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Chapter 1

Introduction

1.1 The Need for Formal Methods

As a matter of fact, human beings are becoming more and more dependent on technology
products, large and small, software and hardware. Mobile phones, electronic devices like
tablet computers and laptops, software services like the email and social networking
sites, software applications like google calender, operating systems, Internet technology
and more have become our daily needs. We can sense that this human dependence on
technology is going to increase in the future. Greater dependence on technology compels
us to establish their correctness or perfectness. Imperfections can be tolerated for not so
critical applications but not otherwise. We can tolerate if the operating system in our
laptop crash when an audio player is run or an email sent to one person ends up in the
inbox of someone else, but we cannot tolerate slightest error in, for example, tha c

Alert and Collision Avoidance Systenfor air tra ¢ control which might lead to a mid

air collision. In fact, we are becoming less and less tolerant regarding technology errors.

There had been incidences of technology failures in the past in the realm of critical
systems. The explosion of Ariane 5 rocket in June 4, 1996, 40 seconds after its take o
is a recent example of technology failure whose cause, according to an inquiry report
[Lio96], is due to a software design error in the onboard computer system. Even more
recently, the Space Shuttle Columbia disaster on 1 February, 2003 which resulted in the
death of all the seven NASA astronauts on board is yet another example of intolerable
technology failure. The Columbia Accident Investigation Board (CAIB) reported the
loss of Columbia as a result of damage sustained during launch when a piece of foam
insulation the size of a small briefcase broke o from the Space Shuttle external tank
under the aerodynamic forces of launch. The debris struck the leading edge of the left
wing, damaging the Shuttle's thermal protection system (TPS), which shields it from the
intense heat generated from atmospheric compression during re-entry. NASA's original
shuttle design speci cations stated that the external tank was not to shed foam or other
debris. NASA launches in the past reported debris strikes but they were not taken as
a security threat and the design aw was accepted as inevitable and unresolvable. This
deviation from the original design speci cation is blamed for the disaster [Dis]. These
incidences shed light on the importance afesign speci cationand design validation

Formal methods are to counter technology imperfections to as much extent as possi-
ble or to remove imperfections which really matter. Formal methods are mathematical
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1.2. Model Checking

techniques for the speci cation, development and veri cation of software and hardware

systems. The goal of formal methods is to contribute to the reliability and robustness

of a software or hardware system. The application of formal methods in real world is

seemingly increasing and with the advent of more powerful tools which are scalable, the
future looks brighter for formal methods based techniques in design validation.

1.2 Model Checking

The foreword by Amir Pneuli to the introductory book on model checking [JGP99] is a
beautiful insight to the problem of Design Validation - Ensuring the correctness of the
design at the earliest possible stag®uoting from the foreword - \The major obstacle to
\help computers help us more" and to relegate to these helpful partners even more complex
and sensitive tasks is not inadequate speed and unsatisfactory raw computing power in
the existing machines, but our limited ability to design and implement complex systems
with su ciently high degree of con dence in their correctness under all circumstances”

Simulation, testing and deductive veri cation are traditional approaches to gain greater
con dence on systems. While simulation is carried out on the model of a design, testing is
performed on the actual design itself. Deductive reasoning is a mathematical proof system
where correctness of systems are proved with axioms and proof rules. We know that
simulation and testing are inadequate in establishing total con dence of the design under
validation because they are not exhaustive checks. Deductive veri cation has advantages
and disadvantages of its own. Deductive veri cation can be extremely expensive at times.

Model checkingis an automatic technique for verifying nite state systems. The proce-
dure normally uses an exhaustive search of the state space of the system to determine
if a speci cation is true or not. There are broadly two types of system properties those
are checked with model checking algorithms, namesafety properties andlivenessprop-
erties. Safety properties are properties which specify that nothing bad occurs. Liveness
properties are properties which specify that something good eventually occurs. There are
model checking algorithms which are reasonably e cient and allows for its automation.

In nite state systems can also be model checked with abstractions which constructs nite
symbolic states from the in nite state space. Model checking, however, su ers from the
state space explosioproblem which arises due to the exponential increase in the number
of explicit states of a system. State space explosion problem can be tackled to some
extent with model abstractions, use of e cient data structures, heuristics and symbolic
representation of states.

Applying model checking for design validation mainly involves three steps: (1) Modeling,
(2) Specication and (3) Veri cation. Modeling is the process of formalizing a design
with a mathematical model. A model is sometimes abstracted to hide unnecessary details
and to make it within analysis limits and trying to cope with the state space explosion
problem. Speci cation means formally stating the properties that the design must satisfy.
Temporal Logic is used to specify properties over time for example. Veri cation is the
process of automatically checking if the given speci cations are satis ed by the design
under validation. If a speci cation is found to be violated, a counter example is expected
to be returned by the model checking algorithm showing the design behavior that violated
the given speci cation. When working with abstraction of models, it becomes necessary
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Chapter 1. Introduction

to check if the generated counter example is spurious.

Examples of some model checkers are SPIN [Hol97], UPPAAL [BL26], Kronos [BDM" 98],
HyTech [HHWT97] and PHAVer [Fre08]. SPIN is a model checker for distributed software
systems against LTL speci cations. UPPAAL is a model checker for real time systems
modeled with timed automata. Kronos is similarly a model checker for real time systems
modeled with timed automata against TCTL speci cations. HyTech and PHAVer are
model checkers for hybrid systems modeled as linear hybrid automata.

1.3 Hybrid Automata

Hybrid automataare a modeling formalism that combines discrete events with continuous
variables that change over time [ACH 95], [Hen96]. Formally, a hybrid automatonH =
(Loc; Var ; Lab; Trans; Flow; Inv; Init )

consists of the following elements:

a graph whose vertices, calletbcations are given by a nite set Loc, and whose
edges, calledliscrete transitions are given by a nite set Trans;

a nite set of real-valued variablesVar. A state of the automaton consists of a
location and a value for each variable (formally described asvaluation over Var).
The set of all states of the automaton is called itstate space To simplify the
presentation, we assume that the state spacelisc R", wheren is the number of
variables. We will also simply writex to denote the name of the variablex or its
value according to the context;

for each location, the variables can only take values in a given set calledariant.
The invariants are given bylnv  Loc R";

for each location, the change of the variables over time is de ned by its time-
derivative that must be in a given setFlow Loc R" R". For example, if the
system is in a locationl, a variable x can take the values of a function (t) if at
each time instantt, (I; (t); (t)) 2 Flow, where (t) denotes the derivative of (t)
with respect to time;

the discrete transitions Trans Loc Lab 2R R Loc specify instantaneous

changes of the state of the automaton. A transitionl( ; ;| 9 signi es the system
can instantaneously jump from any state I x) to any state (1%x9 if x°2 Inv (19
and (x;x9 2 . Every transition has a synchronisation 2 Lab that is used

to model the interaction between several composed automata. Intuitively, if two
automata share a common , transitions with this can only be executed in unison,
i.e., by simultaneous execution of a transition with this label in both automata.
The relation is called thejump relation of the transition;

A set of stateslnit Loc R" speci es theinitial states from which all behavior
of the automaton begins.

Figure 1.1 shows a bouncing ball modeled as a hybrid automaton. The ball's velocity
change with time constitutes the continuous aspect and the discrete change in the velocity
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at strikes with the ground constitutes the discrete aspect. The only locatioalways in
this example has a location invariantxk 0 and a ow equationx = v & v= g@. The
variable x stands for the position of the ball andv stands for its velocity. There is a
self transition with the label hop. The transition has a guard given byx 0& v <0
and an assignment®= c:v. X, v are the continuous variables of this system and, g
are constants.v®in the transition assignment denotes the new value of the velocity after
the transition has taken place. This hybrid automaton de nes a two dimensional hybrid
system because it models the behavior of two continuous variables.

hop
Xx 0&v<O

Figure 1.1: Bouncing ball modeled with a hybrid automaton.

In the next section, we introduce the notion of reachability.

1.4 Reachability

A reachable state of a hybrid automaton is a valuation to the continuous variables which
is possible under the dynamics of the system. The dynamics of the system de nes the
evolution of the continuous variables with time. When we say a reachable state of a
hybrid automaton, it is meaningful only when it is de ned relative to an initial state

in Init . The execution of a hybrid automaton results in continuous change ( ows) and
discrete change (jumps). A result of executing a hybrid automaton from an initial state
Xo IS a trajectory, say ,.

A trajectory is the path constituting all the states starting from the initial state that the
system can take under its dynamics. A trajectory is unique for a given initial state if
the system under consideration is deterministic, having empty input séi. Given a time
instant t and an initial state xo, ,(t) denotes the state of the trajectory initiated from
Xo at time t.

All reachable states of a hybrid automaton constitute its reachable set. Computing the
reachable set is what we call as reachability computation. The reachable set can also be
seen as the union of all trajectories of the hybrid automata.

R=fx2R"j9%p 2 Init, t 2 R such that ,(t) = xg

If there is a nite number of initial states and the hybrid automaton is completely de-
terministic then computing all the trajectories and taking their union would give us the
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reachable set. Unfortunately, there is often in nite number of initial states inlnit R"
and hence one would ideally need in nite number of trajectory computations to get the
reachable set which is infeasible.

A trajectory of a dynamical system can be computed with numerical simulations for a
given start state and input using numerical integration. Simulation is handy for design
validation up-to a certain degree of con dence. There are some fast simulators available
for dynamical systems like the MATLAB Simulink [Sim] which has become an industrial
de facto standard for model based development of complex systems. Simulations can also
provide the designers with an overall idea of the reachable set by choosing some clever
simulation start points like the corner cases. However, simulations in general cannot
guarantee safety or liveness properties. Reachable set on the other hand if computed
can guarantee safety and liveness properties and that is the main motivation. For a
continuous initial state Init and input setU, one need to perform in nite number of sim-
ulations in theory to check all possible behaviors. Hence, we can deduce that reachability
computation with numerical simulations is not a feasible solution.

\
X2

Bad Set

)

Initial Set

Reachable Set

X1

Figure 1.2: lllustrating safety veri cation with set based reachability analysis. The Gray
set denotes the initial states of the system and the Black set denotes the bad or the error
states. Reachable set denotes all possible states taken by the system. Empty intersection
of the reachable set with the bad set implies safety.

A hybrid automaton consists of potentially in nitely many states. For an algorithmic
analysis, we need a nite representation of the in nite state space and that is done
through symbolic state representation. We de ne a symbolic state to be a pair of a
discrete set and a continuous set. Semantically, the discrete set is a set of locations and
the continuous set gives the possible valuations of the continuous variables of the hybrid
system in the location(s). For example, if we have locatiorts; d, and ds in a discrete set
and a continuous set is given by a unit hypercube iR", the symbolic state comprising
of the pair of this discrete and continuous set represents all hybrid automaton states
(V1 vn) 2 unit hypercube when in locationd; or d, or d3. Reachability computation
will consist of searching exhaustively for all symbolic states till the xpoint is reached.
For hybrid automata where xpoint do not exist, we could compute bounded reachability
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which is to compute all reachable states up-to a time bound.

R(T)= fx2 R"j9%p 2 Init , t 2 [0; T] such that ,(t) = xg

Similarly, we also might be interested in the states of the system between a time interval
which is de ned as follows:

R(ty;t2) = fx 2 R"j9%p 2 Init , t 2 [ty; tp] such that ,,(t) = xg

Theoretically, the reachability problem of a hybrid automatonH concerns with the ques-
tion that - Is there a trajectory of H which starts in X, and ends inXg? It is shown
that for hybrid systems in general, the reachability problem is undecidable [ACHD5],
[HKPV95]. The reachability problem for even most of the simpler classes of hybrid
systems is shown to be undecidable. Undecidability has not kept the research commu-
nity away from the subject of formal veri cation of hybrid systems though. Algorithms
and heuristics have been developed and are still being developed to compute an over-
approximation of the reachable set and then it is checked if this over-approximated set
is safe, i.e., it does not intersect with the bad set. An over-approximated S& oyer
contains more states than the model actually reaches, i.eR R .. Safety of the
over-approximated set implies the safety of the design under validation. If there is an
intersection of the over-approximated set with the bad set, unsafety is not implied how-
ever. The intersection with the bad set could be due to the over-approximation. Counter
examples can be generated from the parts of the reachable set that intersect with the bad
set. To identify if the obtained counter example is spurious, one can use the CEGAR
approach (Counter Example Guided Abstraction Re nement) [CGJ00] which re nes
the abstraction, i.e., improves the approximation to eliminate behaviors guided by the
counter examples. Unsafety can be guaranteed by computing an under-approximated
reachable seR ynqer . An under-approximated reachable set contains less states than the
actual reach set of the model, i.eRyger R . If the under-approximated reachable set
intersect with the bad set, then the design under validation is guaranteed to be unsafe.

1.5 Thesis Scope and Outline

This thesis is broadly an attempt to attack the problem ofdesign validationand to widen
the existing horizon of the state of the art. Reachability analysis of hybrid systems is the
focus of this thesis. We explore the use stipport functionsfor the reachability analysis.

There are a number of classes of hybrid automata namely rectangular hybrid automata
and linear hybrid automata (LHA). Each of this models a class of hybrid systems. In
a LHA, for each variable the rate of change is constant. although this constant can be
di erent in each location. The terms involved in the invariant, guard and assignments
are required to be linear. Timed automaton [AD94] is a special case of LHA where the
variables are clocks with rate of change always as 1.

The context of this thesis remains restricted to linear hybrid automata (LHA) and hybrid
automata having a ne continuous dynamics with uncertain inputs and a ne maps on
the discrete jumps. The type of location dynamics we are concerned with is as follows:

x(t) = Ax(t) + u(t); u(t) 2 U; (1.2)
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Chapter 1. Introduction

wherex(t) 2 R", A is a real-valuedn n matrix and U R" is a closed and bounded
convex set.

Transition assignments are of the form
x%= Rx + w; w2W; (1.2)

wherex®2 R™ the values after the transition,R 2 R™ R" is the assignment map, and
W R" is a closed and bounded convex set of non-deterministic inputs.

These two classes of hybrid automata can model a wide range of systems in real life and
can be used to approximate non-linear systems.

In chapter 2, we start with the presentation of a basic reachability algorithm for hybrid
systems. In section 2.1, we present the concept of symbolic states and how they are
used to e ciently compute the reachable set of in nite state systems. Section 2.2.1
presents some basic de nitions, theorems and propositions on convex analysis that we
frequently refer later in the thesis. A brief introduction to convex polytopes and support
functions follows which we use for representing continuous sets. We de ne the notion of
owpipes and how they are over-approximated with a collection of convex sets in section
2.3. Existing work is revisited on computing the reachable set of hybrid systems having
a ne continuous dynamics and a ne maps on the discrete jumps, with a collection of
convex sets. Section 2.3.2 describes the data structure used for storing the owpipe
computed with a support function based reachability algorithm proposed in [GGO09].
Section 2.4 presents an introduction to the problem of computing the transition successors
in reachability computation. In section 2.4.2, a new approach is proposed for computing
the transition successors and it is shown why this new approach should produce more
accurate results in theory.

Chapter 3 could be seen as a standalone chapter illustrating an algorithm to compute
the support function of the intersection of convex sets with Hyperplanes and Halfspaces
e ciently. In the thesis context, this ts in because the novel approach of computing
the transition successors in the reachability computation, proposed in section 2.4.2 of the
previous chapter, is based on computing e ciently the support function of the intersection
of convex sets. It is shown in section 3.1 that the problem of computing the support
function of the intersection of a convex set with a hyperplane or halfspace reduces to the
problem of minimizing a convex function. Restriction to hyperplane, halfspace set is still
worthy because in practice, most of the guard sets in hybrid automata are hyperplanar
or halfspace. Furthermore, it is shown that for polyhedral sets, computing the support
function of the intersection with hyperplane/halfspace reduces to the minimization of
convex piecewise linear function.

Our proposed algorithm for optimizing convex function has two main parts - (1) Minima
Bracketing (2) Sandwich algorithm. Minima bracketing is illustrated in section 3.2.1 and
the sandwich algorithm is illustrated in section 3.2.2.

In chapter 4, we illustrate the use of our algorithm for computing the support function
of the intersection of convex sets with Hyperplanes and Halfspaces, illustrated in chap-
ter 3, in the context of accurate owpipe-guard intersection. Section 4.1 illustrates the
detection of the owpipe segments which intersect with a given polyhedral guard set.
We present the related work in the problem of a convex set and hyperplane intersection
in section 4.2.2 and compare our method of computing the support function of the in-
tersection of a polyhedron with hyperplane with the existing work proposed in [GGO09].
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We also show experiments for computing the support function of the intersection of a
polyhedron with a halfspace. Section 4.3 proposes an algorithm to compute the support
function of the intersection of a set of convex sets with a hyperplane/halfspace guard set
by simultaneously solving a number of minimization problems. Section 4.3.1 proposes
an algorithm to compute the convex hull of the intersection of a set of convex sets with
a hyperplane/halfspace guard set using branch and bound. Section 4.3.2 shows an al-
gorithm for taking the convex hull of not all but a group of intersection sets between
the owpipe convex sets and the guard set. Section 4.4 shows a way of extending our
owpipe-guard intersection algorithm to polyhedral guard sets. A computational opti-
mization is presented in section 4.5 and the chapter ends by showing the promising results
of our owpipe-guard intersection algorithm on some case studies, namely the Bouncing
Ball, the Colliding Pendulums and the Filtered Oscillator. The Navigation benchmark
model is also tested.

Chapter 5 presents the SpaceEx tool platform. The requirements analysis and design
principles are shown in section 5.1 and section 5.2 respectively. Section 5.3 shows the
implementation of two scenarios in the SpaceEx platform, namely the PHAVer and Sup-
port Function scenario. The software engineering behind the development of the tool is
discussed in section 5.4. The last few sections talks about the input model in SpaceEx,
its output formats and about the software licensing.

Chapter 6 is the last chapter of this thesis where the main contributions of this thesis is
presented. Some possible directions to future work is also suggested.
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Chapter 2

Reachability with Support
Functions

This chapter explains the general reachability computation with symbolic states. We
de ne some key terms related to reachability computation like owpipes, symbolic states
and post operators. We present two basic convex set representations, namely convex
polytopes and support functions which are used in the symbolic representation of reach-
able states. The approximation of owpipes and its computation is explained. In the last
section, we discuss the key problem we address in this thesis, i.e., to reduce the approxi-
mation error in the computation of transition successors during reachability computation.

Before we talk about what are owpipes and how is it computed, we rst discuss the
reachability algorithm. *

2.1 Reachability using Symbolic States

Let us recall that an execution of the automaton is a sequence of discrete jumps and
pieces of continuous trajectories according to its dynamics, and originates in one of the
initial states. A state is reachableif an execution leads to it. We are concerned with
computing the set of states that are reachable and check feafety, i.e., given a set of
bad states, the reachable set of the system does not intersect with the bad states.

For a set of statesR, let the discrete post-operatorPosty(R) be the set of states reachable
by a discrete transition fromR, and the continuous post-operatorpost,(R) be the set of
states reachable fronR by letting an arbitrary amount of time elapse.

The set of reachable states is the xpoint of the sequend®, = Init ,

Ria = R [ Posty(Rk) [ post(Ri): (2.1)
A straightforward heuristic improvement of this algorithm is to apply both post-operators
in alternation, and only to the states new in the previous iteration, leading to Alg. 2.1.

In order to implement Alg. 2.1, we need to e ciently carry out union, di erence, and
emptiness tests on sets of states, avoiding redundant computations. A common way to
do so is to represent sets of states as setssymbolic statefHNSY92]. A symbolic state

1This chapter contains excerpts from the publication [FLGD* 11] and [FRO09].
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2.1. Reachability using Symbolic States

Algorithm 2.1 Basic Reachability
1: R; Ry = post(Init)

2: while Ry 6 ; do

3:  RY%:=posty(Rn)

4:  R%%:=post,(R9

5. Ry := R%R
6
7

R:=R[ Ry
end while

s = (D; C) represents the cross product of a set of discrete statBs Loc and a set

of continuous statesC  RY®". E.g., D could be a single location andC a polyhedron.
Let S be the set of symbolic states of a given hybrid automaton. The post-operators are
extended to symbolic states: given a single symbolic stase posty(s) and post,(s) both
produce a set of symbolic states. The implementation of the veri cation tool UPPAAL
[BLL ™ 96] for real time systems and PHAVer [Fre08] for linear hybrid systems are based on
this concept of representing in nite states nitely as symbolic states. The veri cation tool
SpaceEx [FLGD 11] for linear hybrid systems and hybrid systems with a ne continuous
dynamics which is presented in chapter 5 is also based on representing in nite states
nitely as symbolic states.

To representR and Ry as sets of symbolic states, we usepassed/waiting list (PWL),
refer to [DBLYO02] for a detailed discussion. The passed list contains the symbolic states
that have been encountered so far and corresponds in Alg. 2.1 R The waiting list
contains the symbolic states whose successors still have to be computed. Itis implemented
as a set of references to elements of the passed list and corresponds in Alg. 2R\to
The waiting list is computed by performing a set di erence on the the newly computed
reachable seR%in each iteration with the passed list R%n R) which is shown in step 5

of the algorithm. The algorithm terminates when the waiting list is empty. Formally, a
PWL is a pair (P; W) 25 25with W P. We de ne the following operations for the
PWL:

(P; W) = init (1) : Assign a set of symbolic states Sto P andW.

S=di (s;s): Given symbolic statess = (D;C) and s°= (D% C9, produces the
set of symbolic statesns®= f(DnD% C); (D\ D% CnC9g, or an over-approximation
that is e cient to compute. Our default implementation for convex setsC; C%is

f(DnD%C)g fC C°

di (s;s)= f(D;C)g otherwise.

If C or C%are non convex sets represented as a set of convex sets, we extend this
operation pairwise. Letdi (s;P) be the result of applyingdi consecutively for
all s°2 P.

(P2W©SS) = add(P;W;s) : Add s°= di (s;P)to P and W.

(P%W9 = compact(P;W;S) : Compact P and W by replacing alls°2 P;W by
di (s%S), eliminating symbolic states whereD or C is empty.

(s; W9 = pop(P; W) : Select a symbolic states 2 W, remove in fromW and return
it for further processing (post computation).
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Chapter 2. Reachability with Support Functions

This leads us to Alg. 2.2, which proceeds as follows:

1. Initialize the PWL with the time-post of the initial states.

2. Pick a symbolic state from the PWL.

3. Apply discrete-post (generating possibly more than one symbolic state).
4. Apply continuous-post to every generated symbolic state.

5. Throw away the symb. states (or parts of them) that are already on the passed list
{ this involves testing for inclusion and emptiness. Put the remaining ones onto the
PWL.

6. Compact the PWL by removing redundant states ( this is not always the best
reduction; one could also compact rst and then add).

7. If the waiting list is not empty, go to 2.

Algorithm 2.2 Reachability using Symbolic States
1: (P; W) := init (post.(Init ))
2: while W 6 ; do

3. s:= pop(P; W)

4. forall s°2 posty(s) do

5: for all s%2 post,(s) do

6: (P; W;S) := add(P; W, %
7 (P; W) := compactP; W;S)
8: end for

9: end for

10: end while

The order in which states are popped o the waiting list determines the order of com-
putation (breath rst/depth rst). This may in uence the speed of the computation
and may have implications on the interpretation of results. E.g., if a forbidden state
is encountered during breath- rst exploration, it is the state with the shortest counter
example. If over-approximations are used, the resulting set can di er according to which
ordering is used, since over-approximation and post operators might not commute.

2.2 Representing Continuous Sets

In n dimensional continuous or hybrid systems, the set of states reachable is a subset
of R". Representing such continuous sets hence become important. The representation
should be such that it is simple and the operations that needs to be done on them by the
reachability algorithm should be e cient and tractable. The commonly used representa-

tion of continuous sets include Boxes, Ellipsoids, Convex Polytopes, Zonotopes, Simplices
and Support function. All the mentioned representations though represent convex sets
mainly because of the nice properties of convex sets and the existing mathematical work
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2.2. Representing Continuous Sets

on convex analysis. In this thesis, we restrict ourselves to Polytopes and Support function
representation of continuous sets.

Restriction to support function and polytopes is justi ed by the fact that most of the
operations that we need to perform on them, for reachable set computation like convex
hull, linear transformation, Minkowski sum and intersection are more or less tractable if
not e cient. We discuss further about the e ciency of each operation for each of the
representation later in this chapter.

In the next section, we present some preliminaries on convex sets and convex functions
briey. We then discuss the two di erent representations of polytopes followed by the
support function representation. A support function uniquely represents a compact con-
vex set or convex bodies. Polyhedral approximation of a compact convex set can be
constructed by sampling its support function in a given set of template directions. We
lastly present the concept of owpipes to cover the reachable set and its computation
with support functions.

2.2.1 Preliminaries

We present here some of the basic de nitions and theorems regarding convex sets, convex
functions and some operations on sets which we are going to refer later.

The de nitions are presented as in [Sch93]. In the notation, by:x, we mean the dot
product of the vectors™ and x where’;x 2 R". R" de nes a real n-dimensional Euclidean
space. sup stands for supremum or least upper bound. denotes the zero vector. We
say a functionf : R"! R is proper iffx 2 R"jff(x)= 1g = ; andfx 2 R"jf (x) =
19 6= R".

De nition 2.1. AsetX R"is convex if together with any two pointsx, y it contains
the segmentxy, thus if

1A )x+y 2Aforx,y 2A andO 1 (2.2)

De nition 2.2. A function f : R"! R is calledconvexif f is proper and if,

f(@ Ix+y) @ HX+ f(y) (2.3)
Theorem 2.1. Letfq;:::;f, be proper convex functions irR", and let
X xn )
f (x) =inf fi(xi)) xi2R" Xxi=x : (2.4)
i=1 i=1

Then f is a convex function orR". [p-33, [Roc70]]

De nition 2.3. Let X and Y be two sets. The Hausdor distance betweelX and Y,
denoteddy (X;Y) is de ned by:

dy (X;Y) = max supinfkx yk;supinf kx yk (2.5)
x2X ¥2Y y2y X2X
De nition 2.4. The Minkowski sum of two setsX and Y is the set of sums of elements
from X and Y:
XY =fx+yjx2X andy2Yg (2.6)
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Clearly, is commutative.

De nition 2.5. For X 2 R", the set of all convex combinations of any nitely many
elements ofX is called theconvex hullof X and is denoted by CHK), i.e.,

(X“ X

CH(X) = iXi  Xj 2 X y i 0, i = 1 (27)

i=1 i=1
Givenamatrix M 2 R" ", MX = fMx j x 2 Xg de nes the a ne image of X.

Proposition 2.1. For any two closed setX and Y, if B is a ball of radiusdy (X;Y),
then:
XY B andY X B (2.8)

Moreover, B is the smallest such ball.

It can be seen from the de nition of convex sets that intersection, Minkowski sum of
convex sets are convex, a ne images of convex sets are convex. AlsX ifs a convex set,
then X =f x jx 2 Xg is convex.

2.2.2 Convex Polytopes

A convex polytope is a bounded convex polyhedron. A convex polyhedron is the set of
points common to one or more half-spaces. A convex polygon is an example of a two
dimensional convex polytope.

One way of representing polytopes is as linear constraints, with the interpretation that
the polytope is the intersection of the halfspaces that each of the constraint represent,
\K
X = fxjax ig (2.9)
i=0
Whereg 2 R" and ; 2 R. This is called theH representation of polytopes.

X = i Xi j i 0; i=1 (210)

This is called theV representation of polytopes.

Some operations like convex hull are e cient with theV representation and some like
the intersection are e cient with the H representation. Conversion between these two
representations is a fundamental problem in the theory and application of polyhedra in
general. Many algorithms have been proposed for the representation conversion. There
is no known approach which e ciently solves the problem in general.

Convex Polytopes is a deeply studied subject in mathematics [Zie95]. The geometry of
polyhedra is also interesting in the context of linear programming [DT97], [DTO03] since
the feasible set de nes a convex polyhedra.

There are a number of libraries for the representation and operations on polyhedra like
PPL [BHZO08], Polymake [GJO1], CDD [Fuk99] and Polylib [oPFP].
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2.2.3 Support Functions

We present the de nition of support function and how they represent convex bodies
uniquely, followed by some properties of support functions. We then see the support
functions of some basic 2-dimensional convex bodies like circle and polygons. We show
the graph of support function of some convex polygons in two di erent domains. The
de nitions and properties of support function are presented as in [GK98].

De nition 2.6.  For a nonempty closed convex seX  R" the support function supy is
de ned by
supx (1) = supf™:x jx 2 Xg for " 2 R": (2.11)

De nition 2.7.  For a nonempty closed convex seX R" and
2 dom sup =f og, the supporting planeHy (*) is de ned by

Hy()=fx2 R"j :x = supx(l)g (2.12)
Similarly, the supporting halfspaceas de ned by

H,()=fx2R"j:x supx(l)g (2.13)

Let S denote a unit sphere iNR". supy (u) is a complete representation of a convex body
X, since the values obupy (u) for all u2 S completely de nesX, i.e.,

X =1fx2R"jxu supx(u)forall u2Sg: (2.14)
This means that X is the intersection of all the halfspaceg:u  supy (u).

We state the following result for the characterization of support function.

Proposition 2.2. Every real-valued functionf (x) : R" ! R satisfying the properties:
1.f(o)=0
2. f(x)= f (x); for all 0
3. f(x+y) f(x)+f(y)

is a support function of a convex body.

Proposition 2.3. Every support functionf : R" ! R is a convex function.

Proof.
f(r H)x+vy) (@ )X+Tf(y)I[(3)inprop. 2.2]
@ X+ f (y)[(2) in prop. 2.2]
By de nition of convex function, f is convex. O
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De nition 2.8.  Given a compact convex set and directions'y,..., , 2 R", the outer
polyhedral approximationis the polyhedron

\r
d e= “iix sup (5): (2.15)

i=1

Proposition 2.4. It holds that d e Moreover, the over-approximation is tight as
touches the faces ofl e.

It is easy to see that outer polyhedral approximation of a closed convex set can be
derived from its support function by sampling it in the directions of interest and taking
the intersection of the supporting hyperplanes. We shall see in section 2.3.2 how this
property of support functions is used in the owpipe computation.

It is easy to see thatemplate hullof convex sets is simply théemplate polyhedrofSSMO05],
[SDI08] of the union of the convex sets in the template directions.

We now state some well-known properties of support function:

SUPcH(x,x »)(") = max (supx, (7);supx,(’)) ; (2.17)
supux () = supx (M), (2.18)
Supx, x () = supx, (7) + supx,(’): (2.19)

To understand a relation between the shape of convex sets and their corresponding sup-
port function, we consider some simple convex bodies R and plot their support func-
tion in the polar domain as well as in the domain. An angle in the polar domain

de nes a direction vector™ = (coq );sin( )) 2 R%. We need to de ne what we mean
by the domain Given two vectors ;n 2 R", " n for 2 [1 ;+1] spans all
directions from vectorn to n in the halfspace containing (Figure 2.1). The domain

is important for us when we see later the support function of the intersection of convex
sets with hyperplanes and halfspaces.

-n n

Figure 2.1: = n denotes all directions from n to -n in the halfspace containing for
2[1 ;1]

For a circle C(0;r), centered at the origin and with radiusr, the support function for
any direction vector " is a constant given byrk k. However, for a circleC centered at
(a; b having radiusr, the support function is not a constant and is given bysupc () =
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r + ak’ kcoq )+ bk’ ksin( ) where (k' kcoq );k ksin( )) de nes the polar coordinates of

For reachability analysis purpose, we are mainly interested in the support function of
polytopes. Let us plot the support function of some regular polygons with varying number
of faces both in the polar domain and in the domain. Figure 2.2 and Figure 2.3 shows
the support function graphs in the polar and domain of a hexagon and a polytope with
15 facets respectively. We see that the support function of polytopes in the polar domain
are piecewise concave function with number of concave piecesumber of faces whereas
the support function of polytopes in the domain are convex and piecewise linear. Also,
observe that with larger number of facets, the support function in the domain becomes
more and more smooth near the global minima. The reader is referred to [GK98] for a
more detailed analysis of convex bodies and their support functions.
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(b) The Support function of the Hexagon P over the polar domain in (0;2 )
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(c) The Support function of the Hexagon P over the domain with n=(0;1) and | = (1;0).)

Figure 2.2: The support function of a hexagon in the polar domain and in the domain.
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(c) The Support function of the polytope P over the domain with n=(0;1) and | =(1;0).)
Figure 2.3: The support function of a polytope with 15 facets in the polar domain and

in the domain. In the domain, it can be observed that more the number of facets of
the polytope, atter is the support function near the global minima.
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2.3 Computing Time Elapse Successors

We de ned reachable set in section 1.4 as the set of all trajectories of the hybrid automata
starting from the initial states. A owpipe is the reachable set over an interval of time
[0t:]. The term owpipe is borrowed from the literature [CK98]. Flowpipes can be non-
convex but they are approximated by a union of convex sets and that is what we do. We
approximate the owpipe as a union of a nite number of convex sets. Each such convex
set is called a owpipe segment. We de ne th&™" segment of a owpipe as the convex set
which approximatesR [tk 1;tk]. Given a global time horizonT and a discretization time
step , a owpipe is approximated with N = T= number of convex segments. We shall
refer to such sequence of convex sets that approximates the owpipe as Figure 2.4(a)
shows the owpipes over the state space and its approximation with the union of convex
sets for up to three jumps of the bouncing ball. Figure 2.4(b) shows the owpipes of the
position variable x over time and its approximation.

2 c

S S

ks] = 4

S | g

-6 | | | | |
0 2 4 6 8 10 12 20
position time

(a) Flowpipe of the bouncing ball model for (b) Flowpipe of the position variable for
three jumps of the ball is shown in black. The three jumps of the ball is shown in black over
approximation of the owpipe as segments of time. The approximation of the owpipe as
convex sets is shown in Grey. segments of convex sets is shown in Grey.

Figure 2.4: Flowpipe of the Bouncing Ball Model.

2.3.1 Flowpipe Approximation

In this thesis, we considefFlow(l) to be a continuous dynamics of the form
x(t) = Ax(t) + u(t); u(t) 2 U; (2.20)

wherex(t) 2 R", A is a real-valuedn n matrix and U R" is a closed and bounded
convex set. In this section, we discuss how we compute the owpipe approximation for
such dynamics. LetX, denote the initial set and we assume it to be a closed convex set.
We over-approximate the owpipe by a sequence of continuous setsp;:::; n 1 that
covers the reachable states up to tim& (N depends on the chosen time step). Let us
rst consider the simpler case ofinear time invariant systems

x(t) = AX(t) (2.21)
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The analytic solution in this case is given by:

x(t) = eMxo (2.22)

Taking this to the set based representation, it is easy to see th&(t;t) = e*'X,, where
R(t;t) denotes the set of states reached at time The owpipe segments ; can be
computed using the following recurrence relation:

i+1 — e [ (2.23)

Where each ;issuchthat ; R (i; (i+1) ), being the time step.

Let us see the computation of o which over-approximates the reachable s& (0; ). Let
= ée* . If X, denotes the initial set,X = X, denotes the set of states reachable after
time. We take the convex hull ofXo [ X denoting it by CH(Xg; X ). Notice that the
convex hull might not enclose the entire owpipe section as illustrated in Figure 2.5(a).
To completely cover the owpipe segment, a balB of su cient radius is Minkowski
sum-ed with the convex hulled set as shown in Figure 2.5(b). Hence we have:

Where B, denotes a ball of radiusr. Proposition 2.1 guides us to choose the radius
to be the Hausdor distance between exact owpipe segment and the convex hulled
set CH(Xp; X ). This guarantees that the bloated set contains the owpipe segment
completely. A computation of the upper bound on the Hausdor distance betweeR (0; )
and CH(X; X ) is shown in [Gir04].

X\

CH(Xp; X ) By

/

Xo

(@ The convex hull (b) The bloated convex hull set
set shown with black encloses the owpipe.
boundary do not enclose

the owpipe shown with

dashed boundary.

Figure 2.5: lllustrating the computation of the rst owpipe segment approximation.

Once this over-approximate set o is computed, the owpipe sequence can be computed
by applying a linear transformation = €* as shown in (2.23), i.e., j+1 = i. Both
polyhedra and convex sets in support function representation are closed under linear
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transformation and can be used for representing;. [CK98] shows a method for polyhe-
dral approximation of owpipes which uses simulation to nd the support functions of
owpipe segments in given directions. They also propose a way of estimating directions
that constitute the facets of the polyhedra approximating the owpipe segments.

Let us now consider the more general case of (2.20). The di erence here is the additional
input term u(t) 2 U in the dynamics which brings in non-determinism. The solution for
(2.20) is of the following form:

Z

t
x(t)= e®fxq+ €t 9hy(s)ds (2.25)
0

The evolution of the variables can be seen as the superposition of two separate evolutions
with time, one with the initial set X, and no input set and the other with the initial set
asfOg anghinput setU. The rst one constigtes the term e" xo and the other constitutes

the term Se“ SAu(s) ds. Let us say that (;e(‘ SAu(s)ds = R(t;t)(f0g). We can then
decompose the reachable set at thetime instant R(; ) as:

R(; )=e*Xo R(; )(f0g): (2.26)
and the reachable set after time as:
[
R(; )= e”Xo R(t;t)(f0g) (2.27)
t2[0; ]

As in the computation of owpipes for LTI systems, we compute a sequence of which
covers the reachable set. We compute an over-approximatiory of the rst owpipe
segment such that ¢ R (0; ). As we did with LTI systems, we take the convex hull
of Xg and X, and bloat this with a ball of su cient radius. This time, this ball should
consider not only for the curvatures but also for the set of states reachable under the input
set, i.e., R(; )(f0g). Thus, we have o = CH(Xqo;, Xg) B . The derivation of s
shown in [Gir05]. [Gir05] also shows that a ball of su cient radius °can over-approximate
R(; )(f0g),i.e.,,R(; )(fOg) V = B;o. The sequence of ; is then computed using the
following recurrence relation:

i+1 = i Vo (228)

It is also shown in [Gir§5] that the Hausdor distance between the exact owpipe and

its approximation with :\':01 i vanishes as the time step tends to 0.

There are choices of representing the; as polytopes, ellipsoids, boxes, zonotopes or
convex sets represented by support functions. All we need to consider in the choice
is that the set representation should be closed under convex hull, Minkowski sum and
linear transformation operation. In this thesis, we shall consider the support function
based algorithm proposed by [GG09]. It is shown to be scalable and can analyze a ne
systems having more than 100 continuous variables. Support function representation of
convex sets are e cient with the convex hull, Minkowski sum and linear transformation
operations as shown in the properties of support functions in section 2.2.3. In the text
which follows, when we refer to owpipes we mean the sequencewhich approximates
the owpipe unless we explicitly state that it refers to the exact owpipe.

Flowpipe computation can be seen to consist of two main operations. One is computing
the owpipe inside a location of the hybrid automata for a given dynamics. This we refer
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as the post operation standing for post continuous. The second operation is computing
the map of the owpipe when there is a discrete jump from one location to another in
the hybrid automata. This we refer as the postoperation standing for discrete post. Let
us visit each operation in detail.

2.3.2 Computing Flowpipes with Support Functions

We refer the set of reachable states in a location of the hybrid automata by a location
owpipe. The post, operation is responsible for this computation. Briey, given a nite
set of directions, post computes the support function samples of the time elapse set
at N instances, each after time in the given directions respectively. and N are
parameters which need to be carefully chosen for a system, either by the veri cation tool
automatically or supplied by the user. For example, for systems with monotonic behavior
over time, could be chosen to be large and it could be chosen small for systems which
are non-monotonic. In terms of implementation, we need a suitable data structure that
stores the owpipe approximation or the ; sequence. We use a matrix representation
which we name asSupport Function Matrix (SFM). SFM stores theN support function
values for each direction de ned as follows:

De nition 2.10.  Given a set ofr directionsL = fl;:::;l,gand atime horizonN; 1;:::; «
is represented as @ N matrix called Support Function Matrix with (i;j )" entry de-
noting the support function of ; in the direction *;. For a given SFMM and directions

L, we denote the outer polyhedral approximation of th¢th set as

\I‘
PO(L;MJ'): \i:X Mi;j:

i=1

Similarly, ar N Support Vector Matrix (SVM) represents_,;:::;_, Wwith the (i;j )™
entry denoting the support vector of ; in the direction *;. The convex hull of the support
vectors in thej " column of a SVM will de ne an under-approximation ; of the owpipe.

The reachable continuous set resulting from time elapse in a location, sdy is now
represented in the form of a SFM.

Example 2.1. Figure 2.6 shows the polyhedral overapproximation obtained from using
our support function implementation ofPost. and the dynamics

|><
1

1:386% + 0:693Y;
0:693Y:

y

For comparison, the  are shown as outlines. The set of directions for computing the
SFM was chosen to be the axis directions.
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Chapter 2. Reachability with Support Functions

Figure 2.6: Polyhedral overapproximation of Postusing support functions (shaded), and
actual  for comparison (outlined)

It is to be noticed that the set of directions in the outer polyhedra computation is xed

a priori in the post. operation. We also call this set thetemplate directions Let us
remark that as long we remain with the support function representation of the convex
sets , we have the complete information about them. Once the template directions are
xed and we compute the outer polyhedra covering the owpipe, we loose information
about the supporting hyperplanes of the other directions. This conversion to polytopes
is nevertheless inevitable due to the need of visualization. We cannot graphically plot an
abstract functional representation of a set. Another reason for such a conversion is that
some operations on support function is not cheap like the intersection and containment
operation required for the reachability computation. Intersection operation is cheap for
polyhedra in constraint representation and similarly containment check is also cheap for
constraint polyhedra and even cheaper if the polyhedra have the same facet normals.

We currently consider the following choices of template directions for am-dimensional
system:

box directions, i.e., 21 directions aligned with the axes, i.e.x; = 1, xx = 0 for
k6 i;
octagonaldirections, i.e., 212 directions, consisting of all combinations ok; = 1,

Xj = 1,xx=0for k6 i;j;

uniform directions, i.e., a set ofm directions that are distributed as uniformly as
possible;

user-de ned directions, which can be combined with the other types.

However, the algorithm supports a more general choice of directions, which remains to
be investigated.
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2.4. Computing Transition Successors

We also need to take into consideration the invariant of the location when computing the
owpipe approximation . In our implementation, we test at thek-th step whether

is entirely outside of the invariant, and stop the sequence once this is the case. Then we
intersect the invariant with the computed . Note that this procedure may produce an
over-approximation, as this procedure of invariant intersection may eliminate some of the
trajectories starting in the Init states without eliminating all of them. We include the
invariant face normals in the template directions, so the result is usually of satisfactory
precision.

2.4 Computing Transition Successors

Each owpipe that is created by the time elapse step is passed to the computation of
transition successors. States that take the transition must satisfy the guard, are then
mapped according to the assignment and the result must satisfy the invariant of the
target location. Let G be the guard set of the transition,| * the invariant of the target
location, and let the transition assignment be (1.2). The image of a st with respect
to the transition is

posty(X)= R X\G) W \I *: (2.29)

We can see that there are two operations involved, intersection and assignment. We
discuss each of the two operation below.

Computing the one-to-one image of the sets covering the owpipe, as in (2.28), can
have the devastating e ect of increasing the number of convex sets exponentially with

the search depth. To avoid an explosion in the number of sets and gain e ciency, we

compute the convex hull or template hull of subsets of these sets instead. This is referred
to as clustering which is also explained below in detail.

Flowpipe-Guard Intersection As the owpipe is approximated with a set of convex
sets, there can be a set of convex sets intersecting with the guard set. Since intersection
with support function represented convex sets is hard, [FLGDL1] computes intersec-
tion on the template hull [de nition 2.9] of each convex set, i.e., its outer polyhedral
approximation in the template directions, sayPp = TH p (X).

The di culty with intersection is that we do not have an a-priori bound on how the over-
approximation error from the owpipe computation a ects the result of the intersection.
Moreover, considering the outer polyhedral approximation of the support function rep-
resented convex sets adds to the over-approximation. @ is a polyhedron in constraint
form whose constraint normals are included in template directions, then the intersection
operation can be carried out very e ciently by taking the minimum of the template
coe cients:

\
Pb\G = x2R"j Yoxo min(gS; P
'i2D

If the constraint normals of G are not template directions, we apply normal intersection
for constraint polyhedra, which consists of taking the union of their constraints. Note that
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although working with the outer polyhedral sets make the intersection with polyhedral
guard in constraint form e cient, this incurs higher over-approximation.

Assignment  Recall that according to (1.2) transition assignments are of the form
x°= Rx + w;w 2 W ; whereW R" is a convex set of non-deterministic inputs. In the
general case, the assignment operator is therefore

and can be computed e ciently using support functions. If the assignment is invertible
and deterministic, i.e.,R is invertible and W = fwgg for some constant vectowy, the
exact image can be computed e ciently on the polyhedron.

We consider applying the assignment to a constraint polyhedron
P= x2R"jApx b ;

whereAp 2 R™  R" and b 2 R" are the coe cients of the constraints of P. The
mapped states are computed exactly by mapping the polyhedron :

PoStasgn(P) = X2 R"jApR 'x b+ ApR 'wp :

Intersection with Target Invariant Depending on the assignment, we need to in-
tersect a support function set or a polyhedron with the target invariant. The intersection
of a support function with another set is costly to compute. Since intersection is cheap
for polyhedra in constraint form, we compute the template hull of the owpipe guard in-
tersection set and intersect that instead with the polyhedral invariant in constraint form.
This incurs an over-approximation error that may be substantial. It can be reduced by
increasing the number of template directions though.

For lack of a better term, we call this thestandard discrete image operator in this thesis:

posy(X) R dXeg \G\I W N (2.30)

Note that if R is invertible and W is deterministic (a point), the outermost outer approx-
imation is not necessary since the resulting polyhedron can be computed e ciently with
exact methods. Also note that, the intersection with the source invariant is pulled in here
which we previously stated to be part of the postoperation. This is because we want
to emphasize that [FLGD 11] computes the intersection of the outer polyhedral approx-
imation of X with the source invariant| . This brings in larger over-approximation in
the intersection with guard which as a result brings in larger approximation in the overall
reachable set.

2.4.1 Computing Transition Successors with Support Functions

the intersection of the time elapse set with a guar@®, we would like to identify the relevant
's to consider for computing the intersection with the guard or in other words, we would
like to Iter out the irrelevant 's before proceeding the intersection computation. By
relevant, we mean the ones which can possibly intersect with a gua@ One possibility
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Algorithm 2.3  Polytope Intersection over an SFM
Require: The directions set D = I4;:::;l;, ar N SFM M and polytope G with k linear
constraints HY;xi ¢ X .
Ensure: SFM M, representingM \ G
1: Allocate memory for an SFM M| with r + k rows and N columns.
2:fori 1tor do
3:  for j 1to N do

4: M [ili]  MI]0]
5. end for

6: end for

7. for i 1to k do

8¢ D=D][f I

9: for j 1toN do
10: Mi[r+i]i] ¢
11: end for

12: end for

to identify the relevant s'is to compute their distance from G and check if it is less than
or equal to the diameter of . If the distance is greater than the diameter, we know that

\ G = ; and hence can discard the . The identied 's can be Itered by simply
dropping the corresponding columns from SFM, SVM and the result after Itering is a
smaller SFM, SVM in terms of columns.

To compute the intersection withG, we manipulate our SFMM so as to get a new SFM
M, representing the intersection set. Semantically interpretiniyl as an outer polyhedral

approximation, the intersection is the SFM given by adding the normal vectors of the
constraints (faces) ofG to the set of directions, and computing the SFM for the new set
of directions.

The complexity of constructing the SFMM, is O((r + K)N), wherer is the number of
directions considered to compute SFM during thgost, operation, k is the number of
constraints in G and N is the number of columns in SFVM .

The nal part of the posty operator is to compute the linear transform of the intersection
set. Support functions have the convenient property that given compact convex sets
X;D R", a direction| 2 R", and an n transformation matrix C, supcx p(l) =
supx (CT1)+ supp (1). Using this property, we over-approximate the transformed set with
an SFM M+t de ned by

Mi; = supeowm,)(CTH) + supo (l;):
Algorithm 2.4 shows the construction oM+ from M, .

Clustering For a owpipe, 8[imin;imax] 21 we willhave ; \G,... ;. \G asinitial
sets in the next location. For large intervals, this could lead to considerably large number
of initial sets in the next location and furthermore, this increase in the number of initial
sets could propagate along as we carry on with the reachable set computation, leading
to a drastic slowdown in performance. To avoid this situation, we could consider taking
the HULL of the convex sets either before or after the intersection with the guard set.
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Algorithm 2.4 Linear Transformation over an SFM
Require: The directions set D = flq;:::;lkg, k N SFM M|, n nmatrix Aandal n
vector vy,
Ensure: SFM My representingAM | + vp
1: Allocate memory for a SFM M+ with k rows and N columns.
fori 1tokdo
11 AT
end for
for j 1toN do
Construct a Poyhedron P; by adding constraints:
fori 1tokdo
P;j:add_constraint (Hi;xi ~ M [i][i])
end for
end for
cfori  1ltokdo
for j 1toN do
Ml (1) + hvylii
end for
: end for

e el e el =
aArwNRER O

To consider a somewhat intermediate approach, we apply what we cellistering [FLGD " 11].
Given a hull operator, clustering reduces the number of sets by replacing groups of these
sets with a single convex set, their hull. We use the following clustering algorithm for a

pip, ()= max  (;P;)  min (I;P)) (2.31)
i=1;:z i=1;:2
D is the set of template directions considered in the computation of the owpipe.
Given Pq;:::;P, and aclustering factorof 0 ¢ 1, the clustering algorithm produces
a set of polyhedraQ,;:::;Q;, r z, as follows:

1. Leti=1,r=1, Q = P;:
2. Whilei zand812D: q.p () Cpp,(l), Q := HULL(Qr;Pi);i:=1i+1:

3. Ifi z/letr:=r+1;Q, := P;. Otherwise, stop.

We consider two hull operators: template hull, which is fast but very over-approximate,
and convex hull, which is comparatively precise but slower.

2.4.2 Increasing Precision

We propose as a contribution in this thesis ammproved discrete image operatowhich
aims at increasing the precision over the standard discrete image operator (2.30) by
computing instead:

post,X R X\G\I W\ (2.32)
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Basically, we would like to compute the intersection of the support function represented
convex sets instead of their outer polyhedral approximations as in the standard discrete
image operator, with the guard set. Figure 2.7 shows how this makes a di erence in
terms of precision. G in the gure means the conjunction of the guard and invariant
constraints. To make this idea practical, we need an e cient way of computing the
intersection of a support function represented convex set with the guard set. An e cient
computation of the support function of the intersection of a closed convex set with a
hyperplane/halfspace or a polyhedral guard set is one of the main contribution of this
thesis. It is shown in the introduction to chapter 3 that computing the support function
of the intersection of convex sets is a convex function minimization problem. In practice,
owpipes are largely approximated as a collection of polytopes and the guard sets are
mostly polyhedra too. With polyhedral sets, (3.6) is a parametric linear program (LP),
with  as parameter, andf ( ) is continuous, convex, piecewise linear function. The
reader is referred to [DTO3] for an introduction to parametric linear programming.

G

Figure 2.7: Comparing the intersection of the outer polyhedral approximation of se
and the guard setG (shown in thick bordered region) with the exact intersection (shown
in shade)

Another improvement in terms of precision of the discrete image operation is including
the pre-image of the target invariant to the intersection step. This can lead to substantial
improvements, as shown in Fig. 2.8. Let the target invariant be

n \m 0

An over-approximation of the pre-image of * with respect to (1.2) is given by
n \m o]
I = X aRx b+supy & : (2.33)
i=1
Lemma 2.1. (RX W )\l = R(X\I ) W .
Equality holds ifW = fwg.

We obtain our image operator

gbsty(X)= R X\G\I \I Wt (2.34)

With proposition 2.4 and lemma 2.1, it is straightforward to show that this is a tight
over-approximation in the following sense:
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Lemma 2.2. post(X) fbst, (X).
If W = fwg, then sty () X) = dposty(X)e \I *.

without |

|
|
|
|
|
|
|
|
|
|
b
|
|

777777777777777777777 Sbsty (X)

Figure 2.8: The image of X using the approximation operator (2.34), with the axis directions
as template directions. Here,R = I;W =0,so0l* =1 . G, | are taken to be true. Due
to the intersection with the pre-image of the target invariant, 1 , the result of (2.34) (shown
in thick red) is considerably more accurate than the same approximation withoutl (shown
shaded gray).

Note that (2.32) includes the source invariant also in the intersection step which is con-
sidered to be part of the postoperation. The reason is because we would like to precisely
compute the intersection of support function represented convex sets, we include all such
operations together before taking the template hull which then causes loss of accuracy.

G| ;1 frequently contain redundant constraints and have matching inequalities that
can be simpli ed to equality constraints. LetG = G\l '\l be simpli ed this way. The
result of the operator (2.34) is a polyhedral outer approximation. Recalling its de nition
from (2.15), it involves computing for each 2 L the support

suprxe yw () = supxic (R™)+ supw(’); (2.35)

which we obtain exactly or approximately through minimization as section 4.4 in chapter
4.

In the next chapter we discuss about how we compute the support function of the inter-
section of a convex set with a hyperplane or halfspace guard set. Chapter 4 then extends
this to the precise computation of owpipe intersection with hyperplanar, halfspace and
polyhedral guard sets.
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Chapter 3

The Supporn Function of the
Intersection of Convex Sets with
Hyperplanes and Halfspaces

In this chapter we explore the problem of computing the support function of the in-
tersection of convex sets with hyperplanes and halfspaces. Unlike other operations like
Minkowski sum, linear transformation or convex hull for which support function can be
computed e ciently, it is not trivial to compute the support function of the intersection

of convex sets. [LG09], [GG09] explores the support function computation of the inter-
section of convex sets with hyperplanes and shows this to reduce to a unimodal function
minimization problem. We follow on the same lines of work proposed there and extend it
for halfspace intersection. We show that the support function computation of the inter-
section of convex sets with hyperplanes and halfspaces reduces to a convex minimization
problem and further, for polyhedral sets, to a convex piecewise linear minimization prob-
lem. We propose a custom tailored sandwich algorithm to e ciently compute the minima
of convex functions which is explained in this chapter.

3.1 Intersection as a Minimization Problem

Let (Xi)i2r (wherel is an arbitrary index set) be a family of non-empty compact convex
bodies inR" and suppose that their intersectionS is not empty. Then the support
function of S can be represented in the form )

X X

sups(u) = inf supx; (u;) u=u ; (3.1)

i2l i2l p
where the in mum is taken over all representationsu = u; with u; = o for all but
nitely many i 2 I. [p-46 of [Sch93]]. When only two sets are involved, s&§, Y the
above relation can be expressed as follows:

supy () = Inf (supx (" w) + supy(w)) (3.2)

By proposition 2.3, supx and supy is convex and hence by theorem 2.kupx\y is a
convex function.
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In the following lemmas concerning the intersection of a compact convex set and a hy-
perplane or halfspace, the assumption is that their intersection is non-empty because the
support function of an empty set is not de ned.

Lemma 3.1. Given a non-empty compact convex se and a HyperplaneH = fx :
x:n = g, we have

supaw () = inf (supc (" n)+ ) (3.3)

Proof. Any w 2 RY can be expressed a& = n+ ,n’,st 1; 2R, n” 2R%isa
unit vector perpendicular ton.
Substituting the above expression olv in (3.2), we get:

supxw (1) = inf (supx (C N on°)+ supy( N+ 2n%))

1; 22R:n? 2Rd

For any non-zero , andn?, supy( 1n+ »n?)is1 .
Since we are interested in nding the in mum, we can restrict ourselves to, = 0. Hence,
substituting , = 0 in the equation and renaming ; to , we get :

supow (7)) = inf (supc (" n )+ supa(n))
=inf (supc(C - n)+ )
Since sup(n)= supy(n)= , from the equation ofH : x:n = . m

Lemma 3.2. Given a non-empty compact convex se&t and a halfspaceH = fx : x:n
gn2R%and 2R

supan () = Inf (supx (" n)+ ) (3.4)

Proof. SinceH is bounded only in the direction of vectom, we have:
8w2 RY if w= n where 2 R* thensupy(w)= . supy(w)= 1 otherwise.

As we are interested in nding the in mum of the rhs of (3.2), we are only interested in
alw2 RY¥stw= n, 2 R*. Substituting for w in (3.2), we have:

supan (1) = Inf (supx (" n )+ sup(n))
= nf (supx(C - n)+ )
[l

Lemma 3.3. Consider the halfspacéd = fx : x:n g, the hyperplaneH®= fx : x:n =
g, a compact convex seX, 2 RYand 2 R and let

f()=supx(C n)+ (3.5)
Then we have
supxwn () = iggﬁ( ); supxw o) = inf F(): (3.6)
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Proof. The proof follows from the proof of lemma 3.1 and lemma 3.2. m

Let us note some facts about the support function of the intersection of a convex set with
a halfspace. We use these facts in our implementation to readily compute the support
function and to check for emptiness.

Lemma 3.4. Let X be a compact convex seH = fx 2 RY: x:n = g be a hyperplane
and 2 RYst. "= n, 2R.If X\H6=;, thensupxy ()=

Proof. We have,

xin=;8x2X\H (3.7)
Now,
supxw (1) = supxw (N)
= p (nx)
=B
= ; using (3.7)
O]

Lemma 3.5. Let X be a compact convex set anld = fx 2 RY : n:x g, n2 RYand
2 R be a halfspace. Isupx (n) , then sup\y () = supx ()

Proof.
supx (n) =) max(n)
=) nx ;82X:
=) X H
=) X\H = X:
=) supxw (1) = supx():
O
Lemma 3.6. Given a compact convex séX and a halfspaceH, we havef ( ) ! 1 as
I +1 (0 X\H =;
Proof. By support function property, we have
supx (" n) supx (") + supx( n)
=) supx(C  n)+ supx () + supx( n)+
=) f() supx()+ ¢
Wherec=(supx( n)+ ):
(3.8)
(@) Let X\H = ;. Bylemma 4.2, we have
supx( n) >
=) supx( n)+ <O
=) c<O:
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In (3.8), supx (') is a constant and sincec < 0, !1 =) c¢! 1 . Therefore,
f()'1 as !1

(b)yLetf()! 1 as !1

Assume thatX \H 6= ;.
From lemma 3.3, we have

inf £ )= supcw ()
58 Gf() supw ():

Which contradicts the premisef ( ) ! 1 as !1 . Hence, our assumption that
X \H 6= ; must be false. HenceX \H = ;.

(a) and (b) proves the lemma. ]
Lemma 3.7. Given a compact convex seX and a halfspaceH, if X \H 6= ;, then
FC)  supx( ).

Proof. X\H 6= ; and X is compact 3 X\H is bounded. Hencesupx (') is de ned.
Let x°2 X \H such that supx\y (() = “:x&

x°2X\H =) x%°2X:

Therefore, we have:x° Xm2i>[1(‘:x):

=) supxw () supx( ):

By lemma 3.3, we havesupx\y (7) = ign;j ():

5 nff()  sun( )
5 1) supe( O a

Lemma 3.8. f( ) is a convex function.

Proof. Let f1( )= supx(l n). We know that support function of non-empty compact
convex sets are convex functions. Therefork,( ) is convex sinceX is a compact convex
set.

Let fo( ) = , Where is a constant inR. Since by conventionl < < 1 ,f,is
proper. It is hence easy to see thdt, is convex.

Since pointwise addition of convex functions are also convelx( ) = fi( )+ fo( )is a
convex function. O

When none of the above mentioned special cases could be applied, we compute the support
function of the intersection of convex sets with hyperplanes and halfspaces by solving the
optimization problem mentioned in lemma 3.1 or lemma 3.2.

3.2 Solving the Minimization Problem

We now present our approach of convex function minimization as a variant of the sandwich
algorithm [RR92] in this section. Our algorithm is designed keeping in mind the striking
property of convex functionsf (x) that if x is a point wheref (x) attains a local minima,
then f (x) also attains the global minima atx [Roc70]. Convexity also allows us to
compute the optimality gap and thus obtain a result of guaranteed accuracy.
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Our minimization algorithm is similar to sandwich algorithms used in literature mainly
for approximating convex functions with piecewise linear functions, see [BHR91] and
references therein, though our focus is to reach the point where the function attains the
minima with as few function evaluations as possible. We mention a point sayin the
domain of the function where the functionf is going to be evaluated as aampling point
of the function. Sometimes we also mention sampleof the functionf by which we mean
the pair (x; f (x)).

Our proposed algorithm has two parts:

Minima Bracketing: The minimization algorithm begins with the search of four
sampling points, that we call pivots, which bracket the minima. The convex function
is evaluated at these pivot points to initialise the iterative convergence algorithm.

The Sandwich Algorithm : Selecting a new sampling point at each iteration to
reduce the optimality gap and continuing the iterations until the minima is precisely
reached or the optimality gap is less than or equal to a given bound.

The goal is to nd the exact minima or an interval of optimal gap containing the minima
with as few function evaluations as possible because in our case evaluating the function
is a computationally expensive operation (computing the support function of a compact
convex set). Notice that for the initial bracketing of the function minima, we need a
minimum of three function evaluationsf (x;), f (x2) and f (x3) such that x; < X, < X
andf (x1) > (Xp), f(X2) <f (x3). In our algorithm, we start with four initial evaluations
because an extra point aids us to discover tightdower bound on the function minima

as is explained in section 3.2.2 illustrating our sandwich algorithm.

We call an interval [a,b] a bracketing interval iff (a) f (Xmin) f(banda Xyn b
wheref (Xmin ) denotes the function minimaxn,, denotes the point in the function domain
where the minima is attained andx,,, a, b2 dom(f ).

3.2.1 Minima Bracketing

Minima bracketing is the process of nding an interval in the domain of the function such
that the global minima of the function lies inside that interval. For minima bracketing,
we nd four pivots namely p;, p2, ps and ps such that the following condition holds:

PL<P2<P3<Pa (3.9)
f(p1) >f (p2) and f (p3) <f (pa) (3.10)

Convexity of the function shall ensure that p,, ps] is the bracketing interval. We have
implemented two algorithms for minima bracketing, one useSolden Ratio and we name

it as golden descentnethod. The other is based ormparabolic extrapolation These tech-
niques are adapted from [PVTF02] and we have more or less used the routines mentioned
there with some modi cations. We use the following lemmas in the minima bracketing
algorithm:
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Lemma 3.9. Let Xnin be a point in the domain off such thatf (Xmin) = fmin, fmin
denoting the function minima. Given two pointss, t in the domain off such thats <t,
if f(s)= f(t) thens Xmn t.

Proof. Consider a pointx 2 dom(f ) such that x < s. Let us assume thatf (x) = fyn
and f min <f (8)
Let90 p 1suchthatp:x+(1 p):t=-s.

By convexity property of f , we know:-
Pfmin + (1 p:f(t) f(px+(1 p)t)

=) Pfmin + (1 p):f(s) f(s);sincef(s)= f(t)
and (p:x+(1 p):t)=s

:) p:fmin p:f (S)
=) fmin T ()
(3.11)
(3.11) contradicts our assumption thatf (x) = i, and f i, >f (s) Therefore,
S Xmin (3.12)
Similarly, using convexity property off , we can show that
Using (3.12) and (3.13), we know:
S Xmin I (3.14)
O

Corollary 3.1. Let xmjn be a point in the domain of a convex functioi such that
f (Xmin) = fmin, fmin denoting the function minima. Given pointsx;, X, and X3 in the
domain off,

If f(x1) = f(x2) = f(X3) thenfnin, = f(x1) = f(x2) = f(x3). Also f (X1), f(x2) and
f (x3) are collinear.

Proof. Using lemma 3.9, we havé (x;) fnin f(X2) andf(xy) fmin f(X3). Since
every local minima of a convex function is a global minima, it must be the case that
fmin = T (X1) = f(x2) = f (X3). Also, this means thatf (x;), f (X2) and f (x3) are collinear
points. ]

3.2.1.1 Golden Descent

In golden descenapproach of minima bracketing, we make an initial guess of two sampling
points (In our implementation, we made a choice of sampling the function at 0 and 1).
These two sampling points will be our two initial pivot points and we then start decending
downhill, increasing the step size by a constant factor until we nd the turning point of
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the function. We de ne a turning point to be the rst discovered point x in the domain

of the function such thatf (x) > f (Xyev) Where Xpey IS the previous sampling point in
the decent. We always keep track of the last three samples while descending downhill
until we nd the turning point of the function. When we discover the turning point for

the rst time, we assign this as the fourth pivot point p, and the third pivot point ps is
assigned the mid point betweermp, and ps. This way the pivot conditions in (3.9) and
(3.10) hold.

Consider the context of minimizingf ( ) of lemma 3.3. For the halfspace intersection
case, the search space is R" which means the directions sweep from to n. Initial
samplingat =0and =1 would mean computing the support function of the convex
set X in the direction ~ and ™ n respectively which is half the search space apart. The
advantage we think of having initial pivots p; and p, half the search space apart is that
during the downhill descend, we reject half the search space at the rst go when the new
sample is not the turning point. We use thegolden ratio as the constant to increase the
step size at each downhill descend step. The golden ratio is an irrational mathematical
constant, approximately 1.61803398874989. The procedure is shown in algorithm 3.1
and the downhill descend is illustrated in Figure 3.1. The reader is referred to [Liv08] for
further reading concerning the golden ratio. Notice that for nding the support function

of a convex set intersected with a halfspace [lemma 3.2], we need to search the minima
in the domain of R*. In this case we cannot descend at the left of 0. This special case
is described in algorithm 3.2. The symmetric case is when the search domainln ;u
which is treated by minimizingf °= f (x).

We might under certain conditions know a priori the domain which contains the function
minima, in which case we already have our pivot points; and p, and we need to nd two

more in between them. This case is illustrated in algorithm 3.3. Notice in the algorithm
that under some conditions, we end up nding the minima in the process of bracketing.

f (x)

Downhill Descend

X
P P2 P3 Pa

Figure 3.1: Downbhill descend with four points.p, is the rst discovered turning point
during the descend.

3.2.1.2 Parabolic Extrapolation

Like in the golden descent method, we make an initial guess of 2 points to sample the
function (0 and 1 in our implementation). We then start moving downhill with a step
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size by the result of a parabolic extrapolation of the preceeding points that is designed to

take us to the extrapolated turning point. Once we nd the third point, sayp, we move
further uphill by 5 to get the fourth pivot point. The di erence between the two initial

bracketing routine is the choice of the step-size to descend downhill. In golden descent

method, the step size is a factor ofolden ratio whereas in parabolic extrapolation, the

step size is guided by the parabolic extrapolation of the minima. For detailed pseudo

code refer to [PVTFO02].

f (x)

f (po
f (pa

f(p3
f (p2

P1 67) P3 Pa X

Figure 3.2: Selection of four pivot pointsp;, p,, ps and ps, satisfying the conditions:
PL<pP2<Pp3<pas f(p)>F (p2) and f (ps) <f (pa)

Algorithm 3.1 Minima bracketing with golden descent method in the domain dR

Require: p1=0;p2=1and f (p1);f (p2) 2 R.
Ensure: p1;p2;ps3;Ps such that p1 <pz2<psz<pgandf(p) >f (p2), f (p3) <f (pa):

1:

L el
A wNPERO

©CoOoNARA®WDN

GOLD 1:618034
if f(p2)>f (pp) then
swap(p1,p2)
end if
P p2+(p2 p1) GOLD
while f (p3) <f (p2) do
shift2(ps; p2; ps) f Shifts p; to pz, p2 to ps.g
P p2+(p2 p1) GOLD
end while
if p1>p2then
swap(p:1, p3) f Rename the pivots to increasing ordeg

: end if
T Pa= P3
SP3=p2t(ps p2)=2
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Algorithm 3.2  Golden descent with search range dso + 1

Require: s;=1I;spo=1+21and f(s1);f(s2) 2 R.

Ensure: pi; pz; ps; Pa such that p;p <pz <pz<pgandf(p) >f (p2) and f (p3) <f (pa)
1. GOLD 1:618034
2: if f(sp) <f (s1) then

3 p1 standpy s

4 p3 p2*+(p2 p1) GOLD

5:  while f(p3) <f (p2) do

6: shift2(p1; p2; p3) f Shifts p; to p2 and p, to ps.g

7 P p2+(p2 p1) GOLD

8: end while

9 ps  Pps

10:  ps p2+(pa p2)=2

11: else

122 p1 siandps S

13: p3  p1+(ps p1)=2 fMove towards p; until sample is less thanf (p1)g

14: s pr+(p3 p1)=2

15 Sprev Ps

16:  while f(py) f(s)do

17: if p1;S;Sprev are collinearthen

18: Pa P3 p2 p1 fWe conclude the minima to bef (p1)g fAll pivots are set to
p19

19: stop

20: end if

21: Sprev = S

22: s pt(s p)=2

23:  end while

24: p2 S

25: end if
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Algorithm 3.3  Pivot selection with the search range akto u

Require: s;=1I;s,=uandf(s1);f(s2) 2 R.
Ensure:  pi1;pz; ps; pa such that pr <pz <ps<pgandf(p1) >f (p2).f (p3) <f (pa)

1p

sy andps sz fMin lies betweenf (p1) and f (ps)g

2:if f(s1) >f (s2) then

3 p2 prt(psa p1)=2

4 s pp+(ps p2)=2

5. sSprev P2 fNow, Keep going right until sample is less thanf (ps) sampleg

6: while f(ps) f(s)do

7 if pa;S;Sprev are collinearthen

8: pr P2 p3  ps FWe conclude the minima to bef (ps)g fAIll pivots are set to
P49

9: stop

10: end if

11: Sprev = S

12: S s+(ps S)=2

13:  end while

14: p3=Ss

15: else if f(s1) <f (s2) then

16: p3  p1+(ps p1)=2 fMove towards p; until sample is less thanf (p1)g

172 s pr+(ps p1)=2

18  Sprev P3

19:  while f(p1) f(s) do

20: if p1;S;Sprev are collinearthen

21: pa  ps p2 p1 fWe conclude the minima to bef (p;)g fAll pivots are set to
P19

22: stop

23: end if

24 Sprev = S

25: S prt(s p1)=2

26: end while

27: P2 S

28: else

29:  p2=p1+t(ps p1)=Vandpz=p1+2 (ps p1)=3

30:  if f(p2) = f(pa)or f(ps)= f(ps) then

31 p1 P2 P3 ps fWe conclude that the function plot between p; and ps is a

straight line and the minima is the function sample at any point between p1; ps.9

32: stop

33: endif

34: end if

3.2.2 A Sandwich Algorithm for the Direct Minimization of

Convex Functions

In this section, we describe our sandwich algorithm to nd the minima of a convex function

of one variable given a minima bracketing. We describe the algorithm for general convex
functions. We then show the performance of the procedure for convex piecewise linear
functions which is a special case of convex functions. The procedure is inspired from the
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sandwich algorithm  which is an iterative approach for approximating a convex function
of one variable by piecewise linear functions [[RR92], [BHR91]]. It starts by evaluating
the function and its one-sided derivatives at the endpoints of the given interval. The line
connecting the two endpoints of the graph of the function yields an initial upper bound of
the function, and the two supporting lines described by the derivatives at the end points
give an initial lower bound of the function. Now, the procedure selects a point in the
interval and evaluates the function and its derivative. (If the function is not di erentiable,
then any sub-gradient is taken). In this way, a better upper and lower approximation
is achieved and the problem is split into two sub-intervals. Now, the sub-interval which
has the larger error is selected and is partitioned in the same way as above. The process
is continued for a given number of iterations or until a speci ed error bound is met. In
Figure 3.3, the thin lines show the supporting lines described by the derivatives at each
point in the function. The lower approximation of the function after two partitioning step

is shown with the thick lines. In Figure 3.4, the thin lines shows the upper approximation
after the rst and second iterations. The lower approximation after the second partition
in the third iteration is shown by the thick lines.

" ()

Figure 3.3: Lower approximation with the Sandwich algorithm after two partitioning
steps shown by the thick lines.

X

Figure 3.4: Upper approximation with the Sandwich algorithm after two partitioning

steps. The thin lines show the approximation initially, after the rst and after the second
iteration respectively. The thick lines show the upper approximation of the function after
three iterations.

There are di erent ways of how the interval is partitioned or in other words how to select
a new point in the interval. [RR92] mentions the following four intuitive rules to choose
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the new point :

The interval bisection rule The interval is partitioned into two equal parts.

The slope bisection rule We nd the supporting line whose slope is the mean value
of the slopes of the tangents at the endpoints. We patrtition the interval at some
point where this line touches the function.

The maximum error rule: The interval is partitioned at the breakpoint of the lower
approximation, i.e., at the point where the error between the two approximations
IS maximum.

The chord rule We nd the slope of the line connecting the endpoints of the inter-
val. We partition the interval at some point where this line touches the function.

[RR92], [BHR91] proposed their algorithm with the purpose of approximating convex
functions and shows the fast convergence of their approach. Our purpose is to converge to
the minima of the convex function with as few function evaluations as possible. Although
the end purpose is di erent our algorithm has the following similarities to the sandwich
algorithm:

Given a bracketing interval, we select a new sampling point to partition the interval
into sub-intervals so that we nd a new smaller bracketing interval. The sub-interval
which has the larger error is selected for sampling.

We nd the lower approximation of the convex function with the function samples
at the pivot points. Notice that we do not compute the derivatives of the function
at the pivot points. For e.g., given 4 pivot pointsp;, p., ps and ps, we nd the
lower approximation of the function in the interval [p,, ps] by extending the chords
formed by connectingf (py), f (p2) and f (ps), f (ps) respectively (Figure 3.5).

p1 P2 P3 P4 X

Figure 3.5: The extended chord connecting(p,), f (p2) and f (ps3), f (ps) gives a lower
approximation of f (x) in the interval [p,, ps].

Our algorithm maintains a bracketing interval and an optimality gap at every iteration
and this interval size and optimality gap decreases at each iteration, i.e., we converge
towards the minima. The algorithm continues its iteration until either the minima is
reached or the optimality gap is less than an acceptable error value. We shall explain
the algorithm with the aid of a state machine. For better readability, we have divided
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the entire state machine into smaller ones. Given pivots,, p., ps and ps, we rst com-
paref (p,) and f (p3) and based on the three possibilities, we know the exact bracketing
interval. If f(p2) > f (ps) then we are assured that the bracketing interval ispb, pa]
and the algorithm is said to be in stateS1. If f(p,) = f(ps) then we know that the
bracketing interval is [p,, p3] and we denote this as stat&3 in the algorithm, and nally

if f(p2) <f (p3) then the bracketing interval is [p;, ps] and the algorithm is said to be
in state S2 (Figure 3.6). We select a new sampling point in the bracketing interval and
rename the pivots. In the following subsections, we describe each case in detail:

f(p2) <f (py)
f (p2) = f(p3)

Figure 3.6: Sandwich algorithm as a state machine. Initial state to three possible states.

f(p2) > f (pa)

3.2.2.1 Sandwich Algorithm lllustration-1

We consider here the case whdn(p,) > f (p3). We nd the lower approximation of f (x)
in the function domain interval [p,, ps] by extending the chords formed by connecting the
points f (py), f (p2) and f (ps), f (ps). The point of intersection of the chords is denoted as
say min ;. Similarly, we nd the lower approximation of f (x) in the domain interval [ps,
ps] by extending the chord formed by connecting the points(p,), f (ps) and the vertical
line passing throughf (p;) and (p4,0). The point of intersection of the chord and the line
is denoted as saynin, (Figure 3.7).

f(x)

min ¢

min

X

P1 P2 P3 Pa

Figure 3.7: Lower approximation off (x) in the domain [p,, ps] with extended chords.

Lower and Upper Bound We know that min, is the lower bound onf (x) in the
domain interval [p,, ps] and similarly, min, is the lower bound onf (x) in the domain
interval [ps, ps]. Since we have,, ps] as the bracketing interval in this case, we have
min(min 1, min,) as the lower bound on the minima of (x). The upper bound on the
minima of f (x) is min (f (p.), f (p2), f (p3s) and f (p4)) which in this case isf (ps).
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f(x)

up

low

Figure 3.8: low and up denoting the lower and upper bound on the function minima.

Choice of Sub-interval Now that we have the lower and upper bound on the function
minima, we choose the next sampling point. Out of the two intervalsp}, ps] and [ps,
ps], we choose the interval for which the lower bound on the function is minimum. In
Figure 3.7, min, is the lower bound off (x) in the domain interval [p,, ps], min, is the
lower bound off (x) in the domain interval [ps, ps] and sincemin, < min ;, we choose
the interval [ps; ps] as the candidate to nd a new sampling point. In the state machine,
min; min, depicts state S11 andnin, < min ; is depicted by state S12 which is shown
in Figure 3.10. This choice is natural in the sense that since the lower bound is lower,
there is more chance that the function minima will be contained in the interval (Greedy
choice). if bothmin; and min, are the same then we choose any of the interval arbitrarily.

Point Selection Rule After the interval is chosen, we have di erent possibilities of
how to choose a new sampling point in the interval. We udasection rule here (Fig-
ure 3.9). Observe that the maximum error rule is not a good choice here because it will
lead to ps as the new evaluation point which we already have. We do use maximum error
rule for choosing the new point in conditions described later in a subsection.

We also experimented by choosing the new sampling point at not the midpoint but at
the golden section [at (1 -golden ratio) of the interval] to observe if the asthetics of
this number makes the algorithm converge faster to the minima. We did not notice any
mentionable di erence.

Pivots Renaming Depending on the function value at this new point, we rename the
pivots and start a new iteration. We consider both possibilities of havingj, ps] and [ps,
ps] as the selected interval of sampling. Let us say thatis the new point. First consider
that [p,, ps] is the chosen sub-interval, i.e., algorithm is in state S11. ff(p) < f (ps)
then we know that [p,, ps] is the bracketing interval and p;, p.] and [ps, ps] can be
discarded. We keep all the 5 pivots with renaming and move to 5 pivots state instead
which is depicted by the state S4 in the state machine is renamed tops, ps is renamed
to ps and p4 is renamed tops. if f (p) = f (p3) then we know that [p, ps] is the bracketing
interval. p, is renamed top;, p to p, and the algorithm moves to state S3. Finally, if
f(p) > f (ps), p2 is renamed top,, p is renamed top, and the algorithm moves to the
state S1 again.
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f(x)

X

P1 P2 P3 p Pa

Figure 3.9: New pivot pointp selected by bisecting intervalgs, ps]

Now consider that ps, p4] is the interval of choice, i.e., the algorithm is in the state S12.
If f(p) <f (ps3), po is renamed topy, ps to p, and p to ps (Figure 3.12) and the algorithm
moves to the state S1. if (p) = f (ps) then we know that [ps, p] is the bracketing interval.
p. is renamed top,, ps is renamed top, and p is renamed tops. The algorithm moves to
the state S3. Iff (p) > f (ps) then we know that [p,, p] is the bracketing interval and p,,
p2] and [ps, ps] can be discarded. We keep all the ve pivots with renaming and move to
ve pivots state. p is renamed tops and p, is renamed tops and the algorithm moves to
the state S4. Figure 3.10 shows the state machine starting from the state S1.

f(p) > (ps) f(p) <f (ps)

in; min, min, < min 1

f(p) <f (pa) f(p) = f(pa)

f(p) = f(pa) T(p) >f (ps)

Figure 3.10: State machine with state S1 as the starting state.

3.2.2.2 Sandwich Algorithm Illustration-2

Let us consider the case wheh(p,) = f (ps). In this situation, [p,, ps] is the bracketing
interval. We nd the lower approximation of f (x) in the function domain interval [p,, ps]
by extending the chords formed by connecting the points(py), f (p2) and f (ps), f (pa4).
Let p denote the abscissa antbw denote the ordinate of the point of intersection of the
two chords.

Lower and Upper Bound Since p,, ps3] is the bracketing interval and we havdow
as the lower bound of the function in the domain intervalg,, ps]. Hencelow is the lower
bound on the function minima. The upper bound on the minima of (x) is min (f (py),

f(p2), f (p3) and f (ps)) (Figure 3.13).
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f(x)

up

low

Figure 3.11: low and up denoting the lower and upper bound on the function minima.

f(x)

X

P1 P2 P3 Pa

Figure 3.12: After renaming the pivots.

f (x)

e ‘

Lo L ,,,,,,,,,, L ,,,,,,

P1 bz hs P4
Figure 3.13: Lower and Upper bound on the function minima.
Point Selection Rule Since we already know the bracketing interval in this case, we

simply need to choose a new sampling point in this interval. We use thmaximum
error rule here as the new sampling point selection rule. In Figure 3.14, poiptdenotes
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the new sampling point.

f(x)

p1 p2 P Pz Pa

Figure 3.14: Selecting a new point for evaluation with maximum error rule.

Pivots Renaming If the function value at this new point, i.e.,f (p) is the same ag (p,)
or f (ps) then using corollary 3.1 we nd the function minimaf i, = f(p) = f (p1) = T (p2)
and the algorithm terminates and moves to the Stop state. Otherwisé,(p) has to be
less thanf (p,) or f (ps) sincef (2), f (3) gives the upper bound orf (x) in the domain
interval [p., ps]. In this case, we rename to ps, ps to ps and ps to ps and move to the
ve pivots state (Figure 3.15). Figure 3.16 shows the state machine starting from the
state S3.

f(x)

P1 p2 P3 Ps  Ps

Figure 3.15: Renaming the pivots.

3.2.2.3 Sandwich Algorithm lllustration-3

Let us consider the case wheh(p;) < f (ps). This is only a symmetric situation of
f(p2) >f (p3). Figure 3.17 shows the state machine starting from the state S2.
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f(p) = f(p2) F(p) <t (p2)

Figure 3.16: State machine with state S3 as the starting state.

f(P)>f (p2)

t(p) <f <
@ in; min, min, < min 1
f(p)>f (p2) f(p)=f(p2)

f(p)="1(p2) T(p) <f (p2)

Figure 3.17: State machine with state S2 as the starting state.

3.2.2.4 Sandwich Algorithm lllustration-4

We call this case the ve pivots state. Five pivots state is shown in Figure 3.18. In this
situation, we know that [p,, ps] is the bracketing interval. We keep ve pivots because
using them, we can hope to nd a tighter lower approximation off (x) in the domain
interval [p,, ps]. The chord connecting the pointsf (p;), f (p2) when extended beyond
p. gives a lower approximation onf (x) and similarly, the chord connecting the points
f (ps), T (p3) when extended beyondxs. The point of intersection of these two extended
chords gives a lower bound on the minima df(x) in the domain interval [p,, ps]. let
min,; denote the ordinate of this intersection point andx; denote the abscissa. In the
same way, the chord connecting the point§ (p,), f (ps) and the chord connecting the
points f (ps), f (ps) gives a lower approximation off (x) in the domain interval [ps, pas]
and the point of intersection of these two extended chords gives a lower bound on the
function minima in this domain. let min, denote the ordinate andx, the abscissa of the
intersection point.

Lower and Upper Bound Since Py, p4] is the bracketing interval and we havemin ;
to be the lower bound on the minima of (x) in the domain interval [p,, ps], min, to be
the lower bo'und in the domain interval ps, p4] the lower bound on the minima off (x)
is min(min 1, min,). The upper bound on the minima off (x) is f (ps). For example, in
Figure 3.18,min, gives the lower bound on the minima of (x).

Proposition 3.1. If miny = min, = f(ps) then f,i, = f(ps), wheref ., denotes the
minima of function f (x).

Proof. Let min, = min, = f (p3). Sincemin, is the lower bound onf (x) in [p,, ps] and
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f(x)

min ¢

min »

Figure 3.18: Lower approximation off (x) in [p., ps] by extending chords { (p.), f (p2)).
(f (pa), T (ps)) and (f (p2), f (ps)), (f (Ps), f (Pa))

min , is the lower bound onf (x) in [ps, ps] and asmin; = min,, we havemin; = min,
as the lower bound onf (x) in [p2, ps]. Also, as p,, p4] is the bracketing interval, we
have min; = min, as the lower bound on the function minimd ,,;,. As we havef (ps) =

min; = min,, it must be the case thatf (p3) = fmin. O

We check the above condition to terminate the iteration process and return the function
minima.

Choice of Sub-interval As before, we make a greedy choice. Out of the two intervals
[p2, p3] and [ps, ps], we choose the interval for which the lower bound on the function
is minimum . If [py, ps] is the chosen interval of sampling, the algorithm goes to state
S41 and if ps, ps] is the chosen interval, the algorithm goes to state S42. The algorithm
terminates ifmin ; = min, using the proposition 3.1 (Figure 3.19). For e.qg., in Figure 3.18,
sincemin, < min 1, we choose the intervalgs; ps] as the candidate to nd a new sampling
point. If the lower bound is the same in both the intervals, i.e.min; = min, (but
not equal to f (ps), otherwisef,, = f(p3)) then the one of the two intervals is chosen
arbitrarily for sampling.

Point Selection Rule In this case also, we use thenaximum error rule for the
new sampling point selection. In Figure 3.18, point, denotes the new sampling point.

Pivots Renaming We consider both the possibilities of the chosen sub-interval for
nding the new sampling point and describe the pivot renaming. Lets consider thap{,
ps] is the chosen interval for nding the new sampling point and; as the new sampling
point. If f(x,) >f (p3), we remain in the ve pivots state by renaming the pivotsp, to
p; and x; to po. If f(Xx1) = f(p3), we know that the bracketing interval is ki, ps]. We
discard the intervals p;, p2] and [ps, ps]. p2 is renamed top; and x; is renamed tops,.
Finally, if f(x1) <f (ps), we discard the interval ps, ps]. The pivots are renamed ax;
to ps, ps t0 ps and ps to ps and we again have another ve pivots state.

Now, lets consider the other possibility ofgds, ps] being the chosen sub-interval anc;
as the new sampling point. Iff (x) > f (ps), we discard the interval ps, p4] for further
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search and the pivots are renamed as to p, and p; to ps. We have a ve pivots state
again. Iff (xp) = f (ps), we know that the bracketing interval is ps, X2]. We discard the
intervals [p1, p2] and [ps, ps] for further search. p, is renamed top;, ps to p, and x; is
renamed tops. Finally, if f(x;) <f (ps), we discard the interval p,, p2]. The pivots are
renamed agp, to py, ps tO P2, Xo t0 ps and we have a ve pivots state. Figure 3.19 shows
the state machine starting from the state S4.

There is a situation for which we nd the function minimum and we terminate the
algorithm. This is under the condition that min; = min, = min (say) andf (x;) or
f (X2) equalsmin. In this case,min is the minima because it is the lower bound oh(x)
in the domain interval [p,, ps] and 9x 2 [p2, ps] such that f (xX) = min. Hence, min is
indeed the function minima.

mini = min,

f(P)>f (p3)

f(p) <f (p3) Q
f(p) >f (ps) f(p) <f (p3)
ing <min , min, < min 1

f(p) = f(pa)

Figure 3.19: State machine with state S4 as the starting state.

The sandwich algorithmis illustrated in algorithm 3.4. We combine ourminima brack-
eting and our sandwich algorithmto have a novel minimization algorithm for convex
functions. We name our minimization algorithm as.ower Bound Search algorithm.
The name derives from the fact that our minima search is based in some sense on the
comparisons of the lower bounds of the function at di erent domain intervals. We ex-
plained above these lower bounds on the functions by means of extended chords with end
points of the chord on the function. We now try to put it more formally.

We compute a lower bound functionf () f( ) [Figure 3.20], which we update
with each newly computed sample in our algorithm. Given two samples;i(f ( ;)) and
(5fC ), i< j,the convexity off ( ) implies that the straight line through them,

f(i) f(;
f ()= LTy, (3.15)
] i
is a lower bound onf ( ) to the left and right of the two points, i.e., for all i and
i, and an upper bound between them, i.e., for; i- We combine (3.15)

for all known samples (;;f ( ;)) to the following lower bound function, which is de ned
pointwise over

f ()=max 1 ; mgx»fij( ); max fy () (3.16)

We compute an interval [ ;r.] containing min o f ( ), whoseoptimality gapr. r is
smaller than a given threshold' 0. Lower Bound searchproceeds as follows:
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f(.)

Figure 3.20: The straight line through two points on a convex functiori ( ) is a lower
bound onf ( ) to the left and to the right of those two points.

1. Leti=0, ;=0, ;v =1, r =1 ,ry=+1.

2. Bracket the minimum by adding samples until a turning pointis found, i.ef ( ; 1)
f(i2andf( ;1) f( ), increasing the distance between; exponentially.

3. Computef ( ;) and tighten the interval bounds
r inf og of (), r+  min(r+;f( )

4. Choose the next sample at the lowest point d¢f ( ) unless already visited:

(@) Let i+ arginf ,5 of ().

() If 40 2F o;::0; ig, let 4 ( i+1 + j)=2, where ; is the appropriate
neighboring sample.

5. Ifr., r >",leti i+1andgoto(3).

Algorithm 3.4  Sandwich Algorithm
Require: p1<pz2<pz<pgandf(p)>f (p2) and f(ps) <f (pa), " 2 R
Ensure: [l;u] suchthatl<f i, <u andu I<="

1: ps = p4 f fth pivot is set to p4 until the ve pivots state is reachedg
2: update bounds(p1; p2; Ps; P4; Ps):
3: while u |>" do
4 [X;y] choosesampling _interval (pl; p2; p3; p4; p5):
5. s sample.interval ([x;y]):
6
7
8

rename_pivots(s):

update boundg(ps; p2; P3; P4; Ps):
: end while
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Chapter 4

Flowpipe-Guard Intersection with
Support Functions

Given an outgoing transition from the source location of the automaton, we collect all
the guard constraints, source invariant constraints and the constraints of the pre-map of
the target invariant in say, G. The reason for including the source and the pre-mapped
target invariant constraints is for higher precision explained in section 2.4.2. We assume
that the constraints are all linear constraints, equality or inequality. The conjunction of
the constraints in G de nes an H-polyhedron. The ; of the owpipe de ned in (2.28)
are support function represented convex sets. Note that not all thd ; of the owpipe
necessarily intersect with the guard seG. Therefore, the detection of intersection is
foremost. We then compute the intersection of the guard set with the section(s) of the
owpipe that intersect with it.

Let us mention that we simplify the problem of intersecting a owpipe with a polyhedral
guard set by considering the following sub-problems:

Intersecting a convex set with a hyperplane/halfspace.

Intersecting a collection of convex sets with a hyperplane/halfspace.

Intersecting a collection of convex sets with a polyhedron.

The intersection sets are represented by their support functions. We make polyhedral
approximations from the support function representation whenever the need be by sam-
pling the support function in the desired directions. In the next section we illustrate how
the intersection of a owpipe with a guard set is detected and an illustration is presented
with an example. The subsequent sections describe the support function representation
of the intersection of a convex set with a hyperplane or halfspace, collection of convex
sets with a hyperplane or halfspace and the intersection of a collection of convex sets
with a polyhedron respectively.
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4.1. Detecting Intersection of a Guard with a Flowpipe

4.1 Detecting Intersection of a Guard with a Flow-
pipe

We detect the intersection of ; with the guard setG. For that, we identify indicesi N
of the owpipe such that ;\G & ;. We de ne a list of intervals I having intervals
[imin;imax] Of the indices of the owpipe such that {\G & ;, 8 2 [imin;imax])- The
computation of I proceeds as follows:

1.1 =[ig;in]
2. 892G, | %= List of intervals [imin;imax] such that ;\ g6 ;;8i 2 [imin;imax]-

3.1 =1\l %and go to (2).

Where intersection of list of intervals is de ned as pairwise intersection.

For hyperplanar constraintH = fx : x:n = g, we use the method described in [LG09] to

detect intersection. We use a similar approach for detecting intersection with halfspace
constraints. For hyperplanar constraints, we use the following lemma in the computation
of | :

Lemma 4.1. Given a hyperplaneH = fx 2 R: x:n = g and a compact convex seX,
we have

X\H6=; ( supx ( n) supx (n): (4.2)

Proof. We rst prove that:

supx ( n) supx(n) =) X\H6 =;:
Let supx( n) supx (n).
=) I)’(T;IXH (n:x) r)gg;(lx(n:x).
Consider the case when mitn:x) = or max(n:x) =

x2X x2X

=) 9 x 2 X such thatn:x =
=) 9 x 2 X such thatx 2 H:
=) 9 x2X\H .
=) X\H6 =;.
Now, consider that min(n:x) < < max(n:x).

x2X x2X
Let x4 2 X such that n;)i(n(n:x) = X1:n <

X
and let x, 2 X such that n;gx(n:x) = X,:n >
X

Let x;:n=  + ky and X,:n = ko, ki, ko 2 R*.
SinceX is a convex set, by convexity property, we know that:

y= X1+(1 Xx2)2X;8 2[01]

It can be shown that for = ky=(k; + k), y:n =
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Therefore,9y 2 X suchthaty2H =) X\H6 = ;.

Now, we prove that:

X\H6=; =) supx ( n) supx (n)

Let X \H 6= ;. Then we can partition the setX into three sets as:
X = X1 [X 2[X 3 such that:

X;=1fx2 Xjnix< g.

Xo=fx2 Xjnx= g.

Xz3=fx2 Xjnx> g

SinceX\H6=;, X, 6 ;.

We can see that r£<a>(n:x) , equality holds whenX3; = ; and rr21>i(n(n:x) , equality
holds whenX, = ;.
Therefore, min(n:x) max (n:x).
x2X x2X
=) supx ( n) supx (n).

We prove both directions of the () condition and hence the result is proved.

For halfspace constraints, we use the following lemma in the computation lof

Lemma 4.2. Given a HalfspaceH = fx 2 R : xin g and a compact convex seX,
we have

X\H = supx( n) > : (4.2)
Proof. Let X \H = ;.
X\H =; =) 8 x2X;nx>
=) 8 x2X; nx<
=) max( nx) < (4.3)
=) supx( n)<
=) supx( n)>

Let supx( n)>

supx( n)> =) [(r;ixn(n:x)>

=) 8 x2X:nx> (4.4)
=) X\H =,

(4.3) and (4.4) proves the lemma. ]

Using the above lemmas to check for the emptiness, we can identify the set of intersecting
intervals | .
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Example 4.1. Figure 4.1(a) illustrates the owpipe approximation of a ve dimensional
system. The boxes represent the polyhedral approximation of the support function rep-
resented owpipe in the axes directions. Each box in the gure represents a member
of the owpipe. Figure 4.1(b) shows the sections of the owpipe which intersects with
the guardy = 0. Figure 4.1(c) shows the sections of the owpipe intersecting with the
halfspacey 0.

Algorithm 4.1  pseudo code of discretpost
Require: ha.aut, loc
1: trans  ha_aut.get_out _transitions(loc)
2: owpipe loc.continuous post();
: while t 2 trans do
: tgt  t.get_target_loc();

3

4

5. contset t.guard\ owpipe fcont_setis a continuous seg

6: contset t.assignmap(cont_set)

7 cont_set tgt.get_invariant() \ cont_set;

8: sym.state  symbolic_state(tgt, cont _set)

9 PLWL.add(sym _state) f sym_state is a symbolic state which is pair of location and con-
tinuous set. PLWL is the passed and waiting listy

10: end while

4.2 Intersecting a Convex Set with a Hyperplane or
Halfspace

To have a support function representation of the intersection between a convex set and a
hyperplane or halfspace, we must know how to compute its support function. Section 3.1
shows that the support function computation of the intersection between a convex set and
a hyperplane or halfspace reduces to the problem of minimizing a convex function. We
presented our novel approach to the minimization problem in previous chapter 3 which
we use to have the support function representation of the intersection set. Before we
apply the minimization algorithm, we can get rid of the term  from f ( ) in (3.5), for
computational simplicity, by shifting of the operand sets as discussed below.
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(a) Flowpipe approximation of a ve dimen-
sional system.

3

-~ of r‘g |

(b) Sections of the owpipe which intersects
with the hyperplanar guard y = 0.

3

(c) Sections of the owpipe which intersects
with the halfspace guardy 0.

Figure 4.1: Flowpipe sections intersecting with a hyperplane and a halfspace illustrating
the intersection detection algorithm.
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4.2.1 Shifting the Convex Set and the Hyperplane or Halfspace

For computational simpli cation, we shift the hyperplane or halfspace making it pass
through the center, making its distance from the center to be 0 and hence dismissing the
term , being 0 in (3.5). We also apply the same shift to the convex s8tto get the
same intersection set, but shifted.

Given aguardG:x:n/ ,/ 2f<; =g, we compute the translation vector, sayp, as :

b=1[ =norm (n)]:(n=norm(n)); (4.5)

After we have the translation vectorb, We use (4.7) to compute the required support
function which is derived from the property of support functions given in (4.6).

supsie) b(l) = supsc (1) + (b:l) (4.6)
supsic (I) = supsicy b (b:l) (4.7)

After the shifting, f( ) of 3.5 reduces tof ( ) = supxo(" n), which is the support
function of a compact convex seX in the lambda domainas seen in section 2.2.3. We
already mentioned above thatf ( ) is a convex piecewise linear function for polyhedral
sets. The support function graphs of an hexagon and a polytope with 15 facets in section
2.2.3 gives the reader an idea of the nature of the function.

Lower Bound Search algorithm nds a sequence of sampling points that converges
towards the minimum off ( ), see Figure 4.2 and Figure 4.3 for an illustration. Each;
corresponds to the normed direction

N

= c( in); with ¢ = 1=k inky:

4.2.2 Related Work

To the best of our knowledge, this is the rst proposed solution for a support function
representation of the intersection of a convex set with a halfspace or polyhedron. It is
derived from previous work on the intersection with a hyperplane by [GG09]. There, the
support function of the intersection is reduced to a univariate minimization problem that
is derived geometrically. Its parameter 2 (0; ) describes the angle between the sample
direction and the normal vector of the hyperplanéH®= fx jnx = g:

. : supx (" sin + ncos ) cos
supxw o) = 'z% ) sin '

(4.8)

While (4.8) has the advantage over (3.6) that its argument ranges over a nite interval,
its cost function is unimodal instead of convex. Therefore one has no direct estimate of
the optimality gap, and it is not possible to obtain the exact solution. Recall that iiX is

a polytope, Lower Bound Search computes the exact solution of (3.6) in a nite number
of steps. We refer to the approximate solution of (4.8) by golden section search@sden
Section Search in the Polar Domai(GSPD).
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(b) To compute supx\y o( ), we minimize f (). The function and the samples chosen by the Lower Bound
Search are shown for = (0;1)

Figure 4.2: Intersection of the hyperplangi®= fx + y = 0g with a polytope P with 15
facets

4.2.3 Experiments

The following experiments illustrate the performance of Lower Bound Search in compar-
ison with GSPD.

Table 4.1 compares the support function computation of the intersection between a reg-
ular n-polyhedron in two dimensions with the linexcos + ysin = 0 in the direction

[0; 1], for 1000 uniformly distributed 2 [0; ] by GSPD and Lower Bound Search. The
table shows the averaged results. Note that the error of GSPD decreases as the num-
ber of facets increases. The reason is that the support function becomes atter near
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(b) To compute supxwy (*), we minimize f ( ). The function and the samples chosen by the Lower Bound
Search are shown for = (0;1)

Figure 4.3: Intersection of the halfspacél = fx+y  0g with a polytope P with 15
facets

the minimum for polyhedra with larger number of facets. Hence for a xed interval in
the function domain bracketing the minimum, the di erence between the minimum and
the upper bound decreases. Table 4.2 compares the intersection between a regular n-
polyhedron with the line xcos + ysin = 0 in the direction [0; 1], for 2000 uniformly
distributed 2 [0; ]for a xed number of samples. The table shows the averaged results.

Remark 4.1 Note that in Table 4.2 the computation times di er even though the same
number of samples is computed for both LBS and GSPD. Indeed the computation time
of a sample is data as well as state dependent. In particular, the LP solver computing
the support function keeps its state between calls. A sample can therefore be computed
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Table 4.1: Average performance of Lower Bound Search (exact solution) vs GSPD ( xed to 14
samples), intersecting a hyperplane with a polytope

Lower Bound GSPD
facets samples err time(ms) samples eri0 # time(ms)
4 6.741 0 0.15 14 8.197 0.71
8 8.523 0 0.34 14 3.200 0.82
16 9.611 0 0.50 14 1.612 1.27
24  10.222 0 0.74 14 1.111 1.80

Table 4.2: Average performance of Lower Bound Search vs GSPD, intersecting a hyperplane
with a polytope for a xed number of samples (6)

Lower Bound GSPD
Facets opt. gap err time(ms) err time(ms)
4 0.0338614 0.0285933 0.16 0.0351516 0.25
8 0.0274455 0.0107857 0.10 0.0228235 0.32
16 0.0298651 0.0063944 0.28 0.0156476 0.51
24 0.0302147 0.0044049 0.47 0.0131288 0.98
107 —max err|]
—avg err
_ 10°3
o
o
S 108
S
o
©
10 13
10 18 | | | |

0 5 10 15 20 25
samples

Figure 4.4: Approximation error over the number of samples for the intersection of ran-
dom halfspaces with random polytopes with 16 facets.

faster if its optimal solution for the corresponding direction is close to the one computed
in the last call.

Figure 4.4 shows the approximation error of the support function of the intersection with

a halfspace as a function of the number of samples taken. We measure the absolute error
over 10000 random instances of a polytope with 16 facets intersected with a halfspace.
The polytope and the intersection are by construction non-empty and the halfspace is
non-redundant. After 17 samples, both maximum and average error are below 1)
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which is about as close as we expect given machine precision.

4.3 Intersecting a Set of Convex Sets with a Hyper-
plane/Halfspace

We are nally interested in computing the support function representation of the inter-
section of a owpipe section with a guard setG. A owpipe section is a collection of
convex sets and a guard set is a polyhedra, bounded or unbounded. In section 3.1, we
described our algorithm to compute the support function of the intersection of a convex
set with a hyperplane or halfspace . We can naively use the same algorithm for each
and every convex set in the owpipe collection to get a collection of support function
represented intersection sets. This naive approach is expensive nevertheless.

To counteract the cost, we solve the minimization problems for each convex set in the
owpipe interval simultaneously . The underlying properties of the data structure used
to represent the owpipe are exploited to gain on time. Let us recall that we represent a
owpipe of sizeN givenas o; 1;:::; N asar N matrix which we call as theSupport
Function Matrix with (i;j )" entry denoting the support function sample of ; in the
direction |; [FR09]. The SFM essentially provides a polyhedral approximation of each

in the r template directions. We use the algorithm in [GLO8] to compute our SFM which
for a given direction I, computes the support function of o to |\ iteratively starting
from . Hence, for some owpipe interval i;:::; ;, if we need to compute the support
function of ,i k | in a new directionl, we actually compute the support function
of atleast all the o to  in the new direction| in our SFM. In our implementation,
adding a new direction to a SFM is done through the@xtend operation. When we say
extend an SFM in a direction |, the support function for all the N 's are added to the
matrix in an additional row, N being the size of the owpipe. This means that when we
sample a convex set ; of the owpipe, we actually sample all the 's of the owpipe in
our SFM representation. Figure 4.5 shows the support function graphssdip (I n),
i.e., in the domain where ; is a convex set of the bouncing ball model owpipen is
the normal to the guard constraint in the model k¥ 0) and | is a given direction in
which to compute the support function of the intersection setl(= (0; 1) in this example).
This gure shows the support function graphs for the 3 convex sets of the owpipe at
the second jump in the bouncing ball model that intersects with the guard. It shows
that extending the sfm of the owpipe in a direction corresponding to =5 for example,
samples all the three support functions of the three convex sets shown with the asterix
mark. We use this fact to speed up our minima search when solving the minimization
problems simultaneously.

For ak sized owpipe interval and a guard constraintg 2 G, we initialize k minimization
problems. Each of the minimization problem then demands a new sample point. Any
one of the demand is served and the SFM is extended in this new direction corresponding
to the chosen sample point. After the SFM is extended, we know that each of the
functions in the minimization problem has been sampled as well in this new direction.
We then call an updatebounds method which improves the lower and upper bound on
the function minima, for each of the minimization problem. This is repeated iteratively
until the minima is bounded in an interval with size less than a given tolerance value for

64/107



Chapter 4. Flowpipe-Guard Intersection with Support Functions

each of the minimization problem. The steps are shown in algorithm 4.2.

12

10

f(I-n.lambda)
N

-4
-10 -5 0 5 10
lambda

Figure 4.5: The three plots shows the support function graphs of three convex sets of a
owpipe of the bouncing ball model. Extending the sfm in a direction corresponding to
=5 samples all the three functions shown with asterix mark.

The update boundsroutine worth some illustration. This method takes the new sample,
say and based on the current pivots, it calculates tighter bounds on the minima. If
the is outside the minima containing interval, i.e., <p ;or >p 4o0r >p sinthe

ve pivots state, then the method simply returns without updating. Also, if the is one

of the pivots, then it is redundant and the method return without updating. Otherwise,
based on the four possible positions of and the current state of the algorithm, the
method improves the bounds on the function minima. Recall from the state machine in
Figure 3.6 illustrating the Lower Bound Search algorithm in section 3.2.2 that stat81
denotef (py) > f (ps), state S2 denotef (p,;) < f (p3) , state S3 denotef (p,) = f (ps)
and state S4 denote the 5 pivots state as mentioned in section 3.2.2.4. Therefore, the
Lower Bound Search algorithm can be at one of these four states. Let us now discuss the
actions on the four possible positions of the chosenin what follows:

1.pp < <p ,: Algorithm in state S1: The new sample is assigned as pivpi. By
convexity of the function, f ( ) > f (p.) and hence the algorithm remains in stateS1.
The lower and upper bounds on the minima are recomputed as described in 3.2.2.1.

Algorithm in state S2: We comparef () with f(py). if f( ) >f (p2), isrenamed top,,

p. is renamed tops, ps is renamed top, and p, is renamed tops. The algorithm moves

to the state S4. The lower and upper bounds are recomputed as described in section
3.2.2.4. iff ()= f(p), Iisrenamed top,, p, is renamed tops and ps is renamed to
ps. The algorithm moves to stateS3 and the bounds on the minima are recomputed as
described in section 3.2.2.2. ff( ) <f (p;), is renamed top,, p, is renamed tops and

ps is renamed top,. The algorithm remains in stateS1. The bounds are recomputed as
described in section 3.2.2.1.

Algorithm in state S3: By convexity, f ( ) can be either greater or equal td (p,). If
f()>f(p), Iisrenamed top;, p. is renamed tops and p; is renamed tops. The
algorithm moves to stateS3 and the bounds on the minima are recomputed as in section

65/107



4.3. Intersecting a Set of Convex Sets with a Hyperplane/Halfspace

3.2.2.2. Iff ()= f(p2), we havef ( ) = f(p2) = f(ps). By corollary 3.1, we have the
function minima at f ( ) and the algorithm terminates.

Algorithm in state S4: By convexity, the only possibility isf ( ) >f (p2). is renamed
to p; and the algorithm remains in stateS4. The bounds on the minima are recomputed
as in section 3.2.2.4.

2. ;o< <p 3: Algorithmin state S1: If f( ) >f (ps), then p, is renamed top; and

is renamed top,. The algorithm remains in stateS1 and the bounds on the minima are
recomputed as in 3.2.2.1. If ( ) = f(ps), then p, is renamed top; and is renamed to
p.. The algorithm changes to stateS3 and the bounds on the minima are recomputed as
in 3.2.2.2. iff ( ) <f (p3) then is renamed tops, ps is renamed top, and p, is renamed
to ps. The algorithm moves the stateS4 and the bounds on the minima are recomputed
as in section 3.2.2.4.

Algorithm in state S2: This is symmetrical to the previous with dierent pivot re-
namings. Iff( ) > f (ps), then psz is renamed top, and is renamed tops. The al-
gorithm remains in stateS2 and the bounds on the minima are recomputed as in 3.2.2.3.
If f( )= f(ps3), then ps is renamed tops and is renamed tops. The algorithm changes
to state S3 and the bounds on the minima are recomputed as in 3.2.2.2fif ) <f (ps)
then is renamed tops, ps is renamed top, and p,; is renamed tops. The algorithm
moves the stateS4 and the bounds on the minima are recomputed as in section 3.2.2.4.

Algorithm in state S3: By convexity, f ( ) can be either greater or equal td (p3). If
f( )= f(p3), then by corollary 3.1, minima is atf ( ) and the algorithm terminates. if
f()<f (ps3) then isrenamed tops, ps is renamed top, and p,4 is renamed tops. The
algorithm moves to stateS4 and the bounds on the minima are recomputed as in 3.2.2.4.

Algorithm in state S4: If f ( ) >f (ps) then p, is renamed top; and is renamed top,.
The algorithm remains in stateS4 and the bounds on the minima are recomputed as in
section 3.2.2.4. Iff ( ) = f(ps) then p, is renamed top, and is renamed top,. The
algorithm moves to stateS3 and the bounds on the minima are recomputed as in section
3.2.2.2. Iff () <f (p3) then is renamed tops, ps is renamed top, and p, is renamed
to ps. The algorithm remains in stateS4 and the bounds on the minima are recomputed
as in section 3.2.2.4.

3. ps< <p 4: Algorithm in state S1: if f ( ) >f (ps) then we rename to ps and ps
is renamed tops. The algorithm moves to stateS4 and the bounds on the minima are
recomputed as in 3.2.2.4. If ( ) = f(ps) then p, is renamed top,, ps is renamed top;
and is renamed tops. The algorithm moves to stateS3 and the bounds on the minima
are recomputed as in 3.2.2.2. f( ) <f (p3) then p, is renamed top,, ps is renamed
to p, and is renamed tops;. The algorithm remain in state S1 and the bounds on the
minima are recomputed as in section 3.2.2.1.

Algorithm in state S2: By convexity, the only possibility isf ( ) >f (p3). is renamed
to p; and the algorithm remains in stateS2. The bounds on the minima are recomputed
asin 3.2.2.3.

Algorithm in state S3: By convexity, the only possibility isf( ) >f (ps). is renamed
to p; and the algorithm remains in stateS3. The bounds on the minima are recomputed
asin 3.2.2.2.

Algorithm in state S4: If f( ) > f (ps) then we rename to p, and ps ot ps. The
algorithm remains in stateS4 and the bounds on the minima are recomputed as in 3.2.2.4.
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If f( )= f(ps) then we renamep, to p;, ps to p, and to ps. The algorithm moves to
state S3 and the bounds on the minima are recomputed as in 3.2.2.2.flf ) < f (ps)
then we renamep, to p;, ps to p, and to ps. The algorithm remains in stateS4 and
the bounds on the minima are recomputed as in section 3.2.2.4.

4. ps < <p s5: This case is interesting only when the algorithm is in stat&4, i.e., the
5 pivots state. By convexity, the only possibility isf ( ) >f (ps). We rename to ps and
the algorithm remains in stateS4. The bounds on the function minima are recomputed
as in section 3.2.2.4.

Algorithm 4.2  Simultaneous solving of one dimensional minima search problems

Require: Functions [f ';f1] for each convex set of the owpipe interval [ i: jlandtol 2 R
Ensure: [lk;uk] such that I <f r';in <ugandug Il <=tol, 8k 2 [i;j]

1: stop false

2: list | of requested sampling points =;

3:

4: while !stop do

5. for k=i! j do

6: optprbe  init _problem(f k)

7 is_active,  true

8 opt_prby:minbrak () fbrackets the function minima with four pivots. g

9 I:push(opt_prby:get sampling _point()) f Each problem requests a new sampling poing

10: end for
11: s l:choosepoint() f One of the requested sampling point is selected.

12: for k=1i! j do

13: if is_activex then

14: opt_prby:update_boundqs)
15: [lk;uk]  optprby:getboundy)
16: if uc Igx<tol then

17: is_active,  false

18: end if

19: end if

20:  end for

21:  if 8k 2 [i;j], uk Ik <tol then
22: stop true

23:  endif

24: end while

4.3.1 Convex Hull of the Intersection

We mentioned earlier that there could be many convex sets of the owpipe which intersect
with the guard set and if we treat them individually, we could have a large number of
initial sets to begin the time elapse operation in the target location. The notion of
clustering discussed earlier in section 2.4 showed a way of reducing the number of convex
sets using template hull or convex hull clustering or both.

With convex hull for example, we could think of the following two approaches:
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2.1 We compute the convex hull of the union of ;'s of the intersecting interval and
then nd its intersection with the guard set,
[
St =CH i \G (4.9)

Imin I I'max

2.2 We compute the intersection rst for each ; with the guard setG and then compute
the convex hull of the union of the results,

[
St =CH i\G (4.10)

Imin I TImax

Let us now discuss the complexity of the above two approaches for support function
representation and polytope representation of;. We are interested in two set operations,
namely, intersection and convex hull of the union of sets. For;'s represented as H-
polytopes, computing the convex hull of their union is an expensive operation [Tiw08]
but the intersection operation with a polyhedral guard set given as H-polytope is an easy
operation (If redundant constraints are acceptable).

For ; represented by the support function, computing the support function representa-
tion of the convex hull of their union is an easy operation but computing the support
function representation of the intersection is expensive.

We discussed the idea of applying convex hull to the convex sets before and after com-
puting the intersection in (4.9) and (4.10) respectively. Intuitively, (4.10) is expected to
return more precise intersection compared to (4.9). In this section, we show how we solve
(4.10) using our minimization algorithm. There are essentially two approaches which we
consider.

We solve thek minimization problems for thek intersecting owpipe section mem-
bers simultaneously as described in section 4.3 and then take the max of the com-
puted mins as the support function value by property (2.17) of support functions.

We solve thek minimization problems simultaneously withbranch and bound
method [LD60]. We describe this approach below.

Likewise in the previous section, we solve the minimization problem for each of the
convex set of the owpipe intersecting with the guard simultaneously. For a owpipe
interval [ ; ;] whose intersection with the guard seG is not empty, we are interested
in computing the support function representation ofS; as de ned in (4.10) wherel is
an interval of indices of the owpipe, [;j ] in this case andG is a polyhedral guard set.
We shall illustrate the algorithm for intersection with a single constraint which can be
extended to a list of constraints of polyhedrals as shown in section 4.4.

Using (2.17), we have the following relation for support function oB5:

supsg(l):maxfsup ane(D;risup hva(l)g (4.11)

To solve (4.10), we modify our algorithm 4.2 presented in the previous section with
additional branch and bound technique. As we solve th&k minimization problems
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Algorithm 4.3 Computing the max of mins while solving the minimization problems
simultaneously
Require: Functions [f ;f1] for each convex set of the owpipe interval [ i; j]andtol 2 R

Ensure: [Imax; Umax] such that [max < maxff,inin pil ;f,’mng <Umax and Umax Imax <= tol.
1: stop false

2: list | of sample points.

3: Boolean vectoractive f This vector keeps track of the discarded set of problents
4: lmax 1

5: while !stop do

6: for k=1i! j do

7: optprbe  init _problem(f ¥)

8: opt_prby:minbrak () fbrackets the function minima with 4 pivotsg
9: active[j] true fInitially all the problems are activeg
10: I:push_back opt_prby:get.next_sample())

11:  end for

12: s l.choosesample()

13:  Umax 1

14: for k=1i! j do

15: if active[k] then

16: opt_prby:update_boundqs)

17: [lk;uk]  optprbg:getboundy)

18: if ukx <l max then

19: activelk] false fDiscarding the problemg
20: end if

21: if Ix >1max then

22: Imax Ik

23: end if

24: if Uk > Umax then

25: Umax Ugk

26: end if

27: end if

28: end for

29: if 8k 2 [i;j] & activelKk], ux Ik <tol then

30: stop true

31: endif

32: end while

simultaneously,k being the size of the intersection owpipe interval , each of the mini-
mization problem updates its lower and upper bound on the minima iteratively. Since we
are interested in computing the max of the mins, we compute the max of the upper and
lower bounds of all the minimization problems at every iteration. If the upper bound on
the minima of a minimization problem is less than the max of the lower bound computed
for all the problems, then the problem isdiscardedfor further computation since we know
that it is is not going to contribute to the nal result (branch and bound). We discard
as many problems as we can at each iteration and stop until the di erence between the
upper and the lower bound is less than a given tolerance value for all the remaining
problems. The maximum upper bound of all the problems that remains at the end is
returned. The algorithm is illustrated in 4.3.
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Algorithm 4.4
Require: Flowpipe interval [ ; ;] of sizeN, a split sized and a polyhedral guard setG.

Ensure: Collection of convex setsS'Gk, where 1 k ceil(N=d).
1: for k=0"! ceil(N=d) 1do

2. | i+d k

33 u low+d 1

4: S('Bk chull( |\ G;:::; u\ G)
5: end for

4.3.2 Convex Hull with Flowpipe Interval Splitting

Applying convex hull to the union of the intersection of the convex sets of the owpipe
with the guard set solves the problem of having numerous initial sets at the next location
after a discrete transition, but it brings in larger over-approximation error. To trade-o
between the over-approximation error and the speed of computation, we introduce the
idea of what we callsplitting the owpipe interval before intersection. A user can supply a
split sized, whered should be at most the size of the owpipe interval that intersects with
the guard set. What it means is that the owpipe interval is split into smaller intervals
of size at mostd and then we compute the convex hull of the union of the intersection
of the convex sets of these smaller intervals with the guard set. Hence, for a owpipe
interval of sizeN with a split number d, we are expected to geteil(N=d) convex sets as
the result. Larger the split size, lesser will be the resulting number of convex sets and
hence larger the over-approximation error but faster the computation. Convex hull with
splitting is illustrated as pseudo code in Algorithm 4.4,

4.4 Intersecting a Set of Convex Sets with a Polyhe-
dron

We assume in this section that the polyhedron is given to us in H representation, i.e., as
an intersection of halfspaces. We rst take a look at the intersection of a single convex
set X with a polyhedron P. SinceP is an intersection of halfspaces, we can apply lemma
3.3 repeatedly to obtain the support function of its intersection with a convex seX :

_ R P
Lemma 4.3. supxe (I) = lerlf_ ,SUPx ( 11D I
This is a convex optimization problem ovem variables wherem is the number of con-
straints in P.

In our implementation, we compute the intersection with each halfspace separately. We
intersectX with each halfspace oP separately and combine the results with the following
approximation

SUupx\p (\) minmsupx\f n:x g(\) (4-12)

For the intersection of a collection of convex sets with a polyhedrdn, we take the convex
hull of the intersection of each ; of the owpipe sectionl \ that intersects with P. Each
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halfspace ofP is considered separately. Therefore, for the intersection of the owpipeg
with the j™ halfspace ofP, we must minimize:

fi()=sup,C nj+ (4.13)

Applying the same approximation for polyhedron approximation as in 4.12, we obtain
the approximation:

supy, (') =max min inf f/( ): (4.14)
i2l kj=1;:;m 2R O

As with 4.11 we can use &ranch and boundalgorithm to eliminate the instances of, |
for which the upper bound off | ( ) is lower than the largest of the lower bounds.

4.5 Computational Optimization

The computation of the sequence; amounts to a symbolic integration of the ODE (2.20),
so the support function values of ; depend on the support function values of ; 1, etc.
This gives us the following limitation, which will become an important when we consider
intersections:

Assumption 4.1. To computesup . *, we also need to computsup j “forj =000
1

There is a partial remedy to this problem. Consider the case where we are interested
in computing a subsequence of the owpipe approximation;, say fori 2 [c;d]. Under
Assumption 4.1 this requires us to compute thd + 1 sets with i 2 [0; d]. We can reduce
this computation burden as follows. The sequence; is constructed such that each set
covers the owpipe over a known time interval {j;ti+;]. We decomposing the system
into its autonomous dynamics U = ;) and its input dynamics (X = ;). Recall that

for autonomous dynamics, the set of states reached at exactly tinigis X, = eMc<X.
Starting the owpipe computation for the autonomous dynamics fromt = t. instead of

t =0, we end up with fewer sets to compute. Let

X;:ii0; %) = post eMteX;;; (4.15)
0iiiiy &iiiiy g)=postg;U; (4.16)

such that } and | cover the respective owpipe on the same time intervaltf ti.; ].
Then using the superposition principle we have that ¥ ‘' covers the owpipe ofX
and U on the time interval [t;;ti+1]. This means we only need to compute thd c+1
values of (4.15). While (4.16) still requires the computation ofl + 1 values, the setU is

in practice often simple, e.g., a hyperbox, so that its support function can be computed
much quicker than that of X .

In our minimization algorithm to compute the support function of the owpipe-guard
intersection set, we need to sample the; frequently in new directions. The above
observation largely reduces the computation overhead.
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4.6 Case Studies

We illustrate the di erence of our improved discrete image operator (2.32) and the stan-
dard discrete image operator (2.30) in terms of precision and computation time, on some
case studies. We also compare our approach of computing the convex hull of the convex
sets covering the owpipe before intersecting with the guard set using the branch and
bound method illustrated in section 4.3.1. In the comparisons below, we refer our new
discrete image operator given in (2.32) as LBS intersection. LBS here stands for Lower
Bound Search algorithm that we principally use to precisely compute the intersection
of support function represented sets with polyhedral guard sets. Regarding clustering,
we cluster the convex sets before (-) or after (+) we compute the image of the discrete
transition. We consider as alternatives the template hull of all sets (TH), the convex hull
of all sets (CH), and a mix of both (template hull of about 30%, then convex hull). 30%
here means the percent aflustering factor described in theclustering part of section 2.4.

The case studies we use to illustrate are the simple bouncing ball model, the Itered
oscillator and the colliding pendulum model. We also test our method on the navigation
benchmark model given in [FI04] but do not make comparisons.

2 =
8 8
[] 3]
> i > i
12 12
position position
(a) Reachability upto xpoint with LBS in- (b) Reachable set diverges with standard
tersection discrete image operation after the 5th jump.

Figure 4.6: Reachability up to xpoint with LBS intersection which is not possible with
standard discrete image operation.

Bouncing Ball The bouncing ball model consists of a hybrid automata with a single
location having one and only self transition. The system has two variables namely the
position x and the velocity v of the bouncing ball. The ow equation in the location is
givenbyx = vandv = g, wheregis a constant setto 1. The location invariantisx 0.
The self transition has the guardx 07 v < 0 and an assignmen¥® =  c:v, where

Cc is a constant set to 0.75. The constant accounts for the damping e ect during the
jumps. Figure 4.6(a) shows the computed reachable set with LBS intersection along with
convex hull clustering with branch and bound as described in section 4.3.1. Notice that
here, the convex hull clustering is done before computing the assignment map (denoted
by CH ). With a time step of 0.001s and box directions, the xpoint is reached after 22
jumps in 0.909s. With the same time step and directions, the standard discrete image
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operator with either template or convex hull clustering does not reach xpoint. The

error is so large that the 5th jump reaches higher than the 4th and further jumps takes
the reachable set to diverge to in nity. Figure 4.6(b) shows the result on 5 jumps with

standard discrete post with template hull clustering.

Table 4.3 shows the time and precision comparison of the proposed discrete image compu-
tation with LBS intersection and the standard discrete image operation with clustering.
We make comparison with the di erent variants of clustering on the standard discrete
image operation as they a ect the precision and computation time of the reachable set.
We compute the reachable set for 5 jumps of the ball. The time stepfor the experi-
ments is taken to be 0.025. For precision comparison, we consider the absolute di erence
between the empirical height of the 5th jump and the exact height and compute the
percent error, i.e, percent error in height 5j(hempirica  h)=hj. A close approximation of
the exact height is computed by running the reachability algorithm on support functions
with very small time step (0.001) and many directions (uni32). The percent error in
height is shown in the last column of table 4.3.

Table 4.3: Speed versus accuracy comparison of di erent variants of the discrete image com-
putation, applied to the bouncing ball example. The accuracy shows in the percent error of the
height of the 5th jump

direction err clustering runtime(s) percent err

standard discrete image computation

box TH* 0.325 109.045
box TH&CH™ 0.613 109.045
box CH* 2.408 109.045
oct TH™ 0.408 12.8319
oct TH&CH ™ 0.625 12.8319
oct CH* 0.935 12.8319
discrete image with LBS intersection

box 0.0 TH* 0.198 0.35604
box 00 TH&CH™ 0.214 0.35604
box (040] CH* 0.216 0.35604
oct 0.0 TH* 0.391 0.055
oct 0.0 TH&CH* 0.394 0.055
oct 0.0 CH* 0.392 0.055
oct 0:.01 TH* 0.381 0.152
oct 01 TH* 0.382 0.633
LBS intersection with convex hull clustering

box 10 CH 0.2 2.556
box 02 CH 0.2 2.556
box 01 CH 0.2 2.556
box 001 CH 0.195 0.511
box 0.0 CH 0.196 0.35604
oct 1.0 CH 0.382 1.12179
oct 01 CH 0.382 1.12179
oct 0.0 CH 0.385 0.098
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In the bouncing ball model, we see that the di erent clustering options does not make a
di erence in terms of precision. This is because very few owpipe segments intersect with
the guard constraint with the chosen time step. The best precision obtained is 0.055%
error with our LBS intersection. The next best is 0.098% error with LBS intersection
operation with convex hull clustering using branch and bound. Also notice the di erence
in percent error with varying error parameter (column 2) with our precise LBS intersection
using branch and bound. The error value here signi es the intersection error tolerance
value when computing the support function of the owpipe-guard intersection set with
the novel sandwich algorithm. Also observe that the percent error does not increase
above a threshold on increasing the error paramater value arbitrarily. This is because
our minima bracketing algorithm (see section 3.2.1) computes an optimal gap on the
exact support function and this optimal gap computed by the minima bracketing routine
is the maximum intersection error that could be tolerated. Hence, specifying a error value
larger than this threshold will have no e ect.

We also make comparison with a timed bouncing ball model which is constructed by
adding an additional time variable with dynamicst_= 1 in the ow equation of the
location. In the transition assignment, the time variable is not changed, i.et® = t.
The additional time variable makes the timed bouncing ball a three dimensional system.
The experiments are performed with a time step = 0:01. Due to a small time step,
more owpipe segments intersect with the guard constraint and thus we see the e ect
of di erent clustering parameters. The precision and time comparison with the precise
LBS intersection method is shown in table 4.4. The height of the 5th jump is taken for
precision comparison because with large error in the discrete image computation, the
height of the later jumps goes higher than the height of the previous jumps and diverges
to in nity.

Table 4.4: Speed versus accuracy comparison of di erent variants of the discrete image com-
putation, applied to the timed bouncing ball example. The accuracy shows in the height of the
5th jump

direction err clustering runtime(s) height

standard discrete image computation

box TH* 1.3 3.054
box TH&CH ™ 26 2.209
box CH* 31.2 2.016
oct TH* 3.0 0.972
oct TH&CH ™ 12.7 0.901
oct CH* 36.6 0.844
discrete image with LBS intersection

box 00 TH* 1.3 1.080
box 00 TH&CH™ 3.4 1.017
box 00 CH" 55.9 0.904
LBS intersection with convex hull clustering
box 10 CH 0.8 1.175
box 01 CH 0.6 0.815
box 00 CH 0.6 0.807
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Filtered Oscillator A ltered oscillator is a switched oscillator system with a series
of rst order lters to the output x of the oscillator. The Iters smooth X, producing

a signalz whose amplitude diminishes as the number of Iters increase. The oscillator
is an a ne system with variables x, y that switches between two equilibria in order to
maintain a stable oscillation, which together withk lters yields a parameterized system
with k + 2 continuous variables. The hybrid automaton model of the oscillator and the
Iter are shown in Figure 4.7 and Figure 4.8 respectively. In the hybrid automaton model
of the oscillator, a;, a,, Xo, Yo and c are constants. For our experiment, we take; = 2,

a = 1, Xo= Yo =0:7 andc = 0:5. The invariant of location np, pp, pn and nn

is given byx 0"y (=X, x 02y (=o)X, x 0"y ( c=x)X
andx 07y ( c=x)Xx respectively. Notice that there is no guard constraint and
assignment map over the transitions. This means that the guard set is true and the
assignment map is identity. All the transitions have the synchronization labédiop.

The Iter model is simply a hybrid automaton with a single location. There is no con-
straint over the location invariant, i.e., the location invariant is true. The variableu is

the input variable of the Iter and x is the controlled output variable. ¢ is a constant
taken to be 5.

pp
X 07y ( c=x)X
X=aiX aiXo™y= ay+ ayo

np W H
X 07y ( c=x)X J op -

= aX  aXe” Y= ay+ ayo
L

X<

hop hop

nn
hop

"
X 07y ( c=x)X
‘ X=X+ aXo™ Y= ay ao

X 07y ( c=X)Xx -
X=aXx+ aXe™ y= ay ayo ‘

Figure 4.7: Hybrid Automaton Model of the Switched Oscillator

Figure 4.8: Hybrid Automaton Model of the Filter
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Table 4.5: Speed versus accuracy comparison of di erent variants of the discrete image com-

putation, for computing a xed-point of the ltered oscillator example. The accuracy shows in
the max amplitude of the output signal z

vars " clustering runtime(s) max.z iter
standard discrete image computation

6 0.01 TH 0.3 0.570 5
18 0.01 TH 21 0.361 9
34 0.01 TH 87 0.243 13
66 0.05 TH 174 0.291 23
130 0.05 TH 132.7 0569 39
130 0.025 TH 206.0 0.166 41
precise intersection of convex hull with branch & bound

6 0.01 0 CH 0.4 0.567 5
18 0.01 0 CH 24  0.356 9
34 0.01 0 CH 9.0 0.237 14
66 0.05 01 CH 17.3 0.243 23
66 0.05 001 CH 181 0.232 24
66 0.05 0001 CH 27.4  0.192 37
66 0.05 0 CH 55,6 0.190 71
130 0.05 0.1 CH 126.0 0.339 39
130 0.05 0.01 CH 126.5 0.314 39
130 0.05 0.001 CH 2055 0.190 39
130 0.025 0.01 CH 1742 0.128 65

Table 4.5 shows results for up to 130 state variables, for both standard discrete image
computation and the proposed variant with precise intersection. All instances are com-
puted using box directions. The precise intersection variant outperforms the standard
operator in precision, and often also in speed. In this example, the capacity to compute
the intersection up to a given error (column 3) shows its bene ts: a small but not too
small error greatly reduces the analysis time, at an acceptable loss in accuracy.

Figure 4.9 shows the reachable set for a Itered oscillator model with 16 Iters and hence
having a total of 16+2 continuous variables.
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Figure 4.9: Reachability up to xpoint computation for a 16th order Itered oscillator
(18 vars) with LBS intersection routine.

Colliding pendulums This model consists of two pendulums of massa and length

" such that they touch each other when at rest. For simplicity, the pendulums are
considered to be point mass, i.e, their respective radius is 0. At rest, both the pendulums
are at origin. To start the oscillation, one of the pendulums is taken some distance away
from the origin and released. For our experiment, we displace the left pendulum from
the origin to start the oscillation. This swinging pendulum then collides with the right
pendulum at rest and transfers its momentum. The right pendulum swings and returns to
collide again with the left pendulum and so on. The pendulum and the collision is modeled
with two separate hybrid automata and they are composed. Both the hybrid automata
consist of a single location and the system have ve variables namely the displacement of
the left pendulumx,, velocity of the left pendulumyv;, displacement of the right pendulum
Xr, velocity of the right pendulum v, and time. The hybrid automaton model of the
pendulum and the collision are shown in Figure 4.10 and Figure 4.11 respectively. The
guard in the transition of the collision hybrid automata is given byx, == x, v, >v, and
the transition assignment is given by, = e » v, = e:\f. eis the constant of elasticity
and it is taken to be 0.95 . The continuous dynamics of the system is given by the ow
equation in the location of the pendulum model.m, ~ are the mass and length of the
pendulum, taken as 0.05 and 3 respectivelg is the constant of gravity taken as 10. The
time variable has the ow t.= 1 which is captured in another hybrid automata with only
one location and is composed with the system.
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pendulum

Figure 4.10: Hybrid Automaton Model of the Pendulum

X == X "vy >V,

vi= ey = e\

always

X| Xr

Figure 4.11: Hybrid Automaton Model of the Collision

The speed and accuracy comparison is shown in table 4.6. In this model also, there is
not much e ect of the di erent clustering options over the accuracy because very few
owpipe sections (infact only 1) intersect with the guard constraint with the taken time
step ( =0:025). Also, it is observed that for this model LBS intersection lags behind in
terms of computation time but precision-wise, LBS intersection outperforms the standard
discrete image computation.
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Table 4.6: Speed versus accuracy comparison of di erent variants of the discrete image com-
putation, applied to the Colliding Pendulum example. The accuracy shows in the percent error
in the maximum displacement of the left pendulum after the 28th collision.

direction err clustering runtime(s)

percent err

standard discrete image computation

box TH* 0.885 15.391
box TH&CH™* 0.884 15.391
box CH* 0.907 15.391
oct TH* 2.682 15.391
oct TH&CH™* 2.683 15.391
oct CH* 2.672 15.391
discrete image with LBS intersection
oct 0.0 TH* 6.438 10.090
oct 00 TH&CH* 6.421 10.090
oct 0.0 CH* 6.413 10.090
oct 0.01 TH* 6.029 10.686
oct 0:.05 TH* 6.074 11.360
oct 01 TH* 6.08 11.360
LBS intersection with convex hull clustering using branch & bound
oct 0.0 CH 6.369 10.140
oct 0.01 CH 6.032 10.691
oct 0:.02 CH 6.088 11.339
oct 0.05 CH 6.1 11.360
oct 010 CH 6.076 11.360
oct 1 CH 6.078 11.360
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(a) Projection of the reachable set on time,
velocity variables using standard discrete
image computation

(b) Projection of the reachable set on time,
velocity variables using precise discrete im-
age computation (LBS)
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(c) Projection of the reachable set on time, (d) Projection of the reachable set on time,
displacement variables using standard dis- displacement variables using precise dis-
crete image computation crete image computation (LBS)

Figure 4.12: lllustrating the precision in the computed reachable set with LBS inter-
section. Notice the error accumulation with collisions with the standard discrete image
computation.

Navigation Benchmark The navigation benchmark presented in [FI04] models the
motion of an object in R? plane. The plane in which the object can move is partitioned
into an n m grid and each cell of the grid has a designated desired velocity. The
actual velocity of the moving body is given by the di erential equationv = A(v  vg), A
being a2 2 matrix. The reader is referred to [FI04] for more details. Di erent instances
of this model is provided by the author in the website (http://www.cse.unsw.edu.au/ ans-
gar/benchmark/) and we run our algorithm on them, namely NAVO1, NAV02, NAV04.

Fixpoint is not found for NAVO1, NAV02, NAV04 model with the standard discrete
image computation. It is also not found with the LBS intersection. Figure 4.13 shows
the computed reach set with the LBS intersection routine with convex hull clustering on
the NAV04 model.

Figure 4.13: NAV04
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Chapter 5

SpaceEx: A Tool Platform for
Hybrid Systems Verification

SpaceEx is a tool platform for safety analysis of hybrid systems. It is so far the most
scalable tool capable of handling hybrid systems with a ne continuous dynamics with as
many as 200 variables [FLGD11]. SpaceEx is highly automated and analysis can be ne
tuned using a number of parameter settings at the disposal of the user. SpaceEx consists
of (1) The Analysis Core, (2) The Web-Interface and (3) A Model Editor. All three
components of SpaceEx can be downloaded from the website [http://spaceex.imag.fr/].

The analysis core is a command line engine that takes the hybrid system speci cation
under analysis in a XML based format which we call thesX format. The tunable
parameters of the analysis could be either specied as command line options or in a
con guration le. The core engine generates the corresponding output in the speci ed
output le(s) in the speci ed format(s).

The model editor is a GUI based editor for specifying the hybrid system as a network of
hybrid automata. The model is saved in a le in the SpaceEx's SX format.

The web interface is a GUI for running the analysis core over a web browser. The web
interface calls the analysis core via a web server which may be running remotely or locally
in a virtual machine.

In this chapter, we discuss about thénalysis Core of SpaceEx. It is implemented in the
standard C++ programming language [Str86].1

5.1 Requirements for an Extendable Tool Platform

Our goal is to enable the implementation of a number of di erent approaches to computing
the set of reachable states using Alg. 2.2, as well as enabling their eventual combination
and further enhancements.

We consider the following approaches for computing reachability and safety, which we
nd amenable to Alg. 2.2:

Constant continuous and a ne discrete dynamics

1This chapter contains excerpts from the document [Fre] and from the publication [FR09].
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(A) HyTech [HHWT97]
(B) PHAVer [Fre08]

A ne continuous and discrete dynamics

(C) d/dt [ADMO2]

(D) Using zonotopes [Gir05]

(E) Using support functions [GLO08]

(F) Algorithmic improvements to compute post for D,E [GGMO06]

Nonlinear dynamics and abstraction re nement

(G) Approximating nonlinear dynamics by hybridization [ADGO03]
(H) Forward/backward re nement [FKRO6]
() CEGAR-type approaches [FIK08]

The reachability techniques in A,B are for piecewise constant derivatives, exact as well
as overapproximative over an in nite time horizon. In C, a ne continuous and discrete
dynamics are overapproximated by discretizing time over a nite time horizon. In D and
E, this technique is improved by exploiting the advantages of a particular representation
of continuous sets, plus some low-level algorithmic improvements. In G, the techniques
for a ne dynamics are extended to nonlinear dynamics by overapproximation based on
partitioning the state space. In H, a very simple abstraction/re nement technique is
used for deciding safety, and more sophisticated ones basedoonnter example guided
abstraction re nement (CEGAR) can be found in I. Approaches A{E constitute low-level
algorithms that deal with computing post-images for particular dynamics, while G{I are
high-level techniques that use low-level reachability algorithms as an intermediate step
in a larger scheme.

An analysis of common elements and di erences shall provide us with the basis for our
design.

5.1.1 Common Elements

The system under examination is described as a network of interacting automata. The
speci cation consists of the set of initial and (for safety) forbidden states. In addition, the
user has to provide analysis parameters such as discretization time steps or partition sizes.
For the analysis, a parallel composition operator transforms the automaton network into

a single automaton, possibly on the y. The set of reachable states is computed using
some variant of Alg. 2.1. The resulting set of states undergoes some basic processing
(intersection with forbidden states, projection onto variables of interest), and is output

to a le or visualized.

5.1.2 Dierences

The approaches we consider di er along the following lines:
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5.1.2.1 Set Representations

Polyhedra (A,B), zonotopes (D), and support functions (E) have each various advantages
and disadvantages on fundamental set operations. For example, for polyhedra in con-
straint form computing intersection is cheap and Minkowski sum is expensive, while for
zonotopes Minkowski sum is cheap and the intersection of two zonotopes is not generally
a zonotope.

5.1.2.2 Discrete post-computations

Various exact as well as overapproximative techniques for computing the image of dis-
crete transitions are available (such as taking the convex hull), depending on the set
representation. Most techniques apply to discrete dynamics in the form of a ne maps
(resets). For example, the image of an a ne map is cheap for zonotopes and polyhedra
in generator form, but not for polyhedra in constraint form.

5.1.2.3 Continuous post-computations

Computing the image of a set after time elapse generally necessitates an overapproxima-
tions. Di erent techniques are applicable according to the type of continuous dynamics
as well as the set representation. For A,B the image is over in nite time, while C,D,E,F
discretize time and compute it over a bounded interval. Even for just linear dynamics,
variations abound. For example, F avoids the wrapping e ect by essentially reordering
the computation and its approach is applicable to D,E.

5.1.2.4 State exploration

Most approaches are de ned for forward reachability, but can equally be applied as back-
ward reachability by reversing the system dynamics. One direction may work better than
another depending on the characteristics of the system [Mit07], and H combines both. |
requires keeping track of the dependency graph between symbolic states, i.e., which are
the successor states of which. The explored states need to be stored in some form of
passed/waiting list, and at each iteration the explored states need to be separated into
those that are new and those that already been explored, which involves some form of
di erence operation (exact, overapproximative, see A).

5.1.2.5 Model transformations

Hybridization (G) and abstraction/re nement techniques (B,H,l) involve duplicating
(splitting) locations, adding and removing transitions, and modifying dynamics and in-
variants. Such changes in the model must be compatible with the state exploration if
they are to be carried out on the vy, or if state representations are to be compatible with
di erent variants of the same model.

5.1.2.6 High level algorithms

In abstraction/re nement schemes like H or |, computing the reachable states is just one
step in a larger process. They require certain low-level information like the dependency
graph and counter examples to be accessible, and entail model transformations.
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5.1.2.7 Automaton composition

Composition operators di er in the type of communication (synchronization) and how
variables are shared (A versus B).

5.2 Design Speci cation

5.2.1 Principal Elements

Based on the survey and Alg. 2.2, we de ne the followingrincipal elementsand their
operations:

automaton representation : add locations, transitions

automaton network representation (controls composition; itself an automaton) :
add automata

discrete and continuous set representations : inclusion and emptiness tests, trans-
forms (intersection, a ne maps, etc.)

adapt: convert sets and dynamics to the right form (if possible)
PWL : add, pop symbolic states
continuous-post :transform a symbolic state into a set of symbolic states

discrete-post : transform a symbolic state into a nite set of symbolic states

Implementation choices depend on each other. E.g., a speci ¢ continuous-post might only
apply to a ne dynamics and require polyhedra as set representations. At the same time,

we would like to keep the concrete classes encapsulated as much as possible; whoever
writes the polyhedron class may not know anything about hybrid automata.

This leads us to the following design principles:

Implementations for the principal elements should be interchangeable.

The principal elements should be used exclusively in Alg. 2.2 (instead of creating
new algorithms that add elements or change the order); this shall guarantee that
implementations from di erent sources remain interchangeable and as compatible
as possible, avoiding divergence between di erent implementations.

Compatability between principal elements is optional. We assume that anyone
selecting a set of principal elements to create a scenario has expert knowledge. It
su ces that an exception is created when an incompatibility is detected during
execution.

Low-level operations on continuous sets take up most of the computation time,
so the overhead of polymorphism, operations on discrete sets etc. is considered
negligible.
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The number of (convex) continuous sets created during exploration is large com-
pared to the number of discrete sets, justifying additional e ort, e.g., to compact
sets of symbolic states.

The number of di erent set representation is small and varies little compared to
the other principal elements (post-operators, PWL). It is therefore acceptable that
adding a new set representation requires updating the other principal elements
(which is required for applying the visitor pattern in certain components).

Advanced algorithms modify the system model (automaton network) on the y
or between re-runs of the reachability algorithm. Set representations need to be
compatible with corresponding changes in locations and transitions, e.g., using keys
to refer to previous versions of the location or transition.

5.2.2 Tool Architecture and Execution

We de ne for each of the principal elements an abstract base class, from which implemen-
tations must be derived. We call a set of implementations for the principal elements a

scenario implementation and de ne a scenario class to hold references to them, similar to

the strategy design pattern. Given a scenario object, our implementation of Alg. 2.1 uses
these references to instantiate automaton and set representation, and carry out operations
on symbolic states and the PWL.

A run of the tool (assuming the model has already been generated possibly in a graphical
editor) consists of the following steps, as shown in Fig. 5.1:

1. The user provides the input : models (XML), user commands, scenario selection,
output selection.

2. The input le is parsed to generate a general representation of the automata (tran-
sitions/locations) and sets (initial states, bad states).

3. The general automata are adapted to the right set representation and dynamics
according to the scenario (adapt).

4. The automaton network is instantiated according to the scenario.

5. The user selected algorithm (reachability, safety) is executed, using the elements
provided by the scenario (PWL, post).

6. The output is created : visualization, le export (model, states).

User options are used to select the scenario, additional options can be passed directly to
the scenatrio.

5.3 Tool Implementations

SpaceEx includes default, straightforward implementations for discrete sets, automata,
automata networks and the PWL (linked list). For more details, the reader is referred
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Figure 5.1: Schematic of the tool architecture (solid arrows represent acquaintance be-
tween objects, dashed arrows represent instantiation). Grey arrows indicate in which
order the di erent components are executed

to a similar implementation in [Fre08]. Tool implementations that use these must only
provide the remaining elements: representations of sets, dynamics, its adapters, and
post-operators. The analysis core of SpaceEx currently implements two scenario for the
reachable set computation, namely the PHAVer scenario and the LGG scenario. PHAVer
scenario is for the reachability analysis ofinear hybrid systems modeled with LHA.
The algorithms used here are similar to that used in the tool PHAVer [Fre08]. It is to
be noticed that hybrid systems with a ne continuous dynamics cannot be run in the
current implementation of the PHAVer scenario although the tool PHAVer run on them
by approximating the a ne dynamics with linear dynamics using state space partitioning.

The LGG scenario is for the analysis of hybrid systems having a ne dynamics and non-
deterministic inputs. LGG implements a variant of the support function based reach-
ability algorithm given in [GLO8]. The LGG scenario comes with a number of tunable
parameters to be set by the user before initiating the reachable set computation.

Recently asimulation scenario has also been added to SpaceEx which generates simula-
tion traces on the provided initial points. The simulation scenario is out of scope of this
thesis.

Options can be set via the command line or via the web interface. The con guration les
saved by the web interface can also be read directly by the command line tool. Note that
it is possible to display the command line generated by the web interface, which may be
useful for creating scripts etc.

We rst present the general reachability algorithm in SpaceEXx.

5.3.0.1 Reachability Algorithm

The reachability algorithm using symbolic states presented in section 2.1 in chapter 2
is executed. Recall that reachability for hybrid automata is undecidable in general,
and this procedure is not guaranteed to terminate. Upon termination, the result is an
overapproximation of the reachable states.
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The following options are available to control the reachability algorithm:

Max. iterations : Maximum number of iterations for the reachability algorithm,
which is the total number of discrete post computations on symbolic states. If
negative, the algorithm terminates only when a xed point is reached.

Relative and absolute error : These values are used when comparing oating
point values and deciding whether they are considered equal. This impacts mainly
tests for containment and emptiness of objects.

Merging passed with waiting list : When a new stateA contains a stateB
already on the passed listB is by default replaced byA on the passed list. This
merging process incurs the cost of containment checking and can be disabled.

5.3.1 Phaver Scenario

The Phaver scenario is for LHA models. Ainear hybrid automaton (LHA) is a hybrid
automaton whose continuous sets and relations are given by convex linear constraints
over, respectively, the variables (invariant, initial states), the derivatives ( ow), and the
variables distinguishing before and after a jump (jump relation). This means that the
continuous dynamics are nondeterministic with constant bounds, e.g., 1 x 2 or
x+y = 0. The discrete dynamics are nondeterministic ane, e.g.x°=0or x°= a x+ b,

We represent continuous sets as polyhedra and provide a straightforward implementation
based on linear programming to decide containment and emptiness. Fourier-Motzkin
elimination is used for existential quanti cation. A generic Ip-solver interface allows us
to use di erent linear programming solvers, such as the GLPK [Mak09].

The continuous dynamics are modeled as the continuous set of derivatives for each loca-
tion. The discrete dynamics (jump relations) are modeled as a discrete set over primed
variables (after the jump) and unprimed variables (before the jump).

For LHA, the post-operators are rst-order predicates whose solutions can be computed
using the above standard operations on polyhedra.

5.3.2 Support Function Scenario

For a ne continuous and discrete dynamics, an e cient approach to compute the reach-
able states has been proposed in [GL0O8]. The continuous dynamics is of the form (2.20)
and the discrete dynamics is of the form given in (1.2). Given a set of directions, it uses
polyhedral over-approximations, where each face of the polyhedron is a tight bound on
the original set in one of the given directions.

To make the approach scalable, the support function scenario uses a combination of
operations on implicit set representations (support functions) and overapproximation
steps.

Two operators are necessary to compute the reachable states: computing the states
reachable by time elapse and computing the image of a set of states that take a transition.
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Figure 5.2: A two-dimensional system moving in circles around the origin

(@ =05 (b) =0:2 (c) =0:05

Figure 5.3: A owpipe (bold in black) and the convex sets generated by SpaceEx to
overapproximate it, for di erent values of the sampling time

In the following we consider what happens to a convex set of states in a single location
if we let time elapse. Starting from the initial set, the LGG scenario computes a series
of convex sets that cover the owpipe. Each convex set covers a chunk ofime out of
the owpipe, so that after having computedk of these sets we have covered the states
that are reachable fromX, up to time k . We call the sampling time Since we can't
compute sets up to in nity, we de ne an upper bound on the time span we consider for
each owpipe, called thelocal time horizon To know in detail about the construction of
convex sets that cover the owpipe, refer [GG09], [FLGD11] and section 2.3.1.

Example 5.1. Consider the system shown in Fig. 5.2. We consider locatign with
dynamics

X

Yy = x

which makes its states move around the origin in circular trajectories. We consider as
initial set the state (x = 1;y = 0), which gives rise to the circular owpipe shown in
bold in Fig. 5.3(a). The LGG time elapse algorithm with sampling time = 0:5 and
local time horizon 1:5 produces the three convex sets shown in Fig. 5.3(a), which cover
the owpipe. For smaller sampling times, the accuracy increases, as shown in Fig. 5.3(b)
and Fig. 5.3(c).
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(a) box (b) octagonal (c) 16 uniform

Figure 5.4: Flowpipe overapproximation for di erent choices of template directions

From looking at the example, it seems that by reducing the sampling time, we might get
arbitrarily close to approximating the owpipe. But there is another source of overapprox-
imation: The nal result of the LGG algorithm are template polyhedra, i.e., polyhedra
whose faces have a direction that is given a priori. The use of template polyhedra allows
one to avoid costly operations on polyhedra such as convex hull and existential quanti -
cation, which can be exponential in the number of variables. The price for this scalability
is the degree of overapproximation that such an a-priori choice incurs. As the number
of provided directions goes to in nity (assuming they are evenly distributed), the error
goes to zero. In the worst case, the number of directions needed to fall under a given
error bound is exponential in the number of variables. Experiments have shown that in
practice a low number of directions may su ce, but this depends on the system and the
property at hand.

The LGG scenario provides three options to choose the template directions for an
dimensional system:

box directions, i.e., 21 directions aligned with the axes, i.e.xj = 1, xx = 0 for
k6 i;
octagonaldirections, i.e., 212 directions, consisting of all combinations ok; = 1,

Xp= 1,X¢=0for k6 ij;

uniform directions, i.e., a set oin directions that are (as well as possible) uniformly
distributed.

Example 5.2. Figure 5.4 shows the owpipe of the initial statgdx = 1;y = 0) with
sampling time = 0:5 and local time horizon1:5 for box, octagonal and 16 uniformly
distributed directions.

Intersection with the invariant All states that are reachable within a location
must satisfy the location's invariant. For the owpipe computation, this is achieved by
intersecting the polyhedra that cover the owpipe with the invariant.

5.3.2.1 Computing successors of transitions

Each owpipe that is created by the time elapse step is passed separately to the compu-
tation of transition successors. To compute the successor states we compute the states
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that satisfy the guard, and then map them according to the assignment of the transition.
The states that satisfy the invariant of the target location are the successor states.

Assignment If the assignment is invertible and deterministic, i.e., of the fornx :=
Ax + by with A being an invertible square matrix, the mapped states are computed
exactly by mapping the polyhedron. Otherwise (non-invertibleA or nondeterministic
inputs), the mapped states are computing using a template overapproximation with the
same template direction as used for time elapse.

Clustering  Each owpipe consists of a possibly large number of convex sets that cover
the actual trajectories. When computing the states that can take a transition, clustering
reduces this number. It iteratively replaces a group of sets of the owpipe with a single
convex set, their template hull. An option calledclustering percentagedetermines how
many sets come out of this process: A percentage of 0 means no reduction in the number
of sets, all sets are passed to the aggregation step outlined below. A percentage of 100
means that all sets are combined into a single set (no aggregation necessary). A value
between 0 and 100 groups the convex sets such that the relative distance (Hausdor ) to
the original is below the given value (smaller values indicate higher accuracy). The sets
coming out of the clustering then go through the aggregation step.

Aggregation  The clustering step creates a certain number of convex sets, each one
spawning its own owpipe in the next time elapse computation. This may multiply the
number of sets with each iteration, leading to an explosion in the number of sets and
slowing the analysis to a halt. To avoid this e ect and speed up the analysis, these
sets can optionally be overapproximated by their convex hull. A faster but more coarse
alternative is to set the clustering percentage to 100, which results in only one convex set
(the template hull).

We describe how to use the owpipe guard intersection with the LBS owpipe guard
intersection algorithm discussed in chapter 4 with the support function scenario.

5.3.2.2 Support Function Scenario with LBS intersection

The LBS intersection is activated by passing a positive argument to thimtersection-
error option. By default, LBS intersection algorithm is switched o and the standard
intersection method is activated. The argument to the intersection-error option instructs
LBS to keep searching for the support function of the owpipe guard intersection set until
the di erence between the upper and the lower bound on the support function value is
less than or equal to . Hence, specifying an argument O should return the most precise
result. Recall that LBS computes the support function by solving a minimization problem
and does the minima bracketing before running the sandwich algorithm [refer chapter 3].
After the minima bracketing, LBS nds a lower and upper bound to the minima. With
the intersection-error switched on, the support function is computed up to atleast the
di erence of lower and upper bound of the support function as obtained after the minima
bracketing and an epsilon speci ed larger than this will have no e ect.

Figure 5.5 illustrates the e ect of the intersection-error on the bouncing ball model shown
in 4.6. Figure 5.5(a) is the most precise reachable set computed by SpaceEx with LBS
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intersection method and Figure 5.5(c) is with the intersection-error set to 1. This is with
box directions, sampling time as 0.2 and for four discrete jumps.

The LBS intersection method has a parameter callechinbrak . This is to set the type

of minima bracketing algorithm to use. Currently, there are two minima bracketing
algorithms to choose from, which can be used with the LBS method - (1) Golden descent
method and (2) Parabolic Extrapolation. Golden descent method is chosen by specifying
the string \gold _desc" and the parabolic extrapolation method is chosen by specifying the
string \parab _desc" to the minbrak option. If nothing is speci ed, golden descent method
is chosen by default. Refer section 3.2.1 to recall the minima bracketing algorithms in
detail.

There is another option namedntersection-method to select the convex hull clustering
with the LBS implementation. By default, the branch and bound algorithm to compute
the convex hull of the intersection of the owpipe with the guard set is used which can
be explicitly set by specifying the string \Ib_.chull". The algorithm is explained in section
4.3.1. The simultaneous solve variant of LBS which does no clustering can be called with
the string \Ib _simult". Refer 4.3 for an explanation of this method.

Lastly, there is an option namedsplit which is used to de ne the split size. This number
de nes the size of the owpipe which will be convex hull-ed before computing its intersec-
tion with the guard set. Split is set to 0 by default which means that all the intersecting
owpipe sections are convex hulled before computing the intersection with the guard set.
Section 4.3.2 gives a detailed description of computing the owpipe guard intersection
with splitting.
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(a) The most precise computation of the
discrete jump with intersection-error as 0

(b) Reach set with intersection-error as 0.3

(c) Reach set with intersection-error as 1

Figure 5.5: Reachable Set computed by SpaceEx for three jumps in the bouncing ball
model with di erent values of intersection-error parameter.
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5.4 Software Engineering Behind SpaceEx

SpaceEx has been designed keeping in mind Robustness and Extendability as the goals.
It is a tool platform which is more than being only a tool because it promises that new
algorithms for hybrid systems reachability could be easily tested and integrated within its
framework. Hence, Its design has been given special attention. In the next subsections,
we discuss about the class structure design and design patterns used in SpaceEx, about
smart pointers, version control, testing and debugging in SpaceEx.

5.4.1 Class Structure Design

In section 5.2, we discussed about what we think are the principle elements of a reach-
ability analysis tool and the di erent possibilities of concretizing them. For example,
the continuous post operator is a principle element and this may have di erent imple-
mentations depending on the type of dynamics in the hybrid automata and the type

of continuous set representation. Also, the type of continuous set representation might
depend on the dynamics of the system and the reachability algorithm per se. Thus we
see that there is a interdependency. The goal is to have a class design which preserves
data encapsulation and also provides ample scope for reusability and extendability. For
the purpose of extendability, we de ned the principle elements as abstract base classes.
Di erent possible concretizations of the principle elements are then implemented as the
derived classes. To counter for the fact that there is a compatibility issue on the type of
concretizations of the principle elements that goes together and at the same time there
is a need of data encapsulation, we implement a separate scenario class which integrates
the di erent concretizations and take care of the compatibility issue. Thus for example,

a polyhedron class derived from the continuous set abstract class is implemented without
considering the type of dynamics or the reachability algorithm. A scenario class acts as a
placeholder for each of the principle elements and chooses the right combination of their
concretizations. This type of class design conforms with th&bstract Factory  design
pattern. The di erent design patterns that we mention in this section are explained in
the book [GHJV94].

Figure 5.6 shows the class hierarchy diagram of thgost operator in SpaceEx as an
example. The postoperator class shown in the diagram is a abstract base class and
shown are the concretizations.

As a tool platform and as an experimental framework, SpaceEx de nes a family of algo-
rithms for reachability, operations on sets, input/output etc. It conforms to theStrategy
design pattern as much as possible which lets the algorithm vary independently from
clients that use it. Dierent algorithms to perform a task are encapsulated as dier-
ent subclass implementations of the common abstract base class. For example, in the
support function scenario implementation in SpaceEx, we compute the support func-
tion of polytopes which are nothing but LP problems. There are di erent algorithms to
solve a LP problem which are encapsulated as separate classes to a abstract base class
called Ip_solver. Figure 5.7 shows the class hierarchy diagram of LP solvers in SpaceEx.
The subclassedp_solverfm, Ip_solverglpk and Ip_solver monniaux implements di erent
algorithms to solve a LP problem.

SpaceEx reachability algorithm implementation often works on aggregate objects like a
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Figure 5.6: Class hierarchy diagram of the post operator in SpaceEx.

collection of continuous sets, a collection of symbolic sets etc. The class design therefore
must provide a way to access the elements of the aggregate objects without exposing the
underlying representation. Thelterator design pattern  is used wherein the aggregate
class have methods which creates and returns an iterator object speci c to its own type.

Visitor design pattern  has been used where we could identify a number of di erent
operations on a class of objects and the operations depend on the concrete type of the
operand object. Figure 5.8 shows the hybrid automaton visitor class hierarchy diagram.
CIF _automaton_formatter, SX_automaton_formatter, print, automaton _to_supp.f_adapter

etc de nes the di erent operations on the hybrid automaton.

To give an idea of the size of SpaceEXx, It consists of 30 namespaces excluding the std
namespace, 628 classes, a total of 571 les (C++ header and source les), 65683 lines
of C++ source code (without comments and blank lines) and a total of 20543 lines of
comments to date.

A HTML documentation of SpaceEx which shows its complete interface with class hier-
archy, collaboration diagram and dependency graphs can be generated from the source
code using the automated document generation tool called doxygen [fSCD].
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Figure 5.7: Class hierarchy diagram of LP solvers conforming to the Strategy Design
Pattern

Figure 5.8: Class hierarchy diagram of the hybrid automaton visitor

5.4.2 Smart Pointers

A smart pointer is a C++ class that mimics a regular pointer in syntax and some se-
mantics, but in addition provides value semantics. An object with value semantics is
an object that one cancopy and assign to Compilers do not take care of the memory
management for normal pointers. For example, when a pointer is assigned a value with
the new operator, it becomes the owner of the object it points to. This pointer has to be
explicitly deleted with the delete operator for this memory to be released. In the case of
copying normal pointers, both the copied and the original pointers then own the object it
points to. Consequently, if one of them is deleted, the memory allocated to the object is
released. Moreover, double deletion could be catastrophic. Therefore, normal pointers do
not have value semantics. Smart pointers does all the required memory management for
the user and hence are called 'smart'. SpaceEx is implemented with the the boost smart
pointers which is called shared _ptr . A documentation of the boost shared pointer can
be found at [0BSP].

The reader is referred to [Ale01] for a deeper insight into the implementation of smart
pointers.
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5.4.3 Revision Control

Revision control is the process of managing multiple versions of a piece of information.
One could list down a number of reasons as to why have multiple versions.

In the context of software development, having multiple versions stored serves as a
development timeline and may help to re ect back and learn from its own evolution.

Another reason could be pointed to the changing nature of the world. Requirements
of a software keep changing over time - the algorithms implemented in a version
may stand old and less e cient compared to the newer versions or sometimes the
old versions may be found better suited later in the future. Hence, it is always a
good idea to keep the older versions in the development process which would allow
to revert back when needed.

Version control also helps in recovering from errors. If a new change turns out to
be faulty, then one can revert back to an older working version. Revision control if
used wisely could largely help in the debugging process as well.

Revision control helps in the collaborative development process. For most of the
cases, softwares are developed by a number of developers, many a times distributed
geographically. Developers may write code which con ict with each other and needs
to be resolved. A good revision control system must be able to resolve such con icts.

Revision control manually is tiresome and error prone for even small scale software de-
velopment projects. There are a number of automated revision control tools like CVS
[Sysa], Subversion [Sysd], GIT [Sysb] and Mercurial [Sysc]. The main di erence between
these are some of them like CVS and Subversion have a centralized server/client archi-
tecture whereas others like GIT and Mercurial have a distributed architecture. In the
centralized tools, the repository is stored in a single server and clients communicate with
the repository over the network. In the distributed tools, there can be multiple local
repositories cloned from a repository for each client or user.

Distributed version control is relatively newer and has the following advantages over the
centralized counterpart.

A user can communicate with its own copy of the repository without the need of
having a network.

Distributed version control systems are faster because most metadata is stored
locally unlike in the centralized tools where most metadata is stored in the central
server which needs to be updated over the network.

Distributed version control systems are robust. If the repository in the centralized
version control software gets corrupted then the repository is lost unless there is a
backup. In the distributed counterpart, there are multiple copies of the repository
distributed among the users. All getting corrupted at the same time is rare.

Mercurial is a distributed version control software. SpaceEx version control is done with
Mercurial because of the above mentioned advantages of distributed architecture. The
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distributed architecture proves to be helpful in the development of di erent features in

di erent independent feature branches. Feature branches is a good way of managing
changes in large projects by breaking up and de ning independent branches. A group of
developers has a shared branch of its own, cloned from a single master branch [O'S09]. De-
velopers can work on a particular branch independently and isolated from other branches.
When a particular feature is in a good shape, someone on that branch pulls and merges
the master branch into the feature branch then pushes back up to the master branch.
There could be an additional level of supervision in the master branch as to what new
features got to be added and what all needs to be discarded. The supervisor in the master
branch could pull in only the changes it thinks that should go in from the pushed feature
branch and discard the rest.

The idea of feature branches can also be implemented without having clones for each
branch in mercurial. Mercurial treats all of the development history as a series of branches
and merges. Feature branches can be implemented just by giving a persisteaie to a
branch. By default, all commits goes to thadefault branch in mercurial. New branches
can be created with the command:

$ hg branch new_branch

Switching between branches is done with thepdate command:

$ hg update main_branch

SpaceEx development utilizes this feature branches approach with mercurial in the de-
velopment of its di erent features with branch naming as explained above and not with
repository cloning for each branch. Figure Figure 5.4.3 illustrates feature branching in
SpaceEx.

Figure 5.9: lllustrating feature branch development in SpaceEx

Mercurial is a free software and it is open source. It is easy to use and most of its
commands are the same with the classical rcs tools like SVN and CVS. Mercurial is
portable to all popular operating systems. [O'S09] provides a comprehensive guide to
using Mercurial for revision control in software development.
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5.4.4 Testing and Debugging

Testing the individual software units during the development process is known as unit
testing. Unit testing is a better practice than testing software modules consisting of a
bunch of software units. The later increases the complexity of testing because of the
fact that there are more candidates where the identi ed bug(s) could exist and because
of the possible interdependence between the di erent components under test, the exact
cause of the bug might be hard to nd. In short, unit testing nds the bugs early in the
development cycle.

Unit testing gives greater exibility in the development process. Since the correctness of
the individual software units is tested, refactoring becomes simpler. Refactoring means
disciplined restructuring of the existing parts of the software without changing the overall
desired behavior.

In the continuous test framework, the test cases for the units persist and they are run
as the software undergoes change. If any change causes a failure in one or more of the
unit tests, that signals an unintended e ect of the change over the software units whose
tests fail. Hence, continuous unit testing gives greater con dence in the integrity of the
software as it grows.

SpaceEx has undertaken a test-driven development using the UnitTest++ package [Pac]
for unit testing. UnitTest++ is a lightweight unit testing framework in C++. UnitTest++
provides with a number of macros. There are basically three types of macros, TEST
Macro, SUITE macro and CHECK macros. A TEST macro is the basis of a test. A
SUITE macro is a group of TEST macros and provides them with a namespace. CHECK
macros perform comparisons and outputs true or false results. A false result means that
the test in which the check occurred has failed. UnitTest++ is easy to use and could be
used for a rst experience of testing in the software development process. A total of 503
unit tests in 121 test les were written in the development of SpaceEx so far. The testers
consists of 14272 lines of code and 4149 lines of comments. The total testing time with
UnitTest++ for all the testers is about 193.876 seconds on a standard x86 machine with
32 bits operating system.

GDB (The GNU Project Debugger) [Deb] has been used to debug the test failures and
the runtime exceptions in SpaceEx. GDB is a commonly used debugger distributed with
almost all Unix distributions. With GDB, breakpoint can be set at desired points in

a program from where the program execution could be traced line by line. Program
variables could be monitored at each step. GDB can also display the call stack when
there is a crash.

5.5 Models in SpaceEx

A SpaceEx model can be created using the SpaceEx Model editor which stores the model
in the SX format. A model is made up of one or several components. There are two
types of components: dasecomponent which corresponds to a single hybrid automata.
A network component consists of one or more instantiations of other components (base
or network) and corresponds to a set of hybrid automata in parallel composition. Refer
[Fre] for a detailed description of a SpaceEx model.
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5.6 Libraries

SpaceEx has its own rich library for most of the math operation and data structures it
requires. In addition, the analysis core of SpaceEx uses a number of third party libraries.
The PHAVer scenario uses the PPL library [BRZHO02] to represent continuous sets as
polyhedra. The Boost C++ library [Liba] is used for its fast and e cient data structures

in C++. The support function scenario uses the GLPK (GNU Linear Programming Kit)
library [Mak09] to compute the support function of polyhedra which are nothing but LP
problems. SpaceEx uses GMP - the GNU Multiple Precision arithmetic library [Libb] for
arbitrary precision arithmetic. Table 5.1 lists the third party libraries that SpaceEx core
uses, to whose authors we are most grateful.

SpaceEXx is released under the GNU GPL version 3 license [vL] which is compatible with
the licenses of the third party libraries that it uses [Table 5.2].

Table 5.1: Third party libraries used in SpaceEXx.

Name Version  Year Author(s)

Parma Polyhedra Library 0.11 2011 R. Bagnara, P. M. Hill, E. Za anella
Boost C++ Libraries 1.46.1 2011  multiple

GNU Multiple Precision Arithmetic Library  5.0.2 2011  multiple

GNU Linear Programming Kit 4.45 2010 multiple

SUNDIALS (Solver Suite) 2.4.0 2009 R. Serban, C. Woodward, A. Hindmarsh
ublasJama 1.0.2.2 2005 Frederic Devernay

TinyXML 253 2007 Lee Thomason

Table 5.2: Licenses of the third party libraries used in SpaceEx.

Name License

Parma Polyhedra Library GNU GPLv3

Boost C++ Libraries Boost Software License
GNU Multiple Precision Arithmetic Library  GNU LGPL

GNU Linear Programming Kit GNU GPLv3

SUNDIALS (Solver Suite) BSD License

ublasJama Boost Software License
TinyXML zlib License

5.7 SpaceEx Output

SpaceEx provides with four output formats - (1) Textual TXT ) (2) Vertice List (GEN )
(3) 3D Visualization (JVX ) and (4) [min,max] interval on the output variables (NTV ).
[Fre] gives a detailed documentation of output formats (1),(2) and (3). In addition,
the INTV format which stands for interval format has been later added to the cavalry.
It outputs the minimum, maximum interval on the continuous variables of the system
globally as well as location-wise for the given analysis con guration. The output variables
could be chosen with the -a option in SpaceEx.
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Chapter 6

Conclusion and Future Work

This chapter brie y summarizes the contributions of this thesis and suggest some possible
directions for future work.

The contributions of this thesis are as follows:

1. The SpaceEx tool platform for safety veri cation of hybrid systems : This
thesis provides an extendable tool platformSpaceExon which algorithms for safety
veri cation of hybrid systems can be implemented. We put an e ort in identifying the
principal elements of such a tool platform and provide the generic implementation of those
principal elements. SpaceEx tool platform provides placeholders for the elements which
may vary from approach to approach, e.g., the continuous set representation. Hence,
such an extendable tool platform should aid the researchers in experimenting with their
novel methods to reachability analysis for safety veri cation, CEGAR based algorithms
etc. The availability of the already implemented principal elements should save a lot of
development time of users.

2. As a practical demonstration of the tool platform, two di erent scenarios have been im-
plemented. ThePHAVer scenario and the Support Function scenario. The PHAVer
scenario is for the safety veri cation of linear hybrid automata (LHA) with polyhedra as
the continuous set representation. The Support Function scenario is for safety veri cation
of hybrid automata with a ne dynamics and a ne maps over the discrete transitions.
The Support Function scenario implements the support function based reachability algo-
rithm proposed in [GG09] where continuous sets are represented as convex sets de ned
by their support functions. Both implementations are real usable tool implementations
and not just prototypes. This demonstrates the usefulness of the SpaceEx tool platform.

3. Large over-approximation while computing the transition successors limits the use of
the Support Function approach for the analysis of hybrid systems with frequent discrete

jumps. A more precise support function based algorithm for transition successor compu-
tation is proposed in this thesis. The proposed method largely improves the accuracy of
the discrete image computation during transitions in hybrid systems. The accuracy im-

provements are shown with some case studies. The scalability is illustrated on the Itered

oscillator case study with up to 130 variables. This precise discrete image computation
has been implemented on the support function scenario of the SpaceEx tool platform.

4. As part of the precise discrete image computation, a new algorithm for the minimiza-
tion of univariate convex function is proposed which has been namedwer Bound
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Search (LBS) algorithm.
Some directions for future work:

We mentioned in section 2.3.2 that we have a support function representation of the
owpipe using the reachability algorithm proposed in [GG09]. We compute an outer
polyhedral approximation of this set by sampling the support function in the template
directions, which are xed a priori. This conversion from support function to polyhe-
dra representation is used for operations like intersection and containment which can be
cheaply carried out on constraint represented polyhedra. An arbitrarily chosen set of tem-
plate directions for the outer-polyhedral computation from support function may result
in high over-approximation error. Sampling the support function in a lot of directions will
result in less approximation error but we have to pay in computation time. Synthesizing
a set of well chosen template directions will provide a balance between the approximation
error and the computation time. How to synthesize such a set of directions remains a
future direction of research. In our lower bound search algorithm to compute the support
function of the owpipe-guard intersection in a given direction [alg. 3.2.2.4], we compute
the support function of the owpipe in a number of directions (each parameter value
corresponds to a direction) during the minima search of the support function, which is
a convex function. The algorithm stops when we nd a direction which minimizes the
function. It will be interesting to see the e ect of adding this minimizing direction to the
set of template directions for further computation of the owpipe. Considering the vector
eld of the location dynamics may also provide us helpful clues to synthesize template
directions.

Section 4.3 illustrates the simultaneous solution of the multiple minimization problem
for owpipe-guard intersection with the proposed LBS algorithm. For computational
speed up, it will be interesting to parallelize each such minimization problem. The imple-
mentation could be carried out in a multicore architecture. Similarly, the simultaneous
execution of the lower bound search algorithm with branch and bound illustrated in
section 4.3.1 can also be parallelized.

We de ned Support Function Matrix (SFM) as a data structure for storing and manip-
ulating owpipe representations in section 2.3.2. It will be interesting to implement the
support function based reachability algorithm with SFMs in aGPU (Graphical Process-
ing Unit) architecture since GPUs are highly e cient for matrix and vector operations.
Though GPUs are specialized for graphical computations, application with high use of
matrix and vector operations can also bene t the processing power of GPUs.
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