely)
overlap and that the chains do not
intersect.
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Compression modulus. Being an isotropic liquid the polymer solution is described by only one elastic
modulus, the bulk compression modulus

K ≡ 1/κT = ρ
∂P

∂ρ
, (2.7)

with κT being the standard isothermal compressibility.77 The bulk modulus and/or the dimensionless com-
pressibility can be directly obtained numerically by fitting the pressure isotherms discussed in the previous
subsection. This is best done by fitting a spline to y ≡ log(βP ) as a function of x ≡ log(ρ). Alternatively, the
compression modulus for a given density can be directly computed using the Rowlinson formula78 or from
the plateau of the structure factor in the low-q limit.32, 33 These two methods will be discussed in details in
Sec. 3.2.3.

2.3 Conformational properties of polymer chains

2.3.1 Real space properties

Unlike global properties such as the pressure or the compression modulus discussed above, conformational
properties are primarily defined through the particles microscopic positions. The conformational character-
ization of a system is thus directly obtained by time averaging of the per-configuration values computed by
applying the conformational properties definitions. We review here the definitions of several conformational
properties related to chains typical size and shape. These definition were used to obtain the results discussed
in Sec. 3.3.

Chain size. The end-to-end vector Re is the simplest measure for the chains typical size. It is the vector
that points from one end of a polymer to the other end.

Re ≡ rN − r1 (2.8)

where r1 and rN are the position vectors of the first and the last monomers of the chain. The norm of the
end-to-end vector is called the end-to-end distance.

The radius of gyration Rg measures the size of an object taking into account the position of all its
particles. It is calculated as the root mean square distance of the objects’ parts from its center of mass. For
a N monomer chain with its center of mass at rcm

R2
g ≡ 1

N

N
∑

i=1

(ri − rcm)
2

(2.9)
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The dependence of the chains typical size on the chain length N is caracterized by a power law exponent
ν often called “Flory’s exponent”

R ∼ Nν . (2.10)

This exponent, being equal to the inverse fractal dimension, plays a crucial role in determining various
conformational and thermodynamic properties of the polymer systems.

The calculation of the values of Re and Rg can be applied not only over the entire chains but also over
’chain segments’ or ’subchains’ containing s = m− n+ 1 monomers. Quite generally the radius of gyration
Rg(s) of a subchain of arc-length s ≤ N is given by79

R2
g(s) =

1

s2

∫ s

0

ds′ (s− s′) ×R2
e(s

′) (2.11)

if the mean-squared subchain size R2
e(s

′) is known. Let us assume that Re(s
′) = bes

′ν holds rigorously for
all s′ ≤ s. This implies

(Re(s)/Rg(s))
2 = (2ν + 1)(2ν + 2), (2.12)

i.e. the ratio is set alone by the inverse fractal dimension ν and not by the spatial dimension d or the local
monomer properties. A ratio 6 must thus be observed if ν = 1/2 holds rigorously, a ratio 35/4 = 8.75 for
ν = 3/4. Please note that corrections to the assumed power-law behavior at the lower integration cut-off
should not alter these values if s is sufficiently large.

In addition to the averaged values of Re and Rg it is of interest to characterize the probability distribution
Gi(r, s) of the intrachain vectors r = rm − rn between the monomers n and m = n + s − 1. The power
law exponents θ0, θ1 and θ2 describing the small-x limit of these distibutions are known as the ’contact
exponents’. These exponents play an important role in determining both intrachain and interchain properties
of two-dimensional chains and will be discussed in details in Chap. 3.

Angular correlations. The chain configuration may further be characterized by means of intrachain
angular correlations. The first Legendre polynomial P1(s) ≡ 〈en · em〉 with ei denoting the normalized
tangent bond vector connecting the monomers i and i + 1 of a chain has been shown to be of particular
interest for characterizing the deviations from Gaussianity in dense 3D polymer solutions.33 (The average is
taken as before over all possible pairs of monomers n and m = n+ s− 1.) The reason for this is that33

P1(s) ∼ −∂
2R2

e(s)

∂s2
(2.13)

and that thus small deviations from the asymptotic exponent 2ν = 1 are emphasized. The second Legendre
polynomial P2 ≡ 〈(en · em)

2〉 − 1/2 probes essentially the return probability pr(s) of the chain after s
curvilinear steps, as will be explained in detail in Sec. 3.3.

Chain shape. The gyration tensor M may be defined as

Mαβ =
1

N

N
∑

n=1

(rn,α −Rcm,α)(rn,β −Rcm,β) (2.14)

with Rcm,α being the α-component of the chains’s center of mass. We remind that the radius of gyration R2
g

is given by the trace tr(M) = Mxx +Myy = λ1 + λ2 (averaged over all chains) with eigenvalues λ1 and λ2

obtained from

λ1,2 =
1

2

(

tr(M) ±
√

tr(M)2 − 4det(M)
)

. (2.15)

Similary one may define the gyration tensor and corresponding eigenvalues for subchains.46 The chain
aspherity may be characterized by computing the aspect ratio 〈λ1〉 / 〈λ2〉. Another characterization of the
chain’s shape is given by the moments:
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∆1 =
〈λ1 − λ2〉
〈λ1 + λ2〉

,∆2 =
〈(λ1 − λ2)

2〉
〈(λ1 + λ2)2〉

(2.16)

We remind that ∆1 = 2 〈λ1〉 /R2
g − 1 describes the mean ellipticity and ∆2 the normalized variance of λ1

and λ2.
80, 81 Obviously, ∆1 = ∆2 = 1 for rods and ∆1 = ∆2 = 0 for spheres.

2.3.2 Reciprocal space properties

Although direct real-space visualizations of the 2D polymer systems we focus on in this thesis is experimen-
tally feasible,16, 17, 22 allowing thus a direct computation of various conformational properties, it is important
to note that these properties are more commonly probed in reciprocal space by means of light, small angle
X-ray or neutron scattering experiments.82 Using appropriate labeling techniques this allows to extract the
coherent intramolecular structure factor F (q) and the total monomer structure factor S(q). In this section
we review some theoretical concepts related to these quantities. The simulation results concerning the form
and structure factor will be discussed in details in Sec. 3.4.

Form and structure factors. The coherent intramolecular structure factor F (q) more briefly called
“structure factor” or “form factor”59, 82 is computed by:

F (q) =
1

N

N
∑

n,m=1

〈exp
[

iq · (rn − rm)
]

〉 (2.17)

=
1

N
〈||

N
∑

n=1

exp
(

iq · rn

)

||2〉, (2.18)

The average 〈. . .〉 is taken over all labeled chains of the system and (at least in computational studies) over
several wave vectors q of same modulus q. The second representation of the form factor given above being
an operation linear in N has obvious compuational advantages for large chain lengths.

A second experimentally important reciprocal space characterization of a polymer solution is given by
the “total monomer structure factor”79

S(q) =
1

nmon

nmon
∑

n,m=1

〈exp
[

iq · (rn − rm)
]

〉 (2.19)

measuring the fluctuations of the total monomer density at a given wavevector q. All nmon monomers of the
simulation box are assumed to be labeled and the average 〈. . .〉 is performed over all configurations of the
ensemble and all possible wavevectors of length q = |q|.

Theoretical predictions for the intramolecular form factor We remind that for small wavevec-
tors, in the so-called Guinier regime, the structure factor scales as59, 82

F (q)/N = 1 −Q2/d for Q≪ 1 (2.20)

with Q ≡ qRg being the reduced wavevector. If sufficiently small q-vectors are available the gyration radius
Rg can thus in principle be determined experimentally from the form factor. We also remind that the Flory
exponent ν, i.e. the inverse fractal dimension of a chain, is defined by the chain length dependence of the
typical chain size, R(N) ≈ Rg(N) ∼ Nν , in the limit of asymptotically long chains.83 For “open” chains
with 1/ν < d the fractal dimension determines the structure factor in the intermediate wavevector regime82

F (q) ∼ N0q−1/ν for 1/Rg(N) ≪ q ≪ 1/σ (2.21)
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with σ characterizing either the monomer scale or the blob size ξ for semidilute solutions.59 The so-called
“Kratky representation” of the structure factor, q2F (q) vs. q, thus corresponds to a plateau for strictly
Gaussian chains with 1/ν = 2.82

Obviously, Eq. (2.21) does not hold any more if the chain becomes compact (1/ν = d), i.e., if Porod-like
scattering due to the composition fluctuation at a well-defined “surface” S(N) becomes possible. We remind
that a surface may be characterized by its surface dimension ds which is defined by the asymptotic scaling,83

S(N) ∼ Rg(N)ds ∼ Ndsν = N1−νθ. (2.22)

We have introduced here the exponent θ ≡ 1/ν−ds ≥ 0 to mark the difference between the fractal dimension
of the object and its surface dimension. Obviously, for open chains S(N) ∼ N , hence θ = 0 and ds = 1/ν.
Since the scattering intensity NF (q) of compact objects is known to be proportional to their surface S(N)
and since F (q) must match the Guinier limit, Eq. (2.20), for Q ≈ 1 it follows for asymptotically long chains
that NF (q) = N2f(Q) ∼ S(N) with f(Q) being a universal function. Using standard power-law scaling59

this implies the “generalized Porod law”82, 84, 85

F (q)/N = f(Q) ≈ 1/Q2/ν−ds = 1/Q1/ν+θ (2.23)

for the intermediate wavevector regime. As one expects, Eq. (2.23) yields for a smooth surface (1/ν = d,
ds = d− 1, θ = 1) the classical Porod scattering

F (q) ∼ N/(N1/2q)3 (2.24)

in d = 2 dimensions.82 Note that Eq. (2.23) implies that F (q) depends in general on the chain length.
As we shal show in Sec. 3.3.6, we have dp = d− θ2 = 5/4 in the compact chain limit, i.e. the difference

θ between the fractal dimension of the object and its surface dimension is set by

θ
!
= θ2 = 3/4. (2.25)

We present here an alternative derivation of this important identification using the fact that the form factor
quite generally may be written as33, 46

F (q) =
1

N

∫ N

0

ds 2(N − s) ×Ge(q, s) (2.26)

using the Fourier transform Ge(q, s) of the normalized two-point intramolecular correlation function Ge(r, s)
averaging over all pairs of monomers (n,m = n+s−1). The factor 2(N−s) counts the number of equivalent
monomer pairs separated by an arc-length s. As we have seen in Sec. 3.3.2, Ge(r, s) is well approximated
by the distribution G2(r, s) for s≪ N and N → ∞. For asymptotically long chains it is justified to neglect
chain-end effects (s → N), i.e. physics described by the contact exponents θ0 and θ1. Focusing in addition
on sufficiently large subchains (g ≪ s) the Redner-des Cloizeaux approximation, Eq. (3.18), for i = 2 is
assumed to be rigorously valid for all s. We compute first the 2D Fourier transform

G2(q, s) =

∫ ∞

0

c2x
θ2e−k2x2

2πxdxJ0(qx) (2.27)

with 2πJ0(z) = 2
∫ ∞

0
cos(z cos(θ))dθ being an integer Bessel function86 and x = r/R2(s) = r/bs1/2, θ2 = 3/4,

k2 = 1 + θ2/2, c2 = kk2
2 /πΓ(k2) as already defined in Sec. 3.3.2. As can be seen from Eq. (11.4.28) of Ref.,86

this integral is given by a standard confluent hypergeometric function, the Kummer function M(a, b,−z),
G2(q, s) = M(1 + θ2/2, 1,−z) (2.28)

with z = (qb)2s/4k2. According to Eq. (13.1.2) and Eq. (13.1.5) of [86] the Kummer function can be
expanded as

M(a, b,−z) ≈ 1 − az

b
for |z| ≪ 1, (2.29)

M(a, b,−z) ≈ Γ(b)

Γ(b− a)
z−a for z ≫ 1. (2.30)
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Using Eq. (2.28) this yields, respectively, the small and the large wavevector asymptotic behavior of the
Fourier transform of G2(r, s)

G2(q, s) ≈ 1 − (1 + θ2/2)z for z ≪ 1, (2.31)

G2(q, s) ≈ z−1−θ2/2

Γ(−θ2/2)
∼ q−2−θ2 for z ≫ 1. (2.32)

Note that Eq. (2.31) implies G2(q = 0, s) = 1 as one expects due to the normalization of G2(r, s).
After integrating over s following Eq. (2.26) and defining Z = (qb)2N/4k2 one obtains for the Guinier

regime of the form factor

F (q) ≈ N

(

1 − 1 + θ2/2

3
Z

)

for Z ≪ 1, (2.33)

i.e. according to Eq. (2.20) we have, as one expects,

R2
g(N) =

1

6
b2N

1 + θ2/2

k2
=
b2N

6
. (2.34)

Eq. (2.34) is of course slightly at variance with the measured ratio (Re(N)/Rg(N))2 < 6 due the chain end
effects discussed in Sec. 3.3.2. These effects are neglected here. We show now that the form factor becomes
a power law in agreement with the scaling relation Eq. (2.23). This is done by integrating Eq. (2.23) with
respect to s. This gives

F (q) ≈ 2N

Γ(2 − θ2/2)
Z−(1+θ2/2)

∼ N−θ2/2q−(2+θ2) for Z ≫ 1. (2.35)

Obviously, it is also possible to directly integrate Eq. (2.28) with respect to s as suggested by Eq. (2.26).
This yields the complete Redner-des Cloizeaux approximation of the form factor

F (q)

N
≈ 2M

(

1 +
θ2
2
, 2,−Z

)

− M

(

1 +
θ2
2
, 3,−Z

)

+
1

3

(

1 +
θ2
2

)

Z M

(

2 +
θ2
2
, 4,−Z

)

(2.36)

which can be computed numerically. Using again the expansions of the Kummer function, Eq. (2.29) and
Eq. (2.30), one verifies readily that Eq. (2.36) yields the asymptotics for small and large wavevectors already
given above. It is convenient from the scaling point of view to replace the variable Z used above by the
reduced wavevector Q = qRg(N) substituting

Z =⇒ 6

4
Q2(1 + Θ2/2) =

12

11
Q2, (2.37)

as suggested by Eq. (2.34). Defining the reduced form factor y(Q) ≡ (F (q)/N)Q2 and reexpressing Eq. (2.35)
in these terms this implies

y(Q) ≈ 2

Γ(2 − Θ2/2)

(

3

2 + Θ2

)−(1+Θ2/2)

Q−Θ2

≈ 1.98

Q3/4
, (2.38)

in agreement with Eq. (2.23). Note that due to this substitution the Guinier limit of the Redner-des Cloizeaux
approximation of the form factor is correct by construction. We emphasize that the presented derivation
does not depend explicitly on the density or the persistence length of the solution. It should apply equally
to melts (ρ → 1) and to melts of blobs (N ≫ g).
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Chapter 3

Flexible Polymers

3.1 Introduction

Background and motivation. Three-dimensional (3D) bulk phases of dense homopolymer solutions
and blends are known to be well-described by standard mean-field perturbation calculations.1, 33, 59, 79, 87

Provided that the length N of the (both linear and monodisperse) polymer chains and the monomer number
density ρ are sufficiently large, the polymers adopt thus (to leading order) Gaussian chain statistics, i.e. the
typical chain size R scales as

R ∼ Nν for ρ≫ ρ∗ ≈ N/Rdν (3.1)

with d = 3 being the spatial dimension, ν = 1/2 the inverse fractal dimension of the chains,83 often called
“Flory’s exponent”, and ρ∗ the so-called “overlap density” or “self-density”.1, 33 Even the weak scale-free
corrections with respect to the Gaussian reference implied by the interplay of chain connectivity and incom-
pressibility of the solutions on large scales are neatly captured by one-loop perturbation calculations.33, 88

The success of the mean-field approach for dense systems in d = 3 is of course expected from the fact that
large scale properties are dominated by the interactions of many polymers with each of these interactions
only having a small (both static and dynamical) effect.59

Obviously, the number of chains a reference chain interacts with, and the success of a mean-field approach,
depends on the spatial dimension d of the problem considered as implied by the strong-overlap condition59

ρ∗/ρ ≈ N/ρRd ∼ N1−dν ≪ 1, (3.2)

i.e. for to leading order Gaussian chains (ν = 1/2) the mean-field approach becomes questionable below
d = 3. Due to the increasing experimental interest on mechanical and rheological properties of nanoscale
systems in general10 and on dense polymer solutions in reduced effective dimensions d < 3 in particular14–23

one is naturally led to question theoretically65, 66, 89–95 and computationally45–49, 51, 69, 72–74, 96, 97 the standard
mean-field results. Especially polymer solutions and melts confined to effectively two-dimensional (2D) thin
films and layers are of significant technological relevance with opportunities ranging from tribology to biol-
ogy.14, 15, 18, 20 In this chapter we shall consider such ultrathin films focusing on numerical results45–51, 69, 72

obtained on both self-avoiding and flexible homopolymers confined to strictly d = 2 dimensions where chain
overlap and intersection are strictly forbidden.

Compactness of the chains. As first suggested by de Gennes,59 it is now generally accepted that such
2D “self-avoiding walks” (SAW) adopt compact and segregated conformations at high densities,16, 17, 45–47, 50, 51, 65, 66, 69, 72, 91

i.e., the typical chain size R scales as

R ≈ (N/ρ)ν where ν = 1/d = 1/2. (3.3)

Interestingly, according to Eq. (3.3) the typical chain size is set alone by the density of chains ρ/N and
does thus not depend on other local monomeric parameters such as the (effective) excluded volume or the
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Figure 3.1: Semidilute regime for number density ρ = 0.125 and chain length N = 2048. The numbers refer
to a chain index used for computational purposes. The dashed spheres represent a hard disk of uniform mass
distribution having a radius of gyration Rg equal to the semidilute blob size ξ ≈ 31 of the given density.
As shown in panel (a) some chains are still rather elongated (e.g., chain 10 or 30) and the swollen chain
statistics remains relevant on small scales (r ≪ ξ). On larger scales the chains are shown to adopt (on
average) compact configurations with power-law exponents ν = 1/d and θ2 = 3/4. The square in the first
panel is redrawn with higher magnification in panel (b). The spheres (not to scale) correspond to monomers
interacting with monomers from other chains.

chain persistence length. As already stated we assume that chain intersections are strictly forbidden.66

This must be distinguished from systems of so-called “self-avoiding trails” (SAT) which are characterized
by a finite chain intersection probability. Relaxing thus the topological constraint SAT have been argued
to belong to a different universality class revealing mean-field-type statistics with rather strong logarithmic
N -corrections.66, 90 An experimentally relevant example for SAT is provided by polymer melts confined to
thin films of finite width H allowing the overlap of the chains in the direction perpendicular to the walls. At
variance to Eq. (3.3) such systems are predicted to reveal swollen chain statistics with

R2 ∼ N log(N)/Hρ (3.4)

as confirmed recently numerically by means of Monte Carlo (MC) simulation of the bond-fluctuation model96

and by molecular dynamics (MD) simulation43, 44 of a standard bead-spring model97 essentially identical to
the one further discussed in the present study.

Non-Gaussianity and surface fractality. It is important to stress that the compactness of the
strictly 2D chains, Eq. (3.3), does not imply Gaussian chain statistics since other critical exponents with
non-Gaussian values have been shown to matter for various experimentally relevant properties.45–47, 65, 66, 91

It is thus incorrect to assume that excluded-volume effects are screened73 as is approximately the case for
3D melts.33 Also the segregation of the chains does by no means impose disklike shapes minimizing the
contour perimeter of the (sub)chains. As may be seen from the snapshot presented in Fig. 3.2, the chains
adopt instead rather fractal shapes of irregular contours.45–48, 72–74 Focusing on dense 2D melts it has been
shown recently both theoretically66 and numerically45–48 that the irregular chain contours are characterized
by a fractal perimeter of typical length

P ∼ Nnint ∼ Rdp ∼ Ndp/d with dp = d− θ2 = 5/4 (3.5)

where nint stands for the fraction of monomers of a chain interacting with monomers of other chains. The
fractal line dimension dp is set by Duplantier’s contact exponent θ2 = 3/4 characterizing the size distribution
of inner chain segments.65 We remind that Duplantier’s theoretical predictions obtained using conformal
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Figure 3.2: A dense melt for density ρ = 0.875 and chain length N = 2048: (a) Only “chain 1” in the
middle is fully drawn while for the other chains only the perimeter monomers interacting with other chains
are indicated. The chains are compact, i.e., they fill space densely, and interact typically with about 6 other
chains. However, compactness does apparently still not imply a disk-like shape which would minimize the
perimeter length P as may be seen, e.g., from the chain 7 or 52. (b) Self-similarity of compactness and
perimeter fractality on all scales shown for chain 1. The solid line indicates the perimeter of this chain with
respect to monomers of other chains. We consider 8 consecutive subchains of length s = 256 and compute
their respective perimeter monomers being close to monomers from other chains or subchains. The subchains
are compact and of irregular shape, just as the total chains (s = N)

invariance65 rely both on the topological constraint (no chain intersections) and the space-filling property of
the melt.

Focus of this Chapter. Obviously, high densities are experimentally difficult to realize for strictly 2D
layers16, 17, 21 since the chains tend either do detach from the surface or interface or to overlap increasing thus
the number of polymer layers as clearly shown from the pressure isotherms studied in Ref.[21]. Elaborating
a short comment made recently,48 one aim of the presented study is to show that eqs. (3.3,3.5) hold more
generally for all densities assuming that the chains are sufficiently long. Following de Gennes’ classical density
crossover scaling59 this allows to view the polymer solutions as space-filling melts of “blobs” containing

g(ρ) ≈ ρξd(ρ) ≈ 1/(bd0ρ)
1/(ν0d−1) ∼ 1/ρ2 (3.6)

monomers with ξ ≈ b0g
ν0 ∼ 1/ρ3/2 being the size of the semidilute blob where ν0 = 3/4 stands for Flory’s

chain size exponent for dilute swollen chains in d = 2 dimensions59 and b0 ≡ limN→∞R0(N)/Nν0 for the
corresponding statistical segment size. Here as throughout this thesis report we shall often characterize
by an index 0 the dilute limit of a property. Having received experimental attention recently,16, 17, 21 we
shall also discuss the density dependence of various thermodynamic properties such as the dimensionless
compressibility

gT(ρ) ≡ lim
N→∞

Tρ/K = lim
N→∞

(

lim
q→0

S(q)

)

(3.7)

which may be either obtained from the compression modulus K of the solution43, 78 or from the low-wave
vector limit of the total monomer structure factor S(q).32, 33 As one expects according to a standard density
crossover scaling à la de Gennes59 we will demonstrate numerically that the dimensionless compressibility
gT(ρ) scales as the blob size g(ρ). This is of some importance since due to the generalized Porod scattering
of the compact chains the intrachain coherent structure factor F (q) is shown to scale as45–47

NF (q) ≈ N2/(qR)2d−dp ∼ P (3.8)
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in the intermediate wave vector regime 1/R ≪ q ≪ 1/ξ, as predicted theoretically by Eq. (2.36).46 It is
hence incorrect to determine the blob size by means of an Ornstein-Zernike fit to the intramolecular form
factor F (q) as done, e.g., in Ref.[17].

3.2 Thermodynamic properties

3.2.1 Energy
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Figure 3.3: Various mean energy contributions per monomer: (a) Total energy etot, bonding energy eb,
excluded volume energy enb and interaction energy eint between monomers of different chains as a function
of density for N = 1024. (b) Interchain interaction energy eint as a function of chain length N for different
densities. The dashed and solid power-law slopes represent, respectively, the predicted asymptotic behavior
for the dilute and dense density limits.48

From the numerical point of view the simplest thermodynamic property to be investigated here is the
total mean interaction energy per monomer etot due to the Hamiltonian described in Sec. 2.1. As shown in
panel (a) of Fig. 3.3, it is essentially density independent and always dominated by the bonding potential
eb (triangles). Due to the harmonic springs used we have eb ≈ kBT/2 with a small positive correction due
to the excluded volume repulsion which tends to increase the bond length. The total non-bonded excluded
volume interaction per monomer enb (spheres) becomes constant at low densities where it is dominated by
the excluded volume interaction of curvilinear neighbors on the same chain. The non-bonded energy enb

increases of course for larger densities, but remains always smaller than the bonded energy eb. (Values of
enb for N = 1024 are included in Table 2.1.) From the theoretical point of view more interesting is the
contribution to the total excluded volume interaction due to the contact of monomers from different chains
measured by eint (squares). This interchain energy contribution is of course proportional to the density in
the dilute regime (dashed line) due to the mean-field probability that two chains are in contact. At higher
semidilute densities up to ρ ≈ 0.5 a much stronger power-law exponent ≈ 21/8 is seen. This apparent
exponent will be traced back in Sec. 3.3.6 to the known values of the universal exponents ν and θ2 of the
dilute and dense limits. The interaction energy eint increases even more strongly for our largest densities
where the semidilute blob picture becomes inaccurate. At variance to the other mean energies eint has
a strong chain length effect as revealed in panel (b). The indicated power-law slopes correspond to the
predicted exponents νθ2 = 19/16 and 3/8 for, respectively, the dilute (dashed line) and dense (bold lines)
density limits as further discussed below in Sec. 3.3.6.

3.2.2 Pressure

While the energy contributions discussed above cannot be probed in a real experiment, the osmotic pressure
of the polymer solution can readily be accessed experimentally.21 As described in Sect. 2.2, the mean pressure
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Figure 3.4: Pressure as a function of density ρ for
different chain lengths N . Unconnected LJ beads are
indicated by the small filled spheres. The data for
N ≥ 256 and ρ ≤ 0.125 have been obtained using the
slithering snake MC algorithm, all other data using
MD with γ = 0.5 and δt = 0.01. The thin dashed lines
give the osmotic pressure βP = ρ/N in the dilute limit
forN = 1, 16, 64, 256 and 2048. The pressure becomes
rapidly chain length independent with increasing N
and ρ. The bold line indicates the power-law exponent
dν0/(dν0 − 1) = 3 expected in the semidilute regime
according to Eq. (3.9). Inset: Pressure as a function
of the MD time increment δt for N = 1024 and ρ =
0.0625. The horizontal line corresponds to our MC
result. As indicated by the vertical arrow the Verlet
algorithm yields the correct pressure in the dilute limit
if δt≪ τb/100.

P at a given density ρ has been obtained by means of the virial equation P = kBTρ+ 〈W〉 /V .43 The main
panel of Fig. 3.4 shows the pressure for different chain lengths N. The pressure increases of course strongly
with density ρ. For very large densities the LJ excluded volume dominates all interactions, i.e. the pressure
of polymer chains approaches the pressure of unbonded LJ beads (filled spheres). The chain length only
matters in the dilute limit for short chains and small densities.

Low-ρ limit. Let us focus first on the latter dilute limit where ultimately the translational entropy of
the chains must dominate the free energy,59 i.e. βP → ρ/N as indicated by the thin lines. Surprisingly, this
(theoretically trivial) limit turns out to be numerically the most challenging regime, especially with increasing
N . The main reason for this is that in this limit a large positive term, the kinetic pressure contribution kBTρ,
is essentially cancelled by a large negative term, the excesss pressure Pex = 〈W〉 /V . (The excess pressure
is negative since it is dominated by the tensile bonding potential between connected beads.) This requires
increasingly good statistics as N becomes larger. Due to this cancellation the precise determination of the
pressure in the dilute limit becomes even delicate and surprisingly time consuming when the configurations
are sampled by means of slithering snake MC moves (Sec. 2.1). However, using this method and given
sufficient numerical precision the pressure approaches (as it should) the asymptotic dilute limit indicated by
the thin dashed lines. This is indeed different if the systems are computed by MD simulation with a too
large time step δt as shown in the inset of Fig. 3.4. The bond oscillation time τb is indicated by the vertical
arrow. If δt is too large the bonds are slightly stretched on average, i.e. they become too tensile which
corresponds to a too negative virial. Unfortunately, the bonding potential is that strong, i.e. the time scale
τb so small, that it gets inefficient to compute the pressure using MD with δt≪ τb/100 ≃ 0.0024.98

Returning to the main panel of Fig. 3.4 it is seen that the pressure becomes rapidly N -independent
with increasing chain length and density. Since the non-bonded interactions become now dominant, the
above-mentioned numerical problems become also irrelevant, i.e. the differences between MD results with
γ = 0.5 and δt = 0.01 and the MC ensembles are negligible. Note the data points given in the main panel of
the figure and in Table 2.1 all refer to the best δt-independent and thermodynamic relevant values available.

Semidilute density regime. From the theoretical point of view more interesting is the intermediate
semidilute density regime indicated by the bold dashed power-law slope. The universal exponent can be
understood by an elegant crossover scaling argument given by de Gennes59 where the pressure is written as
P = ρ/N × f(ρ/ρ∗) with ρ∗ ≈ N/Rd ≈ N1−dν0/bd0 being the crossover density and f(x) a universal function.
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Figure 3.5: Determination of dimensionless com-
pressibility gT(ρ) = limN→∞ gT,N(ρ): (a) gT,N(ρ) ob-
tained by various means for several chain lengths N .
The thin lines correspond to a polynomial fit to P (ρ)
for N = 1 (lower thin line) and the largest chains avail-
able (upper thin line). The large spheres have been
obtained using the Rowlinson formula, Eq. (3.13), for
N = 1024. All other data correspond to the plateau
of the total structure factor S(q,N) for small wavevec-
tors q. The bold dashed line indicates the power law
expected for the semidilute regime, eq. (3.6). (b) Ex-
cess compressibility 1/gT,N − 1/N yielding according
to Eq. (3.12) the inverse compressibility for asymptot-
ically long chains 1/gT.

Assuming P to be chain length independent for x≫ 1 this implies f(x) ∼ x1/(dν0−1) and, hence,

βPb20 ≈ (b0/ξ(ρ))
d ≈ (bd0ρ)

dν0/(dν0−1) ≈ (b20ρ)
3 (3.9)

where we have used Eq. (3.6) to restate the well-known relation between pressure and blob size ξ.59 The
predicted exponent fits the data over about a decade in density where the blob size is sufficiently large.
Additional non-universal physics related to the already mentioned LJ monomer interactions becomes relevant
for densities around ρ ≈ 0.5. Note that the axes of the panel are not expressed in fully dimensionless units
which makes the comparison to real experiments difficult. Chosing as a (natural but arbitrary) length scale
the effective segment size b0 associated to the dilute radius of gyration, one may instead plot the rescaled
pressure y = βPbd0 as a function of the reduced density bd0ρ. In the semidilute regime this corresponds
to a power-law slope y = aPx

3 with a power-law amplitude aP ≈ 83.4 (not shown). This dimensionless
amplitude (or similar related values due to different choices of b0) may be compared to real experiments or
other computational models. As long as the blob size is sufficiently large, i.e. the density sufficiently small
and the chains sufficiently large, molecular details should not alter this universal amplitude. (Persistence
length effects should, e.g., change b0 but not the amplitude aP.) We also note that by matching of the dilute
asymptote βP = ρ/N with the semidilute pressure regime the prefactor of the crossover density ρ∗ may be
operationally defined as

ρ∗ = a1−dν0

P ×N/Rd
g ≈ 0.845/N1/2 (3.10)

with Rg being the radius of gyration in the dilute limit. This implies ρ∗ ≈ 0.02 for our largest chains with
N = 2048. Considering that the semidilute regime breaks down at ρ ≈ 0.5 this limits the semidilute scaling
to about an order of magnitude in density.

3.2.3 Compressibility

In the next paragraph we review and extend the thermodynamic definition of the bulk modulus of a polymer
solution given in Sec. 2.2 and discuss its relation with the number of monomers in the semidilute blob. Later
in this section we describe and compare three different methods allowing to measure this quantities precisely
for our flexible polymer chains systems.

Definitions. Being an isotropic liquid a polymer solution is described in the hydrodynamic limit by only
one elastic modulus, the bulk compression modulus

K ≡ 1/κT ≡ kBTρ/gT,N = ρ
∂P

∂ρ
, (3.11)
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with κT being the standard isothermal compressibility77 and gT,N the “dimensionless compressibility” for
systems of finite chain length N . (The shear modulus G is by definition of a liquid given by G = 0.1) We use
here the additional index N to distinguish gT,N from the dimensionless compressibility for asymptotically
long chains gT ≡ limN→∞ gT,N. Due to the transitional entropy of the chains both quantities should be
related by33, 59

1

gT,N
=

1

N
+

1

gT
, (3.12)

i.e. gT,N and gT are expected to differ strongly for small densities where gT must be large. (Note that gT
corresponds to the excess contribution to the total free energy.) Our aim is to determine gT,N precisely
comparing different techniques and to extrapolate then using Eq. (3.12) to gT which should scale in the
semidilute regime as the number of monomers per blob as stated by Eq. (3.6) in the Introduction.

Measurements. As mentioned in Sec. 2.2, the bulk compression modulus of a polymer solution can
be computed numerically by fitting the pressure isotherms discussed in the previous section. The resulting
curves for N = 1 and the largest chain lengths available are represented by the thin lines in the main panel
of Fig. 3.5 where gT,N is traced as a function of density ρ. A disadvantage of this method is that P (ρ,N)
must be known for a large number of densities, especially for large ρ where the pressure increases strongly.

Alternatively, the compressibility for one specific density can be obtained from the plateau in the low-
wavevector limit of the total structure factor S(q,N) which is further discussed in Fig. 3.15 below. This
method was used to obtain the bulk of the data presented in Fig. 3.5. Due to the large box sizes we have
used (especially in the low-ρ limit) this method provides over the whole density range reliable numerical
values only requiring the analysis of about 1000 more or less independent configurations which anyway had
to be stored for the computation of various configurational properties.

Finally, a third method is available to compute the compressibility using the Rowlinson formula78

K = P +
〈X 〉
V

− β

V

〈

δ2W
〉

(3.13)

with W being the already mentioned virial and X the so-called “hypervirial”.43 The hypervirial is defined
by

X = − 1

d2

∑

i<j

rij
dw(rij)

drij
(3.14)

with rij =
√

x2
ij + y2

ij being the distance between two interacting beads i and j and w(rij) the pair virial

function defined in Eq. (2.5). Results obtained for N = 1024 using MC simulations are indicated by the
large spheres in Fig. 3.5. While the computation of K using the Rowlinson formula is numerically trivial at
high melt densities (ρ > 0.5), it becomes statistically delicate at lower densities where both K and P become
small and a large positive hypervirial term 〈X 〉 /V essentially must cancel a large negative contribution due
to the excess pressure fluctuation

〈

δ2W
〉

. Since in addition to this the latter stress fluctuation contribution
converges extremely slowly with time, the Rowlinson formula becomes frustratingly time consuming for
smaller densities as discussed in Ref.[99].

Interpretation of data. In agreement with Eq. (3.11) and the scaling of the pressure discussed above
the dimensionless compressibility gT,N is found to be strongly N -dependent for short chains and small den-
sities where the translational entropy matters. This chain length dependence is, however, easily understood
using Eq. (3.12) as explicitly checked by the scaling collapse shown in the inset. The scaling being successful
for even rather small chains, this allows us to determine even from data obtained at small N the asymptotic
chain length behavior gT for all densities (indicated by stars). Consistent with Eq. (3.9) the dashed bold
lines indicate the power-law asymptote

gT ≈ 1

3aP(b20ρ)
2
≈ 0.24/ρ2 (3.15)
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Figure 3.6: Average chain size R for a broad range of densities ρ and chain lengths N : (a) Root-mean-
square chain end-to-end distance Re as a function of density ρ. The dilute limit is characterized by an
effective segment length be,0 = 0.98 as shown by the dashed lines. The bold lines indicate the expected
scaling Re ∼ ρ−1/d for high densities. (b) Successful scaling of Re/ξ and Rg/ξ as functions of the reduced
chain length N/g as expected from the standard density crossover scaling.59 The exponent ν = ν0 ≡ 3/4 for
the dilute swollen chain limit is given by the dashed lines, the compact chain exponent ν = 1/d by the bold
lines. (c) Replot of Re focusing on the ρ-scaling for constant chain length N .

for the semidilute regime. Taking apart an arbitrary prefactor the number of monomers per blob g may thus
be identified with the dimensionless compresssibility.

3.3 Conformational (real space) properties

3.3.1 Chain and subchain size

Asymptotic limits. That sufficiently long 2D polymer chains become indeed compact for all densities,
as stated by Eq. (3.3), is shown in Fig. 3.6 presenting the overall chain size R as characterized by the root-
mean square chain end-to-end distance Re and the radius of gyration Rg.

79 As expected the typical chain
size is found to increase with a power-law exponent ν = ν0 ≡ 3/4 in the dilute limit (dashed lines) and
with ν = 1/d for larger chains and densities in agreement with various numerical51, 69, 72 and experimental
studies.16, 17, 22 The unscaled chain end-to-end distance Re is traced as a function of density ρ in panel (a)
confirming that the chain size decays according to Eq. (3.3) at high densities (bold line) while it becomes
ρ-independent in the dilute limit where Re(N)/Nν0 → be,0 ≈ 0.98 for the largest chains probed. A similar
plot exists for the chain radius of gyration.

Scaling with chain length. The scaling of the chain size for different densities as a function of
chain length N is checked in panel (b) where the horizontal axis is rescaled with the number of monomers
g(ρ) ∼ ρ−2 spanning the semidilute blob and the vertical axis by its size ξ ∼ ρ−3/2 in agreement with the
standard density crossover scaling, Eq. (3.6). We fix the (slightly arbitrary) prefactors as

g ≡ 0.09/(bd0ρ)
1/(ν0d−1) ≈ 5.43/ρ2

ξ ≡ b0g
ν0 ≈ 1.35/ρ3/2 (3.16)

with b0 ≡ 0.37 the dilute statistical segment length and trace y = R(N)/ξ(ρ) as a function of x = N/g(ρ).
This choice allows to fix the intercept of the asymptotic power-law slopes for the radius of gyration at
(x, y) = (1, 1) as emphasized by the vertical dashed line.
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Figure 3.7: Root-mean-square subchain end-to-end distance Re(s) and radius of gyration Rg(s) for sub-
chains of s = m−n+ 1 ≤ N monomers with N = 1024. Tracing Re(s)/ξ(ρ) and Rg(s)/ξ(ρ) vs. (s− 1)/g(ρ)
yields again a perfect data collapse for all densities.

Scaling with density. An equivalent data representation focusing on the chain size as a function of
density taking as reference the dilute chain size R0 ≡ be,0N

ν0 is shown in panel (c). We trace here Re/R0 as
a function of the reduced density x = ρ/ρ∗ with ρ∗ = 0.845/N1/2 being the crossover density as defined by
the presssure isotherm, Eq. (3.10). Within this prefactor choice for ρ∗ the crossover for Re occurs at about
x ≈ 2. For larger x the typical chain size decreases indeed as R ∼ 1/

√
ρ with increasing density (bold line)

as expected for compact chains, Eq. (3.3). Below we refer to N/g ≈ (ρ/ρ∗)2 ≫ 1 as the “compact chain
limit” and to g → 0, where the blob size becomes formally comparable or smaller than the monomer size, as
the “melt limit”.

Scaling of subchain size. To emphasize that it is not only the total chain which becomes compact but
in a self-similar and hierarchical manner the chain conformation on all scales we present in Fig. 3.7 the scaling
of the size of subchains of arc-length s = m−n+ 1 ≤ N (see sketch). The subchain size is characterized (as
before) by its root-mean-squared end-to-end distance Re(s) (upper data) and radius of gyration Rg(s). To
improve the statistics averages are taken over all monomer pairs (n,m) possible. Please note that averaging
only over subchains at the curvilinear chain center (n,m ≈ N/2) slightly reduces chain end effects; however,
the difference is negligible for the large chains we focus on. The limit s = N corresponds obviously to
the total chain size discussed above. As in panel (b) of Fig. 3.6 the reduced subchain size y = R(s)/ξ(ρ)
is plotted as a function of the reduced arc-length x = (s − 1)/g(ρ) using the same prefactor convention,
Eq. (3.16). Data for one chain length, N = 1024, and a broad range of densities are presented. The data
collapse is again perfect and the asymptotic power-law slopes for x ≪ 1 (dashed lines) and x ≫ 1 (bold
lines) for the radius of gyration intercept at (x, y) = (1, 1). It is in fact the subchain size radius of gyration
Rg(s) for N = 1024 and N = 2048 for the densities ρ = 0.0625 and ρ = 0.125 which has allowed the most
precise determination of the prefactors indicated in Eq. (3.16). Note also that since Re(s) becomes compact
more rapidly as Rg(s), a blob size defined using Re(s) would be slightly smaller. The numerical prefactors
depend thus somewhat on the property probed.

Success of scaling at high densities. Finally, we draw attention to the fact that the blob scaling of
the chain and subchain size is even successful for our highest densities where the blob picture clearly breaks
down for some other properties as discussed, e.g., in Sec. 3.2.2. This is due to the fact that R(s) is set in
this limit by the typical distance dcm ≈ (s/ρ)1/d between the chain or subchain center of masses and this
irrespective of the physics (monomer size, persistence length, . . .) on small scales. Since ρ ≈ g/ξd is imposed,
a different choice of the blob size only leads to a shift of the data along the bold power-law slope ν = 1/d.
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Only for sufficiently low densities where (sub)chains smaller than the blob can be probed it is possible to
test the blob scaling and to adjust the prefactors.
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Figure 3.8: (a) Sketch of the intrachain distributions Gi(r, s) and the corresponding contact exponents θi

for dilute and compact chain limits.65 (b) Scaling plots for one density ρ = 0.875: G0(r,N), G1(r,N/2) and
G2(r,N/2) for N = 1024 (squares) and N = 2048 (spheres) and Ge(r, s) for N = 1024 ≫ s with s = 256
(triangles) and s = 512 (diamonds). The distributions G0(r,N) and G1(r,N/2) are shifted upwards for
clarity. All data for different N and s collapse on the respective master curves if y = R2

iGi(r, s) is plotted
vs. the reduced distance x = r/Ri with R2

i being the second moment of the corresponding distribution. The
thin line indicates the distribution for Gaussian chains. The power laws y ≈ xθi observed for x≪ 1 confirm
Duplantier’s prediction. The thin solid line at the bottom shows Eq. (3.18) for i = 2. (c) Distribution
G2(r, s = N/2) for various densities and N = 1024. The exponent θ2 for x≪ 1 is given by θ2 = θ2,0 ≡ 19/12
in the dilute limit and for distances probing the structure within the semidilute blobs (dashed lines).

3.3.2 Intrachain contact probability

Definitions. Being characterized by the same Flory exponent ν as their 3D counterparts does by no
means imply that compact 2D chains are Gaussian.65, 66 This can be directly seen, e.g., from the different
(properly normalized) probability distributions Gi(r, s) of the intrachain vectors r = rm − rn between the
monomers n and m = n+ s− 1 presented in Fig. 3.8. As illustrated in panel (a),

• G0(r, s = N) characterizes the distribution of the total chain end-to-end vector (n = 1, m = N),

• G1(r, s = N/2) the distance between a chain end and a monomer in the middle of the chain (n = 1,
m = N/2),

• G2(r, s = N/2) the distribution of an inner segment vector between the monomers n = N/4 and
m = 3N/4,

• while Ge(r, s) averages over all pairs of monomers (n,m = n+ s− 1) for s ≤ N .33
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Melt limit. Let us focus first on the large-ρ limit where the blob size becomes negligible.45, 46 As shown in
panel (b) for one high density, ρ = 0.875, all data for differentN and s collapse on three distinct master curves
if the axes are made dimensionless using the measured second moment R2

i of the respective distribution.
(R2(s) is the subchain size Re(s) discussed already in Sec. 3.3.1.) The only relevant length scale is thus
the typical size of the subchain itself. The distributions are all non-monotonous and are thus qualitatively
different from the Gaussian distribution y = exp(−x2)/π (thin line) expected for uncorrelated ideal chains
in d = 2. Please note that we have binned the data logarithmically and only distances r > 2 are presented
to suppress local packing effects of the LJ beads which would superimpose and blur the expected scaling
behavior for small distances. Confirming Duplantier’s prediction65 we find

Rd
iGi(r, s) = xθifi(x) (3.17)

with x = r/Ri being the scaling variable. The indicated power-law slopes correspond (from the top to the
bottom) to the contact exponents θ0 = 3/8, θ1 = 1/2 and θ2 = 3/4 describing the small-x limit where the
universal functions fi(x) become constant. Especially the largest of these exponents, θ2, is clearly visible.
The contact probability for two monomers of a chain in a 2D melt is thus strongly suppressed compared to
ideal chain statistics (θ0 = θ1 = θ2 = 0).

The rescaled distributions show exponential cut-offs for large distances. The Redner-des Cloizeaux
formula100 is a useful interpolating formula which supposes that

fi(x) = ci exp(−kix
2). (3.18)

The constants ki = 1 + θi/2 and ci = kki

i /πΓ(ki) with Γ(z) being the Gamma function86 are imposed by
the normalization and the second moment of the distributions.101 This formula is by no means rigorous but
yields reasonable parameter free fits as it is shown by the thin solid line for f2(x).

Density variation. Density effects are investigated in panel (c) of Fig. 3.8 for the distribution G2(r, s =
N/2) for one chain length N = 1024. (Qualitatively similar plots exists for the other distributions.) As
in panel (b) the data points for r > 2 have been binned logarithmically. The axes are again rescaled with
the measured second moment R2

2(s) of the given distribution. The scaling for very small (ρ < 0.0625) and
very high densities (ρ ≥ 0.5) is particulary simple. In these limits R2(s) is the only relevant length scale
and the data are thus found to collapse on two respective master curves. The dashed and bold power-law
slopes indicated in the figure correspond to the exponents θ2 = θ2,0 ≡ 19/12 and θ2 = 3/4 predicted for both
limits.65 Obviously, the scaling of G2(r,N/2) becomes more intricate for semi-dilute densities where the
blob size ξ sets an additional length scale.48 For s = N/2 ≫ g(ρ) ≫ 1 one expects to observe two power-law
asymptotes, one scaling as G2(r,N/2) ∼ r19/12 if the conformational properties within the blob are probed
(r ≪ ξ) and one as G2(r,N/2) ∼ r3/4 for ξ ≪ r ≪ R(s). Although much larger blobs are certainly warranted
to demonstrate this unambiguously, this expected behavior is qualitatively consistent with our data as may
be seen for ρ = 0.125.

Size distribution of subchain of arc-length s. It is also instructif to compute the size distribution
Ge(r, s) of subchains of arc-length s where we average over all pairs of monomers n and m = n + s − 1.
Obviously, Ge(r, s) ≈ G0(r,N) for very large subchains s → N (not shown). As can be seen in panel (b)
of Fig. 3.8, the rescaled distributions Ge(r, s) and G2(r,N/2) become identical for sufficiently large chains
(where chain-end effects can be ignored) if N/2 and s are either both much larger or much smaller than the
blob size g. It is for this reason that the exponent θ2 is central for asymptotically long chains. This will
become obvious below in Sec. 3.3.5 and Sec. 3.4.1. The two exponents θ0 and θ1 are only relevant if the
measured property specifically highlights chain end effects as in the example presented in the next paragraph.

Chain and subchain size revisited

Reminder. The log-log representation chosen in Fig. 3.7 masks deliberately small corrections to the
leading power law due to chain end effects which exist in 2D as they do in 3D polymer solutions and
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Figure 3.9: Corrections to the dominant power law of the (sub)chain size: (a) Scaling plot of (Re/Rg)
2

for different chain lengths N as a function of reduced density x = ρ/ρ∗. In the dilute limit the ratio clearly
exceeds the Gaussian value (thin line) but does not become 35/4 = 8.75 as one would expect if the dilute
Flory exponent ν = ν0 = 3/4 would hold rigorously for all subchains, Eq. (2.12). More importantly, it is
demonstrated that with increasing number of blobs the ratio approaches for all densities and chain lengths a
universal limit ≈ 5.3 confirming older numerical studies.50, 51, 69, 72 (b) Focusing on the density ρ = 0.875 the
reduced subchain size R(s)/s1/2 is characterized either by the root-mean-square end-to-end distance Re(s)
(top data) or by the radius of gyration Rg(s) (bottom data). Interestingly, Re(s)/s

1/2 decays for s > N/2
due to chain-end effects. The solid horizontal lines indicate the effective segment sizes be = 1.6 and bg = 0.65
obtained for 100 ≪ s≪ N from Re(s)/s

1/2 and Rg(s)/s
1/2, respectively. The dashed line corresponds to an

apparent effective segment size bN = 1.5 from the end-to-end distances Re(N) of our longest chains.

melts.33 As explained in details in Sec. 2.3, assuming that the typical size of all subchains is settled by the
same ν exponent, the ratio (Re(N)/Rg(N))2 do not depend on the spatial dimension or the local monomer
properties and can be rigorously calculated by (Re(s)/Rg(s))

2 = (2ν+1)(2ν+2) which yealds 6 for ν = 1/2
and 35/4 = 8.75 for ν = 3/4.

Corrections to the assumed power-law behavior at the lower integration cut-off should not alter these
values if s is sufficiently large.

Observed total chain ratio (Re(N)/Rg(N))2. The scaling of the ratio (Re/Rg)
2 for the total chain,

i.e. s = N , is put to the test in panel (a) of Fig. 3.9. Data for different chain length N is traced as a
function of the reduced density x = ρ/ρ∗. Please note the strong finite-N effects in the dilute limit where
the ratio becomes of course density independent. That the ratio becomes larger than the Gaussian value
(thin line) in this limit is expected from Eq. (2.12). Interestingly, the corresponding value 8.75 is clearly
too large and not compatible with our data which indicates that the chains are less swollen at the chain
ends (as further discussed in Sec. 3.3.3). More importantly, it is seen that the scaling works nicely once
the density and/or the chain length are sufficiently large (x > 1). The data decreases then systematically
levelling off to a numerical plateau value 5.3 for x > 3 in conflict to a rigorous power-law with a compact
chain Flory exponent ν = 1/2. This confirms similar observations made in previous simulations using much
shorter chains.50, 51, 69, 72

This behavior can be understood by considering more systematically the subchain sizes as shown in
panel (b) of Fig. 3.9 for one high density ρ = 0.875. Using log-linear coordinates we present here Re(s)/s

1/2

and Rg(s)/s
1/2 vs. s and Re(N)/N1/2 and Rg(N)/N1/2 vs. N (stars). The reduced radius of gyration

(bottom data) becomes in fact rapidly constant and chain length independent. As emphasized by the
bottom horizontal line we find

bg ≈ Rg(s)/s
1/2 ≈ Rg(N)/N1/2 for s,N ≫ 100 (3.19)
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with bg = 0.65 for ρ = 0.875. Interestingly, we observe non-monotonous behavior for Re(s)/s
1/2 with a

decay for s > N/2. Due to this decay Re(N)/N1/2 (stars) is systematically below the corresponding internal
chain distance Re(s)/s

1/2. Fitting the total chain end-to-end distances yields an effective segment size79

bN ≈ Re(N)/N1/2 ≈ 1.5 for 100 ≪ N, (3.20)

as shown by the dashed line. (The index ⋆ indicates that we refer to the total chain.) This value agrees
of course with the ratio (Re/Rg)

2 = (bN(ρ)/bg(ρ))
2 ≈ 5.3 < 6 seen in panel (a). If on the other hand the

effective segment size be is obtained from the internal distances this yields

be ≈ Re(s)/s
1/2 ≈ 1.6 for 100 ≪ s≪ N, (3.21)

as indicated by the top solid line. Since in this s-regime Eq. (2.12) holds we obtain accordingly (be(ρ)/bg(ρ))
2 ≈

6. The same holds for all densities where sufficiently long chains are available (N ≫ s ≫ g). Note that
the integral over s′ in Eq. (2.11) is dominated by subchains with s′ ≈ s/2 and that thus large subchains
of order s′ ≈ N are less relevant for the gyration radius of the total chain Rg(s = N). Hence, the non-
monotonous behavior observed for Re(s) should be barely detectible for the radius of gyration in agreement
with Eq. (3.19).

That a naive fit of be from the total chain end-to-end distance Re(N) leads to a systematic underestima-
tion of the effective segment size of asymptotically long chains is a well-known fact for 3D melts.33 However,
both estimations of be merge for 3D melts if sufficiently long chains are computed as may be seen from
Eq. (86) and Fig. 23 of ref.33 Apparently, this is not the case in 2D since if Re(s) or R2

e(s)/s are plotted as a
function of x = s/N (not shown) a nice scaling collapse of the data is obtained for large x and for N ≥ 256,
i.e.

Re(s)

besν
≈ f̃(x) with f̃(x) =

{

1 if x≪ 1
bN/be if x→ 1.

(3.22)

Hence, chain end effects do not scale away with N → ∞ as they do in 3D.
A simple qualitative explanation for Eq. (3.22) is in fact readily given by considering an ideal chain of bond

length be squeezed into a more or less spherical container of size Rc ∼ N1/2. For s≪ N it is unlikely that the
subchain interacts with the container walls and Re(s) ≈ bes

1/2. With s→ N the chain will feel increasingly
the confinement reflecting it back from the walls into the center of the container reducing thus the effective
segment length bN associated with the chain end-to-end distance. Since the scaling function f̃(x) must be
universal, it should be possible to express the ratio bN/be — and thus the ratio Re(N)/Rg(N) = bN/bg —
in terms of the dimension d and the exponents θ0, θ1 and θ2. The two statistical segment sizes be and bN
should thus be related. At present we are still lacking a solid theoretical proof for the latter conjection.
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Figure 3.10: Intrachain angular bond correlations vs. arc-length s for chains of length N = 1024 and a
broad range of densities: (a) As expected from Eq. (2.13) and the swollen chain statistics in the dilute limit
the first Legendre polynomial P1(s) approaches with decreasing density P1(s) ≈ +1/s1/2 (dashed line). (b)
The bonds are anticorrelated for larger s ≫ g. At higher densities there is a first peak at s ≈ 10N0 due to
the local wrapping of the chains. A second peak is visible at s ≈ N/2 as expected from the discussion in
Sec. 3.3.2. (c) P2(s) probes the return probability pr(s) and approaches thus with increasing density a slope
P2(s) ≈ 1/s11/8 (bold line). (d) 2πrP2(r) oscillates strongly with an exponentially decreasing amplitude.
Being dominated by a nematic peak at the origin (r ≈ 1) it acts as a δ-function.

3.3.3 Intrachain angular correlations

First Legendre polynomial. As explained in Sec. 2.3 the first Legendre polynomial P1(s) ≡ 〈en · em〉
has been shown to be of particular interest for characterizing the deviations from Gaussianity in dense 3D
polymer solutions.33 P1(s) is presented in panel (a) and panel (b) of Fig. 3.10 for different densities keeping
the chain length constant (N = 1024).

As one expects from Eq. (2.13) and the swollen chain statistics in the dilute limit where ν = ν0 = 3/4
the data approach with decreasing density the power law P1(s) ≈ +1/s1/2 indicated by the dashed line.
Please note the strong finite-N corrections to the asymptotic power law even for our single chain simulation
indicated by the filled spheres (ρ = 0) due to the fact that chains are quite generally less swollen at their
ends.102 Using the exact relations Eq. (2.13) and Eq. (2.11) this is consistent with and explains in turns the
strong finite-N effects for the ratio (Re(N)/Rg(N))2 shown in Fig. 3.9(a) for the dilute limit.103

The bonds remain of course aligned, P1(s) > 0, if the structure within the blobs is probed (s ≪ g) at
finite densities. Interestingly, the bonds becomes anti-correlated for larger arc-lengths as may be better seen
from panel (b) where we have plotted −P1(s)N as function of x = (s− 1)/N . For larger densities two peaks
are clearly visible. The first anti-correlation peak seen in panel (b) is due to the local backfolding of the
chain contour caused by the packing of the monodisperse beads which can be directly seen from chain 1
drawn in Fig. 3.2(a). More importantly, there is a second peak for all densities and sufficiently long chains.
Using Eq. (2.13) this peak corresponds exactly to the scaling expected from Eq. (3.22) with an associated
universal function scaling as −∂2

x(xf̃(x)). Following the discussion at the end of Sec. 3.3.2 a peak at s ≈ N/2
is expected due to the confinement of the chain which causes long segments to be reflected back. We stress
however that altogether this is a rather small effect and essentially P1(s) ≈ ∂2

sR
2
e(s) ≈ 0 for s ≫ g. Hence,

the first Legendre polynomial confirms that to leading order 2ν ≈ 1 in the compact chain limit.

Second Legendre polynomial. More relevant for the focus of this chapter is the scaling observed
for the second Legendre polynomial P2 ≡ 〈(en · em)

2〉 − 1/2 presented in panel (c) and (d) of Fig. 3.10. In
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the latter panel (d) the second Legendre polynomial is plotted for one configuration with N = 1024 and
ρ = 0.875 as a function of the distance r between the mid-points of both bonds. Averages are taken over
all intrachain bond pairs with [r, r + δr] using a bin of width δr = 0.01. The vertical axis is rescaled with
the phase volume 2πr. As can be seen, the orientational correlations oscillate with r and this with a rapidly
decaying amplitude. (These oscillations are related to the oscillations of the pair correlation function at high
densities and reflect the local packing and wrapping of chains composed of discrete spherical beads.) Due
to the oscillations and (more importantly) the decay, only bond pairs at r ≈ 1 matter if we compute P2(s),
i.e. if we sum over all distances r at a fixed curvilinear distance s as shown in panel (c). P2(s) thus probes
essentially the return probability pr(s) of the chain after s curvilinear steps. Following Eq. (3.17) one thus
expects

P2(s) ≈ w(ρ) × pr(s) ≈ w(ρ)/s1+νθ2 , (3.23)

where w(ρ) characterizes the s-independent local and non-universal alignment effect given that two bonds
are close to each other. This is confirmed by our data which is seen to approach with increasing density a
power law P2(s) ≈ +1/s11/8 (bold line).

3.3.4 Chain shape

As obvious from Fig. 3.2 the compact chain conformations are neither perfectly spherical nor extremely
elongated. Having discussed above the chain size we address now the chain shape as characterized by the
average aspherity of the gyration tensor. (For definitions see Sec. 2.3.) In the compact chain limit the “aspect
ratio” of the gyration tensor eigenvalues is found to approach

〈λ1〉 : 〈λ2〉 ≈ 4.5 : 1 (3.24)

for our longest chains which corresponds to a reduced principal eigenvalue 〈λ1〉 /R2
g ≈ 0.8.46 It should be

noted that Gaussian chains and dilute good solvent chains in 2D are characterized104 by an aspect ratio
〈λ1〉 / 〈λ2〉 ≈ 5.2 and 6.3, respectively. (The latter value stems from our own MC simulations for dilute SAW
up to N = 8192103 which is slightly lower than the value given in the literature104). High-density chains are
thus clearly less elongated.

Motivated by experimental work on DNA molecules investigated using fluorescence microscopy105 the
asphericity of the inertia tensor of 2D objects may be further characterized by computing the moments ∆1

and ∆2 defined in Sec. 2.3.80, 81, 104, 105 Obviously, ∆1 = ∆2 = 1 for rods and ∆1 = ∆2 = 0 for spheres. As
indicated by the thin horizontal lines in Fig. 3.11, it is known for Gaussian chains in two dimensions that
∆1 ≈ 0.68 and ∆2 = 2(d+ 2)/(5d+ 4) ≈ 0.57.80, 104

Our data for ∆1 and ∆2 is represented in Fig. 3.11 as a function of the reduced chain length N/g. This
allows to collapse data for a broad range of densities on two respective master curves. In agreement with
Yethiraj72 the aspherity is found to decreases systematically with increasing chain length and density, i.e.
the chains become more spherical the more we enter the compact chain regime. As one expects, plateau
values are approached in the dilute limit and the compact chain limit indicated, respectively, by dashed
and bold lines. The indicated values for the dilute limit ∆1 ≈ 0.72 and ∆2 ≈ 0.62 have been taken from
our single chain MC simulations (ρ = 0)103 which are again similar to previous numerical and experimental
data.81, 104, 105 Unfortunately, in the opposite limit the precise plateau values for asymptotically long chains
are yet unknown and the presented lines with ∆1 ≈ 0.63 and ∆2 ≈ 0.51 are merely guides to the eye.
(Yethiraj72 indicates ∆2 = 0.52 for N = 256 which agrees reasonably with our estimation.) We emphasize
that in any case these plateau values are below the corresponding predictions for Gaussian chains, i.e. the
chains become clearly more spherical.

3.3.5 Interchain monomer pair distribution function

Predictions. As defined in Sec. 3.3.2 the contact exponent θ2 characterizes the intrachain subchain size
distribution Ge(r, s) ≈ G2(r, s) for small arc-lengths s ≪ N and distances r ≪ R. It has been argued
recently48, 66 that θ2 should also be relevant for describing interchain monomer contacts. As illustrated in
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Figure 3.11: Chain aspherity for different densities
as a function of reduced chain length N/g in log-linear
coordinates using the same symbols as in Fig. 3.3. The
horizontal axis is rescaled using Eq. (3.16) for the num-
ber of monomers per blob g(ρ). Since strong finite-N
effects are again observed in the dilute limit, only the
three largest chain lengths are given for ρ < 0.0625.
The aspherity is characterized by the moments ∆1 and
∆2 of the eigenvalues λ1 and λ2 of the inertia ten-
sor, Eq. (2.16). Both moments decay with increasing
chain length and density, i.e. the chains become more
spherical. The thin lines correspond to the predic-
tion for Gaussian chains,80, 104 the dashed lines to the
plateau values in the dilute limit103 and the bold lines
to suggested values for long compact chains.46, 72 Even
longer chains and, more importantly, better statistics
are required to seddle the latter limit.

Fig. 1.5 this scaling argument states that it is irrelevant of whether the neighborhood at r ≪ R around the
reference monomer is penetrated by a long loop of the same chain or by another chain with a center of mass
at a typical distance R. The radial pair distribution function gint(r) between monomers from different chains
should thus scale as

gint(r)ρ ≈ G2(r, s ≈ N) ×N ×Rdρ/N (3.25)

where the second factor N stems from the fact that it is irrelevant which monomer of the second chain
is probed.106 (By normalization gint(r) → 1 for r ≫ R for all densities.) Note that the underlined term
characterizing the probability for having a second chain close to the reference chain drops out in the compact
chain limit where Eq. (3.3) holds. It follows from Eq. (3.17) for i = 2 and Eq. (3.25) that

gint(r) ≈ (r/R)θ2 ∼ 1/Nνθ2 for r ≪ R (3.26)

as indicated in panel (b) by dashed and bold solid lines for, respectively, the dilute limit and the melt limit.

Numerical confirmation. To test these predictions we have computed gint(r) for a broad range of
densities.48 Using double-logarithmic coordinates the data has been traced in panel (a) of Fig. 3.12 as a
function of the reduced distance x ≡ r/Rg. In agreement with Eq. (3.26) the same exponents θ2 are observed
for x ≪ 1 as for the intrachain subchain size distribution G(r, s) ≈ G2(r, s) for s ≪ N : θ2 = 19/12 in the
dilute limit (dashed line) and θ2 = 3/4 in the compact chain limit (solid line). Please note that the data
representation is again motivated by the density limits where the chain size is the only relevant length scale,
i.e. data collapse is not expected in the semi-dilute regime. The scaling with respect to chain length N for
small distances r indicated in Eq. (3.26) is successfully verified by comparing different chain lengths N at the
same density ρ as shown in panel (b) of Fig. 3.12 for ρ = 0.875. The distributions gint(r) have been sampled
here using linear r-bins to emphasize that, as one expects, the standard oscillations of the monomer-monomer
pair-correlations are observed for small distances r at high densities. Interestingly, being caused by non-local
correlations the predicted N -scaling gint(r) ∼ 1/N3/8 still holds in the high-ρ limit where g → 0. Please
note that the peak structure disappears rapidly with decreasing density (not shown).

3.3.6 Interchain binary monomer contacts

In order to characterize more systematically the density crossover from the dilute limit over the semidilute
regime up to dense melts we focus now on gint(r ≈ a) with a being one fixed monomeric distance for all
densities. For the data presented in Fig. 3.13 we have determined the typical number nint of interchain
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Figure 3.12: Connection between intrachain and in-
terchain contact probability: (a) Numerical data for
N = 1024 and r > 2 for different densities ρ using
the same symbols as in Fig. 3.6. The logarithmically
binned results are traced as a function of the reduced
distance x = r/Rg. Due to the additional length scale
ξ(ρ) in the semidilute density regime, data collapse is
only observed for very low dilute densities and high
melt densities. (b) Scaling collapse of gint(r)N

3/8 for
small distances r for the melt density ρ = 0.875 con-
firming the predicted scaling gint(r) ∼ 1/Nνθ2 in this
limit. The cut-off parameter a = 1.56 used for the de-
termination of the typical interchain monomer contact
number nint is indicated by the arrow.

monomer contacts for a reference monomer by integrating gint(r)ρ up to a cut-off a = 1.56. The raw
data obtained for several densities is presented in panel (a) which is (of course) seen to scale with N as the
interaction energy, βeint ≈ nint, between monomers from different chains discussed in Fig. 3.3 above. (Values
for N = 1024 are given in Table 2.1.) The specific value used for a is motivated by the first minimum of the
pair distribution function which varies only weakly with ρ. It turns out that for not too high densities the
scaling of nint is robust under variation of a. The quality of the ρ-scaling (but not of the scaling with respect
to N) depends somewhat on a for ρ ≥ 0.75 where the blobs become too small and additional physics due
to the discrete beads becomes relevant as one expects from our discussion of the thermodynamic properties
(Sec. 3.2). The cut-off parameter a is essentially a useful tuning parameter allowing to improve the scaling
collapse for the highest (experimentally less relevant) densities. It is satisfactory, however, that it is possible
to improve the scaling with just one physically transparent parameter.

Using a similar representation as in Fig. 3.6 for the chain size, we present in panel (b) of Fig. 3.13
the rescaled number of interchain contacts nint as a function of the reduced chain length N/g for different
densities and in panel (c) as a function of the reduced density ρ/ρ∗ for different chain lengths. The rescaling
used for the vertical axes is readily obtained by matching at N/g ≈ (ρ/ρ∗)2 ≈ 1 the power-law results implied
by Eq. (3.26) for the dilute (νθ2 = 19/16) and compact (νθ2 = 3/8) limits. This implies for the latter limit
(solid bold lines)

nint ≈
ρad

gν0θ2,0
× (N/g)−νθ2 (3.27)

where the first factor corresponds to the fraction of monomers of a given blob interacting with monomers
from other chains given that the blob is at the chain perimeter. The second term (N/g)−νθ2 = (N/g)−3/8

stands for the fraction of blobs of a chain interacting with other chains. Eq. (3.27) implies the ρ-scaling
observed in panel (b) of Fig. 3.3 for the interaction energy eint ∼ ρ21/8 in the semidilute regime. The scaling
seen in Fig. 3.13 implies that in the compact chain limit the perimeter P scales as107

P/ξ ≈ (N/g)1−θ2/d (3.28)

where the ρ-scaling only holds rigorously (without tuning parameter) in the semidilute regime. Since on the
other hand P/ξ ≈ (R/ξ)dp ≈ (N/g)dp/d, this implies a fractal line dimension dp = d− θ2 = 5/4, generalizing
thus the numerical result obtained for the melt limit46 to the broader compact chain limit.
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Figure 3.13: Average interchain monomer contact number nint obtained from the interchain monomer pair-
distribution function gint(r) assuming a cut-off distance a = 1.56 and using the same symbols as in Fig. 3.6:
(a) unscaled nint(N) for different densities, (b) scaling plot with respect to reduced chain length N/g for
different densities and (c) scaling plot with respect to reduced density ρ/ρ∗ for different chain lengths. The
dashed lines correspond to the exponent νθ2 = 19/16 for dilute chains, the full lines to νθ2 = 3/8 for the
compact limit. The observed data collapse confirms Eqs. (3.26) and (3.27).

3.4 Reciprocal space properties

3.4.1 Intramolecular form factor F (q)

In Sec. 2.3.2 we reviewed already the “generalized Porod law”82, 84, 85 and the theoretical predictions for the
intramolecular form factor F (q). These predictions are compared to our numerical results in Fig. 3.14 for
different densities and chain lengths. The thin lines indicated correspond to the Gaussian chain behavior
and the bold solid lines to our key prediction Eq. (3.8). Obviously, F (q) → N for q ≪ Rg as may be seen
from panel (a) presenting the unscaled form factor F (q) for one chain length, N = 1024, and a broad range
of densities. As indicated by the dashed lines we have in the intermediate wavevector regime of long dilute
chains a power-law decay103

F (q) = F0(q) =
c0

(b0q)4/3
(3.29)

with a dimensionless amplitude c0 ≈ 0.5. The decay with q in the intermediate wavevector regimes increases
systematically with increasing density. Interestingly, this decay becomes clearly stronger than the Gaussian
chain power law (thin line). The Kratky representations of the form factor reveals non-monotonous behavior
which increases with increasing density and chain length as shown, respectively, in panel (b) and (c). As
shown in the latter panel (c) for one density with N ≫ g, the form factor is found to become N -independent
only in the limit of very large wavevectors. This is quite generally an important indicator for a (generalized)
Porod scattering behavior as discussed in paragraph 2.3.2.

Motivated by the scaling expected for very large chains of blobs, the last panel (d) presents the rescaled
form factor (F (q)/N)Q2 as a function of the reduced wavevector Q = qRg. The filled symbols refer to data
for N = 2048, all other symbols to N = 1024. At variance to the indicated Debye formula for Gaussian
chains a strong nonmonotonous behavior is revealed by our data, which approaches with increasing ρ and
N a power-law exponent −θ2 = −3/4 given by the bold solid line, Eq. (2.38). Please note that the power-
law amplitude used has been determined in the preceeding paragraph. Our complete theoretical prediction
Eq. (2.36) for asymptotically long chains using the Redner-des Cloizeaux approximation is given by the
thin solid line. Without any adjustable parameter it allows to fit successfully the data starting from the
Guinier regime for small wavevectors up to Q ≈ 10 for our largest densities and chain lengths. Our numerical
data presented in Fig. 3.14 agree thus with the theoretical prediction of compact chains of blobs of fractal
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Figure 3.14: Various representations of the intramolecular form factor F (q) for different densities ρ and
chain lengths N : (a) F (q) vs. wavevector q for N = 1024 and a broad range of densities. The dilute swollen
chain limit with F (q) ∼ 1/q1/ν0 is represented by the dashed line, the Gaussian chain F (q) ∼ 1/q2 by the
thin line and the power law for compact chains of fractal contour, Eq. (3.8), by the bold line. (b) The
Kratky representation of the same data reveals with increasing density a more and more pronounced non-
monotonous behavior. (c) The non-monotonous behavior becomes also more striking with increasing chain
length as shown here for one intermediate density, ρ = 0.5. The form factor becomes only N -independent
on the monomeric scale. (d) Kratky representation of y = (F (q)/N)Q2 vs. reduced wavevector Q = qRg.
Filled symbols refer to N = 2048, all other symbols to N = 1024. The Debye formula is indicated by the top
thin line, the Porod scattering for a compact 2D object with smooth perimeter by the dash-dotted line and
the power-law exponent −θ2 = −3/4 by the bold solid line. Our prediction for asymptotically long chains,
Eq. (2.36), allowing a fit starting from the Guinier regime for small wavevectors, is given by the thin solid
line.

contour perimeter.65, 66 Obviously, much larger chains than computationally feasible at present are required
to confirm numerically the predicted perimeter dimension only from the decay of the form factor.

3.4.2 Total monomer structure factor S(q)

As already discussed in Sec. 3.2.3, the isothermal compressibility of the solution may be obtained from the
plateau of the structure factor in the low-q limit according to Eq. (3.7). The smallest possible wavevector is
of course 2π/Lbox since the wavevector q must be commensurate with the simulation box of linear dimension
Lbox. As can be seen in panel (a) of Fig. 3.15 our box sizes allow for a precise determination of gT,N(ρ) for
all densities ρ ≥ 0.0625. Only chains of length N = 1024 are presented for clarity. Note that above q > 3 the
monomer structure becomes important for all densities and, being interested in universal physics, we focus
below on smaller wavevectors. For comparison, we have also included the structure factor S(q) = F0(q) for
one single chain in a large box (ρ = 0). We remind that the “random phase approximation” (RPA)33, 59

1

S(q)
=

1

gT
+

1

F (q)
(3.30)

is supposed to relate — at least for not too high densities — the total structure factor S(q) to the dilute
chain form factor F (q) ≈ F0(q) for q ≫ 1/ξ.33, 59 Note that gT stands for the excess contribution to the
dimensionless compressibility in agreement to Eq. (3.12) and to 1/F (q) → 1/N in the low-q limit. By
construction S(q) is well fitted by the RPA for very small and large wavevectors as shown by the thin solid
line for ρ = 0.125. Please note that even for low densities the crossover regime between both q-limits at
q ≈ 1/ξ is, however, only inaccurately described. The monotonous decay of S(q) implicit to Eq. (3.30) is
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Figure 3.15: Total monomer structure factor S(q) for N = 1024 for a broad range of densities ρ: (a) S(q)
as a function of wavevector q. In the dilute limit (ρ ≪ ρ∗) S(q) corresponds to the single chain form factor
F0(q) indicated by filled spheres. The plateau values in the low-q limit at finite densities have been used
for the determination of gT,N(ρ) as shown for ρ = 0.125 and ρ = 0.5 (thin horizonal lines). Local physics is
observed for q > 3. At smaller wavevectors S(q) is found to decay monotonously only for densities ρ < 0.5.
At higher densities S(q) increases with q at qualitative variance to the RPA formula, Eq. (3.30), indicated
by the thin solid line. (b) Rescaled structure factor y = S(q)/gT,N(ρ) as a function of reduced wavevector
x = qξ(ρ)/2π. Assuming Eq. (3.16) for the blob size ξ, the asymptotic small-q (horizontal line) and large-q
(bold dashed line) limits match at x ≈ 1 as indicated by the vertical dashed line.

indeed observed for the semidilute densities with ρ < 0.5. For higher densities, where the blob picture breaks
down due to monomer physics, S(q) becomes essentially constant for all q up the monomeric scale.

The scaling of S(q) in the semidilute regime is further investigated in panel (b) of Fig. 3.15 where
y = S(q)/gT,N is traced as a function of x = qξ/2π with ξ = b0g

ν0 being set by the matching of the radius
of gyration in the dilute and semidilute limits, Eq. (3.16). As indicated by the vertical dashed line the
asymptotic slopes for small and large wavevectors are found to intercept at x ≈ 1. Using Eq. (3.29) for
the dilute chain form factor this matching implies ξ = b02π(gT/c0)

ν0 . The number of monomers per blob g
thus may be obtained in the semidilute regime from the dimensionless compressibility gT using g ≈ 23gT in
agreement with Eq. (3.16). Our slightly arbitrary prefactor setting thus corresponds to a reasonable choice. It
also suggests that experimental work should proceed in a similar manner by fixing ξ (or equivalently g) from
the matching point of both q-limits of the total structure factor rather than by imposing an inappropriate
Ornstein-Zernike fit to the intramolecular form factor.17
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Chapter 4

Semiflexible Polymers

4.1 Introduction

In our work we have considered so far chains that are flexible down to the monomer scale. This is obviously
an idealized limit since most of the experimentally relevant macromolecules display a finite rigidity.16, 17, 22

Following previous computational work39, 56, 108 we are currently investigating the scaling behavior of semi-
flexible 2D chain solutions, from the dilute limit39 up to high densities, in order to detect how a finite
persistence length may change the system behavior. This short chapter sketches our first conclusions from
the analysis of the numerical simulation results obtained so far, paving the way for later, more detailed
studies of semiflexibility effects in strictly two dimensional polymer systems.

Semiflexibility is readily included in our model by the stiffness potential Hangle = kθ(θ − θ0)
2 between

adjacent bonds along the chain contour with θ being the angle between the bonds, θ0 the angle in the ground
state conformation and kθ the energy difference between orthogonal and perfectly aligned bonds.109 In this
chapter we assume θ0 ≡ 0 i.e. the chains do not have any spontaneous curvature.

We present in Fig. 4.1 snapshots of chain conformations in simulated systems at four densities, increasing
from left to right and five rigidities incremented from bottom to top. The configurations have been sampled
gradually increasing kθ starting with flexible systems (kθ = 0). While the chains remain compact and
segregated at low densities and stiffnesses below the dashed line, they are seen in the opposite limit to align
(at least) locally.
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Figure 4.1: Snapshots of semiflexible 2D polymers of length N = 256 for four densities ρ = 0.125
(M = 192, Lbox ≈ 627), ρ = 0.250 (M = 192, Lbox ≈ 627), ρ = 0.500 (M = 192, Lbox ≈ 313),
and ρ = 0.750 (M = 384, Lbox ≈ 362) and five bending penalties kθ = 0, 2, 4, 8 and 16 (from the
bottom to the top). The configurations have been sampled gradually increasing kθ starting with
flexible and compact chain systems (kθ = 0). While the chains remain compact and segregated at
low densities and stiffnesses below the dashed line, they are seen in the opposite limit to align (at
least) locally forming bundle of chains with hairpins which are extremely difficult to equilibrate.
With more computer time a regular long-ranged nematic phase (with few defects) is expected,
however, as already verified using shorter chains.
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4.2 Weak persistence length effects

The effect of this potential is best characterized first for the dilute limit, where the curvilinear persistence
length lp ≡ lsp can be extracted from the exponential decay of the bond-bond correlation function P1(s) ∼
exp(−s/sp),39, 103 the bond length l can be regarded as constant for all kθ and ρ. As for the flexible systems,
a blob size ξ and the number of units g in a blob can still be defined for small enough rigidities and densities.
More precisely, renormalized flexible behavior is expected59 as long as the persistence length remains smaller
than the number of monomers in a blob, sp ≤ g(kθ). We found indeed that for the experimentally mainly
relevant low and moderate densities, the finite rigidity does not change qualitatively the scaling properties
discussed in the previous chapters. In fact, since according to Eq. (3.6) the blob size decreases rapidly with
stiffness, a finite rigidity speeds up the convergence to the predicted compact chain limit.
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Figure 4.2: Rescaled subchain size distribution y = R2
e(s)/(s − 1) for four densities and three stiffness

penalties corresponding to systems below the dashed line in Fig. 4.1. The symbols refer to flexible systems
(kθ = 0); the line width for kθ = 2 and 4 increases with density. The dash-dotted line corresponds to the
asymptotic slope for perfectly rigid chains. Note that y(s) becomes strongly non-monotonous with increasing
kθ. However, as long as the system remains isotropic, i.e. kθ is not too large, the reduced chain lengths for
a given density become similar for large arc-length s. Independent on the local rigidity the overall subchain
size is thus ruled by the — persistence length independent — distance dcm ≈ (s/ρ)1/d between subchain
center of masses.

As shown from the reduced subchain size R2
e(s)/(s−1) for different kθ presented in Fig. 4.2, the subchain

size depends in fact very little on the local persistence length for large arc-lengths s → N . In this limit
the chain and subchain size is essentially set by the persistence length independent distance dcm ≈ (s/ρ)1/d

between subchains.

An independent confirmation that renormalized semi-dilute scaling holds for these 2D solutions, is pro-
vided by the properties of the pressure shown in Fig. 4.3. As the figure shows, the pressure depends on the
third power of the density for a fair range of the chain rigidity, for small enough densities. The semidilute
power law is mainly limited by the fact that the presented chainslength N = 256 is rather short and, hence,
the dilute scaling βρ ∼ ρ/N is seen for densities ρ < 0.1. Larger chaind and smaller densities at finite
persistence length are required in order to check the scaling of the blob size with ℓp stated above.
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Figure 4.3: Total pressure βP as a function of density ρ for N = 256 and several stiffness energy penalties kθ

as indicated. Small deviations from the, globally holding, standard scaling behavior for flexible chains P ∝ ρ3

can be seen when increasing density and rigidity. In agreement with previous computational findings26 the
pressure P (kθ) is found to increase with kθ for low densities but decreases for high densities due to the (albeit
incomplete and only local) isotropic-nematic ordering transition.

4.3 Isotropic-nematic transition

The chain solution cannot any longer be viewed as a semidilute solution of flexible chains with a renor-
malized monomer size when the persistence length, estimated by extrapolation to finite densities using the
conformational properties of the dilute limit, exceeds strongly the blob size. In this limit a transition to an
ordered nematic state with increasing persistence length and density is observed as can be seen from the
snapshots of Fig. 4.1.

Theoretical studies, focusing on semiflexible polymer chains of a fully occupied Flory lattice model, con-
fined to a volume of fixed shape,41, 42 suggest that this transition is continuous, but Monte Carlo simulations
of multichain systems at a fixed finite density56 point to first order changes. We have not so far precisely
determined the order of the transition nor its precise location on the [k,ρ] diagram of state. Notwithstand-
ing, the analysis of the numerical simulations that we performed so far, suggests a first order nature of the
transition as discussed below.

The data presented in Fig. 4.1 and Fig. 4.2 stems from systems where we start with our compact and
segregated chain conformations of flexible chains (kθ = 0) and increase gradually the bending penalty.
Additionally, a second set of data has been obtained starting with aligned rods at high kθ decreasing then
gradually the stiffness. (This data set is limited up to now to short chains of length N ≤ 256.) While
for systems below the dashed line in Fig. 4.1 the same chain conformations are readily reached with both
dynamical pathways for all chain lengths available, this becomes computationally challenging around and
above the dashed line, i.e. strong hysteresis effects have been clearly observed. Due to the sluggish hairpin-
like defects seen in the snapshots the hysteresis might be of course a merely dynamical issue. However, for
all systems for which both dynamical pathways yield the same configurational properties, i.e. where we are
sure to have reached equilibrium, a sharp transition between isotropic and nematic state has been observed
for the standard nematic order parameter S,79 the reduced system size Re(N)/N or the second Legendre
polynomial P2(r) of intra- and interchain bonds as a function of distance r between bonds (not shown). As
shall be discussed elsewhere,110 these results strongly point to a proper first order transition68 confirming
thus the pioneering work by Baumgärtner and Yoon.56
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Chapter 5

Athermal Fibers

5.1 Introduction

In this chapter, we move away from phenomena governed by thermal disorder and consider rather how
quenched disorder, captured in frozen spontaneous shapes of individual chains or membranes, influences the
collective properties of assemblies of corrugated fibers or sheets. As reviewed below, one can find in Nature
and in man-made materials, many of such systems, well aligned or isotropically distributed, embedded in
two or in three dimensions, see Fig. 5.1. Here we will adapt the simulation methods and data analysis tools
employed in the precedent chapters, to study, for simplicity, the case where shape-quenched fibers lay in
strictly two-dimensions.

Figure 5.1: Several natural and man-made systems of waving fibers and surfaces, where the im-
printed non-straight or non-flat shape of individual components play a role in the final global aspect
and on the global mechanical or sensorial properties. For the top left packs of paper soft tissues,
for instance, a current trend in paper-making companies is to advertise progress on the packing
capacity while retaining tissue fluffiness, for reduced environmental transportation costs.111
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Disordered stacks of waving fibers: here, there, everywhere.

Beyond its interest as a raw product for the textile industry, natural wool has been for many years studied as
an archetype for fluffy fibrous materials. Synthetic substitutes for wool where sought for, with the ambition
of reproducing the material mechanical and insulating qualities. Extensions of such dense fiber packings for
the building industry include for instance the so-called glass wool insulator. The basic constituent of such
materials is a fiber or strand, of lateral dimension much smaller than length, often with a non straight, waving
shape. Deformation of wads of wool can be easily obtained due to the predominance of fiber bending, which
is much easier to achieve than fiber stretching or compression. For isotropic packings of straight fibers,
such as needles, matches or toothpicks, bending couples to fiber contact density to determine the global
compression behavior.27 For isotropic 3D or 2D arrangements of non-straight strands, such as in natural
wool, glass wool, paper and felt, the waviness of the shapes is not essential to achieve finite compressibility,
but it plays a renormalizing role112 of the bending stiffness. However, in natural or composite materials of
almost aligned fibers, as for instance in hair tresses or ponytails, fluffiness can only be found in bundles of
strands with non-straight spontaneous shapes – see Fig. 5.2. In these systems, the waviness spontaneous
shape of the fibers allow for a finite compressibility of the fiber bundles, that would otherwise behave as a
dense solid material.113 Here below, we will explore by numerical simulations how the statistical properties
of the distribution of spontaneous shapes determine bundle compressibility.

Figure 5.2: A random choice of systems with almost aligned fibers of wavy shapes. From left to
right, top to bottom: a socket lock for wire ropes, that need to be properly broomed in a cone-like
shape; a decorative fluffy puf of wool; a vegetal broom, with fiber details shown; a cotton-grass,
eriophorum angustifolium; a ponytail and, on the bottom, several bow string silencers from different
animal or vegetal fiber pufs.

State of the Art

In an attempt to explain the compressibility of wool, van Wyk114 discussed back in the forties several
available pressure-volume relations, and realized that the deformation of wool stacks was controlled mostly,
under a given external load, by the bending modes of the fiber strands. Work on the compressibility of fibrous
masses made from isotropically distributed fiber strands has since followed the steps of the seminal work
in.114 Recently, Kabla and Mahadevan115 performed extension stretching experiments on felt, a material
exhibiting strain stiffening and high Poisson ratios, and showed that theses properties are related to the
mechanical behavior of individual fibers with quenched non-zero curvatures.
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When the fibers are almost aligned, the quenched disordered shapes are key to allow for a finite compress-
ibility of the fiber bundles or fluffs, which would otherwise display, if perfectly aligned, the high compression
values of the constituent materials. This was first discussed by Beckrich et al.31 which computed within a
self-consistent mean-field treatment in two dimensions the compression modulus of the fiber stacks, and used
this equation of state to predict the shapes of brooms and other fluffy cones made from fibers. Very recently,
Goldstein et al.30 studied the cylindrically symmetric 3D shape of hair ponytails and showed that they could
be understood by similar arguments, albeit with a yet unexplained equation of state for the bundle internal
compressibility.

Implementation of simulations for 2D non-straight fibers

As in the precedent chapters, we consider here two dimensional chains described by the Hamiltonian Eq. (1.1),
with the additional feature that the fibers ground state is not a straight line. Instead, the spontaneous
equilibrium shape of a single fiber is described by a set of non-vanishing reference angles {θ0} between any
three consecutive monomers, as depicted in Fig. 5.3. The angles are chosen such that the local fiber gradients
remain much smaller than unity, so that fiber shapes can also be described mathematically by a single-valued
function ζ0 (x).

Contrary to the precedent chapters where molecular dynamics simulation methods were used to sample
the configurations as a function of time, in the present chapter, where the velocities of the coarse-grained
beads can be neglected, we use the Steepest Descent (SD) method63 to find the equilibrium, time-independent
conformations of the interacting chains. This quasi-static energy-minimization method consists of iteratively
adjusting the monomers coordinates by moving along the direction of the total force. Of course the energy
minimization process that explores a multi-dimensional coordinate space bring the energy to the closest local
minimum, not necessarily to the absolute energy minimum and systems can be trapped in metastable states.
As a consequence, contrary to thermalized flexible polymer systems where the typical behavior at a given
density does not depend on the initial state, in the case of frozen systems the conformational and mechanical
properties at a given density strongly depend on the initial configuration and on the pathway used to achieve
the final deformation.

As stated above, here we restrict ourself to systems of quasi-parallel fiber stacks. Aiming to understand
the role of spontaneous curvature in determining the compressibility, we choose, in all the simulations
reported in this chapter, to proceed by a gradual deformation of pre-aligned fibers disposed initially in
their fundamental state. In practice, we build the shapes of the isolated fibers from a given mathematical
function ζ0(x) along which we place N monomers sequentially, at the equilibrium distance lb = 0.967 of the
monomer-monomer bond interactions, setting at the same time the corresponding values of θ0. At the end
of this process, we have a fiber of N monomers in an equilibrium shape identical to the function ζ0(x). At
each step of the simulation a small affine deformation, perpendicular to the fibers principal axis, is imposed
followed by an energy minimization. (See Sec. 2.1 for numerical details). The last configuration obtained at
each step is used for different analysis purposes. In particular, we report in this chapter the evolution of the
pressure tensor component Pyy corresponding to the axis of deformation, as a function of D - the average
distance between fibers. For simplicity we drop the index yy and note P . The method used for calculating
the different components of the pressure tensor is described in Sec. 2.2.

From a technical point of view, several minor modifications of our simulation tool LAMMPS were in-
troduced in order to handle the calculation of the chains angular energy to the case of rigid fibers in 2D.
These modifications, allowing to distinguish ‘left handed’ and ‘right handed’ configurations which are strictly
equivalent in the three-dimensional case or for zero spontaneous curvature, are described in Appendix 6.2.

Types of spontaneous curvature disorder

We describe here three categories of typical shapes implemented by three families of functions ζ0(x). The
simulation results obtained for systems displaying these three types of disorder as well as the corresponding
analytical discussions will be given in the following sections.
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Figure 5.3: Sketch of the spontaneous shapes of two neighboring fibers. The fibers start to interact
when the average distance between fibers D becomes comparable with twice the larger amplitude
of the spontaneous shapes.

First, in order to calibrate our simulation method against predictions from continuous elasticity theory,
we test simple systems corresponding to single fibers with sinusoidal shapes, confined between parallel
walls. In practice, for consistency with the more complicated systems where periodic boundary conditions
are imposed, instead of simulating single chains between walls we simulate periodic systems consisting

of pairs of chains with identical sinusoidal shapes and opposite phases ζ
(1)
0 (x) = D0/2 cos(2πx/λ) and

ζ
(2)
0 (x) = D0/2 cos(2πx/λ+ π). The opposite phases coupled with chains small roughness due to the shapes

of individual monomers insure that chains are not trivially sliding. In the following we will refer to this type
of systems as the “single-mode fiber systems”.

The second simulated system class introduces some disorder on fibers wavelengths and phases. Here we

simulate a large number of parallel sinusoidal fibers ζ
(i)
0 (x) = D0/2 cos(2πx/λi + ψi) with identical fiber

amplitudes D0, wavelengths λi chosen from the Gaussian distribution for λ

P (λ) =
1√

2πσ2
e−

(λ−λ0)2

2σ2 , (5.1)

and a random translation phase shift ψi homogeneously distributed in phase space ψi ∈ [0, 2π]. We refer to
this kind of disorder as systems with “wavelength disorder”.

A more general system class, allowing to represent a wide range of fiber shapes is obtained by constructing
ζ0(x) as a superposition of a large number of modes, ζ0(x) =

∑

i ζ0,qi
φqi

(x), where the amplitudes ζ0,qi
are

picked from a Gaussian probability distribution :

P (ζ0,q) =
1

√

2π〈ζ2
0,qi

〉
exp

[

−
ζ2
0,qi

2〈ζ2
0,qi

〉

]

, (5.2)

where we impose :
〈ζ2

0,q〉 = C/(kqα). (5.3)

This class of disordered spontaneous shapes is referred to as the “q-dependent disorder case” or “smooth
disorder”. We note that the relation (5.3) is a generalization of the thermaly-inspired relation 〈ζ2

0,q〉 ∝
kBT/(kq

4) corresponding to the typical disorder characterizing the small fluctuations of a thermally activated
semiflexible rod. Here, by playing on the value of the exponent α in (5.3), the thermal-like q-dependent
disorder is generalized and we can continuously control the local waviness of the chains as illustrated in
Fig. 5.4.
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Figure 5.4: Implementation of spontaneous shapes for the third disorder class discussed in this
chapter (“smooth disorder”). Top figures : the Gaussian distribution (left) determining the prob-
ability of an amplitude ζ0,q) for a given mode q and the amplitudes (right) extracted from this
distribution as a function of q. Below, fibers shapes obtained for α = 2 and α = 4. In general,
increasing the value of α decreases the chains roughness at small scales.

The functions used for the mode-superpositions are the eigenfunctions of the square Laplacian operator
that describes curvature elasticity116 :

φqi
(x) =

cosh(ψi) − cos(ψi)

sinh(ψi) − sin(ψi)

[

sinh
(

ψi
x

Na

)

+ sin
(

ψi
x

Na

)]

−
[

cosh
(

ψi
x

Na

)

+ cos
(

ψi
x

Na

)]

, (5.4)

where the numerical coefficients ψi are determined from the relation cos (ψi) cosh (ψi) = 1. The solutions
obey approximately ψi ≡ qiNa ≃ (i+ 1/2)π with i ∈ N. The N wave vectors qiNa were thus picked
uniformly from the set qiNa = (i+ 1/2)π, with i = 1....N . The shape mean square amplitude is a factor of
both α and C/k with:

〈ζ2
0 〉 =

∑

q

〈ζ2
0,q〉 ∝

C

κ

Nα−2

(α− 1)
. (5.5)

Below, we will use values of the root-mean-square amplitude ζ0 of a fiber in the continuous distribution
model as a way of monitoring the vertical average extension of the fibers. This is most conveniently obtained
by measuring the gyration tensor of the fibers and by extracting its smallest eigenvalue. The values are
rather well described by the analytical expression 5.5, as reported on Fig. 5.5. These values are also close to
the onset of the compression curves that will be studied below, as for instance on Fig. 5.9.
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Figure 5.5: Normalized mean-square amplitudes κ〈ζ2
0 〉/C as a function of the disorder exponent α

and comparison with the analytical expression 5.5.

Relation continuous/discrete models

In the following sections we present our simulation results and compare them to analytical predictions based
on continuous elasticity theory. In our analytic description chains are seen as infinitely thin continuous lines
that, in analogy to the three terms in the discrete Hamiltonian used for simulations Eq. (1.1), interact via
stretching, bending and excluded volume potentials. Contrary to the numerical approach that takes into
account the detailed local interactions between (coarsed-grained) monomers, the analytic approach aims to
capture the system’s behavior using a minimal, tractable model based on several well chosen simplification
assumptions.

In this sense we first assume here that the stretching term in the analytic Hamiltonian can be neglected
since, in the fiber systems we treat, chains bending is much easier to achieve then chains stretching. The
energy of a single chain can thus be described by the curvature Hamiltonian116

Hbending =
κ

2

∫ L

0

dx [ζ′′(x) − ζ′′0 (x)]
2
, (5.6)

where κ replaces the bending modulus kθ from the simulation model and L is the chain projection on the x
axis. ζ′′(x) and ζ′′0 (x), the second derivatives of the functions representing the chain’s shapes, correspond to
the chain curvature in the Monge approximation,117 the index 0 denoting the shape or the curvature of the
chain in its ground-state as discussed above.

More challenging is the choice of the analytic description for the interchain excluded volume interactions.
While the simulation model directly takes into account this contribution by the local LJ potential, in order
to resolve this multi-body problem analytically, in particular when chains spontaneous shape display some
complex disorder, new statistical tools have to be developed.

In the two first parts of the following (single mode and single mode with wavelength disorder chains),
we will assume a single chain deformation, taking into account the interaction with other chains as punctual
forces. In the last part where we introduce a q-dependent disorder, we will use a self-consistent approximation
in the spirit of Helfrich work on thermally activated systems.
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5.2 Results

5.2.1 Single-mode

In this section we focus on the simple case of a stack of identical fibers with sinusoidal spontaneous shapes.
This system will play the role of a reference system for our study. In addition, since it is possible to
analytically derive the compression law of such a system,116 it will also allow us to check the range of
validity of our simulation method.

Analytical description

Introducing the spontaneous shape ζ0(x) = D0

2 cos
(

2π
λ x

)

in the bending Hamiltonian 5.6 leads after a simple
functional minimization to the differential equation :

∂4ζ

∂x4
=
∂4ζ0
∂x4

(5.7)

Using the boundary conditions ζ(0) = 0, ζ(λ/2) = D −D0 and ζ′(0) = ζ′(λ/2) = 0 we obtain the shape of
the fiber between x ∈ [0, λ/2] for a compression D:

ζ(x) − ζ0(x) = 12(D −D0)
x2

λ2

(

1 − 4

3

x

λ

)

. (5.8)

It is then possible to calculate the elastic energy of the fiber and the corresponding pressure :

E =
96κD2

0

λ3

(

D −D0

D0

)2

(5.9)

P =
1

λ

∂E

∂D
=

192κD0

λ4

(D0 −D)

D0
. (5.10)

This is of course equivalent to the energy and the pressure of an harmonic spring with an effective spring
constant :

κeff ≡ 96κD2
0

λ3
. (5.11)

Numerical results

In Fig. 5.6 we present the evolution of the pressure as function of density for different single-mode systems.
We observe a very good agreement between numerical data and theory, without any fitting parameters. The
small deviations from the analytical curve at low densities and for small effective bending modulus (small κ
or large λ) can be explained by the limited accuracy of the Monge approximation and of the convergence of
the minimization process in these regimes.
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Figure 5.6: Pressure component P ≡ Pyy perpendicular to the aligned fibers as a function of the
typical distance D between fibers. We trace the normalized pressure Pλ4/ (192κD0) vs. reduced
density D0/D for single-mode fiber stacks for various values of amplitude ζ0, bending modulus κ
and wavelength λ. The theoretical function 1 −D/D0 is also plotted for comparison.

48



100 101

10–6

10–4

10–2

100

102

P

κ=2048, σ=0.0001

κ=2048, σ=0.001

κ=2048, σ=0.01

κ=2048, σ=0.1

κ=2048, σ=0 (Single Mode)

D0/D

P

D0

10–7

Figure 5.7: Pressure P vs. normalized density D0/D for sinusoidal fibers of amplitude ζ0 with
wavelength λ following a Gaussian distribution of mean value λ0 and variance σ. All the simulations
presented here have the the same bending modulus κ = 2048, λ0 = 128 and amplitude ζ0 = 4, with
variance σ ranging from 0.001 to 0.1.

5.2.2 Single-mode with wavelength disorder

Having tested the validity of our simulation model on the simple single-mode systems, we now introduce
disorder in the fiber stacks by taking sinusoidal spontaneous shapes with the same amplitude ζ0 for all the
fibers, but with different wavelengths λ following a Gaussian distribution of mean value λ0 and variance σ.

Numerical results

We present on Fig. 5.7 for sinusoidal fibers of amplitude ζ0 with wavelength λ following a Gaussian dis-
tribution of mean value λ0 and variance σ. All the simulations presented here have the the same bending
modulus κ = 2048 and amplitude ζ0 = 4, with variance σ ranging from 0.001 to 0.1. Interestingly, we
observe that introducing some disorder on wave length completely modifies the compression law, even for
very narrow probability distribution. Surprisingly, the compression law seems to be very weekly dependent
on the distribution probability variance.

Phenomenological approach and discussion

We propose here a semi-quantitative approach to solve this problems. We consider a fiber with a sinusoidal
spontaneous shape of wavelength λ and amplitude D0. We assume that this fiber is deformed by a force F
applied at a point M0 and which is exerted by another fiber. This problem can be solved analytically just
as in Sec. 5.2.1. To obtain the deformed shape of the fiber we have to solve the differential equation :

∂4ζ

∂x4
=
∂4ζ0
∂x4

(5.12)
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σ. All the simulations presented here have the the same bending modulus κ = 2048 and amplitude
ζ0 = 4, with variance σ ranging from 0.001 to 0.1. Solid line corresponds to the analytical expression
of Eq. (5.15).

with the appropriate boundary conditions. We obtain the shape of the fiber for a compression D and we
can calculate the elastic energy of the fiber and the corresponding the pressure :

E (x0) =
96κλ3

(

D0

(

1 + cos
(

2πx0

λ

))

−D
)2

(λ− 2x0)
4
(λ+ 4x0)

2 (5.13)

P (x0) =
192κ

(

D0

(

1 + cos
(

2πx0

λ

))

−D
)

λ4 (1 − 2x0/λ)
4
(1 + 4x0/λ)

2 . (5.14)

We define now the dimensionless variable u = x0/λ. Integrating the pressure over all the accessible position
for x0 we obtain the total pressure P as :

Pλ4

192κD0
= 2

∫ umax

0

(1 + cos (2πu) −D/D0)

(1 − 2u)4 (1 + 4u)2
du. (5.15)

with 2πumax = arccos (D/D0 − 1). We report simulation data for various parameters (κ, λ and ζ0) on
Fig. 5.8 where we normalize the pressure by Pλ4/ (192κD0). Except for small bending modulus (κ < 128)
and large amplitudes (ζ0 > 8) - limits already discussed in the previous section - all the data seem to be
very well described by the expression 5.15.
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Figure 5.9: Influence of the shape disorder on the normal pressure of the fiber bundles. The mean
amplitudes of the Fourier modes of the fibers’ ground state are imposed by increasing the value of
α. We use this results to determine the value ζ0 (α) where the pressure begin to increase.

5.2.3 Smooth distribution

In the previous paragraphs we validated our model and determined a relevant range of parameters, clearly
showing also the influence of wavelength disorder on the compression laws of fiber stacks. We will now
deal with systems with a more complex spontaneous shape. We choose to focus on systems with almost
continuous distributions of wavelengths where the mean square amplitude of each mode depends on the
wavenumber as a power law:

〈ζ2
0,q〉 =

C

Nκqα
. (5.16)

This kind of amplitude distribution covers a large spectrum of fibers forms as illustrated in Fig. 5.4. By
choosing a small value of α we obtain very rough fibers, while increasing the value of α yields progressively
smoother fibers. It is also an interesting system for a direct comparison with thermally activated systems.
The compression behavior of this class of systems, plotted in Fig. 5.9, shows a strong dependence on the
value of the exponent α i.e. on the relative weight of the different modes in the shape of the individual fibers.
In the following we will try to explain this results analytically.

Mean-Field Calculation

If one assumes that different fibers interact through a two body potential V , then the total interaction energy
Eint can be written as:

Eint =

N
∑

n,m=1

∫ L

0

dx

∫ L

0

dx′ V [ζm(x) +mD − (ζn(x′) + nD)] . (5.17)

In the spirit of Helfrich treatment of thermally activated fluid membranes and fibers,118–120 we follow a
simple mean-field approximation. We assume that forces between first-neighbors dominate the interaction
energy, an exact assumption for excluded volume potentials and a good approximation for other short range
forces such as those given by screened electrostatic potentials. Then the sum of the bending (5.6) and
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interaction (5.17) terms can be written as the effective energy :

Eeff =
κ

2

N
∑

n=1

∫ L

0

dx
[

ζ′′n(x) − ζ′′0,n(x)
]2

+
B

2

N
∑

n=1

∫ L

0

dx [ζn+1(x) − ζn(x)]
2
. (5.18)

By functional minimization, we can deduce fiber’s shape in reciprocal space as:

ζqQ =
κq4

κq4 +B(Q)
ζ0,qQ (5.19)

By introducing this relation in the energy density obtained by the Helfrich inspired model:

e =
1

2(2π)3

∫

d~qdQ
[

κq4(ζqQ − ζ0,qQ)2 +B(Q)ζ2
qQ

]

. (5.20)

and integrating over Q, we obtain a general, quenched disorder dependent, expression for the mean energy
density:

〈e〉 =
C

Nπκ

B

D

∫ +∞

π
2L

∼0

dq
〈

ζ0,q
2
〉

(

κq4

4B + κq4

)

3
2

. (5.21)

Supposing now a quenched disorder of the form
〈

ζ0,q
2
〉

= C
Nκqα and using q1 ≡ ( κ

4B )1/4q we get:

〈e〉 =
C

Nπκ

B

D

(

4B

κ

)
1
4

(

4B

κ

)

−α
4

∫ +∞

0

dq1q
−α
1

(

q41
1 + q41

)

3
2

〈e〉 ∝ C

D
B

5−α
4 κ

α−5
4 (5.22)

An auto-coherent calculation allows to extract the compression modulus:

B = d
∂2 〈e〉
∂D2

∝ C

D2
B

5−α
4 κ

α−5
4 (5.23)

B =

(

C

D2
κ

α−5
4

)
4

α−1

(5.24)

and calculate the pressure:

P ∝ BD ∝ (C)
4

α−1κ
α−5
α−1D

α−9
α−1 (5.25)

This results suggests that it is possible to tune the elastic response of a fiber bundle by playing on the
relative weight of the different modes in the shape of the individual fibers. It is possible to generalize this
mean field calculation to d-dimensional systems (with athermal membranes of dimension d− 1). We obtain
for the pressure:

P ∝ (C)
4

α+1−dκ
α−3−d
α+1−dD

α−7−d
α+1−d . (5.26)

For thermal-like quenched disorder (α = 4) we have P ∝ C4/3κ−1/3D−5/3 in the two-dimensional case (fibers)
and P ∝ C2κ−1D−3 in the three dimensional case (membranes), just as for real thermalized systems.

Scaling Arguments

Interestingly, these compression-law predictions can also be derived by thermally-inspired scaling arguments:
Helfrich pressure for fluctuating rods can be obtained by supposing that the fluctuating rods confined to
a distance D can be seen as a sequence of ’blobs’ of size λ ∗ D with typical energy of kBT . The relation
between λ and D can be calculated by:

κq4D2λ = kBT ⇒ D2 =
kBT

κq3
⇒ λ =

(

κD2

kBT

)

1
3

. (5.27)
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Figure 5.10: Predicted exponents β for pressure-density power laws D−β calculated theoretically
for different values of α in 2D.

As consequence, the pressure scales as:

P ∝ E

λD
=
κq4D2λ

λD
=

C
4
3

κ
1
3D

5
3

(5.28)

In analogy, in the athermal case, if we impose the relation
〈

ζ0,q
2
〉

= kBT
κqα , we get:

κqαD2λ = kBT ⇒ D2 =
kBT

κqα−1
⇒ λ = (

κD2

kBT
)

1
α−1 , (5.29)

and we expect for the pressure:

P ∝ E

λD
=
κq4D2λ

λD
=
κD

λ4
=

κD

(
κζ2

q

kBT )
4

α−1

= (kBT )
4

α−1 κ
α−5
α−1D

α−9
α−1 . (5.30)

which is exactly the same as Eq.( 5.25) using kBT = C.

Discussion

We plot on Fig. 5.11 the normalized pressure following theoretical expression Eq. (5.25) as a function of
density. For the values of α > 2, we clearly observe 3 different regimes on the compression curves.

For the large density limit, where fibers are in close contact, we observe that the data collapses well on
the same master curve, similarly to those of a single mode fiber. In that limit of compact fibers, spontaneous
shape disorder is irrelevant.

For an intermediate density, the compression law seems to be well described by the self-consistent equa-
tion (5.26), as shown on Fig. 5.11 where lines corresponds to the best fitting by A/Dβ with only A as fitting
parameter. Such an agreement is quite remarkable. It clearly appears that the validity range of these power
law increases with increasing α. We should stress the low validity range of the predicted pressure power law
for the case of α = 2. It will be interesting to extend our simulation effort for this case of stronger disorder
for larger fiber sizes.

Finally, for the low density limit, where distance between fibers is of the order of the fibers mean-square
amplitude, we observe a deviation of the simulation data to the power law behavior. Obviously, mean-field
theory is not effective in this limit, because the number of fibers of mean amplitude larger than ζ2

0 vanishes,
contrary to the thermal case. We can qualitatively understand this regime. The force rises sharply from zero
as the fiber-fiber contacts progressively build up, with essentially single-mode compression behavior. This
is shown by Fig. 5.11 where dotted lines correspond to the single mode expression 5.10 with an effective
wavelength λeff . Values of λeff are reported on Fig. 5.11. They are all of the same order of magnitude,
smaller than the maximum value of λ (λmax = 820) but closer to the second mode wavelength (λ = 585).
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Figure 5.11: Normalized pressure following expression Eq.( 5.25) as a function of 1/D. The solid
lines represent the power law predicted by the theory without any fitting (only the constant values).
The dotted lines correspond to the single mode expression 5.10 with an effective wavelength λeff .

5.3 Conclusions

In this chapter we studied the mechanical behavior of corrugated fiber stacks. Contrary to compact straight
fiber arrangements, that exhibit a high compression modulus, the shape waviness imprinted on the fibers
brings to the stack compression behavior a fluffiness that is also controlled by the chains bending modes, in
a manner reminiscent of many fibrous three dimensional materials.

After having shown that our simulation tool reproduces well fiber mechanical behavior expected from
continuous elasticity theory, and that simple disorder such as phase and wavelength disorder at fixed am-
plitude is enough to induce a non-trivial compression behavior of the stack, we have studied more realistic
distributions for fiber disorder, with fiber spontaneous shapes reconstituted from a superimposition of modes
with q-dependent amplitudes. The results show that the compression law for fiber stacks displays three typ-
ical regions. At inter-fiber distances comparable to the monomer size, the fibers are all well aligned in a
compact manner, and the compression forces are very high. At very large distances, of the order of the fibers
mean-square amplitude, the force rises sharply from zero as the fiber-fiber contacts progressively build up,
with essentially single-mode compression behavior. In between these two limits, the stack displays a fluffy
compression behavior, with deformation forces controlled by the fiber bending energy. For fibers of moderate
corrugation the compression forces compare favorably with a mean-field theory based on an analogy with
thermalized polymers and membranes.
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Chapter 6

Conclusions

6.1 Summary

In this PhD manuscript we have presented our results on polymer and fiber chains in strictly two-dimensions.

The motivation for this work was discussed in Chapter 1. There, we argued that present trends in
nanosciences require a better understanding of polymers confined in very thins layers, where often chains do
not self-intersect. We have pointed also to the interesting role that rigidity plays in dense two-dimensional
polymers, both in thermal macromolecular materials and in macroscopic disordered fiber systems.

In Chapter 2, we reviewed our methods for numerical simulation and data analysis. A detailed description
of our coarse-grained bead-spring model as well as the methods used for conformation sampling was made.
Strategies for extracting the relevant physical quantities from the simulation data were also summarized.

In Chapter 3 we have investigated the density crossover scaling of various thermodynamic and confor-
mational properties of thermalized and flexible polymer chains. We have focused on properties related to
the θ2 contact exponent.65 It has been shown that the latter exponent not only characterizes (by defini-
tion) the intrachain subchain size distribution Ge(r, s) for arc-lengths s with 1 ≪ s ≪ N , but also the
interchain pair distribution function gint(r) ∼ rθ2 , as shown in Fig. 3.12, and the monomer contact number
nint ∼ eint ∼ 1/Nνθ2 (Figs. 3.3 and 3.13). The scaling with chain length N established for dense melts45, 46, 66

is found to remain valid for all densities if the data is renormalized in terms of chains of blobs of g ∼ 1/ρ2

monomers.48 The corresponding semidilute crossover scaling with respect to density ρ has been confirmed
to be consistent with our data over about one order of magnitude, e.g. the pressure is found to scale as
P ∼ ρ3 (Fig. 3.4) as expected.59Obviously, for large densities where g becomes too small, deviations from
the predicted ρ-scaling show up for various properties due the additional non-universal monomer physics.
This additional monomer physics at high densities has been seen to be particulary marked for the various
thermodynamic properties discussed (Figs. 3.4, 3.5 and 3.15). As expected from the generalized Porod scat-
tering of compact objects of fractal perimeter dimension dp summarized in Sec. 2.3.2, the intramolecular
form factor F (q) measuring the composition fluctuations at the fractal perimeters of the compact blob chains
approaches with increasing density and chain length a power-law asymptote.

Much more briefly, we have investigated in Chapter 4 the influence of a finite bending rigidity. The key
point we made is simply that persistence lengths effects do not change the general scaling in terms of compact
chains of blobs of fractal contour as long as the persistence length remains smaller than the semidilute blob
size (sp ≪ g ≪ N), i.e. our theoretical and computational results made in Chapter 3 are robust especially
for the experimentally more relevant low volume fractions. With increasing rigidity the chains are seen to
align locally (Fig. 4.1). These bundles of chains remain compact on large scales, however, at least if the
bending rigidity is introduced starting with compact configurations of flexible chains. The characterization
of the transition between the isotropic phase of compact and segregated chains at low densities and bending
rigidities to the ordered nematic phase in the opposite limit is the topic of a still on-going theoretical and
numerical investigation beyond the scope of my PhD thesis.
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Chapter 5 was devoted to the study of macroscopic fiber stacks where, contrary to the polymer materials
discussed in Chapter 3 and 4, temperature does not play any role. In these systems, where disorder is
introduced by the non-straight shapes of the individual fibers, new methods are required to compute chain
equilibrium conformation and stack mechanical properties. Using the athermal limit of our bead-spring
model, and adapting the computational tools for athermal energy minimization, we have explored the effect
of different classes of spontaneous curvature distributions on the system properties. After having validated
in Sec. 5.1 our tools against standard continuous mechanical theories for sinusoidal fibers, for which explicit
predictions can be made, we have shown in Sec. 5.2 that the compression behavior of phase disordered fibers
with even a narrow distribution of wavelength values is drastically different from single fiber compression.
More realistic distributions for fiber disorder were studied in Sec. 5.3, with fiber spontaneous shapes recon-
stituted from a superimposition of modes with q-dependent amplitudes. The results compare favorably with
a mean-field theory based on an analogy with thermalized polymers and membranes.

6.2 Perspectives

Critical temperature of demixing of polymer blends

Interestingly, the scaling of the intermolecular contact probability nint tested numerically in Sec. 3.3.6 is
consistent with recent Monte Carlo simulations of symmetrical polymer mixtures using a version of the
bond-fluctuation model in strictly two dimensions.73, 74 These simulations show that the compatibility of
the chains is strongly enhanced compared to 3D blends. We remind that for the latter systems the scaling of
the critical temperature of unmixing Tc is well described by the Flory-Huggins mean-field prediction,59 i.e.

kBTc ∼ 1/χc ∼ N (6.1)

where χc stands for the critical Flory demixing parameter. The compatibility of the blend decreases thus
very strongly with chain length.87, 121 More generally, kBTc should be set by the typical interaction energy
Neint between different chains. As we have shown in Sec. 3.2.1 for homopolymer solutions Neint ∼ Nnint ∼
ρ21/8N5/8 holds over several orders of magnitude in density and chain length. The same scaling is expected
to hold close to the critical point of a polymer mixture. According to Eq. (3.27) and using Eq. (3.6) it follows
thus that

kBTc ≈ Nnint ≈ g2−ν0θ2,0−ν0d × (N/g)1−νθ2 (6.2)

∼ ρ21/8N5/8 (6.3)

in the compact chain limit. The power-law exponent 5/8 = 0.625 predicted in Eq. (6.3) for the N -dependence
of strictly 2D self-avoiding walks agrees well with the value 0.65 obtained by fitting Tc for all computed chain
lengths.73 (For the three longest chains computed a somewhat lower value 0.5±0.1 has been reported.) The
corresponding strong power-law increase Tc ∼ ρ21/8 with density has to our knowledge not been probed yet.
As predicted theoretically in Ref.[66] and as checked numerically in Ref. [74], it is crucial here that the chains
of the blend do not overlap or intersect as it may occur in thin films of finite width where the number of
monomers of a chain in contact with monomers from other chains becomes proportional to N apart from the
logarithmic corrections implied by Eq. (3.4). Interestingly, for 3D good solvent polymer solutions it follows
from Eq. (6.2) that

kBTc ≈ g−0.243 × (N/g) ∼ ρ1.626N (6.4)

where we have used that ν0 ≈ 0.588 and θ2,0 ≈ 0.815 in the dilute limit122 and ν = 1/2 and θ2 = 0 for large
densities (N ≫ g). The increase of Tc with density is thus predicted to be much weaker in 3D compared to
strictly 2D layers. Since the predicted density dependence for semidilute good solvent solutions, eqs. (6.3,6.4),
deviates strongly from the standard mean-field prediction (Tc ∼ ρ2),1, 59 this suggests urgently a verification
by computer simulation and real experiments.
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Spontaneous shape effects in experimentally-inspired systems

The last decade has seen an important effort to understand granular media, its static and dynamic properties
being determined by how disorder in grain shape and packing couples to the organization of the chains of
force in the granular beds. Studies in fiber systems are much more scarce, and our attempt is one of the first
to carry out a parallel effort to understand packings of non-straight macroscopic fibers. Other groups have
recently presented new experimental data on fiber bundles organized as ponytails, and a recent session was
devoted to this field at the APS 2012 March meeting. The challenges posed by these experimental systems
require further theoretical and numerical efforts. We have mainly focused on two-dimensional well aligned
systems undergoing uniaxial compression. In two dimensions, other limits remain still to be explored, as for
instance that of shorter isotropically distributed wavy fibers. In this limit we foresee a key role of strong
bending deformations, and a limited influence of shape disorder of the individual chains. In three dimensions,
torsion will also play a role for fibers, and the confinement by near neighbors will be less pronounced, as
discovered by Beckrich et al.31 An interesting extension of our work in three dimensions would consist of
treating organized piles of corrugated sheets, a type of organization found in many natural and synthetic
materials such as plants,tissue piles, cardboard stacks and many more. For all these systems, one might
also consider, in both two and three dimensions, the role of external forces such has gravity, that can be
easily accounted for by our simulation methods. We believe that we have set the foundations for further
precise comparison between simulations and experiments. In particular, a great value would certainly be
found in carrying out numerical simulations on systems representing types of disorder actually determined
from experimental systems, in order to test the predictive power of the simulations against say, the actual
mechanical properties measured in experiments.
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Appendix A : Implementation of spontaneous curvature for rigid

chains

In our model chain stiffness is modeled by an angular potential Hang = kθ(θ − θ0)
2 and the spontaneous

curvature of the chains is implemented by the ensemble of the reference angles {θ0,i}. It is important to note

that the 2D projection of the 3D torsional degree of freedom (usually taken into account through the angle

φ) yields two possible values for one value of θ and it is necessary to differentiate ’left handed’ and ’right

handed’ angles. Hence, when comparing the values of the reference and actual angles in the 2D case, the

usual calculation of θ using the cosine function may lead to ambiguity. In order to calculate the angles in

a single valued manner we implemented in the C++ LAMMPS code a combined calculation based on both

cosine and sinus functions as shown in the code below. Our modifications are indicated by emphasized font.

double AngleHarmonic::single(int type, int i1, int i2, int i3)

double **x = atom->x;

double delx1 = x[i1][0] - x[i2][0];

double dely1 = x[i1][1] - x[i2][1];

double delz1 = x[i1][2] - x[i2][2];

domain->minimum_image(delx1,dely1,delz1);

double r1 = sqrt(delx1*delx1 + dely1*dely1 + delz1*delz1);

double delx2 = x[i3][0] - x[i2][0];

double dely2 = x[i3][1] - x[i2][1];

double delz2 = x[i3][2] - x[i2][2];

domain->minimum_image(delx2,dely2,delz2);

double r2 = sqrt(delx2*delx2 + dely2*dely2 + delz2*delz2);

double tk;

double dtheta;
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double c = delx1*delx2 + dely1*dely2 + delz1*delz2;

c /= r1*r2;

if (c > 1.0) c = 1.0;

if (c < -1.0) c = -1.0;

double s = delx1*dely2-delx2*dely1;

s /= r1*r2;

if (s > 1.0) s = 1.0;

if (s < -1.0) s = -1.0;

s = 1.0/s;

if (s>0)

dtheta = acos(c)- theta0[type];

else

dtheta = -acos(c)+2*PI- theta0[type];

tk = k[type] * dtheta;

return tk*dtheta;
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Appendix B : Spontaneous curvature distributions

In our simulations, thermalized semiflexible polymers are always supposed to have a linear ground state

while athermal fibers present different shape distributions. For every disorder class we chose a base and a

typical amplitude distribution for the different modes. The ground state shape of a specific chain was then

designed by fixing the modes and the amplitudes using the appropriate distribution and by superposing the

different modes. (Reference angles were then fixed supposing equidistant monomers distances.)

The following Fortran90 code illustrates the implementation of several disorder types:

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
! Determination of modes and amplitudes
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

select case (disorder_type)

case ("lines")
nrq(iM)=1
q(1)=0
A(1)=0

case ("one_mode")
nrq(iM)=1
mysign=-mysign
q(1)=alfa*qmin*mysign
A(1)=Aq0

case ("one_mode_qdis")
nrq(iM)=1
do iq=1,nrq(iM)

mysign=-mysign
qmean=mysign*alfa*qmin
sigma=beta*alfa*qmin
call gauss_rand(qmean,sigma,q(iq))
A(iq)=Aq0

end do

case ("alpha")
nrq(iM)=N
do iq=1,nrq(iM)

q(iq)=qmin+(iq-1)*(qmax-qmin)/(real(N)-1)
sigma=Aq0*(KbT/k/N)**0.5/(q(iq))**(alfa/2)
mu=0.
call gauss_rand(mu,sigma,A(iq))

end do

case ("alpha2")
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nrq(iM)=N
do iq=1,nrq(iM)

mysign=-mysign
call scaled_rand(qmin,qmax,q(iq))
A(iq)=mysign*Aq0*(KbT/k/N)**0.5/(q(iq))**(alfa/2)

end do

case ("alpha_few_modes")
nrq(iM)=beta
do iq=1,nrq(iM)

q(iq)=qmin*iq
sigma=Aq0*(KbT/k/N)**0.5/(q(iq))**(alfa/2)
mu=0.
call gauss_rand(mu,sigma,A(iq))

end do

case default
write(*,*) "please specify disorder type. "

end select

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
! Mode superposition -> function F
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

F=0
select case (base_type)

case ("sin_sum")
do iq=1,nrq(iM)

F=F+A(iq)*sin(q(iq)*x1+fi)!(2*Pi*q(iq)*x/L)
end do

case ("eigen_sum")
do iq=1,nrq(iM)

al=q(iq)*N
b=al*x1/N
ea=exp(-al)
eb=exp(-b)
e2a=ea*ea
eba=exp(b-al)
fq=eba*(ea+sin(al)-cos(al))/(1-e2a-2*sin(al)*ea)
fq=fq+0.5*(1+e2a-2*cos(al)*ea)/(1-e2a-2*sin(al)*ea)

*(-eb+2*sin(b))
fq=fq-0.5*(eb+2*cos(b))
F=F+A(iq)*fq

end do

end select
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Résumé
Cette thèse de doctorat est consacrée à l’étude analytique et numérique de systèmes de polymères et de
fibres à deux dimensions. Des systèmes de polymères confinés en films ultra-minces présentent un très
grand intérêt technologique et expérimentale et posent de nombreux défis théoriques en raison de leur fort
comportement non-champ moyen qui se manifeste par divers exposants critiques non triviaux. Nous nous
concentrons sur  la  limite  strictement  2D où le  croisement  des chaînes est  interdit  et  nous étudions,  en
fonction de la densité et de la rigidité des chaînes, les propriétés élastiques et conformationnelles de trois
classes de systèmes: polymères flexibles et semi-flexibles à température finie et polymères macroscopiques
athermiques (fibres) à courbure spontanée imposée. Pour les polymères flexibles, il est démontré que bien
que les polymères auto-évitants denses adoptent des configurations compactes avec un exposant de Flory ν
= 1/2, ils ne se comportent pas comme des chaînes gaussiennes. En particulier un exposant de contact non-
nul 2 = 3/4 implique une dimension fractale de périmètre dp = 5/4. Par conséquence, en accord avec la loiθ
généralisée de Porod, le facteur de structure intramoléculaire F(q) révèle un comportement non-gaussien et la
température de démixion des mélanges de polymères 2D devrait être réduite. Nous étudions également les
effets de la rigidité des chaînes sur les systèmes de polymères à 2D et constatons que le comportement
universel n’est pas modifié lorsque la longueur de persistance est beaucoup plus petite que la longueur de
confinement. La nature de la transition de phase nématique à haute rigidité, qui est dans le cas 2D l’objet d’un
débat de longue date, est également explorée. Des résultats préliminaires semblent indiquer une transition du
premier ordre. Enfin, motivés par un travail  théorique récent sur les modules élastiques de faisceaux de
fibres,  nous   étudions  les  effets  de  la  courbure  spontanée  sur  l’élasticité  d’ensembles  de  fibres.  Nous
montrons que en jouant sur le désordre des amplitudes des modes de Fourier de l’état fondamental il est
possible de régler le module de compression, en accord qualitatif avec la théorie.
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Résumé en anglais
This  PhD thesis  is  devoted  to  a  theoretical  study  of  polymer  and  ’polymer  like’  systems  in  strictly  two
dimensions. Polymer systems in reduced dimensions are of high experimental and technological interest and
present theoretical challenges due to their strong non-mean-field-like behavior manifested by various non-
trivial universal power law exponents. We focus on the strictly 2D limit where chain crossing is forbidden and
study as function of density and of chain rigidity conformational and elastic properties of three system classes:
flexible  and semiflexible  polymers  at  finite  temperature  and macroscopic  athermal  polymers  (fibers)  with
imposed quenched curvature. For flexible polymers it is shown that although dense self-avoiding polymers are
segregated with Flory exponent  = 1/2 , they do not behave as Gaussian chains. In particular a non-zeroν
contact exponent 2 = 3/4 implies a fractal  perimeter dimension of dp = 5/4.  As a consequence and inθ
agreement with the generalized Porod law, the intramolecular structure factor F(q) reveals a non-Gaussian
behavior  and  the  demixing  temperature  of  2D  polymer  blends  is  expected  to  be  reduced.
We also investigate the effects of chain rigidity on 2D polymer systems and found that universal behavior is
not changed when the persistence length is not too large compared to the semidilute blob size. The nature of
the nematic phase transition at higher rigidities, which is in the 2D case the subject of a long standing debate,
is  also  briefly  explored.  Preliminary  results  seem  to  indicate  a  first  order  transition.
Finally,  motivated  by  recent  theoretical  work  on  elastic  moduli  of  fiber  bundles,  we study the  effects  of
spontaneous curvature at zero temperature. We show that by playing on the disorder of the Fourier mode
amplitudes of the ground state, it is possible to tune the compression modulus, in qualitative agreement with
theory.
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