N

N

Méthode pour la spécification de responsabilité pour les
logiciels: Modelisation, Tracabilité et Analyse de
dysfonctionnements

Eduardo Sampaio Elesbao Mazza Sampaio Elesbao Mazza

» To cite this version:

Eduardo Sampaio Elesbao Mazza Sampaio Elesbao Mazza. Méthode pour la spécification de respons-
abilité pour les logiciels : Modelisation, Tracabilité et Analyse de dysfonctionnements. Autre [cs.OH].
Université de Grenoble, 2012. Francais. NNT: 2012GRENMO022 . tel-00767942

HAL Id: tel-00767942
https://theses.hal.science/tel-00767942
Submitted on 20 Dec 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-00767942
https://hal.archives-ouvertes.fr

UNIVERSITE DE GRENOBLE

THESE

Pour obtenir le grade de

DOCTEUR DE L’'UNIVERSITE DE GRENOBLE
Spécialité : Informatique

Arrété ministériel :

Présentée par

Eduardo Sampaio Elesbao Mazza

Thése dirigée par Marie-Laure Potet
et codirigée par Daniel Le Métayer

préparée au sein de VERIMAG
et de Ecole Doctorale Mathématiques, Sciences et Technologies de
I'Information, Informatique

A Formal Framework for Specify-
ing and Analyzing Liabilities Using
Log as Digital Evidence

Thése soutenue publiguement le ,
devant le jury composé de :

Roland Groz

Professeur, Laboratoire d’Informatique de Grenoble, Président
Regine Laleau

Professeur, Université Paris-Est Créteil, Rapporteur
Gerardo Schneider

Professeur, University of Gothenburg, Rapporteur
Guillaume Dufay

Consultant Sécurité, Trusted Labs, Examinateur
Jean-Marc Jézéquel

Professeur, Université de Rennes |, Examinateur
Marie-Laure Potet

Professeur, VERIMAG, Directeur de thése

Daniel Le Métayer

Directeur de Recherche, INRIA, Co-Directeur de thése

Acknowledgments

I would like to express my immense gratitude to my two supervisors: Marie-Laure Potet
and Daniel Le Métayer, whose knowledge, guidance and patience added to my working
experience. | appreciate, specially, their assistance in the writing process which helped me
to produce this document. I would like to thank also the other members of the project
LISE to the assistance provided at other aspects of my research.

Besides my supervisors and collaborators, I would like to thanks my thesis committee:
Regine Laleau, Gerardo Schneider, Guillaume Dufay, Jean-Marc Jézéquel and Roland Groz;
for taking their time to read and evaluate my work, and also provide their critical opinion
and interesting questions about the research.

I also thank the staff members of Verimag, specially to Sandrine Magnin and Christine
Saunier, for their help with the administrative process. I thank some of my fellow PhD
students: Jean Quilbeuf, Artur Pietrek and Balaji Raman. Each of them helped to make
my time in the PhD program much more fun and interesting and they also provided support
with the administrative process of my PhD while I was outside France.

I must say that without the immense love, support and encouragement of my wife Julia
I would never have finished my thesis and for this I am eternally grateful. I would also like
to thanks my family that, besides the geographical distance, also provided support during
my PhD.

Finally, I recognize that this research would not be possible without the financial assis-

tance of the ANR! through the project LISE (ANR-07-SESU-007).

! Agence Nationale de la Recherche

Abstract

Despite the effort made to define methods for the design of high quality software, experience
shows that failures of IT systems due to software errors remain very common and one must
admit that even critical systems are not immune from that type of errors. One of the
reasons for this situation is that software requirements are generally hard to elicit precisely
and it is often impossible to predict all the contexts in which software products will actually
be used. Considering the interests at stake, it is therefore of prime importance to be able
to establish liabilities when damages are caused by software errors. Essential requirements
to define these liabilities are (1) the availability of reliable evidence, (2) a clear definition
of the expected behaviors of the components of the system and (3) the agreement between
the parties with respect to liabilities. In this thesis, we address these problems and propose
a formal framework to precisely specify and establish liabilities in a software contract. This
framework can be used to assist the parties both in the drafting phase of the contract
and in the definition of the architecture to collect evidence. Our first contribution is a
method for the integration of a formal definition of digital evidence and liabilities in a legal
contract. Digital evidence is based on distributed execution logs produced by "acceptable
log architectures". The notion of acceptability relies on a formal threat model based on
the set of potential claims. Another main contribution is the definition of an incremental
procedure, which is implemented in the LAPRO tool, for the analysis of distributed logs.

Abstract in French

Malgré les progres importants effectués en matiére de conception de logiciels et 1'existence de
méthodes de développement éprouvées, il faut reconnaitre que les défaillances de systémes
causées par des logiciels restent fréquentes. Il arrive méme que ces défaillances concernent
des logiciels critiques et provoquent des dommages significatifs. Considérant I'importance
des intéréts en jeu, et le fait que la garantie de logiciel "zéro défaut" est hors d’atteinte,
il est donc important de pouvoir déterminer en cas de dommages causés par des logiciels
les responsabilités des différentes parties. Pour établir ces responsabilités, un certain nom-
bre de conditions doivent étre réunies: (1) on doit pouvoir disposer d’éléments de preuve
fiables, (2) les comportements attendus des composants doivent avoir été définis préalable-
ment et (3) les parties doivent avoir précisé leurs intentions en matiére de répartition des
responsabilités. Dans cette thése, nous apportons des éléments de réponse a ces questions
en proposant un cadre formel pour spécifier et établir les responsabilités en cas de dysfonc-
tionnement d’un logiciel. Ce cadre formel peut étre utilisé par les parties dans la phase de
rédaction du contrat et pour concevoir ’architecture de logs du systéme. Notre premiére
contribution est une méthode permettant d’intégrer les définitions formelles de responsabil-
ité et d’éléments de preuves dans le contrat juridique. Les éléments de preuves sont fournis
par une architecture de logs dite “acceptable” qui dépend des types de griefs considérés
par les parties. La seconde contribution importante est la définition d'une procédure incré-
mentale, qui est mise en ceuvre dans 'outil LAPRO, pour Panalyse incrémentale de logs
distribués.

Contents

Introduction

Structure of the Document

1 Context and State of the Art

Context e
Software Liabilities
Research Issues
Formal Contracts

1.1
1.2
1.3
1.4

1.5

1.6

1.4.1
1.4.2
1.4.3
1.4.4
1.4.5
1.4.6
1.4.7
1.4.8
1.4.9

Requirements for Contract Formalisms
The Contract Formalism by Jones et al.
The Process-Oriented Event-Driven Transaction System (POETS)

The Contract Language CL
The Rule-Based Contract Language RuleML
The IST Contract Project
The Contract Formalism of Xu and Jeusfeld
Contracts for Services oL
SUIMMATY v v e e e

Digital Evidence

1.5.1
1.5.2
1.5.3
1.54
1.5.5
1.5.6
1.5.7

Legal Evidence Requirements
Log Security Requirements
The Syslog Standard 0o
The Schneier and Kelsey Logging Protocol
The Ma and Tsudik Logging Protocol
Searching Information in Encrypted Files
SUMMAaryo

Trace Analysis L

1.6.1
1.6.2
1.6.3
1.6.4

Challenges in Trace Analysis
Requirements for Trace Analysis
LTL Review o o o 0 e e
Structured Assertion Language for Temporal Logic (SALT)

21

CONTENTS

1.6.5 Test Behavior Language (TBL) 41

1.6.6 LTLsgand TLTL3 42
1.6.7 RuleR and LogScope 42

1.6.8 ForSpec and Property Specification Language (PSL) 43

1.6.9 The reduce Approach L. 44
1.6.10 ObjectGEODE 45
1.6.11 Tree-based Analysis of Traces 46
1.6.12 Summary e 47

1.7 LISE Project e 48
LISE Approach 49
2.1 Objective of Our Approach 50
2.1.1 Terminology of Computer System Misbehavior 50
2.1.2 Terminology About Logs 51

2.2 LISE Contract o1
2.2.1 Specification of the System (Annex A) 53
2.2.2 Definition of Evidence (Article 2) 53
2.2.3 Definition of Liabilities (Article 3) 55
2.2.4 Definition of the Claim Handling Procedure (Article4) 56

2.3 Technical Framework oL 58
2.4 Background on the B-Method oL 60
2.4.1 Abstract Machines 60
2.4.2 Machine consistency Lo 61
2.4.3 Structuring Machines. L oL oL 62
244 Bsettheory 63
Relations 64

Functionso 64

Sequences 65

Log Analysis 67
3.1 Assumption of the System and Communications 67
3.2 CaseStudy 68
3.3 Specifying Logs L 69
3.3.1 APl of Components 69
3.3.2 LogkFiles 71
3.3.3 Logs Distributiono o 73
3.3.4 B Machines and Technical Annexes 74

3.4 Operations on Distributed Logs 74
3.4.1 Log Extractiono 75
342 Log Merging 76

3.5 Specifying and Verifying Log Properties 7

10

CONTENTS

3.6
3.7
3.8

3.5.1 Log Property
3.5.2 Parametric Properties L.
3.5.3 Analysis of Distributed Logs
3.5.4 B Machines and Technical Annexes
Incremental Analysis L.
Technical Annexes and Machines
Contributions of the Chapter

Specifying and Establishing Liabilities

4.1

4.2

4.3

4.4

4.5

LISE Approach
Specifying Liabilities
421 Parties.o
422 Claims
4.2.3 Liabilities oL
4.2.4 B Machine and Technical Annexes
Establishing Liabilities
4.3.1 Step 1: Log Collection
4.3.2 Step 2: Log Validity Analysis
4.3.3 Step 3: Claim Validity Analysis
4.3.4 Step 4: Liability Analysis
4.3.5 Interpreting the Results
Log Distribution Analysis
4.4.1 Technical and Legal Assumptions
4.4.2 Malicious Attacks
4.4.3 Claim Events
4.4.4 Acceptable Log Distribution
445 Results o0
446 CaseStudy
4.4.7 Related Works 0oL
Contributions of the Chapter

Implementation of the Log Analysis Procedure

0.1
5.2

0.3
5.4

Language of Properties
Representation of Logs and Liabilities
5.2.1 Declaration of Liabilities
5.2.2 Declaration of Log Files
Log Analyzer Algorithm
Log Analysis PROcedure (LAPRO) Tool
5.4.1 Step 1: Log Collection
5.4.2 Step 2: Log Validity Analysis
5.4.3 Step 3: Claim Validity Analysis

11

CONTENTS

54.4 Step 4: Liability Analysis 0oL 122

55 LAPRO Evaluation 123
5.5.1 Evaluation of LogFile.verify() 124

5.5.2 Evaluation of log merging L. 124

5.5.3 Evaluation of the verification of properties 125

5.5.4 Optimizations L 125
Conclusion 127

12

Introduction

Software contracts usually include strong liability limitations and even exemptions of the
providers for damages caused by their products. This situation does not favor the devel-
opment of high quality software because software editors do not have sufficient economical
incentives to apply stringent development and verification methods.

One of the main problems to define liabilities is that computer systems cannot be
treated in the same way as physical systems and other traditional tangible goods. Because
of their complexity it is often too hard to describe precisely all expected behaviors and
potential defects that can occur during their execution. Another issue is the legal value
of electronic evidence in court [Maurer 2004, Buskirk & Liu 2006, Insa 2006]. First, the
production and manipulation of electronic evidence should follow specific rules which may
depend on jurisdictions and types of trials. Another source of uncertainty is the fact that
the weight of electronic evidence is not an absolute criterion and its final evaluation is left
to the appraisal of the judge.

Taking up these challenges was precisely the main objective of the LISE? project. The
work developed in this thesis, which has been carried out within LISE, is to define a formal
framework which can be used in the elaboration a software contract to specify certain
liabilities as precisely as possible.

Beyond liabilities, another key aspect of our work is the study of the use of the logs
as digital evidence. The liabilities among the parties of a contract are characterized with
respect to entries of the logs. We believe that this approach can not only help the contract
elaboration process, but also improve the legal value of logs used as digital evidence.

Structure of the Document

This thesis is structured in six chapters. In Chapter 1, we describe the context of the thesis
and identify the main research challenges. We also provide a study of the main contributions
in the state of the art. We conclude Chapter 1 with an introduction to the LISE project
and its objective.

2LISE (Liability Issues for Software Engineering) was a project funded by ANR (Agent Nationale de la
Recherche) under the SeSur 2007 programme (ANR-07-SECU-007). http://licit.inrialpes.fr/lise/

13

CONTENTS

In Chapter 2, we start from the legal framework proposed by the lawyers of the LISE
project and we derive a number of technical requirements for a framework for the speci-
fication of liabilities. This chapter also contains a review of the technologies used in the
definition of our formal framework.

In Chapter 3, we introduce the first part of our framework dedicated to the represen-
tation and analysis of logs. This chapter also includes the specification of a log analysis
tool capable of analyzing distributed logs. We also define an incremental version of this
log analysis tool. In this chapter, we introduce a case study that is used to illustrate our
approach throughout the document.

In Chapter 4, we define the second part of our framework dedicated to the specification
of liabilities and we propose a systematic procedure to establish liabilities. In this chapter
we also provide criteria to analyze log distributions in order to improve the legal value of
the logs to be used as digital evidence.

In Chapter 5 we present the tool that we have implemented to establish liabilities and
we introduce a language of properties that can be used to specify liabilities. In this chapter,
we also discuss the performances of our tool and suggest some optimizations. Finally, we
conclude this document with some perspectives.

14

Chapter 1

Context and State of the Art

In this chapter we describe the context of this thesis and we provide a study of the state of
the art in related domains.

1.1 Context

Software systems have considerably grown in scale and functionality and this growth will
inevitably continue in the future. Adequate functionality and quality for these systems is a
crucial issue in a society that vitally depends on them. One must admit, however, that soft-
ware systems are far from immune from failures. According to Charrette [Charette 2005],
the most common factors of software failures are badly defined system requirements, the
inability to handle software complexity and sloppy development practices. Charrette also
points out that most software failures are predictable and avoidable but most organizations
do not consider preventing failures as a critical issue.

Nevertheless, software failures may cause catastrophic losses of money, time or even
physical damages [Birsch 2004]. For instance, in 2009, a component failure partially led
to the derailment of a software controlled train in London [Branch 2010]. The problem
occurred due to some conditions not considered in the signal control system which led the
train controller to believe that the train was in a safe situation when it was actually not the
case. In the health care sector, the malfunction of a software component during a LASIK!
eye surgery could cause irreversible blindness |U.S. Food and Drug Administration 2011].
A wrong interpretation of a parameter to be provided to the system could lead to an over
exposition of the laser permanently damaging the eye. In the financial sector, a human error
(a trader accidentally mistyping the size of a trade) that should have been detected by the
software led to almost a thousand points drop in the Dow Jones stock market [ABC 2010)].
These examples show that software failures may have severe consequences.

T.aser-assisted in situ kerotomileusis is a surgery for correcting myopia, hypermetropia and astigmatism

15

CHAPTER 1. CONTEXT AND STATE OF THE ART

One of the major goals of software engineering is thus to enable developers to con-
struct systems that operate reliably despite their complexity. Software engineering meth-
ods greatly increase the understanding of software systems and can reveal inconsistencies,
ambiguities and incompletenesses that might otherwise go undetected. However, despite
all the efforts made during the development of software systems, software failures can still
occur even in critical systems. Woodcock et all. point out that there is no way to guarantee
that a complex system will operate without failures [Woodcock et al. 2009], mainly due to
the fact that requirements are often difficult to elicit precisely. Another major reason is that
software developers frequently cannot predict all the contexts in which their products will
be used or integrated [Ryan 2003, Schneider 2009]. Last but not least, the priority granted
by organizations to failures prevention is also a key factor in this context [Charette 2005].

1.2 Software Liabilities

Considering that failures may occur, the next question is how the liabilities for software
errors can be defined and established. Some studies [Patel 2006, Patel 2007| suggest that
very often liabilities are not defined very clearly in contracts between companies, although
the precise specification of liabilities will more and more become critical to successful busi-
nesses. Other studies [Marotta-Wurgler 2007| show that software licenses usually include
strong liability limitations or even exemptions of the providers for damages caused by their
products. This situation does not favor the development of high quality software. In fact,
experience shows that products tend to be of higher quality and more secure when the
actors in position to influence their development are also the actors bearing the liabilities
for their defects [Anderson & Moore 2009, Berry 2007, Ryan 2003].

The usual justification of software providers is the fact that software products are too
complex and versatile objects whose expected features (and potential defects) cannot be
characterized precisely, and which thus cannot be treated as traditional tangible goods
[Schneider 2009, Ryan 2003, Birsch 2004]. Indeed, it is well known that defining in an
unambiguous, comprehensive and understandable way the expected behavior of systems,
integrating a variety of components, is quite a challenge. In addition, the establishment
of a clear causality relationship between a failure of the system and the component that
produced the error leading to the failure can also be a very complex task. Even when this
relationship can be established, the liabilities may still depend on the precise specifications
and commitments of the parties involved in the development of the product. For example,
when a computer system fails due to one of its component, the producer of the component
may be liable for the failure. However, it may also be the case that the system integrator
is liable for using the component under certain conditions not assumed by the producer.

As a result of this complexity, when they are not specifically excluded, contractual
liabilities are usually expressed in very general, or imprecise terms in software contracts
[Patel 2006, Patel 2007]. Generally speaking, texts in natural language, even in simple

16

1.3. RESEARCH ISSUES

“legal language", often conceal ambiguities and misleading representations. This may cause
a lower rate of compliant transactions resulting in potential financial penalties: “the average
savings of transactions that are compliant with contracts is 22%” [Patel 2006, p. 1|. The
situation is even worse when contracts refer to mechanisms which are as complex as software
[Schneider 2009].

Another challenge concerning the liabilities for software systems is how to effectively
establish them in case of incident. Usually, the investigations of legal disputes and
crimes involving computer systems involve the use of digital forensics techniques. In
[Richard III & Roussev 2006], Richard III and Roussev point out that the increasing com-
plexity of computer system over the last years is demanding more attention from digital
forensic investigators: digital forensics techniques need to take into account aspects such as
how to extract relevant evidence to establish liabilities, how to efficiently analyze a large
amount of data and how to automate the analysis process.

1.3 Research Issues

Specifying and establishing liabilities in case of litigation involving computer systems is
generally a delicate matter. Taking up this challenge is precisely the objective of the work
described here. Our starting point is the legal contract signed between the parties involved
in the design or use of a computer system. We aim to propose a technical framework
to define contractual liabilities in a precise and unambiguous way, to build evidence and
establish such liabilities in case of failure. Obviously, any technical solutions or methodology
in this context should comply with the legal requirements specially with respect to contract
validity and evidence theory. The three main challenges to address this objective are the
following:

1. How to represent liabilities in a precisely unambiguous way?

The first challenge is to establish a precise relationship between the failures of the
system and the parties liable for these failures. This requires a precise and unam-
biguous specification of the failures and possibly to use this specification to elaborate
a valid liability agreement in a legal contract.

2. How to produce the digital evidence to establish liabilities?

The second challenge is to ensure that convincing evidence will be available to estab-
lish liabilities in case of disagreement between the parties. This evidence should be
sufficient (1) to show that a failure has effectively occurred, and (2) to identify all the
incorrect behavior of the components which have led to the failure.

17

CHAPTER 1. CONTEXT AND STATE OF THE ART

3. How to establish liabilities in case of incident?

Once the digital evidence is collected, an analysis of this evidence is necessary to
identify the liable party (or parties) according to the contract. Depending on the
formalism used to define liabilities, this task can be more or less difficult and expen-
sive. It is also necessary to define the amount of digital digital evidence necessary to
establish liabilities and to deal with the additional complexity of distributed logs.

To address these issues, we follow an approach based on the a prior: analysis of liabilities
in order to define which evidence has to be produced to establish liabilities. In our approach
evidence takes the form of log files containing information about the actions executed by
the components of the system. We also assume the existence of a contractual agreement
between parties. The contract describes the liabilities associated with a computer system
including the content of the digital evidence and how they will be produced.

Several connected areas share part of our objectives and provide useful hints and results.
We present three main areas related to the work described here, corresponding to the three
challenges mentioned above:

e Formal contract formalisms share with our approach the objective to specify con-
tracts as precisely as possible. These formalisms usually aim to provide mechanisms
to express contractual obligations in a precise way and are closely related to our first
objective. Contributions in this domain also include the analysis of contracts to detect
inconsistencies, as well the use of contracts for the purpose of monitoring.

e Digital evidence frameworks share with our approach the objective to use digital
information in a legal setting. Usually, the digital evidence used in forensic investiga-
tions should be in conformance with precise legal and technical requirements. Con-
tributions in this domain include techniques to produce, check and analyze evidence
that fulfill these requirements.

e Trace analysis proposals share with our approach the objective to analyze the be-
havior of computer systems based on their execution traces. Contributions in this
domain provide helpful hints about the procedure that should be used to establish
liabilities based on the observed behavior of the system.

In the following sections we sketch the main contributions related to our objectives in
each of these areas.

1.4 Formal Contracts

Business contracts are usually considered as purely legal documents without strong connec-
tion with the day-to-day conduct of business of the companies. A better approach however

18

1.4. FORMAL CONTRACTS

is to see the contract as a way to define more precisely the interactions between the parties
and their responsibilities [Patel 2007|. For instance, besides expressing the obligations of
each party, contracts may express the measures to be taken when a violation is detected
[Molina-Jiménez et al. 2009|. In the past years, significant results have been achieved on the
specification and analysis of contracts (|Giannikis & Daskalopulu 2011, Strano et al. 2009,
Oren et al. 2008, Pace & Schneider 2009, Andersen et al. 2006] to cite a few).

Contractual clauses, which usually express obligations, permissions or prohibitions
[Pace & Schneider 2009], can typically be expressed in deontic logic [von Wright 1951]. De-
ontic logic provides a very general framework with high expressive power but the price to
pay for this expressiveness is the counter intuitive meaning of certain statements known
as paradoxes [Meyer et al. 1994]. For example, the Ross’s Paradox states that for any
X and Y it is possible to show that X is obligatory implies that X or Y is obligatory
(O(X) = O(X VY)). It seems odd, for example, that an obligation to “read a letter”
implies an obligation “to read the letter or to destroy it” which can be interpret as the
possibility to escape the obligation to read the letter.

To avoid these problems, other formalisms have been proposed to formalize contracts.
In this subsection, we first identify the main requirements for a contract language. Then,
we sketch the main formalisms in the literature and evaluate them with respect to these
requirements.

1.4.1 Requirements for Contract Formalisms

The requirements for contract formalisms identified below are mostly based on
[Pace & Schneider 2009, Patel 2007, Yao-Hua Tan 2001]. We divide these requirement into
two types:

e Expressiveness requirements concern the type of statement that may be expressed
in the formalism. They include:

1. Event-based vs. State-based properties — some formalisms make it possible
to express properties on states and other focus on events (or actions) properties.

2. Contrary-to-duty Obligations — Contrary-to-duty obligations express a sit-
uation in which there is a primary obligation and a secondary obligation, which
comes into effect when the primary obligation is violated. As an illustration,
consider the sentence “There must be no failure. If there is a failure then it must
be fixed within 3 days”. The second sentence is a contrary-to-duty obligation
because it is only considered if the first obligation is violated. A challenge in
deontic logic and contract languages in general is the proper representation of
contrary-to-duty obligations [Prakken & Sergot 1996].

3. Temporal Constraints One of the main features of contracts is the interac-
tion between deontic and temporal modalities. Indeed, contractual obligations

19

CHAPTER 1. CONTEXT AND STATE OF THE ART

or prohibitions usually come with a deadline which may be defined by fixed date,
by a delay or by an event.

e Analysis requirements concern the analysis of contracts to detect inconsistencies,
breaches and possibly the actions to be taken in case of breach. The main analysis
requirements are:

1. Conflict Analysis — A valuable goal is the analysis of inconsistencies between
different clauses of the contract. For example, to detect that two obligations
conflict with each other.

2. Compliance Analysis — Another objective is to ensure for a given execution
of the contract that the clauses of the contract have not been breached.

3. Blame assignment A more ambitious objective is to be able to assign the
blame to a party (or several parties) in case of breach of the contract. Blame
assignment mechanisms associate contractual violations with the parties of the
contract that are liable for the violations.

In the following, we analyze the features of the main formalisms proposed in the litera-
ture to specify contracts and we assess them by the yardsticks of the above requirements.

1.4.2 The Contract Formalism by Jones et al.

In |Jones et al. 2003|, the authors propose a formalism dedicated to the specification of
financial contracts. The authors suggest that complex contracts may be formed by the
combination of simpler contracts. They propose a set of combinators that are commonly
used in contracts, such as zero-coupon discount bound used to express, for example, sen-
tences like “receive X on date t”. Most of the statements that can be expressed using these
combinators are related to deliver and payment commitments in the exchange of goods.

Jones et al. also introduce a combinator to express limit clauses. Limit clauses are
sentences with a deadline or bound limit, e.g. “unless the temperature falls below zero” or
“unless interest rates go above 6%”. The combination of limit clauses with other types of
combinators can be used to specify contrary-to-duty obligations.

Temporal constraints can also be expressed by combinators. Explicit time constraints
may be represented with the combinator when which defines an obligation that should
be activated when a given value is observed. Temporal constraints about the order of
events can be represented using the combinator anytime which defines that a condition will
eventually hold after a given value is observed.

Expressiveness requirements are summarized in the following table:

20

1.4. FORMAL CONTRACTS

Properties | Contrary- | Temporal Specific features
to-duty | constraints

state-based yes yes - focus on the exchange of goods
- contract between only two parties

The proposed language involves a notion of observable values. Observable values are
measurable quantities observed by the parties which can be used to specify conditions. For
example, the temperature can be an observable value, and it is possible to use a combinator
to express that “The client should pay $100 each month unless the temperature is below
zero”.

Although the authors do not provide specific details, they offer an implementation of
the language using the Haskel language. This makes it possible to provide conformance
checking mechanisms reading the set of observable values and ensuring that the clauses in
a given contract are always respected.

In the proposed formalism, contracts are always bilateral: between the holder of the
contract and a single counter-party. Therefore, there is no support for complex blame
assignment mechanisms where multiple parties could be involved.

Analysis requirements are summarized in the following table:

Conflict | Compliance | Blame Assignment

no yes no

1.4.3 The Process-Oriented Event-Driven Transaction System (POETS)

In [Andersen et al. 2006], the authors extend the work of Jones et al. to encompass the
exchange of money, goods and services between multiple parties. Andersen et al. pro-
pose a trace-based denotational semantics to specify contracts: a contract is formed by
the combination of other contracts and consists of a set of traces. Each trace is a finite
sequence of events that represents a way of concluding the contract successfully. The lan-
guage is incorporated as a core component in a process-oriented event-driven transaction
system (POETS) |Henglein et al. 2009]. A trace-based approach makes it possible to ex-
press statements concerning the expected occurrences of events.

POETS supports a variant of contrary-to-duty clauses using pairs of traces. The pair
represents the choice between respecting or not the first commitment of a clause. However,
this approach does not distinguish between the primary and secondary obligations. The
trace-based semantics leads to a natural representation of temporal constraints w.r.t the
order of occurrence of events. Explicit time constraints can also be represented based on
deadlines. For example, the following obligation:

transmit(ay, ag,r,t)

21

CHAPTER 1. CONTEXT AND STATE OF THE ART

means that the agent aq should transmit to the agent ao the resource r before the time ¢
(deadline).

Expressiveness requirements are summarized in the following table:

Properties | Contrary- | Temporal
to-duty | constraints Specific features

event-based yes yes - focus on the exchange of goods
- clauses with deadlines

The authors also define a semantics for compliance checking based on event traces. The
idea is to match the observed sequence of events with the expected events specified in the
contract to check that no clause has been breached.

Analysis requirements are summarized in the following table:

Conflict | Compliance | Blame Assignment

no yes no

1.4.4 The Contract Language CL

The contract language CL is introduced by Prisacariu and Schneider
[Prisacariu & Schneider 2007]. Like POETS, CL relies on a trace-based semantics.
CL introduces deontic modalities to provide the notions of obligation and permission.
Typically, a deontic logic uses the operator Oz to state that “it is obligatory that a7,
the operator Px to state that “x is permitted” and the operator F'z to state that “x is
forbidden”. In CL, a contract defines a set of actions and the deontic operators are used to
define assertions about these sets of actions. As an illustration, let us consider a simple
contract stating that a provider must deliver a product to a receiver (deliver_product)
and, upon the service delivery, the receiver must pay for the product (pay_product). This
contract can be specified in CL as follows:

O(deliver_product) A
[deliver_product]O(pay_product)

The syntax of CL allows the specification of action sequencing (ajas), alternative (a + as)
and concurrency (a;&as).

In CL, deontic operators are applied to actions rather than states. The authors justify
this choice by the observation that contracts usually describe what may or may not be
performed, rather than what may or may not be the state of affairs. In consequence,
a statement such as “the bandwidth should be more than 20kbps” cannot be expressed
directly in CL, because it defines an obligation on a state rather that an action.

CL supports contrary-to-duty obligations through the use of an operator representing
the lack of an action (noted ay). For example the statement O(ay) A [ar]as expresses that
a1 is an obligation, and in the absence of a; then ay becomes an obligation.

22

1.4. FORMAL CONTRACTS

Temporal constraints are expressed in CL through the application of temporal connec-
tives to obligations or permissions. The language provides the connectives until () and
next () of standard temporal logic, which make it possible to express constraints on the
order of actions but without support for explicit time constraints. It is possible however, to
write liveness properties (e.g. “provider must deliver eventually”) using the connective U.

Expressiveness requirements are summarized in the following table:

Properties | Contrary- Temporal Specific features
to-duty constraints
event-based yes yes (non timed events) | - deontic logic modalities

In [Kyas et al. 2008]|, the authors propose a method to generate monitoring mechanisms
for contracts written in CL. These mechanisms take the form of automata which accept only
the traces that respect the clauses of the contract and can be used to check the compliance
for a given execution of the contract.

In [Fenech et al. 2009a| Fenech et al. define a formal notion of conflict in a contract.
Intuitively, a conflict can be detected when an action is both imposed and forbidden; or
both permitted and forbidden; or when two contradictory actions (noted aj#asg) are per-
mitted. The authors describe a procedure to detect conflicts by constructing the set of
automata representing the contract and searching for conflicts in the traces accepted by
these automata.

Analysis requirements are summarized in the following table:

Conflict | Compliance | Blame Assignment
yes yes no

Hvitved |[Hvitved 2010] proposes CSL, a language to specify contracts with a trace-
based semantics. CSL is very similar to the formalism proposed by Andersen et al.
|Andersen et al. 2006] and Pace and Schneider [Pace & Schneider 2009| and provides the
same expressiveness. The author argues that although contract formalisms are more tar-
geted towards the elaboration of the contract itself, blame assignment is a fundamental
requirement for contract languages. An interesting aspect of the language is the fact that
the clauses of the contract are associated with the parties that should be held accountable
in case of violation. CSL provides an abstract definition of a run-time monitoring mecha-
nism that receives as input a trace and return “yes” if any violation is detected and, in case
of violation, the parties liable for the violation.

The analysis requirements for CSL can be summarized in the following table:

Conflict Analysis ‘ Compliance ‘ Blame Assignment

yes ‘ yes ‘ yes

23

CHAPTER 1. CONTEXT AND STATE OF THE ART

1.4.5 The Rule-Based Contract Language RuleML

RuleML |[RuleML 2011, Governatori 2005] is a XML-based contract language which uses the
notion of rules to express obligations. Rules are statements of the form event-condition-
action expressing that when a given event takes place, a given action must occur under
a given condition. RuleML is “semantically neutral” language, meaning that there is no
semantics attached to it.

To support contrary-to-duty clauses, RuleML introduces the connective ® used to state
reparation for clause violations. For example, Ox ® Oy is read as “QOy is the reparation
of the violation of Ox”. This means that x is obligatory, but if the obligation Ox is not
fulfilled then the obligation Oy becomes active.

In RuleML, it is possible to express temporal constraints using conditions attached
to the rules. Omne can specify, for example, that “the client must login before making
a reservation” or “the provider must deliver the service 5 days after a request”. Since
RuleML is semantically neutral, many frameworks propose implementations of RuleML (e.g.
jDREW [jJDREW 2011] is a Java-based deductive engine for RuleML) providing different
means to express temporal constraints.

Expressiveness requirements are summarized in the following table:

Properties Contrary- Temporal Specific features
to-duty constraints
state and event based yes yes (no semantics) -rule based syntax

- no fixed semantics
- different implementations

DR-CONTRACT |[Governatori & Pham 2009| extends RuleML to include compliance
checking. The authors propose an inference engine that receives a list of observed events
and finds if these events violate any rule in the contract. Another approach, propose by
[Blom et al. 2004], consists of translating each rule into an automaton and tracking rule
violations based on the execution trace.

In [Governatori & Pham 2009], the authors introduce a Defeasible Deontic Logic Vio-
lations into RuleML based on a hierarchy relationship between rules which express the fact
that some rules may overrule other rules. For example, consider the two rules:

r1: The price of the service for all clients is 300$
ro: Premium clients get a 5% discount

We can solve this conflict stating that ro has a higher priority then r;. This logic can be
used to detect and solve conflicts in the specification of rules.
Analysis requirements are summarized in the following table:

Conflict Analysis | Compliance | Blame Assignment

yes yes no

24

1.4. FORMAL CONTRACTS

1.4.6 The IST Contract Project

The IST Contract Project [IST 2011] is a research project funded by the European Com-
mission that aims to cover both theoretical and practical aspects of the specification of elec-
tronic business-to-business contracts. The project proposes a formalism [Oren et al. 2008]
to specify contracts based on the notion of normative statement (or simply norm). A
contract is defined as a set of norms that describe the obligations in the contract.

A norm consists of five components: the norm type, an activation and an expiration
condition, a goal and a target. The norm type corresponds to a deontic modality (obligation,
permission or prohibition). The activation and expiration conditions define respectively
when the norm should become activated and deactivated. The goal defines the actions that
may/must be performed if the norm is activated. Finally, the target describes the agent(s)
to whom the norm applies.

Except for the expiration condition, norms are very similar to the event-condition-action
approach. The authors propose an operational semantics for this language, based on the
notion of normative states. Normative states intuitively divide norms into a set of active
norms, a set of inactive norms and a set of expired norms according to the activation and
expiration conditions. The three classes of normative states are updated according to the
actions that are performed.

Contrary-to-duty obligations may be expressed using the activation and expiration con-
ditions to specify that when the primary obligation is expired then the penalty obligation
should be activated. The authors describe the possibility to use activation and expiration
conditions to express temporal constraints. However, the semantics of the language does
not involve any notion of time.

The expressiveness requirements for this formalism can be summarized in the following
table:

Properties | Contrary- Temporal Specific features
to-duty constraints
event-based yes yes (not formalized) | - rule-based syntax and semantics

Although the authors do not propose monitoring mechanisms, they suggest to use an
event calculus implementation to keep track of normative states |[Farrell et al. 2005|. They
also refer to [Daskalopulu 2001] to describe how Petri nets could be used to perform contract
monitoring.

The analysis requirements are summarized in the following table:

Conflict Analysis | Compliance | Blame Assignment

no yes no

25

CHAPTER 1. CONTEXT AND STATE OF THE ART

1.4.7 The Contract Formalism of Xu and Jeusfeld

Xu and Jeusfeld [Xu & Jeusfeld 2003] propose a formalism to specify contracts based on
commaitment graphs. In a commitment graph, the nodes represent the parties and the
edges represent the actions that can be performed. Contractual commitments are defined
as sequences of actions. Each action specifies a set of expected inputs and outputs. For
example, if a provider delivers some goods to a client (action delivery), the client should pay
the costs of the goods (action payment); the output of delivery is a condition to activate
the commitments concerning payment.

Temporal commitments can be expressed only as constraints on the order of execution
of the actions and there is no support for explicit time constraints. There is no mention of
support to contrary-to-duty clauses. The expressiveness requirements for this formalisms
can be summarized in the following table:

Properties | Contrary- Temporal Specific features
to-duty constraints
event-based no yes (non timed events) | - input/output activate obligations

An interesting aspect of this approach is that monitoring mechanisms not only detect
violations of the contract, but also determine the parties responsible for these violations.
In [Xu et al. 2005] the authors propose a model that relates a contractual commitment
with the parties that should be responsible for the violation of this commitment. Through
the analysis of execution traces it is possible to find which expected actions and outputs
are missing, then detect when a violation occurred and what are the parties liable for the
violation.

The analysis requirements can be summarized in the following table:

Conflict Analysis | Compliance | Blame Assignment
no yes yes

1.4.8 Contracts for Services

Contracts can also settle the terms of a service rather than a product. In this case, it is
common to use a Service Level Agreement (SLA). A SLA is the part of a service contract
that formally defines the conditions of the service. For example, Internet Service Providers
(ISP) may include a SLA within the terms of their contracts with customers, specifying
certain aspects of the service, such as the maximum time of recovery from failures or the
average connection speed.

During the last decade, many languages have been proposed to specify SLAs. SLA lan-
guages usually provide domain-specific support for defining reliability, latency or through-
put constraints for services. For example, Web-Service Level Agreement language (WSLA)
is a language developed by IBM [Keller & Ludwig 2003] for the specification of web-services.

26

1.4. FORMAL CONTRACTS

WSLA provides a set of service level parameters that specify which quantities should be
measured, how each quantity should be measured, who is responsible for monitoring it and
where the measurement can be retrieved. Constraints over the measured quantities can be
expressed using pre-defined functions and predicates that can be combined hierarchically.

The contract formalisms described in the previous sections can also be extended to
specify SLAs. For example, RBSLA |Paschke 2005] is a framework that extends RuleML
to include SLA-specific elements such as metrics and domain-specific vocabularies. RBSLA
supports a flexible syntax to describe rules concerning the conduct of services in general
and provides an intuitive way to express contractual constraints for services.

Contrary-to-duty obligations are commonly supported by SLA languages. In SLAs,
contrary-to-duty obligations usually specify penalties for the parties who do not satisfy
their obligations.

Most SLA languages can express temporal constraints with an explicit notion of time.
For example, SLAs often include clauses stating the maximum amount of time the service
provider can take to answer a request from the client.

The expressiveness requirements for SLA formalisms are summarized in the following
table:

Properties Contrary- | Temporal Specific features
to-duty | constraints

- mainly state-based yes yes - focus on the quality of service
- domain specific frameworks

Run-time mechanisms for monitoring SLAs is one of the main features of these lan-
guages. Some approaches go a step further, such as [Skene et al. 2007] which defines the
monitorability criterion to classify SLAs. The monitorability is defined according to a trust
relationship between the parties. For example, a client may trust the Internet provider
to observe the actions of the service and inform if the clauses of the contract have been
violated or not. The authors propose a procedure to build SLAs with acceptable levels of
monitorability.

Some SLA formalisms are also endowed with mechanisms for conflict detection. The
RBSLA framework includes a method to detect conflicts in SLA and to automatically avoid
or resolve conflicts [Paschke & Bichler 2005]. For example, an authorization conflict where
a clause forbids and another clause allows at the same moment the execution of a request
action may be solved by rejecting the request actions until the conflict is solved.

The analysis requirements are summarized in the following table:

Conflict Analysis | Compliance | Blame Assignment

yes yes no

27

CHAPTER 1. CONTEXT AND STATE OF THE ART

1.4.9 Summary

Regarding the expressiveness requirements we can conclude from this study that most ex-
isting contract formalisms are able to represent contractual liabilities providing different
programming paradigms and various degrees of expressiveness. Clearly, a lower expressive
power can be a design choice rather than a weakness because trade-offs between expressive-
ness and simplicity are necessary to make the formalism usable.

With respect to the analysis requirements, we can observe that only CLS and; Xu and
Jeusfeld consider blame assignment. In addition, these approaches only consider determin-
istic blame assignments. This means that they are limited to contracts where violations
can always be uniquely assigned to a certain set of parties in the contract. Typically,
traces that reveal several errors from different components cannot be analyzed within these
frameworks. Both approaches define liabilities by associating clauses of the contract with
the parties that should be held accountable for the breach of the clause.

Another conclusion of this study is that, besides SLAng [Skene et al. 2007|, no formal-
ism addresses the issue of whether or not the digital evidence used to prove a contract
violation can be trusted. Usually, these approaches assume that the digital evidence is
trustworthy because it is secured by other means, such as specific tamper-proof hardware
or security measures. We provide a study of the techniques of digital evidence in the
following section.

1.5 Digital Evidence

Digital forensics involves the investigation of material found in digital devices, namely
digital evidence, generally with the aim to use such material in legal procedures. Usually,
digital forensics investigations concerns security attacks and computer crimes investigations
[Carrier 2003, Reith et al. 2002]. Therefore, the works on digital evidence usually do not
assume the existence of a legal contract. Nevertheless, this domain shares part of our
objectives to analyze digital information in a legal setting, in particular how to manage
logs as digital evidence in a legal context. In this section we explore the main research
contributions of the use of digital data as evidence.

1.5.1 Legal Evidence Requirements

From a legal point of view, an evidence (digital or nor) is a proof legally presented at a trial
which is intended to convince someone of alleged facts?. Legally speaking, three aspects
have to be considered to assess the legal value of evidence:

o Admissibility in court: to be admissible in court, the evidence must comply with spe-
cific legal rules that may depend of the type of its nature (physical, digital, testimony,

?The People’s Law Dictionary available at: http://dictionary.law.com

28

1.5. DIGITAL EVIDENCE

genetic, etc.).

e Relevance: the evidence must prove to be relevant and have a significant relationship
with the case in question, i.e. evidence must have a significant role to prove something
important in a trial.

e Probative value: the strength the evidence is associated with its capacity to convince
or persuade a judge or a jury of a certain fact.

The admissibility in court may depend on jurisdictions and types of trials. For example,
in most jurisdictions a communication recorded without the knowing of the participants
cannot be used against them unless the recording has been authorized by a court. Another
potential obstacle to the use of log files in court could be the principle according to which
“no one can form for himself his own evidence”. It seems more and more admitted however,
that this general principle allows exceptions for evidence produced by computers. As an
illustration, the printed list of an airline company showing the late arrival of a traveller at
the boarding desk was accepted as evidence by the French “Cour de cassation"?.

The relevance of digital evidence depends on the causality relationship which can be
established between the facts. This issue is related to the analysis of the digital evidence
(Section 1.6). The probative value of a piece of evidence is not an absolute criterion and
its final evaluation is left to the appraisal of the judge and/or jury. However, there are
desirable characteristics which are likely to increase the probative value of digital evidence.
For example, specific protocols may provide guarantees of authenticity of data stored in the
logs.

In the following section, we review the security requirements of the logs that may in-
crease their probative value as digital evidence.

1.5.2 Log Security Requirements

Logs are records of observable events performed by a computer system. Logs are composed
of log entries, and each log entry contains information related to a specific event that has
occurred within a system.

We are not aware of specific regulations dedicated to the use of logs as digital evidence.
However, standard organizations, such as the National Institute of Standards and Technol-
ogy (NIST), propose a list of measures for the logs management. For instance, the “Guide
for Computer Security Log Management” [Kent & Souppaya 2006] contains important re-
quirements and goals that should be taken into account to establish a policy to generate,
build, store and analyze the logs of a system, such as follows:

e What components of the system should be logged.

3Cass. civ. 1°Y, July 13" 2004: Bull. civ. 2004, T, n° 207

29

CHAPTER 1. CONTEXT AND STATE OF THE ART

e What data should be logged for each type of event.
e What protocol should be used to transmit the data to build the log file.

e How confidentiality, integrity and availability of the information in the logs should be
protected either during transmission or in memory.

Some of these aspects are supported by the logging protocols used to produce the logs.
Logging protocols are technical solutions dedicated to the transmission and storage of log
data. They may describe the structure of a log file and how the information of each log
entry is stored into the file. A logging protocol may also specify the communication protocol
that should be used to transmit the data of the logs.

Kenneally [Kenneally 2004] sketches several considerations to take into account for logs
to be admitted as digital evidence and relates them to the guarantees of “trustworthiness”
of the evidence. Accorsi [Accorsi 2009] analyze security requirements of logging protocols
such as integrity and authenticity. We describe here some of most important requirements
identified in these works:

1. Authentication the entries in the logs must come from authorized and identifiable
devices. This means that it is always possible to identify the components involved in
the event represented by each log entry. Besides this we can expect that once a log
entry is produced is not possible to repudiate the observed event.

2. Integrity the events must not be modified during transmission and the logs cannot
be tampered once recorded. In particular it must be impossible for an attacker to
tamper the information of the log by adding, removing or changing the content of log
entries either during their transmission or within the log files.

3. Confidentiality — it may be required that some information contained in the logs
remains confidential during transmission and storage. This requirement is usually
address through the use of cryptographic techniques before transmitting or storing
the log data.

In order to make these requirements more precise, we introduce three types of entities
based on the model proposed in [Accorsi 2009]. Sensors are software components that
observe the events and automatically generate the corresponding log entries. These log
entries are transmitted to a software called the collector that is responsible for adding the
log entry into a log file. Finally, an investigator is an entity that can check the integrity of
the log files.

Authentication is usually achieved using algorithms based on digital signature, for ex-
ample, using asymmetric keys. Each entry in the log is digitally signed by a sensor. This
provides guarantees that the log data is produced by authorized devices and once an au-
thenticated entry is registered in the log it cannot be repudiated.

30

1.5. DIGITAL EVIDENCE

Confidentiality in the transmission is established by the communication protocol used
to transmit the log data between the sensor and the collector. During the storage the
confidentiality is ensured by the application of cryptographic techniques (either symmetric
or asymmetric).

Integrity is a more complex aspect because different types of attacks have to be ad-
dressed. For example, a logging protocol may protect integrity of the logs against an
attacker adding entries into the log but not against an attacker deleting entries. Usually
logging protocols specify a list of possible threats such as the access to the cryptographic
key of a sensor. Just like confidentiality, integrity has to be ensured within the process of
transmission of log data between the sensor and the collector and when the data is stored
into the collector memory. In addition to cryptographic techniques, security mechanisms
such as access control to log files can be used.

In the following, we analyze the features of the main logging protocols proposed in
the literature and we assess them by the yardsticks of the three security requirements
given above. Since authentication and confidentiality are usually addressed with standard
solutions, we mainly focus on integrity.

1.5.3 The Syslog Standard

The Syslog standard |Gerhards 2001] specifies a format of log entries including a type (such
as mail or news) and a priority (such as emergency or warning). To transmit log data,
Syslog uses the User Datagram Protocol (UDP). In Syslog, log entries are stored in clear-
text and are not authenticated. Syslog was initially not intended to be a secured logging
protocol. However, in the past years various extensions of the traditional Syslog standard
have been proposed, improving data transmission security. Here, we present three of these
extensions and describe their security features.

Syslog-ng [BalaBit IT Security 2011] and Reliable Syslog [New & Rose 2001| both ex-
tend Syslog to provide reliable transmission using the Transmission Control Protocol (TCP).
Syslog-ng supports confidentiality during transmission of data using the Transport Layer
Security (TLS) protocol. Reliable Syslog provides mechanisms for authentication and for
the protection of integrity of entries during transmission, using the Blocks Extensible Ex-
change Protocol (BEEP) [Rose 2001].

Syslog-sign |Kelsey et al. 2009] also extends Syslog to provide authentication. It also
provides support to log integrity checking against entry modification and deletion during
transmission and storage. These requirements are achieved using the notion of signature
blocks (Figure 1.1). The idea is to compute a hash of all combined previous entries to
produce a digital signature (using SHA-1 and DSA) of the log file. This stamp is computed
and safely stored periodically or after the insertion of a new entry. To verify the integrity
of a log file against missing entries or tampered entries one has to compare the signature
block of the log content with the signature block stored.

31

CHAPTER 1. CONTEXT AND STATE OF THE ART

Log Entry 1

Log Entry 2

Log Entry 3

Signature
Block

Figure 1.1: Signature block creation

The following table summarizes how Syslog and its extensions fulfill the three security
requirements:

Protocol Authentication Integrity Confidentiality
Syslog no no no
Syslog-ng no transmission yes
Reliable Syslog yes transmission no
Syslog-sign yes storage/transmission no

1.5.4 The Schneier and Kelsey Logging Protocol

Schneier and Kelsey propose in [Schneier & Kelsey 1999] a protocol for secure logging
mainly focused on the protection of the data stored in memory (as opposed to transmission).
The main techniques used to secure the logs are hash chains and evolving cryptographic keys.
A hash chain is a successive application of a cryptographic hash function to a string. For ex-
ample, let h be a hash function and s a string, then [h(s), h(h(s)) and h(h(h(s)))] is a hash
chain of length 3, often denoted h3(s). Evolving cryptographic keys consists of systemati-
cally changing the cryptographic key over time, possibly as a function of the previous keys,
with the purpose of limiting the damage of attackers who obtain a key. Based on these two
techniques the authors provide algorithms to create logs and append authenticated entries
to them.
Schneier and Kelsey propose a log entry format consisting of four parts as follows:

Li=|M; | {Ei}k, | Hi | Ci |

32

1.5. DIGITAL EVIDENCE

1. The authorization mask M; controls the access to the contents of the entry, i.e.; only
investigators authorized in M; gain access to the contents of the entry.

2. The value F; of the entry encrypted, with a key K;. This key is generated through
the application of a hash function to a combination of the authorization mask M;
and an authentication key A; possessed by the sensor. Once generating K;, a new
authentication key A;1q is automatically produced.

3. The H; hash chain value is generated from the hash of M;, {E;} g, and the hash chain
value associated to the previous entry H; 1. Any change in an entry can be detected
as an error in the hash chain, which ensure message integrity.

4. C; is the authentication code computed using the authentication key A; of the sensor
that generates the entry.

An informal threat analysis of the Schneier and Kelsey protocol revealed attacks in which
modifications cannot be detected [Stathopoulos et al. 2006, Holt 2006, Accorsi 2006]. For
example, an attacker can truncate a log file, without breaking the hash chain. To address
this weakness, several evolutions of this protocol have been proposed.

In [Stathopoulos et al. 2006], the authors show that internal attacks allow an attacker
knowing a given authentication key to reconstruct parts of the log in a way that tampering
could not be detected. To solve this problem the authors introduce a “regulatory authority”
which ensures that the log system follows the protocol. The idea is similar to the signature
blocks used in the Syslog-sing protocol (Section 1.5.3). The regulatory authority periodi-
cally generates signature blocks for logs. In case of suspicious actions. the current signature
block of the log is compared with the signature block stored by the regulatory authority.

In [Holt 2006], the authors point out a weakness related to the use of symmetric keys:
an investigator should possess the key used to authenticate log entries and has the ability
to tamper log entries. The authors propose Logcrypt, a protocol based on public key cryp-
tography to compute the authentication code of the message. An asymmetric key approach
makes it possible the use of two keys for verification and authentication respectively.

In [Sackmann et al. 2006, Accorsi 2006], the authors modify the Schneier and Kelsey
protocol to take into account authentication during the storage and the transmission of the
log entries. They introduce a public key infrastructure where each message is encrypted and
signed before transmission to the collector. The proposed protocol also ensures message
integrity during transmission using timestamps. For every new log entry received by the
collector, it sends back to the sensor an acknowledgment message with the C-value of the
entry and a timestamp. This message is stored by the sensor and an investigator can
use this value to verify the integrity during the transmission of log entries. To avoid the
possibility of attacks truncating log files, the authors propose that instead of authenticating
each entry L; based on the content E;, the entry should be authenticated based on the hash
chain value Y;.

33

CHAPTER 1. CONTEXT AND STATE OF THE ART

The following table summarizes how the above logging protocols fulfill the security
requirements:

Protocol Authentication Integrity Confidentiality
Schneier and Kelsey yes storage yes
Stathopoulus et al. yes storage yes
Logcrypt yes storage yes
Sackmann et al yes storage/transmission yes

1.5.5 The Ma and Tsudik Logging Protocol

Ma and Tsudit [Ma & Tsudik 2009] propose a logging protocol ensuring integrity without
any auxiliary information associated to the entries. In this protocol a log file consists of
two parts: the sequence of entries Ly, Lo, L3, ..., L; and two codes V; and T; corresponding
to the last entry ¢. The structure of a log file is defined as follows:

Li,Ly,Ls,....Li | Vi | T |

In addition, the collector possesses two symmetric keys A; and B; which are automati-
cally updated after each new entry. The procedure to add a new entry L;,1 is:

1. Computation of two digital signatures Signa, and Signp, of the entry L;,i using
respectively A; and B;.

2. Computation of the codes V11 and T;41 such that:
Ti+1 = h(T; + Signp,)
where h is a hash function.

The initial keys (A; and Bj) are randomly build before the first entry and stored both by
the sensor and by the collector.

The idea behind the two codes V; and Tj; is that, at any time, an investigator entity can
check the integrity of the log by obtaining the key A; and computing V; incrementally from
the log content. The investigator not knowing the key Bj, cannot add valid entries in the
log file.

Considering that log files may be very large, the first benefit of this approach is that
the collector stores only two codes and two keys for each log file. The second benefit is that
investigators cannot acquire the information necessary to change the log files.

The following table summarizes how the logging protocol proposed by Ma and Tsudit
fulfill the security requirements:

Protocol Authentication Integrity Confidentiality
Ma and Tsudit yes storage/transmission no

34

1.5. DIGITAL EVIDENCE

1.5.6 Searching Information in Encrypted Files

Most of the logging protocols presented so far focused on the integrity of the log entries.
To ensure confidentiality, some logging protocols involve the encryption of all the content
of the log file. The downside of this approach is that encrypted files are less convenient
for information extraction, which is a requested feature for the analysis of digital evidence.
A naive solution would be to decrypt all the file in before starting the analysis. This
approach may involve a high computational cost and unintended access to classified data
by an investigator. To solve this problem some authors propose a secure storage solution
for encrypted log files to be analyzed in an efficient way. In the sequel, we focus on two of
these approaches.

In the protocol proposed in [Waters et al. 2004|, each entry L; of the log is defined as
follows:

LZ:‘ {El}K ‘ HZ ‘ Cwi s Cwos Cwzy -+ - 5 Cwy,

e The content F; encrypted with a key K.
e A part of the hash chain H;.

e A set of codes ¢y, Cuys Cus, - - - Cu,, called keyword information used to search the
entries.

To add a new log entry, the collector first automatically extracts the keywords
w1, Wo,Ws, ..., wy, from the entry based on the structure of the log entries. The proce-
dure to extract the keywords depends of the context of the application. As an example, the
authors provide a log file including the queries sent from a client to a database and suggest
to use as keywords the names of the tables and columns used in the queries.

After extracting each keyword, the collector computes the keyword information through
the application of a series of hash encryption function using the key K and the keyword
itself. Finally, the collector writes the entry with the encrypted content, the part of the
hash chain and the list of keyword information.

To search for an entry in the log, the investigator sends to the collector a query contain-
ing a keyword w. The collector then computes ¢, and searches for matching log entries.
Log confidentiality is preserved because the investigator entity does not know the key K
and therefore cannot see the information in {E}x. The authors also propose a similar
schema using asymmetric cryptography that supports authentication.

In [Ohtaki 2008|, Ohtaki proposes a solution based on Bloom filters. A Bloom filter
(Figure 1.2) is a probabilistic data structure used to test whether an element is a member
of a set. Filters are represented by an array of m bits and a set of r independent hash
functions hq, ..., h.. They propose to incrementally construct for each log file a filter which
contains information about the entries of the log. To do so, we start with all m bits set

35

CHAPTER 1. CONTEXT AND STATE OF THE ART

h_l(e) /

e \
1]
h r(e) / 1
- 0

Figure 1.2: Bloom Filter Structure

lolofo] -

m bits

to 0. To add an entry e in the log, we set the bits hi(e),...,h,(e) to 1. This procedure is
repeated for each entry of the log.

To decide if an entry = belongs to the log, we check in its filter if either one of the bits
hi(x),...,h.(x) is equal to 0, which means that x is not an element of the log. If all bits
hi(z) are equal to 1 then x is a member of the log. Using Bloom filters can lead to false
positives (conclude that an element belongs to the log when in fact it does not) because
the bits produced by x in the hash functions may have been produced by others entries.
However, there is no probability of false negatives (that an element does not belong to the
log when in fact it does). The rate of false positives can be managed by tunning the size
of the values m and r. Low values for m and r can lead to a filter fulfill with 1’s for logs
with a large number of entries. The higher the values of m and r the lower the probability
of false positives. In this case, every query results that the entry belongs to the log.

The following table summarizes how the above solutions fulfill the security requirements:

Protocol Authentication | Integrity | Confidentiality
Waters et al. yes storage yes
Ohtaki no storage yes

1.5.7 Summary

From the above study we may conclude that a number of cryptographic solutions have
been proposed to ensure the main log security requirements (authentication, integrity and
confidentiality). As pointed out in [Accorsi 2009, Kent & Souppaya 2006], besides crypto-
graphic techniques, other security measures must be put in place to ensure the security of
the log files. For example, the access control to the log files should be granted only for
authorized entities. Further guarantees should be provided with respect to the whole log
management process [Kent & Souppaya 2006]:

36

1.6. TRACE ANALYSIS

1. Log Monitoring — one must ensure that the information registered in the logs corre-
sponds to the real events.

2. Log Analysis — log files should be analyzed according trusted methods and tools. This
issue is studied in more details in the following section.

To ensure the strength of the log based evidence, it is recommended to define precisely all
the technical steps for the production of the log files, their storage and the means used to
ensure their authenticity and integrity.

1.6 Trace Analysis

Trace analysis consists in using verification techniques to check whether the execution
of a computer system (represented by its traces) satisfies or violates a given property
[Leucker & Schallhart 2009]. Trace analysis has been applied in various domains includ-
ing model checking, runtime verification and diagnosis. In this section, we sketch the main
results on trace analysis related to this thesis. We use the term trace here to represent a
set of observations about the execution of a computer system, the term event to represent
the entries in a trace, and the term parameters to represent the information in the events.
A trace usually defines an order relation between its events (or a subset of its events) that
correspond to the chronological order. Some authors, e.g. [Barringer et al. 2010a], use the
term “log” to refer to the actual files containing the record of the events, and the term
“trace” to represent an abstraction of the logs. In this section, we chose to adopt a uniform
terminology and use the single term “trace”.

1.6.1 Challenges in Trace Analysis

The main challenge of trace analysis is to provide a way to verify a given property of a given
trace (or set of traces). Works related to trace analysis usually can be classified according
to three main parameters:

1. The structure of traces.
2. The expressiveness of the properties.
3. The verification algorithm.

The first aspect is relative to the content and organization of events in the traces, i.e.,
the distribution of the information among the traces. For example, some authors consider a
single trace representing the complete execution of the system (e.g. [Barringer et al. 2010b,
Bauer et al. 2006]), when others propose models to represent and analyze distributed traces
where the events can occur concurrently (e.g. [Arasteh et al. 2007, Hallal et al. 2006]).

37

CHAPTER 1. CONTEXT AND STATE OF THE ART

The second aspect is relative to the expressiveness of the language used to state prop-
erties (temporal conditions, causality conditions, deadline, etc.). For example, properties
for reactive systems (with potential infinite executions) are commonly specified using Lin-
ear Temporal Logic (LTL) (Section 1.6.3). However, this logic is not expressive enough to
state properties of real-time systems with time constraints, that are often specified using
an extension of LTL called Timed LTL.

Finally, the third aspect is relative to the decidability and complexity of the verification.
This aspect is related to the previous ones because the complexity of the verification usually
depends on the richness of the types of traces and the expressiveness of the language of
properties.

In the following, we identify requirements associated with each of with these aspects that
allow us to characterize trace analysis proposals according characteristics of our interest.
These requirements will then be used to analyze existing solutions in a systematic way.

1.6.2 Requirements for Trace Analysis

We consider successively the requirements associated with each of the aspects mentioned
in the previous section:

e Structure requirement concerns the way the trace are represented. The main cat-
egories of structures are distributed or centralized. In the first case, a total ordering
between events can be assumed, which is not true for the second case.

e Expressiveness requirements include the following:

— Parametric properties — it is possible to generalize properties for a given set
of events and parameters [Chen & Rosu 2009]|. As an illustration of parametric
property, consider a trace that contains the communications between a supplier
and its costumers. One can specify a parametric property to verify if a given
costumer (defined by its ID) sends a request to the supplier. The parametric
property can then be instantiated for any costumer using his ID.

— Sub-trace verification it is possible to specify the specific parts of the traces
on which a property should be verified. For example, one may state that a
property to check if “component A has sent a request” should be evaluated using
only the traces of A. This approach makes it possible to reduce the amount of
trace in the verification and to analyze larger logs at a reasonable price.

e Algorithm requirements concern the way that a given property is evaluated. They
include support to:

— Timed verification - it is possible to bound the period of time during which
a property is supposed to hold (and is verified). Typically, this kind of property
involves a notion of deadline.

38

1.6. TRACE ANALYSIS

— Online/offline verification — the verification algorithm may be performed
online or offline |Leucker & Schallhart 2009]. Online verification is commonly
used in situations where a quick response is necessary, for instance, in intrusion
detection. Offline verification is preferred when time is not of the essence, for
instance in diagnosis. In general, solutions that support online verification take
into account future incompleteness in traces because future events may change
the value of a property.

A large part of the body of work on trace analysis refers to LTL to state properties
over traces. In the following section we provide a brief review of LTL and its application
to express properties over traces. Finally, we summarize the features of the main trace
analysis solutions proposed in the literature and we assess them by the yardsticks of the
above set of requirements.

1.6.3 LTL Review

Linear Temporal Logic (LTL) is a logic introduced by Pnueli [Pnueli 1977] that allows
reasoning about temporal conditions over sequences. For example, in LTL it is possible
to expressing that “some event occurs in the future” or “some event does not occur until
another event occur”. LTL was initially proposed to describe the behavior of systems over
infinite sequences of states in a computer system, but it can also be used to verify properties
over finite sequences of events in a trace [Bollig & Leucker 2003, Bauer et al. 2011].

LTL extends propositional logic including the temporal operators nezt, eventually, glob-
ally and until. These operators are defined as follows:

39

CHAPTER 1. CONTEXT AND STATE OF THE ART

Let ¢ and v be properties in propositional logic and T a trace. We note T' |= ¢ to state
that ¢ holds for T'. Let T,, be the suffix trace obtained from the n-th event of T" assuming
zero-based index, i.e. Ty = T. We have:

Operator | Notation | Semantics Interpretation

Next O T EQOQp & T E ¢ (O¢ holds iff ¢ holds in
the suffix starting from
the next event of T’

Eventually O T ECp & Fx(z>0ANT, E ¢) | O¢ holds iff ¢ holds for
some suffix of T’

Globally O T E O¢p < Va(r > 0 = | O¢ holds iff ¢ holds for
T, &= ¢) all suffixes of T
Until U T FEoUdd & 3Falr>0A|¢U P holds iff ¢ holds
T, E v AVy.(0 <y <ax=T, | for some suffix of T" and
?)) until then ¢ holds

For example, the property LJ(Close = (—Read U Open)) state that each time a Close event
occurs then Open should occur later on and Read should not occur until Open occurs.

The verification of LTL properties can be achieved through the use of existing model
checking and runtime verification tools such as SPIN? (offline) or LTL3 Tools® (online).

LTL is well-accepted for specifying properties in the verification of concurrent sys-
tems. In particular, LTL is used to express safety properties (stating that something bad
never happens), and liveness properties (stating that something good keeps happening)
[Sistla 1994]. However there also are limitations in LTL, for example, considering dis-
tributed traces, we cannot state the property “there is a possibility that Open occurs before
Close”, which requires reasoning about sets of traces. This type of statement is usually
stated using a branching-time logic (such as CTL) which makes it possible to reason over
different timelines.

Timed LTL (TLTL) [Raskin & Schobbens 1999, D’Souza 2003] is an extension of LTL
suited to state time-bounded response properties that are common in real-time systems.
For example, in TLTL it is possible to state that “ Read should occur each five minutes”.

1.6.4 Structured Assertion Language for Temporal Logic (SALT)

The Structured Assertion Language for Temporal Logic (SALT), proposed in
[Bauer et al. 2006], is a general purpose language to specify temporal properties. The
main motivation behind SALT is to provide an easier way to specify properties using the
modalities of LTL and TLTL.

"http://spinroot.com
Shttp://1t13tools.sourcegorge.net

40

1.6. TRACE ANALYSIS

Specifications in SALT consist of three layers: a propositional layer providing atomic,
boolean propositions and operators; a temporal layer encapsulating future and past asser-
tions; and a timed layer adding real-time constraints. In the timed layer, it is possible
to specify deadlines setting limits for the specification of properties. For example, always
timed[~c] P states that P must be true within the time bounds c.

In the temporal layer, SALT allows the specification of scope operators to an-
alyze properties in specific parts of the traces. For example, the statement
assert P between excl a, excl b defines that P should hold only between the events
a and b. However, it is only possible to specify the parts of the trace in terms of initial
and final events (statements such as “P is evaluated only for the traces of the Webserver”
cannot be expressed in SALT).

The language offers support for parametric properties through the creation of functions.
For example, define resp(X,Y) := Y implies X defines a function that computes the
formula Y = X for any given instance of X and Y.

Finally, the authors also provide a mechanism for translating specifications in SALT to
formulas in LTL and TLTL. This makes it possible to use existing trace analysis tools in
order to perform online and offline verification.

The features of this proposal are summarized in the following table:

Proposal Trace Parametric | Sub-trace Timed Online/Offline
structure | properties | verification | Verification Verification
SALT | centralized yes no yes both
(external tools)

1.6.5 Test Behavior Language (TBL)

Test Behavior Language (TBL) [Chang & Ren 2007| is a language to specify and validate
trace-based properties, dedicated mainly to the verification of large telecommunication
systems.

In TBL, properties are specified using patterns consisting of a name and a regular
expression. Regular expressions represent the structure that should be matched within a
trace. For example the following pattern states that an Input event with a parameter (a
number representing an identifier) should be followed by an Output event with the same
parameter.

pattern P (id:[0-9]1+) {‘Input $id’ ; ‘Output $id’ }

where the connector “;”
events.

Expressions can also define time limits that impose the maximum time for which con-

ditions should be evaluated. For example, the expression *!Input represents the longest

states that any number of events may appear between the two

41

CHAPTER 1. CONTEXT AND STATE OF THE ART

sequence of Input events and it may never terminate since one can wait for more events
to occur. One solution is to use the expression *!Input in (3600,300) that terminates
the matching in an hour (3600 seconds) or whenever any new events do not occur in a 300
seconds period.

The features of this proposal are summarized in the following table:

Proposal Trace Parametric | Sub-trace Timed Online/Offline
structure | properties | verification | Verification | Verification
TBL centralized yes no yes offline

1.6.6 LTLJ and TLTL3

[Bauer et al. 2011| define an algorithm for online verification of properties written in LTL
and TLTL. Properties are evaluated using three-value logics, called LTL3 and TLTL3 where
properties can be evaluated to either ‘true’; ‘false’ or ‘unknown’. A property is evaluated
to ‘unknown’ whenever it is not possible to know its value because events in the future
may change the value of the property. For example, the property ¢ = Qevy holds for
T =< eva >, but ¢ is unknown for 77 =< evp > because ev4 may still occur in the future.

The authors also propose the use of a four-value logic for property verification. In this
approach, properties can be evaluated to ‘true’, ‘false’, ‘presumably true’ or ‘presumably
false’. The idea is that, if the result of evaluating a given property is unknown, then the
values ‘presumably true’ or ‘presumably false’ indicate what would be the result if the
execution had been finished. For example, consider the simple property ¢ = Qeva that
holds if eva occurs eventually and the trace T =< evp >. The evaluation of ¢ for T is
‘presumably false’ because if the execution finishes then ¢ does not hold for T'; however
future events may change the value of ¢. This idea in used in [Falcone et al. 2009] for online
verification of security properties written in LTL and TLTL.

The features of this proposal are summarized in the following table:

Proposal Trace Parametric | Sub-trace Timed Online/Offline
structure | properties | verification | Verification | Verification
LTLg centralized no no no online
TLTL3 | centralized no no yes online

1.6.7 RuleR and LogScope

RULER [Barringer et al. 2010b, Barringer et al. 2007 is a rule-based system dedicated to
runtime verification, that was used to support testing of spacecraft flight software for the
Mars mission of NASA.

In RULER, a specification is a set of rules, each one of the form name:cond -> body
which represents a name (name), condition (cond) and a body (body) indicating that, if the

42

1.6. TRACE ANALYSIS

condition is satisfied then the body should be satisfied. For example, the following rules
check that only opened files are closed:

Name Condition Body

Start: openFile(f:obj) -> Track(f);
Track(f:obj): !closeFile(f) -> Track(f);

Close: closeFile(f:obj),!Track(f) | -> print(‘Error in:’ + f);

The rule Start states that once openFile occurs the rule Track is activated. The rule
Track states that the rule stays active while closeFile does not occur. Finally, the rule
Close states that if closeFile occurs and the rule Track is not active then an error is
printed.

The authors also show that RULER can express a wide range of temporal logics (such
as LTL) and they provide a prototype implementation of a verification algorithm that can
be applied either offline or online. Similarly to LT L3 (Section 1.6.6), to perform online
verification RULER uses a four-value logic, where the values ‘still true’ and ‘still false’ cor-
respond to the values ‘presumably true’ and ‘presumably false’ respectively. Additionally,
a specification is evaluated to ‘unknown’ if there are some rules evaluated to ‘still true’ and
others to ‘still false’ at the same time.

LoGScopE [Barringer et al. 2010a| is an adaptation of RULER providing a higher-
level language to express temporal properties. This language makes it possible to repre-
sent conditions expressing that an event should occur eventually (noted ev), or an event
should not occur (noted 'ev), or a set of events should occur in a specific order (noted
[evi,ev2,...]) or unordered (noted {evi,ev2,...}). For example, the following rule
states that if openFile occurs then readFile and writeFile should occur in any order,
and these events should be followed by closeFile:

VerifyRead: openFile -> [{readFile,flushFile},closeFile]

The features of this proposal are summarized in the following table:

Proposal Trace Parametric | Sub-trace Timed Online/Offline
structure | properties | verification | Verification | Verification
RULER centralized yes no no both
LOGSCOPE | centralized yes no no offline

1.6.8 ForSpec and Property Specification Language (PSL)

ForSpec [Armoni et al. 2002] is a formal framework, proposed by Intel, for hardware ver-
ification. ForSpec includes a language to specify properties based on a combination of
LTL and regular expressions. Properties may specify temporal constraints such as event

43

CHAPTER 1. CONTEXT AND STATE OF THE ART

ordering or deadlines and the language also support parametric properties. Since ForSpec
has been designed for hardware verification, it also provides support to specific modalities
concerning clock signals. For example, the property accept_on a P states that the value
of the property P should hold until the arrival of the clock signal a.

A particular feature of ForSpec is that each property may advance according different
clocks and it is possible to specify the sub-traces for which the property should be evaluated.
For example, the property change on c P states that the property P should be evaluated
for the traces defined by the high phases of the clock c, i.e. to evaluate P it is necessary to
use the traces relative to the clock c.

Property Specification Language |Vardi 2008| (PSL) is an extension of ForSpec that,
among other features, includes a branching-time extension that makes it possible to state
properties about multiple timelines. For example, the property EF P states that there is a
possibility that P holds in the future. This extension is mainly applied to model checking
for the verification of deadlocks properties. However, there is no mention of distributed
traces where the total order of the events is unknown.

Initially, ForSpec and PSL were designed with offline verification in mind. 1In
[Morin-Allory et al. 2007| the authors propose an algorithm to build monitoring mecha-
nism for online verification of properties in PSL. Similar to LT Ls (Section 1.6.6), these
mechanisms adopt a four-value logic where properties can are evaluated to ‘presumably
true’ or ‘presumably false’ whenever the evaluation of the property can change due to
future events.

The features of this proposal are summarized in the following table:

Proposal Trace Parametric | Sub-trace Timed Online/Offline
structure | properties | verification | Verification | Verification
ForSpec | centralized yes yes yes offline
PSL centralized yes yes yes both

1.6.9 The reduce Approach

In |Garg et al. 2011] the authors propose an approach to verify traces in compliance with
privacy and security policies, which are represented by sets of logical properties. Every
event in the trace is associated with a timestamp indicating when the event occurred. For
example, the event send(S,R, ‘open’,5) means that S has sent to R message ‘open’ at
time 5. It is assumed that events occurs on distinct times and the total order between
events can be obtained using the timestamps.

Properties are expressed using a logic that includes the main modalities of propositional
logic. To ensure decidability and efficiency of the verification algorithm, the authors impose
that bounded quantifications take the forms Vz.(c < ¢) and Jx.(c A ¢), where ¢ defines
the scope of the variable z and it has a limited syntax where quantifiers and implications
are not allowed. In [DeYoung et al. 2010], the authors show that this limited logic make it

44

1.6. TRACE ANALYSIS

possible to express temporal propositions including all modalities of LTL with the addition
of real-time constraints.

The main contribution of this approach is a procedure to evaluate properties for in-
complete traces, named reduce. The verification is based on a three-value logic, similar to
LT L3 (Section 1.6.6). However, besides evaluation of properties future events, a property
may also evaluate to ‘unknown’ due to spatial incompleteness and subjective incomplete-
ness. Spatial incompleteness happens when some traces are stored on non-available physical
sites. For example, the property “the Webserver receives the request” may be evaluated to
‘unknown’ if the trace of the Webserver is not available. Subjective incompleteness happens
when some some predicate of the properties rely on human judgment. For example, a prop-
erty stating conditions about personal medical information of patients may be evaluated to
‘unknown’ because such information is not present in the traces due to privacy issues.

The reduce procedure works by reducing a policy ¢ for a trace T to either a boolean
value or to a reduced version of ¢, which contains only predicates that evaluate to unknown.
For example, consider the property ¢ = exists t.(t < 5 and send(S,R, ‘open’,t) and
send(S,R, ‘close’,t)) and the trace T' = <send(S,R, ‘open’,4)>. The result of apply-
ing reduce (¢, T) is the reduced form ¢/ = exists t.(t < 5 and send(S,R,‘close’,t))
since it remains unknown if send(S,R, ‘close’,t) may still occur. The resulting policies
can be verified incrementally with additional traces until the point that true/false eval-
uation is obtained or the policy should be analyzed by an expert (in case of subjective
incompleteness).

The features of this proposal are summarized in the following table:

Proposal Trace Parametric | Sub-trace Timed Online/Offline
structure | properties | verification | Verification | Verification
reduce | centralized no no yes offline

1.6.10 ObjectGEODE

[Hallal et al. 2003, Hallal et al. 2006] describe ObjectGEODE, a tool used by Siemens to
analyze communication protocols properties. One of the key features of this approach is
the verification of properties for distributed traces.

In a trace, events take the form (send, P;, P;, m) representing P; sending message m to
P;, (rec, P;, Pj, m) representing m’s reception, or (rdv, P;, P;j) for a synchronization (rendez-
vous) event between P; and P;. Traces are represented by automata where state transitions
correspond communications between processes and are labeled by the corresponding event.
For example, consider the following traces:

(Sendv Py, Py, a‘)v (Send7 Py, Ps, a)
(rec, Py, Py, a)

Trace:
Traces:

These traces are represented by the following automaton:

45

CHAPTER 1. CONTEXT AND STATE OF THE ART

(rec,P1,P2,a end,P1,P3,a)

(send,P1,P2,a)

O

(send,P1,P3,a rec,P1,P2,a)

This automaton-based specification allows the use of model checking tools to produce
the scenarios that correspond to a possible total order of the events. For example, the
above automaton produces the following two scenarios:

Scenarioy: (send, P1, Py, a), (send, Py, P3,a), (rec, P, P2, a)
Scenariog: (send, Pi, Py, a), (rec, P, Py, a), (send, P, P3,a)

The verification of a property for a set of traces consists of computing all scenarios and
evaluating the property for each scenario. The result of the evaluation is two sets containing
the scenarios where the property holds or not.

The features of this proposal are summarized in the following table:

Proposal Trace Parametric | Sub-trace Timed Online/Offline
structure | properties | verification | Verification | Verification
ObjectGEODE | distributed no no no offline

1.6.11 Tree-based Analysis of Traces

[Saleh et al. 2007, Arasteh et al. 2007| define a framework for forensic analysis based on a
branching-time logic to verify properties for distributed traces.

Traces are represented by trees where branches represent concurrent sequences of events.
For example, the following tree defines a distributed trace where the events Close (f1) and
Open(£2) occur concurrently:

Open(fl)

Read(f1)

Close(f1) Open(f2)

Properties can include modalities of branching-time logic that makes it possible to reason
over the various scenarios that may be produced from the tree. For example, it is possible
to state that “in at least one of the scenarios Close occurs before Open”.

46

1.6. TRACE ANALYSIS

Temporal conditions are expressed using patterns of events and parameters to be
matched in traces. For example, the property <x.Open(sID).x.Close(sID).x> checks
if an event Open occurs followed by an event Close both with the same parameter. The
symbol x works as a wildcard to indicate that any number of events may occur before, after
or between the two events.

One advantage of this logic is the possibility to state properties that should be verified
for specific portions of the traces. For example, the property «Server»<x.Close().x>
checks if Close occurs in the traces of the server.

The features of this proposal are summarized in the following table:

Proposal Trace Parametric | Sub-trace Timed Online/Offline
structure | properties | verification | Verification | Verification
Tree-based | distributed yes yes no offline
Analysis

1.6.12 Summary

We conclude that the analysis of distributed traces consists mainly of computing the sce-
narios representing the possible total orders of the events, where the same property is
evaluated for every scenario, such is the case of ObjectGEODE (Section 1.6.10). A more
complete solution consists of providing a branching-time logic (such as CTL) where is possi-
ble to reason about the different scenarios computed, such is the case of a tree-base analysis
(Section 1.6.11).

One of the key issues in the analysis of distributed traces is to be able to deal with
the potentially exponential number of scenarios that may be computed. Computational
slicing [Sen & Garg 2003, Mittal & Garg 2001] has been proposed to address this issue.
This approach consists of building selected parts of the traces which contain only events
that may change the evaluation of the property, which may considerably reduce the number
of scenarios.

As far as efficiency is concerned, the support of parametric properties can also make
the analysis much more expensive. In some cases, such as earlier versions of LOGSCOPE
(Section 1.6.7), the support to these feature may be limited in return for better performances
of the verification procedure.

In online evaluation, the evaluation can remain inconclusive because it depends on the
occurrence of future events. One solution is to use a three-value (or four-value) logic for
which the value ‘unknown’ indicates that a property may still change with the advent
of future events. Another solution is to impose a time limit stating when the property
should be verified, such as in TBL (Section 1.6.5). The reduce approach (Section 1.6.9)
extends the verification of properties with future incompleteness to also evaluate properties
to ‘unknown’ when some events are not available due to other reasons, such as location
access or privacy issues.

47

CHAPTER 1. CONTEXT AND STATE OF THE ART

Finally, among the proposals mentioned here, only PSL (Section 1.6.8) and tree-based
analysis provide support for the analysis of sub-traces. However, these solutions do not
offer mechanisms verify that only the sub-traces specified are used in the evaluation of the

property.

1.7 LISE Project

LISE® (Liabilities Issues in Software Engineering) is a multidisciplinary project funded by
the French National Research Agency (ANR-07-SESU-007). The project is led by INRTA
and involves two research groups in law and four research groups in ICT.

This project addresses the problem of liabilities in the restricted context of B2B con-
tracts concerning computer system products. In contrast with forensics, where the approach
is to look for evidence after a problem has occurred, a contractual framework allows the par-
ties to consider an a priori approach where dysfunctions, liabilities and electronic evidence
are defined before the delivery of the system.

The objective of the project is to elaborate a methodology for assisting parties to elab-
orate such B2B contracts and to ensure that convincing digital evidence will be avail-
able to establish liabilities in case of failure. The approach will also facilitate an amica-
ble and precise settlement of liabilities between the parties, avoiding for instance exces-
sive and stronger liabilities exemptions that could be challenged or invalidated in court
[Genicon 2008, Bitan 2004|. In fact, the necessity to resort to a judge comes only from
the lack of agreement between the parties about the consequences of system failures and
potential compensations. If the contract is precise, coherent and balanced enough w.r.t the
share of liabilities, the legal costs can be considerably reduced.

The LISE methodology includes technical and legal solutions for stating contractual li-
abilities in an integrated way. By technical solutions we mean a set of tools supporting the
parties for describing and evaluating liabilities in a precise and unambiguous manner. By
legal solutions we mean a contractual framework which is in conformance with the appli-
cable law and jurisprudence. Legal solutions take the form of a set of contractual clauses
referring to technical annexes, which specify liabilities, electronic evidence and application
of liabilities.

In the following chapter, starting from the legal solution elaborated by the lawyers of
the project, we exhibit the expected requirements of the technical framework, which is
developed in the sequel.

Shttp://licit.inrialpes.fr/lise/

48

Chapter 2

LISE Approach

As described in the previous chapter, we focus on business-to-business (B2B) contracts
dedicated to the development or integration of computer systems. We mainly focus on
issues related to failures of computer components. In particular, we do not take into account
liabilities for delays in service delivery or intellectual property right’s infringements.

As an illustration, consider a car embedded system controlling an automatic urgency
braking mechanism based on the recognition of obstacles’. This system may be the result of
the combination of various computer components (such as the obstacle detection software,
the braking activation mechanism, the alert system, etc.) that are supplied by contractors
and put together by an integrator. The scope of the contract should describe the liabilities
of the parties in case of a failure of the system.

We focus on B2B contracts because legal constraints for these types of contracts are not
as strong as for business-to-consumer (B2C) contracts, generally subject to specific legal
protections of consumers. In B2B contracts, the parties are considered is principle as equal
in power and able to understand the implications and the scope of their commitments. In
contrast, in B2C contracts, some clauses can be considered unfair considering the lack of
knowledge and expertise of average customers.

In this chapter, we describe in more detail our approach to help in the elaboration
of the parts of B2B contracts which are dedicated to system failures and the resulting
liabilities. First, we describe the objectives of our approach and introduce our terminology
(Section 2.1) before sketching the legal framework proposed by the lawyers of the LISE
project to achieve the objectives (Section 2.2). Then, we proceed with the requirements
and functionalities of a technical framework to be used to elaborate the parts of the contract
dedicated to liabilities for computer system failures (Section 2.3). Finally, we review the
technology used to implement our framework (Section 2.4).

'For instance, tests performed on the braking system of the Volvo S60 show that the risks of failures
are real. More information on http://carscooop.blogspot.com/2010/05/epic-fail-2011-volvo-s60-warning-
with.html

49

CHAPTER 2. LISE APPROACH

2.1 Objective of Our Approach

The objective of our approach is to provide a well-understood and non ambiguous procedure
allowing the parties to establish liabilities for damages caused by failures of the system. To
this aim, we provide a procedure based on the analysis of the logs of the system. By
procedure, we mean not only the tools used in the log analysis but also the way to use
these tools and the actors in charge of each step of the analysis.

In order to propose a reliable and trusted procedure to define and establish liabilities,
two main requirements must be satisfied. First, there should exist a conclusive and reli-
able way to identify the component that caused the failure. Second, there should exist a
precise method, accepted by the parties, that (based on the observation of the erroneous
components) leaves no doubt about the liabilities.

Considering our objective and these requirements, the contract must include the follow-
ing elements:

1. A definition (as precise as possible) of the system and its components.

2. The identification of failures considered important enough to warrant a formal defi-
nition of the associated liabilities.

3. The definition of logs that can be used as digital evidence.
4. The relationship between the components of the system and the liable parties.

5. The definition of the procedure to establish liabilities and the actions to follow when
the proposed approach is not applicable, such as a failures not initially foreseen.

The aim of the LISE approach is to propose an integrated framework to help the parties
to elaborate the contract containing the elements mentioned above. In Section 2.2, we
introduce the model of the contractual provisions dedicated to liabilities proposed by the
lawyers of the LISE project [Steer et al. 2011]|. This model consists of a set of legal clauses
which refer to technical annexes. The aim of this chapter is to define the content of these
technical annexes as precisely as possible, in particular pointing out elements that have to
be formalized and proposing a well-defined procedure for the log analysis. Before entering
into this description, we introduce some terminology.

2.1.1 Terminology of Computer System Misbehavior

We adopt a standard terminology [Avizienis et al. 2004] to define computer system misbe-
haviors:

e A system is “an entity that interacts with other entities, i.e., other systems, including
hardware, software, humans and the physical world. [...]| A system is composed of a
set of components bound together to interact”.

50

2.2. LISE CONTRACT

e A system failure (or simply failure) is “an event that occurs when the delivered service
deviates from correct service”. That is, a failure is a transition from a correct behavior
to an incorrect behavior.

e An error is “the part of the total state of the system that may lead to its subsequent
service failure. |...| many errors do not reach the system’s external state and cause
a failure”. That is, a failure occurs when an error reaches the service interface of the
System.

e A fault is “the adjudged or hypothesized cause of an error. [...| A fault is active
when it causes an error, otherwise it is dormant.”

For example, a fault may be a missing variable initialisation. This fault becomes active
and causes an error when one of the components tries to access the value of the variable.
A failure occurs for instance if an access to an uninitialized variable raises an exception,
which makes the system stop and display an error message to the user.

2.1.2 Terminology About Logs

We adopt the following terminology based on the NIST Guide to Computer Security Log
Management |Kent & Souppaya 2006]:

e A log file (or simply a log) is a record of the events occurring within a system. Logs
are composed of log entries, each one containing information concerning a specific
event that occurred in the system.

e A log infrastructure consists of the material (hardware and software) used to generate,
transmit, store and dispose the log data.

e A log management policy is the process established in an organization for generating,
transmitting, storing and disposing log data.

2.2 LISE Contract

The model of contract proposed in [Steer et al. 2011] is divided into articles, each one
composed by a set of legal clauses defining the terms of the contract. The first article

ol

CHAPTER 2. LISE APPROACH

provides the definitions used in the rest of the contract?:

Article 1: Definitions

Computer System: The Computer System subject to this Agreement is the integra-
tion of the set of computer components as specified in Annex A.

Contract: This Agreement includes the present document and its annexes A, B, C, D
and E.

Log: The Logs are the files recording the events occurring within the Computer System.

Log Analysis Procedure: The Log Analysis Procedure is the procedure defined in
Annex C and applied by the Parties to collect and analyze the information contained in
the Logs in order to establish liabilities as set forth in Article 3 of the Agreement.

Log Analyzer: The Log Analyzer is the software tool defined in Annex D and used
in the Log Analysis Procedure in order to establish the validity of a claim and to identify
the components involved in the handling of the claim.

Log Infrastructure: The Log Infrastructure is the set of tools used to generate,
transmit, store and dispose the Logs as specified in Annex B.

Party: A Party is any entity signing this Agreement.

Provider: The Provider is the Party in charge of providing the Computer System to
the customer.

..

The model of contract includes three other articles. Article 2 describes the agreement
between the parties to recognize the legal value of the logs as digital evidence. Article 3
defines the liabilities associated to each party. Finally, Article 4 defines the actions that
should take place in order to establish the liabilities in case of failure. These articles refer
to five annexes providing the technical details of the contract:

e Annex A provides a description of the system and failures for which liabilities are
defined.

e Annex B describes the log infrastructure and a log management policy.
e Annex C defines the log analysis procedure.
e Annex D defines the tool used in the log analysis procedure (log analyzer).

e Annex E defines the liability relationship (associating combinations of failures and
liable parties).

In the following sections, we discuss in more detail each part of the contract in asso-
ciation with the content of these annexes. We use the car braking system case study to
illustrate our approach.

*Translated to English from the original in French [Steer et al. 2011]

52

2.2. LISE CONTRACT

2.2.1 Specification of the System (Annex A)

Annex A is mentioned in Article 1 and it provides a description of the system in terms of
its expected functionalities, its architecture, the behavior of each of its components and its
potential failures. Annex A also specifies the components that should be logged and for
each of these components, the information that should be logged. Annex A should thus
include:

1. The specification of the system.
2. The identification of failures for which the parties wish to specify liabilities.
3. The specification of the information that should be recorded in the logs.

The specification of the system and failures can be used to check whether or not the
system behaved as expected. The failures are expressed in terms of information recorded
in the logs. For example, we can specify that the braking system fails either because the
obstacle detection component did not communicate with the braking component or the
braking component did not activate the brake in time. To specify this failure, we define
the actions executed by the two components and the expected exchange of information
between these components that are recorded in the logs. It is also necessary to specify
which components should be logged and the precise information that should be logged.

Ideally, to ensure an unambiguous and precise description of the system and the lia-
bilities it is recommended to use rigorous techniques for the description of the computer
system (such as semi-formal or formal methods). In our framework we provide a way to
specify the information that should be recorded in the logs and, based on this information,
a formal way to describe the failures.

2.2.2 Definition of Evidence (Article 2)

Article 2 defines the agreement about the logs that have to be supplied by the parties and
how they will be used to establish liabilities. More precisely, the clauses of this article
specify the agreement about:

e The log infrastructure and log management policy (clauses 2.2 and 2.3).

e The procedure and tools that should be used when a failure is reported (clause 2.4).

e The admissibility and probative value of the results of the log analyzer (clause 2.5).

The article is structured as follows:

53

CHAPTER 2. LISE APPROACH

Article 2 : Definition of Evidence

2.1 The Parties hereby accept and agree to apply the rules defined in this article to define
the evidence to be used to establish their liabilities as set forth in Article 3.

2.2 The Logs are recorded by the Log Infrastructure in the format specified in Annex B
and stored on the devices of the Parties (or third parties) set forth in Annex B during (x)
months. After this (x) months period, to the extent not prohibited by law, the Logs shall
be deleted by the aforementioned Parties (or third parties).

2.3 The Parties set forth in Annex B shall use the Log Infrastructure to record the Logs
as specified in Annex B. They commit not to modify, delete or alter log entries in any way.
When Annex B provides for a third party to host the Logs, the Parties hereby agree to
accept the aforementioned third party as an independent escrow and commit to send him
the execution data necessary to build the Logs. The execution data sent by the Parties
shall be complete (as required by Annex B) and unmodified.

2.4 The Parties hereby agree to apply the Log Analysis Procedure and the Log Analyzer
in the following events:

e Failure of the Computer System observed or suspected by a Party.

e Claim of a customer against one of the Parties about an alleged failure of the Com-
puter System.

2.5 The Parties hereby agree to grant to the results of the Log Analysis Procedure the
weight of evidence and legal value. They commit not to challenge the acceptability, accu-
racy or probative value of the results of the Log Analyzer except in case of act in bad faith
or intentional fault of one of the Parties.

..

As pointed out in clauses 2.2 and 2.3, Annex B should include:
1. The log infrastructure.
2. The log management policy (including the parties involved).

3. The log distribution (including a description of the components responsible for log-
ging).

As mentioned in Section 1.5, to ensure the probative value of log based evidence, the log
infrastructure and a log management policy should be defined precisely. Certain aspects
of the log infrastructure may be specified by a logging protocol, such as the transmission
protocol for log data. Due to the potentiality distributed nature of the system, an important
information to be specified is the log distribution describing how entries are distributed

o4

2.2. LISE CONTRACT

among the various logs files and the logging components. For example, in a client-server
architecture the log distribution may be composed of a simple log file containing entries
of all the clients (logged by the webserver which is the contact point with the clients) and
another log file to record the information of the server (logged by the central server).

2.2.3 Definition of Liabilities (Article 3)

Article 3 defines the agreement about liabilities in case of failure and the compensations
associated with these liabilities (clause 3.1). This agreement excludes liabilities related to
criminal actions or defective products (clause 3.2) because the law provides specific rules
for such cases®. The article is structured as follows:

Article 3 : Definition of Liabilities

3.1 The Parties commit to apply the rules defined in Annex E for the definition of liabilities
following the procedure defined in Article 4 and shall not object to their conclusions. The
identification of the component(s) involved in the failure of the Computer System by the
binding procedure defined in Article 4 shall be used to identify the liable Parties as defined
in Annex E and the aforementioned liable Parties shall indemnify the plaintiff in the
conditions and within the limits set forth in Annex E.

3.2 The liability rules defined in Annex E shall apply only to the extent not prohibited by
law; they shall not apply to tort liability or bodily injuries.

..

Annex E may take the form of tables that define the parties liable for a given failure
and the associated compensations. The following table defines the assignment of liabilities
for a failure in the braking system:

Annex E: Assignment of liabilities

Then, the liabilities will be assigned to:
P1 (sup- | P2 (sup- | P3 (sup- | P4 (system | P5 (system
plier of | plier of | plier of | integrator) supplier)

If errors have occurred in:

obstacle brake com- | obstacle
detection ponent) detection
software) hardware)
Obstacle detection software X
Obstacle detection hardware X
Brake component X
Obstacle detection functionality X X
Obstacle detection functionality due to
extreme weather conditions X
Integration between components (bad X X

interface definition)
No identified component

htd
<

3For instance, Article 1150 of the French Civil Code states that clauses limiting liabilities will be con-
sidered null if they concern corporal damages or defective products.

5Y)

CHAPTER 2. LISE APPROACH

The first column contains the components for which an erroneous behavior is observed
in the logs and the other columns define the parties which will be held liable for the
failure. Some lines (such as the first line) simply allocate the liability to the provider
of the faulty component. Other lines (such as the fourth line) define several liable parties
because the information available is not precise enough to identify a single party. Whatever
the underlying motivations, the point of that these allocation of liabilities must come from
the agreement of the parties. The table specifying the compensations is specified as follows:

Annex E: Compensations

If errors have occurred in: then the liability shall amount to:

Obstacle detection software Full amount of the damages caused by the failure

Obstacle detection hardware Full amount of the damages caused by the failure

Brake component Full amount of the damages caused by the failure

Obstacle detection functionality Half of the amount of the damages caused by the failure for

each of the designated Parties

Obstacle detection functionality due to extreme | No damages
weather conditions

Integration between components (bad interface | Indemnification by P4 up to (x) EUR, and by P5 for any
definition) damage in excess of (x) EUR.

No identified component Full amount of the damages caused by the failure

In Chapter 4 we provide a formal way to specify certain aspects of the liability relation
defined in the above tables.

2.2.4 Definition of the Claim Handling Procedure (Article 4)

Article 4 defines the actions that should be taken to establish liabilities when a failure has
occurred or a claim is raised by a third party with respect to the system. The first clauses
(4.1, 4.2 and 4.3) define how the parties should notify a failure and the corrective actions:

Article 4 : Claim Handling Procedure

4.1 Notification of the claims.

The Provider commits to apply the procedure set forth in this Article 4 as soon as he
receives a claim notification from a customer for an alleged failure of the Computer System.
If the claim is notified by the customer to another Party, the Party receiving the claim
shall apply the same rules and comply with this article as if it were the Provider for the
purpose of this Article 4.

4.2 Information.

The Provider shall notify the claim and all relevant information pertaining to the claim to
the other Parties without delay (and the latest one day after receipt of the notification of
the claim). Notification shall be sent by registered post with acknowledgment of receipt.

56

2.2. LISE CONTRACT

4.3 Corrective actions.

After receipt of a claim notification, the Parties (or, if applicable, the Parties specified
in the Log Analysis Procedure) commit to take without delay all appropriate corrective
actions in order to repair the Computer System and limit the damages.

]

The notification of the failure starts with a claim. In our context, a claim is a complaint,
either legal or amicable, from a party (called the plaintiff) against another party (called
the defendant). Claims can also be initiated by third parties, such as the consumer in a
B2B contract.

The following two clauses (4.4 and 4.5) define the agreement concerning the process of
collecting and analyzing the logs to handle a claim:

4.4 Collection of the Logs.
After receipt of a claim notification, the Party specified in Annex C shall without delay
(and the latest within 1 day after receipt of the notification) apply the procedure set forth
in Annex C to collect and protect the Log data. If applicable, the aforementioned Party
shall also forward the Log data to the trusted third party specified in Annex C in the
conditions defined in Annex C.

4.5 Log Analysis

The Parties shall apply the Log Analysis Procedure set forth in Annex C without delay
(and the latest within 3 days after receipt of the claim notification) and use the results of
this procedure to decide upon the validity of the claim and, if applicable, their respective
liabilities for the claim following the rules defined in Annex E. The Provider shall notify
the result of the application of the Log Analysis Procedure to all the Parties without delay
(and the latest within two days after the availability of these results).

..

As pointed out in the above clauses, Annex C should include:
e The log collection procedure.
e The log analysis procedure.

More precisely, Annex C specifies the party (or an expert) that should be responsible for
conducting the claim handling procedure. The claim handling procedure starts with the
collection of the logs. This step should comply with precise requirements (specified in
Annex C) to guarantee the integrity of the logs. For example, it may be required that the
logs to be analyzed should be transmitted using a secure protocol to preserve their privacy
and integrity. Another part of Annex C specifies the log analysis procedure. The objective
of this procedure is to identify the failing components relying on the logs collected and the
definitions of failures in Annex A.

o7

CHAPTER 2. LISE APPROACH

Annex D specifies the log analyzer be used in the log analysis procedure. Given the
specification of the failures in Annex A and the logs, the log analyzer checks if the failure
indeed occurred and the potential errors that may have caused the failure.

Finally, the remaining clauses of Article 4 define what should be done when the results
of the log analysis are challenged or are not sufficient to establish liabilities. In this case the
parties should resort to a third party, typically an expert, to solve the issue. This expert
may use the logs (and any other resources) to find the component that caused the failure
and to designate the liable parties.

2.3 Technical Framework

Our objective is to define a method to specify contractual liabilities based on the model of
contract presented in the previous section. To this aim, we propose a framework consisting
of a set of tools that can be used to elaborate certain aspects of the technical annexes of
the contract.

One requirement of our framework is to allow to precisely specify the liabilities for a
given set of failures and the process to establish these liabilities using the logs. To reach
this goal, we need to specify the logs, including their content and distribution, as well as
the log analysis tool.

Another requirement of our framework is to provide a support for contract simulation,
i.e. the ability to validate the results of the liabilities for given logs. This includes the
verification of properties of the logs, the analysis of log distribution and the animation of
claim scenarios.

In the rest of this thesis we present a formal framework to specify liabilities that fulfills
these requirements. More precisely, our framework is based on a set of formal model
templates that can be completed on a case-by-case basis. These models specify not only
the logs but also the failures for which the parties wish to establish liabilities.

Our framework includes the following:

e A model to specify the API of the components (Annex A).

A model to specify the logs: the content of the entries (Annex A) and their distribution
(Annex B).

A model to specify the failures of the system considered in the contract (Annex A).

A model to specify the assignment of liabilities (Annex E)

A specification of the log analyzer (Annex D) and the claim handling procedure

(Annex C).

58

2.3. TECHNICAL FRAMEWORK

The benefits of a formal language include a well-defined semantics that allows us to
precisely specify the log content and its analysis to establish liabilities. Besides this, it is
also provides a support to formally verify implementations of this analyzer. Yet another
advantage is the possibility to validate the contract using tools that support verification
and animation of models.

Our methodology (Figure 2.1) is based on a set of formal model templates to be instanti-
ated by the parties (or experts representing the parties). The aim is to provide a structured
and precise way to specify the information of the annexes. The models also contain certain
properties about the logs and the system that the parties wish to verify precisely. For
example, the parties may state properties about the logs to verify their integrity.

Using model verification tools it is possible to verify if the properties in the model
hold for a specific case and a given set of logs. Tools can also be provided to support the
animation of possible scenarios. This process is usually performed by an investigator that
can be either the parties or a third party (expert) designated to analyze the logs.

L X

Parties Ivestigator

Technical Annexes
Logs

Framework |

Y
Model

-—) Verification

Tool

/N

Property
Verification

Animation
Figure 2.1: Framework Methodology

We have chosen to implement our framework using the B-method. In the following
section we describe the benefits of this approach and review the main concepts of the

29

CHAPTER 2. LISE APPROACH

technology.

2.4 Background on the B-Method

The B-method [Abrial 1996] is a formal method of software development that has been
successfully applied in safety-critical systems in academy and industry [Behm et al. 1999,
Badeau & Amelot 2005, Rehm 2010]. The B method encompasses activities of modeling,
safety properties verification and refinement until code generation and is supported by an
industrial tool [ClearSy 2011] and an open platform [Rodin 2011]. These tools assist the
development process in its whole, from specification until code generation. Some tools
are dedicated to validation of models, such as animators (ProB [Leuschel & Butler 2003],
Brama [Servat 2007]) and test generators (jSynoPSys |[Dadeau & Tissot 2009], Leirios
[Jaffuel & Legeard 2007]).

In the LISE context, we have chosen the B-method for several reasons:

e the industrial status of this approach is a positive argument in terms of trust, a
important notion in our context.

e the B-method is based on a first order set theory which is understandable and manip-
ulable way by computer science engineers who can be implied in the technical content
of contracts.

e the maturity of tools allows us to use them during contract elaboration in order to
validate liability specification on concrete cases.

In this thesis we exploit a very restricted part of the B method: we are mainly interested
to model data and to state some verifications and calculus on them. In particular the
refinement facility will be not used.

2.4.1 Abstract Machines

In B-method, each model is represented by an abstract machine that defines the state of
the system, properties about this state and how it evolves. Abstract machines take the

60

(c1)

2.4. BACKGROUND ON THE B-METHOD

following form:

MACHINE M

SETS S /* given and enumerated sets */

CONSTANTS C /* list of constants */

PROPERTIES P /* properties in the form of a first order formula */
VARIABLES V /* list of variables */

INVARIANT I /* a first order formula stating properties

on variables and constants */
INITIALISATION U /* initial assignment of variables */
OPERATIONS /* operation definitions in the form of
pre and postconditions /

END

Properties and invariant are stated using a first order set typed theory (see section
2.4.4). Clause SETS allows to introduce enumerated and given sets, that are considered as
type. Initialisations and operations are stated using the generalized substitution language,
a specification language based on assignment. However, we will not describe this language
here because it will not be used in the context of this thesis.

Example 2.1. Example of abstract machine

Machine BreakController defines the actions (enumerated set ACTION) and parame-
ters (given set PARADM) that define the APT of a break controller component. The constant
NumParams maps each action into the number of parameters of the action, that should
be greater that one (cl).

MACHINE BreakController
SETS ACTION = {Activate, Deactivate, EmmitAlert}; PARAM
CONSTANTS NumParams
PROPERTIES
NumParams € ACTION — N A
NumParams = {(Activate — 3), (Deactivate — 2), (EmmitAlert — 2)} A
Y action.(action € dom(NumParams) = NumParams(action) > 1)
END

The operator dom(f) returns the domain of the function f (see Section 2.4.4).

2.4.2 Machine consistency

Machine consistency is established using proof obligations. Verification imposed in
[Abrial 1996]| is relative to invariant preservation: we have to prove that the invariant is

61

CHAPTER 2. LISE APPROACH

established by initialisation and preserves by each operation. Due to the fact that our mod-
els do not contain variables we not detailed these proof obligations here. Another possible
verification consists to establish property consistency, as proposed in [Schneider 2001]:

Hg=3dCP

where Hg are the hypothesis relative to given and enumerated sets. For example if a
machine contains the given set S and the enumerated set T' = {a, b} than Hg is equivalent
to:

SEPl(INT> ATGPl(INT) NT = {a,b} ANa#b

The B-method does not impose this verification at the abstract machine level. In fact,
feasibility properties are normally automatically established at the level of implementation:
if we build a correct implementation the existence of constants and variables is proved. In
particular, an implementation must contain a clause called VALUE that explicitly assigns
values to constants. This clause generates a proof obligation that verifies all properties
starting from the abstract machine level until the implementation. However, we to not use
the refinement process in this thesis.

2.4.3 Structuring Machines

Models can be structured to constitute larger models using INCLUDES and SEES clauses.

The INCLUDES clause

If My includes M (the machine in Section 2.4.1) then it means that My contains a copy of
M, i.e. sets, constants and variables of M are included into My. We specify Ms as follows:

MACHINE M, INCLUDES M
SETS S,

CONSTANTS C
PROPERTIES P,
VARIABLES V5
INVARIANTS I
INITIALISATION U,
OPERATIONS ...

END

Variables defined in M can only be assigned using a call of M’s operations (encapsulated
use of M). Thanks to this restriction, the invariant of M is preserved by construction. Proof

62

2.4. BACKGROUND ON THE B-METHOD

obligations attached to My are only dedicated to the fact that Is is respected by the initial-
isation Uy and new My operations. Satisfiability proofs, as proposed in [Schneider 2001], is
the following one:

Hg NHg, = 1C, CQ(P N Pg)

Therefore, if Mj is consistent (Section 2.4.2) then M is also consistent.

Structuring with SEES

If M5 sees M then this represents that Ms can read the data of M but My cannot modify
the data of M. We specify My as follows:

MACHINE M, SEES M

END

Constants of M can be used to define the types and values of constants in M. The
difference between INCLUDES and SEES is that when structuring with SEES the variables
of M are not referenceable within the invariants of M> and the operations of M are not
referenceable within the operations of My (only read operations). However, since the ma-
chines presented in this thesis do not contain variables we only structure machines using
SEES. Unlike the include relationship, the see relationship is not transitive, therefore if a
machine Msz sees My then Mg cannot read the sets and constants of M.

2.4.4 B set theory

The basic set constructs are the following:

Construct Name
SxT Cartesian product
P(S) Powerset

{z | P} | Set comprehension
BIG An infinite set

The cartesian product S x T' of two sets are the set of ordered pairs (s,t) such that
s€ S and t € T. The powerset P(S) of a set S is the set of all subsets of S. In B is also
possible to use F(S) to represent the set of all finite subsets. Set comprehension {z | P} is
the set of elements for which the condition P is true. Finally, the infinite set BIG allows
us to define sets such as integers.

From the construct above we can define new domains and operators such as relations,
functions and sequences.

63

CHAPTER 2. LISE APPROACH

Relations

Given two set S and T we express a relation rel between these two sets (noted rel € S <> T')
as a set of elements of the form s +— t that belongs to the cartesian product S x T

rele ST redC{(s—t)]seSAteT}
The domain and range of rel is defined respectively as follows:

dom(rel) ={s|se€ SAIt.(t €T Ns—tecrel)}
ran(rel) ={t |t e T NIs.(s€ SNs—terel)}

The relational inverse of a relation rel (noted rel~!) is defined as:
rel™t = {t ~ s|s >t € rel}

In a relation rel the operator rel[U] identifies all elements in ran(rel) that are related with
an element belonging to U, i.e.:

rellUl={t|s—terel NseU}

Functions

A function between two sets S and T is a relation which relates the elements of S to no more
that one element of T. Functions can be partial (fun € S - T) or total (fun € S — T)
depending on their domain, i.e.:

S+»T={fun| fune€ S T AVs,ti,ta.(s€ESANt1ET Nty €T =
((s+—=t1 € fun A s>ty € fun) = t] =t9)}
S—T={fun| fune S + T Adom(fun) =S}

The notation fun(s), with s € dom(fun), denotes the value of fun associated to s.

We can also state functions using the lambda notation. The form of a lambda definition
is fun = As.(s € S| E), which maps s, of type S, to the value of expression E. For
example, the mathematical function square given by the definition square(z) = 2% can be

expressed as follows:
square = \z.(x € Z | z?)

The more general form of a lambda notation is A z.(P | F) defined for a list of variables z,
provided that P defines the type of each variable in z.

64

2.4. BACKGROUND ON THE B-METHOD

Sequences

Finally, sequences are finite ordered list of elements of a given type that can be understood
as a special kind of function that maps natural number into elements of a given set. We
denote seq(.S) the seq of possible sequences of the elements of S:

n

seq(S) = | J (1.N = 9)
N=0

Additionally, we use the notation iseq(S) to denote injective sequences, i.e. all sequences
of elements of S that contain distinct members. The value of a sequence can be defined by
listing its members within square brackets and the number of elements is obtained using
the function size. The following example defines a sequence ss of natural numbers that
contain three elements:

ss € seq(N) A ss =1, 3,6]
The symbol union represents the generalized union of all elements of a given set, i.e.:
union(TT) =Ty UTo, U---UT, such that T; e TT for 1 <i<mn
For example, let TT = {{1,2},{3,4},{5}} then:

union(TT) = {1,2} U {3,4} U {5} = {1,2,3,4,5}

65

CHAPTER 2. LISE APPROACH

66

Chapter 3
Log Analysis

As mentioned in the previous chapter, we propose a framework consisting of a collection of
models to be completed, to assist parties in the elaborating of the content of the technical
annexes. In this chapter we present the models used to specify the logs and their analysis.

First, we describe some basic assumptions about the system and the communications
between its components (Section 3.1) and we describe the case study, used to illustrate
our approach (Section 3.2). Then, we introduce the models used to represent the logs
(Section 3.3) and the operations on distributed logs (Section 3.4). Then, we introduce the
models allowing us to state properties on the logs and provide a formal specification of
the log analyzer to verify properties of distributed logs (Section 3.5). We also define an
incremental version of the log analyzer (Section 3.6). Finally, we point out the parts of the
technical annexes corresponding to each model (Section 3.7) and we summarize the main
contributions of this chapter (Section 3.8).

3.1 Assumption of the System and Communications

First, we consider distributed systems consists of components that communicate by ex-
change of asynchronous messages. These messages may represent exchange of information
(either between components or between components and users of the system), method calls
or internal actions executed by the components. This approach is a standard way to model
interactions of components and to abstract different kinds of communications that may oc-
cur in the system [Coulouris et al. 2011|. We assume that the messages are recorded in the
chronological order of the communications. This hypothesis is common in trace analysis
(Section 1.6).

Second, following the approach taken in the contract formalisms presented in Sec-
tion 1.4, we assume that the components communicate without loss of information.
This assumption is likely to be valid in a B2B contractual context because, in or-
der to establish liabilities, the parties need to distinguish between errors in the com-

67

CHAPTER 3. LOG ANALYSIS

ponents and communication errors. More specifically, when an error occurred because
a message has not been received by a component it should be possible to establish
if the error was caused by the component or by the network. Several logging proto-
cols have been proposed to ensure that communications occur without loss of message
[BalaBit IT Security 2011, Kelsey et al. 2009, Sackmann et al. 2006, Ma & Tsudik 2009]
(Section 1.5). They rely on communication protocols (such as TCP) that ensure message
delivery by retransmission of lost messages.

Third, we also assume that messages exchanged between components are unique and
can be distinguished from each other. In particular, in order to recompose logs, we have
to detect the pairs of log entries corresponding to the send and receive operations for each
message. The same assumption is used in the analysis of distributed traces, such as Object-
GEODE [Hallal et al. 2006]. One consequence of this assumption is that it is possible to
identify the components involved in each communication. Therefore, we consider that each
message contains information about the component initiating the communication (sender)
and the component receiving the communication (receiver). However, our framework can
also accommodate other communication modes, such as broadcasting.

3.2 Case Study

Throughout this chapter, we consider a Travel Agency (TA) reservation system as a driving
example. The reservation process is illustrated in the sequence diagram of Figure 3.1.

Client WebComp IntSys CompH otel CompBank

NewRequest(sessionld, clientld, dgtails)
o
Request(sessionld, clientld, detafils)
o

Bpok(sessionld, clientld, detaills
4

Response(sessionld, Y ES)
r ¢
Canfirm(sessionld, details, prige)

Debitl(sessionld, hotelld, clientId, price)

Bill(sessionld, hot¢lld, clientId, price)

Figure 3.1: Accepted reservation scenario

First, the client requests a hotel reservation to a travel agency using a web component
(WebComp) and informing his identifier and the reservation details. The travel agency
internal system (IntSys) receives the request and tries to book a reservation by commu-
nicating with a hotel (CompHotel). If agreed, the requested hotel sends a confirmation
to both the client and the travel agency. On the reservation date, the hotel charges the

68

3.3. SPECIFYING LOGS

client for the reservation by communicating with the bank (CompBank). Then, the client
receives a debit confirmation from the bank.

The client can also cancel a reservation before the date of debit using WebComp indi-
cating the identifier of the session. This scenario is represented by the sequence diagram of
Figure 3.2.

Client WebComp IntSys CompH otel CompBank
)

Canfirm(sessionld, details, prige

Cancel Request(sessionld)
o

Cancel(sessionld)

Unbook(sessionld)

¢

Figure 3.2: Reservation canceled scenario

In this case study we are interested in specifying the B2B contract between the travel
agency and the various hotels that should specify theirs liabilities in case of damages caused
to their clients.

3.3 Specifying Logs

In this section we define the models used to specify the logs: their content and how they
are distributed.

3.3.1 API of Components

The contract includes a description of the components (and the information exchanged
between them) that should be logged. We propose a model to represent the communications
based on the API of the components. The API of a component define the services associated
to the component and its communications with other components. In practice, the API
may include different types of communications such as method calls or email messages.

The machine ComponentsAPI (Figure 3.3) specifies the set of components (set
COMP) and the set of actions (set ACTION) forming the API of the components. The
ellipsis marks (“...”) in machines indicate information that should be completed.

69

CHAPTER 3. LOG ANALYSIS

MACHINE ComponentsAPI

SETS COMP={---}; ACTION ={---}; PARAM
CONSTANTS Inter face, Invoke, NumParams
PROPERTIES

/* component that offers the function */

Inter face € ACTION — COMP A
Interface ={---} A

/* components that may invoke the function */
Invoke € ACTION — F(COMP) A
Invoke = {---} A

/* number of parameters */
NumParams € ACTION — N A
NumParams = {---}

END

Figure 3.3: Machine ComponentsAPI

The constant Inter face maps each action onto the component that performs the action.
The constant Invoke maps each action onto the set of component that may invoke the
action. Internal actions of components may be represented using the same component to
perform and invoke the action.

The parameters represent the information exchanged during communications and are
specified using the set PARAM. Parameters can be specified by a complex description
including their type and default values. We use here an abstract definition of parameter
values based on a fixed given set. In practice, the set PARAM works as a serialized
representation of parameters. In machines, particular parameter values can be specified as
constants of the type PARAM . For example, to specify a client’s identifier we proceed as
follows:

CONSTANT clientId
PROPERTIES clientld € PARAM

The constant NumParams maps each action onto the number of parameters exchanged
in the action. For example, when requesting a reservation, the client provides two parame-
ters: his identifier and the reservation requirements (location/date/number of nights).

In our model, each action has a unique identifier. To avoid any ambiguities we adopt
the dot notation used in programming languages. For example, if a component Comp
offers an action Open we name the action “Comp.Open”. When no ambiguity can arise,
the component name can be omitted.

70

3.3. SPECIFYING LOGS

Example 3.1. API of components in the Travel Agency system
To provide an example of instance of ComponentsAPI using our case study, we com-
plete the information of this machine with the following values:

COMP = {Client, WebComp, IntSys, CompHotel, CompBank}
ACTION = {NewRequest, Request, Book, Response, Con firm,
Debit, Bill, Cancel Request, Cancel, Unbook }
Inter face = {(NewRequest — WebComp), (Request — IntSys), (Book — CompHotel),
(Response — IntSys), (Con firm — Client), (Debit — CompBank),
(Bill — Client), (Cancel Request — WebComp), (Cancel — IntSys)}
(Unbook — CompHotel)}
Invoke = {(NewRequest — {Client}), (Request — {WebComp}), (Book — {IntSys}),
(Response — {CompHotel}), (Con firm — {CompH otel}),
(Debit — {CompHotel}), (Bill — {CompBank}),
(Cancel Request — {Client}), (Cancel — {WebComp}),
(Unbook +— {IntSys})}
NumParams = {(NewRequest — 3), (Request — 3), (Book + 3),
(Response +— 2), (Confirm — 3), (Debit — 4),
(Bill — 4), (Cancel Request — 1), (Cancel — 1), (Unbook + 1)}

Machine ComponentsAPI only specifies the components and actions that will be
logged. In some cases, certain actions and parameters cannot be recorded due to technical
or privacy reasons [Garg et al. 2011]. In other cases, depending of the liabilities specified
in the contract, it may not be necessary to specify the API of a given component. For
example, a component used to communicate with an internal database that registers all
reservations may not be included in the model because it does not appear in the definition
of liabilities or its producer is a third party that does not take part in the contract.

The model can also include components that do not produce logs but which may appear
in the messages. For example, this is the case of Client in our case study because it
communicates with WebComp and CompBank but it is not a component of the system
involved in the generation of the logs.

3.3.2 Log Files

We now define a model to specify the content of log files and their entries. Each log entry
consists of:

e the type of entry: either Send if the communication is initiated by the action or Rec
if the communication is received;

e the components that initiate (sender) and receive (receiver) the communication;

71

CHAPTER 3. LOG ANALYSIS

e the action and its associated parameters.

In most papers about trace analysis (Section 1.6), log files are represented by sequences
of log entries. Because we want to be able to deal with distributed systems, we propose a
extended notion of log file consisting not only of a sequence of entries but also of the set of
components that are logged. In our approach, a log file is as a pair consisting of:

e the components that have their communications recorded in the log; in the text we
refer to them as the components of a given log file.

e a sequence of log entries; in the text we refer to this sequence as the content of the
log.

Machine LogF'iles (Figure 3.4) specifies log entries (constant ENTRY') and log files
(constant LOG_FILE).

MACHINE LogFiles

SEES ComponentsAPI

SETS TYPE = {Send, Rec}
CONSTANTS ENTRY, LOG_FILE
PROPERTIES

/* log entries */

ENTRY = {(tp,cs,cr,ac,par) | tp e TYPE N cs € COMP N cg € COMP A
ac € ACTION A par € seq(PARAM) A size(par) = NumParams(ac) A

cs € Invoke(ac) N cg = Inter face(ac)} A

/* log files */
LOG_FILE = {(comps, cont) | comps € F(COMP) A cont € iseq(ENTRY) A
Y(tp, cs, cr, ac, par).((tp, cs, cr, ac, par) € ran(cont) =

((tp = Send A c¢s € comps) V (tp = Rec A cg € comps))) A
V(ena,eng,cs,cr,ac,par).(eny € ran(cont) A eng € ran(cont) A

eng = (Send, cg, cgr,ac,par) N\ eng = (Rec,cg, cr, ac,par) =

Pos(eny, cont) < Pos(enp, cont))}

END

Figure 3.4: Machine LogF'iles

The definition of ENTRY imposes the consistency between the sender, receiver and num-
ber of parameters and the API defined in ComponentsAPI. The definition of LOG_FILE
requires that log files contain only entries related to (i.e. sent and received by) the com-
ponents involved (c1) and for each pair of corresponding Send and Rec entries, the Send

72

3.3. SPECIFYING LOGS

entry precedes the Rec entry (¢2). Pos is a function (not defined here) that returns the
position of an element in a sequence. We use iseq to specify that the log contains only
unique entries (Section 3.1).

Example 3.2. Log file example
Let us consider the following log entries corresponding to a reservation request between
the client and IntSys:

eni1 € ENTRY Neng € ENTRY Neng € ENTRY A

en1 = (Rec, Client, WebComp, NewRequest, [sessionld, clientId, details]) A
eng = (Send, WebComp, IntSys, Request, [sessionld, clientld, details]) N
eng = (Rec, WebComp, IntSys, Request, [sessionld, clientld, details])

where the parameters sessionld, clientld and details correspond respectively to the session
identifier, the client identifier and the reservation requirements. If components WebComp
and IntSys are recorded in a single log file then we can represent a log file value as follow:

log € LOG_FILE A log = ({WebComp, IntSys}, [en, eng, ens])

The values assigned to a log file must meet the requirements into the definition of
ENTRY and LOG_FILE. The verification consists in establishing the proof obligation
log € LOG_FILE, which includes conditions (c1) and (¢2).

3.3.3 Logs Distribution

Contracts must specify how logs are distributed (Section 2.2). The notion of log distribu-
tton is generally not included in the formalisms proposed to define contract (Section 1.4).
However, as mentioned in Section 1.5, to increase the probative value of the logs as digital
evidence, it is recommended to provide a detailed description of the log infrastructure and
the log management policy, including the process for generating and distributing logs.
Machine LogDistribution (Figure 3.5) defines a log distribution as a constant Dist that
must be instantiated to include the set of components which are logged in the same log file.

MACHINE LogDistribution
SEES ComponentsAPI
CONSTANTS Dist
PROPERTIES

/* log distribution */
Dist € F(F(COMP)) N
Dist={...}

END

Figure 3.5: Machine LogDistribution

73

CHAPTER 3. LOG ANALYSIS

The log distribution does not impose any constraints: components may be logged more
than once or not logged at all. In Chapter 4, we analyze how the choice of the log distri-
bution may affect the legal value of the digital evidence provided by the logs.

Example 3.3. Log distribution example

Let use consider three options for the distribution of logs of the Travel Agency system.
The first option consists of two log files containing respectively the entries of WebComp and
IntSys. The second one involves a single log file. In the third one, the entries related to
WebComp are recorded twice. These distributions are represented respectively as follows:

e Disty = {{WebComp},{IntSys}}
e Disty = {{WebComp, IntSys}}
e Dists = {{WebComp}, {WebComp, IntSys}}

3.3.4 B Machines and Technical Annexes

The machine ComponentsAPI and LogFiles are included in Annex A to specify the in-
formation recorded in the logs. An implementation of machine LogF'iles can be used to
verify if a given value of a log file respects the definition imposed in LOG_FILE, i.e., the
entries are consistent with the component API and the ordering constraint.

Machine LogDistribution should be instantiated and included in Annex B to describe
how log files are distributed.

The following table summarizes the information about the machines in the technical
annexes:

Machine Annex Information described Instantiation required
ComponentsAPI A Information to be logged Yes

LogFiles A Content of the log files No
LogDistribution B Log distribution Yes

3.4 Operations on Distributed Logs

It may be necessary to manipulate different log files in order to obtain a single log file with
entries relative to a given set of components. We define two functions for the manipulation
of logs: extraction and merge. These functions are based on the theory of trace analysis
and the well known relation happened-before introduced in the early work of Lamport
[Lamport 1978|.

Machine LogOperations (Figure 3.6) specifies the operations Extract and Merge.
Their properties are defined in the following sections. Additionally, this machine speci-
fies the constant LOG_SET representing finite sets of log files.

74

3.4. OPERATIONS ON DISTRIBUTED LOGS

MACHINE LogOperations

SEES ComponentsAPI, LogF'iles
CONSTANTS LOG_SET, Extract, Merge
PROPERTIES

/* set of logs */
LOG_SET = F(LOG_FILE)

/* Extract definition (Section 3.4.1) */
/* Merge definition (Section 3.4.2) */
END

Figure 3.6: Machine LogOperations

3.4.1 Log Extraction

The function Extract allows us to extract a sub-log of a log file containing only the entries
related to a given group of components.

Definition 1. Function Extract

The partial function Extract € (F(COMP) x LOG_FILE) + LOG_FILE maps ev-
ery pair (compsest,log), such that log = (comps,cont) and compsey,r C comps, to
l0gext = (compsegt, contey) being characterized by the following properties:

1. /* extracted log content */
ran(contezt) = {(tp, cs, cr, ac,par) | (tp,cs, cr,ac,par) € ran(cont) A
((tp = Send A cg € compseszt) V (tp = Rec A cr € compsest)) }

2. /* preservation of entries order */
V(ena,enp).(eng € ran(contezt) A enp € ran(contezt) A
Pos(ena, contegt) < Pos(enp, contegyt) = Pos(ena, cont) < Pos(eng, cont))

The extracted log file (logest) contains all entries of log that are sent or received by com-
ponents in compseyz (1.) and it respects the initial order of entries in log (2.).

Example 3.4. Example of Extract
Let us consider the following log file with entries related to WebComp and IntSys:

log = ({WebComp, IntSys},
[(Rec, Client, WebComp, New Request, [sessionld, clientId, details]),
(Send, WebComp, IntSys, Request, [sessionld, clientld, details]),
(Rec, WebComp, IntSys, Request, [sessionld, clientId, details]),
(Send, IntSys, CompHotel, Book, [sessionld, clientId, details)),
(Rec, CompHotel, IntSys, Response, [sessionld,Y ES])])

We can use Extract to obtain a log file related to IntSys:

75

CHAPTER 3. LOG ANALYSIS

Extract({IntSys},log) = ({IntSys},
[(Rec, WebComp, IntSys, Request, [sessionld, clientld, details]),
(Send, IntSys, CompHotel, Book, [sessionld, clientId, details]),
(Rec, CompHotel, IntSys, Response, [sessionld,Y ES])])

3.4.2 Log Merging

The relation Merge computes the scenarios consisting of all possible total orders of the
entries of a given set of log files. More precisely, Merge defines all the permutations of
log entries, which respect the local order of each log file and the causal order between
Send and Rec entries. This relation is similar to the operation used by [Hallal et al. 2006]
(Section 1.6.10) to produce the scenarios of distributed traces.

Definition 2. Relation Merge
The relation Merge € LOG_SET <+ LOG_FILE is defined for any pair
(LogSet, scenario) € Merge, such that scenario = (compsscen, Contscen) and:

1. /* scenario components */
compSscen, = union({comps | I(cont).((comps, cont) € LogSet)})

2. /* scenario content */
ran(contscen) = union({ran(cont) | I(comps).((comps,cont) € LogSet)})

3. /* preservation of entries order */
Y comps, cont.((comps, cont) € LogSet = Extract(comps, scenario) = (comps, cont))

The last property states that the order of entries in scenario respects the order of en-
tries of the log files in LogSet. By definition, the range of the relation Merge only
contains log files, such that the Send entries occur before the corresponding Rec entries
(ran(Merge) € LOG_FILE). Therefore, this relation may result in an empty set if it is
impossible to compute a scenario that respect the order of entries.

Example 3.5. Example of Merge
Let us consider two log files, logwescomp and logrnisys, with the following content:

logWebComp: ({Webcomp},
(Send, WebComp, IntSys, Request, [sessionld, clientld, details]),
Send, WebComp, IntSys, Cancel, [sessionld])])

[
(

loglntSys = ({IntSyS},
[(Rec, WebComp, IntSys, Request, [sessionld, clientld, details])])

If LogSet = {logwebcompsl0gimisys} the operation Merge[{LogSet}] produces the set

76

3.5. SPECIFYING AND VERIFYING LOG PROPERTIES

{sceny, sceny} such that:

scen; = ({WebComp, IntSys},
(Send, WebComp, IntSys, Request, [sessionld, clientId, details]),
Rec, WebComp, IntSys, Request, [sessionld, clientld, details]),
Send, WebComp, IntSys, Cancel, [sessionld]),])

[
(
(

sceng = ({WebComp, IntSys},
[(Send, WebComp, IntSys, Request, [sessionld, clientlId, details]),
(Send, WebComp, IntSys,Cancel, [sessionld)),
(Rec, WebComp, IntSys, Request, [sessionld, clientld, details])])

The action Cancel can be permuted with the reception of Request since there is no ordering
constraint between them.

3.5 Specifying and Verifying Log Properties

In this section we define the models used to describe and verify properties on log files.

3.5.1 Log Property

We use logical properties (called log properties) to describe the behaviors of the system.
The various languages of properties described in Section 1.6 express properties in terms of
conditions on sequences of log entries. However, this approach is not sufficient here because
we want to express local properties on the logs attached to a given set of components.
Therefore, we need not only to describe the conditions on log entries, but also the part of
the system to which the property applies. To address this need we attach to each property
the set of components of interest.

As an illustration, consider a property stating that “IntSys has sent a reservation re-
quest (Book) to the hotel immediately after (i.e. with no other communications in between)
it received a request (Request)”. This property holds for the following log file:

logi = ({IntSys},
[(Rec, WebComp, IntSys, Request, [sessionld, clientld, details]),
(Send, IntSys, CompHotel, Book, [sessionld, clientId, details])]

However, the same property would not hold for the following log file that also includes
WebComp’s actions:

logas = ({WebComp, IntSys},
[(Send, Client, WebComp, N ewRequest, [sessionld, clientld, details]),
(Send, WebComp, IntSys, Request, [sessionld, clientld, details]),
(Rec, WebComp, IntSys, Request, [sessionld, clientld, details]),

77

CHAPTER 3. LOG ANALYSIS

(Send, WebComp, CompH otel, Cancel, [sessionld)),
(Send, IntSys, CompH otel, Book, [sessionld, clientld, details])])

In our approach, we can specify that we are interested in a property related to IntSys only
because we only want to check that IntSys has not communicated between Request and
Book. The property should thus hold for both log files.

With this extended definition of log property it is possible to verify properties
when not all logs are available. Similarly to the work on trace analysis proposed in
[Arasteh et al. 2007] (Section 1.6.11).

Machine LogProperties (Figure 3.7) provides a formal definition of log properties (con-
stant PROP). A log property is a pair (comps, pred) consisting respectively of:

e the components concerned by the property. In the text, we refer to this set as the
components of the property;

e 3 function mapping a log file into a boolean value indicating if the property holds for
a given log. In the text, we refer to this function as the predicate of the property.

MACHINE LogProperties

SEES ComponentsAPI, LogFiles

CONSTANTS PROP, PropComps, PropPredicate
PROPERTIES

/* log properties */

PROP = {(comps,pred) | comps € F(COMP) A pred € (LOG_FILE + BOOL) A

V(log).(log € dom(pred) = 3(compsiog, contjog).(log = (compsiog, contieg) A
compsiog = comps))} A

/* selectors for log properties */

PropComps € PROP — F(COMP) A

PropPredicate € PROP — (LOG_FILE + BOOL) A

V(comps, pred).((comps, pred) € PROP =
PropComps(comps, pred) = comps N\ PropPredicate(comps, pred) = pred)

END

Figure 3.7: Machine LogProperties

The definition of PROP requires that the property predicate is a partial function such
that its domain is defined only for log files related to the components of interest (¢1). The
selectors PropComps and PropPredicate return each part of a given log property (¢2) and
are used to define the values of log properties, as illustrated in the following example.

78

3.5. SPECIFYING AND VERIFYING LOG PROPERTIES

Example 3.6. Log property example

We specify the property mentioned at the beginning of this section stating that IntSys
sends a reservation message immediately after it has received a request. First we specify
an identifier and the components attached to the property:
Proppemand € PROP N PropComps(proppemand) = {IntSys}

Assuming that sessionld, clientld and details have been defined previously, we specify
the predicate of the property using the lambda notation:

PropPredicate(proppemand) =
A(log).(log € LOG_FILE A 3(cont).(log = ({IntSys},cont)) | bool(3(cont,ena,enp).
(log = ({IntSys},cont) A ena € ran(cont) A enpg € ran(cont) A
eng = (Rec, WebComp, IntSys, Request, [sessionld, clientld, details]) A
enpg = (Send, IntSys, CompHotel, Book, [sessionld, clientId, details]) A
Pos(enpg, cont) = Pos(eny, cont) + 1)))

This property applies to a given session and client. We see in the following section how to
provide a generalization of it based on a set of parameters. Similarly to the definition of
log files, it is also possible to check if a given property prop is consistent with the definition
of log property by verifying the proof obligation prop € PROP.

We can define an operation that takes as input a log file (log) and a log property (prop)
and return a boolean (hold) indicating if the property holds or not for the log:

hold < VerifyProperty(log, prop) =
PRE

log € LOG_FILE A prop € PROP N

I(comps, cont).((comps, cont) = log A PropComps(prop) C comps)
THEN

hold := (PropPredicate(prop))(Extract(PropComps(prop),log))
END
The pre-condition ensures that the components related to the log file contain at least the
components attached to the log property. Then, Extract is applied to ensure that only the
concerned entries are used in the analysis of the property.

This definition however does not take into account distributed logs and it is not included

in the technical annexes. In Section 3.5.3 we provide a version of this operation to verify log
properties that also takes into account distributed logs, which constitutes the log analyzer.

3.5.2 Parametric Properties

It is often useful to generalize properties with respect to certain parameters
[Chen & Rogu 2009]. Many proposals in traces analysis (Section 1.6) and contract for-
malisms (Section 1.4) provide a way to characterize parametric properties. For example,

79

CHAPTER 3. LOG ANALYSIS

one can specify a property that, given a client identifier, verifies if a reservation has been
done for this client. We introduce now a model to specify parametric properties.

Machine ParametricProperties (Figure 3.8) defines parametric properties (constant
PAR_PROP) consisting of a set of components and a partial function that maps a sequence
of parameters to a log property.

MACHINE ParametricProperties

SEES ComponentsAPI, LogProperties

CONSTANTS PAR_PROP, PPropComps, PPropPredicate
PROPERTIES

/* parametric properties */
PAR_PROP = {(comps, ppred) | comps € F(COMP) A ppred € seq(PARAM) - PROP N
Y(prop).(prop € ran(ppred) = comps = PropComps(prop))} A

/* selectors for parametric properties */

PPropComps € PAR_PROP — F(COMP) A

PPropPredicate € PAR_PROP — (seq(PARAM) -+ PROP) N

V(comps, ppred).((comps, ppred) € PAR_PROP =
PPropComps(comps, pred) = comps \ PPropPredicate(comps, pred) = pred)

END

Figure 3.8: Machine ParametricProperties

The definition of PAR_PROP states that the instantiated properties have the same com-
ponents attached to the parametric properties. Similarly to log properties we define the
selectors PPropComps and PPropPredicate that return each part of a parametric prop-
erty. The domain of the predicate of a parametric property should be defined only for the
number of parameters accepted by the property, as illustrated by the following example.

Example 3.7. Parametric property example

We specify now a parametric version of the log property proppemand of Example 3.6 that
takes as parameters the session identifier, client identifiers and reservation details. First,
we should define the components attached to the parametric property:

parProppemand € PAR_PROP A
PPropComps(par Proppemand) = {IntSys} A

80

3.5. SPECIFYING AND VERIFYING LOG PROPERTIES

Then, we define its predicate using the lambda notation:

PPropPredicate(par Proppemand) = Apar).(par € seq(PARAM) A size(par)
3 {IntSys} —

A(log).(log € LOG_FILE A 3(cont).(log = ({IntSys}, cont)) | bool(3(cont,ena,enp).
(log = ({IntSys},cont) A ena € ran(cont) A enp € ran(cont) A

eng = (Rec, WebComp, IntSys, Request, [par(1), par(2), par(3)]) A

enpg = (Send, IntSys, CompH otel, Book, [par(1), par(2), par(3)]) A

Pos(enp, cont) = Pos(eny, cont) + 1))))

We use par(1), par(2) and par(3) to refer respectively to the session identifier, client iden-
tifier and reservation details. In order to obtain an instance of log property for given
parameters sessionld, clientld and details, we use the predicate of the parametric prop-
erty:

Proppemand € PROP A

Proppemand = (PPropPredicate(par Proppemand))([sessionld, clientld, details])

3.5.3 Analysis of Distributed Logs

We present now the specification of the log analyzer which evaluates a given log property
for a set of distributed logs. The analysis of distributed logs is based on the scenarios
obtained by merging the logs, similarly to the approaches of trace analysis proposed in
[Arasteh et al. 2007, Hallal et al. 2006] (Section 1.6.10).

Machine LogAnalyzer (Figure 3.9) defines the operation VerifyProperty which takes
as input a set of log files (LogSet) and a log property (prop).

MACHINE LogAnalyzer
SEES LogOperations, LogProperties
OPERATIONS
scen, ok < VerifyProperty(LogSet, prop) =
PRE
LogSet € LOG_SET N prop € PROP N
PropComps(prop) C union({comps | I(cont).((comps,cont) € LogSet)})
THEN
LET temp BE temp = Extract[{ PropComps(prop)} x Merge[{LogSet}]] IN
scen = temp ||
ok := temp N PropPredicate(prop) [{TRUE}]
END
END
END

81

CHAPTER 3. LOG ANALYSIS

Figure 3.9: Operation VerifyProperty

To comply with the constraints of PROP (Figure 3.7), the pre-condition states that the
components of the log files must contain at least the components attached to the property
(cl). We should also make sure that each log file in LogSet respects the definition of
LOG_FILE, i.e. each log file only contains entries consistent with the API and the order
of Send/Rec entries.

The operation VerifyProperty computes two results: scen, the set of all scenarios
after extracting the entries related to the components attached to the property (computed
in temp); and ok, the subset of these scenarios where the property holds. The ratio between
these two results provide information on the validity of the researched property for the given
logs:

e if ok = scen the property holds for all scenarios.

e if ok = () the property is false for all scenarios.

If none of these conditions holds then a further analysis of the scenarios can be conducted.
One possibility is to increase the number of log files used in the analysis, which can have the
effect of reducing the number of scenarios. However, it is possible that even using a larges
set, of logs it is still not possible to show a clear conclusion. In this case, a detailed analysis
of each scenario by an expert may be necessary to assess the likelihood of each scenario and
take into account contextual factors which are not included in the formal model.

Regarding the complexity of the operation, it is known that the problem of counting the
scenarios of distributed logs is #P-complete (equivalent do count the number of solutions
of a NP-complete problem), with respect to the number of entries in the logs. However, in
[Brightwell & Winkler 1991], the authors show that the number of scenarios may also be es-
timated using randomized polynomial-time algorithms. Optimizations can also be be made
for properties stating conditions specifically about the order of the entries [Ivanov 2005].
These optimizations consists of trying to match the conditions of the property using graphs
(represent by parallel posets) that represents the causality relation between the entries of
the logs.

Example 3.8. Distributed log analysis example
We show how the log analyzer can be used to verify the property propretecancer stating

82

3.5. SPECIFYING AND VERIFYING LOG PROPERTIES

that the client is charged for a canceled reservation:

ProprateCancel € PROP A PropComps(propratecancet) = {WebComp, CompHotel} N
PropPredicate(propratecancer) = A(log).(log € LOG_FILE A
I(cont).(log = ({WebComp, CompHotel}, cont)) | bool(I(cont,ena, enp).
(log = ({WebComp, CompHotel}, cont) A ena € ran(cont) A enp € ran(cont) A
eng = (Rec, Client, WebComp, Cancel Request, [sessionld]) A
enpg = (Send, CompHotel, CompBank, Debit, [sessionld, hotelld, clientld, price]) A
Pos(ena, cont) < Pos(enp,cont))))

The predicate holds when Cancel Request occurs before Debit. For now, we assume that
the values for sessionld, hotelld, clientld and price are supplied by the client and have
been defined previously. Consider the following log distribution, where each component
produces a log file:

Dist = {{WebComp}, {IntSys},{CompHotel}, {CompBank}}

and the communications illustrated by the following diagram:

Client WebComp IntSys CompH otel CompBank

NewRequest(sessionld, clientld, ddtails)
P>
Request(sessionld, clientld, detafils)

P-o

Bpok(sessionld, clientld, details

N2

Response(sessionld, Y ES)
o
Canfirm(sessionld, details, prige)

o«
Cancel Request(sessionld)
P
Cancel(sessionld)
P-o
Unbook(sessionld)
>
Debitl(sessionld, hotelld, clientld, price)
P
Bill(sessionld, hotglld, clientId, price)
o«

If we execute VerifyProperty with the logs of WebComp and CompHotel, then 126
scenarios are produced and the property holds for 105 of them. The high number of scenarios
is a consequence of the absence of interaction between WebComp and CompHotel: as a
consequence, there are no restrictions on the ordering of entries, except the local order of
each log file. However, if we also use the log of IntSys, then only 10 scenarios are produced,
and the property holds for all of them, which allows us to get to a positive conclusion.

83

CHAPTER 3. LOG ANALYSIS

3.5.4 B Machines and Technical Annexes

Machines LogProperties and ParametricProperties are part of Annex A and are used to
specify failures, which will be discussed in the next chapter.

Machines LogOperations and LogAnalyzer provide the formal definition of the log
analyzer and are included in Annex D. The procedure defining the use of the log analyzer
to establish liabilities is the subject of Annex C and it is detailed in the next chapter.

The following table summarizes information about the machines in the technical an-

nexes:
Machine Annex Information described Instantiation required
LogProperties A Properties of logs No
ParametricProperties (used in Chapter 4)
LogOperations D Distributed logs operations No
used by the log analyzer
LogAnalyzer D Log analyzer No

3.6 Incremental Analysis

At the time of analysis, some logs may not be available either due to legal reasons (avail-
ability depending on a formal demand) or technical reasons (such as log data that need to
be decrypted). For example, in our study case the access to the log file of CompBank may
not be immediate. In this case, the log analysis may take place using the logs of only a
part of the system (Example 3.8). However, depending on the results it may be necessary
to perform a new analysis using a larger set of logs that can help to approximate the real
behavior. In this section, we propose an incremental version of the log analyzer.

We include in machine LogAnalyzer the operation IncrVerifyProperty (Figure 3.10)
that takes as input a set of log files (LogSet), a log property (prop) and the result ok from
a previous log analysis.

84

3.6. INCREMENTAL ANALYSIS

iscen, iok < IncrVerifyProperty(LogSet, prop,ok) =
PRE
LogSet € LOG_SET A prop € PROP A scen € LOG_SET A ok € LOG_SET A
ok C PropPredicate(prop) [{TRUE}])
THEN
LET temp BE temp = Extract[{ PropComps(prop)} x Merge[{LogSet}]] IN
iscen :=temp ||
iok :=temp N ok
END
END

Figure 3.10: Operation IncrVerifyProperty

The computation of iscen are similar to the operations used in the previous version (Fig-

ure 3.9). However, the computation of iok consists of comparing the results of the scenarios

produced (temp) with the scenarios for which the property was previously verified (ok). The

main interest is to compute the result of i0k without having to check again the property.
The correctness of the proposed operation is based on the following property:

Property 3.1. Let LogSet, LogSet’ € LOG_SET such that LogSet C LogSet’ then for
any comps C union({comps | I(cont).((comps, cont) € LogSet)}):

Extract[{comps} x Merge[{LogSet'}]] C Extract[{comps} x Merge[{LogSet}]|

This property says that the additional logs in LogSet’ can only restrain the scenarios
that will be produced by LogSet, introducing more causalities. The Extract function
ensures that we compare scenarios dedicated to the same set of components (they have
the same entries). This property is based on an hypothesis we have made, imposing that
events related to a given component comp are the same ones in all logs associated to this
component, and in the same order. More formally:

Vlogl,log2,comp . (logl € LOG_FILE A log2 € LOG_FILE N comp € COMP
N ({comp},logl) € dom(extract) N ({comp},log2) € dom(extract)
= Euxtract({comp},logl) = FExtract({comp},log2)

Property 3.1 allows us to compare the results of the incremental log analyzer to the
results of the previous log analyzer in the following theorem.

Theorem 3.1. Result of incremental log analyzer

Let prop € PROP and LogSet, LogSet' € LOG_SET such that LogSet C LogSet’ and:

85

CHAPTER 3. LOG ANALYSIS

scen, ok < VerifyProperty(LogSet, prop);
iscen,iok < IncrVerifyProperty(LogSet’, prop,ok);
scen’,ok! < VerifyProperty(LogSet', prop)

Then we have iscen = scen’ and iok = ok’, i.e. the incremental analysis produces the same
result as re-analyzing the property using more logs.

Proof. iscen = scen’ are equals because they are computed by an identical operation. To
prove that iok = ok, we start with the definition of iok:

1ok = iscen N ok
If we apply the definition of ok and iscen = scen’:
iok = scen’ N (PropPredicate™ (prop)[{TRUE}] N scen)

From Property 3.1 we know that scen’ C scen because the new logs used to compute scen’
can only add constraints on the scenarios of scen, then:

iok = scen’ N PropPredicate*(prop)[{TRUE}]
Which is precisely the definition of ok’. O

Example 3.9. Incremental analysis example

The log analysis described in Example 3.8 can be performed incrementally. The in-
cremental analysis produces only 10 scenarios which are all evaluated to ok and we may
conclude that the property holds (iscen = iok).

In [Mazza et al. 2010], we propose a different version of IncrVerifyProperty that takes
as input the scenarios produced in the previous analysis (scen). The operation verifies if the
additional logs contain entries that are eliminates some some scenarios in scen in order to
approximate the result of iscen and 70k. This approach is useful when the number of merged
scenarios is large and the final result is small subset of them. For example, suppose that
in the first analysis using LogSet the merge produces 1000 scenarios and only 2 scenarios
remained after the extraction (card(scen) = 2). In the second analysis, using LogSet’ =
LogSet U {loga}, this approach consists in only checking if the entries in log4 eliminates
one of the scenarios of scen, rather that compute the merging of LogSet’ that may produce
even more than 1000 scenarios. However, the approach proposed in [Mazza et al. 2010] only
produces an approximation of the results because, due to extraction, we loose information
about entries, consequently producing scenarios that would otherwise be eliminated using
the additional logs.

Additional logs should help to reduce the number of scenarios by facing new causalities
between. To choose which logs have to be added a possible heuristic is to analyze the
scenarios in scen in order to maximize the number of causality relation between Send/Rec
entries. For example, during the analysis of propratecance (Example 3.8) the produced

86

3.7. TECHNICAL ANNEXES AND MACHINES

scenarios contain 5 communications to/from IntSys and only one communication with
CompBank, therefore adding IntSys’s log is more likely to reduce the scenarios than
CompBank’s log.

3.7 Technical Annexes and Machines

We now summarize how machines can be used to define the content of technical annexes,
as described in Chapter 2.

Annex A includes an instance of machine ComponentsAPI defining the information
that is recorded in the logs and machine LogF'iles that defines the content of logs.

Annex B includes an instance of machine LogDistribution describing how log files are
distributed. In the next chapter, we specify desirable characteristics of log distributions to
provide log files more likely to be accepted as digital evidence.

Annex D contains machines LogOperations and LogAnalyzer that provide the formal
definition of the log analyzer. The details about the use of the log analyzer is described in
the next chapter.

The following table summarizes the information about all machines presented in this
chapter and the technical annexes:

Machine Annex Information described To be instantiated?
ComponentsAPI A Information to be logged Yes
LogFiles A The content of the log files No
LogDistribution B Log distribution Yes
LogProperties A Properties of logs No

ParametricProperties (used in Chapter 4)
LogOperations D Distributed logs operations No

used by the log analyzer

LogAnalyzer D Log Analyzer No

3.8 Contributions of the Chapter

In this chapter we propose a set of formal models to specify the logs and their distribution.
A first contribution, consists of precisely defining the set of constraints about the log files
and their entries. These constraints are stated in machine LogF'iles (Section 3.3.2) and
can be used to verify integrity of a given log file.

The second contribution of our approach is that we take into account the analy-
sis of distributed logs. Some contract formalisms assume distributed logs, e.g. PO-
ETS [Andersen et al. 2006] and SLAng [Lamanna et al. 2003]. However, these approaches

87

CHAPTER 3. LOG ANALYSIS

are usually based on the existence of a common clock for all components, and anal-
ysis is performed always with a single scenario. Since this is not always the case
[Schwarz & Mattern 1994|, our approach also take into account the analysis of distributed
traces (Section 1.6) where communications may occur concurrently without established
order.

An important contribution and a original aspect of our framework is that we propose a
way to specify properties that are only concerned with a part of the system. An advantage
of this approach is to make possible the analysis when not all logs are available, as seen in
Example 3.8 (Section 3.5.3). Similar approaches have been offered to specify local proper-
ties, e.g. [Saleh et al. 2007, Vardi 2008] however these approaches do not enforce the use
of the logs related to the properties in their analysis. Finally, this last aspect allow us to
provide an incremental way to analyze log properties. The main advantage of this approach
is the possibility to obtain a conclusive result, without having to reanalyze the value of the

property.

88

Chapter 4

Specifying and Establishing
Liabilities

The log analysis presented in the previous chapter allows us to extract useful information
from the logs. The next step is to use this information to establish liabilities, which is the
subject of this chapter.

4.1 LISE Approach

As mentioned in Chapter 2, our objective is to help in the elaboration of the parts of
the contracts that are dedicated to software failures and the resulting liabilities in case of
damages. These failures are notified in the form of claims, which represent a complaint
from an actor against a party of the contract.

The contract specifies (Article 4, Section 2.2.4) that when a claim is notified the parties
must initiate the process of collection and analysis of the logs, defined in Annex C and
referred in the contract as the log analysis procedure. In practice, the contract includes
a selection of the most significant claims for the parties. For example, in our case study
the parties may decide to specify liabilities when the client claims that he has sent a
reservation but has not received any confirmation. Article 4 of the contract also specifies
that, if liabilities for a given failure are not explicitly defined, then the parties agree to
resort to an expert that may use the logs., the log analyzer and any other resources to
designate the liable parties.

The log analysis procedure (Figure 4.1) starts with a claim from the plaintiff against
the defendant. The party identified in the contract as the leader of the investigation (called
here the analyst) must get the logs necessary to analyze the claim (Log Collect). Ideally,
it should always be possible to obtain the totality of the logs. However, depending on the
claim and the availability of logs, the analyst may analyze the claim using only a subset of
the logs.

89

CHAPTER 4. SPECIFYING AND ESTABLISHING LIABILITIES

Claim

Analyst Plaintiff

Selected
Logs
INVALID g—| Log Validity
LOGS Analysis
CLAIM
Validated — > REJECTED
L
A 09s Claim
Claim Validity M
el » Liability
~ Analysis

O_ Analyst's Decision

— Automated Process

Figure 4.1: Log analysis procedure

Liability
Scenarios

LIABILITY
STATEMENT

After the collection of the logs, the analyst has to check if they can be accepted as digital
evidence (Log Validity Analysis). For example, the logs must not present signs of tampering
(Section 1.5.1). Certain integrity properties of the logs may be verified automatically (see
Chapter 5) based on the formal definitions in LOG_FILE and ENTRY (Section 3.3.2).

When the validity of the logs is established, the log analyzer (defined in Section 3.5.3)
is applied to check the property that represents the claim (Claim Validity Analysis). The
result of this analysis is a pair of sets of Claim Scenarios for which the claim is accepted and
rejected respectively (as seen in Example 3.8). However, as explained in Section 3.6, if the
results are not precise enough it may be necessary to perform a further analysis including
additional logs. In this case, the analyst may iterate the procedure and return to the log
collection step.

90

4.2. SPECIFYING LIABILITIES

If the claim is accepted, then the liability allocation process (Liability Analysis) takes
place. This process consists in determining the component (or set of components) that did
not execute correctly (erroneous components). The liability relation between errors and
parties are specified in the tables of Annex E of the contract (Section 2.2.3). Each Claim
Scenario resulting from the Claim Validity Analysis is verified in order to determine the
erroneous components. However, because the analysis can be performed with only a subset
of the logs, its results may not be precise enough to establish liabilities. In this case, the
analyst may return to the log collection step in order to attempt to reduce the number of
scenarios (Section 3.6).

First, we introduce the models to represent claims and liabilities (Section 4.2). Then,
we define the procedure to establish liabilities (Section 4.3) and we propose formal criteria
on log distributions to increase the chances that logs will be accepted as digital evidence
(Section 4.4). Finally, we summarize the main contributions of this chapter (Section 4.5).

4.2 Specifying Liabilities

In order to define our models for claims (Section 4.2.2) and liabilities (Section 4.2.3) we
must first specify the parties involved (Section 4.2.1).

4.2.1 Parties

The formalisms described in Section 1.4 usually do not address the legal implications of
third parties, such as customers (even when they support blame assignment |Xu et al. 2005,
Hvitved 2010]). In the contract model proposed in Section 2.2, we distinguish between two
types of legal entities:

e Signing parties (or simply parties) — the parties that elaborate and sign the contract
(e.g. software providers and integrators).

e Third parties — the entities that are not involved in the elaboration of the contract
(e.g. costumers). Third parties still have the right to legally sue the signing parties.

Every signing party is identified by a unique name. In contrast, some third parties are
referred in the contract only by the role that they play in the system. As an illustration,
consider our case study where the travel agency “Thomas Cook” and the hotel “iBis” are
the signing parties and theirs customers are third parties mentioned in the contract simply
as “Client”.

Machine Contract Agents (Figure 4.2) should be completed to specify the set of all legal
entities (called agents) mentioned in the contract (set AGENT). Subsets SIGN_PARTY
and THIRD_PARTY should contain respectively the signing parties and the third parties.

91

CHAPTER 4. SPECIFYING AND ESTABLISHING LIABILITIES

MACHINE ContractAgents
SETS
AGENT ={...}
CONSTANTS SIGN_PARTY THIRD_PARTY
PROPERTIES

SIGN_PARTY C AGENT A

THIRD_PARTY C AGENT A

SIGN_PARTY ={...} ATHIRD_PARTY ={...} A
SIGN_PARTY U THIRD_PARTY = AGENT A
SIGN_PARTY N THIRD_PARTY =)

END

Figure 4.2: Machine Contract Agents

Example 4.1. Parties
We provide an example of instance of the machine ContractAgents with the following
values of our case study:

AGENT = {Client, ThomasCook,iBis, BN P}
SIGN_PARTY = {ThomasCook,iBis}
THIRD_PARTY = {Client, BN P}

Note that only signing parties can be made liable in the contract (a legal contract
cannot impose any commitments on third parties). In our case study, we will consider that
Thomas Cook is liable for the components WebComp and IntSys, and iBis is liable for
the component CompHotel. The component CompBank is under the responsibility of the
third party BNP.

4.2.2 Claims

As mentioned at the beginning of this chapter, the notification of failures takes the form of
claims, which represent legal complaints from a plaintiff against a defendant. Each claim
is formally described as a plaintiff, a defendant and a parametric property representing the
alleged failure that motivates the claim.

Since claims can occur several times in different contexts, we represent failures using
parametric properties and we define a specific instance whenever a party initiates a claim.
A claim instance consists of a claim with a sequence of parameter values.

Machine Claims (Figure 4.3) should be instantiated to define the set of identified claims.
It specifies the set of claims (constant CLAIM), each one consisting of the plaintiff, the
defendant and the parametric property describing the associated failure. The machine also
defines the set of claim instances (constant CLAIM _INST).

92

(c1)

4.2. SPECIFYING LIABILITIES

MACHINE Claims

SEES LogFiles, ParametricProperties, ContractAgents
CONSTANTS CLAIM, CLAIM_INST, DECLARED_CLAIMS, ...
PROPERTIES

/* claims x/
CLAIM = AGENT x SIGN_PARTY x PAR_PROP A

/* claim instances */
CLAIM_INST = {(claim,par) | claim € CLAIM A par € seq(PARAM) A
A(plain, def, par Prop).(claim = (plain, def, par Prop) A
Y parcigim-(paraim € dom(PPropPredicate(par Prop)) = size(par qaim) = size(par)))} A

/* property and claim declarations */

/* claims in contract */

DECLARED_CLAIMS C CLAIM A

DECLARED_CLAIMS ={...}
END

Figure 4.3: Machine Claims

Property (cl) states that the number of parameters of the claim instance must be the same
as the number of parameters of the property attached to the claim.

For a given contract, claims and properties attached to them could be declared as
constants and specified in the PROPERTIES section. The set of declared claims must be
defined in the constant DECLARED_CLAIMS.

Example 4.2. Claim claimyoroom €xample

Let us specify the claim where the client purports that he has sent a request but has not
received any confirmation for the reservation. First, in the CONSTANT section we declare
the name of the claim and the property attached to the claim:

MACHINE Claims
CONSTANTS ..., claimnoroom, Par PropNoRroom

Then, in the PROPERTIES section we specify par Propnoroom that takes two parameters,
the session identifier (par(1)) and the client identifier (par(2)):

93

CHAPTER 4. SPECIFYING AND ESTABLISHING LIABILITIES

par Propyoroom € PAR_PROP A
PPropComps(par Propnoroom) = { WebComp, CompHotel} A

PPropPredicate(par Propnoroom) = A(par).(size(par) = 2 [{WebComp, CompH otel} —
A(log).(log € LOG_FILE A 3(cont).(log = ({WebComp, CompHotel}, cont)) |
bool(3(cont, details, price).(log = ({WebComp, CompHotel}, cont) A
details € PARAM A price € PARAM N
(Rec, Client, WebComp, N ew Request, [par(1), par(2), details]) € ran(cont) A
(Send, CompHotel, Client, Con firm, [par(1), details, price]) & ran(cont))))) A

The property holds if WebComp receives the request (New Request), but CompH otel does
not send the confirmation (Confirm). The predicate is defined for any possible values of
details and price (3(details, price)).

We can specify the claim as follows:

claimnoroom € CLAIM N
claimpyoroom = (Client, ThomasCook, par Propnoeroom) /\
DECLARED_CLAIMS = {claimnoroom}

An instance of claimnoroom for a client with identifier clientld during a given session
sessionld is represented as follows:

(claimnoRoom, [clientId, sessionld])

The parties may decide which failures must be included in the model based on a common
agreement or adopt a more systematic approach using, for example, techniques of failure
mode, effects and criticality analysis (FMECA) [Pelaez & Bowles 1996, Chin et al. 2009]
which consists in analyzing potential failures and classifying them by likelihood and sever-
ity. For example, in our case study, besides the failure claimyoroom, the parties can also
decide to specify a claim where the client purports that he has been charged for a canceled
reservation.

4.2.3 Liabilities

As explained in Section 2.2.4, contractual liabilities take the form of tables (one for each
claim) associating erroneous components with liable parties. FEach line of these tables
characterizes an error in a component. As an illustration, the table in Section 2.2.4 specifies
that if errors occurred in “the obstacle detection functionality due to extreme weather
condition”, then the system integrator and supplier should be liable for the failure. Here we
are interested in representing only conditions that can be verified using the logs. To this
aim, we provide in this section a way to relate errors, failures and the corresponding liable
parties.

94

~—

4.2. SPECIFYING LIABILITIES

For example, suppose the parties wish to specify liabilities for the claim claimnoRroom
(Example 4.2) for the errors defined in the table of Figure 4.4.

Annex E: Assignment of liabilities for claim claimyo,Room

Then, the liabilities will be assigned to:
If errors have occurred: Thomas Cook Bis
WebComp or IntSys does not pass the request (par Propnororward) X
CompHotel does not send confirmation (parPropNoconfirm) X

Figure 4.4: Liabilities for claim claimyoRoom

The claim can occur either if WebComp or IntSys does not forward the reservation request
(first line); or if CompH otel does not send the confirmation of the reservation to WebComp
(second line). Liabilities for these two errors are associated respectively with Thomas Cook
and iBis.

Machine Liabilities (Figure 4.5) defines the liabilities (constant Liability) as a function
that maps the declared claim to the errors (represented by parametric properties) and the
corresponding liable parties.

MACHINE Liabilities
SEES ComponentsAPI, LogFiles, LogProperties, ContractAgents, Claims
CONSTANTS Liability
PROPERTIES
/* liabilities */
Liability €« DECLARED_CLAIMS — (PAR_PROP + F(SIGN_PARTY)) A
V(claim, error).(claim € dom(Liability) A error € dom(Liability(claim)) =
PPropComps(ExpressClaim(claim)) C PPropComps(error)) A
Liability = {...}
END

Figure 4.5: Machine Liabilities

For a given claim claim, the domain of Liability(claim) should be the set of possible errors
associated to this claim. The components attached to error specifications must be included
in the components attached to the property describing the claim (cl).

Example 4.3. Liabilities for claimnoroom
Liability(claimnoroom) = {parPropnororward — {ThomasCook},

parPropnoconfirm — {iBis}}

The above definition represents the table of Figure 4.4.

95

CHAPTER 4. SPECIFYING AND ESTABLISHING LIABILITIES

4.2.4 B Machine and Technical Annexes

Machines Contract Agents and Claims are part of Annex A of the contract and should be
completed to specify respectively the agents and the claims for which the parties wish to
specify liabilities. Machine Liabilities should be completed to specify the liabilities tables
of each claim appearing in Annex E.

The following table summarizes the relevant information about the machines and tech-
nical annexes:

Machine Annex Information described To be instantiated?
ContractAgents A Agents of the contract Yes
Claims A Claim definitions Yes
Liabilities E Liabilities Yes

4.3 Establishing Liabilities

In the following sections, we specify the four steps of the log analysis procedure of Figure 4.1
(Sections 4.3.1 to 4.3.4) and the interpretation of the results (Section 4.3.5).

4.3.1 Step 1: Log Collection

INPUT: a claim instance (claim, par) and a set of logs (LogSet)

Given a claim instance, the property attached to the claim is first instantiated using the
sequence of parameters par. Let claim = (plain, def, par Prop), propeaim is them built as
follows:

Propeiaim = (PPropPredicate(par Prop))(par)
The definition of CLAIM _INST ensures that the parameters of the claim instance (par)
can be used to instantiate parProp (condition ¢l in machine Claims in Section 4.2.2).

Then, it is necessary to verify if the logs in the input (LogSet) contain the entries related
to the components of propqgim.

OUTPUT: Yes if the following holds for LogSet:
PropComps(propeaim) C union({comps | I(cont).((comps, cont) € LogSet)})

No, otherwise

96

4.3. ESTABLISHING LIABILITIES

4.3.2 Step 2: Log Validity Analysis

The second step consists in analyzing LogSet to check that it meets the requirements on
our models.

INPUT: LogSet, the input from the previous step.

For all log € LogSet, check the proof obligation log € LOG_FILE. According to the
LOG_FILEFE definition, for each log = (comps, cont) the entries must be unique (cont €
iseq(ENTRY')) and comply with the API definition for the component. In addition, all
entries must be related to comps and respect the ordering between associated Send and
Rec (conditions ¢l and ¢2 in machine LogF'iles in Section 3.3.2).

OUTPUT: Yes/No

4.3.3 Step 3: Claim Validity Analysis

The third step consists in applying the log analyzer to LogSet to determine if the claim is
confirmed by the logs.

INPUT: LogSet, from the input of the first step; and propgqm» instantiated in the first
step.

Compute the set of scenarios scen and ok as follows:
scen, ok < VerifyProperty(LogSet, propeaim)

OUTPUT: scen the set of scenarios and ok the subset of scenarios in which the claim is
observed.

The decision to accept or reject the claim is based on the sets scen and ok, as explained
in Section 3.5.

4.3.4 Step 4: Liability Analysis

The fourth step consists in searching in the ok scenarios for the errors that are related to the
liabilities. This step also includes the computation of the parties liable for each scenario.

INPUT: (claim, par), the claim instance given as input of step 1.
ok, computed in the previous step.

The algorithm used to compute liabilities is the following one:

97

CHAPTER 4. SPECIFYING AND ESTABLISHING LIABILITIES

scenAnalysis = ();

for all log € ok and error € dom(Liability(claim)) do
Properror := (PPropPredicate(error))(par);
SCENerror, Okerror < VerifyPropeTty({log},propermr);
if scenepror = Okerror then

scenAnalysis := scenAnalysis U {(log — error)};

end if

end for

OUTPUT: scenAnalysis € LOG_FILE <+ PAR_PROP, the relationship between the
scenarios and errors.

scenAnalysis relates the scenarios where the claim is accepted (log € ok) with the errors
defined in Annex E (error € dom(Liability(claim))). Because we apply VerifyProperty
to a set reduced to a singleton, we have scenepror = {log}. Then the condition scenepror =
Okerror €xpresses the fact that the error occurs in the scenario or not. In the last case
scenAnalysis is equal to ().

4.3.5 Interpreting the Results

The result scenAnalysis can be presented in the form of a table as follows:

Scenarios in ok
Errors
logy logo coo logn—1 logn
errory LP 0 0 0
errory 0 LP, s 0 LP,,
0 0 0 0
errory, 0 LP, 2 0 0

Figure 4.6: Table representing scenAnalysis

This table defines the analysis of a given claim. Each value LP; ; represents the set of liable
parties for an occurrence of error; in log;. We have for log;:

error; € dom(Liability(claim)) = LP; ; = Liability(claim)(error;)

If error; does not occur in log; then LP;; = (). For a given scenario log;, the set of liable
parties can be computed as follows:

liabilityLog; := U LP;
i=1

98

4.4. LOG DISTRIBUTION ANALYSIS

Deciding which parties should be liable for a claim is based on the table representing
scenAnalysis. The most trivial case is when the same parties are liable for all scenarios.
If this is not the case, then similarly to the analysis of the claim (step 3) there are two
options. If only a subset of the logs has been collected then the analyst can return to the
log collecting step to add new logs in order to try to reduce the number of scenarios. If all
logs have been analyzed, then the contract stipulates that the parties should resort to an
expert to establish liabilities based on the logs (or any other resources) and the tables in
Annex E.

Example 4.4. Establishing liabilities
Suppose that, after applying the log analysis procedure for an instance of the claim
claimnoRoom, We obtain the following table:

Scenarios
Errors - - - -
scenario] SCENarioy SCENArioz SCENario
parpropNoForward @ @ 0 @
parPropnoconfirm | {1Bis} {iBis} {iBis} {iBis}
liability Log {iBis} {iBis} {iBis} {iBis}

In this case, it is clear that the component CompH otel has not sent a confirmation to the
client (parPropnoconfirm) in all possible scenarios and then agent iBis is liable.

4.4 Log Distribution Analysis

In this section, we specify a way to analyze log distributions in order to increase the strength
of the logs used as digital evidence.

4.4.1 Technical and Legal Assumptions

The logging protocols described in Section 1.5 provide guarantees (integrity, confidential-
ity and authentication) that can increase the probative values of the logs used as digital
evidence. These guarantees are usually based on security properties of cryptographic tech-
niques and communication protocols. However, in a legal procedure, the probative value
of digital evidence is always left to the appraisal of the judge (usually based on the advice
of technical experts). In order to reduce legal uncertainties in this procedure, we propose
a way to evaluate a given log distribution which is based on the assumption that agents
only tamper with the logs when there is a possibility to change the result of the analysis
of a claim (accept a claim that should be rejected or vice-versa) in their favor. We first
introduce some technical concepts related to log distribution that complement the notions
presented in Section 3.3.3.

99

CHAPTER 4. SPECIFYING AND ESTABLISHING LIABILITIES

The malicious attacks considered here are related to the type and action fields of entries.
We do not consider attacks consisting in changing the value of the parameters. Therefore,
we define the notion of “form” of a log entry as a pair made of its type and action. The
function EvForm maps every log entry to its form:

EvForm € ENTRY — (TYPE x ACTION)
Y(tp, cs, cr,ac, par).((tp, cs, cr,ac,par) € ENTRY =
EvForm(tp, cs, cr,ac, par) = (tp,ac))

In order to define the level of trustworthiness of a set of log files, we specify the function
Access that maps every form of log entry into the set of agents that have access to this
entry (which are also the agents in charge of logging the corresponding entries).

Access € (TYPE x ACTION) — F(AGENT)

For example, we specify that BNP has access to the logs of CompBank as:

Access(Rec, Debit) = {BN P}
Access(Send, Bill) = { BN P}

We also assume that certain agents can be trusted not to tamper with certain types of
entries. We represent this assumption by the function T'rust that maps every form of entry
with agents that are trusted for this form.

Trust € (TY PE x ACTION) — F(AGENT)

Legally speaking, this assumption can be seen as a presumption of integrity of the log
entries either due to technical reasons (e.g. use of trusted modules) or legal reasons, (e.g.
strong regulations). For example, we assume that BNP can be trusted not to tamper with
the entries of CompBank because banks are subject to rigorous regulations and they are
very unlikely to breach them.

Finally, some logging protocols described in Section 1.5 include the notion of authenti-
cated log entries, e.g. [New & Rose 2001, Sackmann et al. 2006, Ma & Tsudik 2009]. We
also define the function Auth that maps each action to the set of agents that authenticate
this action:

Auth € ACTION — F(AGENT)

The meaning of an authenticated action is that it is “testified” by some agents and it cannot
be tampered with by any other agents, e.g. the testifying agent digitally sign the entry with
the his private key. As an illustration, suppose that the entry NewRequest is authenticated
by Client, then only Client may forge a reservation request.

Note that the functions Access, Trust and Auth have to be specified for every action
but it is possible to map actions to empty sets to indicate, respectively, actions that are
not logged, actions that do not have any trusted agent or actions that are logged without
any authentication.

100

4.4. LOG DISTRIBUTION ANALYSIS

4.4.2 Malicious Attacks

As mentioned in Section 1.5.2, integrity is a crucial condition to ensure the probative values
of the logs. However, in order to reason about the integrity of the log files, we must first
define the types of malicious attacks to be addressed.

We consider two types of attacks against the logs: the deletion of an entry and the
addition of a new entry. The corresponding attacks are denoted respectively by:

e Delete(agent,comp,i) — deletion by agent of the i-th entry in the log file of the
component comp.

e Add(agent,comp,i,en) — addition by agent of entry en at position i in the log file of
the component comp.

In [Le Métayer et al. 2010b], we define the effect of each of these attacks. Typically the
goal of these attacks can be to escape potential claims from other agents or to build claims
against other agents. We assume that an attack can happen only from agents that are not
trusted for the targeted entries (agent ¢ Trust(EvForm(en))) and that can benefit from
this attack. The evaluation of this benefit is based on the potentiality to make it possible
(or impossible) to sustain claims in favor (or against) agent.

More specifically, an attack Delete takes place only if there exists a set of log files and
a claim instance such that one of the following conditions happens:

e agent is the plaintiff and the claim would be rejected with the original log files, but
would be accepted after deletion of the entry.

e agent can be liable for the claim and the claim would be accepted for the original
log files, but would be rejected after deletion of the entry.

Add attacks are defined similarly with the additional condition that only agents that au-
thenticate a log entry can add it to the log file. This condition expresses the fact that
agents cannot forge log entries authenticated by other agents.

4.4.3 Claim Events

To analyze the acceptability of claims we represent the claim instances by “claim events” tak-
ing the form C(plain, def, prop), such that plain is the plaintiff, de f the defendant and prop
is the ground for the claim. The set CLAIM _EV represents the set of all claim events con-
sidered by parties. We also use a function Fval € (PROP x LOG_SET) — {Ac, Rj,In}
that returns, for a given property and a set of logs, Ac (accepted) if the property holds, Rj
(rejected) if it does not hold or In if it is inconclusive. We add the possible result In to
represent the fact that it is not always possible to establish liabilities using the logs (e.g.
logs may have been tampered with or the scenario analysis may not provide a conclusive
result).

101

CHAPTER 4. SPECIFYING AND ESTABLISHING LIABILITIES

Fval can be defined as follow based on VerifyProperty introduced in Chapter 3:
VerifyProperty(LogSet, prop) = (scen, ok) then Eval(prop, LogSet) =

o Acif scen = ok
e Rjif ok=1
e In otherwise

Note that we use the claim event C'(plain,def,prop A error) to encapsulate the conditions
for the validity of the claim (prop) and for the liabilities of an agent (error). For example,
for a given claim = (plain, def, prop) such that:

Liability(claim)(error) = {Agi, Aga}

we use claim events C(plain, Agy,prop A error) and C(plain, Ags,prop A error).

4.4.4 Acceptable Log Distribution

We define a notion of acceptable log distribution that depends on the technical and legal
assumptions (Section 4.4.1) and the malicious attacks (Section 4.4.2). This definition pro-
vides the conditions on log distributions to ensure that the attacks of malicious agents on
the logs do not have any impact on the validity of the claims. It is based on the “dependency
function” Neutral € (TYPE x ACTION) — F(AGENT). Neutral(tp,ac) returns
the set of agents which can be considered as neutral for a form of entry (¢p, ac) because the
occurrence of these entries is neither detrimental nor beneficial for claims in which these
agents might be involved:

Definition 3. Neutral
agent € Neutral(tp, ac) iff:

V(LogSet, LogSet’, en).(LogSet € LOG_SET A LogSet' € LOG_SET N

en € ENTRY A EvForm(en) = (tp,ac) A

ExtractEn(LogSet,en) = ExtractEn(LogSet’,en) = V(def, plain, prop).
(C(agent,def,prop) € CLAIM_EV = Eval(prop, LogSet) = Eval(prop, LogSet’) A
C(plain,agent, prop) € CLAIM_EV = Eval(prop, LogSet) = Eval(prop, LogSet')))

Where function EztractEn(LogSet,en) returns the log files of LogSet from which all oc-
currences of entries en have been removed.

We also define the function Fplus, which is weaker than Neutral: Fplus(tp,ac) returns
the set of agents for which the occurrence of entries of the form (¢p, ac) cannot be detrimental
in the sense that they cannot contribute to make a claim against them valid or a claim from
them invalid:

102

4.4. LOG DISTRIBUTION ANALYSIS

Definition 4. Fplus
agent € Fplus(tp, ac) iff:

V(LogSet, LogSet',en).(LogSet € LOG_SET A LogSet' € LOG_SET A
en € ENTRY A EvForm(en) = (tp,ac) A ContainEv(LogSet,en) A
EzxtractEn(LogSet,en) = ExtractEn(LogSet',en) = V(def, plain, prop).
(C(agent, def,prop) € CLAIM_EV = Ewval(prop, LogSet’') = Eval(prop, LogSet) A
C(plain,agent, prop) € CLAIM_EV = Eval(prop, LogSet) = Eval(prop, LogSet')))

where function ContainFEv(LogSet,en) returns true if there is a log file in LogSet that
contains an occurrence of entry en.

The dual of Fplus(tp,ac) is Fminus(tp, ac) which returns the set of agents for which the
occurrence of entries of the form (¢p, ac) cannot be beneficial.

Definition 5. Fminus
agent € Fminus(tp, ac) iff:

V(LogSet, LogSet',en).(LogSet € LOG_SET A LogSet' € LOG_SET A
en € ENTRY A EvForm(en) = (tp,ac) A ~ContainEv(LogSet,en) A
ExtractEn(LogSet,en) = ExtractEn(LogSet’,en) = V(def, plain, prop).
(C(agent, def,prop) € CLAIM_EV = Ewval(prop, LogSet’') = Eval(prop, LogSet) A
C(plain,agent, prop) € CLAIM_EV = Eval(prop, LogSet) = Eval(prop, LogSet')))

Based on the definition of these three functions we define a log distribution as acceptable.

Definition 6. Acceptable log distribution

A log distribution is acceptable if and only if for any entry form (¢p,ac) such that
I(agent).(agent & Neutral(tp,ac)) then Access(tp,ac) # 0, and:

e V(agent).(agent € Access(tp,ac) = agent € Neutral(tp,ac) U Trust(tp, ac))

or

e Auth(ac) # 0 A Y(agent).(agent € Auth(ac) = agent € Fminus(tp,ac)) A
V(agent).(agent € Access(tp,ac) = (agent € Fplus(tp,ac) V agent € Trust(tp,ac)))

In other words, a log distribution is acceptable if each entry which may have an im-
pact on a claim (3(agent).(agent € Neutral(tp,ac))) is logged by at least one agent
(Access(tp,ac) # 0) and:

e the logging agents are neutral w.r.t this form of entry or can be trusted to log this
form of entry

or

103

CHAPTER 4. SPECIFYING AND ESTABLISHING LIABILITIES

e this form of entry is not beneficial for agents that authenticate them and not detri-
mental to logging agents, unless they can be trusted to log them.

Definition 6 can constitute the basis for an analyzer taking as input a log distribution
and returning either a positive answer if the log distribution is acceptable or the set of
entries for which the log distribution is not acceptable (with the set of agents concerned)
otherwise. The only difficulty is the computation of Neutral, Fplus and Fminus which
depend on the function Eval. This step can be more or less challenging (or require more or
less approximations) depending on the expressive power of the language of properties. For
a language involving only existential properties on entries (occurrence or absence of entries)
this analysis can be done easily based on the association of a polarity with each individual
entry depending on its context of occurrence in a claim property (which can be positive,
negative or neutral).

4.4.5 Results

The ultimate goal of the log distribution is to ensure that any claim can be evaluated
correctly. Correctness means that any claim evaluation is correct, even when the logs have
been subject to malicious attacks. We assume the existence of a function ® that receives
a set of logs and a sequence of attacks (of type Add or Delete) and returns the set of logs
after the attacks.

Definition 7. Correct log distribution
A log distribution is correct iff:

V(LogSet, LogSet’, Attacks, claimEwv, plain, de f, prop).

(claimEv € CLAIM_EV A claimEv = C(plain, def, prop) A LogSet’ =
®(LogSet, Attacks) =

Eval(prop, LogSet) = Eval(prop, LogSet’)

The intuition of the above definition is that in a correct log distribution every claim event
is evaluated to the same result before and after the logs have been tampered. The main
property of acceptable log distributions is stated as follow:

Property 4.1. Any acceptable log distribution is correct.
This property follows from correctness and consistency properties established in similar
settings in [Le Métayer et al. 2010b] (with a slightly different notation). The consistency

property ensures that no attack against the logs can introduce inconsistencies between the
logs of different agents.

104

4.4. LOG DISTRIBUTION ANALYSIS

4.4.6 Case Study

Let us consider an example of log distribution analysis using our case study. We assume
that, although WebComp has been provided by the travel agency, it is the client has access
to the logs of WebComp. The travel agency (ThomasCook) has access to the logs of
its internal system (IntSys), the hotel (iBis) to the logs of the reservation component

(CompHotel) and the bank (BN P) to the logs of the payment component:

Dist = {{WebComp}, {IntSys},{CompHotel},{CompBank}}
Access = {

(Rec, NewRequest) — {Client},
Send, Request) — {Client},
Send, Book) — {ThomasCook}, Send, Unbook) — {ThomasCook},
Rec, Request) — {ThomasCook}, (Rec,Cancel) — {ThomasCook},

(Rec, Cancel Request) — {Client},
((
((
((
(Rec, Book) — {iBis}, (Rec, Unbook) — {iBis},
((
((
((

Send, Cancel) — {Client},

Send, Response) — {iBis}, Rec, Response) — {ThomasCook},
Send, Confirm) — {iBis}, Send, Debit) — {iBis},
Ree, Debit) — {BNP}, Send, Bill) — {BN P}

}

The types of entries associated with the client himself' (Send, New Request) and (Rec, Bill)
are not logged, therefore they do not appear in the definition of Access.
We consider in a first stage that none of the entries are authenticated, i.e.:

V(ac).(ac € ACTION = Auth(ac) = 0)

Finally, we assume that the bank and the hotel are trusted to log their debit because they
have to follow very stringent regulatory requirements. This assumption can be expressed
as follows:

Trust(Send, Debit) = {iBis}
Trust(Rec, Debit) = { BN P}

Let us consider the claim C(Client, ThomasCook, prop) raised by a client clientIdwith
the property prop stating that the client has been charged for a reservation that has not
been requested. More precisely, the predicate of this property is defined as follows:

PropPredicate(prop) =

A(log).(log € LOG_FILE A 3(cont).(log = ({IntSys, CompHotel}, cont)) |
bool(3(cont).(log = ({IntSys, CompHotel}, cont) A
(Rec, WebComp, IntSys, Request, [sessionld, clientld, details]) & ran(cont) A
(Send, CompH otel, CompBank, Debit, [sessionld, hotelld, clientId, price]) € ran(cont)))

L As opposed to the WebComp component which logs its entries

105

CHAPTER 4. SPECIFYING AND ESTABLISHING LIABILITIES

The predicate holds if the logs contain a Debit but no corresponding Request.

The application of the criteria of Definition 6 shows that the log distribution is not
acceptable because the entries of form (Rec, Request) (which are involved in the predicate
of prop) are not appropriately logged:

e The agent ThomasCook that has access to this type of entry is neither
trusted nor neutral because it belongs neither to Trust(Rec, Request) nor to
Neutral(Rec, Request).

e This type of entry is not authenticated by any agent, because Auth(Request) = {).

One possible option to enhance the log distribution is that Request entries are authen-
ticated by Client. Then, we have:

Auth(Request) = {Client}
and the second criterion of Definition 6 is satisfied. More precisely, we have:

Auth(Request) # 0 A
V(agent).(agent € Auth(Request) = agent € Fminus(Rec, Request)) N
V(agent).(agent € Access(Rec, Request) = agent € Fplus(Rec, Request))

ThomasCook has still access to the entries of the form (Rec, Request) but cannot add any
entries because they must be authenticated by Client.

This example shows how the definition of acceptable log distribution can be used to
provide logs that are more likely to be accepted as digital evidence because it is possible to
show that no agent can modify the logs to get any benefit in the treatment of the claims. Of
course, the logs must in addition be protected against external attacks using secure logging
methods (Section 1.5).

4.4.7 Related Works

The work which is the closest in spirit to the approach presented in this section is the
SLAng formalist (Section 1.4.8). The notion of monitorability in the contract formalist of
SLAng differs from our notion of acceptable logs in the sense that monitorability concerns
the possibility for an agent to get trustable information about the execution of the system
rather than the availability of evidence. In other words, monitorability ensures that the
agent can trust the information, but not that he can use this information to convince a
third party (e.g. a judge). Another, more general, departure from [Skene et al. 2007| has
to do with the objective itself: the goal of [Skene et al. 2007| is to analyze contracts to
check their monitorability by the parties whereas we take contracts as granted and analyze
the log distribution to check that it is sufficient to sustain the potential claims between

106

4.5. CONTRIBUTIONS OF THE CHAPTER

the parties. The two approaches are clearly complementary and could be integrated in a
common environment.

Theories of accountability and audit have been proposed in the context of security and
usage policies ([Jagadeesan et al. 2009, Vaughan et al. 2008, Cederquist et al. 2007]). The
logging mechanisms and audit procedures are defined in a logical framework (based on a
policy language) and applied to practical examples such as the protection of confidential
documents. The main departure with respect to these approaches is the fact that we do
not focus on security and usage policies and consider more generally claims between parties
in a contract.

4.5 Contributions of the Chapter

Existing contract formalisms (Section 1.4) focus on the specification of the obligations of
each party. Our first contribution is a generic way to specify liabilities for failures of the
system using parametric properties (Section 4.2).

Another contribution is a procedure to establish liabilities in case of failure (Section 4.3).
In [Hvitved 2010], the author points out that most contract formalisms do not provide any
support to establish liabilities in case of breach of contract. In comparison with CSL
(Section 1.4.4), instead of associating a party with each clause of the contract, we provide
a way to specify liabilities which is related to the specification of the components (errors
and failures) which allows us to define more complex liabilities where, for example, more
than one party may be liable for a single failure.

In [Goessler et al. 2012| we discuss the causal relationship between claims and errors and
we provide an alternative way to specify liabilities. The advantage of the approach presented
in [Goessler et al. 2012] is that the definition of causality can be applied systematically to
claims that are not predefined in the contract. However, this approach requires more effort
in terms of specification because the analysis of causality is based on the specification of
the correct and incorrect behaviors of the components. In practice, both methods are
complementary: our approach can be followed to treat claims based on a priori allocation
of liabilities and the approach in [Goessler et al. 2012| when the parties cannot foresee the
potential errors which can lead to a failure.

Another contribution of our work is to take into account distributed logs and their anal-
ysis. We can establish liabilities even when the logs are recorded by different components
(i.e. a central logging system is not mandatory) or when parts of the log files are not avail-
able. When the results of the log analysis are not conclusive, it may still be possible to use
them to establish liabilities based on other factors (such as the likelihood of the scenarios).

The last contribution is the study of properties of a given log distribution in terms of
acceptability (Section 4.4). This definition allows us to check if a distribution can provide
trustworthy digital evidence, even when agents cannot be trusted to store the information
in their logs or not to tamper with the log entries.

107

CHAPTER 4. SPECIFYING AND ESTABLISHING LIABILITIES

108

Chapter 5

Implementation of the Log Analysis
Procedure

In this section we describe the implementation of the LAPRO (Log Analysis PROcedure)
Tool that implements the Log Analysis Procedure.

Section 5.1 describes the language of properties used to define claims and liabilities in
LAPRQ. Starting from B models, Section 5.2 explains how sets and constants are repre-
sented. In Section 5.3 we describe the log analyzer algorithm dedicated to our language
of properties and in Section 5.4 we present the LAPRO tool. Finally, in Section 5.5 we
provide an evaluation of the performance of LAPRO for large logs.

5.1 Language of Properties

In our framework, properties define functions that map log files to boolean values. Up to
this point, we have expressed these functions using first order logic. However, first order
logic is undecidable and not specifically designed to reason about sequences. Its use as a
language of properties also introduces complexity issues [Gupta 1992, Claessen et al. 2002].
The language of properties proposed in the literature to address these issues (Section 1.6)
generally include limited versions of the operators of first order logic and introduce oper-
ators that provide a more natural way to express conditions about sequences (such as the
operators of LTL, Section 1.6.3).

Regular expressions provide a way to define patterns in sequences of characters in UNIX
systems [IEEE & The Open Group 1997|. According to [Vardi 2008], regular expressions
have the advantage to be easily understood by computer science engineers and are thus
well suited to industrial applications. Indeed, regular expressions are used in industrial
specification languages and supported by programming languages widely used in industry,
such as Python and Java.

109

CHAPTER 5. IMPLEMENTATION OF THE LOG ANALYSIS PROCEDURE

Languages of properties usually combine boolean connectives (A, V,) and regular ex-
pressions |[Vardi 2008, Leucker & Sanchez 2010]. This is the case, for example, in TBL
(Section 1.6.5), PSL (Section 1.6.8) and LogScope (Section 1.6.7).

We define a language for expressing parametric properties on logs inspired by to the
language LogScope (Section 1.6.7) that combines regular expressions and boolean operators.
Properties are defined over entries which are expressed using the following grammar:

Definition 8. Grammar of entries

<entry> == ‘O <type> ‘, <tewt> ‘, <text> ‘,” <text> ‘,[’ <parList> ‘1)’ | ‘e’
<type> = ‘Send’ | ‘Rec’
<text> = |a-zA-Z0-1_|+
<parList> = <wvalue> | <value> *,’<parList>
<wvalue> == <text> | ‘{’ <text> ‘} | ‘¢’

An entry (<entry>) is represented either by its values separated by commas (surrounded
by parentheses ()) or the terminal e that represents any possible entry. A parameter that
needs to be instantiated is represented by its identifier between curly brackets { }. The
terminal $§ represents any parameter value. Based on the above definition, we define regular
expressions over entries as follows:

Definition 9. Regular expression
<RE> = <entry> | ‘C<RE>")"| <RE><RE> | <RE>'|'<RE> | <RE>'¥

Regular expressions (<RE>) can be grouped (using parentheses) and concatenated. The
operator ‘|’ separates alternatives. Finally, the operator ‘*’ is the Kleene star that denotes
zero or more occurrences of the regular expression. Classically, a given regular expression
RE defines a language L(RE). The only particularities of our language are the terminals
e and $. We define theirs associated sets as follows:

L(e) = {(tp, t1,ta,t3, [par]) | tp € L(type) N t1 € L(text) Aty € L(text) N ts € L(text) N
par € L(parList)}
L($)={t|te L(text)}

We say that a log satisfies a regular expression RE if it belongs to the language of the
regular expression:

log satisfies RE < log € L(RE)

As mentioned before, our language of properties combines regular expressions with boolean
operators. A property can be expressed using the following grammar:

110

5.1. LANGUAGE OF PROPERTIES

Definition 10. Language of properties

<prop> = <RE> |
‘NOT (' <prop> *)’ |
‘("<prop> ‘AND’ <prop> ‘)’|
‘O <prop> ‘OR’ <prop>)’

The function holds takes a property written in the above language and a log and returns
the boolean value “true” if the property holds for the log and “false” otherwise. We define
this function recursively as follows:

Definition 11. Verification algorithm
holds(prop,log) =

if prop = RE then

return log € L(RE);
elsif prop = NOT(P) then

return —holds(P,log);
elsif prop = (P, AND P,) then

return holds(P,log) A holds(Ps,log);
else prop = (P OR P») then

return holds(P,log) V holds(Ps,log);
end if

Example 5.1. Regular expression

We use our language of properties to represent the predicate of the parametric property
par Propnoroom (Example 4.2 in Section 4.2.2) stating that the client has sent a request
and has not received any confirmation (clientId and sessionId being two parameters):

(ex(Rec,Client ,WebComp,NewRequest, [{sessionId},{clientId},$])e*x AND
NOT (e* (Send,CompHotel, CompBank,Confirm, [{sessionId},$,$]1)ex*))

For any regular expression, it is possible to construct a non-deterministic finite automa-
ton that accepts the same language. This automaton can be built in O(n) time, where n is
the size of the regular expression and it processes each character of a string in O(1) time.
Thus, checking if a regular expression matches a string of size m takes O(n + m) time.
Additionally, the automaton requires O(n?) memory [Sidhu & Prasanna 2001]. Tt has also
been shown that regular expressions have greater expressiveness than LTL [Wolper 1983].
For example, given a string S the regular expression (a.)* ensures that a occurs every two
character of the string, which cannot be expressed by an LTL formula.

111

CHAPTER 5. IMPLEMENTATION OF THE LOG ANALYSIS PROCEDURE

5.2 Representation of Logs and Liabilities

In this section we provide more details on the implementation of LAPRO. We use the
Python language to represent data and algorithms and HTML for the interface with the
Apache web server. In this section we describe how sets and constants of B models are
represented. Table 5.1 summarizes our implementation choices.

Machine Set/Constant Implementation

ComponentsAPI COMP set(string)

ACTION set(string)

TYPE set(string)

PARAM string

ContractAgents AGENT set(string)
ComponentsAPI Inter face set(string,string)
Invoke set(string,string)

NumParams set(string,int)
LogDistribution Dist set(set(string))
ContractAgents SIGN_PARTY | set(string)
THIRD_PARTY | set(string)
LogFiles ENTRY class LogEntry
LOG_FILE class LogFile
LogOperations LOG_SET class LogSet
LogProperties PROP class LogProperty
ParametricProperties PAR_PROP class LogParProperty
Claims CLAIM class Claim
CLAIM_INST | class ClaimInstance
Liabilities Liability class Liability

Table 5.1: Implementation of B machines

The enumerated sets (COMP, ACTION, TY PE and AGENT) are represented by
sets of strings. Flements of the given set PARAM are strings of characters. Constants
which are defined by the parties (such as Interface) are also represented by sets. The
constants that define types (such as ENTRY') are represented by classes (one for each
constant), each of them containing a method verify. The class diagrams of Figure 5.1
and Figure 5.2 show respectively the relationship between the classes pursuant to logs and
liabilities.

112

5.2. REPRESENTATION OF LOGS AND LIABILITIES

LogEntry
LogFile +type: string
- +sender: string
LogSet \+C°mp°”e”tsf set(string) +receiver: string
—>|+content: list(LogEntry) “ l+action: string

+logs: set(LogFile)

+verify(): list(string) +params: list(string)
+toString(): string

+verify(): list(string)
+toString(): string

Figure 5.1: Classes defining logs

Claimlnstance

+claim: Claim
+params: list(string)

+verify(): list(string)

y

Claim

+plaintiff: string
+defendant: string
+property: LogParProperty
+verify(): list(string)

Liability

+claim: Claim
+errors: set(LogParProperty,set(string))

+verify(): list(string)

LogParProperty LogProperty
+components: set(string) X ;
+predicate: string |_<<instantiate>> +com§9ne:ts. ie?(strlng)
- : — +predicate: string
+bu11dInstance(gigiTzéiizggstrlng)). LogProperty, +hold(log:LogFile): bool,list(string)
+verify(): list(string) +verify(): list(string)

Figure 5.2: Classes defining liabilities

Each class contains a method verify that tests the validity of elements of classes,
according to the B models. Conditions are summarized in Table 5.2.

113

CHAPTER 5. IMPLEMENTATION OF THE LOG ANALYSIS PROCEDURE
Class Properties verified
LogEntry - actions are in the interface of receiver
- actions may be invoked by sender
- the number of parameters is the same as specified in the
API
LogFile - entries are unique
- entries are related to the components attached to the log
file
- Send entries occur before Rec entries
- conditions in the verify method of each entry in the con-
tent are satisfied
LogSet - conditions in the verify method of each log file in the set
are satisfied
LogProperty - the syntax of the predicate is correct
LogParProperty | - the syntax of the predicate is correct
Claim - the defendant is a signing party
- conditions in the verify method of the parametric property
of claim are satisfied
ClaimInstance | - the number of parameters is equal to the number of param-
eters of the property attached to the claim
Liability - liable parties are signing parties

- components associated with errors are included in the com-
ponents of the properties attached to the claims

- conditions in the verify method of each parametric prop-
erty expressing an error are satisfied

Table 5.2: Conditions checked by verify

5.2.1 Declaration of Liabilities

Claims and liabilities can be declared using formatted text files. Functions readClaim and
readLiabilities respectively build an instance of Claim and an instance of Liability

from these files.

114

5.2. REPRESENTATION OF LOGS AND LIABILITIES

The format of claim declaration files is the following:

<comment describing the claim (optional)>

<plaintiff>

<defendant>

<components attached to the claim property, separated by comma>
<predicate of the property>

The first line may contain a comment (starting with #) with a description of the claim.
The following four lines specify respectively the plaintiff, the defendant, the components
and the predicate of the property. The predicate of the property is specified using the
language presented in Section 5.1.

The format of the liability declaration file is the following:

<name of the claim file>

error 1 description (optional)

<components attached to the error property, separated by comma>
<predicate of the property>

<liable parties associated with the error, separated by comma>
error 2 description (optional)

The first line is the name of the claim declaration file for which liabilities are specified.
Liabilities are defined by a sequence of error definitions. The first line of an error definition
contains an optional comment (starting with #). The following three lines specify the error
property (components and predicate) and the parties liable for the errors.

LAPRO offers an interface to be used during the elaboration of the contract to validate
the files defining claims and liabilities (Figure 5.3). This interface allows us to load and
check declaration files, according to the method verify (table 5.2).

115

CHAPTER 5. IMPLEMENTATION OF THE LOG ANALYSIS PROCEDURE

Load Liabilities

Select file

Errors in Claim

FILE: /home/mazza/liabilities/claim01.txt
No errors found

Errors in Liabilities

FILE: /home/mazza/liabilities/liabilitiesClaim01.txt

line 12 | component WebCompp not recognised

line 15 | invalid predicate found

Figure 5.3: Load Liabilities Interface

There are two types of errors:
e Name error occurs if the name of a component, action or agent is not recognized.

e Syntaz error occurs if the input file is not conform to the syntax described in Sec-
tion 5.2.2. This is the case, for example, if the first line of a log file does not contain
a list of components names.

The first column also contains a link to a document that displays the line which has led
to the error.

5.2.2 Declaration of Log Files

Log files can also be declared using formatted text files. The first line contains the name
of the components (separated by commas) related to the log. The following lines should
contain the entries of the logs, one line per entry. Log entries are encoded according to the
grammar given Section 5.1, excluding e and $. For example:

log = ({WebComp, IntSys},
[(Send, WebComp, IntSys, Request, [s011, emazza, 14Jun_Paris]),
(Rec, WebComp, IntSys, Request, [s011, emazza, 14Jun_Paris)),
(Send, IntSys, CompH otel, Book, [s011, emazza, 14Jun_Paris])])

is encoded by:

116

5.3. LOG ANALYZER ALGORITHM

WebComp, IntSys

Send,WebComp, IntSys,Request, [011,emazza,14Jun Paris]
Rec,WebComp,IntSys,Request, [011,emazza,14Jun Paris]
Send, IntSys,CompHotel,Book, [011,emazza,14Jun Paris]

The function readLogFile takes as input a name of a log declaration file and builds an
instance of class LogFile. LAPRO offers an interface to load log files (Section 5.4.1).

5.3 Log Analyzer Algorithm

In order to implement the log analyzer, we must first provide an implementation of the
functions Fxtract and Merge (machine LogOperations in Section 3.4).

The function extract takes as input a LogFile and a set of component names and
returns a new LogFile containing only the entries related to the given set of components.
This function also returns an error message when the set of components is not included in
the components of the log (according to the domain definition of the extract function in
Section 3.4.1).

The function merge takes as input a LogSet and returns a new instance of LogSet
containing all the scenarios produced. A naive implementation of this function consists
first in producing all possible interleavings of entries that respect the local order and them
verifying which interleavings respect the causal order between Send and Rec entries. The
problem with this approach is that the amount of interleavings grows exponentially with
the number of entries.

Many solutions have been proposed to improve the efficiency of this process
|Brightwell & Winkler 1991, Kalvin & Varol 1983, Varol & Rotem 1981]. We have imple-
mented the algorithm proposed by [Varol & Rotem 1981] due to its simplicity and efficiency
in practice [Pruesse & Ruskey 1994]. This algorithm consists in keeping track of every pos-
sible position that each entry can take relatively to other ones. Then, the algorithm uses
these locations to swap entries and to produce the scenarios. For example, let eny, ens
and eng be three entries such that en; happens before eng and ens. The algorithm first
records that en; cannot swap with any other entry and ens can swap positions with eng
and then it produces the scenarios eny, eno, eng and eny, ens, ens. In terms of complexity,
this algorithm takes at most O(n) time per scenario where n is the number of entries.

The log analyzer is implemented by the function verifyProperty that takes as input
a LogSet and a LogProperty and returns two new instances of LogSet corresponding to
the sets scen and ok. This function returns an error if the selected logs do not contain the
entries associated with the set of components attached to the property (pre-condition of
VerifyProperty in Section 3.5.3).

The verification of a log property for a given log is made by parsing the predicate of the
property according to the definition of holds (Definition 11). To verify that a given log file is

117

CHAPTER 5. IMPLEMENTATION OF THE LOG ANALYSIS PROCEDURE

recognized by a regular expression, we use the regular expression library re of Python. This
library includes a function match that, given a string and a regular expression, returns the
position where the regular expression matches the string or None if the regular expression
does not match the string. To build a string from an entry representation (Definition 8)
we have to expand the non conventional operators of our regular expressions (the $ and e
symbols). Each symbol $ is replaced by the string \w* with \w defined as [a-zA-Z0-9_]).
Each e is replaced by the string \ ((Send |Rec) , \w+,\w+,\w+,\ [[\w,]1*\]1\) I that matches
any entry.

5.4 Log Analysis PROcedure (LAPRO) Tool

In this section, we describe the LAPRO tool that implements the log analysis procedure, as
specified Figure 4.1. The interface of LAPRO consists of several HTML documents, each
of them corresponding to one step of the procedure. The links Next Step and Previous Step
allow us to browse through the different steps of the procedure.

5.4.1 Step 1: Log Collection

The interface described in Figure 5.4 allows us to select the set of logs to be analyzed and
the claim instance for which liabilities must be established. The link Add log file allows us
to select the log files that should be in the format specified in Section 5.2.2. The link Select
liabilities can be used to define liabilities in the format specified in Section 5.2.1. Then,
the interface makes it possible to define the values of the parameters specific to the claim
instance.

!Since the characters square brackets and parentheses have a special meaning in regular expressions if
we wish to match then in the text we should note them with a backslash

118

5.4. LOG ANALYSIS PROCEDURE (LAPRO) TOOL

Log Collection
(step 1 of 4)

Set of Logs

Add log file
/home/mazza/logs/logWebComp.txt
/home/mazza/logs/logAgency. txt

Claim

Select Claim
/home/mazza/claims/claim01.txt

Parameters

sessionld:

clientld:

Next Step

Figure 5.4: Log Collection Interface

When the user tries to proceed to the next step, the procedure shows a warning (Fig-
ure 5.5) if the collected log files do not fulfill the conditions of table 5.2. LAPRO also
produces an error message if a parameter is not defined.

[Javascript Alert

The logs selected should contain at least the entries of WebComp
and IntSys

Figure 5.5: Alert Message in Log Collection

5.4.2 Step 2: Log Validity Analysis

In the second step (Figure 5.6), LAPRO verifies the log file format according to the syntax
defined in Section 5.2 and conditions of Table 5.2. If any error occurs, the first column of

each table contains the location of the error in the file and the second column contains the
error message.

119

CHAPTER 5. IMPLEMENTATION OF THE LOG ANALYSIS PROCEDURE

Log Validity Analysis
(step 2 of 4)

Errors in Logs

LOG FILE: /home/mazza/logs/logWebComp.txt

line 1 |component CompBaank is not recognised

line 2 | action Request is not specified in the interface of CompHotel

line 5 | entry is not related to the components of the log

line 10 | invalid number of parameters

LOG FILE: /home/mazza/logs/logAgency.txt
No errors found

Previous Step | Next Step

Figure 5.6: Log Validity Analysis Interface

Besides name error and syntaz error (Section 5.2.1), integrity errors can occur if the prop-
erties defined in Table 5.2 do not hold. The first column contains a link to a document
displaying the error, as shown Figure 5.7.

View Error

line 2, /home/mazza/logs/logWebComp.txt

Error
action Request not specified in interface of CompHotel
Entry

Send,CompHotel, WebComp,Request,[011,emazza,ibis,50]

Back

Figure 5.7: View Error Interface for Log Entry

5.4.3 Step 3: Claim Validity Analysis

In the third step, described Figure 5.8, LAPRO executes the merge and extraction to pro-
duce the scenarios and it applies the verifyProperty algorithm (Section 5.3) to determine
the scenarios where the claim occurs. The document of Figure 5.8 contains a table listing
the set of all scenarios (set scen) resulting from the log analyzer. Each scenario has one
unique identifier (first column) with a link to a document displaying its content (Figure 5.9).

120

5.4. LOG ANALYSIS PROCEDURE (LAPRO) TOOL

The second column indicates with a ‘x’ the subset of scenarios where the claim is valid (set

ok). The third column contains a link, Ezclude, that allows us to exclude a given scenario
(for instance a non realistic one).

Claim Validity Analysis
(step 3 of 4)

Claim

Client is charged without reservation
View claim

Scenarios

Total (scen): 4 scenarios
Claim Valid (ok): 2 scenarios

Scenario | Claim Valid
(scen) (ok)

logl Exclude

log2 x Exclude

log3 x Exclude

log4 Exclude

Previous Step | Next Step

Figure 5.8: Claim Validity Analysis Interface

The link View Claim displays the components and predicate of the property attached
to the analyzed claim.

121

CHAPTER 5. IMPLEMENTATION OF THE LOG ANALYSIS PROCEDURE

View Scenario

logl
Components
WebComp
Content

Rec,WebComp,IntSys,Request,[011,emazza, 14Jun-Paris]
Send,InsSys,CompHotel,Book,[011,emazza, 14Jun-Paris]

Back

Figure 5.9: View Scenario Interface

5.4.4 Step 4: Liability Analysis

In the last step (Figure 5.10), LAPRO analyzes the marked scenarios to search the errors
associated with the claim.

Liability Analysis

(step 4 of 4)
Errors in Scenarios
log? log3
errorl - -
error2 iBis iBis
error3 ThomasCook ThomasCook
Scenarios Liability | iBis, ThomasCook | iBis,ThomasCook

Previous Step

Figure 5.10: Liability Analysis Interface
The first column lists the set of errors coming from the input file describing liabilities.

Each of the following columns represents one scenario (log;) where the claim is valid (log; €
ok). Each cell indicates the liable parties (‘-’ indicates that the error did not occur in

122

5.5. LAPRO EVALUATION

the scenario). The last line of the table contains the union of all parties liable for a given
scenario.

Additionally, each error contains a link (error;) to a document that displays a descrip-
tion, components and predicate attached to the error property (Figure 5.11).

View Error

errorl
Description
WebComp cancel reservation without any request from the client
Components
WebComp
Predicate

NOT(e*(Send,Client, WebComp, Cancel,[011])e*) AND
e*(Send, WebComp,IntSys,Cancel,[011])e*

Back

Figure 5.11: View Error Property Interface

5.5 LAPRO Evaluation

In this document, for the sake of conciseness, we only have presented the verification of the

properties for small logs. However, in practice the number of events in the logs may be very

large. In this section we evaluate the performance of our tool for the analysis of large logs.
The three most relevant criteria for this evaluation are the following:

1. First, the computational cost to evaluate if a given log is valid (step 2). More precisely,
we must verify if the log content fulfills the properties defined in the set LOG_FILE
(method verify of the class LogFile). The more complex condition is the verifica-
tion that Send entries always occur before their respective Rec entries. The other
conditions consists in verifying each entry of the log content to check if the action
and number of parameters are specified as defined in the API of the components.

2. Second, the cost of verifying a property for a large log file. We want to verify the
time necessary to verify properties written in the language of Section 5.1.

123

CHAPTER 5. IMPLEMENTATION OF THE LOG ANALYSIS PROCEDURE

3. Third, the cost of merging the logs and producing the set of scenarios. When working
with large amounts of entries, the number of scenarios may also be very large. We
must determine if the number of scenario is too large to be computed in practice.

The evaluations reported in the next sections were performed in a machine with a Intel
Core i5 1.07Ghz and 4GB of memory running Ubuntu 11.10.

5.5.1 [Evaluation of LogFile.verify()

We randomly produced logs containing errors that should be detected by the method
verify. The evaluation was performed on a set of log files containing a total of 103,
10 and 10° entries. For each of these sizes, 100 log files were produced.

The following table shows the average time necessary to execute the method verify
(Table 5.2) on the class LogFile:

verify average time (in milliseconds)

103 entries | 10* entries | 10° entries
11 117 1240

All conditions of the method verify take linear time to be performed because each
entry only needs to be verified once. To verify the order between Send and Rec entries the
tool stores each entry and its position in a hashtable structure and checks for every Rec
entry if its Send counterpart has a lower position in the log file.

5.5.2 Evaluation of log merging

Based on our case study, we randomly produced logs with the entries of multiple sessions
that could occur in parallel and we measured the time necessary to produce all scenario.
We considered the log distributions that could produce the largest numbers of scenario for
the components WebComp, IntSys and CompH otel:

Dist = {{WebComp},{IntSys},{CompHotel}}

The following table shows the results of the scenario analysis:

number of scenarios (total time to compute scenarios in seconds)
15 entries 20 entries 25 entries
1.55 x 10°scenarios(< 1) | 5.25 x 107(87) timeout

Additionally, the average time necessary to produce each scenario is always less than 1
millisecond, even for a set of log files with a total of 10° entries. However, one problem
that we faced was the number of scenarios produced that grows exponentially with the
number of entries (for logs with 25 entries it was not possible to compute the number of
scenario event after several minutes). Optimizations to solve this problem are discussed in
Section 5.5.4.

124

5.5. LAPRO EVALUATION

5.5.3 Evaluation of the verification of properties

We randomly produced logs containing a total of 103, 10* and 10° entries. For each of these
sizes, 100 log files were produced; then we measured the average time necessary to eval-
uate the properties par Propnoroom (Section 5.1) and propratecancer (Section 3.8). These
properties were chosen because they include all the operators of the language proposed in
Section 5.1 (boolean operators, regular expressions using Kleene star and entries ordering).
The log files were produced in a way such that the entries of the section for which the failure
occurred would be randomly added to the log file and the properties tested would hold.
The predicate par Propnoroom (Example 5.1) is represented as follows:

(ex(Rec,Client ,WebComp,NewRequest, [{sessionId},{clientId},$])ex AND
NOT (e* (Send,CompHotel, CompBank,Confirm, [{sessionId},$,$1)ex*))

and proprateCancel 18 €xpressed as follows:

e*x(Rec,Client,WebComp,CancelRequest, [{sessionId}])e*
(Send, CompHotel,CompBank,Debit, [{sessionId},{hotelId},{clientId},$])e*

The following table shows the average time necessary to analyze parPropyoroom and
ProprateCancel -

Property Aver.age time (in @iliseconds) '
102 entries | 10% entries | 10° entries

parPrOpNoRoom 6 58 594

PropLateCancel 4 40 457

5.5.4 Optimizations

Regarding the results of the evaluation of LAPRO, we may conclude that only efficiency
problem comes from the production of the scenarios. Some optimizations may be imple-
mented to address this issue. The first one consists in filtering the log content to keep only
the entries that are relevant for the property. Filters may be based on specific parameters.
For example, we may filter only entries relative to a single session or perform the analysis
only with entries that occur between the first (New Request) and the final entries (Debit)
of a given session.

Another possible optimization is to check, before producing the scenarios, if the property
does not state conditions about the order of the entries (as an illustration, the property
par Propnoreom Only states conditions on the existence of entries). If this is the case,
then the verification of the property may be performed using a single scenario because the
properties of the function Merge ensures that the scenarios contain the same entries, but
in different orders.

125

CHAPTER 5. IMPLEMENTATION OF THE LOG ANALYSIS PROCEDURE

Finally, in some cases we may conclude that the order of two given entries must be
the same for scenarios by analyzing the causality between Send and Rec entries (based on
the relation “happened before” [Lamport 1978]). As an illustration, let us consider the logs
containing the entries pictured in the following diagram:

Client WebComp IntSys CompH otel CompBank

Cancel Request(sl)

Cancel(sl)

Unbook(sl)

o
Debit(sl,ibisl, emazza, 80)

¢

Even if other entries occurred before or after the above entries, the property propratecancel
(given the session sl and client emazza) holds for every scenario because the causality of
the Send/Rec entries shows that the Cancel Request occurred before Debit.

An issue about the last two optimizations is that it may be difficult to automatically
detect for a given property if it states conditions about the ordering of the entries because
these conditions are written within regular expressions that may also express conditions
about the existence of entries and parameter values. This issue can be addressed by adding
in the language an operator stating the ordering between two entries and using this operator,
instead of regular expressions, to express temporal conditions.

126

Conclusion

The core of this thesis is a formal framework to help the parties to specify software liabilities
in precise way and to establish these liabilities in case of failure. This framework is based
on a model of software contracts (Chapter 2) that was developed in the context of the
LISE project (Section 1.7). Our framework addresses the three main challenges identified
in Section 1.3:

1. How to represent liabilities in a precise and unambiguous way?

Chapter 4 presents the formal models that allow us to associate failures of the system
with the parties that should be considered liable for these failures (Section 5.2.1).
This approach takes into account the legal contractual requirements, as analyzed by
the lawyers of the LISE project.

To validate our approach we propose a property language (Section 5.1) and a file
format to specify liabilities (Section 5.2.1) that can be annexed to the contract.

2. How to produce digital evidence to establish liabilities?

Chapter 4 defines desirable properties of log architectures (Section 4.4) that are likely
to increase the acceptability of the logs as digital evidence [Le Métayer et al. 2010b].
The definition of acceptable log architectures is based on the interest of the parties to
tamper with the logs in order to change the evaluation of future claims in their favor.

3. How to establish liabilities in case of incident?

Chapter 4 defines the log analysis procedure to establish liabilities. This procedure
is based on a log analyzer (Section 3.5.3) and it can be applied to distributed logs
[Mazza et al. 2010]. The analysis can be performed using only a subset of the logs
and we also propose an incremental version of the log analyzer [Mazza et al. 2010].

To validate our approach, Chapter 5 provides an implementation of the log analyzer
and the log analysis procedure (LAPRO tool in Section 5.4). The implementation also
includes the models necessary to represent the logs and their content (Section 5.2.2).
Experimental results of its application to different types of logs are also presented
and its performances are analyzed (Section 5.5).

127

CHAPTER 5. IMPLEMENTATION OF THE LOG ANALYSIS PROCEDURE

Perspectives

The work presented in this thesis can be pursued in several directions. First, the models
of log properties presented in Chapter 3 could be generalized to consider logs that may
not be complete with respect to a given property because the property depends on future
events. One possibility consists in using a 3-value logic (true/false/unknown) with ‘un-
known’ representing a property which cannot be evaluated because it depends on future
events. Another alternative is to define a function returning the part of the logs (e.g. initial
and final entries) necessary to evaluate a property.

A second line of work, which follows from Chapter 4, is the analysis of the causality
between the failures and the errors in the logs. This kind of analysis would provide a way for
the parties to define their respective liabilities in a more direct and logical way. In practice,
it would also avoid the need to define once for all in the contract the association of errors
to liabilities. An initial discussion of this subject is presented in [Goessler et al. 2012].

Another avenue for further research is the refinement of the definition of acceptable log
architectures to consider levels of acceptability. We may define the acceptability of the
claims differently for each party based on the degree of trust between agents.

With respect to Chapter 5, the property specification language could be extended to
include conditions about parameters, which would make it possible to filter the relevant
parts of the logs. We also wish to extend LAPRO to suggest possible acceptable log
distributions when the initial log distribution is not acceptable.

Finally, although our work has been made in collaboration with lawyers and presented
to legal experts?, we think that our approach may benefit form a formal validation by
professionals lawyers in charge of writing contracts.

2Several workshop and conferences were organized by the LISE project involving many legal experts and
lawyers. The program of these conferences can been found at http://licit.inrialpes.fr/lise/

128

Bibliography

[ABC 2010] ABC (2010). Dow Suddenly Drops 1,000 Points on Worries Over Greek Debt,
Then Recovers (available at: abcnews.go.com/Business/story?id-—10576136). [Online].

[Abrial 1996] Abrial, J. (1996). The B-Book. Cambridge University Press.

[Accorsi 2006] Accorsi, R. (2006). On the relationship of privacy and secure remote logging
in dynamic systems. In S. Fischer-Hiibner, K. Rannenberg, L. Yngstrom, & S. Lindskog
(Eds.), SEC, volume 201 of IFIP (pp. 329-339). Springer.

[Accorsi 2009] Accorsi, R. (2009). Safe-keeping digital evidence with secure logging proto-
cols: State of the art and challenges. In O. Goebel, R. Ehlert, S. Frings, D. Giinther, H.
Morgenstern, & D. Schadt (Eds.), IMF (pp. 94-110). IEEE Computer Society.

[Andersen et al. 2006] Andersen, J., Elsborg, E., Henglein, F., Simonsen, J. G., & Ste-
fansen, C. (2006). Compositional specification of commercial contracts. STTT, 8(6),
485-516.

[Anderson & Moore 2009] Anderson, R. & Moore, T. (2009). Information Security: Where
Computer Science, Economics and Psychology Meet. Philosophical Transactions of the
Royal Society A: Mathematical Physical & Engineering Sciences, 367(1898), 2717-2727.

[Anderson 2008] Anderson, R. J. (2008). Information security economics - and beyond. In
R. van der Meyden & J. van der Torre (Eds.), DEON, volume 5076 of Lecture Notes in
Computer Science (pp.49). Springer.

[Arasteh et al. 2007|] Arasteh, A. R., Debbabi, M., Sakha, A., & Saleh, M. (2007). Analyz-
ing Multiple Logs for Forensic Evidence. Digital Investigation, 4, 82-91.

[Armoni et al. 2002] Armoni, R., Fix, L., Flaisher, A., Gerth, R., Ginsburg, B., Kanza, T,
Landver, A., Mador-Haim, S., Singerman, E., Tiemeyer, A., Vardi, M. Y., & Zbar, Y.
(2002). The forspec temporal logic: A new temporal property-specification language. In
J.-P. Katoen & P. Stevens (Eds.), TACAS, volume 2280 of Lecture Notes in Computer
Science (pp. 296-211). Springer.

129

BIBLIOGRAPHY

[Avizienis et al. 2004] Avizienis, A., Laprie, J.-C., Randell, B., & Landwehr, C. E. (2004).
Basic concepts and taxonomy of dependable and secure computing. IEEE Trans. De-
pendable Sec. Comput., 1(1), 11 33.

[Badeau & Amelot 2005] Badeau, F. & Amelot, A. (2005). Using b as a high level pro-
gramming language in an industrial project: Roissy val. In H. Treharne, S. King, M. C.
Henson, & S. A. Schneider (Eds.), ZB, volume 3455 of Lecture Notes in Computer Science
(pp. 334 354). Springer.

|[BalaBit IT Security 2011] BalaBit IT Security (2011). Syslog-ng web site. Available at:
www.balabit.com /network-scerity /syslog-ng.

[Barringer et al. 2010a] Barringer, H., Groce, A., Havelund, K., & Smith, M. H. (2010a).
Formal Analysis of Log Files. Aerospace Computing, Information, and Communication,

7.

[Barringer et al. 2007] Barringer, H., Rydeheard, D., & Havelund, K. (2007). Rule Systems
for Run-Time Monitoring: from Eagle to Ruler. In Proceedings of the 7th international
conference on Runtime verification, RV’07 (pp. 111-125).

[Barringer et al. 2010b| Barringer, H., Rydeheard, D. E., & Havelund, K. (2010b). Rule
systems for run-time monitoring: from eagle to ruler. J. Log. Comput., 20(3), 675-706.

[Bauer et al. 2011] Bauer, A., Leucker, M., & Schallhart, C. (2011). Runtime verification
for 1t] and tltl. ACM Trans. Softw. Eng. Methodol., 20(4), 14.

[Bauer et al. 2006] Bauer, A., Leucker, M., & Streit, J. (2006). Salt - structured assertion
language for temporal logic. In Z. Liu & J. He (Eds.), ICFEM, volume 4260 of Lecture
Notes in Computer Science (pp. 757 775). Springer.

[Behm et al. 1999] Behm, P., Benoit, P., Faivre, A., & Meynadier, J.-M. (1999). Météor:
A successful application of b in a large project. In J. M. Wing, J. Woodcock, & J. Davies
(Eds.), World Congress on Formal Methods, volume 1708 of Lecture Notes in Computer
Science (pp. 369-387). Springer.

[Berry 2007] Berry, D. M. (2007). Abstract appliances and software: The importance of
the buyer’s warranty and the developer’s liability in promoting the use of systematic
quality assurance and formal methods. CiteSeerX - Scientific Literature Digital Library
and Search Engine, http://www .scientificcommons.org/42749418.

[Birsch 2004| Birsch, D. (2004). Moral responsibility for harm caused by computer system
failures. Ethics and Information Technology, 6, 233-245. 10.1007/s10676-005-5609-5.

[Bitan 2004| Bitan, H. (2004). Les clauses limitatives des responsabilité dans les contrats
informatique. Communication Commerce Eletronique, 1, 14-19.

130

BIBLIOGRAPHY

[Blom et al. 2004] Blom, J., Hessel, A., Jonsson, B., & Pettersson, P. (2004). Specifying
and generating test cases using observer automata. In J. Grabowski & B. Nielsen (Eds.),
FATES, volume 3395 of Lecture Notes in Computer Science (pp. 125 139). Springer.

[Bollig & Leucker 2003] Bollig, B. & Leucker, M. (2003). Deciding 1tl over mazurkiewicz
traces. Data Knowl. Eng., 44(2), 219-238.

[Branch 2010] Branch, R. A. I. (2010). Derailment of a Docklands Light Railway Train
Near West India Quay Station. Technical report, Department for Transport, UK.

[Brightwell & Winkler 1991| Brightwell, G. & Winkler, P. (1991). Counting linear exten-
sions. Order, 8, 225-242. 10.1007/BF00383444.

[Buskirk & Liu 2006] Buskirk, E. V. & Liu, V. T. (2006). Digital evidence: Challenging
the presumption of reliability. J. Digital Forensic Practice, 1(1), 19 26.

[Cardoso & Oliveira 2009] Cardoso, H. L. & Oliveira, E. C. (2009). Monitoring cooperative
business contracts in an institutional environment. In J. Cordeiro & J. Filipe (Eds.),
ICEIS (2) (pp. 206 211).

[Carrier 2003] Carrier, B. D. (2003). Defining digital forensic examination and analysis tool
using abstraction layers. International Journal of Digital Evidence, 1(4).

[Cederquist et al. 2007] Cederquist, J. G., Corin, R., Dekker, M. A. C., Etalle, S., den
Hartog, J. I., & Lenzini, G. (2007). Audit-based compliance control. Int. J. Inf. Sec.,
6(2-3), 133-151.

[Chang & Ren 2007] Chang, F. & Ren, J. (2007). Validating system properties exhibited
in execution traces. In R. E. K. Stirewalt, A. Egyed, & B. Fischer (Eds.), ASE (pp.
517-520). ACM.

[Charette 2005] Charette, R. N. (2005). Why software fails. IEEE Spectrum.

[Chen & Rosu 2009] Chen, F. & Rosu, G. (2009). Parametric Trace Slicing and Monitoring.
In Proceedings of the 15th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (ETAPS 2009), (pp. 246-261). Springer-Verlag.

[Chin et al. 2009] Chin, K.-S., Wang, Y.-M., Poon, G. K. K., & Yang, J.-B. (2009). Failure
mode and effects analysis using a group-based evidential reasoning approach. Computers
€ OR, 36(6), 1768-1779.

[Claessen et al. 2002] Claessen, K., Hahnle, R., Martensson, J., & Ab, S. (2002). Verifica-
tion of Hardware Systems with First-Order Logic. Technical report, Copenhagen, DIKU,
University of Copenhagen, Denmark.

131

BIBLIOGRAPHY

[ClearSy 2011] ClearSy (2011). Atelier b, version 4.0 (www.atelierb.eu).

[Coulouris et al. 2011] Coulouris, G., Dollimore, J., Kindberg, T., & Blair, G. (2011). Dis-
tributed systems - concepts and designs (5. ed.). International computer science series.
Addison-Wesley-Longman.

[Dadeau & Tissot 2009] Dadeau, F. & Tissot, R. (2009). jsynopsys - a scenario-based test-
ing tool based on the symbolic animation of b machines. Electr. Notes Theor. Comput.
Sei., 253(2), 117-132.

|[Daskalopulu 2001] Daskalopulu, A. (2001). Modelling legal contracts as processes. CoRR,
¢cs.AT/0106010.

[Desai et al. 2008] Desai, N., Narendra, N. C.; & Singh, M. P. (2008). Checking correctness
of business contracts via commitments. In L. Padgham, D. C. Parkes, J. Miiller, & S.
Parsons (Eds.), AAMAS (2) (pp. 787-794). IFAAMAS.

[DeYoung et al. 2010] DeYoung, H., Garg, D., Jia, L., Kaynar, D. K., & Datta, A. (2010).
Experiences in the logical specification of the hipaa and glba privacy laws. In E. Al-Shaer
& K. B. Frikken (Eds.), WPES (pp. 73-82). ACM.

[D’Souza 2003] D’Souza, D. (2003). A logical characterisation of event clock automata.
Int. J. Found. Comput. Sci., 14(4), 625-640.

[Falcone et al. 2009| Falcone, Y., Fernandez, J.-C., & Mounier, L. (2009). Runtime verifi-
cation of safety-progress properties. In S. Bensalem & D. Peled (Eds.), RV, volume 5779
of Lecture Notes in Computer Science (pp. 40 59). Springer.

[Farrell et al. 2005] Farrell, A. D. H., Sergot, M. J., Sall¢, M., & Bartolini, C. (2005). Using
the event calculus for tracking the normative state of contracts. Int. J. Cooperative Inf.
Syst., 14(2-3), 99-129.

|[Fenech et al. 2009a] Fenech, S., Pace, G. J., & Schneider, G. (2009a). Automatic conflict
detection on contracts. In M. Leucker & C. Morgan (Eds.), ICTAC, volume 5684 of
Lecture Notes in Computer Science (pp. 200 214). Springer.

[Fenech et al. 2009b| Fenech, S., Pace, G. J., & Schneider, G. (2009b). CLAN: A Tool for
Contract Analysis and Conflict Discovery. In Z. Liu & A. P. Ravn (Eds.), ATVA, volume
5799 of Lecture Notes in Computer Science (pp. 90-96). Springer.

[Garg et al. 2011] Garg, D., Jia, L., & Datta, A. (2011). Policy auditing over incom-
plete logs: theory, implementation and applications. In Y. Chen, G. Danezis, & V.
Shmatikov (Eds.), ACM Conference on Computer and Communications Security (pp.
151-162). ACM.

132

BIBLIOGRAPHY

|Genicon 2008] Genicon, T. (2008). Le régime des caluses limitatives de réparation: état
des lieux et perspectives. Revue des contrats, 3, 982—-1008.

[Gerhards 2001| Gerhards, R. (2001). RFC 3164: The BSD Syslog Protocol. Available at:
tools.ietf.org /html/rfc3164.

|Giannikis & Daskalopulu 2011] Giannikis, G. K. & Daskalopulu, A. (2011). Normative
conflicts in electronic contracts. FElectronic Commerce Research and Applications, 10(2),

247 267.

|Goessler et al. 2012 Goessler, G., Le Métayer, D., Mazza, E., Potet, M.-L.; & Astefanoaei,
L. (2012). Apport des méthodes formelles dans 'exploitation de logs informatiques dans

un contexte contractuel. In Approches Formelles dans I’Assitance au Développement de
Logiciels (AFADL).

[Governatori 2005] Governatori, G. (2005). Representing business contracts in RuleML.
Int. J. Cooperative Inf. Syst., 14(2-3), 181-216.

[Governatori et al. 2008] Governatori, G., Hoffmann, J., Sadiq, S. W., & Weber, 1. (2008).
Detecting regulatory compliance for business process models through semantic annota-
tions. In D. Ardagna, M. Mecella, & J. Yang (Eds.), Business Process Management
Workshops, volume 17 of Lecture Notes in Business Information Processing (pp. 5-17).
Springer.

[Governatori & Milosevic 2006] Governatori, G. & Milosevic, Z. (2006). A formal analysis
of a business contract language. Int. J. Cooperative Inf. Syst., 15(4), 659 685.

|Governatori & Pham 2009] Governatori, G. & Pham, D. H. (2009). Dr-contract: An ar-
chitecture for e-contracts in defeasible logic. International Journal of Business Process
Integration and Management, 5(4).

[Gupta 1992] Gupta, A. (1992). Formal hardware verification methods: A survey. Formal
Methods in System Design, 1(2/3), 151-238.

[Hallal et al. 2006] Hallal, H., Boroday, S., Petrenko, A., & Ulrich, A. (2006). A Formal
Approach to Property Testing in Causally Consistent Distributed Traces. Formal Aspects
of Computing, 18(1), 63-83.

[Hallal et al. 2003| Hallal, H., Boroday, S., Ulrich, A., & Petrenko, A. (2003). An automata-
based approach to property testing in event traces. In D. Hogrefe & A. Wiles (Eds.)
TestCom, volume 2644 of Lecture Notes in Computer Science (pp. 180-196). Springer.

3

[Henglein et al. 2009] Henglein, F., Larsen, K. F., Simonsen, J. G., & Stefansen, C. (2009).
Poets: Process-oriented event-driven transaction systems. J. Log. Algebr. Program.,
78(5), 381-401.

133

BIBLIOGRAPHY

[Holt 2006] Holt, J. E. (2006). Logcrypt: forward security and public verification for secure
audit logs. In R. Buyya, T. Ma, R. Safavi-Naini, C. Steketee, & W. Susilo (Eds.), ACSW
Frontiers, volume 54 of CRPIT (pp. 203 211). Australian Computer Society.

[Hvitved 2010] Hvitved, T. (2010). A trace-based model for multi-party contracts. In
Workshop on Formal Languages and Analysis of Contract-Oriented Software (FLACOS).

[TIEEE & The Open Group 1997| IEEE & The Open Group (1997). The Single Uniz Spec-
ification, Version 2. IEEE.

[Insa 2006] Insa, F. (2006). The admissibility of electronic evidence in court (a.e.e.c.):
Fighting against high-tech crime - results of a european study. J. Digital Forensic Prac-
tice, 1(4), 285289,

[IST 2011 IST (2011). IST Contract Porject (ist-contract.org).

[Ivanov 2005] Ivanov, L. (2005). Modeling and verification of a distributed transmission
protocol. In L. T. Yang, H. R. Arabnia, Y. Li, S. N. Salloum, & J. G. Delgado-Frias
(Eds.), CDES (pp. 64-70). CSREA Press.

[Jaffuel & Legeard 2007| Jaffuel, E. & Legeard, B. (2007). Leirios test generator: Auto-
mated test generation from b models. In J. Julliand & O. Kouchnarenko (Eds.), B,
volume 4355 of Lecture Notes in Computer Science (pp. 277-280). Springer.

[Jagadeesan et al. 2009| Jagadeesan, R., Jeffrey, A., Pitcher, C., & Riely, J. (2009). To-
wards a theory of accountability and audit. In M. Backes & P. Ning (Eds.), ESORICS,
volume 5789 of Lecture Notes in Computer Science (pp. 152 167). Springer.

[i]DREW 2011] jDREW (2011). A Java Deductive Reasoning Engine for the Web
(jdrew.org).

[Jones et al. 2003] Jones, S. P., Eber, J.-M., & Seward, J. (2003). How to write a financial
contract. In Gibbons & de Moor (Eds.), The Fun of Programming. Palgrave Macmillan.

[Kalvin & Varol 1983] Kalvin, A. D. & Varol, Y. L. (1983). On the generation of all topo-
logical sortings. J. Algorithms, 4(2), 150-162.

[Keller & Ludwig 2003] Keller, A. & Ludwig, H. (2003). The wsla framework: Specifying
and monitoring service level agreements for web services. J. Network Syst. Manage.,
11(1), 57-81.

[Kelsey et al. 2009] Kelsey, J., Callas, J., & Clemm, A. (2009). Signed syslog messages.
Available at: tools.ietf.org//html/draft-ietf-syslog-sign-29.txt.

134

BIBLIOGRAPHY

[Kenneally 2004] Kenneally, E. (2004). Digital logs - proof matters. Digital Investigation,
1(2), 94-101.

[Kent & Souppaya 2006 Kent, K. & Souppaya, M. (2006). Guide to Computer Security
Log Management. Technical report, National Institute of Standards and Technology.

[Kyas et al. 2008| Kyas, M., Prisacariu, C., & Schneider, G. (2008). Run-time monitoring of
electronic contracts. In S. D. Cha, J.-Y. Choi, M. Kim, I. Lee, & M. Viswanathan (Eds.),
ATVA, volume 5311 of Lecture Notes in Computer Science (pp. 397 407). Springer.

[Lamanna et al. 2003] Lamanna, D. D., Skene, J., & Emmerich, W. (2003). Slang: A
language for defining service level agreements. In FTDCS IEEE Computer Society.

[Lamport 1978] Lamport, L. (1978). Time, Clocks, and the Ordering of Events in a Dis-
tributed System. Communications of the ACM, 21(7), 558 565.

[Landwehr 2009] Landwehr, C. E. (2009). A national goal for cyberspace: Create an open,
accountable internet. [EEE Security & Privacy, 7(3), 3—4.

[Le Métayer et al. 2010a] Le Métayer, D., Maarek, M., Mazza, E., Potet, M.-L., Viet
Triem Tong, V., Craipeau, N., Frénot, S., & Hardouin, R. (2010a). Liability in Soft-
ware Engineering: Overview of the LISE Approach and Illustration on a Case Study. In
International Conference on Software Engineering (ICSE) (pp. 135 144).

[Le Métayer et al. 2010b] Le Métayer, D., Mazza, E., & Potet, M.-L. (2010b). Designing
log architectures for legal evidence. In J. L. Fiadeiro, S. Gnesi, & A. Maggiolo-Schettini
(Eds.), SEFM (pp. 156 165). IEEE Computer Society.

[Leucker & Sanchez 2010 Leucker, M. & Sanchez, C. (2010). Regular linear-time temporal
logic. In N. Markey & J. Wijsen (Eds.), TIME (pp. 3-5). IEEE Computer Society.

|[Leucker & Schallhart 2009] Leucker, M. & Schallhart, C. (2009). A brief account of run-
time verification. J. Log. Algebr. Program., 78(5), 293 303.

[Leuschel & Butler 2003| Leuschel, M. & Butler, M. (2003). ProB: A model checker for B.
In K. Araki, S. Gnesi, & D. Mandrioli (Eds.), FME 2003: Formal Methods, LNCS 2805
(pp- 855 874). Springer-Verlag.

[Ma & Tsudik 2009] Ma, D. & Tsudik, G. (2009). A new approach to secure logging. TOS,
5(1).

[Marotta-Wurgler 2007] Marotta-Wurgler, F. (2007). What’s in a standard form contract?
an empirical analysis of software license agreements. Journal of Empirical Legal Studies,
4(4), 677-713.

135

BIBLIOGRAPHY

[Maurer 2004] Maurer, U. M. (2004). New approaches to digital evidence. Proceedings of
the IEEE, 92(6), 933-947.

[Mazza et al. 2010] Mazza, E., Potet, M.-L., & Le Métayer, D. (2010). A formal framework
for specifying and analyzing logs as electronic evidence. In J. Davies, L. Silva, & A.
da Silva Simao (Eds.), SBMF, volume 6527 of Lecture Notes in Computer Science (pp.
194-209). Springer.

[Meyer et al. 1994] Meyer, J. J. C., Dignum, F. P. M., & Wiering, R. J. (1994). The
Paradozes of Deontic Logic Revisited: A Compute Science Perspective.

[Mittal & Garg 2001] Mittal, N. & Garg, V. K. (2001). Computation slicing: Techniques
and theory. In J. L. Welch (Ed.), DISC, volume 2180 of Lecture Notes in Computer
Science (pp. 78-92). Springer.

[Molina-Jiménez et al. 2009] Molina-Jiménez, C., Shrivastava, S. K., & Strano, M. (2009).
Exception handling in electronic contracting. In B. Hofreiter & H. Werthner (Eds.), CEC
(pp. 65-73). IEEE Computer Society.

[Morin-Allory et al. 2007] Morin-Allory, K., Fesquet, L., Roustan, B., & Borrione, D.
(2007). Asynchronous online-monitoring of logical and temporal assertions. In FDL
(pp. 286 290). ECST.

[New & Rose 2001] New, D. & Rose, M. (2001). Reliable Delivery for syslog. Available at:
tools.ietf.org/rfc/rfc3195.txt.

[Ohtaki 2008] Ohtaki, Y. (2008). Partial disclosure of searchable encrypted data with sup-
port for boolean queries. In ARES (pp. 1083-1090). IEEE Computer Society.

[Oren et al. 2008] Oren, N., Panagiotidi, S., Vazquez-Salceda, J., Modgil, S., Luck, M., &
Miles, S. (2008). Towards a formalisation of electronic contracting environments. In J. F.
Hiibner, E. T. Matson, O. Boissier, & V. Dignum (Eds.), COIN AAMAS, volume 5428
of Lecture Notes in Computer Science (pp. 156-171). Springer.

[Pace & Schneider 2009] Pace, G. J. & Schneider, G. (2009). Challenges in the specification
of full contracts. In M. Leuschel & H. Wehrheim (Eds.), IFM, volume 5423 of Lecture
Notes in Computer Science (pp. 292-306). Springer.

|[Paschke 2005] Paschke, A. (2005). Rbsla a declarative rule-based service level agreement
language based on ruleml. In CIMCA/IAWTIC (pp. 308-314). IEEE Computer Society.

|[Paschke & Bichler 2005] Paschke, A. & Bichler, M. (2005). Sla representation, manage-
ment and enforcement. In EEE (pp. 158-163). IEEE Computer Society.

136

BIBLIOGRAPHY

[Patel 2006] Patel, V. (2006). The Contract Management Benchmark Report: Procurement
Contracts. Technical report, Aberdeen Group.

[Patel 2007| Patel, V. (2007). Contract Lifecycle Management and the CFO: Optimizing
Revenues and Capturing Savings. Technical report, Aberdeen Group.

[Peldez & Bowles 1996] Pelaez, C. E. & Bowles, J. B. (1996). Using fuzzy cognitive maps
as a system model for failure modes and effects analysis. Inf. Sci., 88(1-4), 177 199.

[Pnueli 1977] Pnueli, A. (1977). The temporal logic of programs. In FOCS (pp. 46-57).
IEEE.

[Prakken & Sergot 1996] Prakken, H. & Sergot, M. J. (1996). Contrary-to-duty obligations.
Studia Logica, 57(1), 91-115.

[Prisacariu & Schneider 2007] Prisacariu, C. & Schneider, G. (2007). A formal language
for electronic contracts. In M. M. Bonsangue & E. B. Johnsen (Eds.), FMOODS, volume
4468 of Lecture Notes in Computer Science (pp. 174-189). Springer.

[Pruesse & Ruskey 1994] Pruesse, G. & Ruskey, F. (1994). Generating linear extensions
fast. STAM J. Comput., 23(2), 373-386.

[Raskin & Schobbens 1999] Raskin, J.-F. & Schobbens, P.-Y. (1999). The logic of event
clocks - decidability, complexity and expressiveness. Journal of Automata, Languages
and Combinatorics, 4(3), 247-286.

[Rehm 2010] Rehm, J. (2010). Proved development of the real-time properties of the ieee
1394 root contention protocol with the event-b method. Software Tools for Technology
Transfer (STTT), 12(1), 39-51.

[Reith et al. 2002] Reith, M., Carr, C., & Gunsch, G. H. (2002). An examination of digital
forensic models. IJDE, 1(3).

[Richard III & Roussev 2006] Richard III, G. G. & Roussev, V. (2006). Next-generation
digital forensics. Commun. ACM, 49(2), 76-80.

|[Rodin 2011] Rodin (2011). RODIN - Rigorous Open Development Environment for Com-
plex Systems (rodin.cs.ncl.ac.uk).

[Rose 2001] Rose, M. (2001). The Blocks Eztensible Exchange Protocol Core. Available at:
tools.ietf.org/rfc/rfc3080.txt.

[RuleML 2011] RuleML (2011). The Rule Markup Initiative (ruleml.org).

[Ryan 2003] Ryan, D. J. (2003). Two views on security software liability: Let the legal
system decide. IEEE Security & Privacy, 1(1), 70-72.

137

BIBLIOGRAPHY

[Sackmann et al. 2006] Sackmann, S., Striiker, J., & Accorsi, R. (2006). Personalization in
privacy-aware highly dynamic systems. Commun. ACM, 49(9), 32-38.

[Saleh et al. 2007] Saleh, M., Arasteh, A. R., Sakha, A., & Debbabi, M. (2007). Forensic
Analysis of Logs: Modeling and verification. Knowledge-Based Systems, 20(7), 671-682.

[Schneider 2009] Schneider, F. B. (2009). Accountability for Perfection. IEEE Security &
Privacy, 7(2), 3-4.

[Schneider 2001| Schneider, S. (2001). The B-Method: An Introduction. Palgrave MacMil-
lan.

[Schneier & Kelsey 1999] Schneier, B. & Kelsey, J. (1999). Secure audit logs to support
computer forensics. ACM Trans. Inf. Syst. Secur., 2(2), 159 176.

[Schwarz & Mattern 1994| Schwarz, R. & Mattern, F. (1994). Detecting causal relation-
ships in distributed computations: In search of the holy grail. Distributed Computing,
7(3), 149-174.

[Sen & Garg 2003] Sen, A. & Garg, V. K. (2003). Partial order trace analyzer (pota) for
distributed programs. Electr. Notes Theor. Comput. Sci., 89(2), 22—-43.

[Servat 2007] Servat, T. (2007). Brama: A new graphic animation tool for b models. In
J. Julliand & O. Kouchnarenko (Eds.), B, volume 4355 of Lecture Notes in Computer
Science (pp. 274-276). Springer.

[Sidhu & Prasanna 2001] Sidhu, R. & Prasanna, V. K. (2001). Fast Regular Expression
Matching Using FPGAs. In IEEE Symposium on Field-Programmable Custom Computing
Machines (pp. 227-238).

[Sistla 1994] Sistla, A. P. (1994). Safety, liveness and fairness in temporal logic. Formal
Asp. Comput., 6(5), 495 512.

[Skene et al. 2007] Skene, J., Skene, A., Crampton, J., & Emmerich, W. (2007). The mon-
itorability of service-level agreements for application-service provision. In V. Cortellessa,
S. Uchitel, & D. Yankelevich (Eds.), WOSP (pp. 3-14). ACM.

[Stathopoulos et al. 2006] Stathopoulos, V., Kotzanikolaou, P., & Magkos, E. (2006). A
framework for secure and verifiable logging in public communication networks. In J.
Lopez (Ed.), CRITIS, volume 4347 of Lecture Notes in Computer Science (pp. 273 284).
Springer.

[Steer et al. 2011] Steer, S., Craipeau, N., Métrayer, D. L., Maarek, M., Potet, M.-L., &
Viet Triem Tong, V. (2011). Définition des responsabilités pour les dysfonctionnements de
logiciels: Cadre contractuel et outils de mise en oeuvre. In Droit, Sciences et Techniques,
Quelles Responsabilité?, éditions Litec (Lexisnexis), collection “colloques et debats”.

138

BIBLIOGRAPHY

[Strano et al. 2009] Strano, M., Molina-Jiménez, C., & Shrivastava, S. K. (2009). Imple-
menting a rule-based contract compliance checker. In C. Godart, N. Gronau, S. K.
Sharma, & G. Canals (Eds.), I8E, volume 305 of IFIP (pp. 96 111). Springer.

[U.S. Food and Drug Administration 2011] U.S. Food and Drug Administration (2011).
LASIK Eye Surgery. Available at: www.fda.gov/LASIK.

[Vardi 2008] Vardi, M. Y. (2008). From church and prior to psl. In O. Grumberg & H.
Veith (Eds.), 25 Years of Model Checking, volume 5000 of Lecture Notes in Computer
Science (pp. 150 171). Springer.

[Varol & Rotem 1981] Varol, Y. L. & Rotem, D. (1981). An algorithm to generate all
topological sorting arrangements. Comput. J., 24(1), 83-84.

[Vaughan et al. 2008] Vaughan, J. A., Jia, L., Mazurak, K., & Zdancewic, S. (2008).
Evidence-based audit. In CSF (pp. 177-191). IEEE Computer Society.

|[von Wright 1951] von Wright, G. H. (1951). Deontic logic. Mind, 60, 1-15.

[Waters et al. 2004] Waters, B. R., Balfanz, D., Durfee, G., & Smetters, D. K. (2004).
Building an encrypted and searchable audit log. In NDSS The Internet Society.

[Wolper 1983] Wolper, P. (1983). Temporal logic can be more expressive. Information and
Control, 56(1/2), 72 99.

[Woodcock et al. 2009] Woodcock, J., Larsen, P. G., Bicarregui, J., & Fitzgerald, J. S.
(2009). Formal methods: Practice and experience. ACM Computing Survey, 41(4).

[Xu & Jeusfeld 2003] Xu, L. & Jeusfeld, M. A. (2003). Pro-active monitoring of electronic
contracts. In J. Eder & M. Missikoff (Eds.), CAiSE, volume 2681 of Lecture Notes in
Computer Science (pp. 584 600). Springer.

[Xu et al. 2005] Xu, L., Jeusfeld, M. A., & Grefen, P. W. P. J. (2005). Detection tests for
identifying violators of multi-party contracts. SIGecom Ezchanges, 5(3), 19-28.

[Yao-Hua Tan 2001| Yao-Hua Tan, W. T. (2001). A survey of electronic contracting related
developments. In 14th Bled FElectronic Commerce Conference.

139

