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ABSTRACT

The American Nanotechnology Initiative (NNI) of the present millennium has helped to focus attention
on objects sized 1-100 nm. Physicists and electrical engineers typically follow a “top-down approach”
to synthesizing these objects by etching away the matter of larger objects while chemists often take a
“bottom-up” approach of trying to synthesize nano scale objects from smaller molecular units. A partic-
ular flavor of the bottom-up approach is the chemical assembly of separate molecular units with different
functions–such as chromophore antennas, spacer wires, and reactive centers—to make functional pho-
tochemical molecular devices (PMDs). One particularly popular type of chromophore unit consists of
ruthenium complexes whose long-lived luminescent excited states may be used in charge transfer pro-
cesses. Unfortunately tailoring such complexes to fit them into a larger PMD can result in destroying
some of the very properties of the smaller unit which one would like to keep in the larger unit. In partic-
ular a well-chosen tridentate ligand for ruthenium may lead to a convenient chromophore with desirable
charge transfer properties for use in a PMD while a badly chosen tridentate ligand may destroy the very
photo-properties that one would like to exploit. This thesis presents a theoretical investigation of factors
influencing luminescence lifetime in ruthenium complexes with tridentate ligands and was carried out in
close collaboration with the experimental group of Frédérique Loiseau and Damien Jouvenot and their
student Sébastien Liatard.

The work reported in this thesis was prompted by the observation that some ruthenium complexes
failed to show luminescence at room temperature, but showed some luminescence at very low tempera-
tures.

A common ligand-field theory (LFT) explanation of luminescence lifetimes in these clusters is in
terms of the relative proximity of the energies of the t2g→π∗ metal-ligand charge transfer (MLCT) and
the t2g→e∗g metal centered (MC) excitations. Close proximity of MC and MLCT states is expected to
lead to rapid radiationless de-activation of the luminescent MLCT state. We put this theory to test by
analyzing the predictions of more sophisticated density functional theory (DFT) and time-dependent DFT
(TD-DFT) calculations and comparing with experimental luminescence lifetimes. DFT was judged to be
adequate if it was able to reproduce experimental X-ray geometries and TD-DFT was able to provide
quantitative absorption spectra. The simple LFT explanation could then be verified by extracting t2g, π∗,
and e∗g energies using a partial density of states (PDOS) analysis.

The complexes that were studied in this project were: [Ru(benzi)2]2+, [Ru(tpy)2]2+, [Ru(CNC)2]2+,
and [Ru(CNC)(tpy)]2+ where bpy=2,2-bipyridine, tpy=2,2’:6’,2"-terpyridine, and CNC=2,6-{bis-N-(N-

xiii
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methy limidazolylidene)methyl}-pyridine,benzi=2,6-bis-N-(N-benzimidazolylidene)methyl-pyridine). and
the hypothetical complex [Ru(oxa)2]2+.

In all except the case of the hypothetical complex, geometries were optimized beginning from the X-
ray geometry. Only small changes were observed, thus confirming the validity of DFT in this case. TD-
DFT absorption spectra also agreed well with experiment. The extraction of LFT information from our
DFT calculations was in reasonable qualitative agreement with the usual hypothesis, but agreement at this
level is only qualitative. To some extent, this is to be expected because a more sophisticated description
of the photophysical process should involve the coupling of potential energy surfaces of electronic states
rather than orbitals. Nevertheless it is gratifying that the simpler and computationally less demanding
orbital analysis is able to provide qualitative trends.

Heartened by these results we set out to predict what should happen for the as yet unsynthesized
molecule [Ru(oxa)2]2+. Theoretical results are given and a prediction is made. The experiment has not
yet been carried out. The thesis concludes with a discussion of more sophisticated approaches which
could be used to gain still deeper insight into the problem of luminescence in ruthenium complexes.

Key Words: Nanotechnology, nanoscale, quantum chemistry, photochemistry, density-functional the-
ory, time-dependent density functional theory, electronic excitation spectrum and excited states.



RESUMÉ

L’intiative américaine pour nanotechnologie (NNI pour l’anglais National Nanotechnology Intiative) du
millenaire actuel a aidé à focaliser l’attention sur des objets de la taille de un à cent millimimètres. Les
physiciens et les ingénieurs élèctriques suivent typiquement une approche top-down pour créer des ob-
jets à l’échelle nanométrique en enlevant progressivement de la matière des objets plus gros. Par contre,
les chimistes prennent le plus souvent une approche bottom-up en faisant la synthèse d’objet à l’échelle
nanométrique par l’assemblage de composants moléculaires ayant des fonctionnalités différentes—dont
antennes chromophores, fils espaceurs et centres réactifs—pour créer des dispositifs photochimiques
moléculaires (DPMs). Un composant de type chromophore particulièrement populaire est un complexe
de ruthénium dont les états excités peuvent servir pour faire le transfert de charge. Malheureusement la
confection de tels complexes pour les faire assembler en DPMs plus grands peuvent nuire justement aux
propriétés des unités constituantes qu’on cherche à utiliser. En particulier un ligand de ruthénium bien
choisi peut faire un bon chromophore avec la bonne propriété de transfert de charge pour servir dans un
DPM, mais un autre ligand tridentate malchoisi peut justement détruire les propriétés qu’on cherche à
exploiter. Il est présenté dans cette thèse une investigation théorique des facteurs influençant le temps de
vie de luminescence dans les complexes de ruthénium à ligands tridentates. Ce projet a été mené en étroite
collaboration avec le groupe d’expérimenteurs de Frédérique Loiseau, Damien Jouvenot et leur étudiant
doctoral Sébastien Liatard. Spécifiquement le travail présenté a été grandement motivé par l’observation
que certains complexes de ruthénium ne sont pas luminescent à température ambiante, mais uniquement
aux températures très basses.

Une explication très répandue est basée sur la théorie de champs de ligands (TCL). Il s’agit d’une
comparaison de la différence d’énergie entre l’état t2g → π∗ de type transfert de charge du métal aux
ligands (MLCT pour l’anglais metal-to-ligand charge transfer) et l’état t2g → e∗g de type centré sur le
métal (MC de l’angais metal centered). Il est anticipé qu’une petite différence d’énergie entre les états
MLCT et MC serait associée avec une désactivation sans radiation plus rapide de l’état luminescent MLCT.
Nous avons mis en place les outils pour tester cette théorie par l’analyse des prédictions des théories plus
sophistiquées—en particulier la théorie de la fonctionnelle de la densité (DFT pour l’anglais density-

functional theory) et DFT dépendante du temps (TD-DFT pour l’anglais time-dependent DFT)—en les
comparant avec les temps de vie de luminescence mesurés. Les calculs DFT étaient jugés suffisant s’ils
pouvaient reproduire les géométries cristallographiques et si les calculs TD-DFT associés étaient capable
de simuler de manière quantitative les spectres d’absorption correspondants. Il a été alors possible de
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valider l’explication simple de la TCL en retrouvant les énergies orbitalaires t2g, π∗ et e∗g à partir d’une
analyse de la densité partielle des états (PDOS pour l’anglais partial density of states).

Les complexes étudiés dans cette thèse sont [Ru(bpy)3]2+, [Ru(benzi)2]2+, [Ru(tpy)2]2+, [Ru(CNC)2]2+

et [Ru(CNC)(tpy)]2+ où bpy=2,2-bipyridine, tpy=2,2’:6’,2"-terpyridine, CNC=2,6-{bis-N-(N-méthylimid-
azolylidene)méthyl}-pyridine et benzi=2,6-bis-N-(N-benzimidazolylidene)méthyl-pyridine). De plus un
complexe hypothétique, [Ru(oxa)2]2+, a été étudié en attendant sa synthèse et la mesure de son degré
de luminescence. Sauf pour le complexe non encore synthétisé, les géométries ont été optimisées en
prenant la géométrie cristallographique comme la géométrie du départ. Les petites différences entre les
géométrie rayon-x et les géométries optimisées valident la qualité du modèle DFT. Aussi les spectres
d’absorption TD-DFT sont relativement en bon accord avec les spectres d’absorption mesurés en solu-
tion. L’extraction d’information semblable à celle de la TCL a été possible grâce à la technique PDOS.
Ainsi nous avons pu confirmer un accord qualitatif avec l’explication usuelle de luminescence des com-
plexes de ruthénium. Encouragé par ces résultats nous avons fait des calculs pour prédire les propriétés
luminescentes du complexe pas encore synthétisé, [Ru(oxa)2]2+. La thèse conclut avec une discussion
des approches plus sophistiquées qu’on peut penser utiliser pour obtenir une compréhension approfondie
du problème de luminescence des complexes de ruthénium.

Mots Clés: Nanotechnologie, l’Echelle Nano, Chimie Quantique, Photochimie, Théorie de la Fonc-
tionnelle de la Densité, Théorie de la Fonctionnelle de la Densité Dépendent du Temps, Spectre d’Excitation
Électronique et État Excités.
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CHAPTER 1

INTRODUCTION

This thesis reports work done on the application of computational chemistry to the determination of lu-
minescent properties of ruthenium complexes. Luminescence generally is one of the most effective tech-
niques to monitor the operation of molecular devices. In this context therefore this work is a contribution
to the growth of the “bottom-up” approach to the construction of molecular-level devices which we shall
describe here as photoactivated molecular devices (PMDs). In this approach, nanoscale molecular de-
vices are built by assembling different types of molecular components, each of which has a well-defined
purpose as a molecular ‘antenna’, ‘wire’, or even ‘active site’ where energy received is used to carry out
specific chemical reactions.

These efforts are based on the understanding that the traditional “top-down” approach based on pho-
tolithography could soon reach its limits. Serious challenges are likely to emerge when components
smaller than 100 nm are required for incorporation into nanoscale devices. This reasoning is based on
the extrapolation of Moore’s law on the limits of electronic circuit miniaturization with conventional
technology roughly by 2012.

Therefore given the inevitability of nanoscale devices due to their efficiency in performance, conve-
nience of storage, specifically more efficient utilization of energy, it is necessary to find new ways to
make working microscopic devices. The need for devices that make efficient use of energy is also in real-
ization that fossil fuels are both limited and polluting and that access to scarce resources is all too easily
interrupted by political conflicts.

As might be expected, this thesis seeks not to solve all the problems implied by PMD fabrication.
Rather I focus on the target problem of how to design a ruthenium complex ‘antenna molecule’ which
will act as a chromophore to capture light and create a long-lived excitation which can be transfered via
linking units (‘wires’) to other parts of a PMD. Specifically, we would like to gain insight via computa-
tional chemistry into how ligands designed for connecting into PMDs can enhance, preserve, or diminish
luminescence in ruthenium complexes

The main goal of this thesis is to determine the molecular orbital picture in various ruthenium com-
plexes and especially the π∗ and e∗g and their relative positions. The other key goal is to assess the relative
separations between π∗ and e∗g and compare them with the length of their excited lifetimes at the room
temperatures.

1



2 Chapter 1 Introduction

The specific objectives in this work are:

• optimize structures (x-ray ones or built ones),

• do a frequency calculation on each optimized structure to be sure that it is the global minimum,

• perform a UV-transitions calculation,

• perform calculation with appropriate GAUSSIAN options to generate information leading to cal-
culation of partial density of states.

The rest of the thesis is organized as follows:

This is a complex project requiring a mastery of basics in a number of areas. These are described in
‘Part I. Fundamentals.’
The various chapters in this part are as outlined below:

Chapter 2 introduces the ligand field theory which is important since it paves way for a clearer under-
standing of the various molecular orbitals in complexes. Their ordering, and closeness are critical in this
study.

Chapter 3 deals with the basics of wave function-based electronic structure theory. This chapter cap-
tures only the parts of the wave function methods that bear a strong relationship with the real methods
used in this thesis (DFT and TDDFT), i.e. HF, CIS, etc.

Chapter 4 extends our knowledge base to the Density Functional Theory, Time-dependent Density
Functional Theory and response theory. This is pertinent in relating time-dependent perturbation to the
resultant time-dependent response.

Chapter 5 looks at the basics of photochemistry and photophysics. These are necessary because the
knowledge of potential energy surfaces, funnels and conical intersections are vital in explaining radiative
and nonradiative deactivation of excited molecules. Phosphorescence and fluorescence are also easier to
explain when linked to the above mentioned photochemical and photophysical properties. Phosphores-
cence and Stokes shifts are also discussed in this chapter.

Chapter 6 is on mulliken population analysis. This fits in nicely because the calculation of partial
density of states requres knowledge in this field.

Chapter 7 reviews the literature related to the main work of this thesis. The ruthenium complexes and
their applications are captured. Besides, similar work to the work in this thesis and the lessons learned
are also taken into consideration.

“ ‘Part II. Original Work.’ is the heart of this thesis”

Chapter 8 This chapter reports work on a number of ruthenium complexes. Calculations on ground state
geometry optimization and property calculations, electronic transitions and spectra determination and
comparison of the results with the experimental values. Besides, recovery of the ligand field theory for-
mulation of the molecular orbitals was done by the partial density of states approach based on population
analysis. Correlation of the excited lifetimes of these complexes and the separation between their π∗ and
e∗g was done.
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“Finally ‘ chapters 9 and 10 in Part III. Perspectives and Conclusions’ describes on-going
work, summarizes what we have been able to accomplish during my PhD studies, and how
I think my work could best be continued in the future.”

There are three other parts in this thesis.
They form the appendices part which are; appendix A, which is the Spin-flip paper. This is an article in
which a number of people made different contributions.

Appendix B is simply my curriculum vitae.
Appendix C is on the Computational Chemistry in Kenya. This brings out some of the pioneer efforts

to start this important field in sub-Sahara Africa. The exact work of the computer connections between
Nairobi and Grenoble.



Part I

Fundamentals
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CHAPTER 2

LIGAND FIELD THEORY

In this chapter I discuss the origin of MOs in ligand field theory and how symmetry lower-

ing due to ligand distortions leads to lifting of orbital degeneracy

2.1 Introduction

The metal-ligand bond in transition metal complexes is better represented by covalency considerations.
Ligand field theory ( [1, pp. 288] and [2, pp. 58]) is the appropriate bonding theory that deals with this
covalency in such systems. A bond between the metal ion and the ligand is formed by the overlap between
atomic orbitals [3, pp. 38] derived from the metal ion and those from the ligand donor atoms.

The best starting point in this area starts with the octahedral symmetry [4, pp. 243]. An octahedral
complex is a high symmetry complex in which the resultant molecular orbitals have degeneracy which
is usually broken by symmetry lowering ( [5] and [6, pp. 106]) and this has a lot of implications in other
fields such as spectroscopy of such complexes.

In a free metal ion the five d orbitals with different values of the magnetic quantum number (m) have
the same energy.

During compound formation, the five d-orbitals interact [2, pp. 66] differently with the surrounding
ligands and a ligand field splitting (∆o) is produced. As already mentioned above, a common coordination
is octahedral (Oh point group) with six surrounding ligands.

In such complexes two of the d orbitals form the eg set and are found at higher energy than the other
three (dxy, dxz and dyz, which are known as t2g). Such a splitting occurs in all transition metals compounds
with octahedral coordination [2, pp. 66]. This splitting is the basic consideration when attempting to
understand electronic transitions in such chemical species. Figure 2.1 clearly shows the way the d-orbitals
split and also the various molecular orbitals arranged according to their energies in a perfect octahedral
geometry.

2.2 Molecular orbitals

Most ligands coordinate to the metal ion using nonbonding electrons. A ligand lone-pair orbital pointing
directly towards the metal overlaps with the eg orbitals but has the wrong symmetry [7, pp. 214] to interact

5



6 Chapter 2 Ligand Field Theory

Figure 2.1: Arrangement of σ -molecular or-
bitals in a perfect octahedral complex. The
metal-based atomic orbitals (Metal-AOs) are
on the left of the diagram. At the center
are found the molecular orbitals (MOs) and
on the right are the ligand type of orbitals
(LGOs). LGOs represent a linear combina-
tion of symmetry adapted atomic orbitals

with t2g. The orientation of the t2g orbitals makes them better suited for a different type of interaction
altogether.

This kind of overlap gives rise to bonding (σ ) and antibonding (σ∗ ) molecular orbitals. The bonding
orbitals are occupied by the electrons from the ligand, while the σ antibonding levels among which the
‘metal’ eg set belongs are centered mainly on the metal. Different ligands cause different splittings ∆o

between the t2g and eg sets.
Metal-ligand interaction can also lead to π bonding [3, pp. 99]. This arises when ligands having orbitals

directed perpendicular [7, pp. 214] to the metal-ligand axis interact with the metal t2g orbitals. These t2g

orbitals are described as having dπ symmetry because of this possibility to form π molecular orbitals
(see figure 2.2). The nature of the ligand interacting with the metal ion finally determines what happens.
Ligands such as halide ions have occupied pπ orbitals and act as π-donors. This interaction raises the
energy of the metal t2g orbitals, and decreases ∆o.

On the other hand, π-acceptor ligands such as CO have empty antibonding π orbitals. Overlap with
the metal in this case causes the t2g orbitals to be lowered in energy so that ∆o is increased.

2.3 Symmetry and Molecular Orbital Formation

Construction of the molecular orbitals of a complex, requires determining their shape, by which we mean
the contributions of the metal and ligand orbitals to each one, as well as their relative energies.

Good knowledge of the symmetry [4, pp. 245] properties of these orbitals allows us to simplify the
construction of these diagrams very considerably. If the two orbitals have the same symmetry properties,
their overlap is non-zero and an interaction can occur.

Usually in its interaction the metal ion uses 9 atomic orbitals derived from 3d, 4s, and 4p. The 3d

contributes 5 atomic orbitals, 4s contributes 1 atomic orbital while the 4p contributes 3 yielding a total of
nine atomic orbitals. These ones usually form the left side of the octahedral molecular orbital diagram.

According to group these atomic orbitals are labelled according to how they transform in the Oh point
group. The orientation of the t2g set is such that they transform as the t2g irrep. The other set has an eg

symmetry. The 4s orbital transform as the a1 irrep. while the 4p atomic orbitals transform as the t1u irrep.
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Figure 2.2: π and σ molecular orbitals in an octahedral complex

Group theory [1, pp. 114] knowledge helps in the formulation of the the so-called symmetry adapted
linear combinations of the ligand σ orbitals. These ones as already mentioned, are six and on the molecu-
lar orbital diagrams are ordered according to their energies. An important outcome of this undertaking is
that molecular orbitals are formed. These are labelled as a1g and t1u accordingly. These molecular orbitals
form both bonding and their corresponding antibonding types.

In a general sense, there will result six bonding molecular orbitals, three degenerate nonbonding
molecular orbitals, and six antibonding molecular orbitals in all octahedral complexes [3, pp. 45]. It is
important to note that the lowest antibonding molecular orbitals (situated above the nonbonding t2g or-
bitals) are always the two degenerate eg orbitals. This is so because they involve the metal d orbitals,
which are lower in energy than the s and p orbitals which contribute to the antibonding molecular orbitals
a1g and t1u, respectively. However, the energetic ordering given in both the bonding and antibonding
molecular orbitals can change depending on the nature of the metal and the ligands. For example, the
bonding level eg can be found between the bonding a1g and t1u levels, or the antibonding a1g may be
placed lower than the antibonding t1u level.

The t2g set usually remain unaffected and remain nonbonding molecular orbital unless they participate
in π bonding in suitably oriented orbitals from the ligand, in a process referred to as backbonding.

In most of the synthesis, one usually ends up with complexes that are not exactly octahedral because
they usually assume a distorted geometry. This distortion lowers symmetry [6, pp. 106] and this will have
the result of lifting degeneracy of certain molecular orbitals when the Oh point group is maintained as the
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reference. This is what results in D3 complexes such as the famous [Ru(bpy)3]3+ and other even lower
symmetry complexes that we have in our study.

In order to explain electronic transitions in complexes correctly, we must consider the fact that in
pseudooctahedral complexes, there are many intervening π∗ molecular orbitals between the t2g and the eg

metal-based molecular orbitals. This argument then takes us to a more correct representation of molecular
orbitals as seen in figure 2.3. Figure 9.2 shows a number of π∗ molecular orbitals between the t2g and eg.
Besides, there is alot of splitting of these two mainly metal-centered molecular orbitals.

Figure 2.3: Ordering Molecular orbitals in an octahedral complex

With the observations made earlier about the mixing of both σ and π bond types and also that a number
of intervening π∗ exist between the t2g and e∗g it is easy to see that the correct electronic transitions in such
complexes is best represented by figure 2.4.
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πL
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π
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Figure 2.4: Possible electronic transitions between different MOs that lead to MLCT, LLCT and

even d-d transition types
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CHAPTER 3

WAVE FUNCTION-BASED ELECTRONIC STRUCTURE THEORY

Quantum mechanics is almost always formulated in terms of wavefunctions, so it makes

sense to begin with this more familiar approach before discussing the density-based theory

in the next few chapters. Quite a few concepts are presented in this chapter which go

from the basic interpretation of quantum mechanics, to concepts arising from common

and conceptually useful approximations, to numerical methods for solving the Schrödinger

equation.

3.1 Quantum Mechanics and the Schrödinger Equation

Quantum mechanics grew from the realization that observations such as black-body radiation, the pho-
toelectric effect and the ultraviolet catastrophe [1] could not be explained based upon the established
physical theories of the end of the 19th century. Following these observations, it was realized that light,
which was considered to be a wave, also had a particle-like nature. These particles are known as photons
and have the energy,

Ephoton = hν , (3.1)

where h is Planck’s constant and ν is the frequency of the light. It was then noted that an electron which
had been considered only as a particle could have wave-like nature as evidenced, for example, by the
diffraction of electrons off surfaces. The wavelength of the wave is given by the de Broglie wavelength,

λ =
p

h
, (3.2)

where,
~p = m~c , (3.3)

is the particle momentum (whose magnitude is p). We thus see the birth of the particle-wave duality in
quantum mechanics. It has taken many years to develop a clear understanding of this duality and some
controversy over the exact interpretation of quantum mechanics remains. However, the most generally
accepted interpretation is the Copenhagen one.

10



3.1 Quantum Mechanics and the Schrödinger Equation 11

According to the Copenhagen interpretation of modern quantum mechanics, the state of the system
before making an observation is described by a wave—that is, by a probability amplitude known as the
wave function. For simplicity we will just consider a single particle and denote the wave function as
ψ(~r, t). However, what is actually observed is a particle. The probability density for finding the particle
at position~r is |ψ(~r, t)|2. Since there is a 100% probability of finding the particle somewhere, then the
wave function is normalized so that,

∫

|ψ(~r, t)|2 d~r = 1 . (3.4)

The probability distribution for other physical observables is a bit more complicated to explain. To each
classical expression of the observable, A(~r,~p), there is a corresponding quantum mechanical operator, Â

made by replacing the cartessian position coordinates with the corresponding multiplication opertors,

x → x̂ = x ·
y → ŷ = y ·
z → ẑ = z· , (3.5)

and by replacing the cartessian momentum coordinates with the corresponding differential operators,

px = mvx → p̂x =−ih̄
∂

∂x

py = mvy → p̂y =−ih̄
∂

∂y

pz = mvz → p̂z =−ih̄
∂

∂ z
, (3.6)

where,

h̄ =
h

2π
. (3.7)

An example is the energy. Its classical expression is the sum of the kinetic and potential energies,

E =
p2

2m
+V (~r) . (3.8)

The corresponding quantum mechanical operator is the hamiltonian,

Ĥ =− h̄2

2m
∇2 +V (~r) . (3.9)

Now it is a principle of quantum mechanics that only the eigenvalues of the operator corresponding to
an observable will actually be measured. Thus, for example, the only energies that can be observed1 are
those which satisfy the eigenvalue equation,

Ĥψi(~r) = Eiψi(~r) . (3.10)

1Strictly speaking, only energy differences are observables. However, fixing the arbitrary energy zero at some physical
value, such as the completely dissociated system, means that “absolute” energies on this energy scale are really given by
energy differences with respect to the predefined energy zero.
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That is, we can only actually measure one of the Ei. The probability pi(t) of observing Ei at time t is
given by the square of the expansion coefficient,

pi(t) = |ci(t)|2 , (3.11)

where,
ψ(~r, t) = ∑

i

ψi(~r)ci(t) . (3.12)

Notice that this implicitly assumes that the eigenfunctions of every observable form a complete basis set
which can be used to expand any observable. This, in fact, is just another postulate of quantum mechanics.

Let us do this over using a biased notation for a more general example. For an arbitrary operator Ω̂, its
operation on its eigenfunction fn, yields the eigenvalue ωn,

Ω̂ fn = ωn fn . (3.13)

It can be shown that it is always possible to chose these eigenfunctions as orthonormal in the sense,

〈 fm| fn〉= δm,n ≡
{

1 ; m = n

0 ; m 6= n
, (3.14)

where the bra-ket notation is defined by,

〈 f |g〉=
∫

f ∗(~r)g(~r)d~r . (3.15)

We may then find the expansion coefficients in,

ψ(~r, t) = ∑
n

fn(~r)cn(t) (3.16)

by left multiplying by f ∗m(~r) and integrating over~r (“multigration”),

〈 fm|ψ(t)〉= cm(t) . (3.17)

Notice how the cn(t) are then just another representation of ψ(~r, t). Dirac proposed to represent the
state of the system by a generalized “ket” abstract vector |ψ(t)〉. The eigenfunctions of Ω̂ are also repre-
sented by ket vectors,

Ω̂| fn〉= ωn| fn〉 . (3.18)

We may expand our state vector,

|ψ(t)〉= ∑
n

| fn〉cn(t) =
(

| f1〉 | f2〉 · · · | fn〉
)











c1(t)
c2(t)

...
cn(t)











, (3.19)

and determine the coefficient as the projection of |ψ(t)〉 onto | fn〉,

cn(t) = 〈 fn|ψ(t)〉 . (3.20)
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The dual abstract vector,

〈ψ(t)|=
(

c∗1(t) c∗2(t) · · · c∗n(t)
)











〈 f1|
〈 f2|

...
〈 fn











, (3.21)

is called the “bra.”
Notice also that the quantum mechanical state of a system is actually an ensemble quantity since

it describes the probability of observing different values of an observable ωn associated with different
systems (designated by the index n) in the ensemble. The expectation value is the mean value over the
ensemble,

〈ψ(t)|Ω̂|ψ(t)〉= ∑
n

|cn(t)|2ωn . (3.22)

Also the classical limit of quantum mechanics is not just classical mechanics, but rather classical statistical
mechanics. This is why the correspondance principle tells us that a quantum mechanical expectation value
is something like a time-average value in the classical limit.

We have not yet explained from whence comes the wave function. In 1925, Erwin Schrödinger formu-
lated his famous equation, whose most general form is the time-dependent one,

(

− h̄2

2me

∇2 +V (~r)

)

ψ(~r, t) = ih̄
∂

∂ t
ψ(~r, t) . (3.23)

Once again, for the sake of simplicity, we consider only one particle. This general equation has stationary-
state solutions,

ψ(~r, t) = ψ(~r)e−iEt/h̄ , (3.24)

which satisfy the time-independent Schrödinger equation,

(

− h̄2

2me

∇2 +V (~r)

)

ψ(~r) = Eψ(~r) . (3.25)

We see that the time-independent Schrödinger equation is a key step determining which energies are
observable and with what probability they may be observed.

3.2 Many-Particle Problem and Born-Oppenheimer Separation

A molecule with N electrons and K nuclei is a complex many-body problem. The corresponding
Schrödinger equation is,

Ĥ(r,R)Ψ(x,R, t) = ih̄
∂

∂
Ψ(x,R, t) . (3.26)

Here, r = (~r1,~r2, · · · ,~rN) is the matrix whose columns are the position vectors of the different electrons,
R = (~R1,~R2, · · · ,~RK) is the matrix whose columns are the position vectors of the different nuclei. Also
x = (~x1,~x2, · · · ,~xN) is the matrix made up of generalized spatial and spin coordinates, ~x = (~r,σ). The
nonrelativistic Hamiltonian operator is given by,

Ĥ(r,R) = T̂N(R)+ T̂e(r,R)+V̂N,el(r,R)+V̂e,e(r)+V̂N,N(R) , (3.27)

where the different terms correspond to the nuclear,
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T̂N(R) = −∑
A

h̄2

2MA

(
∂ 2

∂x2
A

+
∂ 2

∂y2
A

+
∂ 2

∂ z2
A

) (3.28)

= −∑
h̄2

2MA

∇2
A , (3.29)

where MA is the mass of nucleus A, and electronic kinetic energy operators,

T̂e(r) = − h̄2

2me
∑

i

(
∂ 2

∂x2
i

+
∂ 2

∂y2
i

+
∂ 2

∂ z2
i

) (3.30)

= − h̄2

2m
∑

i

∇2
i , (3.31)

the nuclear-nuclear repulsion,

V̂N,N(R) = +
A<B

∑
A,B

ZAZB

e2

RA,B
, (3.32)

where ZA is the atomic number of nucleus A and RA,B = |~RA −~RB| is the distance between nuclei A and
B, the electron-nuclear attraction,

V̂N,e(r,R) =−∑
A

∑
i

ZA

e2

rA,i
, (3.33)

where rA,i = |~ri−~RA| is the distance between electron i and nucleus A, and the electron-electron repulsion,

V̂e,e(r) = +
i< j

∑
i, j

e2

ri, j
, (3.34)

where ri, j = |~ri −~r j| is the distance between electrons i and j.

Notice that we are using Gaussian electromagnetic units (otherwise there would be factors of 4πε0).
One reason for doing this is that it is habitual for theorists to write their equations in atomic units which
are based upon Gaussian units rather than SI units. The idea is to use a principle of dimensional analysis
that it takes only three quantities to define all the other units. In atomic units, these are h̄, me, and e and
all take on values of one in atomic mass units.

Notice also that this Hamiltonian is itself an approximation. Not included are, for example, (i) any
relativistic correction to the kinetic energy, (ii) interaction of magnetic moments (orbit/orbit, spin/orbit,
spin/spin) [2], and (iii) any interaction with external electric and magnetic fields. However, the Hamilto-
nian we are using suffices for many types of calculations and often extra terms can simply be added when
needed.

As it stands we have both a gigantic computational and conceptual problem. Part of the problem is
solved by making the Born-Oppenheimer approximation. This is based upon the idea of a separation
of time scales: the electrons are much lighter than the nuclei and therefore move much faster. We will
assume that they instantaneously adjust to each new position of the nuclei. Consequently we may define
an electronic Schrödinger equation,

Ĥe(r;R)Ψe
I (x;R) = Ee

I (R)Ψe
I (x;R) , (3.35)
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where the electronic hamiltonian is just given by,

Ĥe(r;R) = T̂e(r)+VN,e(r;R)+Ve,e(r) . (3.36)

The semicolon (;) is used deliberately to show that R is a parameter. That is, the electronic problem is
solved for a given set of fixed nuclear positions. Then, if desired, the nuclei are moved and the electronic
problem is resolved for the new set of nuclear positions.

In the Born-Oppenheimer approximation, it is the mean field of the fast-moving electrons which bind
the molecule together. The nuclei move in the potential,

V N
I (R) =VN,N(R)+Ee

I (R) , (3.37)

according to the time-dependent Schrödinger equation,

ĤN
I (R)χn,I(R, t) =−ih̄

∂

∂ t
χn,I(R, t) , (3.38)

where the nuclear Hamiltonian,
ĤN

I (R) = T̂N(R)+V N
I (R) . (3.39)

Notice that this is for Born-Oppenheimer dynamics (also called adiabatic dynamics) where the electronic
state of the molecule remains fixed at the Ith state. The total wave function in the Born-Oppenheimer
approximation is,

Ψ(r,R, t) = χn,I(R, t)Ψe
I (r;R) . (3.40)

3.3 More About the Nuclear Problem

The quantity V N
I (R) is very important. It is often referred to as the potential energy surface (PES) of

the molecule. For a K-atom molecule there are 3K degrees of freedom of which 3 correspond to center
of mass motion and another 3 correspond to rotations about the center of mass (only 2 if the molecule
is linear). Thus the PES is really an energy-valued function of 3K − 6 (3K − 5 for a linear molecule)
internal degrees of freedom and so is really a hypersurface which requires 3K − 5 (3K − 4 for a linear
molecule) coordinates to plot (one extra for V N

I itself). Nevertheless, the minima on the PES tell us the
equilibrium geometries of stable species while saddle points give us information about transition states. In
particular, geometry optimizations typically seek to find the global minimum for a given molecule. This
must then be proven by showing that gradients (i.e., forces) are zero and that the curvature of the surface
(corresponding to vibrational frequencies) are all real and positive. If not, then it is not a true minimum.

Note however that finding a minimum does not guarantee having found the global minimum since the
minimum found may only be a local minimum on the global PES.

Changes in bond length and in the angles between chemical bonds provide the most significant and
physically meaningful set of coordinates for the description of potential energy. These coordinates are
called “internal coordinates” since they describe just the internal motions of the molecule—i.e., molecular
vibrations. The types of internal coordinates which are generally used are the following:

• Bond stretching coordinate: variation of the length of a chemical bond

• In-plane bending coordinate: variation of the angle between two chemical bonds having one atom
in common.
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• Out-plane bending coordinate: variation of the angle between the plane defined by two bonds with
one atom in common and a third bond connected to the common atom.

• Torsional coordinate: This is variation in the dihedral angle between the planes determined by
three consecutive bonds connecting four atoms.

Since the variations in bond length and angles in a molecule can be written in terms of the variation in the
cartesian displacement coordinates of the atoms, the problem we have to face is that one of writing the
explicit form of the transformation from cartesian coordinates to the new set of internal coordinates.

Given sk as a generic coordinate, the most general relation between sk and the cartesian coordinates
can be written in the form

sk = ∑
i

Bk
i xi +

1
2 ∑

i j

Bk
i jxix j + higher terms (3.41)

where the coefficients Bk
i xi,B

k
i j etc, are determined by the molecular geometry. A drastic simplification

can be achieved if we restrict our treatment to the case of infinitesimal amplitudes of vibration where we
can drop all terms not linear in~x. If we call~s and~x the vectors whose components are the internal and the
cartesian coordinates, then the linear equation in matrix notation is

~s = B~x , (3.42)

where B is the matrix whose elements are Bk,i = Bk
i . The matrix B is not in general a square matrix. The

translations and rotations are not included in the set of internal coordinates which describe, by definition
a molecular motion in which the relative positions of the atoms are not changed. Since B is not a square
matrix, it can not be inverted. We can always include in the s-vector six additional coordinates to describe
the three translations and the three rotations.

A special choice of internal coordinates [3, 4] often used as input to quantum chemical programs is
the Z-matrix. The Z-matrix of a molecule is built from a list of the atoms. The coordinates of each new
atom (A) are characterised by:

1. The distance to another, already defined atom B

2. The angle between the bond to atom B and the bond of atom B to an already defined atom C.

3. The dihedral angle between A,B,C and an already defined atom D.

The Z-matrix of a molecule is not unique. There are many different possibilities to order the atoms and
to define distances, angles and dihedrals.

3.4 The Electronic Problem and Approximation Methods

To optimize the geometry of a molecule we need the PES and to get the PES we need to solve the
electronic problem,

Ĥe(r;R)Ψe
I (x;R) = Ee

I (R)Ψe
I (x;R) . (3.43)

Let us simplify the notation to write this same equation as just,

ĤΨI(x) = EIΨI(x) . (3.44)
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This must be solved according to the Pauli principle which states that the total wave function must change
sign when any two electrons are transposed,

Ψ(~x1,~x2, · · · ,~x j, · · · ,~xi, · · · ,~xN) =−Ψ(~x1,~x2, · · · ,~xi, · · · ,~x j, · · · ,~xN) , (3.45)

since electrons are fermions. The most general such solution may be expressed as the linear combination
of all possible Slater determinants [5],

|i1i2 · · · iN |=
1√
N!

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψi1(~x1) ψi2(~x1) · · · ψiN (~x1)
ψi1(~x2) ψi2(~x2) · · · ψiN (~x2)

...
...

. . .
...

ψi1(~xN) ψi2(~xN) · · · ψiN (~xN)

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (3.46)

of orthonormal spin-orbitals, ψi(~x). Typically these orthonormal spin-orbitals are taken as the solution
to some one-electron problem. When both the set of spin-orbitals is complete (and hence infinite) and
the set of Slater determinants is complete (and hence infinite), then one speaks of complete configuration
interaction (complete CI) and the expansion is exact.

Even the time-independent Schrödinger equation can only be solved exactly for relatively few sys-
tems, such as the particle in a box, the hydrogen atom, the rigid rotor, and the harmonic and Morse
oscillators. If we allow accurate numerical solutions, we can include pretty much any one-dimensional
system (e.g., the vibrational wave function of a diatomic molecule, provided the potential is known) and
the hydrogen molecule cation, H+

2 . More generally, crudely speaking, “exact solutions” are usually use-
less because either (i) they are simply unattainable or (ii) may require approximations in order to extract
a physical or chemical interpretation. To go further, we need approximations and some way of judging
which approximations should be better than others. For this reason we need approximations. There are
two main classes of approximation methods in quantum mechanics, namely the variational principle and
perturbation theory.

3.4.1 Variational Principle

The variational principle tells us how we can begin with some guessed form for the wave function and op-
timize it. The variational theorem says that any trial wave function, Ψ(x), satisfying the physical boundary
conditions of our problem is an upper bound on the exact ground state energy,

E0 ≤
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 . (3.47)

Put another way,

E0 = min
Ψ

〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 , (3.48)

but only if the variation is over all possible wave functions, Ψ, otherwise,

E0 ≤ EΨ = min
Ψ

〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 , (3.49)

An example application of the variational principle is truncated CI where we keep only a finite number,
M, of terms of the (infinite) complete CI expansion,
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Ψ =
M

∑
I=1

ΦICI , (3.50)

where the ΦI are a set of orthonormal Slater determinants. The coefficients CI are varied until the minimal
value of the energy expectation value EΨ is found. In general Ψ is not normalized, so we must minimize,

E =
A

B
, (3.51)

where,
A = 〈Ψ|Ĥ|Ψ〉= ∑

K
∑
J

C∗
K〈ΦK |ĤΦ j〉CJ , (3.52)

and,
B = 〈Ψ|Ψ〉= ∑

K
∑
J

C∗
K〈ΦK |ΦJ〉CJ . (3.53)

Minimisation of Eψ with respect to the variational parameters CI ,

∂Eψ

∂CI

= 0 , (3.54)

for I = 1,2, . . . ,M, gives,

∂Eψ

∂CI

=
1

B2 (B
∂A

∂CI

−A
∂B

∂CI

) (3.55)

=
1
B
(

∂A

∂CI

− A

B

∂B

∂CI

) (3.56)

= 0 . (3.57)

Because B 6= 0 (normalisation integral) and with Eψ = A/B we get

∂A

∂CI

−Eψ
∂B

∂CI

= 0 . (3.58)

Which gives the generalised eigenvalue equation,

∑
J

(HI,J −EΨSI,J)CJ = 0 , (3.59)

for i = 1,2, . . . ,M. Here we have introduced the Hamiltonian matrix whose matrix elements are defined
by,

HK,J = 〈ΦK |ĤΦJ〉= H∗
J,K , (3.60)

and the overlap matrix whose matrix elements are defined by,

SK,J = 〈ΦK |ΦJ〉 . (3.61)

Thus,
∑
J

HI,JCJ = EΨ ∑
J

SI,JCJ , (3.62)
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may be written in matrix form as,
H~C = EΨS~C . (3.63)

In the CI problem, almost always S = 1 because the determinants are constructed to be orthonormal.
However the variational principle will also be applied to solving the Hartree-Fock equations (vide infra)
where S 6= 1.

The solution of this equation gives M energies EK , where the lowest value is a variational upper bound
to the true ground state energy. In fact, the lower the value of Eψ , the closer we are to the true ground
state energy. Hence we have a criterion for judging the relative quality of different approximate solutions.
Very interestingly, in the case of linear variations, we have what mathematicians refer to as Cayley’s and
what physicists refer to as the Hylleraas-Undheim-MacDonald interleaving theorem which says that the
Kth approximate energy is always an exact upper bound to the exact Kth energy [6].

We may also extract an approximate wave function. For each energy EK , we get after inserting in the
system of linear equations the coefficients CJ,K and therefore the corresponding wavefunction ΨK .

3.4.2 Perturbation Theory

Perturbation theory [7] provides a second systematic way to find approximate solutions to some prob-
lem. The perturbations may either be real (e.g., an applied electric field) or fictive (e.g., electron repul-
sions). Later we will use time-dependent perturbation theory to find excited states from time-dependent
density-functional theory. We content ourselves here with (time-independent) nondegenerate Rayleigh-
Schrödinger perturbation theory.

It is assumed that we know the exact wave functions Ψ
(0)
I and corresponding energies, EI(0), for some

unperturbed (real or model) system with Hamiltonian Ĥ(0),

Ĥ(0)Ψ
(0)
I = E

(0)
I Ψ

(0)
I . (3.64)

We want to use this solution to solve a similar but different problem, namely,

ĤΨI = EIΨI , (3.65)

where,
Ĥ = Ĥ(0)+λ Ĥ(1) . (3.66)

The quantity, Ĥ(1), is the perturbation, and λ is its strength. When the perturbation is real—such as the
case of an applied electric field—then λ may correspond to a real physical parameter which can be varied
experimentally. In the case of a fictitious perturbation, typically λ is just a formal parameter which will
be set to one at the end of the calculation. Both the energies,

EI = E
(0)
I +λE

(1)
I +λ 2E

(2)
I +λ 3E

(3)
I + · · · , (3.67)

and the wave function,
ΨI = Ψ

(0)
I +λΨ

(1)
I +λ 2Ψ

(2)
I +λ 3Ψ

(3)
I + · · · , (3.68)

are expanded in λ . These are then inserted into Eq. (3.66) which is then regrouped according to powers
of λ to obtain a hierarchy of equations to be solved for the different orders of perturbation theory using
the intermediate normalisation,

〈ΨI |Ψ(0)
I 〉= 1 , (3.69)



20 Chapter 3 Wave Function-Based Electronic Structure Theory

For example,
E
(p)
I = 〈Ψ(0)

I |Ĥ(1)|Ψ(p−1)
I 〉 , (3.70)

which gives us our first-order correction to the energy,

E
(1)
I = 〈Ψ(0)

I |Ĥ(1)|Ψ(0)
I 〉 , (3.71)

The first-order correction to the wave function turns out to be,

Ψ
(1)
I =

J 6=I

∑
J

Ψ
(0)
J

〈Ψ(0)
J |Ĥ(1)|Ψ(0)

I 〉
E
(0)
I −E

(0)
J

. (3.72)

3.5 Hartree-Fock Approximation

One of the oldest useful approach for treating the many-electron problem is due to Hartree who used it
for calculating ionization potentials [8]. The wave function in this approach is given by a simple product,

Ψ(x) = ψ1(~x1)ψ2(~x2)ψ3(~x3)....ψn(~xn) , (3.73)

and is known as a Hartree product. Since such a wave function violates the Pauli principle, requiring
that the wave function be antisymmetric with respect to any transposition of electrons, Fock replaced the
Hartree product with a single determinant built from orthonormal spin orbitals, ψ(~x). The generalized
Hartree-Fock (GHF) method consists of finding the energy and orbitals which minimize the variational
integral.

More commonly an additional collinear spin approximation is made that the spin of each electron is
either oriented up (spin α) so that,

ψ(~x) = ψα(~r)α(σ) , (3.74)

or oriented down (spin β ) so that,
ψ(~x) = ψβ (~r)β (σ) , (3.75)

We thus have different (spatial) orbitals for different spin (DODS). This defines the (spin) unrestricted
Hartree-Fock (UHF) method.

If, in addition, we make the approximation of having the same (spatial) orbitals for different spin
(SODS), then we may write,

ψ(~x) = ψ(~r)α(σ)

ψ̄(~x) = ψ(~r)β (σ) , (3.76)

where we have introduced the bar notation to distinguish between spin α and spin β spin-orbitals. This
defines the (spin) restricted Hartree-Fock (RHF) method.

We are now in a position to understand the Pauli exclusion principle. This principle states that we may
only put at most two electrons in a spatial orbital and then only if the two spins are different. This is au-
tomatically obeyed by the Hartree-Fock Slater determinant because as soon as two spin-orbitals have the
spatial and spin part, then two columns of the Slater determinant will be identical and the wave function
will be identically equal to zero (i.e., must be disallowed because it is no longer properly normalizable).

Another observation has to do with spin. Slater determinants are always eigenfunctions of Ŝz. How-
ever, they are not necessarily eigenfunctions of Ŝ2 unless linear combinations of two or more Slater
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determinants are taken. Such spin-adapted linear combination of determinants (configurations) are often
needed to describe open-shell systems. An exception is found in closed-shell systems where the spins of
all electrons are paired.

Ψ(~x1,~x2, · · · ,~xN) = |ψ1, ψ̄1,ψ2, ψ̄2, · · · ,ψN/2ψ̄N/2| . (3.77)

This RHF Slater determinant is an eigenfunction of Ŝz and Ŝ2 with S = Ms=0

We wish now to find the variationally best Slater determinant. We will work with spin-orbitals as in
the GHF for simplicity of notation. The electronic energy,

E =
N

∑
i=1

hi,i +
i< j

∑
i, j=1,N

(Ji, j −Ki j)

=
N

∑
i=1

hi,i +
1
2 ∑

i, j=1,N
(Ji, j −Ki j) , (3.78)

is the expectation value of the non-relativistic electronic Hamiltonian operator Ĥ with respect to the N-
electron Slater determinant of orthonormal spin-orbitals. Here, the one-electron integrals over the core
hamiltonian consisting of the electron kinetic energy plus the attraction to the nuclei have been denoted
as,

hi,i = 〈ψi|ĥ|ψi〉 , (3.79)

the Coulomb integrals are denoted by,

Ji, j =
∫ ∫

ψ∗
i (~x1)ψi(~x1)

e2

r12
ψ∗

j (~x2)ψ j(~x2)d~x1d~x2 = (ii|| j j) , (3.80)

and the exchange integrals are denoted by,

Ki, j =
∫ ∫

ψ∗
i (~x1)ψ j(~x1)

e2

r12
ψ∗

i (~x2)ψ j(~x2)d~x1d~x2 = (i j|| ji) . (3.81)

Although all off these integrals have been expressed as integrals over spin-orbitals, the integration over
spin reduces everything to integrals over spatial orbitals. Here we have introduced Mulliken (charge
cloud) notation for electron repulsion integrals,

(i j||kl) =
∫ ∫

ψ∗
i (~x1)ψ j(~x1)

e2

r12
ψ∗

k (~x2)ψl(~x2)d~x1d~x2 . (3.82)

We must now minimize the HF energy expression [Eq. (3.78)] with respect to the constraint that the
spin-orbials are orthonormal. This is most easily done using the method of Lagrange multipliers. Thus
we must minimize the Lagrangian,

L = E −∑
i, j

εi, j (〈ψi|ψ j〉−δi, j) , (3.83)

subject to spin-orbital orthonormality. The εi, j are the Lagrange multipliers. Minimization gives,
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f̂ ψi(~x) =
N

∑
j=1

εi, jψ j(~x) , (3.84)

where f̂ is the Fock operator, and given as

f̂ =− h̄2

2me

∇2 −
M

∑
A=1

ZAe2

riA

+
N

∑
i=1

(

Ĵi − K̂i

)

. (3.85)

Here Ĵi is the Coulomb operator describig the Coulomb interaction due to an electron in a given spin-
orbital and whose action on an arbitrary orbital is given by,

Ĵiψ(~x1) =

(

∫

e2|ψi(~x2)|2
r12

d~x2

)

ψ(~x1) . (3.86)

The action of the exchange operator, K̂i, is given by,

K̂iψ(~x1) = ψi(~x2)
∫

e2ψ∗
i (~x2)ψ(~x1)

r12
d~x2 . (3.87)

One of the purposes of the exchange operator is to remove a self-interaction error in the Coulomb energy
because Ki,i = Ji,i.

It is important to notice that the operator f̂ is hermitian and invariant to a unitary ransformation of the
occupied orbitals. By choosing a unitary transformation Eq. (3.84) can be written in a diagonal form as,

f̂ ψi = εiψi . (3.88)

This is known as the canonical Hartree-Fock equation. The quantity εi is the energy of the spin-orbital
ψi. The remaining task is to find those spin-orbitals which are eigenfunctions of the Fock operator.

Since the Fock operator, f̂ , depends upon the Hartree-Fock orbitals, the Hartree-Fock equations must
be solved iteratively [9]. That is, one begins with an initial guess for the occupied orbitals, constructs
the Fock operator, finds the new occupied orbitals from the eigenfunctions of f̂ , and so on and so forth,
until convergence is reached. That is, the sequence above is stopped if the solutions in two consecu-
tive iterations do not change (within a given tolerance). This is known as the self-consistent field (SCF)
method.

We now want to discuss some of the properties of the canonical HF orbitals and orbital energies. The
N spin-orbitals with the lowest orbital energies are just the spin-orbitals occupied in the determinant Φ.
We will use the indices i, j,k,m,n, l for occupied orbital energies. The indices, a,b,c, · · · ,g,h, will be
reserved for the remaining infinite number of unoccupied (or virtual) spin-orbitals with higher energies.
The indices r,s, · · · ,x,y,z represent orbitals which are free to be either occupiedd or unoccupied. The Fock
matrix is diagonal in the basis of the canonical orbitals,

Fi, j = 〈ψi| f̂ |ψ j〉= εi〈ψi|ψ j〉= ε jδi, j . (3.89)

The orbital energies can be expressed as
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εi = Fi,i (3.90)

= 〈ψi|ĥ|ψi〉+∑
k

〈ψi|(Jk −Kk)|ψi〉 (3.91)

= 〈ψi|ĥ|ψi〉+∑
k

(

〈ψi|Ĵk|ψi〉−∑
k

〈ψi|K̂k|ψi〉
)

(3.92)

= ε
(0)
i +∑

k

((ii||kk)− (ik||ki)) . (3.93)

In particular we get for occupied orbitals,

εi = ε
(0)
i +∑

j

((ii|| j j)− (i j|| ji)) (3.94)

= ε
(0)
i +

j 6=i

∑
j

((ii|| j j)− (i j|| ji)) , , (3.95)

and for virtual orbitals,
εa = ε

(0)
a +∑

k

((aa||kk)− (ak||ka)) . (3.96)

The occupied orbital energy εi represents the energy of an electron in the occupied spin-orbital ψi. This
energy is the kinetic and the attraction to the nuclei ε

(0)
i plus a Coulomb and exchange integration with

each of the remaining N − 1 electrons. The result for the unoccupied orbital energy, εa has a different
character. It includes the kinetic energy and the nuclear attraction of an electron in ε

(0)
a , but includes

Coulomb and exchange interactions with N electrons of the Hartree-Fock ground state. It is as if an
electron has been added to the ground-state determinant, Φ, to produce an (N + 1)-electron state. If we
simply add up the orbital energies of the occupied states, we get

∑
i=1,N

εi = ∑
i=1,N

ε
(0)
i + ∑

j,k=1,N
(( j j||kk)− (i j|| ji)) . (3.97)

If we compare this with the total Hartree-Fock energy

EHF = ∑
i=1,N

ε
(0)
i +

1
2 ∑

j,k=1,N
((ii|| j j)− (i j|| ji)) . (3.98)

We see that,
EHF 6= ∑

i=1,N
εi , (3.99)

and that the total energy of the state Φ is not just the sum of the orbital energies. The reason is that the
energy εi include Coulomb and exchange interactions between an electron in orbital ψi and electrons in all
other occupied spin orbitals, in particular orbital ψ j. But ε j includes Coulomb and exchange interactions
between an electron in ψ j and electrons in all other occupied spin orbitals, in particular orbital ψi. Thus
if we add εi and ε j, then we include the electron-electron interactions between an electron in ψi and
one in ψb twice. The sum of orbital energies counts the electron-electron interactions twice. This is the
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reason for the factor 1/2 in the correct energy expression for the total energy relative to the sum of orbital
energies.

Koopmans’ theorem states that, given an N-electron Hartree-Fock single determinant Φ with occupied
and unoccupied (virtual) spin-orbital energies εi and εa, the ionization potential to produce an (N − 1)-
electron single determinant Φi = âiΦ with identical spin-orbitals, obtained by removing an electron from
spin-orbital ψi, and the electron affinity to produce an (N+1)-electron single determinant Φa = â†

aΦ with
identical spin-orbitals, obtained by adding an electron to spinorbital ψa are just-εi and −εa, respectively.
To see this, it suffices to calculate the ionization potential in the frozen orbital approximation,

IP =N−1 Ei −N E0 =−εi , (3.100)

where N−1Ei and NE0 are the expectation values of the energy of the two relevant single determinants.
Occupied orbital energies are generally negative and ionisation potentials are positive. Similarly for the
electron affinity,

EA =N E0 −N+1 Ea =−εa . (3.101)

This result is consistent with the earlier observation that εa included interactions with all N other electrons
of the ground state and thus describes an N +1st electron.

Koopmans’ ionisation potentials are reasonable first approximations to experimental ionisation poten-
tials (missing are orbital relaxation and correlation effects which tend to cancel, at least for outer valence
ionization). Koopmans’ electron affinities are unfortunately often bad (because correlation and relaxation
effects cancel less well). Many neutral molecules will add an electron to form a stable negative ion.
Hartree-Fock calculations on neutral molecules, however, almost always give positive orbital energies for
all the virtual orbitals.

Another occasionally useful observation is known as Brillouin’s theorem which states that singly-
excited determinants Φa

i = â†
a îΦ constructed using canonical Hartree-Fock orbitals will not interact di-

rectly with the Hartree-Fock determinant Φ,

〈Φ|Ĥ|Φa
i 〉= 〈i|ĥ|a〉+∑

k

((ia||kk)− (ik||ka)) = Fi,a = 0 . (3.102)

The matrix element that mixes singly-excited determinants with the ground-state determinant is thus equal
to an off-diagonal element of the Fock matrix. Now, by definition, the canonical Hartree-Fock orbitals are
the ones which make the matrix F diagonal, hence Fi,a = 0. One can say that solving the Hartree-Fock
eigenvalue equation is equivalent to ensuring that the ground state determinant will not mix with any
singly excited determinants.

3.6 Basis Sets and Pseudopotentials

Now that we have formulated the Hartree-Fock equations, we still have to solve them. This implies the
choice of a numerical method. We will follow the usual route of quantum chemists and use a finite basis set
of Gaussian-type orbitals (GTOs). However for the heavy ruthenium atom we must use a pseudopotential
to include scalar relativistic effects of core electrons.

Roothaan [10] in 1951 made the Hartree-Fock approximation more practical for numerical solutions
by introducing the concept of basis sets (linear combination of atomic orbitals or LCAO). The molec-
ular orbitals are represented as a linear combination of carefully chosen three-dimensional one-electron
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functions, χµ called “atomic orbitals” 2,

φiσ (~r) = ∑
µ=1,K

χµ(~r)c
σ
µ,i , (3.103)

where K is an integer (the size of the basis set) larger than the number of electrons in the system. These
occupied orbitals may be used to form Slater determinants which are then minimized with respect to the
matrix of molecular orbital coefficients whose matrix elements are the coefficients cσ

µ,i. This results in a

set of matrix equations. A sloppy derivation 3 of the equations is as follows: Using the basis set Eq. 3.103
yields

f̂ σ
K

∑
µ=1

χµ(~r)c
σ
µ p = εpσ

K

∑
µ=1

χµ(~r)c
σ
µ p . (3.104)

Multigration with χν then results in,

K

∑
µ=1

〈χν | f̂ σ |χµ〉cσ
µ p = εpσ

K

∑
µ=1

〈χν |χµ〉cσ
µ p (3.105)

where there are K such equations and p = 1,2, · · · ,K. Writing these in a matrix equation yields the
Roothaan equation,

Fσ Cσ = SCσ Eσ , (3.106)

where,

Fσ
µ,ν = 〈χµ | f̂ σ |χν〉

Sµ,ν = 〈χµ |χν〉
Cσ

µ,p = cσ
µ p

Eσ
p,q = εpδp,q . (3.107)

Since Fσ depends upon Cσ in Eq. (3.106), then the Roothaan equations must also be solved self-
consistently. The final self-consistent energy is guaranteed to be an upper bound to the true (infinite
basis set) Hartree-Fock energy.

Many different approximate methods [3] exist for solving the Schrödinger equation and which one to
use for a specific problem is usually chosen by comparing its performance against known experimental
data. Experimental data thus guides the selection of the computational model, rather than directly entering
into the computational procedure. We have just described one level of approximation—that is, the restric-
tion to a single determinantal wave function. If the determinants in a CI expansion of the exact solution of
the many-electron wave function are viewed as N-electron basis functions, then the Hartree-Fock method
is a drastic restriction to a single N-electron basis function. However, another of the the approximations
inherent in essentially all ab initio methods is the introduction of a one-electron basis set. This is the one
which proves to be the most important for the work reported in this thesis.

A basis set is a mathematical description of the orbitals within a system used to perform the theoretical
calculation. Unknown functions such as molecular orbitals are normally expanded in a set of known
functions (basis set). When the basis set is complete, the expansion is no longer an approximation. It is

2Note however that these “atomic orbitals” need not be—and usually are not—the exact solution of any atomic problem.
3A rigorous derivation uses the variational principle.
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impossible to use a complete basis set for this would mean an infinite number of functions rendering the
calculations impractical. When a finite basis set is used, only components of the molecular orbital along
those coordinate axes corresponding to the selected basis functions can be represented. The smaller the
basis set, the poorer the representation. The type of basis functions used also influences the accuracy.
The better a single basis function is able to reproduce the unknown function, the fewer basis functions are
necessary for achieving a given level of accuracy. Generally larger basis sets more accurately approximate
the orbitals by imposing fewer restrictions on the locations of the electrons in space.

Much of our chemical intuition about how to chose a basis set comes from the hydrogen atom which
is one of the few quantum mechanical problems with an analytic solution [11]. The potential energy
has a simple − 1

r
dependence, so separation of variables can be used for obtaining radial and angular

components to the eigenstates of the wave function,

Ψ(r,θ ,ϕ) = Rn(r)Y
l
m(θ ,ϕ) . (3.108)

The Y l
m(θ ,ϕ) are spherical harmonics, while the radial dependence Rn(r)has the form,

Rn(r) = Ln(r)e
−r
a0 , (3.109)

where Ln is the nth Laguerre polynomial. The eigenvalues of the spatial Hamiltonian are specified by the
triple (n, l,m), known as quantum numbers. The number n fixes the total electron energy, the number l

describes the orbital angular momentum, and m denotes the z component of the angular momentum. There
is a fourth quantum number, ms, which accounts for the spin the electron [2], either α (spin up) or β (spin
down). The eigenfunctions that these quantum numbers specify are known as orbitals (or spin-orbitals
if spin is included), and they form the foundation for understanding the way electrons behave in other
atoms. And, more to the point, this analytic solution has had a large influence upon how we construct
basis sets.

The one-electron basis sets which most closely resembles the hydrogen atom solution are Slater-type
orbitals (STOs). These have the form Yl,m(θ ,ϕ)r

ne−ζ r or xnymzle−ζ r. The exponential dependence on the
distance between the nucleus and electrons mirrors the behavior of the exact orbitals for the hydrogen
atom. However, the STOs do not have any radial nodes. That is not such a great problem for a varia-
tional calculation is easily shown to make linear combinations of STOs having the proper nodal structure.
Nowadays STOs are primarily used for atomic and diatomic systems where high accuracy is required,
and in semi-empirical methods where all three- and four-centre integrals are neglected. They can also
be used with density functional methods that do not include exact exchange and where the Coulomb en-
ergy is calculated by fitting the density into a set of auxiliary functions, such as in the ADF (Amsterdam
Density-Functional) program. The main difficulty with STO basis sets is the difficulty of calculating three
and four center electron repulsion integrals.

The usual response is to use Gaussian-type orbitals (GTOs) which have the form xnymzle−αr2
. GTOs

are not as efficient as STOs in terms of the number of basis functions which must be used, but all nec-
essary integrals have analytic formulae in a GTO basis set which is not the case for STOs. Thus the r2

dependence in the exponential makes the GTO inferior to the STOs in two respects. At the nucleus a GTO
has a zero slope, in contrast to a STO which has a ’cusp’ ( a discontinous derivative), and GTOs have
a problem representing the proper behavior near the nucleus. The other problem is that the GTO falls
off too rapidly far from the nucleus compared with an STO, and the "tail" of the wavefunction is conse-
quently represented poorly. Both STOs and GTOs can be chosen to form a complete basis, but the above
considerations indicate that more GTOs are necessary for achieving a certain accuracy compared with
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STOs. The increase in the number of GTO basis functions, however, is more than compensated for by
the ease with which the required integrals are calculated. In terms of computational efficiency, GTOs are
therefore preferred and are used almost universally as basis functions in electronic structure calculations.

Having decided on the type of function and the location (nuclei), the most important factor is the
number of functions to be used. There is now a well-established hierarchy of approximations built up
over many decades for how to more or less systematically improve the basis set used in a calculation in
order to converge to good numbers. The smallest number of functions possible is for a minimum basis set.
In this basis set, only enough functions are employed to contain all the electrons of the neutral atom(s)
and any empty valence orbitals.

The next improvement of the basis sets is a doubling of all basis functions producing a double zeta
(DZ) type basis. Doubling the number of basis functions allows for a much better description of the fact
that the electron distribution is different in different directions. A variation of the DZ basis is the split
valence basis sets where the doubling of basis functions is only done for valence orbitals.

The next step up basis set size is a triple zeta (TZ). Such a basis contains three times as many func-
tions as the minimum basis. Some of the core orbitals mayagain be saved by only splitting the valence,
producing a triple split valence basis.The term TZ is used to cover both cases. The terms auadruple zeta
(QZ) and quintuple or pentuple zeta (PZ or 5Z,but not QZ) for the next levels of basis sets are also used,
but large basis sets are given explicitly in terms of the number of basis functions of each type.

Standard basis sets for electronic structure calculations use linear combinations of gaussian functions
to form athe orbitals. GAUSSIAN offers a wide range of pre-defined basis sets, which may be classified by
the number and types of basis functions that they contain. Basis sets assign a group of basis functions to
each atom within a molecule to approximate its orbitals. These basis functions themselves are composed
of a linear combination of gaussian functions and such basis functions are referred to as contracted func-
tions, and the component gaussian l functions are referred to as primitives. A basis function consisting of
a single gaussian function is termed uncontracted.

Since the choice of basis set is very important, let us take a moment to take stock of some of the
important choices and vocabulary needed when working with basis sets and the GAUSSIAN program:
Split valence basis set

This is away to make a basis set larger and it is done by increasing the number of basis functions per
atom. Split valence basis sets, such as 3-21G and 6-31G*,have two or more sizes of basis functions for
each valence orbital. The double zeta basis sets, form molecular orbitals from linear combination of two
sizes of functions for each atomic orbital. Similarly,triple split valence basis sets,like 6-311G, use three
sizes of contracted functions for each orbital-type.
Polarized valence basis set

Split valence basis sets allow orbitals to change size, but not to change shape. Polarized basis sets remove
this limitation by adding orbitals with angular momentum beyond what is required for the ground state
to the description of each atom. For example, polarized basis sets add d functions to carbon atoms and
f functions to transition metals, and some of them add p functions to hydrogen atoms. An example of a
polarized basis set is 6-31G(d). What it means is that it is a 6-31G basis set with d functions added to
heavy atoms. It is also known as 6-31G*. Another popular polarized basis set 6-31G(d,p), also known as
6-31G**, which adds p functions to hydrogen atoms in addition to d functions on heavy atoms.
Diffuse functions

Diffuse functions are large-size versions of s-and p-type functions (as opposed to the standard valence-
size functions). They allow orbitals to occupy a larger region of space. Basis sets with diffuse functions
are important for systems where electrons are relatively far from the nucleus: molecules with lone pairs,
anions and other systems with significant negative charge,systems in their excited states, systems with
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low ionization potentials, descriptions of absolute acidities, and so on. The 6-31+G(d) basis set is the
6-31G(d) basis set with diffuse functions added to heavy atoms. the double plus version, 6-31++G(d),
adds diffuse functions to the hydrogen atoms as well.
High angular momentum basis set

Much larger basis sets are now practical for many systems. Such basis sets add multiple polarization
functions per atom to the triple zeta basis set. The 6-31G(2d) basis set adds two d functions per heavy
atom instead of just one, while the 6-311++G(3df, 3pd) basis set contains three sets of valence region
functions, diffuse functions on both heavy atoms and hydrogens, and multiple polarization functions: 3 d
functions and 1 f function on heavy atoms and 3 p functions and 1 d function on hydrogen atoms. Such
basis sets are useul for describing the interactions between electrons in electron correlation methods;
they are not generally needed for Hartree-Fock calculations. Some large sets specify different sets of
polarization functions for heavy atoms depending upon the row of the periodic table in which they are
located. For example the 6-311+(3df,2df,p) basis set places 3 d functions and 1 f function on heavy atoms
in the second and higher rows of the periodic table, and it places 2 d functions and 1 f function on first
row heavy atoms and 1 p function on hydrogen atoms.
Basis set for Post-Third-Row Atoms

Basis sets for atoms beyond the third row of the periodic table are handled somewhat differently. For these
very heavy nuclei, electrons near the nucleus are treated in an approximate way, via core potentials(ECPs).
This treatment includes some relativistic effects, which are important in these atoms. The LANL2DZ
basis set is the best known of these.

In density function theory the same kind of basis sets can be used as in Hartree-Fock calculations. In
principal the parameters would have to be newly optimised (e.g. for a 6-31G* type basis). However, it
turned out that such optimised parameters only have a minor effect on results and the expense needed for
the optimisation is not justifiable. It is therefore common to use the same basis sets in density functional
theory that are also used in wavefunction calculations. In Kohn-Sham density functional theory only sim-
ple orbitals have to be described. Therefore, the demand on the basis is comparable to other independent
particle models like the Hartree-Fock model. Basis sets of double quality with one set of polarisation
functions are often sufficient to get good results. Triple-type of basis sets with two sets of polarisation
functions are formost cases close to converged results.

A final consideration, important for this thesis, is the concept of pseudopotential. Generally, a trade-off
between speed and accuracy is necessary, as there is an N4 dependence on the basis set size. In a system
of the size of a ruthenium polypyridyl complex (on the order of 100 atoms), a reasonable compromise is
to use the LanL2DZ basis set and electron-core potential of Dunning, Hay and Wadt. For the atoms C, H
and N, LanL2DZ uses the Dunning/Huzinaga10 valence double-ζ basis set. Following the usual notation
for basis sets, H, C and N are described by (10s5p/4s)[3s2p/2s].

The treatment of heavy atoms (third row and lower) by LanL2DZ involves the use of a pseudopotential
or effective core potential (ECP) for the core electrons. The ECP is an analytical function which is used to
account for the effect of the combined nuclear-electronic core on the remaining electrons. This approach
is justified by the fact that the inner electrons of a heavy atom are unimportant, in a chemical sense, their
spatial distribution and energies are largely unchanged when they form a chemical bond. In addition,
relativistic effects, which are important for atoms as heavy as ruthenium, can be “folded in” to the ECP.
These effects would otherwise be neglected. The LanL2DZ ECP accounts for the innermost 28 electrons
of Ru ([Ar]3d10)and the innermost 60 electrons of Os ([Kr]4d104 f 14). In both cases the remaining 16
electrons (4s24p64d75s1 for Ru,i and 5s25p65d76s1 for Os) are treated using a double-ζ basis set. The
name LanL2DZ comes from the fact that it uses the Los Alamos National Laboratory (LANL) ECPs
along with a doubleζ (DZ) basis set.
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3.7 Beyond Hartree-Fock

Although the Hartree Fock theory lays the foundation for understanding what goes on in quantum chem-
istry, it is known not to give accurate answers. This energy difference between the Hartree Fock energy
and the exact energy is called the correlation energy. Other so-called correlated or post Hartree Fock meth-
ods [3, 4]. To recover this correlation energy, the correlated methods use more and more determinants.
Such methods include the following:

• Complete Active Space SCF (CASSCF),

• Multi-Configurational SCF (MCSCF),

• Configuration Interaction (CI),

• Coupled Cluster Method (CC), etc.

The problem with the additional determinants is that they make the calculations more expensive. This
limitation is what necessitated the search for and use of a method that yields good results but is not
computationally so costly. This method is the Density Functional Theory (DFT) and its time dependent
version the so-called Time Dependent Density Functional Theory (TDDFT). This method will be dealt
with in the next chapter.
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CHAPTER 4

DENSITY-FUNCTIONAL THEORY AND TIME-DEPENDENT
DENSITY-FUNCTIONAL THEORY

This chapter provides a brief description of density-functional theory (DFT) and of time-

dependent DFT (TD-DFT).

4.1 Density-Functional Theory

Density-functional theory (DFT) [1, 2] is built around the idea of an electron density ρ(~r), which ba-
sically represents the number of electrons per unit volume at some position ~r in a molecule or in an
atom. DFT leads to a paradigm shift from the wave-function approach. The electron density ρ(~r), is
used as the main variable instead of the many-body wave function. In essence, the purpose of DFT is to
replace the (perhaps) unnecessarily complicated N-electron wave function Ψ(~x1,~x2,~x3, · · · ,~xN) and the
computationally-expensive part of solving the many-electron problem by a functional of the electronic
density. By the term “functional” is simply meant a function whose argument is itself a function. This
is unlike the familiar function which maps one number onto another number. A functional is normally
denoted by the use of a square bracket for its argument (i.e., F [ f ]) to distinguish it from an ordinary func-
tion (e.g., f (~r)). Some quantities, such as the exchange-correlation potential vxc[ρ](~r) are simultaneously
functionals and functions.

This realization that the electron density could be exploited in the study of ground state properties of
an atom or a molecule led to a lot of efforts towards understanding it. Some of the work in this direction
is captured below.

4.1.1 The Thomas-Fermi Model

In 1927, Thomas and Fermi [3] came up with the first ever approach to use the electron density as the
key variable in atomic calculations. They realized that statistical mechanics instead of quantum mechanics
could be used to approximate the distributions of the electrons in the atomic systems. In their formulation,
they used the same electron kinetic energy as that of a uniform electron gas,

ET F [ρ] =CF

∫

ρ
5
3 (~r)d~r−Z

∫

ρ(~r)

~r
d~r+

1
2

∫ ∫

ρ(~r1)ρ(~r2)

|~r1 −~r2|
d~r1d~r2 , (4.1)
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where CF = 3
10 (3π2)

2
3 . The above equation [Eq. (4.1)], ignores the terms of exchange and correlation and

only considers the traditional electrostatic energies of attraction (electron-nuclei) and repulsion (electron-
electron). It is thus, the functional for the energy in the Thomas-Fermi model for atoms. This model does
not give very accurate results. It is a model that did not work well when applied to molecules. This was
considered one of those oversimplified models that did not have any importance in quantitative predictions
in atomic and solid-state physics.

According to this model atoms can not bind and when nuclei are moved infinitely far apart this lowers
the energy [4, 5]

4.1.2 Hohenberg-Kohn

Hohenberg and Kohn (HK) [6] established the two theorems which constitute the theoretical foundation
of DFT:

First HK Theorem (The Existence Theorem).
For a nondegenerate system of interacting electrons in an external potential vext(~r), there
is a one-to-one (apart from an irrelevant additive constant) correspondence between vext(~r)
and the ground-state particle density, ρ0(~r). Given that vext(~r) in turn fixes Ĥ [up to an
arbitrary additive constant (energy zero)] it is seen that the full many-particle ground state
is a unique functional of ρ0(~r).

For an N-electron system, the existence theorem legitimizes the use of the ρ0(~r) instead of N and vext (r).
Thus it is possible from ρ0(~r) to determine not only N and vext(~r), but all the other properties of the
ground state such as the kinetic energy, the potential energy as well as the total energy. More to the point,
there is no longer any need for the complicated many-electron wave function, Ψ(~x1,~x2,~x3, · · · ,~xN). The
proof of this first theorem is done by considering the fact that if there are two systems with N electrons
and both are of equal electron density, then showing that the variational principle then requires that the
two systems must have the same external potential vext(~r). The proof is by contradiction. Assume that

two systems with different external potentials, v
(1)
ext and v

(2)
ext , and hence different wave functions, Ψ1 and

Ψ2, have the same ground-state charge density. Then, according to the variational principle,

E1 < 〈Ψ2|Ĥ1|Ψ2〉
= 〈Ψ2|Ĥ2 + v

(1)
ext − v

(2)
ext |Ψ2〉

= 〈Ψ2|Ĥ2|Ψ2〉+ 〈Ψ2|v(1)ext − v
(2)
ext |Ψ2〉

= E2 +
∫

(

v
(1)
ext (~r)− v

(2)
ext (~r)

)

ρ(~r)d~r . (4.2)

Similarly,

E2 < E2 +
∫

(

v
(2)
ext (~r)− v

(1)
ext (~r)

)

ρ(~r)d~r . (4.3)

Taking sum of Eqs. (4.2) and (4.3) gives the contradiction,

E1 +E2 < E1 +E2 . (4.4)

We are thus forced to conclude that our intial assumption that two systems with different external po-
tentials may have the same ground state density must be false. Or, put a different way, we are forced to
conclude that the density of a system with a nondegenerate ground state determines the external potential
up to an additive constant.
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The greatest achievement of this first HK theorem was the confirmation that there exists a direct con-
nection between the vext(~r) and ρ0(~r). As a mere existence theorem, it failed to clarify the form of the
density functional. It is thus not possible on the basis of this first theorem to calculate E0 from the external
potential vext(~r). This weakness is what the second HK theorem seeks to address.

Second HK Theorem (The Variational Theorem).
The ground-state charge density minimizes a variational expression for the ground state
energy,

Evext [ρ] = T [ρ]+Vne[ρ]+Vee[ρ] =
∫

ρ(~r)vext(~r)d~r+FHK [ρ] . (4.5)

Here, Evext simply stresses the dependence of the total electronic energy on the external
potential, vext(~r) and ρ(~r) in the equation only becomes equal to the ground-state density,
ρ0(r), for the exact variational minimum. Any remaining unaccounted parts of the energy
are included in FHK [ρ] which is a universal functional in the sense that it is independent of
the system under consideration (i.e., does not depend upon vext(~r)). Furthermore, FHK [ρ] is
minimal at the exact ground-state density ρ0(~r), and its minimum gives the exact ground-
state energy, E0, of the system.

Mathematically, an approximate density ρ̃ of an N-electrons system, yields an approximate energy Ẽvext

which is an upper bound to the exact ground state energy,

E0 ≤ Ẽvext . (4.6)

By applying the variational principle of the second HK theorem to the HK energy functional we obtain
the Euler equation,

µ =
δEvext [ρ]

δρ(~r)
= vext(~r)+

δFHK [ρ]

δρ(~r)
, (4.7)

where µ is the chemical potential. This equation [Eq. (4.7)] forms the main working equation in orbital-
free DFT. In fact, we have here the formally exact generalization of Thomas-Fermi theory. It is also an
empty theory unless we can find useful approximations for the universal functional FKS[ρ]. This means
that we tend to fall back on Thomas-Fermi-like approximations which are not usually sufficiently accurate
for chemistry.

4.1.3 Kohn-Sham Formalism

Kohn and Sham recognized that the main difficulty is the problem of finding a density functional for
the kinetic energy. In the Kohn-Sham approach [7] N orthonormal auxiliary functions (the Kohn-Sham
orbitals) are introduced to create a formal theory with a density-functional which turned out to be much
easier to approximate. The result is a system of N noninteracting electrons moving in a local potential v̂s

(the s stands for “single particle”) whose ground-state density is assumed to be exactly the same as the
ground-state density of the real interacting system of N electrons. The kinetic energy of the noninteracting
system is (in atomic units, h̄ = me = e = 1),

Ts =−1
2

N

∑
i=1

ni〈ψi|∇2|ψi〉 , (4.8)

where the ψi and ni are the Kohn-Sham (spin-)orbitals and their occupation numbers respectively. This
noninteracting kinetic energy is in general not the same as the kinetic energy of the interacting system.
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Normally these occupation numbers are assumed to have values of either zero or one in which case the
assumption that the ground state densities be the same for the interacting and noninteracting systems is
called noninteracting v-representability. However there is an ensemble generalization which allows the
occupation numberes to be fractional.

The Kohn-Sham reference system has a one-electron Hamiltonian,

ĥs =−1
2

N

∑
i

∇2
i +

N

∑
i

vs(~ri) , (4.9)

in which there are no electron-electron repulsion terms, and which yields an exact ground state electron
density ρ . For this system there is a corresponding exact determinantal ground state wave function.

Φs = |ψ1,ψ2,ψ3, · · · ,ψN | . (4.10)

If we apply the first Hohenberg-Kohn theorem to noninteracting systems, then we find that the noninter-
acting kinetic energy of Eq. (4.8) must also be a functional of the density, Ts[ρ]. However now instead of
having to make a Thomas-Fermi-like approximation for this part of the kinetic energy, we have a new im-
plicit expression involving Kohn-Sham orbitals which themselves must be functionals of the ground-state
charge density.

Let us now turn to the second Hohenberg-Kohn theorem where we see that we can now write that,

F [ρ] = Ts[ρ]+ J[ρ]+Exc[ρ] , (4.11)

where the exchange-correlation (xc) energy is at first sight a sort of “rubbish bin” for putting all the terms
that we cannot or do not want to calculate,

Exc[ρ] = T [ρ]−Ts[ρ]+Vee[ρ]− J[ρ] . (4.12)

Note that the terms Vee[ρ]− J[ρ] correspond fairly well to what is normally called exchange and correla-
tion, but that the xc-energy of DFT also includes the kinetic energy difference between the true interacting
and fictitious noninteracting system.

We want to minimize this with respect to the constraint that the orbitals be orthonormal. Once again
using the method of Lagrange multipliers (but this time using functional derivatives), we carry out,

0 =
δL

δψ∗
i (~r)

=
(

ĥs − εi

)

ψi(~r) , (4.13)

where,

L =−1
2

N

∑
i=1

ni〈ψi|∇2|ψi〉+
∫

vext(~r)+Vee[ρ]+Exc[ρ]−
N

∑
i=1

εi (〈ψi|ψi〉−1) . (4.14)

Of course, Eq. (4.13) is just the Kohn-Sham orbital equation,

ĥsψi(~r) = εiψi(~r) , (4.15)

except that we may now write out the noninteracting potential more explicitly as,

vs(~r) = vext(~r)+ vH [ρ](~r)+ vxc[ρ](~r) , (4.16)
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where the Hartree (or Coulomb) potential is,

vH [ρ](~r1) =
∫

ρ(~r2)

r12
d~r2 , (4.17)

and the xc-potential is,

vxc[ρ](~r) =
δExc[ρ]

δρ(~r)
. (4.18)

Thus far everything is exact and it would seem that, instead of paying the high computational price for
multiple determinants in the wave-function-based methods discussed earlier, the better way forward is to
seek for ways of improving the exchange-correlation functionals.

To make this a useful theory, we need to find approximations for Exc[ρ]. The search for efficient
exchange-correlation functionals is an active area of study in DFT and below (in the next subsection) are
more details about some of the approximations and some representative functionals. Let us assume for
the moment that we already have a reasonable approximate Exc[ρ] and can form its derivative vxc[ρ](~r).
Then the similarity of the Kohn-Sham equations to the Hartree-Fock equations makes it relatively easy to
implement Kohn-Sham DFT in program that already does Hartree-Fock calculations. Like Hartree-Fock
calculations, Kohn-Sham calculations are done self-consistently. One obtains ρ(~r) for a given vs which
satisfies the Euler equation by solving the one-electron equation,

[

− 1
2

∇2 + vs(~r)

]

ψi = εiψi . (4.19)

For completeness, let us also derive the form of vxc a somewhat different way. We begin with the
Hohenberg-Kohn F functional which we rewrite as,

F [ρ] = T [ρ]+ J[ρ]+Exc[ρ] , (4.20)

where,
Exc[ρ] = T [ρ]−Ts[ρ]+Vee[ρ]− J[ρ] . (4.21)

The quantity Exc is the same xc-energy as before. The Euler equation becomes,

µ = vs(~r)+
δTs[ρ]

δρ(~r)
, (4.22)

where the KS effective potential is defined by,

vs(~r) = vext(~r)+
δJ[ρ]

δρ(~r)
+

δExc[ρ]

δρ(~r)
=

∫

ρ(~r′)
|~r−~r′|d~r

′+ vxc(~r) , (4.23)

where,

vext(~r) =−
M

∑
A

ZA

r1A

, (4.24)

with the exchange-correlation potential,

vxc(~r) =
δExc[ρ]

δρ(~r)
. (4.25)
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The total electronic energy may be calculated from the Kohn-Sham orbitals in a variety of ways. One
which makes use of the Kohn-Sham orbital energies is,

E =
N

∑
i=1

εi −
1
2

J[ρ]+Exc[ρ]−
∫

vxc[ρ](~r)ρ(~r)d~r . (4.26)

4.1.4 Exchange-Correlation Approximations

In some ways the Kohn-Sham formalism resembles the Hartree-Fock approximation. However Hartree-
Fock is an approximation, while Kohn-Sham promises to be exact when the exact xc-functional is used.
Unfortunately no exact practical form is known for the xc-functional. However the forms that are known
perform so well that Hartree-Fock calculations are now rarely performed unless the intension is to follow
up with explicitly correlated ab initio calculations. This is in large part due to the successes in developing
new and better xc-functionals in DFT. For the purposes of the presentation here, the development of
xc-functionals may divided into three generations.

4.1.4.1 First Generation: Local Density Approximation

Much of the success of DFT is due to that fact that Exc[ρ] can be reasonably approximated by a local
or nearly local functional of the density. The first and most widespread approximation to Exc[ρ] is the
local density approximation (LDA), which assumes that the xc-energy of a real system behaves locally as
that of a uniform electron gas (UEG). Thus the LDA assumes that the exchange-correlation (xc) energy
density, Exc[ρ], depends only upon the density at~r. Thus,

ELDA
xc =

∫

εUEG
xc (ρ(~r)ρ(~r d~r , (4.27)

where εUEG
xc (ρ(~r)) is the energy density of the UEG evaluated at~r for the density ρ(~r) at that point in the

system. Clearly, the LDA is eact in the limit of slowly varying densities.
The exchange-correlation energy for the homogeneous electron gas can be written as,

ELDA
xc = ELDA

x +ELDA
c . (4.28)

The first part of the term is the Dirac exchange energy and has a relatively simple analytic form,

ELDA
x =−2

3

(

3
4π

) 1
3
∫

[

ρ(~r)

] 4
3

d~r . (4.29)

The correlation term however, does not have a known analytic form. However, the correlation part has
been obtained by parameterizing [8, 9] the results of Monte Carlo simulations [10].

Remarkably the LDA works even for molecules where the electron density is far from uniform. Typ-
ically the LDA yields a good accuracy in reproducing experimental structural and vibrational properties
of strongly bound systems. It usually overestimates bonding energies and underestimates bond lengths.

The next step beyond the LDA is the local spin density approximation where up and down spins are
treated differently. Nowadays the term LDA almost always implies the local spin density approximation.

4.1.4.2 Second Generation: Generalized Gradient Approximation

The first try at a second generation of xc-functionals was the gradient expansion approximation (GEA).
In this approach, the exchange correlation energy is treated as a Taylor expansion about the density at
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every point,

EGEA
xc [ρ] =

∫

εUEG
xc (ρ)ρ(~r)d~r+

∫

Cxc(ρ(~r)x(~r)d~r . (4.30)

Unfortunately this approach never worked very well.
Equation 4.30, is assymptotically valid for densities that vary slowly over space. For instance for finite

systems, the terms in the expansion of the exchange energy of order equal to or greater than four diverge.
The exchange potential performs even more poorly for it diverges at the second order [11].

A more successful approach has been generalized gradient approximations (GGA) of the form ,

EGGA
xc =

∫

εxc(ρ(~r),x(~r))ρ(~r)d~r , (4.31)

where the reduced gradient,

x(~r) =
|~∇ρ(~r)|
ρ4/3(~r)

. (4.32)

The three most popular parametrizations are that of Becke (B88), Perdew and Wang (PW91), and Perdew,
Burke, and Enzerhof (PBE) [12]. The GGA greatly improves upon the LDA in the prediction of the
binding energies of real substances.

4.1.4.3 Third Generation: Hybrid Functionals

Axel Becke introduced hybrid functionals [13] as the third generation of density functionals in the 1990s.
These functionals have a contribution of Hartree-Fock exchange. For example,

Exc = EGGA
xc +Cx

(

EHF
x −EGGA

x

)

. (4.33)

The work reported in this thesis was carried out using a particular hybrid functional called B3LYP whose
formulation is,

EB3LY P
xc = (1−a)ELDA

x +aELDA
xc +bEB88

x + cELY P
c +(1− c)ELSD

c (4.34)

4.1.4.4 New Generation of functionals

In recent times a new generation of functionals has emerged and it comprises among others the following:

• Meta-Generalized Gradient Approximation-meta-GGA

• Range-separated functionals

• Double hybrid functionals

A “meta-GGA functional [14]” is basically an extension of the GGA in which the non-interacting
Laplacian (second derivative) of the density or kinetic energy density is used as input to the functional as
well as the electron density and its gradient. The concept of “range separation” was introduced in order
to combine DFT and wavefunction theory. More details on this can be found in reference [15].

The double-hybrid (DH) [16] density-functional approximations mix HF exchange with a semilocal
exchange density functional and second-order Møller-Plesset (MP2) correlation with a semilocal correla-
tion density functional.
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4.2 Time-Dependent Density Functional Theory

It should be clear by now that ordinary DFT is restricted to time-independent ground-state problems.
However there are many problems in chemistry where we are interested in the dynamic response of the
charge density or in electronic excited states. Fortunately there is a time-dependent variant on DFT.

4.2.1 Runge and Gross Formulations

Runge and Gross [17] formalized time-dependent DFT (TD-DFT) and extended the Hohenberg-Kohn
theorems into the time domain, by proving that two spatially different external potentials cannot induce
the same time-dependent densities. The formulation that follows is done in such a wy as to bring out the
similarity with the conceptual structure of ground-state DFT

Existence Theorem.
For any system of interacting electrons in an external time-dependent potential vext(~r, t),
which can be expanded in Taylor series with respect to time, and given an initial state
Ψ(t0) =Ψ0, there is a one-to-one correspondence between vext(~r, t) and the time-dependent
electron density ρ(~r, t) up to an additive function of time.

According to this theorem—which is the analogue of the first Hohenberg-Kohn theorem—we can con-
sider the time-dependent electronic density [18] as the fundamental variable that determines all the prop-
erties of the system. It is important to notice that, different from DFT, this case requires setting an initial
condition, since we are following an evolution in time.

Now what about an analogue of the second Hohenberg-Kohn theorem? There is no energy variational
principle for the time-dependent case. Instead what is often used is the

Frenkel-Dirac Variational Principle.
Making the action,

A =
∫ t1

t0

〈Ψ(t)|i ∂

∂ t
− Ĥ(t)|Ψ(t)〉 , (4.35)

stationary, with respect to all possible variations of Ψ(t) subject to the fixed point condi-
tions δΨ(t0) = δΨ(t1) gives the time-dependent Schrödinger equation,

Ĥ(t)Ψ(t) =−i
∂

∂ t
Ψ(t) . (4.36)

It is important to realize that the exact solution is only obtained if there are no constraints on the variations.
Otherwise, the Frenkel Dirac variational principle provides a way to derive an appropriate approximate
time-dependent equation from a given trial function (e.g., one of single-determinantal form). This extra
degree of freedom is an advantage in most applications.

In the Runge-Gross paper, they propose an

Action Theorem.
The Frenkel-Dirac action is a functional of the time-dependent density, A[ρ].

This has actually been shown to be incorrect and is known as the “causality problem.” The problem is
that we are asking something more than what is usually required from the Frenkel-Dirac action—an exact
equation, rather than an appropriate approximate equation. Vignale has shown that the problem stems
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from the fact that time propagation means that Ψ(t0) actually determines Ψ(t1) (even in the wave function
case). He shows that an extra term must be added to restore causality [19]. Fortunately many correct
results may be (and have been) obtained without taking this extra term needed in rigorous derivations into
consideration.

Runge and Gross then go on to derive a time-dependent Kohn-Sham equation. First they partition the
action as,

A[ρ] = S[ρ]−
∫ t1

t0

∫

ρ(~r, t)vext(~r, t)dtd~r , (4.37)

in which S[ρ] is a universal functional of the time-dependent density and A[ρ] is stationary for variations
around the exact density of the system. Let S0[ρ] denote the S functional for noninteracting electrons.
Then,

A[ρ] = S0[ρ]+SH [ρ]+SXC[ρ]−
∫ t1

t0

∫

ρ(~r, t)vext(~r, t)dtd~r , (4.38)

where

SH [ρ] =−1
2

∫ t1

t0

∫ ∫

ρ(~r, t)ρ(~r′, t)
|r̃− r̃′| dtd~rd~r′ , (4.39)

and the xc-action Sxc, similar to ground-state DFT, contains all the missing contributions to the functional
A[ρ]. The stationary action principle then leads to the equation

δS0[ρ]

δ (~r, t)
− vs(~r, t) = 0 , (4.40)

where,

vs(r, t) = vH((r, t)+ vxc((~r, t)+ vext((~r, t)

=
∫

n(~r′, t)
|~r−~r′|d~r

′− δAxc[ρ]

δρ(~r, t)
+ vext(~r, t) . (4.41)

Equation (4.40) is the Euler equation of a system of independent electrons moving in a time-dependent
potential equal to vs(~r, t). Therefore, the exact density of the many-body system can be obtained from the
one-particle time-dependent Schrödinger equation,

i
∂

∂t

ψi(r, t) =

[

− 1
2

∇2 + vs(~r, t)

]

ψi(~r, t) , (4.42)

called the time-dependent Kohn-Sham (TD-KS) equation. The density is to be built from the orbitals
ψ(~r, t) through the relation,

ρ(~r, t) =
i

∑
Nv

|ψi(vec, t)|2 , (4.43)

where the sum is over the occupied states.

4.2.2 Adiabatic approximation

Thus far the theory is pretty much exact and so useless unless we can find suitable approximations for
the time-dependent xc-functional. The exact vxc depends nonlocally on the density both in the spatial

and in the time variables (memory dependence). Fortunately, by disregarding the memory dependence,
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we obtain an approximation which is not too bad and that has been successfully applied in many cases.
This approach, called the adiabatic exchange [20] -correlation approximation (AxcA). It may be written
formally as,

vadia
xc [ρ](r, t) =

δExc[ρ(t)]

δρ(~r; t)
. (4.44)

It is important to understand this equation. On the left-hand side, we have the functional derivative of a
functional of a function of four variables (x,y,z, t) (and spin),

vxc[ρ](~r, t) =
δSxc[ρ]

δρ(~r, t)
, (4.45)

but on the right-hand side, we only have the functional derivative of a functional of a function of three
variables (x,y,z) (and spin) because time is treated as a fixed parameter (hence the semicolon) which does
not enter into the functional differentiation,

δExc[ρ(t)]

δρ(~r; t)
= vxc[ρ(t)](~r; t) . (4.46)

This allows us to replace the xc-functional Sxc about which relatively little is known with the somewhat
betterer known xc-functional Exc. In the limit of an external potential that varies slowly in time, the AxcA
becomes exact if the true xc ground-state functional is known. In practice the results are also affected
by the faults of the ground-state approximations, such as the lack of spatial nonlocality of the LDA or
the GGA. Nevertheless, despite its crudeness, the AxcA, often yields calculated optical spectra that are
comparable with those of more demanding many-body methods.

4.3 Linear Response Theory

Many of the applications of TD-DFT concern the calculation of absorption spectra in the linear regime
using the dipole approximation. With a weak external perturbing field, the results of such calculations can
be compared to the findings of standard spectroscopic experiments by using linear response theory.

Linear response theory [21] is a straightforward consequence of the time-dependent Schrödinger equa-
tion in a perturbative treatment. For convenience, the equations will be considered in the frequency (en-
ergy) representation, obtained by Fourier transformation of time-dependent quantities.

Basically, the purpose of linear response theory is to study the variation of a given physical observable
due to the application of a weak external perturbation. As it is usual in quantum mechanics, both the
observable and the perturbation are represented by Hermitian operators.

4.3.1 Susceptibility

The fundamental quantity in time-dependent linear response theory is the generalized susceptibility which
in the frequency domain can be written as,

χ(~r,~r′,ω) = ∑
n

[ 〈Ψ0|ψ̂†(~r)ψ̂(~r)|Ψn〉〈Ψn|ψ̂†(~r′)ψ̂(~r′)|Ψ0〉
ω − (En −E0)+ iη

− 〈Ψ0|ψ̂†(~r′)ψ̂(~r′)|Ψn〉〈Ψn|ψ̂†(~r)ψ̂(~r)|Ψ0〉
ω +(En −E0)+ iη

]

, (4.47)
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where η is an infinitesimal positive number, Ψ0 and Ψn are respectively the groundstate and excited-state
wave functions that correspond to the energies E0 and En, and ψ̂†(~r) and ψ̂(~r) are second-quantization
field operators. The operator ψ̂†(~r)ψ̂(~r) is the second-quantized version of the density operator,

ρ̂(~r) =
N

∑
i

δ (~r−~ri) , (4.48)

where N is the number of electrons. The poles in Eq. (4.47) correspond to the excitation energies of
the system. Using Eq. (4.47), the Fourier transform of the response of the expectation value of a local
operator, Â to a local time-dependent perturbation v′ext(~r

′, t) becomes,

A′(ω) =
∫

A(~r)χ(~r,~r′)v′ext(~r
′,ω)d~rd~r′ . (4.49)

For an independent-particle system Ψ0 and Ψn become Slater determinants of single-particle orbitals,
ψr(r), which correspond to the energies εr and Eq. (4.47) can then be written as,

χ(~r,~r′,ω) = ∑
rs

(ns −nr)
φ ∗

s (~r)φr(~r)φ
∗
r (~r

′)φ ′
s(~r)

εs − εr +ω + iη
, (4.50)

where ns and nr are the occupation numbers. This equation is particularly important in TD-DFT since it
is used to calculate the susceptibility of the Kohn-Sham system of noninteracting particles.

4.3.2 Polarizability

Polarizability is particularly important since it is strictly related to the absorption of electromagnetic
radiation in the dipole approximation. In linear response theory, the dynamic polarizability is given by,

αi j(ω) =
∫

riχ(~r,~r
′,ω)r′jd~rd~r′ , (4.51)

where ri and r′j are the components of the position operators~r and~r′ in the first-quantized form. If we

indicate with ~d′(ω) the linear response of the dipole to the external perturbation v′ext(~r
′,ω) = ~E (ω) ·~r

(where ~E (ω) is a weak electric field), we can write polarizability as,

αi j(ω) =
d′

i(ω)

E j(ω)
, (4.52)

which is also referred to as the response tensor of the dipole to an external electric field. In the case of
unpolarized radiation, the mean polarizability is usually written in the form

ᾱ(ω) =
1
3

Trα(ω) = ∑
n

fn

(En −E0)2 −ω2 , (4.53)

where the spectroscopic oscillator strengths,

fn =
2
3
(En −E0)(|〈ψ0|x|ψn〉|2 + |〈ψ0|y|ψn〉|2 + |〈ψ0|z|ψn〉|2) , (4.54)
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and x, y and z are the components of the position operator. Eq. (4.53) is a straightforward consequence of
Eq. (4.47) and of Eq. (4.51).

For a molecular system we can write the absorption coefficient as,

I(ω)∝ ωℑm(ᾱ(ω + iη)). (4.55)

Normally, the absorption coefficient I is defined by the relation,

F(z) = F0eIz , (4.56)

where F indicates the intensity of an electromagnetic beam propagating along the z direction. We also
note that the density of the energy of radiation is given by,

ρ =
E 2

8π
, (4.57)

where E is the norm of the electric field associated with the wave. The intensity F is provided by the
product cρ where c is the speed of light. Using these relations, the energy per unit of time which is
provided to the system under investigation by the light beam is written as,

dU

dt
= c

dU

dz
=

V c

8π

dE 2

dz
=−V c

8π
IE 2 , (4.58)

where V indicates the volume. Inversion of this equation gives the I-equation as

I =− 8π

V cE 2

dU

dt
. (4.59)

In order to establish a connection with microscopic theory we rewrite Eq. (eq:energy-unit) as,

dU

dt
= ∑

i f

ω f iWi f (4.60)

where i and f denote occupied and empty energy levels, ω f i is their difference in energy, and Wi f is the
transition probability per unit of time between levels i and f . To go further we have now to evaluate
Wi f using quantum mechanics. Reference here is made to the simple case of a single electron subject
to an external potential vext(r) and to electromagnetic radiation. The Hamiltonian for this system can be
expressed as,

Ĥ =
1
2
(−i~∇−

~A

c
)2 + ve f f (~r) , (4.61)

where A is the vector potential associated with the electromagnetic wave. Using the Coulomb gauge ~∇ ·A
= 0 and ignoring the quadratic term in the vector potential, Eq. (4.61) can be simplified as,

Ĥ =−1
2

∇2 + ve f f (~r)+
i

c
~A ·~∇ , (4.62)

where the last term of the Hamiltonian can be treated perturbatively. For an electromagnetic wave propa-
gating along z, the vector potential can be chosen to be,
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~A(z, t) = ~A0ei(kz−ωt) , (4.63)

where k is the wave number and ω is the frequency. In general, if the wavelength of the radiation is large
in comparison with the dimension of the system under investigation, the vector potential can be expanded
in powers of kz = 2π

λ
z,

~A(z, t) = ~A0e−iωt

[

1+ ikz− 1
2
(kz)2 + ....

]

(4.64)

The dipole approximation is then obtained by limiting the expansion to the first term, namely by
discarding the dependence on the position. Using Fermi’s golden rule, the transition probability per unit
of time between two levels i (occupied) and f (unoccupied) is given by,

Wi f =
2π

c2

[

~A0 · 〈ψ f |~∇|ψi

]2

δ (ω f i −ω) . (4.65)

Through the identity
[

~r, Ĥ

]

= ~∇ the term 〈Ψ f |~∇|Ψi〉 can be expressed as,

〈ψ f |~∇|ψi〉=−ω f i〈ψ f |~r|ψi〉 , (4.66)

and Eq. (4.65) can finally be written as,

Wi f = 2π

[

~E0 · 〈ψ|~r|ψ〉
]2

δ (ω f i −ω) , (4.67)

where we used the relation ~E0 =
iω f i

c
~A0. Now Wi f is ready to be inserted in Eq. (4.60) to obtain the ab-

sorption coefficient through Eq. (4.59). It is now straightforward to note the equivalence of Eq. (4.55) and
Eq. (4.59).

4.3.3 Linear-Response TDDFT and Dyson-Like Equation

For an interacting system, the perturbation υ ′
ext [see Eq. (4.49)] introduces a first-order change in the

electronic density that can be expressed as,

ρ ′(~r,ω) =
∫

χ(~r,~r′,ω)V ′
ext(~r

′,ω)d~r′ , (4.68)

where χ is the generalized susceptibility as per Eq. ( 4.47). Since the the noninteracting Kohn-Sham
equation [Eq. (4.42)] has the same time-dependent density as the many-body problem, the response of
the density ρ ′(~r,ω) is also the same. In this case in which the equations are a bit more complicated due
to the dependence of the effective potential on the internal variables, the resultant response of the density
can be written as,

ρ ′(~r,ω) =
∫

χs(~r,~r
′,ω)v′s(~r,ω)d~r′ , (4.69)

where ,
v′s(~r,ω) = v′ext(~r,ω)+ v′H(~r,ω)+ v′xc(~r,ω) , (4.70)

and χs is the KS susceptibility,
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χs(~r,~r
′,ω) = ∑

i j

(n j −ni)
φ ∗

j (~r)ψi(~r)ψ
∗
i (~r

′)ψ j(~r
′)

ε j − εi +ω + iη
, (4.71)

where ψi and ψ j indicate the ground-state KS orbitals corresponding to the eigenvalues εi and ε j. It is
important to note that, if i and j are both occupied or empty levels, the corresponding contribution to χ
vanishes. Equation (4.70) also introduces the first-order response of the Hartree+xc correlation potential
induced by the application of v′ext ,

v′Hxc(~r,ω) = v′H(~r,ω + v′xc(~r,ω) =
∫

κ(~r,~r′,ω)n′(~r′,ω)d~r′ . (4.72)

The kernel κ is defined by,

κ(~r,~r′,ω) =
1

|~r−~r′| +
δvxc(~r,ω)

δn(r′)

∣

∣

∣

∣

n=n0

δ (t − t ′) , (4.73)

where the second term is a functional of the ground-state density only. In the AxcA the dependence of
Eq. ( 4.73) on the frequency is not explicit because the xc contribution to the kernel is local in time,

f adia
xc = χs(~r,~r

′, t ′t ) =
δvxc(~r)

δn(~r′)

∣

∣

∣

∣

n=n0

δ (t − t ′) . (4.74)

By equating the density response in Eq. (4.68) and Eq. (4.69) and by using Eq. (4.72), one obtains the
Dyson-like equation of TDDFT linear response,

χ(~r,~r′,ω) = χs(~r,~r
′,ω)+

∫ ∫

χs(~r,~r
′,ω)κ(~r1,~r2,ω)χ(~r2,~r

′,ω)d~r1d~r2 . (4.75)

As already noted earlier, the poles of the response function χ are excitation energies of the interacting
system and the residues are the corresponding oscillator strength. The kernel κ is responsible for the
corrections to the non interacting KS susceptibility Eq. (4.71). Setting κ = 0 gives exactly χ = χs. It
is important to notice that the optical spectra can be obtained from the Dyson-like equation through
Eq. (4.51).

The practical solution of Eq. (4.75) is quite an expensive operation from both computational and
memory-requirement points of view. Practically, because of its unfavorable scaling, this approach is fea-
sible only for systems consisting of a small number of atoms. As a result of these limitations, more
efficient ways to cope with the problem of optical properties have been devised.

4.3.4 Casida’s equations

The absorption spectrum is given in stick form by the poles of the dynamic polarizabiity (excitation
energies ωI) and by its residues (oscillator strengths, fI). The problem is how to calculate these quantities
efficiently. Casida’s equations [22] entail a reformulation of the calculation of the poles (which are the
transition energies) of the response function χ into a generalized Hermitian eigenvalue problem. This
applies to frequency-independent kernels. The Casida approach is the most widespread among quantum
chemists and this has seen it implemented in many ab initio codes. It is especially appropriate for the
calculation of optical properties. Its limitation is in terms of its inability to access broad energy ranges.

The derivation of Casida’s equations starts with Eq. (4.69) where V ′
Hxc in turn depends linearly upon the

response of the density through Eq. (4.72). By explicitly substituting the KS susceptibility [Eq. (4.71)] in
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Eq. (4.69), one notices that the factorization allows for a direct integration of the product of the response
function and of the first order change in the potential. The induced density change can then be written as,

ρ ′(~r,ω) = ∑
i j

P′
i jφ

∗
j (~r)φi(~r) , (4.76)

in which the expansion coefficients are given by,

Pi j′(ω) =
n j −ni

ε j − εi +ω + iη

∫

φ ∗
i (r)v

′
s(~r,ω)φ j(~r)d~r . (4.77)

These coefficients are nonzero only if they connect virtual states with occupied states and vice versa.
Explicit insertion of ρ ′ in the form of Eq. (4.76) in Eq. (4.73) and by use of this last equation to evaluate
Eq. (4.77), one obtains the linear system,

∑
kl

[

ω − (εk − εl)

n j −ni

δikδ jl − ki j,kl

]

P′
kl(ω) =

∫

φ ∗
i (~r)v

′
ext(~r,ω)φ j(~r)d~r , (4.78)

where,

ki j,kl(ω) =
∫ ∫

φ ∗
i (~r)φ j(~r)κ(~r,~r

′,ω)φ ∗
k (~r

′)φl(~r
′) , (4.79)

is the coupling matrix and κ(~r,~r′,ω) is the xc-kernel kernel given by Eq. (4.73). With some more al-
gebraic manipulations and by setting v′ext = 0, Eq. (4.78) can be written in the final form of Casida’s
equations,

Ω~FI = ωI
~FI . (4.80)

where
Ωi j,kl = (εl − εk)

2δikδ jl +2
√

(ni −n j)(ε j − εi)ki j,kl

√

(nk −nl)(εl − εk) , (4.81)

is a Hermitian matrix. The eigenvalues of Eq. (4.80) provide the excitation energies of the system; the
eigenvectors, instead, can be used to obtain the spectroscopic oscillator strengths and to assign the symme-
try of each transition. The solution to Casida’s equations requires that one diagonalizes the ground-state
Hamiltonian in order to obtain all (or at least many of) the empty KS states.

This process has an unfavorable scaling, which makes this approach not particularly suitable for large
basis sets, such as plane-waves. The most straightforward (and naïve) approach is to calculate the NvNc

dimensional matrix Ωi j,kl explicitly and to store it. The most computational demanding task is to calculate
the coupling matrix in Eq. (4.79). Indeed, if we suppose to calculate it in real space, the computational cost
amounts to N2

gridN2
v N2

c , but it usually decreases for the xc part since this term is local (at least in ALDA).

This rough estimation shows a really unfavorable scaling as the 6th power of the system dimension. Once
the matrix is constructed it is diagonalized and this requires a cost that scales as N3

v N3
c . In practice this

is never done. It is possible to take advantage of iterative techniques that do not require the explicit
calculation and storage of the full matrix. The coupling matrix can be evaluated using techniques, which
are already well established for ground-state calculations. These techniques include the auxiliary function
expansion method for localized basis sets and fast Fourier transforms in plane-wave implementations. In
this scheme the computational cost is significantly reduced. The real shortcoming of this approach is that
iterative techniques allow for the calculation of only a limited number of the lowest eigenvalues. The
approach is prone to serious problems when particularly large systems have to be treated. Normally an
increase in the size of the system leads to an increase in the density of transitions in a given energy range.
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CHAPTER 5

BASICS OF PHOTOCHEMISTRY AND PHOTOPHYSICS

5.1 Introduction

Photochemistry is the study of chemical reactions that are light-induced or light producing [1]. Excita-
tion by light of a chemical species is common to many fields including photophysics, photocatalysis,
electrochemistry, chemical and electrochemical luminescence and photoelectrochemistry .

Some uses of photochemistry include: targetting specific sites during reactions due to absorptions of
specific energies, use of chlorophyll as a photocatalyst, photography, vision, cycloaddition reactions,
photochemical synthesis (green chemistry), ultrashort pulses, electron dynamics versus efficiency of
photovoltaic cells, solar cells (conversion of solar to electric energy), optical devices for data process-
ing, pharmacology, cancer treatment, Human Immuno-deficiency Virus (HIV) treatment, photo-induced
asymmetric synthesis and organic sunscreens,

Most of the interesting absorptions in the excitation-related processes above occur in the ultraviolet
(UV) (UV 200-400 nm) or visible (400-800 nm) region of the electromagnetic spectrum [2].

An excited electronic state will have a completely different electron distribution from that of the ground
state, a different geometry, and will most likely undergo different chemical reactions from those of the
ground state.

5.2 Absorption and Emission

A system may be excited by absorbing radiation, through a chemical reaction or by an energy transfer
process [3].

Photochemistry has been viewed as affording an alternative route to thermal-based synthesis. In a
photochemically-driven process, the chemical reaction passes through an excited electronic state.

The energy of a photon (E = hc
λ

) required to produce a particular excited state is the difference in
energy between that state and the ground state.

5.2.1 Vertical Excitations

Electronic transitions are usually vertical [4, 5]. The reason for this is that the electron is so light compared
to the nuclei such that the electron transition time is too short for the nuclei to adjust correspondingly. All

47
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electronic transitions end up in higher vibrational states of the excited state. Electron transition changes
the electron density in the molecular system [6]. The consequence of this is usually the increase in bond
lengths. This development then leads to complete adjustment in which the molecule now starts to vibrate
around the new lengths. For every electronic transition, one obtains a series of normal vibrations associ-
ated with it. The many vibrational levels have their corresponding excited rotational sublevels in the gas
phase. The situation is more complicated in the liquid phase because, among other things the frequent
collisions caused by the surrounding solvent molecules. These contribute to peak broadening.

Another important outcome of absorption, related to the vertical transition idea, is that due to rapid
vibrational relaxation from the highest vibrational levels, it does not matter the variation in excitation
energies, the photon emission (fluorescence and phosphorescence) is usually independent of that variation
for it always starts after the initial relaxation to the lowest vibrational level [2, 7].

5.2.2 Spin Multiplicity and Electronic States

The vertical nature of the electronic transition discussed in the preceding subsection is governed by the
spin multiplicity (2S+1, where S is the total spin of all electron spins) requirement. Given a singlet ground
state, it can only be excited into an excited state with the same spin multiplicity. This is in accordance
with the spin preservation requirement. Quantum mechanics forbids spin flip during electronic transitions
in the sense that it violates the ∆S = 0 rule. This requirement then imposes serious constraints to what
formally can happen and what can not. For closed shell systems a singlet is one with paired electrons.
For an open system the possible spin-down and spin-up electronic configurations are linearly combined.
The sum of such combinations yields a singlet state while the difference yields a triplet state. Figure 5.1
illustrates the nature of these configurations.

Figure 5.1: Diagram illustrating
how to determine singlet states
from closed and open shell
molecules

5.2.3 Energies of Electronic States

As already seen above, electronic states of closed shell molecules are usually classified into two main
categories, singlet states and triplet states based on their spin multiplicities.

A point to note here is that the two different excited electronic state types differ significantly in their
properties as well as in their energies. A triplet state will always lie lower in energy than its corresponding
singlet state.
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Another factor in energy determination is the type of transitions taking place. The metal-to-ligand
transitions are the least energetic while those involving only the ligand molecular orbitals can turn out to
be so energetic as seen on the figure 5.2.

Figure 5.2: Arrangement of molecular orbitals

showing the origin between the different energies

of MLCT and LLCT states

The difference in the energies of different elec-
tronic states is as a result of spin correlation ef-

fect. Besides the coulomb interaction, the Fermi
correlation keeps the electron pairs with paral-
lel spins spatially separated thereby reducing the
electron repulsion energy. In a triplet excited state,
the two single electrons found on the HOMO and
the LUMO, respectively, tend to adopt a configu-
ration that maximizes their spatial separation and,
thus, the transition dipole moment. This results in
a lower energy level for T1 compared to S1 state.
This spin correlation effect is more noticeable for
spatially overlapping HOMO and LUMO orbitals,
such as in (π , π∗) state, and is less important for
(n, π∗) state, for instance.

5.2.4 Spin-Orbit Coupling

This kind of coupling has tremendous effects on
the photophysical and photochemical phenomena
involving the triplet excited state. For heavy atoms
there is coupling between the orbital magnetic moment and the spin magnetic moment [8–10]. The conse-
quence of this is to yield vibrational levels that are iso-energetic though belonging to both the two (impure
singlet and impure triplet) excited states. In the presence of spin-orbit term, S is no longer a nice quantum
number for it allows the singlet and the triplet to mix. In this sense, we see a contamination of a singlet
state by some triplet contributions as well as that of the triplet state by the singlet state. For this reason
we talk about impure (contaminated) states.

Apparently it is the generation of a considerable orbital magnetic moment that actually matters in this
whole exercise. It can be due to a heavy metal ion that is part of the molecule such as a transition metal
ion or what is emerging is that besides that requirement, even heavy atoms [10] just around the system
can generate orbital magnetic moment that help in mixing the singlet and triplet vibrational levels even
more and this has the effect of increasing the ISC efficiency.

5.3 Luminescence

Luminescence is the emission of light by cold substances [2]. It differs from incandescence which is black
body radiation. Luminescence as an emissive process has many causes, differentiated by the specific type
of initial excitation that finally leads to that emission. Some of them include the following; chemilumi-
nescence, sonoluminescence, bioluminescence, electroluminescence and photoluminescence In the fol-
lowing we mean photoluminescence whenever we refer to luminescence emission that is is triggered by
photoexcitation. This way, luminescence may be divided into fluorescence and phosphorescence.

It is photoluminescence, that the concept of luminescence will refer to in this work. This is emission
that is is triggered by photoexcitation. It generally refers to fluorescence and phosphorescence.
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5.3.1 Stokes Shift

The Stokes shift is the difference (in energy units) between positions of the band maxima of the absorption
and emission spectra of the same electronic transition [11]. A small Stokes shift is indicative of a rigid
molecule, with little change in the equilibrium nuclear configuration in the ground- and excited states.

5.3.2 The Jablonski Diagram

This diagram (figure 5.3) describes many of the photochemical and photophysical phenomena. On any
Jablonski diagram [2], one observes a vertical arrangement of electronic states (with increasing energy)
while the states with different spin multiplicities are arranged horizontally. For every electronic state there
are a number of vibrational states (see section 5.2.1). The vibrational state with the lowest energy in every
electronic state is denoted by a thick line. The other vibrational states shown by use of thin lines.

Figure 5.3: Jablonski diagram. It shows the key
absorptive and emissive processes that usually
characterize a photophysical and photochemical
process

The critical point to observe from the figure the Jablonski diagram is that there is a range of wave-
lengths that can lead to a transition between any two electronic states, which account for the fact that
electronic spectra generally occur as broad bands and not as single lines. This is based on the fact that
we can have transitions originating from ground state but ending up into different vibrational states of a
given excited state. One rarely sees any arrow (transition) from the ground state to the triplet state. This is
due to the forbiddenness of such transitions which makes them highly unlikely (improbable) (see section
5.2.2).

5.4 Potential Energy Surfaces

With the consideration of Born-Oppenheimer approximation,it is possible to determine the adiabatic en-
ergy Ee

I which is the energy of the electrons calculated at fixed nuclear positions plus the nuclear repulsion
energy.

Ĥe(r,R)Ψe
I (x,R) = Ee

I (R)Ψe
I (x,R) (5.1)

A plot of this energy against different nuclear positions yields what is called the potential energy
surface (PES). This energy is only valid in situations where the nuclei move much more slowly than
the electrons and is only observed in ground state processes. In photoexcitation, the reactants in the
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minimum basin of the ground state PES absorb energy to get to the excited state where they start moving
along its PES. A pathway to decay back to the ground state happens when the system reaches the conical

intersection (CX) region on figure 5.4 . This is a point where the ground state and the excited state are
degenerate. At this point, the the nuclei and the electrons are equally fast and as a result, the Born-
Oppenheimer separation is invalidated. The description of the processes at the conical intersection done
diabatically since the electronic and nuclear motions can not be separated.

Figure 5.4: Potential Energy Surfaces
(PES). An interesting point on this PES
is the conical intersection (CX). A point
where the system either reverts to the
ground state or the absorbed energy trans-
forms it into a new species, the product.
Figure from Ref [12]

5.5 Excited state lifetime and Quantum Yield

The excited-state lifetime (τ) is a measure of the time a given excited state survives before relaxing
by radiative or nonradiative mechanisms to the ground state. The luminescence lifetime is the time a
luminescent species stays in its excited state before it emits a photon [2].

Quantum yield Φ in the sense of luminescence is given as

Φ =
photons emitted

photons absorbed
(5.2)

According to this equation, the calculated value of Φ above is an indication of the emission efficiency
of a luminescent species.

It is important to distinguish between quantum yield and quantum efficiency (QE). Which is the inci-
dent photon to converted electron ratio of a photosensitive device. In this sense it is seen as a measure of
the device’s electrical sensitivity to light. Taking an example of a solar cell, its external quantum efficiency
EΦE is given by,

EΦE =
electrons/sec

photons/sec
(5.3)

A low value of EΦE clearly shows that the solar cell is performing very badly for its active part is not
able to make good use of the incident photons.

Applying a very short pulse of light to a dilute solution of fluorescent molecules leads to their excitation
from the ground state S0 to the excited state S1. Taking the concentration of the excited molecules as
[1B∗]0, their rate of return to ground state is given as

− d[1B∗]
dt

= (ks
r + ks

nr)[
1B∗] (5.4)

where ks
r is the sum of the radiative rate constants while ks

nr is the sum of the nonradiative rate constants.
On integration of equation 5.4 one gets equation 5.5,
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[1B∗] = [1B∗]0exp(
t

τs

) (5.5)

where [1B∗]0 is the concentration of excited molecules at time 0 resulting from pulse light excitation and
τs the lifetime of excited state S1, is given by

τs =
1

ks
r + ks

nr

(5.6)

The fluorescence intensity iF (t) at time t after excitation and which is defined as the amount of photons
(in moles) emitted per unit time (s) and per unit volume of solution (liter: L) is proportional, at any time,
to the instantaneous concentration of molecules still excited. The proportionality factor is the rate constant
for the radiative de-excitation ks

r

iF(t) = ks
r[

1B∗] = ks
r[

1B∗]0exp(
t

τs

) (5.7)

5.6 De-activation mechanisms

Once in an excited state, a system seeks to relax to the lowest attainable stationary state. Usually the
relaxation process entails loss of excess energy through either radiative or non-radiative mechanisms.
According to Kasha-Vavilov’s rule [7], a molecule in an electronic excited state, quickly relaxes to the
lowest vibrational level and from there they can decay to the lowest electronic state via radiative (photon
emission) or non-radiative processes.

5.6.1 Non-radiative pathways

The mechanisms comprise internal conversion (IC) intersystem crossing(ISC). Internal conversion [2]
refers to the transfer that takes place between states of the same spin multiplicity. Internal conversion im-
plies the transformation of electronic excitation into vibrational energy. This process takes place through
nuclear tunneling from the excited state potential surface to that of the ground state. Strong overlap
of vibrational wave functions is necessary. Since back-tunneling can also readily occur, fast vibrational
relaxation (VR) is an important condition for the efficiency of this deactivation pathway.

Intersystem crossing [2, 13] takes place between an electronic excited state and another excited state
characterized by a different spin multiplicity such as in S1 → T1. This process involves a simultaneous
change in spin. Vibrational relaxation is also necessary to avoid crossing back to the initial system.

It is worth noting that the smaller is the energy gap between the states, the higher is the probability for
transfer. It therefore follows that the most favorable topology for the transfer is the conical intersection

point [12, 14] where the crossing occurs between states of the same spatial and spin symmetry. The next
section ( 5.4) deals with these special features.

5.7 Fluorescence and Phosphorescence

These are the two forms of luminescence that have a direct bearing to the discussions in this thesis.
This section gives a more detailed treatment of this kind of luminescence. The luminescence in section
is described as a form of radiative deactivation (photoemission). They involve electronic transitions and
condition which makes them be submitted to the same selection rules as the ones for light absorption .
The mechanisms consist of Fluorescence and Phosphorescence.
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5.7.1 Fluorescence

Fluorescence [2] is the radiative deactivation (occurring over a time interval ranging between 10−9 s
and 10−5 s) pathway that occurs between two states of identical spin multiplicity. This transition is spin
allowed. This is so because the absorption process occurs over a short time interval (10−15s) and does
not change the direction of the electron spin. Because vibrational relaxation occurs about 1000 times
faster than de-excitation, most molecules return to a low-vibrational state before the de-excitation takes
place. Vibrational relaxation [15] (emission of IR while lowering vibrational state) occurs in 10−12 s It
should be noted that even though a quantum of radiation is emitted in fluorescence this quantum will be
lower in energy on the average than the quantum absorbed by the molecule, due to vibrational relaxation
(both after absorption and after emission). The change in photon energy causes a shift of the fluorescence
spectrum to longer wavelength, relative to the absorption spectrum, this is referred to as the Stokes Shift
(see section 5.3.1).

5.7.2 Phosphorescence

Although population of triplet states by direct absorption from the ground state is insignificant, the process
of intersystem crossing provides a more efficient method to populate triplet states from the lowest excited
singlet state in many molecules. This is basically a spin-dependent internal conversion process.

The mechanism for intersystem crossing (see section 5.2.4) involves vibrational coupling between an
excited singlet state and a triplet state. This is the reason why the less probable singlet-triplet processes
occurs within the lifetime of an excited singlet state (10−8 sec).

Given that singlet-triplet processes are less probable than singlet-singlet processes by a factor of 10−5

to 10−6, and that radiationless vibrational processes (such as internal conversion) occur in approximately
10−13 sec, the time required for a spin-forbidden vibrational process would be approximately 10−8 to
10−7 sec, which is the same order of magnitude as the lifetime of an excited singlet state. Therefore
intersystem crossing can compete with fluorescence emission from the zeroth vibrational level of an
excited singlet state but cannot compete with vibrational deactivation from higher vibrational level of a
singlet state.

Once intersystem crossing has occurred the molecule undergoes the usual internal conversion process
(10−13 to 10−11 sec) and falls to the zeroth vibrational level of the triplet state. Since the difference in
energy between the zeroth vibrational level of the triplet state and the zeroth vibrational level of the lowest
exited singlet state is large compared to thermal energy, repopulation of a singlet state from a triplet state
is highly improbable.

There are two factors which tend to enhance a radiationless transition between the lowest triplet state
and the ground state. First, the energy difference between the triplet state and the ground state is smaller
than the difference between the lowest singlet state and the ground state. This tends to enhance vibrational

coupling between these two states, and therefore to enhance internal conversion. Secondly, and more
important, the life time of a triplet state is much longer than that of an excited singlet state (about 10−4 to
10 sec) and therefore loss of excitation energy by collisional transfer is generally enhanced. Indeed, this
second process is so important that in solution at room temperature it is often the dominant mechanism
for the loss of triplet state excitation energy.

5.8 Luminescence (Fluorescence) Quenching

Quenching [2, 16] is an idea which means the reduction in the fluorescence intensity of a given fluo-
rophore. Quite a number of processes lead to quenching of excitations. Some of these processes include
complex-formation, excited state reactions, collisions and energy transfer. Factors such as temperature
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and pressure that affect those processes directly become critical parameters when dealing with he quench-
ing process.

What is tricky here is the factor that at a glance, quenching may seem as a problem. Indeed it depends
largely on what aspect the observer is stressing. Quenching is finding use in a number of interesting
applications. A typical example is the use the quenching effect of oxygen on certain ruthenium complexes.
O2 is a triplet quencher which is good for trapping radicals. The process helps in the determination of the
extent of oxygen saturation in solution.

Molecular oxygen [13] used in the quenching process above belongs to a class of what are referred to
as chemical quenchers. Other chemical substances capable of causing similar quenching are I−, Cl−, Br−

and C3H5NO. The quenching ability seems to be dependent on the nature of the anion. Among the halide
ions, the ion with the strongest quenching ability is I− and the one with the weakest quenching capability
is Cl−. This observation implies that the mechanism of quenching involves a charge transfer reaction. So
the easier it is for an ion to release an electron, the higher is its quenching ability.

Generally heavy atoms are good quenchers [17]. This is based on the spin-orbit coupling effect dis-
cussed earlier. The mixing of singlet and triplet vibrational levels facilitates energy transfer.

Collision between the excited states and the ground state molecules is also a nice quenching route.
Chemical reactions such as dimerizations can occur between excites molecules, certain photoisomeriza-
tion processes an also occur. All these processes lead to increased quenching.

5.9 Solvation dynamics

In addition to internal nuclear coordinates, consideration of the solvation coordinate has also to be done
whenever a molecule is dissolved in a polar solvent [2] absorbs light. On photoexcitation, the dipole
moment of a solvated fluorophore is usually modified. The change in the molecular dipole moment is as
a result of the energy differences between the ground state and the excited states.

Figure 5.5: Solvation dynamics on photoexcita-

tion. The solvent relaxation process contibutes to

the lowering of the energy of the excited state.

This ultimately leads to the red shift in the emis-

sion spectra

Solvent dipoles have then to rearrange around
the excited molecule as shown on Figure 5.5. This
process entails the rotation of solvent molecules
and depends on the viscosity. It is also referred
to as solvent relaxation . It is fast enough to take
place just before the fluorescence process.

Given the fact that absorption is a much faster
process than solvent relaxation, it follows that ab-
sorption is not dependent on solvent polarity. Nor-
mally excitation of a fluorophore leads to higher
vibrational levels of the first excited singlet state
S1. For this fluorophore to come back to the low-
est vibrational level, it must rapidly lose energy
to the surrounding solvent molecules. The solvent
relaxation process has an even more critical con-
tribution. The relaxation process lowers the en-
ergy of the excited state. This has the consequence
of decreasing the energy separation between the
excited state and the ground state. This leads to
red shift in the fluorescence emission. Increasing
solvent polarity means correpondingly increasing
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the reduction in the energy level of the excited state. This greatly reduces its separation from the ground
state, with the result of increased wavelength of the fluorescence emission. It is worthy noting that de-
creasing solvent polarity reduces its effect on the energy of the excited state. Naturally one then asks the
most logical question of whether or not the fluorophore polarity does have any effect. Fluorophore polar-
ity determines the sensitivity of the excited state to solvent effects. Polar fluorophores are more affected
than the non-polar ones.
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CHAPTER 6

MULLIKEN POPULATION ANALYSIS-MPA

This chapter serves as a precursor to bring an understanding to the section on Par-

tial Density of States. PDOS (see APPENDIX A: PARTIAL DENSITY OF STATES

ANALYSIS-chapter 8, of the attached manuscript). PDOS calculations require mulliken

charges and the details of this are captured in the following section.

It is usually desirable to describe molecular orbitals in terms of fragment orbitals [1, 2]. By fragments
are meant basis functions (AOs), atoms [3, 4] or ligands. It is more meaningful to be able to determine
how the various fragments contribute to a given molecular orbital. Population analysis [1] approaches
partition all the electrons of a molecule among the various fragments according to some rules. This
charge density analysis has been done by many methods. Among the many alternatives the oldest and
most commonly used is Mulliken’s. Results with this method tend to be only qualitative and have a
strong basis set dependence, but Mulliken’s method is widely implemented, fast, and simple. In order to
understand Mulliken’s method [5–11], let us write a molecular orbital (MO) as a linear combination of
atomic orbitals (AOs) [12–14] on different atomic centers.

ψi(r) = ∑
A

∑
µ∈A

χµA(r)cµA,i . (6.1)

The corresponding charge density [15–18] is,

ρi(r) = ∑
A

∑
B

∑
µ∈A

∑
ν∈B

χµA(r)χνB(r)cµA,icνB,i , (6.2)

which integrates to,

1 = ∑
A

∑
B

∑
µ∈A

∑
µ∈B

SµA,νBP
(i)
µA,νB , (6.3)

where,

SµA,νB = 〈µA|νB〉 , (6.4)
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defines the overlap matrix [19, 20] and,

P
(i)
µA,νB = cµA,icνB,i , (6.5)

defines the density matrix for MO i. Mulliken chose to rewrite Eq. (6.3) as,

1 = ∑
A

∑
µ∈A

q
(i)
µA , (6.6)

where the charge due to orbital µ on atom A is given by,

q
(i)
µA = ∑

B
∑
νB

SµA,νBP
(i)
µA,νB . (6.7)

The all-electron generalization is obtained by using the total density matrix,

PµA,νB =
occ

∑
i

niP
(i)
µA,νB . (6.8)

where ni is the MO occupation number [17, 21, 22]. The partial charge on atom A due to MO i is just
given by,

q
(i)
A = ∑

µ∈A

q
(i)
µA . (6.9)

If this atom is just the central ruthenium atom in our complex, then the intensity of the Ru PDOS
(before Gaussian convolution) is just given by,

q
(i)
Ru = ∑

µ∈Ru
q
(i)
µRu . (6.10)

The rest of the MO charge is on the ligands,

q
(i)
L = 1−q

(i)
Ru . (6.11)

If we are only interested in the d-orbitals on the ruthenium atom, then the intensity of the Ru d-orbital
PDOS is given by,

q
(i)
Rud = ∑

µ∈Rud

q
(i)
µRu . (6.12)

Quantum chemistry programs print out enough information to calculate these quantities by hand or
automatically by some programs.

Our own in-house Python program PDOS.PY used the printed information to calculate the PDOS and
DOS and further plot them on the same set of axes. From the plotted PDOS and DOS peaks it is possible
to determine the electron density distribution on each atom or fragment of interest.
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CHAPTER 7

LITERATURE REVIEW OF LUMINESCENCE IN RUTHENIUM
COMPLEXES

This chapter examines the general “bottom-up” approach to the construction of photo-

chemical molecular devices (PMDs). It looks at the thinking that underlies the synthesis

of suitable components and the difficulties encountered in this field. It then goes on to look

at the possible use of computational tools to reduce some of these difficulties. Finally it

concludes with a consideration of theoretical calculations similar to those done by us in

this project and with particular focus on the nature of methods currently in use.

7.1 Introduction

The motivation behind the work carried out in this thesis was the desire to assemble larger systems from
smaller units. This approach is what is commonly referred to as the “bottom-up” approach [1, 2].

Such assemblies are also referred to as supramolecules. They are capable of performing very com-
plex functions. Supramolecules may be natural man-made (artificial). The functioning of functional
supramolecules is often based on efficient charge separation [3, 4]. A pertinent biological example is
photosystem II (PSII), an assembly of many parts working in harmony to ensure successful photosynthe-
sis process occurs. Light activates the system and the energized electrons are transferred through a series
of many intervening coenzymes and cofactors to sites where they cause reductions. The hole left by the
transferred electrons then oxidizes water to give oxygen molecules and hydrogen ions. In this natural
system, it is therefore seen that it is the electrons obtained from water that drive the photosynthesis [5]
process.

Man-made light-activated assemblies intended to perform complex functions similar to those carried
out by natural systems are collectively called photochemical (photoactivated) molecular devices (PMDs).
They normally consist of many distinct components connected mainly by intermolecular forces [6–8].

Inspired especially by the natural systems that perform complex functions, we embarked on a process
to design and build photochemical molecular devices. Since this process is component-based, our work
was to start with the most critical component, the photosensitizer. Since there are all sorts of photosensi-
tizers, we chose to focus mainly on the ones that are Ru(II)-based. Important experimental properties of
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the parent complex [Ru(bpy)3]2+ are discussed in the section below for this is the complex that forms the
basis of Ru(II) complexes that are our preferred photosensitizers.

7.2 Experimental Properties of the Archetype Compound

[Ru(bpy)3]2+

The study of polypyridyl Ru(II) complexes usually starts with the prototype [Ru(bpy)3]2+ [9–12]. The
other useful complexes are derived by application of various modification strategies to this particular
species. Following the full characterization [13] of [Ru(bpy)3]2+, it is now known that its suitability is in
part, based on its thermodynamic stability and kinetic inertness.

The characterization of [Ru(bpy)3]2+ is normally done by use of absorption spectroscopy and molec-
ular fluorescence spectroscopy.

The determination of the extinction coefficient at a given absorption wavelength is done by plotting the
absorbance against the concentration and then calculating the gradient of the resultant line which gives
the extinction coefficient at that wavelength.

Spectroscopically, [Ru(bpy)3]2+ shows mainly three peaks in its absorption spectrum at 243 nm, 286
nm and at 450 nm. Besides, its lowest excited state 3MLCT is long-lived in deaerated acetonitrile at 298
K. It also shows intense emission at about 610 nm in deaerated acetonitrile at 298 K.

The absorptions at 243 nm and 286 nm are assigned to π → π∗ while the one at 450 nm is assigned to
the metal-to-ligand charge transfer (MLCT). The 3MLCT state has an excited lifetime (τ) of about 1 µs

in organic solvents and 600 ns in water and a quantum yield (Φ) of about 6%.
Electrochemically, [Ru(bpy)3]2+ shows localized oxidation that is metal-centered (MC) and also cor-

responding localized reduction that is ligand-centered (LC). An even more interesting feature is that
[Ru(bpy)3]2+ in its 3MLCT excited state is both a reductant as well as an oxidant. The electron trans-
ferred leaves a hole on Ru and this makes the complex act as an oxidizing agent. On the other hand,
the gain of an electron by the excited ligand π∗ MO makes the complex a reducing agent because it can
donate it. Stated differently, the redox potentials of excited states are different from those of the ground
states.

The two key observations— that excited [Ru(bpy)3]2+ is reactive, and also that [Ru(bpy)3]2+ had
been observed to induce photosplitting of water by acting as a photosensitizer as well as a photocatalyst
—served to motivate and sustain interest in the study of these complexes.

Inspired, in part by [Ru(bpy)3]2+, several thousands of Ru(II) polypyridyl complexes have been
synthesized and characterized. Control of the photophysical and electrochemical properties of these
polypyridyl complexes can be accomplished by either changing the ligand or modifying its substituents.

7.3 Design Considerations for Experimental PMDs

The sustained intense and rigorous study of Ru(II) polypyridyl complexes has led to their use as major
components in building of PMDs. The main factor in all these incorporations is the combination of good
photochemical and electrochemical properties that make them appropriate photoactive centers in these
molecular devices and machines [14, 15].

At this level we look at what is usually considered during the various stages. The whole exercise
normally starts with design of appropriate ligands that are then reacted with a suitable transition metal
ion [in our case it is the Ru(II) ion] to form a complex that performs the work of a photosensitizer. The
main consideration in this treatment is that we need a strong field ligand which then gives good separation
between the t2g MO (d-orbitals) and the e∗g MO. This separation ultimately has a direct link to the energy
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separations between the various electronic states and especially the 3MLCT and 3MC that are of great
relevance to our work.

Many ligand-related factors are potentially important, including (among others) the design of a ligand
that on forming a complex gives an octahedral geometry or one that is very close. Octahedral geometry
usually gives the greatest separation between the t2g and e∗g MOs and by extension also this is the geometry
that keeps the 3MLCT and 3MC farthest apart. Thus a feature to consider during ligand design, if possible,
is to create ligands that will increase the size of the metallocycle that finally forms. Reduced constraints
around the metal reduce the distorsion and hence destabilizes the 3MC state even more.

A ligand with π-acceptor groups is a good one for this will possibly lead to the widening of the crystal
splitting field and which is part of the strong field requirement as noted above. The ligand should also be
rigid. This is an important consideration because later on during the assembly of the triad, the key factor
is to keep the donor and the acceptor as far apart as possible. This is supposed to ensure no possibility of
unwanted charge recombination during the process of photoinduced charge separation. It is also useful to
consider the aromaticity of the ligand. Given that the desire is to have a highly stabilized 3MLCT state,
then the π conjugation in the ligand helps to lower the energy of this state. The metal more easily transfers
an electron towards such a ligand thus lowering the energy of the 3MLCT state.

As already stated earlier, Ru(II) complexes have just the right photochemical, photophysical and elec-
trochemical properties that make them suitable in most of the supramolecular assemblies. [Ru(bpy)3]2+

and many other bpy-type ligands manifest the best of those cited qualities. Unfortunately, at the point of
synthesis and incorporation of such bidentate ligands [3], one encounters serious problems to do with the
control of stereoisomerism at its six coordinated centers. This problem becomes even worse when one
ends up with a mixture of triads during the supramolecular or PMDs construction. This leads to a serious
and costly problem of isolation.

Research has shifted to tridentate ligands which are less troublesome. Tridentate ligands form achiral
complexes on reaction with the Ru(II) ion. Such species are better suited for the intended tasks in the
sense that in it, one observes the possibility of a more efficient photoinduced charge separation process.
Besides, the formed triad (the D,P,A components on figure 7.1) comprising the donor (D), photosensitizer
(P) and acceptor (A) allow for room to add other important groups between D and P and P and A.

Figure 7.1: An arrangement of a triad with spac-

ers (S) separating the major components D,P,A

Spacers (S) [16] play an extremely impor-
tant role in PMD designs. Spacers connect dif-
ferent parts of the whole arrangement but be-
sides, they control the electronic communication
between various components and especially in sit-
uations with through-bond electron and energy
transfers. This then means that its nature is criti-
cal in the whole matrix. A good spacer should be
rigid. This is mainly afforded by aromatic rings.
There are many other such rigid molecules but the motivation for the preference of aromatic rings is the
additional efficiency in its electronic communication. Such added groups which could be aromatic rings
for example lead to increase in the separations between those components. This increase in the separation
reduces the chances of charge recombination before full charge purification.

For the arrangement D-S-P-S-A to work efficiently, there has to be conscious consideration of certain
constraints. The oxidation of the donor and reduction of the acceptor should lead to intense absorption
changes to enable detection of electron transfer by a suitable spectroscopic approach.
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Ultimately, when all important considerations and precautions are taken care of, the next most logical
thing now is the putting together of all the ideas and skills to produce functional devices. Two very
excellent sources for detailed information on the various devices are references [17] and [18].

Now I look at some photoactivated molecular devices. The first one is the dye-sensitized solar cell
(DSSC). This is a device whose design is such that a dye (photosensitizer) is adsorbed onto a transparent
semiconductor such as (TiO2). Photoexcitation of the adsorbed dye with visible light excites an electron
from its highest occupied molecular orbital (HOMO) to its lowest unoccupied molecular orbital (LUMO).
Following this, charge transfer from the dye to the semiconductor may take place if the LUMO overlaps
energetically with the conduction band of the semiconductor. At the level of designing and building this
device, care is normally taken to improve on the overall solar-to-electrical energy conversion efficiency.
This is normally done by modifying the structure of the sensitizer and varying the other parts of the
device. A common modification at the dye level is that of increasing the π-conjugation extension in order
to increase the molar extinction coefficient of the dye. One could also further optimize the DSSC itself
by using an appropriate electrolyte and a suitable texture of the nanocrystaline TiO2 electrode.

Another nice example is the production of hydrogen fuel through an assembly consisting of mixed-
metal supramolecular complexes that have been designed to photochemically absorb solar light, undergo
photo-initiated electron collection which then reduces water to produce hydrogen fuel. This process in-
terestingly uses low energy visible light.

An important observation to bring out in all these devices is that the photosensitizer a critical com-
ponent in their functioning. Knowledge of its structure, stability and excited lifetime is vital. These are
the factors that influence the properties of such systems. There have been cases like our own where, even
with the precautions cited above having been taken, the synthesized complexes have very short excited
state lifetimes or zero excited state lifetime at room temperature. This character in such complexes is a
bad sign in the sense that such complexes can not perform the intended role of a photosensitizer. Lack
of luminescence especially is an indication that the complex undergoes rapid nonradiative deactivation.
This poses a problem because it means that there is no time for electron transfer from the excited state.
Efforts to understand what could be happening here require understanding of the electronic structure of
the complex in question. Faced with this problem, an affordable way to try and understand it had to be
sought. The final method chosen by us was density-functional theory (DFT/TD-DFT). The next section
reviews some of DFT calculations from the literature.

7.4 Theoretical Modeling of [Ru(bpy)3]2+

In 2002 Baranovskii et al. carried out a study on estimation of the changes in the geometrical structural
parameters of [Ru(bpy)3]2+ and [Ag(bpy)]+ complexes during charge-transfer electron excitations. They
combined several methods including the experimental Raman resonance data, the wave packet dynamics
and quantum-chemical calculations of the geometry and vibrational spectra of relatively small fragments
of the complex ion. For theoretical calculations they used the GAMESS software in a restricted Hartree-
Fock (RHF) approximation in the DZV+P, 3-21G, 6-31G, 6-31G* bases. They also used the GAUSSIAN

94 program with the B3LYP functional with the 6-31+G* basis. For the ground state, they used 6-31G
for the C,N,H and SBK for Ru. As part of their results they reproduced the dependence of bond length
on the bond position in the ring. Calculated angles differed from the experimental ones by about 1-3%.
In consideration of the discrepancies between the experimental data and the fact that the experimental
values differ between the rings of the same ligand, this agreement was taken to be good enough [19].

In 2007 Lundqvist [20] et al reported the calculated optoelectronic properties of [Ru(bpy)3]2+ dyes
containing the oligophenyleneethylene rigid rod linkers in different chemical environments. In this study
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they used DFT/TD-DFT method as implemented in the GAUSSIAN 03 package. They used the B3LYP
functional together with the LanL2DZ effective core potentials. More interestingly they carried out a more
detailed theorretical comparison between a selected complex and the archetype [Ru(bpy)3]2+. In this par-
ticular comparison, they used different combinations of DFT functionals such as B3LYP, BLYP, HCTH,
PBE1PBE and effective core potential (ECP)/basis combinations such as LANL2DZ,CEP-31,CEP-121
and SDD. These calculations were performed on the B3LYP/LANL2DZ gas-phase optimized geometry
of their selected complex to test the robustness of the calculated electronic properties.

In 2009 Heully et al. carried out a detailed study of the photophysics of [Ru(bpy)3]2+. They used a
number of programs for different purposes [21]. The NEWCHEM package was used for the calculation of
energy. The circular dichroism values were determined using the ORCA program. The minimum crossing
point between the 3MC and the ground state arising from spin-orbit coupling was obtained by the use of
the GAMESS program. They used the B3LYP functional for the DFT/ TD-DFT calculations. A key feature
of their findings is a detailed model for the mechanism of nonradiative decay of the 3MC (dd) state. It is a
short-lived structure that is the route through which the 3MLCT state deactivates nonradiatively. Usually
at this point one notes the possibility of competition between the luminescence of 3MLCT state and the
nonradiative decay back to the ground state through populating the 3MC state which easily deactivates to
the ground state through a deactivation funnel. The factor that now counts is the extent of the barrier to
the population of the 3MC state.

Waskasi et al. in 2010 reported the findings of their work in an International Electronic Conference on
Synthetic Chemistry. Their work was on the Computational studies of water splitting by use of Ruthenium
organometalic compounds [22]. They did theoretical work on the determination of molecular geometries,
electronic structures and optical absorption of [Ru(bpy) 3]2+. They did the calculation the HF/3-21G
and at the DFT/TDDFT B3LYP/3-21G levels for the heteroleptic ruthenium dye (heteroleptic because
of the functionalization done using phosphonate and malonate ligands in the 4-positions of the 2,2’-
bipyridyl ligands in order to adsorb strongly to TiO2. For Ru, they used the LanL2DZ basis set. They
used the CPCM solvation model since they were doing this work in a solvent. The findings indicated that
HOMO molecular orbitals are the Ru 4d-orbitals. Their conclusion was that Ru-based complexes might
be effective for the next generation dye-sensitized photoelectrochemical cell.

Tavernelli et al. did a nonadiabatic molecular dynamics study with solvent effects on [Ru(bpy)3]2+

in 2011. They used a linear response time-dependent density-functional theory (LR-TD-DFT) and quan-
tum mechanics/molecular mechanics (QM/MM).The DFT/TD-DFT claculations were done using Becke-
Perdew (BP) GGA xc-functional. The plane waves with cutoff of 75 Ryd. were used to expand the va-
lence electrons in a cubic box of side length of 18Å. For scalar relativistic effects, the core electrons
were replaced by norm-conserving pseudo potentials of the Martins-Troullier type. The quality of LR-
TDDFT/BP results was assessed by means of additional calculations using the M06 functional on dif-
ferent molecular geometries extracted from the excited states dynamics. The M06 and BP calculations
were done using the GAUSSIAN 09 package. The LANL2DZ basis set was used for the ruthenium atom
while the 6-311G* basis set was used for all other atoms. Spin orbit couplings (SOCs) were calculated
using the perturbation approach of Ziegler and co-workers. They used the approach as is implemented in
the ADF2009.01. A TZP basis set was used for all atoms and relativistic effects were introduced using
ZORA. Water was described by a continuum model using COSMO. All molecular representations were
produced by use VMD (version 1.8.7). Nonadiabatic dynamics was performed using the fewest-switches
trajectory surface hopping algorithm of Tully as implemented in the plane wave code CPMD. Some of the
results from this study indicate that in order to get non-vanishing SOC matrix elements between MLCT
states, the singlet and triplet excited states need to: (i) have the excited π∗ orbitals localized on the same
ligand, and (ii) involve metal d-orbitals of different symmetries. It was also shown that for the kind of
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system dealt with in this work, the GGA functionals have been shown to give good agreement with the
experiment [23].

7.5 Theoretical Modeling of Other Ru(II) Polypyridine

Compounds

While elaborate computational-resource intensive calculations can be justified for the parent compound
[Ru(bpy)3]2+, such calculations are rarely performed for other Ru(II) polypyridyl compounds. In this
latter case the goals are typically less ambitious. Nevertheless, as a complementary approach to exper-
imental work on Ru(II) polypyridyl complexes, a number of theoretical calculations have been done.
A diversity of electronic, structural and other features have been determined. The following examples
picked from the literature represent a few of such efforts. This survey was critical in helping us select the
right computational parameters such as functionals, basis sets etc, for our calculations.

Gorelsky and Lever in 2001 carried out DFT calculations on the series [Ru(bqdi)n(bpy)3−n]2+

(bpy=2,2’-bipyridine, bqdi=o-benzoquinonediimine) to explore the degree of coupling between 4d and π
and π∗ orbitals [24]. The DFT calculations here were done using the B3LYP functional and an effective
core potential basis set LanL2DZ. Time-dependent density functional response theory (TD-DFT) was
used to predict the complex spectra which were compared with the experimental data. Comparison of the
calculated results with those of INDO/S method (where INDO stands for Intermediate Neglect of Differ-
ential Overlap) was done. The results showed good agreement in terms of orbital energies, orbital mixing
and electronic spectra. These results confirmed that for complexes of the type studied here, the INDO/S
approach is a good model and reproduces the results of the computationally more demanding but more
reliable TD-DFT calculations.

In 2007 Li et al. studied the structures, trends in DNA-binding and the spectral properties of molecular
light “ light switch” complexes using DFT/TDDFT [25]. They used the B3LYP functional, LANL2DZ
basis set (with its ECP) for Ru and D95 basis set for all the other atoms. Structurally, the results indi-
cated that there was a trend in their deoxyribonucleic acid (DNA)-binding constants. This revealed trend
related very well to the luminescence properties of the complexes in DNA. The explanation behind this
observation is that simply increasing the planar area of the intercalating ligand may not be effective in
improving the DNA-binding of the resulting complex because of the increase in the LUMO energy, but
introduction of more electronegative heteroatoms into the ring skeleton of the ligand should be effective.
This effectiveness is due to the decrease in the LUMO (and LUMO+y) energy to some extent.

In 2002 Zheng et al. did study the effect of the ligands on the electronic structure and related properties
[26] of [Ru(L)3]2+ (L=bpy,bpmbpz). They used DFT with the B3LYP functional and the LANL2DZ
basis set. From a general point of view, they clearly established that variation of ligand structure and
composition affects the molecular orbital energies and especially the frontier molecular orbitals. The
incorporation of a heteroatom such as N into a ligand had a significant impact on the position of negative
charge. Most negative charges are populated on the negative atom.

In 2009 Le Bahers et al. investigated the ground- and excited-state properties in indoline dyes used
for dye-sensitized solar cells [27]. They used DFT and TDDFT with the hybrid functional PBE0. For
heavier atoms they used the 6-31G(d) basis set for the calculation of ground state properties. For the
vertical excitations they carried out TD-DFT at he same theory level but added a diffuse function on all
the non-hydrogen atoms (6-31+G(d) basis set). Their results for both ground and excited states allow for
quantitative description of absorption and emission properties of the studied dyes in solution. In addition,
their results also led to a qualitative rationalization of the different efficiencies of these dyes DSSCs. The
most important part of this result is that it paved a way for possible in-silico designed new dyes.
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Schramm et al in 2009 studied a mononuclear Ru(II) polypyridyl complex with an enlarged coordi-
nation cage [28]. In this complex, the enlargement of the coordination sphere done by introducing two
additional carbon bridges between the aromatic pyridine groups of the terdentate ligand. Several tech-
niques were used to study different features of interest. Theoretical calculations using DFT/TD-DFT
were carried out on the ground state, the singlet excited states and triplet states. The results show a triplet
metal-to-ligand charge transfer with an unprecedented substantial quantum yield of 13% and a lifetime
of 1.36µs at room temperature and in the presence of oxygen. Generally, the exceptional properties of
this expanded cage compound opened the possibility of exploiting the terpyridyl-like Ru(II) complexes
in photochemical device under room conditions.

The density-functionals, basis sets and ECPs used in these studies are summarized in Table 7.1. These
may be compared with the B3LYP functional and 631G (for C,N,O,H atoms) and LANL2DZ (for Ru)
basis sets and associated Ru ECP in the calculations reported in chapters 8 and 9.
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Table 7.1: Summary of some important theoretical calculations
Author Study Year Functional, Basis set, ECP

Torres [29] et al A quantum dynamics study 2003 B3LYP, LAN2LDZ + its ECP (Ru)
on hydrogen elimination 6-31G (other atoms)

Aiga and Tada [30] Molecular and 2003 PBE0,
electronic structures 3-21G+polarization

of black dye functions
Barolo [31] et al Synthesis, Characterization 2006 B3LYP, 3-21G* (all atoms)

and DFT-TDDFT study of a LANL2DZ + its ECP (Ru), 6-31G*
Ru(II)-functionalized SDD + (MWB quasi-ecp)-Ru, 6-31G*

tetradentate-ligand complex
Persson [32] Sensitizers for Rod-Like 2008 B3LYP, LANL2DZ (Ru)

et al Molecular Arrays 6-31G, 6-31+G(d,p)
Yin [33] et al Impact of ancillary ligands on 2009 B3LYP, LANL2DZ (Ru), 6-31G*

the photophysical properties of SDD ecp for Ru
Ru(II)-conjugated diimine

ligand complexes
Bryan [34] Systematic Manipulation of 2009 B3LYP

et al the Light-Harvesting LANL2DZ
Properties for Tridentate

Cyclometalated
Ruthenium(II) Complexes

Anbarasan [35] DFT and TD-DFT Calculations 2011 B3LYP
et al of Some Metal Free 6-311++G(d,p)

Phthalonitrile Derivatives
for Enhancement of the

Dye Sensitized Solar Cells
Chandrasekharam [36] A molecularly engineered 2011 B3LYP,

et al fluorene-substituted Ru-complex 6-31G(d)
for efficient mesoscopic LANL2DZ (Ru)

dye-sensitized
solar cells

Albert [37] The Frenkel exciton Hamiltonian 2011 B3LYP
et al for functionalized 6-31G* (ligand atoms)

Ru(II)-bpy complexes LANL2DZ (Ru)

From the modeling reviews done in this section and the preceding one (section 7.4), it is observed
that one can afford to do very elaborate calculations for a single compound such as [Ru(bpy)3]2+ but not
when screening a large number of compounds.

7.6 Summary

As a summary of this chapter, one notes that the there was need to synthesize photosensitizers that could
be used for the production of photochemical molecular devices. Precautionary measures were taken to en-
sure the correct design and synthesis strategies were adapted. For example though Ruthenium complexes
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are known to have good photochemical and photophysical properties necessary for good functioning in
a PMD, those based on the bidentate ligands such as bipyridine are a problem to handle due to their
stereoisomerism. A better approach is to use terdentate ligands. This strategy was put in place and terden-
tate ligands and complexes synthesized in readiness for incorporation as photosensitizers. Unfortunately,
a number of these complexes did not show luminescence at at all at room temperature or those that did,
had very short excited lifetimes. This basically meant that they are not good candidates as photosensitiz-
ers. This implied that there are nonradiative ways through which the complex goes back to the ground
state. To understand the likely reasons as to why a particular compound would behave like this, it requires
understanding its structure, stability and excited lifetime. It is at this point that computational techniques
were sought. The search for a suitable theoretical method entailed consideration of the fact that the final
method ought to be computationally affordable and this is why DFT/TDDFT was chosen. An intensive
literature review of the methods in use revealed that for screening purposes we were not going to use very
elaborate calculations but rather simpler, accurate and fast approaches. This is how we ended up with the
functional and basis sets that were used in the calculations reported in this thesis.
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CHAPTER 8

ABSORPTION SPECTRUM AND PARTIAL DENSITY OF STATES
(PDOS) CALCULATIONS ON LUMINESCENT RUTHENIUM

COMPLEXES

Introduction

This chapter is the gist of my thesis work. There were two parts in this project. There was the synthesis
and determination of all the experimental details as captured in the attached manuscript. The team that
did the experimental is also well represented here. The other part was the team that did the theoretical
work reported in this thesis. We did specifically the optimizations, visualization of molecular orbitals,
frequency calculations, calculation of UV transitions and partial density of states. The modeling work on
optimizations, visualization of molecular orbitals, frequency calculations, calculation of UV transitions
went on quite well with the expected difficulties usually encountered in every new field.

Through networking and asking candid questions where we were not sure, we made quite some con-
siderable progress.

A problem arose when it became very clear that visualization alone was not sufficient to enable one
describe a given MO as belonging exclusively to either a metal or a ligand. This is due to the mixing
of metal d orbitals and ligand π orbitals. The way to overcome this was through the application of the
Partial density of states (PDOS) approach. In this method, one determines MOs based on their energies
and the contributing fragments from (d or π orbitals). Manual calculation of density of states (DOS) and
(PDOS) curves was very difficult. Even with the gaussian output files carrying all the necessary details
such as MO energies, Atomic orbital coefficients and overlap integrals, it was a nightmare to work out
the contributions of various orbitals. This was compounded especially by the size of the n × n matrices
(sometimes n of over 600 and where n= number of Atomic orbitals = number of MOS) involved in our
kind of calculations. It is at this point that Pablo Baudin a third year undergraduate Chemistry student
working under my supervisor (Prof. Mark E. Casida) on a Numerical Analysis project proved extremely
useful. He wrote functional python programs that that were able to go far beyond where I had managed
to reach by use of GAUSSSUM program. These programs which had functions customized and tailored
towards our unique needs were able to perform the following:
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• Extract the wavelength and corresponding oscillator strength from a tddft-calculation (UV-transitions)
output and prepare an input file for theoretical spectra calculation.

• Interconvert energy units from eV to λ and wavenumbers and also convert oscillator strengths to
absorption coefficients and plot the the necessary curves (oscillator versus wavelength).

• Prepare input file from experimental absorption data to be plotted alongside the theoretical curve
for comparison purposes.

• Extract enough details from a PDOS calculation to be able to prepare an input file consisting of
required metal d-orbitals and ligand p-orbitals.

• Calculation of the contributions of the metal d-orbitals and ligand p-orbitals into a given MO. This
information helps the convolution calculation of Dos and Pdos that eventually enables the accurate
determination of MOs, their energies and the contributions from selected orbitals of interest.
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A density-functional theory (DFT) study of five ruthenium complexes has been car-
ried out with the goal of gaining deeper insight into factors governing luminescence
lifetimes. The five compounds are [Ru(bpy)3]

2+ (1), [Ru(L1)2]
2+ (2), [Ru(tpy)2]

2+

(3), [Ru(L1)(tpy)]2+ (4), and [Ru(L2)2]
2+ (5), where bpy=2,2’-bipyridine, tpy=2,2’:6’,2”-

terpyridine, L1=1,1’-[2,6-pyridinediylbis(methylene)]bis[3-methylimidazolium] and L2=1,1’-
[2,6-pyridinediylbis(methylene)]bis[3-methylbenziimidazolium]. Experimental work, including
the synthesis and photophysical properties of 5 is also reported in the context of this study.
Gas phase geometries optimized using x-ray crystallography geometries as start geometries were
found to be close to the start geometries. Gas phase absorption spectra calculated using time-
dependent DFT were found to be in good agreement with spectra measured in solution. A
partial density of states (PDOS) analysis of the molecular orbitals shows that it is possible to
recover the ligand field theory (LFT) like picture. On the basis of this PDOS-derived LFT-like
procedure we propose two orbital-based luminescence indices, both motivated my the idea that
luminescence quenching results from a low 3MLCT →

3MC barrier. The first luminescence
index is ∆E, the difference between the e∗g and lowest energy π∗ PDOS bands. The second
luminescence index is d× π, the product of the amount of π character in the t2g band with the
amount of ruthenium d character in the 1π∗ band. These luminescence measures are intended
as qualitative rather than quantitative predictors. Low values of ∆E and high values of d × π

are shown to correlate with lack of luminescence for the five compounds studied in this paper,
while high values of ∆E and low values of d× π correlate well with luminescence.

Keywords: polypyridine ruthenium complexes, luminescence, DFT, TD-DFT.

I. INTRODUCTION

Polypyridine ruthenium complexes have special photo-
physical properties which make them ideal for use as com-
ponents in photochemical molecular devices (PMDs) [1],
including but by no means limited to dye-sensitized so-
lar cells [2–4]. In an ideal bottom-up molecular electron-
ics approach, ever more elaborate photomolecular devices
would be tailor-made to have specific properties designed
for specific uses. Of course, it is not that simple since
both quantum mechanics and synthesis place their own
restrictions on what is currently possible to “engineer.”
This paper concerns a particular problem, namely the
design of ligands which would allow the interconnection
of ruthenium complexes while still maintaining a long lu-
minescence lifetime. PMD components based upon link-

†muhavini@cuea.edu,muhavini.wawire@ujf-grenoble.fr
‡Mark.Casida@UJF-Grenoble.Fr

ing charge-conducting (“molecular wires”) or isolating
(“spacers”) chains to bidentate ligands is plagued by the
problem of multiple isomers. This is why recent work
[5–11] focuses on the synthesis of ruthenium complexes
using tridentate ligands, while still attempting to main-
tain good photophysical properties. Such work [12] could
benefit from computational support for testing some of
the working hypotheses currently used in ligand design.
The computational model should be able (i) to quantita-
tively reproduce the known x-ray structures and absorp-
tion spectra and yet (ii) be interpretable in the ligand
field theory (LFT) [13] terminology commonly used by
experimentalists working on the problem of PMD ligand
design. In this article, we show by explicit calculations
on the five compounds shown in Fig. 1 the extent to
which density-functional theory (DFT) calculations can
meet both of these requirements and hence constitute a
valuable part of the PMD ligand designer’s toolbox.
Much of our understanding of luminescence in ruthe-

nium complexes is based upon a long history of stud-
ies (see, e.g., Refs. [1, 11, 14–28]) of the prototypi-
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FIG. 1: The five molecules considered in this study:
[Ru(bpy)3]

2+ (1), [Ru(L1)2]
2+ (2), [Ru(tpy)2]

2+ (3),
[Ru(tpy)(L1)]2+ (4), [Ru(L2)2]

2+ (5), where bpy=2,2’-
bipyridine, tpy=2,2’:6’,2”-terpyridine, L1=1,1’-[2,6-
pyridinediylbis(methylene)]bis[3-methylimidazolium]
and L2=1,1’-[2,6-pyridinediylbis(methylene)]bis[3-
methylbenziimidazolium].

FIG. 2: Generic ligand field theory diagram for octa-
hedral ruthenium(II) polypyridyl complexes. MC refers
to metal-centered while MLCT refers to metal-to-ligand
charge transfer transitions.

cal tris(2,2’-bipyridine)ruthenium(II) cation (compound
1 in Fig. 1), which we shall simply refer to using the
common abbreviation [Ru(bpy)3]

2+. The LFT picture
which emerges is one of a pseudooctahedral complex with
ruthenium-centered filled bonding t2g orbitals and empty
antibonding e∗g orbitals separated by a typically unspec-
ified number of unoccupied ligand π∗ orbitals (Fig. 2).
This picture has been used and continues to be used as
a convenient and servicable working model for analysing
photophysical properties and designing ligands. However
DFT has proven its value for first-principles quantitative
predictions of molecular structure and time-dependent
DFT (TD- DFT, Ref. [29–31] provide recent reviews)
has been able to do an excellent job in the quantita-
tive prediction of absorption spectra of ruthenium com-
plexes. As will be seen later in this article, DFT molecu-
lar orbitals (MOs) correspond well with the LFT picture
of Fig. 2. Assigning the experimental absorption spec-
trum [32] which shows two broad peaks, one at about
22 500 cm−1 and the other at about 35 000 cm−1, is

much less straightforward as this apparently simple spec-
tral structure hides a number of nearly degenerate ligand-
centered (LC) π → π∗ and metal-to-ligand charge trans-
fer (MLCT) d → π∗ transitions. Nevertheless
(TD-)DFT calculations, including spin-orbit coupling,
have been performed [14] and analyzed producing the
picture shown schematically in Fig. 3. Initial absorp-
tion of a photon, possibly followed by radiationless re-
laxation, leads to a singlet MLCT state (1MLCT) which
rapidly converts through an intersystem-crossing mech-
anism to the correspondingly energetically slightly lower
triplet (3MLCT). Note that spin-orbit coupling due to
the presence of ruthenium favors intersystem crossings.
The luminescence phenomenon is presumed to be phos-
phorescence from the 3MLCT minimum to the singlet
ground state (1GS) since the lifetime is long.
A mechanism for luminescence quenching is provided

by nearby electronic states [1]. Thus the 3MLCT under-
goes an avoided crossing (shown by the dashed lines in
Fig. 3) with the triplet MC (3MC) t2g → e∗g state whose
minimum is at a larger metal-ligand distance than for
the 3MLCT state, leading to the possibility of a reaction
barrier for the interconversion,

3MLCT ⇀↽ 3MC , (I.1)

between the two states. Radiationless relaxation may
occur from either the 3MLCT or 3MC state, but probably
occurs most efficiently from the 3MC state,

3MC →
1GS , (I.2)

by passing through an intersystem crossing conical in-
tersection to the ground state at still larger metal-ligand
distances corresponding to partial ligand dissociation or
displacement by the solvent [14]. Simulation of triplet ex-
cited state dynamics has been described recently [15] and
(very recently) mixed TD-DFT/surface hopping photo-
dynamics simulations of this reaction has also been re-
ported [16].
In contrast to the situation for [Ru(bpy)3]

2+, even a
cursory study of the relevant literature shows that work-
ing hypotheses for designing new ligands for PMDs rely
heavily on the LFT model. This is in part because,
while the above-mentionned state-of-the-art calculations
are indeed impressive and illuminating, they are too long
and costly in computing resources to be useful for PMD
ligand design. This is especially true when going to larger
ligands with less symmetry. Not only would the calcula-
tions be still longer and more costly to perform, especially
for routine screening purposes, but there is another prob-
lem. This is an interpretational problem due to the fact
that the antibonding ruthenium e∗g orbital is now mixing
with an increasingly dense manifold of ligand orbitals,
potentially losing all contact with the traditional LFT
language. We are thus left with the somewhat unfor-
tunate situation that the working hypotheses are rarely
validated by actual MO calculations.
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FIG. 3: The diagram shows the principle potential energy
curves in our model. The abscissa corresponds roughly to
the simultaneous stretching of the Ru-N bonds (breath-
ing mode) while the ordinate represents the state energy.
Abbreviations: GS, ground state; MLCT, metal-ligand
charge transfer state; MC, metal-centered state. The
dashed lines indicate diabatic states whose avoided cross-
ing leads to the energetic barrier on the adiabatic surface
between the 3MLCT and 3MC minima.

The results indicated in this paper show that ap-
propriate use of (TD-)DFT may indeed be used to
validate working hypotheses and hence have poten-
tial value in PMD ligand design. In the next sec-
tion we first (Sec. II A) show that (TD-)DFT is
a quantitative tool for first principles determination
of geometries and absorption spectra for the five
molecules shown in Fig. 1. The well-studied molecule
[Ru(bpy)3]

2+ serves as a convenient well-studied ref-
erence. Bis(terpyridine)ruthenium(II), molecule 3 in
Fig. 1 and denoted in this paper by [Ru(tpy)2], is also
well-characterized experimentally [35–37]. Molecules 2

and 4 in Fig. 1, denoted in this paper respectively as
[Ru(L1)2]

2+ and [Ru(tpy)(L1)]2+, have been recently
studied experimentally in a work co-authored by some of
us [10]. The experimental results for molecule 5 are re-
ported here for the first time. The section then continues
(Sec. II B) with an analysis of the MOs. We show that
the problem of fractionation of e∗g density over numer-
ous MOs can be resolved using the technique of partial
density of states (PDOS) analysis (Appendix A). This
information is used to discuss the calculated TD-DFT
spectra and the observed luminescence lifetimes shown
in Table I. Finally, Sec. III concludes.

TABLE I: Experimental luminescence lifetimes and
PDOS-derived indicators.

Compound Lifetime ∆E (eV)a d× πb

[Ru(bpy)3]
2+ 0.855 µs c 2.49 170

[Ru(tpy)2 ]2+ 0.25 nsd 1.93 256

[Ru(tpy)(L1) ]2+ 5 nse 2.34 299

[Ru(L1)2 ]2+ NLfe 1.87 410

[Ru(L2)2 ]2+ NLfg 2.00 672
a∆E = ∆MC −∆MLCT.
bColumn 4 of Table VI.
cRoom temperature in CH3CN [33]. The same reference gives

0.630 µs for the lifetime in aqueous solution.
dRoom temperature in H2O [34].
eFrom Ref. [10].
fNot luminescent at room temperature in CH3CN.
gPresent work.

FIG. 4: Ball and stick representations of DFT-optimized
geometries of the molecules shown in Fig. 1: Ru, yellow;
C, orange; N, blue; H, white.

II. DFT CALCULATIONS

A Structure and Spectra

In this subsection we give a brief idea of the quality of
the results of our DFT calculations (see Appendix C for
computational details) by direct comparison with experi-
mental results (see Appendix B for the experimental sec-
tion). Two types of comparisons may be made, namely
(i) comparison of DFT-optimized gas phase geometries
with crystallographic data and (ii) comparison of TD-
DFT absorption spectra with experimental absorption
spectra.

1 Geometries

Figure 4 provides ball and stick representations of
the five molecules studied in this paper. Start geome-
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TABLE II: Comparison of theory and experiment for se-
lected geometric parameters (distances in Ångströms, an-
gles in degrees) of the five complexes. Note that each lig-
and is described by a single set of geometric parameters.
Within each ligand the bite atoms are numbered starting
from one end of the ligand going to the other end.

[Ru(bpy)3]
2+

bpy R(RuN1) 6 (N1RuN2)
Expt. 2.056 78.7
Theory 2.11 77.9

[Ru(tpy)2]
2+

tpy R(RuN1) R(RuN2) 6 (N1RuN2) 6 (N1RuN2N3)
Expt. 2.07 2.00 79.4 102.8
Theory 2.13 2.04 78.4 101.6

[Ru(tpy)(L1)]2+

tpy R(RuN1) R(RuN2) 6 (N1RuN2) 6 (N1RuN2N3)
Expt. 2.09 1.95 79.1 179.8
Theory 2.14 1.99 78.7 179.9

L1 R(RuC1) R(RuN2) 6 (C1RuN2) 6 (C1RuN2C3)
Expt. 2.08 2.18 87.1 178.1
Theory 2.16 2.28 85.6 179.1

[Ru(L1)2]
2+

L1 R(RuC1) R(RuN2) 6 (C1RuN2) 6 (C1RuN2C3)
Expt. 2.07 2.12 86.7 175.9
Theory 2.13 2.21 85.9 180.0

[Ru(L2)2]
2+

L2 R(RuC1) R(RuN2) 6 (C1RuN2) 6 (C1RuN2C3)
Expt. 2.07 2.12 86.6 179.6
Theory 2.13 2.21 85.9 180.0

tries for these DFT-optimized gas phase geometries were
taken from crystallographic data. The degree of agree-
ment between the start crystal geometries and the final
optimized gas phase geometries is illustrated in Table II

by selected geometric parameters for the inner sphere of
ligand atoms of the five complexes. With one excep-
tion, the calculated angles differ from the experimental
angles by no more than 1.5◦. The exception is the dihe-
dral angle 6 (C1RuN2C3) for [Ru(L1)2]

2+ where theory
indicates that the ligands are essentially planar but the
x-ray crystal structure indicates a 4.1◦ bending. Calcu-
lated bond lengths are longer than measured ones. This
bond-length difference is too large to be attributed to
errors in the approximate functional used in the calcula-
tions, but rather must be attributed to compression due
to “chemical pressure” in the condensed phase. Multipli-
cation of the theoretical results by an emprical factor of
0.97 brings the theoretical bond lengths into much better
agreement with experiment (Fig. 5).

2 Spectra

Figures 6, 8, 9, 10, and 11 compare our calcu-
lated TD-DFT absorption spectra for the gas phase
molecules with the experimentally-measured solution ab-

FIG. 5: Correlation graph between DFT-calculated gas
phase bond lengths and measured x-ray crystallographic
bond lengths.

sorption spectra. In all cases we used the DFT-optimized
ground state geometries, but in the case of [Ru(tpy)2]

2+,
[Ru(L1)2]

2+, and [Ru(L1)(tpy)]2+ TD-DFT results are
also shown at the x-ray crystal geometries. It is to be
emphasized that these are absolute comparisons of theo-
retical and experimental molar extinction coefficients in
which the only empirical parameter is the full-width-at-
half-height used in the gaussian-convolution to account
for measurement-related, vibrational, and/or solvent re-
lated broadening of peaks. It should also be empha-
sized that each theoretical peak is built of many different
electronic transitions (Fig. 7 shows the underlying stick
spectrum for Fig. 6). For this reason, we have had to cal-
culate on the order of 100 singlet excited states to obtain
reasonable agreement with the first two peaks of the ex-
perimental spectra. Nevertheless, inclusion of still more
singlet excited states in the theoretical calculations may
lead to increasing the height of the higher-energy peaks
in the theoretical spectra.
After gaussian broadening, Figs. 6, 8, 9, 10, and 11

agree with experiment in showing only a few main ab-
sorption peaks. Table III gathers together rough values
for the corresponding main calculated and measured peak
positions. Figure 12 shows that there is quite a reason-
able correlation between the calculated gas phase absorp-
tion peak positions and the measured solution absorption
peak positions—particularly after the theoretical values
are multiplied by an empirical factor of 0.92. One reason
that the theory is blue shifted compared to experiment
may be solvent effects. Figure 6 shows that a dielectric
cavity simulation of CH3CN solvation effects results in a
blue shift with respect to the gas-phase spectrum.
All things considered, the level of agreement between

theory and experiment is excellent for geometries and at
least semiquantitative, if not quantitatative, for absorp-
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FIG. 6: Comparison of calculated and experimental
[Ru(bpy)3]

2+ molar extinction coefficients: experimental
curve, measured at room temperature in H2O [32]; calcu-
lated curve in CH3CN, TD-DFT calculation, 100 singlet
states [18]; calculated curve, TD-DFT calculation, 100
singlet states (present work).

tion spectra. This gives us confidence in the DFT model
and encourages us to take a closer look at the underlying
DFT orbitals which we do in the next subsection.

B Recovery of a Ligand Field-Like Theory

In the previous section we have established the exis-
tance of a quantitative relationship between TD-DFT
gas-phase and experimental solution absorption spectra.
The next logical step would seem to be to assign the
peaks in the spectra in terms of orbital transitions. While
this is a sensible common practice for small molecules, the
literature abounds with less than satisfactory attempts
to do just this for the absorption spectra of ruthenium

FIG. 7: Stick spectrum for [Ru(bpy)3]
2+.

FIG. 8: Comparison of calculated and experimental
[Ru(tpy)2]

2+ molar extinction coefficients: experimen-
tal curve, measured at room temperature in acetonitrile
(from Fig. 6 of Ref. [1]); calculated curve, TD-DFT calcu-
lation, 100 singlet states; calculated (frozen) curve, TD-
DFT calculation using the experimental x-ray structure.

complexes. There is already a problem at the molecu-
lar orbital (MO) level. Explicit visualization of ruthe-
nium complex orbitals often permits the identification of
high-lying occupied orbitals dominated by ruthenium d
orbitals which can be clearly identified with t2g orbitals
from ligand field theory (LFT). Unfortunately attempts
to identify ruthenium complex MOs with the e∗g anti-
bonding orbitals of LFT is much more difficult and also
less convincing because of the (expected and observed)
strong mixing of ruthenium d orbitals with ligand or-
bitals. Furthermore, even supposing that we have suc-
ceeded in making a plausible classification of ruthenium
complex MOs into metal-centered, ligand-centered, and
metal-to-ligand charge transfer types, we soon discover
that each broad peak in the calculated TD-DFT absorp-
tion spectra is the convolution of stick spectra belong-
ing to a formidable mixture of different types of tran-
sitions. Thus “the classification of the orbitals is not
unambiguous, as both d and π contributions are present
in all molecular orbitals, and explicit calculation of the
total energy of the states is motivated” [38], which at
first sight appears to be tantamount to abandonning the
simple LFT picture as being useless. If true, this would
be very bad news for experimentalists who need a simple
picture, such as that provided by LFT, to provide guid-
ance in their everyday work. Fortunately, as we show
in this subsection, it is possible to recover an LFT-like
picture.

1 Partial density of states

If the problem described above is already quite bad
for ruthenium complexes, then it becomes even worse in
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FIG. 9: Comparison of calculated and experimental
[Ru(L1)2]

2+ molar extinction coefficients: experimen-
tal curve, measured at room temperature in acetonitrile
(measured in the context of Ref. [10] but reported here in
full for the first time); calculated curve, TD-DFT calcu-
lation, 100 singlet states; calculated (frozen) curve, TD-
DFT calculation using the experimental x-ray structure.

the case of solids where the dense manifold of MOs turn
into bands. This is why condensed-matter physicists and
physical chemists working on problems such as catalysis
which also involve solids have learned to replace molecu-
lar orbitals with the concept of density of states (DOS)
and to analyze the different atomic and molecular con-
tributions to the DOS in terms of the concept of partial
density of states (PDOS). Roald Hoffmann does a good
job of explaining these concepts to chemists [39]. We will
use these to recover an LFT-like picture (Fig. 2) for the
ruthenium complexes described in this paper. For com-
pleteness, and because there are several variants of PDOS
analysis in the literature, we also give a more technical
explanation of what we actually do in Appendix A and
illustrate how this idea works by applying it to the fa-
miliar textbook example of the diatomic MO diagram of
nitrogen.
Now let us look at the less trivial, but still relatively

simple example of [Ru(bpy)3]
2+ whose PDOS analysis is

shown in Figure 13. The stick spectrum on the bot-
tom of the figure shows the occupied MOs (blue sticks)
and the unoccupied MOs (red sticks). The three MOs
whose explicit visualization permit them to be identified
as t2g LFT-like orbitals like around -11 eV and have been
split into two sets through the symmetry-lowering pres-
ence of the ligands. Two e∗g orbitals may be identified
at about -5 eV in the sense that these MOs have a sig-
nificantly larger ruthenium d contribution than do the
other unoccupied MOs. Elsewhere in the diagram are
many MOs of primarily ligand nature so that the stick
spectrum is relatively dense. Introducing an artificial 1
eV broadening of the stick spectrum produces the DOS
shown in the upper-half of the figure. Higher peaks cor-

FIG. 10: Comparison of calculated and experimental
[Ru(L1)(tpy)]2+ molar extinction coefficients: experi-
mental curve, measured at room temperature in acetoni-
trile [10]; calculated curve, TD-DFT calculation, 100 sin-
glet states; calculated (frozen) curve, TD-DFT calcula-
tion using the experimental x-ray structure.

respond to a greater bunching of MO levels. By analogy
with solid-state language, we will refer to these peaks as
“bands,” even though there is no notion of periodicity in
our calculations.
We now separate our atomic orbital (AO) basis into

d orbitals on ruthenium, p orbitals on carbon and nitro-
gen, and other AOs. Then Mulliken population analy-
sis (Appendix A) allows us to separate the ruthenium
d-orbital contribution (d-PDOS) to the DOS from the
ligand carbon and nitrogen p-orbital contributions (π∗-
PDOS). The purple curve allows us to see quite clearly
that the MOs around -11 eV are of clear ruthenium d
character and hence may be identified with t2g nonbond-
ing orbitals. The purple curve also shows us that the
band around -5 eV is the first set of unoccupied orbitals
of significant ruthenium d character. Hence this must
be the energetic region of the antibonding e∗g orbitals,
though comparison with the DOS and π∗-PDOS shows
that these MOs are also heavily mixed with ligand π∗

orbitals. A little reflection indicates that this is normal
in so far as both bonding and antibonding (as opposed
to nonbonding) LFT orbitals should mix with ligand or-
bitals. Thus this should have been expected. Notice that
there is some ruthenium d character in other bands, but
that it is relatively small. The lowest π∗ band has been
labeled as 1π∗ in Fig. 13. The next higher band could
have been labeled as 2π∗. In this way we recover a LFT-
like picture in close agreement with Fig. 2.
Notice our use of the term “LFT-like.” That is because

this is not the classic LFT of, say, Ref. [13], though it
looks very similar. In fact, we might expect the PDOS
eg−t2g energy difference, ∆MC ≈ 48000 cm−1 to be about
the same as the LFT splitting. However the classic LFT
splitting is a different spectroscopically-derived quantity
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FIG. 11: Comparison of calculated and experimental
[Ru(L2)2]

2+ molar extinction coefficients: experimental
curve, measured at room temperature in acetonitrile; cal-
culated curve, TD-DFT calculation, 80 singlet states; cal-
culated (frozen) curve.

which may be estimated for [Ru(bpy)3]
2+ using the well-

known formula (see, e.g., pg. 218 of Ref. [13]),

∆LFT = fg , (II.1)

where f = 20000 cm−1 (Ref. [40] p. 367) is the LFT split-
ting for the hexaaqua complex and g = 1.43 (Ref. [13] p.
219) for three bipyridine ligands. Since ∆LFT = 28600
cm−1 is considerably smaller than ∆MC, then the PDOS
is providing us with a LFT-like picture but not with con-
ventional LFT.
Figure 14, 15, 16, and Fig. 17 show the (P)DOS

for [Ru(tpy)2]
2+, [Ru(L1)2]

2+, [Ru(tpy)(L1)]2+, and
[Ru(L2)2]

2+ respectively. Table V shows the respective
values of ∆MC. Notice how symmetry-lowering ligands
lead to splitting of both the t2g band (all complexes ex-
cept [Ru(bpy)2]

2+ and [Ru(tpy)2]
2+) [Ru(L2)2]

2+) and
of the e∗g band (all complexes except [Ru(bpy)2]

2+). In
assigning, ∆MC, we are more or less following Kasha’s
rule [41] which states that the most important photopro-
cesses are expected to be those from the lowest relevant
excited state—hence between the lowest e∗g band and the
highest t2g band. Table V then leads to the spectrochem-
ical series,

∆MC : bpy > L2 > tpy > L1 . (II.2)

Part, but not all, of what we are seeing here is due to
band splitting due to ligand-induced symmetry lower-
ing. It is interesting that the two complexes with the
L1 ligand—namely, [Ru(tpy)(L1)]2+ and [Ru(L1)2]

2+—
have essentially the same value of ∆MC, though this may
be only coincidental.

TABLE III: Comparison of the position of calculated and
measured spectral peaks (cm−1) from Figs. 6, 8, 9, 10,
and 11

Compound Expt. Theory Theory-Expt.

[Ru(bpy)3]
2+ 21 875 23 750 1 875

31 563
35 000 37 500 2 500
40 938 45 62 4 687

[Ru(tpy)2 ]2+ 21 428 23 929 2 501
33 928
41 429

[Ru(L1)2 ]2+ 23 546 24 255 709
36 383
39 574 38 865 -709

44 255
50 709

[Ru(tpy)(L1) ]2+ 20 649 21 948 1 299
27 597 28 247 650
31 623 33 896 2 273
37 273a 41 948 4 675

[Ru(L2)2 ]2+ 24 205 24 673 468
31 168 34 439 3 271
39 206 42 196 2 990

aAverage of the values for the two neighboring peaks at 36 298
cm−1 and 38 247 cm−1.

2 Spectra

Having shown that our LFT-like theory is not the clas-
sic LFT theory, we now wish to show that our LFT-like
theory is useful for understanding spectra. At the simple
LFT level, the features we see in the spectra of Figs. 6,
8, 9, 10, and 11 should correspond to MLCT transi-
tions. This is because d → d transitions are expected
to be symmetry forbidden or at least weak in complexes.
The π∗ PDOS gives us an easy way to calculate approx-
imate values for ∆MLCT (Table V). This, in turn, pro-
vides a quick estimate of the 1MLCT peaks calculated
from TD-DFT since basic theoretical reasons (see, e.g.,
Ref. [31]) indicate that the positions of the 1MLCT ab-
sorption peaks should be given roughly by the values of
∆MLCT. This is confirmed in Fig. 18. That this works
is all the more remarkable because the absorption spec-
tra peaks are themselves convolutions of stick spectra of
varying degrees of 1MC and 1MLCT (and even ligand-to-
ligand character) which are being analyzed using PDOS
bands which involve various mixed degrees of MC and
MLCT character. Yet this underlying complexity is not
preventing us from recovering and using a simple LFT-
like picture, albeit in the form of “fuzzy bands,” does
seem to work reasonably well.
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FIG. 12: Correlation graph between DFT-calculated gas
phase absorption peaks and measured absorption peaks
in solution.

3 Luminescence

We now turn to the question of whether our simple
LFT-like model can say something about the lumines-
cence data shown in Table I. To this end we investi-
gate two “luminescence indices,” shown in the last two
columns of the table. Neither one is strictly quantita-
tive but each is intended to be a logical consequence of
the model presented in the introduction and, taken to-
gether, may provide useful orbital-based indications of
whether a compound might or might not be luminescent
before it is synthesized. The data indicates that there are
three classes of luminescent compounds: (i) [Ru(bpy)3]

2+

and [Ru(tpy)(L1)]2+ are luminescent, (ii) [Ru(tpy)2]
2+

is less luminescent, and (iii) neither [Ru(L1)2]
2+ nor

[Ru(L2)2]
2+ were found to luminesce.

Our job is thus to extract a luminescence indices from
the model shown in Fig. 3. The model suggests that
the luminescence lifetime should increase with increasing
difficulty of crossing the potential energy barrier between
the luminescent 3MLCT minimum and the nonlumines-
cent 3MC minimum. Kasha’s rule indicates that only the
lowest π∗ state is of concern when describing lumines-
cence. The simplest theory then suggests that lumines-
cence will be quenched when the lowest e∗g state is closest
to the lowest π∗ state (Fig. 2)—i.e., that the height of the
3MLCT and 3MC avoided crossing is directly related to
a relatively simple orbital energy difference. This en-
ergy difference (∆E)—or more exactly PDOS band en-
ergy difference—is our first luminescence index and is
given in column 3 of Table I. Indeed the higher val-
ues of ∆E do correspond qualitatively to the two most
luminescent species, [Ru(bpy)3]

2+ and [Ru(tpy)(L1)]2+.

FIG. 13: Total and partial density of states of
[Ru(bpy)3]

2+ partitioned over ruthenium d orbitals and
ligand C and N p orbitals.

Note that no simple quantitative relation is proposed
between ∆E and the luminescence lifetime as we ex-
pect many competing factors to enter into a quantitative
model. Thus it is not unreasonable that the less lumines-
cent species [Ru(tpy)2]

2+ and the nonluminescent species
[Ru(L2)2]

2+ have similar “small” values of ∆E.
The second proposition of a luminescence index is mo-

tivated by the avoided crossing in Fig. 3. We might ex-
pect that the lower the barrier, then the stronger the con-
figuration mixing should be. This in turn suggests that
we look for a possible departure from t2g → π∗ charac-
ter. This is done in Table VI where we make a rough
estimate of the of the amount of d character in the first

FIG. 14: Total and partial density of states of
[Ru(tpy)2]

2+ partitioned over ruthenium d orbitals and
ligand C and N p orbitals.
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FIG. 15: Total and partial density of states of
[Ru(L1)2]

2+ partitioned over ruthenium d orbitals and
ligand C and N p orbitals.

π∗ (“1π∗”) peak (obtained simply from a rough ratio of
the ruthenium d PDOS height to the height of the cor-
responding DOS peak) and the amount of π character
in the primary t2g peak (obtained in a similar manner).
Column 4 of Table I indicates that the product of these
two numbers also gives a reasonable luminescence index
in that the three luminescent compounds have the lowest
value of the product d× π given by multiplying columns
2 and 3 in Table VI and that the nonluminescent species
have markedly higher values.
Taken together the two luminescence indices, ∆E and

d × π, provide a “quick” indication of ruthenium com-
plex luminescence. This is particularly noteworthy be-

FIG. 16: Total and partial density of states of
[Ru(tpy)(L1)]2+ partitioned over ruthenium d orbitals
and ligand C and N p orbitals.

FIG. 17: Total and partial density of states of
[Ru(L2)2]

2+ partitioned over ruthenium d orbitals and
ligand C and N p orbitals.

TABLE IV: Location of ruthenium t2g and e∗g orbitals
obtained from the PDOS analysis. Notice the splitting
of the Oh orbitals due to symmetry lowering. The quan-
tity ∆MC reported here is the smallest t2g − e∗g energy
difference.

Compound t2g e∗g ∆MC

(eV) (eV) (cm−1)

[Ru(bpy)3]
2+ -11.13 -5.02 49 283

[Ru(tpy)2 ]2+ -11.20 -5.65 44 766
-5.00

[Ru(tpy)(L1) ]2+ -11.00
-10.79 -5.09 43 159

-4.39

[Ru(L1)2 ]2+ -10.70
-10.35 -5.00 43 153

-4.60

[Ru(L2)2 ]2+ -10.50
-10.20 -4.60 45 169

-3.10

TABLE V: Comparison of LFT orbital energy differences
and positions of calculated absorption peaks.

Compound t2g π∗ ∆MLCT
1MLCT

(eV) (eV) (cm−1) (cm−1)

[Ru(bpy)3]
2+ -11.0 -7.5 28 200 24 000

-6.2 38 700 37 000

[Ru(tpy)2 ]2+ -11.5 -7.5 32 200 24 000
-6.5 40 300 34 000

[Ru(tpy)(L1) ]2+ -10.75 -7.5 26 200 22 000
-6.5 34 300 28 000

[Ru(L1)2 ]2+ -10.5 -6.5 32 300 24 000
-6.0 36 300 39 000

[Ru(L2)2 ]2+ -10.25 -6.5 30 200 25 000
-5.8 35 900 35 000
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FIG. 18: Correlation graph between estimated values of
∆MLCT and calculated values of 1MLCT peaks.

TABLE VI: PDOS criteria which may have an influence
on luminescence lifetimes.

Compound % d % π d× π a

in “1π∗” in “t2g”

[Ru(bpy)3]
2+ 7.4 23 170

[Ru(tpy)2 ]2+ 9.5 27 256

[Ru(tpy)(L1) ]2+ 8.6 34.8 299

[Ru(L1)2 ]2+ 13 31.5 410

[Ru(L2)2 ]2+ 12.5 53.8 672
aProduct of columns 2 and 3.

cause the determination of these indices is considerably
less computationally demanding than calculating poten-
tial energy curves for N -electron states.

III. CONCLUSION

The initially stated goal of this paper was to investi-
gate the extent to which (TD-)DFT could provide com-
putation support for experimentalists seeking to design
ligands for photochemical molecular devices. We empha-
sized that the computational model should be able (i) to
quantitatively reproduce the known x-ray structures and
absorption spectra and yet (ii) be interpretable in the
ligand field theory (LFT) terminology commonly used
by experimentalists working on the problem of PMD lig-
and design. We have largely accomplished what we set
out to do. Thus our gas-phase optimized structures dif-
fer little from the x-ray crystallographic start geometries
that we used, except for a small (3%) contraction ex-

pected from chemical pressure in the condensed phase.
Our calculated gas-phase spectra are also in good agree-
ment with, though slightly blue shifted (by about 7%)
compared to, spectra measured in solution. The main
peaks in the spectra can also be explained in terms of
LFT-like orbital energy differences extracted using the
technique of partial density of states (PDOS) analysis
in so far as trends in ∆MLCT provide a good prediction
of the principle 1MLCT absorption peaks. This is good
news as DFT geometry optimizations and PDOS anal-
ysis are much less computationally intensive than TD-
DFT calculations. Finally we showed how our (P)DOS
plots may provide rough indicators of when a compound
is likely to luminesce without carrying out a much longer
and more computational resource intensive calculation of
excited states and their surfaces and/or dynamics.
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APPENDIX A: PARTIAL DENSITY OF STATES

ANALYSIS

Partial density of states (PDOS) analysis is a well-established
procedure in condensed matter theory, though there are several
variants of the PDOS procedure to be found in the literature. The
variant we use is essentially the same as the one proposed by Roald
Hoffmann and sketched on pp. 32-36 of Ref. [39]. For concreteness,
we give here a brief description of our PDOS analysis.

The density of states (DOS) function is given by,

DOS(ǫ) =
∑

i

g(ǫ− ǫi) , (A1)

where g is a normalized gaussian,
∫

g(ǫ) dǫ = 1 , (A2)
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FIG. 19: N2 PDOS analysis. The familiar MO diagram
of N2 has been turned sidewise with respect to its famil-
iar position and placed above the (P)DOS. Orbital labels
indicate both the MO symmetry and the expected chem-
ical nature of the MOs which is largely confirmed by the
MO analysis.

with fixed full-width-at-half-maximum (FWHM, chosen to be 1 eV
in the present study) and ǫi is the energy of the ith molecular
orbital (MO). The formula for the PDOS for the µth atomic orbital
(AO) is,

PDOSµ(ǫ) =
∑

i

qµ,ig(ǫ− ǫi) , (A3)

where qµ,i is the Mulliken charge of the µth AO in the ith MO. It
is calculated as,

qµ,i =
∑

ν

Sµ,νP
(i)
µ,ν . (A4)

where,
Sµ,ν = 〈µ|ν〉 , (A5)

is the AO overlap matrix and,

P
(i)
µ,ν = Cν,iCµ,i , (A6)

is the ith MO density matrix calculated from the MO coefficient
matrix, C. Normally we are interested in the PDOS for a group of
orbitals (such as al the d orbitals on the ruthenium atom). In that
case, the appropriate PDOS is obtained as a sum over the PDOS
of all relevant orbitals,

PDOS(ǫ) =
∑

µ

PDOSµ(ǫ) . (A7)

These equations were implemented in our own in-house Python

program PDOS.py. Figure 19 shows an application of the method
to the familiar homonuclear diatomic MO diagram of N2. As ex-
pected, the lowest σ bonding and antibonding orbitals have mixed
atomic s and p character, but are dominately of s-type. On the
other hand, the higher energy σ orbital shown in the figure is of
mixed s and p character, but is of dominately p-type. As expected
from simple symmetry arguments, the π bonding and antibonding
orbital have only p character and no atomic s character whatsoever.

Another program with the same functionality is the Python

program GaussSum (http://gausssum.sourcegourge.net/) and
PDOS.py has been checked against GaussSum. An advantage of
PDOS.py is that multiple PDOS as well as the total DOS may be
plotted on the same graph. We needed this for the present article

TABLE VII: X-ray coordinates (Cartessian in Å) of the
[Ru(L2)2]

2+ complex.

Atom x y z Atom x y z

1 Ru -2.2881 3.3610 23.1656 51 C -1.9361 -0.8580 22.9876

2 N -1.3473 3.8790 24.9896 52 C -2.4081 -2.1370 22.7076
3 N 0.2071 3.2600 21.2147 53 C -1.5861 -3.1730 23.1016

4 N 0.2729 4.8360 22.6806 54 C -0.3792 -2.9540 23.7386
5 N 5.3172 3.2100 24.1546 55 C 0.0878 -1.6730 23.9886
6 N -3.8883 2.4310 25.5466 56 C -0.7172 -0.6410 23.5946

7 N -3.2110 2.8810 21.3127 57 C 0.6038 1.3560 24.2846
8 N -3.6682 6.1660 23.7166 58 H -0.6558 2.3640 19.6677

9 N -3.1810 5.7950 21.6447 59 H 0.6222 1.6320 20.1567
10 N -2.4951 0.4060 22.8006 60 H -0.6979 1.5110 20.9617

11 N -0.5892 0.7370 23.7246 61 H 2.3442 3.1150 19.3687
12 C -0.5020 3.8010 22.2457 62 H 4.0993 4.6790 19.4067
13 C -3.9812 2.9630 24.3036 63 H 4.1431 6.3881 20.9347

14 C -3.0561 5.2610 22.9006 64 H 2.4600 6.6420 22.5416
15 C -1.6941 1.3890 23.2656 65 H 0.5708 6.2911 23.9856

16 C -0.1640 2.0910 20.4317 66 H -0.9102 6.1681 23.5396
17 C 1.3691 3.9710 20.9777 67 H 0.8156 5.9650 26.2106
18 C 2.3682 3.8160 20.0077 68 H 0.2504 4.9110 28.2066

19 C 3.3932 4.7490 20.0397 69 H -1.3086 3.1740 28.1606
20 C 3.4221 5.7710 20.9587 70 H -2.2254 1.3780 25.6616

21 C 2.4390 5.9280 21.9167 71 H -2.7615 1.8270 27.0456
22 C 1.4130 4.9790 21.9137 72 H -4.8846 1.4520 28.0186

23 C -0.1342 5.6840 23.7956 73 H -7.1796 1.5450 28.5246
24 C -0.4433 4.8940 25.0436 74 H -8.6895 2.4480 27.0566
25 C 0.1696 5.2690 26.2156 75 H -8.0193 3.2800 24.9626

26 C -0.1515 4.6430 27.3906 76 H -5.4171 3.6420 22.2207
27 C -1.0655 3.6210 27.3586 77 H -6.8011 3.3180 22.8436

28 C -1.6324 3.2460 26.1536 78 H -6.1311 4.6910 23.1156
29 C -2.6094 2.0980 26.1476 79 H -3.1743 5.4450 25.4866
30 C -5.1214 2.3250 26.1776 80 H -3.6133 6.9321 25.5356

31 C -5.5115 1.8200 27.4066 81 H -4.6763 5.8130 25.3756
32 C -6.8686 1.8810 27.6926 82 H -5.0452 8.5781 24.2906

33 C -7.7725 2.4150 26.8116 83 H -5.7461 10.0031 22.5636
34 C -7.3914 2.9120 25.5716 84 H -5.2819 9.5681 20.3667

35 C -6.0413 2.8330 25.2776 85 H -4.1028 7.6641 19.7217
36 C -5.9731 3.7630 22.9826 86 H -1.7309 5.0490 20.5317
37 C -3.7933 6.0830 25.1496 87 H -2.8878 5.6600 19.6977

38 C -4.1821 7.2451 22.9856 88 H -3.8567 4.1210 18.3647
39 C -4.8642 8.3841 23.3766 89 H -4.6587 1.9530 17.9757

40 C -5.2601 9.2161 22.3487 90 H -4.5938 0.4210 19.7247
41 C -4.9829 8.9551 21.0267 91 H -4.3811 1.0080 22.8656
42 C -4.2909 7.8451 20.6357 92 H -4.1470 -0.1450 21.8537

43 C -3.8810 6.9951 21.6577 93 H -3.2410 -2.2870 22.2757
44 C -2.6749 5.1310 20.4557 94 H -1.8591 -4.0670 22.9276

45 C -3.2589 3.7780 20.2767 95 H 0.1428 -3.7000 24.0106
46 C -3.8138 3.4640 19.0497 96 H 0.9228 -1.5220 24.4126

47 C -4.3027 2.1970 18.8247 97 H 1.3768 0.9550 23.9046
48 C -4.2608 1.3020 19.8547 98 H 0.6127 1.2330 25.2256
49 C -3.7430 1.6610 21.0757 99 H 0.6008 2.2860 24.0866

50 C -3.8000 0.6720 22.1937

and it does not seem to be very easy to do with GaussSum. Our
Figs. 13, 14, 15, 16, and 17 are all made using PDOS.py.

Users of GaussSum should note that GaussSum and PDOS.py

differ in their definitions of the gaussian convolution. In GaussSum,
the gaussians always have unit height. In PDOS.py, the gaussians
always have unit area. This latter choice seems more logical to us.
This means that the ratio of peak heights calculated with Gauss-

Sum to that of PDOS.py is ,

GaussSum

PDOS.py
=

√

π

log 2

FWHM

2
. (A8)

APPENDIX B: EXPERIMENTAL

The crystal structure of [Ru(bpy)3]2+ is from Ref. [27].
The synthesis and crystal structure of [Ru(tpy)2]2+ were re-

ported in Ref. [35].
The synthesis and characterization of [Ru(L1)2]2+ and

[Ru(tpy)(L1)]2+ were reported in Ref. [10]. We have taken the
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crystal structures for the bromides of these compounds crystalized
from acetonitrile from that study. The absorption spectra have
been taken from that same study, but are only reported in full in
the present work. The measurements were for acetonitrile solutions
at room temperature. Luminescence lifetime measurements were
measured under the same conditions at room temperature.

The synthesis and photophysical data for [Ru(L2)2]2+ are
reported for the first time in this article. The synthesis of
[Ru(L2)2]2+ was carried out following the same method as
that used to synthesize [Ru(L1)2]2+ in Ref. [10]. Specifically,
[Ru(L2)2](PF6)2 was prepared in the following manner: A sus-
pension of anhydrous RuCl3 (121 mg, 0.58 mmol), L2 (500 mg,
1.17 mmol) and potassium carbonate (650 mg, 4,68 mmol) in 15
mL ethylene glycol was stirred at 150◦C for 5 hours. After cool-
ing to room temperature, addition of a saturated aqueous solu-
tion of KPF6 caused the precipitation of a yellowish compound.
After filtration, the resulting solid was purified by column chro-
matography (CHCl3:CH3CN 2:1) affording 161 mg (15% yield).
1H NMR (CD3CN, 300 MHz): δ (ppm) 8.01 (t, 2H), 7.84 (d, 4H),
7.73 (d, 4H), 7.37 (m, 4H), 7.30 (d, 8H), 5.69 (d, 4H), 4.49 (d,
4H), 2.20 (s, 12H). ESI-MS: m/z = 989.1 ([M-PF6]+, calculated
for C46H50F6N10PRu = 989.29.

Absorption spectra were recorded a Varian Cary 300 Scan UV-
Visible spectrophotometer. Emission spectra were recorded on a
Varian Cary Eclipse spectrofluorimeter. Samples in acetonitrile
solutions were placed in 1 cm path length quartz cuvettes for room
temperature measurements. [Ru(L2)2]PF6 was crystalized by slow
evaporation from acetonitrile. The x-ray crystal structure is given
in Tables VII. It has been deposited on the Cambridge database
under the reference CCDC-800433.

APPENDIX C: COMPUTATIONAL DETAILS

DFT and TD-DFT calculations were carried out using the
GAUSSIAN 03 program [42]. The 6-31G basis set was used for
carbon, nitrogen, and hydrogen. The LANL2DZ effective core po-
tential and accompanying basis set was used for ruthenium.

Since no practical exact exchange-correlation functional is
known (TD-)DFT, approximate functionals must be used in prac-
tice. We chose to use the B3LYP functional used in previous TD-
DFT studies of the absorption spectrum of [Ru(bpy)3]2+ [18, 19].
This is is a hybrid functional, meaning that it incorporates a fixed
amount of “exact” (Hartree-Fock) exchange into a generalized gra-
dient approximation (GGA). The parameters used in the B3LYP
functional are taken without reoptimization from Becke’s B3PW
functional [43] even though the original Perdew-Wang (PW) cor-
relation functional [44] is replaced by the Lee-Yang-Parr (LYP)
correlation functional [45]. Becke’s exchange GGA (B) is the same
in the B3PW and B3LYP functionals.

Gas-phase ground-state geometries were optimized beginning
from the x-ray crystallography start geometries. D3 symmetry
was imposed along with a multiplicity of 1 and a charge of 2+.
Potential energy minima were checked by calculating vibrational
frequencies without the symmetry constraint. SCF convergence
was set to tight andd the grid was set to fine. Visualization of
molecular orbitals was done using Molden [46].

Gas-phase absorption spectra were calculated by TD-DFT using
the adiabatic approximation and same B3LYP functional as for the
ground state calculations (i.e., TD-B3LYP calculations). As a large
number of excited states is needed to compare with experiment,
special use was made of the keyword add. By using add=20, we were
able to add 20 states at a time to our spectra until we had on the
order of 100 excited states. It as also necessary to set the keyword
maxdavidson=500 to widen the Krylov subspace dimensions in order
to facilitate convergence in the block Davidson algorithm. This

gives us the spectral function,

S(ω) =
∑

I

fIδ(ω − ωI) , (C1)

where fI is the oscillator strength corresponding to the electronic
excitation energy ωI = EI −E0.

The spectral function must be converted to the molar extinction
coefficient before it may be compared against experiment. To do
so, we wrote an in-house Python program, spectrum.py, which
uses the well-known formula [47–49] (see also, e.g., Ref. [13] p. 180),

ǫ(ω) =
πNAe2

2ǫ0mec ln(10)
S(ω) , (C2)

expressed here in SI units. Actual calculations were gaussian broad-
ened with a FWHM of 4 000 cm−1 to account for spectral broad-
ening due to vibrational structure, solvent effects, and finite ex-
perimental resolution. Note that the FWHM is the only empirical
parameter involved in the comparison of theoretical and measured
spectra in this paper.

APPENDIX D: LIST OF ABBREVIATIONS

Due to its somewhat multidisciplinary nature, this article con-
tains a large numbere of abbreviations. Some of these have been
collected in this appendix as a convenience to the reader.

6-31G A double ζ quality split valence gaussian-type orbital basis
set.

AO Atomic orbital.

B3LYP A hybrid density functionl using Becke’s exchange func-
tional and the Lee-Yang-Parr correlation functional as well
as 3 semi-empirical parameters taken from the B3PW func-
tional.

B3PW The original hybrid functional consisting of Becke’s ex-
change functional and the Perdew-Wang correlation func-
tional, assembled with Hartree-Fock exchange using 3 em-
pirical parameters.

bpy The ligand bipyridine.

e∗g Metal-centered ligand field theory antibonding d orbitals.

DFT Density-functional theory.

DOS Density of states.

ESI-MS Electron spray ionization mass spectroscopy.

FWHM Full width at half maximum.

GGA Generalized-gradient approximation.

GS Ground state. 1GS emphasizes that the ground state is a
singlet.

L1 The ligand 1,1’-[2,6-pyridinediylbis(methylene)]bis[3-
methylimidazolium].

L2 The ligand 1,1’-[2,6-pyridinediylbis(methylene)]bis[3-
methylbenziimidazolium].

LANL2DZ The effective core potential used for ruthenium in this
paper.

LFT Ligand field theory.

MC Metal centered. 1MC and 3MC indicate, respectively, the
singlet and triplet metal-centered excited states.

MLCT Metal-to-ligand charge transfer transition. 1MLCT and
3MLCT indicate, respectively, the singlet and triplet metal-
to-ligand charge transfer excited states.

MO Molecuar orbital.

π∗ Ligand-centered antibonding orbitals.
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PDOS Partial density of states.

PMD Photochemical molecular devices.

SI Système international.

t2g Metal-centered ligand field theory nonbonding d orbitals.

TD-B3LYP TD-DFT using the B3LYP functional.

TD-DFT Time-dependent density-functional theory.

tpy The ligand terpyridine.

UV Ultraviolet.
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This part comprises two parts which are; the chapter on the hypothetical complex. This is an ongoing
work which is an extension of the thesis work that is reported here. The next chapter is on Conclusion,
and here I look at the specific achievements. The formulated tools to be used in other situations as well.
The chapter looks at what next and what lessons have we learned if any.



CHAPTER 9

THE HYPOTHETICAL COMPLEX

9.1 Introduction

[Ru(oxa)2]2+ This section deals with a hypothetical complex that we intend to synthesize in future. The
oxa ligand is yet to be named accordingly. It has been included here as a way of extending the work that
has been carried out in this thesis. A number of techniques [1] that were applied on the five complexes
studied in this work were applied and results documented and presented here. With an imagined structure,
optimization (using DFT) was done, partial density of states and TDDFT (UV transitions) were done. The
calculations were based on the B3LYP functional, and the 6-31G basis set for the C,N,O,H atoms and with
Lanl2dz basis set with its associated ECP for Ru atom. The following parts are a report of the findings.

9.2 Geometry calculations

The structure below represents the hypothetical complex before optimization. Each ligand is tridentate
and uses nitrogen as its donor atom.

Figure 9.1: The optimized structure of the hypo-

thetical complex

From the optimization process we end up with
table 9.1 below which gives an insight on the na-
ture of the frontier molecular orbitals in this com-
plex. The determination of the character of these
MOs was done using MOLDEN and it shows lo-
calized MOs as well as delocalized MOs. Molecu-
lar orbitals are usually either metal-centred (MC),
ligand-centred (LC) or centred on both the metal
and the ligand (MLC). This table is fundamental
when it comes to to assigning electronic transi-
tions. This kind of work will be dealt with later
in this section.

Table 9.2 indicates that ligands are slightly
bent. The bond lengths and angles are similar to
those of the complexes dealt with in this work.
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Table 9.1: Some frontier molecular orbitals and their energies
Number MO Energy (eV) Character

236 LUMO+10 -5.99 MC
235 LUMO+10 -6.04 LC
234 LUMO+8 -6.09 LC
233 LUMO+7 -6.53 MLC
232 LUMO+6 -6.90 LC
231 LUMO+5 -7.01 LC
230 LUMO+4 -7.15 MLC
229 LUMO+3 -8.11 LC
228 LUMO+2 -8.58 LC
227 LUMO+1 -8.60 LC
226 LUMO -8.80 MLC
225 HOMO -11.08 MC
224 HOMO-1 -11.20 MC
223 HOMO-2 -11.65 MC
222 HOMO-3 -11.93 LC
221 HOMO-4 -12.08 MC
220 HOMO-5 -12.18 LC
219 HOMO-6 -12.18 LC
218 HOMO-7 -12.19 LC
217 HOMO-8 -12.24 MLC
216 HOMO-9 -12.37 MLC
215 HOMO-10 -12.37 MLC
214 HOMO-11 -12.60 LC
213 HOMO-12 -12.83 LC
212 HOMO-13 -13.07 LC
211 HOMO-14 -13.17 LC
210 HOMO-15 -13.32 LC
209 HOMO-16 -13.38 LC
208 HOMO-17 -13.41 LC
207 HOMO-18 -13.42 LC
206 HOMO-19 -14.16 LC
205 HOMO-20 -14.23 LC
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The bending leads to distortions that finally leads
to the lowering of the symmetry.

Table 9.2: Comparison of theoretical geometric parameters (distances in Ångströms, angles in degrees)
of the "two ligand moities". Note that the two ligands are actually not different. They are described as
being two because of the differences in their geometric parameters. Within each ligand the bite atoms are
numbered starting from one end of the ligand going to the other end.

oxa1 R(RuN1) R(RuN2) R(RuN3) ∠(N1RuN2) ∠(N1RuN2N3)
Theory 2.17 2.11 2.16 91.1 179.5

oxa2 R(RuN1) R(RuN2) R(RuN3) ∠(C1RuN2) ∠(N1RuN2N3)
Theory 2.11 2.17 2.12 91.1 179.8

As seen in the discussions done earlier in this thesis, it is very difficult to uniquely identify and de-
scribe MOs as belonging to the metal or ligand exclusively. This as already known and also illustrated by
visualization using MOLDEN is due to the mixing of d orbitals with the ligand π orbitals. This difficult
prompted the invocation of the Partial density of states approach discussed in section 9.3 below.

9.3 Partial density of states-PDOS

The Partial density of states method enables one to determine the various MOs based on their energies.
Using this approach and which is already discussed in detail in this thesis we can now identify the t2g, π∗

and eg as shown on the figure 9.2.

Figure 9.2: Total and partial density of states of [Ru(oxa)2]2+ partitioned over ruthenium d orbitals

and ligand C, N and O p orbitals.

Table 9.3 consists of extracted energies for the important MOs, it also gives ∆MC, ∆MLCT . The table
also captures the calculated 1MLCT energy which is extracted from figure 9.4 in section 9.4. The inclusion
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of 1MLCT in this table is meant to facilitate its comparison with the pdos-determined ∆MLCT which
is supposed to be the same thing in situations where the partial density of states approach performs
excellently well. These two values agree very well and this means that the pdos approach affords us a
quick way to estimate 1MLCT.

Table 9.3: Energy levels of t2g, π∗ and e∗g obtained by PDOS analysis of [Ru(oxa)2]2+ and the resultant
∆MC ∆MLCT and comparison with calculated 1MLCT energies

t2g π∗ e∗g ∆MC ∆MLCT Absorption
(eV) (eV) (eV) (cm−1) (cm−1) peaks (1MLCT)
-11.3 -8.5 -6.0 41118.4 22574.7 23000

Besides the ∆MLCT , we also have the ∆MC in the table, a quantity that helps alot in determining the
separation between the t2g and e∗g levels. In our particular case the pdos method enables us to calculate this
value as 41118.4 cm1. This value which is calculated from the difference between -11.3 eV of t2g and -6.0
eV of e∗g and eventual conversion to wavenumbers forms a basis of positioning it in our spectrochemical
series in our manuscript paper of chapter 8. The new spectrochemical series then becomes:

∆MC : bpy > L2 > t py > L1 > oxa (9.1)

where oxa is the ligand on our hypothetical complex.
Thus, the pdos picture has enabled us to recover the ligand field-like theory in especially two ways.

First, the pdos diagram in figure 9.2 clearly shows an arrangement of MOs similar to the familiar generic
ligand field theory diagram. On this diagram one sees a number of π MOs between t2g and e∗g. Secondly,
the ∆o is estimated in terms of ∆MC, which is easy to extract from such diagrams.

Table 9.4: The d×π product criteria for luminescence determination
% d in 1 π∗ % π in t2g d ×π

5 30 150

9.4 Excitation and luminescence

This section deals with the absorption process and the processes that follow thereafter. As already noted
the pdos method through the ∆MLCT approximation can be used to estimate 1MLCT energy.

What follows is proof that usually spectral peaks comprise many mixed transitions. This is clearly seen
in table 9.5. In this table, the major peaks observed on figure 9.4 are analyzed and the % contribution of
each transition noted. In addition, the character of each transition is also determined.

As part of the overall objectives, we assess the luminescence status of this hypothetical complex. Based
on the two indices developed in this work, the ∆E and the product d ×π one can proceed as follows to
attempt important predictions. Given that ∆E=∆MC-∆MLCT , our calculations here yield a ∆E value of 2.29
eV calculated from a ∆MC = 41118.4 cm−1 and ∆MLCT = 22574.4 cm−1 and its conversion to electron
volts using the relationship 1eV= 8062.4 cm−1. This ∆E and the d ×π value of 150 (see table 9.6),

are and indication of a luminescent complex. The ∆E value is a quantification of the energy barrier
between the luminescent 3MLCT and the nonluminescent 3MC state. It is so hard to populate the 3MC
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Table 9.5: Spectral Analysis of the transitions in the peaks of the spectra of [Ru(oxa)2]2+

Excited State Wavelength (nm) Intensity (oscillator strength) Contributions (%) Character
Number 1 813.13 0.0106
HOMO-4 → LUMO 3% MC → MLC
HOMO → LUMO 97% MC → MLC

Number 3 680.90 0.0501
HOMO → LUMO 100% MC → MLC

Number 12 476.44 0.1656
HOMO-3 → LUMO 90% LC → MLC
HOMO-1 → LUMO+3 10% MC → LC

Number 12 331.61 0.3799
HOMO-17 → LUMO+2 3% LC → LC
HOMO-16 → LUMO 5% LC → MLC
HOMO-14 → LUMO 47% LC → MLC
HOMO-13 → LUMO+1 2% LC → LC
HOMO-11 → LUMO+2 6% LC → LC
HOMO-10 → LUMO 3% M(L)C → MLC
HOMO-9 → LUMO+1 6% M(L)C → LC
HOMO-8 → LUMO+3 4% MLC → LC
HOMO-4 → LUMO+3 3% MC → LC
HOMO-3 → LUMO+2 3% LC → LC
HOMO-1 → LUMO+6 18% MC → LC

Table 9.6: The d×π product criteria for luminescence determination
% d in 1π∗ % π in t2g d ×π

5 30 150
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Figure 9.3: Calculated absorption spectra of [Ru(oxa)2]2+

state hence the excited state prefers the 3MLCT minimum from which luminescence can occur. Thus the
low d × π value of 150 and large value of ∆E (2.29 eV) favor luminescence just like the luminescent
complexes which have this combination.

9.5 Conclusion

In conclusion, it is hoped that finally this hypothetical complex will be synthesized and measurements
corresponding to the calculated ones determined. The outcome of such measurements will help to check
on the predictive capability of the methods developed in this work. The results will help in refining our
methods if they prove good and lead to radical modifications. With our methods working, as hoped, we
shall have devised an affordable tool to be used for the prediction of chemical properties prior to synthesis
of any complex of interest. This then is likely to drastically reduce dangerous and costly ventures in our
laboratories.
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CHAPTER 10

CONCLUSION

The objectives of this work were to determine the molecular orbital picture in various ruthenium com-
plexes, and especially the relative positions of the π∗ and e∗g. This objective was largely achieved. We
succeeded to determine what we described in this thesis as the ligand field-like picture.

The optimizations, the frequency calculations, the UV transitions, and partial density of states were
carried out as earlier planned.

The thesis work led to the formulation of a method based on partial density of states which has proved
very useful. The partial density of states peaks enabled determination of ∆MC and ∆MLCT which enabled
the determination ∆E. ∆E and the d × π are the two important indices determined in this work which
have proved that the use of DFT and TDDFT in conjunction with the partial density of states can provide
a cheaper way to assess the luminescence properties of complexes in a cheaper way.

The future of this kind of research lies in exploring cheap ways to attain credible results. This was
nicely demonstrated in this project. The need to work in a multi-disciplinary manner also came out quite
clearly. The partial density of states technique borrowed from solid state physics enabled the progress that
was made in this project.

There is also need to formulate ways of determining the properties of molecules before their synthesis
This is exactly what the previous chapter is dealing with. In this chapter we decided to come up with
a hypothetical complex and perform all the necessary calculations before the real synthesis. Depending
on what results the synthesis will reveal at an appropriate time, it will have paved a way to apply the
formulated tool for predictive purposes. The experimental results will be used as a way to calibrate of our
pdos method.
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APPENDIX A

TDA-TDDFT FOR THE PHOTOCHEMICAL RING-OPENING OF
OXIRANE

Overview

This article lies outside the main objectives of this thesis and so has been relegated to an appendix. Nev-
ertheless, for myself and the two other doctoral students (Miquel Huix-rotllant and Bhaarathi Natarajan)
the work reported here represents a first and hence an important introduction to photochemical modeling
using TD-DFT. Previous work (refs 7 and 21 of the published paper ) indicates that TD-DFT can be at-
tractive in describing the photochemistry of oxirane ring opening. However, conventional TD-DFT failed
to describe avoided crossings and conical intersections which are conventionally thought to explicit re-
quire inclusion of 2-electron excited states. We thought that spin-flip TD-DFT could resolve some of the
problems. The article describes our implementation of spin-flip TD-DFT and testing of its performance.
My contribution to this paper consisted of calculations along the asymmetric ring opening pathway.
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Under the usual assumption of noninteracting v-representability, density-functional theory (DFT)

together with time-dependent DFT (TDDFT) provide a formally exact single-reference method

suitable for the theoretical description of the electronic excited-states of large molecules, and

hence for the description of excited-state potential energy surfaces important for photochemistry.

The quality of this single-reference description is limited in practice by the need to use

approximate exchange–correlation functionals. In particular it is far from clear how well

approximations used in contemporary practical TDDFT calculations can describe funnel regions

such as avoided crossings and conical intersections. These regions typically involve biradical-like

structures associated with bond breaking and conventional wisdom would seem to suggest the

need to introduce explicit double excitation character to describe these structures. Although this is

lacking in ordinary spin-preserving (SP) TDDFT, it is present to some extent in spin-flip (SF)

TDDFT. We report our tests of Wang–Ziegler noncollinear SF-TDDFT within the

Tamm–Dancoff approximation for describing the avoided crossing in the C2v CC ring-opening

reaction of oxirane and for describing the conical intersection relevant for the more physical

asymmetric CO ring-opening reaction of oxirane. Comparisons are made with complete active

space self-consistent field and quantum Monte Carlo benchmark results from two previous papers

on the subject [J. Chem. Phys., 2007, 127, 164111; ibid 129, 2008, 124108]. While the avoided

crossing in the C2v pathway is found to be reasonably well described, the method was found to be

only partially successful for the conical intersection (CX) associated with the physically more

important asymmetric pathway. The origin of the difficulties preventing the noncollinear

SF-TDDFT method from giving a completely satisfactory description of the CX was traced

back to the inability of SF-TDDFT based upon a single triplet reference state to correlate all

potentially relevant configurations involving not just two but three nearly degenerate orbitals

(n, sCO, and s�CO). This article is also the first report of our implementation of SF-TDDFT within

the DEMON2K program.

I. Introduction

Due to its rigorous formal foundations and computational

efficiency, time-dependent density-functional theory (TDDFT)

is currently a method of choice for treating electronic excited

states. It is thus one of several tools to be found in today’s

photochemical modeling kit (see e.g., ref. 1–4). Nevertheless

applications of TDDFT are limited by a number of problems

due to the inevitable use of approximate functionals in practical

applications. Overcoming these limitations is important for

extending the domain of applicability of TDDFT. Here we

investigate the ability of spin-flip TDDFT (SF-TDDFT)

to overcome problems encountered by ordinary TDDFT

near funnel regions, namely avoided crossings and conical

intersections (CXs). This is especially important in light

of the recent development of Tully-type5,6 mixed TDDFT/

classical trajectory surface-hopping dynamics.7–12 Surface-

hopping dynamics may also have inspired very recent work

by Minezawa and Gordon13 focusing on characterizing the

CXs of ethylene using one formulation of SF-TDDFT14,15

and the BHHLYP functional (50% Hartree–Fock plus 50%

Becke exchange16 plus Lee–Yang–Parr correlation17). In the

present study, we have chosen the photochemical ring opening

of oxirane [(I) in Fig. 1] as a test case for evaluating the ability

of a different formulation of SF-TDDFT18,19 in describing

funnel regions because oxiranes are an important class of

compounds in photochemistry (see ref. 20 and the brief review

in Appendix B of ref. 21 as well as ref. 22 where the photo-

chemical ring-opening of diphenyloxirane has been studied,

not by TDDFT, but by a different DFT approach) and
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because of the availability of high-quality comparison

results.7,21

Let us review the fundamental problems encountered

by density-functional theory (DFT) for such applications.

Hohenberg, Kohn, and Sham showed that the static ground

state properties of a real system of interacting electrons could

in principle be treated exactly by replacing it with a fictitious

system of noninteracting electrons.23,24 In the absence of

degeneracies, the wave function of the noninteracting system

is single determinantal in nature. The orbitals obey the well-

known Kohn–Sham equation,

(ĥsC + vH + vsxc)c
s

p = epsc
s

p , (I.1)

where ĥsC is the usual core (i.e., kinetic energy plus external

potential, vsext), vH is the Hartree (i.e., Coulomb) potential,

and (assuming a pure spin-density functional) the exchange–

correlation (xc) potential,

vsxc½ra; rb�ðrÞ ¼
dExc½ra; rb�

drsðrÞ
; ðI:2Þ

is the functional derivative of the xc-energy, Exc. (Hartree

atomic units are used throughout this paper: �h=me = e= 1.)

While the Hohenberg–Kohn–Sham DFT is formally exact in

principle, it is limited in practice by the use of approximate

xc-functionals. The result is that DFT, whose equations

resemble those of Hartree–Fock (HF) theory, ‘‘inherits’’ some

of the problems of HF theory, notably molecular orbital

symmetry breaking when describing the rupture of covalent

bonds. Indeed simple arguments show that no symmetry

breaking should occur for a closed-shell molecule when the

xc-functional is exact.21 In practice, the broken symmetry

solution becomes lower in energy than the unbroken symmetry

solution beyond some critical bond distance (the Coulson–

Fischer point) because of the use of approximate functionals.

The above arguments rest on the supposition of noninteracting

v-representability (NVR), which means that the energy is

minimized with the Aufbau filling of the Kohn–Sham orbitals.

Interestingly there is some indication that NVR fails for

biradicals,7 indicating the need for an ensemble formalism

which, however, is beyond the scope of the present paper.

Modern TDDFT is based upon the formalism of Runge and

Gross who presented Hohenberg–Kohn-like theorems for

the time-dependent case and a time-dependent Kohn–Sham

equation,25

ðĥsC þ vH þ vsxcÞcs
p ¼ i

@

@t
cs
p; ðI:3Þ

in which the xc-potential is, in principle, a functional of the

time-dependent density, rs(r, t), and the wave functions of the

interacting and noninteracting systems at some initial time.

However the first Hohenberg–Kohn theorem tells us that these

wave functions are also functionals of the initial density,

meaning that the xc-potential depends only on the density

for the case of a system initially in its ground stationary state

perturbed by a time-dependent applied potential.23 Linear

response (LR) theory may then be used to extract information

about excited states. This leads, in Casida’s formulation,26 to

the LR-TDDFT equation,

AðoÞ BðoÞ
B�ðoÞ A�ðoÞ

� �

X

Y

� �

¼ o
1 0

0 ÿ1

� �

X

Y

� �

; ðI:4Þ

which has paired excitation and de-excitation solutions,

XI

YI

� �

$ oI ¼ EI ÿ E0 ¼ ÿoI $
YI

XI

� �

ðI:5Þ

Here

As,t
ia,jb(o) = da,bdi,jds,t(eas ÿ eis) + Ks,t

ia,jb(o)

Bs,t
ia,jb(o) = Ks,t

ia,bj(o), (I.6)

and the coupling matrix,

Ks,t
ia,jb(o) = (ia|ds,tfH + fs,txc (o)|bj), (I.7)

where,

fHðr1; r2Þ ¼
1

r12
; ðI:8Þ

is the Hartree kernel and,

f s;txc ðr1; r2;oÞ ¼
Z þ1

ÿ1
eioðt1ÿt2Þ dv

s
xcðr1; t1Þ

drtðr2; t2Þ
dðt1 ÿ t2Þ; ðI:9Þ

is the xc-kernel. Integrals are written in Mulliken charge-cloud

notation,

ðpqjf jrsÞ ¼
ZZ

c�
pðr1Þcqðr1Þf ðr1; r2Þc�

r ðr2Þcsðr2Þdr1dr2:

ðI:10Þ

Since LR-TDDFT is the primary application of TDDFT and

the only one treated in the present article, we will normally just

refer to LR-TDDFT as TDDFT. Like conventional DFT, the

underlying formalism of TDDFT has been the subject of much

healthy criticism (e.g., ref. 27–29). Nevertheless is our expecta-

tion that, like the static ground-state formalism, formal

TDDFT—either as is or suitably modified—will stand the test

of time, for at least some time to come. The reader interested

in further information about TDDFT is referred to a recent

book30 and two special journal issues31,32 devoted to TDDFT.

Problems arise in practice because of the use of approximate

functionals. These have been extensively reviewed in the

Fig. 1 Gomer–Noyes mechanism for the ring-opening of oxirane
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literature (e.g., ref. 33 and 34). Suffice it to say that the normal

domain of validity of TDDFT with existent approximate

xc-functionals is low-lying 1-electron excitations which are

not too delocalized in space and do not involve too much

charge transfer.

The present paper is primarily concerned with the limitation

to 1-electron excitations. This limitation arises from the basic

adiabatic approximation (AA) which is almost universally

used in practice. This approximation assumes that the

xc-potential reacts instantaneously and without memory to

any temporal change of the charge density. Mathematically,

the AA means that the xc-potential,

vsxcðr; tÞ ¼
dExc½rta; rtb�

drtsðrÞ
; ðI:11Þ

may be evaluated in terms of the xc-functional of static

ground-state DFT. Here rts(r) means rs(r,t) regarded as a

function of the spatial coordinate r at fixed time t. It is easily

seen that the AA limits TDDFT to 1-electron excitations

(albeit ‘‘dressed’’ to include some electron correlation effects).

In particular, the AA implies that the coupling matrix is

frequency-independent and hence that the number of excita-

tion solutions obtained from the LR-TDDFT equation is

exactly equal to the number of 1-electron excitations. This

is a problem for some applications, such as excitations in

polyenes and open-shell molecules, and an active area of

research is aimed at going beyond the AA by explicit inclusion

of 2- and higher-electron excitations through the frequency-

dependence of the xc-kernel.35–40 The limitation to 1-electron

excitations is a priori also a problem for photochemical

reactions passing through biradicals since the conventional

description of biradical formation involves the mixing of the

ground state configuration with a doubly-excited state. Thus

for the breaking of the s bond in H2,

HA–HB - [HAm + HBk 2 HAk + HBm], (I.12)

the final state corresponds to the wave function,

1
ffiffiffi

2
p sA; �sBj j þ sB; �sAj jð Þ ¼ 1

ffiffiffi

2
p s; �sj j ÿ s�; �s�j jð Þ: ðI:13Þ

The 2-electron excited state, |s*,�s*|, is excluded by the AA. A

subtler, but important point, is that mixing of the ground and

excited configurations is also forbidden by the AA but is

rigorously necessary to have a CX.7,21,41

The present and previous work applying TDDFT to oxirane

photochemistry7,21 also makes use of the Tamm–Dancoff

approximation (TDA).42 [The work of Friedrichs and Frank

on the photochemical dynamics of diphenyloxirane uses a

different (non-TDDFT) DFT approach.22] The TDA consists

of neglecting the B matrix to obtain just,

AX = oX. (I.14)

While the TDA is simpler than full LR-TDDFT and so is both

a bit easier to interpret as well as being computationally a bit

simpler, the main advantage of the TDA is that it bypasses the

triplet instability problem—that is, symmetry breaking in

the ground state occurs if and only if an imaginary triplet

excitation energy is found in TDDFT.21,33,43,44 The reason, of

course, is that TDDFT excitation energies obtained by LR

theory are intrinsically limited by the quality of the DFT

description of the ground state which in the NVR case

should not show any symmetry breaking. Underestimates of

corresponding singlet excitation energies are also often

associated with triplet instabilities. However when the TDA

is applied to LR time-dependent HF, then the fully variational

configuration interaction singles (CIS) is obtained, indicating

that the excited-state problem has been decoupled from the

ground-state problem in a way that avoids the problem of

variational collapse. The situation in TDDFT is similar and

TDDFT TDA calculations give much improved excited-state

potential energy surfaces (PESs) compared to full TDDFT

calculations.21,43,44

(It may be worth noting that use of the TDA comes with a

cost. TDDFT absorption spectra are derived using linear

response theory from the poles of the dynamic polarizability.26

This implies that the spectral intensities should be reasonably

correct. For example, it is known that the Thomas–

Reiche–Kuhn ‘‘f-sum’’ rule holds in a sufficiently extended

basis set.45 However the f-sum rule is lost and the reliability of

calculated spectral intensities is diminished when making the

TDA with potentially important effects on spectra. Con-

sequently the TDA should be used with extreme caution when

calculating oscillator strength distributions.46 Here however

we are interested in potential energy surfaces not oscillator

strengths.)

Though it yields improved PESs, the TDA does not solve

the problem that mixing of the ground and excited configura-

tions is forbidden by the AA but is rigorously necessary to

have a CX, nor does the TDA provide the 2-electron excited

states needed for describing biradialoı̈d intermediates. At

first thought such an absence of CX might seem fatal for

photodynamics applications. Though the situation is not

actually as dark as might at first seem,7 it would be nice to

find a way to recover a true CX.

Levine et al. suggest that SF-TDDFT might be good for this

purpose.41 The main idea of SF-TDDFT is shown in Fig. 2.

We must first make the common pragmatic assumption that

DFT applies not only to the ground state but also to the lowest

energy state of a given spin-symmetry. This assumption is

Fig. 2 Two-orbital model of TDDFT excitations with a triplet

reference configuration.
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especially plausible if a single-determinant provides a reasonable

first approximation to the state in question. Excited states

normally excluded from TDDFT are included in SF-TDDFT

by beginning from the lowest triplet state and flipping spins

while exciting electrons from one orbital to another. In this

manner we arrive at exactly the ground configuration and

the doubly-excited configuration needed to describe bond

breaking. Ideally then H2 will dissociate correctly without

recourse to symmetry breaking and this is indeed the case18

(Fig. 3). Moreover the problem of an effective failure of NVR

is very much reduced leading to much improved convergence.

Historically designing an appropriate functional for SF-TDDFT

has proven to be not entirely straightforward. This problem is

reviewed in some detail the next section.

Computational details and a brief description of our own

implementation of SF-TDDFT are given in Sec. III. In Sec. IV,

we report results pertinent to oxirane photochemistry. Section V

summarizes our main conclusions about the effectiveness of

SF-TDDFT for describing photochemical funnels.

II. Spin-flip TDDFT

No new solution to the SF-TDDFT problem is proposed in

the present paper, but this section reviews existent solutions

to the problem of developing appropriate functionals for

SF-TDDFT. We do this partly to keep this paper self-

contained, but also to point out that some aspects of

present SF solutions might also be improved if the goal is

complete compatibility between SF-TDDFT and conventional

TDDFT.

The most basic requirement of the SF method is the generali-

zation of the one-component collinear approach in which each

orbital is associated with either spin a or spin b aligned

along an arbitrary z-axis, to a two-component noncollinear

approach in which each orbital is a linear combination of spin

a and spin b components. Lifting of the collinear requirement

is needed to allow spins to rotate in response to an external

spin-dependent perturbation and hence to be able to flip.

Orbitals become two-component spinors,

wpðrÞ ¼
ca
pðrÞ

cb
pðrÞ

 !

; ðII:1Þ

which are obtained by solving the 2 � 2 matrix equation

in spin,

ĥ
a;a

C þ v
a;a
Hxc ĥ

a;b

C þ va;bxc

ĥ
b;a

C þ vb;axc ĥ
b;b

C þ v
b;b
Hxc

" #

ca
pðrÞ

cb
pðrÞ

 !

¼ ep
ca
pðrÞ

cb
pðrÞ

 !

: ðII:2Þ

Note that the core Hamiltonian may now have a spin-dependence

due to a spin-dependent external potential. The density is also

a 2 � 2 matrix in spin,

qðrÞ ¼ ra;aðrÞ ra;bðrÞ
rb;aðrÞ rb;bðrÞ

� �

: ðII:3Þ

Consequently the xc-kernel has four spin indices,

f s;s
0;t;t0

xc ðr1; r2;oÞ

¼
Z 1

ÿ1
eioðt1ÿt2Þ dv

s;s0
xc ðr1; t1Þ

drt;t0ðr2; t2Þ
dðt1 ÿ t2Þ;

ðII:4Þ

or, in the AA,

f s;s
0;t;t0

xc ðr1; r2Þ ¼
d2Exc½q�

drs;s0ðr1Þdrt;t0ðr2Þ
: ðII:5Þ

Naturally the TDDFT coupling matrix also has four spin

indices.

Normal practice is to apply SF-TDDFT using orbitals and

orbital energies obtained from an ordinary one-component

collinear calculation, rather than as a post two-component

noncollinear calculation. Thus the assumption is that the one-

component noncollinear calculation is an adequate approxi-

mation at the SCF level to a full two-component noncollinear

SCF calculation. In the end, the noncollinear model only

serves in deriving the SF-TDDFT formalism, not in actually

carrying it out.

Applying the SF-TDDFT formalism to the usual collinear

pure xc-functionals leads to nothing new because,

f s;s
0 ;t;t0

xc ¼ ds;s0dt;t0 f
s;t
xc : ðII:6Þ

This however is not true in HF because the kernel of the

exchange operator, Ŝs,t
x , is given by,

S
s;t
x ðr1; r2Þ ¼ ÿ

gs;tðr1; r2Þ
r12

; ðII:7Þ

Fig. 3 Dissociation of H2 obtained with the present implementation

of SF-TDDFT. The black 13Su curve (circles) is the triplet SCF

reference state from which excitations are taken. It is nearly degenerate

with the MS = 0 triplet state (not shown) generated by SF-TDDFT.

The red 11Sg ground state curve (squares) is a mixture of |s,�s| and

|s*,�s*| configurations, with the |s,�s| dominating at the equilibrium

geometry. The 11Sg and 13Su states dissociate to the same neutral

‘‘diradical’’ limit, namely [Hm + Hk 2 Hk + Hm]. The blue 21Sg

state curve (triangles) is also a mixture of |s,�s| and |s*,�s*| configura-

tions, but the ‘‘doubly-excited’’ |s*,�s*| configuration dominates at the

ground state equilibrium geometry. The green curve (diamonds) is the

11Su(s - s*) singly-excited state. The 21Sg and 11Su(s - s*) states

dissociate to the same ionic limit, namely [H+ + Hÿ 2 Hÿ + H+].
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where gs,t(r1,r2) is the one-electron reduced density matrix.

Consequently,

f s;t;s
0 ;t0

x ðr1; r2; r01; r02Þ ¼
dSs;t

x ðr1; r2Þ
dgs0;t0ðr01; r02Þ

¼ ÿ ds;s0dt;t0
dðr1 ÿ r01Þdðr2 ÿ r02Þ

r12
;

ðII:8Þ
and the exchange-part of the HF coupling matrix is,

Ks;t;s0 ;t0
pq;rs ¼ ÿds;s0dt;t0ðpsjfHjrqÞ: ðII:9Þ

This means that hybrid functionals allow SF because they

include a portion of HF exchange. This in fact was the first

form of SF-TDDFT. It was proposed by Anna Krylov and

coworkers who used their approach to study the ground and

excited states of diradicals.14,15 In order to get good agreement

with experiment, they found it necessary to use a significantly

higher amount of HF exchange (50%) than is typically used

for ground state properties (B25%). Even higher percentages

of HF exchange (>50%) have been reported to be necessary

for calculating second hyperpolarizabilities of diradical systems

by this spin-flip method.47 Although the use of a different

functional for ground and excited states is disturbing, the basic

idea is admirable and this method continues to be used.47–49 In

particular, this is the SF-TDDFT approach mentioned in the

introduction in the context of its recent use by Minezawa and

Gordon who found the method to give a relatively good

description of CXs in ethylene.13

The next and most recent major advance in SF-TDDFT

came with an article by Wang and Ziegler.18 (See also ref. 19.)

It is intimately related to work by Wenjian Liu and coworkers

on relativistic four-component TDDFT.50 Basing their approach

on ideas from relativistic two-component DFT,51,52 Wang and

Ziegler proposed that any pure spin-density xc-functional,

Exc[ra,rb], could be used to make a noncollinear xc-functional

suitable for SF calculations by making the substitution,

ra - r+ = 1
2
(r + s)

rb - rÿ = 1
2
(r ÿ s), (II.10)

involving two quantities which are invariant under a unitary

transformation of the spin coordinates. These are the total

charge density,

r = ra,a + rb,b, (II.11)

and the magnetization, s, whose square is given by,

s2 = (ra,a ÿ rb,b)
2 + 2(r2a,b + r2b,a). (II.12)

The collinear limit of s is just the spin-polarization,

s - ra ÿ rb, (II.13)

after an appropriate choice of phase. The factor of 1/2 has

been introduced by us so that,

r+ - ra

rÿ - rb, (II.14)

in the same limit. After taking derivatives and the noncollinear

limit, the xc-kernel becomes,

f a;a;a;axc f a;a;b;bxc f a;a;a;bxc f a;a;b;axc

f b;b;a;axc f b;b;b;bxc f b;b;a;bxc f b;b;b;axc

f a;b;a;axc f a;b;b;bxc f a;b;a;bxc f a;b;b;axc

f b;a;a;axc f b;a;b;bxc f b;a;a;bxc f b;a;b;axc

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

¼

f a;axc f a;bxc 0 0

f b;axc f b;bxc 0 0

0 0
vaxcÿv

b
xc

raÿrb
0

0 0 0
vaxcÿv

b
xc

raÿrb

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

:

ðII:15Þ

This approach to SF-TDDFT has been applied to the dis-

sociation of H2
18 and to calculate the spectra of open-shell

molecules.53–55 Very recent work has used the Wang–Ziegler

approach to treat the reaction path for the cis–trans photo-

chemical isomerization of 4-styrylpyridine.56,57 The Wang–

Ziegler approach has also been proposed as the basis of a

more general spin-coupled TDDFT.58

At first glance, eqn (II.15) is very pretty because it con-

tains ordinary TDDFT for spin-preserving (SP) transitions.

However we can be more demanding. For example, we can

require that the three triplets which are generated from the

singlet referenced two-orbital model shown in Fig. 4 be strictly

degenerate. In the TDA, ordinary TDDFT gives the MS = 0

triplet excitation energy,

oT = ea ÿ ei + (ia|fa,axc ÿ fa,bxc |ia). (II.16)

Also in the TDA, SF-TDDFT gives the MS = �1 triplet

excitation energies,

oT ¼ ea ÿ ei þ ia
vaxc ÿ vbxc
ra ÿ rb

�

�

�

�

�

�

�

�

�

�

ia

 !

: ðII:17Þ

Fig. 4 Two-orbital model of TDDFT excitations with a closed-shell

singlet reference configuration.
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Since ra = rb, the right-hand-side of eqn (II.17) can only be

interpreted as a derivative. That is, we set ra = rb + d and

take the limit that the function d - 0. Then,

vaxcðrÞ ÿ vbxcðrÞ
raðrÞ ÿ rbðrÞ

¼ lim
d!0

vaxc½rb þ d; rb�ðrÞ ÿ vbxc½rb þ d; rb�ðrÞ
dðrÞ

¼ lim
d!0

R

f a;axc ðr; r0Þdðr0Þdr0 ÿ
R

f b;axc ðr; r0Þdðr0Þdr0
dðrÞ ;

ðII:18Þ

which is rigorously only equal to fa,axc ÿ fa,bxc for the local density

approximation (LDA), in which case eqn (II.16) and (II.17),

reduce to the same thing. That, of course, is quite good

(probably even adequate for most applications), but it would

have been nice to have a theory which was completely general.

As emphasized in the introduction, the case that most

interests us in practice is when we begin with a triplet reference

configuration as in the two-orbital model of Fig. 2 and look

at DMS = ÿ1 transitions. This leads to a triplet–triplet

SF-TDDFT TDA excitation energy which is equal to

zero when orbital relaxation is neglected. The demonstration

involves making use of the identity,

Fa
p;q ÿ Fb

p;q ¼ pq
vaxc ÿ vbxc
ra ÿ rb

�

�

�

�

�

�

�

�

�

�

aa

 !

þ pq
vaxc ÿ vbxc
ra ÿ rb

�

�

�

�

�

�

�

�

�

�

ii

 !

:

ðII:19Þ

However the usual SP-TDDFT excited singlet–triplet energy

difference formula,

oS ÿ oT = 2(ia|fH + fa,bxc |ia), (II.20)

cannot be recovered in the SF-TDDFT formalism where

instead is found,

oS ÿ oT ¼ 2 ii
vaxc ÿ vbxc
ra ÿ rb

�

�

�

�

�

�

�

�

�

�

aa

 !

: ðII:21Þ

The ground to triplet excitation energy formulae obtained

from the two formalisms are equally different. Furthermore

there is no analogue of Brillouin’s theorem in the sense that the

coupling between the ground configuration (lower left in

Fig. 2) and the singly excited configurations (right hand side

of Fig. 2) is nonzero in this formalism. Of course, a sort of

Brillouin’s theorem still holds by construction in the sense that

there is no coupling in this formalism between the reference

triplet (center in Fig. 2) and any of the excited states (left and

right sides in Fig. 2).

While the above comments suggest that there are grave

problems in harmonizing the formulae of the two different

TDDFT formalisms, they do not suggest any fatal problems

since different looking formulae can lead to nearly similar

numerical results. It will, however, turn out that the SF-TDDFT

triplet energy is lower than the corresponding SP-TDDFT triplet

energy because orbital relaxation in the triplet is more easily

described when beginning from a triplet reference than from a

singlet reference. Thus the two formalisms are at least shifted

with respect to one another.

Despite these unresolved problems, we have chosen to

use the Wang–Ziegler functional in the present paper for our

noncollinear SF-TDDFT calculations. This is because we

believe pure density-functionals, rather than HF exchange,

to be at the heart of DFT. It thus seems more attractive to us

to use the LDA or a generalized gradient approximation

(GGA) in conjunction with the Wang–Ziegler noncollinear

spin-flip approach than not to use potentially different

amounts of HF exchange in hybrid functionals for ground

and excited states while completely ignoring the pure DFT

part of the hybrid functional as implied by the pioneering

SF-TDDFT approach of Krylov and coworkers.

III. Computational details

The benchmark geometries and electronic structure calcula-

tions used in the present work are taken from the literature.

For the C2v CC ring-opening pathway, we used the geometries

and quantum Monte Carlo (QMC) potential energy curves

given in Appendix C of ref. 21. The idea behind QMC is to use

statistical techniques to go beyond typical high-quality ab initio

calculations, such as complete active space self-consistent field

(CASSCF) and configuration interaction (CI), through the

use of more general types of wave functions. The QMC

calculations of ref. 21 began with a conventional CASSCF

calculation. This was then reoptimized by variational Monte

Carlo in the presence of a Jastrow factor to include dynamical

correlation. Finally diffusion Monte Carlo was used to further

improve on the result of the variational Monte Carlo calcula-

tion. Suffice it to say that the result is an electronic structure

calculation of very high quality (certainly better than the

CASSCF starting point or multireference CI). Geometry

optimizations are not presently possible with QMC, so the

benchmark geometries are those obtained by C2v structure

optimization at fixed ring-opening angle using DFT with the

B3LYP functional.59 For asymmetric CO ring-opening, we

used the geometries and QMC potential energy curves from

Appendix C of ref. 7. The QMC calculations in this reference

are similar to those of ref. 21, but are carried out along a

typical pathway for CO ring-opening obtained by mixed

TDDFT/classical surface hopping photodynamics calcula-

tions. They pass close to a CX which was characterized at

the CASSCF level in ref. 7. While exact CXs with the ground

state are impossible in conventional TDDFT,41 it was shown

in ref. 7 that the CX is described to a reasonably good

approximation by TDDFT in the form of an interpenetrating

double cone.

Calculations for the present work were performed with

the Grenoble development version of DEMON2K (density of

Montreal 2000).60 Where needed additional calculations were

carried out with GAUSSIAN 0361 in order to fix orbital symmetry

assignments since the particular version of DEMON2K used here

did not yet have automatic symmetry assignments. The

DEMON2K program makes use of two Gaussian-type basis

sets. In addition to the usual orbital basis set, there is a

second auxiliary charge-density fitting basis set. Its use

permits the elimination of all four-center integrals. As with
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other DFT programs, DEMON2K uses a grid to evaluate

xc-integrals. A description of the implementation of standard

(spin-preserving) TDDFT in DEMON2K has been published

elsewhere.62 The present work is the first reported use of our

implementation of Wang–Ziegler SF-TDDFT in DEMON2K.

Results were compared against those obtained from the ADF

(Amsterdam density-functional)63 package and were found to

be acceptably close.

The DEMON2K calculations in the present work were carried

out using the Vosko–Wilk–Nusair parameterization of the

LDA.64 Density-fitting was carried out without imposing

the charge conservation constraint62 using the GEN-A3*

density-fitting basis. The orbital basis was the extensive

6-311++G**(2d,2p) basis set.65,66 The SCF convergence was

set at 10ÿ7 and the FIXED FINE option was always used for

the grid. Our SF-TDDFT calculations used the TDA and

the reference state was always the lowest energy triplet. Full

advantage was taken of DEMON2K keywords allowing conver-

gence of excited state configurations to explore alternative

triplet reference configurations for SF-TDDFT.

IV. Results

We are interested in the ability of TDDFT to describe funnel

regions. These are regions where potential energy surfaces

(PESs) come close enough together that surface hopping

becomes possible. Typical funnels are avoided crossings

(AXs) and conical intersections (CXs).

Rather than being distinct phenomena, AXs and CXs are

actually very closely related. The PESs of a molecule with f

(15 in the case of oxirane) nuclear internal degrees of freedom,

R, is an f-dimensional hypersurface in an (f + 1)-dimensional

hyperspace. The condition that the Ith and Jth PESs cross,

EI(R) = EJ(R), (IV.1)

reduces the dimensionality of the intersection to an (f ÿ 1)-

dimensional hyperline. If this were all that there were to it,

then we could talk about ‘‘surfaces that cross without seeing

each other.’’ However quantum mechanics typically also

requires zeroing out a configuration-interaction (CI) like

coupling matrix element,

AI,J(R) = 0, (IV.2)

denoted A here to indicate that it could be the linear response

matrix in the TDA. (However we could equally well have

called it H for the CI matrix in a CASSCF calculation.) This

second condition reduces the dimensionality of the intersection

to an (f ÿ 2)-dimensional hyperpoint. CXs are impossible

for diatomics for states belonging to the same irreducible

representation of the molecular point group because f = 1

and f ÿ 2 = ÿ1 is impossible. So only AXs are seen for

diatomics in this case. [Crossings may occur for states belonging

to different irreducible representations because eqn (IV.2) is

then a consequence of symmetry and so no longer useful as a

condition defining the intersection space.] However, in general,

there will be two coordinates in hyperspace along which

the two intersecting PESs will separate. These two branching

coordinates are normally defined by the derivative nona-

diabatic coupling vector (DC),

hðI ;JÞq ¼ X
y
I

@H

@q
XJ ; ðIV:3Þ

and the unscaled gradient difference (UGD) vector,

gðI ;JÞq ¼ X
y
I

@H

@q
XI ÿ X

y
J

@H

@q
XJ ; ðIV:4Þ

and there is quite a literature on finding and characterizing

them (see e.g., ref. 67). Within the 3-dimensional space defined

by the two branching coordinates plus the energy coordinate,

a CX takes on the form of a double cone. Choosing a one-

dimensional slice within the space of branching coordinates

means that we will typically pass near but not through the CX

and so see an AX.

In this section we report the results of our calculations to see

to what extent SF-TDDFT calculations give a better than

ordinary SP-TDDFT description of funnel regions in oxirane

photochemistry in comparison with the results of previously

reported-high benchmark calculations.21 Results are divided

into two parts. In the first part we look at C2v ring opening

which involves breaking the CC single bond. This is a one-

dimensional slice and so any funnel region will appear as an

AX. However it has two advantages: firstly that it represents

our ‘‘normal’’ picture of how bonds break and secondly that

we can analyze it in great detail. In the second part we look at

the CX region for asymmetric CO ring opening along the

typical photochemical pathway. Here we are restricted to

using CASSCF branching coordinates because we are not

yet able to find CXs within TDDFT. From this point of view,

our conclusions cannot be conclusive as those of the recent

study of Minezawa and Gordon,13 but nevertheless we believe

the present calculations to be indicative of some of the

strengths and weaknesses of Ziegler-Wang SF-TDDFT for

this type of application.

A C2v Ring opening

The present SF-TDDFT work is perhaps best understood in

the light of previous work which is now briefly reviewed. Aryl

substitution of oxirane favors symmetric ring opening via CC

bond cleavage. Cordova et al. investigated the ability of

TDDFT to describe C2v as well as conrotatory and disrotatory

ring opening of oxirane, by comparing TDDFT results against

results from high-quality quantum Monte Carlo (QMC)

calculations.21 The high symmetry C2v ring-opening pathway

allowed a particularly detailed analysis. Investigation of con-

rotatory and disrotatory ring opening was inspired by the

Woodward–Hoffmann theory of electrocyclic ring-opening

reactions. The three principal UV absorption peaks were

assigned to Rydberg excitations from the oxygen nonbonding

orbital, which are difficult to describe quantitatively because of

the well-known problem of underestimation of the ioniza-

tion threshold,68 but which can nevertheless be described

qualitatively correctly even with the simple local density

approximation (LDA). The C2v ring-opening pathway showed

a cusp in the ground state potential energy surface when the

occupied 6a1(s) and unoccupied 4b2(s*) orbitals became

quasidegenerate. This region also showed an ‘‘effective failure
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of NVR,’’ which is to say that the energy of the lowest

unoccupied molecular orbital (LUMO) fell below that of the

highest occupied molecular orbital (HOMO). A consequence

of this effective failure are severe self-consistent field (SCF)

convergence problems when using a program which tries to

enforce the Aufbau principle. Triplet instabilities were found to

be omnipresent for all the symmetric ring-opening pathways

investigated. It was pointed out that the TDA is a practical

necessity for avoiding triplet instabilities and singlet near

instabilities. With the TDA, the excited-state potential energy

surfaces were found to be energetically reasonable even during

bond breaking. In principle, SF-TDDFT can improve upon

the previous SP-TDDFT calculations in two ways: first by

removing the cusp along the C2v ring-opening pathway

through an improved description of the AX, and second

through the use of a triplet reference which bypasses the

effective failure of NVR in the ground singlet state and so

may lead to improved convergence.

The reference in our SF-TDDFT calculations is the

lowest triplet. While the configuration of oxirane at the intial

equilibrium geometry,21

� � �[6a1(s)]2[2b1(n)]2[7a1(3s)]0[4b2(s*)]0� � �. (IV.5)

suggests that the reference is the 13B1[2b1(n) - 7a1(3s)]

state, this is at most true below a ring-opening angle of

about 751. Beyond this angle the reference triplet is the

13B2[6a1(s) - 4b2(s*)] state. This is true not only in the range

75–1201 when the configuration is,

� � �[2b1(n)]2[6a1(s)]2[4b2(s*)]0[7a1(3s)]0� � �, (IV.6)

but also beyond 1201 when the s and s* orbitals change order,

� � �[2b1(n)]2[4b2(s*)]2[6a1(s)]0[7a1(3s)]0� � �, (IV.7)

Fig. 5 shows the frontier molecular orbitals in our SF-TDDFT

calculations (which however make use of all, not just the of the

frontier, molecular orbitals). Both the ground X1A1 and

doubly excited D1A1 configurations are accessible by spin-flip

from the R3B2 reference state. Taking the symmetric and

antisymmetric combinations of the 6a1(s) and 4b2(s*) SF

configurations leads to B2 states, the triplet of which is

expected to be degenerate with the R3B2 reference state. Two

states of mixed spin symmetry (MB2 and
MA1) are also formed.

These states are unphysical and yet are necessarily present

in any SF-TDDFT calculation (including in the Krylov

approach to SF-TDDFT). They are readily identifiable in

our calculations and have been excluded from the following

discussion.

Fig. 6 shows the results of the SF-TDDFT calculations. The

four states predicted in our qualitative discussion are all

present. The R3B2 SCF reference curve and the corresponding
3B2 SF-TDDFT curve are not identical, but they are indistin-

guishable on the scale of the Figure. The Figure also shows a

very important feature, namely the classic avoided crossing

corresponding to the breaking of the CC s bond. The tradi-

tional picture is that of H2 described in the introduction where

mixing of the s2 and (s*)2 configurations is necessary for bond

breaking. In order to confirm this two-orbital model, we

isolated the part of the SF-TDDFT corresponding to the

4b2(s*) - 6a1(s) and 6a1(s) - 4b2(s*) SF transi-

tions. Diagonalizing this 2 � 2 matrix gives the two-orbital

model adiabatic curves in Fig. 6, which are seen to be in

semiquantitative agreement with the results of the full

SF-TDDFT calculation. The diagonal elements of the

2 � 2 matrix give the corresponding diabatic curves. These

show how the s2 ground state configuration at small angles

continues on at large angles to become an excited state and

how the (s*)2 excited state configuration at small angles

continues on at large angles to become the ground state at

large angles. Thus it would seem that SF-TDDFT can

correctly describe avoided crossings associated with bond

breaking.

Fig. 5 Principal frontier molecular orbital spin-flip transitions

involved in the C2v ring-opening of oxirane beginning from the

R3B2[6a1(s) - 4b2(s*)] reference state.

Fig. 6 C2v potential energy curves: full calculation (solid lines),

two-orbital model (dashed lines).

D
o

w
n

lo
ad

ed
 b

y
 B

ib
li

o
th

eq
u

e 
U

n
iv

er
si

ta
ir

e 
D

e 
S

ci
en

ce
s 

D
e 

G
re

n
o
b

le
  

o
n

 0
1

 O
ct

o
b

er
 2

0
1

0

P
u
b

li
sh

ed
 o

n
 2

7
 A

u
g

u
st

 2
0

1
0

 o
n

 h
tt

p
:/

/p
u
b

s.
rs

c.
o

rg
 | 

d
o

i:
1

0
.1

0
3

9
/C

0
C

P
0

0
2

7
3

A

View Online



This journal is c the Owner Societies 2010 Phys. Chem. Chem. Phys., 2010, 12, 12811–12825 12819

Fig. 7 compares the present SF-TDDFT calculations with

both ordinary SP-TDDFT calculations obtained with the

LDA functional and the TDA (ref. 21) and with the QMC

benchmark calculations. Let us begin first with the comparison

with SP-TDDFT calculations. As explained in ref. 21, the

bond-breaking region around 1201 is an example of effective

failure of NVR where the LUMO falls lower in energy than

the HOMO. The result is that ‘‘normal’’ DFT programs which

insist on filling the Kohn–Sham orbitals according to the

Aufbau principle will inevitably fail to converge in this region.

This is why there are neither SCF ground state nor SP-TDDFT

results near 1201 in the figure. Very significantly, few conver-

gence difficulties are encountered for the triplet reference state.

This would seem to be very good news for those who would

like to carry out routine photodynamics calculations where

SCF convergence failures can be highly inconvenient if not

fatal to the calculations.

In the region where the SCF ground state does converge

the shape of the ground X1A1 and excited 13B2 curves are

very similar for SF-TDDFT and SP-TDDFT calculations.

Before shifting the SF-TDDFT curves are actually 0.41 eV

in energy higher than the corresponding SP-TDDFT curves.

Differences between SCF and TDDFT triplet excitation

energies have been previously discussed by Casida et al.44

who gave an analysis within a two-level model. The result

is that the SF-TDDFT triplet reference is expected to be higher

in energy than the SP-TDDFT triplet by the charge-transfer

correction (really a density-transfer correction or relaxation

effect),

oDSCF
T ÿ oSP-TDDFT

T E
1
2
(Dr|fH + fa,axc |Dr) > 0. (IV.8)

This is illustrated in Fig. 8. Simultaneously there is a problem

describing the ground state with orbitals optimized for a triplet.

The result is that the SF-TDDFT method overestimates the

ground state energy. However energy differences do appear to

be similar in SF-TDDFT and in SP-TDDFT when the same

configurations are concerned, so that a rigid shift of energy

levels is reasonable.

Having established the similarity and differences of the DFT

approaches, let us now compare against the QMC benchmark

calculations. Just as relaxation effects lead to the underestimation

of the SP-TDDFT 13B2[6a1(s)- 4b2(s*)] state with respect to

the SF-TDDFT SCF reference state, so we can expect the

SF-TDDFT D1A1{[6a1(s)]
2 - [4b2(s*)]

2} to be underestimated

with respect to an SCF calculation with the doubly-excited

configuration. This may help to explain why the SF-TDDFT

D1A1 is significantly below the corresponding QMC curve.

Consequently we may also expect important differences

between the SF-TDDFT and QMC description of the ground

state curve in the region of the avoided crossing. Nevertheless,

except for the point at 601, the shape of the QMC and DFT

ground state curves agree reasonably well below about 1001.

Significant differences only really appear in Fig. 7 between the

DFT and QMC ground state curves at higher angles. We must

conclude that SF-TDDFT is not able to capture all of the

correlation effects present in QMC at these angles. Note that

the QMC D1A1 also seems to be mixing with one or more

singly-excited states (see Table 2 of ref. 21), none of which

are accessible to the SF-TDDFT formalism used here. The

result is a QMC D1A1 curve which is rather flatter than its

SF-TDDFT counterpart.

B Photochemical pathway

Alkyl substitution of oxirane and indeed oxirane itself does

not undergo symmetric ring opening. Rather photochemical

ring-opening of oxirane is believed to proceed via the three

Fig. 7 Comparison between different methods for the X1A1, 1
3B2,

and D1A1 C2v ring-opening potential energy curves: SF-TDDFT

triplet SCF reference state (black dashed line), SF-TDDFT (circles),

SP-TDDFT (squares), and DMC (triangles). All curves have been

shifted to give the same ground state energy at a ring-opening angle of

801.

Fig. 8 Illustration of orbital relaxation effects in SF versus SP

TDDFT.
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step Gomer–Noyes mechanism shown in Fig. 1. In ref. 7,

Tapavicza et al. carried out Tully-type TDDFT/classical

trajectory surface-hopping photodynamics calculations using

the TDA. This study confirmed and detailed the Gomer–

Noyes mechanism. It was shown that the 1(n,3pz) Rydberg

state is directly linked to a 1(n,s*) valence CO antibonding

state. Initial excitation leads within 100 femtoseconds or so to

population of the 1(n,3pz) state and thereby to spontaneous

ring-opening (step 1 in Fig. 1). Structure (II) of Fig. 1 is a

CX with mixed zwitterionic and biradical character permitting

electronic de-excitation directly to a vibrationally hot (4000 K)

electronic ground state. At this point there is enough energy

for several things to happen, one of which is hydrogen

abstraction (III) followed by CC bond breaking. High-quality

QMC calculations were carried out along a typical trajectory

and used for comparison purposes. Once again an effective

failure of NVR was encountered, but difficulties with SCF

convergence problems are minimized in dynamics calculations

by restarting the SCF for each new geometry from the con-

verged result of the previous geometry, so that orbital-following

rather than Aufbau filling is enforced.

In this subsection we compare the results of our SF-TDDFT

calculations with results of other methods along this trajec-

tory. The trajectory involves the following ‘‘events’’: Only

the initial geometry has C2v symmetry, so we fall back

on a more chemical nomenclature for key molecular orbitals.

The first excited singlet state, S1, is initially assigned as

11B1[b1(n) - a1(3s)] and thereafter as simply 1(n, 3s). This

state remains of Rydberg character throughout the photo-

reaction. However the second excited singlet state, S2, does

not. Instead, S2 is initially 21B1[b1(n) - a1(3pz)], remains of
1(n, 3pz) Rydberg type for only a short time, soon falling in

energy to become the new S1 as it takes on valence-type CO

antibonding character, 1ðn; s�COÞ. At that point 1(n, 3s) is the

new S2. In fact, what happens is qualitatively very much in-line

with the Woodward–Hoffmann orbital correlation scheme

described in ref. 21 (Fig. 1 of that reference) for the C2v

ring-opening reaction but without the symmetry. The trajec-

tory finally passes through (or near) a CX where surface

hopping takes place. The nature of this CX has been discussed

in ref. 7. Suffice it to say that it is probably best described by

the resonance structure II shown in Fig. 1, which has both

biradicaloid and zwitterionic character.

Results are shown in Fig. 9 alongside those from the QMC

and SP-TDDFT calculations of ref. 7. Configuration inter-

action singles (CIS) calculations obtained using GAUSSIAN
61

and the same basis set have also been included in the figure. It

appears from this Figure that the S1/S0 CX is perhaps a bit

better described by SP-TDDFT than by SF-TDDFT and, as

expected, that both are significantly better than the CIS

description of the same CX. Most dramatic however is the

difference between the behavior of the SP-TDDFT S2 state,

which is in relatively good agreement with the QMC S2 state

and in qualitatively reasonable agreement with the CIS S2

state, and the SF-TDDFT S2 state which takes an energetic

dive as the ring opens. This latter state is in fact highly spin-

contaminated and hence unphysical.

It is clear from both the SP-TDDFT and SF-TDDFT

calculations that the S1 state is predominantly of 1ðn; s�COÞ
character. This confers a partial CO s biradicaloid character

by reducing the bond index to 1/2. The SF-TDDFT reference

configuration is geometry dependent but for most

geometries is,

spin a : � � � n1s1COðs�COÞ
1 � � �

spin b : � � � s1COn0ðs�COÞ
0 � � � :

ðIV:9Þ

Formation of the s2CO ! ðs�COÞ
2
is thus impossible. Rechoosing

the orbital occupations as,

spin a : � � � n1s1COðs�COÞ
1 � � �

spin b : � � � n1s0COðs�COÞ
0 � � � ;

ðIV:10Þ

makes the usual s2CO=ðs�COÞ
2
description of a biradical possible

but explicit calculations (not shown here) show S0 and S1

potential energy surfaces which are misshapen and much too

high in energy, something we can only partly attribute to the

use of orbitals optimized for a triplet excited state. As the

electronic configuration around the CX likely has both some
1ðn; s�COÞ and some s2CO=ðs�COÞ

2
, it is remarkable that SP-

TDDFT and SF-TDDFT with reference configuration (IV.9)

do as well as they do.

C Conical intersection

Let us now take a closer look at what is happening around the

CX, first reviewing some of the conclusions of ref. 7. Earlier

Levine et al. had noted that a true CX could not exist between

S0 and S1 because condition (IV.2) is a consequence of the

formalism and hence cannot serve as a criterion for fixing the

dimensionality of the intersection space.41 Tapavicza et al.

verified this point but showed that an approximate CX did

exist in adiabatic TDDFT for the asymmetric ring opening of

oxirane, provided appropriate care was taken in treating

convergence problems. These convergence problems result

from an effective failure of NVR near the CX as shown

schematically in Fig. 10. The representation can only be

schematic because the orbitals mix and their energetic ordering

varies with the mixing. However this representation, while

simplified, is as close as possible to what emerged during

Fig. 9 Potential energy curves for asymmetric ring-opening in

oxirane calculated with various methods.
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lengthy discussions between one of us (MEC) and Enrico

Tapavicza.69 However Tapavicza et al. were able to maintain

the lower energy solution with its ‘‘hole below the Fermi level’’

by a sort of ‘‘orbital following.’’ The result is an approximate

TDDFT CX in the form of interpenetrating double cones as

shown in Fig. 11. The similarity between the behavior of the

TDDFT and CASSCF PESs is perhaps even more clear in

Fig. 12 where the S0 - S1 excitation energy is shown for the

CASSCF branching plane.

Given the results obtained in the case of the symmetric C2v

CC ring-opening reaction, we expected that SF-TDDFT

would give a rather good description of the asymmetric CO

ring-opening reaction by mixing configurations with doubly

occupied sCO and doubly occupied s�CO orbitals. Levine et al.

also suggested that SF-TDDFT might be the solution to the

CX problem in TDDFT.41 Fig. 11 and 12 show that the

situation is not so simple. These results do seem to confirm

what is expected theoretically, namely that SF-TDDFT is able

to produce a CX by coupling ground and excited states.

However the SF-TDDFT S0/S1 intersection is located at a

position between that found in CIS and that found with

CASSCF (and approximately by SP-TDDFT).

It is worth taking a closer look. Fig. 11 shows that, while not

identical, the SF-TDDFT ground state more closely resembles

the CIS ground state than the CASSCF ground state. In

particular both the SF-TDDFT and the CIS PESs have a

minimum at (DC,UGD) = (0,2) while the CASSCF PES has

its minimum at the origin. This indicates that it is highly

unlikely that s2CO=ðs�COÞ
2

configuration mixing is actually

occurring near (DC,UGD) = (0,0). (As might be expected,

straight DFT also gives a result similar to SF-TDDFT for the

ground state.) Our explanation is shown schematically in

Fig. 13 which shows how the reference triplet configuration

evolves with ring-opening angle. Though the spin a and b

orbitals have different energies in our spin-unrestricted calcula-

tion and significant orbital remixing occurs, this explanation

could still be confirmed by explicit orbital visualization. Con-

clusions based upon Fig. 13 explain our results rather well,

because there is no geometry where SF-TDDFT can simul-

taneously lead to both the (sCO)
2 and ðs�COÞ

2
configurations.

We have carried out SF-TDDFT by enforcing an initial

s1COðs�COÞ
1
triplet state [eqn (IV.10)], with significant degrada-

tion of results compared to the CASSCF and SP-TDDFT

curves. This is in line with our above mentionned observations

for the asymmetric ring opening pathway when the reference

configuration was rechosen as (IV.10).

Fig. 10 Schematic Walsh diagram showing how the orbital fillings

during asymmetric ring-opening in a normal TDDFT calculation

(figure n0 = text n). Regions B and C show effective violation of NVR.

Fig. 11 Comparison of the S0 and S1 PESs calculated using different methods for the CASSCF branching coordinate space. All but the SF-

TDDFT part of the Figure have been adapted from ref. 7. See also that reference for a detailed description of the branching coordinates.
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V. Conclusion

The present paper is a contribution to our understanding of

how well TDDFT, and SF-TDDFT in particular, is able to

describe critical funnels in photochemical reactions. We have

chosen the small molecule oxirane for our study because of

the availability of previously reported high-quality ab initio

results7,21 for comparison and have investigated the avoided

crossing (AX) in the C2v ring-opening pathway, the more

physical CO ring-opening pathway, and the associated conical

intersection (CX).

As pointed out in the introduction, the recent development

of mixed TDDFT/classical trajectory SH photodynamics7–12

is fueling investigations of the ability of TDDFT to describe

critical funnel regions.7,21,41,70–75 Such regions often corres-

pond to the formation of diradicals through bond breaking.

Traditional wisdom tells us that a correct description of such

regions requires mixing of the ground-state configuration

with doubly-excited configurations, which are not normally

available to ordinary spin-preserving (SP) TDDFT. In particular,

Levine et al. argued convincingly that CXs cannot exist

between the ground and excited states in SP-TDDFT in the

usual case where the TDDFT adiabatic approximation is

employed.41 This is counter to the idea that exact TDDFT

should be able to describe this coupling21 and that an approxi-

mate CX has been found in practice.7 Nevertheless it is highly

desirable to find a way to include double excitations so as to

obtain a more rigorous description of funnel regions. One

active area of research which may lead to a better understanding

of the problem, if not a solution, is the explicit inclusion of

2- and higher-electron excitations through the frequency-

dependence of the xc-kernel.35–40 In the meantime, spin–flip

(SF) TDDFT14,15,18,19,47–49,53–58 offers an attractive alter-

native. Indeed this was also recognized by Levine et al.7 The

present work reports our implementation of Wang–Ziegler

noncollinear SF-TDDFT in the program DEMON2K and con-

stitutes a test of the usefulness of SF-TDDFT for photo-

chemical funnels.

We know of only two previous works on this subject. One is

unpublished work by Lawson Daku, Linares, and Boillot who

used Wang–Ziegler SF-TDDFT to investigate the cis/trans

photoisomerization of 4-styrylpyridine.56,57 The other is recent

work by Minezawa and Gordon who characterized CXs

in ethylene using the Krylov variant of SF-TDDFT.13

While both of those applications appeared to be successful,

they are both restricted to cis/trans isomerization around a

double bond. Here we treat something very different, namely

Fig. 12 Comparison of the S0 - S1 excitation energy surfaces calculated using different methods for the CASSCF branching coordinate space.

See ref. 7 for a detailed description of the branching coordinates.

Fig. 13 Schematic Walsh diagram showing how the orbital fillings

vary during asymmetric ring-opening in a SF-TDDFT calculation

(figure n0 = text n).
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photochemical ring-opening and are only able to report mixed

success.

We first applied SF-TDDFT to study the AX along the C2v

ring-opening pathway. A few problems show up which are not

present in the obligatory test of dissociation of H2 (Fig. 3).

One problem is the presence of unphysical states of mixed spin

symmetry (Fig. 5). Fortunately these were readily identifiable

and so could be appropriately ignored. A second problem

arises in comparing the results of SP-TDDFT beginning

from the ground-state singlet determinant reference and

SF-TDDFT beginning from the lowest triplet determinant

reference. The different choice of reference immediately implies

the possible presence of an orbital relaxation energy correction

and indeed the SF-TDDFT potential energy curves are shifted

by about 0.4 eV from the corresponding SP-TDDFT curves.

Nevertheless SF-TDDFT is to be quite successful in describing

the interesting AX.

This is especially true when it is realized that the usual

SP-TDDFT calculations run into serious convergence problems

in the vicinity of the AX.21 This is exactly a region of effective

violation of noninteracting v-representability.7 Minimizing the

total energy with integer occupation number leads to a viola-

tion of the Aufbau principle with the LUMO below the

HOMO or (to put it in more solid-state physics language)

with a hole below the Fermi level. Most quantum chemistry

programs seek to enforce the Aufbau principle even in this

case with the result that convergence is not possible at this

geometry. In contrast, no particular convergence problems

were encountered using SF-TDDFT and the triplet reference.

The question arises as to what can be done in order to

remove the unphysical mixed spin-symmetry states in the

SF-TDDFT calculations. Vahtras and Rinkevicius have

proposed what appears to be a very elegant formal solution.58

They propose a reformulation of TDDFT which makes use

from the very beginning of explicit spin-coupled excitation and

de-excitation operators. This requires using the same orbitals

for different spin (i.e., a spin-restricted formalism) which is

often viewed as at odds with the variational principle in

density-functional theory, but this perhaps is a small price to

pay. (Note however that our own experience in the present

work is that spin-restricted calculations can be significantly

more difficult to converge than spin-unrestricted calculations.

This is one reason why all of our calculations have been done

in the spin-unrestricted formalism.) More importantly putting

the Vahtras–Rinkvicius scheme into practice still means

finding explicit ways to include matrix elements involving

2-electron and higher excitations. We have already mentioned

research aimed at the explicit inclusion of 2- and higher-

electron excitations through the frequency-dependence of the

xc-kernel.35–40 Another approach which should be mentioned

is to handle these states by a transformed reference via an

intermediate configuration Kohn–Sham TDDFT procedure

proposed by Seth and Ziegler with its very appropriate

acronym ‘‘TRICKS-TDDFT’’.54 The basic idea is to combine

SF-TDDFT with different reference states using ideas from the

Ziegler–Rauk–Baerends multiplet sum method to make first-

order estimates of the pure spin-states corresponding to the

mixed states.77 Thus, in the case of the M(a1 - b1) mixed

state on the right hand side of Fig. 5 obtained from SF-TDDFT,

we could calculate the energy for the corresponding 3(a1 - b1)

triplet state from conventional SP-TDDFT and then use the

multiplet sum formula

oTRICKS-TDDFT
S = 2oSF-TDDFT

M ÿ oSP-TDDFT
T , (V.1)

to estimate the energy of the 1(a1 - b1) singlet state. Similar

ideas have been used to advantage in the recent study of the

reaction path for the cis/trans photochemical isomerization of

4-styrylpyridine.56,57 The main drawback, and the reason that

this approach was not considered here, is that finding corres-

ponding spin a and b orbitals is not only not always easy but

also not always possible in the spin-unrestricted (i.e., different-

orbitals-for-different-spins) approach. It turns out that this is

especially true in the funnel regions which interest us most.

Perhaps the most interesting and important result in this

paper came when we pursued the CO ring-opening path way

and examined the physically-important CX. The situation is

very different than the case of cis/trans photoisomerization. In

that case, the HOMO and LUMO are typically the p and p*

orbitals associated with the double bond around which

rotation is occurring. It is also true that the HOMO and

LUMO involved in the C2v ring-opening reaction are the s and

s* orbitals associated with breaking the CC bond. The oxygen

lone pair (n) is tightly enough bound that it stays out of the

way. However along the physical CO ring-opening reaction

route, elementary chemical arguments indicate that the oxygen

lone pair intercedes as HOMO between the relevant CO s and

s* orbitals. This means that taking the lowest triplet as

reference does not necessarily lead to an optimal description

of the biradical present at the CO ring-opening CX. In

particular, attempts to include the doubly-excited s2 - (s*)2

configuration exclude the possibility of the 1(n,s*) configura-

tion whose importance is well-established, and did not prove

useful. Nevertheless S0/S1 coupling exists in SF-TDDFT

meaning that a CX is theoretically possible. Indeed such a

feature is seen in our lowest energy triplet SF-TDDFT calcula-

tions roughly half-way between the location of the CASSCF

CX and the CIS seam.

We conclude that, depending upon the molecule and the

CX, the lowest triplet state may or may not be the optimal

choice of reference for SF-TDDFT. However the asymmetric

ring-opening reaction in oxirane should be taken as a warning

that choosing a suitable triplet reference for SF-TDDFT may

require a nontrivial use of chemical intuition. This is likely to

be especially problematic for larger molecules and is unlikely

to be practical for on-the-fly photodynamics calculations.

Thus, for the moment, SF-TDDFT remains an ad hoc solution

for particular problems rather than a universal panacea.
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Phys., 2008, 349, 319.

11 R. Mirić, U. Werner and V. Bonačić-Kouteck, J. Chem. Phys.,
2008, 129, 164118.

12 C. F. Craig, W. R. Duncan and O. V. Prezhdo, Phys. Rev. Lett.,
2005, 95, 163001.

13 N. Minezawa and M. S. Gordon, J. Phys. Chem. A, 2009, 113,
12749.

14 Y. Shao, M. Head-Gordon and A. I. Krylov, J. Chem. Phys., 2003,
118, 4807.

15 L. V. Slipchenko and A. I. Krylov, J. Chem. Phys., 2003, 118, 6874.
16 A. D. Becke, Phys. Rev. A: At., Mol., Opt. Phys., 1988, 38, 3098.
17 C. Lee, W. Yang and R. G. Parr, Phys. Rev. B: Condens. Matter,

1988, 37, 785.
18 F. Wang and T. Ziegler, J. Chem. Phys., 2004, 121, 12191.
19 F. Wang and T. Ziegler, Int. J. Quantum Chem., 2006, 106, 2545.
20 E. Hasegawa and M. Kamata, in CRC Handbook of Organic

Photoreactions and Photobiology, ed. W. Horspool and F. Lenci,
CRC Press, New York, 2nd edn, 2004, p. 53.

21 F. Cordova, L. J. Doriol, A. Ipatov, M. E. Casida, C. Filippi and
A. Vela, J. Chem. Phys., 2007, 127, 164111.

22 J. Friedrichs and I. Frank, Chem.–Eur. J., 2009, 15, 10825.
23 P. Hohenberg and W. Kohn, Phys. Rev., 1964, 136, B864.
24 W. Kohn and L. J. Sham, Phys. Rev., 1965, 140, A1133.
25 E. Runge and E. K. U. Gross, Phys. Rev. Lett., 1984, 52, 997.
26 M. E. Casida, in Recent Advances in Density Functional Methods,

ed. D. P. Chong, World Scientific, Singapore, 1995, p. 155.

27 J. Schirmer and A. Dreuw, Phys. Rev. A: At., Mol., Opt. Phys.,
2007, 75, 022513.

28 N. T. Maitra, K. Burke and R. van Leeuwen, Phys. Rev. A: At.,
Mol., Opt. Phys., 2008, 78, 056501.

29 J. Schirmer and A. Dreuw, Phys. Rev. A: At., Mol., Opt. Phys.,
2008, 78, 056502.

30 Time-dependent Density Functional Theory, ed. M. A. L. Marques,
C. A. Ullrich, F. Nogueira, A. Rubio, K. Burke and E. K. U.
Gross, Lecture Notes of Physics, Springer, Berlin, 2006.

31 M. A. L. Marques and A. Rubio, Phys. Chem. Chem. Phys., 2009,
11(22), 4421–4688; Themed Issue on time-dependent density-
functional theory.

32 M. E. Casida, H. Chermette and D. Jacquemin, J. Mol. Struct.
(THEOCHEM), 2009, 914; Special Issue on time-dependent
density-functional theory.

33 M. E. Casida, in Accurate Description of Low-Lying Molecular
States and Potential Energy Surfaces, ed. M. R. H. Hoffmann and
K. G. Dyall, ACS Press, Washington, DC, 2002, p. 199.

34 M. E. Casida, J. Mol. Struct. (THEOCHEM), 2009, 914, 3.
35 M. E. Casida, J. Chem. Phys., 2005, 122, 054111.
36 R. J. Cave, F. Zhang, N. T. Maitra and K. Burke, Chem. Phys.

Lett., 2004, 389, 39.
37 N. T. Maitra, F. Zhang, R. J. Cave and K. Burke, J. Chem. Phys.,

2004, 120, 5932.
38 G. Mazur and R. W lodarczyk, J. Comput. Chem., 2009, 30, 811.
39 P. Romaniello, D. Sangalli, J. A. Berger, F. Sottile, L. G. Molinari,

L. Reining and G. Onida, J. Chem. Phys., 2009, 130, 044108.
40 O. V. Gritsenko and E. J. Baerends, Phys. Chem. Chem. Phys.,

2009, 11, 4640.
41 B. G. Levine, C. Ko, J. Quenneville and T. J. Martinez,Mol. Phys.,

2006, 104, 1039.
42 S. Hirata and M. Head-Gordon, Chem. Phys. Lett., 1999, 314, 291.
43 M. E. Casida, A. Ipatov and F. Cordova, in Time-Dependent

Density Functional Theory, ed. M. Marques, C. Ulrich,
F. Nogueira, A. Rubio and E. Gross, Springer, Berlin, 2006.

44 M. E. Casida, F. Gutierrez, J. Guan, F. Gadea, D. Salahub and
J. Daudey, J. Chem. Phys., 2000, 113, 7062.

45 C. Jamorski, M. E. Casida and D. R. Salahub, J. Chem. Phys.,
1996, 104, 5134.
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Joseph Fourier and the University of Texas at Austin. Grenoble, France,
October 2009

• Workshop on Needs Assessment Training, at Kolping Organization of Kenya-
Nairobi, May 2010

• Workshop on Implementers Training for ISO 9001: 2008 Standard, at Kolp-
ing Organization of Kenya-Nairobi, September 2010

Oral
Presentations

• C. Muhavini Wawire, “Ab initio study of Nanoscale Ruthenium Complexes
as candidates for incorporation into solar cells and photocatalysts by use of
computational tools and skills”, Presentation to Faculty of Science, CUEA,
Nairobi, Kenya, 27th October 2011.

• C. Muhavini Wawire, “Computational, Modeling Chemistry & Software De-
velopment” Presentation during the French Alumni Launch at IFRA, Nairobi
Kenya , 21st June 2010.

• S. Terah and C. Muhavini Wawire, “Demystification of Software Develop-
ment and Scripting in Sciences”, presentation during the Faculty of Science
Interdisciplinary Session at CUEA, Nairobi, Kenya, 26th March 2010.

• C. Muhavini Wawire, “Trends in the Teaching of Science, Maths and Tech-
nology”, presentation during the Faculty of Science Interdisciplinary Session
at CUEA, Nairobi, Kenya, 26th March 2010.

• C. Muhavini Wawire, “Modeling of Nanoscale Ruthenium Complexes for
Photochemical Molecular Devices (Photocatalysts, Solar Cells)”, Theoretical
Chemistry Laboratory Group-LCT- Grenoble, France, 4th December 2009.

• C. Muhavini Wawire, “Typesetting Technology and Computational Science”,
Interdisciplinary Workshop, CUEA, Nairobi, Kenya, 27th March, 2009.

• G. A. Mwayuli & C. Muhavini Wawire, “Education and demand driven
courses in Africa: Is Science still relevant?” Interdisciplinary Workshop,
CUEA, Nairobi, Kenya, 26th March, 2009.

• C. Muhavini Wawire, “Computational Chemistry/Science and Pedagogical
Implications”, Moi University, Eldoret, Kenya, 4th September 2009.

• C. Muhavini Wawire, “Computational Chemistry Science”, Science Club,
Catholic University of East Africa, Nairobi, Kenya, 12th March 2008.

Posters Bhaarathi Natarajan, M. Huix-Rotllant, A. Ipatov, C. M. Wawire, T. Deutsch,
and M. E. Casida, “Behaviour of Conical Intersections within Noncollinear Spin-
Flip Time-Dependent Density-Functional Theory: Oxirane as Test Case”, 13th

International Conference on the Applications of Density Functional Theory in
Chemistry and Physics, DFT09, 31st August to 4 th September 2009, Lyon,
France.

Membership to
International
Bodies

• Member of the Computational Chemistry List (CCL).

Research
Projects

• Lead and cadmium in fresh tobacco and its products and the potentiometric
study of their complexes with nicotinic acid (2001).
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• Commission of Higher Education (CHE)-Research Project on Mushroom
Farming in Lugari District, Kenya (November 2006-2009).

• Production of herbal soaps and detergents using local plant oil blends: a
poverty alleviation option for rural communities of the ASALS of Kenya
(2005).

• PhD Research Project- Investigation of Nanoscale Ruthenium Photosensitizers)—
2008-2012

Student
Supervision
and
Mentorship

Dorothy Moga: Analysis of Chang’aa for its compliance with the KEBS-set
standards. 2012
Pablo Baudin: Étude Théorique des Spectres UV-Visible et des PDOS de
complexes du Ruthénium par les méthodes DFT et TDDFT. 2011
Sauli Jacinta: A correlational study of Mathematics and Chemistry on
students performance in 2006 KCSE. A case study of Masinga Division-
Machakos District. 2009
Grace Momanyi: Investigation of the quality of the locally made soaps in
relation to specifications set by the Kenya Bureau of Standards-KEBS. 2006

Publications
• Sarah Wambui Kimani, Elias Kiarie Kagira, Kendi Lydia and Cleophas
Muhavini Wawire, “Shoppers Perception of Retail Service Quality: Super-
markets versus Small Convenience Shops (Dukas) in Kenya” Journal of Man-
agement and Strategy, Vol. 3, No. 1; February 2012.

• C . Muhavini Wawire, 2011. Subject Methods Chemistry-MODULE : Self-
Study Materials for the Bachelor of Education Degree. CUEA PRESS (Nairobi-
Kenya)

• Miquel Huix-Rotllant, Bhaarathi Natarajan, Andrei lpatov, C. Muhavini
Wawire, Thierry Deutsch, and Mark E. Casida, “Assessment of Noncollinear
Spin-Flip Tamm-Dancoff Approximation Time-Dependent Density-Functional
Theory for the Photochemical Ring-Opening of Oxirane”, Phys. Chem.
Chem. Phys. 12, I2811-12825 (2010).

• C. Muhavini Wawire, 2002. Atomic Structure and States of Matter (module).

Submitted
Journal
Publications

“Density-Functional Study of Lumininescence in Polypyridine Ruthenium Com-
plexes”, C. Muhavini Wawire, Damien Jouvenot, Frédérique Loiseau, Pablo
Baudin, Sébastien Liatard, Lydia Njenga , Geoffrey N. Kamau and Mark E.
Casida

Books in
Preparation • Digitizing the University Core Processes in African Universities. The Tech-

nological Approach.

• Uses of Software Packages in Computational Chemistry. Sustainable Science
Learning & Teaching in Africa: Highlighting African Realities.
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• Demystification of Multi-media for enhanced e-Learning in the Sub-Sahara
Region.

Awards
• Commission of Higher Education (CHE)-Research Project on Mushroom
farming in Lugari District , Kenya (November 2006-2009).

• CUEA-Research project on production of herbal soaps and detergents using
local plant oil blends: a poverty alleviation option for rural communities of
the Asals of Kenya (2006).

• French Government PhD-Scholarship (August 2008)- July 2012.

• Joseph Fourier University-Doctoral School Award to attend specialized course
in Computational Science at Lyon (Ecole Normale Superieure de Lyon -
ENSL) in France-October 2008

Other
Professional
and Community
Activities-
(Other
Responsibilities

• Participation in the translation of Science books and Journals from English
to French and vice versa for the Distance Training Programme (DTP) of
Kigali Institute of Education-Rwanda.

• Participation in committees in the university such as students/staff commit-
tee (faculty of science), and also a faculty publications representative.

• Active participation in the establishment of partnerships between the Catholic
University of Eastern Africa and Community Organizations in Lugari Dis-
trict, Western Province- Kenya.

• Co-authorship of Modules used in the Mushroom Farming Project Lugari
District- Kenya.

• Setting up of a Computational Chemistry Center in CUEA- The first ever
in Kenya, Eastern Africa and Africa excluding South Africa.

• Working on a joint venture to set up a Computational Chemistry Center for
Eastern and Central Africa at MMUST and CUEA.

Personal
Interest

• Music (guitar making and playing, Musical Keyboard playing and Music
composition.

• Linguistics (Kiswahili, English, French, Lingala, Kinyarwanda/Kirundi and
Luhya.

• Open source software and other Internet resources for doing, teaching and
learning Science.

• Skills in identification, installation, customization and use of e-learning en-
gines.

• Programming, scripting and application of these skills to software develop-
ment.

• Gathering and implementing ideas and skills to do with website design/development,
hosting and use.
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Referees Prof. Mark E. Casida
Laboratoire de Chimie Théorique
Département de Chimie Moléculaire (DCM, UMR 5250)
Institut de Chimie Moléculaire de Grenoble (ICMG, FR260)
Université Joseph Fourier (Grenoble I)
F-38041 Grenoble, FRANCE

Dr. Nicholas W. Twoli Prof. Genevieve Mwayuli
Kenyatta University The Catholic University of Eastern Africa
Comm. Tech. Department Natural Sciences Department
P.O. Box 43844 P.O. Box 62157-(00200)
Nairobi Kenya Nairobi-Kenya
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APPENDIX C

COMPUTATIONAL CHEMISTRY IN KENYA

Computational Chemistry in Kenya is still in its infancy. There have been efforts to start this important
area of research but the progress is quite unsatisfactory. The very first person to do some calculations
using GAUSSIAN 03 was Dr. Kibe of Kenyatta university. His thesis was on “Study of the Mechanism

of Acid Catalyzed Esterification.” This was carried out in South Africa at Kwazulu Natal University in
2005. Ever since he came back, there is not much in terms of infrastructural growth to enable the growth
of computational Chemistry. The study itself involved some expensive residential sessions in S. Africa. It
was also mounted on Microsoft windows platform. This made it very difficult to continue with this area
after completion.

Moi University has a fairly advanced kind of cluster which is coming up. They have received donations
from Japan and S. Africa and right now the attention is on ensuring that the system is up and running.
Unlike Kenyatta University, the situation in Moi is slightly better because there are many people involved
and it is a system as opposed to a one-man show in Kenyatta university. Moi system is also superior
because they use linux operating system which enables calculations through secure shell-ssh and sftp

approaches.
The unfortunate part of the Moi situation is that the only people who carry out calculations are physi-

cists. It is only recently that some efforts were made to incorporate a chemistry student. Right now there
are all sorts of activities to ensure that the servers in Moi and their partner institutions are up and effi-
ciently running because the university is to host the 2nd African School on ‘Electronic Structure Methods
and Applications’ (ASESMA 2012). This school seeks to fulfil a number of things such as:

1. encourage growth of computational calculations,

2. start and enhance collaborations between physicists and chemists,

3. formulate follow-up activities to ensure that computational science growth is sustained,

4. explore possibilities of exposing the young participants to more of these computations in other
parts of the world.
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126 Appendix C Computational Chemistry in Kenya

There have been other efforts by the HP-Initiative to start what is called ‘East African Computational

Chemistry Infrastructure Project’. It was to be set up at the Masinde Muliro University of Science and
Technology (MMUST) in Western Kenya. Since I was a key member of the team I am aware that the
necessary forms of sponsorship came in terms of servers and computers in 2011 early but up to now there
is nothing to show for it. Possible reasons are many but my own take is that poor leadership and bad
local politics could be behind this delay. The aim of this project was to set up a grid in conjunction with
Binghamton University. The collaboration was meant to create a link in which MMUST students could
do some calculations using the high quality chemistry resources at Binghamton University, and which are
not possible here due to their high cost. Personnel and students from MMUST and its partners such as
The Catholic University of Eastern-CUEA were to connect to the servers in Binghamton University in the
US, learn and then apply the acquired skills to the study of ways to mitigate environmental toxins and the
development of natural anti-malarial products. This is yet to take off as earlier mentioned and one thing
that I saw there was the lack of linux skills.

Finally there is a fairly functional system at The Catholic University of Eastern Africa-CUEA. From
many points within the CUEA firewall, I am able to connect to the Supercomputers in France and submit
my jobs to the queue system awaiting the calculations. My office has computers that operate on linux-
(ubuntu-distro). Through the commandline, I connect to a local server and then enter the cluster with
many machines. I also use secure file transfer protocol (sftp) to submit and recover output files for anal-
ysis. Following the success of our connections and working, quite a number of universities are keen to
learn and replicate this mode of learning. At CUEA itself, quite a number of departments are now on
ubuntu. Some computers are fully linux and others dual boot. The computer department is also adjusting
to linux.

From the experience on the ground, there are some efforts to move forward in this field. We need just
to define where to start. The acknowledgement that linux can make a difference is one of the ways and I
am happy that this is now happening.
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Diffuse functions, 27
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electrochemistry, 47
electron density, 30
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electronic transitions, 93
ensemble quantity, 13
exchange integrals, 21
exchange-correlation potential, 34
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external electric and magnetic fields, 14
extinction coefficient, 62

file transfer protocol (sftp), 126
first-order correction, 20
fluorescence, 2, 53
Fock operator, 22
Frenkel Dirac variational principle, 37
frontier molecular orbitals, 93
functional, 30
functional derivatives, 33

Gaussian convolution, 58
Gaussian electromagnetic units, 14
Gaussian-type orbitals (GTOs), 26
generalized spatial and spin coordinates, 13
gradient expansion approximation (GEA), 35

Hartree product, 20
hypothetical complex, 96

Internal conversion, 52
internal coordinates, 16
Intersystem crossing, 52
ionisation potentials, 24

Kasha-Vavilov’s rule, 52
Kohn-Sham formalism, 35
Koopmans’ electron affinities, 24
Koopmans’ theorem states, 24

Lagrange multipliers, 33
Lagrangian, 21
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LANL2DZ, 66
Linear response theory, 39
local density approximation (LDA), 35
localized MOs, 93
localized oxidation, 62
localized reduction, 62
Los Alamos National Laboratory (LANL) ECPs,

28
low ionization potentials, 28
luminescence, 47

machines, 62
magnetic moments, 14

Masinde Muliro University of Science and Tech-
nology (MMUST), 126

metallocycle, 63
Moore’s law, 1
Mulliken notation, 21
multiple polarization functions, 28
multiplication opertors, 11

non-relativistic electronic Hamiltonian operator, 21
noninteracting kinetic energy, 32
noninteracting systems, 33
nonrelativistic Hamiltonian operator, 13
nuclear coordinates, 54

occupation number, 58
orthonormal Slater determinants, 18
orthonormal spin-orbitals, 21
overlap matrix, 58

partial charge, 58
Partial Density of State, 57
Pauli principle, 20
perturbation theory, 19
Phosphorescence, 2
photoactivated molecular devices (PMDs), 1
photocatalysis, 47
photochemical, 61
Photochemistry, 47
photochemistry and photophysics, 2
photoelectric effect, 10
photoelectrochemistry, 47
photoexcitation, 50
photon emission, 52
photophysics, 47
photosensitizer, 61
photosplitting, 62
photosystem II, 61
Polarized valence basis set, 27
position vectors, 13
potential energy surface, 50
probability distribution, 11
pseudopotential, 24, 28

quantum mechanical operator, 11
quantum mechanical state, 13
Quantum mechanics, 10
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Roothaan, 24

scalar relativistic effects, 24
Schrödinger equation, 10
solvated fluorophore, 54
solvation coordinate, 54
solvent relaxation, 54
spatial orbitals, 21
spectrochemical series, 96
spectroscopic oscillator strengths, 40
Split valence basis sets, 27
Stokes shifts, 2
Supercomputers, 126
supramolecules, 61

Taylor expansion, 35
The Catholic University of Eastern-CUEA, 126
Thomas-Fermi model, 31
Time-dependent Density Functional Theory, 2
topology, 52
total density matrix, 58

ultraviolet catastrophe, 10
uniform electron gas (UEG), 35
universal functional, 38

Variational Principle, 17
vibrational frequencies, 15
Vibrational relaxation, 52


