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SPR Strictly Positive Real
w.p.1 with probability one
w.r.t. with respect to
YK Youla-Kučera
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Chapter 1

Introduction et Résumé Détaillé

Ce chapitre introductif décrit les problèmes de base du contrôle actif de bruit (Active
Noise Control, ANC) et du contrôle actif de vibrations (Active Vibration Control, AVC)
qui ont motivé la recherche. Les structures de base utilisées pour le développement des
algorithmes sont introduites et expliquées. Ensuite, un aperçu général des principaux
résultats de la littérature et les directions de recherche sont présentés. Dans la dernière
section, un résumé étendu des contributions originales de ce travail est fait et un aperçu
de la thèse (Chapitres 3, 4, 5 et 6) est donné.

1.1 Motivation

Les principes de base du rejet actif de perturbations seront expliqués dans cette section.
Quelques exemples seront utilisés pour indiquer d’une manière pratique ces problèmes de
régulation et le contexte de ce travail sera également expliqué.

Le premier qui a mentionné le problème du contrôle actif du bruit (ANC) est Henri
Coandă dans un brevet français ([Coanda, 1930]). Il a été suivi peu après par Paul
Lueg ([Lueg, 1934]) et Harry F. Olson ([Olson and May, 1953]). Le problème abordé
dans leurs ouvrages était celui de rejet de bruit provenant d’une source, en utilisant un
microphone, un amplificateur et un haut-parleur. Il a été démontré que si l’ensemble
capteur-régulateur-amplificateur-actionneur était capable de créer une onde sonore avec
les mêmes caractéristiques en fréquence que le bruit source, mais avec un décalage de
phase de 1800, il serait alors possible d’éliminer le bruit dans le domaine d’action des
ondes sonores produites par le haut-parleur. Les réductions du bruit de moteur dans les
avions et du bruit créé par différents types de machines à proximité de l’opérateur sont
mentionnées comme applications possibles de ces techniques.

Dans la littérature scientifique, trois types de méthodes de contrôle ont été développés
pour compenser des bruits ou des vibrations ([Fuller et al., 1997, Snyder, 2000]) : passifs,
semi-actifs et actifs.

La solution classique est d’améliorer l’isolation ou d’ajouter des matériaux amortis-
sants : c’est ce qu’on appelle l’approche passive car aucun algorithme de contrôle n’est
nécessaire. Elle a l’avantage d’être simple et directe à utiliser et en même temps de fournir
de solutions robustes, fiables et économiquement efficaces. L’utilisation de l’amortisseur
passif est cependant limitée par l’impossibilité d’ajuster les forces de contrôle, la diffi-
culté à cibler l’action de contrôle à des objectifs particuliers, la dépendance de la force
de contrôle sur la dynamique du système naturel. Un bon exemple est le résonateur de
Helmholtz décrit dans [Olson and May, 1953, Fleming et al., 2007].

Pour s’affranchir de ces défauts, différentes méthodes de contrôle qui permettent
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l’utilisation de capteurs et d’actionneurs ont été employées. La plus simple est la méthode
semi-active obtenue en utilisant des actionneurs qui se comportent comme des éléments
passifs, permettant, par conséquent, seulement le stockage ou la dissipation d’énergie. Ils
représentent encore une étape vers le contrôle actif parce que leurs propriétés mécaniques
peuvent être ajustées par l’utilisation d’un signal provenant d’un contrôleur. Par exemple,
les amortisseurs de certains véhicules ont un coefficient de frottement visqueux contrôlé
par ordinateur. Comme dans le cas passif, il n’y a pas d’énergie injectée dans le système.

L’objectif de cette thèse concerne la troisième des solutions mentionnées ci-dessus,
plus précisément le contrôle actif. La principale différence par rapport aux deux autres,
c’est son aptitude à fournir une puissance mécanique au système et à cibler l’action de
commande vers des objectifs spécifiques. Dans les applications de contrôle du bruit,
la fréquence d’échantillonnage peut monter jusqu’à 40.000 Hz. Il est indiqué dans la
littérature ([Olson and May, 1953, Fuller and von Flotow, 1995, Elliott, 2001]) que les
techniques passives donnent généralement des résultats satisfaisants dans la bande des
hautes fréquences (réductions de plus de 40 dB au-dessus de 500 Hz) et donc, au début,
l’utilisation de méthodes actives est devenue intéressante pour les basses fréquences, en
particulier d’un point de vue du contrôle adaptatif comme il sera montré plus tard. Il y
a un grand nombre d’applications où les bruits extérieurs et les vibrations doivent être
réduits. Un bon exemple est donné dans la Figure 1.1, qui montre comment fonctionnent
les casques à réduction de bruit. Les écouteurs modernes sont conçus pour donner un son
de bonne qualité, même dans les environnements bruyants. À cet effet, les perturbations
extérieures sont mesurées par un microphone utilisé en tant que capteur et un algorithme
de contrôle est développé pour annuler les perturbations en utilisant un haut-parleur
intégré en tant qu’actionneur. Dans le cas idéal, le signal ajouté par l’actionneur devrait
avoir une grandeur égale et avec un décalage de phase de 1800 par rapport au bruit
extérieur pour obtenir un rejet parfait. Une analyse globale est publiée dans les références
suivantes: [Elliott and Nelson, 1993, Fuller and von Flotow, 1995, Guicking, 2007].
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Figure 1.1: Réduction de bruit dans les casque - principe de fonctionnement.

1.2 Description du Problème

Cette section offre au lecteur une description succincte des problèmes de régulation
adaptative qui seront traités dans les chapitres suivants. L’objectif principal est de réduire



1.2. Description du Problème 23

le niveau des vibrations (ou des bruits) dans un endroit prédéfini tout en assurant la
stabilité du système. Une présentation générale du système et des stratégies de contrôle
sera faite dans les sections suivantes.

1.2.1 Configuration du système de contrôle

La Figure 2.2 représente un système de control actif des vibrations (ou des bruits) en
utilisant un contrôleur généralisé « feedforward-feedback ». Le système a deux entrées
et deux sorties. La première entrée est la perturbation w(t), produite par une source
inconnue s(t) filtrée à travers un filtre de caractéristiques inconnues. La deuxième
entrée est le signal de commande u(t). La première sortie est la mesure de l’accélération
résiduelle e(t) (appelée aussi variable de performance). La deuxième sortie est un signal
corrélé avec la perturbation inconnue, y1(t) dans la Figure 1.2. La voie secondaire
caractérise les dynamiques entre le signal de commande et l’accélération résiduelle e(t).
La fonction de transfert entre le signal w(t) qui caractérise l’image de la perturbation en
l’absence des compensateurs et la mesure de l’accélération résiduelle e(t), caractérise la
voie primaire. Quand le système de compensation est actif, l’actionneur de contrôle agit
sur l’accélération résiduelle, mais aussi sur la mesure de l’image de la perturbation. Le
signal mesuré y1(t) est alors la somme de la mesure corrélée avec la perturbation w(t),
obtenue en l’absence de compensation en « feedforward », et l’effet de l’actionneur utilisé
pour la compensation, sur cette mesure. Ce couplage entre le signal de commande et la
mesure de l’image de la perturbation y1(t) via l’actionneur de compensation est appelé
voie inverse. Ce retour positif non désiré peut poser plusieurs problèmes en pratique
(source d’instabilités) et rend la synthèse et l’analyse des compensateurs plus difficiles.

L’objectif est de minimiser la variable de performance e(t) par un contrôle u(t) calculé
en utilisant les variables mesurées e(t) et y1(t).
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Figure 1.2: Schéma de commande hybride « feedforward-feedback ».

On peut remarquer que le signal de contrôle u(t) est obtenu par la soustraction entre
le signal de contrôle « feedforward », u1(t), et le signal de contrôle « feedback » , u2(t).
Le signal mesuré peut être décrit par y(t) = [y1(t), y2(t)]T . En conséquence, le régulateur
peut aussi être représenté par un vecteur κ = [N, −K]T , où N et K représentent les
compensateurs « feedforward » et « feedback » respectivement. Avec ces notations,
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l’équation qui lie la mesure avec le signal de contrôle est donnée par

u(t) = u1(t)− u2(t) = N · y1(t)−K · y2(t) = κT · y(t). (1.1)

L’appellation « contrôleur feedforward » donnée à N est motivée par le fait que y1(t),
appelé aussi « image corrélée avec la perturbation », est mesuré en amont de la variable de
performance, en supposant en même temps que c’est physiquement possible d’obtenir une
telle mesure. Dans les situations où il n’est pas possible d’installer un deuxième capteur
comme décrit ci-dessus, seulement une approche par contrôle « feedback » peut être
utilisée. Dans la littérature du contrôle actif des vibrations (ou bruits), la méthodologie
de contrôle mixte « feedforward - feedback » est souvent appelée « contrôle hybride ».

Figure 1.3: Représentation générale d’un système de contrôle actif des vibrations (ou
bruit).

Une représentation standard sous la forme d’un système à 2 entrées et 2 sor-
ties peut aussi être utilisée, comme indiqué dans la Figure 1.3. Cette représen-
tation est très bien connue dans le contrôle robuste et optimal (voir aussi
[Tay et al., 1997, Zhou et al., 1996]). Les équations du système associé à cette
représentation avec contrôle par contre-réaction sont:

[

e(t)
y(t)

]

=

[

P11 P12

P21 P22

] [

w(t)
u(t)

]

=
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[

w(t)
u(t)

]

, (1.2)

et la loi de commande est donnée par l’équation (1.1).
Deux cas particuliers, également proposés dans la thèse, seront présentés dans les

sous-sections suivantes.

1.2.2 Le problème de contrôle par action anticipatrice « feed-
forward »

Une particularisation du problème général est d’atténuer les vibrations (ou bruits) par
action anticipatrice « feedforward ». Une représentation schématique de cette situation
est donnée dans la Figure 2.4. Une caractéristique importante de cette configuration est
l’absence de régulateur à contre-réaction, K = 0. En regardant la Figure 2.4, on obtient
y(t) = y1(t) et u(t) = u1(t). On suppose aussi, comme précisé ci-dessus, qu’on peut
utiliser un deuxième capteur qui fournit une image corrélée avec la perturbation, installé
en amont de la mesure de performance e(t), ce qui permet d’utiliser la méthodologie
présentée ci-après.

Cette méthode est importante dans les situations concrètes où des perturbations bande
large doivent être réduites. Dans ces cas, une approche par contre-réaction serait limitée
par les contraintes imposées par l’intégrale de Bode ([Hong and Bernstein, 1998]).
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Figure 1.4: Schéma bloc de la commande par action anticipatrice « feedforward ».

Pour traiter le cas des perturbations à bande large, on peut utiliser le schéma de la
Figure 1.4. Il peut être immédiatement observé de cette représentation que, quand le
système de compensation est actif, l’actionneur n’agit pas seulement sur l’accélération
résiduelle, mais aussi sur la mesure de l’image de la perturbation par la voie inverse.
Ce retour positif non désiré complique la conception du contrôleur en posant plusieurs
problèmes en pratique (source d’instabilités) et rend la synthèse et l’analyse des compen-
sateurs plus difficiles.

Dans une première étape de développement des algorithmes pour résoudre ce
problème, le couplage interne positif décrit ci-dessus n’a pas été pris en compte
([Widrow et al., 1975]), considérant que son influence peut être compensée ou qu’elle
est trop faible pour poser des problèmes. Certaines techniques ont été proposées
dans la littérature pour la compensation de l’effet du couplage positif, certaines étant
de nature mécanique et d’autres étant plus liées à l’algorithme de contrôle. Par
exemple pour la seconde, la méthode dite de neutralisation du couplage positif, a
été décrite dans ([Kuo and Morgan, 1999, Nelson and Elliott, 1993]) et dépend d’une
très bonne estimation de la voie inverse du système. Cependant, il est noté dans
([Nelson and Elliott, 1993, Mosquera et al., 1999]) que si l’estimation n’est pas exacte,
alors la possibilité d’instabilité existe toujours.

Les algorithmes présentés dans cette thèse sont conçus pour fournir de bons résul-
tats, même en présence du couplage interne positif et il n’y a donc pas besoin de la
neutralisation.

L’utilisation du contrôle adaptatif est motivée par la prise en compte de l’éventualité
que les caractéristiques de la perturbation peuvent varier ou que les modèles identifiés ne
soient pas des représentations exactes des chemins du système. En outre, il y a aussi la
possibilité que la perturbation (d(t)) change sa caractéristique fréquentielle pendant une
expérimentation de longue durée.
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1.2.3 Le problème de contrôle par contre-réaction « feedback »

Un autre cas trouvé dans la pratique est la régulation par contre-réaction « feedback ».
Dans cette situation, on peut seulement réduire des perturbations à bande étroite. En
général, on considère le problème de la réduction des vibrations issues de multiples sources
de perturbation à bande étroite. Une représentation schématique de cette situation est
donnée dans la Figure 1.5. On observe que dans ce cas N = 0. En conséquence, on
obtient y(t) = y2(t) et u(t) = u2(t).
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Figure 1.5: Schéma bloc du commande par contre-réaction « feedback ».

Dans les situations où on ne peut pas utiliser un deuxième capteur pour mesurer une
image corrélée avec la perturbation parce que les caractéristiques physiques du système
l’empêchent, une méthode de contrôle par contre-réaction doit être appliquée. Comme
mentionné précédemment, les restrictions de l’intégrale de Bode ne permettent que la
réduction ou le rejet des perturbations à bande étroite; dans cette partie de la thèse,
l’objectif sera donc de développer des techniques uniquement pour la compensation des
perturbations sinusoïdales multiples stationnaires ou variables.

1.3 Revue de la Littérature

Cette section présente un survol des contributions importantes dans la littérature du
contrôle par action anticipatrice et par contre-réaction des bruits ou des vibrations.

1.3.1 Méthodes de commande par action anticipatrice « feed-
forward »

Les premiers résultats dans la littérature du contrôle par action anticipatrice « feedfor-
ward » pour la régulation des vibrations (ou des bruits) ont été obtenus en négligeant
le couplage positif interne. La plupart des travaux faits dans ce domaine se concentrent
autour de diverses modifications de la méthode de recherche par le gradient du Least
Mean Square (LMS) (introduit dans [Widrow, 1971]). L’objectif de la méthode LMS
est de trouver le point minimum de la surface de l’erreur quadratique moyenne (MSE)
en mettant à jour les paramètres d’un filtre FIR (Finite Impulse Response) dans une
direction qui est une estimation de la descente la plus rapide. A cet effet, l’algorithme
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utilise l’échantillon actuel de l’erreur quadratique, qui est une approximation grossière de
l’erreur quadratique moyenne.

Une des premiers progrès a été le LMS filtré sur l’entrée (appelé FxLMS), proposé
indépendamment par [Burges, 1981] et [Widrow et al., 1981], qui ont utilisé une version
filtrée des observations (mesures en corrélation avec la perturbation) dans l’algorithme
d’adaptation. Les deux schémas d’adaptation étudiés par ces auteurs (contrôleur audio
adaptatif dans la recherche de Burges et contrôle adaptatif inverse dans celle de Widrow)
ont présenté un modèle de chemin secondaire qui influe sur la procédure d’adaptation. En
conséquence, le filtrage du vecteur d’observation à travers le modèle du chemin secondaire
a été proposé afin d’obtenir de meilleures performances. Les deux solutions proposées par
ces auteurs ont utilisé l’adaptation d’un filtre FIR dans un schéma sans couplage positif
interne.

Malgré la stabilité et la surface d’optimisation convexe pour les filtres FIR, il y a
des situations où l’utilisation des filtres avec des pôles et des zéros, appelés filtres IIR,
est particulièrement intéressante. Par exemple, pour obtenir de bonnes performances,
avec des filtres FIR, on doit souvent utiliser un grand nombre de paramètres, tandis
qu’avec les filtres IIR, il est possible d’obtenir des performances similaires avec un nombre
considérablement réduit de paramètres. Une méthode d’adaptation des filtres IIR a été
proposée par Feintuch dans [Feintuch, 1976]. Elle a été appelée LMS récursive (RLMS) et
fournit une transformation de l’adaptation du filtre LMS basique à la structure IIR. Plus
tard, l’algorithme a été amélioré en utilisant des observations filtrées de la même manière
que cela est fait pour les FxLMS, fournissant l’algorithme Filtered-U LMS (FuLMS).
Le FuLMS a d’abord été introduit dans [Eriksson et al., 1987] pour les applications de
contrôle actif des bruits mais l’analyse de convergence et de stabilité n’a pas été donnée.
Comme exemple d’application de cet algorithme : la réduction du bruit, à l’intérieur des
avions à réaction, produit par les moteurs qui sont montés directement sur le fuselage est
décrite dans [Billoud, 2001].

La famille des algorithmes LMS utilise une estimation approximative de la di-
rection de descente maximale, obtenue en prenant le gradient de l’échantillon actuel
de l’erreur quadratique au lieu du gradient de l’erreur quadratique moyenne. Une
amélioration a été obtenue avec l’algorithme Filtered-v LMS (FvLMS) présenté dans
[Crawford and Stewart, 1997] où le gradient exact est calculé. Néanmoins, en prenant en
compte l’adaptation lente des paramètres, certaines approximations ont été faites pour
réduire la complexité numérique de l’algorithme.

Un problème difficile pour les filtres adaptatifs IIR dans le cadre du contrôle des
vibrations (ou bruits) concerne leur stabilité et l’analyse de leur convergence. Par
rapport aux algorithmes d’erreur de sortie, présentés dans la littérature concernée avec
l’identification des systèmes, ceci doit se faire en tenant compte de la structure particulière
du système (surtout des voies secondaire et inverse, voir Section1.2).

Une manière d’analyser la convergence, dans un environnement stochastique,
est la méthode O.D.E. de Ljung ([Ljung and Söderström, 1983] - d’abord présentée
dans [Ljung, 1977a] et appliquée dans l’analyse de la méthode erreur de sortie (voir
[Landau, 1976]) pour l’estimation des paramètres dans [Ljung, 1977b]). Avec cette
méthode, il a été possible d’analyser les propriétés de l’algorithme FuLMS. Dans
[Wang and Ren, 2003, Fraanje et al., 1999], des conditions sont trouvées pour assurer
la convergence avec une probabilité de 1, dans le cas avec retour interne positif, mais
avec quelques conditions restrictives, parmi lesquelles deux sont résumées : le gain
d’adaptation doit tendre vers zéro et la voie inverse ne doit pas déstabiliser le système.
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Une autre méthode pour l’analyse de la stabilité et de la convergence des algorithmes
adaptatifs est la théorie de l’hyperstabilité. Elle a été d’abord proposée dans les travaux
de V.M. Popov et présentée dans les publications [Popov, 1960, Popov, 1966] et ensuite
traduite dans [Popov, 1963, Popov, 1973]. Une des conséquences les plus importantes
de cette théorie est son utilisation dans la synthèse des algorithmes adaptatifs en com-
binaison avec des systèmes positifs. Le cadre initial pour l’étude des systèmes adap-
tatifs en utilisant l’hyperstabilité a été mis en place dans [Landau and Silveira, 1979,
Landau, 1979, Landau, 1980] et une analyse théorique complète peut être trouvée dans
[Landau et al., 2011g]. Contrairement à l’approche de Lyapunov qui est limitée par la
difficulté de trouver des fonctions de Lyapunov candidates appropriées, une grande famille
de lois d’adaptation conduit à des algorithmes adaptatifs stables qui peuvent être conçus
en utilisant la théorie d’hyperstabilité.
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Figure 1.6: La représentation standard utilisée dans l’analyse des systèmes adaptatifs
avec la théorie d’hyperstabilité.

L’hyperstabilité traite principalement la stabilité d’une classe de systèmes qui peuvent
être représentés sous la forme donnée dans la Figure 1.6. Dans cette configuration, il est
supposé que le bloc de réaction non-linéaire et / ou variable dans le temps satisfait une
relation d’entrée-sortie de la forme

t1
∑

t=0

v(t)w(t) ≥ −γ2 pour tout t ≥ 0. (1.3)

Une des premières utilisations de l’hyperstabilité dans la synthèse d’algorithmes
adaptatifs a été signalée dans [Treichler et al., 1978, Larimore et al., 1980]. L’algorithme
SHARF (Simple Hyperstable Adaptive Recursive Filter) est convergent hyperstable
uniquement pour un gain d’adaptation faible. En outre, la version plus complexe, HARF
a été prouvée convergente sous des conditions significativement moins contraignantes
([Johnson, 1979]). Les deux algorithmes utilisent le filtrage de l’erreur d’estimation. La
difficulté rencontrée dans ces algorithmes (celle qui les rend difficiles à utiliser dans des
systèmes ANVC réels) est le choix du filtre qui assure la condition de Strict Positif Réel
(SPR), en particulier en raison de l’existence des voies secondaires et inverses. En outre,
ils ne sont pas proposés dans un contexte de contrôle actif des vibrations (ou des bruits),
donc le couplage interne positif n’est pas pris en compte dans leur développement.

Une variante de l’algorithme HARF avec filtrage des observations et de l’erreur est
proposée dans la recherche de [Mosquera et al., 1999]. La convergence est démontrée
sur la base de la théorie développée précédemment. Une mise en œuvre sur un système
de contrôle actif des bruits est testée en supposant le couplage interne positif nul (après
utilisation d’un compensateur fixe spécialement conçu pour cette tâche), mais les résultats
ne sont pas satisfaisants.

Comme pour les algorithmes (S)HARF, une méthode applicable dans le contrôle
actif sans couplage interne positif est présentée dans [Snyder, 1994]. Contrairement aux
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algorithmes (S)HARF, le filtrage se fait sur le vecteur d’observation, tandis que dans les
algorithmes ci-dessus, il a été fait sur l’erreur d’estimation, et une façon de choisir le filtre
est suggéré.

Une autre tentative d’élaborer un algorithme de contrôle actif des bruits par une méth-
ode de stabilité a été proposée dans [Jacobson et al., 2001]. Néanmoins, les hypothèses
spécifiques prises dans le développement restreignent l’application de cet algorithme à des
cas spécifiques et, comme justifié dans [Landau et al., 2011d], il peut même devenir in-
stable dans un problème plus général de contrôle actif des vibrations. Plus précisément,
il a été supposé que la voie secondaire est une fonction de transfert réelle strictement
positive mais ce n’est pas toujours le cas.

En plus de ces directions de recherche, le travail a été fait également sur
l’amélioration de l’efficacité numérique surtout dans le cas des algorithmes de
type RLS. Des références relatives à ces méthodes peuvent être trouvées dans
[Montazeri and Poshtan, 2010, Montazeri and Poshtan, 2011], mais le travail a été limité
au cas sans couplage de contre-réaction positive.

Un algorithme à erreur d’équation a été présenté dans [Sun and Chen, 2002].
L’algorithme a une convergence globale dans le cas où le couplage positif interne n’est
pas présent et où le bruit de mesure est égal à zéro. En présence de bruit de mesure,
il est démontré que le résultat est biaisé. Aussi, lorsque la contre-réaction existe, un
minimum local est atteint, au lieu de minimum global. Pour surmonter ces problèmes,
un algorithme Steiglitz-McBride de type IIR a été proposé dans [Sun and Meng, 2004].
Des résultats de simulation sans couplage positif interne sont présentés. Un autre
inconvénient de cet algorithme est que la stabilité est supposée a priori, mais, dans la
pratique, les pôles du filtre adaptatif IIR peuvent se déplacer en dehors du cercle unité
et l’instabilité peut se produire.

Une approche différente est considérée dans [Zeng and de Callafon, 2006], où la con-
ception est basée sur un modèle (Model Based Design - MBD) en utilisant une paramétri-
sation Youla-Kučera de tous les contrôleurs stabilisants avec une mise en œuvre pour un
problème de rejet de bruit. Tout d’abord le filtre à action anticipatrice « feedforward »
est identifié à partir des données obtenues en boucle ouverte, puis une fonction de base or-
thonormée est conçue sur la base de la théorie décrite dans [Heuberger et al., 1995]. Une
autre différence de ce qui a été fait dans les recherches précédemment mentionnées, c’est
que l’adaptation des paramètres ne se fait pas à chaque période d’échantillonnage, mais
à certains intervalles au cours desquels le système fonctionne avec les dernières valeurs
calculées pour le filtre adaptatif. Aucune analyse de la stabilité n’a été réalisée.

Pour conclure sur la revue des diverses méthodes développées dans le domaine du
contrôle actif des vibrations et des bruits, il est nécessaire de mentionner également les
compensateurs H∞ et H2 développés sur la base des modèles estimés. Cette approche
a été prise en compte dans [Bai and H.H.Lin, 1997, Rotunno and de Callafon, 2003,
Alma et al., 2012b]. Toutefois, le compensateur résultant n’a pas les capacités
d’adaptation et sa performance n’est pas forcément très bonne. Sous la condition
que la grande dimension du compensateur résultant peut être réduite, il peut con-
stituer une valeur « initiale » pour les paramètres d’un compensateur adaptatif. Dans
[Bai and H.H.Lin, 1997] il est démontré expérimentalement que les résultats obtenus avec
la méthode H∞ sont meilleurs que ceux obtenus en utilisant l’algorithme d’adaptation
très populaire FULMS (pour une perturbation dont on connaît les caractéristiques
spectrales). Une comparaison similaire réalisée expérimentalement dans le cadre de cette
thèse et publiée dans [Landau et al., 2011d] confirme ce fait. Toutefois, ce n’est plus
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vrai lorsque l’on compare les résultats obtenus avec un régulateur H∞ aux algorithmes
adaptatifs présentés dans cette thèse.

Il est important de remarquer que toutes ces contributions (sauf [Alma et al., 2012b])
ont été réalisées dans le cadre du contrôle actif de bruit. Bien que les algorithmes pour
le contrôle actif de bruit puissent être utilisés dans le contrôle actif des vibrations, il faut
prendre en compte la spécificité de ces systèmes qui disposent de nombreux modes de
vibration faiblement amortis (résonance) et aussi des zéros complexes faiblement amortis
(antirésonance).

1.3.2 Méthodes de commande par contre-réaction « feedback »
pour le rejet de perturbations bande étroite

Souvent, dans la pratique, il n’est pas possible d’utiliser un deuxième capteur pour
mesurer une image de la perturbation. Dans ces situations, une approche par commande
à contre-réaction « feedback » doit être considérée. Tenant compte de la restriction
de l’intégrale de Bode ([Åström and Murray, 2008, Zhou et al., 1996]), nous pouvons
conclure que seulement des perturbations sur une bande de fréquences étroite peuvent
être atténuées. Par conséquent, cette partie de la thèse concerne le rejet de plusieurs
perturbations sinusoïdales variables dans le temps. Une analyse comparative de la
commande par rétro-action « feedback » et par action anticipatrice « feedforward »
est donnée dans [Elliott and Sutton, 1996].

Une présentation des méthodes existantes pour le rejet des perturbations bande étroite
est donnée ci-dessous. Pour commencer, la différence entre les paradigmes « régulation
adaptative » et « contrôle adaptatif » a été soulignée dans un article récent (voir
[Landau et al., 2011f]). Il est alors mentionné que dans le contrôle adaptatif classique
l’objectif est le suivi de la consigne ou/et l’atténuation des perturbations dans le cadre
des systèmes (voie secondaire) à paramètres inconnus et variables dans le temps. Ainsi,
l’objectif du contrôle adaptatif est centré sur l’adaptation par rapport aux variations
dans les paramètres du système. Le modèle de la perturbation est supposé être connu et
invariant dans le temps.

En revanche, la « régulation adaptative » fait référence à la suppression (ou attenua-
tion) asymptotique de l’effet des perturbations inconnues et variables dans le temps. Il est
également supposé que le modèle du système est connu et que des principes de contrôle
robuste peuvent s’appliquer pour traiter d’éventuelles petites variations des paramètres.
Par conséquence, aucun effort n’est mis dans l’estimation en temps réel du modèle du
système. Un aspect important est que la perturbation devrait être située dans la région
de fréquence où le système a assez de gain.

L’objectif de cette thèse étant le rejet des perturbations, le problème de la «
régulation adaptative » sera pris en considération. Le cadre commun est l’hypothèse
que la perturbation est le résultat d’un bruit blanc (ou une impulsion de Dirac) passé
à travers le « modèle de la perturbation ». Pour rejeter son influence, différentes
solutions ont été proposées. L’une d’entre elles fait appel au principe du modèle interne
(IMP) présenté dans [Amara et al., 1999a, Amara et al., 1999b, Gouraud et al., 1997,
Hillerstrom and Sternby, 1994, Valentinotti, 2001, Valentinotti et al., 2003]. Utiliser
cette méthode suppose l’intégration du modèle de la perturbation dans le contrôleur
([Bengtsson, 1977, Francis and Wonham, 1976, Johnson, 1976, Tsypkin, 1997]). Ses
paramètres doivent donc être estimés en permanence pour être en mesure de répondre
à d’éventuelles modifications dans les caractéristiques de la perturbation. Cela conduira
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à un algorithme indirect de commande adaptative. Toutefois, il a été montré dans
[Landau et al., 2005] que l’adaptation directe est utilisable si on utilise la paramétrisation
de Youla-Kučera pour tous les contrôleurs stabilisants.

Une autre idée qui a été utilisée est celle de construire un observateur adaptatif
et de l’incorporer dans le contrôleur [Ding, 2003, Marino et al., 2003, Serrani, 2006,
Marino and Tomei, 2007]. Toutefois, l’approche semble se concentrer sur des perturba-
tions qui agissent sur l’entrée du système. Des hypothèses supplémentaires doivent être
prises en compte avant de l’appliquer à des perturbations sur la sortie. On peut noter
que, même si le principe du modèle interne n’est pas explicitement pris en considération
dans ce schéma, incorporer l’observateur dans le contrôleur signifie que cette approche
est semblable à la première.

Une approche directe pour le rejet de perturbations sinusoïdales de fréquences
inconnues, basée sur l’intégration d’une boucle « phase-locked » pour la commande
en contre-réaction adaptative avec un modèle de procédé connu, est présentée
dans [Bodson and Douglas, 1997] et des résultats expérimentaux sont donnés dans
[Bodson, 2005]. L’estimation de la fréquence de la perturbation et son élimination se
font simultanément utilisant un seul signal d’erreur. La connaissance de la réponse
fréquentielle du procédé dans la région fréquentielle considérée est nécessaire.

1.4 Contributions

Dans cette thèse, les objectifs principaux ont été de développer, analyser et tester sur
les plateformes disponibles au sein du département Automatique du laboratoire GIPSA-
Lab, des algorithmes pour le rejet (ou l’atténuation) des vibrations bande étroite ou bande
large. Tenant compte des caractéristiques des perturbations, nous avons proposé soit des
méthodes de contrôle par action anticipatrice « feedforward » pour les perturbations
bande large, soit par contre-réaction « feedback » pour les perturbations bande étroite.

La Partie I de la thèse est consacrée aux méthodes « feedforward ». Les contributions
les plus significatives sont :

1. Développement des algorithmes généralisés qui utilisent un filtrage sur l’erreur a
posteriori et aussi un filtrage du vecteur d’observations. Les algorithmes ont été
conçus en tenant compte du couplage interne positif existant dans les systèmes
de contrôle actif de vibrations. La stabilité et la convergence sont vérifiées et des
expérimentations sont faites pour confirmer l’analyse théorique.

2. Une solution est aussi proposée pour l’assouplissement de la condition de réelle
positivité. L’idée est d’utiliser un Algorithme d’Adaptation Paramétrique « Intégral
+ Proportionnel ».

3. Développement et analyse des algorithmes paramétrés Youla-Kučera utilisant des
filtres adaptatifs FIR ou IIR.

Les contributions de la Partie II de la thèse sont :

1. Développement d’un nouvel algorithme de contrôle par contre-réaction pour
l’atténuation de perturbations bande étroite. L’algorithme est conçu en utilisant
des filtres stop-bande pour calibrer la fonction de sensibilité avec un minimum
d’influence en dehors des fréquences d’atténuation.
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2. Utilisation des « Filtres Adaptatifs à Encoche » pour estimer les fréquences des
perturbations dans un contexte de contrôle actif de vibrations.

3. Mise en œuvre avec la paramétrisation de Youla-Kučera pour diminuer la complexité
de l’algorithme.

1.5 Plan du Manuscrit de Thèse

Les principaux objectifs de la thèse ont été le développement, l’analyse et l’évaluation
expérimentale des algorithmes adaptatifs pour le rejet de perturbations sur les systèmes de
contrôle actif de vibrations. Selon les caractéristiques de la perturbation et les contraintes
du système, nous avons développé, soit des régulateurs par contre-réaction « feedback »
soit des approches par action anticipatrice « feedforward ». La régulation par contre-
réaction a été utilisée pour l’atténuation de perturbations bande étroite. Par contre, la
compensation des perturbations bande large a été réalisée en utilisant un régulateur à
action anticipatrice et en profitant d’un deuxième dispositif de mesure capable d’offrir
une image de la perturbation.

Les Chapitres 3 - 6 présentent des différentes solutions pour le problème de contrôle
abordé dans cette thèse. Les conclusions et les directions de recherches futures sont
indiquées dans le Chapitre 7. Les preuves des lemmes, corolaires et théorèmes énoncés
dans les chapitres précédents de la thèse sont données en annexes (Appendices A et
B).

Les sections suivantes présentent un résumé de la thèse.

1.5.1 Description du système

La Partie I présente des algorithmes de contrôle par action anticipatrice « feedforward ».
Tout d’abord, le Chapitre 3 présente le système réel sur lequel les algorithmes proposés
dans cette thèse ont été testés. La structure utilisée a été réalisée en collaboration avec
le centre de recherche Vibrachoc, et s’est inspirée de problèmes de rejet de perturbations
vibratoires dans le domaine industriel. Une image de ce système est donnée dans la
Figure 1.7 et le schéma correspondant dans la Figure 1.8. Le système consiste en cinq
plaques métalliques, reliées par des ressorts. Les plaques supérieure et inférieure sont
reliées entre elles d’une manière rigide par quatre vis. Les trois plaques au centre seront
dénotées M1, M2 et M3 dans les Figures 1.7 et 1.8. Les plaques métalliques mobiles
M1 et M3 sont équipées d’actionneurs inertiels. Celui d’en haut, placé sur M1, sert de
générateur de perturbations (actionneur inertiel I dans les Figures 1.7 et 1.8), et celui
d’en bas, placé sur M3, sert à la compensation de ces perturbations (actionneur inertiel
II dans les Figures 1.7 et 1.8). Le système est équipé avec une mesure de l’accélération
résiduelle sur la plaque M3, comme sortie du procédé, et d’une mesure de l’image de la
perturbation produite par un accéléromètre placé sur la plaque M1.

Les voies primaire (D), secondaire (G), et inverse (M) représentées dans la Fig-
ure 3.3(b) sont caractérisées par les fonctions de transfert :

X(q−1) =
BX(q−1)
AX(q−1)

=
bX1 q

−1 + ...+ bXnBX
q−nBX

1 + aX1 q
−1 + ...+ aXnAX

q−nAX
, (1.4)

avec BX = q−1B∗X et AX = 1 + q−1A∗X pour tout X ∈ {D,G,M}. Ĝ = B̂G
ÂG

, M̂ = B̂M
ÂM

et

D̂ = B̂D
ÂD

représentent les modèles identifiés pour les voies secondaire, inverse et primaire.
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Figure 1.7: Système de contrôle actif de vibrations utilisé pour les expérimentations.

Figure 1.8: Schéma du système de contrôle actif de vibrations utilisé pour les expérimen-
tations.

Dans la première partie de la thèse, des méthodes de commande par action antici-
patrice sont proposées et étudiées en tenant compte de l’existence d’un couplage positif
entre le signal de commande et la mesure de l’image de la perturbation, qui peut désta-
biliser le système. Le filtre « feedforward » est représenté par

N(q−1) =
R(q−1)
S(q−1)

, (1.5)

où
R(q−1) = r0 + r1q

−1 + ...+ rnRq
−nR , (1.6)

S(q−1) = 1 + s1q
−1 + ...+ snSq

−nS = 1 + q−1S∗(q−1). (1.7)

Le filtre « feedforward » estimé est représenté par

N̂(q−1) =
R̂(q−1)

Ŝ(q−1)
. (1.8)

Le vecteur des paramètres optimaux est

θT = [s1, . . . snS , r0, . . . rnR ]T (1.9)
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et le vecteur des paramètres estimés est

θ̂T (t) = [ŝ1(t), . . . ŝnS(t), r̂0(t), . . . r̂nR(t)]. (1.10)

Les algorithmes développés ci-après en tenant compte de la théorie de l’hyperstabilité
de Popov sont analysés dans différents contextes, tout d’abord en supposant qu’une
condition de poursuite parfaite est satisfaite (i.e., le nombre exact de paramètres du
filtre optimal est connu et on l’utilise pour le filtre mis en œuvre); et ensuite sous des
hypothèses moins restrictives.

Bien que développés pour un système de contrôle actif de vibrations, les algorithmes
sont également applicables pour les systèmes de contrôle actif du bruit.

1.5.2 Méthodes de compensation des vibrations par des struc-
tures hybrides

Dans le Chapitre 4, une méthode d’adaptation directe des filtres IIR en utilisant un
Algorithme d’Adaptation Paramétrique (AAP) généralisé « Intégral + Proportionnel »
(IP-PAA) est présentée et analysée en présence d’un filtre à contre-réaction fixe. La
méthode de compensation adaptative des vibrations présentée dans ce chapitre est une
généralisation de celles proposées dans [Landau et al., 2011d, Alma et al., 2012a]. Le
régulateur en contre-réaction de type RS, ci-après appelé K, est défini par

K(q−1) =
BK(q−1)
AK(q−1)

. (1.11)

L’algorithme de compensation feedforward adaptative sera développé sous les hy-
pothèses suivantes :

H1) Le signal w(t) est borné, i.e.,

|w(t)| ≤ α ∀t (0 ≤ α <∞). (1.12)

H2) Condition de poursuite parfaite - Il existe un filtre N(q−1) de dimension finie de telle
sorte que

N(z−1)
1−N(z−1)M(z−1)

G(z−1) = −D(z−1) (1.13)

et les polynômes suivants:

• de la boucle interne

P (z−1) = AM(z−1)S(z−1)−BM(z−1)R(z−1), (1.14)

• de la boucle (G-K)

Pcl(z−1) = AG(z−1)AK(z−1) +BG(z−1)BK(z−1), (1.15)

• du système
Pfb−ff = AMS[AGAK +BGBK ]−BMRAKAG (1.16)

sont stables.

H3) Contexte déterministe - L’effet du bruit de mesure sur l’erreur résiduelle est négligé.
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H4) Le modèle de la voie primaire D(z−1) est inconnu et invariant.

La première étape pour le développement des algorithmes est d’établir une relation
entre les erreurs d’estimation des paramètres du filtre « feedforward » et l’accélération
résiduelle mesurée. Ceci est donné par l’équation suivante :

ε(t+ 1) =
AM(q−1)AG(q−1)AK(q−1)G(q−1)

Pfb−ff (q−1)

[

θ − θ̂
]T
φ(t), (1.17)

où

φT (t) = [−û1(t), . . . − û1(t− nS + 1), ŷ1(t+ 1), . . . ŷ1(t− nR + 1)]

=
[

φTû1
(t), φTŷ1

(t)
]

, (1.18)

est le vecteur d’observations.
En filtrant le vecteur φ(t) par le filtre asymptotiquement stable L(q−1) = BL

AL
,

l’éq. (1.17), pour θ̂ constant, devient

ε(t+ 1) =
AM(q−1)AG(q−1)AK(q−1)G(q−1)

Pfb−ff (q−1)L(q−1)

[

θ − θ̂
]T
φf (t) (1.19)

avec
φf (t) = L(q−1)φ(t). (1.20)

L’éq. (1.19) sera utilisée pour le développement des algorithmes d’adaptation en
négligeant pour l’instant la non-commutativité des opérateurs quand θ̂ est variant dans le
temps. En remplaçant les paramètres estimés fixes par les paramètres estimés à l’instant
courant, l’éq. (1.19) devient l’équation de l’erreur d’adaptation a posteriori non-filtrée
(qui est calculée)

ε(t+ 1) =
AM(q−1)AG(q−1)AK(q−1)

Pfb−ff (q−1)L(q−1)
G(q−1)

[

θ − θ̂(t+ 1)
]T
φf (t). (1.21)

L’éq. (1.21) possède la forme standard d’une erreur d’adaptation a posteriori
([Landau et al., 2011g]), ce qui suggère l’utilisation de l’algorithme d’adaptation
paramétrique « Intégral + Proportionnel » (IP-PAA) suivant

θ̂I(t+ 1) = θ̂I(t) + ξ(t)FI(t)Φ(t)ν(t+ 1) (1.22a)

θ̂P (t+ 1) = FP (t)Φ(t)ν(t+ 1) (1.22b)

ε(t+ 1) =
ε0(t+ 1)

1 + ΦT (t)(ξ(t)FI(t) + FP (t))Φ(t)
(1.22c)

ν(t+ 1) = ε(t+ 1) +
n1
∑

i=1

vBi q
−iε(t+ 1− i)−

n2
∑

i=1

vAi q
−iν(t+ 1− i) (1.22d)

FI(t+ 1) =
1

λ1(t)



FI(t)−
FI(t)Φ(t)ΦT (t)FI(t)
λ1(t)
λ2(t)

+ ΦT (t)FI(t)Φ(t)



 (1.22e)

FP (t) = α(t)FI(t), α(t) > −0.5 (1.22f)

F (t) = ξ(t)FI(t) + FP (t) (1.22g)

ξ(t) = 1 +
λ2(t)
λ1(t)

ΦT (t)FP (t)Φ(t); (1.22h)

θ̂(t+ 1) = θ̂I(t+ 1) + θ̂P (t+ 1) (1.22i)

1 ≥ λ1(t) > 0, 0 ≤ λ2(t) < 2, FI(0) > 0 (1.22j)

Φ(t) = φf (t), (1.22k)
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où ν(t+ 1) est l’erreur d’adaptation a posteriori généralisée.
La stabilité du système sera assurée si la fonction de transfert donnée par

H ′ = H −
λ2

2
=
AMAGAK

Pfb−ff

GV

L
−
λ2

2
(1.23)

est SPR. Ceci est une condition suffisante pour la stabilité du système en boucle fermée.
Plusieurs algorithmes seront considérés en tenant compte des filtres V et L :

Algorithme I L = G, V = 1

Algorithme IIa L = Ĝ, V = 1

Algorithme IIb L = Ĝ, V 6= 1

Algorithme IIc L =
Ĝ

1 + ĜK
, V = 1

Algorithme IId L =
Ĝ

1 + ĜK
, V 6= 1

Algorithme III L =
ÂM ÂGAK

P̂fb−ff
Ĝ, V = 1 (1.24)

où
P̂fb−ff = ÂM Ŝ

[

ÂGAK + B̂GBK

]

− B̂M R̂AKÂG (1.25)

est une estimation du polynôme caractéristique du système.
Quand la condition de poursuite parfaite n’est pas satisfaite, une analyse de la

distribution des biais des paramètres montre que de bonnes estimations sont obtenues
dans les régions des fréquences qui sont les plus importantes d’un point de vue du contrôle
(là où le gain de la voie secondaire et la distribution spectrale de la perturbation sont
importants). Il est également montré, en utilisant la théorie des moyennes développée
dans [Anderson et al., 1986] (voir aussi [Landau et al., 2011g]), que la condition SPR
peut être relaxée en tenant compte du contenu spectral de la perturbation. Cela signifie
que la condition SPR ne doit pas être nécessairement satisfaite sur toute la plage de
fréquences. Il suffit, en gros, qu’elle soit satisfaite dans une bande fréquentielle limitée,
si cette bande couvre le contenu spectral le plus important de la perturbation.

On propose dans ce chapitre une autre façon d’assouplir la condition SPR. Les
avantages de l’adaptation IP-PAA sont mis en évidence par une analyse théorique et
on constate que l’utilisation de cette adaptation a une influence bénéfique sur la stabilité
et sur les performances de filtre adaptatif.

Des résultats expérimentaux confirment les conclusions théoriques. Premièrement,
l’amélioration des performances par l’utilisation de l’adaptation IP-PAA est démontrée
avec des résultats expérimentaux. La Figure 1.9 présente une comparaison des différents
résultats obtenu en boucle ouverte et avec contrôle adaptatif sans et avec IP-PAA.

Deuxièmement, pour le cas du contrôle sans contre-réaction fixe, on cherche à
améliorer la condition SPR en utilisant l’adaptation IP-PAA. La Figure 1.10 présente
une estimation de la fonction H(z−1) pour l’Algorithme IIa (voir aussi l’éq. (1.23)). On
observe que cela n’est pas SPR dans des régions de fréquence où la perturbation est
aussi importante (à comparer avec la densité spectrale de puissance obtenue en boucle
ouverte dans la Figure 1.9). En utilisant l’adaptation IP-PAA on obtient tout de même
une amélioration des performances comme montré dans la Figure 1.11.
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Figure 1.9: Densités spectrales de puissance des filtres adaptatifs.
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Figure 1.10: Phase de la fonction de transfert H(z−1) estimé pour Algorithm IIa.
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Figure 1.11: Résultats en temps réel avec Algorithme IIa avec adaptation scalaire «
Intégral » (à gauche) et « Intégral + Proportionnel » (à droite).

1.5.3 Méthodes de contrôle « feedforward » en utilisant la
paramétrisation de Youla-Kučera

Ensuite, les avantages de la paramétrisation de Youla-Kučera sont exposés et une méthode
basée sur elle est proposée dans le Chapitre 5. Dans ce chapitre, des algorithmes
qui s’appuient sur la paramétrisation de Youla-Kučera sont développés autour de filtres
adaptatifs de structure FIR ainsi qu’avec des filtres adaptatifs de structure IIR. Le
principal avantage de cette paramétrisation est la possibilité de garantir la stabilité de la
boucle interne positive. Ceci est toujours assuré si on utilise une structure FIR mais non
plus si on utilise une structure IIR. Bien que cette dernière perde cet avantage, on constate
une réduction du nombre de paramètres à adapter pour obtenir les mêmes performances,
ce qui est très important dans le contrôle actif de bruit. En plus, contrairement aux
filtres adaptatifs IIR directs, pour les filtres adaptatifs IIRYK, on observe l’avantage
d’un contrôle de la stabilité beaucoup plus facile. Les algorithmes proposés sont analysés
dans des conditions similaires à celles du Chapitre 4 et vérifiés en pratique sur le système
décrit précédemment.

Dans le cas général des paramètres Youla-Kučera IIR, les polynômes du filtre adaptatif
« feedforward » deviennent

R(q−1) = AQ(q−1)R0(q−1)−BQ(q−1)AM(q−1), (1.26)

S(q−1) = AQ(q−1)S0(q−1)−BQ(q−1)BM(q−1), (1.27)

où S0(q−1) et R0(q−1) représentent le dénominateur et le numérateur du régulateur central
et AQ(q−1), BQ(q−1) sont le dénominateur et le numérateur du paramètre Youla-Kučera
optimal

Q(q−1) =
BQ(q−1)
AQ(q−1)

=
b
Q
0 + b

Q
1 q
−1 + . . .+ bQnBQ

q
−nBQ

1 + a
Q
1 q
−1 + . . .+ a

Q
nAQ

q
−nAQ

. (1.28)

Le filtre QIIR estimé est

Q̂(q−1) =
B̂Q(q−1)

ÂQ(q−1)
=
b̂
Q
0 + b̂

Q
1 q
−1 + . . .+ b̂QnBQ

q
−nBQ

1 + â
Q
1 q
−1 + . . .+ â

Q
nAQ

q
−nAQ

(1.29)
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et le vecteur de ces paramètres est

θ̂T = [b̂Q0 , . . . b̂
Q
nBQ

, â
Q
1 , . . . â

Q
nAQ

] = [θ̂TBQ , θ̂
T
AQ

]. (1.30)

Deux régulateurs centraux sont utilisés dans ce schéma d’adaptation. Le premier
(PP ) a été obtenu par placement des pôles. Le deuxième (H∞) est un régulateur de type
H∞ d’ordre réduit ([Alma et al., 2012b]).

Quelques observations s’imposent :
• La condition de poursuite parfaite devient

G · AM(R0AQ − AMBQ)
AQ(AMS0 −BMR0)

= −D. (1.31)

• Le polynôme caractéristique du système de contrôle actif de vibrations devient

P (z−1) = AQ(z−1)
(

AM(z−1)S0(z−1)−BM(z−1)R0(z−1)
)

. (1.32)

Suivant la même procédure que dans la sous-section précédente, on obtient l’équation
de l’erreur d’adaptation a posteriori

ν(t+ 1) =
AM(q−1)G(q−1)

AQ(q−1)P0(q−1)L(q−1)

[

θ − θ̂(t+ 1)
]T
φf (t). (1.33)

avec

φf (t) = L(q−1)φ(t)

=
[

αf (t+ 1), . . . αf (t− nBQ + 1), −βf (t), . . . − βf (t− nAQ)
]

, (1.34)

où

αf (t+ 1) = L(q−1)α(t+ 1)

βf (t) = L(q−1)β(t)
(1.35)

et1

α(t+ 1) =BM û(t+ 1)− AM ŷ(t+ 1) = B∗M û(t)− AM ŷ(t+ 1) (1.36)

β(t) =S0û(t)−R0ŷ(t). (1.37)

On observe que la paramétrisation FIRYK est un cas particulier de la paramétrisation
IIRYK obtenu en remplaçant AQ par 1.

Les différents choix des filtres L conduisent aux algorithmes suivants :

Algorithme I L = G

Algorithme IIa L = Ĝ

Algorithme IIb L =
ÂM

P̂0

Ĝ (1.38)

Algorithme III L =
ÂM

P̂
Ĝ (1.39)

Des résultats expérimentaux sont également donnés pour mettre en évidence l’analyse
théorique. Dans la Figure 1.12 les densités spectrales de puissance pour les filtres
adaptatifs utilisant des paramètres QFIR et QIIR sont comparées. On observe des
résultats similaires obtenus avec QIIR même si le nombre des paramètres est plus que 2
fois plus petit.

1En absence du contre-réaction fixe, on a u(t) = u1(t) et y(t) = y1(t).
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Figure 1.12: Densités spectrales de puissance en boucle ouverte, avec IIRYK (nBQ = 3,
nAQ = 8) et avec FIRYK (nQ = 31) en utilisant le régulateur central H∞.

1.5.4 Méthodes de contrôle par contre-réaction adaptatif

Dans la Partie II, Chapitre 6, la régulation par contre-réaction « feedback » adap-
tative des perturbations bande étroite est discutée et un algorithme indirect pour ré-
duire des perturbations bande étroite, basé sur des filtres stop-bande (Band-stop Filter,
BSF) pour le calibrage de la fonction de sensibilité est présenté. Par ailleurs, une com-
paraison expérimentale avec l’algorithme de régulation adaptative directe présenté dans
[Landau et al., 2011e] est réalisée. Il est montré que la méthode proposée possède des
propriétés intéressantes données par les BSFs. Plus précisément, il est possible de régler
le niveau de l’atténuation et de réduire les effets sur les fréquences avoisinantes afin de
préserver de bonnes marges de robustesse.

La procédure indirecte comprend l’estimation des fréquences des perturbations
bande étroite par un observateur, le calcul des filtres stop-bande comme décrit dans
[Landau and Zito, 2005] et les modifications des paramètres du régulateur en trouvant
la solution d’une équation de Bezout.

L’estimation des fréquences des perturbations est faite en utilisant des Filtres Adap-
tatifs à Encoche (ANF)

Hf (z−1) =
Af (z−1)
Af (ρz−1)

, (1.40)

où

Af (z−1) = 1+af1z
−1 + . . .+ afnz

−n + . . .+ a
f
1z
−2n+1 + z−2n. (1.41)

On suppose que la perturbation a la forme

p̂(t) =
n
∑

i=1

ci sin(ωi · t+ βi) + v(t) (1.42)

et on utilise les filtres ANF pour estimer les fréquences ωi. Le nombre des sinusoïdes
qui constituent la perturbation est supposé connu. Des procédures d’analyse spectrale
peuvent être utilisées pour résoudre ce problème.
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Figure 1.13: Fonction de sensibilité de la sortie avec régulateur nominal (gris), avec un
régulateur basé sur le principe du modèle interne (noir) et avec un régulateur basé sur
des filtres BSFs (gris en pointillés). Pour le contrôleur avec BSFs on a ζdi = 0.04 et
Mi = 60 dB. Les atténuations sont introduits à 50, 70 et 90 Hz.

En utilisant les fréquences estimées, on peut calculer un filtre stop-bande

SBSFi(z
−1)

PBSFi(z−1)
=

1 + βi1z
−1 + βi2z

−1

1 + αi1z
−1 + αi2z

−1
. (1.43)

qui résulte de la discrétisation du filtre continu (voir aussi [Procházka and Landau, 2003,
Landau and Zito, 2005])

Fi(s) =
s2 + 2ζniωis+ ω2

i

s2 + 2ζdiωis+ ω2
i

(1.44)

avec la transformation bilinéaire. Ce filtre introduit une atténuation

Mi = −20 · log10

(

ζni
ζdi

)

(1.45)

à la fréquence ωi. Les valeurs positives de Mi signifient des atténuations (ζni < ζdi) et les
valeurs négatives signifient des amplifications (ζni > ζdi).

Les filtres stop-bande sont utilisés pour calibrer la fonction de sensibilité perturbation-
sortie. Leur numérateur, SBSFi(z

−1), fera partie du dénominateur du régulateur et leur
dénominateur fera partie du polynôme caractéristique de la boucle fermée. L’influence
du compensateur en dehors des fréquences des perturbations peut être minimisée en
utilisant des valeurs ζdi suffisamment petites. La Figure 1.13 présente la comparaison des
fonctions de sensibilité perturbation-sortie entre un régulateur central qui n’est pas réalisé
pour rejeter des perturbations, un régulateur contenant des filtres stop-bande pour rejeter
les perturbations et un régulateur basé sur le principe du modèle interne pour rejeter les
perturbations. On observe que pour les amortissements ζdi utilisés pour le régulateur
avec BSF dans la Figure 1.13, l’influence en dehors des fréquences des perturbations et
visiblement moins importante que pour le régulateur avec IMP.



42 Introduction et Résumé Détaillé

La difficulté est d’introduire le dénominateur des filtres BSF dans le polynôme car-
actéristique de la boucle fermée. La méthode la plus directe est de calculer le régulateur
comme solution de l’équation de Bezout (placement des pôles)

P (z−1) = P0(z−1)PBSF (z−1) =A(z−1)HS(z−1)S ′(z−1)+

+ z−dB(z−1)HR1
(z−1)R′(z−1). (1.46)

HS(z−1) =SBSF (z−1)HS1
(z−1) (1.47)

Dans les éqs. (1.46) et (1.47), PBSF et SBSF représentent le dénominateur et le numérateur
des BSFs, P0 sont des pôles imposés pour satisfaire certaines conditions de robustesse, A
et B sont le dénominateur et le numérateur du modèle, HR1

et HS1
sont les parties fixes

du régulateur central et S ′ et R′ doivent être calculés.
Ensuite, la paramétrisation de Youla-Kučera est utilisée pour réduire la complexité

de l’équation matricielle qui doit être résolue à chaque période d’échantillonnage pour
trouver les paramètres du régulateur. La schéma de la Figure 1.14 décrit cette technique.
On utilise la factorisation des polynômes du régulateur :

R(z−1) =R0(z−1)PBSF (z−1) + A(z−1)HR1
(z−1)HS1

(z−1)Q(z−1), (1.48)

S(z−1) =S0(z−1)PBSF (z−1)− z−dB(z−1)HR1
(z−1)HS1

(z−1)Q(z−1), (1.49)

Ceci permet de respecter les objectifs de la régulation et de réduire la taille de
l’équation matricielle à résoudre. La nouvelle équation de Bezout est

S ′′PBSF = SBSFS
′ + q−dBHR1

Q. (1.50)

Dans la dernière équation, S ′′ fait partie du dénominateur du régulateur central et
on est intéressé à obtenir Q. La dimension de la nouvelle équation matricielle est
nBezYK × nBezYK , dont

nBezYK = nB + d+ nHR1
+ 2 · n− 1. (1.51)

Pour comparaison, la dimension de l’équation de Bezout initiale était nBez × nBez,
dont

nBez = nA + nB + d+ nHS1
+ nHR1

+ 2 · n− 1. (1.52)

nA, nB et d sont les ordres et le retard du modèle, nHS1
et nHR1

sont les ordres des parties
fixes du régulateur central et n est le nombre des perturbations sinusoïdales supposé
connu.

La Figure1.15 présente la densité spectrale de puissance obtenue en boucle ouverte,
avec le régulateur adaptatif avec filtres stop-bande et avec un régulateur adaptatif basé
sur le principe du modèle interne. On constate une influence importante du régulateur
basé sur le principe de modèle interne en dehors de la zone fréquentielle d’atténuation.
Par contre, pour le régulateur avec filtres stop-bande, l’influence est négligeable.
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Figure 1.14: Schéma de l’algorithme adaptatif utilisant la paramétrisation de Youla-
Kučera.
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Figure 1.15: Comparaison des densités spectrales des puissances entre la mesure en
boule ouverte et les accélérations résiduelles obtenues avec deux régulateur adaptatifs
(le premier avec filtres stop-bande et le deuxième avec le principe de modèle interne).
L’entrée de la voie primaire est constituée par deux signaux sinusoïdaux à 63 Hz et à
88 Hz.





Chapter 2

Introduction (english)

This introductory chapter describes the basic problems of Active Noise Control (ANC)
and Active Vibration Control (AVC) that have motivated the research and gives an
overview of the main results in the literature. In the last two sections of the chapter, the
original contributions of this work are summarized and an outline of the dissertation is
given.

2.1 Motivation

The basic principles of Active Noise and Vibration Control (ANVC) will be explained in
this section. Some examples will be used to state the control problem associated with
ANVC, and the context of this work will be presented.

Henri Coandă is probably the first one to have mentioned the Active Noise Control
(ANC) problem in a French patent ([Coanda, 1930]). He was followed shortly after
by Paul Lueg ([Lueg, 1934]) and Harry F. Olson [Olson and May, 1953]. The problem
addressed in their works was that of silencing noise coming from a source by the use of
a microphone, an amplifier and a loudspeaker. It is shown that if the silencing ensemble
would be capable of creating a sound wave of same frequency characteristics as the noise
source but with a 1800 shift in the phase, then it would be possible to eliminate the noise
in the field of action of the sound waves produced by the loudspeaker. The reduction of
engine sound in airplanes and of the noise created by different types of machinery in the
vicinity of the operator are mentioned as possible applications of these techniques.

In the scientific literature, three different types of control methods have been consid-
ered for compensating noises or vibrations ([Fuller et al., 1997, Snyder, 2000]): passive,
semi-active and active.

The classical solution is that of adding insulation or damping materials and this is
called passive because no control algorithm is needed. It has the advantages of being
simple and straightforward to use, and in the same time, providing robust, reliable,
and economically efficient solutions. The usage of the passive absorber is however
limited by the impossibility to adjust the control forces, the difficulty in targeting the
control action at particular objectives, and the dependence of the control force on the
natural system’s dynamics. One such example is the Helmholtz resonator described in
[Olson and May, 1953, Fleming et al., 2007].

To solve these shortcomings, different control methods that permit the use of sensors
and actuators have been employed. The simplest one is the semi-active approach which is
obtained by using actuators that behave as passive elements, consequently allowing only
storage or dissipation of energy. Still, they represent a step towards active control as their

45
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mechanical properties can be adjusted by the use of a signal stemming from a controller.
As an example, the shock-absorbers in some vehicles have a computer controlled viscous
damping coefficient. As in the passive case, no energy is injected into the system.

This thesis focuses on the third of the aforementioned solutions, more pre-
cisely on the active control. The main difference with the other two ones is
its ability to supply mechanical power to the system and to target the control
action towards specific objectives. In noise control applications, the frequen-
cies of interest range from 20 Hz to 20, 000 Hz. It is stated in the literature
([Olson and May, 1953, Fuller and von Flotow, 1995, Elliott, 2001]) that passive tech-
niques usually give satisfactory results in the high frequency band (reductions of more
than 40 dB above 500 Hz); therefore it is in the low frequencies that the use of
active methods first became interesting, and in particular, from an adaptive control
point of view as it will be latter shown. There is a large number of applications
where outside noises/vibrations need to be reduced. One such example is given in
Fig. 2.1, which shows how head-phones with noise reduction capabilities work. Modern
head-phones are designed to give good quality sound even in noisy environments.
For this purpose, they measure outside disturbances by the use of a microphone as
a transducer and cancel out these disturbances using a control algorithm and the
built-in speaker as an actuator. In the ideal case, the added signal should be of
equal magnitude and of 1800 phase shift (negative) so as to completely cancel the
disturbing noise. Further background analysis can be found in the survey papers of
[Elliott and Nelson, 1993, Fuller and von Flotow, 1995, Guicking, 2007].
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Figure 2.1: Outside noise reduction in headphones by use of ANC.

2.2 Problem Description

This section provides the reader with a brief description of the Active Noise and Vibration
Control problems that will be treated in the later chapters of this thesis. The main
objective is that of reducing the level of vibration (or noise) at a predefined location of
interest. A general presentation of the system and the strategies of control will be given
in the next subsections.
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2.2.1 Control system configurations

Figure 2.2 represents an ANVC system using both feedforward and feedback compen-
sators. The system has two inputs and two outputs. The first input is the disturbance
w(t) which is generated by the unknown disturbance source s(t) passed through a filter
with unknown characteristics. The second input is the control signal, u(t). The first
output is the measurement of the residual acceleration, e(t) (also called the performance
variable) and the second output is a signal correlated with the unknown disturbance, y1(t)
in Figure 2.2. This correlation is a result of the physical characteristics of the system.
As shown in Figure 2.2, the path that transmits the filtered disturbance, w(t), to the
residual acceleration is called the primary path. The control signal, on the other hand,
is transmitted to the residual acceleration through the secondary path. The residual ac-
celeration is formed by addition between the output of the primary path, denoted x(t),
and the output of the secondary path, denoted z(t). ANVC systems present in general
also a coupling between the control signal and the measured y1(t), as previously stated,
which is shown in Figure 2.2 as the positive coupling path (also called reverse path). This
results in an internal positive feedback which can destabilize the ANVC system if not
taken into account.

The objective is that of minimizing the performance variable, e(t), by computing an
appropriate control, u(t), based on the measurements e(t) and y1(t).
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Figure 2.2: Block diagram representation of the combined feedforward-feedback control
problem.

One can see that, in the control system architecture presented in Figure 2.2, the control
signal u(t) is obtained by the subtraction between the feedforward control, u1(t), and the
feedback control, u2(t). The measurement obtained from the system can be put into a
vector form as y(t) = [y1(t), y2(t)]T = [y1(t), e(t)]T . As a consequence, the controller
also has a vector representation κ = [N, −K]T , where N and K denote respectively the
feedforward and the feedback compensators. With these notations, the equation relating
the measurements to the control signal is given by

u(t) = u1(t)− u2(t) = N · y1(t)−K · y2(t) = κT · y(t). (2.1)

The feedforward controller denomination attributed to N is motivated by the fact
that y1(t), also called correlated image of the disturbance, is measured upstream of the
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performance variable. This assumes also that it is physically possible to obtain such
a measurement. The situations where this is not possible constitute feedback control
problems, while the others are more generally addressed in the literature as hybrid control.

Figure 2.3: Generalized ANVC system representation.

A standard feedback representation in the form of a 2 input - 2 output system can
also be considered as shown in Figure 2.3. This representation is very well known in
robust and optimal control (see also [Tay et al., 1997, Zhou et al., 1996]). The equations
associated with the feedback system representation are

[

e(t)
y(t)

]

=

[

P11 P12

P21 P22

] [

w(t)
u(t)

]

=







D G

1 M

D G







[

w(t)
u(t)

]

, (2.2)

and the control is given by (2.1).
Two special cases of this problem will be discussed next.

2.2.2 Feedforward control problem

One particular problem is that of the feedforward vibration (or noise) compensation. A
schematic representation of this situation is given in Figure 2.4. As it can be observed,
K = 0 in Figure 2.4. Therefore, in this situation we obtain y(t) = y1(t) and u(t) = u1(t).
As mentioned earlier, it is supposed that a transducer can be used that provides a
correlated image of the disturbance upstream of the performance variable e(t), therefore
allowing a feedforward regulation approach to be implemented.
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Figure 2.4: Block diagram representation of the feedforward ANVC problem.

This method is used in practical situations where large band perturbations need to be
reduced. In these cases, a pure feedback approach would be hindered by the limitations



2.3. Literature Overview 49

imposed through the Bode integral ([Hong and Bernstein, 1998]) and only narrow band
disturbances could be compensated (as it will be shown in the next section).

To deal with large band disturbances, the scheme in Figure 2.4 can be used. It can be
immediately observed from this representation that the measured correlated image of the
disturbance will not only contain the significant information from the disturbance source
but it will also be contaminated by the control signal transmitted through the positive
coupling path. The presence of this intrinsic positive feedback complicates the controller
design because it can cause instability.

In many of the research studies that begun to propose solutions for this prob-
lem, the influence of the positive feedback coupling was not taken into account
([Widrow et al., 1975]), because it was either considered that its influence could be
compensated or that it was to weak to raise any problems. Several techniques have
been reported in the literature for the compensation of the positive feedback coupling’s
effect, some being of mechanical nature and other being more related to the control
algorithm. One example concerning the second technique, called feedback neutralization,
has been described in [Kuo and Morgan, 1999, Nelson and Elliott, 1993] and relies on
a very good estimation of the feedback path’s model. However, it has been reported in
[Nelson and Elliott, 1993, Mosquera et al., 1999] that if the estimation is not exact, then
the possibility for instability still exists.

The algorithms presented in this dissertation are designed to provide good results in
the presence of the feedback coupling path and therefore there is no need for positive
feedback path cancelation.

The use of adaptive control is motivated by the fact that the characteristics of
the disturbance can vary in time or that the identified models might not be exact
representations of the system’s paths.

2.2.3 Feedback regulation problem

The feedback regulation is another special case. For this, one can only provide a solution
for reducing narrow band disturbances. In general, the disturbances will be supposed to
represent vibrations coming from multiple narrow band disturbances sources. A schematic
representation of this situation is given in Figure 2.5. It should be observed that in this
context N = 0, and consequently, we will have y(t) = y2(t) and u(t) = u2(t).

In the situations where a second transducer to measure an image correlated with the
disturbance cannot be used because the physical characteristics of the process prevent it,
feedback control techniques have to be applied. As discussed earlier, the Bode integral
limitations permit only narrow band disturbances to be reduced or rejected; therefore, in
this part of the dissertation, the objectives will be that of developing techniques for the
compensation of multiple stationary or variable sinusoidal disturbances.

2.3 Literature Overview

In this section a review of the important contributions in the literature of feedforward
and feedback regulation of noise or vibrations is presented.

2.3.1 Feedforward control of vibrations

The first attempts in the literature of adaptive feedforward active vibration (or noise)
compensation have been done neglecting the positive feedback coupling. Most of the
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Figure 2.5: Block diagram representation of the feedback ANVC problem.

work that has been done in this field is centered around various developments of the
Least Mean Squares (LMS) gradient search algorithm (introduced in [Widrow, 1971]).
The objective of the LMS method is to find the minimum point on the Mean Square
Error (MSE) surface by updating the parameters of a Finite Impulse Response (FIR)
filter in a direction which is an estimate of the steepest descent. For this purpose, the
algorithm uses the current sample of the squared error.

One of the first improvements was the Filtered-X LMS (FxLMS), proposed inde-
pendently by [Burges, 1981] and [Widrow et al., 1981], which used a filtered version of
the observations (measurements correlated with the disturbance) in the adaptation algo-
rithm. Both adaptation schemes studied by these authors (adaptive sound controller in
Burges’s research and adaptive inverse control in Widrow’s) presented a secondary path
model that influenced the adaptation procedure. A filtering of the observation vector
through the model of the secondary path had to be performed in order to obtain good
estimations. Both problems addressed by these authors presented the adaptation of a
FIR filter in a scheme without feedback coupling.

Despite the stability and the convex performance surface of the FIR filters, there are
situations when the use of Infinite Impulse Response (IIR) filters is especially interesting
(e.g., to obtain good performances, one often has to use a large number of parameters
for the FIR filter because of their all zero form, while with IIR filters, it is possible
to obtain similar performances with a significantly reduced number of parameters). A
method to adapt IIR filters was originally proposed by Feintuch in [Feintuch, 1976],
called the Recursive LMS (RLMS), and provides a transformation of the basic LMS filter
adaptation to the IIR structure. Later, the algorithm was improved by using filtered
observations in the same way as was done in the FxLMS, providing the Filtered-U LMS
(FuLMS) algorithm. The FuLMS was first introduced in [Eriksson et al., 1987] for ANVC
applications but no convergence and stability analysis was provided. As an application
example of this algorithm, the reduction of noise inside jet aircrafts, produced by the
engines that are mounted directly on the fuselage is described in [Billoud, 2001].

The family of LMS algorithms uses an approximate estimate of the steepest descent
direction, obtained by taking the gradient of the current sample of the squared error
instead of the gradient of the mean squared error. An improvement has been obtained
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in the Filtered-v LMS (FvLMS) algorithm presented in [Crawford and Stewart, 1997]
where the full-gradient is calculated. Nevertheless, considering slow adaptation of the
parameters, some approximations have been done to reduce the algorithm’s numerical
complexity.

A difficult problem for adaptive IIR filters in the context of ANVC is their stability
and convergence analysis. Compared to the output error algorithms, this is complicated
mainly by the secondary and feedback coupling paths.

One way of analyzing the convergence, in a stochastic environment, is the O.D.E.
method of Ljung ([Ljung and Söderström, 1983] - first presented in [Ljung, 1977a] and
applied in the analysis of the output error estimation method of [Landau, 1976] in
[Ljung, 1977b]). Using this, it was possible to analyze the properties of the FuLMS
algorithm and in [Wang and Ren, 2003, Fraanje et al., 1999]. Conditions are found so
as to assure convergence w.p.1 in the case of positive feedback coupling but with some
restricting conditions, two of them being that a vanishing adaptation gain has to be used
and that the feedback path does not destabilize the system.

Another approach for the stability and convergence analysis of adaptive algorithms
is the hyperstability theory. This was first proposed in the seminal work of V.M. Popov
presented in the original publications [Popov, 1960, Popov, 1966] and then translated in
[Popov, 1963, Popov, 1973]. One of the most important consequences of this theory is its
use in the design of stable adaptive algorithms alongside positive dynamic systems. The
initial framework for studying adaptive systems using the hyperstability was established
in [Landau and Silveira, 1979, Landau, 1979, Landau, 1980] and a complete theoretical
analysis can be found in [Landau et al., 2011g]. Unlike the Lyapunov approach which
is limited by the difficulty in finding appropriate Lyapunov functions, a large family
of adaptation laws leading to stable adaptive algorithms can be designed using the
hyperstability theory.
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Figure 2.6: Standard representation used in the analysis of adaptive systems using
hyperstability theory.

The hyperstability mainly deals with the stability of a class of systems that can be
represented in the form given in Figure 2.6. In this configuration, it is supposed that
the nonlinear and/or time-varying feedback block is such that it satisfies an input-output
relation of the form

t1
∑

t=0

v(t)w(t) ≥ −γ2 for all t ≥ 0 (2.3)

One of the early uses of hyperstability in the synthesis of adaptive algorithms was
reported in [Treichler et al., 1978, Larimore et al., 1980]. The Simple Hyperstable Adap-
tive Recursive Filter (SHARF) is convergent only for slow adaptation. The more com-
plex HARF version has, instead, been proven convergent under less restrictive conditions
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([Johnson, 1979]). Both algorithms use filtering of the estimation error. The challenge
encountered in these algorithms and which makes them difficult to use in ANVC systems
is the choice of the filter that assures the Strictly Positive Real (S.P.R.) condition, espe-
cially due to the existence of the secondary and reverse paths. Furthermore, they are not
presented in an ANVC context, therefore the feedback coupling is not taken into account.

A filtered observations - filtered error variant of the HARF algorithm is presented
in [Mosquera et al., 1999]. The convergence is concluded upon, based on the previously
developed theory. An implementation on an ANC system is experimented using feedback
cancellation but the results were not satisfactory.

Similarly to the (S)HARF algorithms, in [Snyder, 1994] a method applicable in active
control without positive feedback coupling is formulated. In contrast to the (S)HARF
algorithms, the filtering is done on the observation vector, whereas in the aforementioned
algorithms it was done on the estimation error. A way of choosing the filtering is given.

Another attempt to use the stability approach to design an adaptive algorithm for
ANC was proposed in [Jacobson et al., 2001]. However, specific assumptions taken in the
development restrict the application of this algorithm to specific cases and, as shown in
[Landau et al., 2011d]. The algorithm can even become unstable in a more general ANVC
problem. More specifically, it was supposed that the secondary path is characterized by
a SPR transfer function which is seldom true.

In addition to these directions of research, much work was done also on improv-
ing the numerical efficiency, especially in the case of RLS type algorithms and ref-
erences pertaining to these methods can be found in [Montazeri and Poshtan, 2010,
Montazeri and Poshtan, 2011], but it has been limited to the case without positive feed-
back coupling.

An equation error algorithm has been presented in [Sun and Chen, 2002]. The algo-
rithm is globally convergent when the feedback coupling is not present and the measure-
ment noise is zero. In the presence of measurement noise, it is shown that the result is
biased. Also when feedback exists, a local minimum is attained instead of a global one.
To overcome these problems, a Steiglitz-Mcbride type IIR algorithm has been published
in [Sun and Meng, 2004]. Simulation results without feedback coupling are presented.
One other drawback of this algorithm is that stability is assumed before hand but, in
practice, the poles of the IIR filter may move outside the unit circle and instability may
then occur.

A different approach is considered in [Zeng and de Callafon, 2006], where a Model
Based Design (MBD) controller obtained using the Youla-Kučera parametrization of all
stabilizing controllers is implemented for a noise cancellation problem. The feedforward
filter is first identified from open loop data and then an orthonormal basis function is
designed, based on the method presented in [Heuberger et al., 1995]. A further difference
with previously mentioned research results is that the parameters’ adaptation is not done
continuously but at certain intervals during which the system operates based on the last
computed values. No stability analysis has been performed.

To conclude on the review of the various methods developed in the field of
ANVC, it is necessary to mention also the H∞ and H2 MBD compensators. This ap-
proach has been considered in [Bai and H.H.Lin, 1997, Rotunno and de Callafon, 2003,
Alma et al., 2012b]. However, the resulting compensator does not have adaptation
capabilities and its performance is not necessarily very good. Provided that the high
dimension of the resulting compensator can be reduced, it may constitute an "initial"
value for the parameters of an adaptive or self-tuning feedforward compensator. In
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[Bai and H.H.Lin, 1997], it is shown experimentally that the results obtained with
the H∞ approach are better than those obtained using the very popular FULMS
adaptation algorithm (for a disturbance with known spectral characteristics). A similar
comparison done experimentally during the work for this thesis and published in
[Landau et al., 2011d] confirms this fact. However, this is no more true when comparing
the H∞ design with the new adaptive algorithms introduced in this thesis.

It is important to remark that all these contributions (except [Alma et al., 2012b])
have been done in the context of ANC. While the algorithms for ANC can be used in
AVC, one has to take into account the specificity of these latter systems which feature
many low damped vibration modes (resonance) and low damped complex zeros (anti-
resonance).

2.3.2 Feedback rejection of multiple narrow band disturbances

Often in practice, it is not possible to use a second transducer to measure the image of a
disturbance. In these situations, a feedback control approach has to be considered. Taking
into account the Bode integral restriction ([Åström and Murray, 2008, Zhou et al., 1996])
we can conclude that only disturbances on a finite band of frequencies can be attenuated.
Consequently, this part of the dissertation is concerned with the rejection of multiple
time-varying sinusoidal disturbances. A comparative analysis of feedback and feedforward
disturbance rejection is given in [Elliott and Sutton, 1996].

A review of the existing methods for narrow band disturbance rejection is given
hereafter. To begin with, the difference between the paradigms "adaptive regulation"
and "adaptive control" was pointed out in a recent paper ([Landau et al., 2011f]). It is
observed there that in classical "adaptive control" the objective is tracking/disturbance
attenuation in the presence of unknown and time varying plant model parameters. Thus,
the focus of adaptive control is put on the adaptation with respect to variations in the
parameters of the plant’s model. The model of the disturbance is assumed to be known
and invariant.

Conversely, the "adaptive regulation" paradigm refers to asymptotically suppression
(or attenuation) of the effect of unknown and time varying disturbances. It is also assumed
that the plant model is known and that a robust control design can be applied to deal
with possible small variations of its parameters. Thus no effort is put onto estimating in
real time the model of the process. An important aspect is that the disturbance should
be located in the frequency region where the plant model has enough gain.

The objective of this dissertation being disturbance rejection (or attenuation),
the "adaptive regulation" problem will be considered. The common framework
is the assumption that the disturbance is the result of a white noise or a Dirac
impulse passed through the "model of the disturbance". To reject its influence,
several solutions have been proposed. One of them is the Internal Model Principle
(IMP) reported in [Amara et al., 1999a, Amara et al., 1999b, Gouraud et al., 1997,
Hillerstrom and Sternby, 1994, Valentinotti, 2001, Valentinotti et al., 2003]. Using this
method supposes that the model of the disturbance is incorporated in the controller
([Bengtsson, 1977, Francis and Wonham, 1976, Johnson, 1976, Tsypkin, 1997]). Its
parameters should therefore be continuously estimated to be able to respond to possible
changes in the disturbance’s characteristics. This will lead to an indirect adaptive control
algorithm. However, it has been shown in [Landau et al., 2005] that direct adaptation is
possible if one uses the Youla-Kučera parametrization of all stable controllers.
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Another idea that has been used is to build and incorporate an adaptive observer in
the controller [Ding, 2003, Marino et al., 2003, Serrani, 2006, Marino and Tomei, 2007].
However, the approach seems to be mainly focused on disturbances acting on the input
of the plant. Additional hypotheses should be taken into account before applying it
to disturbances on the output (the plant should have stable zeros, which is seldom
the case for discrete time plant models). It can be noted that, although the Internal
Model Principle is not explicitly taken into consideration in this scheme, incorporating
the observer into the controller means that the internal model principle is implicitly used.

A direct approach that uses the concept of a phase-locked loop is presented in
[Bodson and Douglas, 1997] and experimental results are provided in [Bodson, 2005]. It
can be applied to the rejection of sinusoidal disturbances with unknown frequencies. Dis-
turbance frequency estimation and disturbance cancellation are performed simultaneously
by using a single error signal. The frequency response of the plant in the frequency range
of interest is needed.

2.4 Contributions

The main objective of the thesis has been the development of adaptive algorithms for
vibration attenuation in mechanical systems. The algorithms have been extensively teste
on the flexible structures available at the GIPSA-Lab of the University of Grenoble.
Taking into consideration the characteristics of the disturbances, either feedforward
control for large band disturbances or feedback control for narrow band disturbances
has been used.

In Part I of the dissertation, feedforward control methods are proposed. The most
significant contributions are:

1. Development of generalized feedforward compensation adaptive algorithms that
take into account the existence of the positive feedback coupling inherent in AVC
systems and using both filtering of the a posteriori error and of the observations
vector. The stability and the convergence of the resulting algorithms are then
analyzed and experiments are run on a real AVC system.

2. Relaxation of the SPR condition by use of “Integral + Proportional” Parametric
Adaptation Algorithms.

3. Development and analysis of Youla-Kučera parameterized adaptive feedforward
filters with either FIR or IIR parameters.

The contributions of Part II of this thesis are:

1. Development of new feedback control methods to reject narrow band disturbances
based on Band-stop Filters with adjustable frequency bandwidths and attenuations
to shape the output sensitivity function.

2. Use of Adaptive Notch Filters to estimate the central frequencies characterizing the
narrow band disturbances in an active vibration control context.

3. Implementation using the Youla-Kučera parametrization to reduce the computa-
tional complexity of the algorithm.

Experimental results are shown and confirm the results of the theoretical analysis.
Although developed for an Active Vibration Control system, the algorithms are also
applicable to Active Noise Control.
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2.5 Dissertation Outline

Depending on the characteristics of the disturbance and the constraints of the system,
either feedback or feedforward approaches have been developed and the thesis will be
structured accordingly.

In Part I of the thesis, feedforward control methods for compensating large band
disturbances are proposed and studied, taking into account the existence of a positive
feedback coupling between the control signal and the measurement of the image of the
disturbance, which can destabilize the system. First of all, Chapter 3 presents the
AVC system on which the algorithms have been tested. The experimental system, built
in collaboration with the Active Noise and Vibration Control, PAULSTRA SNC (Dept.
VIBRACHOC) research center, is inspired by problems encountered in the industry. A
special feature of this system is the presence of two measuring devices, therefore making
it very well suited for experimenting feedforward adaptive control methods. In the next
two chapters, the contributions in adaptive feedforward control are described, analyzed
and tested. The algorithms are developed using Popov’s Hyperstability Theory.

Chapters 4 and 5 present new ideas to solve the ANVC regulation problem. Firstly,
a method for direct adaptation of IIR filters in the presence of a fixed feedback controller
using a generalized “Integral + Proportional” PAA is presented (Chapter 4). Then
the advantages of the Youla-Kučera parametrization are taken into consideration and
methods based on it are presented in Chapter 5. The algorithms for adapting the
parameters of FIR and IIR Youla-Kučera filters are developed and analyzed. It is shown
that, although the FIRYK has some interesting stability properties, the reduced number
of parameters needed for the IIRYK filter could be an important advantage in some
applications.

The main difference of the proposed methods is the form of the adaptive filter: (i)
direct IIR in Chapter 4, (ii) Youla-Kučera parameterized with FIR adaptive filter, and
(iii) Youla-Kučera parameterized with IIR adaptive filter in Chapter 5.

An analysis of the algorithms is provided in each of the chapters, firstly assuming
that a perfect matching condition is satisfied (i.e., the exact number of parameters of
the optimal filter is known and is used for the implemented filter), and then, using less
restrictive assumptions. The satisfaction of a Strictly Positive Real (SPR) condition,
required by the stability analysis, implies the use of an appropriate filtering either of
the observation vector or of the residual acceleration. For non-perfect matching, an
analysis of the parameters’ bias distribution shows that good estimates are obtained in
the frequency regions that are the most important from a control point of view (high
gain of the secondary path and of the disturbance’s spectral distribution). It is also
shown, using the Averaging Theory ([Anderson et al., 1986, Landau et al., 2011g]), that
the SPR condition can be relaxed by taking into consideration the spectral content of
the disturbance. Another way of relaxing the SPR condition is the use of “Integral +
Proportional” Parameter Adaptation Algorithms (IP-PAA) as shown in Chapter 4.

In Part II, the Chapter 6 develops an indirect adaptive algorithm for the attenuation
of multiple narrow band disturbances by shaping the output sensitivity function. The
method is based on the introduction of Band-stop Filters (BSFs) in the output sensibility
function. The indirect procedure is based on a first step of disturbances’ frequencies
estimation and a second step of controller updating. An experimental comparison with
a direct adaptive regulation algorithm presented in [Landau et al., 2011e] is given. It
is shown that the proposed method does have some interesting properties given by the
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BSFs. More precisely, it is possible to adjust the level of the attenuation and to reduce the
impact on neighboring frequencies in order the preserve good robustness performances.

Concluding remarks and directions for future research are given in Chapter 7.
Finally, the thesis ends by detailing the proofs of the results presented in the previous
chapters of the thesis (Appendices A and B).



Part I

Adaptive Feedforward Disturbance
Rejection
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Chapter 3

An AVC System Using an Inertial
Actuator

This chapter gives a detailed presentation of the AVC system that will be used to test
the adaptive algorithms proposed in this thesis (Section 3.1). Also, the basic equations
which are common for the next chapters are given in Section 3.2. Finally, the procedure
used for the identification of the various paths is described in Section 3.3.

3.1 System Description

Figures 3.1 and 3.2 show an AVC system using a measurement correlated with the
disturbance and an inertial actuator used to reduce the residual acceleration. The
structure is representative for a number of situations encountered in practice.

Figure 3.1: The AVC system used for experimentations - photo.

The system is composed of five metal plates (in dural of 1.8 kg each) interconnected
by springs. The uppermost and lowermost ones are also rigidly linked together by four
screws. The middle three plates will be labeled for easier referencing M1, M2 and M3
(see Figure 3.1). M1 and M3 are equipped with inertial actuators. The one on M1
is used as a disturbance generator (inertial actuator I in Figure 3.2), the one at the
bottom is used for disturbance compensation (inertial actuator II in Figure 3.2). Inertial
actuators use a principle similar as that of loudspeakers (see for example [Marcos, 2000,
Landau et al., 2011e]). The measurement correlated with the disturbance (image of the
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disturbance) is obtained from an accelerometer which is fixed on plate M1. Another sensor
of the same type is fixed on plate M3 and is used to measure the residual acceleration
(see Figure 3.2). The objective is to minimize the residual acceleration measured on plate
M3.

The various paths described in Section 2.2 (and also 1.2) are indicated in Figures 3.1
and 3.2. The measured quantity ŷ1(t) will be the sum of the correlated disturbance
measurement w(t) obtained in the absence of the feedforward compensation (see Fig-
ure 3.3(a)) and of the effect of the actuator used for compensation.

The disturbance is the position of the mobile part of the inertial actuator (see
Figures 3.1 and 3.2) located on the top of the structure. The input to the compensator
system is the position of the mobile part of the inertial actuator located on the bottom
of the structure. The input to the inertial actuators being a position, the global
primary path, the secondary path and the reverse path have a double differentiator
behavior (their respective output being measured by accelerometers). This structure
is representative of various situations encountered in practice. Similar internal positive
feedback coupling occurs also in feedforward active noise control ([Jacobson et al., 2001,
Zeng and de Callafon, 2006]).
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Figure 3.2: An AVC system using an adaptive feedforward and a fixed feedback compen-
sation scheme.

The corresponding block diagrams, in open loop operation and with the compensator
system, are shown in Figures 3.3(a) and 3.3(b), respectively. In Figure 3.3(b), ŷ1(t)
denotes the effective output provided by the upstream measurement device and which
will serve as input to the adaptive feedforward filter N̂ . The output of this filter is denoted
by û1(t). The feedback compensator has as input the performance variable1 y2(t) = e0(t)
and its output is represented by u2(t) as described in Subsection 2.2.1. The control signal
applied to the actuator through an amplifier is

û(t) = û1(t)− u2(t). (3.1)

1Here e0(t) denotes the a priori measured value of the residual acceleration (obtained with the
parameters from time t − 1). In Figure 3.3(a), given that no adaptive filter is present, there is no
point in differencing between a priori and a posteriori values and the simplified notation e(t) is used.
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The transfer function G (the secondary path) characterizes the dynamics from the output
of the compensator κ to the residual acceleration measurement (amplifier + actuator
+ dynamics of the mechanical system). The transfer function D between w(t) and
the measurement of the residual acceleration (in open loop operation) characterizes the
primary path.
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Figure 3.3: Feedforward AVC: (a) in open loop and (b) with adaptive feedforward + fixed
feedback compensator.

The coupling between the output of the compensator, û(t), and the measurement ŷ1(t)
is denoted by M . As indicated in Figure 3.3(b) this coupling is a "positive" feedback.
This unwanted coupling raises problems in practice (source of instabilities) and makes
the analysis of adaptive (estimation) algorithms more difficult.

At this stage it is important to make the following remarks, when there is no
compensator (open loop operation):
• very reliable models for the secondary path and the "positive" feedback path can be

identified by applying appropriate excitation on the actuator used for compensation;
• an initial estimation of the primary path transfer function can be obtained using

the measured w(t) as input and e(t) as output (the compensator actuator being at
rest);
• the design of a fixed model based stabilizing feedforward compensator requires the

knowledge of the reverse path model only;
• the adaptation algorithms do not use informations concerning the primary path

whose characteristics may be unknown or subject to change;
• the knowledge of the disturbance characteristics and of the primary path model,

in addition to the secondary and reverse path models, is mandatory for the design
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of an optimal fixed model based feedforward compensator ([Alma et al., 2012b,
Rotunno and de Callafon, 2003]).

The objective is to develop stable recursive algorithms for online estimation and
adaptation of the parameters of the feedforward filter such that the measured residual
error (acceleration or force in AVC, noise in ANC) be minimized with respect to a certain
criterion while simultaneously assuring the stability of the internal positive feedback loop.
This has to be done for broadband disturbances w(t) (or s(t)) with unknown and variable
spectral characteristics and an unknown primary path model2.

3.2 Basic Equations and Notations

The different blocks of the AVC system (Figure 3.3(b)) are described in this section. The
primary path is characterized by the asymptotically stable transfer operator

D(q−1) =
BD(q−1)
AD(q−1)

, (3.2)

where3

BD(q−1) = bD1 q
−1 + ...+ bDnBD

q−nBD = q−1B∗D(q−1), (3.3)

AD(q−1) = 1 + aD1 q
−1 + ...+ aDnAD

q−nAD . (3.4)

The unmeasurable value of the output of the primary path (when the compensation is
active) is denoted x(t).

The secondary path is characterized by the asymptotically stable transfer operator

G(q−1) =
BG(q−1)
AG(q−1)

, (3.5)

where
BG(q−1) = bG1 q

−1 + ...+ bGnBG
q−nBG = q−1B∗G(q−1), (3.6)

AG(q−1) = 1 + aG1 q
−1 + ...+ aGnAG

q−nAG . (3.7)

The positive feedback coupling is characterized by the asymptotically stable transfer
operator

M(q−1) =
BM(q−1)
AM(q−1)

, (3.8)

where
BM(q−1) = bM1 q

−1 + ...+ bMnBM
q−nBM = q−1B∗M(q−1), (3.9)

AM(q−1) = 1 + aM1 q
−1 + ...+ aMnAM

q−nAM . (3.10)

BG, BM , and BD have a one step discretization delay. The identified models of the
secondary path and of the positive feedback coupling are denoted Ĝ and M̂ , respectively,
and their numerators and denominators B̂G, ÂG, B̂M and ÂM .

2Variations of the unknown model W , the transfer function between the disturbance s(t) and w(t)
are equivalent to variations of the spectral characteristics of s(t).

3Throughout the thesis, the notation V (q−1) = v0 + q−1V ∗
D

(q−1) will be used. Usually, v0 will either
be 1 or 0.
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The optimal feedforward filter (unknown) is defined by

N(q−1) =
R(q−1)
S(q−1)

, (3.11)

where
R(q−1) = r0 + r1q

−1 + ...+ rnRq
−nR , (3.12)

S(q−1) = 1 + s1q
−1 + ...+ snSq

−nS = 1 + q−1S∗(q−1). (3.13)

The estimated feedforward filter is denoted by

N̂(q−1) =
R̂(q−1)

Ŝ(q−1)
. (3.14)

The vector of optimal feedforward filter parameters is

θT = [s1, . . . snS , r0, . . . rnR ]T (3.15)

and the vector of estimated feedforward filter coefficients is

θ̂T (t) = [ŝ1(t), . . . ŝnS(t), r̂0(t), . . . r̂nR(t)]T . (3.16)

The different representations concerning this feedforward controller will be presented
in the following two chapters.

The fixed RS controller K, computed on the basis of the model Ĝ to reject broadband
disturbances on the output e(t), is characterized by the asymptotically stable transfer
function

K(q−1) =
BK(q−1)
AK(q−1)

, (3.17)

where
BK(q−1) = bK0 + bK1 q

−1 + ...+ bKnBK
q−nBK , (3.18)

AK(q−1) = 1 + aK1 q
−1 + ...+ aKnAK

q−nAK . (3.19)

The input of the feedforward filter (called also reference) is denoted by ŷ1(t) and it
corresponds to the measurement provided by the primary transducer (force or acceleration
transducer in AVC or a microphone in ANC). In the absence of the compensation loop
(open loop operation) ŷ1(t) = w(t). The output of the feedforward compensator is
denoted by û1(t+ 1) = û1(t+ 1|θ̂(t+ 1)) (a posteriori output)4.

The measured input to the feedforward filter can also be written as

ŷ1(t+ 1) = w(t+ 1) +
B∗M(q−1)
AM(q−1)

û(t), (3.20)

where
û = û1(t)− u2(t), (3.21)

û1(t) and u2(t) are the outputs given by the adaptive feedforward and the fixed feedback
compensator, respectively. û is the effective input sent to the control actuator.

4In adaptive control and estimation the predicted output at t+1 can be computed either on the basis
of the previous parameter estimates (a priori, time t) or on the basis of the current parameter estimates
(a posteriori, time t+ 1).
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The a priori output of the estimated feedforward filter is given by

û0
1(t+ 1) = û1(t+ 1|θ̂(t))

= −Ŝ∗(t, q−1)û1(t) + R̂(t, q−1)ŷ1(t+ 1)

= θ̂T (t)φ(t) =
[

θ̂TS (t), θ̂TR(t)
]

[

φŷ1
(t)

φû1
(t)

]

(3.22)

where θ̂T (t) has been given in (3.16) and

φT (t) = [−û1(t), . . . − û1(t− nS + 1), ŷ1(t+ 1), ŷ1(t), . . . ŷ1(t− nR + 1)]

= [φTû1
(t), φTŷ (t)] (3.23)

In the context of this thesis, fixed feedback compensators K will be considered.
The input to the feedback compensator is given by the performance variable, therefore
y2(t) = e(t). Its output will be u2(t) = K · y2(t).

The unmeasurable value of the output of the primary path (when the compensation
is active) is denoted x(t). The a priori output of the secondary path is denoted
ẑ0(t+ 1) = ẑ(t+ 1|θ̂(t)) while its input is û(t). One has

ẑ0(t+ 1) =
B∗G(q−1)
AG(q−1)

û(t) =
B∗G(q−1)
AG(q−1)

û(t|θ̂(t)). (3.24)

The measured residual acceleration (or force) satisfies the following equation

e0(t+ 1) = x(t+ 1) + ẑ0(t+ 1). (3.25)

The filtered a priori adaptation error is defined as

ν0(t+ 1) =ν(t+ 1|θ̂(t)) (3.26)

=ε0(t+ 1) +
n1
∑

i=1

vBi ε(t+ 1− i)−
n2
∑

i=1

vAi ν
0(t+ 1− i), (3.27)

where
ε0(t+ 1) = ε(t+ 1|θ̂(t)) = −e0(t+ 1) = −x(t+ 1)− ẑ0(t+ 1) (3.28)

and
ε(t+ 1) = ε(t+ 1|θ̂(t+ 1)) = −e(t+ 1) = −x(t+ 1)− ẑ(t+ 1) (3.29)

are also called, respectively, the a priori and the a posteriori unfiltered adaptation errors.
The coefficients vXi , X ∈ {B, A}, are the coefficients of an IIR filter, with all poles

and zeros inside the unit circle, acting on the adaptation error

V (q−1) =
BV (q−1)
AV (q−1)

, (3.30)

where

XV (q−1) = 1 + q−1X∗V (q−1) = 1 +
nj
∑

i=1

vXi q
−i, X ∈ {B, A}. (3.31)

The filtered a posteriori unmeasurable (but computable) adaptation error is given by

ν(t+ 1) =ν(t+ 1|θ̂(t+ 1)) (3.32)

=ε(t+ 1) +
n1
∑

i=1

vBi ε(t+ 1− i)−
n2
∑

i=1

vAi ν(t+ 1− i), (3.33)
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Figure 3.4: Frequency characteristics of the primary, secondary and reverse paths.

with ε(t+ 1) given in (3.29).
The a posteriori value of the output of the secondary path ẑ(t+ 1) (dummy variable)

is given by

ẑ(t+ 1) = ẑ(t+ 1|θ̂(t+ 1)) =
B∗G(q−1)
AG(q−1)

û(t|θ̂(t+ 1)). (3.34)

For compensators with constant parameters ν0(t) = ν(t), ε0(t) = ε(t), e0(t) = e(t),
ẑ0(t) = ẑ(t), û0(t) = û(t).

Remark: in Chapter 5, one has V (q−1) = 1 (the adaptation error is not filtered) and,
therefore, the a priori and the a posteriori adaptation errors will have respectively the
forms

ν0(t+ 1) = ν(t+ 1|θ̂(t)) = ε(t+ 1|θ̂(t)) = −e0(t+ 1) = −x(t+ 1)− ẑ0(t+ 1) (3.35)

and

ν(t+ 1) = ν(t+ 1|θ̂(t+ 1)) = ε(t+ 1|θ̂(t+ 1)) = −e(t+ 1) = −x(t+ 1)− ẑ(t+ 1). (3.36)

3.3 System Identification

This section describes the identification procedure for the mechanical structure’s paths.
The methodology used for parametric system identification is similar to that presented
in [Landau et al., 2001b, Landau et al., 2001a, Landau et al., 2011d]. The sampling fre-
quency is 800 Hz. The identification of the secondary and the reverse paths has been
done in the absence of the compensator (see Figure 3.3(b)) using as an excitation signal
a PRBS generated by a 10 bit shift register and a frequency divider5 p = 4 applied at
the input of the inertial actuator II where the control signal û(t) is applied (see figures
3.1 and 3.2).

For the secondary path, G(q−1), the output is the residual acceleration measurement,
e(t). For the reverse path, M(q−1), the output is the signal delivered by the primary
transducer (accelerometer) ŷ1(t). The estimated orders of the model for the secondary
path are nBG = 14, nAG = 14. The best results, in terms of validation, have been obtained

5It was first verified with p = 2 that there are no significant dynamics around 200 Hz and then p = 4
has been chosen in order to enhance the power spectral density of the excitation in low frequencies while
keeping a reasonable length for the experiment.
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with the Recursive Extended Least Square method. The frequency characteristics of the
secondary path is shown in Figure 3.4, solid line. It features several very low damped
vibration modes. The first vibration mode is at 44 Hz with a damping of 0.0212, the
second at 83.8 Hz with a damping of 0.00961 and the third one at 115 Hz with a damping
of 0.00694. There is also a pair of low damped complex zeros at 108 Hz with a damping
of 0.021. As a consequence of the double differentiator behavior, a double zero at z = 1
is also present.

For the reverse path M(q−1), the model’s complexity has been estimated to be
nBM = 13, nAM = 13. The frequency characteristic of the reverse path is shown in
Figure 3.4 (dotted line). There are several very low damped vibration modes at 45.1 Hz
with a damping of 0.0331, at 83.6 Hz with a damping of 0.00967, at 115 Hz with a
damping of 0.0107 and some additional modes in high frequencies. There are two zeros
on the unit circle corresponding to the double differentiator behavior. The gain of the
reverse path is of the same order of magnitude as the gain of the secondary path up to
150 Hz, indicating a strong feedback in this frequency zone.

The primary path has been also identified in the absence of the compensator using
w(t) as an input and measuring e(t). The disturbance s(t) was a PRBS sequence (N = 9,
frequency divider p = 2). The estimated orders of the model are nBD = 26, nAD = 26.
The frequency characteristic is presented in Figure 3.4 (dashed line) and may be used for
simulations and detailed performance evaluation. Note that the primary path features a
strong resonance at 108 Hz, exactly where the secondary path has a pair of low damped
complex zeros (almost no gain). Therefore, one cannot expect a good attenuation around
this frequency.

3.4 Concluding Remarks

This chapter concludes the description of the system and of the basic equations. The
next ones will focus on presenting the adaptive control methods proposed in this thesis.
Nevertheless, parts of this chapter will often be referenced.



Chapter 4

Adaptation Algorithms for
Feedforward Compensation in AVC

4.1 Introduction

Adaptive feedforward for broadband disturbance compensation is widely used when
a well correlated signal with the disturbance (image of the disturbance) is avail-
able ([Elliott and Nelson, 1994, Elliott and Sutton, 1996, Kuo and Morgan, 1999,
Zeng and de Callafon, 2006]). However, in many systems, there is a positive mechanical
coupling between the feedforward compensation system and the measurement of the
image of the disturbance. This often leads to the instability of the system.

In the context of this inherent "positive" feedback, the adaptive feedforward compen-
sator should minimize the effect of the disturbance while simultaneously assuring the
stability of the internal positive feedback loop.

An approach discussed in the literature is the analysis in this new context of existing
algorithms for adaptive feedforward compensation developed for the case without feed-
back. An attempt is made in [Wang and Ren, 2003] where the asymptotic convergence
in a stochastic environment of the so called "Filtered-U LMS" (FULMS) algorithm is
discussed. Further results on the same direction can be found in [Fraanje et al., 1999].
The authors use the Ljung’s ODE method ([Ljung and Söderström, 1983]) for the case of
a scalar vanishing adaptation gain. Unfortunately this is not enough because nothing is
said about the stability of the system with respect to initial conditions and when a non
vanishing adaptation gain is used (to keep adaptation capabilities). The authors assume
that the positive feedback does not destabilize the system.

A stability approach to develop appropriate adaptive algorithms in the context of in-
ternal positive feedback is discussed in [Jacobson et al., 2001] and [Landau et al., 2011d].
In [Landau et al., 2011d] there is also an experimental comparison of various algorithms
for IIR adaptive compensators in the presence of the internal positive feedback.

Combining adaptive feedforward compensation with feedback control has been con-
sidered as an issue to further improve the performance of the adaptive feedforward
compensation alone. Several references are available, like [de Callafon and Kinney, 2010,
Ray et al., 2006, Esmailzadeh et al., 2002]. While various procedures for designing the
fixed feedback controller can be considered, it is clear that an improvement of the global
performance can be obtained. Unfortunately, there is a strong interaction between the
presence of this local feedback controller and the stability conditions for the adaptive
feedforward compensations algorithms.

All the research papers referenced this far use "Integral" PAAs. This means that the

67
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equation for updating the parameters of the adaptive filter can be written as the output
of an integrator, which has as input a vector obtained by multiplying a matrix (or scalar)
adaptation gain, the observations’ vector, and the a posteriori error.

Another important issue in adaptive feedforward compensation is the design of filters
either on the observed variables of the feedforward compensator or on the residual
acceleration in order to satisfy positive realness conditions on some transfer functions.
In [Landau et al., 2011d] based on the work done by [Anderson et al., 1986], it was
shown that for small adaptation gains (slow adaptation) the violation of the positive
real conditions in some frequency regions is acceptable, provide that in the average, the
input-output product associated with this transfer function is positive. It is in fact a
signal dependent condition.

However, the problem of removing or relaxing the positive real condition can be also
approached by adding a proportional adaptation to the widely used integral adaptation.
While this approach is known in adaptive control [Landau et al., 2011g, Tomizuka, 1982],
it has not been used apparently in the context of adaptive feedforward compensation.
One other effect of the "Integral + Proportional" adaptation is that of speeding up the
transients of the adaptation error while slowing down the convergence of the parameters.

A subject of debate in the context of adaptive feedforward compensation was the
choice between filtering the data or filtering the residual acceleration (error) in order
to satisfy the positive realness conditions required by the stability analysis (in the
presence of the internal positive feedback or not). Some of the references discussing
this issue are [Larimore et al., 1980, Montazeri and Poshtan, 2011, Sun and Chen, 2002,
Sun and Meng, 2004]. As it will shown, the reason to use one of the two options is related
to the criterion which is minimized and to the presence or not of unstable zeros in the
secondary path. The filtering of the residual error will affect the PSD of the residual
error. There are a number of situations where shaping the residual error in the frequency
domain is very useful. A more detailed discussion on the various implications of both
types of filtering will be done later in this chapter.

From the user point of view and taking into account the type of operation of adaptive
disturbance compensation systems, one has to consider two modes of operation of the
adaptive schemes:
• Adaptive operation. The adaptation is performed continuously with a non vanishing

adaptation gain and the feedforward compensator is updated at each sampling.
• Self-tuning operation. The adaptation procedure starts either on demand or when

the performance is unsatisfactory. A vanishing adaptation gain is used. The current
controller is either updated at each sampling instant once adaption starts or is
frozen during the estimation/computation of the new controller parameters.

Scalar adaptation gains are used in some algorithms for adaptive feedforward com-
pensation, but most of the recent algorithms use RLS type matrix adaptation gains
able to cover both self tuning and adaptive operations. In the context of the absence
of internal feedback, [Montazeri and Poshtan, 2011] gives a detailed comparison of the
two types of adaptation gain. A quite similar comparison in the presence of the inter-
nal positive feedback can be found in [Landau et al., 2011d]. Although not detailed in
this chapter, it is important to keep in mind that the time varying adaptation gains
associated with RLS type algorithms require the use of a UD factorization for im-
plementation in real time in order to avoid numerical errors due to round off errors
[Bierman, 1977, Landau et al., 2011g]. The complexity of the algorithms has been one
of the reasons why initially algorithms using a scalar adaptation gain have been used. It
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turns out that using an array type implementation strongly reduced the complexity of
algorithms using RLS type matrix adaptation gain. This is very pertinently shown in the
context of adaptive feedforward compensation in [Montazeri and Poshtan, 2010].

The main contributions of this chapter are:
• Analysis of the interaction between the local feedback loop and the adaptive

feedforward compensation in the presence of an internal positive feedback coupling;
• Development and analysis of a general algorithm for adaptive feedforward com-

pensation in the presence of an internal positive coupling and a local feedback
controller using both filtering of the observations and of the residual error and a
IP-PAA (“Integral + Proportional” Parameter Adaptation Algorithm);
• Enhancement of the role of the desired performance criterion in the design of specific

algorithms;
• Enhancement of the use of proportional adaptation to relax the positive real

conditions;
• Comparison of the new algorithm with some existing algorithms;
• Application of the algorithms to an active vibration control system featuring

internal positive mechanical coupling.
One of the important observations resulting from the analysis developed in this

chapter, is that the stability conditions for the adaptive feedforward compensation are
highly influenced by the design of the feedback loop. This interaction is further enhanced
when the internal positive coupling is present. The major practical consequence is that
the filters used in order to assure the stability conditions for the adaptive feedforward
compensation will depend upon the elements of the feedback compensation loop built
around the secondary path and upon the parameters of the positive internal feedback
loop.

The chapter is organized as follows. The algorithms for adaptive feedforward com-
pensation are developed in Section 4.2 and analyzed in Section 4.3. The problem of SPR
relaxation is discussed in Section 4.4. Section 4.5 presents experimental results obtained
on the AVC system.

4.2 Development and Analysis of the Algorithms

The description of the AVC system in the presence of an hybrid feedforward + feedback
controller has been given in Sections 3.1 and 3.2.

The algorithms for adaptive feedforward compensation in the presence of RS feedback
controller will be developed under the following hypotheses:

H1) The signal w(t) is bounded, i.e.,

|w(t)| ≤ α, ∀t (0 ≤ α <∞) (4.1)

(which is equivalent to say that s(t) is bounded and W (q−1) in Figure 3.3 is
asymptotically stable).

H2) Perfect matching condition - There exists a filter N(q−1) of finite dimension such
that

N(z−1)
1−N(z−1)M(z−1)

G(z−1) = −D(z−1) (4.2)

and the characteristic polynomials:
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• of the "internal" positive coupling loop

P (z−1) = AM(z−1)S(z−1)−BM(z−1)R(z−1), (4.3)

• of the closed loop (G-K)

Pcl(z−1) = AG(z−1)AK(z−1) +BG(z−1)BK(z−1), (4.4)

• and of the coupled feedforward-feedback loop

Pfb−ff = AMS[AGAK +BGBK ]−BMRAKAG (4.5)

are Hurwitz polynomials.

H3) Deterministic context - The effect of the measurement noise upon the measured
residual error is neglected.

H4) The primary path model D(z−1) is unknown and constant.

Once the algorithms are developed under these hypotheses, H2 and H3 will be removed
and the algorithms will be analyzed in this modified context.

A first step in the development of the algorithms is to establish a relation between
the errors on the estimation of the parameters of the feedforward filter and the measured
residual acceleration. This is summarized in the following lemma.

Lemma 4.2.1. Let the system be described by eqs. (3.2) - (3.34). Under hypotheses H1,
H2, H3, and H4, using a feedforward compensator N̂ with constant parameters, leads to

ε(t+ 1) =
AM(q−1)AG(q−1)AK(q−1)G(q−1)

Pfb−ff (q−1)

[

θ − θ̂
]T
φ(t), (4.6)

where

θT = [s1, ... snS , r0, r1, ... rnR ] =
[

θTS , θ
T
R

]

(4.7)

is the vector of parameters of the optimal filter N assuring perfect matching,

θ̂T = [ŝ1, ... ŝnS , r̂0 ... r̂nR ] =
[

θ̂TS , θ̂
T
R

]

(4.8)

is the vector of constant estimated parameters of N̂ ,

φT (t) = [−û1(t), . . . − û1(t− nS + 1), ŷ1(t+ 1), . . . ŷ1(t− nR + 1)]

=
[

φTû1
(t), φTŷ1

(t)
]

, (4.9)

and ŷ1(t+ 1) is given by

ŷ1(t+ 1) = w(t+ 1) +
B∗M(q−1)
AM(q−1)

û(t). (4.10)

The proof has been given in [Alma, 2011].
The results of Lemma 4.2.1 can be easily particularized to the case without internal

positive feedback or without RS feedback controller (see also [Alma, 2011]).
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Filtering the vector φ(t) with an asymptotically stable filter L(q−1) = BL
AL

, eq. (4.6)

for θ̂ = constant leads to

ε(t+ 1) =
AM(q−1)AG(q−1)AK(q−1)G(q−1)

Pfb−ff (q−1)L(q−1)

[

θ − θ̂
]T
φf (t) (4.11)

with
φf (t) = L(q−1)φ(t). (4.12)

Eq. (4.11) will be used to develop the adaptation algorithms, neglecting for the
moment the non-commutativity of the operators when θ̂ is time varying (however an
exact algorithm can be derived in such cases - see [Landau et al., 2011g]). Replacing the
fixed estimated parameters by the current estimated parameters, equation (4.11) becomes
the equation of the a posteriori residual unfiltered error ε(t+ 1) (which is computed)

ε(t+ 1) =
AM(q−1)AG(q−1)AK(q−1)

Pfb−ff (q−1)L(q−1)
G(q−1)

[

θ − θ̂(t+ 1)
]T
φf (t). (4.13)

Eq. (4.13) has the standard form for an a posteriori adaptation error
([Landau et al., 2011g]), which suggests to use the following IP-PAA

θ̂I(t+ 1) = θ̂I(t) + ξ(t)FI(t)Φ(t)ν(t+ 1) (4.14a)

θ̂P (t+ 1) = FP (t)Φ(t)ν(t+ 1) (4.14b)

ε(t+ 1) =
ε0(t+ 1)

1 + ΦT (t)(ξ(t)FI(t) + FP (t))Φ(t)
(4.14c)

ν(t+ 1) = ε(t+ 1) +
n1
∑

i=1

vBi ε(t+ 1− i)−
n2
∑

i=1

vAi ν(t+ 1− i) (4.14d)

FI(t+ 1) =
1

λ1(t)



FI(t)−
FI(t)Φ(t)ΦT (t)FI(t)
λ1(t)
λ2(t)

+ ΦT (t)FI(t)Φ(t)



 (4.14e)

FP (t) = α(t)FI(t), α(t) > −0.5 (4.14f)

F (t) = ξ(t)FI(t) + FP (t) (4.14g)

ξ(t) = 1 +
λ2(t)
λ1(t)

ΦT (t)FP (t)Φ(t); (4.14h)

θ̂(t+ 1) = θ̂I(t+ 1) + θ̂P (t+ 1) (4.14i)

1 ≥ λ1(t) > 0, 0 ≤ λ2(t) < 2, FI(0) > 0 (4.14j)

Φ(t) = φf (t), (4.14k)

where ν(t + 1) is the generalized filtered adaptation error (see also Section 3.2 for more
details), λ1(t) and λ2(t) allow to obtain various profiles for the matrix adaptation gain
F (t) ([Landau et al., 2011g]). By taking λ2(t) ≡ 0 one obtains a constant adaptation gain
matrix and choosing FI = γI, γ > 0 one gets a scalar adaptation gain). For α(t) ≡ 0, one
obtains the algorithm with integral adaptation gain introduced in [Landau et al., 2011d].

For the adaptive operation, a FI(t) with constant trace can be obtained by auto-
matically computing λ1(t) and λ2(t) at each sampling period as a function of the newly
computed trace of the “Integral” adaptation matrix, tr(FI(t)), and the desired constant
trace, tr(FI0

). In this case, a design parameter αF = λ1(t)
λ2(t)

(chosen equal to 1 in Sec-
tion 4.5) is also used. The equations are given below:

λ1(t) =
tr(FI(t))
tr(FI0

)
, λ2(t) =

λ1(t)
αF

. (4.15)
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Note also that eq. (4.15) is obtained from

F−1
I (t+ 1) = λ1(t)F−1

I (t) + λ2(t)Φ(t)ΦT (t), (4.16)

using the matrix inversion lemma ([Landau et al., 2011g]).

4.3 Analysis of the Algorithms

The equation for the a posteriori adaptation error has the form

ν(t+ 1) = H(q−1)
[

θ − θ̂(t+ 1)
]T

Φ(t) (4.17)

where

H(q−1) =
AMAGAK

Pfb−ff

GV

L
, Φ = φf . (4.18)

Neglecting the non-commutativity of the time varying operators, one has the following
result

Lemma 4.3.1. Assuming that eq. (4.17) represents the evolution of the a posteriori
adaptation error and that the IP-PAA (4.14) is used, one has:

lim
t→∞

ν(t+ 1) =0 (4.19)

lim
t→∞

[ν0(t+ 1)]2

1 + Φ(t)TF (t)Φ(t)
=0 (4.20)

||Φ(t)|| is bounded (4.21)

lim
t→∞

ν0(t+ 1) =0 (4.22)

for any bounded initial conditions θ̂(0), ν0(0), F (0), provided that

H ′(z−1) = H(z−1)−
λ2

2
(4.23)

is a SPR transfer function.

The proof1 of (4.19) is given in Appendix A.1. For (4.20), (4.21), and (4.22), the
proof follows [Landau, 1980, Landau et al., 2011d] and is omitted.

It should be observed that the PAA with "Integral + Proportional" adaptation gain
presented here, is a generalization of that given in Theorem 3.2 of [Landau et al., 2011d].
Note also that P (t), Q(t), S(t), and R(t) used in the proof of Appendix A.1 are generalized
forms of those used in the proof of the theorem mentioned above for "Integral" PAA.

The proof of [Landau and Silveira, 1979] for "Integral + Proportional" adaptation
with time varying integral adaptation gain is given for ξ(t) = 1

λ1(t)
+ λ2(t)

λ1(t)
ΦT (t)FP (t)Φ(t).

To the knowledge of the authors, the proof for ξ(t) = 1+ λ2(t)
λ1(t)

ΦT (t)FP (t)Φ(t) is presented
here for the first time.

1ε0(t+ 1) is computed using θ̂(t) = θ̂I(t).
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4.3.1 Discussion of the algorithms

Below several versions of the algorithms particularized for various choices of V and L are
given:

Algorithm I L = G, V = 1

Algorithm IIa L = Ĝ, V = 1

Algorithm IIb L = Ĝ, V 6= 1

Algorithm IIc L =
Ĝ

1 + ĜK
, V = 1

Algorithm IId L =
Ĝ

1 + ĜK
, V 6= 1

Algorithm III L =
ÂM ÂGAK

P̂fb−ff
Ĝ, V = 1 (4.24)

where
P̂fb−ff = ÂM Ŝ

[

ÂGAK + B̂GBK

]

− B̂M R̂AKÂG (4.25)

is an estimation of the characteristic polynomial of the coupled feedforward-feedback loop
computed on the basis of available estimates of the parameters of the filter N̂ .

For the Algorithm III, several options for updating P̂fb−ff can be considered:

• Run one of the Algorithms II for a certain time to get estimates of R̂ and Ŝ;
• Run a simulation (using the identified models);
• Update P̂fb−ff at each sampling instant or from time to time using Algorithm III

(after a short initialization horizon using one of the Algorithms II).
Remark: It should be noticed that in the adaptive control literature, adaptation

error filtering as well as observation vector filtering have been reported (see also Sub-
section 2.3.1 for a more complete review). Even though the objective of both types of
filtering is the same, satisfaction of the SPR condition, their effects are different. The
filtering of the adaptation error introduces a frequency weighting on the performance cri-
terion. On the other hand, special care has to be taken because satisfaction of the SPR
condition (4.23) by adaptation error filtering alone (V (q−1) 6= 1, L(q−1) = 1) implies
filtering by the inverse of the secondary path which in some cases is not of minimum
phase thus its inverse is unstable. This problem is avoided when filtering the observation
vector using L(q−1).

4.3.2 The stochastic case - perfect matching

There are two sources of measurement noise, one acting on the primary transducer which
gives the correlated measurement with the disturbance and the second acting on the
measurement of the residual error (force, acceleration). For the primary transducer, the
effect of the measurement noise is negligible since the signal to noise ratio is very high.
The situation is different for the residual error where the effect of the noise can not be
neglected.

In the presence of the measurement noise (n(t)), the equation of the a posteriori
residual error becomes

ν(t+ 1) = H(q−1)
[

θ − θ̂(t+ 1)
]T

Φ(t) + n(t+ 1). (4.26)
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The O.D.E. method [Ljung and Söderström, 1983] can be used to analyse the asymp-
totic behavior of the algorithm in the presence of noise. Taking into account the
form of equation (4.26), one can directly use [Landau et al., 2011g, Theorem 4.1] or
[Landau and Karimi, 1997, Theorem B1].

The following assumptions will be made:

1. λ1(t) = 1 and λ2(t) = λ2 > 0;

2. θ̂(t) generated by the algorithm belongs infinitely often to the domain DS:

DS , {θ̂ : P̂ (z−1) = 0⇒ |z| < 1}

for which stationary processes

Φ(t, θ̂) ,Φ(t)|θ̂(t)=θ̂=const

ν(t, θ̂) =ν(t)|θ̂(t)=θ̂=const

can be defined;

3. n(t) is a zero mean stochastic process with finite moments and independent of the
sequence w(t).

From (4.26) for θ̂(t) = θ̂, one gets

e(t+ 1, θ̂) = H(q−1)
[

θ − θ̂
]T

Φ(t, θ̂) + n(t+ 1). (4.27)

Since Φ(t, θ̂) depends upon w(t) only, one concludes that Φ(t, θ̂) and n(t + 1) are
independent. Therefore, using [Landau et al., 2011g, Theorem 4.1] it results that if

H ′(z−1) =
AMAGAK

Pfb−ff

GV

L
−
λ2

2
(4.28)

is a SPR transfer function, one has Prob{ lim
t→∞

θ̂(t) ∈ DC} = 1, where DC = {θ̂ :

ΦT (t, θ̂)(θ − θ̂) = 0}. If furthermore ΦT (t, θ̂)(θ − θ̂) = 0 has a unique solution (richness
condition), the condition that H ′(z−1) be SPR implies that Prob{ lim

t→∞
θ̂(t) = θ} = 1.

4.3.3 The case of non-perfect matching

If N̂(t, q−1) does not have the appropriate dimension, there is no chance to satisfy the
perfect matching condition. Two problems are of interest in this case:

1. The boundedness of the residual error

2. The bias distribution in the frequency domain
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Boundedness of the residual error

Results from [Landau and Karimi, 1997, Landau et al., 2001b] can be used to analyze
the boundedness of the residual error. The following assumptions are made:

1. There exists a reduced order filter N̂ , characterized by the unknown polynomials Ŝ
(of order nS) and R̂ (of order nR), for which the polynomials given in eqs. (4.3)-(4.5),
where S and R have been replaced by Ŝ and R̂, are Hurwitz.

2. The output of the optimal filter satisfying the matching condition can be expressed
as

û1(t+ 1) = −
[

Ŝ∗(q−1)û1(t)− R̂(q−1)ŷ1(t+ 1) + η(t+ 1)
]

, (4.29)

where η(t+ 1) is a norm bounded signal.

Using the results of [Landau and Karimi, 1997, Theorem 4.1, pp. 1505-1506] and
assuming that w(t) is norm bounded, it can be shown that all the signals are norm
bounded under the passivity condition (4.23), where P̂fb−ff is computed now with the
reduced order estimated filter.

Bias distribution

Using the Parseval’s relation, the asymptotic bias distribution of the estimated param-
eters in the frequency domain can be obtained, starting from the expression of ν(t),
by taking into account that the algorithm minimizes (almost) a criterion of the form
lim
N→∞

1
N

∑N
t=1 ν

2(t).

The bias distribution (for Algorithm III) is given by

θ̂∗ = arg min
θ̂

∫ π
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where φw and φn are the spectral densities of the disturbance w(t) and of the measurement
noise. Taking into account equation (4.2), one obtains

θ̂∗ = arg min
θ̂

∫ π

−π
|V |2 ·

·



|SNM |
2
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∣N − N̂
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∣
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1

1− N̂M +KG
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∣

∣

∣

2

|G|2 φw(ω) + φn(ω)



 dω (4.31)

where SNM = 1
1−NM

is the output sensitivity function of the internal closed loop for the
optimal controller.

From (4.30) and (4.31) one concludes that a good approximation of N(q−1) will be
obtained in the frequency region where φw is significant and where G(q−1) has a high gain
(usually G(q−1) should have high gain in the frequency region where φw is significant in
order to counteract the effect of w(t)). However, the quality of the estimated N̂(q−1) will
be affected also by the output sensitivity function of the internal closed loop N −M .
Clearly, the introduction of the filter V (q−1) on the adaptation error will shape the
frequency distribution of the error.
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4.4 Relaxing the Positive Real Condition

The adaptive system formed by eq. (4.17) and the adaptation algorithm (4.14) admits an
equivalent feedback representation (EFR) for λ1(t) ≡ 1, λ2(t) ≡ 0 (constant adaptation
gain). The stability condition of eq. (4.23) (in this case H ′(z−1) = H(z−1)) is a direct
consequence of the passivity of the equivalent feedback path, since if the feedback
path is passive, it is enough that the equivalent linear feedforward path is SPR (see
[Landau et al., 2011g]). However, this condition is only sufficient. There is an additional
"excess" of passivity in the feedback path (which depends upon the adaptation gains
and on the magnitude of Φ(t)) which can be transferred to the linear feedforward block
in order to relax the SPR condition. This idea was prompted out in the context of
recursive identification by Tomizuka and results have been given for the case of integral
adaptation and for the case when the equivalent linear feedforward path is characterized
by an all poles (no zeros) transfer function (see [Tomizuka, 1982]). These results have
been extended in [Landau et al., 2011g] for "Integral + Proportional" adaptation with
constant adaptation gain.

In what follows, the results of [Tomizuka, 1982, Landau et al., 2011g] will be extended
to the case of linear equivalent feedforward paths characterized by a poles-zeros transfer
function and taking into account the presence of the proportional adaptation which
increases significantly the reserve of passivity of the equivalent feedback path. One needs
first the following result:

Lemma 4.4.1. Given the discrete transfer function

H(z−1) =
B(z−1)
A(z−1)

=
b0 + b1z

−1 + . . .+ bnBz
−nB

1 + a1z−1 + . . .+ anAz
−nA

, (4.32)

under the hypotheses:

H5) H(z−1) has all its zeros inside the unit circle,

H6) b0 6= 0,

there exists a positive scalar gain K such that H
1+KH

is SPR.

The proof of this lemma is presented in Appendix A.2.
Using the above property, the EFR of the adaptive feedback system given by the

eqs. (4.14) and (4.17) for λ2(t) ≡ 0, λ1(t) ≡ 1 (constant adaptation gain) can be
represented as in Figure 4.1, where K has been chosen such that H

1+KH
is SPR and

θ̃I(t) = θ̂I(t)− θ, (4.33)

ν(t+ 1) = −
H(z−1)

1 +KH(z−1)
ye2(t), (4.34)

θ̃I(t+ 1) = θ̃I(t) + ξ(t)FIΦ(t)ν(t+ 1), (4.35)

ye2(t) = ΦT (t)θ̃I(t) + (ΦT (t)F (t)Φ(t)−K)ν(t+ 1), (4.36)

ue2(t) = ν(t+ 1) (4.37)

For the stability, it remains to show that the new equivalent path is passive, i.e., it
satisfies the Popov inequality

t1
∑

t=0

ye2(t)ue2(t) ≥ −γ2
0 . (4.38)
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Figure 4.1: Equivalent feedback representation of the PAA with "Integral + Proportional"
adaptation with constant integral adaptation gain.

Theorem 4.4.1. The adaptive system described by eq. (4.17) and eqs. (4.14) for λ2(t) ≡ 0
and λ1(t) ≡ 1 is asymptotically stable provided that:

T1) There exists a gain K such that H
1+KH

is SPR,

T2) The adaptation gains FI and FP (t) and the observation vector Φ(t) satisfy

t1
∑

t=0

[

ΦT (t− 1)
(1

2
FI + FP (t− 1)

)

Φ(t− 1)−K
]

ν2(t) ≥ 0 (4.39)

for all t1 ≥ 0 or

ΦT (t)
(1

2
FI + FP (t)

)

Φ(t) > K > 0, (4.40)

for all t ≥ 0.

The proof of this theorem is given in Appendix A.3.

4.5 Experimental Results

The advantages of using the feedforward adaptive compensator in the presence of the
fixed feedback have been demonstrated in the thesis [Alma, 2011] and will not be recalled
here. In Section 4.5.1, it will be shown that using an IP-PAA in addition to the above
mentioned scheme can have a positive effect on the disturbance rejection performance.
Section 4.5.2 will provide experimental results which highlight the relaxation of the SPR
condition by use of IP-PAA. In both sections, scalar adaptations are experimented with.

4.5.1 Broadband disturbance rejection with feedback controller
and adaptation error filtering

The adaptive feedforward filter structure for all of the experiments has been nR = 3,
nS = 4 (total of 8 parameters). This complexity does not allow to verify the "perfect
matching condition" (not enough parameters). A PRBS excitation on the global primary
path will be considered as the disturbance.
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Figure 4.2 shows the performance of the feedback controller with respect to the open
loop. A 13 dB of global attenuation is obtained.

For the adaptive operation the Algorithm IIa and IIb have been used with scalar
adaptation gain (λ1(t) = 1, λ2(t) = 0)2. The experiments have been carried out by first
applying the disturbance in open loop during 50 sec and after that, closing the loop with
the adaptive feedforward algorithms in the presence of the fixed feedback controller. The
experiments have been run over a 1500 sec time period.

Time domain results obtained on the AVC system with only an "Integral" PAA are
shown in Figure 4.3. Figure 4.4 shows the time domain result obtained using the IP-PAA.
The advantage of using an "Integral + Proportional" PAA is an overall improvement of
the transient behavior. A variable α(t) in the PAA has been chosen, starting with an
initial value of 200 and linearly decreasing to 100 (over a horizon of 25s).

In Figure 4.5, in addition to the IP-PAA a filtering of the adaptation error using
V (q−1) = 1 − 0.9q−1 has been introduced (using Algorithm IIb). In this case, α(t) has
been initialized at 200 and was linearly decreased to 10 over a horizon of 950 sec.
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Figure 4.2: Power spectral density of the open loop and when using the fixed feedback
controller.

A comparison of the power spectral densities obtained with the three adaptive algo-
rithms is presented in Figure 4.6. One observes a very good attenuation obtained by the
IP-PAA algorithm with adaptation error filtering and no degradation with respect to the
open loop above at high frequencies, which is in congruence with the V (q−1) filter that
has been used. It has to be mentioned that for the PSDs only the last ten seconds of the
1500 sec experiments have been taken into account.

It is clear that "Integral + Proportional" adaptation gives better results than only
"Integral" adaptation and that using a filtering of the adaptation error can also have a
good effect.

4.5.2 Broadband disturbance rejection using only the feedfor-
ward adaptive filter

As it turns out, in the hybrid case, the positive real condition was satisfied even with
Algorithm IIa in the frequency region from 0 to 300 Hz, which under the slow adaptation

2Note that Algorithm IIa uses the same filtering as FuLMS algorithm.



4.5. Experimental Results 79

0 500 1000 1500
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

0
0.1
0.2
0.3
0.4
0.5
0.6

Plant output using broadband disturbance adaptive compensation after 50 sec

Time [sec]

R
es

id
ua

l a
cc

el
er

at
io

n 
[V

]

Figure 4.3: Real time results obtained with Algorithm IIa using "Integral" scalar adap-
tation gain.
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Figure 4.4: Real time results obtained with Algorithm IIa using "Integral + Proportional"
scalar adaptation gain.
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Figure 4.5: Real time results obtained with Algorithm IIb using "Integral + Proportional"
scalar adaptation gain and adaptation error filtering.
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Figure 4.6: Power spectral density of the adaptive filters.

gain assumption is enough to guarantee the stability of the system taking also into
consideration the frequency characteristics of the disturbance (Figure 4.6, open loop). In
this subsection, the case without fixed feedback compensator is considered. The objective
is to show that the SPR condition can be improved in a more general case when this is
an issue.

In the absence of the feedback controller, BK(q−1) = 0 and AK(q−1) = 1, and with
no filtering of the adaptation error, V (q−1) = 1, eq. (4.18) for Algorithm IIa (or IIb)
becomes

H(q−1) =
AMG

PĜ
. (4.41)

The advantage of using an "Integral + Proportional" PAA is an overall improvement of
the transient behavior despite the fact that the SPR condition on H(q−1) is not satisfied
as shown in Figure 4.7 (the SPR condition is not satisfied around 83 Hz and around
116 Hz). Note that Figure 4.7 corresponds to an estimation of this transfer function
assuming Ĝ = G, M̂ = M and P = AM Ŝ − BM R̂ in which the parameters of R̂ and Ŝ

have been obtained by running the adaptation algorithm for 1500s. A variable α(t) in the
PAA has been chosen, starting with an initial value of 200 and linearly decreasing to 100
(over a horizon of 25s). To obtain this profile for α(t), different variations have been tried
first, taking also into consideration the theoretical analysis given in Section 4.4, and the
one giving the best results has been used in the end. The most important objective has
been to improve the performance during the initial transient period, thus a large value
for α(t) has been used at start decreasing to smaller values so that parameter variations
could be reduced in the end, thus obtaining better global attenuations.

Time domain results obtained on the AVC system are shown in Figure 4.9. Figure 4.8
shows the comparison between "Integral" and "Integral + Proportional" adaptation over
an horizon of 1500s (Figure 4.9 is a zoom of Figure 4.8 covering only the first 30s after
the introduction of the adaptive feedforward compensator). It is clear that "Integral +
Proportional" adaptation gives better results on a long run. The effect in the initial phase
of the adaptation, Figure 4.9, is an acceleration of transients. It can be observed that
the adaptation error is limited to the interval [−0.3, 0.3] 10 seconds sooner when using
IP-PAA than when using basic integral adaptation.
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Figure 4.7: Phase of estimated H(z−1) for Algorithm IIa.
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Figure 4.8: Real time results obtained with Algorithm IIa using "Integral" scalar adap-
tation gain (left) and "Integral + Proportional" scalar adaptation gain (right) over 1500s.

4.6 Concluding Remarks

In this chapter it has been shown that the ”Integral + Proportional” adaptation algo-
rithms presented are useful in the context of adaptive feedforward vibration (or noise)
compensation. Theoretical development shows that the SPR condition can be relaxed and
an improvement of the adaptation transients is obtained. Furthermore, the introduction
of a feedback controller on one hand modifies the stability conditions and on the other
hand improves significantly the performances of the adaptive feedforward compensation
schemes.
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Plant output using broadband disturbance adaptive compensation after 50 seconds
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Figure 4.9: Real time results obtained with Algorithm IIa using "Integral" scalar adap-
tation gain (left) and "Integral + Proportional" scalar adaptation gain (right).



Chapter 5

General Youla-Kučera
Parameterized Feedforward AVC

5.1 Introduction

The importance of designing feedforward adaptive algorithms for AVC systems taking
into account the inherent "positive" feedback has been highlighted in the previous chapter.
Here, a different approach to the development of feedforward algorithms is taken by use
of the Youla-Kučera parametrization.

In [Zeng and de Callafon, 2006], the idea of using a Youla-Kučera parametrization1

of the feedforward compensator is illustrated in the context of active noise control.
Based on the identification of the system, a stabilizing Youla-Kučera controller using
an orthonormal basis filter is designed. The Youla-Kučera parameters weighting the
orthonormal basis filters are then updated by using a two time scale indirect procedure:
(1) estimation of the Q-filter’s parameters over a certain horizon, (2) updating of the
controller. No stability proof for the tuning procedure is provided.

In the control literature the use of Youla-Kučera type controllers has been ex-
tensively discussed, see [Anderson, 1998, Tay et al., 1997] and related references
[de Callafon and Kinney, 2010, Ficocelli and Ben Amara, 2009]2.

The objectives of this chapter are:

• to develop, to analyze and to evaluate experimentally new recursive algorithms for
online estimation and adaptation of the Q-parameters of IIR Youla-Kučera (sub-
sequently called QIIR) parameterized feedforward compensators for broadband
disturbances with unknown and variable spectral characteristics;
• to evaluate comparatively these algorithms with respect to existing algorithms from

theoretical, implementation and experimental points of view.

As it will be seen, this chapter focuses on the IIR Youla-Kučera parametrization.
The main reason is that the FIR Youla-Kučera is a special case of the former, more
general one. Discussions on the simplifications that arise when passing from IIR to FIR
Youla-Kučera parameters will be given at the different stages of the development and the
analysis.

The main contributions of this chapter with respect to [Zeng and de Callafon, 2006]
are:

1Throughout the chapter the Youla-Kučera parametrization will also be called Q (or YK ) -

parametrization.
2To the best knowledge of the author, the specific problem considered in this chapter is not covered

in the existing literature.
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• the development of new real time recursive adaptation algorithms for the Q-
parameters of FIR/IIR Youla-Kučera feedforward compensators and the analysis
of the stability of the resulting system;
• the application of the algorithms to an active vibration control system;
• the experimental comparison with adaptive IIR feedforward compensators;
• the significant reduction of the number of parameters to be adapted for the

same level of performance when using adaptive IIR Youla-Kučera feedforward
compensators instead of adaptive FIR Youla-Kučera feedforward compensators.

In the context of this chapter, it is assumed that:

• the characteristics of the wide band disturbance acting on the system are unknown
and they may vary;
• the internal positive feedback can not be neglected;
• the dynamic models of the AVC are constant and a good estimation of these models

is available (these models can be estimated from experimental data).

From the user point of view and taking into account the type of operation of adaptive
disturbance compensation systems, one has to consider two modes of operation of the
adaptive schemes:

• Adaptive operation. The adaptation is performed continuously with a non vanishing
adaptation gain.
• Self-tuning operation. The adaptation procedure starts either on demand or when

the performance is unsatisfactory. A vanishing adaptation gain is used.

From the implementation point of view, the chapter will explore the comparative
performances of adaptation algorithms with matrix adaptation gain and with scalar
adaptation gain. While the algorithms have been developed and tested in the context of
AVC, the results are certainly applicable to ANC (Active Noise Control) systems since
they feature the same type of internal positive feedback.

The chapter is organized as follows. The system representation and the IIR Youla-
Kučera feedforward compensator structure are given in Section 5.2. The algorithms
for adaptive feedforward compensation are developed in Section 5.3 and analyzed in
Section 5.4. Section 5.5 presents experimental results obtained on the active vibration
control system with the algorithms introduced in this chapter, as well as an experimental
comparison with those given in [Landau et al., 2011c, Landau et al., 2011d]. Section 5.6
summarizes the comparison with other algorithms.

5.2 Basic Equations and Notations

For the purpose of this chapter, an IIR Youla-Kučera parametrization of the optimal
feedforward filter, Figure 2.4, is considered (see [Anderson, 1998] for more detailed
informations on the Youla-Kučera parametrization). Taking into account the fact that
in the present chapter there is no feedback compensator (K ≡ 0), the measured signal
and the control are as described in Subsection 2.2.2 (u(t) = u1(t) and y(t) = y1(t)). The
block diagram representing this method is given in Figure 5.1. In this case, the filter
polynomials R(q−1) and S(q−1), from eq. 3.11, become

R(q−1) = AQ(q−1)R0(q−1)−BQ(q−1)ÂM(q−1), (5.1)

S(q−1) = AQ(q−1)S0(q−1)−BQ(q−1)B̂M(q−1), (5.2)
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Figure 5.1: AVC block diagram with adaptive feedforward compensator using the YKIIR
method.

where S0(q−1) and R0(q−1) denote respectively the denominator and numerator of a
central (stabilizing) controller (see Section 5.5.1) and AQ(q−1) and BQ(q−1) are the
denominator and the numerator of the optimal QIIR filter

Q(q−1) =
BQ(q−1)
AQ(q−1)

=
b
Q
0 + b

Q
1 q
−1 + . . .+ bQnBQ

q
−nBQ

1 + a
Q
1 q
−1 + . . .+ a

Q
nAQ

q
−nAQ

. (5.3)

The estimated QIIR filter is denoted by Q̂(q−1) or Q̂(θ̂, q−1) when it is a linear
filter with constant coefficients or Q̂(t, q−1) during the estimation (adaptation) stage.
The vector of parameters of the optimal QIIR filter assuring perfect matching will be
denoted by

θT = [bQ0 , . . . b
Q
nBQ

, a
Q
1 , . . . a

Q
nAQ

] = [θTBQ , θ
T
AQ

]. (5.4)

The vector of parameters for the estimated QIIR filter

Q̂(q−1) =
B̂Q(q−1)

ÂQ(q−1)
=
b̂
Q
0 + b̂

Q
1 q
−1 + . . .+ b̂QnBQ

q
−nBQ

1 + â
Q
1 q
−1 + . . .+ â

Q
nAQ

q
−nAQ

(5.5)

is denoted by
θ̂T = [b̂Q0 , . . . b̂

Q
nBQ

, â
Q
1 , . . . â

Q
nAQ

] = [θ̂TBQ , θ̂
T
AQ

]. (5.6)

The a priori output of the estimated feedforward compensator using an IIRYK
parametrization for the case of time varying parameter estimates is given by (using
eq. (3.11) and taking into consideration that the adaptation error is not filtered in the
present context, V (q−1) = 1)

û0(t+ 1) = û(t+ 1|θ̂(t)) = −Ŝ∗(t, q−1)û(t) + R̂(t, q−1)ŷ(t+ 1)

= −((ÂQ(t, q−1)S0(q−1))∗ − B̂Q(t, q−1)B̂∗M(q−1))û(t)

+(ÂQ(t, q−1)R0(q−1)− B̂Q(t, q−1)ÂM(q−1))ŷ(t+ 1) (5.7)

= −(ÂQ(t, q−1)S0(q−1))∗û(t) + ÂQ(t, q−1)R0(q−1)ŷ(t+ 1)

+B̂Q(t, q−1)
(

B̂∗M(q−1)û(t)− ÂM(q−1)ŷ(t+ 1)
)

, (5.8)
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where

û(t+ 1) = −(ÂQ(t+ 1, q−1)S0(q−1))∗û(t) + ÂQ(t+ 1, q−1)R0(q−1)ŷ(t+ 1)

+B̂Q(t+ 1, q−1)
(

B̂∗M(q−1)û(t)− ÂM(q−1)ŷ(t+ 1)
)

. (5.9)

Notice that eqs. (5.1), (5.2), (5.3), (5.8) and (5.9) can be easily particularized for the
case of a FIR Youla-Kučera parametrization by taking ÂQ(t, q−1) ≡ 1.

5.3 Development of the Algorithms

The algorithms for adaptive feedforward IIRYK compensators will be developed under
the following hypotheses:

H1) The signal w(t) is bounded (which is equivalent to s(t) is bounded and W (q−1) in
Figures 3.3 and 5.1 is asymptotically stable).

H2) The estimated model for the reverse path is identical to the true model (ÂM ≡ AM
and B̂M ≡ BM).

H3) There exists a central feedforward compensator N0 (R0, S0) which stabilizes the
inner positive feedback loop formed by N0 and M and a QIIR filter (BQ, AQ) such
that the characteristic polynomial of the closed loop3

P (q−1) = AQ(q−1)
(

AM(q−1)S0(q−1)−BM(q−1)R0(q−1)
)

= AQ(q−1)P0(q−1)
(5.10)

is a Hurwitz polynomial.

H4) Perfect matching condition - There exists a value of the Q parameters such that

G · AM(R0AQ − AMBQ)
AQ(AMS0 −BMR0)

= −D. (5.11)

H5) Deterministic context - The effect of the measurement noise upon the measurement
of the residual acceleration is neglected.

H6) The primary path model D(z−1) is unknown and constant.

Once the algorithms will be developed under these hypotheses, H2, H4, and H5 will
be removed and the algorithm will be analyzed in this modified context.

A first step in the development of the algorithms is to establish, for a fixed estimated
compensator, a relation between the error on the Q-parameters (with respect to the
optimal values) and the adaptation error ν. This is summarized in the following lemma.

Lemma 5.3.1. Under the hypotheses H1 - H6 for the system described by eqs. 3.2
- (3.34) (with K ≡ 0) using an estimated IIR Youla-Kučera parameterized feedforward

compensator with constant parameters θ̂, one has

ν(t+ 1) =
AM(q−1)G(q−1)
AQ(q−1)P0(q−1)

[

θ − θ̂
]T
φ(t), (5.12)

3The parenthesis (q−1) will be omitted in some of the following equations to make them more compact.
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where φ(t) is given by

φT (t) =
[

α(t+ 1), . . . α(t− nBQ + 1), −β(t), . . . − β(t− nAQ)
]

. (5.13)

and

α(t+ 1) =B̂M û(t+ 1)− ÂM ŷ(t+ 1) = B̂∗M û(t)− ÂM ŷ(t+ 1) (5.14a)

β(t) =S0û(t)−R0ŷ(t) (5.14b)

The proof of this lemma is given in Appendix B.1.

Corollary 5.3.1. Under the hypotheses H1 - H6 for the system described by eqs. (3.2) -
(3.34) using an estimated FIR Youla-Kučera parameterized feedforward compensator with

constant parameters θ̂, one has

ν(t+ 1) =
AM(q−1)G(q−1)

P0(q−1)

[

θ − θ̂
]T
φ(t), (5.15)

where

θT =
[

b
Q
0 , . . . b

Q
nBQ

]

=
[

θTBQ

]

(5.16)

is the vector of parameters of the optimal QFIR filter assuring perfect matching,

θ̂T =
[

b̂
Q
0 , . . . b̂

Q
nBQ

]

=
[

θ̂TBQ

]

(5.17)

is the vector of parameters for the estimated Q̂FIR filter

Q̂(q−1) = B̂Q(q−1) = b̂
Q
0 + b̂

Q
1 q
−1 + . . .+ b̂QnBQ

q
−nBQ , (5.18)

and φT (t) is given by

φT (t) =
[

α(t+ 1), α(t), . . . α(t− nBQ + 1)
]

. (5.19)

where α(t+ 1) is given in eq. (5.14a).

Proof. This result can be straightforwardly obtained by making ÂQ(q−1) = 1 and
AQ(q−1) = 1 in Lemma 5.3.1.

Throughout the remainder of this section and the next one, unless stated differently,
the Youla-Kučera parametrization with a QIIR filter will be discussed. It should be
observed that the results for the case of QFIR polynomials can be obtained by imposing
AQ(q−1) = 1 and ÂQ(q−1) = 1. Further comments will be made when appropriate.

As it will be shown later on, it is convenient, for assuring the stability of the system,
to filter the observation vector φ(t). Filtering the vector φ(t) with an asymptotically
stable filter L(q−1) = BL

AL
, eq. (5.12) for a constant θ̂ becomes

ν(t+ 1) =
AM(q−1)G(q−1)

AQ(q−1)P0(q−1)L(q−1)

[

θ − θ̂
]T
φf (t) (5.20)

with

φf (t) = L(q−1)φ(t)

=
[

αf (t+ 1), . . . αf (t− nBQ + 1), −βf (t), . . . − βf (t− nAQ)
]

, (5.21)
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where

αf (t+ 1) = L(q−1)α(t+ 1)

βf (t) = L(q−1)β(t).
(5.22)

Eq. (5.20) will be used to develop the adaptation algorithms. When the parameters of
Q̂ are time-varying and neglecting the non-commutativity of the time-varying operators
(which implies slow adaptation (see [Anderson et al., 1986]), i.e., a limited value for the
adaptation gain), eq. (5.20) transforms into4

ν(t+ 1) =
AM(q−1)G(q−1)

AQ(q−1)P0(q−1)L(q−1)
[θ − θ̂(t+ 1)]Tφf (t). (5.23)

Eq. (5.23) has the standard form for an a posteriori adaptation error
([Landau et al., 2011g]), which immediately suggests to use the following PAA

θ̂(t+ 1) = θ̂(t) + F (t)ψ(t)ν(t+ 1) (5.24a)

ν(t+ 1) =
ν0(t+ 1)

1 + ψT (t)F (t)ψ(t)
(5.24b)

F (t+ 1) =
1

λ1(t)



F (t)−
F (t)ψ(t)ψT (t)F (t)
λ1(t)
λ2(t)

+ ψT (t)F (t)ψ(t)



 (5.24c)

1 ≥ λ1(t) > 0, 0 ≤ λ2(t) < 2, F (0) > 0 (5.24d)

ψ(t) = φf (t), (5.24e)

where λ1(t) and λ2(t) allow to obtain various profiles for the matrix adaptation gain F (t)
(see Section 5.5 and [Landau et al., 2011g]). By taking λ2(t) ≡ 0 and λ1(t) ≡ 1, one
gets a constant adaptation gain matrix (or a scalar adaptation gain by choosing F = γI,
γ > 0).

Several choices for the filter L will be considered, leading to different algorithms:

Algorithm I L = G

Algorithm IIa L = Ĝ

Algorithm IIb L =
ÂM

P̂0

Ĝ (5.25)

Algorithm III L =
ÂM

P̂
Ĝ (5.26)

with
P̂ = ÂQ(ÂMS0 − B̂MR0) = ÂQP̂0, (5.27)

where ÂQ is an estimation of the denominator of the ideal QIIR filter computed on the
basis of available estimates of the parameters of the filter Q̂. For the Algorithm III

several options for updating ÂQ can be considered:

• Run Algorithm IIa or IIb during a certain time to get an estimate of ÂQ.
• Run a simulation (using the identified models).

4However, exact algorithms can be developed taking into account the non-commutativity of the time
varying operators - see [Landau et al., 2011g].
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• Update ÂQ at each sampling instant or from time to time using Algorithm III

(after a short initialization horizon using Algorithm IIa or IIb).

The following procedure is applied at each sampling time for adaptive or self-tuning
operation:

1. Get the measured image of the disturbance ŷ(t + 1), the measured residual error
e0(t+ 1) and compute ν0(t+ 1) = −e0(t+ 1).

2. Compute φ(t) and φf (t) using (5.13) and (5.21).

3. Estimate the parameter vector θ̂(t+ 1) using the PAA of (5.24a) - (5.24e).

4. Compute (using (5.9)) and apply the control.

5.4 Analysis of the Algorithms

5.4.1 The deterministic case - perfect matching

For Algorithms I, IIa, IIb and III the equation for the a posteriori adaptation error
has the form

ν(t+ 1) = H(q−1)
[

θ − θ̂(t+ 1)
]T
ψ(t), (5.28)

where

H(q−1) =
AM(q−1)G(q−1)

AQ(q−1)P0(q−1)L(q−1)
, ψ = φf . (5.29)

Neglecting the non-commutativity of time varying operators, one has the following
result:

Lemma 5.4.1. Assuming that eq. (5.28) represents the evolution of the a posteriori
adaptation error when using an IIR Youla-Kučera adaptive feedforward compensator and
that the PAA (5.24a) - (5.24e) is used, one has:

lim
t→∞

ν(t+ 1) = 0 (5.30)

lim
t→∞

ψT (t)[θ − θ̂(t+ 1)] = 0 (5.31)

lim
t→∞

[ν0(t+ 1)]2

1 + ψ(t)TF (t)ψ(t)
= 0 (5.32)

||ψ(t)|| is bounded (5.33)

lim
t→∞

ν0(t+ 1) = 0 (5.34)

for any initial conditions θ̂(0), ν0(0), F (0), provided that

H ′(z−1) = H(z−1)−
λ2

2
,max

t
[λ2(t)] ≤ λ2 < 2 (5.35)

is a strictly positive real transfer function.

The proof of this lemma is given in Appendix B.2. This result can be particularized
for the case of FIR Youla-Kučera adaptive compensators by using the following corollary:
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Corollary 5.4.1. Assuming that eq. (5.28) represents the evolution of the a posteriori
adaptation error for FIR Youla - Kučera adaptive feedforward compensators, where

H(q−1) =
AM(q−1)G(q−1)
P0(q−1)L(q−1)

, ψ = φf , (5.36)

φf (t) = L(q−1)φ(t) =
[

αf (t+ 1), . . . α(f t− nBQ + 1)
]

,

and that the PAA (5.24a) - (5.24e) is used with θ̂(t) given by (5.17), then (5.30), (5.32),

(5.34) and (5.34) hold for any initial conditions θ̂(0), ν0(0), F (0), provided that

H ′(z−1) = H(z−1)−
λ2

2
,max

t
[λ2(t)] ≤ λ2 < 2 (5.37)

is a SPR transfer function.

The proof is similar to that of Lemma 5.4.1 and will be omitted.
Remark 1: Using Algorithm III and taking into account eq. (5.26), the stability con-

dition for λ2 = 1 can be transformed into ([Ljung and Söderström, 1983, Ljung, 1977b]):

∣

∣

∣

∣

∣

∣

(

AM

ÂM
·
ÂQ

AQ
·
P̂0

P0

·
G

Ĝ

)−1

− 1

∣

∣

∣

∣

∣

∣

< 1 (5.38)

for all ω. This roughly means that it always holds provided that the estimates of AM ,
AQ, P0, and G are close to the true values (i.e., H(e−jω) in this case is close to a unit
transfer function).

Remark 2: For the case of constant adaptation gain (F = αI = const.) and using
Algorithm III, eq. (5.24a) can be viewed as an approximation of the gradient algorithm.
For constant adaptation gain λ2(t) ≡ 0, the strict positive realness on H ′(z−1) implies at
all the frequencies

− 900 < ∠
AM(e−jω)G(e−jω)
AQ(e−jω)P0(e−jω)

− ∠
ÂM(e−jω)Ĝ(e−jω)

ÂQ(e−jω)P̂0(e−jω)
< 900. (5.39)

Therefore, the interpretation of the SPR condition of Lemma 5.4.1 is that the angle
between the direction of adaptation and the direction of the inverse of the true gradient
(not computable) should be less than 900. For time-varying adaptation gains, the
condition is sharper since in this case Re{H(e−jω)} should be larger than λ2

2
at all

frequencies.
Remark 3: Eq. (5.31) indicates that the estimated parameters of the feedforward

compensator converge toward the domain DC = {θ̂ : ψT (t, θ̂)(θ− θ̂) = 0}. If furthermore
ψT (t, θ̂)(θ − θ̂) = 0 has a unique solution (richness condition), then limt→∞θ̂(t) = θ.

Remark 4: The poles of the estimated Q filter (the roots of ÂQ), which are also poles
of the internal positive closed loop, will be asymptotically inside the unit circle, if the
SPR condition is satisfied. However, transiently, they may be outside the unit circle. It
is possible to force these poles to remain inside of the unit circle during transient periods
using adaptive algorithms with projection (see [Landau et al., 2011g]). However, the SPR
condition remains the same.
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5.4.2 The stochastic case - perfect matching

There are two sources of measurement noise, one acting on the primary transducer which
gives the correlated measurement with the disturbance and the second acting on the
measurement of the residual error (force, acceleration). For the primary transducer the
effect of the measurement noise is negligible since the signal to noise ratio is very high.
The situation is different for the residual since the effect of the noise can not be neglected.

In the presence of the measurement noise (n(t)), the equation of the a posteriori
residual error becomes

ν(t+ 1) = H(q−1)
[

θ − θ̂(t+ 1)
]T
ψ(t) + n(t+ 1). (5.40)

In this context, we should analyze the asymptotic behavior of the adaptation algo-
rithms (i.e., the convergence points in the parameter space). The O.D.E. method
[Ljung and Söderström, 1983, Ljung, 1977b] can be used to analyse the asymptotic be-
havior of the algorithm in the presence of noise. Taking into account the form of
eq. (5.40), one can directly use Theorem 4.1 of [Landau et al., 2011g] or Theorem B1
of [Landau and Karimi, 1997].

The following assumptions will be made:

1. λ1(t) = 1 and λ2(t) = λ2 > 0

2. θ̂(t) generated by the algorithm belongs infinitely often to the domain DS:

DS , {θ̂ : P̂ (z−1) = 0⇒ |z| < 1}

for which the stationary processes:

ψ(t, θ̂) , ψ(t)|θ̂(t)=θ̂=const

ν(t, θ̂) = ν(t)|θ̂(t)=θ̂=const

can be defined.

3. n(t) is a zero mean stochastic process with finite moments and independent of the
sequence w(t).

From (5.40) for θ̂(t) = θ̂, one gets

ν(t+ 1, θ̂) = H(q−1)
[

θ − θ̂
]T
ψ(t, θ̂) + n(t+ 1). (5.41)

Since ψ(t, θ̂) depends upon w(t) only, one concludes that ψ(t, θ̂) and n(t + 1, θ̂) are
independent. Therefore, using Theorem 4.1 from [Landau et al., 2011g], it results that if

H ′(z−1) =
AM(z−1)G(z−1)

AQ(z−1)P0(z−1)L(z−1)
−
λ2

2
(5.42)

is a SPR transfer function, one has Prob{ lim
t→∞

θ̂(t) ∈ DC} = 1 where DC = {θ̂ :

ψT (t, θ̂)(θ−θ̂) = 0}. If furthermore ψT (t, θ̂)(θ−θ̂) = 0 has a unique solution (richness con-
dition), the condition that H ′(z−1) be strictly positive real implies that: Prob{ lim

t→∞
θ̂(t) =

θ} = 1.
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5.4.3 The case of non-perfect matching

If Q̂(t, q−1) does not have the appropriate dimension there is no chance to satisfy the
perfect matching condition. Two important questions arise in this case:

1. The boundedness of the residual error

2. The bias distribution in the frequency domain

Boundedness of the residual error

The analysis of the boundedness of the residual error can be done using
[Landau and Karimi, 1997, Landau et al., 2001b]. The following assumptions are
made:

1. There exists a reduced order filter N̂ characterized by the unknown polynomials
ÂQ (of order nAQ) and B̂Q (of order nBQ) as described in eqs. (5.2) and (5.1),
for which the closed loop formed by N̂ and M is asymptotically stable, i.e.,
ÂQ(AMS0 −BMR0) is a Hurwitz polynomial.

2. The output of the optimal filter satisfying the matching condition can be expressed
as:

û(t+ 1) = −
[

Ŝ∗(q−1)û(t)− R̂(q−1)ŷ(t+ 1) + η(t+ 1)
]

(5.43)

where η(t+ 1) is a norm bounded signal.

Using the results of [Landau and Karimi, 1997] (Theorem 4.1, pages 1505-1506) and
assuming that w(t) is norm bounded, it can be shown that all the signals are norm
bounded under the passivity condition (5.35), where P is computed now with the reduced
order estimated filter.

Bias distribution

Using the Parseval’s relation, the asymptotic bias distribution of the estimated param-
eters in the frequency domain can be obtained starting from the expression of ν(t), by
taking into account the fact that the algorithm minimizes (almost) a criterion of the form
lim
N→∞

1
N

∑N
t=1 ν

2(t).
Using eq. (5.11), the bias distribution (for Algorithm III) is given by

θ̂∗ = arg min
θ̂

∫ π

−π





∣

∣

∣

∣

∣

D(e−jω) +
N̂(e−jω)G(e−jω)

1− N̂(e−jω)M(e−jω)

∣

∣

∣

∣

∣

2

φw(ω) + φn(ω)



 dω (5.44)

where φw and φn are the spectral densities of the disturbance w(t) and of the measurement
noise n(t). Taking into account eq. (5.11), one obtains

θ̂∗ = arg min
θ̂

∫ π

−π





∣

∣

∣

∣

∣

GA2
M

P0

∣

∣

∣

∣

∣

2 ∣
∣

∣

∣

∣

BQ

AQ
−
B̂Q

ÂQ

∣

∣

∣

∣

∣

2

φw(ω) + φn(ω)



 dω. (5.45)

From (5.45) one concludes that a good approximation of the Q filter will be obtained
in the frequency region where φw is significant and where G has a high gain (usually G

should have high gain in the frequency region where φw is significant in order to counteract
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the effect of w(t)). However, the quality of the estimated Q̂ filter will also depend on the
transfer function A2

M

P0
.

A similar result is obtained for FIRYK parameters by replacing AQ ≡ 1 and ÂQ ≡ 1
in eq. (5.45).

5.4.4 Relaxing the positive real condition

It is possible to relax the SPR conditions taking into account the fact that:

1. The disturbance (input to the system) is a broadband signal

2. Most of the adaptation algorithms work with a low adaptation gain.

Under these two assumptions, the behavior of the algorithms can be well
described by the "averaging theory" developed in [Anderson et al., 1986] and
[Ljung and Söderström, 1983] (see also [Landau et al., 2011g]).

When using the averaging approach, the basic assumption of a slow adaptation holds
for small adaptation gains (constant and scalar in [Anderson et al., 1986], i.e., λ2(t) ≡
0, λ1(t) = 1; matrix and time decreasing asymptotically in [Ljung and Söderström, 1983,
Landau et al., 2011g] i.e lim

t→∞
λ1(t) = 1, λ2(t) = λ2 > 0 or scalar and time decreasing).

In the context of averaging, the basic condition for stability is that:

lim
N→∞

1
N

N
∑

t=1

ψ(t)H ′(q−1)ψT (t) =
1
2

∫ π

−π
Ψ(ejω)[H ′(ejω)

+H ′(e−jω)]ΨT (e−jω)dω > 0 (5.46)

is a positive definite matrix, where Ψ(ejω) is the Fourier transform of ψ(t).
One can view (5.46) as the weighted energy of the observation vector ψ. Of course, the

SPR sufficient condition upon H ′(z−1) (see eq. (5.35)) allows to satisfy this condition.
However, in the averaging context, it is only needed that (5.46) is true which allows
that H ′ may be non positive real in a limited frequency band. Expression (5.46) can be
re-written as follows ([Landau et al., 2011d]):

∫ π

−π
ψ(ejω) [H ′ +H ′∗]ψT (e−jω)dω =

r
∑

i=1

∫ αi+∆i

αi

ψ(ejω) [H ′ +H ′∗]ψT (e−jω)dω−

p
∑

j=1

∫ βj+∆j

βj

ψ(ejω)
[

H̄ ′ + H̄ ′∗
]

ψT (e−jω)dω > 0 (5.47)

where H ′ is SPR in the frequency intervals [αi, αi + ∆i] and H̄ ′ = −H ′ is positive real
in the frequency intervals [βj, βj + ∆j] (H ′∗ denotes the complex conjugate of H ′). The
conclusion is that H ′ does not need to be SPR. It is enough that the "positive" weighted
energy exceeds the "negative" weighted energy. This explains why Algorithms I, IIa
and IIb will work in practice, in most of the cases. It is however important to remark
that if the disturbance is a single sinusoid (which violates the hypothesis of broadband
disturbance) located in the frequency region where H ′ is not SPR, the algorithm may
diverge (see [Anderson et al., 1986, Ljung and Söderström, 1983]). It was observed that
despite the satisfaction of condition (5.47) which will assure the stability of the system,
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attenuation is not very good in the frequency regions where the positive real condition
(5.37) is violated.

Without any doubt, the best approach for relaxing the SPR conditions is to use the
Algorithm III (given in eq. (5.26)) instead of Algorithm IIa or IIb. This is motivated by
equation (5.38). As it will be shown experimentally, this algorithm gives the best results.

5.4.5 Summary of the algorithms

Tables 5.1 and 5.2 summarize the structure of the algorithms as well as the stability
and convergence conditions for the algorithms developed in this chapter with matrix
and scalar adaptation gain for IIR Youla-Kučera feedforward compensators, for FIR
Youla-Kučera feedforward compensators, and for IIR adaptive feedforward compensators
introduced in [Landau et al., 2011d]. These two references take also into account the
internal positive feedback. Concerning algorithms for IIR adaptive feedforward com-
pensators, the algorithms introduced in [Jacobson et al., 2001] and the FULMS algo-
rithms ([Wang and Ren, 2003]) can be viewed as particular cases of those introduced in
[Landau et al., 2011d].

It was not possible to give in Tables 5.1 and 5.2 all the options for the adaptation
gain. However, basic characteristics for adaptive operation (non vanishing adaptation
gain) and self-tuning operation (vanishing adaptation gain) have been provided5.

Table 5.1: Comparison of matrix gain algorithms for adaptive feedforward compensation
in AVC with mechanical coupling.

IIRYK FIRYK [Landau et al., 2011d]

θ̂(t+ 1) = θ̂(t) + F (t)ψ(t) ν0(t+1)
1+ψT (t)F (t)ψ(t)

Adapt. gain
F (t+ 1)−1 = λ1(t)F (t) + λ2(t)ψ(t)ψT (t)
0 ≤ λ1(t) < 1, 0 ≤ λ2(t) < 2, F (0) > 0

Adaptive Decr. gain and const. trace
Self tuning λ2 = const., lim

t→∞
λ1(t) = 1

θ̂(t) = [b̂Q0 , . . . , â
Q
1 , . . .] [b̂Q0 , . . .] [−ŝ1(t), . . . , r̂0(t), . . .]

φT (t) =
[α(t+ 1), . . . ,−β(t), . . .] [α(t+ 1), . . .] [−û(t), . . .
α(t) = B̂M û(t)− ÂM ŷ(t) α(t) = B̂M û(t) ŷ(t+ 1), . . .]
β(t) = S0û(t)−R0ŷ(t) −ÂM ŷ(t)

P̂ = ÂQ(ÂMS0 − B̂MR0) ÂMS0 − B̂MR0 ÂM Ŝ − B̂M R̂
P = AQ(AMS0 −BMR0) AMS0 −BMR0 AM Ŝ −BM R̂

ψ(t) = Lφ(t); L2 = Ĝ; L3 = ÂM
P̂
Ĝ

Stability AMG
PL
− λ

2
= SPR (λ = max λ2(t))condition

Conv. AMG
PL
− λ

2
= SPR (λ = λ2)condition

5Convergence analysis can be applied only for vanishing adaptation gains.
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Table 5.2: Comparison of scalar gain algorithms for adaptive feedforward compensation
in AVC with mechanical coupling.

IIRYK FIRYK [Landau et al., 2011d]
Scalar gain

θ̂(t+ 1) = θ̂(t) + γ(t)ψ(t) ν0(t+1)
1+γ(t)ψT (t)ψ(t)

Adapt. gain γ(t) > 0

Adaptive γ(t) = γ = const

Self tuning
∞
∑

t=1
γ(t) =∞, lim

t→∞
γ(t) = 0

θ̂(t) = [b̂Q0 , . . . , â
Q
1 , . . .] [b̂Q0 , . . .]

[−ŝ1(t), . . . , r̂0(t), . . .]

φT (t) =
[α(t+ 1), . . . ,−β(t), . . .] [α(t+ 1), . . .] [−û(t), . . . ,
α(t) = B̂M û(t)− ÂM ŷ(t) α(t) = B̂M û(t) ŷ(t+ 1), . . .]
β(t) = S0û(t)−R0ŷ(t) −ÂM ŷ(t)

P̂ = ÂQ(ÂMS0 − B̂MR0) ÂMS0 − B̂MR0 ÂM Ŝ − B̂M R̂
P = AQ(AMS0 −BMR0) AMS0 −BMR0 AM Ŝ −BM R̂

ψ(t) = Lφ(t); L2 = Ĝ; L3 = ÂM
P̂
Ĝ

Stability AMG
PL

= SPR
condition

Conv. AMG
PL

= SPR
condition

5.5 Experimental Results

The detailed description of the system used for the experiments has been given in
Section 3.1 and a picture of the mechanical structure is shown in Figure 3.1. The
identification procedure is the one described in Section 3.3.

This section presents first the central controllers (Subsection 5.5.1) and then experi-
mental results obtained either using matrix adaptation (Subsection 5.5.2) or scalar adap-
tation (Subsection 5.5.3).

5.5.1 The Central Controllers

Two central controllers have been used to test the Youla-Kučera parameterized adaptive
feedforward compensators. The first (PP) has been designed using a pole placement
method adapted for the case of positive feedback systems. Its main objective is to stabilize
the internal positive feedback loop. The end result was a controller of orders nR0

= 15
and nS0

= 17. The second is a reduced order H∞ controller with nR0
= 19 and nS0

= 20
from [Alma et al., 2012b]6. For the design of the H∞ controller, the knowledge of the
primary path is mandatory (which is not necessary for the PP controller). Figure 5.2
shows a comparison of the performances obtained with these controllers. One observes
that H∞ already provides a good attenuation (14.70 dB).

6The orders of the initial H∞ controller were: nRH∞ = 70 and nSH∞ = 70
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Figure 5.2: Spectral densities of residual acceleration for the two central controllers
(experimental).

5.5.2 Broadband disturbance rejection using matrix adaptation
gain

Broadband disturbance rejection capabilities using the two Youla-Kučera parameteriza-
tions with IIR and FIR filters described in columns 2 and 3 of Table 5.1 are evaluated
in this subsection and some observations regarding how they compare to the algorithm
of column 4 (see also [Landau et al., 2011d]) are made. For most of the experiments,
the complexity of the IIRYK filter was nBQ = 3 and nAQ = 8, leading to 12 parameters
in the adaptation algorithm according to eq. (5.3). For the FIRYK parametrization, an
adaptive filter of order nQ = 31 (32 parameters) has been used. These values do not
allow to satisfy the “perfect matching condition”.

A PRBS excitation on the global primary path is considered as the disturbance.
Two modes of operation can be considered, depending on the particular choices taken in
eq. (5.24c):

• For adaptive operation, Algorithms IIa and III have been used with decreasing
adaptation gain (λ1(t) = 1, λ2(t) = 1) combined with a constant trace adaptation
gain. The adaptation is started at an initial high value of the adaptation gain
matrix. While the decreasing adaptation gain algorithm is active, the trace of F (t)
decreases towards zero. When the trace of the adaptation matrix is below a given
value, the decreasing adaptation gain algorithm is replaced by the constant trace
algorithm. The constant trace gain updating modifies the values of λ1(t) and λ2(t)
so that the trace of F (t) is kept constant. This assures the evolution of the PAA in
the optimal direction but the step size does not go to zero, therefore maintaining
adaptation capabilities for eventual changes in disturbance or variations of the
primary path model.
• In self-tuning operation, a decreasing adaptation gain F (t) is used and the step

size goes to zero. Then, if a degradation of the performance is observed, as a
consequence of a change of the disturbance characteristics, the PAA is re-started.
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Figure 5.3: Real time residual acceleration obtained with the IIR Youla-Kučera
parametrization (nBQ = 3, nAQ = 8) using Algorithm IIa with matrix adaptation gain
and the H∞ central controller.
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Figure 5.4: Real time residual acceleration obtained with the IIR Youla-Kučera
parametrization (nBQ = 3, nAQ = 8) using Algorithm III with matrix adaptation gain
and the H∞ central controller.
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Figure 5.5: Real time results obtained with the FIR Youla-Kučera parametrization
(nQ = 31) using Algorithm III with matrix adaptation gain and the H∞ central
controller.

The PAAs have been implemented using the UD factorization [Landau et al., 2011g]7.
For the reason of space, only the experimental results in adaptive operation will be
presented. For IIRYK the adaptation has been done starting with an initial gain of 0.02
(initial trace = initial gain × number of adjustable parameters, thus 0.24) and using a
constant trace of 0.02. For FIRYK an initial gain of 0.05 (initial trace 0.05 × 32 = 1.6)
and constant trace 0.1 have been used.
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FIRYK (Algo. III): −16.1728dB

Figure 5.6: Power spectral densities of the residual acceleration in open loop, with IIRYK
(nBQ = 3, nAQ = 8) and with FIRYK (nQ = 31) using the H∞ central controller
(experimental).

The experiments have been carried out by first applying the disturbance and then
starting the adaptive feedforward compensation after 50 seconds using the FIR or the
IIR Youla-Kučera parametrization. If not otherwise specified, the results which will be

7An array implementation as in [Montazeri and Poshtan, 2010] can also be considered.
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Figure 5.7: Evolution of the IIRYK parameters (nBQ = 3, nAQ = 8 and H∞ central
controller) for Algorithm III using matrix adaptation gain (experimental).
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Figure 5.8: Evolution of the IIR parameters (nR = 9, nS = 10) for Algorithm III using
matrix adaptation gain (experimental).
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presented have been obtained with the H∞ central controller. In the case of the IIRYK
parametrization using Algorithm III, the filtering by the denominator of the QIIR filter
used in eq. (5.27) is done adaptively by using the last stable estimation of AQ(q−1).
Time domain results using IIRYK with Algorithms IIa and III are shown in Figures 5.3
and 5.4 respectively. It can be seen that Algorithm III provides a better performance
than Algorithm IIa and this can be explained by a better approximation of the positive
real condition (see discussion in Subsection 5.4.4). Figure 5.5 shows the evolution of
the residual acceleration with the FIRYK adaptive compensator using Algorithm III

of [Landau et al., 2011c]. The final attenuation given by IIRYK using Algorithm III

(16.21dB) is better than that provided by IIRYK using Algorithm IIa (13.37dB) and
slightly better than that provided by using FIRYK with Algorithm III (16.17dB) which
uses significantly more adjustable parameters (32 instead of 12). However, the adaption
transient is slightly more rapid for FIRYK.

The power spectral density of the residual acceleration (after the adaptation transient
period) for the considered algorithms are shown in Fig. 5.6.

Figure 5.7 shows the convergence of the parameters for the IIRYK feedforward
adaptive compensator using Algorithm III. The experiment has been carried out over an
horizon of 13 hours. Parameters take approximatively 8 hours to almost settle. However,
this does not impair the performance (the transient duration on the residual acceleration
for Algorithm III is about 50 s). This result can be compared to that obtained with the
direct adaptive IIR filter shown in Figure 5.8.

An evaluation of the influence of the number of parameters upon the global attenua-
tion of the IIRYK parametrization is shown in Table 5.3. The results are grouped on two
lines corresponding to the two central controllers used, and the given attenuations are
measured in dB. The column headers give the number of numerator coefficients followed
by the number of denominator coefficients. It can be observed that a larger order of the
denominator is better than a larger order of the numerator.

Total no. param. 0 8 12 16
No. param. of num/den 0/0 4/4 8/4 4/8 6/6 10/6 6/10 8/8

H∞ (db) 14.7 15.96 15.56 16.21 16.31 15.67 16.5 16.47
PP (db) 4.61 15.52 16.25 16.02 16.24 15.57 15.72 16.21

Table 5.3: Influence of the number of the IIRYK parameters upon the global attenuation.

A similar analysis for the FIRYK feedforward adaptive compensators is given in
Table 5.4. Comparing the two tables, one can say that a reduction of adjustable
parameters by a factor of (at least) 2 is obtained in the case of IIRYK with respect
to to FIRYK for approximatively the same level of performance (compare IIRYK with
8 parameters with the FIRYK with 16 and the IIRYK with 6/6 parameters with the
FIRYK with 32 parameters). It can be noticed that the IIRYK is less sensitive that
FIRYK with respect to the performances of the model based central controller. Table 5.4
gives also comparative results for the IIR adaptive fedforward compensators. The IIRYK
structure seems to allow a slight reduction of the number of parameters with respect to
the IIR structure for the same level of performance (compare the results of IIRYK with
16 adjustable parameters (6/10) with the IIR using 20 adjustable parameters).

To verify the adaptive capabilities of the two parameterizations, a narrow band
disturbance has been added after 1400 seconds of experimentation. This has been made
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Figure 5.9: Power spectral densities of the residual acceleration when an additional
sinusoidal disturbance is added (Disturbance = PRBS + sinusoid) and the adaptive
IIRYK parametrization is used.
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Figure 5.10: Power spectral densities of the residual acceleration when an additional
sinusoidal disturbance is added (Disturbance = PRBS + sinusoid) and the adaptive
FIRYK parametrization is used.



102 General Youla-Kučera Parameterized Feedforward AVC

No. param. 0 8 16 20 32 40
H∞ (db) 14.7 15.4 15.6 - 16.17 16.03
PP (db) 4.61 14.69 15.89 - 15.7 15.33
IIR (db) - - 16.23 16.49 16.89

Table 5.4: Influence of the number of parameters upon the global attenuation for the
FIRYK parametrization (lines 2 and 3) and for the IIR adaptive filter (line 4).
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Figure 5.11: Power spectral densities of the residual acceleration when an additional
sinusoidal disturbance is added (Disturbance = PRBS + sinusoid) and the direct adaptive
IIR filter is used.

by using a sinusoidal signal of 150 Hz. Power spectral density estimates are shown in
Fig. 5.9 for the IIRYK parametrization and Fig. 5.10 for the FIRYK parametrization.
Better results are obtained with the IIRYK parametrization and they are comparable
with those obtained for IIR adaptive feedforward compensators, shown in Fig. 5.11.

5.5.3 Broadband disturbance rejection using scalar adaptation
gain

The scalar adaptation gain algorithms of columns 5 and 6 from Table 5.2 have been also
tested on the AVC system.

In the adaptation regime, as opposed to the matrix cases, a constant adaptation
gain of 0.001 has been used for both parameterizations, as in [Landau et al., 2011d] (see
also table 5.2). This corresponds to a constant trace of 0.012 for the IIRYK and 0.032
for the FIRYK (taking in account the number of adapted parameters). Figure 5.12
shows the adaptation transient for the scalar version of the IIRYK parametrization
using Algorithm III. Surprisingly, the performances are close to those obtained with
a matrix adaptation gain (a similar observation has been made in [Landau et al., 2011d,
Figure 14]). Figure 5.13 shows the adaptation transient for the FIRYK parametrization
using a scalar adaption gain. It can be seen that the transient performances are a little
better for the IIRYK. In Figure 5.14, power spectral densities and the corresponding
global attenuations are given for both parameterizations. It can be observed that
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Figure 5.12: Real time residual acceleration obtained with the IIR Youla-Kučera
parametrization (nBQ = 3, nAQ = 8) using Algorithm III with scalar adaptation gain
and the H∞ central controller.
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Figure 5.13: Real time residual acceleration obtained with the FIR Youla-Kučera
parametrization (nQ = 31) using Algorithm III with scalar adaptation gain and the
H∞ central controller.
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IIRYK parametrization with 12 adjustable parameters gives a slightly better attenuation
(additional 0.5 dB) with respect to a FIRYK parametrization with 32 parameters.
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Figure 5.14: Power spectral densities of the residual acceleration in open loop, with
IIRYK (nBQ = 3, nAQ = 8) and with FIRYK (nQ = 31) using scalar adaptation gain and
the H∞ central controller (experimental).

5.6 Comparison with Other Algorithms

The algorithms developed in this chapter with matrix and scalar adaptation gains for
IIR Youla-Kučera feedforward compensators have been compared with the FIR Youla-
Kučera parameterized feedforward compensators from [Landau et al., 2011c] and the
direct IIR adaptive algorithm of [Landau et al., 2011d] (see Tables 5.2 and 5.1). This
section summarizes the observations made in Subsection 5.4.5 and in Section 5.5 based
on experimental results.

Remark 1 - The number of adjustable parameters. The main advantage of the
IIRYK adaptive feedforward compensators introduced in this chapter compared with
FIRYK adaptive compensators is that they require a significantly lower number of
adjustable parameters for a given level of performance (a reduction by a factor of 2
in the application presented). This is, without any doubt, a major practical advantage
in terms of implementation complexity. A slight reduction of the number of adjustable
parameters is also obtained with respect to IIR adaptive feedforward compensators.

Remark 2 - The poles of the internal positive closed loop. For IIR adaptive feedforward
compensators, provided that the SPR condition for stability is satisfied, the poles of the
internal "positive" loop will be asymptotically stable but they can be very close to the unit
circle. For FIRYK, the poles of the internal positive feedback loop are assigned by the
central stabilizing controller and they remain unchanged under the effect of adaptation.
For IIRYK, some of the poles of the internal positive feedback loop are assigned by the
central stabilizing controller but there are additional poles corresponding to ÂQ. These
poles will be inside the unit circle if the positive real condition for stability is satisfied but
they can be very close to the unit circle (at least theoretically). However, if one wants to
impose that these poles lie inside a circle of a certain radius, this can be easily achieved
by using PAAs with "projections" ([Goodwin and Sin, 1984, Landau et al., 2011g]).
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Remark 3 - Implementation of the filter for Algorithm III. For IIRYK adaptive
compensator, one has to run first Algorithm IIa or IIb over a short horizon in order
to get an estimate of ÂQ for implementing the appropriate filter. A similar procedure
has to be used also for IIR adaptive compensators (See [Landau et al., 2011d]). For the
IIRYK the filter can be continuously improved by updating at each step the estimation
of ÂQ in the filter. Such a procedure is more difficult to apply to the IIR structure
since the estimated closed loop poles have to be computed at each step based on current
estimates of the feedforward compensator’s parameters and the knowledge of the reverse
path M(q−1). For FIRYK, this initialization procedure is not necessary since the poles of
the internal positive feedback loop remain unchanged under the effect of adaptation and
a good estimation is provided by the knowledge of the central stabilizing compensator
and of the model of the reverse path.

Remark 4 - Initial model based design compensator. Since the system as well as the
initial characteristics of the disturbance can be identified, a model based design of an
initial feedforward compensator can be done. Unfortunately this information can not be
easily used to efficiently initialize the parameters of the IIR adaptive compensator because
the model based design (like H∞) will lead in general to a controller with a larger number
of parameters than the number of those used in the adaptive IIR filter (the number of
the adjustable parameters should be the same as the number of the parameters of the
model based controller). When using a FIRYK or an IIRYK feedforward compensator,
any model based designed compensator can be used as the central controller (no matter
what is its dimension). Its performances will be enhanced by the adaptation of the
Q-parameters.

Remark 5 - Influence of the initial stabilizing controller. The performances of the
IIRYK adaptive compensator are less sensitive that those of the FIRYK adaptive com-
pensator with respect to the performances of the initial model based stabilizing controller
(at least for a reduced number of adjustable parameters).

5.7 Concluding Remarks

The chapter has presented an adaptive IIR Youla-Kučera parametrized feedforward
compensator built around a stabilizing filter for the internal "positive" feedback loop
occurring in AVC and ANC systems. Experimental results on an active vibration control
system featuring an internal "positive" feedback have illustrated the potential of the
approach. It has been shown that the use of the IIR Youla-Kučera filters allows to
reduce significantly the number of parameters to be adapted with respect to the FIR
Youla-Kučera filters for the same level of performance.





Part II

Adaptive Feedback Disturbance
Compensation
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Chapter 6

Adaptive Indirect Regulation of
Narrow Band Disturbances

6.1 Introduction

An important problem in active vibration (or noise) control is the compensation of
disturbances without measuring them. In this case, a feedback approach is considered
for disturbance attenuation. In general, one considers the disturbances as being a
white noise or a Dirac impulse passed through a filter which characterizes the model
of the disturbance1. To be more specific, the disturbances considered can be defined as
"finite band disturbances". This includes single or multiple narrow band disturbances or
sinusoidal signals. For the purpose of this chapter, the disturbances are considered to be
time varying, in other words, their model has time varying coefficients. This motivates the
use of an adaptive regulation approach since the objective is the attenuation of unknown
disturbances without measuring them.

The potential advantage of adaptive regulation versus adaptive feedforward distur-
bance compensation [Beranek and Ver, 1992, Fuller et al., 1997, Landau et al., 2011d] is
the elimination of the need for a second transducer used for obtaining an image of the
disturbance (a correlated measurement with the disturbance).

A popular methodology for this regulation problem is the design of a controller that
incorporates the model of the disturbance (internal model principle). This technique
has been described in [Francis and Wonham, 1976, Bengtsson, 1977, Landau et al., 2005,
Landau et al., 2011e]. The main problem using the IMP principle is that complete
rejection of the disturbances is attempted (asymptotically) and this may have a strong
influence upon the sensitivity functions outside the frequency band in which attenuation
is achieved. As long as rejection of a single narrow band disturbance is considered
([Landau et al., 2005, Landau et al., 2011e]), the influence upon the output sensitivity
functions does in general not pose problems. However, application of this (IMP) approach
for the case of multiple narrow band disturbances may lead to unacceptable profiles of
the output sensitivity functions in terms of robustness and unacceptable amplification
of the residual noise in certain frequency regions. Also, the IMP approach may lead to
actuator saturation. In addition, in many applications, only a level of attenuation is
required (IMP does too much!).

In this chapter, a different solution is proposed. Instead of complete
cancelation of the disturbances, only a chosen attenuation is introduced by

1Throughout the chapter, it is assumed that the number of multiple narrow band disturbances is
known (it can be estimated from data if necessary) but not their frequency characteristics.
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shaping the output sensitivity function with band-stop filters (BSF) (see also
[Landau and Zito, 2005, Procházka and Landau, 2003]) at those frequencies corre-
sponding to spikes in the spectrum of the disturbance2. In order to implement the
algorithm, one needs to estimate in real time the frequency spikes contained in the
disturbance. System identification techniques can be used to estimate the model of
the disturbance ([Airimiţoaie et al., 2011, Landau et al., 2011e]). Unfortunately, to find
the frequencies of the spikes requires the computation in real time of the roots of an
equation of order 2 · n, where n is the number of spikes. Therefore, this approach is
applicable in the case of one eventually two narrow band disturbances. What is needed
is an algorithm which can directly estimate the frequencies of the various spikes of the
disturbance. Several methods have been proposed in the signal processing community to
solve this issue ([Tichavský and Nehorai, 1997]). One approach which has been reported
to give very good results ([Stoica and Nehorai, 1988, M’Sirdi et al., 1988]) is based on
the use of ANFs ([Rao and Kung, 1984, Nehorai, 1985, Chen et al., 1992, Li, 1997]).

Based on the current estimation of the frequencies of the spikes at each sampling time,
one has to solve a Bezout equation in order to find the parameters of the controller. As
it will be shown, using a Youla-Kučera parametrization of the controller ([Tsypkin, 1997,
de Callafon and Kinney, 2010, Landau et al., 2005, Tay et al., 1997]) the dimension of
the matrix equation that has to be solved is reduced significantly and therefore the
computation load will be much lower. The other advantage that motivates the use of the
Youla-Kučera parametrization is the fact that a nominal controller is always present in
order to stabilize and to assure the nominal performances of the closed loop system in
the absence of the disturbance (e.g., damping of vibration modes in the system).

In the present framework, the hypothesis of constant dynamic characteristics of the
AVC system is made (like in [Landau et al., 2011e]). Furthermore, the corresponding
control model is supposed to be accurately identified from input/output data.

In [Landau et al., 2005] the direct adaptive regulation of narrow band disturbances
using IMP and the Youla-Kučera parametrization is described and analyzed and ex-
tended in [Landau et al., 2011e] for multiple disturbances. Another method for narrow
band disturbances rejection by feedback is based on the use of a disturbance observer
([Nakao et al., 1987, Huang and Messner, 1998, Chen and Tomizuka, 2012]). However,
this method is different with respect to that proposed in this chapter, since an adaptive
Q filter, that is not part of the controller parametrization, is used to extract the narrow
band disturbances. The rejection is then obtained by subtracting the predicted distur-
bance out of the control signal, taking into consideration the fact that the disturbance is
supposed to act at the input of the process.

The main contributions of this chapter are:
• the development of new algorithms based on Band-stop Filters with adjustable

frequency bandwidths and attenuations for shaping the output sensitivity function
with minimal influences outside the attenuation frequency regions;
• the use of Adaptive Notch Filters for estimation of the central frequencies charac-

terizing the narrow band disturbances;
• the reduction of the computation complexity of the indirect adaptive controllers by

using a Youla-Kučera parametrization of the adjustable controller.
This chapter is organized as follows. In Section 6.2 the main notations and equations
for the indirect adaptive system are given. The estimation method used for tracking

2The numerators of these filters will be implemented in the controller while the denominators will
define additional desired close-loop poles.
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the variations of the disturbances’ frequencies is briefly described in Section 6.3. The
indirect adaptive regulation method based on BSFs is presented in Section 6.4. A reduced
complexity implementation of this method using the Youla-Kučera parametrization is
then given in Section 6.5. In Section 6.6, an experimental performance evaluation and
comparison with the method of [Landau et al., 2011e] are presented. Some concluding
remarks are given in Section 6.7.

6.2 System Description
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Figure 6.1: Basic scheme for indirect adaptive control.

The basic indirect adaptive control block diagram used is shown in Figure 6.1. The
process output can be written as3

y(t) = G(q−1) · u(t) + p(t), (6.1)

where

G(q−1) = q−d
B(q−1)
A(q−1)

(6.2)

is called the secondary path of the system and p(t) is the effect of the disturbances on
the measured output.

As specified in Section 6.1, the hypothesis of constant dynamic characteristics of the
AVC system is considered (similar to [Landau et al., 2005, Landau et al., 2011e]). The
denominator of the secondary path model is given by

A(q−1) = 1 + a1q
−1 + . . .+ anAq

−nA , (6.3)

the numerator is given by

B(q−1) = b1q
−1 + . . .+ bnBq

−nB = q−1B∗(q−1) (6.4)

and d is the integer delay (number of sampling periods)4.

3The complex variable z−1 will be used to characterize the system’s behavior in the frequency domain
and the delay operator q−1 will be used for the time domain analysis.

4As indicated earlier, it is assumed that a reliable model identification is achieved and therefore the
estimated model is assumed to be equal to the true model.
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The control signal is given by

u(t) = −R(q−1) · y(t)− S∗(q−1) · u(t− 1), (6.5)

with

S(q−1) = 1 + q−1S∗(q−1) = 1 + s1q
−1 + . . .+ snSq

−nS

= S ′(q−1) ·HS(q−1), (6.6)

R(q−1) = r0 + r1q
−1 + . . .+ rnRq

−nR

= R′(q−1) ·HR(q−1), (6.7)

where HS(q−1) and HR(q−1) represent fixed (imposed) parts in the controller and S ′(q−1)
and R′(q−1) are computed. Under the hypothesis that the plant model parameters are
constant and that an accurate identification experiment can be run, a reliable estimate
p̂(t) of the disturbance signal can be obtained by using the following disturbance observer

p̂(t+ 1) = y(t+ 1)− q−d
B(q−1)
A(q−1)

u(t+ 1) (6.8)

= y(t+ 1)− q−d
B∗(q−1)
A(q−1)

u(t) (6.9)

as shown in Figure 6.1. The disturbance estimator (p̂(t)) is followed by a block which
estimates spikes’ frequencies and computes in real time the controller parameters.

6.3 Frequency Estimation Using Adaptive Notch Filters

The indirect adaptive regulation methodology presented here is based on the knowl-
edge of the spikes frequencies in the spectrum of the disturbance. In the framework
of narrow band disturbance rejection, it is usually supposed that the disturbances are
in fact sinusoidal signals with variable frequencies. In most of the situations encoun-
tered in practice, these frequencies are not known, thus the need for adaptive estimation
arises. As specified in the introduction, the hypothesis of known number of multiple nar-
row band disturbances is assumed (similar to [Landau et al., 2005, Landau et al., 2011e,
Chen and Tomizuka, 2012]). A technique based on ANFs will be used to estimate
the frequencies of the sinusoidal signals in the disturbance (details can be found in
[Nehorai, 1985, M’Sirdi et al., 1988]).

The general form of an ANF is

Hf (z−1) =
Af (z−1)
Af (ρz−1)

, (6.10)

where the polynomial Af (z−1) is such that the zeros of the transfer function Hf (z−1) lie
on the unit circle. A necessary condition for a monic polynomial to satisfy this property
is that its coefficients have a mirror symmetric form

Af (z−1) = 1+af1z
−1 + . . .+ afnz

−n + . . .+ a
f
1z
−2n+1 + z−2n. (6.11)

Another requirement is that the poles of the ANF should be on the same radial lines
as those of the zeros but slightly closer to the origin of the unit circle. Using filter
denominators of the general form Af (ρz−1) with ρ a positive real number smaller but



6.4. Indirect Adaptive Procedure Based on Band-stop Filters for Shaping the Sensitivity
Function 113

close to 1, the poles have the desired property and are in fact located on a circle of radius
ρ ([Nehorai, 1985]).

The estimation algorithm will be detailed next. It is considered that the disturbance
signal (or a good estimation) is available.

A cascade construction of second order ANF filters is considered. Their number is
given by the number of narrow band signals whose frequencies have to be estimated. The
main idea behind this algorithm is to consider the signal p̂(t) as having the form

p̂(t) =
n
∑

i=1

ci sin(ωi · t+ βi) + v(t), (6.12)

where v(t) is a noise affecting the measurement and n is the number of narrow band
signals with different frequencies.

The ANF cascade form will be given by (this is an equivalent representation of
eqs. (6.10) and (6.11))

Hf (z−1) =
n
∏

i=1

H i
f (z
−1) =

n
∏

i=1

1 + afiz−1 + z−2

1 + ρafiz−1 + ρ2z−2
. (6.13)

Next, the estimation of one spike’s frequency is considered, assuming convergence of
the other (n− 1) âfi (estimations of the true afi) to afi , which can thus be filtered out of
the estimated disturbance signal, p̂(t), by applying

p̂j(t) =
n
∏

i=1
i6=j

1 + afiz−1 + z−2

1 + ρafiz−1 + ρ2z−2
p̂(t). (6.14)

The prediction error is obtained from

ǫ(t) = Hf (z−1)p̂(t) (6.15)

and can be computed based on one of the p̂j(t) to reduce the computation complexity.
Each cell can be adapted independently after prefiltering the signal by the others.
Following the Recursive Prediction Error (RPE) technique, the gradient is obtained as

Ψj(t) = −
∂ǫ(t)
∂afj

=
(1− ρ)(1− ρz−2)

1 + ρafjz−1 + ρ2z−2
p̂j(t). (6.16)

The parametric adaptation algorithm can be summarized as

âfj(t) = âfj(t− 1) + F (t− 1) ·Ψj(t) · ǫ(t) (6.17)

F (t) =
F (t− 1)

λ+ F (t− 1)Ψj(t)2
, (6.18)

where âfj are estimations of the true afj , which are connected to the narrow band signals’
frequencies by ωfj = arccos(−a

fj

2
).

6.4 Indirect Adaptive Procedure Based on Band-stop Filters for Shaping
the Sensitivity Function

This section presents a technique of output sensitivity function shaping for narrow band
disturbance compensation. It will be used to compute the parameters of the adjustable
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controller. Here the controller’s parameters computation procedure considering con-
stant and known frequencies of the narrow band disturbances is presented. The design
uses BSFs to shape the output sensitivity functions. Following [Landau and Zito, 2005,
Procházka and Landau, 2003], there exists a digital filter HSi

PFi
which, if used in the design

of the controller, will assure the desired attenuation of a narrow band disturbance (index
i ∈ {1, . . . , n}). The numerator of the filter is directly included in the controller. The
denominator will specify a factor in the desired closed loop characteristic polynomial.

It is important to remark that one should only reject disturbances located in frequency
regions where the plant model has enough gain. The reason for this can be better
understood by looking at the transfer function from the disturbance to the controller
output. Perfect disturbance rejection at a certain frequency ω0 means having Syp(e−jω0) =
0. Taking into consideration the form of the output sensitivity function,

Syp(z−1) =
A(z−1)S(z−1)

A(z−1)S(z−1) + z−dB(z−1)R(z−1)
, (6.19)

and keeping in mind that A(z−1) and B(z−1) are fixed, it is easy to see that perfect
rejection can only be obtained if Syp(e−jω0) = 0. For the input sensitivity function,

Sup(z−1) = −
A(z−1)R(z−1)

A(z−1)S(z−1) + z−dB(z−1)R(z−1)
, (6.20)

this means that Sup(e−jω0) = A(e−jω0 )
B(e−jω0 )

. Therefore, if the gain of the model is too small
at the frequency ω0, the disturbance will be amplified to a value that could saturate or
damage the actuator (in addition this can lead to a lack of robustness with respect to
additive plant uncertainties).

The purpose of this method is to allow the possibility of choosing the desired attenu-
ation and bandwidth of attenuation for each of the estimated narrow band disturbances.
This is the main advantage with respect to classical internal model methods which, in
the case of several narrow band disturbances, as a consequence of complete cancellation
of the disturbances, may lead to unacceptable values of the modulus of the output sen-
sitivity function outside the attenuation regions. Choosing the level of attenuation and
the bandwidth allows to preserve the sensitivity functions outside the attenuation bands
and this is very useful in the case of multiple narrow band disturbances’ regulation.

As mentioned before, the algorithm makes use of the estimated frequencies of the
narrow band disturbances. These are needed to shape the output sensitivity function
using BSFs which have the following structure

SBSFi(z
−1)

PBSFi(z−1)
=

1 + βi1z
−1 + βi2z

−1

1 + αi1z
−1 + αi2z

−2
(6.21)

resulting from the discretization of a continuous filter (see also [Procházka and Landau, 2003,
Landau and Zito, 2005])

Fi(s) =
s2 + 2ζniωis+ ω2

i

s2 + 2ζdiωis+ ω2
i

(6.22)

using the bilinear transformation. This filter introduces an attenuation of

Mi = −20 · log10

(

ζni
ζdi

)

(6.23)
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at the frequency ωi. Positive values of Mi denote attenuations (ζni < ζdi) and negative
values denote amplifications (ζni > ζdi)

5.
Remark: the design parameters for each BSF are the desired attenuation (Mi), the

central frequency of the filter (ωi) and the damping of the denominator (ζdi). The
denominator damping is used to adjust the frequency bandwidth of the BSF. For very
small values of the frequency bandwidth, the influence of the filters on frequencies other
than those defined by ωi is negligible. Therefore, the number of BSFs and subsequently
that of the narrow band disturbances that can be compensated, can be as large as
necessary. However, for fast varying narrow band signals, it is recommended to use
larger values for the denominators’ dampings. In this situation, care has to be taken for
the constraint imposed by the Bode integral of the output sensitivity function.

In Figure 6.2, a comparison of the sensitivity functions of a nominal controller (which
does not attenuate disturbances) and two controllers that attenuate disturbances (one
using the IMP and the other one using BSFs) is shown. The method which uses BSFs,
for ζdi = 0.04 and an attenuation of −60 dB, ∀ i ∈ {1, 2, 3} (a level large enough in
most of the applications), introduces less alteration into the characteristics of the nominal
controller outside the attenuation band than the IMP controller. It can be concluded from
the input sensitivity function that the IMP controller might amplify the measurement
noise to a level that could saturate the system’s input6. Note that for the design of the
IMP controller, 3 pairs of poles close to the disturbances’ frequencies with damping 0.2
have been added to improve its robustness.

For n narrow band disturbances, n band-stop filters will be used

SBSF (z−1)
PBSF (z−1)

=
∏n
i=1 SBSFi(z

−1)
∏n
i=1 PBSFi(z−1)

. (6.24)

As stated before, the objective is that of shaping the output sensitivity function. The
characteristic polynomial

P (z−1) = A(z−1)S(z−1) + z−dB(z−1)R(z−1) (6.25)

can be rewritten, considering (6.6), (6.7), the factorizations of S(z−1) and R(z−1):

S(z−1) =HS(z−1)S ′(z−1), (6.26)

R(z−1) =HR(z−1)R′(z−1), (6.27)

and a factorization of P (z−1), as

P (z−1) = P0(z−1)PBSF (z−1) =A(z−1)HS(z−1)S ′(z−1)+

+ z−dB(z−1)HR1
(z−1)R′(z−1). (6.28)

In the last equation, PBSF is the combined denominator of all the band-stop filters, (6.24),
and P0 are other imposed poles of the closed loop system (usually for satisfying robustness
conditions). It is easy to see that the output sensitivity function becomes

Syp(z−1) =
A(z−1)S(z−1)

P0(z−1)PBSF (z−1)
. (6.29)

5For frequencies below 0.17fS (fS is the sampling frequency) the design can be done with a very good
precision directly in discrete time ([Landau and Zito, 2005]).

6The optimal design of the nominal controller when using IMP in order to minimize the effect of the
output sensitivity function outside the attenuation bands is still an open problem.
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Figure 6.2: Output (upper) and input (lower) sensitivity functions with nominal controller
(grey) and with controllers designed using BSFs (black) or the IMP (dotted grey). For
the BSF controller, ζdi = 0.04 and Mi = 60 dB. The attenuations are introduced at 50,
70, and 90 Hz.
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The fixed part of the controller denominator HS is in turn factorized into

HS(z−1) = SBSF (z−1)HS1
(z−1), (6.30)

where SBSF is the combined numerator of the band-stop filters, (6.24), and HS1
can be

used if necessary to satisfy other control specifications (in Section 6.6 it is equal to 1).
HR1

is similar to HS1
allowing to introduce fixed parts in the controller’s numerator if

needed (like opening the loop at certain frequencies). Equation (6.28) is called the Bezout
(or Diophantine) equation. The unknowns S ′ and R′ can be computed by putting (6.28)
into matrix form (see also [Landau and Zito, 2005]). Thus, the inclusion of the band-stop
filter in the output sensitivity function is achieved. The size of the matrix equation that
needs to be solved is nBez × nBez, where

nBez = nA + nB + d+ nHS1
+ nHR1

+ 2 · n− 1. (6.31)

nA, nB, and d are respectively the order of the plant’s model denominator, numerator, and
delay (given in (6.3) and (6.4)), nHS1

and nHR1
are the orders of HS1

(z−1) and HR1
(z−1)

respectively and n is the number of narrow band disturbances. Eq. (6.28) has an unique
minimal degree solution for S ′ and R′, if

nP ≤ nBez, (6.32)

where nP is the order of the pre-specified characteristic polynomial P (q−1). Also, it can
be seen from (6.28) and (6.30) that the minimal orders of S ′ and R′ will be

nS′ = nB + d+ nHR1
− 1, (6.33)

nR′ = nA + nHS1
+ 2 · n− 1. (6.34)

Note that for real time applications, the Diophantine equation has to be solved either
at each sampling time (adaptive operation) or each time when a change in the narrow
band disturbances’ frequencies occurs (self-tuning operation).

6.5 Implementation Using the Youla-Kučera Parametrization

The computational complexity related to the Bezout equation (6.28) is significant. In
this section, we show how the computation load of the algorithm can be reduced by the
use of the Youla-Kučera parametrization.

As before, a multiple band-stop filter

HBSF (z−1) =
SBSF (z−1)
PBSF (z−1)

=
∏n
i=1 SBSFi(z

−1)
∏n
i=1 PBSFi(z−1)

(6.35)

should be continuously calculated based on the estimated frequencies of the multiple
narrow band signal. The objective is to implement the design method described in
Section 6.4 using a Youla-Kučera parametrization of the controller.

Suppose that a nominal controller

R0(z−1) = HR1
(z−1)R′′(z−1), (6.36)

S0(z−1) = HS1
(z−1)S ′′(z−1) (6.37)
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is available, that assures nominal performances for the closed loop system in the absence
of narrow band disturbances. This controller satisfies the Bezout equation

P0(z−1) = A(z−1)S0(z−1) + z−dB(z−1)R0(z−1). (6.38)

A Youla-Kučera parametrization can offer the desired characteristics for disturbance
rejection, maintaining also the fixed parts of the nominal controller (HR1

(z−1) and
HS1

(z−1)) and is consequently used. For this purpose, the controller polynomials are
factorized as

R(z−1) =R0(z−1)PBSF (z−1) + A(z−1)HR1
(z−1)HS1

(z−1)Q(z−1), (6.39)

S(z−1) =S0(z−1)PBSF (z−1)− z−dB(z−1)HR1
(z−1)HS1

(z−1)Q(z−1), (6.40)

where Q(z−1) is a FIR filter computed in order to satisfy

P (z−1) = P0(z−1)PBSF (z−1), (6.41)

for P (z−1) in (6.25). R0(z−1), S0(z−1) are given by (6.36) and (6.37) respectively.
Taking into account (6.25), (6.28), and (6.30), it remains to compute Q(z−1) such

that
S(z−1) = SBSF (z−1)HS1

(z−1)S ′(z−1). (6.42)

Turning back to eq. (6.40) one obtains7

S0PBSF = SBSFHS1
S ′ + z−dBHR1

HS1
Q. (6.43)

and taking into consideration also (6.37) it results that

S ′′PBSF = SBSFS
′ + q−dBHR1

Q. (6.44)

In the last equation, the left side of the equal sign is known and on its right side only
S ′(z−1) and Q(z−1) are unknown. This is also a Bezout equation which can be solved by
finding the solution to a matrix equation of dimension nBezYK × nBezYK , where

nBezYK = nB + d+ nHR1
+ 2 · n− 1. (6.45)

As it can be observed, the size of the new Bezout equation is reduced in comparison to
(6.31) by nA + nHS1

. For systems with large dimensions, this has a significant influence
on the computation time (in Section 6.6, nA = 14, nB = 14, the number of sinusoids is
n ∈ {2, 3}, nHR1

= 2, nHS1
= 0, and d = 0). The nominal controller, being a unique and

minimal degree solution to a Bezout equation, satisfies

nS′′ = nB + d+ nHR1
− 1. (6.46)

By adding 2 · n in both sides of the last equation, one obtains

nS′′ + 2 · n = 2 · n+ nB + d+ nHR1
− 1 (6.47)

which proves that the solution of the simplified Bezout equation is unique and of minimal
degree. Furthermore, the order of the Q FIR filter is equal to 2 · n.

Figure 6.3 summarizes the implementation of the Youla-Kučera parameterized indirect
adaptive controller described in this section. The Youla-Kučera parameter in Figure 6.3
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Figure 6.3: Youla-Kučera scheme for indirect adaptive control.

is of the IIR filter type and it satisfies the controller factorization given by eqs. (6.39)
and (6.40).

The design parameters that need to be provided to the algorithm are: the number
of narrow band spikes in the disturbance (n), the desired attenuations and dampings of
the BSFs, either as unique values (Mi = M, ζdi = ζd, ∀i ∈ {1, . . . n}) or as individual
values for each of the spikes (Mi and ζdi), and the nominal controller (R0, S0) together
with its fixed parts (HR1

, HS1
). The control signal is computed by applying the following

procedure at each sampling time:

(a) Get the measured output y(t + 1) and the applied control u(t) to compute the
estimated disturbance signal p̂(t+ 1) as in (6.9).

(b) Estimate the disturbances’ frequencies using adaptive notch filters, eqs. (6.14)-(6.18).

(c) Calculate SBSF (z−1) and PBSF (z−1) as in (6.21) - (6.24).

(d) Find Q(z−1) by solving the reduced order Bezout equation (6.44).

(e) Compute and apply the control using (6.5) with R and S given respectively by (6.39)
and (6.40).

6.5.1 Stability Considerations

The stability analysis of the algorithm for adapting the notch filters has been done in
[Stoica and Nehorai, 1988] and will not be recalled here.

The stability of the closed loop for the case of known constant narrow band distur-
bances with the indirect adaptive controller is satisfied as the poles of the system are
given by those of the nominal controller and the poles of the band-stop filters, which are
always stable.

A complete stability analysis of the full adaptive control scheme remains to be done
and will be the subject of a future research.

7The argument (z−1) has been dropped to simplify the writing of the equation.
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6.6 Experimental Results

6.6.1 An active vibration control system using an inertial actu-
ator

The detailed system’s description has been given in Section 3. While the real system
remains unchanged, in this chapter only feedback control is experimented. This implies
that the measurement of the image of the disturbance obtained by the use of the
accelerometer positioned on plate M1 in Figure 3.1 is no longer necessary. Figure 6.4
presents the adaptive scheme in the context of feedback control. The disturbance p(t)
represents here the output of the global primary path (also called x(t) in Section 2.2).
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Figure 6.4: An AVC system using a feedback compensation - scheme.

As before, a sampling frequency of 800 Hz is been used.

6.6.2 Attenuation of multi-sinusoidal disturbance

An experimental comparison of the proposed algorithm with the direct adaptive con-
troller of [Landau et al., 2011e] is presented. A multi-sinusoidal signal has been used as
disturbance (input of the primary path).

The main advantage of the proposed method is that the BSFs can be adjusted in order
to satisfy the desired regulation objectives and, in the same time, to modify as little as
possible the closed loop characteristics outside the frequency regions of attenuation. This
can be done by choosing very small denominator dampings for the BSFs (in Figure 6.2,
ζd = 0.04 has been chosen). On the other hand, the direct adaptive algorithm of
[Landau et al., 2011e] has a strong influence outside the attenuation region when several
disturbances have to be rejected (as shown in Figure 6.2). Due to the time-varying nature
of the disturbance, in all of the following experiments, ζd has been chosen equal to 0.04.
Also, a 60 dB attenuation has been imposed on all of the BSFs. The nominal controller’s
characteristic polynomial, P0(z−1), contains all the undamped poles of the secondary
path and 15 additional real poles at 0.42 for robustness.

The results and their interpretations are given next. In this test, the sine signals
change their frequencies at given times. Two experiments have been run. 2 sine
signals have been used in the first (Figure 6.5) with a magnitude of 0.1 each and
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3 sine signals in the second (Figures 6.7 and 6.8) with a magnitude of 0.04 each in
order to avoid saturation of the control input with the direct adaptive controller of
[Landau et al., 2011e]. In Figures 6.5 and 6.7, the curves on top represent the effect of the
disturbance upon the residual acceleration in open loop operation, the ones in the middle
are the residual accelerations in closed loop with the proposed algorithm and the ones
on the bottom are the residual accelerations obtained with the direct adaptive regulator
of [Landau et al., 2011e]. Three sequences of multi-sinusoidal disturbances have been
applied to the primary path. Their corresponding frequencies are given in the figures.
The first sequence starts at 3 sec and the duration of each one is of 10 sec.
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Figure 6.5: Performance comparison in the presence of a two sine wave disturbance.

It should be observed that the proposed algorithm has very good stationary distur-
bance rejection properties but the one of [Landau et al., 2011e] is better with regard to
the transient behavior. As seen from Figure 6.8, the transient behavior of the proposed
method is mainly due to the ANFs frequency estimation. For 3 sines, the BSF outper-
forms the IMP controller.

Remark: for the rejection of 3 sines with the adaptive IMP algorithm, 3 pairs of
poles close to the disturbances’ frequencies with damping 0.2 have been added to the
nominal closed loop to improve its robustness outside the attenuation band removing,
for the minimality of the solution, 6 real poles with respect to the nominal characteristic
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Figure 6.6: PSD comparison between the open loop measured disturbance and the
residual accelerations obtained with the direct and the indirect compensators. In the
upper figure, the PSDs are obtained with a 512 points window. In the lower one, the size
of the window is 4096 points and therefore a better resolution is obtained. The input to
the primary path of obtained by adding to sinusoidal signals of 63 Hz and 88 Hz.

polynomial described earlier.
Further analysis can be done by looking at the power spectral density (PSD) esti-

mates (computed after the adaptation process has converged toward an almost constant
controller). In Figure 6.6, the PSD for 63 and 88 Hz disturbance are shown first with
a complete view and after that with a detailed view on the frequency region where the
attenuation is introduced. It should be observed that the direct adaptive algorithm
of [Landau et al., 2011e] introduces a significant amplification of the residual accelera-
tion between 190 Hz and 240 Hz (17db with respect to the open loop). This influ-
ences the global attenuation of the algorithm. A better global attenuation is obtained
by the proposed algorithm (65 dB) in comparison to the direct adaptive algorithm of
[Landau et al., 2011e] (54 dB).

6.7 Concluding Remarks

The technique of BSF to shape the output sensitivity function [Procházka and Landau, 2003]
is very appropriate for the attenuation of multiple narrow band disturbances in an
adaptive procedure. This design method has been transformed into an adaptive
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Figure 6.7: Performance evaluation in the presence of 3 variable sinusoidal signals.
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Figure 6.8: Three variable sinusoidal disturbances estimation using ANFs.

procedure by adding an estimator of the spikes’ frequencies characterizing unknown time
varying multiple narrow band disturbances. The experimental results show the potential
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of this approach to solve practical problems related to the attenuation of narrow band
disturbances. Future work will include stability analysis and possible development of a
direct adaptation algorithm to solve this adaptive regulation problem.

It should be pointed out that the ideas of this chapter provide also a way for improving
the robustness of the direct adaptive regulation of narrow band disturbances proposed in
[Landau et al., 2011e, Landau et al., 2005]. As explained before, the IMP method shows
robustness problems when trying to compensate a large number of disturbances. However,
the robustness can be improved by considering the scheme of Figure 6.3 in which only the
poles PBSF are now computed using the ANF estimation and the BSFs given in Section 6.4
while the polynomial Q is updated using the direct adaptation algorithm proposed in
[Landau et al., 2011e, Section V]. Choosing a denominator damping (for the BSFs) close
to or smaller than 0.2 for the BSFs will compensate for the loss of robustness due to the
use of the IMP. Furthermore, as it turns out, the direct estimated Q’s parameters will be
close to those of the BSF’s numerator (for sufficiently small values of the denominator
damping). One can consider this method also as a replacement of the Bezout equation
solving that has been proposed in this chapter.



Chapter 7

Concluding Remarks and Future
Work

7.1 Overall Conclusions

To conclude this work, a classification of the control strategies and their main objectives
and advantages is drawn.

Adaptive feedforward vibration compensation

The main concern of this thesis was the control of active vibration systems. Adaptive
and robust algorithms have been presented and tested on an experimental configuration.
A Strictly Positive Real condition has been found to provide the necessary stability and
convergence properties. Two different approaches have been followed.

The first algorithm is based on direct adaptation of the parameters of an IIR regulator
in the presence of a fixed feedback controller. The analysis has shown that, if the SPR
condition is satisfied, the algorithm is stable and parameter convergence can be obtained
even in the stochastic case, provided that a richness condition on the observation vector
is true. To relax the SPR condition, an “Integral + Proportional” Parameter Adaptation
Algorithm has been introduced and and analyzed.

The second class of algorithms is based on the use of the Youla-Kučera parametriza-
tion. This representation of the controller has been analyzed in the context of Ac-
tive Vibration Control. At first a FIR adaptive filter is used inside the Youla-Kučera
parametrization. Their main advantage is that the poles of the internal positive loop
remain unchanged as specified by the central controller. Nevertheless, a reduction of the
number of coefficients is obtained if one uses an IIR filter as Youla-Kučera parameter.
Although this scheme introduces new poles in the internal positive loop, these are the
poles of the QIIR filter and therefore their stability is easier to verify then for direct adap-
tive IIR schemes. The analysis of the adaptation algorithm is done in a similar manner
as for the direct adaptive IIR filter in the presence of internal positive feedback and an
analogous SPR condition is found.

Adaptive feedback vibrations compensation

The focus of this part of the thesis was set on adaptive feedback regulation. A new method
for adaptive indirect rejection of narrow band disturbances has been proposed. This is
done by first identifying the frequency characteristics of the disturbance using Adaptive
Notch Filters and then using adjustable Band-stop Filters to remove the influence of the
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perturbations. The advantage of this method is that it allows to adjust the attenuation
at each frequency and minimize the effect of the adaptive controller at neighboring
frequencies. In consequence, it is easier to obtain robust controllers than with methods
that use IMP where perfect cancellation is achieved.

7.2 Future Work

The algorithms have been presented in the context of Active Vibration Control systems
but they are also applicable to Active Noise Control systems. Taking into considera-
tions that in ANC systems the sampling frequencies are usually around 20, 000 Hz, it is
intended that in the future fast-array type versions of the algorithms should be imple-
mented.

Another perspective of future research is the introduction of an adaptive feedforward
+ adaptive feedback algorithm. It has been shown that a non-adaptive negative feedback
from the residual acceleration to the input of the secondary path can significantly improve
the global attenuation of the AVC system. Adapting also the feedback controller’s
parameters in the hybrid approach should improve on these results even further.

A different path of research is to analyze the influence of the Youla-Kučera
parametrization and the possible benefits of using it in the hybrid approach. In
Chapter4, the direct IIR has been analyzed in this context. A combination of YK and
direct adaptive regulators can also be considered.

A very important hypothesis for the development of the algorithms has been that the
plant model’s parameters do not change over time. This is not always true and, in future,
methods have to be proposed for obtaining similarly good results in a more general, time
varying context.

Another direction for future research is the development of multi variable control
algorithms for ANVC systems. In a number of situations (e.g., adaptive optics, multistage
active vibration isolation systems) a multi variable approach has to be considered.
Therefore, another direction of research is the development of control algorithms for
systems with more than one input and one output. One of the problems that arise in this
context is the computational complexity of the algorithms which should be taken into
account especially for very large systems.



Appendix A

Proofs for Chapter 4

A.1 Proof of the a posteriori adaptation error’s asymptotic stability in
Lemma 4.3.1

�

�
�

�

�

Figure A.1: Equivalent feedback representation of the PAA with "Integral + Proportional"
adaptation.

Before going into the details of the proof, [Landau and Silveira, 1979, Theo-
rem 1] and [Landau and Silveira, 1979, Lemma 2] will be recalled (note that in
[Landau and Silveira, 1979] the variable k has been used instead of t).

Theorem A.1.1. ([Landau and Silveira, 1979, Theorem 1]) A discrete linear time-
invariant system belonging to the class L(Λ) in feedback connection with a discrete linear
time-varying system belonging to the class N(Γ) is globally asymptotically stable if

Λ− Γ(t) ≥ 0, ∀ t ≥ t0. (A.1)

Lemma A.1.1. ([Landau and Silveira, 1979, Lemma 2]) The discrete linear time-
varying system described by

x(t+ 1) = A(t)x(t) +B(t)u(t) (A.2)

y(t) = C(t)x(t) +D(t)u(t) (A.3)

belongs to the class N(Γ) if there exist three sequences of positive (or semipositive) definite
matrices P (t), Q(t), and R(t), a matrix sequence S(t), and a sequence of symmetric
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matrices Γ(t) such that the following system of equations is satisfied:

AT (t)P (t+ 1)A(t)− P (t) = −Q(t) + CT (t)Γ(t)C(t) (A.4)

BT (t)P (t+ 1)A(t) + ST (t) = C(t) +DT (t)Γ(t)C(t) (A.5)

R(t)−DT (t)Γ(t)D(t) = D(t) +DT (t)−BT (t)P (t+ 1)B(t) (A.6)

and

M(t) =

[

Q(t) S(t)
ST (t) R(t)

]

≥ 0 (A.7)

with P (0) being bounded.

The proof of Lemma 4.3.1 is given next.

Proof. This result can be directly obtained by applying [Landau and Silveira, 1979, The-
orem 1]. The linear feedforward block belongs to the class L(λ2) as it can be concluded
from the condition that H ′(z−1) given in eq. (4.23) is SPR.

It remains to show that the feedback block belongs to the class N(γ), for γ(t) =
λ2(t). One can directly verify Lemma 2 of [Landau and Silveira, 1979] by considering an
equivalent feedback representation (EFR) of the adaptive feedback system given by the
eqs. (4.14a) - (4.14k) and (4.17) (Fig. A.1)

θ̃I(t) = θ̂I(t)− θ, (A.8)

ν(t+ 1) = −H(z−1)ΦT (t)θ̃(t+ 1) (A.9)

θ̃I(t+ 1) = θ̃I(t) + ξ(t)FI(t)Φ(t)ν(t+ 1), (A.10)

ȳe2(t) = ΦT (t)θ̃I(t) + ΦT (t)F (t)Φ(t)ν(t+ 1), (A.11)

In order to use Lemma 2 of [Landau and Silveira, 1979], one has to consider the following
change of notations:

A(t) = I, (A.12)

B(t) = ξ(t)FI(t)Φ(t), (A.13)

C(t) = ΦT (t), (A.14)

D(t) = ΦT (t)F (t)Φ(t). (A.15)

Then, eqs. (2.16)-(2.18) of [Landau and Silveira, 1979] are satisfied for

P (t) = F−1
I (t), (A.16)

Q(t) = [1− λ1(t)]F−1
I (t), (A.17)

S(t) = [1− λ1(t)]Φ(t), (A.18)

fFI (t)
def= ΦT (t)FI(t)Φ(t), (A.19)

fFP (t) def= ΦT (t)FP (t)Φ(t), (A.20)

R(t) = [2− λ1(t)]fFI (t) +
λ2

2(t)
λ1(t)

fFI (t)f
2
FP

(t)

+ λ2(t)f 2
FP

(t) + 2
λ2(t)
λ1(t)

fFI (t)fFP (t) + 2fFP (t). (A.21)
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Finally, condition (2.21) of [Landau and Silveira, 1979] is assured by the choice of γ(t) =
λ2(t) and the fact that the feedforward path is of the class L(λ2), where λ2 ≥ λ2(t) from
eq. (4.23).

Thus the conditions of Theorem 1 given in [Landau and Silveira, 1979] are satisfied
and the time-varying feedback system is asymptotically stable, which implies eq. (4.19).

A.2 Proof of Lemma 4.4.1

Proof. To analyse the strict positive realness of this transfer function, one has to check
first that it’s real part is strictly positive. We then have:

Re{
H(z−1)

1 +K ·H(z−1)
} = Re{

Re{H}+ jIm{H}

1 +K ·Re{H}+ jK · Im{H}
}

= Re{
(Re{H}+ jIm{H}) · (1 +K ·Re{H} − jK · Im{H})

(1 +K ·Re{H})2 + (K · Im{H})2
}

=
K ·Re{H}2 +Re{H}+K · Im{H}2

(1 +K ·Re{H})2 + (K · Im{H})2
. (A.22)

In eq. (A.22), the denominator is always strictly positive. Thus, the strict positive
realness is satisfied if K is chosen such that the numerator of eq. (A.22) is also strictly
positive. This is always true if K satisfies the relation

K >−
Re{H(e−jω)}

Re{H(e−jω)}2 + Im{H(e−jω)}2
, (A.23)

0 ≤ ω ≤ π · fS,

fS being the sampling frequency.
Next, the stability of the direct path is analyzed. Under hypothesis H6, the direct

path becomes:

H(q−1)
1 +K ·H(q−1)

=

∑nB
m=0

bmq
−m

1+
∑nA
p=1

apq−p

1 +K

∑nB
m=0

bmq−m

1+
∑nA
p=1

apq−p

(A.24)

=
∑nB
m=0 bmq

−m

1 +Kb0 +
∑nA
p=1 apq

−p +K
∑nB
m=1 bmq

−m
(A.25)

=
1

1+Kb0

∑nB
m=0 bmq

−m

1 +
∑nA
p=1

apq−p+K
∑nB
m=1

bmq−m

1+Kb0

. (A.26)

The poles of the direct path are thus given by the roots of the polynomial

P (q−1) = 1 +
∑nA
p=1 apq

−p +K
∑nB
m=1 bmq

−m

1 +Kb0

(A.27)

and assuming K large enough such that Kbm ≫ ap,∀m ∈ {1, . . . , nB}, p ∈ {1, . . . , nA},

P (q−1) ∼=







1 +
∑nB
m=1

bm
b0
q−m, if nB ≥ nA,

1 +
∑nB
m=1

bm
b0
q−m +

∑nA
p=nB+1

ap
1+Kb0

q−p, if nB < nA.
(A.28)
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Thus for nB ≥ nA, the poles and the zeros of the direct path become identical when
K → ∞. For nB < nA, in addition to the poles identical to the zeros of B(q−1), there
appear nA − nB poles that go to zero as K →∞.

It is now obvious that hypothesis H5 has been introduced to assure the stability of
the direct path when H6 is satisfied.

The necessity of hypothesis H6 is shown with the use of a counterexample. Let suppose
that b0 = 0. Then the direct path’s transfer function becomes

H(q−1)
1 +K ·H(q−1)

=
∑nB
m=1 bmq

−m

1 +
∑nA
p=1 apq

−p +K
∑nB
m=1 bmq

−m
. (A.29)

Taking a first order system as an example, H(q−1) = b1q−1

1+a1q−1 , it is evident that the poles
will be the zeros of 1 + (a1 +Kb1)q−1 = 0 and thus the direct path becomes unstable for
large enough K.

A.3 Proof of Theorem 4.4.1

Proof. The proof is similar to that of [Landau et al., 2011g, Theorem 3.3, pp. 109)]
where Lemma 3.3 (pp. 110) is replaced by Lemma 4.4.1 of this paper. However, the
details of the proof of Theorem 3.3 in [Landau et al., 2011g] are not given. For the sake
of completeness, the details of the proof of Theorem 4.4.1 are given next.

The proof is done by using [Landau and Silveira, 1979, Theorem 1]. The adaptive
system can be rearranged into the one given in Fig. 4.1. Under condition T1, the linear
feedforward block from ue1(t) to ν(t+ 1) belongs to the class L(0).

Given the choice in adaptation gain (λ2(t) ≡ 0, λ1(t) ≡ 1), the necessary condition
for asymptotic stability is only that the time-varying feedback block belongs to the class
N(0) and, therefore, its input-output product verifies Popov’s inequality (4.38),

t1
∑

t=0

ye2(t)ue2(t) =
t1
∑

t=0

ȳe2(t)ue2(t)−K
t1
∑

t=0

u2
e2(t) ≥ −γ

2
0 . (A.30)

It should be observed that with the current choice of λ2(t) ≡ 0, λ1(t) ≡ 1, one obtains
ξ(t) = 1 from eq. (4.14h).

Taking into consideration eqs. (A.10) and (A.11)

ȳe2(t)ue2(t) = ȳe2(t)ν(t+ 1) =θ̃TI (t+ 1)Φ(t)ν(t+ 1)+

+ ΦT (t)FP (t)Φ(t)ν2(t+ 1). (A.31)

The first term in the right hand side can be further expressed as (see also Lemma 3.2 of
[Landau et al., 2011g])

θ̃TI (t+ 1)Φ(t)ν(t+ 1) = θ̃TI (t+ 1)F−1
I θ̃I(t+ 1)− θ̃TI (t+ 1)F−1

I θ̃I(t). (A.32)

On the other hand

[θ̃I(t+ 1)− θ̃I(t)]TF−1
I [θ̃I(t+ 1)− θ̃I(t)] =θ̃TI (t+ 1)F−1

I θ̃I(t+ 1) + θ̃TI (t)F−1
I θ̃I(t)−

− 2θ̃TI (t+ 1)F−1
I θ̃I(t) ≥ 0, (A.33)
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from which, using (4.16) and (A.10), results

θ̃TI (t+ 1)F−1
I θ̃I(t) =

1
2
θ̃TI (t+ 1)F−1

I θ̃I(t+ 1)+

+
1
2
θ̃TI (t)F−1

I θ̃I(t)−
1
2

ΦT (t)FIΦ(t)ν2(t+ 1). (A.34)

Substituting the last equation back into (A.32) and using (4.16)

θ̃TI (t+ 1)Φ(t)ν(t+ 1) =
1
2
θ̃TI (t+ 1)F−1

I θ̃I(t+ 1)−

−
1
2
θ̃TI (t)F−1

I θ̃I(t) +
1
2

ΦT (t)FIΦ(t)ν2(t+ 1), (A.35)

and summing up from t = 0 to t1, one gets

t1
∑

t=0

ye2(t)ν(t+ 1) =
1
2
θ̃TI (t1 + 1)F−1

I θ̃I(t1 + 1)+

+
t1
∑

t=0

ΦT (t)
(1

2
FI + FP (t)

)

Φ(t)ν2(t+ 1)−

−K
t1
∑

t=0

ν2(t+ 1)−
1
2
θ̃TI (0)F−1

I θ̃I(0). (A.36)

From eq. (A.36) and the fact that FI is positive definite concludes that

t1
∑

t=0

ye2(t)ue2(t) ≥ −
1
2
θ̃TI (0)F−1

I θ̃I(0) (A.37)

as long as K satisfies condition T2 of the theorem, thus Popov’s inequality is satisfied
and the adaptive system is asymptotically stable.





Appendix B

Proofs for Chapter 5

B.1 Proof of Lemma 5.3.1

Proof. Using hypotheses H2 and H4 (perfect matching condition), one can construct an
equivalent closed loop system for the primary path as in Figure B.1.
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Figure B.1: Equivalent system representation for Youla-Kučera parameterized feedfor-
ward compensators.

Considering a Q(q−1) filter as in eq. (5.3), the polynomial S(q−1) given in eq. (3.13)
can be rewritten as

S(q−1) = 1 + q−1S∗ = 1 + q−1((AQS0)∗ −BQB
∗
M). (B.1)

Under hypothesis H4, the output of the primary path can be expressed as

x(t) = −z(t) = −G(q−1)u(t) (B.2)

and the input of the Youla-Kučera scheme as

y(t+ 1) = w(t+ 1) +
BM

AM
u(t+ 1), (B.3)
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where u(t) is a dummy variable given by

u(t+ 1) = −S∗u(t) +Ry(t+ 1)

= −((AQS0)∗ −BQB
∗
M)u(t) + (AQR0 −BQAM)y(t+ 1)

= −(AQS0)∗u(t) + AQR0y(t+ 1) +BQ (B∗Mu(t)− AMy(t+ 1)) . (B.4)

Similarly, the output of the adaptive feedforward filter (for a fixed Q̂) is given by

û(t+ 1) = −(ÂQS0)∗û(t) + ÂQR0ŷ(t+ 1) + B̂Q (B∗M û(t)− AM ŷ(t+ 1)) . (B.5)

The output of the secondary path is

ẑ(t) = G(q−1)û(t). (B.6)

Define the dummy error (for a fixed estimated set of parameters)

ǫ(t) = −u(t) + û(t) (B.7)

and the residual error

ν(t) = −e(t) = −(−z(t) + ẑ(t)) = −G(q−1)ǫ(t)). (B.8)

Eq. (B.4) can be rewritten as

u(t+ 1) =− (AQS0)∗û(t) + AQR0ŷ(t+ 1) +BQ [B∗M û(t)− AM ŷ(t+ 1)]−

− (AQS0)∗ [u(t)− û(t)] + AQR0 [y(t+ 1)− ŷ(t+ 1)] +

+BQ [B∗M(u(t)− û(t))− AM(y(t+ 1)− ŷ(t+ 1))] .

(B.9)

Taking into consideration eqs. (3.20) and (B.3)

BQ [B∗M(u(t)− û(t))− AM(y(t+ 1)− ŷ(t+ 1))] =

= −BQ

[

B∗Mǫ(t)− AM
B∗M
AM

ǫ(t)
]

= 0
(B.10)

and subtracting eq. (B.9) from (B.5) one obtains

ǫ(t+ 1) =− ((−AQ + ÂQ)S0)∗û(t) + (−AQ + ÂQ)R0ŷ(t+ 1)+

+ (−BQ + B̂Q)[B∗M û(t)− AM ŷ(t+ 1)]−

− (AQS0)∗ǫ(t) + AQR0
B∗M
AM

ǫ(t).

(B.11)

Passing the terms in ǫ(t) on the left hand side, it results
[

1 + q−1

(

AM(AQS0)∗ − AQR0B
∗
M

AM

)]

ǫ(t+ 1) =
AQP0

AM
ǫ(t+ 1) =

= (−A∗Q + Â∗Q)[−S0û(t) +R0ŷ(t)]

+ (−BQ + B̂Q)[BM û(t+ 1)− AM ŷ(t+ 1)].

(B.12)

Using eqs. (B.8) and (5.14)

ν(t+ 1) =
AM(q−1)G(q−1)
AQ(q−1)P0(q−1)

(θ − θ̂)Tφ(t), (B.13)

which corresponds to eq. (5.12) and thus ends the proof.
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B.2 Proof of Lemma 5.4.1

Proof. Using Theorem 3.2 from [Landau et al., 2011g], under the condition (5.35), (5.30)
and (5.32) hold.

However, in order to show that ν0(t + 1) goes to zero, one has to show first that
the components of the observation vector are bounded. The result (5.32) suggests to
use the Goodwin’s "bounded growth" lemma ([Landau et al., 2001b] and Lemma 11.1 in
[Landau et al., 2011g]). Provided that one has

|ψT (t)F (t)ψ(t)|
1

2 ≤ C1 + C2 · max
0≤k≤t+1

|ν0(k)| (B.14)

0 < C1 <∞, 0 < C2 <∞, F (t) > 0,

||ψ(t)|| will be bounded. So it will be shown that (B.14) holds. This will be proved for
Algorithm I (for Algorithms II and III, the proof is similar).

From (3.36) one has
− ẑ(t) = ν(t) + x(t). (B.15)

Since x(t) is bounded (output of an asymptotically stable system with bounded input),
one has

|ûf (t)| = |Gû(t)| = |ẑ(t)| ≤ C3 + C4 · max
0≤k≤t+1

|ν(k)|

≤ C ′3 + C ′4 · max
0≤k≤t+1

|ν0(k)| (B.16)

0 < C3, C4, C
′
3, C

′
4 <∞ (B.17)

since |ν(t)| ≤ |ν0(t)| for all t. Filtering both sides of eq. (3.20) by G(q−1), one gets in the
adaptive case

ŷf (t) = G · w(t) +
BM

AM
ûf (t). (B.18)

Since AG and AM are Hurwitz polynomials and w(t) is bounded, it results that

|ŷf (t)| ≤ C5 + C6 · max
0≤k≤t+1

|ν0(k)|; 0 < C5, C6 <∞. (B.19)

Using Eqs. (5.14a), (5.14b), (5.22), (B.17) and (B.19), one can conclude that

|αf (t)| ≤ C7 + C8 · max
0≤k≤t+1

|ν0(k)| (B.20)

and
|βf (t)| ≤ C9 + C10 · max

0≤k≤t+1
|ν0(k)|. (B.21)

Therefore, (B.14) holds, which implies that ψ(t) is bounded and one can conclude that
(5.34) also holds. End of the proof.

B.3 Changes to Lemma 5.3.1 when hypothesis H2 is not satisfied

When hypothesis H2 is not satisfied (ÂM 6= AM and B̂M 6= BM), hypotheses H3 and H4
become:



136 Appendix

H3) There exists a central feedforward compensator N0 (R0, S0) which stabilizes the
inner positive feedback loop formed by N0 and M and a QIIR filter (BQ, AQ) such
that the characteristic polynomial of the closed loop

P = AQP0 −BQ(AM B̂M − ÂMBM) (B.22)

is a Hurwitz polynomial.

H4) Perfect matching condition - There exists a value of the Q parameters such that

G · AM(R0AQ − ÂMBQ)

AQP0 −BQ(AM B̂M − ÂMBM)
= −D. (B.23)

Lemma B.3.1. Under the hypotheses H1, H3 - H6 for the system described by equa-
tions (3.2) - (3.34) (with K ≡ 0) using an estimated IIR Youla-Kučera parameterized

feedforward compensator with constant parameters θ̂, one has

ν(t+ 1) =
AMG

AQP0 −BQ(AM B̂M − ÂMBM)

[

θ − θ̂
]T
φ(t), (B.24)

where φ(t), α(t+ 1), and β(t) are given by eqs. (5.13), (5.14a), and (5.14b) respectively.

Proof. Using hypotheses H2 and H4 (perfect matching condition), one can construct an
equivalent closed loop system for the primary path as in Figure B.2.

�
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�

�
�
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Figure B.2: Equivalent system representation for Youla-Kučera parameterized feedfor-
ward compensators in the absence of hypothesis H2.

Considering a Q(q−1) filter as in eq. (5.3), the polynomial S(q−1) given in eq. (3.13)
can be rewritten as

S(q−1) = 1 + q−1S∗ = 1 + q−1((AQS0)∗ −BQB̂
∗
M). (B.25)
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Under hypothesis H4, the output of the primary path can be expressed as

x(t) = −z(t) = −G(q−1)u(t) (B.26)

and the input of the Youla-Kučera scheme as

y(t+ 1) = w(t+ 1) +
BM

AM
u(t+ 1), (B.27)

where u(t) is a dummy variable given by

u(t+ 1) = −S∗u(t) +Ry(t+ 1)

= −((AQS0)∗ −BQB̂
∗
M)u(t) + (AQR0 −BQÂM)y(t+ 1)

= −(AQS0)∗u(t) + AQR0y(t+ 1) +BQ

(

B̂∗Mu(t)− ÂMy(t+ 1)
)

. (B.28)

Similarly, the output of the adaptive feedforward filter (for a fixed Q̂) is given by

û(t+ 1) = −(ÂQS0)∗û(t) + ÂQR0ŷ(t+ 1) + B̂Q

(

B̂∗M û(t)− ÂM ŷ(t+ 1)
)

. (B.29)

The output of the secondary path is

ẑ(t) = G(q−1)û(t). (B.30)

Define the dummy error (for a fixed estimated set of parameters)

ǫ(t) = −u(t) + û(t) (B.31)

and the residual error

ν(t) = −e(t) = −(−z(t) + ẑ(t)) = −G(q−1)ǫ(t)). (B.32)

Eq. (B.28) can be rewritten as

u(t+ 1) = −(AQS0)∗û(t) + AQR0ŷ(t+ 1) +BQ

[

B̂∗M û(t)− ÂM ŷ(t+ 1)
]

−

− (AQS0)∗ [u(t)− û(t)] + AQR0 [y(t+ 1)− ŷ(t+ 1)] +

+BQ

[

B̂∗M(u(t)− û(t))− ÂM(y(t+ 1)− ŷ(t+ 1))
]

. (B.33)

Taking into consideration eqs. (3.20), (B.27)

BQ

[

B̂∗M(u(t)− û(t))− ÂM(y(t+ 1)− ŷ(t+ 1))
]

=

= −BQ

[

B̂∗Mǫ(t)− ÂM
B∗M
AM

ǫ(t)
]

= −BQ

AM B̂
∗
M − ÂMB

∗
M

AM
ǫ(t) 6= 0 (B.34)

and subtracting eq. (B.33) from (B.29) one obtains

ǫ(t+ 1) = −((−AQ + ÂQ)S0)∗û(t) + (−AQ + ÂQ)R0ŷ(t+ 1)+

+ (−BQ + B̂Q)[B̂∗M û(t)− ÂM ŷ(t+ 1)]−

− (AQS0)∗ǫ(t) + AQR0
B∗M
AM

ǫ(t) +BQ

AM B̂
∗
M − ÂMB

∗
M

AM
ǫ(t). (B.35)
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Passing the terms in ǫ(t) on the left hand side, it results
[

1 + q−1

(

AM(AQS0)∗ − AQR0B
∗
M

AM

)

− q−1BQ

AM B̂
∗
M − ÂMB

∗
M

AM

]

ǫ(t+ 1) =

=
AQP0 −BQ(AM B̂M − ÂMBM)

AM
ǫ(t+ 1) = (−A∗Q + Â∗Q)[−S0û(t) +R0ŷ(t)]+

+ (−BQ + B̂Q)[BM û(t+ 1)− AM ŷ(t+ 1)]. (B.36)

Using eqs. (B.32) and (5.14)

ν(t+ 1) =
AM(q−1)G(q−1)

AQ(q−1)P0(q−1)−BQ(AM B̂M − ÂMBM)
(θ − θ̂)Tφ(t), (B.37)

which corresponds to eq. (B.24) and thus ends the proof.

B.4 Changes to the stability condition when hypothesis H2 is not satisfied

The effects brought by the violation of hypothesis H2 upon the adaptation algorithms
are discussed in this section.

Remark: Suppression of this hypothesis does not influence the implementation of the
algorithms, which remains unchanged (the filter L has been given in Section 5.3).

The elimination of hypothesis H2 influences the stability condition for the adaptation
algorithms. In this context, the transfer function H(q−1), given by eq. (5.29), becomes,
for Algorithm IIa,

H = AM
G

Ĝ
·

1

AQ (AMS0 −BMR0)−BQ(AM B̂M − ÂMBM)
(B.38)

for Algorithm IIb,

H =
AM

ÂM
·
G

Ĝ
·

ÂMS0 − B̂MR0

AQ (AMS0 −BMR0)−BQ(AM B̂M − ÂMBM)
(B.39)

and, for Algorithm III,

H =
AM

ÂM
·
G

Ĝ
·

ÂQ
(

ÂMS0 − B̂MR0

)

AQ (AMS0 −BMR0)−BQ(AM B̂M − ÂMBM)
. (B.40)

Similar stability and convergence results are obtained under the perfect matching
condition (hypothesis H4). The strictly positive realness of the transfer function

H ′(z−1) = H(z−1)−
λ2

2
(B.41)

has to be checked, where H(z−1) is now computed, for Algorithms IIa, IIb, and III, as
shown in eqs. B.38, B.39, and B.40.

An analysis of the bias distribution in the absence of hypothesis H2 shows that
eq. (5.44) becomes

θ̂∗ = arg min
θ̂

∫ π

−π

[

∣

∣

∣GA2
M

∣

∣

∣

2
∣

∣

∣

∣

∣

S0ÂM −R0B̂M

ÂQP0 − B̂Q(AM B̂M − ÂMBM)
·

·
ÂQBQ − AQB̂Q

AQP0 −BQ(AM B̂M − ÂMBM)

∣

∣

∣

∣

∣

2

φw(ω) + φn(ω)



 dω, (B.42)
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which, if particularized for ÂM ≡ AM and B̂M ≡ BM , gives the result obtained in
eq. (5.45).
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1. Introduction

Adaptive feedforward broadband vibration (or noise) compen-
sation is currently used in ANC (Active Noise Control) and AVC (Ac-
tive Vibration Control) when a correlated measurement with the
disturbance (an image of the disturbance) is available (Elliott &Nel-
son, 1994; Elliott & Sutton, 1996; Kuo & Morgan, 1999; Zeng & de
Callafon, 2006). From the user’s point of view and taking into ac-
count the type of operation of adaptive disturbance compensation
systems, one has to consider two modes of operation of the adap-
tive schemes:

• Adaptive operation. The adaptation is performed continuously
with a non vanishing adaptation gain.

• Self-tuning operation. The adaptation procedure starts either on
demand orwhen the performance is unsatisfactory. A vanishing
adaptation gain is used.

At the end of the nineties it was pointed out that in many
systems there is a ‘‘positive’’ feedback coupling between the

✩ This paper was not presented at any IFAC meeting. This paper was

recommended for publication in revised form by Associate Editor Andrea Serrani

under the direction of Editor Miroslav Krstic.

E-mail addresses: ioan-dore.landau@gipsa-lab.grenoble-inp.fr (I.D. Landau),

marouane.alma@gipsa-lab.grenoble-inp.fr (M. Alma),

tudor-bogdan.airimitoaie@gipsa-lab.grenoble-inp.fr (T.-B. Airimitoaie).
1 Tel.: +33 4 7682 6391; fax: +33 4 7682 6382.

compensator system and the measurement of the image of the
disturbance. The positive feedbackmay destabilize the system. The
system is no longer a pure feedforward compensator. Different
solutions have been proposed to overcome this problem (Hu &
Linn, 2000; Jacobson, Johnson, Mc Cormick, & Sethares, 2001; Kuo
& Morgan, 1999, 1996; Zeng & de Callafon, 2006).

One of the solutions to overcome this problem (Kuo & Morgan,
1999) is to try to compensate for the positive feedback (Fraanje,
Verhaegen, &Doelman, 1999; Kuo&Morgan, 1999). However since
the compensation can not be perfect, the potential instability of the
system still exists (Bai & Lin, 1997; Wang & Ren, 1999).

Another approach discussed in the literature is the analysis in
this new context of existing algorithms for adaptive feedforward
compensation developed for the case without feedback. An
attempt is made in Wang and Ren (1999) where the asymptotic
convergence in a stochastic environment of the so called ‘‘Filtered-
U LMS’’ (FULMS) algorithm is discussed. Further results on the
same direction can be found in Fraanje et al. (1999). The authors
use Ljung’s ODEmethod (Ljung & Söderström, 1983) for the case of
a scalar vanishing adaptation gain. Unfortunately this is not enough
because nothing is said about the stability of the system with
respect to initial conditions and when a non vanishing adaptation
gain is used (to keep adaptation capabilities). The authors assume
that the positive feedback does not destabilize the system.

A stability approach for developing appropriate adaptive
algorithms in the context of internal positive feedback is discussed
in Jacobson et al. (2001). Unfortunately the results are obtained
in the context of very particular assumptions upon the system,

0005-1098/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.

doi:10.1016/j.automatica.2011.08.015
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namely that the transfer function of the physical compensator
system (called ‘‘secondary path’’ — see Section 2) is strictly positive
real, that the feedback path and the primary path (the transfer
between the disturbance and the residual error) can be described
by FIR (finite impulse response) models. Only the case of constant
scalar adaption gain is considered. Convergence analysis in the
stochastic case with a vanishing adaption gain is not provided.

An interesting approach is adopted in Zeng and de Callafon
(2006) using a Youla–Kucera parametrization (Q – parametriza-
tion) of the feedforward compensator. A fixed stabilizing feedfor-
ward filter is first designed and a recursive self-tuning procedure
for estimating the Q filter is implemented using input–output data
acquired without the compensator. Details are not given concern-
ing a possible adaptive operation in the presence of the feedfor-
ward compensator. A stability analysis of the self-tuning algorithm
is not provided.

The problem of the internal positive feedback can be properly
addressed in the context of H∞ or H2 model based design. This
approach has been considered in Bai and Lin (1997), Rotunno and
de Callafon (1999) and Alma, Martinez, Landau, and Buche (2011).
However the resulting compensator does not have adaptation
capabilities and its performance is not necessarily very good.
Provided that the high dimension of the resulting compensator can
be reduced, it may constitute an ‘‘initial’’ value for the parameters
of an adaptive or self-tuning feedforward compensator. In Bai and
Lin (1997) it is shown experimentally that the results obtained
with the H∞ approach are better than those obtained using
the very popular FULMS adaptation algorithm (for a disturbance
with known spectral characteristics). A similar comparison done
experimentally in this paper confirms this fact. However this is
no more true when comparing the H∞ design with the adaptive
algorithms introduced in the present paper (see Section 7).

It is important to remark that all these contributions (ex-
cept Alma et al., 2011) have been done in the context of active
noise control. While the algorithms for active noise control can be
used in active vibration control, one has to take into account the
specificity of these latter systemswhich featuremany low damped
vibrationmodes (resonance) and lowdamped complex zeros (anti-
resonance).

The main contributions of the present paper are:

• Development of new real time recursive adaptation algorithms
for active vibration control systems with mechanical coupling.

• Stability analysis (in a deterministic context) and convergence
analysis (in a stochastic context) of the algorithms.

• Application of the algorithms to an active vibration control
system (most of the available control literature deal only with
active noise control).

• Comparison of the new algorithms with existing algorithms
(both theoretically and experimentally).

While the algorithms have been developed in the context of
AVC, they are certainly applicable to ANC systems with acoustic
coupling.

The paper is organized as follows. The AVC system on which
the algorithms will be tested is presented in Section 2. The system
representation and feedforward compensator structure are given
in Section 3. The algorithm for adaptive feedforward compensation
will be developed in Section 4 and analysed in Section 5. Section 6
will present a comparison with other algorithms. Section 7 will
present experimental results obtained on the active vibration
control systemwith the algorithms introduced in this paper aswell
as with two other adaptive algorithms given in the literature.

2. An active vibration control system using an inertial actuator

Figs. 1 and 2 represent an AVC system using a correlated
measurement with the disturbance and an inertial actuator for

Fig. 1. An AVC system using a feedforward compensation — photo.

reducing the residual acceleration. The structure is representative
for a number of situations encountered in practice.

The system consists of three mobile metallic plates (M1, M2,
M3) connected by springs. The first and the third plates are also
connected by springs to the rigid part of the system formed by
two other metallic plates connected themselves rigidly. The upper
and lower mobile plates (M1 and M3) are equipped with inertial
actuators. The one on the top serves as disturbance generator
(inertial actuator 1 in Fig. 2), the one at the bottom serves
for disturbance compensation (inertial actuator 2 in Fig. 2). The
system is equipped with a measure of the residual acceleration
(on plate M3) and a measure of the image of the disturbance
made by an accelerometer posed on plate M1. The path between
the disturbance (in this case, generated by the inertial actuator
on top of the structure), and the residual acceleration is called
the global primary path. The path between the measure of the
image of the disturbance and the residual acceleration (in open
loop) is called the primary path and the path between the inertial
actuator for compensation and the residual acceleration is called
the secondary path. When the compensator system is active, the
actuator acts upon the residual acceleration, but also upon the
measurement of the image of the disturbance (a positive feedback).
The measured quantity û(t) will be the sum of the correlated
disturbance measurement d(t) obtained in the absence of the
feedforward compensation (see Fig. 3(a)) and of the effect of the
actuator used for compensation.

The disturbance is the position of the mobile part of the inertial
actuator (see Figs. 1 and2) located on topof the structure. The input
to the compensator system is the position of the mobile part of the
inertial actuator located on the bottom of the structure.

The input to the inertial actuators being a position, the global
primary path, the secondary path and the positive feedback path
have a double differentiator behavior.

The corresponding block diagrams in open loop operation and
with the compensator system are shown in Fig. 3(a) and (b),
respectively. In Fig. 3(b), û(t) denotes the effective output provided
by the measurement device and which will serve as input to the

adaptive feedforward filter N̂ . The output of this filter denoted by
ŷ(t) is applied to the actuator through an amplifier. The transfer
function G (the secondary path) characterizes the dynamics from

the output of the filter N̂ to the residual accelerationmeasurement
(amplifier + actuator + dynamics of the mechanical system). The
transfer function D between d(t) and the measurement of the
residual acceleration (in open loop operation) characterizes the
primary path.

The coupling between the output of the filter and the
measurement û(t) through the compensator actuator is denoted
byM . As indicated in Fig. 3(b) this coupling is a ‘‘positive’’ feedback.
This unwanted coupling raises problems in practice (source of
instabilities) and makes the analysis of adaptive (estimation)
algorithms more difficult.
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Fig. 2. An AVC system using a feedforward compensation — scheme.

Fig. 3. Feedforward AVC: in open loop (a) and with adaptive feedforward

compensator (b).

At this stage it is important to make the following remarks,

when the feedforward filter is absent (open loop operation):

• very reliable models for the secondary path and the ‘‘positive’’

feedback path can be identified by applying appropriate

excitation on the actuator.

• An estimation of the primary path transfer function can be

obtained using the measured d(t) as input and χ(t) as output

(the compensator actuator being at rest).

The objective is to develop stable recursive algorithms for

online estimation and adaptation of the parameters of the

feedforward filter compensator (which will be denoted N̂) such

that the measured residual error (acceleration or force in AVC,

noise in ANC) be minimized in the sense of a certain criterion.

This has to be done for broadband disturbances d(t) (or s(t)) with

unknown and variable spectral characteristics and an unknown
primary path model.2

3. Basic equations and notations

The description of the various blocks will be made with respect
to Fig. 3.

The primary path is characterized by the asymptotically stable
transfer operator3:

D(q−1) =
BD(q

−1)

AD(q−1)
(1)

where

BD(q
−1) = bD1q

−1 + · · · + bDnBD
q−nBD (2)

AD(q
−1) = 1 + aD1q

−1 + · · · + aDnAD
q−nAD . (3)

The unmeasurable value of the output of the primary path (when
the compensation is active) is denoted x(t).

The secondary path is characterized by the asymptotically
stable transfer operator:

G(q−1) =
BG(q

−1)

AG(q−1)
(4)

where:

BG(q
−1) = bG1q

−1 + · · · + bGnBG
q−nBG = q−1B∗

G(q
−1) (5)

AG(q
−1) = 1 + aG1q

−1 + · · · + aGnAG
q−nAG . (6)

The positive feedback coupling is characterized by the asymptoti-
cally stable transfer operator:

M(q−1) =
BM(q

−1)

AM(q−1)
(7)

2 Variations of the unknown model W , the transfer function between the

disturbance s(t) and d(t) are equivalent to variations of the spectral characteristics

of s(t).
3 The complex variable z−1 will be used for characterizing the system’s behavior

in the frequency domain and the delay operator q−1 will be used for describing the

system’s behavior in the time domain.
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where:

BM(q
−1) = bM1 q−1 + · · · + bMnBM

q−nBM = q−1B∗
M(q

−1) (8)

AM(q
−1) = 1 + aM1 q−1 + · · · + aMnAM

q−nAM . (9)

Both BG and BM have a one step discretization delay. The identified
models of the secondary path and of the positive feedback coupling

will be denoted Ĝ and M̂ , respectively.
The optimal feedforward filter (unknown) is defined by:

N(q−1) =
R(q−1)

S(q−1)
(10)

where:

R(q−1) = r0 + r1q
−1 + · · · + rnRq

−nR (11)

S(q−1) = 1 + s1q
−1 + · · · + snSq

−nS = 1 + q−1S∗(q−1). (12)

The estimated filter is denoted by N̂(q−1) or N̂(θ̂ , q−1) when it

is a linear filter with constant coefficients or N̂(t, q−1) during
estimation (adaptation) of its parameters.

The input of the feedforward filter is denoted by û(t) and it
corresponds to the measurement provided by the primary trans-
ducer (force or acceleration transducer in AVC or a microphone in
ANC). In the absence of the compensation loop (open loop oper-
ation) û(t) = d(t). The ‘‘a posteriori’’ output of the feedforward
filter (which is the control signal applied to the secondary path) is

denoted by ŷ(t + 1) = ŷ(t + 1 | θ̂ (t + 1)). The ‘‘a priori’’ output of
the estimated feedforward filter is given by:

ŷ0(t + 1) = ŷ(t + 1 | θ̂ (t))

= −Ŝ∗(t, q−1)ŷ(t)+ R̂(t, q−1)û(t + 1)

= θ̂ T (t)φ(t) = [θ̂ TS (t), θ̂
T
R (t)]

[
φŷ(t)
φû(t)

]
(13)

where

θ̂ T (t) = [ŝ1(t) . . . ŝnS (t), r̂0(t) . . . r̂nR(t)] = [θ̂ TS (t), θ̂
T
R (t)] (14)

φT (t) = [−ŷ(t) . . .− ŷ(t − nS + 1, û(t + 1),

û(t) . . . û(t − nR + 1))]

= [φT
ŷ (t), φ

T
û (t)] (15)

and ŷ(t), ŷ(t − 1) . . . are the ‘‘a posteriori’’ outputs of the
feedforward filter generated by:

ŷ(t + 1) = ŷ(t + 1 | θ̂ (t + 1)) = θ̂ T (t + 1)φ(t) (16)

while û(t + 1), û(t) . . . are the measurements provided by the
primary transducer.4 The unmeasurable ‘‘a priori’’ output of the
secondary path will be denoted ẑ0(t + 1).

ẑ0(t + 1) = ẑ(t + 1 | θ̂ (t)) =
B∗
G(q

−1)

AG(q−1)
ŷ(t). (17)

The ‘‘a posteriori’’ unmeasurable value of the output of the
secondary path is denoted by:

ẑ(t + 1) = ẑ(t + 1 | θ̂ (t + 1)). (18)

The measured primary signal (called also reference) satisfies the
following equation:

û(t + 1) = d(t + 1)+
B∗
M(q

−1)

AM(q−1)
ŷ(t). (19)

4 û(t + 1) is available before adaptation of parameters starts at t + 1.

The measured residual error satisfies the following equation:

χ0(t + 1) = χ(t + 1 | θ̂ (t)) = ẑ0(t + 1)+ x(t + 1). (20)

The ‘‘a priori’’ adaptation error is defined as:

ν0(t + 1) = −χ0(t + 1) = −x(t + 1)− ẑ0(t + 1). (21)

The ‘‘a posteriori’’ adaptation (residual) error (which is computed)
will be given by:

ν(t + 1) = ν(t + 1 | θ̂ (t + 1)) = −x(t + 1)− ẑ(t + 1). (22)

When using an estimated filter N̂ with constant parameters:
ŷ0(t) = ŷ(t), ẑ0(t) = ẑ(t) and ν0(t) = ν(t).

4. Development of the algorithms

The algorithms for adaptive feedforward compensation will be
developed under the following hypotheses:

(1) H1 — The signal d(t) is bounded i.e.

|d(t)| ≤ α ∀t (0 ≤ α ≤ ∞) (23)

(which is equivalently to say that s(t) is bounded and W (q−1)
in Fig. 3 is asymptotically stable).

(2) H2 — Perfect matching condition. There exists a filter N(q−1)
of finite dimension such that5:

D = −
N

(1 − NM)
G (24)

and the characteristic polynomial of the ‘‘internal’’ feedback
loop:

P(z−1) = AM(z
−1)S(z−1)− BM(z

−1)R(z−1) (25)

is a Hurwitz polynomial.
(3) H3 — The effect of the measurement noise upon the measured

residual error is neglected (deterministic context).
(4) H4—Theprimary pathmodelD(z−1) is unknownand constant.

Once the algorithms will be developed under these hypotheses,
hypotheses (2) and (3) will be removed and the algorithms will be
analyzed in this modified context.

A first step in the development of the algorithms is to establish
a relation between the errors on the estimation of the parameters
of the feedforward filter and the measured residual acceleration.
This is summarized in the following lemma.

Lemma 4.1. Under hypotheses H1 through H4, for the system
described by Eqs. (1) through (22) using a feedforward compensator

N̂ with constant parameters, one has:

ν(t + 1) =
AM(q

−1)G(q−1)

P(q−1)
[θ − θ̂ ]Tφ(t) (26)

where

θ T = [s1, . . . snS , r0, r1, . . . rnR ] = [θ TS , θ
T
R ] (27)

is the vector of parameters of the optimal filter N assuring perfect
matching

θ̂ T = [ŝ1 . . . ŝnS , r̂0 . . . r̂nR ] = [θ̂ TS , θ̂
T
R ] (28)

is the vector of constant estimated parameters of N̂ and φ(t) and
û(t + 1) are given by (15) and (19).

The proof of this lemmma is given in Appendix A.

5 In many cases, the argument q−1 or z−1 will be dropped out.
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Filtering the vector φ(t) through an asymptotically stable filter

L(q−1) =
BL
AL
, Eq. (26) for θ̂ = constant becomes:

ν(t + 1) =
AM(q

−1)G(q−1)

P(q−1)L(q−1)
[θ − θ̂ ]Tφf (t) (29)

with:

φf (t) = L(q−1)φ(t). (30)

Eq. (29) will be used to develop the adaptation algorithms
neglecting for themoment the non-commutativity of the operators

when θ̂ is time varying (however an exact algorithm can be derived
in such cases — see Landau, Lozano, and Saad (1997)).

Replacing the fixed estimated parameters by the current
estimated parameters, Eq. (29) becomes the equation or the a-
posteriori residual error ν(t + 1) (which is computed):

ν(t + 1) =
AM(q

−1)G(q−1)

P(q−1)L(q−1)
[θ − θ̂ (t + 1)]Tφf (t). (31)

Eq. (31) has the standard form for an a-posteriori adaptation
error (Landau et al., 1997), which immediately suggests to use the
following parameter adaptation algorithm:

θ̂ (t + 1) = θ̂ (t)+ F(t)ψ(t)ν(t + 1); (32)

ν(t + 1) =
ν0(t + 1)

1 + ψT (t)F(t)ψ(t)
; (33)

F(t + 1) =
1

λ1(t)

[
F(t)−

F(t)ψ(t)ψT (t)F(t)
λ1(t)

λ2(t)
+ ψT (t)F(t)ψ(t)

]
(34)

1 ≥ λ1(t) > 0; 0 ≤ λ2(t) < 2; F(0) > 0 (35)

ψ(t) = φf (t) (36)

where λ1(t) and λ2(t) allow to obtain various profiles for the
matrix adaptation gain F(t) (see Section 7 and Landau et al., 1997).
By taking λ2(t) ≡ 0 and λ1(t) ≡ 1, one gets a constant adaptation
gain matrix (and choosing F = γ I , γ > 0 one gets a scalar
adaptation gain).

Three choices for the filter Lwill be considered, leading to three
different algorithms: Algorithm I: L = G.

Algorithm II: L = Ĝ.

Algorithm III:

L =
ÂM

P̂
Ĝ (37)

where:

P̂ = ÂM Ŝ − B̂M R̂ (38)

is an estimation of the characteristic polynomial of the internal
feedback loop computed on the basis of available estimates of the

parameters of the filter N̂ .

For Algorithm III several options for updating P̂ can be
considered:

• Run Algorithm II for a certain time to get estimates of R̂ and Ŝ.
• Run a simulation (using the identified models).

• Update P̂ at each sampling instant or from time to time
using Algorithm III (after a short initialization horizon using
Algorithm II).

The following procedure is applied at each sampling time for
adaptive or self-tuning operation:

(1) Get the measured image of the disturbance û(t + 1), the
measured residual error χ0(t + 1) and compute ν0(t + 1) =
−χ0(t + 1)

(2) Compute φ(t) and φf (t) using (15) and (30)

(3) Estimate the parameter vector θ̂ (t + 1) using the parametric
adaptation algorithm (32) through (36).

(4) Compute (using (16)) and apply the control.

5. Analysis of the algorithms

5.1. The deterministic case — perfect matching

For algorithms I–III the equation for the a-posteriori adaptation
error has the form:

ν(t + 1) = H(q−1)[θ − θ̂ (t + 1)]Tψ(t) (39)

where:

H(q−1) =
AM(q

−1)G(q−1)

P(q−1)L(q−1)
, ψ = φf . (40)

Neglecting the non-commutativity of time varying operators, one
has the following result.

Lemma 5.1. Assuming that Eq. (39) represents the evolution of the
a posteriori adaptation error and that the parameter adaptation
algorithm (32) through (36) is used, one has:

lim
t→∞

ν(t + 1) = 0 (41)

lim
t→∞

[ν0(t + 1)2]

1 + ψ(t)T F(t)ψ(t)
= 0 (42)

‖ψ(t)‖ is bounded (43)

lim
t→∞

ν0(t + 1) = 0 (44)

for any initial conditions θ̂ (0), ν0(0), F(0), provided that:

H ′(z−1) = H(z−1)−
λ2

2
, max

t
[λ2(t)] ≤ λ2 < 2 (45)

is a strictly positive real transfer function.

Proof. Using Theorem 3.3.2 from Landau et al. (1997), under the
condition (45), (41) and (42) hold.

However in order to show that ν0(t + 1) goes to zero one
has to show first that the components of the observation vector
are bounded. The result (42) suggests to use Goodwin’s ‘‘bounded
growth’’ lemma (Landau, Karimi, and Constantinescu (2001a) and
lemma 11.2.1 in Landau et al. (1997)).

Provided that one has:

|ψT (t)F(t)ψ(t)|
1
2 ≤ C1 + C2. max

0≤k≤t+1
|ν0(k)| (46)

0 < C1 < ∞ 0 < C2 < ∞ F(t) > 0

‖ψ(t)‖ will be bounded. So it will be shown that (46) holds for
Algorithm I (for algorithms II and III the proof is similar). From (22)
one has:

− ẑ(t) = ν(t)+ x(t). (47)

Since x(t) is bounded (output of an asymptotically stable system
with bounded input), one has:

| − ŷf (t)| = | − Gŷ(t)| = | − ẑ(t)| ≤ C3 + C4 · max
0≤k≤t+1

|ν(k)|

≤ C ′
3 + C ′

4 · max
0≤k≤t+1

|ν0(k)| (48)

0 < C3, C4, C
′
3, C

′
4 < ∞ (49)

since |ν(t)| ≤ |ν0(t)| for all t . Filtering both sides of Eq. (19) by
G(q−1) one gets in the adaptive case:

ûf (t) =
BG

AG

d(t)+
BM

AM

ŷf (t). (50)
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Since AG and AM are Hurwitz polynomials and d(t) is bounded, it
results that:

|ûf (t)| ≤ C5 + C6 · max
0≤k≤t+1

|ν0(k)|; 0 < C5, C6 < ∞. (51)

Therefore (46) holds, which implies that ψ(t) is bounded and one
can conclude that (44) also holds. End of the proof. �

It is interesting to remark that for Algorithm III taking into
account Eq. (37), the stability condition is that:

AM

ÂM

·
P̂

P
·
G

Ĝ
−
λ2

2
(52)

should be a strictly positive real transfer function. However this
condition can be re-written for λ2 = 1 as (Ljung, 1977; Ljung &
Söderström, 1983):
∣∣∣∣∣∣

(
AM

ÂM

·
P̂

P
·
G

Ĝ

)−1

− 1

∣∣∣∣∣∣
< 1 (53)

for allω. This roughly means that it always holds provided that the
estimates of AM , P , and G are close to the true values (i.e. H(ejω) in
this case is close to a unit transfer function).

5.2. The stochastic case — perfect matching

There are two sources of measurement noise, one acting on the
primary transducer which gives the correlated measurement with
the disturbance and the second acting on the measurement of the
residual error (force, acceleration). For the primary transducer the
effect of the measurement noise is negligible since the signal to
noise ratio is very high. The situation is different for the residual
error where the effect of the noise can not be neglected.

In the presence of the measurement noise (w), the equation of
the a-posteriori residual error becomes:

ν(t + 1) = H(q−1)[θ − θ̂ (t + 1)]Tψ(t)+ w(t + 1). (54)

The O.D.E. method (Ljung, 1977; Ljung & Söderström, 1983) can be
used to analyze the asymptotic behavior of the algorithm in the
presence of noise. Taking into account the form of Eq. (54), one can
directly use Theorem 4.2.1 of Landau et al. (1997) or Theorem B1
of Landau and Karimi (1997).

The following assumptions will be made:

(1) λ1(t) = 1 and λ2(t) = λ2 > 0

(2) θ̂ (t) generated by the algorithm belongs infinitely often to the
domain DS :

DS , {θ̂ : P̂(z−1) = 0 ⇒ |z| < 1}

for which stationary processes:

ψ(t, θ̂ ) , ψ(t)|θ̂ (t)=θ̂=const

χ(t, θ̂ ) = χ(t)|θ̂ (t)=θ̂=const

can be defined.
(3) w(t) is a zeromean stochastic processwith finitemoments and

is independent of the sequence d(t).

From (54) for θ̂ (t) = θ̂ , one gets:

ν(t + 1, θ̂ ) = H(q−1)[θ − θ̂ ]Tψ(t, θ̂ )+ w(t + 1, θ̂ ). (55)

Since ψ(t, θ̂ ) depends upon d(t) one concludes that ψ(t, θ̂ ) and

w(t + 1, θ̂ ) are independent. Therefore using Theorem 4.2.1
from Landau et al. (1997) it results that if:

H ′(z−1) =
AM(z

−1)G(z−1)

P(z−1)L(z−1)
−
λ2

2
(56)

is a strictly positive real transfer function, one has: Prob{limt→∞

θ̂ (t) ∈ DC } = 1 where: DC = {θ̂ : ψT (t, θ̂ )(θ − θ̂ ) = 0}.

If furthermore ψT (t, θ̂ )(θ − θ̂ ) = 0 has a unique solution
(richness condition), the condition that H ′(z−1) be strictly positive

real implies that: Prob{limt→∞ θ̂ (t) = θ} = 1.

5.3. The case of non-perfect matching

If N̂(t, q−1) does not have the appropriate dimension there is
no chance to satisfy the perfect matching condition.

Two questions are of interest in this case:

(1) The boundedness of the residual error
(2) The bias distribution in the frequency domain.

5.3.1. Boundedness of the residual error

For analyzing the boundedness of the residual error, results
from Landau and Karimi (1997); Landau et al. (2001a), can be used.
The following assumptions are made:

(1) There exists a reduced order filter N̂ characterized by the

unknown polynomials Ŝ (of order nS) and R̂ (of order nR), for

which the closed loop formed by N̂ and M is asymptotically

stable. i.e. AM Ŝ − BM R̂ is a Hurwitz polynomial.
(2) The output of the optimal filter satisfying the matching

condition can be expressed as:

ŷ(t + 1) = −[Ŝ∗(q−1)ŷ(t)− R̂(q−1)û(t + 1)+ η(t + 1)] (57)

where η(t + 1) is a norm bounded signal.

Using the results of Landau and Karimi (1997) (Theorem 4.1
pp. 1505–1506) and assuming that d(t) is norm bounded, it can be
shown that all the signals are norm bounded under the passivity
condition (45), where P is computed now with the reduced order
estimated filter.

5.3.2. Bias distribution

Using Parseval’s relation, the asymptotic bias distribution of the
estimated parameters in the frequency domain can be obtained
starting from the expression of ν(t), by taking into account
that the algorithm minimizes (almost) a criterion of the form

limN→∞
1
N

∑N
t=1 ν

2(t).
The bias distribution (for Algorithm III) will be given by:

θ̂∗ = argmin
θ̂

∫ π

−π



∣∣∣∣∣D(jω)−

N̂(jω)G(jω)

1 − N̂(jω)M(jω)

∣∣∣∣∣

2

φd(ω)

+ φw(ω)

]
dω (58)

where φd and φw are the spectral densities of the disturbance d(t)
and of the measurement noise. Taking into account Eq. (24), one
obtains:

θ̂∗ = argmin
θ̂

∫ π

−π

[|SNM |2|N − N̂|2|SN̂M |2|G|2φd(ω)

+φw(ω)]dω (59)

where SNM and SN̂M are the output sensitivity functions of the

internal closed loop for N and respectively N̂: SNM = 1
1−NM

; SN̂M =
1

1−N̂M
.

From (58) and (59) one concludes that a good approximation of
N will be obtained in the frequency region where φd is significant
and where G has a high gain (usually G should have high gain in
the frequency region where φd is significant in order to counteract

the effect of d(t)). However the quality of the estimated N̂ will
be affected also by the output sensitivity functions of the internal
closed loop N − M .
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5.4. Relaxing the positive real condition

It is possible to relax the strictly positive real (S.P.R.) conditions
taking into account that:

(1) The disturbance (input to the system) is a broadband signal.

(2) Most of the adaptation algorithms work with a low adaptation
gain.

Under these two assumptions, the behavior of the algorithmcan
bewell described by the ‘‘averaging theory’’ developed inAnderson
et al. (1986) and Ljung and Söderström (1983) (see also Landau
et al., 1997).

When using the averaging approach, the basic assumption of
a slow adaptation holds for small adaptation gains (constant and
scalar in Anderson et al. (1986) i.e. λ2(t) ≡ 0, λ1(t) = 1; matrix
and time decreasing asymptotically in Ljung and Söderström
(1983) and Landau et al. (1997) i.e limt→∞ λ1(t) = 1, λ2(t) =
λ2 > 0 or scalar and time decreasing).

In the context of averaging, the basic condition for stability is
that:

lim
N→∞

1

N

N∑

t=1

ψ(t)H ′(q−1)ψT (t) =
1

2

∫ π

−π

ψ(ejω)[H ′(ejω)

+H ′(e−jω)]ψT (e−jω)dω > 0 (60)

be a positive definite matrix (ψ(ejω) is the Fourier transform of
ψ(t)).

One can view (60) as the weighted energy of the observation
vectorψ . Of course the S.P.R sufficient condition uponH ′(z−1) (see
Eq. (45)) allows to satisfy this condition. However in the averaging
context it is only necessary that (60) is true which allows that H ′

be non positive real in a limited frequency band. Expression (60)
can be re-written as follows:
∫ π

−π

ψ(ejω)[H ′ + H ′∗ ]ψT (e−jω)dω

=

r∑

i=1

∫ αi+∆i

αi

ψ(ejω)[H ′ + H ′∗ ]ψT (e−jω)dω

−

p∑

j=1

∫ βj+∆j

βj

ψ(ejω)[H̄ ′ + H̄ ′∗]ψT (e−jω)dω > 0 (61)

whereH ′ is strictly positive real in the frequency intervals [αi, αi+
∆i] and H̄ ′ = −H ′ is positive real in the frequencies intervals
[βj, βj + ∆j] (H ′∗ denotes the complex conjugate of H ′). The
conclusion is that H ′ does not need to be S.P.R. It is enough that
the ‘‘positive’’ weighted energy exceeds the ‘‘negative’’ weighted
energy. This explains why algorithms I and II will work in practice
in most of the cases. It is however important to remark that if the
disturbance is a single sinusoid (which violates the hypothesis of
broadband disturbance) located in the frequency region where H ′

is not S.P.R, the algorithm may diverge (see Anderson et al., 1986;
Ljung & Söderström, 1983).

Without doubt, the best approach for relaxing the S.P.R.
conditions, is to use Algorithm III (given in Eq. (37)) instead of
Algorithm II. This is motivated by Eqs. (52) and (53). As it will be
shown experimentally, this algorithm gives the best results.

6. Comparison with other algorithms

The algorithms developed in this paper with matrix and
scalar adaptation gain for IIR feedforward compensators will be
compared with the algorithm of Jacobson et al. (2001) and the
FULMS (Wang & Ren, 1999) algorithm. These two references

Fig. 4. Frequency characteristics of the primary, secondary and reverse paths.

consider the same type of compensator and take into account the
internal positive feedback.6

Table 1 summarizes the structure of the algorithms, the stability
and convergence conditions as well as the hypotheses upon the
structure of the system. The notations adopted in this paper were
used to describe the other algorithms. A table in Appendix B
gives the equivalence of the notations between the present paper
and the notations used in Jacobson et al. (2001) and Wang
and Ren (1999). It was not possible to give in Table 1 all the
options for the adaptation gain. However basic characteristics for
adaptive operation (non vanishing adaptation gain) and self-tuning
operation (vanishing adaptation gain) have been provided7.

7. Experimental results

A detailed view of the mechanical structure used for the
experiments has been given in Fig. 1 and the description of the
system has been given in Section 2.

7.1. System identification

The models of the plant may be obtained by parametric system
identification with the same methodology used for an active
suspension in Landau et al. (2001a) and Landau, Constantinescu,
Loubat, Rey, and Franco (2001b).

The secondary path between the control signal ŷ(t) and the
output χ(t) has been identified in the absence of the feedforward
compensator. The excitation signal was a PRBS generated with
a shift register with N = 10 and a frequency divider of p =
4. The estimated orders of the model are nBG = 15, nAG =
13. The best results in terms of model validation were obtained
with the Recursive Extended Least Square method. The frequency
characteristic of the secondary path is shown in Fig. 4 (solid). There
are several very low damped vibration modes in the secondary
path. The first vibration mode is at 46.56 Hz with a damping of
0.013, the second at 83.9 Hz with a damping of 0.011, the third
one at 116 Hz with a damping of 0.014. There is also a pair of
low damped complex zeros at 108 Hz with a damping of 0.021.
There are two zeros on the unit circle corresponding to the double
differentiator behavior.

The reverse path M(q−1) has been identified in the absence
of the feedforward compensator with the same PRBS excitation
(N = 10 and a frequency divider of p = 4) applied at ŷ(t) and
measuring the output signal of the primary transducer û(t). The
estimated orders of the model are nBM = 15, nAM = 13. The
frequency characteristic of the reverse path is presented in Fig. 4

6 Algorithms dedicated to FIR feedforward compensators have not been

considered because they are particular cases of the algorithms for IIR compensators.
7 Convergence analysis can be applied only for vanishing adaptation gains.
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Table 1
Comparison of algorithms for adaptive feedforward compensation in AVC with mechanical coupling.

Paper (matrix gain) Paper (scalar gain) Jacobson–Johnson

(scalar gain)

FULMS (scalar gain)

θ̂ (t + 1) = θ̂ (t)+ F(t)ψ(t) ν0(t+1)

1+ψT (t)F(t)ψ(t)
θ̂ (t)+ γ (t)ψ(t) ν0(t+1)

1+γ (t)ψT (t)ψ(t)
θ̂ (t)+

µγψ(t) ν0(t+1)

1+γψT (t)ψ(t)

θ̂ (t)+ γ (t)ψ(t − 1)ν0(t)

Adapt. gain F(t + 1)−1 = λ1(t)F(t)+
λ2(t)ψ(t)ψ

T (t) 0 ≤ λ1(t) <

1, 0 ≤ λ2(t) < 2, F(0) > 0

γ (t) > 0 γ > 0, 0 < µ ≤ 1 γ (t) > 0

Adaptive Decr. gain and const. trace γ (t) = γ = const γ > 0 γ (t) = γ = const

Self tuning λ2 = const. limt→∞ λ1(t) = 1
∑∞

t=1 γ (t) =
∞, limt→∞ γ (t) = 0

Does not apply
∑∞

t=1 γ (t) = ∞, limt→∞ γ (t) = 0

φT (t) = [−ŷ(t), . . . , û(t + 1), . . .] [−ŷ(t), . . . , û(t + 1), . . .] [−ŷ(t), . . . , û(t +
1), . . .]

[−ŷ(t), . . . , û(t + 1), . . .]

ψ(t) = Lφ(t)L2 = Ĝ; L3 =
ÂM

P̂
ĜP̂ =

ÂM Ŝ − B̂M R̂

Lφ(t)L2 = Ĝ; L3 =
ÂM

P̂
Ĝ P̂ =

ÂM Ŝ − B̂M R̂

φ(t) Lφ(t) L = Ĝ

G =
BG
AG

BG = b1G z
−1 + b2G z

−2 + · · ·

AG = 1 + a1G z
−1 + a2G z

−2 + · · ·

BG = b1G z
−1 + b2G z

−2 + · · ·

AG = 1 + a1G z
−1 + · · ·

BG = 1, AG = 1 or

G = SPR

BG = b1G z
−1 + b2G z

−2 + · · ·

AG = 1 + a1G z
−1 + · · ·

M =
BM
AM

BM = b1M z−1 + b2M z−2 + · · ·

AM = 1 + a1M z−1 + a2M z−2 + · · ·

BM = b1M z−1 + b2M z−2 + · · ·

AM = 1 + a1M z−1 + · · ·

BM =
b1M z−1 + b2M z−2 + · · ·
AM = 1

BM = b1M z−1 + b2M z−2 + · · ·
AM = 1

D =
BD
AD

BD = b1D z
−1 + b2D z

−2 + · · ·

AD = 1 + a1D z
−1 + a2D z

−2 + · · ·

BD = b1D z
−1 + b2D z

−2 + · · ·

AD = 1 + a1D z
−1 + · · ·

BD =
b1D z

−1 + b2D z
−2 + · · ·

AD = 1

BD = b1D z
−1 + b2D z

−2 + · · ·

AD = 1 + a1D z
−1 + · · ·

Stability Condition
AMG

PL
− λ

2
= SPR

λ = max λ2(t)

AMG

PL
= SPR G = SPR Unknown

Conv. Condition
AMG

PL
− λ

2
= SPR

λ = λ2

AMG

PL
= SPR Does not Apply G

PĜ
= SPR

(dotted). There are several very low damped vibration modes at

46.20 Hz with a damping of 0.045, at 83.9 Hz with a damping

of 0.01, at 115 Hz with a damping of 0.014 and some additional

modes in high frequencies. There are two zeros on the unit circle

corresponding to the double differentiator behavior.

The primary path has been identified in the absence of the

feedforward compensator using d(t) as an input and measuring

χ(t). The disturbance s(t) was a PRBS sequence (N = 10,

frequency divider p = 2). The estimated orders of the model are

nBD = 26, nAD = 26. The frequency characteristic is presented

in Fig. 4 (dashed) and may serve for simulations and detailed

performance evaluation. Note that the primary path features a

strong resonance at 108 Hz, exactly where the secondary path has

a pair of low damped complex zeros (almost no gain). Therefore

one can not expect good attenuation around this frequency.

7.2. Broadband disturbance rejection using matrix adaptation gain

The performance of the system for rejecting broadband

disturbances will be illustrated using the adaptive feedforward

scheme. The adaptive filter structure for most of the experiments

has been nR = 9, nS = 10 (total of 20 parameters) and

this complexity does not allow to verify the ‘‘perfect matching

condition’’ (not enough parameters). The influence of the number

of parameters upon the performance of the system has been also

investigated (up to 40 parameters).

A PRBS excitation on the global primary pathwill be considered

as the disturbance. The corresponding spectral densities of d(t) in

open loop and of û(t) when feedforward compensation is active

are shown in Fig. 5 (the effect of the mechanical feedback is

significant).

For the adaptive operation, algorithms II and III have been

used with decreasing adaptation gain (λ1(t) = 1, λ2(t) = 1)
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Fig. 5. Spectral densities of the image of the disturbance in open loop d(t) and in

feedforward compensation scheme û(t) (experimental).

combined with a constant trace adaptation gain.8 Once the trace
of the adaptation gain is below a given value, one switches to the
constant trace gain updating. The trace of the adaptation gain F(t)
is kept constant by modifying appropriately λ1(t) for a fixed ratio
α = λ1(t)/λ2(t). The corresponding formula is:

trF(t + 1) =
1

λ1(t)
tr

[
F(t)−

F(t)ψ(t)ψ(t)T F(t)

α + ψ(t)T F(t)ψ(t)

]

= tr F(t). (62)

The advantage of the constant trace gain updating is that the
adaptation moves in an optimal direction (least squares) but the
size of the step does not go to zero. For details see Landau and Zito
(2005) and Landau et al. (1997).

8 Almost similar results are obtained if instead of the ‘‘decreasing adaptation

gain’’ one uses adaptation gain updating with variable forgetting factor λ1(t) (the

variable forgetting factor tends towards 1).
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Fig. 6. Real time results obtained with Algorithm II using matrix adaptation gain.

Fig. 7. Real time results obtained with Algorithm III using matrix adaptation gain.

Fig. 8. Evolution of the feedforward compensator parameters for Algorithm III

using matrix adaptation gain (experimental).

The experiments have been carried on by first applying
the disturbance and then starting the adaptive feedforward
compensation after 50 s. Time domain results obtained in open
loop and with adaptive feedforward compensation algorithms II
and III on the AVC system are shown in Figs. 6 and 7, respectively.
The filter for Algorithm III has been computed based on the
parameter estimates obtained with Algorithm II at t = 3600 s
(almost the same results are obtained if the initialization horizon
is of the order of 200 s). The initial trace of the matrix adaptation
gain for 20 parameters was 10 and the constant trace has been
fixed at 0.2. As it can be seen the transient duration for Algorithm II
is approximatively 75 s while for Algorithm III it is approximately
12 s.

The variance of the residual forcewithout the feedforward com-
pensator is: var(χ(t) = x(t)) = 0.0354. With adaptive feed-
forward compensation Algorithm II, the variance is: var(χ(t)) =
0.0058 (evaluated after 175 s, when the transient is finished). This
corresponds to a global attenuation of 15.68 dB. Using Algorithm III
the variance of the residual acceleration is: var(χ(t)) = 0.0054.
This corresponds to a global attenuation of 16.23 dB, which is an
improvement with respect to Algorithm II. The convergence of the
parameters ismuch slower (but this does not have an impact on the

Fig. 9. Power spectral densities of the residual acceleration in open loop and with

adaptive feedforward compensation (experimental).

Table 2
Influence of the number of parameters upon the global attenuation.

Number of parameters 20 32 40

Global attenuation (db) 16.23 16.49 16.89

performance). This is illustrated in Fig. 8. The experiment has been
carried out over 12 h using Algorithm III. Fig. 9 shows the power
spectral densities of the residual accelerationmeasured on the AVC
in open loop (without compensator) and using adaptive feedfor-
ward compensation (after the adaptation transient i.e. 175 s). The
corresponding global attenuations are also given. Algorithm III per-
forms slightly better than Algorithm II. The influence of the num-
ber of parameters upon the performance of the system is sum-
marized in Table 2 for the case of Algorithm III. The global atten-
uation is slightly improved when the number of parameters of
the compensator is augmented over 20 (the PSD are almost the
same).

To test the adaptive capabilities of the algorithms, a sinusoidal
disturbance has been added at 1500 s (adaptation algorithm III
with constant trace set at 1). Fig. 10 shows the time domain
results in the case when the adaptation is stopped prior to the
application of the sinusoidal disturbance (upper diagram) and
when the adaptation is active (lower diagram). The duration of the
transient is approximatively 25 s. Fig. 11 shows the evolution of
the parameters when the sinusoidal disturbance is applied. The
power spectral densities when adaptation is stopped prior to the
application of the sinusoidal disturbance and when adaptation is
active are shown in Fig. 12. One can remark a strong attenuation
of the sinusoidal disturbance (larger than 35 dB) without
affecting other frequencies (similar results are obtained with
Algorithm II).

7.3. Broadband disturbance rejection using scalar adaptation gain

Experiments have been carried out under the same protocol
using the algorithmswith scalar adaptation gain given in column 2
(introduced in this paper), 3 (Jacobson et al., 2001) and 4 (Wang &
Ren, 1999) of Table 1. The algorithm of Jacobson–Johnson (column
3)was unstable even for very low adaptation gain. The explanation

is clear. It does not use filtering at least by Ĝ and since G is not
positive real (in particular in the frequency zone where most of
the energy of the disturbance is concentrated) the instability is not
surprising. Tomake a fair comparison the same adaptation gain has
been used for the algorithms given in columns 2 and 4 of Table 1.
Since the FULMS is very sensitive to the value of the adaptation
gain (becomes easily unstable and the transients are very bad) a
value for the adaptation gain of 0.001 has been chosen (for a higher
value FULMS is unstable). This value corresponds to a trace of a
diagonal matrix adaptation gain of 0.02when using a compensator
filter with 20 parameters.
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Fig. 10. Real time results for rejection of an additional sinusoidal disturbance.

Upper diagram: adaptation stopped prior application of the disturbance. Lower

diagram: adaptation is active.

Fig. 11. Evolution of the compensator parameters when a sinusoidal disturbance

is added (experimental).

Fig. 12. Power spectral densities of the residual acceleration when an additional

sinusoidal disturbance is added (Disturbance = PRBS + sinusoid).

Fig. 13 shows the adaptation transient for the FULMS algorithm.
The maximum value is unacceptable in practice (one can not
tolerate an overshoot over 30% of the uncompensated residual
acceleration). Fig. 14 shows the adaptation transient for the scalar
version of Algorithm III, which is surprisingly good. Almost same
transient behavior is obtained with the scalar version of Algorithm
II. Figs. 15 and 16 show the evolution of the parameters for the
FULMS algorithm and the scalar version of Algorithm III. One
can see jumps in the evolution of the parameters for the FULMS
algorithms and instabilities occur on a long run. For Algorithm III,
evolution of the parameters is smooth and no instabilities occur in
a long run (12 h). Comparing Figs. 16 and 8 one can see that the
convergence point in the parameter space is not the same. Either
the algorithm with scalar gain has not yet converged or there are
several local minima in the case of a compensator with not enough
parameters for satisfying the perfect matching condition.

Fig. 13. Real time results obtained with FULMS algorithm.

Fig. 14. Real time results obtained with Algorithm III using scalar adaptation gain.

Fig. 15. Evolution of the feedforward compensator parameters (experimental) —

Algorithm FULMS.

Fig. 16. Evolution of the feedforward compensator parameters (experimental) —

Algorithm III using scalar adaptation gain.

The performances in the frequency domain are summarized
in Fig. 17 where the power spectral densities and the global
attenuation provided by the algorithms with scalar adaptation
gain are shown. In Fig. 17 the performances of a H∞ compensator
designed in Alma et al. (2011) are also given (initial complexity:
70 parameters, reduced to 40 without loss of performance). The
H∞ design provides better performance than the FULMS but less
goodperformance than algorithms II and III in their scalar ormatrix
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Fig. 17. Spectral densities of the residual acceleration in open loop and

with adaptive feedforward compensation using scalar adaptation gain or H∞

compensator.

Fig. 18. Spectral densities of the residual acceleration in open loop and with adap-

tive feedforward compensation using scalar adaptation gain (Disturbance = PRBS

+sinusoid) (experimental).

version (despite that the number of filter parameters is divided
by 2).

Adaptation capabilities have been tested by adding a sinusoidal
disturbance like for the case of matrix adaptation gain. The
FULMS has been destabilized by the application of the sinusoidal
disturbance. Fig. 18 shows the power spectral densities of the
residual acceleration when the adaptation is stopped before
the sinusoidal disturbance is applied, when the adaptation is
active and when the H∞ compensator (not designed for this
supplementary disturbance) is used. The performance of the
adaptation algorithm III with scalar gain is inferior compared with
the case of matrix adaption gain (see Fig. 12). The sinusoidal
disturbance is attenuated in the scalar case by 20 dB while the
attenuation is over 35 dBwith amatrix adaptation gain. In addition
the performance is degraded in the frequency region 170–270 Hz
which does not occur when using a matrix adaption gain. The
H∞ compensator does very little attenuation of the sinuosoidal
disturbance (2.6 dB). It does not have ‘‘adaptation capabilities’’.

8. Concluding remarks

The paper has presented several new algorithms for adaptive
feedforward compensation in AVC systems taking into account the
existence of an inherent internal positive feedback coupling.

Theoretical analysis has pointed out the presence of a sufficient
condition for stability involving a positive real condition on a
certain transfer function. This condition can be relaxed by taking
into account the nature of the disturbance (broadband) or by an
appropriate filtering of the regressor vector.

Real time results obtained on an active vibration control system
have shown the feasibility and good performance of the proposed
algorithms. The algorithms have been compared theoretically and
experimentally with two other algorithms for which an analysis in
the context of the internal positive feedback is available as well as

with an H∞ controller. It will be interesting to test the proposed
algorithms on ANC systems.

Subjects for further researchmay include: (1) initialization pro-
cedures using model based designed feedforward compensators,
(2) imposing constraints on the poles of the internal positive feed-
back loop.

Appendix A. Proof of Lemma 4.1

Proof. Under the assumption H2 (perfect matching condition) the
output of the primary path can be expressed as: equation

x(t) = −G(q−1)y(t) (63)

where y(t) is a dummy variable given by:

y(t + 1) = −S∗(q−1)y(t)+ R(q−1)u(t + 1)

= θ Tϕ(t) = [θ TS , θ
T
R ]

[
ϕy(t)
ϕu(t)

]
(64)

where:

θ T = [s1, . . . snS , r0, r1, . . . rnR ] = [θ TS , θ
T
R ] (65)

ϕT (t) = [−y(t) . . .− y(t − nS + 1), u(t + 1) . . . u(t − nR + 1)]

= [ϕT
y (t), ϕ

T
u (t)] (66)

and u(t) is given by:

u(t + 1) = d(t + 1)+
B∗
M(q

−1)

AM(q−1)
y(t). (67)

For a fixed value of the parameter vector θ̂ characterizing the

estimated filter N̂(q−1) of same dimension as the optimal filter
N(q−1), the output of the secondary path can be expressed by (in
this case ẑ(t) = ẑ0(t) and ŷ(t) = ŷ0(t)):

ẑ(t) = G(q−1)ŷ(t) (68)

where:

ŷ(t + 1) = θ̂ Tφ(t). (69)

The key observation is that the dummy variable y(t + 1) can be
expressed as:

y(t + 1) = θ Tφ(t)+ θ T [ϕ(t)− φ(t)]

= θ Tφ(t)+ θ TS [ϕy − φŷ] + θ TR [ϕu − φû]. (70)

Define the dummy error (for a fixed vector θ̂ )

ε(t + 1) = y(t + 1)− ŷ(t + 1) (71)

and the adaptation error becomes:

ν(t + 1) = −x(t)− ẑ(t) = G(q−1)ε(t + 1). (72)

It results from (70) by taking into account the expressions of u(t)
and û(t) given by (19) and (67) that:

y(t + 1) = θ Tφ(t)−

(
S∗(q−1)−

R(q−1)B∗
M(q

−1)

AM(q−1)

)
ε(t). (73)

Using Eqs. (69) and (71), one gets (after passing all terms in ε on
the left hand side):

ε(t + 1) =
AM(q

−1)

P(q−1)
[θ − θ̂ ]Tφ(t). (74)

Taking now into account Eq. (72) one obtains Eq. (26). End of the
proof. �
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Table 3
Present notations compared to those of Jacobson et al. (2001) and Wang and Ren

(1999).

Present paper In Jacobson et al. (2001) In Wang and Ren (1999)

t k k

D P G

G C P

BM F F

AM 1 1

N W C

R b0 + b1q
−1 + · · · A

S 1 − a1q
−1 − · · · B

d s x

ŷ ŷ u

û u x + Fu

γ 1
δ

γ

φ φ φ

ψ = Lφ φ P̂φ

F 1
δ
I γ I

Appendix B. Equivalence of notations

See Table 3.
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a b s t r a c t

In Jacobson, Johnson, Mc Cormick, and Sethares (2001) and Landau, Alma, and Airimiţoaie (2011)
adaptation algorithms taking into account the ‘‘positive’’ feedback coupling arising in most of the active
noise and vibration control systems have been proposed and analyzed. The stability of the system requires
satisfaction of a positive real condition through an appropriate filtering of the regressor vector. It is shown
in this note that the presence in addition of a feedback controller on one hand strongly influences the
positive real conditions for stability and the structure of the filter to be used in the algorithm and on the
other hand improves significantly the performance of the system. Experimental results obtained on an
active vibration control (AVC) system clearly illustrate the benefit of using a hybrid adaptive feedforward
+ feedback approach.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Adaptive feedforward for broadbanddisturbance compensation
is widely used when a well correlated signal with the disturbance
(image of the disturbance) is available (Elliott & Nelson, 1994;
Elliott & Sutton, 1996; Kuo & Morgan, 1999; Zeng & de Callafon,
2006). However in many systems there is a positive (mechanical
or acoustical) coupling between the feedforward compensation
system and the measurement of the image of the disturbance.

In Jacobson et al. (2001) and Landau et al. (2011) adaptation
algorithms taking in account this ‘‘positive’’ feedback have been
proposed and analyzed. The stability of the system requires
satisfaction of a positive real condition through an appropriate
filtering of the regressor vector. The objective of this note is to
show theoretically and experimentally what the impact of using a
feedback compensator in addition to an adaptive feedforward filter
as discussed in Landau et al. (2011) is.

A combination of adaptive feedforward + fixed feedback
disturbance compensation has already been discussed since it
is expected to improve the performance of active noise control

✩ The material in this paper was not presented at any conference. This paper was
recommended for publication in revised form by Associate Editor A. Pedro Aguiar
under the direction of Editor André L. Tits.

E-mail addresses: marouane.alma@gipsa-lab.grenoble-inp.fr (M. Alma),
ioan-dore.landau@gipsa-lab.grenoble-inp.fr (I.D. Landau), a_tudor_b@yahoo.com
(T.-B. Airimitoaie).
1 Tel.: +33 4 7682 6391; fax: +33 4 7682 6382.

(ANC) and active vibration control (AVC) systems. See for example
De Callafon (2010), Ray, Solbeck, Streeter, and Collier (2006),
Esmailzadeh, Alasty, and Ohadi (2002). However the influence
of the feedback upon the stability of the adaptive feedforward
algorithms has not been examined.

The main contributions of the present paper are:

• Establishing the influence of the feedback control loop upon
the stability conditions for adaptive feedforward compensation
(with and without internal positive coupling)

• Showing the improvement of the global attenuation w.r.t
results obtained with adaptive feedforward compensation
(Landau et al., 2011).

2. Basic equations and notations

The block diagram associated with an AVC system using a
hybrid (feedback + adaptive feedforward) control is shown in
Fig. 1.

The description, equations and notations of the various blocs
and transfer functions have been presented in detail in Landau

et al. (2011) Eqs. (1)–(12). D =
BD
AD
,G =

BG
AG
,M =

BM
AM

represent

the transfer operators associated with the primary, secondary
and reverse paths (all asymptotically stable). The feedforward

compensator is N̂ = R̂

Ŝ
with:

R̂(q−1) = r̂0 + r̂1q
−1 + · · · + r̂n

R̂
q−n

R̂ , (1)

Ŝ(q−1) = 1 + ŝ1q
−1 + · · · + ŝn

Ŝ
q−n

Ŝ = 1 + q−1Ŝ∗(q−1). (2)

0005-1098/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2012.02.015
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Fig. 1. Feedforward AVC with fixed feedback controller (K ) and adaptive

feedforward compensator (N̂).

The signal s(t) is the external disturbance source, d(t) is
the correlated disturbance measurement (in the absence of the
compensation) and û(t) is the measured primary signal which
is the sum of d(t) and of the effect of the actuator used for
compensation.

The fixed feedback controller K , is characterized by the stable
transfer function:

K(q−1) =
BK (q

−1)

AK (q−1)
=

bK0 + bK1 q
−1 + · · · + bKnBK

q−nBK

1 + aK1 q
−1 + · · · + aKnAK

q−nAK
. (3)

The ‘‘a posteriori’’ output of the feedforward filter is denoted by:

ŷ1(t + 1) = ŷ1(t + 1|θ̂ (t + 1)).

The ‘‘a priori’’ output of the estimated feedforward filter is given
by:

ŷ01(t + 1) = ŷ1(t + 1|θ̂ (t))

= θ̂ T (t)φ(t) =
[

θ̂ TS (t), θ̂
T
R (t)

]

[

φŷ1(t)
φû(t)

]

(4)

where

θ̂ T (t) = [ŝ1(t) · · · ŝnS (t), r̂0(t) · · · r̂nR(t)] = [θ̂ TS (t), θ̂
T
R (t)] (5)

φT (t) = [−ŷ1(t) · · · − ŷ1(t − nS + 1), û(t + 1),

û(t) · · · û(t − nR + 1)]

= [φT
ŷ1
(t), φT

û (t)] (6)

and ŷ1(t), ŷ1(t − 1) · · · are the ‘‘a posteriori’’ outputs of the
feedforward filter generated by:

ŷ1(t + 1) = ŷ1(t + 1|θ̂ (t + 1)) = θ̂ T (t + 1)φ(t) (7)

while û(t + 1), û(t) · · · are the measurements provided by the
primary transducer.2

The control signal applied to the secondary path is given by

ŷ(t + 1) = ŷ1(t + 1)−
BK

AK

χ0(t + 1) (8)

where χ0(t + 1) is the measured residual acceleration.

3. Development of the algorithms

The algorithms for adaptive feedforward compensation in the
presence of a feedback controller will be developed under the
hypotheses H1, H3 and H4 from Landau et al. (2011) and new
hypothesis H2:

2 û(t + 1) is available before the adaptation of parameters starts at t + 1.

H2-Perfect matching condition. There exists a filter N(q−1) of
finite dimension such that3:

N

(1 − NM)
G = −D (9)

and the characteristic polynomials (i) of the ‘‘internal’’ positive
coupling loop:

P = AMS − BMR (10)

(ii) of the closed loop (G − K ):

Pcl = AGAK + BGBK (11)

and of the coupled feedforward–feedback loop:

Pfb−ff = AMS[AGAK + BGBK ] − BMRAKAG (12)

are Hurwitz polynomials.
A first step in the development of the algorithms is to establish

a relation between the errors on the estimation of the parameters
of the feedforward filter and the measured residual acceleration.
This is summarized in the following lemma.

Lemma 3.1. Under hypotheses H1–H4, for the system described

in Section 2, using a feedforward compensator N̂ with constant
parameters and a feedback controller K , one has:

ν(t + 1) = −χ(t + 1) =
AMAGAKG

Pfb−ff

[θ − θ̂ ]Tφ(t) (13)

where

θ T = [s1, . . . , snS , r0, r1, . . . , rnR ] = [θ TS , θ
T
R ] (14)

is the vector of parameters of the optimal filter N assuring perfect
matching

θ̂ T = [ŝ1 · · · ŝnS , r̂0 · · · r̂nR ] = [θ̂ TS , θ̂
T
R ] (15)

is the vector of constant estimated parameters of N̂

φT (t) = [−ŷ1(t) · · · − ŷ1(t − nS + 1),

û(t + 1), û(t) · · · û(t − nR + 1)]

= [φT
ŷ1
(t), φT

û (t)] (16)

and û(t + 1) is given by4:

û(t + 1) = d(t + 1)+
B∗
M

AM

ŷ(t). (17)

The proof is given in the Appendix.

Corollary 1. For BK = 0 (absence of the feedback controller), the
error equation for pure feedforward compensation given in Landau
et al. (2011), is obtained.

Corollary 2. For BM = 0 (absence of the mechanical coupling), the
error equation is given by:

ν(t + 1) =
BGAK

PclS
[θ − θ̂ ]Tφ(t) =

Gcl

S
[θ − θ̂ ]Tφ(t) (18)

where: Gcl is the closed loop transfer function (G,K) defined by: Gcl =
BGAK
Pcl

.

3 In many cases, the argument q−1 or z−1 will be dropped out.
4 B(q−1) = q−1B∗(q−1).
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Filtering the vector φ(t) through an asymptotically stable filter

L(q−1) =
BL
AL
, Eq. (13) for θ̂ = constant becomes:

ν(t + 1) =
AMAGAKG

Pfb−ff L
[θ − θ̂ ]Tφf (t) (19)

φf (t) = L(q−1)φ(t). (20)

Eq. (19) will be used to develop the adaptation algorithms

neglecting the non-commutativity of the operators when θ̂ is time
varying (however an exact algorithm can be derived in such cases
- see Landau, Lozano, and M’Saad (2011)).

Replacing the fixed estimated parameters by the current
estimated parameters, Eq. (19) becomes the equation of the a
posteriori residual (adaptation) error ν(t+1) (which is computed):

ν(t + 1/θ̂(t + 1)) =
AMAGAK

Pfb−ff L
G[θ − θ̂ (t + 1)]Tφf (t). (21)

Eq. (21) has the standard form for an a posteriori adaptation
error (Landau et al., 2011), which immediately suggests to use the
following parameter adaptation algorithm (the same as in Landau
et al. (2011)):

θ̂ (t + 1) = θ̂ (t)+ F(t)ψ(t)ν(t + 1); (22)

ν(t + 1) =
ν0(t + 1)

1 + ψT (t)F(t)ψ(t)
; (23)

F(t + 1) =
1

λ1(t)

[

F(t)−
F(t)ψ(t)ψT (t)F(t)

λ1(t)

λ2(t)
+ ψT (t)F(t)ψ(t)

]

(24)

1 ≥ λ1(t) > 0; 0 ≤ λ2(t) < 2; F(0) > 0 (25)

ψ(t) = φf (t) (26)

where λ1(t) and λ2(t) allow to obtain various profiles for the
matrix adaptation gain F(t) (see Section 4 and Landau et al. (2011)).

Three choices for the filter Lwill be considered, leading to three
different algorithms:

Algorithm I: L = G

Algorithm II: L = Ĝ

Algorithm III: L =
ÂM ÂGAK

P̂fb−ff
Ĝ

where:

P̂fb−ff = ÂM Ŝ[ÂGAK + B̂GBK ] − B̂M R̂AK ÂG (27)

is an estimation of the characteristic polynomial of the coupled
feedforward–feedback loop computed on the basis of available

estimates of the parameters of the filter N̂ and estimated models

Ĝ =
B̂G

ÂG
and M̂ =

B̂M

ÂM
. For Algorithm III several options for updating

P̂fb−ff can be considered:

• Run Algorithm II for a certain time to get estimates of R̂ and Ŝ

and compute P̂fb−ff

• Update P̂fb−ff at each sampling instant or from time to time
using Algorithm III (after a short initialization horizon using
Algorithm II).

3.1. Analysis of the algorithms

For Algorithms I, II and III the equation for the a posteriori
adaptation error has the form5:

ν(t + 1) = H(q−1)[θ − θ̂ (t + 1)]Tψ(t) (28)

5 The argument θ̂ (t + 1) has been dropped out.

where:

H(q−1) =
AMAGAK

Pfb−ff L
G, ψ = φf . (29)

Neglecting the non-commutativity of time varying operators, one
has the following result:

Lemma 3.2. Assuming that Eq. (28) represents the evolution of the
a posteriori adaptation error and that the parameter adaptation
algorithm (22) through (26) is used, one has:

lim
t→∞

ν(t + 1) = 0 (30)

lim
t→∞

[ν0(t + 1)2]

1 + ψ(t)T F(t)ψ(t)
= 0 (31)

‖ψ(t)‖ is bounded (32)

lim
t→∞

ν0(t + 1) = 0 (33)

for any initial conditions θ̂ (0), ν0(0), F(0), provided that:

H ′(z−1) = H(z−1)−
λ2

2
, max

t
[λ2(t)] ≤ λ2 < 2 (34)

is a strictly positive real (SPR) transfer function.

The proof is similar to that given in Landau et al. (2011) for BK =
0 and AK = 1 (absence of the feedback controller) and it is
omitted.

4. Experimental results

The same AVC system as in Landau et al. (2011) has been used.

4.1. Design of the feedback controller

The objective of the feedback controller K is to reduce the
disturbance effect on the residual acceleration χ(t) where the
secondary path G has enough gain, without using the disturbance
correlated measurement û(t).

4.2. Broadband disturbance rejection

The adaptive feedforward filter structure for most of the
experiments has been nR = 9, nS = 10 (total of 20 parameters)
and this complexity does not allow to verify the ‘‘perfect matching
condition’’ (which requires more than 40 parameters). A pseudo-
random binary sequence (PRBS) excitation on the global primary
path will be considered as the disturbance. For the adaptive
operation the Algorithms II and III have been used with decreasing
adaptation gain (λ1(t) = 1, λ2(t) = 1) combined with a constant
trace adaptation gain.

The experiments have been carried on by first applying the
disturbance in open loop during 50 s and after that closing the
loop with the hybrid adaptive feedforward–feedback algorithms.
Time domain results obtained in open loop andwith hybrid control
(using Algorithm III) on the AVC system are shown in Fig. 2. The
initial trace of the matrix adaptation gain was 10 and the constant
trace has been fixed at 0.2.

Table 1 summarizes the global attenuation results for various
configurations. Clearly, the hybrid adaptive feedforward–feedback
scheme brings a significant improvement in performance with
respect to adaptive feedforward compensation alone. Comparing
with the results of Landau et al. (2011), (Table 2) one can
conclude that in terms of performance and complexity it is more
interesting to add a linear feedback than augmenting the number
of parameters of the adaptive feedforward filter beyond a certain
value.
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Table 1

Global attenuation for various configurations.

No feedback no feedforward Feedback only Adaptive feedforward Feedback & Ad. feedforward

Variance 0.0354 0.0067 0.0054 0.0033
Normalized var. 1 0.1892 0.1525 0.0932
Atten. (dB) 0 −14.40 −16.23 −20.53

Fig. 2. Real time results obtained with feedback controller and adaptive
feedforward Algorithm III.

Fig. 3. Power spectral densities of the residual acceleration (disturbance = PRBS).

Fig. 3 shows a comparison of the power spectral densities for
adaptive feedforward alone with 20 parameters (Algorithm III),
feedback controller alone, and the hybrid ‘‘feedback-adaptive
feedforward’’ scheme with 20 parameters (Algorithm III).

5. Conclusions

The theoretical analysis presented in this note has pointed out
the interaction between the feedback and the stability conditions
for adaptive feedforward compensation. Experimental results on
an AVC system featuring an internal ‘‘positive’’ coupling have
illustrated the improvement in the performance provided by the
hybrid approach.

Appendix. Proof of Lemma 3.1

For a fixed value of the parameter vector θ̂ characterizing the

estimated filter N̂(q−1) of same dimension as the optimal filter
N(q−1), the output of the secondary path can be expressed by (in
this case ẑ(t) = ẑ0(t), ŷ(t) = ŷ0(t) and χ(t) = χ0(t)):

ẑ(t) = Gŷ(t) (35)

with:

ŷ(t) = ŷ1(t)−
BK

AK

χ(t) = ŷ1(t)+
BK

AK

ν(t) (36)

where:

ŷ1(t + 1) = θ̂ Tφ(t). (37)

The key observation is that using Eqs. (63) through (67) from
Landau et al. (2011) the dummy variable y(t +1) can be expressed
as:

y(t + 1) = θ Tφ(t)− S∗[y(t)− ŷ1(t)] + R[u(t + 1)− û(t + 1)].

(38)

Define the dummy error (for a fixed vector θ̂ )

ε(t + 1) = y(t + 1)− ŷ1(t + 1)− KGε(t + 1) (39)

and the residual error becomes:

ν(t + 1) = −x(t + 1)− ẑ(t + 1) = Gε(t + 1). (40)

By taking into account the Eqs. (36) and (40), y(t + 1) becomes:

y(t + 1) = θ Tφ(t)− S∗

[

y(t)− ŷ(t)+
BKBG

AKAG

ε(t)

]

+ R[u(t + 1)− û(t + 1)]. (41)

It results from (41) by taking into account the expressions of u(t)
and û(t) given by (67) of Landau et al. (2011) and (17) that:

y(t + 1) = θ Tφ(t)−

[

S∗

(

1 +
BKBG

AKAG

)

−
R(q−1)B∗

M

AM

]

ε(t).

(42)

Using Eqs. (36) and (39), one gets (after passing all terms in ε on
the left hand side):

ε(t + 1) =
AMAGAK

Pfb−ff

[θ − θ̂ ]Tφ(t). (43)

Taking now into account Eq. (40) one obtains Eq. (13). End of the
proof.
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IIR Youla-Kucera parameterized adaptive

feedforward compensators for active vibration

control with mechanical coupling
Ioan Doré Landau, Tudor-Bogdan Airimiţoaie, and Marouane Alma

Abstract—Adaptive feedforward broadband vibration (or
noise) compensation requires a reliable correlated measurement
with the disturbance (an image of the disturbance). The reliability
of this measurement is compromised in most of the systems by a
”positive” internal feedback coupling between the compensator
system and the correlated measurement of the disturbance. The
system may become unstable if the adaptation algorithms do
not take into account this positive feedback. Instead of using
classical IIR or FIR feedforward compensators, the present paper
proposes and analyses an IIR Youla - Kucera parametrization
of the feedforward compensator. A model based central IIR
stabilizing compensator is used and its performance is enhanced
by the adaptation of the parameters (Q-parameters) of an IIR
Youla-Kucera filter. Adaptation algorithms assuring the stability
of the system in the presence of the positive internal feedback
are provided. Their performances are evaluated experimentally
on an active vibration control (AVC) system. Theoretical and
experimental comparisons with FIR Youla-Kucera parameterized
feedforward compensators and IIR feedforward compensators
are provided.

Index Terms—active vibration control, adaptive feedforward
compensation, adaptive control, Youla-Kucera parametrization,
parameter estimation.

LIST OF ACRONYMS

ANC - Active noise control system

AVC - Active vibration control system

FIRYK - Youla-Kucera parameterized IIR adaptive feedfor-

ward compensator using a FIR Youla-Kucera filter

IIR - IIR adaptive feedforward compensator

IIRYK - Youla-Kucera parameterized IIR adaptive feedforward

compensator using an IIR Youla-Kucera filter

PAA - Parameter adaptation algorithm

PRBS - Pseudo random binary sequence

QFIR - Youla-Kucera FIR filter

QIIR - Youla-Kucera IIR filter

SPR - Strictly positive real (transfer function)

I. INTRODUCTION

A preliminary version of this paper has been presented at the
CDC/ECC 2011, Orlando, USA. The authors are with the Control System
Department of GIPSA-Lab, St. Martin d’Héres, 38402 FRANCE, emails:
([Ioan-Dore.Landau, Tudor-Bogdan.Airimitoaie, Marouane.Alma]@gipsa-
lab.grenoble-inp.fr).

Tudor-Bogdan Airimiţoaie is also with the Faculty of Automatic Control
and Computers, University ”Politehnica” of Bucharest, Bucharest, 060042
ROMANIA.

A
DAPTIVE feedforward broadband vibration (or noise)

compensation requires a reliable correlated measurement

with the disturbance (an image of the disturbance) ([1], [2],

[3], [4]). The reliability of this measurement is compromised

in most of the systems by a ”positive” internal feedback

coupling between the compensator system and the correlated

measurement of the disturbance. The system may become

unstable if the adaptation algorithms do not take into account

this positive feedback ([2], [4], [5], [6]). One of the solutions

to overcome this problem ([3]) is to try to compensate the

positive feedback ([3], [7]). However, since the compensation

can not be perfect, the potential instability of the system still

exists ([8], [9]).

In the context of this inherent ”positive” feedback, the

adaptive feedforward compensator should minimize the effect

of the disturbance while simultaneously assuring the stability

of the internal positive feedback loop.

However this problem can be formulated as a standard

feedback control problem using the 2x2 generalized plant rep-

resentation [10]. The inputs are the disturbance and the input

to the compensator system (the control) and the outputs are the

residual acceleration (force, noise) which is the performance

variable and the effective measurement of the disturbance. The

problem is now to design a feedback compensator (from the

measurement of the disturbance to the input of the compen-

sator system) which minimizes the residual acceleration and

stabilizes the system ([11], [12]). From a control perspective,

the compensator filter appears as a feedback controller while

in all the literature dedicated to active vibration (or noise)

control the term ”feedforward compensator” is used. The term

”feedforward” is justified by the fact that the information upon

the disturbance is taken ”upstream” while for a ”feedback

compensator” is taken ”downstream” by measuring its effect

(upon the residual acceleration)1.

An approach discussed in the literature is the analysis in

this new context of existing algorithms for adaptive feedfor-

ward compensation developed for the case without internal

coupling. An attempt is made in [8] where the asymptotic

convergence in a stochastic environment of the so called

”Filtered-U LMS” (FULMS) algorithm is discussed. Further

results on the same direction can be found in [7]. The authors

use the Ljung’s ODE method ([13]) for the case of a scalar

vanishing adaptation gain. Unfortunately this is not enough

1For a coherent presentation with related contributions in the field of active
vibration (noise) control, the terminology of the field will be used throughout
the paper
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because nothing is said about the stability of the system

with respect to initial conditions and when a non vanishing

adaptation gain is used (to keep adaptation capabilities). The

authors assume that the positive feedback does not destabilize

the system.

A stability approach for developing appropriate adaptive

algorithms in the context of internal positive feedback is

discussed in [6] and [14]. Reference [14] provides also an ex-

perimental comparison of various algorithms for IIR adaptive

compensators in the presence of the internal positive feedback.

In [4], the idea of using an Youla-Kucera parametrization2

of the feedforward compensator is illustrated in the context

of ANC. Based on the identification of the system, a sta-

bilizing Youla-Kucera controller using an orthonormal basis

filter is designed. The Youla-Kucera parameters weighting

the orthonormal basis filters are then updated by using a

two time scale indirect procedure: (1) estimation of the Q-

filter’s parameters over a certain horizon, (2) updating of

the controller. No stability proof for the tuning procedure is

provided.

In [15] an algorithm for adapting the Q parameters of a

FIR Youla-Kucera (subsequently called QFIR) parameterized

feedforward compensator has been proposed, analyzed and

tested experimentally on an AVC system. While the central

stabilizing compensator has an IIR structure, the Youla-Kucera

filter has a FIR structure.

In the control literature the use of Youla-Kucera type

controllers has been extensively discussed. See [16], [17].

Reference [17] gives an extensive coverage of the subject.

Related references are also [18], [19]3.

The objectives of this paper are:

• to develop, to analyze, and to evaluate experimentally

new recursive algorithms for online estimation and adap-

tation of the Q-parameters of IIR Youla-Kucera (sub-

sequently called QIIR) parameterized feedforward com-

pensators for broadband disturbances with unknown and

variable spectral characteristics;

• to evaluate comparatively these algorithms with respect

to existing algorithms from theoretical, implementation,

and experimental points of view.

The main contributions of this paper with respect to [4] and

[15] are:

• the development of new real time recursive adaptation

algorithms for the Q-parameters of IIR Youla-Kucera

feedforward compensators and the analysis of the stability

of the resulting system;

• the algorithms presented in [15] for FIR Youla-Kucera

adaptive feedforward compensators are particular cases

of those introduced in this paper;

• application of the algorithms to an AVC system;

• experimental comparison with adaptive IIR feedfor-

ward compensators and with adaptive FIR Youla-Kucera

parametrization;

2Throughout the paper the Youla-Kucera parametrization will also be called
Q (or YK) -parametrization.

3To the knowledge of the authors the specific problem considered in this
paper is not covered in the existing literature.

• significant reduction of the number of parameters to

be adapted for the same level of performance when

using adaptive IIR Youla-Kucera feedforward compen-

sators instead of adaptive FIR Youla-Kucera feedforward

compensators.

In the context of this paper it is assumed that:

• the characteristics of the wide band disturbance acting on

the system are unknown and they may vary;

• the internal positive feedback can not be neglected;

• the dynamic models of the AVC are constant and a good

estimation of these models is available (these models can

be estimated from experimental data).

From the user point of view and taking into account the type

of operation of adaptive disturbance compensation systems,

one has to consider two modes of operation of the adaptive

schemes:

• Adaptive operation. The adaptation is performed contin-

uously with a non vanishing adaptation gain.

• Self-tuning operation. The adaptation procedure starts

either on demand or when the performance is unsatis-

factory. A vanishing adaptation gain is used.

From an implementation point of view the paper will ex-

plore the comparative performances of adaptation algorithms

with matrix adaptation gain and with scalar adaptation gain.

While the algorithms have been developed and tested in the

context of AVC, the results are certainly applicable to ANC

systems since they feature the same type of internal positive

feedback.

The paper is organized as follows. The AVC system (fea-

turing an internal positive mechanical coupling) on which

the algorithms will be tested, is presented in section II. The

system representation and the IIR Youla-Kucera feedforward

compensator structure are given in section III. The algorithms

for adaptive feedforward compensation will be developed in

section IV and analyzed in section V. Section VI will present

experimental results obtained on the AVC system with the

algorithms introduced in this paper as well as an experimental

comparison with those given in [14], [15]. Section VII will

summarize the comparison with other algorithms.

II. AN ACTIVE VIBRATION CONTROL SYSTEM USING AN

INERTIAL ACTUATOR

Figures 1 and 2 show an AVC system using a correlated

measurement with the disturbance and an inertial actuator for

reducing the residual acceleration. The corresponding block

diagrams in open loop operation and with the compensator

system are shown in Figures 3(a) and 3(b), respectively.

The structure is representative for a number of situations

encountered in practice (see [12]). It consists on five metal

plates (in dural of 1.8 Kg each one) connected by springs.

The uppermost and lowermost ones are rigidly jointed together

by four screws. The middle three plates will be labeled for

easier referencing M1, M2 and M3 (see figure 2). M1 and

M3 are equipped with inertial actuators. The one on M1

serves as disturbance generator (inertial actuator I in figure 2),

the one at the bottom serves for disturbance compensation

(inertial actuator II in figure 2). Inertial actuators use a similar
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principle as loudspeakers (see [20], [21]). The correlated

measurement with the disturbance (image of the disturbance)

is obtained from an accelerometer which is positioned on plate

M1. Another sensor of the same type is positioned on plate

M3 and serves for measuring the residual acceleration (see

figure 2). The objective is to minimize the residual acceleration

measured on plate M3.

When the compensator system is active, the actuator acts

upon the residual acceleration, but also upon the measurement

of the image of the disturbance through the reverse path

(a positive feedback coupling). The measured quantity ŷ(t)
will be the sum of the correlated disturbance measurement

w(t) obtained in the absence of the feedforward compensation

(see figure 3(a)) and of the effect of the actuator used for

compensation. The disturbance is the position of the mobile

part of the inertial actuator (see figures 1 and 2) located on top

of the structure. The input to the compensator system is the

position of the mobile part of the inertial actuator located on

the bottom of the structure. The input to the inertial actuators

being a position, the global primary path, the secondary path,

and the reverse path have a double differentiator behavior.

Similar internal positive feedback coupling occur also in

feedforward ANC ([4], [6]).

Fig. 1. An AVC system using a feedforward compensation - photo.

In figure 3(b), ŷ(t) denotes the effective output provided

by the measurement device and which will serve as input to

the adaptive feedforward filter N̂ . The output of this filter

denoted by û(t) is applied to the actuator through an amplifier.

The transfer function G (the secondary path) characterizes
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Fig. 2. An AVC system using a feedforward compensation - schema.

the dynamics from the output of the filter N̂ to the residual

acceleration measurement (amplifier + actuator + dynamics of

the mechanical system). The transfer function D between w(t)
and the measurement of the residual acceleration (in open loop

operation) characterizes the primary path.
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Fig. 3. Feedforward AVC: in open loop (a) and with adaptive feedforward
compensator (b).

The coupling between the output of the filter and the

measurement ŷ(t) through the compensator actuator is denoted

by M . As indicated in figure 3(b) this coupling is a ”positive”

feedback. This unwanted coupling raises problems in practice

(source of instabilities) and makes the analysis of adaptive

(estimation) algorithms more difficult. The system shown in

figure 3(b) can be represented in the standard feedback form

shown in Figure 4 (for details see Section III).

At this stage it is important to make the following remarks,

when the feedforward filter is absent (open loop operation):

• very reliable models for the secondary path and the

”positive” feedback path can be identified by applying

appropriate excitation on the actuator used for compen-

sation;

• an initial estimation of the primary path transfer function

can be obtained using the measured w(t) as input and

e(t) as output (the compensator actuator being at rest);

• the design of a fixed model based stabilizing feedforward

compensator requires the knowledge of the reverse path

model only;

• the adaptation algorithms do not use information upon

the primary path whose characteristics may be unknown

or subject to change;

• the knowledge of the disturbance characteristics and of

the primary path model in addition of the secondary

and reverse paths models is mandatory for the design of

an optimal fixed model based feedforward compensator

([11], [12].

The objective is to develop stable recursive algorithms for

adaptation of the parameters of the feedforward filter com-
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Fig. 4. Feedback representation of the system shown in Figure 3(b).

pensator such that the measured residual error (acceleration or

force in AVC, noise in ANC) be minimized in the sense of

a certain criterion while simultaneously assuring the stability

of the internal positive feedback loop. This has to be done

for broadband disturbances w(t) (or s(t)) with unknown and

variable spectral characteristics and an unknown primary path

model4.

III. BASIC EQUATIONS AND NOTATIONS

The block diagrams associated with an AVC system are

shown in fig. 3 in open loop (3(a)) and when an IIR (Infinite

Impulse Response) Youla-Kucera compensator is active (3(b)).

The primary (D), secondary (G), and reverse (positive

coupling) (M ) paths represented in fig. 3(b) are characterized

by the asymptotically stable transfer operators:

X(q−1) =
BX(q−1)

AX(q−1)
=

bX1 q
−1 + ...+ bXnBX

q−nBX

1 + aX
1 q

−1 + ...+ aX
nAX

q−nAX

,

(1)

with BX = q−1B∗
X for any X ∈ {D,G,M}. Ĝ = B̂G

ÂG
,

M̂ = B̂M

ÂM
, and D̂ = B̂D

ÂD
denote the identified (estimated)

models of G, M, and D.
The equations associated with the feedback system repre-

sentation shown in figure 4 are:

[

e0(t)

ŷ(t)

]

=

[

P11 P12

P21 P22

][

w(t)

û(t)

]

=

[

D G

1 M

][

w(t)

û(t)

]

, (2)

where e0(t) is the performance variable to be minimized

(residual acceleration), ŷ(t) is the measured variable (im-

age of the disturbance), w(t) is the disturbance (w(t) =
W (q−1)s(t)), and û(t) is the control input5.

The optimal IIR feedforward compensator which will mini-

mize the residual acceleration can be written, using the Youla-

Kucera parametrization, as

N(q−1) =
R(q−1)

S(q−1)
=
AQ(q−1)R0(q

−1) −BQ(q−1)AM (q−1)

AQ(q−1)S0(q−1) −BQ(q−1)BM (q−1)
(3)

where the optimal polynomial Q(q−1) has an IIR structure

Q(q−1) =
BQ(q−1)

AQ(q−1)
=
bQ0 + bQ1 q

−1 + . . .+ bQnBQ
q−nBQ

1 + aQ
1 q

−1 + . . .+ aQ
nAQ

q−nAQ

(4)

4Variations of the unknown model W , the transfer function between
the disturbance s(t) and w(t) are equivalent to variations of the spectral
characteristics of s(t).

5If w(t) is not measured P21 = 0. If there is no internal positive coupling
M = 0.

and R0(q
−1), S0(q

−1) = 1+q−1S∗
0 (q−1) are the polynomials

of the central (stabilizing) filter and AM (q−1), BM (q−1) are

given in (1)6.

The estimated QIIR filter is denoted by Q̂(q−1) or

Q̂(θ̂, q−1) when it is a linear filter with constant coefficients

or Q̂(t, q−1) during estimation (adaptation). The vector of

parameters of the optimal QIIR filter assuring perfect matching

will be denoted by

θT = [bQ0 , . . . , b
Q
nBQ

, aQ
1 , . . . , a

Q
nAQ

] = [θT
BQ
, θT

AQ
]. (5)

The vector of parameters for the estimated Q̂IIR filter

Q̂(q−1) =
B̂Q(q−1)

ÂQ(q−1)
=
b̂Q0 + b̂Q1 q

−1 + . . .+ b̂QnBQ
q−nBQ

1 + âQ
1 q

−1 + . . .+ âQ
nAQ

q−nAQ

(6)

is denoted by

θ̂T = [b̂Q0 , . . . , b̂
Q
nBQ

, âQ
1 , . . . , â

Q
nAQ

] = [θ̂T
BQ
, θ̂T

AQ
]. (7)

The input of the feedforward filter (called also reference)

is denoted by ŷ(t) and it corresponds to the measurement

provided by the primary transducer (force or acceleration

transducer in AVC or a microphone in ANC). In the absence

of the compensation loop (open loop operation) ŷ(t) = w(t).
The output of the feedforward compensator (which is the

control signal applied to the secondary path) is denoted by

û(t+ 1) = û(t+ 1/θ̂(t+ 1)) (a posteriori output)7.

The ”a priori” output of the estimated feedforward com-

pensator using an YKIIR parametrization for the case of time

varying parameter estimates is given by (using eq. (3))

û0(t+ 1) = û(t+ 1/θ̂(t)) = −Ŝ∗(t, q−1)û(t) + R̂(t, q−1)ŷ(t+ 1)

= −(ÂQ(t, q−1)S0)∗û(t) + ÂQ(t, q−1)R0ŷ(t+ 1)

+B̂Q(t, q−1) (B∗

M û(t) −AM ŷ(t+ 1)) , (8)

where

û(t+ 1) = −(ÂQ(t+ 1, q−1)S0)∗û(t) + ÂQ(t+ 1, q−1)R0ŷ(t+ 1)

+B̂Q(t+ 1, q−1) (B∗

M û(t) −AM ŷ(t+ 1)) . (9)

It should be observed that eqs. (3), (4), (8), and (9) can

be easily particularized for the case of a FIR Youla-Kucera

parametrization by taking ÂQ(t, q−1) ≡ 1.

The measured input to the feedforward filter can also be

written as

ŷ(t+ 1) = w(t+ 1) +
B∗

M (q−1)

AM (q−1)
û(t). (10)

The unmeasurable value of the output of the primary path

(when the compensation is active) is denoted x(t). The ”a

priori” output of the secondary path will be denoted ẑ0(t +
1) = ẑ(t+ 1/θ̂(t)) while its input is û(t). One has

ẑ0(t+ 1) =
B∗

G(q−1)

AG(q−1)
û(t) =

B∗
G(q−1)

AG(q−1)
û(t/θ̂(t)), (11)

6The following notation for polynomials will be used throughout this paper:
A(q−1) = a0 +

∑nA
i=1 aiq

−i = a0 + q−1A∗(q−1).
7In adaptive control and estimation the predicted output at t + 1 can be

computed either on the basis of the previous parameter estimates (a priori) or
on the basis of the current parameter estimates (a posteriori).
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where θ̂(t) is the vector of estimated parameters given in

(7). The measured residual acceleration (or force) satisfies the

following equation

e0(t+ 1) = x(t+ 1) + ẑ0(t+ 1). (12)

The ”a priori” adaptation error is defined as

ν0(t+1) = ν(t+1/θ̂(t)) = −e0(t+1) = −x(t+1)−ẑ0(t+1).
(13)

The ”a posteriori” unmeasurable (but computable) adaptation

error is given by

ν(t+1) = ν(t+1/θ̂(t+1)) = −e(t+1) = −x(t+1)−ẑ(t+1).
(14)

where the ”a posteriori” value of the output of the secondary

path ẑ(t+ 1) (dummy variable) is given by

ẑ(t+1) = ẑ(t+1/θ̂(t+1)) =
B∗

G(q−1)

AG(q−1)
û(t/θ̂(t+1)). (15)

For compensators with constant parameters ν0(t) = ν(t),
e0(t) = e(t), ẑ0(t) = ẑ(t), û0(t) = û(t).

The objective is to develop stable recursive algorithms for

adaptation of the parameters of the Q filter such that the

measured residual error (acceleration or force in AVC, noise

in ANC) be minimized in the sense of a certain criterion. This

has to be done for broadband disturbances w(t) (or s(t)) with

unknown and variable spectral characteristics and an unknown

primary path model.

IV. DEVELOPMENT OF THE ALGORITHMS

The algorithm for adaptive feedforward YKIIR compen-

sators will be developed under the following hypotheses:

1) H1 - The signal w(t) is bounded (which is equivalently

to say that s(t) is bounded and W (q−1) in figure 3 is

asymptotically stable).

2) H2 - There exists a central feedforward compensator

N0 (R0, S0) which stabilizes the inner positive feed-

back loop formed by N0 and M and the characteristic

polynomial of the closed loop8

P0(z
−1) = AM (z−1)S0(z

−1) −BM (z−1)R0(z
−1)

is a Hurwitz polynomial.

3) H3 - (Perfect matching condition) There exists a value

of the Q parameters such that

G ·AM (R0AQ −AMBQ)

AQ(AMS0 −BMR0)
= −D. (16)

4) H4 - The effect of the measurement noise upon the

measurement of the residual acceleration is neglected

(deterministic context).

Once the algorithm will be developed under these hypothe-

ses, H3 and H4 will be removed and the algorithm will be

analyzed in this modified context.

A first step in the development of the algorithms is to

establish for a fixed estimated compensator a relation between

8The parenthesis (q−1) will be omitted in some of the following equations
to make them more compact.

the error on the Q-parameters (with respect to the optimal

values) and the adaptation error ν. This is summarized in the

following Lemma.

Lemma 4.1: Under the hypothesis H1 through H4 for the

system described by equations (1) through (15) using an

estimated IIR Youla-Kucera parameterized feedforward com-

pensator with constant parameters one has:

ν(t+ 1/θ̂) =
AM (q−1)G(q−1)

AQ(q−1)P0(q−1)
[θ − θ̂]Tφ(t), (17)

with φ(t) given by:

φT (t) = [α(t+ 1), α(t), . . . , α(t− nBQ
+ 1),

− β(t),−β(t− 1), . . . ,−β(t− nAQ
)]. (18)

where:

α(t+ 1) =BM û(t+ 1) −AM ŷ(t+ 1) =

=B∗
M û(t) −AM ŷ(t+ 1) (19a)

β(t) =S0û(t) −R0ŷ(t). (19b)

The proof of this lemma is given in Appendix A.

Corollary 4.1: Under the hypothesis H1 through H4 for

the system described by equations (1) through (15) using

an estimated FIR Youla-Kucera parameterized feedforward

compensator with constant parameters one has:

ν(t+ 1/θ̂) =
AM (q−1)G(q−1)

P0(q−1)
[θ − θ̂]Tφ(t), (20)

where

θT = [bQ0 , . . . , b
Q
nBQ

] = [θT
BQ

] (21)

is the vector of parameters of the optimal QFIR filter assuring

perfect matching,

θ̂T = [b̂Q0 , . . . , b̂
Q
nBQ

] = [θ̂T
BQ

] (22)

is the vector of parameters for the estimated Q̂FIR filter

Q̂(q−1) = B̂Q(q−1) = b̂Q0 + b̂Q1 q
−1+. . .+ b̂QnBQ

q−nBQ , (23)

and φT (t) is given by:

φT (t) = [α(t+ 1), α(t), . . . , α(t− nBQ
+ 1)], (24)

where α(t+ 1) is given in eq. (19a).

Proof: This result is straightforwardly obtained by mak-

ing ÂQ(q−1) = 1 and AQ(q−1) = 1 in Lemma 4.1.

Throughout the remainder of this section and the next one,

unless stated differently, the Youla-Kucera parametrization

having an QIIR filter will be discussed. It should be observed

that in most of the cases results for QFIR-polynomials can be

obtained by imposing AQ(q−1) = 1 and ÂQ(q−1) = 1.

As it will be shown later on, it is convenient for assuring

the stability of the system to filter the observation vector φ(t).
Filtering the vector φ(t) through an asymptotically stable filter

L(q−1) = BL

AL
, equation (17) for θ̂ = constant becomes

ν(t+ 1/θ̂) =
AM (q−1)G(q−1)

AQ(q−1)P0(q−1)L(q−1)
[θ − θ̂]Tφf (t) (25)
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with

φf (t) = L(q−1)φ(t) = [αf (t+ 1), . . . , αf (t− nBQ
+ 1),

βf (t), βf (t− 1), . . . , βf (t− nAQ
)] (26)

where

αf (t+ 1) = L(q−1)α(t+ 1)

βf (t) = L(q−1)β(t).
(27)

Equation (25) will be used to develop the adaptation al-

gorithms. When the parameters of Q̂ evolve over time and
neglecting the non-commutativity of the time varying opera-
tors (which implies slow adaptation (see [22]), i.e., a limited
value for the adaptation gain), equation (25) transforms into9

ν(t+1/θ̂(t+1)) =
AM (q−1)G(q−1)

AQ(q−1)P0(q−1)L(q−1)
[θ− θ̂(t+1)]Tφf (t).

(28)

Equation (28) has the standard form for an a-posteriori

adaptation error ([23]), which immediately suggests to use the

following PAA:

θ̂(t+ 1) = θ̂(t) + F (t)ψ(t)ν(t+ 1) ; (29a)

ν(t+ 1) =
ν0(t+ 1)

1 + ψT (t)F (t)ψ(t)
; (29b)

F (t+ 1) =
1

λ1(t)



F (t) −
F (t)ψ(t)ψT (t)F (t)

λ1(t)
λ2(t)

+ ψT (t)F (t)ψ(t)



 (29c)

1 ≥ λ1(t) > 0; 0 ≤ λ2(t) < 2;F (0) > 0 (29d)

ψ(t) = φf (t), (29e)

where λ1(t) and λ2(t) allow to obtain various profiles for

the matrix adaptation gain F (t) (see section VI and [23]). By

taking λ2(t) ≡ 0 and λ1(t) ≡ 1, one gets a constant adaptation

gain matrix (and choosing F = γI , γ > 0 one gets a scalar

adaptation gain).

Several choices for the filter L will be considered, leading

to different algorithms:

Algorithm I L = G
Algorithm IIa L = Ĝ

Algorithm IIb L = ÂM

P̂0

Ĝ

Algorithm III

L =
ÂM

P̂
Ĝ (30)

with

P̂ = ÂQ(ÂMS0 − B̂MR0) = ÂQP̂0, (31)

where ÂQ is an estimation of the denominator of the ideal

QIIR filter computed on the basis of available estimates of

the parameters of the filter Q̂. For the Algorithm III several

options for updating ÂQ can be considered:

• Run Algorithm IIa or IIb for a certain time to get an

estimate of ÂQ

• Run a simulation (using the identified models)

• Update ÂQ at each sampling instant or from time to time

using Algorithm III (after a short initialization horizon

using Algorithm IIa or IIb)

9However, exact algorithms can be developed taking into account the non-
commutativity of the time varying operators - see [23].

The following procedure is applied at each sampling time

for adaptive or self-tuning operation:

1) Get the measured image of the disturbance ŷ(t+1), the

measured residual error e0(t + 1) and compute ν0(t +
1) = −e0(t+ 1).

2) Compute φ(t) and φf (t) using (18) and (26).

3) Estimate the parameter vector θ̂(t + 1) using the para-

metric adaptation algorithm (29a) through (29e).

4) Compute (using (9)) and apply the control.

V. ANALYSIS OF THE ALGORITHMS

A. The Deterministic Case - Perfect Matching

For algorithms I , IIa, IIb and III the equation for the

a-posteriori adaptation error has the form:

ν(t+ 1) = H(q−1)[θ − θ̂(t+ 1)]Tψ(t), (32)

where

H(q−1) =
AM (q−1)G(q−1)

AQ(q−1)P0(q−1)L(q−1)
, ψ = φf . (33)

Neglecting the non-commutativity of time varying operators,

one has the following result:

Lemma 5.1: Assuming that eq. (32) represents the evolution

of the a posteriori adaptation error when using an IIR Youla-

Kucera adaptive feedforward compensator and that the PAA

(29a) through (29e) is used, one has:

lim
t→∞

ν(t+ 1) = 0 (34)

lim
t→∞

ψ(t)[θ − θ̂(t+ 1)] = 0 (35)

lim
t→∞

[ν0(t+ 1)2]

1 + ψ(t)TF (t)ψ(t)
= 0 (36)

||ψ(t)|| is bounded (37)

lim
t→∞

ν0(t+ 1) = 0 (38)

for any initial conditions θ̂(0), ν0(0), F (0), provided that

H ′(z−1) = H(z−1) −
λ2

2
,max

t
[λ2(t)] ≤ λ2 < 2 (39)

is a SPR transfer function.

The proof of this lemma is given in Appendix B. This

result can be particularized for the case of FIR Youla-Kucera

adaptive compensators by using the following corollary:

Corollary 5.1: Assuming that eq. (32) represents the evolu-

tion of the a posteriori adaptation error for FIR Youla - Kucera

adaptive feedforward compensators, where

H(q−1) =
AM (q−1)G(q−1)

P0(q−1)L(q−1)
, ψ = φf , (40)

φf (t) = L(q−1)φ(t) = [αf (t+ 1), . . . , α(f t− nBQ
+ 1)],

and that the PAA (29a) through (29e) is used with θ̂(t) given

by (22), then (34) through (38) hold for any initial conditions

θ̂(0), ν0(0), F (0), provided that

H ′(z−1) = H(z−1) −
λ2

2
,max

t
[λ2(t)] ≤ λ2 < 2 (41)

is a SPR transfer function.
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The proof is similar to that of Lemma 5.1 and will be

omitted.

Remark 1: Using Algorithm III and taking into account

eq. (30), the stability condition for λ2 = 1 can be transformed

into ([13], [24]):
∣

∣

∣

∣

∣

∣

(

AM

ÂM

·
ÂQ

AQ

·
P̂0

P0
·
G

Ĝ

)−1

− 1

∣

∣

∣

∣

∣

∣

< 1 (42)

for all ω. This roughly means that it always holds provided

that the estimates of AM , AQ, P0, and G are close to the true

values (i.e. H(e−jω) in this case is close to a unit transfer

function).

Remark 2: For the case of constant adaptation gain (F =
αI = const.) and using Algorithm III , eq. (29a) can be

viewed as an approximation of the gradient algorithm. For

constant adaptation gain λ2(t) ≡ 0 and the strict positive

realness on H ′(z−1) implies at all the frequencies

−900 < ∠
AM (e−jω)G(e−jω)

AQ(e−jω)P0(e−jω)
−∠

ÂM (e−jω)Ĝ(e−jω)

ÂQ(e−jω)P̂0(e−jω)
< 900.

(43)

Therefore the interpretation of the SPR condition of

Lemma 5.1 is that the angle between the direction of adap-

tation and the direction of the inverse of the true gradient

(not computable) should be less than 900. For time-varying

adaptation gains the condition is sharper since in this case

Re{H(e−jω)} should be larger than λ2

2 at all frequencies.

Remark 3: Eq. (35) indicates that the estimated param-

eters of the feedforward compensator converge toward the

domain DC = {θ̂ : ψT (t, θ̂)(θ − θ̂) = 0}. If furthermore

ψT (t, θ̂)(θ−θ̂) = 0 has a unique solution (richness condition),

then limt→∞θ̂(t) = θ.

Remark 4: The poles of the estimated Q filter (the roots

of ÂQ), which are also poles of the internal positive closed

loop, will be asymptotically inside the unit circle, if the

SPR condition is satisfied. However, transiently they may be

outside the unit circle. It is possible to force these poles

to remain inside of the unit circle during transient using

adaptive algorithms with projection (see [23]). However, the

SPR condition remains the same.

B. The Stochastic Case - Perfect Matching

There are two sources of measurement noise, one acting

on the primary transducer which gives the correlated mea-

surement with the disturbance and the second acting on the

measurement of the residual error (force, acceleration). For

the primary transducer the effect of the measurement noise

is negligible since the signal to noise ratio is very high. The

situation is different for the residual error where the effect of

the noise can not be neglected.

In the presence of the measurement noise (n(t)), the equa-

tion of the a-posteriori residual error becomes

ν(t+ 1) = H(q−1)[θ − θ̂(t+ 1)]Tψ(t) + n(t+ 1). (44)

In this context, we should analyze the asymptotic behavior of

the adaptation algorithms (i.e., the convergence points in the

parameter space). The O.D.E. method [13], [24] can be used

to analyse the asymptotic behavior of the algorithm in the

presence of noise. Taking into account the form of equation

(44), one can directly use Theorem 4.1 of [23] or Theorem

B1 of [25].

The following assumptions will be made:

1) λ1(t) = 1 and λ2(t) = λ2 > 0 (decreasing adaptation

gain)

2) θ̂(t) generated by the algorithm belongs infinitely often

to the domain DS :

DS , {θ̂ : P̂ (z−1) = 0 ⇒ |z| < 1}

for which stationary processes:

ψ(t, θ̂) , ψ(t)|
θ̂(t)=θ̂=const

e(t, θ̂) = e(t)|
θ̂(t)=θ̂=const

can be defined.

3) n(t) is a zero mean stochastic process with finite

moments and independent of the sequence d(t).

From (44) for θ̂(t) = θ̂, one gets

ν(t+ 1, θ̂) = H(q−1)[θ − θ̂]Tψ(t, θ̂) + n(t+ 1). (45)

Since ψ(t, θ̂) depends upon w(t) only, one concludes that

ψ(t, θ̂) and n(t+1) are independent. Therefore using Theorem

4.1 from [23] it results that if

H ′(z−1) =
AM (z−1)G(z−1)

AQ(z−1)P0(z−1)L(z−1)
−
λ2

2
(46)

is a SPR transfer function, one has Prob{ lim
t→∞

θ̂(t) ∈ DC} =

1. If furthermore ψT (t, θ̂)(θ − θ̂) = 0 has a unique solu-

tion (richness condition), then Prob{ lim
t→∞

θ̂(t) = θ} = 1.

Therefore one can say that the parameters of the estimated

feedforward compensator will converge to the same value as

for the case without noise.

C. The Case of Non-Perfect Matching

If Q̂(t, q−1) does not have the appropriate dimension there

is no chance to satisfy the perfect matching condition. Two

questions are of interest in this case:

1) The boundedness of the residual error;

2) The bias distribution in the frequency domain.

1) Boundedness of the residual error: For analyzing the

boundedness of the residual error, results from [25], [26], can

be used. The following assumptions are made:

1) There exists a reduced order filter N̂ characterized by the

unknown polynomials ÂQ (of order nAQ
) and B̂Q (of

order nBQ
) as described in eq. (3), for which the closed

loop formed by N̂ and M is asymptotically stable, i.e.

ÂQ(AMS0 −BMR0) is a Hurwitz polynomial;

2) The output of the optimal filter satisfying the matching

condition can be expressed as:

û(t+1) = −[Ŝ∗(q−1)û(t)− R̂(q−1)ŷ(t+1)+η(t+1)]
(47)

where η(t+ 1) is a norm bounded signal.
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Using the results of [25] (Theorem 4.1 pp. 1505-1506)

and assuming that w(t) is norm bounded, it can be shown

that all the signals are norm bounded under the passivity

condition (39), where P is computed now with the reduced

order estimated filter.

2) Bias distribution: Using the Parseval’s relation, the

asymptotic bias distribution of the estimated parameters in the

frequency domain can be obtained starting from the expression

of ν(t), by taking into account that the algorithm minimizes

(almost) a criterion of the form lim
N→∞

1
N

∑N

t=1 ν
2(t). Using

eq. (16), the bias distribution (for algorithm III) will be given

by

θ̂∗ = arg min
θ̂

∫ π

−π

[|D(e−jω) +
N̂(e−jω)G(e−jω)

1 − N̂(e−jω)M(e−jω)
|2φw(ω)

+ φn(ω)]dω (48)

where φw and φn are the spectral densities of the disturbance

w(t) and of the measurement noise. Taking into account

equation (16), one obtains

θ̂∗ = arg min
θ̂

∫ π

−π

[|
GA2

M

P0
|2|
BQ

AQ

−
B̂Q

ÂQ

|2φw(ω)

+ φn(ω)]dω. (49)

From (49) one concludes that a good approximation of Q
filter will be obtained in the frequency region where φw is

significant and where G has a high gain (usually G should

have high gain in the frequency region where φw is significant

in order to counteract the effect of w(t)). However the quality

of the estimated Q̂ filter will be affected also by the transfer

function
A2

M

P0

.

D. Relaxing the Positive Real Condition

It is possible to relax the SPR conditions taking into account

that:

1) The disturbance (input to the system) is a broadband

signal;

2) Most of the adaptation algorithms work with a low

adaptation gain.

Under these two assumptions, the behavior of the algorithm

can be well described by the ”averaging theory” developed in

[22] and [13] (see also [23]).

When using the averaging approach, the basic assumption

of a slow adaptation holds for small adaptation gains (constant

and scalar in [22] i.e. λ2(t) ≡ 0, λ1(t) = 1; matrix and

time decreasing asymptotically in [13], [23] i.e lim
t→∞

λ1(t) =

1, λ2(t) = λ2 > 0).

In the context of averaging, the basic condition for stability

is that:

lim
N→∞

1

N

N
∑

t=1

ψ(t)H ′(q−1)ψT (t) =
1

2

∫ π

−π

Ψ(ejω)[H ′(ejω)

+H ′(e−jω)]ΨT (e−jω)dω > 0 (50)

be a positive definite matrix (Ψ(ejω) is the Fourier transform

of ψ(t)).

One can view (50) as the weighted energy of the observation

vector ψ. Of course the SPR sufficient condition upon H ′(z−1)
(see Equation 39) allows to satisfy this condition. However in

the averaging context it is only needed that (50) is true which

allows that H ′ be non positive real in a limited frequency

band. Expression (50) can be re-written as follows ([14]):
∫ π

−π

ψ(ejω)[H ′ +H ′∗]ψT (e−jω)dω =

r
∑

i=1

∫ αi+∆i

αi

ψ(ejω)[H ′ +H ′∗]ψT (e−jω)dω−

p
∑

j=1

∫ βj+∆j

βj

ψ(ejω)[H̄ ′ + H̄ ′∗]ψT (e−jω)dω > 0 (51)

where H ′ is SPR in the frequency intervals [αi, αi + ∆i]
and H̄ ′ = −H ′ is positive real in the frequencies intervals

[βj , βj + ∆j ] (H ′∗ denotes the complex conjugate of H ′).

The conclusion is that H ′ does not need to be SPR. It

is enough that the ”positive” weighted energy exceeds the

”negative” weighted energy. This explains why algorithms I ,

IIa and IIb will work in practice in most of the cases. It

is however important to remark that if the disturbance is a

single sinusoid (which violates the hypothesis of broadband

disturbance) located in the frequency region where H ′ is

not SPR, the algorithm may diverge (see [13], [22]). It was

observed that despite satisfaction of condition (51) which will

assure the stability of the system, attenuation is not very good

in the frequency regions where the positive real condition (41)

is violated.

Without doubt, the best approach for relaxing the SPR

conditions is to use algorithm III (given in eq. (30)) instead

of algorithm IIa or IIb. This is motivated by eq. (42). As

it will be shown experimentally, this algorithm gives the best

results.

E. Summary of the algorithms

Table I summarizes the structure of the algorithms and

the stability and convergence conditions for the algorithms

developed in this paper with matrix and scalar adaptation

gain for IIR Youla-Kucera feedforward compensators, for FIR

Youla-Kucera feedforward compensators ([15]) and for IIR

adaptive feedforward compensators introduced in [14]. These

two references take also into account the internal positive

feedback. Concerning algorithms for IIR adaptive feedfor-

ward compensators, the algorithms introduced in [6] and the

FULMS algorithms ([8]) can be viewed as particular cases of

those introduced in [14].

It was not possible to give in table I all the options for

the adaptation gain. However basic characteristics for adaptive

operation (non vanishing adaptation gain) and self-tuning

operation (vanishing adaptation gain) have been provided10.

VI. EXPERIMENTAL RESULTS

The detailed description of the system used for the ex-

periments has been given in section II and a photo of the

mechanical structure is shown in figure 1.

10Convergence analysis can be applied only for vanishing adaptation gains.
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TABLE I
COMPARISON OF ALGORITHMS FOR ADAPTIVE FEEDFORWARD COMPENSATION IN AVC WITH MECHANICAL COUPLING

YKIIR YKFIR [14] YKIIR YKFIR [14]

Matrix gain Scalar gain

θ̂(t+ 1) = θ̂(t) + F (t)ψ(t)
ν0(t+1)

1+ψT (t)F (t)ψ(t)
θ̂(t) + γ(t)ψ(t)

ν0(t+1)

1+γ(t)ψT (t)ψ(t)

Adapt. gain
F (t+ 1)−1 = λ1(t)F (t) + λ2(t)ψ(t)ψT (t)

γ(t) > 0
0 ≤ λ1(t) < 1, 0 ≤ λ2(t) < 2, F (0) > 0

Adaptive Decr. gain and const. trace γ(t) = γ = const

Self tuning λ2 = const., lim
t→∞

λ1(t) = 1
∞
∑

t=1
γ(t) = ∞, lim

t→∞

γ(t) = 0

θ̂(t) = [b̂Q0 , . . . , â
Q
1 , . . .] [b̂Q0 , . . .] [−ŝ1(t), . . . , r̂0(t), . . .] [b̂Q0 , . . . , â

Q
1 , . . .] [b̂Q0 , . . .] [−ŝ1(t), . . . , r̂0(t), . . .]

φT (t) =
[α(t+ 1), . . . , β(t), . . .] [α(t+ 1), . . .] [−û(t), . . . [α(t+ 1), . . . , β(t), . . .] [α(t+ 1), . . .] [−û(t), . . . ,

α(t) = BM û(t) −AM ŷ(t) α(t) = BM û(t) ŷ(t+ 1), . . .] α(t) = BM û(t) −AM ŷ(t) α(t) = BM û(t) ŷ(t+ 1), . . .]
β(t) = R0ŷ(t) − S0û(t) −AM ŷ(t) β(t) = R0ŷ(t) − S0û(t) −AM ŷ(t)

P̂ = ÂQ(ÂMS0 − B̂MR0) ÂMS0 − B̂MR0 ÂM Ŝ − B̂M R̂ ÂQ(ÂMS0 − B̂MR0) ÂMS0 − B̂MR0 ÂM Ŝ − B̂M R̂
P = AQ(AMS0 −BMR0) AMS0 −BMR0 AM Ŝ −BM R̂ AQ(AMS0 −BMR0) AMS0 −BMR0 AM Ŝ −BM R̂

ψ(t) = Lφ(t); L2 = Ĝ; L3 = ÂM

P̂
Ĝ Lφ(t); L2 = Ĝ; L3 = ÂM

P̂
Ĝ

Stability AMG

PL
− λ

2
= SPR (λ = maxλ2(t)) AMG

PL
= SPR

condition

Conv. AMG

PL
− λ

2
= SPR (λ = λ2) AMG

PL
= SPR

condition
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Fig. 5. Frequency characteristics of the primary, secondary and reverse paths

A. System identification

The methodology used for parametric identification of the

mechanical structure’s paths is similar to that of [14], [26],

[27]. The sampling frequency is 800Hz.

The secondary and reverse paths have been identified in the

absence of the feedforward compensator (see figure 3(b)) using

as excitation signal a PRBS generated by a 10 bit shift register

and a frequency divider p = 4 applied at the input of the

amplifier feeding the inertial actuator used for compensation11

(see figures 1 and 2). For the secondary path, G(q−1), the

output is the residual acceleration measurement, e(t). For the

reverse path, M(q−1), the output is the signal delivered by the

primary transducer (accelerometer) ŷ(t).
The estimated orders of the model for the secondary path are

nBG
= 14, nAG

= 14. The best results, in terms of validation,

have been obtained with the Recursive Extended Least Square

method. The frequency characteristic of the secondary path

is shown in figure 5, solid line. It features several very low

damped vibration modes. The first vibration mode is at 44Hz

11It was first verified with p = 2 that there are no significant dynamics
around 200 Hz and then p = 4 has been chosen in order to enhance the
power spectral density of the excitation in low frequencies while keeping a
reasonable length for the experiment.

with a damping of 0.0212, the second at 83.8Hz with a

damping of 0.00961, the third one at 115Hz with a damping

of 0.00694. There is also a pair of low damped complex zeros

at 108Hz with a damping of 0.021. As a consequence of the

double differentiator behavior, a double zero at z = 1 is also

present.

For the reverse path M(q−1), the model’s complexity has

been estimated to be nBM
= 13, nAM

= 13. The frequency

characteristic of the reverse path is shown in figure 5 (dotted

line). There are several very low damped vibration modes at

45.1Hz with a damping of 0.0331, at 83.6Hz with a damping

of 0.00967, at 115Hz with a damping of 0.0107 and some

additional modes in high frequencies. There are two zeros

on the unit circle corresponding to the double differentiator

behavior. The gain of the reverse path is of the same order of

magnitude as the gain of the secondary path up to 150 HZ,

indicating a strong feedback in this frequency zone.

The primary path has been identified in the absence of

the feedforward compensator using w(t) as an input and

measuring e(t). The disturbance s(t) was a PRBS sequence

(N=10, frequency divider p=2). The estimated orders of the

model are nBD
= 26, nAD

= 26. The frequency characteristic

is presented in figure 5 (dashed line) and may serve for

simulations and detailed performance evaluation. Note that the

primary path features a strong resonance at 108 Hz, exactly

where the secondary path has a pair of low damped complex

zeros (almost no gain). Therefore one can not expect good

attenuation around this frequency.

B. The central controllers and comparison objectives

Two central controllers have been used to test IIRYK

adaptive feedforward compensators. The first (PP) has been

designed using a pole placement method adapted for the case

of positive feedback systems. Its main objective is to stabilize

the internal positive feedback loop. The end result was a

controller of orders nR0
= 15 and nS0

= 17. The second
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(H∞) is a reduced order H∞ controller with nR0
= 19 and

nS0
= 20 from [11]12. For the design of the H∞ controller,

the knowledge of the primary path is mandatory (which is

not necessary for the PP controller). Figure 6 shows a com-

parison of the performances obtained with these controllers.

One observes that H∞ already provides a good attenuation

(14.70 dB)13.
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∞
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PP: −4.6136dB

Fig. 6. Spectral densities of residual acceleration for the two central
controllers (experimental)

C. Broadband disturbance rejection using matrix adaptation

gain

Broadband disturbance rejection capabilities using the two

Youla-Kucera parametrizations with IIR and FIR filters de-

scribed in column 2 and 3 of table I are evaluated in this

subsection and some observations regarding how they compare

to the algorithm of column 4 (see also [14]) are made. For

most of the experiments, the complexity of the IIRYK filter

was nBQ
= 3 and nAQ

= 8, therefore having 12 parameters in

the adaptation algorithm according to eq. (4). For the FIRYK

parametrization, an adaptive filter of order nQ = 31 (32

parameters) has been used. These values do not allow for the

“perfect matching condition” to be verified.

A PRBS excitation on the global primary path is considered

as the disturbance.

Two modes of operation can be considered, depending on

the particular choices taken in eq. (29c):

• For adaptive operation, Algorithms IIa and III have

been used with decreasing adaptation gain (λ1(t) = 1,

λ2(t) = 1) combined with a constant trace adaptation

gain. When the trace of the adaptation matrix is bellow a

given value, the constant trace gain updating modifies the

values of λ1(t) and λ2(t) so that the trace of F is kept

constant. This assures the evolution of the PAA in the

optimal direction but the step size does not go to zero,

therefore maintaining adaptation capabilities for eventual

changes in disturbance or variations of the primary path

model.

• In self-tuning operation, a decreasing adaptation gain

F (t) is used and the step size goes to zero. Then, if

12The orders of the initial H∞ controller were: nRH∞
= 70 and

nSH∞
= 70.

13The same central controllers have been used in [15] for evaluating FIRYK
feedforward adaptive compensators.

a degradation of the performance is observed, as a con-

sequence of a change of the disturbance characteristics,

the PAA is re-started.

The parametric adaptation algorithms have been imple-

mented using the UD factorization [23]14. For reason of space

only the experimental results in adaptive operation will be

presented. For IIRYK the adaptation has been done starting

with an initial gain of 0.02 (initial trace = initial gain × number

of adjustable parameters, thus 0.24) and using a constant

trace of 0.02. For FIRYK an initial gain of 0.05 (initial trace

0.05 × 32 = 1.6) and constant trace 0.1 have been used.
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Fig. 7. Real time residual acceleration obtained with the IIR Youla-Kucera
parametrization (nBQ

= 3, nAQ
= 8) using Algorithm IIa with matrix

adaptation gain and the H∞ central controller.
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Fig. 8. Real time residual acceleration obtained with the IIR Youla-Kucera
parametrization (nBQ

= 3, nAQ
= 8) using Algorithm III with matrix

adaptation gain and the H∞ central controller.
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Fig. 9. Real time results obtained with the FIR Youla-Kucera parametrization
(nQ = 31) using Algorithm III with matrix adaptation gain and the H∞

central controller.

14An array implementation as in [28] can be also considered.
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The experiments have been carried out by first applying

the disturbance and then starting the adaptive feedforward

compensation after 50 seconds using the FIR or the IIR Youla-

Kucera parametrization. If not otherwise specified, the results

which will be presented have been obtained with the H∞

central controller. In the case of the IIRYK parametrization

using Algorithm III , the filtering by the denominator of the

QIIR filter used in equation (31) is done adaptively by using

the last stable estimation of AQ(q−1). Time domain results

using IIRYK with Algorithms IIa and III are shown in

figures 7 and 8 respectively. It can be seen that Algorithm

III provides a better performance than Algorithm IIa and this

can be explained by a better approximation of the positive real

condition (see discussion in subsection V-D). Figure 9 shows

the evolution of the residual acceleration with the FIRYK

adaptive compensator using Algorithm III of [15]. The final

attenuation given by IIRYK using Algorithm III (16.21dB)

is better than that provided by IIRYK using Algorithm IIa
(13.37dB) and slightly better than that provided by using

FIRYK with Algorithm III (16.17dB) which uses signifi-

cantly more adjustable parameters (32 instead of 12). However

the adaptation transient is slightly more rapid for FIRYK.

The power spectral density of the residual acceleration (after

adaptation transient is finished) for the considered algorithms

are shown in fig. 10.
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Fig. 10. Power spectral densities of the residual acceleration in open loop,
with IIRYK (nBQ

= 3, nAQ
= 8) and with FIRYK (nQ = 31) using the

H∞ central controller (experimental).
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Fig. 11. Evolution of the IIRYK parameters(nBQ
= 3, nAQ

= 8 and

H∞ central controller) for Algorithm III using matrix adaptation gain
(experimental).

Figure 11 shows the convergence of the parameters for

the IIRYK feedforward adaptive compensator using Algorithm

III . The experiment has been carried out over an horizon of

13 hours. Parameters take approximatively 8 hours to almost

settle. However this does not affect the performance (the

transient duration on the residual acceleration for Algorithm

III is about 50 s).

An evaluation of the influence of the number of parameters

upon the global attenuation of the IIRYK parametrization

is shown in table II. The results are grouped on two lines

corresponding to the two central controllers used, and the

given attenuations are measured in dB. The column headers

give the number of numerator coefficients followed by the

number of denominator coefficients. It can be observed that a

larger order of the denominator is better than a larger order of

the numerator.

Total no. param. 0 8 12 16

No. param. of num/den 0/0 4/4 8/4 4/8 6/6 10/6 6/10 8/8

H∞ (db) 14.715.9615.5616.2116.3115.67 16.5 16.47

PP (db) 4.6115.5216.2516.0216.2415.5715.7216.21

TABLE II
INFLUENCE OF THE NUMBER OF THE IIRYK PARAMETERS UPON THE

GLOBAL ATTENUATION

A similar analysis for the FIRYK feedforward adaptive

compensators is given in table III. Comparing the two tables

one can say that a reduction of adjustable parameters by

a factor of (at least) 2 is obtained in the case of IIRYK

with respect to to FIRYK for approximatively same level

of performance (compare IIRYK with 8 parameters with the

FIRYK with 16 and the IIRYK with 6/6 parameters with

the FIRYK with 32 parameters). It can be noticed that the

IIRYK is less sensitive that FIRYK with respsect to the

performances of the model based central controller. Table III

gives also comparative results for the IIR adaptive fedforward

compensators. The IIRYK structure seems to allows a slight

reduction of the number of parameters with respect to the

IIR structure for the same level of performance (compare the

results of IIRYK with 16 adjustable parameters (6/10) with

the IIR using 20 adjustable parameters).

No. param. 0 8 16 20 32 40

H∞ (db) 14.7 15.4 15.6 - 16.1716.03

PP (db) 4.6114.6915.89 - 15.7 15.33

IIR (db) - - 16.2316.4916.89

TABLE III
INFLUENCE OF THE NUMBER OF PARAMETERS UPON THE GLOBAL

ATTENUATION FOR THE FIRYK PARAMETRIZATION (LINES 2 AND 3) AND

FOR THE IIR ADAPTIVE FILTER (LINE 4)

To verify the adaptive capabilities of the two parametriza-

tions, a narrow band disturbance has been added after 1400

seconds of experimentation. This has been realized by using

a sinusoidal signal of 150 Hz. Power spectral density esti-

mates are shown in fig. 12 for the IIRYK parametrization

and in fig. 13 for the FIRYK parametrization. Better results

are obtained with the IIRYK parametrization and they are

comparable with those obtained for IIR adaptive feedforward

compensators. See [14, Fig. 12].
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Fig. 12. Power spectral densities of the residual acceleration when an
additional sinusoidal disturbance is added (Disturbance = PRBS + sinusoid)
and the IIRYK parametrization is used.
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Fig. 13. Power spectral densities of the residual acceleration when an
additional sinusoidal disturbance is added (Disturbance = PRBS + sinusoid)
and the FIRYK parametrization is used.

D. Broadband disturbance rejection using scalar adaptation

gain

The scalar adaptation gain algorithms of columns 5 and 6

from table I have been also tested on the AVC system.
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Fig. 14. Real time residual acceleration obtained with the IIR Youla-Kucera
parametrization (nBQ

= 3, nAQ
= 8) using Algorithm III with scalar

adaptation gain and the H∞ central controller.

In the adaptation regime, as opposed to the matrix cases,

a constant adaptation gain of 0.001 has been used for both

parametrizations, as in [14] (see also table I). This corre-

sponds to a constant trace of 0.012 for the IIRYK and 0.032

for the FIRYK (taking into account the number of adapted

parameters). Figure 14 shows the adaptation transient for the

scalar version of the IIRYK parametrization using Algorithm

III . Surprisingly, the performances are close to those obtained

with a matrix adaptation gain. (a similar observation has

been made in [14, Fig. 14]. Figure 15 shows the adaptation
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Fig. 15. Real time residual acceleration obtained with the FIR Youla-Kucera
parametrization (nQ = 31) using Algorithm III with scalar adaptation gain
and the H∞ central controller.

transient for the FIRYK parametrization using a scalar adap-

tation gain. It can be seen that the transient performances

are a little better for the IIRYK. In fig. 16, power spectral

densities and the corresponding global attenuations are given

for both parametrizations. It can be observed that IIRYK

parametrization with 12 adjustable parameters gives a slightly

better attenuation (additional 0.5 dB) with respect to a FIRYK

parametrization with 32 parameters.
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Open loop
IIRYK (Algo. III scal): −16.4577dB
FIRYK (Algo. III scal): −15.9229dB

Fig. 16. Power spectral densities of the residual acceleration in open loop,
with IIRYK (nBQ

= 3, nAQ
= 8) and with FIRYK (nQ = 31) using scalar

adaptation gain and the H∞ central controller (experimental).

VII. COMPARISON WITH OTHER ALGORITHMS

The algorithms developed in this paper with matrix and

scalar adaptation gains for IIR Youla-Kucera feedforward

compensators have been compared with the FIR Youla-Kucera

parameterized feedforward compensators from [15] and the

direct IIR adaptive algorithm of [14] (see Table I). This section

summarizes the observations made in Subsection V-E and in

Section VI based on experimental results.

Remark 1 - The number of adjustable parameters. The main

advantage of the IIRYK adaptive feedforward compensators

introduced in this paper compared with FIRYK adaptive

compensators is that they require a significantly lower number

of adjustable parameters for a given level of performance

(a reduction by a factor of 2 in the application presented).

This is without doubt a major practical advantage in terms of

implementation complexity. A slight reduction of the number

of adjustable parameters is also obtained with respect to IIR

adaptive feedforward compensators.
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Remark 2 - The poles of the internal positive closed loop.

For IIR adaptive feedforward compensators provided that the

SPR condition for stability is satisfied, the poles of the internal

”positive” loop will be asymptotically stable but they can be

very close to the unit circle. For FIRYK, the poles of the

internal positive feedback loop are assigned by the central

stabilizing controller and they remain unchanged under the

effect of adaptation. For IIRYK, part of the poles of the internal

positive feedback loop are assigned by the central stabilizing

controller but there are additional poles corresponding to ÂQ.

These poles will be inside the unit circle if the positive real

condition for stability is satisfied but they can be very close to

the unit circle (at least theoretically). However if one likes to

impose that these poles lie inside a circle of a certain radius,

this can be easily achieved by using parameter adaptation

algorithms with ”projections” ([23], [29]).

Remark 3 - Implementation of the filter for Algorithm

III. For IIRYK adaptive compensator one has to run first

algorithm IIa or IIb over a short horizon in order to get

an estimate of ÂQ for implementing the appropriate filter.

A similar procedure has to be used also for IIR adaptive

compensators (See [14]). For the IIRYK the filter can be

continuously improved by updating at each step the estimation

of ÂQ in the filter. Such a procedure is more difficult to apply

to the IIR structure since the estimated closed loop poles have

to be computed at each step based on current estimates of

the feedforward compensator’s parameters and the knowledge

of the reverse path M(q−1). For FIRYK this initialization

procedure is not necessary since the poles of the internal

positive feedback loop remain unchanged under the effect of

adaptation and a good estimation is provided by the knowledge

of the central stabilizing compensator and of the model of the

reverse path.

Remark 4 - Initial model based design compensator. Since

the system as well as the initial characteristics of the distur-

bance can be identified, a model based design of an initial

feedforward compensator can be done. For a FIRYK or an

IIRYK adaptive feedforward compensator, any model based

designed compensator can be used as the central controller

(no matter what is its dimension). Its performances will be

enhanced by the adaptation of the Q-parameters. However,

for IIR adaptive feedforward compensators the initial model

based designed compensator should have the same structure

(number of parameters) as the adaptive structure.

Remark 5 - Influence of the initial stabilizing controller.

The performances of IIRYK adaptive compensator are less

sensitive that those of FIRYK adaptive compensator with

respect to the performances of the initial model based sta-

bilizing controller (at least for a reduced number of adjustable

parameters).

VIII. CONCLUDING REMARKS

The paper has presented an adaptive IIR Youla-Kucera

parameterized feedforward compensator built around a stabi-

lizing filter for the internal ”positive” feedback loop occur-

ring in AVC and ANC systems. Experimental results on an

AVC system featuring an internal ”positive” feedback have

illustrated the potential of the approach. It has been shown

that the use of the IIR Youla-Kucera filters allows to reduce

significantly the number of parameters to be adapted with

respect to the FIR Youla-Kucera filters for the same level of

performance.

APPENDIX A

PROOF OF LEMMA 4.1

Proof: Using hypothesis H3, one can construct an equiv-

alent closed loop system for the primary path as in figure 17.
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Fig. 17. Equivalent system representation

Considering a Q(q−1) filter as in eq. (4), the polynomial

S(q−1) given in eq. (3) can be rewritten as

S(q−1) = 1 + q−1S∗ = 1 + q−1((AQS0)
∗ −BQB

∗
M ). (52)

Under hypothesis 3 (perfect matching condition) the output

of the primary path can be expressed as

x(t) = −z(t) = −G(q−1)u(t) (53)

and the input to the Youla-Kucera schema as

y(t+ 1) = w(t+ 1) +
BM

AM

u(t+ 1) (54)

where u(t) is a dummy variable given by

u(t+ 1) = −S∗u(t) +Ry(t+ 1)

= −((AQS0)∗ −BQB
∗

M )u(t) + (AQR0 −BQAM )y(t+ 1)

= −(AQS0)∗u(t) +AQR0y(t+ 1)

+BQ (B∗

Mu(t) −AMy(t+ 1)) . (55)

Similarly, the output of the adaptive feedforward filter (for

a fixed Q̂) is given by

û(t+ 1) = − (ÂQS0)∗û(t) + ÂQR0ŷ(t+ 1)

+ B̂Q (B∗

M û(t) −AM ŷ(t+ 1)) . (56)

The output of the secondary path is

ẑ(t) = G(q−1)û(t). (57)

Define the dummy error (for a fixed estimated set of

parameters)

ǫ(t) = −u(t) + û(t) (58)

and the residual error

ν(t) = −e(t) = −(−z(t) + ẑ(t)) = −G(q−1)ǫ(t)). (59)
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Equation (55) can be rewritten as

u(t+ 1) = −(AQS0)∗û(t) +AQR0ŷ(t+ 1) +BQ(B∗

M û(t)

−AM ŷ(t+ 1)) − (AQS0)∗(u(t) − û(t)) +AQR0(y(t+ 1)

− ŷ(t+ 1)) +BQ[B∗

M (u(t) − û(t)) −AM (y(t+ 1) − ŷ(t+ 1))].
(60)

Taking into consideration eqs. (10), (54)

BQ[B∗
M (u(t) − û(t)) −AM (y(t+ 1) − ŷ(t+ 1))] =

= BQ

[

B∗
M ǫ(t) −AM

B∗
M

AM

ǫ(t)

]

= 0
(61)

and substracting equation (56), from (60) one obtains

ǫ(t+ 1) = − ((−AQ + ÂQ)S0)∗û(t) + (−AQ + ÂQ)R0ŷ(t+ 1)

+ (−BQ + B̂Q)[B∗

M û(t) −AM ŷ(t+ 1)]

− (AQS0)∗ǫ(t) +AQR0
B∗

M

AM
ǫ(t).

(62)

Passing the terms in ǫ(t) on the left hand side, one gets:

[

1 + q−1

(

AM (AQS0)∗ −AQR0B∗

M

AM

)]

ǫ(t+ 1) =
AQP0

AM
ǫ(t+ 1)

= (−A∗

Q + Â∗

Q)[−S0û(t) +R0ŷ(t)]

+ (−BQ + B̂Q)[BM û(t+ 1) −AM ŷ(t+ 1)]
(63)

Using eqs. (59) and (19) one gets:

ν(t+ 1) =
AM (q−1)G(q−1)

AQ(q−1)P0(q−1)
(θ − θ̂)Tφ(t), (64)

which corresponds to eq. (17) and this ends the proof.

APPENDIX B

PROOF OF LEMMA 5.1

Proof: Using Theorem 3.2 from [23], under the condition

(39), (34), (35) and (36) hold.

However in order to show that ν0(t + 1) goes to zero one

has to show first that the components of the observation vector

are bounded. The result (36) suggests to use the Goodwin’s

”bounded growth” lemma ([26] and Lemma 11.1 in [23]).

Provided that one has:

|ψT (t)F (t)ψ(t)|
1

2 ≤ C1 + C2 · max
0≤k≤t+1

|ν0(k)| (65)

0 < C1 <∞, 0 < C2 <∞, F (t) > 0,

||ψ(t)|| will be bounded. So it will be shown that (65) holds.

This will be proved for algorithm I (for algorithms II and III

the proof is similar).

From (14) one has

−ẑ(t) = ν(t) + x(t). (66)

Since x(t) is bounded (output of an asymptotically stable

system with bounded input), one has

|ûf (t)| = |Gû(t)| = |ẑ(t)| ≤ C3 + C4 · max
0≤k≤t+1

|ν(k)|

≤ C ′
3 + C ′

4 · max
0≤k≤t+1

|ν0(k)| (67)

0 < C3, C4, C
′
3, C

′
4 <∞ (68)

since |ν(t)| ≤ |ν0(t)| for all t. Filtering both sides of equation

(10) by G(q−1) one gets in the adaptive case:

ŷf (t) = G · w(t) +
BM

AM

· ûf (t) (69)

Since AG and AM are Hurwitz polynomials and d(t) is

bounded, it results that

|ŷf (t)| ≤ C5 + C6 · max
0≤k≤t+1

|ν0(k)|; 0 < C5, C6 <∞

(70)

Using equations (19a), (19b), (27), (68) and (70) one can

conclude that

|αf (t)| ≤ C7 + C8 · max
0≤k≤t+1

|ν0(k)| (71)

and

|βf (t)| ≤ C9 + C10 · max
0≤k≤t+1

|ν0(k)| (72)

Therefore (65) holds, which implies that ψ(t) is bounded and

one can conclude that (38) also holds. End of the proof.
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A Youla-Kucera parametrized adaptive feedforward compensator for active

vibration control with mechanical coupling✩
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Abstract

Most of the adaptive feedforward vibration (or noise) compensation systems feature an internal ”positive feedback” coupling

between the compensator system and the correlated disturbance measurement which serves as reference. This may lead to the

instability of the system. Instead of the standard IIR structure for the adaptive feedforward compensator, the paper proposes a

Youla-Kucera parametrization of the adaptive compensator. The central compensator assures the stability of the system and its

performances are enhanced in real time by the direct adaptation of the Youla-Kucera parameters. Theoretical and experimental

comparison with recent results obtained using an IIR adaptive feedforward compensators are provided.

Keywords: active vibration control, adaptive feedforward compensation, adaptive control, Youla-Kucera parametrization,

parameter estimation.

1. Introduction

When a correlated measurement with the disturbance is

available, adaptive feedforward compensation of broadband vi-

brations or noise can be considered (Elliott & Nelson, 1994;

Kuo & Morgan, 1996; Jacobson et al., 2001; Zeng & de Calla-

fon, 2006). However in many AVC (Active Vibration Control)

or ANC (Active Noise Control) systems there is a ”positive”

feedback coupling between the compensator system and the

correlated measurement of the disturbance which serves as ref-

erence (Jacobson et al., 2001; Zeng & de Callafon, 2006; Hu &

Linn, 2000). The positive feedback may destabilize the system.

The disturbance is assumed to be unknown and with variable

spectral characteristics, but the dynamic models of the AVC and

ANC are supposed to be constant and known (these models can

be identified).

In Jacobson et al. (2001) and Landau et al. (2011a), algorithms

for adapting an IIR feedforward compensator in real time taking

into account the presence of the internal positive feedback have

been proposed, analyzed and evaluated. In Zeng & de Calla-

fon (2006), the idea of using a Youla-Kucera parametrization1

of the feedforward compensator is illustrated in the context of

active noise control. Based on the identification of the system,

a stabilizing YK controller is designed. The YK parameters are

then updated by using a two time scale indirect procedure: (1)

estimation of the Q-filter’s parameters over a certain horizon,

(2) updating of the controller.

✩The preliminary version of the paper has been accepted at the IFAC World

Congress 2011.
∗Corresponding author. Tel. +33-4-7682-6391. Fax +33-4-7682-6382. E-

mail Ioan-Dore.Landau@gipsa-lab.grenoble-inp.fr.
1Throughout the paper the Youla-Kucera parametrisation will also be called

Q (or YK) -parametrisation.

The main contributions of the present paper with respect to

Zeng & de Callafon (2006) and Landau et al. (2011a) are:

1. the development of a direct real time recursive adapta-

tion algorithm for the Q-parameters of a Youla-Kucera

parameterized feedforward filter and the analysis of the

stability of the resulting system;

2. possibility to assign the poles of the internal positive

closed loop (not possible in Landau et al. (2011a));

3. easier satisfaction of the positive real condition for stabil-

ity and convergence;

4. application of the algorithm to an active vibration control

system (in Zeng & de Callafon (2006) an active noise

control system is considered) and comparative evaluation

with the results given in Landau et al. (2011a).

While the paper is developed in the context of AVC, the

results are certainly applicable to ANC systems.

The paper is organized as follows. The system structure is

presented in section 2. The algorithm for adaptive feedforward

compensation will be developed in section 3 and analysed in

section 4. In section 5 the AVC system used for real time

experiments is briefly presented. Experimental results obtained

on the AVC system are shown in section 6.

2. Basic equations and notations

The block diagrams associated with an AVC system are

shown in fig.1 in open loop (1(a)) and when the Youla-Kucera

compensator is active (1(b)). For adaptive IIR feedforward

compensators see Landau et al. (2011a). s(t) is the disturbance

and d(t) is the correlated measurement with the disturbance.

The primary (D), secondary (G) and reverse (positive coupling)

Preprint submitted to Automatica January 8, 2012
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Figure 1: Feedforward AVC: in open loop (a) and with adaptive feedforward

compensator (b)

(M) paths represented in (1(b)) are respectively characterized

by the asymptotically stable transfer operators:

D(q−1) =
BD(q−1)

AD(q−1)
=

bD
1 q−1 + ...+bD

nBD
q−nBD

1+aD
1 q−1 + ...+aD

nAD
q−nAD

, (1)

G(q−1) =
BG(q−1)

AG(q−1)
=

bG
1 q−1 + ...+bG

nBG
q
−nBG

1+aG
1 q−1 + ...+aG

nAG
q
−nAG

, (2)

M(q−1) =
BM(q−1)

AM(q−1)
=

bM
1 q−1 + ...+bM

nBM
q−nBM

1+aM
1 q−1 + ...+aM

nAM
q−nAM

, (3)

with BX = q−1B∗
X for any x∈ {D,G,M}. Ĝ, M̂ and D̂ denote the

identified (estimated) models of G, M and D. The optimal IIR

feedforward compensator which will minimize the residual ac-

celeration can be written, using the Youla-Kucera parametriza-

tion (Q-parametrization), as

N(q−1) =
R(q−1)

S(q−1)
=

R0(q
−1)−AM(q−1)Q(q−1)

S0(q−1)−BM(q−1)Q(q−1)
(4)

where the optimal polynomial Q(q−1) has a FIR structure:

Q(q−1) = q0 +q1q−1 + ...+qnQ
q−nQ . (5)

and R0(q
−1), S0(q

−1) = 1+q−1S∗0(q
−1) are the polynomials of

the central (stabilizing) filter and AM(q−1), BM(q−1) are given

in (3).

The estimated Q polynomial is denoted2 by Q̂(q−1) or

Q̂(θ̂ ,q−1) when it is a linear filter with constant coefficients or

Q̂(t,q−1) during estimation (adaptation).

2The complex variable z−1 will be used for characterizing the system’s

behavior in the frequency domain and the delay operator q−1 will be used for

describing the system’s behavior in the time domain.

The input of the feedforward filter (called also reference) is
denoted by û(t) and it corresponds to the measurement provided
by the primary transducer (force or acceleration transducer in
AVC or a microphone in ANC). In the absence of the compen-
sation loop (open loop operation) û(t) = d(t). The output of
the feedforward filter (which is the control signal applied to the

secondary path) is denoted by ŷ(t) = ŷ(t + 1|θ̂(t + 1)) (a pos-

teriori output). The a priori output ŷ0(t + 1) = ŷ(t + 1|θ̂(t)) is
given by:

ŷ0(t +1) = −S∗0 ŷ(t)+R0û(t +1)+ Q̂(t,q−1)[B∗
M ŷ(t)−AM û(t +1)], (6)

where ŷ(t), ŷ(t − 1), ... are the ”a posteriori” outputs of the
feedforward filter generated by

ŷ(t +1) = −S∗0 ŷ(t)+R0û(t +1)+ Q̂(t +1,q−1)[B∗
M ŷ(t)−AM û(t +1)]. (7)

The measured input to the feedforward filter satisfies the

following equation (when feedforward compensation is active)

û(t +1) = d(t +1)+
B∗

M(q−1)

AM(q−1)
ŷ(t). (8)

The unmeasurable value of the output of the primary path

is denoted x(t). The unmeasurable ”a priori” output of the

secondary path will be denoted ẑ0(t +1).

ẑ0(t +1) = ẑ(t +1|θ̂(t)) =
B∗

G(q−1)

AG(q−1)
ŷ(t) (9)

The ”a posteriori” unmeasurable value of the output of the

secondary path is denoted by:

ẑ(t +1) = ẑ(t +1|θ̂(t +1)) (10)

The a priori adaptation error is defined as:

ν0(t +1) = ν(t +1|θ̂(t)) =−χ0(t +1) =−x(t +1)− ẑ0(t +1)
(11)

where χ0(t + 1) is the measured residual acceleration. The ”a

posteriori” adaptation error (computed) will be given by:

ν(t +1) = ν(t +1|θ̂(t +1)) = −x(t +1)− ẑ(t +1). (12)

When using an estimated filter N̂ with constant parameters:

ŷ0(t) = ŷ(t), ẑ0(t) = ẑ(t) and ν0(t) = ν(t).
The objective is to develop stable recursive algorithms for

adaptation of the parameters of the Q filter such that the mea-

sured residual error (acceleration or force in AVC, noise in

ANC) be minimized in the sense of a certain criterion. This

has to be done for broadband disturbances d(t) (or s(t)) with

unknown and variable spectral characteristics and an unknown

primary path model.

3. Algorithm development

The algorithm for adaptive feedforward compensation will

be developed under the following hypotheses:

1. The signal d(t) is bounded (which is equivalent to say

that s(t) is bounded and W (q−1) in figure 1 is asymptoti-

cally stable).

2



2. It exists a central feedforward compensator N0 (R0, S0)
which stabilizes the inner positive feedback loop formed

by N0 and M such that its characteristic polynomial 3

P0(z
−1) = AM(z−1)S0(z

−1)−BM(z−1)R0(z
−1) (13)

is a Hurwitz polynomial.

3. (Perfect matching condition) It exists a value of the Q

parameters such that

G ·AM(R0 −AMQ)

AMS0 −BMR0
= −D. (14)

4. The effect of the measurement noise upon the measure-

ment of the residual acceleration is neglected (determin-

istic context).

Once the algorithm will be developed under these hypothe-

ses, hypotheses 3 and 4 are removed and the algorithm can be

analyzed in this modified context.

A first step in the development of the algorithms is to estab-

lish for a fixed estimated compensator a relation between the

error on the Q-parameters (with respect to the optimal values)

and the adaptation error ν . This is summarized in the following

Lemma.

Lemma 1. Under the hypothesis 1, 2, 3 and 4 for the system

described by eqs. (1) through (12), using a Q-parameterized

feedforward compensator with constant parameters, one has:

ν(t +1/θ̂) =
AM(q−1)G(q−1)

P0(q−1)
[θ − θ̂ ]T φ(t), (15)

where θ , θ̂ and φ are given respectively by:

θ T = [q0,q1,q2, . . . ,qnQ
] (16a)

θ̂ T = [q̂0, q̂1, q̂2, . . . , q̂nQ
] (16b)

φ T (t) = [α(t +1),α(t), . . . ,α(t −nQ +1)]. (16c)

α(t +1) = BM ŷ(t +1)−AM û(t +1)

= B∗
M ŷ(t)−AM û(t +1) (16d)

qi are the coefficients of the optimal Q-filter and q̂i are the

coefficients of the fixed estimated Q̂-filter.

For a proof, see Appendix A.

Filtering the vector φ by an asymptotically stable filter

L(q−1), eq. (15) becomes

ν(t +1/θ̂) =
AM(q−1)G(q−1)

P0(q−1)L(q−1)
[θ − θ̂ ]T φ f (t) (17)

with

φ f (t) = L(q−1)φ(t) (18)

= [α f (t +1),α f (t), . . . ,α f (t −nQ+1)],

3The parenthesis (q−1) will be omitted in some of the following equations

to make them more compact.

Present paper
Landau et al. (2011a)

(Adaptive IIR)
(Fix IIR +

Adaptive YKFIR)

θ̂(t +1) = θ̂(t)+F(t)ψ(t) ν0(t+1)
1+ψT (t)F(t)ψ(t)

Adapt.

gain

F(t +1)−1 = λ1(t)F(t)+λ2(t)ψ(t)ψT (t)
0 ≤ λ1(t)< 1, 0 ≤ λ2(t)< 2, F(0)> 0

Adaptive Decr. gain and const. trace

Self tuning λ2 = const., lim
t→∞

λ1(t) = 1

θ̂(t) = [q̂0(t), q̂1(t), . . .] [−ŝ1(t), . . . , r̂0(t), . . .]

φ T (t) =
[α(t +1),α(t), . . .]

[−ŷ(t), . . . , û(t +1), . . .]
α(t) = BM ŷ(t)−AM û(t)

P̂ = ÂMS0 − B̂MR0 ÂM Ŝ− B̂MR̂

P = AMS0 −BMR0 AM Ŝ−BMR̂

ψ(t) = Lφ(t); L2 = Ĝ; L3 = ÂM

P̂
Ĝ

Stability AMG
PL

− λ
2

= SPR (λ = maxλ2(t))condition

Conv. AMG
PL

− λ
2

= SPR (λ = λ2)condition

Table 1: Algorithms for adaptive feedforward compensation in AVC with me-

chanical coupling (YK parametrization and IIR parmetrization)

.

where

α f (t +1) = L(q−1)α(t +1). (19)

Eq. (17) will be used to develop the adaptation algorithms.

When the parameters of Q̂ evolve over time and neglecting

the non-commutativity of the time varying operators (which

implies slow adaptation (Anderson et al., 1986) i.e., a limited

value for the adaptation gain), equation (17) transforms into4

ν(t +1/θ̂(t +1) =
AM(q−1)G(q−1)

P0(q−1)L(q−1)
[θ − θ̂(t +1)]T φ f (t).

(20)

Eq. (20) has the standard form of an ”a posteriori adaption

error equation” (Landau et al., 2011b), which immediately sug-

gests to use the following parameter adaptation algorithm:

θ̂(t +1) = θ̂(t)+F(t)ψ(t)ν(t +1) (21a)

ν(t +1) =
ν0(t +1)

1+ψT (t)F(t)ψ(t)
(21b)

F(t +1) =
1

λ1(t)



F(t)−
F(t)ψ(t)ψT (t)F(t)

λ1(t)
λ2(t) +ψT (t)F(t)ψ(t)



 (21c)

1 ≥ λ1(t)> 0;0 ≤ λ2(t)< 2;F(0) = αI;αmax > α > 0

(21d)

ψ(t) = φ f (t) (21e)

where λ1(t) and λ2(t) allow to obtain various profiles for the

adaptation gain F(t) (see Landau et al. (2011b)).

4However, exact algorithms can be developed taking into account the non-

commutativity of the time varying operators - see Landau et al. (2011b)
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Three choices for the filter L will be considered:

Algorithm I L = G

Algorithm II L = Ĝ

Algorithm III

L =
ÂM

P̂0

Ĝ (22)

where

P̂0 = ÂMS0 − B̂MR0. (23)

A comparison with algorithms for IIR adaptive compen-

sators (Landau et al., 2011a) is summarized in Table 1. For the

IIR one adapts the filter parameters while for YK parametrized

filters one adapts the parameters of the Q filter. For IIR, the re-

gressor vector is constituted by filtered inputs and outputs while

for YK parametrization, the components of the regressor vector

are filtered linear combinations of input and outputs weighted

by the parameters of the reverse path model.

4. Analysis of the algorithms

4.1. The deterministic case - perfect matching

Equation (20) for the a posteriori adaptation error has the

form:

ν(t +1) = H(q−1)[θ − θ̂(t +1)]T ψ(t), (24)

where

H(q−1) =
AM(q−1)G(q−1)

P0(q−1)L(q−1)
, ψ = φ f . (25)

One has the following result:

Lemma 2. Assuming that eq. (24) represents the evolution of

the a posteriori adaptation error and that the parameter adap-

tation algorithm (21a) through (21e) is used one has:

lim
t→∞

ν(t +1) = 0 (26)

lim
t→∞

[ν0(t +1)2]

1+ψ(t)T F(t)ψ(t)
= 0 (27)

||ψ(t)|| is bounded (28)

lim
t→∞

ν0(t +1) = 0 (29)

for any initial conditions θ̂(0),ν(0) if:

H ′(z−1) = H(z−1)−
λ2

2
, max

t
[λ2(t)] ≤ λ2 < 2 (30)

is a strictly positive real (SPR) transfer function.

Proof: The proof is similar to that of (Landau et al., 2011a,

Lemma 5.1) and is omitted.

The analysis in the presence of a measurement noise and

when the perfect model matching does not hold can be carried

on in a similar way as in Landau et al. (2011a) and it is omitted.

Remark 1: For algorithm III, the stability condition (30) for

λ2 = 1 can be transformed into (Ljung & Söderström, 1983)

∣

∣

∣

∣

∣

(

AM(e− jω)

ÂM(e− jω)
·

P̂0(e
− jω)

P0(e− jω)
·

G(e− jω)

Ĝ(e− jω)

)−1

−1

∣

∣

∣

∣

∣

< 1 (31)

for all ω , which is always true provided that the initial estimates

of M and G are close to the true values (the differences between

P0 and P̂0 depend only upon the estimation errors of M̂).
Remark 2: Consider eq. (15) for the case of time varying

parameter θ̂ . Neglecting the non-commutativity of time varying

operators it can be written as:

ν(t +1|θ̂(t +1)) =[θ − θ̂(t +1)]T φ ′
f (t) (32)

φ ′
f (t) =

AM(q−1)G(q−1)

P0(q−1)
φ(t) (33)

If one would like to minimize a one step ahead quadratic crite-

rion J(t +1) = ν2(t +1) using the gradient technique (Landau

et al., 2011b) one gets

1

2

∂J(t +1)

∂ θ̂(t +1)
= −φ ′

f (t)ν(t +1) (34)

Using algorithm III, eq. (21a) can be viewed as an approxima-

tion of the gradient (F = αI = const. for the gradient tech-

nique). For constant adaptation gain λ2(t) ≡ 0 and the strict

positive realness on H ′(z−1) implies at all the frequencies:

−900 < ∠
AM(e− jω)G(e− jω)

P0(e− jω)
−∠

ÂM(e− jω)Ĝ(e− jω)

P̂0(e− jω)
< 900

(35)

Therefore the interpretation of the SPR condition of Lemma 2

is that the angle between the direction of adaptation and the

direction of the inverse of the true gradient should be less than

900. For time-varying adaptation gains the condition is sharper

since in this case Re{H(e− jω)} should be larger than
λ2
2

at all

frequencies.
Remark 3: The asymptotic bias distribution when perfect

matching condition is not satisfied is given by (see Landau et al.
(2011a) for the computation method):

θ̂ ∗ = argmin
θ̂

∫ π

−π
[|

G( jω)A2
M( jω)

P0( jω)
|2|Q( jω)− Q̂( jω)|2φd(ω)+φw(ω)]dω

(36)

where φd and φw are the spectral densities of d(t) and of the

measurement noise. From (36) one concludes that a good ap-

proximation of Q corresponding to the perfect matching will

be obtained in the frequency region where φd is significant and

where G has a high gain (usually G should have high gain in

the frequency region where φd is significant in order to coun-

teract the effect of d(t)). The quality of the estimated Q̂ will be

affected also by A2
M/P0.

Remark 4: In the case where some of the zeros of G are

outside the unit circle, the use of Lemma 2 requires that the

estimated unstable zeros be equal to the true unstable zeros and

in addition that the minimal order transfer function H ′ be SPR.

Extensive simulations have shown however that it is enough

that real and estimated unstable zeros be sufficiently close in

order that the phase condition associated to the positivity of the

real part of H ′ is satisfied (even if H’ in this case can not be

SPR).

4.2. Comparison with IIR adaptive feedforward compensators

Lets focus now on the differences between the IIR adaptive

compensator given in Landau et al. (2011a) and the YK adap-

tive compensator.
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Remark 1: For IIR adaptive compensators, provided that the

SPR condition is satisfied, the poles of the internal ”positive”

loop will be asymptotically stable but they can be very close to

the unit circle (they can be inside of a circle of radius 0.99999..).

This may induce some numerical problems in practice (when

using truncation or fixed point arithmetic).

Remark 2: The central YK controller allows to assign the

poles of the internal closed loop. Therefore one can impose that

all the poles of the internal loop be inside of a circle of radius

1−δ ,δ > 0 (δ takes care of the numerical approximations).

Remark 3: If a model based initial IIR compensator is avail-

able, it can not in general be used to initialize the parameters

of the IIR adaptive compensator since often the number of pa-

rameters of the fixed compensator is higher than the number of

parameters of the adaptive IIR compensator. The situation is

different for YK adaptive compensator where any initial stabi-

lizing compensator can be used whatever its complexity is.

Remark 4: For YK adaptive compensators the filters for

Algorithm III can be directly implemented since the estimated

closed loop poles are defined by the central controller and M̂.

For IIR adaptive compensators there is a need for an initial-

ization horizon using Algorithm II followed by the real time

computation of the estimated closed loop poles using N̂ and M̂.

5. An active vibration control system using an inertial ac-

tuator
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Figure 2: An AVC system using a feedforward compensation - scheme

Figure 2 represents an AVC system using a measurement

of the image of the disturbance and an inertial actuator for

reducing the residual acceleration which has been used for real

time experiments. The system is composed of three metal plates

interconnected by springs. The one on top (M1) is equipped

with an inertial actuator which generates the disturbance s(t)
(figure 1). Another inertial actuator is located bellow plate

M3 and is used for disturbance rejection. Two accelerometers

positioned as in figure 2 measure the image of the disturbance

and the residual acceleration χ0(t). The corresponding block

diagrams in open loop operation and with the compensator

system are shown in figures 1(a) and 1(b). The procedure for

identifying the various models has been described in Landau

et al. (2011a). Their frequency characteristics are shown in

figure 3. The model orders for the secondary path (solid line)

and the reverse path (dotted line) have been estimated to be:

nBG
= 17, nAG

= 15 and nBM
= 16, nAM

= 16 respectively. The

primary path model has been used only for simulations.
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Figure 3: Frequency characteristics of the primary, secondary and reverse paths

(identified models)

6. Experimental results

6.1. The central controllers

Two central controllers have been used to test this approach.

The first (PP) has been designed using pole placement method.

Its main objective is to stabilize the internal positive feedback

loop. The end result was a controller of orders nR0
= 15 and

nS0
= 17. The second controller is a reduced order H∞ con-

troller with nR0
= 19 and nS0

= 20 from Alma et al. (2011)5.

6.2. Experimental results - Broadband disturbance rejection

The broadband disturbance is a PRBS applied on the iner-

tial actuator on top of the system. Its effect in the absence of

the compensation system can be viewed in figures 4 and 5 (open

loop power spectral density). Preliminary simulation studies
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Figure 4: Experimental spectral densities of the residual acceleration (H∞)

have confirmed the theoretical expectations that algorithm III

gives better results than algorithm II. Subsequently only the al-

gorithm III has been considered in the experiments. The power

spectral densities obtained with the two central controllers with-

out and with adaptation (32 parameters) are shown in figures 4

5The orders of the initial H∞ controller were: nRH∞

= 70 and nSH∞

= 70
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Figure 5: Experimental spectral densities of the residual acceleration (PP)

No. of param. 0 8 20 32 40

YK with H∞ 14.70 dB16.24 dB16.76 dB16.52 dB16.04 dB

YK with PP 4.61 dB 14.26 dB14.49 dB15.16 dB15.56 dB

IIR - 16.14 dB16.23 dB16.49 dB16.89 dB

Table 2: Influence of the number of parameters upon the global attenuation

(experimental).

and 5. On both figures, the spectral density obtained using the

IIR adaptive filter (Landau et al., 2011a), with 32 parameters,

is also shown for comparison. Table 2 summarizes the global

attenuation results obtained with the two central controllers for

various number of parameters of the Q polynomial. The last

line give the results for the IIR adaptive feedforward filter used

in Landau et al. (2011a). In the column ”0”, the attenuations

obtained for each structure, in the absence of the adapted fil-

ters, are given. For the YK parametrization, this corresponds

to the use of the fixed central controller. For the IIR filter, this

corresponds to open loop operation. For YK parametrized feed-

forward compensator the performance depends upon the central

controller. For a well designed central controller, the perfor-

mances are close to those of the IIR adaptive compensator.

7. Conclusions

FIR Youla Kucera parametrized adaptive feedforward com-

pensators and IIR adaptive feedforward compensators provide

close performances. However from a practical point of view the

YK adaptive feedforward compensator seems more interesting

in terms of initialization, assignment of the inner closed loop

poles and implementation of the filters required by the positive

real condition for stability and convergence.

Appendix A. Proof of Lemma 1

Under the assumption 3 (perfect matching condition) the

output of the primary path can be expressed as

x(t) = −G(q−1)y(t), (A.1)

where y(t) is a dummy variable given by

y(t +1) = −S∗0y(t)+R0u(t +1)+Q[B∗
My(t)−AMu(t +1)] (A.2)

with

u(t +1) = d(t +1)+
B∗

M

AM

y(t). (A.3)

The output of the adaptive feedforward filter (for a fixed Q̂)

is given by (7), where one replaces Q̂(t + 1,q−1) with Q̂(q−1).
The output of the secondary path is

ẑ(t) = G(q−1)ŷ(t). (A.4)

Define the dummy error (for a fixed estimated set of parame-

ters)

ε(t) = y(t)− ŷ(t) (A.5)

and the residual adaptation error becomes:

ν(t) = −χ(t) = −x(t)− ẑ(t) = G(q−1)ε(t). (A.6)

Equation (A.2) can be rewritten as

y(t +1) =−S∗0ŷ(t)+R0û(t +1)+Q[B∗
M ŷ(t)−AM û(t +1)]

−S∗0[y(t)− ŷ(t)]+R0[u(t +1)− û(t +1)] (A.7)

+Q[B∗
M(y(t)− ŷ(t))−AM(u(t +1)− û(t +1))].

Using (8) and (A.3) it results that

Q[B∗
M(y(t)− ŷ(t))−AM(u(t +1)− û(t +1))] = 0 (A.8)

From equations (7) and (A.7) one obtains

ε(t +1) = −S∗0ε(t)+
R0B∗

M

AM
ε(t)+(Q− Q̂)[B∗

M ŷ(t)−AM û(t +1)]. (A.9)

Passing the terms in ε(t) on the left hand side and taking into

account eqs. (16d) and (A.6), one gets:

ν(t +1) =
AM(q−1)G(q−1)

P0(q−1)
(Q− Q̂)α(t +1), (A.10)

Using eqs. (16a), (16b) and (16c), eq. (A.10) can be rewritten

as eq. (15) which ends the proof.
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