
HAL Id: tel-00768033
https://theses.hal.science/tel-00768033

Submitted on 20 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Calcul d’Atteignabilité des systèmes hybrides avec des
fonctions de support

Rajarshi Ray

To cite this version:
Rajarshi Ray. Calcul d’Atteignabilité des systèmes hybrides avec des fonctions de support. Autre
[cs.OH]. Université de Grenoble, 2012. Français. �NNT : 2012GRENM021�. �tel-00768033�

https://theses.hal.science/tel-00768033
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Mathématiques et Informatique

Arrêté ministérial : 7 août 2006

Présentée par

Mr. Rajarshi Ray

Thèse dirigée par Dr. Oded Maler
et codirigée par Dr. Goran Frehse

préparée au sein Verimag
et de Ecole Doctorale Mathématiques, Sciences Et Technologies De
L’information, Informatique

Reachability Analysis of Hybrid
Systems Using Support Functions

Thèse soutenue publiquement le 29th May, 2012,
devant le jury composé de :

Prof. Eugene Asarin
Université Paris Diderot - Paris 7, Rapporteur
Prof. Radu Grosu
Vienna University of Technology, Rapporteur
Prof. Andreas Podelski
University of Freiburg, Examinateur
Dr. Colas Le Guernic
DGA, France, Examinateur
D.R. Oded MALER
CNRS, Directeur de thèse
MCF Goran FREHSE
Université Joseph Fourier Grenoble 1, Co-Directeur de thèse

2/107

Contents

1 Introduction 3

1.1 The Need for Formal Methods . 3

1.2 Model Checking . 4

1.3 Hybrid Automata . 5

1.4 Reachability . 6

1.5 Thesis Scope and Outline . 8

2 Reachability with Support Functions 11

2.1 Reachability using Symbolic States . 11

2.2 Representing Continuous Sets . 13

2.2.1 Preliminaries . 14

2.2.2 Convex Polytopes . 15

2.2.3 Support Functions . 16

2.3 Computing Time Elapse Successors . 21

2.3.1 Flowpipe Approximation . 21

2.3.2 Computing Flowpipes with Support Functions 24

2.4 Computing Transition Successors . 26

2.4.1 Computing Transition Successors with Support Functions 27

2.4.2 Increasing Precision . 29

3 The Support Function of the Intersection of Convex Sets with Hyper-
planes and Halfspaces 33

3.1 Intersection as a Minimization Problem 33

3.2 Solving the Minimization Problem . 36

3.2.1 Minima Bracketing . 37

3.2.2 A Sandwich Algorithm for the Direct Minimization of Convex Func-
tions . 42

4 Flowpipe-Guard Intersection with Support Functions 55

i

Contents

4.1 Detecting Intersection of a Guard with a Flowpipe 56

4.2 Intersecting a Convex Set with a Hyperplane or Halfspace 58

4.2.1 Shifting the Convex Set and the Hyperplane or Halfspace 60

4.2.2 Related Work . 60

4.2.3 Experiments . 61

4.3 Intersecting a Set of Convex Sets with a Hyperplane/Halfspace 64

4.3.1 Convex Hull of the Intersection 67

4.3.2 Convex Hull with Flowpipe Interval Splitting 70

4.4 Intersecting a Set of Convex Sets with a Polyhedron 70

4.5 Computational Optimization . 71

4.6 Case Studies . 72

5 SpaceEx: A Tool Platform for Hybrid Systems Verification 81

5.1 Requirements for an Extendable Tool Platform 81

5.1.1 Common Elements . 82

5.1.2 Differences . 82

5.2 Design Specification . 84

5.2.1 Principal Elements . 84

5.2.2 Tool Architecture and Execution 85

5.3 Tool Implementations . 85

5.3.1 Phaver Scenario . 87

5.3.2 Support Function Scenario . 87

5.4 Software Engineering Behind SpaceEx 93

5.4.1 Class Structure Design . 93

5.4.2 Smart Pointers . 95

5.4.3 Revision Control . 96

5.4.4 Testing and Debugging . 98

5.5 Models in SpaceEx . 98

5.6 Libraries . 99

5.7 SpaceEx Output . 99

6 Conclusion and Future Work 101

Bibliography 103

ii/107

List of Figures

1.1 Bouncing ball modeled with a hybrid automaton. 6

1.2 Illustrating safety verification with set based reachability analysis. The
Gray set denotes the initial states of the system and the Black set denotes
the bad or the error states. Reachable set denotes all possible states taken
by the system. Empty intersection of the reachable set with the bad set
implies safety. 7

2.1 `− λn denotes all directions from n to -n in the halfspace containing ` for
λ ∈ [−∞,∞] . 17

2.2 The support function of a hexagon in the polar domain and in the λ domain. 19

2.3 The support function of a polytope with 15 facets in the polar domain
and in the λ domain. In the λ domain, it can be observed that more the
number of facets of the polytope, flatter is the support function near the
global minima. 20

2.4 Flowpipe of the Bouncing Ball Model. 21

2.5 Illustrating the computation of the first flowpipe segment approximation. 22

2.6 Polyhedral overapproximation of Postc using support functions (shaded),
and actual Ωk for comparison (outlined) 25

2.7 Comparing the intersection of the outer polyhedral approximation of set
X and the guard set G∗ (shown in thick bordered region) with the exact
intersection (shown in shade) . 30

2.8 The image of X using the approximation operator (2.34), with the axis directions

as template directions. Here, R = I,W = 0, so I+ = I∗. G, I− are taken to

be true. Due to the intersection with the pre-image of the target invariant, I∗,
the result of (2.34) (shown in thick red) is considerably more accurate than the

same approximation without I∗ (shown shaded gray). 31

3.1 Downhill descend with four points. p4 is the first discovered turning point
during the descend. 39

3.2 Selection of four pivot points p1, p2, p3 and p4, satisfying the conditions:
p1 < p2 < p3 < p4, f(p1) > f(p2) and f(p3) < f(p4) 40

3.3 Lower approximation with the Sandwich algorithm after two partitioning
steps shown by the thick lines. 43

iii

List of Figures

3.4 Upper approximation with the Sandwich algorithm after two partitioning
steps. The thin lines show the approximation initially, after the first and
after the second iteration respectively. The thick lines show the upper
approximation of the function after three iterations. 43

3.5 The extended chord connecting f(p1), f(p2) and f(p3), f(p4) gives a lower
approximation of f(x) in the interval [p2, p3]. 44

3.6 Sandwich algorithm as a state machine. Initial state to three possible states. 45

3.7 Lower approximation of f(x) in the domain [p2, p4] with extended chords. 45

3.8 low and up denoting the lower and upper bound on the function minima. 46

3.9 New pivot point p selected by bisecting interval [p3, p4] 47

3.10 State machine with state S1 as the starting state. 47

3.11 low and up denoting the lower and upper bound on the function minima. 48

3.12 After renaming the pivots. 48

3.13 Lower and Upper bound on the function minima. 48

3.14 Selecting a new point for evaluation with maximum error rule. 49

3.15 Renaming the pivots. 49

3.16 State machine with state S3 as the starting state. 50

3.17 State machine with state S2 as the starting state. 50

3.18 Lower approximation of f(x) in [p2, p4] by extending chords (f(p1), f(p2)),
(f(p4), f(p3)) and (f(p2), f(p3)), (f(p5), f(p4)) 51

3.19 State machine with state S4 as the starting state. 52

3.20 The straight line through two points on a convex function f(λ) is a lower
bound on f(λ) to the left and to the right of those two points. 53

4.1 Flowpipe sections intersecting with a hyperplane and a halfspace illustrat-
ing the intersection detection algorithm. 59

4.2 Intersection of the hyperplane H′ = {x + y = 0} with a polytope P with
15 facets . 61

4.3 Intersection of the halfspace H = {x + y ≤ 0} with a polytope P with 15
facets . 62

4.4 Approximation error over the number of samples for the intersection of
random halfspaces with random polytopes with 16 facets. 63

4.5 The three plots shows the support function graphs of three convex sets of
a flowpipe of the bouncing ball model. Extending the sfm in a direction
corresponding to λ = 5 samples all the three functions shown with asterix
mark. 65

4.6 Reachability up to fixpoint with LBS intersection which is not possible
with standard discrete image operation. 72

4.7 Hybrid Automaton Model of the Switched Oscillator 75

iv/107

List of Figures

4.8 Hybrid Automaton Model of the Filter 75

4.9 Reachability up to fixpoint computation for a 16th order filtered oscillator
(18 vars) with LBS intersection routine. 77

4.10 Hybrid Automaton Model of the Pendulum 78

4.11 Hybrid Automaton Model of the Collision 78

4.12 Illustrating the precision in the computed reachable set with LBS inter-
section. Notice the error accumulation with collisions with the standard
discrete image computation. 80

4.13 NAV04 . 80

5.1 Schematic of the tool architecture (solid arrows represent acquaintance
between objects, dashed arrows represent instantiation). Grey arrows in-
dicate in which order the different components are executed 86

5.2 A two-dimensional system moving in circles around the origin 88

5.3 A flowpipe (bold in black) and the convex sets generated by SpaceEx to
overapproximate it, for different values of the sampling time δ 88

5.4 Flowpipe overapproximation for different choices of template directions . 89

5.5 Reachable Set computed by SpaceEx for three jumps in the bouncing ball
model with different values of intersection-error parameter. 92

5.6 Class hierarchy diagram of the post operator in SpaceEx. 94

5.7 Class hierarchy diagram of LP solvers conforming to the Strategy Design
Pattern . 95

5.8 Class hierarchy diagram of the hybrid automaton visitor 95

5.9 Illustrating feature branch development in SpaceEx 97

v/107

List of Figures

vi/107

List of Tables

4.1 Average performance of Lower Bound Search (exact solution) vs GSPD (fixed

to 14 samples), intersecting a hyperplane with a polytope 63

4.2 Average performance of Lower Bound Search vs GSPD, intersecting a hyper-

plane with a polytope for a fixed number of samples (6) 63

4.3 Speed versus accuracy comparison of different variants of the discrete image

computation, applied to the bouncing ball example. The accuracy shows in the

percent error of the height of the 5th jump 73

4.4 Speed versus accuracy comparison of different variants of the discrete image

computation, applied to the timed bouncing ball example. The accuracy shows

in the height of the 5th jump . 74

4.5 Speed versus accuracy comparison of different variants of the discrete image

computation, for computing a fixed-point of the filtered oscillator example. The

accuracy shows in the max amplitude of the output signal z 76

4.6 Speed versus accuracy comparison of different variants of the discrete image

computation, applied to the Colliding Pendulum example. The accuracy shows

in the percent error in the maximum displacement of the left pendulum after

the 28th collision. 79

5.1 Third party libraries used in SpaceEx. 99

5.2 Licenses of the third party libraries used in SpaceEx. 99

vii

List of Tables

viii/107

Acknowledgements

My gratitude to my thesis advisor, Goran Frehse for his tremendous support and encour-
agement during the course of my thesis. Goran has been my first point of contact for
almost all the help I needed during my stay in Verimag, be it academic or non-academic.
I am grateful to my thesis director Oded Maler for all this help with my thesis. My
thanks also to the TEMPO team members.

My gratitude to Prof. Eugene Asarin and Prof. Radu Grosu for helpful comments on my
thesis manuscript, Prof. Andreas Podelski and Dr. Colas Le Guernic for examining my
work.

It has been a pleasure working with the SpaceEx team members. I would like to particu-
larly thank Scott Cotton, Olivier Lebeltel and Manish Goyal for helpful discussions and
exchange of thoughts.

My thanks to all my friends and colleagues at Verimag with whom I have spent a won-
derful time. My officemates at Bureau 41, Selma Saidi, Julien Le Guernic and Marion
Daubignard who inspired each other during the course of Ph.D.

My thanks to Tayeb Bouhadiba for his help on latex and regarding the technical arrange-
ments for my thesis defense at the CTL auditorium at Verimag.

I am grateful to my friends, Pranav Tendulkar, Vrushali Tendulkar, Sanjay Rawat, Dipti
Dahiya, Ananda Basu, Priyadarshini Basu and Parantapa Goswami who arranged a won-
derful post defense treat and prepared delicious Indian recipes.

I am grateful to my family for the support and inspiration during the course of my Ph.D.
thesis.

List of Tables

2/107

Chapter 1

Introduction

1.1 The Need for Formal Methods

As a matter of fact, human beings are becoming more and more dependent on technology
products, large and small, software and hardware. Mobile phones, electronic devices like
tablet computers and laptops, software services like the email and social networking
sites, software applications like google calender, operating systems, Internet technology
and more have become our daily needs. We can sense that this human dependence on
technology is going to increase in the future. Greater dependence on technology compels
us to establish their correctness or perfectness. Imperfections can be tolerated for not so
critical applications but not otherwise. We can tolerate if the operating system in our
laptop crash when an audio player is run or an email sent to one person ends up in the
inbox of someone else, but we cannot tolerate slightest error in, for example, the Traffic
Alert and Collision Avoidance System for air traffic control which might lead to a mid
air collision. In fact, we are becoming less and less tolerant regarding technology errors.

There had been incidences of technology failures in the past in the realm of critical
systems. The explosion of Ariane 5 rocket in June 4, 1996, 40 seconds after its take off
is a recent example of technology failure whose cause, according to an inquiry report
[Lio96], is due to a software design error in the onboard computer system. Even more
recently, the Space Shuttle Columbia disaster on 1 February, 2003 which resulted in the
death of all the seven NASA astronauts on board is yet another example of intolerable
technology failure. The Columbia Accident Investigation Board (CAIB) reported the
loss of Columbia as a result of damage sustained during launch when a piece of foam
insulation the size of a small briefcase broke off from the Space Shuttle external tank
under the aerodynamic forces of launch. The debris struck the leading edge of the left
wing, damaging the Shuttle’s thermal protection system (TPS), which shields it from the
intense heat generated from atmospheric compression during re-entry. NASA’s original
shuttle design specifications stated that the external tank was not to shed foam or other
debris. NASA launches in the past reported debris strikes but they were not taken as
a security threat and the design flaw was accepted as inevitable and unresolvable. This
deviation from the original design specification is blamed for the disaster [Dis]. These
incidences shed light on the importance of design specification and design validation.

Formal methods are to counter technology imperfections to as much extent as possi-
ble or to remove imperfections which really matter. Formal methods are mathematical

3

1.2. Model Checking

techniques for the specification, development and verification of software and hardware
systems. The goal of formal methods is to contribute to the reliability and robustness
of a software or hardware system. The application of formal methods in real world is
seemingly increasing and with the advent of more powerful tools which are scalable, the
future looks brighter for formal methods based techniques in design validation.

1.2 Model Checking

The foreword by Amir Pneuli to the introductory book on model checking [JGP99] is a
beautiful insight to the problem of Design Validation - Ensuring the correctness of the
design at the earliest possible stage. Quoting from the foreword - “The major obstacle to
“help computers help us more” and to relegate to these helpful partners even more complex
and sensitive tasks is not inadequate speed and unsatisfactory raw computing power in
the existing machines, but our limited ability to design and implement complex systems
with sufficiently high degree of confidence in their correctness under all circumstances”.

Simulation, testing and deductive verification are traditional approaches to gain greater
confidence on systems. While simulation is carried out on the model of a design, testing is
performed on the actual design itself. Deductive reasoning is a mathematical proof system
where correctness of systems are proved with axioms and proof rules. We know that
simulation and testing are inadequate in establishing total confidence of the design under
validation because they are not exhaustive checks. Deductive verification has advantages
and disadvantages of its own. Deductive verification can be extremely expensive at times.

Model checking is an automatic technique for verifying finite state systems. The proce-
dure normally uses an exhaustive search of the state space of the system to determine
if a specification is true or not. There are broadly two types of system properties those
are checked with model checking algorithms, namely safety properties and liveness prop-
erties. Safety properties are properties which specify that nothing bad occurs. Liveness
properties are properties which specify that something good eventually occurs. There are
model checking algorithms which are reasonably efficient and allows for its automation.
Infinite state systems can also be model checked with abstractions which constructs finite
symbolic states from the infinite state space. Model checking, however, suffers from the
state space explosion problem which arises due to the exponential increase in the number
of explicit states of a system. State space explosion problem can be tackled to some
extent with model abstractions, use of efficient data structures, heuristics and symbolic
representation of states.

Applying model checking for design validation mainly involves three steps: (1) Modeling,
(2) Specification and (3) Verification. Modeling is the process of formalizing a design
with a mathematical model. A model is sometimes abstracted to hide unnecessary details
and to make it within analysis limits and trying to cope with the state space explosion
problem. Specification means formally stating the properties that the design must satisfy.
Temporal Logic is used to specify properties over time for example. Verification is the
process of automatically checking if the given specifications are satisfied by the design
under validation. If a specification is found to be violated, a counter example is expected
to be returned by the model checking algorithm showing the design behavior that violated
the given specification. When working with abstraction of models, it becomes necessary

4/107

Chapter 1. Introduction

to check if the generated counter example is spurious.

Examples of some model checkers are SPIN [Hol97], UPPAAL [BLL+96], Kronos [BDM+98],
HyTech [HHWT97] and PHAVer [Fre08]. SPIN is a model checker for distributed software
systems against LTL specifications. UPPAAL is a model checker for real time systems
modeled with timed automata. Kronos is similarly a model checker for real time systems
modeled with timed automata against TCTL specifications. HyTech and PHAVer are
model checkers for hybrid systems modeled as linear hybrid automata.

1.3 Hybrid Automata

Hybrid automata are a modeling formalism that combines discrete events with continuous
variables that change over time [ACH+95], [Hen96]. Formally, a hybrid automaton H =
(Loc,Var ,Lab,Trans ,Flow , Inv , Init)

consists of the following elements:

• a graph whose vertices, called locations, are given by a finite set Loc, and whose
edges, called discrete transitions, are given by a finite set Trans ;

• a finite set of real-valued variables Var . A state of the automaton consists of a
location and a value for each variable (formally described as a valuation over Var).
The set of all states of the automaton is called its state space. To simplify the
presentation, we assume that the state space is Loc×Rn, where n is the number of
variables. We will also simply write x to denote the name of the variable x or its
value according to the context;

• for each location, the variables can only take values in a given set called invariant.
The invariants are given by Inv ⊆ Loc × Rn;

• for each location, the change of the variables over time is defined by its time-
derivative that must be in a given set Flow ⊆ Loc × Rn × Rn. For example, if the
system is in a location l, a variable x can take the values of a function ξ(t) if at
each time instant t, (l, ξ̇(t), ξ(t)) ∈ Flow , where ξ̇(t) denotes the derivative of ξ(t)
with respect to time;

• the discrete transitions Trans ⊆ Loc × Lab × 2R×R × Loc specify instantaneous
changes of the state of the automaton. A transition (l, α, µ, l′) signifies the system
can instantaneously jump from any state (l, x) to any state (l′, x′) if x′ ∈ Inv(l′)
and (x, x′) ∈ µ. Every transition has a synchronisation α ∈ Lab that is used
to model the interaction between several composed automata. Intuitively, if two
automata share a common α, transitions with this can only be executed in unison,
i.e., by simultaneous execution of a transition with this label in both automata.
The relation µ is called the jump relation of the transition;

• A set of states Init ⊆ Loc × Rn specifies the initial states from which all behavior
of the automaton begins.

Figure 1.1 shows a bouncing ball modeled as a hybrid automaton. The ball’s velocity
change with time constitutes the continuous aspect and the discrete change in the velocity

5/107

1.4. Reachability

at strikes with the ground constitutes the discrete aspect. The only location always in
this example has a location invariant x ≥ 0 and a flow equation ẋ = v & v̇ = −g. The
variable x stands for the position of the ball and v stands for its velocity. There is a
self transition with the label hop. The transition has a guard given by x ≤ 0 & v < 0
and an assignment v′ = −c.v. x, v are the continuous variables of this system and c, g
are constants. v′ in the transition assignment denotes the new value of the velocity after
the transition has taken place. This hybrid automaton defines a two dimensional hybrid
system because it models the behavior of two continuous variables.

v′ = −c.v

ẋ = v & v̇ = −g

x ≥ 0

x ≤ 0 & v < 0

always

hop

Figure 1.1: Bouncing ball modeled with a hybrid automaton.

In the next section, we introduce the notion of reachability.

1.4 Reachability

A reachable state of a hybrid automaton is a valuation to the continuous variables which
is possible under the dynamics of the system. The dynamics of the system defines the
evolution of the continuous variables with time. When we say a reachable state of a
hybrid automaton, it is meaningful only when it is defined relative to an initial state
in Init . The execution of a hybrid automaton results in continuous change (flows) and
discrete change (jumps). A result of executing a hybrid automaton from an initial state
x0 is a trajectory, say πx0 .

A trajectory is the path constituting all the states starting from the initial state that the
system can take under its dynamics. A trajectory is unique for a given initial state if
the system under consideration is deterministic, having empty input set U . Given a time
instant t and an initial state x0, πx0(t) denotes the state of the trajectory initiated from
x0 at time t.

All reachable states of a hybrid automaton constitute its reachable set. Computing the
reachable set is what we call as reachability computation. The reachable set can also be
seen as the union of all trajectories of the hybrid automata.

R = {x ∈ Rn | ∃x0 ∈ Init, t ∈ R such that πx0(t) = x}

If there is a finite number of initial states and the hybrid automaton is completely de-
terministic then computing all the trajectories and taking their union would give us the

6/107

Chapter 1. Introduction

reachable set. Unfortunately, there is often infinite number of initial states in Init ⊆ Rn

and hence one would ideally need infinite number of trajectory computations to get the
reachable set which is infeasible.

A trajectory of a dynamical system can be computed with numerical simulations for a
given start state and input using numerical integration. Simulation is handy for design
validation up-to a certain degree of confidence. There are some fast simulators available
for dynamical systems like the MATLAB Simulink [Sim] which has become an industrial
de facto standard for model based development of complex systems. Simulations can also
provide the designers with an overall idea of the reachable set by choosing some clever
simulation start points like the corner cases. However, simulations in general cannot
guarantee safety or liveness properties. Reachable set on the other hand if computed
can guarantee safety and liveness properties and that is the main motivation. For a
continuous initial state Init and input set U , one need to perform infinite number of sim-
ulations in theory to check all possible behaviors. Hence, we can deduce that reachability
computation with numerical simulations is not a feasible solution.

Bad Set

Initial Set

Reachable Set

x1

x2

Figure 1.2: Illustrating safety verification with set based reachability analysis. The Gray
set denotes the initial states of the system and the Black set denotes the bad or the error
states. Reachable set denotes all possible states taken by the system. Empty intersection
of the reachable set with the bad set implies safety.

A hybrid automaton consists of potentially infinitely many states. For an algorithmic
analysis, we need a finite representation of the infinite state space and that is done
through symbolic state representation. We define a symbolic state to be a pair of a
discrete set and a continuous set. Semantically, the discrete set is a set of locations and
the continuous set gives the possible valuations of the continuous variables of the hybrid
system in the location(s). For example, if we have locations d1, d2 and d3 in a discrete set
and a continuous set is given by a unit hypercube in Rn, the symbolic state comprising
of the pair of this discrete and continuous set represents all hybrid automaton states
(v1, ..., vn) ∈ unit hypercube when in location d1 or d2 or d3. Reachability computation
will consist of searching exhaustively for all symbolic states till the fixpoint is reached.
For hybrid automata where fixpoint do not exist, we could compute bounded reachability

7/107

1.5. Thesis Scope and Outline

which is to compute all reachable states up-to a time bound T .

R(T) = {x ∈ Rn | ∃x0 ∈ Init, t ∈ [0, T] such that πx0(t) = x}

Similarly, we also might be interested in the states of the system between a time interval
which is defined as follows:

R(t1, t2) = {x ∈ Rn | ∃x0 ∈ Init, t ∈ [t1, t2] such that πx0(t) = x}

Theoretically, the reachability problem of a hybrid automaton H concerns with the ques-
tion that - Is there a trajectory of H which starts in X0 and ends in XF ? It is shown
that for hybrid systems in general, the reachability problem is undecidable [ACH+95],
[HKPV95]. The reachability problem for even most of the simpler classes of hybrid
systems is shown to be undecidable. Undecidability has not kept the research commu-
nity away from the subject of formal verification of hybrid systems though. Algorithms
and heuristics have been developed and are still being developed to compute an over-
approximation of the reachable set and then it is checked if this over-approximated set
is safe, i.e., it does not intersect with the bad set. An over-approximated set Rover

contains more states than the model actually reaches, i.e., R ⊆ Rover. Safety of the
over-approximated set implies the safety of the design under validation. If there is an
intersection of the over-approximated set with the bad set, unsafety is not implied how-
ever. The intersection with the bad set could be due to the over-approximation. Counter
examples can be generated from the parts of the reachable set that intersect with the bad
set. To identify if the obtained counter example is spurious, one can use the CEGAR
approach (Counter Example Guided Abstraction Refinement) [CGJ+00] which refines
the abstraction, i.e., improves the approximation to eliminate behaviors guided by the
counter examples. Unsafety can be guaranteed by computing an under-approximated
reachable set Runder. An under-approximated reachable set contains less states than the
actual reach set of the model, i.e., Runder ⊆ R. If the under-approximated reachable set
intersect with the bad set, then the design under validation is guaranteed to be unsafe.

1.5 Thesis Scope and Outline

This thesis is broadly an attempt to attack the problem of design validation and to widen
the existing horizon of the state of the art. Reachability analysis of hybrid systems is the
focus of this thesis. We explore the use of support functions for the reachability analysis.

There are a number of classes of hybrid automata namely rectangular hybrid automata
and linear hybrid automata (LHA). Each of this models a class of hybrid systems. In
a LHA, for each variable the rate of change is constant. although this constant can be
different in each location. The terms involved in the invariant, guard and assignments
are required to be linear. Timed automaton [AD94] is a special case of LHA where the
variables are clocks with rate of change always as 1.

The context of this thesis remains restricted to linear hybrid automata (LHA) and hybrid
automata having affine continuous dynamics with uncertain inputs and affine maps on
the discrete jumps. The type of location dynamics we are concerned with is as follows:

ẋ(t) = Ax(t) + u(t), u(t) ∈ U , (1.1)

8/107

Chapter 1. Introduction

where x(t) ∈ Rn, A is a real-valued n × n matrix and U ⊆ Rn is a closed and bounded
convex set.

Transition assignments are of the form

x′ = Rx+ w, w ∈ W , (1.2)

where x′ ∈ Rm the values after the transition, R ∈ Rm × Rn is the assignment map, and
W ⊆ Rn is a closed and bounded convex set of non-deterministic inputs.

These two classes of hybrid automata can model a wide range of systems in real life and
can be used to approximate non-linear systems.

In chapter 2, we start with the presentation of a basic reachability algorithm for hybrid
systems. In section 2.1, we present the concept of symbolic states and how they are
used to efficiently compute the reachable set of infinite state systems. Section 2.2.1
presents some basic definitions, theorems and propositions on convex analysis that we
frequently refer later in the thesis. A brief introduction to convex polytopes and support
functions follows which we use for representing continuous sets. We define the notion of
flowpipes and how they are over-approximated with a collection of convex sets in section
2.3. Existing work is revisited on computing the reachable set of hybrid systems having
affine continuous dynamics and affine maps on the discrete jumps, with a collection of
convex sets. Section 2.3.2 describes the data structure used for storing the flowpipe
computed with a support function based reachability algorithm proposed in [GG09].
Section 2.4 presents an introduction to the problem of computing the transition successors
in reachability computation. In section 2.4.2, a new approach is proposed for computing
the transition successors and it is shown why this new approach should produce more
accurate results in theory.

Chapter 3 could be seen as a standalone chapter illustrating an algorithm to compute
the support function of the intersection of convex sets with Hyperplanes and Halfspaces
efficiently. In the thesis context, this fits in because the novel approach of computing
the transition successors in the reachability computation, proposed in section 2.4.2 of the
previous chapter, is based on computing efficiently the support function of the intersection
of convex sets. It is shown in section 3.1 that the problem of computing the support
function of the intersection of a convex set with a hyperplane or halfspace reduces to the
problem of minimizing a convex function. Restriction to hyperplane, halfspace set is still
worthy because in practice, most of the guard sets in hybrid automata are hyperplanar
or halfspace. Furthermore, it is shown that for polyhedral sets, computing the support
function of the intersection with hyperplane/halfspace reduces to the minimization of
convex piecewise linear function.

Our proposed algorithm for optimizing convex function has two main parts - (1) Minima
Bracketing (2) Sandwich algorithm. Minima bracketing is illustrated in section 3.2.1 and
the sandwich algorithm is illustrated in section 3.2.2.

In chapter 4, we illustrate the use of our algorithm for computing the support function
of the intersection of convex sets with Hyperplanes and Halfspaces, illustrated in chap-
ter 3, in the context of accurate flowpipe-guard intersection. Section 4.1 illustrates the
detection of the flowpipe segments which intersect with a given polyhedral guard set.
We present the related work in the problem of a convex set and hyperplane intersection
in section 4.2.2 and compare our method of computing the support function of the in-
tersection of a polyhedron with hyperplane with the existing work proposed in [GG09].

9/107

1.5. Thesis Scope and Outline

We also show experiments for computing the support function of the intersection of a
polyhedron with a halfspace. Section 4.3 proposes an algorithm to compute the support
function of the intersection of a set of convex sets with a hyperplane/halfspace guard set
by simultaneously solving a number of minimization problems. Section 4.3.1 proposes
an algorithm to compute the convex hull of the intersection of a set of convex sets with
a hyperplane/halfspace guard set using branch and bound. Section 4.3.2 shows an al-
gorithm for taking the convex hull of not all but a group of intersection sets between
the flowpipe convex sets and the guard set. Section 4.4 shows a way of extending our
flowpipe-guard intersection algorithm to polyhedral guard sets. A computational opti-
mization is presented in section 4.5 and the chapter ends by showing the promising results
of our flowpipe-guard intersection algorithm on some case studies, namely the Bouncing
Ball, the Colliding Pendulums and the Filtered Oscillator. The Navigation benchmark
model is also tested.

Chapter 5 presents the SpaceEx tool platform. The requirements analysis and design
principles are shown in section 5.1 and section 5.2 respectively. Section 5.3 shows the
implementation of two scenarios in the SpaceEx platform, namely the PHAVer and Sup-
port Function scenario. The software engineering behind the development of the tool is
discussed in section 5.4. The last few sections talks about the input model in SpaceEx,
its output formats and about the software licensing.

Chapter 6 is the last chapter of this thesis where the main contributions of this thesis is
presented. Some possible directions to future work is also suggested.

10/107

Chapter 2

Reachability with Support
Functions

This chapter explains the general reachability computation with symbolic states. We
define some key terms related to reachability computation like flowpipes, symbolic states
and post operators. We present two basic convex set representations, namely convex
polytopes and support functions which are used in the symbolic representation of reach-
able states. The approximation of flowpipes and its computation is explained. In the last
section, we discuss the key problem we address in this thesis, i.e., to reduce the approxi-
mation error in the computation of transition successors during reachability computation.

Before we talk about what are flowpipes and how is it computed, we first discuss the
reachability algorithm. 1

2.1 Reachability using Symbolic States

Let us recall that an execution of the automaton is a sequence of discrete jumps and
pieces of continuous trajectories according to its dynamics, and originates in one of the
initial states. A state is reachable if an execution leads to it. We are concerned with
computing the set of states that are reachable and check for safety, i.e., given a set of
bad states, the reachable set of the system does not intersect with the bad states.

For a set of states R, let the discrete post-operator Postd(R) be the set of states reachable
by a discrete transition from R, and the continuous post-operator postc(R) be the set of
states reachable from R by letting an arbitrary amount of time elapse.

The set of reachable states is the fixpoint of the sequence R0 = Init,

Rk+1 := Rk ∪ Postd(Rk) ∪ postc(Rk). (2.1)

A straightforward heuristic improvement of this algorithm is to apply both post-operators
in alternation, and only to the states new in the previous iteration, leading to Alg. 2.1.

In order to implement Alg. 2.1, we need to efficiently carry out union, difference, and
emptiness tests on sets of states, avoiding redundant computations. A common way to
do so is to represent sets of states as sets of symbolic states [HNSY92]. A symbolic state

1This chapter contains excerpts from the publication [FLGD+11] and [FR09].

11

2.1. Reachability using Symbolic States

Algorithm 2.1 Basic Reachability

1: R,RN := postc(Init)
2: while RN 6= ∅ do
3: R′ := postd(RN)
4: R′′ := postc(R

′)
5: RN := R′′ \R
6: R := R ∪RN

7: end while

s = (D,C) represents the cross product of a set of discrete states D ⊆ Loc and a set
of continuous states C ⊆ RVar . E.g., D could be a single location and C a polyhedron.
Let S be the set of symbolic states of a given hybrid automaton. The post-operators are
extended to symbolic states: given a single symbolic state s, postd(s) and postc(s) both
produce a set of symbolic states. The implementation of the verification tool UPPAAL
[BLL+96] for real time systems and PHAVer [Fre08] for linear hybrid systems are based on
this concept of representing infinite states finitely as symbolic states. The verification tool
SpaceEx [FLGD+11] for linear hybrid systems and hybrid systems with affine continuous
dynamics which is presented in chapter 5 is also based on representing infinite states
finitely as symbolic states.

To represent R and RN as sets of symbolic states, we use a passed/waiting list (PWL),
refer to [DBLY02] for a detailed discussion. The passed list contains the symbolic states
that have been encountered so far and corresponds in Alg. 2.1 to R. The waiting list
contains the symbolic states whose successors still have to be computed. It is implemented
as a set of references to elements of the passed list and corresponds in Alg. 2.1 to RN .
The waiting list is computed by performing a set difference on the the newly computed
reachable set R′′ in each iteration with the passed list (R′′ \R) which is shown in step 5
of the algorithm. The algorithm terminates when the waiting list is empty. Formally, a
PWL is a pair (P,W) ⊆ 2S× 2S with W ⊆ P . We define the following operations for the
PWL:

• (P,W) = init(I) : Assign a set of symbolic states I ⊆ S to P and W .

• S = diff (s, s′) : Given symbolic states s = (D,C) and s′ = (D′, C ′), produces the
set of symbolic states s\s′ = {(D\D′, C), (D∩D′, C\C ′)}, or an over-approximation
that is efficient to compute. Our default implementation for convex sets C,C ′ is

diff (s, s′) =

{
{(D \D′, C)} if C ⊆ C ′,
{(D,C)} otherwise.

If C or C ′ are non convex sets represented as a set of convex sets, we extend this
operation pairwise. Let diff (s, P) be the result of applying diff consecutively for
all s′ ∈ P .

• (P ′,W ′, S) = add(P,W, s) : Add s′ = diff (s, P) to P and W .

• (P ′,W ′) = compact(P,W, S) : Compact P and W by replacing all s′ ∈ P,W by
diff (s′, S), eliminating symbolic states where D or C is empty.

• (s,W ′) = pop(P,W) : Select a symbolic state s ∈ W , remove in from W and return
it for further processing (post computation).

12/107

Chapter 2. Reachability with Support Functions

This leads us to Alg. 2.2, which proceeds as follows:

1. Initialize the PWL with the time-post of the initial states.

2. Pick a symbolic state from the PWL.

3. Apply discrete-post (generating possibly more than one symbolic state).

4. Apply continuous-post to every generated symbolic state.

5. Throw away the symb. states (or parts of them) that are already on the passed list
– this involves testing for inclusion and emptiness. Put the remaining ones onto the
PWL.

6. Compact the PWL by removing redundant states (this is not always the best
reduction; one could also compact first and then add).

7. If the waiting list is not empty, go to 2.

Algorithm 2.2 Reachability using Symbolic States

1: (P,W) := init(postc(Init))
2: while W 6= ∅ do
3: s := pop(P,W)
4: for all s′ ∈ postd(s) do
5: for all s′′ ∈ postc(s

′) do
6: (P,W, S) := add(P,W, s′′)
7: (P,W) := compact(P,W, S)
8: end for
9: end for

10: end while

The order in which states are popped off the waiting list determines the order of com-
putation (breath first/depth first). This may influence the speed of the computation
and may have implications on the interpretation of results. E.g., if a forbidden state
is encountered during breath-first exploration, it is the state with the shortest counter
example. If over-approximations are used, the resulting set can differ according to which
ordering is used, since over-approximation and post operators might not commute.

2.2 Representing Continuous Sets

In n dimensional continuous or hybrid systems, the set of states reachable is a subset
of Rn. Representing such continuous sets hence become important. The representation
should be such that it is simple and the operations that needs to be done on them by the
reachability algorithm should be efficient and tractable. The commonly used representa-
tion of continuous sets include Boxes, Ellipsoids, Convex Polytopes, Zonotopes, Simplices
and Support function. All the mentioned representations though represent convex sets
mainly because of the nice properties of convex sets and the existing mathematical work

13/107

2.2. Representing Continuous Sets

on convex analysis. In this thesis, we restrict ourselves to Polytopes and Support function
representation of continuous sets.

Restriction to support function and polytopes is justified by the fact that most of the
operations that we need to perform on them, for reachable set computation like convex
hull, linear transformation, Minkowski sum and intersection are more or less tractable if
not efficient. We discuss further about the efficiency of each operation for each of the
representation later in this chapter.

In the next section, we present some preliminaries on convex sets and convex functions
briefly. We then discuss the two different representations of polytopes followed by the
support function representation. A support function uniquely represents a compact con-
vex set or convex bodies. Polyhedral approximation of a compact convex set can be
constructed by sampling its support function in a given set of template directions. We
lastly present the concept of flowpipes to cover the reachable set and its computation
with support functions.

2.2.1 Preliminaries

We present here some of the basic definitions and theorems regarding convex sets, convex
functions and some operations on sets which we are going to refer later.

The definitions are presented as in [Sch93]. In the notation, by `.x, we mean the dot
product of the vectors ` and x where `, x ∈ Rn. Rn defines a real n-dimensional Euclidean
space. sup stands for supremum or least upper bound. o denotes the zero vector. We
say a function f : Rn → R is proper if {x ∈ Rn|f(x) = −∞} = ∅ and {x ∈ Rn|f(x) =
∞} 6= Rn.

Definition 2.1. A set X ⊂ Rn is convex if together with any two points x, y it contains
the segment xy, thus if

(1− λ)x+ λy ∈ A for x, y ∈ A and 0 ≤ λ ≤ 1. (2.2)

Definition 2.2. A function f : Rn → R is called convex if f is proper and if,

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) (2.3)

Theorem 2.1. Let f1, . . . , fm be proper convex functions in Rn, and let

f(x) = inf

{
m∑
i=1

fi(xi)
∣∣∣ xi ∈ Rn,

m∑
i=1

xi = x

}
. (2.4)

Then f is a convex function on Rn. [p-33, [Roc70]]

Definition 2.3. Let X and Y be two sets. The Hausdorff distance between X and Y ,
denoted dH(X ,Y) is defined by:

dH(X ,Y) = max

(
sup
x∈X

inf
y∈Y
‖x− y‖,sup

y∈Y
inf
x∈X
‖x− y‖

)
(2.5)

Definition 2.4. The Minkowski sum of two sets X and Y is the set of sums of elements
from X and Y :

X ⊕ Y = {x+ y | x ∈ X and y ∈ Y} (2.6)

14/107

Chapter 2. Reachability with Support Functions

Clearly, ⊕ is commutative.

Definition 2.5. For X ∈ Rn, the set of all convex combinations of any finitely many
elements of X is called the convex hull of X and is denoted by CH(X), i.e.,

CH(X) =

{
m∑
i=1

λixi

∣∣∣ xi ∈ X , λi ≥ 0,
m∑
i=1

λi = 1

}
(2.7)

Given a matrix M ∈ Rn×n, MX = {Mx | x ∈ X} defines the affine image of X .

Proposition 2.1. For any two closed sets X and Y, if B is a ball of radius dH(X ,Y),
then:

X ⊆ Y ⊕ B and Y ⊆ X ⊕ B (2.8)

Moreover, B is the smallest such ball.

It can be seen from the definition of convex sets that intersection, Minkowski sum of
convex sets are convex, affine images of convex sets are convex. Also if X is a convex set,
then λX = {λx|x ∈ X} is convex.

2.2.2 Convex Polytopes

A convex polytope is a bounded convex polyhedron. A convex polyhedron is the set of
points common to one or more half-spaces. A convex polygon is an example of a two
dimensional convex polytope.

One way of representing polytopes is as linear constraints, with the interpretation that
the polytope is the intersection of the halfspaces that each of the constraint represent,

X =
k⋂
i=0

{x | ai.x ≤ αi} (2.9)

Where ai ∈ Rn and αi ∈ R. This is called the H representation of polytopes.

A polytope X can also be represented by its vertices x1, . . . , xk. The polytope X is then
interpreted as the convex hull of its vertices,

X =

{
k∑
i=1

λixi | λi ≥ 0,
k∑
i=1

λi = 1

}
(2.10)

This is called the V representation of polytopes.

Some operations like convex hull are efficient with the V representation and some like
the intersection are efficient with the H representation. Conversion between these two
representations is a fundamental problem in the theory and application of polyhedra in
general. Many algorithms have been proposed for the representation conversion. There
is no known approach which efficiently solves the problem in general.

Convex Polytopes is a deeply studied subject in mathematics [Zie95]. The geometry of
polyhedra is also interesting in the context of linear programming [DT97], [DT03] since
the feasible set defines a convex polyhedra.

There are a number of libraries for the representation and operations on polyhedra like
PPL [BHZ08], Polymake [GJ01], CDD [Fuk99] and Polylib [oPFP].

15/107

2.2. Representing Continuous Sets

2.2.3 Support Functions

We present the definition of support function and how they represent convex bodies
uniquely, followed by some properties of support functions. We then see the support
functions of some basic 2-dimensional convex bodies like circle and polygons. We show
the graph of support function of some convex polygons in two different domains. The
definitions and properties of support function are presented as in [GK98].

Definition 2.6. For a nonempty closed convex set X ⊂ Rn the support function supX is
defined by

supX (l) = sup{`.x | x ∈ X} for ` ∈ Rn. (2.11)

Definition 2.7. For a nonempty closed convex set X ⊂ Rn and
` ∈ dom supX/{o}, the supporting plane HX (`) is defined by

HX (`) = {x ∈ Rn | `.x = supX (l)} (2.12)

Similarly, the supporting halfspace is defined by

H−X (`) = {x ∈ Rn | `.x ≤ supX (l)} (2.13)

Let S denote a unit sphere in Rn. supX (u) is a complete representation of a convex body
X , since the values of supX (u) for all u ∈ S completely defines X , i.e.,

X = {x ∈ Rn | x.u ≤ supX (u) for all u ∈ S} . (2.14)

This means that X is the intersection of all the halfspaces x.u ≤ supX (u).

We state the following result for the characterization of support function.

Proposition 2.2. Every real-valued function f(x) : Rn → R satisfying the properties:

1. f(o) = 0

2. f(λx) = λf(x), for all λ ≥ 0

3. f(x+ y) ≤ f(x) + f(y)

is a support function of a convex body.

Proposition 2.3. Every support function f : Rn → R is a convex function.

Proof.

f((1− λ)x+ λy) ≤ f((1− λ)x) + f(λy) [(3) in prop. 2.2]

≤ (1− λ)f(x) + λf(y) [(2) in prop. 2.2]

By definition of convex function, f is convex.

16/107

Chapter 2. Reachability with Support Functions

Definition 2.8. Given a compact convex set Ω and directions `1,. . . ,`r ∈ Rn, the outer
polyhedral approximation is the polyhedron

dΩe =
r⋂
i=1

`i.x ≤ supΩ(`i). (2.15)

Proposition 2.4. It holds that Ω ⊆ dΩe. Moreover, the over-approximation is tight as
Ω touches the faces of dΩe.

It is easy to see that outer polyhedral approximation of a closed convex set can be
derived from its support function by sampling it in the directions of interest and taking
the intersection of the supporting hyperplanes. We shall see in section 2.3.2 how this
property of support functions is used in the flowpipe computation.

Definition 2.9. Given convex sets S1, . . . ,Sn and a set of directions D called template
directions, the template hull of S1, . . . ,Sn in the template directions is defined as:

THD (S1, . . . , Sn) =
⋂
`∈D

{x ∈ Rn | `.x ≤ max
i∈[1,n]

(supSi(`))}. (2.16)

It is easy to see that template hull of convex sets is simply the template polyhedron[SSM05],
[SDI08] of the union of the convex sets in the template directions.

We now state some well-known properties of support function:

supCH(X1∪X2)(`) = max (supX1(`), supX2(`)) , (2.17)

supMX (`) = supX (M`), (2.18)

supX1⊕X2(`) = supX1(`) + supX2(`). (2.19)

To understand a relation between the shape of convex sets and their corresponding sup-
port function, we consider some simple convex bodies in R2 and plot their support func-
tion in the polar domain as well as in the λ domain. An angle θ in the polar domain
defines a direction vector ` = (cos(θ), sin(θ)) ∈ R2. We need to define what we mean
by the λ domain. Given two vectors `, n ∈ Rn, ` − λn for λ ∈ [−∞,+∞] spans all
directions from vector n to −n in the halfspace containing ` (Figure 2.1). The λ domain
is important for us when we see later the support function of the intersection of convex
sets with hyperplanes and halfspaces.

n−n

ℓ
ℓ− λn

Figure 2.1: ` − λn denotes all directions from n to -n in the halfspace containing ` for
λ ∈ [−∞,∞]

For a circle C(0, r), centered at the origin and with radius r, the support function for
any direction vector ` is a constant given by r‖`‖. However, for a circle C centered at
(a, b) having radius r, the support function is not a constant and is given by supC(`) =

17/107

2.2. Representing Continuous Sets

r+ a‖`‖cos(θ) + b‖`‖sin(θ) where (‖`‖cos(θ), ‖`‖sin(θ)) defines the polar coordinates of
`.

For reachability analysis purpose, we are mainly interested in the support function of
polytopes. Let us plot the support function of some regular polygons with varying number
of faces both in the polar domain and in the λ domain. Figure 2.2 and Figure 2.3 shows
the support function graphs in the polar and λ domain of a hexagon and a polytope with
15 facets respectively. We see that the support function of polytopes in the polar domain
are piecewise concave function with number of concave pieces ≈ number of faces whereas
the support function of polytopes in the λ domain are convex and piecewise linear. Also,
observe that with larger number of facets, the support function in the λ domain becomes
more and more smooth near the global minima. The reader is referred to [GK98] for a
more detailed analysis of convex bodies and their support functions.

18/107

Chapter 2. Reachability with Support Functions

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x1

x2

(a) A Hexagon P

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

1.05

1.1

1.15

θ

supP(θ)

(b) The Support function of the Hexagon P over the polar domain in (0, 2π)

−10 −8 −6 −4 −2 2 4 6 8 10

2

4

6

8

10

λ

supP(`− λn)

(c) The Support function of the Hexagon P over the λ domain with n = (0, 1) and l = (1, 0).)

Figure 2.2: The support function of a hexagon in the polar domain and in the λ domain.

19/107

2.2. Representing Continuous Sets

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x1

x2

(a) A polytope P with 15 facets

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

1.01

1.01

1.02

1.02

θ

supP(θ)

(b) The Support function of the polytope P over the polar domain in (0, 2π)

−2 −1.5 −1 −0.5 0.5 1 1.5 2

1.5

2

λ

supP(`− λn)

(c) The Support function of the polytope P over the λ domain with n = (0, 1) and l = (1, 0).)

Figure 2.3: The support function of a polytope with 15 facets in the polar domain and
in the λ domain. In the λ domain, it can be observed that more the number of facets of
the polytope, flatter is the support function near the global minima.

20/107

Chapter 2. Reachability with Support Functions

2.3 Computing Time Elapse Successors

We defined reachable set in section 1.4 as the set of all trajectories of the hybrid automata
starting from the initial states. A flowpipe is the reachable set over an interval of time
[0,tf]. The term flowpipe is borrowed from the literature [CK98]. Flowpipes can be non-
convex but they are approximated by a union of convex sets and that is what we do. We
approximate the flowpipe as a union of a finite number of convex sets. Each such convex
set is called a flowpipe segment. We define the kth segment of a flowpipe as the convex set
which approximates R[tk−1, tk]. Given a global time horizon T and a discretization time
step δ, a flowpipe is approximated with N = T/δ number of convex segments. We shall
refer to such sequence of convex sets that approximates the flowpipe as Ωi. Figure 2.4(a)
shows the flowpipes over the state space and its approximation with the union of convex
sets for up to three jumps of the bouncing ball. Figure 2.4(b) shows the flowpipes of the
position variable x over time and its approximation.

0 2 4 6 8 10 12
−6

−4

−2

0

2

4

position

v
e
lo

c
it
y

(a) Flowpipe of the bouncing ball model for
three jumps of the ball is shown in black. The
approximation of the flowpipe as segments of
convex sets is shown in Grey.

0 5 10 15 20
0

2

4

6

8

10

12

time

p
o
s
it
io

n

(b) Flowpipe of the position variable for
three jumps of the ball is shown in black over
time. The approximation of the flowpipe as
segments of convex sets is shown in Grey.

Figure 2.4: Flowpipe of the Bouncing Ball Model.

2.3.1 Flowpipe Approximation

In this thesis, we consider Flow(l) to be a continuous dynamics of the form

ẋ(t) = Ax(t) + u(t), u(t) ∈ U , (2.20)

where x(t) ∈ Rn, A is a real-valued n × n matrix and U ⊆ Rn is a closed and bounded
convex set. In this section, we discuss how we compute the flowpipe approximation for
such dynamics. Let X0 denote the initial set and we assume it to be a closed convex set.
We over-approximate the flowpipe by a sequence of continuous sets Ω0, . . . ,ΩN−1 that
covers the reachable states up to time T (N depends on the chosen time step). Let us
first consider the simpler case of linear time invariant systems :

ẋ(t) = Ax(t) (2.21)

21/107

2.3. Computing Time Elapse Successors

The analytic solution in this case is given by:

ẋ(t) = eAtx0 (2.22)

Taking this to the set based representation, it is easy to see that R(t, t) = eAtX0, where
R(t, t) denotes the set of states reached at time t. The flowpipe segments Ωi can be
computed using the following recurrence relation:

Ωi+1 = eAtΩi (2.23)

Where each Ωi is such that Ωi ⊆ R(iδ, (i+ 1)δ), δ being the time step.

Let us see the computation of Ω0 which over-approximates the reachable set R(0, δ). Let
Φ = eAδ. If X0 denotes the initial set, Xδ = ΦX0 denotes the set of states reachable after
δ time. We take the convex hull of X0 ∪ Xδ denoting it by CH(X0,Xδ). Notice that the
convex hull might not enclose the entire flowpipe section as illustrated in Figure 2.5(a).
To completely cover the flowpipe segment, a ball B of sufficient radius is Minkowski
sum-ed with the convex hulled set as shown in Figure 2.5(b). Hence we have:

Ω0 = CH(X0,Xδ)⊕ Br (2.24)

Where Br denotes a ball of radius r. Proposition 2.1 guides us to choose the radius
to be the Hausdorff distance between exact flowpipe segment and the convex hulled
set CH(X0,Xδ). This guarantees that the bloated set contains the flowpipe segment
completely. A computation of the upper bound on the Hausdorff distance betweenR(0, δ)
and CH(X ,Xδ) is shown in [Gir04].

X0

Xδ

(a) The convex hull
set shown with black
boundary do not enclose
the flowpipe shown with
dashed boundary.

X0

Xδ

CH(X0, Xδ)⊕ Br

(b) The bloated convex hull set
encloses the flowpipe.

Figure 2.5: Illustrating the computation of the first flowpipe segment approximation.

Once this over-approximate set Ω0 is computed, the flowpipe sequence can be computed
by applying a linear transformation φ = eAδ as shown in (2.23), i.e., Ωi+1 = ΦΩi. Both
polyhedra and convex sets in support function representation are closed under linear

22/107

Chapter 2. Reachability with Support Functions

transformation and can be used for representing Ωi. [CK98] shows a method for polyhe-
dral approximation of flowpipes which uses simulation to find the support functions of
flowpipe segments in given directions. They also propose a way of estimating directions
that constitute the facets of the polyhedra approximating the flowpipe segments.

Let us now consider the more general case of (2.20). The difference here is the additional
input term u(t) ∈ U in the dynamics which brings in non-determinism. The solution for
(2.20) is of the following form:

x(t) = etAx0 +

∫ t

0

e(t−s)Au(s) ds (2.25)

The evolution of the variables can be seen as the superposition of two separate evolutions
with time, one with the initial set X0 and no input set and the other with the initial set
as {0} and input set U . The first one constitutes the term etAx0 and the other constitutes
the term

∫ t
0
e(t−s)Au(s) ds. Let us say that

∫ t
0
e(t−s)Au(s) ds = R(t, t)({0}). We can then

decompose the reachable set at the δ time instant R(δ, δ) as:

R(δ, δ) = eδAX0 ⊕R(δ, δ)({0}). (2.26)

and the reachable set after δ time as:

R(0, δ) =
⋃
t∈[0,δ]

(
etAX0 ⊕R(t, t)({0})

)
(2.27)

As in the computation of flowpipes for LTI systems, we compute a sequence of Ωi which
covers the reachable set. We compute an over-approximation Ω0 of the first flowpipe
segment such that Ω0 ⊆ R(0, δ). As we did with LTI systems, we take the convex hull
of X0 and ΦX0 and bloat this with a ball of sufficient radius. This time, this ball should
consider not only for the curvatures but also for the set of states reachable under the input
set, i.e., R(δ, δ)({0}). Thus, we have Ω0 = CH(X0,ΦX0) ⊕ Bα. The derivation of α is
shown in [Gir05]. [Gir05] also shows that a ball of sufficient radius r′ can over-approximate
R(δ, δ)({0}), i.e., R(δ, δ)({0}) ⊆ V = Br′ . The sequence of Ωi is then computed using the
following recurrence relation:

Ωi+1 = ΦΩi ⊕ V . (2.28)

It is also shown in [Gir05] that the Hausdorff distance between the exact flowpipe and
its approximation with

⋃N−1
i=0 Ωi vanishes as the time step δ tends to 0.

There are choices of representing the Ωi as polytopes, ellipsoids, boxes, zonotopes or
convex sets represented by support functions. All we need to consider in the choice
is that the set representation should be closed under convex hull, Minkowski sum and
linear transformation operation. In this thesis, we shall consider the support function
based algorithm proposed by [GG09]. It is shown to be scalable and can analyze affine
systems having more than 100 continuous variables. Support function representation of
convex sets are efficient with the convex hull, Minkowski sum and linear transformation
operations as shown in the properties of support functions in section 2.2.3. In the text
which follows, when we refer to flowpipes we mean the sequence Ωi which approximates
the flowpipe unless we explicitly state that it refers to the exact flowpipe.

Flowpipe computation can be seen to consist of two main operations. One is computing
the flowpipe inside a location of the hybrid automata for a given dynamics. This we refer

23/107

2.3. Computing Time Elapse Successors

as the postc operation standing for post continuous. The second operation is computing
the map of the flowpipe when there is a discrete jump from one location to another in
the hybrid automata. This we refer as the postd operation standing for discrete post. Let
us visit each operation in detail.

2.3.2 Computing Flowpipes with Support Functions

We refer the set of reachable states in a location of the hybrid automata by a location
flowpipe. The postc operation is responsible for this computation. Briefly, given a finite
set of directions, postc computes the support function samples of the time elapse set
at N instances, each after δ time in the given directions respectively. δ and N are
parameters which need to be carefully chosen for a system, either by the verification tool
automatically or supplied by the user. For example, for systems with monotonic behavior
over time, δ could be chosen to be large and it could be chosen small for systems which
are non-monotonic. In terms of implementation, we need a suitable data structure that
stores the flowpipe approximation or the Ωi sequence. We use a matrix representation
which we name as Support Function Matrix (SFM). SFM stores the N support function
values for each direction defined as follows:

Definition 2.10. Given a set of r directions L = {l1, . . . , lr} and a time horizonN, Ω1, . . . ,ΩN

is represented as a r × N matrix called Support Function Matrix with (i, j)th entry de-
noting the support function of Ωj in the direction `i. For a given SFM M and directions
L, we denote the outer polyhedral approximation of the jth set as

PO(L,Mj) =
r⋂
i=1

`i.x ≤Mi,j.

Similarly, a r ×N Support Vector Matrix (SVM) represents Ω1, . . . ,ΩN with the (i, j)th

entry denoting the support vector of Ωj in the direction `i. The convex hull of the support
vectors in the jth column of a SVM will define an under-approximation Ωj of the flowpipe.

The reachable continuous set resulting from time elapse in a location, say d, is now
represented in the form of a SFM.

Example 2.1. Figure 2.6 shows the polyhedral overapproximation obtained from using
our support function implementation of Postc and the dynamics

ẋ = −1.3863x+ 0.6931y,

ẏ = −0.6931y.

For comparison, the Ωk are shown as outlines. The set of directions for computing the
SFM was chosen to be the axis directions.

24/107

Chapter 2. Reachability with Support Functions

0 2 4 6 8
0.0

0.5

1.0

1.5

2.0

Figure 2.6: Polyhedral overapproximation of Postc using support functions (shaded), and
actual Ωk for comparison (outlined)

It is to be noticed that the set of directions in the outer polyhedra computation is fixed
a priori in the postc operation. We also call this set the template directions. Let us
remark that as long we remain with the support function representation of the convex
sets Ωi, we have the complete information about them. Once the template directions are
fixed and we compute the outer polyhedra covering the flowpipe, we loose information
about the supporting hyperplanes of the other directions. This conversion to polytopes
is nevertheless inevitable due to the need of visualization. We cannot graphically plot an
abstract functional representation of a set. Another reason for such a conversion is that
some operations on support function is not cheap like the intersection and containment
operation required for the reachability computation. Intersection operation is cheap for
polyhedra in constraint representation and similarly containment check is also cheap for
constraint polyhedra and even cheaper if the polyhedra have the same facet normals.

We currently consider the following choices of template directions for an n-dimensional
system:

• box directions, i.e., 2n directions aligned with the axes, i.e., xi = ±1, xk = 0 for
k 6= i;

• octagonal directions, i.e., 2n2 directions, consisting of all combinations of xi = ±1,
xj = ±1, xk = 0 for k 6= i, j;

• uniform directions, i.e., a set of m directions that are distributed as uniformly as
possible;

• user-defined directions, which can be combined with the other types.

However, the algorithm supports a more general choice of directions, which remains to
be investigated.

25/107

2.4. Computing Transition Successors

We also need to take into consideration the invariant of the location when computing the
flowpipe approximation Ωi. In our implementation, we test at the k-th step whether Ωk

is entirely outside of the invariant, and stop the sequence once this is the case. Then we
intersect the invariant with the computed Ωk. Note that this procedure may produce an
over-approximation, as this procedure of invariant intersection may eliminate some of the
trajectories starting in the Init states without eliminating all of them. We include the
invariant face normals in the template directions, so the result is usually of satisfactory
precision.

2.4 Computing Transition Successors

Each flowpipe that is created by the time elapse step is passed to the computation of
transition successors. States that take the transition must satisfy the guard, are then
mapped according to the assignment and the result must satisfy the invariant of the
target location. Let G be the guard set of the transition, I+ the invariant of the target
location, and let the transition assignment be (1.2). The image of a set X with respect
to the transition is

postd(X) =
(
R
(
X ∩ G)⊕W

)
∩ I+. (2.29)

We can see that there are two operations involved, intersection and assignment. We
discuss each of the two operation below.

Computing the one-to-one image of the sets covering the flowpipe, as in (2.28), can
have the devastating effect of increasing the number of convex sets exponentially with
the search depth. To avoid an explosion in the number of sets and gain efficiency, we
compute the convex hull or template hull of subsets of these sets instead. This is referred
to as clustering which is also explained below in detail.

Flowpipe-Guard Intersection As the flowpipe is approximated with a set of convex
sets, there can be a set of convex sets intersecting with the guard set. Since intersection
with support function represented convex sets is hard, [FLGD+11] computes intersec-
tion on the template hull [definition 2.9] of each convex set, i.e., its outer polyhedral
approximation in the template directions, say PD = THD(X).

The difficulty with intersection is that we do not have an a-priori bound on how the over-
approximation error from the flowpipe computation affects the result of the intersection.
Moreover, considering the outer polyhedral approximation of the support function rep-
resented convex sets adds to the over-approximation. If G is a polyhedron in constraint
form whose constraint normals are included in template directions, then the intersection
operation can be carried out very efficiently by taking the minimum of the template
coefficients:

PD ∩ G =
{
x ∈ Rn |

⋂
`i∈D

`i · x ≤ min(bXi , b
G
i)
}
.

If the constraint normals of G are not template directions, we apply normal intersection
for constraint polyhedra, which consists of taking the union of their constraints. Note that

26/107

Chapter 2. Reachability with Support Functions

although working with the outer polyhedral sets make the intersection with polyhedral
guard in constraint form efficient, this incurs higher over-approximation.

Assignment Recall that according to (1.2) transition assignments are of the form
x′ = Rx + w,w ∈ W , where W ⊆ Rn is a convex set of non-deterministic inputs. In the
general case, the assignment operator is therefore

PostAsgn(X) = RX ⊕W ,

and can be computed efficiently using support functions. If the assignment is invertible
and deterministic, i.e., R is invertible and W = {w0} for some constant vector w0, the
exact image can be computed efficiently on the polyhedron.

We consider applying the assignment to a constraint polyhedron

P =
{
x ∈ Rn | APx ≤ bP

}
,

where AP ∈ Rm × Rn and bP ∈ Rn are the coefficients of the constraints of P . The
mapped states are computed exactly by mapping the polyhedron :

PostAsgn(P) =
{
x ∈ Rn | APR−1x ≤ bP + APR

−1w0

}
.

Intersection with Target Invariant Depending on the assignment, we need to in-
tersect a support function set or a polyhedron with the target invariant. The intersection
of a support function with another set is costly to compute. Since intersection is cheap
for polyhedra in constraint form, we compute the template hull of the flowpipe guard in-
tersection set and intersect that instead with the polyhedral invariant in constraint form.
This incurs an over-approximation error that may be substantial. It can be reduced by
increasing the number of template directions though.

For lack of a better term, we call this the standard discrete image operator in this thesis:

postd(X) ⊆
⌈
R
(
dXeL ∩ G ∩ I−

)
⊕W

⌉
L
∩ I+. (2.30)

Note that if R is invertible andW is deterministic (a point), the outermost outer approx-
imation is not necessary since the resulting polyhedron can be computed efficiently with
exact methods. Also note that, the intersection with the source invariant is pulled in here
which we previously stated to be part of the postc operation. This is because we want
to emphasize that [FLGD+11] computes the intersection of the outer polyhedral approx-
imation of X with the source invariant I−. This brings in larger over-approximation in
the intersection with guard which as a result brings in larger approximation in the overall
reachable set.

2.4.1 Computing Transition Successors with Support Functions

The postc operator gives us an SFM, a matrix representation of Ω0, . . . ,ΩN To compute
the intersection of the time elapse set with a guard G, we would like to identify the relevant
Ω’s to consider for computing the intersection with the guard or in other words, we would
like to filter out the irrelevant Ω’s before proceeding the intersection computation. By
relevant, we mean the ones which can possibly intersect with a guard G. One possibility

27/107

2.4. Computing Transition Successors

Algorithm 2.3 Polytope Intersection over an SFM
Require: The directions set D = l1, . . . , lr, a r × N SFM M and polytope G with k linear

constraints 〈lg1, x〉 ≤ c1, . . . , 〈lgk, x〉 ≤ ck.
Ensure: SFM MI representing M ∩G

1: Allocate memory for an SFM MI with r + k rows and N columns.
2: for i← 1 to r do
3: for j ← 1 to N do
4: MI [i][j]←M [i][j]
5: end for
6: end for
7: for i← 1 to k do
8: D = D ∪ {lgi }
9: for j ← 1 to N do

10: MI [r + i][j]← ci
11: end for

12: end for

to identify the relevant Ωs’ is to compute their distance from G and check if it is less than
or equal to the diameter of Ω. If the distance is greater than the diameter, we know that
Ω ∩ G = ∅ and hence can discard the Ω. The identified Ω’s can be filtered by simply
dropping the corresponding columns from SFM, SVM and the result after filtering is a
smaller SFM, SVM in terms of columns.

To compute the intersection with G, we manipulate our SFM M so as to get a new SFM
MI representing the intersection set. Semantically interpreting M as an outer polyhedral
approximation, the intersection is the SFM given by adding the normal vectors of the
constraints (faces) of G to the set of directions, and computing the SFM for the new set
of directions.

The complexity of constructing the SFM MI is O((r + k)N), where r is the number of
directions considered to compute SFM during the postc operation, k is the number of
constraints in G and N is the number of columns in SFM M .

The final part of the postd operator is to compute the linear transform of the intersection
set. Support functions have the convenient property that given compact convex sets
X,D ⊆ Rn, a direction l ∈ Rn, and a n × n transformation matrix C, supCX⊕D(l) =
supX(CT l)+supD(l). Using this property, we over-approximate the transformed set with
an SFM MT defined by

Mi,j = supPO(L,Mj)(C
T li) + supD(li).

Algorithm 2.4 shows the construction of MT from MI .

Clustering For a flowpipe, ∀[imin, imax] ∈ I we will have Ωimin
∩G,. . . Ωimax∩G as initial

sets in the next location. For large intervals, this could lead to considerably large number
of initial sets in the next location and furthermore, this increase in the number of initial
sets could propagate along as we carry on with the reachable set computation, leading
to a drastic slowdown in performance. To avoid this situation, we could consider taking
the HULL of the convex sets either before or after the intersection with the guard set.

28/107

Chapter 2. Reachability with Support Functions

Algorithm 2.4 Linear Transformation over an SFM
Require: The directions set D = {l1, . . . , lk}, k × N SFM MI , n × n matrix A and a 1 × n

vector vb.
Ensure: SFM MT representing AMI + vb

1: Allocate memory for a SFM MT with k rows and N columns.
2: for i← 1 to k do
3: l

′
i ← AT li

4: end for
5: for j ← 1 to N do
6: Construct a Poyhedron Pj by adding constraints:
7: for i← 1 to k do
8: Pj .add constraint(〈li, x〉 ≤MI [i][j])
9: end for

10: end for
11: for i← 1 to k do
12: for j ← 1 to N do
13: MT [i][j]← ρPj (l

′
i) + 〈vb, li〉

14: end for

15: end for

To consider a somewhat intermediate approach, we apply what we call clustering [FLGD+11].
Given a hull operator, clustering reduces the number of sets by replacing groups of these
sets with a single convex set, their hull. We use the following clustering algorithm for a
given hull operator HULL. Let the width of P1, . . . , Pz with respect to a direction l ∈ D
be

δP1,...,Pz(l) = max
i=1,...,z

ρ(l, Pi)− min
i=1,...,z

ρ(l, Pi) (2.31)

D is the set of template directions considered in the computation of the flowpipe.

Given P1, . . . , Pz and a clustering factor of 0 ≤ c ≤ 1, the clustering algorithm produces
a set of polyhedra Q1, . . . , Qr, r ≤ z, as follows:

1. Let i = 1, r = 1, Qr := Pi.

2. While i ≤ z and ∀l ∈ D : δQr,Pi
(l) ≤ cδP1,...,Pz(l), Qr := HULL(Qr, Pi), i := i+ 1.

3. If i ≤ z, let r := r + 1, Qr := Pi. Otherwise, stop.

We consider two hull operators: template hull, which is fast but very over-approximate,
and convex hull, which is comparatively precise but slower.

2.4.2 Increasing Precision

We propose as a contribution in this thesis an improved discrete image operator which
aims at increasing the precision over the standard discrete image operator (2.30) by
computing instead:

postdX ⊆
⌈
R
(
X ∩ G ∩ I−

)
⊕W

⌉
L
∩ I+. (2.32)

29/107

2.4. Computing Transition Successors

Basically, we would like to compute the intersection of the support function represented
convex sets instead of their outer polyhedral approximations as in the standard discrete
image operator, with the guard set. Figure 2.7 shows how this makes a difference in
terms of precision. G∗ in the figure means the conjunction of the guard and invariant
constraints. To make this idea practical, we need an efficient way of computing the
intersection of a support function represented convex set with the guard set. An efficient
computation of the support function of the intersection of a closed convex set with a
hyperplane/halfspace or a polyhedral guard set is one of the main contribution of this
thesis. It is shown in the introduction to chapter 3 that computing the support function
of the intersection of convex sets is a convex function minimization problem. In practice,
flowpipes are largely approximated as a collection of polytopes and the guard sets are
mostly polyhedra too. With polyhedral sets, (3.6) is a parametric linear program (LP),
with λ as parameter, and f(λ) is continuous, convex, piecewise linear function. The
reader is referred to [DT03] for an introduction to parametric linear programming.

X

G∗

Figure 2.7: Comparing the intersection of the outer polyhedral approximation of set X
and the guard set G∗ (shown in thick bordered region) with the exact intersection (shown
in shade)

Another improvement in terms of precision of the discrete image operation is including
the pre-image of the target invariant to the intersection step. This can lead to substantial
improvements, as shown in Fig. 2.8. Let the target invariant be

I+ =
{
x
∣∣∣ m⋂
i=1

āT

ix ≤ b̄i

}
.

An over-approximation of the pre-image of I+ with respect to (1.2) is given by

I∗ =
{
x
∣∣∣ m⋂
i=1

āT

iRx ≤ b̄i + supW−āi
}
. (2.33)

Lemma 2.1. (RX ⊕W) ∩ I+ ⊆ R(X ∩ I∗)⊕W.
Equality holds if W = {w}.

We obtain our image operator

p̂ostd (X) =
⌈
R
(
X ∩ G ∩ I− ∩ I∗

)
⊕W

⌉
L
∩ I+. (2.34)

With proposition 2.4 and lemma 2.1, it is straightforward to show that this is a tight
over-approximation in the following sense:

30/107

Chapter 2. Reachability with Support Functions

Lemma 2.2. postd(X) ⊆ p̂ostd (X).
If W = {w}, then p̂ostd (()X) = dpostd(X)eL ∩ I+.

X

I+

p̂ostd (X)

without I∗

Figure 2.8: The image of X using the approximation operator (2.34), with the axis directions
as template directions. Here, R = I,W = 0, so I+ = I∗. G, I− are taken to be true. Due
to the intersection with the pre-image of the target invariant, I∗, the result of (2.34) (shown
in thick red) is considerably more accurate than the same approximation without I∗ (shown
shaded gray).

Note that (2.32) includes the source invariant also in the intersection step which is con-
sidered to be part of the postc operation. The reason is because we would like to precisely
compute the intersection of support function represented convex sets, we include all such
operations together before taking the template hull which then causes loss of accuracy.

G, I−, I∗ frequently contain redundant constraints and have matching inequalities that
can be simplified to equality constraints. Let G∗ = G∩I−∩I∗ be simplified this way. The
result of the operator (2.34) is a polyhedral outer approximation. Recalling its definition
from (2.15), it involves computing for each ` ∈ L the support

supR(X∩G∗)⊕W(`) = supX∩G∗(R
T`) + supW(`), (2.35)

which we obtain exactly or approximately through minimization as section 4.4 in chapter
4.

In the next chapter we discuss about how we compute the support function of the inter-
section of a convex set with a hyperplane or halfspace guard set. Chapter 4 then extends
this to the precise computation of flowpipe intersection with hyperplanar, halfspace and
polyhedral guard sets.

31/107

2.4. Computing Transition Successors

32/107

Chapter 3

The Support Function of the
Intersection of Convex Sets with
Hyperplanes and Halfspaces

In this chapter we explore the problem of computing the support function of the in-
tersection of convex sets with hyperplanes and halfspaces. Unlike other operations like
Minkowski sum, linear transformation or convex hull for which support function can be
computed efficiently, it is not trivial to compute the support function of the intersection
of convex sets. [LG09], [GG09] explores the support function computation of the inter-
section of convex sets with hyperplanes and shows this to reduce to a unimodal function
minimization problem. We follow on the same lines of work proposed there and extend it
for halfspace intersection. We show that the support function computation of the inter-
section of convex sets with hyperplanes and halfspaces reduces to a convex minimization
problem and further, for polyhedral sets, to a convex piecewise linear minimization prob-
lem. We propose a custom tailored sandwich algorithm to efficiently compute the minima
of convex functions which is explained in this chapter.

3.1 Intersection as a Minimization Problem

Let (Xi)i∈I (where I is an arbitrary index set) be a family of non-empty compact convex
bodies in Rn and suppose that their intersection S is not empty. Then the support
function of S can be represented in the form

supS(u) = inf

{∑
i∈I

supXi
(ui)

∣∣∣ ∑
i∈I

ui = u

}
, (3.1)

where the infimum is taken over all representations u =
∑
ui with ui = o for all but

finitely many i ∈ I. [p-46 of [Sch93]]. When only two sets are involved, say X , Y the
above relation can be expressed as follows:

supX∩Y(`) = inf
w∈Rd

(supX (`− w) + supY(w)) (3.2)

By proposition 2.3, supX and supY is convex and hence by theorem 2.1, supX∩Y is a
convex function.

33

3.1. Intersection as a Minimization Problem

In the following lemmas concerning the intersection of a compact convex set and a hy-
perplane or halfspace, the assumption is that their intersection is non-empty because the
support function of an empty set is not defined.

Lemma 3.1. Given a non-empty compact convex set X and a Hyperplane H = {x :
x.n = γ}, we have

supX∩H(`) = inf
λ∈R

(supX (`− λn) + λγ) (3.3)

Proof. Any w ∈ Rd can be expressed as w = λ1n + λ2n
⊥, s.t. λ1, λ2 ∈ R, n⊥ ∈ Rd is a

unit vector perpendicular to n.

Substituting the above expression of w in (3.2), we get:

supX∩H(`) = inf
λ1,λ2∈R,n⊥∈Rd

(supX (`− λ1n− λ2n
⊥) + supH(λ1n+ λ2n

⊥))

For any non-zero λ2 and n⊥, supH(λ1n+ λ2n
⊥) is ∞.

Since we are interested in finding the infimum, we can restrict ourselves to λ2 = 0. Hence,
substituting λ2 = 0 in the equation and renaming λ1 to λ, we get :

supX∩H(`) = inf
λ∈R

(supX (`− λn) + supH(λn))

= inf
λ∈R

(supX (`− λn) + λγ)

Since supH(λn) = λsupH(n) = λγ, from the equation of H : x.n = γ.

Lemma 3.2. Given a non-empty compact convex set X and a halfspace H = {x : x.n ≤
γ}, n ∈ Rd and γ ∈ R

supX∩H(`) = inf
λ∈R+

(supX (`− λn) + λγ) (3.4)

Proof. Since H is bounded only in the direction of vector n, we have:
∀w ∈ Rd, if w = λn where λ ∈ R+ then supH(w) = λγ. supH(w) =∞ otherwise.

As we are interested in finding the infimum of the rhs of (3.2), we are only interested in
all w ∈ Rd s.t w = λn, λ ∈ R+. Substituting for w in (3.2), we have:

supX∩H(`) = inf
λ∈R+

(supX (`− λn) + supH(λn))

= inf
λ∈R+

(supX (`− λn) + λγ)

Lemma 3.3. Consider the halfspace H = {x : x.n ≤ γ}, the hyperplane H′ = {x : x.n =
γ}, a compact convex set X , ` ∈ Rd and λ ∈ R and let

f(λ) = supX (`− λn) + λγ (3.5)

Then we have
supX∩H(`) = inf

λ∈R+
f(λ), supX∩H′(`) = inf

λ∈R
f(λ). (3.6)

34/107

Chapter 3. The Support Function of the Intersection of Convex Sets with Hyperplanes
and Halfspaces

Proof. The proof follows from the proof of lemma 3.1 and lemma 3.2.

Let us note some facts about the support function of the intersection of a convex set with
a halfspace. We use these facts in our implementation to readily compute the support
function and to check for emptiness.

Lemma 3.4. Let X be a compact convex set, H = {x ∈ Rd : x.n = γ} be a hyperplane
and ` ∈ Rd s.t. ` = λn, λ ∈ R. If X ∩H 6= ∅, then supX∩H(`) = λγ.

Proof. We have,
x.n = γ, ∀x ∈ X ∩H (3.7)

Now,

supX∩H(`) = supX∩H(λn)

= max
x∈X∩H

(λnx)

= λ max
x∈X∩H

(nx)

= λγ, using (3.7)

Lemma 3.5. Let X be a compact convex set and H = {x ∈ Rd : n.x ≤ γ}, n ∈ Rd and
γ ∈ R be a halfspace. If supX (n) ≤ γ, then supX∩H(`) = supX (`)

Proof.

supX (n) ≤ γ =⇒ max
x∈X

(n) ≤ γ.

=⇒ n.x ≤ γ, ∀x ∈ X .
=⇒ X ⊂ H.
=⇒ X ∩H = X .
=⇒ supX∩H(`) = supX (`).

Lemma 3.6. Given a compact convex set X and a halfspace H, we have f(λ)→ −∞ as
λ→ +∞ ⇐⇒ X ∩H = ∅

Proof. By support function property, we have

supX (`− λn) ≤ supX(`) + supX (−λn)

=⇒ supX (`− λn) + λγ ≤ supX(`) + supX (−λn) + λγ

=⇒ f(λ) ≤ supX (`) + λc

Where c = (supX (−n) + γ) .

(3.8)

(a) Let X ∩H = ∅. By lemma 4.2, we have

− supX (−n) > γ

=⇒ supX (−n) + γ < 0

=⇒ c < 0.

35/107

3.2. Solving the Minimization Problem

In (3.8), supX (`) is a constant and since c < 0, λ → ∞ =⇒ λc → −∞. Therefore,
f(λ)→ −∞ as λ→∞.

(b) Let f(λ)→ −∞ as λ→∞.

Assume that X ∩H 6= ∅.
From lemma 3.3, we have

inf
λ∈R+

f(λ) = supX∩H(`)

=⇒ ∀λ ≥ 0, f(λ) ≥ supX∩H(`).

Which contradicts the premise f(λ) → −∞ as λ → ∞. Hence, our assumption that
X ∩H 6= ∅ must be false. Hence, X ∩H = ∅.
(a) and (b) proves the lemma.

Lemma 3.7. Given a compact convex set X and a halfspace H, if X ∩ H 6= ∅, then
f(λ) ≥ −supX (−`).

Proof. X ∩H 6= ∅ and X is compact =⇒ X ∩H is bounded. Hence supX∩H(`) is defined.
Let x′ ∈ X ∩H such that supX∩H(`) = `.x′.
x′ ∈ X ∩H =⇒ x′ ∈ X.
Therefore, we have `.x′ ≥ min

x∈X
(`.x).

=⇒ supX∩H(`) ≥ −supX (−`).
By lemma 3.3, we have supX∩H(`) = inf

λ∈R+
f(λ).

=⇒ inf
λ∈R+

f(λ) ≥ −supX (−`).
=⇒ f(λ) ≥ −supX (−`).
Lemma 3.8. f(λ) is a convex function.

Proof. Let f1(λ) = supX (l−λn). We know that support function of non-empty compact
convex sets are convex functions. Therefore, f1(λ) is convex since X is a compact convex
set.

Let f2(λ) = λγ, where γ is a constant in R. Since by convention −∞ < λ < ∞, f2 is
proper. It is hence easy to see that f2 is convex.

Since pointwise addition of convex functions are also convex, f(λ) = f1(λ) + f2(λ) is a
convex function.

When none of the above mentioned special cases could be applied, we compute the support
function of the intersection of convex sets with hyperplanes and halfspaces by solving the
optimization problem mentioned in lemma 3.1 or lemma 3.2.

3.2 Solving the Minimization Problem

We now present our approach of convex function minimization as a variant of the sandwich
algorithm [RR92] in this section. Our algorithm is designed keeping in mind the striking
property of convex functions f(x) that if x is a point where f(x) attains a local minima,
then f(x) also attains the global minima at x [Roc70]. Convexity also allows us to
compute the optimality gap and thus obtain a result of guaranteed accuracy.

36/107

Chapter 3. The Support Function of the Intersection of Convex Sets with Hyperplanes
and Halfspaces

Our minimization algorithm is similar to sandwich algorithms used in literature mainly
for approximating convex functions with piecewise linear functions, see [BHR91] and
references therein, though our focus is to reach the point where the function attains the
minima with as few function evaluations as possible. We mention a point say x in the
domain of the function where the function f is going to be evaluated as a sampling point
of the function. Sometimes we also mention a sample of the function f by which we mean
the pair (x, f(x)).

Our proposed algorithm has two parts:

• Minima Bracketing: The minimization algorithm begins with the search of four
sampling points, that we call pivots, which bracket the minima. The convex function
is evaluated at these pivot points to initialise the iterative convergence algorithm.

• The Sandwich Algorithm : Selecting a new sampling point at each iteration to
reduce the optimality gap and continuing the iterations until the minima is precisely
reached or the optimality gap is less than or equal to a given bound.

The goal is to find the exact minima or an interval of optimal gap containing the minima
with as few function evaluations as possible because in our case evaluating the function
is a computationally expensive operation (computing the support function of a compact
convex set). Notice that for the initial bracketing of the function minima, we need a
minimum of three function evaluations f(x1), f(x2) and f(x3) such that x1 < x2 < x2

and f(x1) > f(x2), f(x2) < f(x3). In our algorithm, we start with four initial evaluations
because an extra point aids us to discover tighter lower bound on the function minima
as is explained in section 3.2.2 illustrating our sandwich algorithm.

We call an interval [a,b] a bracketing interval if f(a) ≤ f(xmin) ≤ f(b) and a ≤ xmin ≤ b,
where f(xmin) denotes the function minima, xmin denotes the point in the function domain
where the minima is attained and xmin, a, b ∈ dom(f).

3.2.1 Minima Bracketing

Minima bracketing is the process of finding an interval in the domain of the function such
that the global minima of the function lies inside that interval. For minima bracketing,
we find four pivots namely p1, p2, p3 and p4 such that the following condition holds:

p1 < p2 < p3 < p4 (3.9)

f(p1) > f(p2) and f(p3) < f(p4) (3.10)

Convexity of the function shall ensure that [p1, p4] is the bracketing interval. We have
implemented two algorithms for minima bracketing, one uses Golden Ratio and we name
it as golden descent method. The other is based on parabolic extrapolation. These tech-
niques are adapted from [PVTF02] and we have more or less used the routines mentioned
there with some modifications. We use the following lemmas in the minima bracketing
algorithm:

37/107

3.2. Solving the Minimization Problem

Lemma 3.9. Let xmin be a point in the domain of f such that f(xmin) = fmin, fmin

denoting the function minima. Given two points s, t in the domain of f such that s < t,
if f(s) = f(t) then s ≤ xmin ≤ t.

Proof. Consider a point x ∈ dom(f) such that x < s. Let us assume that f(x) = fmin

and fmin < f(s)
Let ∃0 ≤ p ≤ 1 such that p.x+ (1− p).t = s.

By convexity property of f , we know:-

p.fmin + (1− p).f(t) ≥ f(p.x+ (1− p).t)
=⇒ p.fmin + (1− p).f(s) ≥ f(s), since f(s) = f(t)

and (p.x+ (1− p).t) = s

=⇒ p.fmin ≥ p.f(s)

=⇒ fmin ≥ f(s)

(3.11)

(3.11) contradicts our assumption that f(x) = fmin and fmin > f(s) Therefore,

s ≤ xmin (3.12)

Similarly, using convexity property of f , we can show that

xmin ≤ t (3.13)

Using (3.12) and (3.13), we know:

s ≤ xmin ≤ t (3.14)

Corollary 3.1. Let xmin be a point in the domain of a convex function f such that
f(xmin) = fmin, fmin denoting the function minima. Given points x1, x2 and x3 in the
domain of f ,
If f(x1) = f(x2) = f(x3) then fmin = f(x1) = f(x2) = f(x3). Also f(x1), f(x2) and
f(x3) are collinear.

Proof. Using lemma 3.9, we have f(x1) ≤ fmin ≤ f(x2) and f(x2) ≤ fmin ≤ f(x3). Since
every local minima of a convex function is a global minima, it must be the case that
fmin = f(x1) = f(x2) = f(x3). Also, this means that f(x1), f(x2) and f(x3) are collinear
points.

3.2.1.1 Golden Descent

In golden descent approach of minima bracketing, we make an initial guess of two sampling
points (In our implementation, we made a choice of sampling the function at 0 and 1).
These two sampling points will be our two initial pivot points and we then start decending
downhill, increasing the step size by a constant factor until we find the turning point of

38/107

Chapter 3. The Support Function of the Intersection of Convex Sets with Hyperplanes
and Halfspaces

the function. We define a turning point to be the first discovered point x in the domain
of the function such that f(x) > f(xprev) where xprev is the previous sampling point in
the decent. We always keep track of the last three samples while descending downhill
until we find the turning point of the function. When we discover the turning point for
the first time, we assign this as the fourth pivot point p4 and the third pivot point p3 is
assigned the mid point between p2 and p4. This way the pivot conditions in (3.9) and
(3.10) hold.

Consider the context of minimizing f(λ) of lemma 3.3. For the halfspace intersection
case, the search space is in R+ which means the directions sweep from ` to n. Initial
sampling at λ = 0 and λ = 1 would mean computing the support function of the convex
set X in the direction ` and `− n respectively which is half the search space apart. The
advantage we think of having initial pivots p1 and p2 half the search space apart is that
during the downhill descend, we reject half the search space at the first go when the new
sample is not the turning point. We use the golden ratio as the constant to increase the
step size at each downhill descend step. The golden ratio is an irrational mathematical
constant, approximately 1.61803398874989. The procedure is shown in algorithm 3.1
and the downhill descend is illustrated in Figure 3.1. The reader is referred to [Liv08] for
further reading concerning the golden ratio. Notice that for finding the support function
of a convex set intersected with a halfspace [lemma 3.2], we need to search the minima
in the domain of R+. In this case we cannot descend at the left of 0. This special case
is described in algorithm 3.2. The symmetric case is when the search domain in −∞, u
which is treated by minimizing f ′ = −f(x).

We might under certain conditions know a priori the domain which contains the function
minima, in which case we already have our pivot points p1 and p4 and we need to find two
more in between them. This case is illustrated in algorithm 3.3. Notice in the algorithm
that under some conditions, we end up finding the minima in the process of bracketing.

p1 p2 p3 p4

Downhill Descend

x

f (x)

Figure 3.1: Downhill descend with four points. p4 is the first discovered turning point
during the descend.

3.2.1.2 Parabolic Extrapolation

Like in the golden descent method, we make an initial guess of 2 points to sample the
function (0 and 1 in our implementation). We then start moving downhill with a step

39/107

3.2. Solving the Minimization Problem

size by the result of a parabolic extrapolation of the preceeding points that is designed to
take us to the extrapolated turning point. Once we find the third point, say p, we move
further uphill by 5 to get the fourth pivot point. The difference between the two initial
bracketing routine is the choice of the step-size to descend downhill. In golden descent
method, the step size is a factor of golden ratio whereas in parabolic extrapolation, the
step size is guided by the parabolic extrapolation of the minima. For detailed pseudo
code refer to [PVTF02].

f (p1)
f (p4)

f (p3)
f (p2)

p1 p2 p3 p4 x

f (x)

Figure 3.2: Selection of four pivot points p1, p2, p3 and p4, satisfying the conditions:
p1 < p2 < p3 < p4, f(p1) > f(p2) and f(p3) < f(p4)

Algorithm 3.1 Minima bracketing with golden descent method in the domain of R
Require: p1 = 0, p2 = 1 and f(p1), f(p2) ∈ R.
Ensure: p1, p2, p3, p4 such that p1 < p2 < p3 < p4 and f(p1) > f(p2), f(p3) < f(p4).

1: GOLD ← 1.618034
2: if f(p2) > f(p1) then
3: swap(p1,p2)
4: end if
5: p3 ← p2 + (p2 − p1) ∗GOLD
6: while f(p3) < f(p2) do
7: shift2(p1, p2, p3) {Shifts p1 to p2, p2 to p3.}
8: p3 ← p2 + (p2 − p1) ∗GOLD
9: end while

10: if p1 > p2 then
11: swap(p1, p3) {Rename the pivots to increasing order}
12: end if
13: p4 = p3

14: p3 = p2 + (p4 − p2)/2

40/107

Chapter 3. The Support Function of the Intersection of Convex Sets with Hyperplanes
and Halfspaces

Algorithm 3.2 Golden descent with search range as l to +∞
Require: s1 = l, s2 = l + 1 and f(s1), f(s2) ∈ R.
Ensure: p1, p2, p3, p4 such that p1 < p2 < p3 < p4 and f(p1) > f(p2) and f(p3) < f(p4)

1: GOLD ← 1.618034
2: if f(s2) < f(s1) then
3: p1 ← s1 and p2 ← s2

4: p3 ← p2 + (p2 − p1) ∗GOLD
5: while f(p3) < f(p2) do
6: shift2(p1, p2, p3) {Shifts p1 to p2 and p2 to p3.}
7: p3 ← p2 + (p2 − p1) ∗GOLD
8: end while
9: p4 ← p3

10: p3 ← p2 + (p4 − p2)/2
11: else
12: p1 ← s1 and p4 ← s2

13: p3 ← p1 + (p4 − p1)/2 {Move towards p1 until sample is less than f(p1)}
14: s← p1 + (p3 − p1)/2
15: sprev ← p3

16: while f(p1) ≤ f(s) do
17: if p1, s, sprev are collinear then
18: p4 ← p3 ← p2 ← p1 {We conclude the minima to be f(p1)} {All pivots are set to

p1}
19: stop
20: end if
21: sprev = s
22: s← p1 + (s− p1)/2
23: end while
24: p2 ← s

25: end if

41/107

3.2. Solving the Minimization Problem

Algorithm 3.3 Pivot selection with the search range as l to u
Require: s1 = l, s2 = u and f(s1), f(s2) ∈ R.
Ensure: p1, p2, p3, p4 such that p1 < p2 < p3 < p4 and f(p1) > f(p2),f(p3) < f(p4)

1: p1 ← s1 and p4 ← s2 {Min lies between f(p1) and f(p4)}
2: if f(s1) > f(s2) then
3: p2 ← p1 + (p4 − p1)/2
4: s← p2 + (p4 − p2)/2
5: sprev ← p2 {Now, Keep going right until sample is less than f(p4) sample}
6: while f(p4) ≤ f(s) do
7: if p4, s, sprev are collinear then
8: p1 ← p2 ← p3 ← p4 {We conclude the minima to be f(p4)} {All pivots are set to

p4}
9: stop

10: end if
11: sprev = s
12: s← s+ (p4 − s)/2
13: end while
14: p3 = s
15: else if f(s1) < f(s2) then
16: p3 ← p1 + (p4 − p1)/2 {Move towards p1 until sample is less than f(p1)}
17: s← p1 + (p3 − p1)/2
18: sprev ← p3

19: while f(p1) ≤ f(s) do
20: if p1, s, sprev are collinear then
21: p4 ← p3 ← p2 ← p1 {We conclude the minima to be f(p1)} {All pivots are set to

p1}
22: stop
23: end if
24: sprev = s
25: s← p1 + (s− p1)/2
26: end while
27: p2 ← s
28: else
29: p2 = p1 + (p4 − p1)/3 and p3 = p1 + 2 ∗ (p4 − p1)/3
30: if f(p2) = f(p4) or f(p3) = f(p4) then
31: p1 ← p2 ← p3 ← p4 {We conclude that the function plot between p1 and p4 is a

straight line and the minima is the function sample at any point between p1, p4.}
32: stop
33: end if

34: end if

3.2.2 A Sandwich Algorithm for the Direct Minimization of
Convex Functions

In this section, we describe our sandwich algorithm to find the minima of a convex function
of one variable given a minima bracketing. We describe the algorithm for general convex
functions. We then show the performance of the procedure for convex piecewise linear
functions which is a special case of convex functions. The procedure is inspired from the

42/107

Chapter 3. The Support Function of the Intersection of Convex Sets with Hyperplanes
and Halfspaces

sandwich algorithm which is an iterative approach for approximating a convex function
of one variable by piecewise linear functions [[RR92], [BHR91]]. It starts by evaluating
the function and its one-sided derivatives at the endpoints of the given interval. The line
connecting the two endpoints of the graph of the function yields an initial upper bound of
the function, and the two supporting lines described by the derivatives at the end points
give an initial lower bound of the function. Now, the procedure selects a point in the
interval and evaluates the function and its derivative. (If the function is not differentiable,
then any sub-gradient is taken). In this way, a better upper and lower approximation
is achieved and the problem is split into two sub-intervals. Now, the sub-interval which
has the larger error is selected and is partitioned in the same way as above. The process
is continued for a given number of iterations or until a specified error bound is met. In
Figure 3.3, the thin lines show the supporting lines described by the derivatives at each
point in the function. The lower approximation of the function after two partitioning step
is shown with the thick lines. In Figure 3.4, the thin lines shows the upper approximation
after the first and second iterations. The lower approximation after the second partition
in the third iteration is shown by the thick lines.

x

f (x)

Figure 3.3: Lower approximation with the Sandwich algorithm after two partitioning
steps shown by the thick lines.

x

f (x)

Figure 3.4: Upper approximation with the Sandwich algorithm after two partitioning
steps. The thin lines show the approximation initially, after the first and after the second
iteration respectively. The thick lines show the upper approximation of the function after
three iterations.

There are different ways of how the interval is partitioned or in other words how to select
a new point in the interval. [RR92] mentions the following four intuitive rules to choose

43/107

3.2. Solving the Minimization Problem

the new point :

• The interval bisection rule: The interval is partitioned into two equal parts.

• The slope bisection rule: We find the supporting line whose slope is the mean value
of the slopes of the tangents at the endpoints. We partition the interval at some
point where this line touches the function.

• The maximum error rule: The interval is partitioned at the breakpoint of the lower
approximation, i.e., at the point where the error between the two approximations
is maximum.

• The chord rule: We find the slope of the line connecting the endpoints of the inter-
val. We partition the interval at some point where this line touches the function.

[RR92], [BHR91] proposed their algorithm with the purpose of approximating convex
functions and shows the fast convergence of their approach. Our purpose is to converge to
the minima of the convex function with as few function evaluations as possible. Although
the end purpose is different our algorithm has the following similarities to the sandwich
algorithm:

• Given a bracketing interval, we select a new sampling point to partition the interval
into sub-intervals so that we find a new smaller bracketing interval. The sub-interval
which has the larger error is selected for sampling.

• We find the lower approximation of the convex function with the function samples
at the pivot points. Notice that we do not compute the derivatives of the function
at the pivot points. For e.g., given 4 pivot points p1, p2, p3 and p4, we find the
lower approximation of the function in the interval [p2, p3] by extending the chords
formed by connecting f(p1), f(p2) and f(p3), f(p4) respectively (Figure 3.5).

p1 p2 p3 p4 x

f (p1)

f (p2)
f (p3)

f (p4)

f (x)

Figure 3.5: The extended chord connecting f(p1), f(p2) and f(p3), f(p4) gives a lower
approximation of f(x) in the interval [p2, p3].

Our algorithm maintains a bracketing interval and an optimality gap at every iteration
and this interval size and optimality gap decreases at each iteration, i.e., we converge
towards the minima. The algorithm continues its iteration until either the minima is
reached or the optimality gap is less than an acceptable error value. We shall explain
the algorithm with the aid of a state machine. For better readability, we have divided

44/107

Chapter 3. The Support Function of the Intersection of Convex Sets with Hyperplanes
and Halfspaces

the entire state machine into smaller ones. Given pivots p1, p2, p3 and p4, we first com-
pare f(p2) and f(p3) and based on the three possibilities, we know the exact bracketing
interval. If f(p2) > f(p3) then we are assured that the bracketing interval is [p2, p4]
and the algorithm is said to be in state S1. If f(p2) = f(p3) then we know that the
bracketing interval is [p2, p3] and we denote this as state S3 in the algorithm, and finally
if f(p2) < f(p3) then the bracketing interval is [p1, p3] and the algorithm is said to be
in state S2 (Figure 3.6). We select a new sampling point in the bracketing interval and
rename the pivots. In the following subsections, we describe each case in detail:

Init

S1 S3 S2

f (p2) < f (p3)
f (p2) > f (p3)

f (p2) = f (p3)

Figure 3.6: Sandwich algorithm as a state machine. Initial state to three possible states.

3.2.2.1 Sandwich Algorithm Illustration-1

We consider here the case when f(p2) > f(p3). We find the lower approximation of f(x)
in the function domain interval [p2, p3] by extending the chords formed by connecting the
points f(p1), f(p2) and f(p3), f(p4). The point of intersection of the chords is denoted as
say min1. Similarly, we find the lower approximation of f(x) in the domain interval [p3,
p4] by extending the chord formed by connecting the points f(p2), f(p3) and the vertical
line passing through f(p4) and (p4,0). The point of intersection of the chord and the line
is denoted as say min2 (Figure 3.7).

x

f (x)

p1 p2 p3 p4

min1

min2

Figure 3.7: Lower approximation of f(x) in the domain [p2, p4] with extended chords.

Lower and Upper Bound We know that min1 is the lower bound on f(x) in the
domain interval [p2, p3] and similarly, min2 is the lower bound on f(x) in the domain
interval [p3, p4]. Since we have [p2, p4] as the bracketing interval in this case, we have
min(min1, min2) as the lower bound on the minima of f(x). The upper bound on the
minima of f(x) is min (f(p1), f(p2), f(p3) and f(p4)) which in this case is f(p3).

45/107

3.2. Solving the Minimization Problem

low

x

up

p1 p2 p3 p4

f (x)

Figure 3.8: low and up denoting the lower and upper bound on the function minima.

Choice of Sub-interval Now that we have the lower and upper bound on the function
minima, we choose the next sampling point. Out of the two intervals [p2, p3] and [p3,
p4], we choose the interval for which the lower bound on the function is minimum. In
Figure 3.7, min1 is the lower bound of f(x) in the domain interval [p2, p3], min2 is the
lower bound of f(x) in the domain interval [p3, p4] and since min2 < min1, we choose
the interval [p3, p4] as the candidate to find a new sampling point. In the state machine,
min1 ≤ min2 depicts state S11 and min2 < min1 is depicted by state S12 which is shown
in Figure 3.10. This choice is natural in the sense that since the lower bound is lower,
there is more chance that the function minima will be contained in the interval (Greedy
choice). if both min1 and min2 are the same then we choose any of the interval arbitrarily.

Point Selection Rule After the interval is chosen, we have different possibilities of
how to choose a new sampling point in the interval. We use bisection rule here (Fig-
ure 3.9). Observe that the maximum error rule is not a good choice here because it will
lead to p4 as the new evaluation point which we already have. We do use maximum error
rule for choosing the new point in conditions described later in a subsection.

We also experimented by choosing the new sampling point at not the midpoint but at
the golden section [at (1 - golden ratio) of the interval] to observe if the asthetics of
this number makes the algorithm converge faster to the minima. We did not notice any
mentionable difference.

Pivots Renaming Depending on the function value at this new point, we rename the
pivots and start a new iteration. We consider both possibilities of having [p2, p3] and [p3,
p4] as the selected interval of sampling. Let us say that p is the new point. First consider
that [p2, p3] is the chosen sub-interval, i.e., algorithm is in state S11. if f(p) < f(p3)
then we know that [p2, p3] is the bracketing interval and [p1, p2] and [p3, p4] can be
discarded. We keep all the 5 pivots with renaming and move to 5 pivots state instead
which is depicted by the state S4 in the state machine. p is renamed to p3, p3 is renamed
to p4 and p4 is renamed to p5. if f(p) = f(p3) then we know that [p, p3] is the bracketing
interval. p2 is renamed to p1, p to p2 and the algorithm moves to state S3. Finally, if
f(p) > f(p3), p2 is renamed to p1, p is renamed to p2 and the algorithm moves to the
state S1 again.

46/107

Chapter 3. The Support Function of the Intersection of Convex Sets with Hyperplanes
and Halfspaces

p1 p2 p3

f (x)

p4
x

p

Figure 3.9: New pivot point p selected by bisecting interval [p3, p4]

Now consider that [p3, p4] is the interval of choice, i.e., the algorithm is in the state S12.
If f(p) < f(p3), p2 is renamed to p1, p3 to p2 and p to p3 (Figure 3.12) and the algorithm
moves to the state S1. if f(p) = f(p3) then we know that [p3, p] is the bracketing interval.
p2 is renamed to p1, p3 is renamed to p2 and p is renamed to p3. The algorithm moves to
the state S3. If f(p) > f(p3) then we know that [p2, p] is the bracketing interval and [p1,
p2] and [p3, p4] can be discarded. We keep all the five pivots with renaming and move to
five pivots state. p is renamed to p4 and p4 is renamed to p5 and the algorithm moves to
the state S4. Figure 3.10 shows the state machine starting from the state S1.

S1

S11 S12

S4S3

f (p) < f (p3)

f (p) > f (p3)

f (p) < f (p3) f (p) = f (p3)

min2 < min1

f (p) > f (p3)

f (p) = f (p3)

min1 ≤ min2

Figure 3.10: State machine with state S1 as the starting state.

3.2.2.2 Sandwich Algorithm Illustration-2

Let us consider the case when f(p2) = f(p3). In this situation, [p2, p3] is the bracketing
interval. We find the lower approximation of f(x) in the function domain interval [p2, p3]
by extending the chords formed by connecting the points f(p1), f(p2) and f(p3), f(p4).
Let p denote the abscissa and low denote the ordinate of the point of intersection of the
two chords.

Lower and Upper Bound Since [p2, p3] is the bracketing interval and we have low
as the lower bound of the function in the domain interval [p2, p3]. Hence low is the lower
bound on the function minima. The upper bound on the minima of f(x) is min (f(p1),
f(p2), f(p3) and f(p4)) (Figure 3.13).

47/107

3.2. Solving the Minimization Problem

low

x

up

p1 p2 p3 p4

f (x)

Figure 3.11: low and up denoting the lower and upper bound on the function minima.

f(x)

x
p1 p2 p3 p4

Figure 3.12: After renaming the pivots.

Low

p1 p2 p3 p4

Up

f (x)

x

Figure 3.13: Lower and Upper bound on the function minima.

Point Selection Rule Since we already know the bracketing interval in this case, we
simply need to choose a new sampling point in this interval. We use the maximum
error rule here as the new sampling point selection rule. In Figure 3.14, point p denotes

48/107

Chapter 3. The Support Function of the Intersection of Convex Sets with Hyperplanes
and Halfspaces

the new sampling point.

p1 p2 p p3 p4

f (x)

x

Figure 3.14: Selecting a new point for evaluation with maximum error rule.

Pivots Renaming If the function value at this new point, i.e., f(p) is the same as f(p2)
or f(p3) then using corollary 3.1 we find the function minima fmin = f(p) = f(p1) = f(p2)
and the algorithm terminates and moves to the Stop state. Otherwise, f(p) has to be
less than f(p2) or f(p3) since f(2), f(3) gives the upper bound on f(x) in the domain
interval [p2, p3]. In this case, we rename p to p3, p3 to p4 and p4 to p5 and move to the
five pivots state (Figure 3.15). Figure 3.16 shows the state machine starting from the
state S3.

p1 p2 p3 p4 p5
x

f (x)

Figure 3.15: Renaming the pivots.

3.2.2.3 Sandwich Algorithm Illustration-3

Let us consider the case when f(p2) < f(p3). This is only a symmetric situation of
f(p2) > f(p3). Figure 3.17 shows the state machine starting from the state S2.

49/107

3.2. Solving the Minimization Problem

f (p) < f (p2)

Stop

f (p) = f (p2)

S3

S4

Figure 3.16: State machine with state S3 as the starting state.

S4S3

min2 < min1min1 ≤ min2

S2

S21 S22

f (p) = f (p2)

f (p) > f (p2) f (p) = f (p2)

f (p) < f (p2)

f (p) < f (p2) f (p) > f (p2)

Figure 3.17: State machine with state S2 as the starting state.

3.2.2.4 Sandwich Algorithm Illustration-4

We call this case the five pivots state. Five pivots state is shown in Figure 3.18. In this
situation, we know that [p2, p4] is the bracketing interval. We keep five pivots because
using them, we can hope to find a tighter lower approximation of f(x) in the domain
interval [p2, p4]. The chord connecting the points f(p1), f(p2) when extended beyond
p2 gives a lower approximation on f(x) and similarly, the chord connecting the points
f(p4), f(p3) when extended beyond p3. The point of intersection of these two extended
chords gives a lower bound on the minima of f(x) in the domain interval [p2, p3]. let
min1 denote the ordinate of this intersection point and x1 denote the abscissa. In the
same way, the chord connecting the points f(p2), f(p3) and the chord connecting the
points f(p5), f(p4) gives a lower approximation of f(x) in the domain interval [p3, p4]
and the point of intersection of these two extended chords gives a lower bound on the
function minima in this domain. let min2 denote the ordinate and x2 the abscissa of the
intersection point.

Lower and Upper Bound Since [p2, p4] is the bracketing interval and we have min1

to be the lower bound on the minima of f(x) in the domain interval [p2, p3], min2 to be
the lower bo‘und in the domain interval [p3, p4] the lower bound on the minima of f(x)
is min(min1, min2). The upper bound on the minima of f(x) is f(p3). For example, in
Figure 3.18, min2 gives the lower bound on the minima of f(x).

Proposition 3.1. If min1 = min2 = f(p3) then fmin = f(p3), where fmin denotes the
minima of function f(x).

Proof. Let min1 = min2 = f(p3). Since min1 is the lower bound on f(x) in [p2, p3] and

50/107

Chapter 3. The Support Function of the Intersection of Convex Sets with Hyperplanes
and Halfspaces

p3 x2 p4 p5

min1

min2

f (p1)

f (p2)

f (p3)

f (p4)

f (p5)

f (x)

x
p1 p2 x1

Figure 3.18: Lower approximation of f(x) in [p2, p4] by extending chords (f(p1), f(p2)),
(f(p4), f(p3)) and (f(p2), f(p3)), (f(p5), f(p4))

min2 is the lower bound on f(x) in [p3, p4] and as min1 = min2, we have min1 = min2

as the lower bound on f(x) in [p2, p4]. Also, as [p2, p4] is the bracketing interval, we
have min1 = min2 as the lower bound on the function minima fmin. As we have f(p3) =
min1 = min2, it must be the case that f(p3) = fmin.

We check the above condition to terminate the iteration process and return the function
minima.

Choice of Sub-interval As before, we make a greedy choice. Out of the two intervals
[p2, p3] and [p3, p4], we choose the interval for which the lower bound on the function
is minimum . If [p2, p3] is the chosen interval of sampling, the algorithm goes to state
S41 and if [p3, p4] is the chosen interval, the algorithm goes to state S42. The algorithm
terminates ifmin1 = min2 using the proposition 3.1 (Figure 3.19). For e.g., in Figure 3.18,
since min2 < min1, we choose the interval [p3, p4] as the candidate to find a new sampling
point. If the lower bound is the same in both the intervals, i.e., min1 = min2 (but
not equal to f(p3), otherwise fmin = f(p3)) then the one of the two intervals is chosen
arbitrarily for sampling.

Point Selection Rule In this case also, we use the maximum error rule for the
new sampling point selection. In Figure 3.18, point x2 denotes the new sampling point.

Pivots Renaming We consider both the possibilities of the chosen sub-interval for
finding the new sampling point and describe the pivot renaming. Lets consider that [p2,
p3] is the chosen interval for finding the new sampling point and x1 as the new sampling
point. If f(x1) > f(p3), we remain in the five pivots state by renaming the pivots p2 to
p1 and x1 to p2. If f(x1) = f(p3), we know that the bracketing interval is [x1, p3]. We
discard the intervals [p1, p2] and [p4, p5]. p2 is renamed to p1 and x1 is renamed to p2.
Finally, if f(x1) < f(p3), we discard the interval [p4, p5]. The pivots are renamed as x1

to p3, p3 to p4 and p4 to p5 and we again have another five pivots state.

Now, lets consider the other possibility of [p3, p4] being the chosen sub-interval and x2

as the new sampling point. If f(x2) > f(p3), we discard the interval [p3, p4] for further

51/107

3.2. Solving the Minimization Problem

search and the pivots are renamed as x2 to p4 and p4 to p5. We have a five pivots state
again. If f(x2) = f(p3), we know that the bracketing interval is [p3, x2]. We discard the
intervals [p1, p2] and [p4, p5] for further search. p2 is renamed to p1, p3 to p2 and x2 is
renamed to p3. Finally, if f(x2) < f(p3), we discard the interval [p1, p2]. The pivots are
renamed as p2 to p1, p3 to p2, x2 to p3 and we have a five pivots state. Figure 3.19 shows
the state machine starting from the state S4.

There is a situation for which we find the function minimum and we terminate the
algorithm. This is under the condition that min1 = min2 = min (say) and f(x1) or
f(x2) equals min. In this case, min is the minima because it is the lower bound on f(x)
in the domain interval [p2, p4] and ∃x ∈ [p2, p4] such that f(x) = min. Hence, min is
indeed the function minima.

min2 < min1

S4

min1 < min2

S41 S42

S3

f (p) < f (p3)
f (p) > f (p3)

f (p) > f (p3)

f (p) = f (p3)

min1 = min2

f (p) = f (p3)

Stop

f (p) < f (p3)

Figure 3.19: State machine with state S4 as the starting state.

The sandwich algorithm is illustrated in algorithm 3.4. We combine our minima brack-
eting and our sandwich algorithm to have a novel minimization algorithm for convex
functions. We name our minimization algorithm as Lower Bound Search algorithm.
The name derives from the fact that our minima search is based in some sense on the
comparisons of the lower bounds of the function at different domain intervals. We ex-
plained above these lower bounds on the functions by means of extended chords with end
points of the chord on the function. We now try to put it more formally.

We compute a lower bound function f−(λ) ≤ f(λ) [Figure 3.20], which we update
with each newly computed sample in our algorithm. Given two samples (λi, f(λi)) and
(λj, f(λj)), λi < λj, the convexity of f(λ) implies that the straight line through them,

f−ij (λ) =
f(λj)− f(λi)

λj − λi
(λ− λi) + f(λi), (3.15)

is a lower bound on f(λ) to the left and right of the two points, i.e., for all λ ≤ λi and
λ ≥ λj, and an upper bound between them, i.e., for λi ≤ λ ≤ λj. We combine (3.15)
for all known samples (λi, f(λi)) to the following lower bound function, which is defined
pointwise over λ:

f−(λ) = max
(
−∞, max

λ≤λi<λj
f−ij (λ), max

λi<λj≤λ
f−ij (λ)

)
. (3.16)

We compute an interval [r−, r+] containing minλ∈R f(λ), whose optimality gap r+− r− is
smaller than a given threshold ε ≥ 0. Lower Bound search proceeds as follows:

52/107

Chapter 3. The Support Function of the Intersection of Convex Sets with Hyperplanes
and Halfspaces

¸¸j
¸i

fij
{(¸)f(¸i)

f(¸)

f(¸j)

0

Figure 3.20: The straight line through two points on a convex function f(λ) is a lower
bound on f(λ) to the left and to the right of those two points.

1. Let i = 0, λi = 0, λi+1 = 1, r− = −∞, r+ = +∞.

2. Bracket the minimum by adding samples until a turning point is found, i.e., f(λi−1) ≤
f(λi−2) and f(λi−1) ≤ f(λi), increasing the distance between λi exponentially.

3. Compute f(λi) and tighten the interval bounds
r− ← infλ∈R≥0 f−(λ), r+ ← min(r+, f(λi))

4. Choose the next sample at the lowest point of f−(λ) unless already visited:

(a) Let λi+1 ← arginfλ∈R≥0(f−(λ)).

(b) If λi+1 ∈ {λ0, . . . , λi}, let λi+1 ← (λi+1 + λj)/2, where λj is the appropriate
neighboring sample.

5. If r+ − r− > ε, let i← i+ 1 and go to (3).

Algorithm 3.4 Sandwich Algorithm
Require: p1 < p2 < p3 < p4 and f(p1) > f(p2) and f(p3) < f(p4), ε ∈ R
Ensure: [l, u] such that l < fmin < u and u− l <= ε

1: p5 = p4 {fifth pivot is set to p4 until the five pivots state is reached}
2: update bounds(p1, p2, p3, p4, p5).
3: while u− l > ε do
4: [x, y]← choose sampling interval(p1, p2, p3, p4, p5).
5: s← sample interval([x, y]).
6: rename pivots(s).
7: update bounds(p1, p2, p3, p4, p5).

8: end while

53/107

3.2. Solving the Minimization Problem

54/107

Chapter 4

Flowpipe-Guard Intersection with
Support Functions

Given an outgoing transition from the source location of the automaton, we collect all
the guard constraints, source invariant constraints and the constraints of the pre-map of
the target invariant in say, G. The reason for including the source and the pre-mapped
target invariant constraints is for higher precision explained in section 2.4.2. We assume
that the constraints are all linear constraints, equality or inequality. The conjunction of
the constraints in G defines an H-polyhedron. The Ωi of the flowpipe defined in (2.28)
are support function represented convex sets. Note that not all the N Ωi of the flowpipe
necessarily intersect with the guard set G. Therefore, the detection of intersection is
foremost. We then compute the intersection of the guard set with the section(s) of the
flowpipe that intersect with it.

Let us mention that we simplify the problem of intersecting a flowpipe with a polyhedral
guard set by considering the following sub-problems:

• Intersecting a convex set with a hyperplane/halfspace.

• Intersecting a collection of convex sets with a hyperplane/halfspace.

• Intersecting a collection of convex sets with a polyhedron.

The intersection sets are represented by their support functions. We make polyhedral
approximations from the support function representation whenever the need be by sam-
pling the support function in the desired directions. In the next section we illustrate how
the intersection of a flowpipe with a guard set is detected and an illustration is presented
with an example. The subsequent sections describe the support function representation
of the intersection of a convex set with a hyperplane or halfspace, collection of convex
sets with a hyperplane or halfspace and the intersection of a collection of convex sets
with a polyhedron respectively.

55

4.1. Detecting Intersection of a Guard with a Flowpipe

4.1 Detecting Intersection of a Guard with a Flow-

pipe

We detect the intersection of Ωi with the guard set G. For that, we identify indices i ≤ N
of the flowpipe such that Ωi ∩ G 6= ∅. We define a list of intervals I having intervals
[imin, imax] of the indices of the flowpipe such that Ωi ∩ G 6= ∅, ∀i ∈ [imin, imax]. The
computation of I proceeds as follows:

1. I = [i0, iN]

2. ∀g ∈ G, I ′ = List of intervals [imin, imax] such that Ωi ∩ g 6= ∅,∀i ∈ [imin, imax].

3. I = I ∩ I ′ and go to (2).

Where intersection of list of intervals is defined as pairwise intersection.

For hyperplanar constraint H = {x : x.n = λ}, we use the method described in [LG09] to
detect intersection. We use a similar approach for detecting intersection with halfspace
constraints. For hyperplanar constraints, we use the following lemma in the computation
of I:

Lemma 4.1. Given a hyperplane H = {x ∈ R : x.n = γ} and a compact convex set X ,
we have

X ∩H 6= ∅ ⇐⇒ −supX (−n) ≤ γ ≤ supX (n). (4.1)

Proof. We first prove that:

−supX (−n) ≤ γ ≤ supX (n) =⇒ X ∩H 6= ∅.

Let −supX (−n) ≤ γ ≤ supX (n).
=⇒ min

x∈X
(n.x) ≤ γ ≤ max

x∈X
(n.x).

Consider the case when min
x∈X

(n.x) = γ or max
x∈X

(n.x) = γ

=⇒ ∃x ∈ X such that n.x = γ.
=⇒ ∃x ∈ X such that x ∈ H.
=⇒ ∃x ∈ X ∩H.
=⇒ X ∩H 6= ∅.
Now, consider that min

x∈X
(n.x) < γ < max

x∈X
(n.x).

Let x1 ∈ X such that min
x∈X

(n.x) = x1.n < γ

and let x2 ∈ X such that max
x∈X

(n.x) = x2.n > γ.

Let x1.n = γ + k1 and x2.n = γ − k2, k1, k2 ∈ R+.
Since X is a convex set, by convexity property, we know that:

y = λx1 + (1− λx2) ∈ X ,∀λ ∈ [0, 1].

It can be shown that for λ = k2/(k1 + k2), y.n = γ.

56/107

Chapter 4. Flowpipe-Guard Intersection with Support Functions

Therefore, ∃y ∈ X such that y ∈ H =⇒ X ∩H 6= ∅.
Now, we prove that:

X ∩H 6= ∅ =⇒ −supX (−n) ≤ γ ≤ supX (n)

Let X ∩H 6= ∅. Then we can partition the set X into three sets as:

X = X1 ∪ X2 ∪ X3 such that:
X1 = {x ∈ X|n.x < γ}.
X2 = {x ∈ X|n.x = γ}.
X3 = {x ∈ X|n.x > γ}.
Since X ∩H 6= ∅, X2 6= ∅.
We can see that max

x∈X
(n.x) ≥ γ, equality holds when X3 = ∅ and min

x∈X
(n.x) ≤ γ, equality

holds when X1 = ∅.
Therefore, min

x∈X
(n.x) ≤ γ ≤ max

x∈X
(n.x).

=⇒ −supX (−n) ≤ γ ≤ supX (n).

We prove both directions of the ⇐⇒ condition and hence the result is proved.

For halfspace constraints, we use the following lemma in the computation of I.

Lemma 4.2. Given a Halfspace H = {x ∈ R : x.n ≤ γ} and a compact convex set X ,
we have

X ∩H = ∅ ⇐⇒ −supX (−n) > γ. (4.2)

Proof. Let X ∩H = ∅.

X ∩H = ∅ =⇒ ∀x ∈ X , n.x > γ

=⇒ ∀x ∈ X ,−n.x < −γ
=⇒ max

x∈X
(−n.x) < −γ

=⇒ supX (−n) < −γ
=⇒ −supX (−n) > γ

(4.3)

Let −supX (−n) > γ.

−supX (−n) > γ =⇒ min
x∈X

(n.x) > γ

=⇒ ∀x ∈ X , n.x > γ

=⇒ X ∩H = ∅
(4.4)

(4.3) and (4.4) proves the lemma.

Using the above lemmas to check for the emptiness, we can identify the set of intersecting
intervals I.

57/107

4.2. Intersecting a Convex Set with a Hyperplane or Halfspace

Example 4.1. Figure 4.1(a) illustrates the flowpipe approximation of a five dimensional
system. The boxes represent the polyhedral approximation of the support function rep-
resented flowpipe in the axes directions. Each box in the figure represents a member Ω
of the flowpipe. Figure 4.1(b) shows the sections of the flowpipe which intersects with
the guard y = 0. Figure 4.1(c) shows the sections of the flowpipe intersecting with the
halfspace y ≤ 0.

Algorithm 4.1 pseudo code of discrete post
Require: ha aut, loc

1: trans ← ha aut.get out transitions(loc)
2: flowpipe ← loc.continuous post();
3: while t ∈ trans do
4: tgt ← t.get target loc();
5: cont set ← t.guard ∩ flowpipe {cont set is a continuous set}
6: cont set ← t.assign map(cont set)
7: cont set ← tgt.get invariant() ∩ cont set;
8: sym state ← symbolic state(tgt, cont set)
9: PLWL.add(sym state) {sym state is a symbolic state which is pair of location and con-

tinuous set. PLWL is the passed and waiting list}
10: end while

4.2 Intersecting a Convex Set with a Hyperplane or

Halfspace

To have a support function representation of the intersection between a convex set and a
hyperplane or halfspace, we must know how to compute its support function. Section 3.1
shows that the support function computation of the intersection between a convex set and
a hyperplane or halfspace reduces to the problem of minimizing a convex function. We
presented our novel approach to the minimization problem in previous chapter 3 which
we use to have the support function representation of the intersection set. Before we
apply the minimization algorithm, we can get rid of the term λγ from f(λ) in (3.5), for
computational simplicity, by shifting of the operand sets as discussed below.

58/107

Chapter 4. Flowpipe-Guard Intersection with Support Functions

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x

y

(a) Flowpipe approximation of a five dimen-
sional system.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x

y

(b) Sections of the flowpipe which intersects
with the hyperplanar guard y = 0.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x

y

(c) Sections of the flowpipe which intersects
with the halfspace guard y ≤ 0.

Figure 4.1: Flowpipe sections intersecting with a hyperplane and a halfspace illustrating
the intersection detection algorithm.

59/107

4.2. Intersecting a Convex Set with a Hyperplane or Halfspace

4.2.1 Shifting the Convex Set and the Hyperplane or Halfspace

For computational simplification, we shift the hyperplane or halfspace making it pass
through the center, making its distance from the center to be 0 and hence dismissing the
term λγ, γ being 0 in (3.5). We also apply the same shift to the convex set S to get the
same intersection set, but shifted.

Given a guard G : x.n ./ γ, ./∈ {<,=}, we compute the translation vector, say b, as :

b = [γ/norm(n)].(n/norm(n)); (4.5)

After we have the translation vector b, We use (4.7) to compute the required support
function which is derived from the property of support functions given in (4.6).

sup(S∩G)⊕b(l) = supS∩G(l) + (b.l) (4.6)

supS∩G(l) = sup(S∩G)⊕b − (b.l) (4.7)

After the shifting, f(λ) of 3.5 reduces to f(λ) = supX ′(` − λn), which is the support
function of a compact convex set X in the lambda domain as seen in section 2.2.3. We
already mentioned above that f(λ) is a convex piecewise linear function for polyhedral
sets. The support function graphs of an hexagon and a polytope with 15 facets in section
2.2.3 gives the reader an idea of the nature of the function.

Lower Bound Search algorithm finds a sequence of sampling points λi that converges
towards the minimum of f(λ), see Figure 4.2 and Figure 4.3 for an illustration. Each λi
corresponds to the normed direction

ˆ̀
i = ci(`− λin), with ci = 1/‖`− λin‖2.

4.2.2 Related Work

To the best of our knowledge, this is the first proposed solution for a support function
representation of the intersection of a convex set with a halfspace or polyhedron. It is
derived from previous work on the intersection with a hyperplane by [GG09]. There, the
support function of the intersection is reduced to a univariate minimization problem that
is derived geometrically. Its parameter θ ∈ (0, π) describes the angle between the sample
direction and the normal vector of the hyperplane H′ = {x | nx = γ}:

supX∩H′(`) = inf
θ∈(0,π)

supX (` sin θ + n cos θ)− γ cos θ

sin θ
. (4.8)

While (4.8) has the advantage over (3.6) that its argument ranges over a finite interval,
its cost function is unimodal instead of convex. Therefore one has no direct estimate of
the optimality gap, and it is not possible to obtain the exact solution. Recall that if X is
a polytope, Lower Bound Search computes the exact solution of (3.6) in a finite number
of steps. We refer to the approximate solution of (4.8) by golden section search as Golden
Section Search in the Polar Domain (GSPD).

60/107

Chapter 4. Flowpipe-Guard Intersection with Support Functions

−1.2−1−0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x1

x2

(a) The polytope P and its intersection with the hyperplane H′

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

0.72

0.74

0.76

0.78

0.8

0.82

0.84

λ

f(λ)

(b) To compute supX∩H′(`), we minimize f(λ). The function and the samples chosen by the Lower Bound
Search are shown for ` = (0, 1)

Figure 4.2: Intersection of the hyperplane H′ = {x + y = 0} with a polytope P with 15
facets

4.2.3 Experiments

The following experiments illustrate the performance of Lower Bound Search in compar-
ison with GSPD.

Table 4.1 compares the support function computation of the intersection between a reg-
ular n-polyhedron in two dimensions with the line x cos θ + y sin θ = 0 in the direction
[0, 1], for 1000 uniformly distributed θ ∈ [0, π] by GSPD and Lower Bound Search. The
table shows the averaged results. Note that the error of GSPD decreases as the num-
ber of facets increases. The reason is that the support function becomes flatter near

61/107

4.2. Intersecting a Convex Set with a Hyperplane or Halfspace

−1.2−1−0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x1

x2

(a) The polytope P and its intersection with the halfspace H

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

0.72

0.74

0.76

0.78

0.8

0.82

0.84

λ

f(λ)

(b) To compute supX∩H(`), we minimize f(λ). The function and the samples chosen by the Lower Bound
Search are shown for ` = (0, 1)

Figure 4.3: Intersection of the halfspace H = {x + y ≤ 0} with a polytope P with 15
facets

the minimum for polyhedra with larger number of facets. Hence for a fixed interval in
the function domain bracketing the minimum, the difference between the minimum and
the upper bound decreases. Table 4.2 compares the intersection between a regular n-
polyhedron with the line x cos θ + y sin θ = 0 in the direction [0, 1], for 1000 uniformly
distributed θ ∈ [0, π] for a fixed number of samples. The table shows the averaged results.

Remark 4.1. Note that in Table 4.2 the computation times differ even though the same
number of samples is computed for both LBS and GSPD. Indeed the computation time
of a sample is data as well as state dependent. In particular, the LP solver computing
the support function keeps its state between calls. A sample can therefore be computed

62/107

Chapter 4. Flowpipe-Guard Intersection with Support Functions

Table 4.1: Average performance of Lower Bound Search (exact solution) vs GSPD (fixed to 14
samples), intersecting a hyperplane with a polytope

Lower Bound GSPD

facets samples err time(ms) samples err×10−4 time(ms)

4 6.741 0 0.15 14 8.197 0.71
8 8.523 0 0.34 14 3.200 0.82

16 9.611 0 0.50 14 1.612 1.27
24 10.222 0 0.74 14 1.111 1.80

Table 4.2: Average performance of Lower Bound Search vs GSPD, intersecting a hyperplane
with a polytope for a fixed number of samples (6)

Lower Bound GSPD

Facets opt. gap err time(ms) err time(ms)

4 0.0338614 0.0285933 0.16 0.0351516 0.25
8 0.0274455 0.0107857 0.10 0.0228235 0.32

16 0.0298651 0.0063944 0.28 0.0156476 0.51
24 0.0302147 0.0044049 0.47 0.0131288 0.98

0 5 10 15 20 25
10−18

10−13

10−8

10−3

102

samples

a
pp
ro
x
.e
rr
or

max err
avg err

Figure 4.4: Approximation error over the number of samples for the intersection of ran-
dom halfspaces with random polytopes with 16 facets.

faster if its optimal solution for the corresponding direction is close to the one computed
in the last call.

Figure 4.4 shows the approximation error of the support function of the intersection with
a halfspace as a function of the number of samples taken. We measure the absolute error
over 10000 random instances of a polytope with 16 facets intersected with a halfspace.
The polytope and the intersection are by construction non-empty and the halfspace is
non-redundant. After 17 samples, both maximum and average error are below 10−13,

63/107

4.3. Intersecting a Set of Convex Sets with a Hyperplane/Halfspace

which is about as close as we expect given machine precision.

4.3 Intersecting a Set of Convex Sets with a Hyper-

plane/Halfspace

We are finally interested in computing the support function representation of the inter-
section of a flowpipe section with a guard set G. A flowpipe section is a collection of
convex sets and a guard set is a polyhedra, bounded or unbounded. In section 3.1, we
described our algorithm to compute the support function of the intersection of a convex
set with a hyperplane or halfspace . We can naively use the same algorithm for each
and every convex set in the flowpipe collection to get a collection of support function
represented intersection sets. This naive approach is expensive nevertheless.

To counteract the cost, we solve the minimization problems for each convex set in the
flowpipe interval simultaneously. The underlying properties of the data structure used
to represent the flowpipe are exploited to gain on time. Let us recall that we represent a
flowpipe of size N given as Ω0,Ω1, . . . ,ΩN as a r×N matrix which we call as the Support
Function Matrix with (i, j)th entry denoting the support function sample of Ωj in the
direction li [FR09]. The SFM essentially provides a polyhedral approximation of each Ωi

in the r template directions. We use the algorithm in [GL08] to compute our SFM which
for a given direction l, computes the support function of Ω0 to ΩN iteratively starting
from Ω0. Hence, for some flowpipe interval Ωi, . . . ,Ωj, if we need to compute the support
function of Ωk, i ≤ k ≤ j in a new direction l, we actually compute the support function
of atleast all the Ω0 to Ωk in the new direction l in our SFM. In our implementation,
adding a new direction to a SFM is done through the extend operation. When we say
extend an SFM in a direction l, the support function for all the N Ω’s are added to the
matrix in an additional row, N being the size of the flowpipe. This means that when we
sample a convex set Ωi of the flowpipe, we actually sample all the Ω’s of the flowpipe in
our SFM representation. Figure 4.5 shows the support function graphs of supΩi

(l− λn),
i.e., in the λ domain where Ωi is a convex set of the bouncing ball model flowpipe, n is
the normal to the guard constraint in the model (x ≤ 0) and l is a given direction in
which to compute the support function of the intersection set (l = (0, 1) in this example).
This figure shows the support function graphs for the 3 convex sets of the flowpipe at
the second jump in the bouncing ball model that intersects with the guard. It shows
that extending the sfm of the flowpipe in a direction corresponding to λ = 5 for example,
samples all the three support functions of the three convex sets shown with the asterix
mark. We use this fact to speed up our minima search when solving the minimization
problems simultaneously.

For a k sized flowpipe interval and a guard constraint g ∈ G, we initialize k minimization
problems. Each of the minimization problem then demands a new sample point. Any
one of the demand is served and the SFM is extended in this new direction corresponding
to the chosen sample point. After the SFM is extended, we know that each of the k
functions in the minimization problem has been sampled as well in this new direction.
We then call an update bounds method which improves the lower and upper bound on
the function minima, for each of the minimization problem. This is repeated iteratively
until the minima is bounded in an interval with size less than a given tolerance value for

64/107

Chapter 4. Flowpipe-Guard Intersection with Support Functions

each of the minimization problem. The steps are shown in algorithm 4.2.

−10 −5 0 5 10
−4

−2

0

2

4

6

8

10

12

lambda

f(
l−

n
.l
a

m
b

d
a

)

Figure 4.5: The three plots shows the support function graphs of three convex sets of a
flowpipe of the bouncing ball model. Extending the sfm in a direction corresponding to
λ = 5 samples all the three functions shown with asterix mark.

The update bounds routine worth some illustration. This method takes the new sample,
say λ and based on the current pivots, it calculates tighter bounds on the minima. If
the λ is outside the minima containing interval, i.e., λ < p1 or λ > p4 or λ > p5 in the
five pivots state, then the method simply returns without updating. Also, if the λ is one
of the pivots, then it is redundant and the method return without updating. Otherwise,
based on the four possible positions of λ and the current state of the algorithm, the
method improves the bounds on the function minima. Recall from the state machine in
Figure 3.6 illustrating the Lower Bound Search algorithm in section 3.2.2 that state S1
denote f(p2) > f(p3), state S2 denote f(p2) < f(p3) , state S3 denote f(p2) = f(p3)
and state S4 denote the 5 pivots state as mentioned in section 3.2.2.4. Therefore, the
Lower Bound Search algorithm can be at one of these four states. Let us now discuss the
actions on the four possible positions of the chosen λ in what follows:

1. p1 < λ < p2 : Algorithm in state S1: The new sample is assigned as pivot p1. By
convexity of the function, f(λ) > f(p2) and hence the algorithm remains in state S1.
The lower and upper bounds on the minima are recomputed as described in 3.2.2.1.

Algorithm in state S2: We compare f(λ) with f(p2). if f(λ) > f(p2), λ is renamed to p2,
p2 is renamed to p3, p3 is renamed to p4 and p4 is renamed to p5. The algorithm moves
to the state S4. The lower and upper bounds are recomputed as described in section
3.2.2.4. if f(λ) = f(p2), λ is renamed to p2, p2 is renamed to p3 and p3 is renamed to
p4. The algorithm moves to state S3 and the bounds on the minima are recomputed as
described in section 3.2.2.2. If f(λ) < f(p2), λ is renamed to p2, p2 is renamed to p3 and
p3 is renamed to p4. The algorithm remains in state S1. The bounds are recomputed as
described in section 3.2.2.1.

Algorithm in state S3: By convexity, f(λ) can be either greater or equal to f(p2). If
f(λ) > f(p2), λ is renamed to p1, p2 is renamed to p3 and p3 is renamed to p4. The
algorithm moves to state S3 and the bounds on the minima are recomputed as in section

65/107

4.3. Intersecting a Set of Convex Sets with a Hyperplane/Halfspace

3.2.2.2. If f(λ) = f(p2), we have f(λ) = f(p2) = f(p3). By corollary 3.1, we have the
function minima at f(λ) and the algorithm terminates.

Algorithm in state S4: By convexity, the only possibility is f(λ) > f(p2). λ is renamed
to p1 and the algorithm remains in state S4. The bounds on the minima are recomputed
as in section 3.2.2.4.

2. p2 < λ < p3 : Algorithm in state S1 : If f(λ) > f(p3), then p2 is renamed to p1 and λ
is renamed to p2. The algorithm remains in state S1 and the bounds on the minima are
recomputed as in 3.2.2.1. If f(λ) = f(p3), then p2 is renamed to p1 and λ is renamed to
p2. The algorithm changes to state S3 and the bounds on the minima are recomputed as
in 3.2.2.2. if f(λ) < f(p3) then λ is renamed to p3, p3 is renamed to p4 and p4 is renamed
to p5. The algorithm moves the state S4 and the bounds on the minima are recomputed
as in section 3.2.2.4.

Algorithm in state S2: This is symmetrical to the previous with different pivot re-
namings. If f(λ) > f(p3), then p3 is renamed to p4 and λ is renamed to p3. The al-
gorithm remains in state S2 and the bounds on the minima are recomputed as in 3.2.2.3.
If f(λ) = f(p3), then p3 is renamed to p4 and λ is renamed to p3. The algorithm changes
to state S3 and the bounds on the minima are recomputed as in 3.2.2.2. if f(λ) < f(p3)
then λ is renamed to p3, p3 is renamed to p4 and p4 is renamed to p5. The algorithm
moves the state S4 and the bounds on the minima are recomputed as in section 3.2.2.4.

Algorithm in state S3: By convexity, f(λ) can be either greater or equal to f(p3). If
f(λ) = f(p3), then by corollary 3.1, minima is at f(λ) and the algorithm terminates. if
f(λ) < f(p3) then λ is renamed to p3, p3 is renamed to p4 and p4 is renamed to p5. The
algorithm moves to state S4 and the bounds on the minima are recomputed as in 3.2.2.4.

Algorithm in state S4: If f(λ) > f(p3) then p2 is renamed to p1 and λ is renamed to p2.
The algorithm remains in state S4 and the bounds on the minima are recomputed as in
section 3.2.2.4. If f(λ) = f(p3) then p2 is renamed to p1 and λ is renamed to p2. The
algorithm moves to state S3 and the bounds on the minima are recomputed as in section
3.2.2.2. If f(λ) < f(p3) then λ is renamed to p3, p3 is renamed to p4 and p4 is renamed
to p5. The algorithm remains in state S4 and the bounds on the minima are recomputed
as in section 3.2.2.4.

3. p3 < λ < p4 : Algorithm in state S1 : if f(λ) > f(p4) then we rename λ to p4 and p4

is renamed to p5. The algorithm moves to state S4 and the bounds on the minima are
recomputed as in 3.2.2.4. If f(λ) = f(p3) then p2 is renamed to p1, p3 is renamed to p2

and λ is renamed to p3. The algorithm moves to state S3 and the bounds on the minima
are recomputed as in 3.2.2.2. If f(λ) < f(p3) then p2 is renamed to p1, p3 is renamed
to p2 and λ is renamed to p3. The algorithm remain in state S1 and the bounds on the
minima are recomputed as in section 3.2.2.1.

Algorithm in state S2: By convexity, the only possibility is f(λ) > f(p3). λ is renamed
to p4 and the algorithm remains in state S2. The bounds on the minima are recomputed
as in 3.2.2.3.

Algorithm in state S3: By convexity, the only possibility is f(λ) > f(p3). λ is renamed
to p4 and the algorithm remains in state S3. The bounds on the minima are recomputed
as in 3.2.2.2.

Algorithm in state S4: If f(λ) > f(p3) then we rename λ to p4 and p4 ot p5. The
algorithm remains in state S4 and the bounds on the minima are recomputed as in 3.2.2.4.

66/107

Chapter 4. Flowpipe-Guard Intersection with Support Functions

If f(λ) = f(p3) then we rename p2 to p1, p3 to p2 and λ to p3. The algorithm moves to
state S3 and the bounds on the minima are recomputed as in 3.2.2.2. If f(λ) < f(p3)
then we rename p2 to p1, p3 to p2 and λ to p3. The algorithm remains in state S4 and
the bounds on the minima are recomputed as in section 3.2.2.4.

4. p4 < λ < p5 : This case is interesting only when the algorithm is in state S4, i.e., the
5 pivots state. By convexity, the only possibility is f(λ) > f(p4). We rename λ to p5 and
the algorithm remains in state S4. The bounds on the function minima are recomputed
as in section 3.2.2.4.

Algorithm 4.2 Simultaneous solving of one dimensional minima search problems

Require: Functions [f i, f j] for each convex set of the flowpipe interval [Ωi,Ωj] and tol ∈ R
Ensure: [lk, uk] such that lk < fkmin < uk and uk − lk <= tol, ∀k ∈ [i, j]

1: stop ← false
2: list l of requested sampling points = ∅
3:

4: while !stop do
5: for k = i→ j do
6: opt prbk ← init problem(fk)
7: is activek ← true
8: opt prbk.minbrak() {brackets the function minima with four pivots.}
9: l.push(opt prbk.get sampling point()) {Each problem requests a new sampling point.}

10: end for
11: s← l.choose point() {One of the requested sampling point is selected.}
12: for k = i→ j do
13: if is activek then
14: opt prbk.update bounds(s)
15: [lk, uk]← opt prbk.get bounds()
16: if uk − lk < tol then
17: is activek ← false
18: end if
19: end if
20: end for
21: if ∀k ∈ [i, j], uk − lk < tol then
22: stop← true
23: end if

24: end while

4.3.1 Convex Hull of the Intersection

We mentioned earlier that there could be many convex sets of the flowpipe which intersect
with the guard set and if we treat them individually, we could have a large number of
initial sets to begin the time elapse operation in the target location. The notion of
clustering discussed earlier in section 2.4 showed a way of reducing the number of convex
sets using template hull or convex hull clustering or both.

With convex hull for example, we could think of the following two approaches:

67/107

4.3. Intersecting a Set of Convex Sets with a Hyperplane/Halfspace

2.1 We compute the convex hull of the union of Ωi’s of the intersecting interval and
then find its intersection with the guard set,

SIG = CH
(⋃
imin≤i≤imax

(
Ωi

))
∩ G (4.9)

2.2 We compute the intersection first for each Ωi with the guard set G and then compute
the convex hull of the union of the results,

SIG = CH
(⋃
imin≤i≤imax

(
Ωi ∩ G

))
(4.10)

Let us now discuss the complexity of the above two approaches for support function
representation and polytope representation of Ωi. We are interested in two set operations,
namely, intersection and convex hull of the union of sets. For Ωi’s represented as H-
polytopes, computing the convex hull of their union is an expensive operation [Tiw08]
but the intersection operation with a polyhedral guard set given as H-polytope is an easy
operation (If redundant constraints are acceptable).

For Ωi represented by the support function, computing the support function representa-
tion of the convex hull of their union is an easy operation but computing the support
function representation of the intersection is expensive.

We discussed the idea of applying convex hull to the convex sets before and after com-
puting the intersection in (4.9) and (4.10) respectively. Intuitively, (4.10) is expected to
return more precise intersection compared to (4.9). In this section, we show how we solve
(4.10) using our minimization algorithm. There are essentially two approaches which we
consider.

• We solve the k minimization problems for the k intersecting flowpipe section mem-
bers simultaneously as described in section 4.3 and then take the max of the com-
puted mins as the support function value by property (2.17) of support functions.

• We solve the k minimization problems simultaneously with branch and bound
method [LD60]. We describe this approach below.

Likewise in the previous section, we solve the minimization problem for each of the
convex set of the flowpipe intersecting with the guard simultaneously. For a flowpipe
interval [Ωi,Ωj] whose intersection with the guard set G is not empty, we are interested
in computing the support function representation of SIG as defined in (4.10) where I is
an interval of indices of the flowpipe, [i, j] in this case and G is a polyhedral guard set.
We shall illustrate the algorithm for intersection with a single constraint which can be
extended to a list of constraints of polyhedral G as shown in section 4.4.

Using (2.17), we have the following relation for support function of SIG:

supSI
G

(l) = max{supΩi∩G(l), . . . , supΩj∩G(l)} (4.11)

To solve (4.10), we modify our algorithm 4.2 presented in the previous section with
additional branch and bound technique. As we solve the k minimization problems

68/107

Chapter 4. Flowpipe-Guard Intersection with Support Functions

Algorithm 4.3 Computing the max of mins while solving the minimization problems
simultaneously

Require: Functions [f i, f j] for each convex set of the flowpipe interval [Ωi,Ωj] and tol ∈ R
Ensure: [lmax, umax] such that lmax < max{f imin, . . . , f

j
min} < umax and umax − lmax <= tol.

1: stop ← false
2: list l of sample points.
3: Boolean vector active {This vector keeps track of the discarded set of problems}
4: lmax ← −∞
5: while !stop do
6: for k = i→ j do
7: opt prbk ← init problem(fk)
8: opt prbk.minbrak() {brackets the function minima with 4 pivots}
9: active[j]← true {Initially all the problems are active}

10: l.push back(opt prbk.get next sample())
11: end for
12: s← l.choose sample()
13: umax ← −∞
14: for k = i→ j do
15: if active[k] then
16: opt prbk.update bounds(s)
17: [lk, uk]← opt prbk.get bounds()
18: if uk < lmax then
19: active[k]← false {Discarding the problem}
20: end if
21: if lk > lmax then
22: lmax ← lk
23: end if
24: if uk > umax then
25: umax ← uk
26: end if
27: end if
28: end for
29: if ∀k ∈ [i, j] & active[k], uk − lk < tol then
30: stop← true
31: end if

32: end while

simultaneously, k being the size of the intersection flowpipe interval I, each of the mini-
mization problem updates its lower and upper bound on the minima iteratively. Since we
are interested in computing the max of the mins, we compute the max of the upper and
lower bounds of all the minimization problems at every iteration. If the upper bound on
the minima of a minimization problem is less than the max of the lower bound computed
for all the problems, then the problem is discarded for further computation since we know
that it is is not going to contribute to the final result (branch and bound). We discard
as many problems as we can at each iteration and stop until the difference between the
upper and the lower bound is less than a given tolerance value for all the remaining
problems. The maximum upper bound of all the problems that remains at the end is
returned. The algorithm is illustrated in 4.3.

69/107

4.4. Intersecting a Set of Convex Sets with a Polyhedron

Algorithm 4.4
Require: Flowpipe interval [Ωi,Ωj] of size N , a split size d and a polyhedral guard set G.

Ensure: Collection of convex sets SI
k

G , where 1 ≤ k ≤ ceil(N/d).
1: for k = 0→ ceil(N/d)− 1 do
2: l← i+ d ∗ k
3: u← low + d− 1
4: SI

k

G ← chull(Ωl ∩G, . . . ,Ωu ∩G)

5: end for

4.3.2 Convex Hull with Flowpipe Interval Splitting

Applying convex hull to the union of the intersection of the convex sets of the flowpipe
with the guard set solves the problem of having numerous initial sets at the next location
after a discrete transition, but it brings in larger over-approximation error. To trade-off
between the over-approximation error and the speed of computation, we introduce the
idea of what we call splitting the flowpipe interval before intersection. A user can supply a
split size d, where d should be at most the size of the flowpipe interval that intersects with
the guard set. What it means is that the flowpipe interval is split into smaller intervals
of size at most d and then we compute the convex hull of the union of the intersection
of the convex sets of these smaller intervals with the guard set. Hence, for a flowpipe
interval of size N with a split number d, we are expected to get ceil(N/d) convex sets as
the result. Larger the split size, lesser will be the resulting number of convex sets and
hence larger the over-approximation error but faster the computation. Convex hull with
splitting is illustrated as pseudo code in Algorithm 4.4.

4.4 Intersecting a Set of Convex Sets with a Polyhe-

dron

We assume in this section that the polyhedron is given to us in H representation, i.e., as
an intersection of halfspaces. We first take a look at the intersection of a single convex
set X with a polyhedron P . Since P is an intersection of halfspaces, we can apply lemma
3.3 repeatedly to obtain the support function of its intersection with a convex set X :

Lemma 4.3. supX∩P(l) = inf
λ∈Rm,λ≥0

supX (`−∑i λini) +
∑

i λiγi

This is a convex optimization problem over m variables where m is the number of con-
straints in P .

In our implementation, we compute the intersection with each halfspace separately. We
intersect X with each halfspace of P separately and combine the results with the following
approximation

supX∩P(`) ≤ min
i=1,...,m

supX∩{n.x≤γ}(`) (4.12)

For the intersection of a collection of convex sets with a polyhedron P , we take the convex
hull of the intersection of each Ωi of the flowpipe section Ik that intersects with P . Each

70/107

Chapter 4. Flowpipe-Guard Intersection with Support Functions

halfspace of P is considered separately. Therefore, for the intersection of the flowpipe Ωi

with the jth halfspace of P , we must minimize:

f ij(λ) = supΩi
(`− λnj) + λγj. (4.13)

Applying the same approximation for polyhedron approximation as in 4.12, we obtain
the approximation:

supYk(`) = max
i∈Ik

min
j=1,...,m

inf
λ∈R≥0

f ij(λ). (4.14)

As with 4.11 we can use a branch and bound algorithm to eliminate the instances of i, j
for which the upper bound of f ik(λ) is lower than the largest of the lower bounds.

4.5 Computational Optimization

The computation of the sequence Ωi amounts to a symbolic integration of the ODE (2.20),
so the support function values of Ωi depend on the support function values of Ωi−1, etc.
This gives us the following limitation, which will become an important when we consider
intersections:

Assumption 4.1. To compute supΩi
`, we also need to compute supΩj

` for j = 0, . . . , i−
1.

There is a partial remedy to this problem. Consider the case where we are interested
in computing a subsequence of the flowpipe approximation Ωi, say for i ∈ [c, d]. Under
Assumption 4.1 this requires us to compute the d+ 1 sets with i ∈ [0, d]. We can reduce
this computation burden as follows. The sequence Ωi is constructed such that each set
covers the flowpipe over a known time interval [ti, ti+1]. We decomposing the system
into its autonomous dynamics (U = ∅) and its input dynamics (X = ∅). Recall that
for autonomous dynamics, the set of states reached at exactly time tc is Xtc = eAtcX .
Starting the flowpipe computation for the autonomous dynamics from t = tc instead of
t = 0, we end up with fewer sets to compute. Let

(Ωx
c , . . . ,Ω

x
d) = postce

AtcX , ∅, (4.15)

(Ωu
0 , . . . ,Ω

u
c , . . . ,Ω

u
d) = postc∅,U , (4.16)

such that Ωx
i and Ωu

i cover the respective flowpipe on the same time interval [ti, ti+1].
Then using the superposition principle we have that Ωx

i ⊕ Ωu
i covers the flowpipe of X

and U on the time interval [ti, ti+1]. This means we only need to compute the d− c + 1
values of (4.15). While (4.16) still requires the computation of d+ 1 values, the set U is
in practice often simple, e.g., a hyperbox, so that its support function can be computed
much quicker than that of X .

In our minimization algorithm to compute the support function of the flowpipe-guard
intersection set, we need to sample the Ωi frequently in new directions. The above
observation largely reduces the computation overhead.

71/107

4.6. Case Studies

4.6 Case Studies

We illustrate the difference of our improved discrete image operator (2.32) and the stan-
dard discrete image operator (2.30) in terms of precision and computation time, on some
case studies. We also compare our approach of computing the convex hull of the convex
sets covering the flowpipe before intersecting with the guard set using the branch and
bound method illustrated in section 4.3.1. In the comparisons below, we refer our new
discrete image operator given in (2.32) as LBS intersection. LBS here stands for Lower
Bound Search algorithm that we principally use to precisely compute the intersection
of support function represented sets with polyhedral guard sets. Regarding clustering,
we cluster the convex sets before (-) or after (+) we compute the image of the discrete
transition. We consider as alternatives the template hull of all sets (TH), the convex hull
of all sets (CH), and a mix of both (template hull of about 30%, then convex hull). 30%
here means the percent of clustering factor described in the clustering part of section 2.4.

The case studies we use to illustrate are the simple bouncing ball model, the filtered
oscillator and the colliding pendulum model. We also test our method on the navigation
benchmark model given in [FI04] but do not make comparisons.

0 2 4 6 8 10 12
−6

−4

−2

0

2

4

position

v
e

lo
c
it
y

(a) Reachability upto fixpoint with LBS in-
tersection

0 2 4 6 8 10 12
−6

−4

−2

0

2

4

position

v
e

lo
c
it
y

(b) Reachable set diverges with standard
discrete image operation after the 5th jump.

Figure 4.6: Reachability up to fixpoint with LBS intersection which is not possible with
standard discrete image operation.

Bouncing Ball The bouncing ball model consists of a hybrid automata with a single
location having one and only self transition. The system has two variables namely the
position x and the velocity v of the bouncing ball. The flow equation in the location is
given by ẋ = v and v̇ = −g, where g is a constant set to 1. The location invariant is x ≥ 0.
The self transition has the guard x ≤ 0 ∧ v < 0 and an assignment v′ = −c.v, where
c is a constant set to 0.75. The constant c accounts for the damping effect during the
jumps. Figure 4.6(a) shows the computed reachable set with LBS intersection along with
convex hull clustering with branch and bound as described in section 4.3.1. Notice that
here, the convex hull clustering is done before computing the assignment map (denoted
by CH−). With a time step of 0.001s and box directions, the fixpoint is reached after 22
jumps in 0.909s. With the same time step and directions, the standard discrete image

72/107

Chapter 4. Flowpipe-Guard Intersection with Support Functions

operator with either template or convex hull clustering does not reach fixpoint. The
error is so large that the 5th jump reaches higher than the 4th and further jumps takes
the reachable set to diverge to infinity. Figure 4.6(b) shows the result on 5 jumps with
standard discrete post with template hull clustering.

Table 4.3 shows the time and precision comparison of the proposed discrete image compu-
tation with LBS intersection and the standard discrete image operation with clustering.
We make comparison with the different variants of clustering on the standard discrete
image operation as they affect the precision and computation time of the reachable set.
We compute the reachable set for 5 jumps of the ball. The time step δ for the experi-
ments is taken to be 0.025. For precision comparison, we consider the absolute difference
between the empirical height of the 5th jump and the exact height and compute the
percent error, i.e, percent error in height = |(hempirical − h)/h|. A close approximation of
the exact height is computed by running the reachability algorithm on support functions
with very small time step δ (0.001) and many directions (uni32). The percent error in
height is shown in the last column of table 4.3.

Table 4.3: Speed versus accuracy comparison of different variants of the discrete image com-
putation, applied to the bouncing ball example. The accuracy shows in the percent error of the
height of the 5th jump

direction err clustering runtime(s) percent err

standard discrete image computation
box TH+ 0.325 109.045
box TH&CH+ 0.613 109.045
box CH+ 2.408 109.045
oct TH+ 0.408 12.8319
oct TH&CH+ 0.625 12.8319
oct CH+ 0.935 12.8319

discrete image with LBS intersection
box 0.0 TH+ 0.198 0.35604
box 0.0 TH&CH+ 0.214 0.35604
box 0.0 CH+ 0.216 0.35604
oct 0.0 TH+ 0.391 0.055
oct 0.0 TH&CH+ 0.394 0.055
oct 0.0 CH+ 0.392 0.055
oct 0.01 TH+ 0.381 0.152
oct 0.1 TH+ 0.382 0.633

LBS intersection with convex hull clustering
box 1.0 CH− 0.2 2.556
box 0.2 CH− 0.2 2.556
box 0.1 CH− 0.2 2.556
box 0.01 CH− 0.195 0.511
box 0.0 CH− 0.196 0.35604
oct 1.0 CH− 0.382 1.12179
oct 0.1 CH− 0.382 1.12179
oct 0.0 CH− 0.385 0.098

73/107

4.6. Case Studies

In the bouncing ball model, we see that the different clustering options does not make a
difference in terms of precision. This is because very few flowpipe segments intersect with
the guard constraint with the chosen time step. The best precision obtained is 0.055%
error with our LBS intersection. The next best is 0.098% error with LBS intersection
operation with convex hull clustering using branch and bound. Also notice the difference
in percent error with varying error parameter (column 2) with our precise LBS intersection
using branch and bound. The error value here signifies the intersection error tolerance
value when computing the support function of the flowpipe-guard intersection set with
the novel sandwich algorithm. Also observe that the percent error does not increase
above a threshold on increasing the error paramater value arbitrarily. This is because
our minima bracketing algorithm (see section 3.2.1) computes an optimal gap on the
exact support function and this optimal gap computed by the minima bracketing routine
is the maximum intersection error that could be tolerated. Hence, specifying a error value
larger than this threshold will have no effect.

We also make comparison with a timed bouncing ball model which is constructed by
adding an additional time variable with dynamics ṫ = 1 in the flow equation of the
location. In the transition assignment, the time variable is not changed, i.e., t′ = t.
The additional time variable makes the timed bouncing ball a three dimensional system.
The experiments are performed with a time step δ = 0.01. Due to a small time step,
more flowpipe segments intersect with the guard constraint and thus we see the effect
of different clustering parameters. The precision and time comparison with the precise
LBS intersection method is shown in table 4.4. The height of the 5th jump is taken for
precision comparison because with large error in the discrete image computation, the
height of the later jumps goes higher than the height of the previous jumps and diverges
to infinity.

Table 4.4: Speed versus accuracy comparison of different variants of the discrete image com-
putation, applied to the timed bouncing ball example. The accuracy shows in the height of the
5th jump

direction err clustering runtime(s) height

standard discrete image computation
box TH+ 1.3 3.054
box TH&CH+ 2.6 2.209
box CH+ 31.2 2.016
oct TH+ 3.0 0.972
oct TH&CH+ 12.7 0.901
oct CH+ 36.6 0.844

discrete image with LBS intersection
box 0.0 TH+ 1.3 1.080
box 0.0 TH&CH+ 3.4 1.017
box 0.0 CH+ 55.9 0.904

LBS intersection with convex hull clustering
box 1.0 CH− 0.8 1.175
box 0.1 CH− 0.6 0.815
box 0.0 CH− 0.6 0.807

74/107

Chapter 4. Flowpipe-Guard Intersection with Support Functions

Filtered Oscillator A filtered oscillator is a switched oscillator system with a series
of first order filters to the output x of the oscillator. The filters smooth x, producing
a signal z whose amplitude diminishes as the number of filters increase. The oscillator
is an affine system with variables x, y that switches between two equilibria in order to
maintain a stable oscillation, which together with k filters yields a parameterized system
with k + 2 continuous variables. The hybrid automaton model of the oscillator and the
filter are shown in Figure 4.7 and Figure 4.8 respectively. In the hybrid automaton model
of the oscillator, a1, a2, x0, y0 and c are constants. For our experiment, we take a1 = −2,
a2 = −1, x0 = y0 = 0.7 and c = 0.5. The invariant of location np, pp, pn and nn
is given by x ≤ 0 ∧ y ≥ (−c/x0)x, x ≥ 0 ∧ y ≥ (−c/x0)x, x ≥ 0 ∧ y ≤ (−c/x0)x
and x ≤ 0 ∧ y ≤ (−c/x0)x respectively. Notice that there is no guard constraint and
assignment map over the transitions. This means that the guard set is true and the
assignment map is identity. All the transitions have the synchronization label hop.

The filter model is simply a hybrid automaton with a single location. There is no con-
straint over the location invariant, i.e., the location invariant is true. The variable u is
the input variable of the filter and x is the controlled output variable. c is a constant
taken to be −5.

pp

nn pn

np

hop

hop

hop

hop

ẋ = a1x+ a1x0 ∧ ẏ = a2y − a2y0 ẋ = a1x+ a1x0 ∧ ẏ = a2y − a2y0

ẋ = a1x− a1x0 ∧ ẏ = a2y + a2y0ẋ = a1x− a1x0 ∧ ẏ = a2y + a2y0

x ≥ 0 ∧ y ≥ (−c/x0)x

x ≤ 0 ∧ y ≤ (−c/x0)x

x ≤ 0 ∧ y ≥ (−c/x0)x

x ≥ 0 ∧ y ≤ (−c/x0)x

Figure 4.7: Hybrid Automaton Model of the Switched Oscillator

always

ẋ = cx− cu

Figure 4.8: Hybrid Automaton Model of the Filter

75/107

4.6. Case Studies

Table 4.5: Speed versus accuracy comparison of different variants of the discrete image com-
putation, for computing a fixed-point of the filtered oscillator example. The accuracy shows in
the max amplitude of the output signal z

vars δ ε clustering runtime(s) max. z iter

standard discrete image computation
6 0.01 TH+ 0.3 0.570 5
18 0.01 TH+ 2.1 0.361 9
34 0.01 TH+ 8.7 0.243 13
66 0.05 TH+ 17.4 0.291 23
130 0.05 TH+ 132.7 0.569 39
130 0.025 TH+ 206.0 0.166 41

precise intersection of convex hull with branch & bound
6 0.01 0 CH− 0.4 0.567 5
18 0.01 0 CH− 2.4 0.356 9
34 0.01 0 CH− 9.0 0.237 14
66 0.05 0.1 CH− 17.3 0.243 23
66 0.05 0.01 CH− 18.1 0.232 24
66 0.05 0.001 CH− 27.4 0.192 37
66 0.05 0 CH− 55.6 0.190 71
130 0.05 0.1 CH− 126.0 0.339 39
130 0.05 0.01 CH− 126.5 0.314 39
130 0.05 0.001 CH− 205.5 0.190 39
130 0.025 0.01 CH− 174.2 0.128 65

Table 4.5 shows results for up to 130 state variables, for both standard discrete image
computation and the proposed variant with precise intersection. All instances are com-
puted using box directions. The precise intersection variant outperforms the standard
operator in precision, and often also in speed. In this example, the capacity to compute
the intersection up to a given error (column 3) shows its benefits: a small but not too
small error greatly reduces the analysis time, at an acceptable loss in accuracy.

Figure 4.9 shows the reachable set for a filtered oscillator model with 16 filters and hence
having a total of 16+2 continuous variables.

76/107

Chapter 4. Flowpipe-Guard Intersection with Support Functions

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

x

z

Figure 4.9: Reachability up to fixpoint computation for a 16th order filtered oscillator
(18 vars) with LBS intersection routine.

Colliding pendulums This model consists of two pendulums of mass m and length
` such that they touch each other when at rest. For simplicity, the pendulums are
considered to be point mass, i.e, their respective radius is 0. At rest, both the pendulums
are at origin. To start the oscillation, one of the pendulums is taken some distance away
from the origin and released. For our experiment, we displace the left pendulum from
the origin to start the oscillation. This swinging pendulum then collides with the right
pendulum at rest and transfers its momentum. The right pendulum swings and returns to
collide again with the left pendulum and so on. The pendulum and the collision is modeled
with two separate hybrid automata and they are composed. Both the hybrid automata
consist of a single location and the system have five variables namely the displacement of
the left pendulum xl, velocity of the left pendulum vl, displacement of the right pendulum
xr, velocity of the right pendulum vr and time. The hybrid automaton model of the
pendulum and the collision are shown in Figure 4.10 and Figure 4.11 respectively. The
guard in the transition of the collision hybrid automata is given by xl == xr∧vl > vr and
the transition assignment is given by vl = e.vr ∧ vr = e.vl. e is the constant of elasticity
and it is taken to be 0.95 . The continuous dynamics of the system is given by the flow
equation in the location of the pendulum model. m, ` are the mass and length of the
pendulum, taken as 0.05 and 3 respectively. g is the constant of gravity taken as 10. The
time variable has the flow ṫ = 1 which is captured in another hybrid automata with only
one location and is composed with the system.

77/107

4.6. Case Studies

pendulum

ẋ = v ∧ v̇ = −x/ℓ/mg

Figure 4.10: Hybrid Automaton Model of the Pendulum

always

vl = e.vr ∧ vr = e.vl

xl ≤ xr

xl == xr ∧ vl > vr

Figure 4.11: Hybrid Automaton Model of the Collision

The speed and accuracy comparison is shown in table 4.6. In this model also, there is
not much effect of the different clustering options over the accuracy because very few
flowpipe sections (infact only 1) intersect with the guard constraint with the taken time
step (δ = 0.025). Also, it is observed that for this model LBS intersection lags behind in
terms of computation time but precision-wise, LBS intersection outperforms the standard
discrete image computation.

78/107

Chapter 4. Flowpipe-Guard Intersection with Support Functions

Table 4.6: Speed versus accuracy comparison of different variants of the discrete image com-
putation, applied to the Colliding Pendulum example. The accuracy shows in the percent error
in the maximum displacement of the left pendulum after the 28th collision.

direction err clustering runtime(s) percent err

standard discrete image computation
box TH+ 0.885 15.391
box TH&CH+ 0.884 15.391
box CH+ 0.907 15.391
oct TH+ 2.682 15.391
oct TH&CH+ 2.683 15.391
oct CH+ 2.672 15.391

discrete image with LBS intersection
oct 0.0 TH+ 6.438 10.090
oct 0.0 TH&CH+ 6.421 10.090
oct 0.0 CH+ 6.413 10.090
oct 0.01 TH+ 6.029 10.686
oct 0.05 TH+ 6.074 11.360
oct 0.1 TH+ 6.08 11.360

LBS intersection with convex hull clustering using branch & bound
oct 0.0 CH− 6.369 10.140
oct 0.01 CH− 6.032 10.691
oct 0.02 CH− 6.088 11.339
oct 0.05 CH− 6.1 11.360
oct 0.10 CH− 6.076 11.360
oct 1 CH− 6.078 11.360

0 2 4 6 8 10 12
−15

−10

−5

0

5

10

15

20

time

v
e
lo

c
it
y

(a) Projection of the reachable set on time,
velocity variables using standard discrete
image computation

0 2 4 6 8 10 12
−15

−10

−5

0

5

10

15

20

time

v
e
lo

c
it
y

(b) Projection of the reachable set on time,
velocity variables using precise discrete im-
age computation (LBS)

79/107

4.6. Case Studies

0 2 4 6 8 10 12
0.0

0.5

1.0

1.5

2.0

time

d
is

p
la

c
e

m
e

n
t

(c) Projection of the reachable set on time,
displacement variables using standard dis-
crete image computation

0 2 4 6 8 10 12
0.0

0.5

1.0

1.5

2.0

time

d
is

p
la

c
e

m
e

n
t

(d) Projection of the reachable set on time,
displacement variables using precise dis-
crete image computation (LBS)

Figure 4.12: Illustrating the precision in the computed reachable set with LBS inter-
section. Notice the error accumulation with collisions with the standard discrete image
computation.

Navigation Benchmark The navigation benchmark presented in [FI04] models the
motion of an object in R2 plane. The plane in which the object can move is partitioned
into an n × m grid and each cell of the grid has a designated desired velocity vd. The
actual velocity of the moving body is given by the differential equation v̇ = A(v− vd), A
being a 2×2 matrix. The reader is referred to [FI04] for more details. Different instances
of this model is provided by the author in the website (http://www.cse.unsw.edu.au/ ans-
gar/benchmark/) and we run our algorithm on them, namely NAV01, NAV02, NAV04.

Fixpoint is not found for NAV01, NAV02, NAV04 model with the standard discrete
image computation. It is also not found with the LBS intersection. Figure 4.13 shows
the computed reach set with the LBS intersection routine with convex hull clustering on
the NAV04 model.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

x1

x
2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

x1

x
2

Figure 4.13: NAV04

80/107

Chapter 5

SpaceEx: A Tool Platform for
Hybrid Systems Verification

SpaceEx is a tool platform for safety analysis of hybrid systems. It is so far the most
scalable tool capable of handling hybrid systems with affine continuous dynamics with as
many as 200 variables [FLGD+11]. SpaceEx is highly automated and analysis can be fine
tuned using a number of parameter settings at the disposal of the user. SpaceEx consists
of (1) The Analysis Core, (2) The Web-Interface and (3) A Model Editor. All three
components of SpaceEx can be downloaded from the website [http://spaceex.imag.fr/].

The analysis core is a command line engine that takes the hybrid system specification
under analysis in a XML based format which we call the SX format. The tunable
parameters of the analysis could be either specified as command line options or in a
configuration file. The core engine generates the corresponding output in the specified
output file(s) in the specified format(s).

The model editor is a GUI based editor for specifying the hybrid system as a network of
hybrid automata. The model is saved in a file in the SpaceEx’s SX format.

The web interface is a GUI for running the analysis core over a web browser. The web
interface calls the analysis core via a web server which may be running remotely or locally
in a virtual machine.

In this chapter, we discuss about the Analysis Core of SpaceEx. It is implemented in the
standard C++ programming language [Str86]. 1

5.1 Requirements for an Extendable Tool Platform

Our goal is to enable the implementation of a number of different approaches to computing
the set of reachable states using Alg. 2.2, as well as enabling their eventual combination
and further enhancements.

We consider the following approaches for computing reachability and safety, which we
find amenable to Alg. 2.2:

• Constant continuous and affine discrete dynamics

1This chapter contains excerpts from the document [Fre] and from the publication [FR09].

81

5.1. Requirements for an Extendable Tool Platform

(A) HyTech [HHWT97]

(B) PHAVer [Fre08]

• Affine continuous and discrete dynamics

(C) d/dt [ADM02]

(D) Using zonotopes [Gir05]

(E) Using support functions [GL08]

(F) Algorithmic improvements to compute postc for D,E [GGM06]

• Nonlinear dynamics and abstraction refinement

(G) Approximating nonlinear dynamics by hybridization [ADG03]

(H) Forward/backward refinement [FKR06]

(I) CEGAR-type approaches [FJK08]

The reachability techniques in A,B are for piecewise constant derivatives, exact as well
as overapproximative over an infinite time horizon. In C, affine continuous and discrete
dynamics are overapproximated by discretizing time over a finite time horizon. In D and
E, this technique is improved by exploiting the advantages of a particular representation
of continuous sets, plus some low-level algorithmic improvements. In G, the techniques
for affine dynamics are extended to nonlinear dynamics by overapproximation based on
partitioning the state space. In H, a very simple abstraction/refinement technique is
used for deciding safety, and more sophisticated ones based on counter example guided
abstraction refinement (CEGAR) can be found in I. Approaches A–E constitute low-level
algorithms that deal with computing post-images for particular dynamics, while G–I are
high-level techniques that use low-level reachability algorithms as an intermediate step
in a larger scheme.

An analysis of common elements and differences shall provide us with the basis for our
design.

5.1.1 Common Elements

The system under examination is described as a network of interacting automata. The
specification consists of the set of initial and (for safety) forbidden states. In addition, the
user has to provide analysis parameters such as discretization time steps or partition sizes.
For the analysis, a parallel composition operator transforms the automaton network into
a single automaton, possibly on the fly. The set of reachable states is computed using
some variant of Alg. 2.1. The resulting set of states undergoes some basic processing
(intersection with forbidden states, projection onto variables of interest), and is output
to a file or visualized.

5.1.2 Differences

The approaches we consider differ along the following lines:

82/107

Chapter 5. SpaceEx: A Tool Platform for Hybrid Systems Verification

5.1.2.1 Set Representations

Polyhedra (A,B), zonotopes (D), and support functions (E) have each various advantages
and disadvantages on fundamental set operations. For example, for polyhedra in con-
straint form computing intersection is cheap and Minkowski sum is expensive, while for
zonotopes Minkowski sum is cheap and the intersection of two zonotopes is not generally
a zonotope.

5.1.2.2 Discrete post-computations

Various exact as well as overapproximative techniques for computing the image of dis-
crete transitions are available (such as taking the convex hull), depending on the set
representation. Most techniques apply to discrete dynamics in the form of affine maps
(resets). For example, the image of an affine map is cheap for zonotopes and polyhedra
in generator form, but not for polyhedra in constraint form.

5.1.2.3 Continuous post-computations

Computing the image of a set after time elapse generally necessitates an overapproxima-
tions. Different techniques are applicable according to the type of continuous dynamics
as well as the set representation. For A,B the image is over infinite time, while C,D,E,F
discretize time and compute it over a bounded interval. Even for just linear dynamics,
variations abound. For example, F avoids the wrapping effect by essentially reordering
the computation and its approach is applicable to D,E.

5.1.2.4 State exploration

Most approaches are defined for forward reachability, but can equally be applied as back-
ward reachability by reversing the system dynamics. One direction may work better than
another depending on the characteristics of the system [Mit07], and H combines both. I
requires keeping track of the dependency graph between symbolic states, i.e., which are
the successor states of which. The explored states need to be stored in some form of
passed/waiting list, and at each iteration the explored states need to be separated into
those that are new and those that already been explored, which involves some form of
difference operation (exact, overapproximative, see A).

5.1.2.5 Model transformations

Hybridization (G) and abstraction/refinement techniques (B,H,I) involve duplicating
(splitting) locations, adding and removing transitions, and modifying dynamics and in-
variants. Such changes in the model must be compatible with the state exploration if
they are to be carried out on the fly, or if state representations are to be compatible with
different variants of the same model.

5.1.2.6 High level algorithms

In abstraction/refinement schemes like H or I, computing the reachable states is just one
step in a larger process. They require certain low-level information like the dependency
graph and counter examples to be accessible, and entail model transformations.

83/107

5.2. Design Specification

5.1.2.7 Automaton composition

Composition operators differ in the type of communication (synchronization) and how
variables are shared (A versus B).

5.2 Design Specification

5.2.1 Principal Elements

Based on the survey and Alg. 2.2, we define the following principal elements and their
operations:

• automaton representation : add locations, transitions

• automaton network representation (controls composition; itself an automaton) :
add automata

• discrete and continuous set representations : inclusion and emptiness tests, trans-
forms (intersection, affine maps, etc.)

• adapt: convert sets and dynamics to the right form (if possible)

• PWL : add, pop symbolic states

• continuous-post :transform a symbolic state into a set of symbolic states

• discrete-post : transform a symbolic state into a finite set of symbolic states

Implementation choices depend on each other. E.g., a specific continuous-post might only
apply to affine dynamics and require polyhedra as set representations. At the same time,
we would like to keep the concrete classes encapsulated as much as possible; whoever
writes the polyhedron class may not know anything about hybrid automata.

This leads us to the following design principles:

• Implementations for the principal elements should be interchangeable.

• The principal elements should be used exclusively in Alg. 2.2 (instead of creating
new algorithms that add elements or change the order); this shall guarantee that
implementations from different sources remain interchangeable and as compatible
as possible, avoiding divergence between different implementations.

• Compatability between principal elements is optional. We assume that anyone
selecting a set of principal elements to create a scenario has expert knowledge. It
suffices that an exception is created when an incompatibility is detected during
execution.

• Low-level operations on continuous sets take up most of the computation time,
so the overhead of polymorphism, operations on discrete sets etc. is considered
negligible.

84/107

Chapter 5. SpaceEx: A Tool Platform for Hybrid Systems Verification

• The number of (convex) continuous sets created during exploration is large com-
pared to the number of discrete sets, justifying additional effort, e.g., to compact
sets of symbolic states.

• The number of different set representation is small and varies little compared to
the other principal elements (post-operators, PWL). It is therefore acceptable that
adding a new set representation requires updating the other principal elements
(which is required for applying the visitor pattern in certain components).

• Advanced algorithms modify the system model (automaton network) on the fly
or between re-runs of the reachability algorithm. Set representations need to be
compatible with corresponding changes in locations and transitions, e.g., using keys
to refer to previous versions of the location or transition.

5.2.2 Tool Architecture and Execution

We define for each of the principal elements an abstract base class, from which implemen-
tations must be derived. We call a set of implementations for the principal elements a
scenario implementation, and define a scenario class to hold references to them, similar to
the strategy design pattern. Given a scenario object, our implementation of Alg. 2.1 uses
these references to instantiate automaton and set representation, and carry out operations
on symbolic states and the PWL.

A run of the tool (assuming the model has already been generated possibly in a graphical
editor) consists of the following steps, as shown in Fig. 5.1:

1. The user provides the input : models (XML), user commands, scenario selection,
output selection.

2. The input file is parsed to generate a general representation of the automata (tran-
sitions/locations) and sets (initial states, bad states).

3. The general automata are adapted to the right set representation and dynamics
according to the scenario (adapt).

4. The automaton network is instantiated according to the scenario.

5. The user selected algorithm (reachability, safety) is executed, using the elements
provided by the scenario (PWL, post).

6. The output is created : visualization, file export (model, states).

User options are used to select the scenario, additional options can be passed directly to
the scenario.

5.3 Tool Implementations

SpaceEx includes default, straightforward implementations for discrete sets, automata,
automata networks and the PWL (linked list). For more details, the reader is referred

85/107

5.3. Tool Implementations

Figure 5.1: Schematic of the tool architecture (solid arrows represent acquaintance be-
tween objects, dashed arrows represent instantiation). Grey arrows indicate in which
order the different components are executed

to a similar implementation in [Fre08]. Tool implementations that use these must only
provide the remaining elements: representations of sets, dynamics, its adapters, and
post-operators. The analysis core of SpaceEx currently implements two scenario for the
reachable set computation, namely the PHAVer scenario and the LGG scenario. PHAVer
scenario is for the reachability analysis of linear hybrid systems modeled with LHA.
The algorithms used here are similar to that used in the tool PHAVer [Fre08]. It is to
be noticed that hybrid systems with affine continuous dynamics cannot be run in the
current implementation of the PHAVer scenario although the tool PHAVer run on them
by approximating the affine dynamics with linear dynamics using state space partitioning.

The LGG scenario is for the analysis of hybrid systems having affine dynamics and non-
deterministic inputs. LGG implements a variant of the support function based reach-
ability algorithm given in [GL08]. The LGG scenario comes with a number of tunable
parameters to be set by the user before initiating the reachable set computation.

Recently a simulation scenario has also been added to SpaceEx which generates simula-
tion traces on the provided initial points. The simulation scenario is out of scope of this
thesis.

Options can be set via the command line or via the web interface. The configuration files
saved by the web interface can also be read directly by the command line tool. Note that
it is possible to display the command line generated by the web interface, which may be
useful for creating scripts etc.

We first present the general reachability algorithm in SpaceEx.

5.3.0.1 Reachability Algorithm

The reachability algorithm using symbolic states presented in section 2.1 in chapter 2
is executed. Recall that reachability for hybrid automata is undecidable in general,
and this procedure is not guaranteed to terminate. Upon termination, the result is an
overapproximation of the reachable states.

86/107

Chapter 5. SpaceEx: A Tool Platform for Hybrid Systems Verification

The following options are available to control the reachability algorithm:

• Max. iterations: Maximum number of iterations for the reachability algorithm,
which is the total number of discrete post computations on symbolic states. If
negative, the algorithm terminates only when a fixed point is reached.

• Relative and absolute error: These values are used when comparing floating
point values and deciding whether they are considered equal. This impacts mainly
tests for containment and emptiness of objects.

• Merging passed with waiting list: When a new state A contains a state B
already on the passed list, B is by default replaced by A on the passed list. This
merging process incurs the cost of containment checking and can be disabled.

5.3.1 Phaver Scenario

The Phaver scenario is for LHA models. A linear hybrid automaton (LHA) is a hybrid
automaton whose continuous sets and relations are given by convex linear constraints
over, respectively, the variables (invariant, initial states), the derivatives (flow), and the
variables distinguishing before and after a jump (jump relation). This means that the
continuous dynamics are nondeterministic with constant bounds, e.g., 1 ≤ ẋ ≤ 2 or
ẋ+ ẏ = 0. The discrete dynamics are nondeterministic affine, e.g., x′ = 0 or x′ = a∗x+b.

We represent continuous sets as polyhedra and provide a straightforward implementation
based on linear programming to decide containment and emptiness. Fourier-Motzkin
elimination is used for existential quantification. A generic lp-solver interface allows us
to use different linear programming solvers, such as the GLPK [Mak09].

The continuous dynamics are modeled as the continuous set of derivatives for each loca-
tion. The discrete dynamics (jump relations) are modeled as a discrete set over primed
variables (after the jump) and unprimed variables (before the jump).

For LHA, the post-operators are first-order predicates whose solutions can be computed
using the above standard operations on polyhedra.

5.3.2 Support Function Scenario

For affine continuous and discrete dynamics, an efficient approach to compute the reach-
able states has been proposed in [GL08]. The continuous dynamics is of the form (2.20)
and the discrete dynamics is of the form given in (1.2). Given a set of directions, it uses
polyhedral over-approximations, where each face of the polyhedron is a tight bound on
the original set in one of the given directions.

To make the approach scalable, the support function scenario uses a combination of
operations on implicit set representations (support functions) and overapproximation
steps.

Two operators are necessary to compute the reachable states: computing the states
reachable by time elapse and computing the image of a set of states that take a transition.

87/107

5.3. Tool Implementations

Figure 5.2: A two-dimensional system moving in circles around the origin

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(a) δ = 0.5

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(b) δ = 0.2

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(c) δ = 0.05

Figure 5.3: A flowpipe (bold in black) and the convex sets generated by SpaceEx to
overapproximate it, for different values of the sampling time δ

In the following we consider what happens to a convex set of states in a single location
if we let time elapse. Starting from the initial set, the LGG scenario computes a series
of convex sets that cover the flowpipe. Each convex set covers a chunk of δ time out of
the flowpipe, so that after having computed k of these sets we have covered the states
that are reachable from X0 up to time kδ. We call δ the sampling time. Since we can’t
compute sets up to infinity, we define an upper bound on the time span we consider for
each flowpipe, called the local time horizon. To know in detail about the construction of
convex sets that cover the flowpipe, refer [GG09], [FLGD+11] and section 2.3.1.

Example 5.1. Consider the system shown in Fig. 5.2. We consider location p, with
dynamics

ẋ = −y,
ẏ = x,

which makes its states move around the origin in circular trajectories. We consider as
initial set the state (x = 1, y = 0), which gives rise to the circular flowpipe shown in
bold in Fig. 5.3(a). The LGG time elapse algorithm with sampling time δ = 0.5 and
local time horizon 1.5 produces the three convex sets shown in Fig. 5.3(a), which cover
the flowpipe. For smaller sampling times, the accuracy increases, as shown in Fig. 5.3(b)
and Fig. 5.3(c).

88/107

Chapter 5. SpaceEx: A Tool Platform for Hybrid Systems Verification

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(a) box

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(b) octagonal

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(c) 16 uniform

Figure 5.4: Flowpipe overapproximation for different choices of template directions

From looking at the example, it seems that by reducing the sampling time, we might get
arbitrarily close to approximating the flowpipe. But there is another source of overapprox-
imation: The final result of the LGG algorithm are template polyhedra, i.e., polyhedra
whose faces have a direction that is given a priori. The use of template polyhedra allows
one to avoid costly operations on polyhedra such as convex hull and existential quantifi-
cation, which can be exponential in the number of variables. The price for this scalability
is the degree of overapproximation that such an a-priori choice incurs. As the number
of provided directions goes to infinity (assuming they are evenly distributed), the error
goes to zero. In the worst case, the number of directions needed to fall under a given
error bound is exponential in the number of variables. Experiments have shown that in
practice a low number of directions may suffice, but this depends on the system and the
property at hand.

The LGG scenario provides three options to choose the template directions for an n-
dimensional system:

• box directions, i.e., 2n directions aligned with the axes, i.e., xi = ±1, xk = 0 for
k 6= i;

• octagonal directions, i.e., 2n2 directions, consisting of all combinations of xi = ±1,
xj = ±1, xk = 0 for k 6= i, j;

• uniform directions, i.e., a set of m directions that are (as well as possible) uniformly
distributed.

Example 5.2. Figure 5.4 shows the flowpipe of the initial state (x = 1, y = 0) with
sampling time δ = 0.5 and local time horizon 1.5 for box, octagonal and 16 uniformly
distributed directions.

Intersection with the invariant All states that are reachable within a location
must satisfy the location’s invariant. For the flowpipe computation, this is achieved by
intersecting the polyhedra that cover the flowpipe with the invariant.

5.3.2.1 Computing successors of transitions

Each flowpipe that is created by the time elapse step is passed separately to the compu-
tation of transition successors. To compute the successor states we compute the states

89/107

5.3. Tool Implementations

that satisfy the guard, and then map them according to the assignment of the transition.
The states that satisfy the invariant of the target location are the successor states.

Assignment If the assignment is invertible and deterministic, i.e., of the form x :=
Ax + b0 with A being an invertible square matrix, the mapped states are computed
exactly by mapping the polyhedron. Otherwise (non-invertible A or nondeterministic
inputs), the mapped states are computing using a template overapproximation with the
same template direction as used for time elapse.

Clustering Each flowpipe consists of a possibly large number of convex sets that cover
the actual trajectories. When computing the states that can take a transition, clustering
reduces this number. It iteratively replaces a group of sets of the flowpipe with a single
convex set, their template hull. An option called clustering percentage determines how
many sets come out of this process: A percentage of 0 means no reduction in the number
of sets, all sets are passed to the aggregation step outlined below. A percentage of 100
means that all sets are combined into a single set (no aggregation necessary). A value
between 0 and 100 groups the convex sets such that the relative distance (Hausdorff) to
the original is below the given value (smaller values indicate higher accuracy). The sets
coming out of the clustering then go through the aggregation step.

Aggregation The clustering step creates a certain number of convex sets, each one
spawning its own flowpipe in the next time elapse computation. This may multiply the
number of sets with each iteration, leading to an explosion in the number of sets and
slowing the analysis to a halt. To avoid this effect and speed up the analysis, these
sets can optionally be overapproximated by their convex hull. A faster but more coarse
alternative is to set the clustering percentage to 100, which results in only one convex set
(the template hull).

We describe how to use the flowpipe guard intersection with the LBS flowpipe guard
intersection algorithm discussed in chapter 4 with the support function scenario.

5.3.2.2 Support Function Scenario with LBS intersection

The LBS intersection is activated by passing a positive argument to the intersection-
error option. By default, LBS intersection algorithm is switched off and the standard
intersection method is activated. The argument ε to the intersection-error option instructs
LBS to keep searching for the support function of the flowpipe guard intersection set until
the difference between the upper and the lower bound on the support function value is
less than or equal to ε. Hence, specifying an argument 0 should return the most precise
result. Recall that LBS computes the support function by solving a minimization problem
and does the minima bracketing before running the sandwich algorithm [refer chapter 3].
After the minima bracketing, LBS finds a lower and upper bound to the minima. With
the intersection-error switched on, the support function is computed up to atleast the
difference of lower and upper bound of the support function as obtained after the minima
bracketing and an epsilon specified larger than this will have no effect.

Figure 5.5 illustrates the effect of the intersection-error on the bouncing ball model shown
in 4.6. Figure 5.5(a) is the most precise reachable set computed by SpaceEx with LBS

90/107

Chapter 5. SpaceEx: A Tool Platform for Hybrid Systems Verification

intersection method and Figure 5.5(c) is with the intersection-error set to 1. This is with
box directions, sampling time as 0.2 and for four discrete jumps.

The LBS intersection method has a parameter called minbrak. This is to set the type
of minima bracketing algorithm to use. Currently, there are two minima bracketing
algorithms to choose from, which can be used with the LBS method - (1) Golden descent
method and (2) Parabolic Extrapolation. Golden descent method is chosen by specifying
the string “gold desc” and the parabolic extrapolation method is chosen by specifying the
string “parab desc” to the minbrak option. If nothing is specified, golden descent method
is chosen by default. Refer section 3.2.1 to recall the minima bracketing algorithms in
detail.

There is another option named intersection-method to select the convex hull clustering
with the LBS implementation. By default, the branch and bound algorithm to compute
the convex hull of the intersection of the flowpipe with the guard set is used which can
be explicitly set by specifying the string “lb chull”. The algorithm is explained in section
4.3.1. The simultaneous solve variant of LBS which does no clustering can be called with
the string “lb simult”. Refer 4.3 for an explanation of this method.

Lastly, there is an option named split which is used to define the split size. This number
defines the size of the flowpipe which will be convex hull-ed before computing its intersec-
tion with the guard set. Split is set to 0 by default which means that all the intersecting
flowpipe sections are convex hulled before computing the intersection with the guard set.
Section 4.3.2 gives a detailed description of computing the flowpipe guard intersection
with splitting.

91/107

5.3. Tool Implementations

0 2 4 6 8 10 12
−6

−4

−2

0

2

4

x

y

(a) The most precise computation of the
discrete jump with intersection-error as 0

0 2 4 6 8 10 12
−6

−4

−2

0

2

4

x

y

(b) Reach set with intersection-error as 0.3

0 2 4 6 8 10 12
−6

−4

−2

0

2

4

x

y

(c) Reach set with intersection-error as 1

Figure 5.5: Reachable Set computed by SpaceEx for three jumps in the bouncing ball
model with different values of intersection-error parameter.

92/107

Chapter 5. SpaceEx: A Tool Platform for Hybrid Systems Verification

5.4 Software Engineering Behind SpaceEx

SpaceEx has been designed keeping in mind Robustness and Extendability as the goals.
It is a tool platform which is more than being only a tool because it promises that new
algorithms for hybrid systems reachability could be easily tested and integrated within its
framework. Hence, Its design has been given special attention. In the next subsections,
we discuss about the class structure design and design patterns used in SpaceEx, about
smart pointers, version control, testing and debugging in SpaceEx.

5.4.1 Class Structure Design

In section 5.2, we discussed about what we think are the principle elements of a reach-
ability analysis tool and the different possibilities of concretizing them. For example,
the continuous post operator is a principle element and this may have different imple-
mentations depending on the type of dynamics in the hybrid automata and the type
of continuous set representation. Also, the type of continuous set representation might
depend on the dynamics of the system and the reachability algorithm per se. Thus we
see that there is a interdependency. The goal is to have a class design which preserves
data encapsulation and also provides ample scope for reusability and extendability. For
the purpose of extendability, we defined the principle elements as abstract base classes.
Different possible concretizations of the principle elements are then implemented as the
derived classes. To counter for the fact that there is a compatibility issue on the type of
concretizations of the principle elements that goes together and at the same time there
is a need of data encapsulation, we implement a separate scenario class which integrates
the different concretizations and take care of the compatibility issue. Thus for example,
a polyhedron class derived from the continuous set abstract class is implemented without
considering the type of dynamics or the reachability algorithm. A scenario class acts as a
placeholder for each of the principle elements and chooses the right combination of their
concretizations. This type of class design conforms with the Abstract Factory design
pattern. The different design patterns that we mention in this section are explained in
the book [GHJV94].

Figure 5.6 shows the class hierarchy diagram of the post operator in SpaceEx as an
example. The post operator class shown in the diagram is a abstract base class and
shown are the concretizations.

As a tool platform and as an experimental framework, SpaceEx defines a family of algo-
rithms for reachability, operations on sets, input/output etc. It conforms to the Strategy
design pattern as much as possible which lets the algorithm vary independently from
clients that use it. Different algorithms to perform a task are encapsulated as differ-
ent subclass implementations of the common abstract base class. For example, in the
support function scenario implementation in SpaceEx, we compute the support func-
tion of polytopes which are nothing but LP problems. There are different algorithms to
solve a LP problem which are encapsulated as separate classes to a abstract base class
called lp solver. Figure 5.7 shows the class hierarchy diagram of LP solvers in SpaceEx.
The subclasses lp solver fm, lp solver glpk and lp solver monniaux implements different
algorithms to solve a LP problem.

SpaceEx reachability algorithm implementation often works on aggregate objects like a

93/107

5.4. Software Engineering Behind SpaceEx

Figure 5.6: Class hierarchy diagram of the post operator in SpaceEx.

collection of continuous sets, a collection of symbolic sets etc. The class design therefore
must provide a way to access the elements of the aggregate objects without exposing the
underlying representation. The Iterator design pattern is used wherein the aggregate
class have methods which creates and returns an iterator object specific to its own type.

Visitor design pattern has been used where we could identify a number of different
operations on a class of objects and the operations depend on the concrete type of the
operand object. Figure 5.8 shows the hybrid automaton visitor class hierarchy diagram.
CIF automaton formatter, SX automaton formatter, print, automaton to supp f adapter
etc defines the different operations on the hybrid automaton.

To give an idea of the size of SpaceEx, It consists of 30 namespaces excluding the std
namespace, 628 classes, a total of 571 files (C++ header and source files), 65683 lines
of C++ source code (without comments and blank lines) and a total of 20543 lines of
comments to date.

A HTML documentation of SpaceEx which shows its complete interface with class hier-
archy, collaboration diagram and dependency graphs can be generated from the source
code using the automated document generation tool called doxygen [fSCD].

94/107

Chapter 5. SpaceEx: A Tool Platform for Hybrid Systems Verification

Figure 5.7: Class hierarchy diagram of LP solvers conforming to the Strategy Design
Pattern

Figure 5.8: Class hierarchy diagram of the hybrid automaton visitor

5.4.2 Smart Pointers

A smart pointer is a C++ class that mimics a regular pointer in syntax and some se-
mantics, but in addition provides value semantics. An object with value semantics is
an object that one can copy and assign to. Compilers do not take care of the memory
management for normal pointers. For example, when a pointer is assigned a value with
the new operator, it becomes the owner of the object it points to. This pointer has to be
explicitly deleted with the delete operator for this memory to be released. In the case of
copying normal pointers, both the copied and the original pointers then own the object it
points to. Consequently, if one of them is deleted, the memory allocated to the object is
released. Moreover, double deletion could be catastrophic. Therefore, normal pointers do
not have value semantics. Smart pointers does all the required memory management for
the user and hence are called ’smart’. SpaceEx is implemented with the the boost smart
pointers which is called shared ptr. A documentation of the boost shared pointer can
be found at [oBSP].

The reader is referred to [Ale01] for a deeper insight into the implementation of smart
pointers.

95/107

5.4. Software Engineering Behind SpaceEx

5.4.3 Revision Control

Revision control is the process of managing multiple versions of a piece of information.
One could list down a number of reasons as to why have multiple versions.

• In the context of software development, having multiple versions stored serves as a
development timeline and may help to reflect back and learn from its own evolution.

• Another reason could be pointed to the changing nature of the world. Requirements
of a software keep changing over time - the algorithms implemented in a version
may stand old and less efficient compared to the newer versions or sometimes the
old versions may be found better suited later in the future. Hence, it is always a
good idea to keep the older versions in the development process which would allow
to revert back when needed.

• Version control also helps in recovering from errors. If a new change turns out to
be faulty, then one can revert back to an older working version. Revision control if
used wisely could largely help in the debugging process as well.

• Revision control helps in the collaborative development process. For most of the
cases, softwares are developed by a number of developers, many a times distributed
geographically. Developers may write code which conflict with each other and needs
to be resolved. A good revision control system must be able to resolve such conflicts.

Revision control manually is tiresome and error prone for even small scale software de-
velopment projects. There are a number of automated revision control tools like CVS
[Sysa], Subversion [Sysd], GIT [Sysb] and Mercurial [Sysc]. The main difference between
these are some of them like CVS and Subversion have a centralized server/client archi-
tecture whereas others like GIT and Mercurial have a distributed architecture. In the
centralized tools, the repository is stored in a single server and clients communicate with
the repository over the network. In the distributed tools, there can be multiple local
repositories cloned from a repository for each client or user.

Distributed version control is relatively newer and has the following advantages over the
centralized counterpart.

• A user can communicate with its own copy of the repository without the need of
having a network.

• Distributed version control systems are faster because most metadata is stored
locally unlike in the centralized tools where most metadata is stored in the central
server which needs to be updated over the network.

• Distributed version control systems are robust. If the repository in the centralized
version control software gets corrupted then the repository is lost unless there is a
backup. In the distributed counterpart, there are multiple copies of the repository
distributed among the users. All getting corrupted at the same time is rare.

Mercurial is a distributed version control software. SpaceEx version control is done with
Mercurial because of the above mentioned advantages of distributed architecture. The

96/107

Chapter 5. SpaceEx: A Tool Platform for Hybrid Systems Verification

distributed architecture proves to be helpful in the development of different features in
different independent feature branches. Feature branches is a good way of managing
changes in large projects by breaking up and defining independent branches. A group of
developers has a shared branch of its own, cloned from a single master branch [O’S09]. De-
velopers can work on a particular branch independently and isolated from other branches.
When a particular feature is in a good shape, someone on that branch pulls and merges
the master branch into the feature branch then pushes back up to the master branch.
There could be an additional level of supervision in the master branch as to what new
features got to be added and what all needs to be discarded. The supervisor in the master
branch could pull in only the changes it thinks that should go in from the pushed feature
branch and discard the rest.

The idea of feature branches can also be implemented without having clones for each
branch in mercurial. Mercurial treats all of the development history as a series of branches
and merges. Feature branches can be implemented just by giving a persistent name to a
branch. By default, all commits goes to the default branch in mercurial. New branches
can be created with the command:

$ hg branch new_branch

Switching between branches is done with the update command:

$ hg update main_branch

SpaceEx development utilizes this feature branches approach with mercurial in the de-
velopment of its different features with branch naming as explained above and not with
repository cloning for each branch. Figure Figure 5.4.3 illustrates feature branching in
SpaceEx.

LBS Intersection Simulation

 Master

Zonotope Separate_timescalesNon Linear

SpaceEx

Figure 5.9: Illustrating feature branch development in SpaceEx

Mercurial is a free software and it is open source. It is easy to use and most of its
commands are the same with the classical rcs tools like SVN and CVS. Mercurial is
portable to all popular operating systems. [O’S09] provides a comprehensive guide to
using Mercurial for revision control in software development.

97/107

5.5. Models in SpaceEx

5.4.4 Testing and Debugging

Testing the individual software units during the development process is known as unit
testing. Unit testing is a better practice than testing software modules consisting of a
bunch of software units. The later increases the complexity of testing because of the
fact that there are more candidates where the identified bug(s) could exist and because
of the possible interdependence between the different components under test, the exact
cause of the bug might be hard to find. In short, unit testing finds the bugs early in the
development cycle.

Unit testing gives greater flexibility in the development process. Since the correctness of
the individual software units is tested, refactoring becomes simpler. Refactoring means
disciplined restructuring of the existing parts of the software without changing the overall
desired behavior.

In the continuous test framework, the test cases for the units persist and they are run
as the software undergoes change. If any change causes a failure in one or more of the
unit tests, that signals an unintended effect of the change over the software units whose
tests fail. Hence, continuous unit testing gives greater confidence in the integrity of the
software as it grows.

SpaceEx has undertaken a test-driven development using the UnitTest++ package [Pac]
for unit testing. UnitTest++ is a lightweight unit testing framework in C++. UnitTest++
provides with a number of macros. There are basically three types of macros, TEST
Macro, SUITE macro and CHECK macros. A TEST macro is the basis of a test. A
SUITE macro is a group of TEST macros and provides them with a namespace. CHECK
macros perform comparisons and outputs true or false results. A false result means that
the test in which the check occurred has failed. UnitTest++ is easy to use and could be
used for a first experience of testing in the software development process. A total of 503
unit tests in 121 test files were written in the development of SpaceEx so far. The testers
consists of 14272 lines of code and 4149 lines of comments. The total testing time with
UnitTest++ for all the testers is about 193.876 seconds on a standard x86 machine with
32 bits operating system.

GDB (The GNU Project Debugger) [Deb] has been used to debug the test failures and
the runtime exceptions in SpaceEx. GDB is a commonly used debugger distributed with
almost all Unix distributions. With GDB, breakpoint can be set at desired points in
a program from where the program execution could be traced line by line. Program
variables could be monitored at each step. GDB can also display the call stack when
there is a crash.

5.5 Models in SpaceEx

A SpaceEx model can be created using the SpaceEx Model editor which stores the model
in the SX format. A model is made up of one or several components. There are two
types of components: a base component which corresponds to a single hybrid automata.
A network component consists of one or more instantiations of other components (base
or network) and corresponds to a set of hybrid automata in parallel composition. Refer
[Fre] for a detailed description of a SpaceEx model.

98/107

Chapter 5. SpaceEx: A Tool Platform for Hybrid Systems Verification

5.6 Libraries

SpaceEx has its own rich library for most of the math operation and data structures it
requires. In addition, the analysis core of SpaceEx uses a number of third party libraries.
The PHAVer scenario uses the PPL library [BRZH02] to represent continuous sets as
polyhedra. The Boost C++ library [Liba] is used for its fast and efficient data structures
in C++. The support function scenario uses the GLPK (GNU Linear Programming Kit)
library [Mak09] to compute the support function of polyhedra which are nothing but LP
problems. SpaceEx uses GMP - the GNU Multiple Precision arithmetic library [Libb] for
arbitrary precision arithmetic. Table 5.1 lists the third party libraries that SpaceEx core
uses, to whose authors we are most grateful.

SpaceEx is released under the GNU GPL version 3 license [vL] which is compatible with
the licenses of the third party libraries that it uses [Table 5.2].

Table 5.1: Third party libraries used in SpaceEx.

Name Version Year Author(s)

Parma Polyhedra Library 0.11 2011 R. Bagnara, P. M. Hill, E. Zaffanella
Boost C++ Libraries 1.46.1 2011 multiple
GNU Multiple Precision Arithmetic Library 5.0.2 2011 multiple
GNU Linear Programming Kit 4.45 2010 multiple
SUNDIALS (Solver Suite) 2.4.0 2009 R. Serban, C. Woodward, A. Hindmarsh
ublasJama 1.0.2.2 2005 Frederic Devernay
TinyXML 2.5.3 2007 Lee Thomason

Table 5.2: Licenses of the third party libraries used in SpaceEx.

Name License

Parma Polyhedra Library GNU GPLv3
Boost C++ Libraries Boost Software License
GNU Multiple Precision Arithmetic Library GNU LGPL
GNU Linear Programming Kit GNU GPLv3
SUNDIALS (Solver Suite) BSD License
ublasJama Boost Software License
TinyXML zlib License

5.7 SpaceEx Output

SpaceEx provides with four output formats - (1) Textual (TXT) (2) Vertice List (GEN)
(3) 3D Visualization (JVX) and (4) [min,max] interval on the output variables (INTV).
[Fre] gives a detailed documentation of output formats (1),(2) and (3). In addition,
the INTV format which stands for interval format has been later added to the cavalry.
It outputs the minimum, maximum interval on the continuous variables of the system
globally as well as location-wise for the given analysis configuration. The output variables
could be chosen with the -a option in SpaceEx.

99/107

5.7. SpaceEx Output

100/107

Chapter 6

Conclusion and Future Work

This chapter briefly summarizes the contributions of this thesis and suggest some possible
directions for future work.

The contributions of this thesis are as follows:

1. The SpaceEx tool platform for safety verification of hybrid systems: This
thesis provides an extendable tool platform, SpaceEx on which algorithms for safety
verification of hybrid systems can be implemented. We put an effort in identifying the
principal elements of such a tool platform and provide the generic implementation of those
principal elements. SpaceEx tool platform provides placeholders for the elements which
may vary from approach to approach, e.g., the continuous set representation. Hence,
such an extendable tool platform should aid the researchers in experimenting with their
novel methods to reachability analysis for safety verification, CEGAR based algorithms
etc. The availability of the already implemented principal elements should save a lot of
development time of users.

2. As a practical demonstration of the tool platform, two different scenarios have been im-
plemented. The PHAVer scenario and the Support Function scenario. The PHAVer
scenario is for the safety verification of linear hybrid automata (LHA) with polyhedra as
the continuous set representation. The Support Function scenario is for safety verification
of hybrid automata with affine dynamics and affine maps over the discrete transitions.
The Support Function scenario implements the support function based reachability algo-
rithm proposed in [GG09] where continuous sets are represented as convex sets defined
by their support functions. Both implementations are real usable tool implementations
and not just prototypes. This demonstrates the usefulness of the SpaceEx tool platform.

3. Large over-approximation while computing the transition successors limits the use of
the Support Function approach for the analysis of hybrid systems with frequent discrete
jumps. A more precise support function based algorithm for transition successor compu-
tation is proposed in this thesis. The proposed method largely improves the accuracy of
the discrete image computation during transitions in hybrid systems. The accuracy im-
provements are shown with some case studies. The scalability is illustrated on the filtered
oscillator case study with up to 130 variables. This precise discrete image computation
has been implemented on the support function scenario of the SpaceEx tool platform.

4. As part of the precise discrete image computation, a new algorithm for the minimiza-
tion of univariate convex function is proposed which has been named Lower Bound

101

Search (LBS) algorithm.

Some directions for future work:

• We mentioned in section 2.3.2 that we have a support function representation of the
flowpipe using the reachability algorithm proposed in [GG09]. We compute an outer
polyhedral approximation of this set by sampling the support function in the template
directions, which are fixed a priori. This conversion from support function to polyhe-
dra representation is used for operations like intersection and containment which can be
cheaply carried out on constraint represented polyhedra. An arbitrarily chosen set of tem-
plate directions for the outer-polyhedral computation from support function may result
in high over-approximation error. Sampling the support function in a lot of directions will
result in less approximation error but we have to pay in computation time. Synthesizing
a set of well chosen template directions will provide a balance between the approximation
error and the computation time. How to synthesize such a set of directions remains a
future direction of research. In our lower bound search algorithm to compute the support
function of the flowpipe-guard intersection in a given direction [alg. 3.2.2.4], we compute
the support function of the flowpipe in a number of directions (each parameter value λ
corresponds to a direction) during the minima search of the support function, which is
a convex function. The algorithm stops when we find a direction which minimizes the
function. It will be interesting to see the effect of adding this minimizing direction to the
set of template directions for further computation of the flowpipe. Considering the vector
field of the location dynamics may also provide us helpful clues to synthesize template
directions.

• Section 4.3 illustrates the simultaneous solution of the multiple minimization problem
for flowpipe-guard intersection with the proposed LBS algorithm. For computational
speed up, it will be interesting to parallelize each such minimization problem. The imple-
mentation could be carried out in a multicore architecture. Similarly, the simultaneous
execution of the lower bound search algorithm with branch and bound illustrated in
section 4.3.1 can also be parallelized.

• We defined Support Function Matrix (SFM) as a data structure for storing and manip-
ulating flowpipe representations in section 2.3.2. It will be interesting to implement the
support function based reachability algorithm with SFMs in a GPU (Graphical Process-
ing Unit) architecture since GPUs are highly efficient for matrix and vector operations.
Though GPUs are specialized for graphical computations, application with high use of
matrix and vector operations can also benefit the processing power of GPUs.

102/107

Bibliography

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analy-
sis of hybrid systems. Theoretical Computer Science, 138(1):3–34, 1995. 5,
8

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126:183–235, 1994. 8

[ADG03] Eugene Asarin, Thao Dang, and Antoine Girard. Reachability analysis of
nonlinear systems using conservative approximation. In HSCC’03, volume
2623 in LNCS, pages 20–35. Springer, 2003. 82

[ADM02] Eugene Asarin, Thao Dang, and Oded Maler. The d/dt tool for verification
of hybrid systems. In CAV, pages 365–370, 2002. 82

[Ale01] Andrei Alexandrescu. Modern C++ Design: Generic Programming and De-
sign Patterns Applied. Addison Wesley, 13 february, 2001. 95

[BBB07] Alberto Bemporad, Antonio Bicchi, and Giorgio C. Buttazzo, editors. Hybrid
Systems: Computation and Control, 10th International Workshop, HSCC
2007, Pisa, Italy, April 3-5, 2007, Proceedings, volume 4416 of lncs. Springer,
2007. 106

[BDM+98] Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tri-
pakis, and Sergio Yovine. Kronos: A model-checking tool for real-time sys-
tems. In Alan J. Hu and Moshe Y. Vardi, editors, CAV, volume 1427 of
Lecture Notes in Computer Science, pages 546–550. Springer, 1998. 5

[BHR91] R. E. Burkard, H. W. Hamacher, and G. Rote. Sandwich approximation
of univariate convex functions with an application to separable convex pro-
gramming. Naval Res. Logistics, 38:911–924, 1991. 37, 43, 44

[BHZ08] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. The parma polyhe-
dra library: Toward a complete set of numerical abstractions for the analysis
and verification of hardware and software systems. Science of Computer
Programming, 72(12):3 – 21, 2008. ¡ce:title¿Special Issue on Second issue of
experimental software and toolkits (EST)¡/ce:title¿. 15

[BLL+96] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson, and Wang
Yi. Uppaal - a tool suite for automatic verification of real-time systems,
1996. 5, 12

103

Bibliography

[BRZH02] Roberto Bagnara, Elisa Ricci, Enea Zaffanella, and Patricia M. Hill. Possibly
not closed convex polyhedra and the parma polyhedra library. In Manuel V.
Hermenegildo and Germán Puebla, editors, SAS, volume 2477 of Lecture
Notes in Computer Science, pages 213–229. Springer, 2002. 99

[CGJ+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided abstraction refinement. In E. Allen Emer-
son and A. Prasad Sistla, editors, CAV, volume 1855 of Lecture Notes in
Computer Science, pages 154–169. Springer, 2000. 8

[CK98] Alongkrit Chutinan and Bruce H. Krogh. Computing polyhedral approxi-
mations to flow pipes for dynamic systems. In In Proceedings of the 37rd
IEEE Conference on Decision and Control. IEEE Press, 1998. 21, 23

[DBLY02] Alexandre David, Gerd Behrmann, Kim Guldstrand Larsen, and Wang Yi. A
tool architecture for the next generation of uppaal. In Bernhard K. Aichernig
and T. S. E. Maibaum, editors, 10th Anniv. Colloq. UNU/IIST, volume 2757
of lncs, pages 352–366. Springer, 2002. 12

[Deb] The GNU Project Debugger. http://www.gnu.org/software/gdb/. 98

[Dis] Space Shuttle Columbia Disaster. http://en.wikipedia.org/wiki/Space_
Shuttle_Columbia_disaster. 3

[DT97] George B. Dantzig and Mukund N. Thapa. Linear Programming 1: Intro-
duction. Springer, 1997. 15

[DT03] George B. Dantzig and Mukund N. Thapa. Linear Programming 2: Theory
and Extensions. Springer, 2003. 15, 30

[FI04] Ansgar Fehnker and Franjo Ivancic. Benchmarks for hybrid systems verifi-
cation. In Rajeev Alur and George J. Pappas, editors, HSCC, volume 2993
of Lecture Notes in Computer Science, pages 326–341. Springer, 2004. 72,
80

[FJK08] Goran Frehse, Sumit Kumar Jha, and Bruce H. Krogh. A counterexample-
guided approach to parameter synthesis for linear hybrid automata. In Mag-
nus Egerstedt and Bud Mishra, editors, HSCC, volume 4981 of lncs, pages
187–200. Springer, 2008. 82

[FKR06] Goran Frehse, Bruce H. Krogh, and Rob A. Rutenbar. Verifying analog os-
cillator circuits using forward/backward abstraction refinement. In Georges
G. E. Gielen, editor, DATE, pages 257–262, 2006. 82

[FLGD+11] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Ra-
jarshi Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang,
and Oded Maler. Spaceex: Scalable verification of hybrid systems. In
Shaz Qadeer Ganesh Gopalakrishnan, editor, Proc. 23rd International Con-
ference on Computer Aided Verification (CAV), LNCS. Springer, 2011. 11,
12, 26, 27, 29, 81, 88

104/107

http://www.gnu.org/software/gdb/
http://en.wikipedia.org/wiki/Space_Shuttle_Columbia_disaster
http://en.wikipedia.org/wiki/Space_Shuttle_Columbia_disaster

Bibliography

[FR09] Goran Frehse and Rajarshi Ray. Design principles for an extendable verifi-
cation tool for hybrid systems. In Proceedings of ADHS’09, volume 3, part
1, 2009. 11, 64, 81

[Fre] Goran Frehse. An introduction to spaceex v0.8. http://spaceex.imag.fr/
documentation/user-documentation/introduction-spaceex-27. 81, 98,
99

[Fre08] Goran Frehse. PHAVer: Algorithmic verification of hybrid systems past
HyTech. STTT, 10(3):263–279, 2008. 5, 12, 82, 86

[fSCD] Document Generator from Source Code (Doxygen). http://www.stack.nl/

~dimitri/doxygen/. 94

[Fuk99] Komei Fukuda. cdd/cdd+ reference manual, 1999. 15

[GG09] Colas Le Guernic and Antoine Girard. Reachability analysis of hybrid sys-
tems using support functions. In Ahmed Bouajjani and Oded Maler, editors,
CAV, volume 5643 of Lecture Notes in Computer Science, pages 540–554.
Springer, 2009. 9, 23, 33, 60, 88, 101, 102

[GGM06] Antoine Girard, Colas Le Guernic, and Oded Maler. Efficient computation
of reachable sets of linear time-invariant systems with inputs. In João P.
Hespanha and Ashish Tiwari, editors, HSCC, volume 3927 of lncs, pages
257–271. Springer, 2006. 82

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, 1 edition (November 10, 1994). 93

[Gir04] Antoine Girard. Analyse Algorithmique des Systemes Hybrides. PhD thesis,
Institut National Polytecnique de Grenoble, 2004. 22

[Gir05] Antoine Girard. Reachability of uncertain linear systems using zonotopes. In
Manfred Morari and Lothar Thiele, editors, HSCC, volume 3414 of Lecture
Notes in Computer Science, pages 291–305. Springer, 2005. 23, 82

[GJ01] Ewgenij Gawrilow and Michael Joswig. Polymake: an approach to modular
software design in computational geometry. In Symposium on Computational
Geometry, pages 222–231, 2001. 15

[GK98] Pijush K. Ghosh and K.Vinod Kumar. Support function representation of
convex bodies, its application in geometric computing, and some related
representations. Computer Vision and Image Understanding, 72(3):379 –
403, 1998. 16, 18

[GL08] Antoine Girard and Colas Le Guernic. Efficient reachability analysis for
linear systems using support functions. In Proc. IFAC World Congress,
2008. 64, 82, 86, 87

[Hen96] Thomas A. Henzinger. The theory of hybrid automata. In IEEE Symp.
Logic in Computer Science, page 278, Washington, DC, USA, 1996. IEEE
Computer Society. 5

105/107

http://spaceex.imag.fr/documentation/user-documentation/introduction-spaceex-27
http://spaceex.imag.fr/documentation/user-documentation/introduction-spaceex-27
http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/

Bibliography

[HHWT97] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model checker for
hybrid systems. Software Tools for Technology Transfer, 1:110 – 122, 1997.
5, 82

[HKPV95] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya.
What’s decidable about hybrid automata? In Journal of Computer and
System Sciences, pages 373–382. ACM Press, 1995. 8

[HNSY92] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine.
Symbolic model checking for real-time systems. Information and Computa-
tion, 111:394–406, 1992. 11

[Hol97] Gerard J. Holzmann. The model checker spin. IEEE Trans. Softw. Eng.,
23(5):279–295, May 1997. 5

[JGP99] Edmund M. Clarke Jr., Orna Grumberg, and Doron A. Peled. Model Check-
ing. The MIT Press, January 7, 1999. 4

[LD60] A. H. Land and A. G Doig. An automatic method of solving discrete pro-
gramming problems. Econometrica, 28(3):497–520, 1960. 68

[LG09] Colas Le Guernic. Reachability analysis of hybrid systems with linear con-
tinuous dynamics. PhD thesis, Université Grenoble 1 - Joseph Fourier, 2009.
33, 56

[Liba] Boost C++ Libraries. http://www.boost.org/. 99

[Libb] GNU Multiple Precision Arithmetic Library. http://gmplib.org/. 99

[Lio96] J.L. Lions. Ariane 5 flight 501 software failure. Report of the inquiry board,
July 1996. Available at http://www.esa.int. 3

[Liv08] M. Livio. The Golden Ratio: The Story of Phi, the World’s Most Astonishing
Number. Paw Prints, 2008. 39

[Mak09] Andrew Makhorin. GNU Linear Programming Kit, v.4.37, 2009. http:

//www.gnu.org/software/glpk. 87, 99

[Mit07] Ian M. Mitchell. Comparing forward and backward reachability as tools for
safety analysis. In Bemporad et al. [BBB07], pages 428–443. 83

[oBSP] Documentation of Boost Smart Pointer. http://www.boost.org/doc/

libs/1_48_0/libs/smart_ptr/shared_ptr.htm. 95

[oPFP] A Library of Polyhedral Functions (Polylib). http://www.irisa.fr/

polylib/. 15

[O’S09] Bryan O’Sullivan. Mercurial: The definitive Guide. 0’Reilly, 2009. 97

[Pac] C++ Unit Testing Package. http://unittest-cpp.sourceforge.net/. 98

[PVTF02] William H. Press, William T. Vetterling, Saul A. Teukolsky, and Brian P.
Flannery. Numerical Recipes in C++: the art of scientific computing. Cam-
bridge University Press, New York, NY, USA, 2nd edition, 2002. 37, 40

106/107

http://www.boost.org/
http://gmplib.org/
http://www.esa.int
http://www.gnu.org/software/glpk
http://www.gnu.org/software/glpk
http://www.boost.org/doc/libs/1_48_0/libs/smart_ptr/shared_ptr.htm
http://www.boost.org/doc/libs/1_48_0/libs/smart_ptr/shared_ptr.htm
http://www.irisa.fr/polylib/
http://www.irisa.fr/polylib/
http://unittest-cpp.sourceforge.net/

Bibliography

[Roc70] R. Tyrrell Rockafellar. Convex Analysis. Princeton Univ Pr, (June 1970).
14, 36

[RR92] Gnter Rote and G Unter Rote. The convergence rate of the sandwich al-
gorithm for approximating convex functions. Computing, 48:337–361, 1992.
36, 43, 44

[Sch93] Rolf Schneider. Convex bodies : The Brunn-Minkowski Theory. Cambridge
University Press, February 26, 1993. 14, 33

[SDI08] Sriram Sankaranarayanan, Thao Dang, and Franjo Ivancic. Symbolic model
checking of hybrid systems using template polyhedra. In C. R. Ramakr-
ishnan and Jakob Rehof, editors, TACAS, volume 4963 of Lecture Notes in
Computer Science, pages 188–202. Springer, 2008. 17

[Sim] The Mathworks MATLAB Simulink. http://www.mathworks.in/

products/simulink/. 7

[SSM05] Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. Scalable
analysis of linear systems using mathematical programming. In Radhia
Cousot, editor, Proc. of Verification, Model Checking and Abstract Interpre-
tation (VMCAI), volume 3385 of lncs, pages 21–47, Paris, France, January
2005. Springer Verlag. 17

[Str86] Bjarne Stroustrup. The C++ Programming Language, First Edition.
Addison-Wesley, 1986. 81

[Sysa] CVS-Version Control System. http://cvs.nongnu.org/. 96

[Sysb] GIT-Distributed Version Control System. http://git-scm.com/. 96

[Sysc] Mercurial Distributed Version Control System. http://mercurial.

selenic.com/. 96

[Sysd] Subversion-Version Control System. http://subversion.apache.org/. 96

[Tiw08] Hans Raj Tiwary. On the hardness of computing intersection, union
and minkowski sum of polytopes. Discrete & Computational Geometry,
40(3):469–479, 2008. 68

[vL] GNU GPL version 3 License. http://www.gnu.org/licenses/gpl.txt. 99

[Zie95] Gnter M. Ziegler. Lectures on Polytopes, volume 152 of Graduate Texts in
Mathematics. Springer, 1995. 15

107/107

http://www.mathworks.in/products/simulink/
http://www.mathworks.in/products/simulink/
http://cvs.nongnu.org/
http://git-scm.com/
http://mercurial.selenic.com/
http://mercurial.selenic.com/
http://subversion.apache.org/
http://www.gnu.org/licenses/gpl.txt

	Introduction
	The Need for Formal Methods
	Model Checking
	Hybrid Automata
	Reachability
	Thesis Scope and Outline

	Reachability with Support Functions
	Reachability using Symbolic States
	Representing Continuous Sets
	Preliminaries
	Convex Polytopes
	Support Functions

	Computing Time Elapse Successors
	Flowpipe Approximation
	Computing Flowpipes with Support Functions

	Computing Transition Successors
	Computing Transition Successors with Support Functions
	Increasing Precision

	The Support Function of the Intersection of Convex Sets with Hyperplanes and Halfspaces
	Intersection as a Minimization Problem
	Solving the Minimization Problem
	Minima Bracketing
	A Sandwich Algorithm for the Direct Minimization of Convex Functions

	Flowpipe-Guard Intersection with Support Functions
	Detecting Intersection of a Guard with a Flowpipe
	Intersecting a Convex Set with a Hyperplane or Halfspace
	Shifting the Convex Set and the Hyperplane or Halfspace
	Related Work
	Experiments

	Intersecting a Set of Convex Sets with a Hyperplane/Halfspace
	Convex Hull of the Intersection
	Convex Hull with Flowpipe Interval Splitting

	Intersecting a Set of Convex Sets with a Polyhedron
	Computational Optimization
	Case Studies

	SpaceEx: A Tool Platform for Hybrid Systems Verification
	Requirements for an Extendable Tool Platform
	Common Elements
	Differences

	Design Specification
	Principal Elements
	Tool Architecture and Execution

	Tool Implementations
	Phaver Scenario
	Support Function Scenario

	Software Engineering Behind SpaceEx
	Class Structure Design
	Smart Pointers
	Revision Control
	Testing and Debugging

	Models in SpaceEx
	Libraries
	SpaceEx Output

	Conclusion and Future Work
	Bibliography

