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Problèmes Directs et Inverses en Interaction
Fluide-Structure. Application à l’hémodynamique

Resumé: Dans cette thèse nous traitons de la simulation d’interaction fluide-
structure (FSI) dans les problèmes en hémodynamique, en mettant l’accent sur
l’assimilation de données et sur la simulation dans les conditions physiologiques.

La première partie présente et analyse un schéma de couplage semi-implicite des
équations de Navier-Stokes (NSE) et d’un modèle de conditions aux limites réduit,
lorsque les NSE sont résolues avec une méthode de projection. Cela permet de
simuler des problèmes de mécanique de fluides et de FSI de façon plus robuste, c’est
à dire en évitant les possibles instabilités associées à des cas-tests réalistes.

La deuxième partie est consacrée à l’assimilation des données avec des méthodes
séquentielles en FSI. Nous présentons d’abord une étude sur l’application d’un fil-
tre de Kalman réduit pour l’estimation efficace des paramètres physiques d’intérêt,
comme la distribution de la rigidité de la paroi de l’artère et la résistance proximale
dans le fluide, à partir des mesures de deplacement à l’interface fluide-structure.
Ensuite, nous analysons certains observateurs de Luenberger utilisés pour la mé-
canique des solides en FSI, dans le but de construire des estimateurs d’état efficaces
pour des problèmes FSI de grande taille.

Dans la troisième et dernière partie, nous appliquons les méthodologies mention-
nées ci-dessus aux problèmes physiques réels. Tout d’abord, la rigidité de la paroi
est estimée (pour des modèles solides linéaires et non linéaires) à partir de données
provenant d’un tube de silicone simulant une aorte. Pour finir, nous analysons une
aorte réelle avec une coarctation réparée, nous testons les techniques d’estimation
avec des données synthétiques et nous montrons quelques résultats obtenues à partir
de données issues du patient.

Mots-clés: interaction fluide-structure, méthodes de projection, imagérie médi-
cale, assimilation des données, filtre de Kalman, observateurs de Luenberger, coarc-
tation de l’aorte.





Forward and Inverse Problems in Fluid-Structure Interaction.
Application to Hemodynamics

Abstract: In this thesis we deal with the simulation of fluid-structure interac-
tion (FSI) problems in hemodynamics, with the emphasis in data assimilation and
simulation in physiological regimes.

The first part presents and analyzes a semi-implicit coupling scheme between the
three-dimensional Navier-Stokes equations (NSE) and lumped parameter models,
when the NSE are solved in a projection framework. This allows to simulate fluid
and FSI problems more robustly, i.e., avoiding instabilities that may occur when
dealing with realistic test-cases.

The second part of the work is devoted to the study of sequential data assimila-
tion techniques in FSI. We first present a study about the application of a reduced-
order Unscented Kalman Filter for the effective estimation of relevant physical pa-
rameters, like the stiffness distribution of the vessel wall and the proximal resistance
in the fluid, from displacement measurements at the fluid-structure interface. Next,
we analyze some Luenberger observers from solid mechanics in FSI, with the aim to
construct tractable state estimators for large-scale FSI problems.

In the third and final part, we apply some of the aforementioned methodologies
to real physical problems. First, we perform the estimation of the wall stiffness (for
linear and non-linear solid models) from data coming from MR-images of a silicone
rubber aortic phantom. To finish, we deal with the forward analysis of a real aorta
with repaired coarctation and we test the estimation techniques with synthetic data
and show some results with the patient’s data.

Keywords: fluid-structure interaction, projection method, medical imaging, data
assimilation, Kalman filtering, Luenberger observers, aortic coarctation.
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Die Arznei macht kranke,
die Mathematik traurige

und die Theologie sündhafte Leute.
Martin Luther.





Chapter 1

Introduction

In this chapter, we first provide a basis about the physiology, structure and mechanical
properties of the elastic arteries, as well as some of the currently used methods for the
quantification of the arterial wall stiffness. As a clinical relevant application, we refer to
the pathology called coarctation of the aorta. Then, we summarize the rest of the thesis
by reporting the main results of each chapter.

Contents
1.1 Estimation of the arterial stiffness . . . . . . . . . . . . . . . 5

1.1.1 The circulatory system and the cardiac cycle . . . . . . . . . 6

1.1.2 Structure and mechanical properties of arteries . . . . . . . . 9

1.1.3 Methods for estimating the arterial’s mechanical properties . 15

1.2 Coarctation of the aorta . . . . . . . . . . . . . . . . . . . . . 20

1.2.1 Description of the pathology . . . . . . . . . . . . . . . . . . 20

1.2.2 Relevance of the arterial stiffness estimation . . . . . . . . . . 24

1.3 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3.1 Fluid-structure interaction in hemodynamics (Part I) . . . . . 27

1.3.2 Data assimilation in fluid-structure interaction (Part II) . . . 30

1.3.3 Applications with real data (Part III) . . . . . . . . . . . . . 33

1.4 Thesis context . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.4.1 The euHeart project . . . . . . . . . . . . . . . . . . . . . . . 35

1.4.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.1 Estimation of the arterial stiffness

This section presents some basic material with the aim of discussing possible
applications of the results of this thesis: the estimation of the mechanical properties
of the aortic wall from three-dimensional and dynamic clinical data (e.g., medical
images) using fluid-structure interaction models. We emphasize that the spirit is to
give a general overview without entering into too technical details.

We start with an overview of the circulatory system, describing its anatomy and
function, in particular detailing the cardiac cycle. Then we present the structure
and properties of arteries, followed by a summary of the methodologies used in the
clinical practice for estimating arterial stiffness.

Note that Sections 1.1 and 1.2 are mainly based on [Kla11, SS11, Pro09, Val12,
Vir08, Hum02] and references therein, if no other bibliography is explicitly indicated.
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1.1.1 The circulatory system and the cardiac cycle

The circulatory system consists of the organs responsible for the transportation
of blood throughout the body. It is mainly composed of the heart (divided in four
chambers, left and right atria and ventricles), arteries, capillaries, and veins (see
Figure 1.1). It transports oxygenated blood from the lungs to the heart through the
pulmonary veins and from the heart to the rest of the body through the systemic
arteries. In the organs, the blood passes from the arteries to the capillaries, releases
oxygen and nutrients to the cells, collects carbon dioxide and waste substances and
then it continues flowing through the veins back to the heart.

Figure 1.1: A schematic view of the circulatory system, representing the major
vessels of the systemic and pulmonary circulation loops and the main organs (from
[Tal11]).

The blood circulation. The circulation is divided in two parts forming a closed
loop. The systemic circulation originates from the left chamber of the heart (see
Figure 1.2), from where the blood flows through the aortic valve into the aorta.
Directly behind the aortic valve two small arteries (called coronary arteries, not in
the figure) branch off for the supply of blood to the heart. The aorta itself, see
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Figure 1.3, initially follows an upward path (ascending aorta) and then forms a
curve (aortic arch) before proceeding downwards (descending aorta) parallel to the
spine.

Figure 1.2: The heart and the sourrounding blood vessels (from [Wik11]).

Figure 1.3: Scheme of the aorta (from my.clevelandclinic.org).

The pulmonary circulation begins in the right ventricle and ends in the left
atrium. The right ventricle ejects the blood low in oxygen through the pulmonary
trunk, which divides into the two pulmonary arteries (one for each lung). In the
lungs, the vessels continue to branch out until capillaries. At this level, the blood
releases carbon dioxide (expelled then during the exhalation), and oxygen (from
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the inhaled air) is absorbed back to the blood. After this exchange of gases, the
oxygenated blood returns to the heart via four large pulmonary veins into the left
atrium.

Electrophysiology of the heart. The circulation of the blood is driven by the
pump function of the heart, which is controlled by electrical commands initiating in
the right atrium. Due to the conductive properties of the cardiac tissue, an electrical
wave is propagated through the atrioventricular node to the ventricles. The passage
of the wave activates the contraction of the myocardium (cardiac muscle), whereas
after the wave pass through the tissue relaxes. The combination of contractions and
relaxations in the different heart regions, together with the valves dynamics, induces
pressure gradients through the different heart chambers. This mechanism rules the
flow of the blood from and into the circulatory system.

The electrical charge of the cells is determined by the transfer of ions (sodium
(Na+), potassium (K+) and calcium (Ca2+)). Without electrical stimuli, the cells
are called to be polarized, namely the transmembrane potential1 is negative due to
the poor concentration of sodium and calcium ions in the cell. When the electrical
stimuli arrives to the cell, the ion channels in the membrane open so that the
transfer of sodium inwards the cell occurs. This is called depolarization, where
the transmembrane potential becomes positive, leading to the contraction of the
cardiac cells. After this, several exchanges of ions across the cell membrane occur
in order to return to the electrical equilibrium (polarized) state.

The electrical activity of the heart is clinically quantified using the electrocar-
diogram (ECG), which consists in measuring the electrical potential on the body
surface, and where the different phases of the wave propagation can be identified
(cf. Figure 1.5).

The cardiac cycle. The cycle of activity of the heart is generally divided into two
phases: the diastole, when the heart ventricles are relaxed (polarized) and the heart
is being filled with blood; and the systole, when the ventricles contract (depolarized)
and pump blood to the arteries. However, to analyze the phases in more detail, the
cardiac cycle is usually divided into seven phases (see Figures 1.4 and 1.5):

(1) Atrial contraction. It follows by the atrial depolarization at the end of the
diastole. The pressure within the atrial chambers increases, which forces the
blood to flow across the open atrioventricular valves into the ventricles.

(2) Isovolumetric contraction. After atrial contraction is complete, the depolar-
ization wave advances to the ventricles, which contract rapidly increasing the
intraventricular pressure. This induces a pressure gradient reversal across the
atrioventricular valves, leading to their closing. Then, the ventricular pressure
continues rising due to the contraction without changing of the intraventricular
volume, and also the atrial pressure begins to fall.

1Transmembrane potential is the difference in electrical potential between the interior and
exterior of a biological cell.
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(3) Rapid ejection. When the intraventricular pressures exceed the pressures within
the aorta and pulmonary artery, aortic and pulmonic valves open and blood
is ejected into these arteries. Maximal outflow velocity and maximal aortic
and pulmonary artery pressures are achieved in this phase. Meanwhile, blood
continues to flow into the atria from their respective venous inflow tracts and
the atrial pressures begin to rise.

(4) Slow ejection. In this phase, ventricular repolarization, leads to a decline in ven-
tricular active tension and therefore the rate of blood ejection into the ventricles
falls. Ventricular pressure falls slightly below the aortic pressure; however, out-
ward flow still occurs due to kinetic (or inertial) energy of the blood. Left and
right atrial pressures gradually rise due to continued venous return from the
lungs and from the systemic circulation, respectively.

(5) Isovolumetric relaxation. When the intraventricular pressures fall sufficiently
due to the repolarization, the aortic and pulmonic valves abruptly close. Hence,
ventricular volume remains constant while atrial pressures rise since they con-
tinue being filled.

(6) Rapid filling. As the ventricles continue to relax, the intraventricular pressures
will fall below their respective atrial pressures. When this occurs, the atrioven-
tricular valves rapidly open and ventricular filling begins. Despite the inflow of
blood from the atria, intraventricular pressure continues to shortly fall because
the ventricles are still undergoing relaxation. Once the ventricles are completely
relaxed, their pressures will slowly rise as they are still being filled.

(7) Slow filling. As the ventricles continue being filled with blood and expand, they
become less compliant2 and the intraventricular pressures rise. This also reduces
the pressure gradient across the atrioventricular valves so that the rate of filling
falls. Aortic pressure and pulmonary arterial pressures keep falling during this
period. After this phase the cardiac cycle restarts with the atrial contraction.

1.1.2 Structure and mechanical properties of arteries

Arteries are organs whose function is the transportation of the blood through
the body. Particularly, arteries near to the heart allow to moderate the fluctuations
in the cardiac outflow, serving as an elastic fluid reservoir. During the first half of
systole, they distend elastically due to the increase of the aortic pressure. From end
of systole to end of diastole, when the internal efforts of the distended arterial wall
exceed the intraluminal pressure, the artery "press back" the blood discharging it
towards the periphery. This helps to maintain a relatively constant pressure in the
distal arteries despite the pulsating nature of the blood flow produced by the heart
as it can be seen in Figure 1.5. The amount of blood that can be stored and the

2The stiffening of soft tissues with increasing loading occurs since the different structural com-
ponents are gradually activated. We will see this in the case of the arteries in next section.
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(a) Atrial contraction (b) Isovolumentric
contraction

(c) Rapid ejection (d) Slow ejection

(e) Isovolumetric
relaxation

(f) Rapid filling (g) Slow filling

Figure 1.4: The seven phases of cardiac cycle (from [Kla11]).

Figure 1.5: The cardiac cycle in terms of the physiological variables (adapted from
[Kla11]). LAP, LVP and AP refer to the left atrium’s, left ventricular’s and arterial’s
pressure, respectively.
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associated pressure, as well as the rate of release during diastole, it is determined by
the total peripheral resistance3 and by the elasticity of the arteries. Moreover, as it
will be seen next, the mechanical properties of arteries also have a direct impact on
the loading of the heart, i.e., on the forces that resist to the contraction, what can
lead to severe cardiovascular pathologies.

Composition and structure. Arteries are mainly composed of three types of
tissue: collagen, elastin and smooth muscle. Collagen and elastin are fibrous struc-
tural proteins that constitute the base of all connective tissues4, where collagen is
stiffer than elastin. Smooth muscle is one of the three types of muscle tissue in
the body (smooth, cardiac and skeletal), and it is characterized by the absence of
a definite striped pattern or striations, which are seen in the other two types. It
generally forms the supporting tissue of blood vessels and internal organs such as
the stomach, intestine and bladder. Similarly to the cardiac tissue, it is able to
perform involuntary contractions, what is necessary for the physiological function
of the organs where it is present.

The composition and mechanical properties of arteries vary throughout the ar-
terial tree, depending on the different functions that each artery has to accomplish,
but they can be classified into two main types: elastic and muscular. The elastic
arteries are closer to the heart (e.g. the aorta and direct out-branching arteries
like carotid and iliac), they have larger diameter and are more compliant since they
contain higher proportions of elastin with respect to collagen. As mentioned above,
their function is mainly to stabilize the pressure fluctuations and to store blood
during systole. Muscular arteries are closer to capillaries and are smaller and less
compliant (proportion of elastin decreases with respect to collagen and smooth mus-
cle) with the main role of distributing the blood. Even they exhibit qualitatively
a similar histological arrangement (see for instance [Hum02]), in the sequel we will
focus on elastic arteries5.

Despite of the heterogenous distribution of the arterial components throughout
the body, in general three main layers or tunicas can be distinguished in the arterial
wall structure: the intima, media and adventitia (see Figures 1.6 and 1.7).

The intima is the innermost layer of the artery, consisting of a single sheet of
endothelial cells (in contact with the blood and usually alongated in the direction
of the flow), plus a thin layer of connective tissue (collagen and elastin), called
internal elastic laminae. The endothelial cells detect physical and chemical changes
of the environment and can release vasodilators, which act on smooth muscle cells
for adjusting the mechanical properties to acute stimuli, for example alterations in
the blood pressure. In young healthy individuals, the contribution of the intima to

3Total peripheral resistance corresponds to the ratio between the pressure gradient across the
systemic circulation and the cardiac output. It is mainly determined by the geometry of the arterial
network [NOH05].

4Tissues composed of fibers forming a support structure for larger tissues and organs.
5The reason is that the emphasis of the numerical experiments in this thesis is the aorta, and

the ultimate goal of this work is the estimation of its mechanical properties.
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Figure 1.6: Schematic view of the tree tunics (adapted from [HGO00]).

Elastin Collagen
Smooth
muscle
cells

Figure 1.7: Histological cut of an aorta. Left: the three tunics, 1 intima, 2 me-
dia and 3 adventitia (from http://histol.narod.ru). Right: tunica media (from
http://www.ceessentials.net).
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the mechanical properties of the artery is insignificant. However, it is the location
where atherosclerosis6 develops.

The media is the middle layer of the artery and consists of a complex three-
dimensional network of smooth muscle cells, elastin and collagen fibers (see Figure
1.7-right). It is the layer which gives the main mechanical properties to a healthy
arterial wall. The media is separated into a varying number of concentrically fiber-
reinforced layers. These layers are defined by wave-shaped elastin fibers similar
to the internal elastic laminae. Between the elastin fibers, collagen fibers (with
variable orientation) surround the smooth muscle cells. This structured arrangement
gives the media high strength, flexibility and the resistance to loads in both the
longitudinal and circumferential directions.

The adventitia mainly consists of connective tissue fibers (again, collagen and
elastin). Collagen fibers contribute significantly to the stability and strength of
the arterial wall, preventing it from acute over-distension. Moreover, it is common
to find peripheral vessels7 and nerves (for the innervation of the smooth muscles
cells in the outer media). In many vessels, the adventitia blends with the connective
tissue surrounding the vessel. Therefore, the definition of its outer limit is somewhat
arbitrary.

Mechanical behavior. Due to their structure and composition, arteries have a
nonlinear constitutive behavior (see Figure 1.8). The pressure exerted on the arterial
wall is transferred from intima to adventitia, where the stresses are gradually passed
from elastin to collagen increasing the stiffness. Moreover, they present hysteresis
dissipating energy during the loading-unloading process.

Arteries also show an anisotropic mechanical behavior since collagen and elastin
fibers are oriented in certain directions. In fact, collagen is the main constituent
that gives the anisotropy to the artery, because its chains are more oriented than
the elastin. In particular, the arterial wall is stiffer in the circumferential than in
the axial direction.

The arterial pressure oscillates in a range of approximately 80-120 mmHg (see
Figure 1.5), hence the arterial wall is permanently under the action of external forces.
Moreover, it is widely accepted that residual stresses are presented in arteries (i.e.,
stresses at zero external load) resulting from their permanent grow and remodeling.
These residual stresses are mainly resisted by the elastin fibers, which are responsible
for the mechanical properties at low loads, as said above.

It is also important to mention that in addition to cells and connective tissue,
the arterial wall contains an important amount of water (mainly extracellular) of

6Atherosclerosis is the most common arterial disease. It mainly consists of the deposition of
fat, calcium and collagen in the intima. It dramatically affects the morphology of the lumen (aug-
menting resistance to flow) and the mechanical behavior of the arterial wall (increasing stiffness).

7The walls of large arteries are so thick that oxygen and nutrients from the lumen cannot perfuse
the peripheral parts. Larger vessels have therefore attached smaller blood vessels which supply the
adventitia and, in the largest vessels, the outer part of the media. They are called vasa vasorum,
from latin "vessels of the vessels".
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Fig. 5. Original tracings of P-D curves in abdominal aorta in three representative women, 23, 
53, and 69 years old. With increasing age steepness of P-D curve decreases, indicating that aorta 
becomes less distensible. 

compliance decreased at an earlier age in men than in 
women. 3 

These calculations of  aortic Ep and stiffness ([~), 
as well as those of  others, 11,15-17 have been based on 
the  assumption that abdominal aortic pressure is 
equal to the pressure obtained in the upper arm 
(brachial artery). This assumption, however, does 
not take into account the difference in pressure 
between central and peripheral arteries, which is 
attributed to wave travel and reflection within the 
arterial tree. ~8 Mean pressure fails slowly toward the 
periphery, but the pulse pressure and the peak systolic 
pressure increases. These differences, however, seem 
to become less marked later in life. 19 One purpose of  
this study was to examine the possibility that an 
eventual difference in pressure at the sites for 
measurement of  pulsatile diameter change and of  
pressure could lead to an error in the obtained values 
and affect the validity of  previous conclusions. A 
good agreement was found between peak systolic 
pressure at the two measuring points; however, 
diastolic pressure proved to be consistently overesti- 
mated when determined by auscultation (Table I). 
No  significant age- or sex-related differences were 

observed. Few references to arterial pressure obtained 
simultaneously at these two points could be found in 
literature. Imura et al. ~s reported values similar to 
ours, although they investigated patients with vascu- 
lar disease and not healthy individuals as we did. The 
fact that pulse pressure measured by the auscultatory 
method of  the brachial artery is less than the actual 
pulse pressure in the abdominal aorta leads to a 
systematic underestimation of  Ep and stiffness ([~) by 
15% to 20% (Table II) when the auscultatory 
method is used. 

Various techniques have been used to measure 
pulsatile diameter changes in vivo. They include 
M-mode ultrasonography, 17 echo-tracking sys- 
tems, 3,~,n,14'ls intravascular ultrasonography, 2° mag- 
netic resonance imaging, 21 angiography, 22 and direct 
optical measurement on surgically exposed arteries.2a 
Surgically exposed vessels are less distensible? 4 O f  
the other techniques echo-tracking and intravascular 
ultrasonography offer the best resolution capacity. 
Furthermore, the echo-tracking technique gives re- 
producible results. ~ Thus, in combination with in- 
traarterial pressure recording, this offers at the', 
moment  one of  the best methods for obtaining in 

Figure 1.8: Sample curves for pressure-diameter relationship in three human aortas
and variation with age (from [SLVH94]).

about 70% of the total mass. Hence, it is fairly reasonable to consider it as a nearly
incompressible solid.

As other soft tissues, arteries are also capable to perform involuntary contrac-
tions, mainly due to the transmembrane calcium flux in the smooth muscle cells
due to acute alterations of the environment. However, it occurs much more slowly
than in striated muscle (e.g. myocardium), and taking in order for few seconds to
achieve its maximum level. They can however maintain maximum contraction for
much longer periods.

Constitutive modeling. The aforementioned mechanisms allow to control the
propagation of the pressure wave and a more rapid recover to the original posi-
tion after the fluid passes through. However, as we will see next, the clinically
used indexes for representing the arterial stiffnesses are based on linear constitutive
assumptions, namely,

σs = Hεs

with H the elasticity tensor depending typically on the Young’s modulus E (stress-
strain ratio in the case of uniaxial load) and the Poisson modulus ν (ratio between
strains in parallel and perpendicular to an applied load). For modeling purposes,
these approaches for quantifying the arterial stiffness can give a preliminary quanti-
tative assessment of the arterial properties for setting up more complex mathemat-
ical constitutive models.

In biomechanics, the so called hyperelastic models are widely accepted to be
an appropriate choice for representing the mechanical behavior of soft tissues. We
briefly introduce them as follows.
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Assume that a body undergoes a deformation field x = ϕ(x̂), with x̂ and x

the spatial coordinates of the same material point at the reference and deformed
configurations, respectively. Let us denote F = ∇x̂ϕ the gradient of the deformation
field. The hyperelastic materials are based on a representation of the stress-strain
behavior in terms of the derivative of a strain-energy function W as [LT94, FFP79]

σs =
∂W

∂F
.

This function W describes the density of elastic strain energy stored during the
deformation of the body of interest. When the material is isotropic, this function
has to be independent of any local rotation of the reference system, hence it can be
written only in terms of the eigenvalues of the right Cauchy-Green tensor C = FTF,
λ2
i , i = 1, . . . , 3, namely

W = W (I1, I2, I3) , I1 = λ2
1 + λ2

2 + λ2
3 , I2 = λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1 , I3 = λ2

1λ
2
2λ

2
3

with I1, I2, I3, called the invariants of C.
Some of the simplest hyperelastic material models are the compressible Neo-

Hookean and Mooney-Rivlin models

WnH = c1(Ī1 − 3) + κ(Ī3 − 1) , WMR = WnH + c2(Ī2 − 3) (1.1)

respectively, with c1, c2, κ the material-dependent constitutive parameters and Ī1 =

I
−2/3
3 I1, Ī2 = I

−4/3
3 I2. For representing the behavior of rubbers usually the Mooney-

Rivlin model is the most popular choice. For the arterial wall, one popular choice
is for instance the Holzapfel-Gasser-Odgen model [HGO00]

WHGO = c1(Ī1 − 3) +
∑̀
j=1

kj
2 a
{exp(a(Ī4,j − 1)2)− 1}. (1.2)

The first term (neo-Hookean model) represents the non-collagenous matrix material.
The second term models the strong stiffening effect of the collagen fibers, where j
denotes the layer-specific index with ` the number of tissue layers. In the invariant
Ī4,j is included the information about the angle of the collagen fibers at each layer
j, and kj , j = 1, . . . , ` and a are material dependent (and layer specific) parameters.
We refer to [HO10] for an extensive review of different constitutive modeling options.

1.1.3 Methods for estimating the arterial’s mechanical properties

Arterial mechanical properties are well accepted as one of the most important
determinants of hypertension in aging societies, hence contributing to stroke and
myocardial infarction [LCVB+06]. Thus, their quantification is of increasing clinical
interest for the assesment of cardiovascular risk.

Methods for the estimation of the arterial mechanical properties can be classified
into: direct, where the mechanical parameter values are obtained directly from the
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measurements, and indirect, where surrogates of these values are estimated. Meth-
ods can also be separated into: local, when all measurements come from one section
of the artery, and regional when the estimated value corresponds to measures ob-
tained in distal points of the arterial network. An additional classification can be
assessed in terms of the character to the measurements as: invasive, where some
dispositive has to be introduced into the arterial lumen in order to determine some
of the quantities needed for the estimation (e.g. pressure catheterization), and non-
invasive, where all measurements are obtained outside from the body (e.g., medical
imaging and blood pulse).

As next we will overview some of the currently used methods for estimating the
mechanical properties of the arterial wall.

Pulse Wave Velocity (PWV). PWV corresponds to the traveling speed of the
pulse wave through a segment of the arterial tree, i.e.,

PWV =
∆L

∆t
, (1.3)

with ∆L the distance travelled by a pressure wave through an elastic vessel and
∆t its transit time. Typical values of PWV in elastic arteries vary between 5 and
15 m/s and they increase with age and with mean blood pressure [The10]. This
quantity can be related to the stiffness of the elastic vessel, for example through the
well-known Moens-Korteweg equation

PWV =

√
Eh

2 (1− ν2) r ρf
, (1.4)

with E the Young’s modulus at the configuration with radius r, ρf the fluid mass
density, ν the Poisson’s ratio of the solid and h the thickness of the vessel wall. This
expression can be computed by obtaining the wave speed resulting of the Navier-
Stokes equations coupled to a generalized string model for the vessel wall on an
infinite cylindrical domain, with the assumption of small deformations [FQV09].

PWVmeasurements is the gold-standard in clinical practice for the assessment of
arterial stiffness since it is simple examination and reproducible among patients. It
is also considered in clinics as an independent predictor of cardiovascular morbidity
[CLRAM11].

Most of PWV clinical investigations are performed non-invasively by collocat-
ing pressure-sensitive transducers on the skin, typically at the carotid and femoral
arteries. Also ultrasound (US) or magnetic resonance imaging (MRI) can be used
in order to measure the flow pulse8. MRI has the advantage that the distance trav-
eled by the wave can be assessed more accurately, especially in tortuous geometries
(common in old subjects). Usually, the foot of the pulse wave is used to determine
the transit time as explained in Figure 1.9.

8Pressure and flow pulse travel at the same velocity if the assumptions of the simplified fluid-
solid model presented above hold, see [FQV09]
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devices. The Complior Systemw (Colson, Les Lilas, France)
employs dedicated mechanotransducers directly applied on
the skin.44 The transit time is determined by means of a cor-
relation algorithm between each simultaneous recorded
wave. The operator is able to visualize the shape of the
recorded arterial waves and to validate them. Three main
arterial sites can be evaluated, mainly the aortic trunk
(carotid-femoral) and the upper (carotid-brachial) and
lower (femoral-dorsalis pedis) limbs. This system was used
inmost of the epidemiological studies demonstrating the pre-
dictive value of PWV for CV events (Table 4).

Pressure waves can also be recorded sequentially from
different sites, and transit time calculated using registration
with a simultaneously recorded ECG. In the SphygmoCorw

system (ArtCor, Sydney, Australia), a single high-fidelity
applanation tonometer (Millarw) to obtain a proximal (i.e.
carotid artery) and distal pulse (i.e. radial or femoral)
recorded sequentially a short time apart and calculates
PWV from the transit time between the two arterial sites,
determined in relation to the R-wave of the ECG. The time
between the ECG and the proximal pulse is subtracted
from the time between ECG and distal pulse to obtain the
pulse transit time. The initial part of the pressure waveform
is used as a reference point. It is also possible to check
offline the variability of measurement over a range of
pulses, according to each algorithm. Since the measure-
ments are made a short time apart, the change in the isovo-
lumic period of the LV or heart rate variability has little or no
effect on measured pulse transit times.

Japanese researchers advocated the use of brachial-ankle
pulse-wave velocity (baPWV) and showed the aortic PWV
was the primary independent correlate of baPWV, followed
by leg PWV.47 Previous remarks concerning the calculation
of the path length apply here. In small cohorts of either
elderly community-dwelling people48 or coronary heart
disease patients,49 baPWV was an independent predictor
for CV deaths and events.

Methods using mechanotransducers or high-fidelity appla-
nation tonometers are well accepted for carotid-femoral
PWV measurement.

Methods based on Doppler probes and other methods
The distension waves obtained from the high-definition
echotracking devices (discussed subsequently) can be used
to calculate PWV. As described earlier for the SphygmoCor
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Figure 1 Measurement of carotid-femoral PWV with the foot to foot
method.
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Figure 1.9: Illustration of the locations for measuring the pressure pulse for the
determination of the PWV and the quantities used for its computation in Equation
1.3 (from [LCVB+06]).

Arterial compliance and distensibility. Arterial compliance C and distensibil-
ity D are direct and local measures of the arterial stiffness in a vessel by quantifying
the change in volume ∆V due to a change in pressure ∆P as

C =
∆V

∆P
, D =

C

V
. (1.5)

A first simple and non-invasive approximation of these quantities in the aorta can
be obtained by: approximating ∆P through the pressure pulse (i.e., the difference
between peak systolic and diastolic pressures) in the carotid artery, and simultane-
ously obtaining the change of cross sectional area of the artery at the same location
by means of ultrasound or magnetic resonance imaging, see Figure 1.10. This ap-
proach lies on the assumption that the carotid artery has a similar composition as
the aorta and it is more accessible for the measurement of diameter and pressure.
For a more accurate determination of the arterial compliance, invasive and local
pressure measurements (catheterization) are sometimes used, together with medical
imaging for assessing the diameter change.

Compliance and distensibility measurements are not yet a validated or routinely
used clinical index, but it is currently being matter of extensive research, see for ex-
ample [LCVB+06]. Hence, for the moment in clinical practice invasive measurements
for the assesment of the arterial compliance are obtained when there are other in-
dications for the catheterization (stent placement, pressure gradient measure across
the aorta, etc).

Vascular elastography. Elastography is a noninvasive technique for estimating
the mechanical properties of tissues by propagating and imaging mechanical waves
[Doy12]. The basic idea is to excite the tissue with harmonic pulses in order to get
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Figure 1.10: Scheme illustrating the local measurement of distensibility (from
[LCVB+06]). (A) Simultaneous recording of pressure and diameter. (B) Pressure-
diameter curve. (C) Calculation of distensibility. (D) Representation of the stroke
change (∆A) in lumen cross-sectional area.

an image of the strain field. Relating loads and measurements through, e.g., the
Helmholtz equation in two or three dimensions can lead to estimates of some of the
mechanical properties. It has been applied to quantitatively assess the viscoelastic
properties of many human tissues in vivo, including breast, brain, muscle and liver
[MGE10].

Ultrasound (US) based elastography has been used in arteries mainly with the
aim of detecting artherosclerotic plaques, see for instance [dKHvdS11]. Moreover,
in [BBC+07, BBC+10] the authors perform stiffness and viscosity estimation also
using US-data but applying an inverse approach by means of reduced mathematical
models.

However, US is limited to arteries close to the body surface (like the carotid).
For the aorta, Magnetic Resonance Elastography (MRE) has been studied as an
alternative to vascular US, where the imaged wavelength can be related to the
Young’s modulus [WRL+06, XCY+12], see examples in Figure 1.11. However, the
estimation of the stiffness is based on the Moens-Korteweg equation (1.4), hence it
is generally limited to long elastic cylindrical vessels and small displacements, and
the loading induced by the mechanical waves is not necessary physiological.

Estimation of constitutive parameters. The direct estimation of constitutive
parameters in human’s arteries is a matter of great interest in the biomechanics
community. Studies usually assume a long cylindrical geometry (for both models
and experiments) and they fit hyperelastic materials parameters (typically models
similar to (1.2)) to the data at the same locations of the measurements.
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modulus of fresh and fixed aortas obtained from MRE and
mechanical testing is illustrated in Fig. 3. Typical stress–
strain curves from the mechanical testing are shown in Fig. 4.
Regression analysis revealed a strong linear relationship of
Young's modulus (r2=0.972, Pb.001) between MRE and
mechanical testing (Fig. 5).

4. Discussion

This study reports the mechanical properties of samples
from five ex vivo porcine aortas evaluated by MRE before
and after formalin fixation. In agreement with our hypoth-
esis, the significant stiffness changes after sample fixation
were clearly demonstrated by MRE and confirmed by
mechanical testing. The results indicate that MRE can be
used to examine the stiffness changes of the aorta.

Magnetic resonance elastography is a novel MR-based
imaging technique that noninvasively determines in vivo
tissue stiffness [15,17]. MRE uses conventional MR imaging
techniques with a superimposed oscillating motion-sensitiz-
ing gradient (usually in the frequency range of 50–500 Hz)
to detect displacements produced by a phase-coupled shear
excitation source. The shear wavelength is then used to

calculate the material stiffness based on the principle that a
stiffer material has a longer wavelength because the shear
wave travels faster through the material [18]. It is well
known that fluid does not support shear wave propagation,
only pressure waves. In water, the speed of acoustic pressure
waves is as fast as 1500 m/s, and the wavelength at the
frequencies used for MRE is so long that MRE inversion
algorithms are invalid. Woodrum et al. modeled the blood-
filled vessel as a thin-wall fluid-filled elastic tube, where the
displacement of the fluid due to motion of the vessel wall can
be represented as one-dimensional plane waves propagating
along the longitudinal axis with a much slower speed, which
makes it possible for MRE to measure the stiffness of the
vessel [12]. These preliminary experiments demonstrated
that externally produced harmonic mechanical waves can be
clearly imaged with MRE in vessel models [12]. The
wavelength at a constant frequency is a direct reflection of
wave velocity and should change with changes in the
mechanical properties of the vessel. Increased arterial
stiffness results in an increased speed of wave propagation
in the aortic wall. To characterize the ability of MRE to

Fig. 3. Comparison of Young's modulus. The Young's modulus of fresh and
fixed aortas obtained from MRE and mechanical testing.

Fig. 4. Typical stress–strain curves from the mechanical testing. A
representative plot of stress–strain curves of fresh and fixed aortas, as
obtained during mechanical testing. Stiffness was calculated as the slope in
the linear region.

Fig. 2. MR elastography of fresh and fixed ex vivo porcine aortas. Wave
images at exciting frequency of 200 Hz obtained with MRE in the fresh aorta
(upper row) and the same sample after fixation (bottom row). The
wavelength of the propagating waves can be seen to be much longer in
the fixed aorta. This reflects a much higher stiffness value in the fixed aorta.
The attenuation of the mechanical waves is more significant in the fresh
aortas than in the fixed ones. The wavelength is measured from line profiles,
as illustrated in the right column.

Fig. 5. Relationship betweenMRE and mechanical testing. A linear regression
was performed between the MRE and mechanical testing Young's modulus
measurements. A strong correlation was observed (Pb.001).
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Figure 1.11: MRE for two arterial segments of porcine aortas tested ex vivo (from
[XCY+12]). The image at the top corresponds effectively to a stiffer aorta, as was
verified in independent mechanical tests.

Most of the studies have been carried out ex vivo, namely through data ob-
tained from experiments with pieces of tissue extracted from the body and tested
in a laboratory. The testing protocols ex vivo can be roughly classified into three
categories:

• Uniaxial tests: where strain-stress relations are obtained by loading in one
direction. This is however not enough to characterize the anisotropic behavior
of the tissue, and hence additional histological information is needed, see for
instance [Hol06].

• Biaxial tests: where tissue is loaded in two perpendicular directions, which
usually allows a reasonable characterization of the model parameters for a
given data set, see for instance [FVH11, SZP+11]. An example for data and
model with fitted parameters is shown in Figure 1.12.

• Inflation-extension tests: where typically direct measurements of the pressure
and diameter of the vessel are obtained, see for example [SH12, LBMV09,
HZCM07, BALS12, ABD10] and references therein.

However, as discussed in [HO09], these protocols are not able to characterize the me-
chanical response of anisotropic materials, and more loading conditions like torsion
or shear stress measurements are needed.

Studies in vivo usually are based on pressure-diameter data, typically obtained
by catheterization and ultrasound imaging, similar to what is done in the inflation
tests ex vivo. Examples of these studies can be found in [ZDRVB10, MBL+08,
ASK+11, Sta09] and references therein.
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Figure 1.12: Example of data ("exp") and model result with fitted constitutive
parameters ("th") for a biaxial tests of human abdominal aortas (AA) (adapted from
from [FVH11]-Figure 4). The curves are expressed in terms of the circumferential
strain λθ and stress tθθ. AA of four groups of subjects were studied: three healthy
of different ages (less than 30, between 30-60 and more than 60 years old) and one
with AA aneurism (AAA).

1.2 Coarctation of the aorta

In this section we overview some aspects about the congenital defect known as
coarctation of the aorta, and we discuss how the estimation of these properties can
help in determining the severity of the disease.

1.2.1 Description of the pathology

Coarctation of the aorta is a pathology with an occurrence around 5-8% of all
congenital heart diseases. It corresponds to a narrowing of the descending aorta
distal to the origin of the left subclavian artery (see Figure 1.13).

Pathogenesis. There is no clear evidence about which are the precise factors
that cause the aortic coarctation. However, it is generally accepted that it is related
with abnormalities in the arterial growing process and hemodynamics in the branch
point of the ductus arteriosus with the aorta during fetal development. However,
the precise etiology remains unknown. It seems to be multifactorial, with important
genetic influence as shown in the association with Turner’s, Noonan’s and 22q11
deletion syndromes [VDK+05, PMLL09].

The theory that may have better perspectives to be proved through computa-
tional modeling tools correspond to the one postulated by Hutchins in [Hut71]. It
suggests that the coarctation of the aorta is a consequence of the unbalanced blood
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!

!Figure 1.13: Examples of aortic coarctations. A. Mild narrowing, B. Moderate
narrowing, C. Tortuous aortic arch, D. Severe narrowing and collateral circulation
(from [Val12]).

flow patterns during the fetal life. In a healthy fetus the blood flow coming from the
ascending aorta exceeds the flow coming from the ductus arteriosus9, as illustrated
in Figure 1.14. In the pathological case, the hypothesis postulates that a part of
the blood from the ductus flowing upwards into the left subclavian artery. This
would produce an abnormal stress patern on the aortic wall that would promote the
genesis of the narrowing.

Pathophysiology. Due to the narrowing of the artery, coarctation of the aorta in-
duces higher pressures in the upper body and left ventricle. Typically this abnormal
hypertensive state stimulates the development of myocardial hypertrophy10, in or-
der to normalize wall stresses and maintain the cardiac output. If the hypertension
is not treated, it can lead to congestive heart failure (CHF)11.

When the disease is diagnosed during childhood or youth, patients do not usually
develop CHF due to the presence of collateral arteries before the coarctation which
help the blood to bypass the obstruction (Figure 1.13-D). Nevertheless, in all cases
low pressures distal to the narrowing affect the perfusion12 of lower extremities.

9The ductus arteriosus is a blood vessel present during fetal life that connects the pulmonary
artery to the descending aorta. Its function corresponds to allow blood to bypass the lungs (not
in function) from the right ventricle to the rest of the circulation, which is itself connected to the
circulatory system of the mother. In a normal case it closes after birth.

10Increase of diameter of the myocites (cardiac cells), and therefore a thickening of the cardiac
muscle.

11CHF is any inability of the heart to supply a sufficient amount of blood to the body.
12Delivery of arterial blood to the tissues.



22

(a) Normal aorta

(b) Aorta with coarctation

Figure 1.14: Anatomical and hemodynamical configurations following Hutchins’
theory (from [Hut71]).
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Diagnosis. The severity of the coarctation is usually assessed by imaging studies
and cardiac catheterization.

Chest radiography is useful for a preliminary assessment of signs of CHF like
cardiac hypertrophy and pulmonary edema13. Echocardiography can give an insight
into the geometry of the aorta around the coarctation region, for evaluation of the
flow pattern around obstruction, as well as for estimation of the pressure gradient
across the narrowing by solving the Bernoulli equation14. Magnetic resonance imag-
ing (MRI) can provide excellent views of the entire aorta, for both geometry and
flow, specially useful to quantify the collateral circulation. Computer Tomography
(CT) is an alternative in the presence of metal stents after coarctation repair, which
may result in artifacts in the MR-images. However, the radiation charge has to be
carefully analyzed due to future radiation-based studies during the follow-up, hence
preference to MRI should be given.

Imaging studies are sometimes not sufficient for a correct diagnosis and an as-
sessment of the pressure gradient across the obstruction is required. A peak-to-peak
systolic gradient15 larger than 20 mmHg is generally considered indicative of sig-
nificant obstruction. Nevertheless, the magnitude of the gradient is not the only
factor indicating the severity of the pathology. Others factors like the development
of collateral vessels and the stiffening of the arterial wall play a role. Hence, in
the case of severe coarctations the estimation of the aortic compliance
distribution is important for a more precise evaluation of the severity
and the possible treatments.

However, due to the catheterization procedure the gradient is measured under
general anesthesia. This is in fact not the normal patient’s status and in the pres-
ence of hypertension the response to exercise can induce additional complications.
Approximately 30% of the patients who underwent surgical repair who are nor-
motensive at rest show an hypertensive response to exercise [Val12]. However, the
clinical significance of exercise-induced hypertension is still unclear and remains a
controversial matter. Moreover, evaluating the pressure gradient during exercise
is even more challenging than during rest conditions, as it requires patient’s co-
operation and the motion may affect the accuracy of the measurements. Thus, in
some centers catheter investigations during pharmacological stress16 are performed
in order to evaluate the hemodynamics in excercise-like conditions.

Treatment. Even though there are many associated defects to the aortic coarc-
tation (aortic valve stenosis, hypertension, cardiac hypertrophy, etc), it is widely

13Accumulation of fluid in the air spaces in the lungs, and it is related to CHF when the heart
cannot adequately remove the blood from the pulmonary circulation.

14∆P = 4(V 2
pre − V 2

post) assuming measured both pre- and postcoarctation velocities Vpre and
Vpost, respectively. It assumes a stationary, irrotational fluid and no energy loss, which is far from
reality in the complex hemodynamics induced by the coarctation.

15Difference between the peak systolic pressure proximal and distal to the coarctation. It is
usually measured by catheterization.

16Administration of drugs (e.g. isopraline) for augmenting the cardiac output and frequency for
simulating the physiological effects to exercise.
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accepted that aortic obstruction is usually the major contributing factor for the
symptomatology. The American Heart Association [WWB+08] recommends inter-
vention if peak-to-peak coarctation gradient ≥ 20 mmHg, or ≤ 20 mmHg if imaging
evidence of anatomic significant coarctation with evidence of significant collateral
flow (i.e, when collateral circulation is presented as in Figure 1.13-D).

There are several intervention alternatives for treating the coarctation (see Fig-
ure 1.15):

(1) End-to-end anastomosis. It consists in a procedure where both extremes proxi-
mal and distal to the coarctation are cut, the coarctated segment removed and
the ends are sewn together.

(2) Patch aortoplasty. If the two ends of the aorta would be too far apart for
performing an anastomosis, a prosthetic patch can be used. In this case, a lon-
gitudinal incision is made along the aorta from the origin of the left subclavian
artery until the proximal descending aorta. Then, an elliptic patch of prosthetic
material is sutured.

(3) Balloon angioplasty. It corresponds to a procedure where an inflation and de-
flation of a balloon catheter inside an artery is performed, stretching the intima
and leaving a ragged interior surface. It is often considered an alternative when
recoarctation occurs, and it is popular due to its minimally invasive character.

(4) Stent placement. Stents are tubes, usually made of a metal or plastic mesh-like
material, that are placed in arteries when they become narrowed or blocked. In
the context of aortic coarctation, this procedure is generally applied in case of re-
coarctation after surgery or balloon angioplasty, in case of unfavorable anatomy
for balloon angioplasty (such as long-segment narrowing), or in case of high risk
for surgical repair. It can also serves to the treatment of aneurysms present
at the time of the intervention. However, some complications may appear in-
cluding acute rupture or dissection of the aorta, stent fracture, incomplete stent
expansion, stent migration, and thromboembolic events.

Follow up. Coarctation of the aorta is a lifelong disease, and many complications
can appear during patient’s life despite an apparent successful surgery. As with
other forms of uncontrolled hypertension, patients may be at risk for premature
atherosclerosis, ventricular disfunction, growing and rupture of cerebral aneurysm,
and recoarctation. Thus, a proper follow up is vital for prematurely detecting com-
plications of the disease.

1.2.2 Relevance of the arterial stiffness estimation

A number of mechanisms have been proposed to explain hypertension at rest and
during and following exercise in individuals with apparently successful coarctation
repair. The existence of abnormalities in vascular structure and function which
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(a) End-to-end anastomosis (b) Patch aortoplasty

(c) Balloon angioplasty (d) Stent placement

Figure 1.15: Different types of interventions for the coarctation of the aorta ((a)
and (b) from [GJDB08], (c) from [amh07] and (d) from [ESP+05]).
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are not apparent from image analysis is the prevailing theory and has gained most
research attention.

Several studies have evidenced increased aortic stiffness in individuals with re-
paired coarctation proximal to the site of the narrowing, without manifestation of
recoarctation (see for example [Pro09] and references therein). In contrast, the de-
scending aorta has been shown to have normal compliance (compared to healthy
control individuals). This stiffening pattern is supported by histological evidence
of increased percentage of collagen in the aortic wall and carotid arteries proximal
but not distal to the coarctation. Moreover, the increased stiffness may remain un-
til the adult life if repair is performed late (end of youth), and it can be present
even in cases where no hypertension or other cardiovascular alterations appear. In
addition, the amount of pre-surgical exposure to high pressures and flows proximal
to narrowing may play a role in the elevated stiffness after repair.

Many of the measurements of the stiffness are obtained with quantities measured
at different sites. For example, when the PWV (see Section 1.1.3) is measured in two
points of the vessels far from each other, or when the pressure does not correspond to
the same location of the deformation measurements in the case of the distensibility.
Even though local measurements of stiffness using invasive pressure measurements
are clinically feasible in some patients, these are usually restricted to few locations.
Additionally, at the same time one would like to reduce the number and complexity
of invasive data acquisitions.

Computational modeling has already shown a great potential to better un-
derstand the biomechanics involved in the coarctation of the aorta (see, e.g.,
[Pou07, LAVC+11, WSC+12]). However, assimilation of clinical data is a crucial
step to increase the model reliability and hence to obtain several quantities of inter-
est in silico. In particular, the usage of coupled fluid-structure models seems to be
the most appropriate choice. Set-up appropriately, they can give a dynamic, three-
dimensional distribution of quantities like blood pressure, stresses and mechanical
properties in the aortic wall.

Despite the enormous progress achieved in the numerical resolution of coupled
fluid-solid models in the last years, to the beginning of this thesis there was almost
no work geared to their biophysical personalization using available clinical data.
These data can be used for a more accurate estimation of models’ outcome and the
assessment of uncertain physical parameters, like the arterial stiffness distribution.

1.3 Thesis overview

In this thesis we deal with the simulation of fluid-structure systems arising in
hemodynamics, with a special interest in data assimilation and simulations in phys-
iological regimes. The document is divided in three main parts.

Part I (consisting only of a single chapter) presents the three-dimensional (3D)
fluid-structure interaction equations, together with the lumped parameter models
(0D) used as boundary conditions in the fluid. The main purpose is to formulate and
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analyze a new numerical scheme for the 3D-0D coupling, when the 3D part is solved
within a Chorin-Temam scheme. Both pure fluid and fluid-structure interaction
cases are considered.

Part II is devoted to data assimilation techniques in fluid-structure interaction
in hemodynamics based on sequential procedures. Chapter 3 deals with parameter
estimation using a nonlinear Kalman filtering technique, whereas Chapter 4 focuses
on the state estimation using Luenberger observers.

Finally, Part III is devoted to the application of the nonlinear Kalman filter
using measured data from real physical problems. In Chapter 5 we perform the esti-
mation of stiffness parameters of a silicone rubber vessel from MR-images, whereas
in Chapter 6 we present the forward and inverse analysis (with synthetic and clinical
data) in a real patient aorta.

1.3.1 Fluid-structure interaction in hemodynamics (Part I)

Mathematical model. We deal with the numerical resolution and the data assim-
ilation of the mechanical interaction between an incompressible fluid and an elastic
structure. The fluid is described by the Navier-Stokes equations (NSE), in a moving
domain Ωf = Ωf(t) ⊂ Rd, d = 2, 3, in an Arbitrary Lagrangian Eulerian (ALE)
formulation, and the structure by the elastodynamic equations in Ωs = Ωs(t) ⊂ Rd.
The fluid-structure interface is denoted by Σ = ∂Ωs ∩ ∂Ωf and ∂Ωf = Γin ∪Γout ∪Σ

are given partitions of the fluid and solid boundaries, respectively (see Figure 1.16).

Ωs ( t)Σ ( t)ΣΩs

Ωf Ωf ( t)

Γ in
A ( · , t )

Γ inΓ out
Γ out

Γ n

Γ d

Γ n

Γ d

Figure 1.16: Domain of the fluid-structure coupled problem at time t.

The coupled FSI problem reads as follows: for t > 0, find the fluid velocity
uf(t) : Ωf(t) → Rd, the fluid pressure p(t) : Ωf(t) → R, the structure displacement
ys(t) : Ωs(t)→ Rd and structure velocity us(t) : Ωs(t)→ Rd such that
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• Fluid equations:
ρf
∂uf

∂t

∣∣∣
ξ

+ ρf(uf −w) ·∇uf −∇ · σf(uf , p) = 0, in Ωf ,

∇ · uf = 0, in Ωf ,

uf = uin, on Γin,

σf(uf , p) · nf = −P nf , on Γout.

(1.6a)

with σf(uf , p) = −p1 + 2µf ε(uf), where ε(uf) denotes the deformation rate
tensor, µf the dynamic viscosity, and ∂

∂t

∣∣
ξ
the ALE derivative (see e.g. [FG09]).

In the hemodynamics problems considered in this work, the outlet pressure P
is obtained by solving the differential-algebraic equation

P = π +RpQ,

Cd
dπ

dt
+

π

Rd
=

∫
Γout

uf · nf dΓ
(1.6b)

Here, the distal resistance Rd, the proximal resistance Rp and the capacitance
Cd are assumed to be given. This “zero-dimensional” equation is known as
the three-element Windkessel model (see for example [FQV09]). It represents
the resistance to the flow (Rp and Rd) and the compliance (C) of the vessels
beyond the three-dimensional vasculature considered in the simulation.

• Structure equations:
∂tys = us, in Ωs,

ρs∂tus − ηs∇ · σs(us, θs)−∇ · σs(ys, θs) = 0, in Ωs,

ys = yin, on Γd,

ηsσs(us, θs)ns + σs(ys, θs)ns = −cΓus − kΓys, on Γn,

(1.6c)

with σs(ys, θs) the stress tensor of the solid, which will be considered linear
or nonlinear along this thesis. The vector θs ∈ Rps notes the set of solid
constitutive parameters. The parameters cΓ and kΓ model in a simply way
the external tissue effect on the vessel of interest, see for example [MXA+11].

• Coupling conditions:
yf = ExtfΣ0

(
ys|Σ0

)
, w = ∂tyf , Ωf(t) =

(
IΩf

0
+ yf(t)

)
(Ωf

0),

uf = us, on Σ,

ηsσs(us) · ns + σs(ys) · ns + σf(uf , p) · nf = 0, on Σ ,

(1.6d)

with ExtfΣ0
an extension operator from Σ0 to Ωf

0.

This problem is completed with appropriate initial conditions: velocity uf(0), do-
main displacement yf(0) and Windkessel’s pressure π(0) for the fluid, initial velocity
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us(0) and displacement ys(0) for the solid.

Coupling schemes between the 0D models and the 3D-NSE in projection
formulation (Chapter 2). Independent of the numerical method used to solve
the NSE, there are basically two approaches to include the 0D models as boundary
conditions. The simplest way is, for example, to compute the pressures of the 0D
part explicitly, namely using the flow of the 3D velocity field from the previous time
step. However, it is well known that this approach can lead to numerical instabilities
when backflow occurs, forcing to use smaller simulation time steps.

One possibility to overcome this is to solve the 3D and 0D monolithically. This
implies either to sub-iterate between both models or to include both equations sys-
tems (after space-time discretization) in the same system. The first alternative can
lead to a prohibitive number of sub-iterations to reach convergence when the algo-
rithm is not appropriately chosen (see for example [MBDQ11]). The second leads
to nonlocal relations between the degrees-of-freedom which could be difficult to im-
plement due to the restrictions in the matrix structure in some codes (see, e.g.,
[MVCFM12]).

All previous studies are based in a monolithic velocity-pressure resolution of the
NSE, i.e., where the flux at the 3D-0D interface can be directly computed from the
3D velocity field. In contrast, in this work we analyze the 0D-3D coupling when of a
Chorin-Temam projection method is used to solve the incompressible NSE [Cho68,
Tem69]. This approach consists in splitting the time iteration in two substeps. First,
an advection-diffusion problem is solved to compute an approximation of the velocity
field, which is not divergence-free. Then, a suitable pressure field is recovered by
projecting the previously computed velocity onto a divergence-free space, and the
divergence-free (also called end-of-step) velocity field can be obtained a posteriori.
Doing so, the computational gain is obvious with respect to a monolithic velocity-
pressure method. The fractional step nature of this scheme can also be exploited in
the FSI framework [FGG07].

In the context of the projection method, we call the type of 3D-0D coupling
explicit, when the Dirichlet boundary condition for the pressure projection step is
obtained independent of the unknown pressure field. First, for the pure NSE (i.e.,
Equations (1.6) with ys = us = 0), we present in particular the case when this
value is obtained by solving the 0D model using the flux of the previously computed
viscous velocity. We show here that dealing with single outlet geometries, this does
not compromise stablity of the NSE since the energy computation of the 3D part
does not include the imposed pressure. However, in the case of multiple outlets (as
in patient-specific geometries), the stability condition of the 3D part depends on
the imposed pressures at the outlets and hence the explicit coupling can become
unstable.

Therefore, we introduce and analyze a semi-implicitly coupled pressure-flux for-
mulation, which yields unconditional stability in the energy norm (up to the convec-
tion) based on the relation between pressure gradient, the viscous and the end-of-
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step velocity. From the algorithmic point of view, it involves one additional pressure
degree-of-freedom (dof ) per outlet (with respect to the explicit approach), resulting
in a nonlocal coupling for the outlet dofs only in the additional equations.

Furthermore, we study the extension of the formulation to fluid-structure inter-
action problems. Here we show that the explicit formulation introduces an artifi-
cial energy to the system even in the single-outlet geometries, whereas the implicit
scheme remains stable as before.

The theoretical results will be confirmed on two numerical examples. For the
pure NSE we use a patient specific aortic geometry obtained by magnetic resonance
imaging. The second example corresponds to an idealized aortic aneurism geometry
with realistic imposed velocity profile and outlet Windkessel parameters.

1.3.2 Data assimilation in fluid-structure interaction (Part II)

Basic data assimilation concepts. A physical system like blood flowing in a
compliant artery can be observed through various measurement modalities: artery
wall movements obtained from three-dimensional or multi-slice dynamic medical
imaging – computed tomography (CT), magnetic resonance imaging (MRI) or ultra-
sound (US) – cross section blood flow rates by Phase Contrast MRI or US, pressure
in few points provided by a catheter, etc. These measurements are usually limited to
a few locations in space, and typically come from different cardiac cycles (in this case
they are resynchronized with the electrocardiogram). They are of course subject to
noise and their postprocessing can introduce some further inaccuracies. Moreover,
only a limited number of physical quantities can be simultaneously obtained. An
example of current data acquisition possibilities is shown in Figure 1.17.

The physical system of interest, in this case a blood vessel, can also be repre-
sented by mathematical models like Equations (1.6). In that case, many quantities
– displacement, velocity, pressure, stress – are available in “all” locations and at
“any” time instant. But of course, the model itself contains approximations – due
for example to the modeling choices and the numerical solution – and relies on
parameters that are not perfectly known. Typically in FSI applications in hemody-
namics, these sets of parameters, which we call θ ∈ Rp in the sequel, involves the
solid constitutive parameters θs, boundary conditions for solid (e.g., cΓ and kΓ) and
the fluid outflow parameters Rp, Rd and C. Moreover, in cardiovascular mechanics,
the initial condition cannot usually be perfectly known.

The objective of data assimilation is to take advantage of both measurements
and models. Measurements can be used to reduce the uncertainties of the model,
and the model can be used to access some “hidden” physical quantities, for example
the mechanical stress in the artery wall. Data assimilation can also be viewed as a
way to reduce the measurements noise by means of a model that takes into account
the underlying physical principles.

Assume that Equations (1.6) are already discretized in space, and we denote the
collection of space-discrete fields (ys,us,yf ,uf , π) as state X(t) ∈ RN satisfying the
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Figure 1.17: Measurements available for the study case 10 of the euHeart database.
Static segmentation (pink geometry); dynamic segmentation (green geometry); inva-
sive pressure measurements at three locations: ascending (red), descending (green)
and abdominal (blue) aorta; and In-Plane velocity measurements. Courtesy of
I. Valverde (King’s College of London), D. Barber and C. Staicu (University of
Sheffield).

dynamics
Ẋ = A(X, θ), (1.7)

and a given initial condition X(0). Note that orders of magnitude of N and p are
typically a few hundreds of thousands and a dozen respectively.

The measurements Z(t) are defined by an observation operator H(t) applied to
the state X(t) so that it holds

Z(t) = H(X) + ζZ ,

where ζZ represents the (additive) noise of the measurement device as well as the
inaccuracy resulting from the discretizations. These measurements are assumed to
be available at every simulation time step. When this is not the case, they are given
by an interpolation in time.

Data assimilation techniques usually consists of minimizing a cost function like:

J(X̂(0), θ) =

∫ T

0
‖Z −H(X̂)‖2W−1 dt+ ‖θ − θ̂0‖2(P θ0 )−1 + ‖X̂(0)− X̂0‖2(PX0 )−1 ,

with X̂ satisfying (1.7). In this expression, X̂0 and θ̂0 are given a priori values
for the initial condition and parameters, and ‖ · ‖W−1 , ‖ · ‖(PX0 )−1 and ‖ · ‖(P θ0 )−1

denote some norms used to measure the observations, the state and the parameters,
respectively. These norms allow to give a different weight to the different terms and
therefore account for the “confidence” in the different quantities. From a statistical
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viewpoint, the “confidence” can be viewed as the inverse of covariance matrices (W ,
PX0 and P θ0 ), which explains the notation.

Defining ζX = X̂(0)− X̂0, ζθ = θ− θ̂0, the optimization problem reads (keeping
the same notation J for the cost function):

J(ζX , ζθ) =

∫ T

0
‖Z −H(X̂)‖2W−1 dt+ ‖ζθ‖2

(P θ0 )−1 + ‖ζX‖2
(PX0 )−1 . (1.8)

This minimization problem can be addressed by many techniques that are classi-
cally divided in two groups: the variational and the sequential approaches. The
variational approach consists of minimizing this cost function by an optimization
algorithm that is usually based on the computation of its gradient, obtained by
solving an adjoint model (see e.g. [BK89, Cha09]). In this work we will focus on the
sequential approaches, also known as filtering, which modify the forward dynam-
ics with a correction term that takes into account the discrepancy between actual
measurements and observations generated by the model:

˙̂
X = A(X̂, θ) +K(Z −H(X̂)), X̂(0) = X̂0, (1.9)

where X̂ is called estimator of X, and the quantity Z − H(X̂) is known as the
innovation, the operator K depends on the method. Note that Equation (1.9)
considers only an uncertainty in the initial condition. In the case where θ has also
to be included in the estimation procedure, the filtered dynamics can be written in
a similar way by defining an extended estimator X̂e = (X̂, θ̂) and its corresponding
dynamics by

˙̂
Xe = Ae(X̂e) +Ke(Z −H(X̂)), X̂e(0) = (X̂0, θ̂0). (1.10)

Note that the innovation still includes the original state only since dynamical mea-
surements of the parameters are typically not available. Moreover, even if the pa-
rameter θ do not evolves in time, the estimated value θ̂ does.

Nonlinear Kalman filtering in FSI (Chapter 3). The most famous sequential
approach is the Kalman filter [KB61]. On a given time interval [0, T ], and if all the
operators are linear, the variational method (namely the minimization of functional
(1.8)) and the Kalman filter algorithm turn out to give the same estimation at
t = T . Concerning the computational complexity, whereas the variational method
has to solve several forward and adjoint problems on the whole interval [0, T ], the
estimation in the sequential algorithm is computed by solving only once the filtered
dynamics (1.9). However, the optimal operator K is determined by operations
(multiplications, inversions, etc.) involving full matrices of the size of the state and
the observations, which makes Kalman-based filters prohibitive for discrete problems
derived from partial differential equations (PDEs).

For these reasons, data assimilation of distributed mechanical systems are usually
based on variational methods. Particularly in FSI for hemodynamics, this approach
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has been investigated for simplified models in [Lag99, MCDG05, Sta09], and for
three-dimensional problems in [DMP+11, PVV11] by modifying the minimization
problem in order to avoid the resolution of the adjoint equations.

In Chapter 3 we deal with the application to FSI problems of the reduced order
Unscented Kalman Filter presented in [MC11b], intending to optimize the model
parameters for reducing error between model and measurements for all times in a
least squares sense, as for instance in Equation (1.8). It is based on the assumption
of low rank of the matrices involved in the Kalman filtering procedure, leading to
a factorized and therefore tractable form of the Kalman gain Ke. Its main features
are that it does not require any adjoint or tangent problems and it can easily be run
in parallel, which is of great interest in fluid-structure problems where the forward
simulation is already a challenge in itself. We illustrate this technique through the
estimation of the Young’s modulus of the arterial wall and the proximal Windkessel
resistance Rp in a three-dimensional idealized abdominal aortic aneurysm. The
measurements are assumed to be the nodal wall displacements. We also study the
effect of a reasonable error in the initial condition, and propose a simple way to
improve the estimation by including the Windkessel pressure π in the uncertainty
space.

Luenberger observers in FSI (Chapter 4). In the case that one has to deal
with uncertainties also in X̂(0), data assimilation methods suffer from the "curse of
dimensionality" as explained by Bellman in [Bel57], which makes them intractable
for systems coming from discretized partial differential equations. However, in
[Lue71] Luenberger introduced a new class of estimators, called observers, for which
he relaxed the optimality condition for computing the gain matrix K in the estima-
tor dynamics (1.9). There, he only bases the filter design on the requirement that
the error system X̃ = X − X̂ be asymptotically stable.

Thus, in Chapter 4 we study analytically and numerically the performance of the
observers presented in [MCLT08, MCLT09] based on displacement and velocity mea-
surements in the solid in the FSI framework. We first show that the straightforward
usage of the these estimators in FSI lead to a considerably better performance of the
displacement with respect to the velocity feedback, while in pure solid mechanics
usually the opposite occurs. After a more detailed theoretical analysis, we conclude
that the velocity feedback does not take into account (by construction) the added
mass effect. Hence, we propose a way to improve its performance by including the
added mass operator in the norm W−1. We also point out that only measurements
in the solid are not enough to stabilize the error of the whole fluid-structure system.
Hence, the design of a feedback using measurements in the fluid is needed and we
propose some fluid observers in Chapter 7.

1.3.3 Applications with real data (Part III)

In the third and final part, we apply the reduced-order Unscented Kalman Filter
with data measured from real physical systems using FSI models.
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Stiffness estimation of a silicon aortic phantom (Chapter 5). We perform
the estimation of the stiffness parameters from data coming from MR-images of a
silicone rubber aortic phantom.

We first briefly describe the experimental setup, basically consisting of MR-
compatible emulator of the cardiovascular system with a flow pump, a valve, a
silicon rubber tube, a compliance chamber and a venous return. The tube is imaged
when the pump is enforcing flow through the system. The MR-images are then
segmented obtaining a sequence of surfaces. The first one is used to build the
geometry (meshes) of the FSI model. Moreover, the measured pressures are used as
boundary conditions in the fluid.

All estimation results are reasonable in the sense that: (a) the estimation algo-
rithm always reduces the discrepancy between model and segmented surfaces (for
both linear and nonlinear solid models), (b) for pressure ranges where the linear
model is more adequate, the estimated Young’s modulus matches with the one ob-
tained from nondestructive mechanical tests, and (c) for large pressure ranges, the
estimated constitutive parameter of the linear model seems not to converge, whereas
for the nonlinear solid does.

Towards biophysical personalization of a FSI aortic model (Chapter 6).
Finally, we present the FSI analysis of a whole aorta with mild coarctation based
on clinical data.

After a presentation about the relevant aspects of the available clinical data, we
proceed with a detailed description of the FSI-model’s setup. A special attention
is dedicated to the definition of the solid boundary conditions, which are crucial to
obtain proper simulation results. In particular, the extraction of the aortic motion
close to the heart is detailed for the boundary conditions for the solid and fluid
domains. Differently to [MXA+11], where the coronary arteries are tracked from
the images, we were not able to identify some material points from the segmenta-
tion. Hence, the motion was extracted from the segmented surfaces by matching
the model’s nodes to the segmented surfaces at the solid’s inlet. Moreover, the dis-
placement field obtained at the intersection of the fluid and solid inlets were lifted
to the interior of the fluid’s inlet so that it deforms independently of the solid wall’s
dynamics. This makes the FSI simulation, in particular the ALE step, more robust
for a larger range of physical parameters.

Next, we show that, without any additional effort, the nonlinear Kalman filter
presented works also in this realistic physics using noisy synthetic measurements. In
particular, we exemplify how the time and spatial resampling impacts the estimation
results for the space distribution of the non-linear constitutive parameters.

Finally, we present some results for the same FSI-model and estimation setting
using the segmented surfaces. Even though we are aware about the model limitations
(which we describe in detail throughout the chapter), the estimation algorithm is
able to reduce the discrepancy between model and measurements. At the same time,
as for the phantom, the interpretation of the estimation results allow unmasking the
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model’s weaknesses and confirming its strengths.

1.4 Thesis context

1.4.1 The euHeart project

EuHeart (www.euheart.eu) is a european research initiative involving 17 indus-
trial, clinical and academic partners, with the goal of developing computational
tools and use patient-specific data for the personalized diagnosis and treatment of
cardiovascular diseases. Examples of the pathologies studied are heart failure, heart
rhythm disorders, coronary artery disease, and aortic disease. Key aspects of the
euHeart project are the validation and the implementation of the tools in a clinical
context.

The INRIA’s REO team was part of the Workpage 9 (together with the Uni-
versity of Sheffield, King’s College of London, HemoLab and the German Cancer
Research Center), which was geared to the analysis of aortic and valve disease. The
main focus of this thesis was the development of numerical algorithms for the data
assimilation in the aorta. Other people in REO team were involve in the simulation
of aortic valves.

Various meetings took place with several partners in order to, firstly, define the
concrete clinical questions, and secondly, to setup the different technical develop-
ments and to exchange the clinical data. In particular, as shown in Chapters 5 and
6, this fruitful collaboration allowed to validate and apply the algorithms presented
throughout the manuscript.

1.4.2 Software

As indicated at the beginning of each Chapter, the different parts of this work
were the result of an active collaboration. In particular, the following solvers were
used:

• The Navier-Stokes solver Mistral, developed by the REO team in C++.

• The structural mechanics solver Heartlab, incuding the state estimation com-
ponents, developed by the MACS team at INRIA in Matlab (The MathWorks,
Natick, MA, USA).

• The coupling between the both fluid and structural codes to perform FSI was
done using the PVM-based package masterFSI developed by the REO team
in C++.

• The parameter estimation algorithm, namely the Reduced Order Uscented
Kalman Filter, is a joint effort between the MACS and REO teams imple-
mented in the C++ and PVM-based code masterSEIK.

• Segmentation of the medical images was done using the software Shirt, devel-
oped by the Medical Physics Group at the University of Sheffield.
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• Mesh processing and edition was done using the software 3-matic (Materialise,
Leuven, Belgium), Gmsh [GR09] and self-implemented Matlab routines.

• Postprocessing was donde using Ensight (CEI Software) and Cardioviz (devel-
oped by the ASCLEPIOS team at INRIA).

Pursuing a close collaboration between the MACS and REO teams, the contribu-
tion of this work has been mainly in developing new capabilities within these codes
(mainly the new algorithm presented in Chapter 2) and coupling them in order to
allow for data assimilation in realistic fluid-structure interaction problems.



Part I

Fluid-structure interaction in
hemodynamics
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Im Reich der Natur waltet Bewegung und Tat,
im Reiche der Freiheit Anlage und Willen.

Johann W. von Goethe, “Zur Naturwissenschaft", 1823.





Chapter 2

Coupling schemes of lumped parameter
models and Navier-Stokes equations in

projection formulation

In three-dimensional (3D) blood flow simulations, lumped parameter models (0D) are
often used to model the neglected parts of the downstream circulatory system. We
analyze two 3D-0D coupling approaches in which a fractional-step projection scheme is
used in the fluid. Our analysis shows that explicit approaches might yield numerical
instabilities, particularly in the case of realistic geometries with multiple outlets. We
introduce and analyze an implicitly 3D-0D coupled formulation with enhanced stability
properties and which requires a negligible additional computational cost. Furthermore, we
also address the extension of these methods to fluid-structure interaction problems. The
theoretical stability results are confirmed by meaningful numerical experiments in patient
specific geometries coming from medical imaging.

The results presented in this chapter lead to the manuscript:
C. Bertoglio, A. Caiazzo, M.A. Fernández. Fractional-step schemes for the coupling
of distributed and lumped models in hemodynamics. Submitted to SIAM
Journal of Scientific Computing, 2012.
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2.1 Problem setting

2.1.1 Model problem

In this section, we present the continuos equations for representing the three-
dimensional (3D) fluid model, as well as the lumped parameter models (0D) used
as boundary conditions for the 3D problem.

2.1.1.1 3D fluid equations

We consider a domain Ωf ⊂ Rd (d = 2, 3) with the following partition of its
boundary

∂Ωf def
= Γin ∪ Σ ∪ Γout.

In the context of blood flow simulations, Ωf will represent the lumen of the vessel
(see Figure 2.1), with Γin, Σ and Γout denoting, respectively, the inlet, vessel wall
and outlet boundaries. The outlet boundary Γout is assumed to be made of n0D

components

Γout =

n0D⋃
l=1

Γl,

such that Γi ∩ Γj = ∅ for i, j = 1, . . . , n0D with i 6= j (see, e.g., Figure 2.1).

Ωf ΣΓ in

Γ 1

Γ 2

π1

R d ,1

C 1

R p,1

C 2

R p,2 R d ,2

π2

Figure 2.1: Fluid domain Ωf with two outlet boundaries Γout = Γ1 ∪ Γ2, (n0D = 2).

We now consider the incompressible Navier-Stokes Equations (NSE) for the ve-
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locity uf : Ωf × R+ → Rd and the pressure p : Ωf × R+ → R:
ρf
∂uf

∂t
+ ρfuf ·∇uf −∇ · σf(uf , p) = 0 in Ωf ,

∇ · uf = 0 in Ωf ,

uf = uin on Γin,

uf = 0 on Σ,

(2.1)

where ρf stands for the density of the fluid and the fluid Cauchy-stress tensor is
given by

σf(uf , p)
def
= −pI + 2µε(uf), ε(uf)

def
=

1

2

(∇uf + ∇uT
f

)
,

µ being the dynamic viscosity of the fluid and uin being a given inlet velocity field.

2.1.1.2 0D Windkessel model

For computing boundary conditions we will consider three elements Windkessel
model (see, e.g., [FQV09, Chapter 10]) where the pressure Pl : R+ → R and the flux
Ql : R+ → R on the outlet Γl are related through the following algebraic-differential
equations: Cd,l

dπl
dt

+
πl
Rd,l

= Ql,

Pl = Rp,lQl + πl,

(2.2)

for l = 1, . . . , n0D. Here, Rp,l and Rd,l model the proximal and distal vasculature,
respectively, and the capacity Cd,l, take into account the deformability of the down-
stream vessels. The values Pl and πl are also called proximal and distal pressures,
respectively.

2.1.1.3 3D-0D coupling conditions

The 3D-0D coupling between (2.1) and (2.2) is defined through the following
relations on each Γl 

Ql =

∫
Γl

uf · nf ,

σf(uf , p)nf = −Plnf on Γl,

(2.3)

for l = 1, . . . , n0D and where nf denotes the exterior unit-vector normal of Ωf .

Energy balance. Let the quantity

E(t)
def
=

ρf

2
‖uf‖20,Ωf +

n0D∑
l=1

Cd,l
2
π2
l
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denote the total (kinetic + potential) energy of the 3D-0D coupled system given by
(2.1)-(2.3), while

D(t)
def
= 2µ

∫ t

0
‖ε(uf(s))‖20,Ωf ds+

n0D∑
l=1

∫ t

0

(
π2
l (s)

Rd,l
+Rp,lQ

2
l (s)

)
ds > 0 (2.4)

represents the dissipative effects. Assuming that uin = 0 (free system) and using a
standard energy argument, we get the following identity

E(t) +D(t) +

∫ t

0

(∫
Γout

ρf

2
|uf(s)|2uf(s) · nf

)
ds = E(0). (2.5)

Remark 1
Since the last term of the right-hand side can be positive, this expression does not
guarantee a correct energy balance across the 3D-0D interface Γout. This issue is
well known in fluid mechanics, the interested reader is referred to [BGH+09] for a
stabilization technique, and to [FMN07] for different 3D-1D coupling conditions.

2.1.2 Time semi-discretization

We are interested in the numerical approximation of the coupled Equations (2.1)-
(2.3), when the incompressible NSE is solved with a projection method. In practice,
different approximations of the Windkessel fluxes Ql can be chosen, what will be
focus of Section 2.2. In this section, we summarize the projection formulation for
the NSE, and the time discretization of the Windkessel’s model.

2.1.2.1 Fractional-step fluid time-marching

In what follows, the parameter τ denotes the time-step size, we set tn
def
= nτ for

n ∈ N and ∂τx
n def

= (xn − xn−1)/τ stands for the first-order backward difference.
Several variants of the original Chorin-Temam projection scheme [Cho68, Tem69]
have been proposed in the literature (see, e.g., [GMS06] for a recent review). The
methods presented and analyzed in section 2.2 below do not a priori depend on
the specific formulation considered for the projection scheme. To fix the ideas and
without generality loss, we consider the non-incremental pressure-correction version
(see, e.g., [GMS06, Section 4]). Hence, we set ũ0

f = u0
f = uf(0) and, for n ≥ 1, we

compute (unf , p
n, ũnf ) by solving:

1. Viscous step:
ρf
ũnf − un−1

f

τ
+ ρf ũ

n−1
f ·∇ũnf − 2µ∇ · ε(ũnf ) = 0 in Ωf ,

ũnf = uin(tn) on Γin,

ũnf = 0 on Σ.

(2.6)
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2. Projection step: 
ρf
unf − ũnf

τ
+ ∇pn = 0 in Ωf ,

∇ · unf = 0 in Ωf ,

unf · nf = uin(tn) · nf on Γin,

unf = 0 on Σ.

(2.7)

For the sake of computational efficiency, the projection step (2.7) is usually
reformulated by as the pressure-Poisson problem

− τ
ρf

∆pn = −∇ · ũnf in Ωf ,

τ

ρf

∂pn

∂nf
= 0 on Γin ∪ Σ.

(2.8)

which requires further regularity on the pressure (H1(Ωf) instead of L2(Ωf) in prac-
tice). Then, the divergence free velocity unf is eliminated in (2.6) using the following
relation (from (2.7)1)

unf = ũnf −
τ

ρf
∇pn. (2.9)

2.1.2.2 Backward-Euler Windkessel time-marching

Without loss of generality, we consider a backward Euler time-discretization of
(2.2), which yields Cd,l∂τπ

n
l +

πnl
Rd,l

= Qnl ,

Pnl = Rp,lQ
n
l + πnl

(2.10)

or, equivalently, {
πnl = αlπ

n−1
l + βlQ

n
l ,

Pnl = γlQ
n
l + αlπ

n−1
l ,

(2.11)

with the notation

αl
def
=

Rd,lCd,l
Rd,l Cd,l + τ

, βl
def
= Rd,l(1− αl), γl

def
= Rp,l + βl. (2.12)

2.1.3 Spatial discretization

In what follows, we will consider the usual Sobolev space H1(Ω), for a given
domain Ω ⊂ Rd. Then, for X ⊂ ∂Ω (with meas(X) > 0), we define H1

X(Ω) the
subspace of H1(Ω) with vanishing trace on X. The scalar product in L2(Ω) is
denoted by (·, ·)Ω and its associated norm by ‖ · ‖0,Ω.

We consider a family of triangulations {Tf,h}0<h≤1 of the domain Ωf satisfying
the usual requirements of finite element approximations (see, e.g., [EG04]). The
subscript h ∈ (0, 1] refers to the level of refinement of the triangulations. In order to
ease the presentation, we assume that the family of triangulations is quasi-uniform.
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For the discretization in space of (2.1), we consider continuous Lagrange finite el-
ement approximations Vh and Nh of [H1(Ωf)]3 and H1(Ωf), respectively. Other
choices of approximation spaces are possible for the projection method (see [GQ98]
for a discussion). For a given X ⊂ ∂Ωf (with meas(X) > 0), we set

VX,h
def
= Vh ∩ [H1

X(Ωf)]d, NX,h
def
= Nh ∩H1

X(Ωf).

2.2 Fractional-step time-marching and 3D-0D coupling
schemes

In this section, we describe two coupling schemes (explicit and semi-implicit)
resulting from appropriate time discretizations of the coupling conditions (2.3).

2.2.1 Explicit 3D-0D coupling scheme

In this case the 3D-0D coupling conditions (2.3) are time discretized as follows
Qnl =

∫
Γl

ũnf · nf ,

pn = Pnl on Γl,

2µε(ũnf )nf = 0 on Γl,

(2.13)

for l = 1, . . . , n0D. Note that the continuity of fluxes (2.3)1 is treated explicitly by
using the flux of the latest computed viscous velocity. For the relation (2.3)2 we
consider a Dirichlet boundary condition for the pressure, while the viscous part of
the fluid stresses is set to zero. This is a usual procedure to decouple the projection
and viscous steps in the framework of projection schemes with natural boundary
conditions (see, e.g., [GMS06]).

The resulting fully discrete time-marching procedure is reported in Algorithm
1. In the viscous-step (2.14) we have considered the standard Temam’s consistent
term, ρf

2 ((∇ · ũn−1)ũn,v)Ωf , which stabilizes the semi-implicit treatment of the con-
vective term. The 3D-0D explicit coupling given by (2.13) allows a fully uncoupled
computation of the Windkesel state, fluid pressure and velocity. This is particularly
appealing from the implementation and computational efficiency point of view. Nev-
ertheless, as suggested in Section 2.2.1.1 below (and then confirmed by numerical
experiments in Section 2.4), Algorithm 1 may suffer from stability issues.
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Algorithm 1 Explicit 3D-0D coupling scheme

Let u0
f

def
= uf(0), ũ0

f ∈ Vh and π0
1, . . . , π

0
n0D
∈ R be given initial data. For n ≥ 1

perform:

1. Viscous step: Find ũnf ∈ VΣ,h such that
ũnf |Γin = uin(tn),
ρf

τ
(ũnf ,v)Ωf + ρf(ũ

n−1
f ·∇ũnf ,v)Ωf +

ρf

2
((∇ · ũn−1

f )ũnf ,v)Ωf

+ 2µ (ε(ũnf ), ε(v))Ωf =
ρf

τ
(unf ,v)Ωf

(2.14)

for all v ∈ VΣ∪Γin,h. Thereafter set Q̃nl
def
=
∫

Γl
ũnf · nf .

2. Windkessel step: For l = 1, . . . , n0D, compute (Qnl , π
n
l , P

n
l ) ∈ R3 from

Qnl = Q̃nl ,

Cd,l∂τπ
n
l +

πnl
Rd,l

= Qnl ,

Pnl = Rp,lQ
n
l + πnl .

(2.15)

3. Projection step: Find pn ∈ Nh such that pn|Γl = Pnl , l = 1, . . . , n0D,
τ

ρf
(∇pn,∇q)Ωf = − (∇ · ũnf , q)Ωf

(2.16)

for all q ∈ NΓout,h. Thereafter set unf
def
= ũnf + τ

ρf
∇pn ∈ [L2(Ωf)]d .

2.2.1.1 Stability analysis

Let the quantities

En
def
=
ρf

2
‖ũnf ‖20,Ωf +

n0D∑
l=1

Cd,l
2
|πnl |2,

Dn def
= 2µ

n∑
m=1

τ‖ε(ũmf )‖20,Ωf +
n−1∑
m=1

n0D∑
l=1

τ

( |πml |2
Rd,l

+Rp,l|Qml |2
)
,

for n ≥ 1, denote the energy and physical dissipation of the discrete system. Let us
also set

E0 def
=

ρf

2
‖u0

f ‖20,Ωf +

n0D∑
l=1

Cd,l
2
|πn0 |2,

We then have the following energy based result.
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Proposition 1
Let

{
(ũnf , p

n)
}
n≥1

and
{

(Qnl , π
n
l , P

n
l )1≤l≤n0D

}
n≥1

be the approximated solution
given by Algorithm 1 and assume that uin = 0 (free system). The following in-
equality holds for n ≥ 1

En +Dn +

n∑
m=1

ρf

2
τ(ũm−1

f · nf , |ũmf |2)Γout ≤ E0 −
n−1∑
m=1

τ2

2ρf
‖∇pm‖20,Ωf

+

n−1∑
m=1

τ (∇ · ũmf , φm)Ωf +

n−1∑
m=1

τ2

ρf
(∇pm,∇φm)Ωf , (2.17)

where φn ∈ Nh is an arbitrary discrete lifting of the (unknown) proximal pressures,
namely,

φn = Pnl on Γl , l = 1, . . . , n0D. (2.18)

Proof. We first test (2.14) with v = ũnf and integrate by parts the convective term.
This yields the identity

ρf

2
∂τ‖ũnf ‖20,Ωf +

ρf

2τ

∥∥ũnf − ũn−1
f

∥∥2

0,Ωf + 2µ‖ε(ũnf )‖20,Ωf

+
(∇pn−1, ũnf

)
Ωf +

ρf

2
(ũn−1

f · nf , |ũnf |2)Γout = 0 (2.19)

for n ≥ 2, and for n = 1 we get

ρf

2τ

(∥∥ũ1
f

∥∥2

0,Ωf −
∥∥u0

f

∥∥2

0,Ωf

)
+
ρf

2τ

∥∥ũ1
f − u0

f

∥∥2

0,Ωf +2µ
∥∥ε(ũ1

f )
∥∥2

0,Ωf +
ρf

2
(ũ0

f ·nf , |ũ1
f |2)Γout = 0.

(2.20)

Moreover, integration by parts in (2.16) at time step n− 1 gives

(∇pn−1,∇q
)

Ωf =
ρf

τ

(
ũn−1

f ,∇q
)

Ωf −
ρf

τ

∫
∂Ωf

ũn−1
f · nfq =

ρf

τ

(
ũn−1

f ,∇q
)

Ωf ,

since q ∈ NΓout,h and ũn−1
f ∈ VΓin∪Σ,h, for n ≥ 2. Then, testing the last equation

with q =
τ

ρf

(
pn−1 − φn−1

)
∈ NΓout,h we get

τ

ρf

∥∥∇pn−1
∥∥2

0,Ωf −
(
ũn−1

f ,∇pn−1
)

Ωf +

(
ũn−1

f − τ

ρf
∇pn−1,∇φn−1

)
Ωf

= 0.

Equivalently, we have

τ

ρf

∥∥∇pn−1
∥∥2

0,Ωf−
(
ũnf ,∇pn−1

)
Ωf +

(
ũnf − ũn−1

f ,∇pn−1
)

Ωf = −
(
ũn−1

f − τ

ρf
∇pn−1,∇φn−1

)
Ωf

.

By using the Cauchy-Schwarz inequality and an arithmetic-geometric inequality, we
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get

τ

2ρf

∥∥∇pn−1
∥∥2

0,Ωf −
ρf

2τ

∥∥ũnf − ũn−1
f

∥∥2

0,Ωf −
(
ũnf ,∇pn−1

)
Ωf

≤ −
(
ũn−1

f − τ

ρf
∇pn−1,∇φn−1

)
Ωf

. (2.21)

On the other hand, integrating by parts the first term in the right-hand side of
(2.21) and using (2.15) and (2.18), we infer that

τ

2ρf

∥∥∇pn−1
∥∥2

0,Ωf −
ρf

2τ

∥∥ũnf − ũn−1
f

∥∥2

0,Ωf −
(
ũnf ,∇pn−1

)
Ωf

≤ −
n0D∑
l=1

Qn−1
l Pn−1

l +
(∇ · ũn−1

f , φn−1
)

Ωf +
τ

ρf

(∇pn−1,∇φn−1
)

Ωf (2.22)

for n ≥ 2. As a result, the summation of (2.19) and (2.22) gives

ρf

2
∂τ‖ũnf ‖20,Ωf + 2µ‖ε(ũnf )‖20,Ωf +

ρf

2
(ũn−1

f · nf , |ũnf |2)Γout

≤ − τ

2ρf

∥∥∇pn−1
∥∥2

0,Ωf +
(∇ · ũn−1

f , φn − 1
)

Ωf +
τ

ρf

(∇pn−1,∇φn−1
)

Ωf−
n0D∑
l=1

Qn−1
l Pn−1

l

(2.23)

for n ≥ 2. At last, we multiply (2.15)2 at n− 1 by πn−1
l to obtain

Cd,l
2
∂τ |πnl |2 +

Cd,l
2
|πnl − πn−1

l |2 +
1

Rd,l
|πnl |2 = Qnl π

n
l , (2.24)

which combined with (2.15)3 yields

Cd,l

2
∂τ |πn−1

l |2 +
1

Rd,l
|πn−1
l |2 +Rp,l|Qn−1

l |2 ≤ Qn−1
l Pn−1

l . (2.25)

We now proceed by inserting (2.25) into (2.23), multiplying by τ and summing
over m = 2, ..., n. This yields the following estimate

En +Dn +
n∑

m=2

ρf

2
τ(ũm−1

f · nf , |ũmf |2)Γout ≤ E1 −
n−1∑
m=1

τ2

2ρf
‖∇pm‖20,Ωf

+
n−1∑
m=1

τ (∇ · ũmf , φm)Ωf +
n−1∑
m=1

τ2

ρf
(∇pm,∇φm)Ωf

for n ≥ 2. The estimate (2.17) is then recovered by simply adding to this inequality
the expression (2.20) multiplied by τ , which completes the proof.

The left-hand side of estimate (2.17) corresponds to the discrete counterpart of
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(2.5). Nevertheless, the artificial power introduced by the last two terms of (2.17),

n−1∑
m=1

τ (∇ · ũmf , φm)Ωf +

n−1∑
m=1

τ2

ρf
(∇pm,∇φm)Ωf , (2.26)

cannot be controlled, so that this estimate does not guarantee the energy stability
of the approximations provided by Algorithm 1. Two remarks are now in order.

Remark 2
It is worth mentioning that the term (2.26) corresponds to the residual of the pro-
jection step (2.16) (note that φn /∈ NΓout,h). In fact, for the space continuous
counterpart of (2.16) we have

(∇ · ũnf , φn)Ωf +
τ

ρf
(∇pn,∇φn)Ωf =

τ

ρf

∫
Γout

∂pn

∂nf
φn

= −
n0D∑
l=1

(∫
Γl

unf · nf −
∫

Γl

ũnf · nf

)
Pnl .

Hence, the uncontrolled artificial power involved in the energy estimate (2.17) is
due to the time-lag in the flux (

∫
Γl
ũnf · nf instead of

∫
Γl
unf · nf) introduced by the

explicit treatment of the continuity of fluxes (2.13)1 on the 3D-0D interfaces Γl.

Remark 3
In the case of a single outlet (i.e., n0D = 1), we can take φn = Pn in Ωf , so that the
right hand-side of (2.21) vanishes. From the proof of Proposition 1 we then recover
the following energy estimate for the fluid

ρf

2
‖ũnf ‖20,Ωf + 2µ

n∑
m=1

τ‖ε(ũmf )‖20,Ωf +
n∑

m=1

ρf

2
τ(ũm−1

f · nf , |ũmf |2)Γout

≤ ρf

2
‖u0

f ‖20,Ωf −
n−1∑
m=1

τ2

2ρf
‖∇pm‖20,Ωf .

As a result, the energy stability of the fluid does not depend on the imposed outlet
pressure.

2.2.2 Semi-implicit 3D-0D coupling scheme

In this case the 3D-0D coupling conditions (2.3) are time-discretized as follows
Qnl =

∫
Γl

unf · nf ,

pn = Pnl on Γl,

2µε(ũnf )nf = 0 on Γl,

(2.27)

for l = 1, . . . , n0D. Note that, in comparison with (2.13), the above coupling scheme
treats implicitly the continuity of fluxes on the outlet boundaries. This feature en-
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hances stability, as we will show in Section 2.2.2.1. However, from the computational
point of view, the relations (2.27)1,2 and (2.10) apparently couple the evaluation of
(2.8) and (2.9). Fortunately, this difficulty can be circumvented via an appropri-
ate reformulation of the pressure (2.27)2 boundary condition for the projection step
(2.8). Indeed, by inserting (2.9) into (2.27)1, we get

Qnl = Q̃nl −
τ

ρf

∫
Γl

∂pn

∂nf
, (2.28)

which with (2.11) and (2.27)2 yields the following (implicit) boundary condition for
the outlet pressures:

pn|Γl = γlQ̃
n
l −

γlτ

ρf

∫
Γl

∂pn

∂nf
+ αlπ

n−1
l (2.29)

for l = 1, . . . , n0D. Note that this expression still enforces pn to be constant on each
Γl.

Multiplying (2.8)1 by q ∈ Nh, integrating by parts, using (2.8)1 and the fact
that q|Γl is constant, we get

τ

ρf
(∇pn,∇q)Ωf − τ

ρf

n0D∑
l=1

(∫
Γl

∂pn

∂nf

)
q|Γl = − (∇ · ũnf , q)Ωf

for all q ∈ Nh. We can eliminate the normal derivative of the pressure using (2.29),
which yields the following modified variational formulation for the projection step:
Find pn ∈ Nh such that

τ

ρf
(∇pn,∇q)Ωf +

n0D∑
l=1

(pn|Γl)(q|Γl)
γl

=

n0D∑
l=1

(
Q̃nl +

αlπ
n−1
l

γl

)
q|Γl − (∇ · ũnf , q)Ωf

(2.30)
for all q ∈ Nh. We can then set Pnl = pn|Γl and retreive (Qnl , π

n
l ) from (2.11), for

l = 1, . . . n0D.

Remark 4
The well-posedness of the pressure-Poisson problem (2.30) follows from a generalized
Poincaré’s inequality, which guarantees the coercivity of the left-hand side of (2.30)
in Nh.

Remark 5
Testing (2.30) with q = 1, and since Pnl = pn|Γl , we have

n0D∑
l=1

Pnl − αlπn−1
l

γl
=

n0D∑
l=1

Q̃nl +

∫
Ωf

∇ · ũnf .

Hence, integrating by parts in the last term, using (2.11)2 and owing to (2.6)2,3 we
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get the following mass conservation for the Windkessel fluxes:

n0D∑
l=1

Qnl = −
∫

Γin

uin(tn).

The complete time-marching procedures is reported in Algorithm 2.

Algorithm 2 3D-0D semi-implicit coupling scheme
Let u0

f = uf(0), ũ0
f ∈ Vh, and π0

1, . . . , π
0
n0D
∈ R be given initial data. For n ≥ 1

perform:

1. Viscous step: Find ũnf ∈ VΣ,h such that
ũnf |Γin = uin(tn),
ρf

τ
(ũnf ,v)Ωf + ρf(ũ

n−1
f ·∇ũnf ,v)Ωf + 2µ (ε(ũnf ), ε(v))Ωf

+
ρf

2
((∇ · ũn−1

f )ũnf ,v)Ωf =
ρf

τ

(
un−1

f ,v
)

Ωf

(2.31)

for all v ∈ VΣ∪Γin,h. Thereafter set Q̃nl
def
=
∫

Γl
ũnf · nf .

2. Projection-Windkessel step: Find pn ∈ Nh and such that

τ

ρf
(∇pn,∇q)Ωf +

n0D∑
l=1

(pn|Γl)(q|Γl)
γl

=

n0D∑
l=1

(
Q̃nl +

αlπ
n−1
l

γl

)
q|Γl − (∇ · ũnf , q)Ωf

(2.32)
for all q ∈ Nh. Thereafter, set Pnl = pn|Γl and compute (Qnl , π

n
l ) ∈ R2 from

the relations

Qnl =
Pnl − αlπn−1

l

γl
, πnl = αlπ

n−1
l + βlQ

n
l , l = 1, . . . n0D (2.33)

and set unf
def
= ũnf − τ

ρf
∇pn ∈ [L2(Ωf)]d.

2.2.2.1 Stability analysis

The focus of this section is to present the stability result of the formulation
(2.31)-(2.33) summarized in the following proposition.

Proposition 2
Let

{
(ũnf , p

n)
}
n≥1

and
{

(Qnl , π
n
l , P

n
l )1≤l≤n0D

}
n≥1

be the approximated solution
given by Algorithm 2 and assume that uin = 0 (free system). The following energy
inequality holds

En +Dn +
n∑

m=1

ρf

2
(ũm−1

f · nf , |ũmf |2)Γout ≤ E0 −
n−1∑
m=1

τ2

2ρf
‖∇pm‖20,Ωf . (2.34)
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Proof. We proceed as in the proof of Proposition 1. Testing the viscous step (2.31)
with v = ũnf yields

ρf

2
∂τ‖ũnf ‖20,Ωf +

ρf

2τ

∥∥ũnf − ũn−1
f

∥∥2

0,Ωf + 2µ‖ε(ũnf )‖20,Ωf

+
(∇pn−1, ũnf

)
Ωf +

ρf

2
(ũn−1

f · nf , |ũnf |2)Γout = 0 (2.35)

for n ≥ 2 and, for n = 1, we get

ρf

2τ

(∥∥ũ1
f

∥∥2

0,Ωf−
∥∥u0

f

∥∥2

0,Ωf

)
+
ρf

2τ

∥∥ũ1
f − u0

f

∥∥2

0,Ωf +2µ
∥∥ε(ũ1

f )
∥∥2

0,Ωf +
ρf

2
(ũ0

f ·nf , |ũ1
f |2)Γout = 0.

(2.36)

Thereafter, taking (2.32) at time step n−1, testing with q = τ
ρf
pn−1 and integrating

by parts in its right-hand side it yields

τ

ρf

∥∥∇pn−1
∥∥2

0,Ωf +

n0D∑
l=1

Pn−1
l − αlπn−2

l

γl
Pn−1
l =

(
ũn−1

f ,∇pn−1
)

Ωf .

for n ≥ 2. Hence, the addition and subtraction of suitable terms and the application
of the Cauchy-Schwarz and arithmetic-geometric inequalities yields

τ

2ρf

∥∥∇pn−1
∥∥2

0,Ωf−
ρf

2τ

∥∥ũnf − ũn−1
f

∥∥2

0,Ωf−
(
ũnf ,∇pn−1

)
Ωf +

n0D∑
l=1

Pn−1
l − αlπn−2

l

γl
Pn−1
l ≤ 0.

(2.37)
As a result, the summation of (2.35) and (2.37) gives

ρf

2
∂τ‖ũnf ‖20,Ωf + 2µ‖ε(ũnf )‖20,Ωf +

ρf

2
(ũn−1

f · nf , |ũnf |2)Γout

+

n0D∑
l=1

Pn−1
l − αlπn−2

l

γl
Pn−1
l ≤ − τ

2ρf

∥∥∇pn−1
∥∥2

0,Ωf (2.38)

for n ≥ 2. At last, from (2.33) and its equivalence to (2.11), we have

Pnl − αlπn−1
l

γl
Pnl = Qnl P

n
l = Rp,l|Qnl |2 +Qnl π

n
l

≥ Cd,l
2
∂τ |πnl |2 +

1

Rd,l
|πnl |2 +Rp,l|Qnl |2

(2.39)

for n ≥ 1. Hence, by inserting the last inequality of (2.39) into (2.38), multiplying
by τ and summing over m = 2, ..., n we get the estimate

En +Dn +
n∑

m=2

ρf

2
(ũm−1

f · nf , |ũmf |2)Γout ≤ E1 −
n−1∑
m=1

τ2

2ρf
‖∇pm‖20,Ωf .



54

for n ≥ 2. We recover the estimate (2.34) by simply adding to this inequality the
expression (2.36) multiplied by τ , which completes the proof.

The estimate (2.34) corresponds to the discrete counterpart of (2.5). Note that
the right-hand side of (2.34) is a pure numerical dissipation term (the natural pres-
sure stabilization of the projection scheme). Therefore, the 3D-0D coupling reported
in Algorithm 2 does not introduce any uncontrolled artificial power and, hence, a
guaranty of numerical stability. This feature will be illustrated in Section 2.4 via
numerical experiments.

2.2.2.2 Implementation issues

In this section we discuss some issues concerning the computer implementation
of the pressure problem (Equation (2.32)) in a finite element framework. For the
sake of simplicity, and without loss of generality, we discuss the case of a single
outlet.

We define the arrays P, V ∈ RN corresponding to the degrees of freedom (dofs)
of the pressure pn ∈ Qh and of a general test function q ∈ Qh, respectively. The
bilinear form (∇pn,∇q)Ωf , without imposing Dirichlet boundary conditions for pn,
can be written in matrix form as

(∇pn,∇q)Ωf = V TAP =
[
V T
I V T

O

] [AII AIO
AOI AOO

] [
PI
PO

]
,

where the subindexes O and I indicate the elements of the array corresponding to
the dofs on Γout and Ω̄\Γout, respectively. Then, the pressure projection step with
explicit Dirichlet boundary conditions can be formulated as

AIIPI = F̃I −AIO1O pn|Γout (2.40)

where the right hand side is defined as

[
V T
I V T

O

] [ F̃I
F̃O

]
=
ρf

τ
(∇ · ũnf , q)Ωf ,

and 1O ∈ RNO denotes a vector of ones, NO being the number of pressure dofs on
Γout. This system is usually solved by means of a preconditioned conjugate gradient
methods (PCG), with the preconditioning operator Â−1

II chosen, for example, as an
incomplete Cholesky factorization.

With the notations introduced above, the matrix formulation for the semi-
implicit formulation (2.32) is straightforward. Since

VO = 1Oq|Γout , PO = 1Op
n
|Γout ,
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we obtain [
AII a

aT b

] [
PI
pn|Γout

]
=

 F̃I

1
T
OF̃I +

ρf

τ

(
Q̃n +

απn−1

γ

) (2.41)

with
a = AIO1O, b = 1

T
OAOO1O +

ρf

τ γ
.

It is worth noticing that the resulting matrix in (2.41) does not have a sparse
structure of a finite element matrix. In our numerical experiments, we used a pre-
conditioner defined as [

Â−1
II 0

0 b−1

]
,

which yielded practically the same number of PCG-iterations to solve problem (2.41)
with respect to the explicit case (2.40).

In the general case of a domain Ωf with multiple outlets, the aforementioned
considerations can be extended by considering one additional equation for each
outlet.

Concerning the computational cost, in our numerical simulations we did observe
any relevant difference between the implicit and the explicit coupling.

2.2.2.3 Extension to higher order time-splitting schemes

Although widely used in practice, the original Chorin-Temam projection scheme
might suffer of a limited accuracy in time and of spurious boundary layers, due to
the unphysical homogenous Neumann boundary condition (2.8)3. Among the several
variants available (see e.g. [GMS06] for an overview), in this section we describe a
possible extension of the implicit 3D-0D coupling (Algorithm 2) in the context of
an incremental pressure projection scheme with a second order time discretization.

Following [GMS06], we decompose now the time iteration in a BDF2 time dis-
cretization for the viscous step:
ρf

(
3ũnf − 4un−1

f + un−2
f

)
2τ

+ ρf ũ
n−1
f ·∇ũnf − 2µ∇ · ε(ũnf ) +∇pn−1 = 0 in Ωf ,

ũnf = uin(tn) on Γin,

ũnf = 0 on Σ,

2µε(ũnf )nf = 0 on Γout,

a projection step for the increment of pressure
− τ
ρf

∆δpn = −3

2
∇ · ũnf in Ωf ,

τ

ρf

∂δpn

∂nf
= 0 on Γin ∪ Σ,

δpn = Pnl − Pn−1
l on Γl, l = 1, . . . , n0D
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completed by the end-of-step updates:

pn = pn−1 + δpn, unf = ũnf −
2τ

3ρf
∇δpn.

In order to have a second-order time-discretization for the whole 3D-0D problem,
we also discretize the 0D model with a BDF2 scheme, namely

πnl = α̂lπ
n−1
l − ψ̂lπn−2

l + β̂lQ
n
l , Pnl = γ̂lQ

n
l + α̂lπ

n−1
l − ψ̂lπn−2

l , (2.42)

with

α̂l
def
=

2Rd,lCd,l

(3/2)Rd,lCd,l + τ
, ψ̂l

def
=

α̂l
4

, β̂l
def
=

Rd,lτ

(3/2)Rd,lCd,l + τ
, γ̂l

def
= Rp,l + β̂l.

Hence, using Equation (2.42)2 to define the implicit coupling with the projection
step, we obtain the following time-stepping method:

1. Viscous step: Find ũnf ∈ VΣ,h such that
unf |Γin = uin(tn),
ρf

2τ
(3ũfn,v)Ωf + ρf(ũ

n−1
f ·∇ũnf ,v)Ωf + 2µ (ε(ũnf ), ε(v))Ωf

+
ρf

2
((∇ · ũn−1

f )ũnf ,v)Ωf = − (∇pn,v) +
ρf

2τ

(
4un−1

f − un−2
f ,v

)
Ωf

for all v ∈ VΣ∪Γin,h. Thereafter set Q̃nl
def
=
∫

Γl
ũnf · nf .

2. Increment-Windkessel step: Find δpn ∈ Rh and such that

τ

ρf
(∇δpn,∇q)Ωf +

n0D∑
l=1

(δpn|Γl)(q|Γl)
γ̂l

=

n0D∑
l=1

(
Q̃nl +

α̂lπ
n−1
l − ψ̂lπn−2

l − Pn−1
l

γ̂l

)
q|Γl − (∇ · ũnf , q)Ωf

for all q ∈ Rh.

3. End-of-step: Set pn def
= pn−1 + δpn, unf

def
= ũnf −

2τ

3ρf
∇δpn ∈ [L2(Ωf)]d, Pnl =

pn|Γl and compute (Qnl , π
n
l ) ∈ R2 from the relations (2.42).

Remark 6
It is well known that the stability of pressure-incremental projection scheme is only
assured if the finite element spaces for velocity and pressure satisfy an inf-sup con-
dition (see [GMS06] for an extended discussion).
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2.2.2.4 Extension to more complex lumped parameter models

The algorithm and analysis presented above can be straightforwardly extended
to more complex networks of lumped parameter models, namely a network of resis-
tances, capacitances, and inductances. This can be for example obtained by con-
necting many Windkessel elements to eachother, when several components of the
cardiovascular system are included in the model, see e.g. [SLH11, KS06, MVCFM12]
and references therein.

Let us consider the following general lumped parameter model
C

dP

dt
+RP = Q+HΨ

L
dΨ

dt
= −HᵀP

(2.43)

with
P ᵀ =

[
P1 . . . Pn0D π1 . . . πnπ

]
the collection of outlet Pl, l = 1, . . . , n0D and distal pressures πj , j = 1, . . . , nπ, and
Ψ are the fluxes through the inductances, both representing the dynamical state of
the lumped parameter model. Moreover, we assume that Q(t) ∈ Rnp has the form

Qᵀ =
[
Q1 . . . Qn0D 0 . . . 0

]
.

with Ql the input flux at the outlet Γl.

In Equation (2.43) C ≥ 0, R,L > 0 denote the symmetric capacitances, resis-
tances and inductances matrices. This ensures the correct energy balance of the
system in the 3D-0D time-space continuos formulation, namely

d

dt

(
1

2
P ᵀCP +

1

2
ΨᵀLΨ

)
= −P ᵀRP + P ᵀQ .

since that the last term of the right-hand-side cancels out when coupling Equations
(2.43) with the Navier-Stokes Equations.

As an example, the three-element Windkessel presented above – with an addi-
tional inductance Lp paralell to Rp – can be rewritten in this format obtaining the
following expressions for the system matrices

C =

[
0 0

0 Cd

]
, R =

[
1/Rp −1/Rp
−1/Rp 1/Rp + 1/Rd

]
, H =

[−1

1

]
, L = Lp .

More complex models can be represented in this format analagously.

Discretizing (2.43) in time (e.g. using a backward Euler scheme), we obtain

Pn = APn−1 +BQn +BHΨn−1 , (2.44)
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with
B = (C/τ +R)−1 ,

A = B (C/τ + τHL−1Hᵀ) .
(2.45)

As done in Equations (2.28)-(2.29) for the three-element Windkessel, in order to
obtain an analogous of the implicit coupling scheme (Algorithm 2), we need explicit
expressions for Qnl , l = 1, . . . , n0D. These can be computed algebraically from
Equation (2.44) by first isolating the degrees-of-freedom at the outlet by

¯̄B

 Qn1
...

Qnn0D

 =

 Pn1
...

Pnn0D

− ĀPn−1 − B̄ HΨn−1

with (̄) denoting the first n0D rows and ¯̄() the first n0D rows and columns, respec-
tively. Hence, we obtain the following expression Qn1

...
Qnn0D

 = G

 Pn1
...

Pnn0D

−GĀPn−1 −GB̄ HΨn−1

with G = ( ¯̄B)−1. Finally, combining the latter with (2.28), obtaining at each time
step the following formulation of the pressure projection-windkessel step (compare
with (2.32)): Find pn ∈ Rh such that

τ

ρf
(∇pn,∇q)Ωf +

n0D∑
k,l=1

gk,l(p
n|Γk)(q|Γl) =

n0D∑
l=1

(Q̃nl + bn−1
l q|Γl)(q|Γl)− (∇ · ũn, q)Ωf

(2.46)
for all q ∈ Rh and with

gk,l = [G]k,l, b
n
l = [GĀPn +GB̄ HΨn]l . (2.47)

Note that, in this general formulation, the pressure at the outlets can be coupled
through the lumped parameter model since generally gk,l 6= 0 for k 6= l.

Remark 7
Using the same arguments as in Section 2.2.2.1, the unconditional stability results of
Theorem 2 can be extended to a fractional step scheme with the generalized pressure
projection formulation (2.46).

2.3 Incompressible fluid-structure interaction

Fractional-step time-marching schemes have been a valuable tool for the de-
sign of efficient solution methods for incompressible fluid-structure interaction
(FSI) problems, yielding the so-called projection semi-implicit coupling scheme
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[FGG06, FGG07] (see also the subsequent works [ACF09, BQQ08, QQ07]). This
coupling approach is based on the following three basic ideas:

• treat explicitly the geometrical non-linearities and the viscous-structure cou-
pling, which reduces computational complexity;

• treat implicitly the presssure-structure coupling, which avoids numerical in-
stability;

• perform this explicit-implicit splitting through a projection scheme in the fluid.

So far, the stability of this method has been analyzed within a simplified framework
which enforces null pressure on the outlet boundaries (see [ACF09, FGG07]). In
this section the analysis is extended to the case of a lumped parameter modeling
of the outlet boundaries, with a pressure-Poisson formulation of the projection step
based on the methods of Section 2.2.

2.3.1 Model problem

Ωf ΣΓin

Γ1

Γ2
Ωs

Ωs

Ωs

Figure 2.2: Example of geometric configurations with Ωs 6= Σ.

For the sake of the analysis (see [FGG07]), we consider as model problem a
coupled linear system in which the fluid is described by the Stokes equations, in
the fixed domain Ωf , and the structure either by the classical linear elastodynamics
equations or by equations based on linear thin-solid models (e.g., plate, shell, etc.).
The reference domain of the solid is denoted by Ωs. It will be either a domain or
a (d − 1)−manifold of Rd (in this later case the elastic domain is identified to its
mid-surface). We denote by Σ

def
= ∂Ωs ∩ ∂Ωf the fluid-structure interface. In the

case the structure is described by thin-solid model we have Ωs = Σ (see Figure 2.2).
The resulting coupled system, describing the fluid velocity uf : Ωf ×R+ → Rd, fluid
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pressure p : Ωf × R+ → R and solid displacement ys : Ωs × R+ → Rd, is given by
ρf∂tuf −∇ · σf(uf , p) = 0 in Ωf ,

∇ · uf = 0 in Ωf ,

uf = uin on Γin,

uf = us in Σ,

(2.48)

{
ρs (∂tus,vs)Ωs + as(ys,vs) = − (σf(uf , p)nf ,vs)Σ ∀vs ∈W ,

us = ∂tys in Ωs,
(2.49)

completed with the lumped-parameter modeling (2.2)-(2.3) on the outlet boundary
Γout (see Figure 2.2). Here, ρs denotes the solid density, the abstract bilinear form
as : W ×W → R describes the elastic behavior of the structure and W stands
for its space of admissible displacements. Note that Equation (2.49) represents
also the variational formulation of the structure subproblem. Though simplified,
problem (2.48)-(2.49) features some of the main numerical issues that appear in
complex nonlinear fluid-structure interaction problems involving an incompressible
fluid (see, e.g., [Fer11]).

Energy balance. Let the quantity

E(t)
def
=

ρf

2
‖uf‖20,Ωf +

ρs

2
‖us‖20,Ωs +

1

2
‖ys‖2s +

n0D∑
l=1

Cd,l
2
π2
l

denote the total (kinetic + potential) energy of the FSI-0D coupled system given
by (2.48)-(2.49) and (2.2)-(2.3). Here, ‖ · ‖s stands for the elastic energy norm of
the solid, defined as ‖ys‖2s

def
= as(ys,ys). Assuming that uin = 0 (free system) and

using a standard energy argument, we get the following identity

E(t) +D(t) = E(0), (2.50)

with the dissipative term D(t) > 0 given as in (2.4).
Note that in this model problem we do not consider the convective term in the

fluid, hence we have to solve the fluid in a fixed domain in order to get the right
energy balance across the fluid-structure interface Σ.

2.3.1.1 Spatial discretization

Let {Ts,h}0<h≤1 be a quasi-uniform family of triangulations of the domain Ωs.
In order to ease the presentation, we assume that the fluid and solid triangulations
Tf,h and Ts,h match at the interface Σ. For the discretization in space of the solid
problem (2.49), we consider continuous Lagrange finite element approximations,Wh

of W , which match the fluid velocity discretizations at the interface. Hence,

{v|Σ | v ∈ Vh} = {vs|Σ | vs ∈Wh} .
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At last, we introduce the standard fluid-sided discrete lifting operator Lh : Wh →
Vh, such that, the nodal values of Lhvs vanish out of Σ and (Lhvs)|Σ = vs|Σ, for all
vs ∈ Wh. In what follows we shall make use of the following continuity estimates
(from [FGG07, Lemma 1]) for the discrete lifting operator Lh:

‖Lhvs‖0,Ωf ≤ CLh
1−α

2 ‖vs‖0,Ωs , ‖∇Lhvs‖0,Ωf ≤ CLh
− 1+α

2 ‖vs‖0,Ωs (2.51)

for all vs ∈Wh and with the notation

α
def
=

{
0 if Ωs = Σ,

1 if Ωs 6= Σ.
(2.52)

2.3.1.2 Fully semi-implicit FSI-0D scheme

In this case we consider numerical approximations of the coupled problem FSI-
0D system (2.48)-(2.49) and (2.2)-(2.3) by combining the projection semi-implicit
coupling scheme reported in [FGG07] with the 3D-0D semi-implicit coupling of
Section 2.2.2. The resulting fully discrete time-marching procedure is reported in
Algorithm 3. In the solid subproblem (2.56), the fluid residual terms are given by

〈Rµ(ũnf ),v〉 def
=

ρf

τ
(ũnf ,v)Ωf + 2µ (ε(ũnf ), ε(v))Ωf − ρf

τ

(
un−1

f ,v
)

Ωf ,

〈Rp(pn,unf ),v〉 def
=

ρf

τ
(unf ,v)Ωf − ρf

τ
(ũnf ,v)Ωf − (pn,∇ · v)Ωf .

Let the quantities

En
def
=
ρf

2
‖unf ‖20,Ωf +

ρs

2
‖uns ‖20,Ωs +

1

2
‖yns ‖2s +

n0D∑
l=1

Cd,l
2
|πnl |2,

Dn def
= 2µ

n∑
m=1

τ‖ε(ũmf )‖20,Ωf +

n−1∑
m=1

n0D∑
l=1

τ

( |πml |2
Rd,l

+Rp,l|Qml |2
)

for n ≥ 1, denote the energy and physical dissipation of the discrete FSI-0D system,
respectively.

We then have the following energy based result.

Proposition 3
Let

{
(ũnf , p

n,yns ,u
n
s )
}
n≥1

and
{

(Qnl , π
n
l , P

n
l )1≤l≤n0D

}
n≥1

be the approximated so-
lution given by Algorithm 3, and assume that uin = 0 (free system) and that the
following condition holds

ρs ≥ 3CL

(
ρfh

1−α +
µτ

h1+α

)
, (2.58)
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Algorithm 3 Fully semi-implicit FSI/3D-0D scheme
Let u0

f = uf(0), π0
1, . . . , π

0
n0D
∈ R and y0

s ,u
0
s ∈Wh be given initial data. For n ≥ 1

perform:

1. Viscous step: Find ũnf ∈ Vh such that
ũnf |Σ = un−1

s |Σ,
ũnf |Γin = uin(tn),
ρf

τ
(ũnf ,v)Ωf + 2µ (ε(ũnf ), ε(v))Ωf =

ρf

τ

(
un−1

f ,v
)

Ωf

(2.53)

for all v ∈ VΣ∪Γin,h. Thereafter set Q̃nl
def
=
∫

Γl
ũnf · nf .

2. Implicit step (projection-Windkessel-solid step): Find (pn,unf ,y
n
s ) ∈ Nh ×

Vh ×Wh with uns = ∂τy
n
s and such that

τ

ρf
(∇pn,∇q)Ωf +

n0D∑
l=1

(pn|Γl)(q|Γl)
γl

=

n0D∑
l=1

(
Q̃nl +

αlπ
n−1
l

γl

)
q|Γl

− (∇ · ũnf , q)Ωf − ((uns − ũnf ) · nf , q)Σ ,

(2.54)
unf |Γin = uin(tn),

unf |Σ = uns |Σ,
ρf

τ
(unf ,v)Ωf =

ρf

τ
(ũnf ,v)Ωf − (∇pn,v)Ωf ,

(2.55)

ρs (∂τu
n
s ,vs)Ωs + as(y

n
s ,vs) = −〈Rµ(ũnf ),Lhvs〉 − 〈Rp(unf , pn),Lhvs〉 (2.56)

for all (q,v,vs) ∈ Nh × VΣ∪Γout,h ×Wh.

Thereafter, set Pnl = pn|Γl and compute (Qnl , π
n
l ) ∈ R2 from the relations

Qnl =
Pnl − αlπn−1

l

γl
, πnl = αlπ

n−1
l + βlQ

n
l , l = 1, . . . n0D. (2.57)

with α given by (2.52). Then, following energy inequality holds

En +Dn . E0 −
n−1∑
m=1

τ2

ρf

∥∥∥Π⊥h (∇pn)
∥∥∥2

0,Ωf
, (2.59)

with Πh : L2(Ωf)→ VΣ∪Γin,h stands for the L2-projection operator into VΣ∪Γin,h,

and Π⊥h
def
= I −Πh for the corresponding orthogonal projection.
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Proof. First, testing the viscous step (2.53) with v = ũnf − Lhun−1
s yields

ρf

2τ

(
‖ũnf ‖20,Ωf −

∥∥un−1
f

∥∥2

0,Ωf

)
+
ρf

2τ

∥∥ũnf − un−1
f

∥∥2

0,Ωf

+ 2µ‖ε(ũnf )‖20,Ωf −
〈
Rµ(ũnf ),Lhun−1

s

〉
= 0. (2.60)

On the other hand, testing (2.55) with v = unf − Lhuns yields

ρf

2τ

(
‖unf ‖20,Ωf − ‖ũnf ‖20,Ωf

)
+
ρf

2τ
‖unf − ũnf ‖20,Ωf

+ (∇pn,unf )Ωf − (pn,uns · nf)Σ − 〈Rp(pn,unf ),Lhuns 〉 = 0 (2.61)

and taking vs = uns in (2.56) yields

ρs

2
∂τ‖uns ‖20,Ωs +

ρs

2τ

∥∥uns − un−1
s

∥∥2

0,Ωs +
1

2
∂τ‖yns ‖2s +

1

2τ
‖yns − yn−1

s ‖2s
= −〈Rµ(ũnf ),Lhuns 〉 − 〈Rp(pn,unf ),Lhuns 〉 . (2.62)

As a result, by adding the equalities (2.60)-(2.62) we get

ρf

2
∂τ‖unf ‖20,Ωf + 2µ‖ε(ũnf )‖20,Ωf +

ρs

2
∂τ‖uns ‖20,Ωs +

1

2
∂τ‖yns ‖2s

+
ρs

2τ

∥∥uns − un−1
s

∥∥2

0,Ωs+(∇pn,unf )Ωf − (pn,uns · nf)Σ︸ ︷︷ ︸
T1

−
〈
Rµ(ũnf ),L(uns − un−1

s )
〉︸ ︷︷ ︸

T2

≤ 0.

(2.63)

Following the argument used in [ACF09]-Appendix A, from (2.54) we infer that

ũnf = unf + Π⊥h (ũnf − Lhuns ) +
τ

ρf
Πh (∇pn) . (2.64)

Thereafter, taking q = pn in (2.54), integrating by parts in its right-hand side, and
since Pnl = pn|Γl , we have

τ

ρf
‖∇pn‖20,Ωf +

n0D∑
l=1

Pnl − αlπn−1
l

γl
Pnl − (ũnf ,∇pn)Ωf + (pn,uns · nf)Σ = 0.

Now, by inserting (2.64) into this expression and using (2.39), we get

T1 =
τ

ρf

∥∥∥Π⊥h (∇pn)
∥∥∥2

0,Ωf
+

n0D∑
l=1

Pnl − αlπn−1
l

γl
Pnl −

(
Π⊥h (ũnf − Lhuns ) ,∇pn

)
Ωf

≥ τ
ρf

∥∥∥Π⊥h (∇pn)
∥∥∥2

0,Ωf
+
Cd,l

2
∂τ |πnl |2 +

1

Rd,l
|πnl |2 +Rp,l|Qnl |2

−
(

Π⊥h (ũnf − Lhuns ) ,∇pn
)

Ωf︸ ︷︷ ︸
T3

.
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Therefore, by applying this lower bound to (2.63) we get

ρf

2
∂τ‖unf ‖20,Ωf +

ρf

2τ

∥∥ũnf − un−1
f

∥∥2

0,Ωf + 2µ‖ε(ũnf )‖20,Ωf +
ρs

2
∂τ‖uns ‖20,Ωs +

1

2
∂τ‖yns ‖2s

+
ρs

2τ

∥∥uns − un−1
s

∥∥2

0,Ωs +
τ

ρf

∥∥∥Π⊥h (∇pn)
∥∥∥2

0,Ωf
+
Cd,l

2
∂τ |πnl |2 +

1

Rd,l
|πnl |2 +Rp,l|Qnl |2

≤ T2 + T3. (2.65)

Term T2 can be bounded as in [FGG07], using (2.51), which yields

T2 ≤
ρf

τ
‖ũnf − un−1

f ‖0,Ωf‖Lh(uns − un−1
s )‖0,Ωf + 2µ‖ε(ũnf )‖0,Ωf‖ε(Lh(uns − un−1

s ))‖0,Ωf

≤ε1
ρf

2τ
‖ũnf − un−1

f ‖20,Ωf + ε2µ‖ε(ũnf )‖20,Ωf

+ CL

(
ρf

2τε1
h1−α +

µ

ε2
h−1−α

)
‖uns − un−1

s ‖20,Ωs .

(2.66)
Term T3 can be bounded following the argument used in [ACF09], which yields

T3 =
(

Π⊥h
(
Lh(un−1

s − uns )
)
,Π⊥h (∇pn)

)
Ωf

≤ε3
τ

2ρf
‖Π⊥h (∇pn)‖20,Ωf +

ρf

2τε3
CLh

1−α‖uns − un−1
s ‖20,Ωs .

(2.67)

Hence, by inserting (2.66)-(2.67) into (2.65) we get the energy estimate

ρf

2
∂τ‖unf ‖20,Ωf +

ρf

2τ
(1−ε1)

∥∥ũnf − un−1
f

∥∥2

0,Ωf +µ(2−ε2)‖ε(ũnf )‖20,Ωf +
ρs

2
∂τ‖uns ‖20,Ωs

+
1

2
∂τ‖yns ‖2s +

[
ρs

2τ
− CL

ρf

2τ
h1−α

(
1

ε1
+

1

ε3

)
− CL

µ

ε2
h−1−α

] ∥∥uns − un−1
s

∥∥2

0,Ωs

+
τ

ρf

(
1− ε3

2

)∥∥∥Π⊥h (∇pn)
∥∥∥2

0,Ωf
+

n0D∑
l=1

(
Cd,l

2
∂τ |πnl |2 +

1

Rd,l
|πnl |2 +Rp,l|Qnl |2

)
≤ 0.

At last, the energy estimate (2.59) follows by taking in the latter ε1 = 1
2 ,

ε2 = ε3 = 1, summing over n and using (2.58), which completes the proof.

Proposition 3 guarantees the conditional stability of Algorithm 3. Note that
the stability condition is similar to the one obtained in [FGG07] with a Darcy-like
formulation of the projection step. The estimate (2.59) corresponds to the discrete
counterpart of (2.50), the right-hand side of (2.59) is a dissipative numerical term
related to the natural pressure stabilization of the projection scheme. Moreover, up
to our experience in the field of computational hemodynamics, the simulations in
physiological regimes with the semi-implicit FSI coupling [FGG07] do not suffer of
stability problems, which suggests that condition (2.58) is generally fulfilled.
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2.3.1.3 Semi-implicit FSI coupling scheme with explicit 3D-0D coupling
scheme

We now consider numerical approximations of the coupled problem FSI-0D sys-
tem (2.48)-(2.49) and (2.2)-(2.3) by combining the projection semi-implicit coupling
scheme reported in [FGG07] with the 3D-0D explicit coupling of Section 2.2.1. The
resulting fully discrete time-marching procedure is reported in Algorithm 4.

Algorithm 4 Semi-implicit FSI coupling scheme with explicit 3D-0D coupling
Let u0

f = uf(0), π0
1, . . . , π

0
n0D
∈ R and y0

s ,u
0
s ∈Wh be given initial data. For n ≥ 1

perform:

1. Viscous step: Find ũnf ∈ Vh such that
ũnf |Σ = un−1

s |Σ,
ũnf |Γin = uin(tn),
ρf

τ
(ũnf ,v)Ωf + 2µ (ε(ũnf ), ε(v))Ωf =

ρf

τ

(
un−1

f ,v
)

Ωf

(2.68)

for all v ∈ VΣ∪Γin,h. Thereafter set Q̃nl
def
=
∫

Γl
ũnf · nf .

2. Windkessel step: For l = 1, . . . , n0D, compute (Qnl , π
n
l , P

n
l ) ∈ R3 from

Qnl = Q̃nl ,

Cd,l∂τπ
n
l +

πnl
Rd,l

= Qnl ,

Pnl = Rp,lQ
n
l + πnl .

(2.69)

3. Implicit projection-solid step: Find (pn,unf ,y
n
s ) ∈ Nh × Vh ×Wh with uns =

∂τy
n
s and such that pn|Γl = Pnl , l = 1, . . . , n0D,
τ

ρf
(∇pn,∇q)Ωf = − (∇ · ũnf , q)Ωf − ((uns − ũnf ) · nf , q)Σ

(2.70)


unf |Γin = uin(tn),

unf |Σ = uns |Σ,
ρf

τ
(unf ,v)Ωf =

ρf

τ
(ũnf ,v)Ωf − (∇pn,v)Ωf ,

(2.71)

ρs (∂τu
n
s ,vs)Ωs + as(y

n
s ,vs) = −〈Rµ(ũnf ),Lhvs〉 − 〈Rp(unf , pn),Lhvs〉 (2.72)

for all (q,v,vs) ∈ NΓout,h × VΣ∪Γin,h ×Wh.

The following proposition provides an energy estimate for the approximations
provided by Algorithm 4.
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Proposition 4
Let

{
(ũnf , p

n,yns ,u
n
s )
}
n≥1

and
{

(Qnl , π
n
l , P

n
l )1≤l≤n0D

}
n≥1

be the approximated so-
lution given by Algorithm 4 and assume that uin = 0 (free system). Then, under
the condition (2.58), the following energy inequality holds

En+Dn . E0−
n−1∑
m=1

τ2

2ρf

∥∥∥Π⊥h (∇pm)
∥∥∥2

0,Ωf
+

n−1∑
m=1

τ (∇ · ũmf , φm)Ωf +

n−1∑
m=1

τ2

ρf
(∇pm,∇φm)Ωf

+

n−1∑
m=1

τ (ums · nf , φ
m)Σ . (2.73)

Proof. The result follows by combining the arguments involved in the proofs of
Propositions 1 and 3. Hence, only partial details are given. The main difference lies
on the estimation of term T1 in (2.63). Since q ∈ NΓout,h, integration by parts in
(2.70) gives

(∇pn,∇q)Ωf =
ρf

τ
(ũnf ,∇q)Ωf − (uns · nf , q)Σ ,

so that by testing with q = (pn − φn) ∈ NΓout,h we get

τ

ρf
‖∇pn‖20,Ωf−(ũnf ,∇pn)Ωf +(uns · nf , p

n)Σ+

(
ũnf −

τ

ρf
∇pn,∇φn

)
Ωf

−(uns · nf , φ
n)Σ = 0.

(2.74)
As in the proof of Proposition 3, from (2.71) we get (2.64). Hence, inserting this
expression into (2.74) we get

− (∇pn,unf )Ωf + (pn,uns · nf)Σ +
τ

ρf

∥∥∥Π⊥h (∇pn)
∥∥∥2

0,Ωf
−
(

Π⊥h (ũnf − Lhuns ) ,∇pn
)

Ωf

= −
(
ũnf −

τ

ρf
∇pn,∇φn

)
Ωf

+ (uns · nf , φ
n)Σ

−
n0D∑
l=1

Qnl P
n
l + (∇ · ũnf , φn)Ωf +

τ

ρf
(∇pn,∇φn)Ωf + (uns · nf , φ

n)Σ (2.75)

and the estimate (2.73) follows using the same arguments than in the proof of
Proposition 3.

Remark 8
A comparison of the energy estimates (2.17) and (2.73) suggests that the fluid-solid
interaction introduces and additional destabilizing effect in the explicit splitting of
the 3D-0D coupling (2.13), due to the presence of the artificial interface term

n−1∑
m=1

τ (ums · nf , φ
m)Σ .

In particular, it is worth noting that the observation made in Remark 3 for the
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case of a single outlet is not valid in the FSI framework, since the above term does
not vanish for φm = Pm in Ωf . This point will be illustrated trough numerical
experiments in Section 2.4

2.4 Numerical experiments

In this section we deal with two numerical examples. The first one corresponds
to a patient-specific aorta, when considering only the Navier-Stokes equations. In
the second example we will show the stability issues in the FSI case on a academic,
but realistic, idealized Abdominal Aortic Aneurism (AAA).

2.4.1 A patient-specific aorta

Our first example (Navier-Stokes only) consists of a patient-specific aorta with
repaired coarctation (Figure 2.3). The geometry comes from the euHeart database
(www.euheart.eu). A segment growing registration algorithm [BOFH07, BSV+12]
was used for the segmentation of the geometry from the medical image. The resulting
surface was pre-processed with 3-matic (Materialise, Leuven, Belgium) and the final
mesh was produced with Gmsh [GR09].

The inflow curve used as boundary condition (Figure 2.5, right, black line) was
obtained from the same patient with Phase Contrast MRI. The initial constant
pressure was set as 62650 bary, and the Windkessel parameters (see Table 2.1) where
calibrated in order to have approximately the measured pressure at the coarctation
and the measured flow at every outlet. The physical parameters of the fluid are
µ = 0.035Po and ρf = 1 gr/cm3. For the numerical simulation, we use P1 finite
elements for both pressure and velocity fields (with a SUPG stabilization for the
viscous step) and a time step τ = 10−3 s. A snapshot of the simulation results is
shown in Figure 2.4).

The spurious oscillations in the approximation provided by the explicit 3D-0D
coupling scheme are clearly visible, while the implicit formulation guarantees sta-
bility within the whole cardiac cycle. Hence, these results are in agreement with
the stability estimates provided by Theorems 1 and 2. As further validation of the
numerical scheme, Figure 2.7 shows the pressures and flows curves computed using
a monolithic solver, implicitely coupled with the 0D-model, showing a satisfactory
agreement of the results.

Outlet 1 Outlet 2 Outlet 3 Outlet 4
Rp (dyn · s · cm−5) 250 683 615 94
Rd (dyn · s · cm−5) 104 1.296 · 104 1.1664 · 104 0.1794 · 104

C (cm5 · dyn−1) 4 · 10−4 2 · 10−4 2 · 10−4 14 · 10−4

Table 2.1: Parameters for the Windkessel’s model. The outlets are ordered in
direction of the flow.
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Figure 2.3: Patient-specific aorta. Left: geometry. Right: surface mesh.

2.4.2 FSI in an idealized AAA

We consider an idealized abdominal aortic aneurysm (AAA) shown in Figure
2.8, of length 22.95 cm, minimal diameter 1.7 cm (tubular part), maximal diameter
4.98 cm (aneurysm) and wall thickness 0.2 cm. The solid has Young’s modulus
1MPa, Poisson ratio is 0.46 and density 1.2 g/cm3. The fluid viscosity is µ =

0.035Po and its density 1 g/cm3.
The boundary conditions are set as follows. The inlet and the outlet parts of

the solid are clamped. In the fluid, a parabolic velocity profile is enforced at the
inlet, with a realistic inflow (peak velocity ≈ 96 cm/s). The Windkessel parameters
are Rp = 700 dyn · s · cm−5, Rd = 5 · 103 dyn · s · cm−5 and C = 2 · 10−4 cm5 · dyn−1.

At t = 0, the pressure is constant and equal to 80 mmHg, whereas all the other
state variables are zero. During the whole simulation, the stress received by the
structure is corrected by the initial one. Doing so, the solid only responds to the
difference with the diastolic phase. In this way, the load applied to the structure is
kept reasonable small so that the linearity assumptions holds.

The results are summarized in Figure 2.9, showing the Windkessel pressures P for
a time step of τ = 0.001 s. Note that the semi-implicit algorithm with explicit 0D-
3D coupling (Algorithm 4) is unstable whereas the semi-implicit scheme (Algorithm
3) remains always stable. In fact, from the results one can infer that the interface
term outlined in Remark 8, namely (uns , P

nnf)Σ, injects a positive artificial power
into the system (an augmentation of the pressure Pn > 0 leads in this case to
uns · nf > 0).

2.5 Conclusions

In this Chapter we discussed in detail different formulations for the 3D-0D cou-
pling of the Navier-Stokes Equations and Windkessel models, when the former are
solved with a projection method. In particular, through an energy based stabil-
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Figure 2.4: Simulation results for the aorta for peak systole. Left: velocity field for
few cutting planes. Right: pressure distribution.

0 0.2 0.4 0.6 0.8 1 1.2
40

50

60

70

80

90

100

110

Time [s]

P
re

ss
ur

e 
 [m

m
H

g]

0 0.2 0.4 0.6 0.8 1 1.2
40

50

60

70

80

90

100

110

Time [s]

P
re

ss
ur

e 
 [m

m
H

g]

Figure 2.5: Mean pressures at inlet (black) and outlets 1 to 4 (blue, green, red,
cyan). Explicit (left) and semi-implicit (right) schemes.
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Figure 2.6: Fluxes for inlet (black) and outlets 1 to 4 (blue, green, red, cyan).
Explicit (left) and semi-implicit (right) schemes.
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Figure 2.7: Pressures (left) and fluxes (right) for inlet (black) and outlets 1–4 (blue,
green, red, cyan) obtained with a monolithic method (circles) and with the projec-
tion method (continuos) using an implicit 3D-0D coupling.

ity analysis we showed that the explicit coupling approaches are only conditionally
stable in presence of multiple outlets. This results extends also to the case of fluid-
structure interaction.

To fix these issues, we proposed a semi-implicit coupling scheme that, with a
negligible additional computational cost (one additional degree of freedom for each
outlet), yields unconditional stability. The theoretical findings have been confirmed
through numerical experiments of practical interest, including fluid-structure inter-
action simulations.
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Figure 2.8: Snapshot of the velocity field inside the idealized AAA. The curves show
outlet pressure and displacements of the aneurysm wall.
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Figure 2.9: Windkessel pressure for the AAA: comparison between semi-implicit
(solid line) and explicit (dashed line) fluid-Windkessel coupling.
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God, give us grace to accept with serenity the things that cannot be changed,
courage to change the things which should be changed
and the wisdom to distinguish the one from the other.

Reinhold Niebuhr.





Chapter 3

Nonlinear Kalman filtering in FSI

We present a robust and computationally efficient parameter estimation strategy for
fluid-structure interaction problems. The method is based on a filtering algorithm, known
as the reduced order Unscented Kalman Filter [MC11b]. It does not require any adjoint or
tangent problems. In addition, it can easily be run in parallel, which is of great interest in
fluid-structure problems where the computational cost of the forward simulation is already
a challenge in itself. We illustrate our methodology with the estimation of the artery wall
stiffness from the wall displacement measurements – as they could be extracted from
medical imaging – in a three-dimensional idealized abdominal aortic aneurysm. We also
show preliminary results about the estimation of the proximal Windkessel resistance,
which is an important parameter for setting appropriate fluid boundary conditions.

The results presented in this chapter lead to the article:
C. Bertoglio, P. Moireau, J.-F. Gerbeau. Sequential parameter estimation in
fluid-structure problems. Application to hemodynamics. Int. J. Num. Meth.
Biomed. Engng., Volume 28, Issue 4, pages 434–455, 2012.
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3.1 The linear Kalman Filter

In this section we derive the equations for the linear Kalman filter. We start with
the (static) least-squares estimation of a vector based on partial measurements and
an initial guess, and then we treat the estimation of the state of a discrete dynamical
system where a set of measurements in time is available. We will deal with both
deterministic (useful for the analogy with variational methods) and probabilistic
approaches, which allows to extend these techniques to nonlinear problems.

3.1.1 Static linear case: least squares estimation

Let start with the task that, for a unknown vector X ∈ RN , we want to find
an estimator X̂ assuming that a “guess” X̂− is available, for example provided
by a model, associated with a confidence matrix (P−)−1. Assume also that partial
observations Z ofX are available, and we write their relation by Z = HX+ζZ . Since
ζZ is unknown, we also associate a confidence matrix W−1 with the observations.

A quantity accounting for X̂− and Z, with their respective levels of confidence,
can simply be obtained by minimizing the quadratic cost function:

J(X̂) =
1

2
(X̂ − X̂−)ᵀ(P−)−1(X̂ − X̂−) +

1

2
(Z −HX̂)ᵀW−1(Z −HX̂).

i.e., find X̂ such that

dJ

dX̂
= −HᵀW−1Z +HᵀW−1HX̂ − (P−)−1X̂− + (P−)−1X̂ ≡ 0 . (3.1)

Thus, the value X̂+ that forces (3.1) to be zero can be obtained as(
(P−)−1 +HᵀW−1H

)
X̂+ = (P−)−1X̂− +HᵀW−1Z(

(P−)−1 +HᵀW−1H
)
X̂+ =

(
(P−)−1 +HᵀW−1H

)
X̂− +HᵀW−1(Z −HX̂−)

X̂+ = X̂− +K (Z −HX̂−) , (3.2)

where
K = P+HᵀW−1 (3.3)

is the Kalman matrix and

P+ =
(
(P−)−1 +HᵀW−1H

)−1
. (3.4)

Applying the Woodbury’s matrix inversion lemma to P+, the Kalman matrix can
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also be written as

K =
(
P− − P−Hᵀ (W +HP−Hᵀ)−1

HP−
)
HᵀW−1

= P−Hᵀ
(
W−1 −

(
W +HP−Hᵀ)−1

HP−HᵀW−1
)

= P−Hᵀ (W +HP−Hᵀ)−1 ((
W +HP−Hᵀ)W−1 −HP−HᵀW−1

)
= PXZ

(
PZ
)−1

, (3.5)

with
PXZ = P−Hᵀ and PZ = W +HP−Hᵀ . (3.6)

3.1.2 Statistical approach to linear least squares

The result presented above can be also obtained with statistical arguments con-
sidering the unknown state X as a random variable. Assume that X̂− = E(X) and
that the error on the guess has a covariance matrix P− = E((X − X̂−)(X − X̂−)ᵀ)

(which is the inverse of the above “confidence matrix”). We also consider ζZ as a
random variable with zero-mean and covariance W .

Assume that X̂+ corresponds to a combination of X̂− and Z in the form X̂+ =

LX̂− +KZ, such that the error X̃+ = X − X̂+ can be written as

X̃+ = X − LX̂− −KZ = (I −KH)X − LX̂− −KζZ .

Hence, to have an unbiased estimator, i.e., E(X̃+) = 0, we have to choose L =

I−KH since, by hypothesis, E(ζZ) = 0 and E(X̂−) = E(X). Then, the a posteriori
estimation can be expressed in the Kalman form X̂+ = X̂− + K (Z − HX̂−) as
in the deterministic case. Note that unbiased property of this estimator does not
depend on the choice of the matrix K. In particular, we interested in a matrix K
such that

K = argmin tr(P+) = argmin tr(E(X̃+(X̃+)ᵀ)) .

where P+ corresponds to the a posteriori covariance of the estimator X̂+.
To obtain now the optimal K we proceed as follows. Defining X̃− = X − X̂−,

we can rewrite the expression for X̃+(X̃+)ᵀ as

X̃+(X̃+)ᵀ = ((I −KH)X̃− −KζZ)(. . . )ᵀ

= (I −KH)X̃−(X̃−)ᵀ(I −KH)ᵀ +KζZ(ζZ)ᵀKᵀ

· · · − (I −KH)X̃−(ζZ)ᵀKᵀ −KζZ(X̃−)ᵀ(I −KH)ᵀ . (3.7)

Then, taking the expected value of (3.7) we obtain

P+ = E(X̃+(X̃+)ᵀ) = (I −KH)P−(I −KH)ᵀ +KWKᵀ (3.8)

since, by hypothesis, the cross terms are statistically independent. Hence, by using
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the identity
∂tr(ABAᵀ)

∂A
= 2AB , (3.9)

the optimality criterion reads

∂tr(P+)

∂K
= −(I −KH)P−Hᵀ +KW ≡ 0 , (3.10)

leading to the optimal Kalman matrix

K = P−Hᵀ(HP−Hᵀ +W )−1 , (3.11)

what corresponds exactly to the same expression as in (3.5).

Moreover, we can verify that PZ corresponds to the covariance of the innovation
Γ = Z −HX̂− = HX̃− + ζZ . It is clear that E(Γ) = 0 and therefore

Cov(Γ) = E
(

(HX̃− + ζZ)(HX̃− + ζZ)ᵀ
)

= HP−Hᵀ +W = PZ ,

since, again, cross terms are statistically independent. Analogously, PXZ can be
obtained by

Cov(X̂−,Γ) = E
(

(X̂− − E(X̂−))(HX̃− + ζZ)ᵀ
)

= E
((
X̂− − E(X̂−)

)
(X̃−)ᵀHᵀ

)
= E

(
(X̃−)(X̃−)ᵀ

)
Hᵀ = P−Hᵀ = PXZ .

Note also that combining expressions (3.8) and (3.11) by

P+ = (I − PXZ
(
PZ
)−1

H)P−(I − PXZ
(
PZ
)−1

H)ᵀ

· · ·+ PXZ
(
PZ
)−1

W (PXZ
(
PZ
)−1

)ᵀ (3.12)

and multiplying out it we directly obtain (3.4).

In fact, the statistical interpretation of these matrices is the key in the extension
of the Kalman filter to non-linear problems. We will come back to this issue in
Section 3.2.1.

3.1.3 Dynamic linear case: the Kalman filter

Now assume that the state variable satisfies a linear dynamics, without any
model uncertainties:

Ẋ = AX + F,
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and with an initial guess X(0) = X̂0 + ζX (X̂0 being given and ζX unknown). After
time discretization, the dynamics reads:

Xn = AnXn−1 + Fn. (3.13)

Suppose that the following observations at each time step are available:

Zn = HnXn + ζZn , (3.14)

where ζZn−1 includes the measurement noise and the discretization error.

The linear Kalman filter [KB61] can simply be presented as follows. Assume
that X̂+

n−1 is known with a covariance P+
n−1. First, the model is used to compute a

prediction:
X̂−n = AnX̂

+
n−1 + Fn, (3.15)

By linearity of An, the covariance P−n = E((Xn − X̂−n )(Xn − X̂−n )ᵀ) is given by

P−n = AnP
+
n−1A

ᵀ
n. (3.16)

Then, repeating mutatis mutandis the least squares argument of the case without
dynamics, a correction taking into account the observation is given by:

X̂+
n = X̂−n +Kn(Zn −HnX̂

−
n ). (3.17)

with
Kn = PXZn (PZn )−1 (3.18)

where PXZn = P−n H
ᵀ
n and PZn = Wn+HnP

−
n H

ᵀ
n. As in the static case, the covariance

associated with X̂+
n is given by

P+
n = P−n − PXZn

(
PZn
)−1 (

PXZn

) ᵀ . (3.19)

Thus, we can iterate and perform the prediction step at the new time step n.

Analogy with variational approach. It can be proved that these estimations
of the state and covariances can also be obtained by minimizing the functional

J(ζX) =
1

2
‖ζ‖2

(P−0 )
−1 +

1

2

n∑
k=0

‖Zk −HXk‖2W−1
k

(3.20)

under the constraint (3.13). In other words, the Kalman filter estimator X̂+
n is equal

to Xn(ζ̄X), where ζ̄X is the minimizer of the variational problem on [0, tn]. For a
detailed proof we refer, for example, to [Moi08].
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3.2 The reduced-order Unscented Kalman filter

The aim of this section is to present a comprehensive derivation of the reduced-
order Unscented Kalman Filter used later for the parameter estimation in our fluid-
structure problems. As first, we present the Extended Kalman Filter (EKF), based
on the linearization of the non-linear operators, where we sketch the approximation
order of both estimated mean and covariances. This motivates the application of the
so-called unscented transforms for improving the approximation order of the EKF
(and also to avoid the computation of tangent operators), what is the base Unscented
Kalman Filter (UKF) algorithm. We end the section with the derivation of the
factorized form of the UKF which allows to treat problems where the uncertainties
are concentrated on a reduced number of quantities, as estimating the physical
parameters of a dynamical system when the initial condition is known.

3.2.1 Extensions to nonlinear cases

The Kalman filter presented above is only valid when the dynamics and the
observation operator are linear. To address the fluid-structure problems considered
in this work, it is necessary to extend the algorithm to nonlinear cases.

The most straightforward extension consists of applying steps (3.16), (3.18) and
(3.19) with the tangent operators A′n

def
= A′n(X̂+

n−1) and H ′n
def
= H ′n(X̂−n ), and steps

(3.15) and (3.17) with the nonlinear operators An(·) and Hn(·):

X̂−n = An(X̂+
n−1)

P−n = A′nP
+
n−1 (A′)ᵀ

PXZn = P−n (H ′)ᵀ , PZn = Wn +H ′P−n (H ′n)ᵀ

X̂+
n = X̂−n +Kn(Zn −Hn(X̂−n )) , Kn = PXZn (PZn )−1

P+
n = P−n − PXZn

(
PZn
)−1 (

PXZn

)
ᵀ

(3.21)

But the resulting algorithm, called Extended Kalman Filter (EKF), has two draw-
backs: the computation of the tangent operators and the precision of the estimated
values.

To understand the latter issue, it is interesting to consider how the mean value
of a random variable is transported by a nonlinear operator A. Let X denote a
random variable in RN , its mean value X̂ = E(X) and its covariance P = E((X −
X̂)(X − X̂)ᵀ). A Taylor expansion around X̂ gives:

Y
def
= A(X) = A(X̂)+A′(X̂) ·(X−X̂)+

1

2
(X−X̂)ᵀ ·A′′(X̂) ·(X−X̂)+O(|X−X̂|3)

Hence, the propagated mean is given by

E(Y ) = A(X̂) +
1

2
A′′(X̂) : P +O(E(|X − X̂|3)) , (3.22)
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and the propagated covariance by

E ((Y − E(Y )) (Y − E(Y )ᵀ) = A′(X̂)P
(
A′(X̂)

)ᵀ
+O(E(|X − X̂|3)) . (3.23)

We see in (3.22) that the simple propagation of the mean value by the nonlinear op-
erator is only locally second order accurate (the term A′′(X̂) : P being second order
in |X − X̂|). This will be improved with the technique presented in Section 3.2.2.

Another way to approximate means and covariances consists of choosing a set
of vectors X(i), 1 ≤ i ≤ r, called particles, which are propagated with the operator
A(·), i.e.,

Y (i) = A(X(i)) , 1 ≤ i ≤ r .
Then, the mean and covariances are obtained by computing the empirical statistics
of the propagated particles Y (i). Of course, to be effective, the particles have to be
carefully chosen. In this work, we use this type of mean and covariance approxima-
tions in the context of the Unscented Kalman Filter [JUDW95, JUDW00], which is
based on deterministic particles. It will be briefly presented in the next section.

The UKF filter presents a lot of similarities with the Ensemble Kalman Filter
[Eve09] which also uses a moderate number of particles – even if this number is
often a larger than for UKF – to compute empirical statistics. Moreover nonlinear
particle filters consider a random generation of the particles X(i) according to a
given probability density function. These filters usually involve a very large number
of particles, which yields a very large number of solutions of the forward problem.
We refer for example to [Sim09].

3.2.2 Unscented transforms and application to Kalman filtering

The Unscented Kalman Filter (UKF) algorithm is based on the unscented trans-
formation. Its principle is to approximate the nonlinear propagation of the mean and
the covariance of a random vector via the propagation of well-chosen deterministic
particles.

The basic idea can easily be explained in one dimension. Let X be a random
variable in R (so N = 1), let X̂ denote its mean value E(X) and σ =

√
Var(X) its

standard deviation. Two particles are defined: X̂(1) = X̂ + σ, X̂(2) = X̂ − σ. These
particles are constructed by adding to the known state X̂ two values σ and −σ called
sigma-points. The empirical mean value of the particles, namely (X̂(1) + X̂(2))/2,
is by construction equals to the mean value X̂. In order to evaluate the empirical
mean value of the particles propagated by the nonlinear operator, let us consider
the Taylor expansions:

A(X̂(1)) = A(X̂) + σA′(X̂) +
σ2

2
A′′(X̂) +O(|X̂(1) − X̂|3) ,

A(X̂(2)) = A(X̂)− σA′(X̂) +
σ2

2
A′′(X̂) +O(|X(2) − X̂|3) .
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The empirical mean is by construction

Ŷ
def
=

1

2

(
A(X(1)) +A(X(2))

)
= A(X̂)+

σ2

2
A′′(X̂)+O(|X̂(1)−X̂|3)+O(|X̂(2)−X̂|3).

(3.24)
Thus, we see that the empirical mean of the propagated particle is an approximation
of E(A(X)) better thanA(X̂) since it includes by construction the second order term
σ2A′′(X̂)/2 (see (3.22) with P = σ2I). Note that the covariance are approximated
with the same order of accuracy in the two methods.

This idea can be generalized in N -dimensions by defining appropriate sigma-
points and their respective weights – see [MC11b] for a comprehensive review. The
natural generalization of the one-dimensional standard deviation is the square root
of the covariance matrix. Its computation, for example by a Cholesky factorization,
is the most expensive part of the UKF algorithm, but usually negligible compared
to the propagation step for the problems considered in this work.

The empirical mean and covariance are defined by:

X̄
def
= Eα

(
X(∗)

)
def
=

∑
1≤i≤r

αiX
(i),Covα

(
X(∗), Z(∗)

)
def
=

∑
1≤i≤r

αi(X
(i)−X̄)(Z(i)−Z̄)ᵀ ,

(3.25)
where the weights αi ∈ R+ are given and depend on the choice of the sigma-points.
In the present work, we use the ones proposed in [Jul03], only based on r = N + 1

particles (see later in Section 3.2.4).
It remains to explain how to use the unscented transformation in the filtering

algorithm. The idea is to replace the formulae (3.6) used in the original Kalman
algorithm by the evaluations of the empirical covariance and mean value of the
particles. More precisely, PXZ is replaced by Covα(Y (∗), Z(∗)), with Y (i) = A(X(i))

and Z(i) = H(Y (i)), and PZ is replaced by W + Covα(Z(∗), Z(∗)).
To summarize, here is the UKF algorithm. Assume that the sigma-points I(i),

1 ≤ i ≤ r, are given, as well as X̂+
0 and P+

0 . For n > 0, we have a 3 steps recursive
algorithm:

• Sampling. Generation of the particles:Cn−1 =
√
P+
n−1 (Cholesky factorization)

X̂
(i)+
n−1 = X̂+

n−1 + Cᵀ
nI(i), 1 ≤ i ≤ r

(3.26)

• Prediction. Resolution of one time step of the model for each particle (can
naturally be done in parallel) and computation of the empirical mean value
and covariance: 

X̂
(i)−
n = An(X̂

(i)+
n−1 ) , 1 ≤ i ≤ r

X̂−n = Eα(X̂
(∗)−
n )

P−n = Covα(X̂
(∗)−
n , X̂

(∗)−
n )

(3.27)
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• Correction. 

Z
(i)
n = H(X̂

(i)−
n ) , 1 ≤ i ≤ r

PZn = Covα(Z
(∗)
n , Z

(∗)
n ) +Wn

PXZn = Covα(X̂
(∗)−
n , Ẑ

(∗)−
n )

Kn = PXZn (PZn )−1

X̂+
n = X̂−n +Kn(Zn − Eα(Z

(∗)
n ))

P+
n = P−n − PXZn

(
PZn
)−1 (

PXZn

)
ᵀ

(3.28)

3.2.3 Factorized formulation of the UKF

In this section, we show how the construction of P+
n , PXZn and PZn is modified

when the covariance matrix P−n can be factorized in the form LU−1Lᵀ, with L ∈
MN,p and U ∈Mp,p. This will be useful to derive the reduced-order UKF algorithm
in the next section.

We consider a family of sigma-points I(i) ∈ Rp, i = 1 . . . r. It is proved in
[MC11b, Sect. 2.2.1] that the empirical covariance of the particles X(i) and Z(i)

(see (3.25)) can be expressed as

Covα(X(∗), Z(∗)) = [X(∗)]Dα[I(∗)]ᵀ
(

[I(∗)]Dα[I(∗)]ᵀ
)−1

[I(∗)]Dα[Z(∗)]ᵀ (3.29)

where [X(∗)] ∈MN,r is the matrix whose column i corresponds to the particle X(i),
1 ≤ i ≤ r (analogously for [I(∗)] and [Z(∗)]), and where Dα

def
= diag [αi] ∈ Mr,r is

the diagonal matrix containing the weights of formulae (3.25).
The covariance matrix P−n is by definition Covα(X̂

(∗)−
n , X̂

(∗)−
n ). Thus, defining

LXn
def
= [X̂(∗)−

n ]Dα[I(∗)]ᵀ and Pα
def
= [I(∗)]Dα[I(∗)]ᵀ (3.30)

we can rewrite P−n according to (3.29) as

P−n = LXn P
−1
α (LXn )ᵀ. (3.31)

Similarly, applying again (3.29) to PZn and PXZn (see their definition in (3.28)):

PZn = Wn + LZnP
−1
α (LZn )ᵀ , PXZn = LXn P

−1
α (LZn )ᵀ, (3.32)

with
LZn

def
= [Z(∗)

n ]Dα[I(∗)]ᵀ. (3.33)

Thus, the a posteriori covariance P+
n can be written as:

P+
n = P−n − PXZn

(
PZn
)−1 (

PXZn

)ᵀ
= LXn

(
P−1
α − P−1

α

(
LZn
)ᵀ (

Wn + LZnP
−1
α

(
LZn
)ᵀ)−1

LZnP
−1
α

)(
LXn
)ᵀ

= LXn U
−1
n

(
LXn
)ᵀ

, (3.34)



86

where Un is defined, applying the Woodbury inversion lemma, by

Un
def
= Pα +

(
LZn
)ᵀ
W−1
n LZn . (3.35)

Next, applying again the Woodbury inversion lemma to PZn , we obtain:(
PZn
)−1

= W−1
n −W−1

n LZnU
−1
n

(
LZn
)ᵀ
W−1
n . (3.36)

Thus, we deduce the factorized form of the Kalman-like matrix Kn = PXZn (PZn )−1:

Kn =
(
LXn P

−1
α

(
LZn
)ᵀ)(

W−1
n −W−1

n LZnU
−1
n

(
LZn
)ᵀ
W−1
n

)
= LXn U

−1
n

(
LZn
)ᵀ
W−1
n . (3.37)

The key point here is to be able to perform operations with P+
n and Kn using

only LXn , LZn and Pα, and not directly P−n . This property proves to be extremely
useful when the rank of P−n is much smaller than the size of X, as will be shown in
the next section.

Remark 9
According to (3.3), K = P+HᵀW−1. Thus, using the expression (3.34) of P+, we
obtain K = LXU−1

(
LX
)ᵀ
HᵀW−1. By comparison with (3.37), we see that LZ for-

mally corresponds to HLX , the “observed state sensitivity”. The Matrix LX(Lθ)−1

corresponds to the sensitivity of the state X with respect to the parameters θ. The
factorization formula (3.29) is instrumental in identifying these analogies. We refer
to [MC11b] for more details.

3.2.4 Reduced-order UKF for parameter estimation

State and parameter estimation. In principle, the UKF algorithm can easily
be generalized to those cases when the uncertainties also affect the parameters. To
do so, we consider an augmented state X = (X, θ) whose size is N + p. At t = 0,
X (0) = X0 + ζX = (X0, θ0) + (ζX , ζθ). The extended dynamical system reads:

Xn def
= (Xn, θn) = An(Xn−1) , (3.38)

with the initial condition X0 = (X0, θ0). When the parameters θ are constant in
time, An is simply defined by An(Xn−1) = (An(Xn−1, θn), θn). Then, even with a
small number of parameters, classical Kalman-like filter cannot be applied to this
augmented state because of the initial state size. However, if we assume that the
uncertainties only affect the part θ of vector X , we will show in the next paragraph
how to use a reduced order filter formulation which limits the computation of the
filter operator to a subspace of small dimension – here the parameter space – and
therefore can be computed.
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Reduced order UKF. We now have all the material to present the reduced-
order UKF algorithm that is used in this paper to estimate some parameters of a
fluid-structure interaction system.

As explained above, any Kalman-like algorithm can be used to estimate the
state and the parameter by simply considering an augmented dynamical system
in the variable X = (X, θ). Nevertheless, as already mentioned, this approach is
intractable with large system as those considered here. To circumvent this difficulty,
the choice made in this study is to assume that the uncertainty is limited to the p
parameters θ. Thus, the covariance matrix has a rank p and we can take advantage
from the factorized formulation of Section 3.2.3.

Suppose that we do not have any uncertainties in the initial condition of the
state, i.e., ζX = 0. Then the initial covariance can be factorized:

P+
0 =

[
0 0

0 Cov(ζθ)

]
=

[
LX0

Lθ0

]
U−1

0

[
(LX0 )ᵀ (Lθ0)ᵀ

]
,

where U0
def
=
(
Cov(ζθ)

)−1 is a (small) p × p matrix, LX0
def
= 0, Lθ0

def
= 1. Hence, and

this is a key point, we only need p + 1 sigma-points in Rp for the sampling step in
the UKF algorithm:

C0 =
√
U−1

0 (Cholesky factorization)

X̂
(i)+
0 = X̂+

0 + LX0C
ᵀ
0 I

(i) = X̂+
0 , 1 ≤ i ≤ p+ 1

θ̂
(i)+
0 = θ̂+

0 + Lθ0C
ᵀ
0 I

(i), 1 ≤ i ≤ p+ 1 .

Reduced order estimation algorithm. Consider the simplex sigma-points
I(i), 1 ≤ i ≤ p+1, their weights collected in the matrix Dα

def
= diag [αi] ∈Mp+1,p+1.

Then, for given values of X̂0, θ̂0 and Cov(ζθ), perform

• Initialization: initialize the sensitivities as

Lθ0 = 1, LX0 = 0, U0 = Cov(ζθ)
−1 (3.39a)

• Sampling: generate the particles by
Cn−1 =

√
U−1
n−1 (Cholesky factorization)

X̂
(i)+
n−1 = X̂+

n−1 + LXn−1C
ᵀ
n−1I

(i), 1 ≤ i ≤ p+ 1

θ̂
(i)+
n−1 = θ̂+

n−1 + Lθn−1C
ᵀ
n−1I

(i), 1 ≤ i ≤ p+ 1

(3.39b)
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• Prediction: propagate the particles with the dynamical system
(X̂

(i)−
n , θ̂

(i)−
n ) = An(X̂

(i)+
n−1 , θ̂

(i)+
n−1)

X̂−n = Eα(X̂(∗)−
n )

θ̂−n = Eα(θ̂
(∗)−
n )

(3.39c)

• Correction: use the innovation Γ
(i)
n = Zn − H(X̂

(i)−
n ) (1 ≤ i ≤ p + 1) to

correct the predicted state and parameters

LXn = [X̂
(∗)−
n ]Dα[I(∗)]ᵀ ∈MN,p

Lθn = [θ̂
(∗)−
n ]Dα[I(∗)]ᵀ ∈Mp

LΓ
n = [Γ

(∗)
n ]Dα[I(∗)]ᵀ

Un = Pα + (LΓ
n)ᵀW−1

n LΓ
n ∈Mp

X̂+
n = X̂−n − LXnU−1

n

(
LΓ
n

)ᵀ
W−1
n Eα(Γ

(∗)
n )

θ̂+
n = θ̂−n − LθnU−1

n

(
LΓ
n

)ᵀ
W−1
n Eα(Γ

(∗)
n )

(3.39d)

and note that we use LΓ
n = −LZn instead of LZn as in the previous sections.

Choice of sigma points. In this work we used the so-called simplex sigma-points
I(i), r = p + 1 , that correspond to vectors of zero mean and √p covariance in
Rp. Together with the weights αi, they are computed recursively as (see [PVG98,
HPB02])

[I∗1 ] =

(
− 1√

2α
,

1√
2α

)
, α =

1

p+ 1
= αi ∀i ,

and

[I∗d ] =



0

[I∗d−1]
...

0

1√
αd(d+ 1)

· · · 1√
αd(d+ 1)

−d√
αd(d+ 1)


, 2 ≤ d ≤ p .

Remark 10
We have implicitly used some specific properties of the simplex sigma-points in the
derivation of the algorithm as fully described in [MC11b]. For more general sigma-
points, the algorithm is more intricate. We refer to [MC11b] and in particular its
erratum [MC11a].
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3.3 Reduced Order filtering for FSI problems

In this section, we deal with some specific issues of the application of the RO-
UKF presented above for fluid-structure problems, with emphasis in hemodynamics.
We present now some considerations when combining the nonlinear filtering when
the dynamic operator An corresponds to the semi-implicit approach presented in
Chapter 2, but now considering a non-linear fluid and a Newmark scheme for the
structure. Note also the that pressure-solid coupling conditions are simplified with
respect to Algorithm 3, which however has a negligible influence on the numerical
results. The numerical scheme is detailed in Algorithm 5 with all notations following
Chapter 2. In this thesis, a partitioned matrix free Newton method [GV03] is used
to solve the interface equation resulting from the coupling between (3.42) and (3.43).

3.3.1 Algorithmic aspects of FSI filtering

Implementation. Beside its efficiency, a very appealing feature of the proposed
approach is the simplicity of its implementation. In algorithm (3.39a)-(3.39d), steps
(3.39a), (3.39b) and (3.39d) are totally independent of the forward problem and
can be implemented in an external software. Since this part is generic, it is very
simple to change the number and the kind of parameters that are used in the filter.
Step (3.39c) corresponds to one time step of the dynamical system with a given
initial condition. It therefore only requires to be able to “restart” the solvers from
any state.

Particle initialization. Let us give some more details about the “restart” of
the fluid-structure algorithm, since this is an important aspect of the estimation
procedure. First, we define the discrete state of the FSI-system as Xn−1

def
=

(ũnf ,y
n
f , π

n
l , . . . , π

n
n0D

,yns ,u
n
s ,a

n
s ). However, after the ROUKF performs the cor-

rection of the state Xn−1, for the propagation of the particles Xn−1 at the next time
step we need the corrected pressure pn−1 for the viscous step in Algorithm 5, as
well as the mid-step velocity un−3/2

s for the Dirichlet conditions for the velocity. We
propose then to perform the following computations prior to step 1 in Algorithm
(5) in order to reconstruct these quantities from the particle Xn−1:

• In the solid recover un−3/2
s = un−1

s − τ
2a

n−1
s .

• In the fluid:

– Reconstruct Ωn−1
f = (IΩ0

f
+ yn−1

f )(Ω0
f ).
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Algorithm 5 Fully semi-implicit FSI/3D-0D scheme in ALE formulation.
Let ũ0

f = u0
f , π

0
1, . . . , π

0
n0D
∈ R and y0

s ,u
0
s ∈ Wh be given initial data. For n ≥ 1

perform:

1. Update fluid domain (ALE step):

ynf = Ext(yn−1
s |Σ0), Ωf

n−1 = (IΩf
0

+ ynf )(Ωf
0),

wn = ∂τy
n
f in Ωf

n−1 ,
(3.40)

2. Viscous step: Find ũnf ∈ Vh such that

ũnf |Σ = un−3/2
s |Σ,with u−3/2

s
def
= u0

s ,

ũnf |Γin = uin(tn−1),
ρf

τ
(ũnf ,v)Ωf

n−1
+ ρf((ũ

n−1
f −wn) ·∇ũnf ,v)Ωf

n−1
+ 2µ (ε(ũnf ), ε(v))Ωf

n−1

+ ρf((∇ · (
1

2
ũn−1

f −wn))ũnf ,v)Ωf
n−1

=
ρf

τ

(
ũn−1

f ,v
)

Ωf
n−1
−
(∇pn−1,v

)
Ωf
n−1

(3.41)
for all v ∈ VΣ∪Γin,h. Thereafter set Q̃nl

def
=
∫

Γl
ũnf · nf .

3. Implicit step (projection-Windkessel-solid step): Find (pn,yns ,u
n
s ) ∈ Nh ×

Wh ×Wh such that
τ

ρf
(∇pn,∇q)Ωf

n−1
+

n0D∑
l=1

(pn|Γl)(q|Γl)
γl

=

n0D∑
l=1

(
Q̃nl +

αlπ
n−1
l

γl

)
q|Γl

− (∇ · ũnf , q)Ωf
n−1
−
(

(un−1/2
s − ũnf ) · nf , q

)
Σn−1

,

(3.42)

 ρs (∂τu
n
s ,vs)Ωs

0
+ as((y

n−1/2
s ,vs) = −〈Rµ(ũnf ),Lhvs〉+ (pnnf ,vs)Σ

(yns − yn−1
s )/τ = (uns + un−1

s )/2
def
= un−1/2

s

(3.43)

for all (q,vs) ∈ Nh ×Wh. Set then ans = (uns − un−1
s )/τ , Pnl = pn|Γl and

compute (Qnl , π
n
l ) ∈ R2 from the relations

Qnl =
Pnl − αlπn−1

l

γl
, πnl = αlπ

n−1
l + βlQ

n
l , l = 1, . . . n0D. (3.44)

– Reconstruct the pressure: Find pn−1 ∈ Nh such that
τ

ρf

(∇pn−1,∇q
)

Ωf +

n0D∑
l=1

(pn−1|Γl)(q|Γl)
Rp,l

=

n0D∑
l=1

(
Q̃n−1
l +

πn−1
l

Rp,l

)
q|Γl

−
(∇ · ũn−1

f , q
)

Ωf −
(

(un−3/2
s − ũn−1

f ) · nf , q
)

Σ
,

(3.45)
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which derived from the equality coming from the Windkessel’s model

Qnl =
Pnl − αlπn−1

l

γl
=
Pnl − πnl
Rp,l

.

Note that πn−1
l is known in this case, differently to (3.42).

Note also that actually, within the semi-implicit scheme, not the whole accelera-
tion an−1

s but only the values at Σ are needed for the pressure’s restart for computing
the proper Neumann boundary condition (3.45).

Total vs. incremental ALE. In many ALE solvers, the domain is updated in
an incremental way, from Ωn−1 to Ωn, i.e.,

wn−1 = Ext(u
n− 3

2
s |Σn), Ωn

f = Ωn−1
f + τwn−1.

This approach is not suitable in the present framework since the fluid domains are
not properly restarted in each particle. This is the reason why we update the domain
from Ω0

f using the Lagrangian displacement ynf . For very large displacements, this
may complicate the computation of the mesh deformation (using for example a
nonlinear pseudo-elasticity problem). In the applications presented in this work, a
simple linear harmonic extension proved to be sufficient.

Parameter range constraints. For physical reasons, the parameters are usually
restricted to a subset of Rp. For instance, Young’s modulus, densities and viscosities
have to be positive. This constraint can simply be enforced by reparametrizing the
physical parameters in such a way that the estimation can indeed be done in the
whole space Rp. In this work, the physical parameters (e.g. the Young’s modulus)
are written as a0 · 2θ, with a0 a reference value of the parameter of interest, and
the estimation is performed on θ. Note that this reparametrization modifies the
statistical meaning of the covariance. For example, when the covariance on θ is
equal to identity, the Young’s modulus 2θ has the same probability to be twice or
half as the initial value.

Choice of the covariance Wn. Due to the analogy with variational methods
(i.e., comparing for instance (3.20) and (1.8)), we use W−1

n−1 = γMΓm , with MΓm

the L2 mass matrix of the observation region Γm, or its diagonal-lumped version.
Hence, we propose to choose

γ = β w−1 (3.46)

where β is a positive scalar value that has to be set and

w−1 =
τobs σ

−2

Tref Href
, (3.47)
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where Tref is a fixed reference time, Href ≈ |Γm|, and τobs is the time sampling of the
observations, and assuming that ζZ ∼ N (0, σ2I). These definitions are motivated
by keeping dimensionless the user-defined gain β associated with the measures and
the a priori knowledge of the parameters. Note that the measure term “tends” to
the continuous space-time norm when spatial and temporal resolution get higher.

3.4 Numerical examples

In this section, we present a numerical example of the ROUKF applied to a
three-dimensional realistic FSI problem. The idea is not only to show that the
estimation procedure is capable to deal with this complex problems, but also to get
an insight to how the estimation results look like and how they can be interpreted.

3.4.1 Estimation of the Young’s modulus

Forward model setting. The example considered here corresponds exactly to
the same of Section 2.4.2, i.e., an idealized Abdominal Aortic Aneurism (AAA).
The parameters used for generating the synthetic measurements are the same as in
Section 2.4.2.

Estimation setting. We apply the reduced order UKF to estimate the Young’s
moduli, Ei = 2θ̂iMPa, starting from θ̂i = 0, i = 1, . . . , 5. The measurements are
the displacements on all nodes of the fluid-structure interface Σ0. In other words,
the observation operator H consists of a m × ny matrix (whose entries are only 0
or 1), where ny is the number of displacement degrees of freedom of the whole solid
and m is the number of displacement degrees of freedom at the interface Σ0.

This kind of Lagrangian measurements can be obtained from processed and
registered tagged MRI and should be understood as a gold standard. However, for
more conventional imaging techniques (Cine MRI or CT), an observation operator
involving the distance between the contours surfaces extracted from the image and
the computational mesh can be considered as a generalization. We refer to [MCLT09]
for details about this observation operator and to [CML+11] for an application with
real data in cardiac mechanics. We will however describe and apply this generalized
observation operator to real world problems in Part III.

When the measurements are not available at a given simulation time step, we
can still generate an interpolated observation which only perturb the estimation by
a consistency term of the order of magnitude of the data sampling.

The initial parameter covariance is assumed to be

Cov(ζθ) = α1 (3.48)

where α is a given positive parameter. The noised signal is given by

Zn = H Y n
s + σζ̂ ,
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where Y n
s is a synthetic solid displacement, ζ̂ ∼ N (0, I), and σ = 0.2mm, i.e.,

10% of the maximal displacement at the solid wall. The measurements covariance is
computed as indicated in Section 3.3.1. The scalar gain w−1 is obtained by formulae
(3.47) setting Tref = 0.8 s, Href = 76 cm2 ≈ |Σ0|. Moreover, we resample the noised
measurements Zn in time with τobs = 10τ = 0.02s, and we re-interpolate linearly
so that the filter can be applied at every time step of the simulation. The perfect
signals and the noise (without time resampling for the sake of clarity) are shown in
Figure 3.1 for representative points of the five regions of the vessel. Note that the
signal-to-noise ratio decreases when going from the center to the ends of the AAA.
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Figure 3.1: Noise compared to the typical wall displacements in the five regions.
Time responses (left), and signal-to-noise ratio (SNR: signal mean divided by stan-
dard deviation) (right).

First estimation results. In Figure 3.2, we present two estimation results for
Ei = 2θi obtained for two different covariances α = 4 and α = 9 for θi in (3.48).
We remind that the higher α the lower the confidence in the initial values of the
parameters. The constant β in (3.46) is for the moment fixed to 1, which corresponds
to a rather low confidence in the measurements.

Several comments are in order. First, comparing the two graphs of Figure 3.2,
we observe that the estimation algorithm has more freedom to adapt the parameters
for large values of α. Second, the result is very good in region 3 but seems poor
in the other regions. This is of course a consequence of the low SNR and the low
value of β. Nevertheless, even in those cases, the algorithm is able to distinguished
regions with high and low stiffness. This can be considered as a promising result for
applications like detection of arteriosclerosis plaques from very noisy measurements.

Sensitivity with respect to β. The results presented in Figure 3.2 can be im-
proved by increasing the value of β, which means increasing our confidence in the
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Figure 3.2: Results for the estimation of the Young’s modulus with the reduced
UKF algorithm for α = 4 (left) and α = 9 (right) for β = 1. The dashed lines
correspond to the correct values. The color are the same as in Figure 3.1.

measurements. Figure 3.3 shows the behavior of the estimated parameter at the
end of the cardiac cycle when β varies.

As expected, the sensitivity to β is higher for large a priori covariances Cov(ζθ) =

α1, and the estimated value is much more sensitive to α in region 1, which has
the poorest SNR. But we also observe that for β reasonably large (about 10), the
values of E are correctly estimated in all the other regions. Hence, at least for this
example, we can conclude that, when the noise is not too high, the estimation does
not strongly depend on the user-defined parameters α and β.
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Figure 3.3: Results for the estimation of the Young’s modulus (at t = 0.8) with the
reduced UKF algorithm for α = 4, 9, for each section and different values of β. The
relation between color and region is the same as in Figure 3.1. The dashed lines
represents the reference values.



3.4. Numerical examples 95

Estimation of the covariance. The results presented so far correspond to the
estimated mean value of the parameters. An important feature of Kalman filtering
is to also provide the estimated covariances, which is a valuable information about
the confidence we can have in the results.

In the reduced UKF framework, the a posteriori covariance of the parameters is
given by

P θn = LθnU
−1
n

(
Lθn

)ᵀ
.

Figure 3.4 shows the results for the parameters mean θ̂n−1 and mean plus/minus
the standard deviation θ̂n−1 ±

√
diag(P θn). For the sake of clarity, the results are

presented here in terms of θ instead of 2θ, and only for the worst and best regions
(1 and 3 respectively). We observe that the a posteriori variance is much higher in
the region where the parameter is poorly estimated. We are therefore informed by
the algorithm that the results are less reliable in that case, even when the correct
value is unknown. This point is particularly important when dealing with real data.
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Figure 3.4: Results for θ̂n−1 for Regions 1 (blue) and 3 (red) with α = 4, β = 100
and α = 9, β = 20 (β chosen in both cases to be in the flat region of Figure 3.3).
The thick continuos lines represent the mean value, the thin continuous lines the
mean plus/minus standard deviation, and the dashed lines the reference value as
before.

3.4.2 Estimation of the Windkessel’s proximal resistance

As indicated in Section 3.3.1, this estimation strategy does not involve many
changes in the original software and can be implemented in a generic way outside
the specific solvers. It is therefore quite simple to change or add parameters to
estimate. In order to illustrate this versatility, we estimated the Windkessel’s prox-
imal resistance Rp from the same measurements as before, i.e. synthetic noisy wall
displacements (see Figure 3.1). For this preliminary test, all the other parameters
were supposed to be known (inclusive the stiffness distribution). As for the Young’s
modulus, we reparametrize Rp as Rp = 500 · 2θ, and we perform the estimation on
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θ. The result shown in Figure 3.5 was obtained with Cov(ζθ) = α1, with α = 1.
The value of β = 100 was chosen so that the final estimation result is not sensitive
to it anymore. Note that can almost perfectly recover the reference value of Rp.
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Figure 3.5: Results for the estimation of the proximal Windkessel resistance Rp with
β = 100.

3.4.3 Error in the initial condition and filtering Windkessel’s pres-
sure

Up to now, it has been assumed that the initial state is perfectly known. This
is of course not the case in practice, and we would like to illustrate in this section
the impact of an error in the initial condition in the estimation results. We will also
show that the results can be improved by considering the Windkessel’s pressure as
a part of the filtered variables in the reduced UKF algorithm (we remind that up to
now the filtered variables were restricted to the parameters).

Estimation with inexact initial condition. To generate the inexact initial
condition, the forward model is first run for one cardiac cycle with an homogeneous
Young’s modulus corresponding to θi = 0. The initial condition X̂0 used for the
estimation corresponds to the state obtained at the end of the cycle (t = 0.8 s).
Compared to the exact solution, the pressure difference is 2.4mmHg and the dis-
placement difference is 0.16mm in the AAA center (see Figure 3.6). The velocity
and displacement differences in the fluid and the solid are negligible.

Figure 3.7 (left) shows the parameter estimation results obtained with α = 4,
β = 100 (the value of β is chosen so that we are in the flat zone shown in Figure
3.3) . Comparing with Figure 3.2, we see how the perturbation of the initial state
deteriorates the estimation results. The pressure is lower due to the error in the
initial condition (Figure 3.8, right, dashed cyan curve), which affects the parameter
estimation.

As already mentioned, a first solution to address this problem is to filter the state
with a physical Luenberger feedback, like in [MCLT08] for elastodynamics and later
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Figure 3.6: Response of the forward model with θi = 0, ∀ i, for displacements at
the AAA center and proximal pressure p̄ at Γout. The dashed lines show the gap
between t = 0 s and t = 0.8 s.

extended to FSI in Chapter 4. The complexity of Luenberger filters remains mod-
erate when the system dimension increases since it is based on regular mechanical
stabilization terms. In the next section we propose a simpler solution, less general,
but apparently quite efficient for blood flow simulations.

Filtering the Windkessel’s pressure. So far, the reduced order UKF algorithm
has only been applied to the parameters. Now we propose to also apply it to the
Windkessel’s pressure π which is a state variable of the problem. Contrary to the
other state variables – the fluid and solid velocities and displacements, which depend
on the spatial discretization – πn has by definition a limited size: just one real
value in the experiment considered here, or a few real values in a case with several
outlets. Therefore, it is straightforward to include it in the parameter space. From
a practical viewpoint, this only consists of considering πn as a (time dependent)
parameter in the above algorithm. If an additional CPU is available for the new
particle associated to this parameter, the total computational cost remains almost
unaffected. From the physical point of view, the fluid pressure is mainly governed
by the Windkessel’s pressure. Hence, improving the knowledge of this quantity
would have a global impact on the estimation of the whole FSI system. Figure 3.7
(right) shows the estimation results in the case with an initial condition error (see
the previous paragraph). We observe that the result is significantly improved.

Figure 3.8 shows the displacements and the pressure for different cases: refer-
ence (the solution to recover), not filtered, estimated with a perfectly known initial
condition, estimated with error in the initial condition with and without filtering
the Windkessel’s pressure. Note that in all the filtered cases, the displacements
are properly recovered. But we observe a substantial improvement in the pressure
estimation when the Windkessel’s pressure is filtered. This good estimation of the
general amount of stress in the system, combined with the displacement accuracy,
implies that the Young’s modulus estimation is better than in the situation when
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Figure 3.7: Parameter estimation in presence of an error in the initial condition with
α = 4, β = 100. Only 5 stiffness parameters included in the parameter space for the
reduced UKF (left), and and effect of inclusion the Windkessel’s pressure (right).

πn is not filtered.
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Figure 3.8: Results for the estimation of displacement at the AAA centre and Wind-
kessel’s pressure. All reduced UKF curves are obtained with α = 4 and β = 100.

3.5 Conclusions

We have derived a procedure to estimate uncertain physical parameters in sys-
tems involving the mechanical interaction of a viscous incompressible fluid and an
elastic structure. The method is based on the reduced-order Unscented Kalman
Filter, introduced in [MC11b]. The algorithm does not need any tangent or adjoint
problems and can easily be run in parallel, using as many processors as the number
of parameters plus one. Doing so, the computational time needed to solve the in-
verse problem is of the same order as the time needed by a forward simulation using
one processor.
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Some numerical results have been presented for noised synthetic data correspond-
ing to an idealized geometry of aneurysm. We have estimated the artery Young’s
modulus in 5 regions using measurements of the wall displacement. We have first
considered a problem with a perfectly known initial condition, and we have investi-
gated the sensitivity of the results to the noise and the a priori parameter covariance
matrices. Then, we have perturbed the initial condition of the system in order to
illustrate its impact on the parameter estimation. Finally, we have shown that con-
sidering the Windkessel’s pressure as a parameter is a simple way to improve the es-
timation performance, without significantly increasing the computational cost, and
without any additional measurements. To illustrate the versatility of the method,
we have also presented a preliminary result about Windkessel resistance estimation.





Chapter 4

Luenberger observers in FSI

We analyze the performance of various Luenberger observers to estimate the state of a
dynamical system involving a viscous incompressible fluid and an elastic structure. The
measurements are assumed to be limited to displacements and velocities in the solid. We
show that the behavior observed in fluid-structure interaction (FSI) and in solid
mechanics may differ dramatically in some situations. We explain this observation,
numerically and analytically, with various simplified models and we propose a new filter
that accounts for the specificity of FSI.

The results presented in this chapter lead to the manuscript:
C. Bertoglio, D. Chapelle, M. Fernández, J.-F. Gerbeau and P. Moireau. State
observers of a vascular fluid-structure interaction model through
measurements in the solid. Submitted to Computer Methods in Applied
Mechanics and Engineering, 2012.
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4.1 Observers for the fluid-structure interaction problem

In this section we introduce the formulations for the fluid-structure observers
when velocities or displacements are available in a subpart of the solid domain. In
order to make this chapter as self-contained as possible, we recall the strong form of
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the coupled fluid-structure equations. Then, we present different definitions of the
discrepancy between observations and model for two types of solid measurements.
Next, we present the respective observers, and we finalize with some numerical
experiments in order to illustrate their performance.

4.1.1 Fluid-structure interaction equations

We consider the mechanical interaction between an incompressible fluid and
an elastic structure. The fluid is described by the Navier-Stokes equations, in a
moving domain Ωf(t) ⊂ Rd, d = 2, 3, in an Arbitrary Lagrangian Eulerian (ALE)
formulation, and the structure by the linear elasticity equations in Ωs

0 ⊂ Rd, with
Ωs

0 = Ωs(0) and Ωs = Ωs(t) the deformed solid domain at time t. The fluid-structure
interface is denoted by Σ = ∂Ωs∩∂Ωf and ∂Ωf = Γin∪Γout∪Σ, ∂Ωs

0 = Γd
0 ∪Γn

0 ∪Σ0,
are given partitions of the fluid and solid boundaries, respectively (see Figure 4.1).
The coupled FSI problem reads as follows:

For t > 0, find the fluid velocity uf(t) : Ωf(t) → Rd, the fluid pressure p(t) :

Ωf(t) → R, the structure displacement ys(t) : Ωs
0 → Rd and structure velocity

us(t) : Ωs
0 → Rd such that

• Fluid equations:
ρf
∂uf

∂t

∣∣∣
ξ

+ ρf(uf −w) ·∇uf −∇ · σf(uf , p) = 0, in Ωf(t),

∇ · uf = 0, in Ωf(t),

uf = uin, on Γin,

σf(uf , p) · nf = −P nf , on Γout.

(4.1a)

with σf(uf , p) = −p1 + 2µf ε(uf), where ε(uf) denotes the deformation rate
tensor, µf the dynamic viscosity, and ∂

∂t |ξ
the ALE derivative (see e.g. [FG09]).

In the hemodynamics problems considered in this work, the outlet pressure P
is obtained by solving the differential-algebraic equation

P = π +RpQ,

C
dπ

dt
+

π

Rd
= Q,

Q =

∫
Γout

uf · nf dΓ

(4.1b)

Here, the distal resistance Rd, the proximal resistance Rp and the capacitance
C are assumed to be given. This “zero-dimensional” equation is known as the
three-element Windkessel model (see for example [FQV09]). It represents the
flow resistance (Rp and Rd) and the compliance (C) of the vessels beyond the
3D portion considered in the simulation.
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• Structure equations:
∂tys = us, in Ωs

0,

ρs∂tus − ηs∇ · σs(us)−∇ · σs(ys) = 0, in Ωs
0,

ys = 0, on Γd
0 ,

ηsσs(us) · ns + σs(ys) · ns = 0, on Γn
0 ,

(4.1c)

with σs(ys) = λsTr(ε(ys))1 + 2µsε(ys) where, λs and µs are the Lamé con-
stants and ηs a viscous modulus.

• Coupling conditions:
yf = ExtfΣ0

(
ys|Σ0

)
, w = ∂tyf , Ωf(t) =

(
IΩf

0
+ yf(t)

)
(Ωf

0),

uf = us, on Σ(t),

ηsσs(us) · ns + σs(ys) · ns + Jfσf(uf , p) · F−Tf · nf = 0, on Σ0 ,
(4.1d)

with ExtfΣ an extension operator from Σ to Ωf , Ff the deformation gradient
and Jf = detFf .

Note that the continuity of the domain displacements could be limited to their
normal components.

This problem is completed with appropriate initial conditions: velocity uf(0),
domain displacement yf(0) and Windkessel’s pressure π(0) for the fluid, initial ve-
locity us(0) and displacement ys(0) for the solid.
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Σ(t)Ωf(t)
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π
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Figure 4.1: Reference (top) and current domain (bottom) in the ALE formulation
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Energy balance - In what follows, the quantity

E(t) =
ρf

2
‖uf‖2L2(Ωf(t))

+
ρs

2
‖us‖2L2(Ωs

0)︸ ︷︷ ︸
Kinetic energy

+
1

2
‖ys‖2Esl +

C

2
π2︸ ︷︷ ︸

Potential energy

denotes the total mechanical energy of the fluid-structure system described by (4.1),
with ‖ · ‖Esl standing for the elastic energy-norm of the structure, that is,

‖ds‖Esl =
√
〈ds,ds〉Esl , 〈ds,vs〉Esl =

∫
Ωs

0

σs(ds) : εs(vs) dΩ

for all ds,vs ∈ Vds .
The next result states the energy equation of the coupled system (4.1). As ex-

pected, dissipation only comes from the viscosity in the fluid, the solid and the resis-
tive terms in the outlet boundary conditions. In particular, the power exchanged by
the fluid and the structure exactly balances at the interface, as a direct consequence
of the coupling conditions (4.1d).

Proposition 5
The following identity holds for t > 0:

d

dt
E(t) = −D(t)−

∫
Γin

ρf

2
uin · nf |uin|2 −

∫
Γout

ρf

2
uf · nf |uf |2 dΓ (4.2)

with

D(t) = 2µ‖ε(uf)‖2L2(Ωf(t))
+ ηs‖us‖2Esl +

π2

Rd
+RpQ

2.

Proof. The identity (4.2) can be derived from a standard energy argument (see,
e.g., [FG09]). We first multiply (4.1a)1 by uf , integrate over Ωf(t) and apply the
Green formula to the divergence term. Similarly, we then multiply (4.1c)2 by us,
integrate over Ωs

0 and apply the Green formula once more. By adding the resulting
expressions and using (4.1d) and (4.1b) we get (4.2).

Note that, as well known, the overall stability of the system is not ensured in
the case of backflow on Γout is presented. For the numerical experiments consider
in this work, this is in fact not an issue.

State-space form. Finally we introduce the standard state-space representa-
tion of System (4.1) classically used to present control and observation problems
[Cor07, CZ95]. First we introduce the state of the system as the combination
x = (ys,us,yf ,uf , π). Then, we can formally define an evolution operator A –
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nonlinear in our case – such that System (4.1) reads{
ẋ = A(x)

x(0) = x0 + ζ
(4.3)

Note that in this formulation the distributed fluid pressure does not appear directly
in (4.3) since it corresponds to a Lagrange multiplier of the fluid incompressibility
constraint prescribed through the fluid space definition.

4.1.2 Observer based on solid measurements

We now present the fluid-structure observer based on displacement measure-
ments in the solid. We begin by defining the types of discrepancy operators and
detailing the filtering setting. Then we present the specific formulations for the
velocities- and displacements-based observers.

4.1.2.1 Discrepancy measure minimization

Usually, computational models only use the data to define the initial state and
the boundary conditions. By contrast, an observer is a system which can benefit
from the whole set of data to improve the result of the model. For example, the data
are used in [MCLT08] to reduce the error on the initial condition for an elasticity
problem, and in [CCM] to reduce the discretization error for a wave-like equation.

In the cardiovascular context, the most common type of non-invasive measure-
ments is provided by medical images which contain information about the solid
kinematics. In [MCLT09], this type of measurements is used to define an observer
for a solid problem. Here, we aim at extending this methodology to an FSI sys-
tem. In this study, we limit ourselves to measurements of structure displacements
or velocities. But the observers presented here can be extended to more realistic
measurements, like for example the distance to segmented surfaces. This has been
proposed in [MCLT09] for solid mechanics problems, applied in [CML+11] with MRI
images, and in [MBX+12] with CT images for an FSI problem.

In the present work, we will consider measurements defined for example by

zd = Hdyref
s , (4.4)

where Hd is the observation operator which e.g. selects the field ys in a subdomain
ω ∈ Ωs

0 or the trace of the field at some interface, e.g. the fluid-structure interface
Σ0. In these cases, we have

zd = yref
s|ω, (4.5a)

or

zd = yref
s|Σ0

. (4.5b)
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Even if velocity measurements are rarely directly accessible, we will also consider

zv = Hvuref
s (4.6)

because this kind of observation can be helpful to understand how to derive adequate
observers.

When these two types of measurements are simultaneously available, the oper-
ators can be aggregated to obtain

z =

(
zd
zv

)
=

(Hd 0

0 Hv

)(
yref

s

uref
s

)
.

More generally for xref = (yref
s ,uref

s ,yref
f ,uref

f , πref), we can define

z = Hxref + χ

with χ some additive measurement noise.

The principle of optimal filtering in data assimilation – with Kalman filtering
[KB61] and various extensions thereof [Sim06] – is to minimize in time – up to
additive regularization terms – a discrepancy measure comparing a given state x =

(ys,us,yf ,uf , π) with the measurements z. Considering again the example (4.5),
the discrepancy measure can be

measL2(ω){x, z}(t) =
1

2

∫
ω
|zd − ys|2 dΩ, (4.7a)

or

measL2(Σ0){x, z}(t) =
1

2

∫
Σ0

|zd − ys|2 dΓ, (4.7b)

when choosing an L2-norm for comparing the two fields. Alternativaly, other norms
can be chosen, for instance on the boundary we can consider an H

1
2 (Σ0) type norm,

while for a subdomain we can employ an H1(ω)-norm. Then, we use

measH1(ω){x, z}(t) =
1

2
‖Extsω(z − ys|ω)‖2H1(Ωs

0), (4.8a)

or

measH1/2(Σ0){x, z}(t) =
1

2
‖ExtsΣ0

(z − ys|Σ0
)‖2H1(Ωs

0), (4.8b)

where ExtsΣ0
and Extsω are extension operators defined in the structure domain and

based on the elasticity formulation. The advantage of the state space form is to
summarize all these discrepancy measures in

measM{x, z}(t) =
1

2
‖z −Hx‖2M (4.9)

for a given norm M. Therefore, optimal filters are built by considering the mini-
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mization of a least square criterion

J(x(0), T ) =
1

2
‖x(0)− x0‖2E +

1

2

∫ T

0
‖z(s)−Hx(s)‖2Mds,

for x(·) following the dynamics (4.3). The norm ‖‖E is typically an energy norm
naturally associated with the system, and we minimize on the initial condition which
entirely determines the rest of the trajectory.

Then the optimal observer – denoted by x̂ since it follows its own evolution
equation – is defined by {

˙̂x = A(x̂) + PH′(z −Hx̂)

x̂(0) = x0

(4.10)

where H′ is the adjoint of the operator H with respect to the norm M, and P
an operator deriving from a Riccati equation in Kalman-like filtering or from a
Hamilton-Jacobi-Bellman equation for nonlinear systems [Fle97]. In all cases, these
filters suffer from the “curse of dimensionality” as explained by Bellman [Bel57],
which makes them intractable with partial differential equations. In [Lue71], Luen-
berger introduced a new class of filter, named observers, for which he relaxed the
optimality condition to only base the filter design requiring that the error x̃ = xref−x̂
to be asymptotically stable. To that purpose, a possible approach is to differentiate
the discrepancy measure (4.9), namely

∇x(measM{x, z}(t)) = −H′(z −Hx),

and use this gradient as the correction descent direction. Hence, a good observer
candidate in state-space form is

˙̂x = A(x̂) + γH′(z −Hx̂), (4.11)

with γ a scalar characterizing the correction intensity. In the case of a linear dy-
namics operator A(·) = Al · we can derive the dynamics of the error x̃ = xref − x̂
between the real system xref and the observer x̂ to ge the autonomous system

˙̃x = (Al − γH′H)x̃− γH′χ.

Hence, the principle of the observer is to ensure that the semi-group generated by
Al − γH′H is asymptotically stable. We will analyze our strategy in this light in
Section 4.2, by considering linear fluid models in our coupled fluid-structure problem.

Let us now specify in the next two paragraphs how the strong formulation for
the classical FSI problem is modified when constructing an FSI observer in the case
of velocities or displacement measurements.
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4.1.2.2 Observer based on solid velocities measurements

We first consider the simplest observer based on solid velocities. Assuming that
we measure the velocities on a subdomain ω or the boundary part Σ0 , we have the
following discrepancy measure

measL2(ω){x, z}(t) =
1

2

∫
ω
|zv − us|2 dΩ, (4.12a)

or

measL2(Σ0){x, z}(t) =
1

2

∫
Σ0

|zv − us|2 dΓ, (4.12b)

and corresponding tangent operators

∀vs ∈ Vvs , PL2(ω){x, z}(t)(vs) =

∫
ω
(zv − us) · vs dΩ, (4.13a)

or

∀vs ∈ Vvs , PL2(Σ0){x, z}(t)(vs) =

∫
Σ0

(zv − us) · vs dΓ. (4.13b)

In this case the control operator γH′ generates a force proportional to the discrep-
ancy between the computed and measured velocities, so that the tangent expression
(4.13a) or (4.13b) appears as an external virtual power in the principle of virtual
power. The resulting filter is called Direct Velocity Feedback (DVF), widely used
in structural control [Pre02], and already applied in [MCLT08] for state estimation
of solid mechanics systems. The corresponding observer consists in modifying in
System (4.1) the solid formulation (4.1c) into

∂tŷs = ûs, in Ωs
0,

ρs∂tûs − ηs∇ · σs(ûs)−∇ · σs(ŷs) = γv1ω(zv − ûs|ω), in Ωs
0,

ŷs = 0, on Γd
0 ,

ηsσs(ûs) · ns + σs(ŷs) · ns = 0, on Γn
0 ,

(4.14a)

with γv corresponding gain for the DVF. The case of velocities measured on a
boundary is more intricate because the velocity is usually defined in L2(Ωs

0) in
System (4.1) and therefore does not a priori have a trace on the boundary. However,
assuming this regularity present in the reference solution – justifying the fact that we
can measure it – some hidden regularity can be justified for the observer as recalled
in [CMLT09] and more precisely discussed in [LT03]. In the case of measurements
on Σ0, the observer consists now only in changing the coupling conditions (4.1d) of
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System (4.1) into
ŷf = ExtfΣ0

(
ŷs|Σ0

)
, ŵ = ∂tŷf , Ωf(t) =

(
IΩf

0
+ ŷf(t)

)
(Ωf

0),

ûf = ûs, on Σ(t),

ηsσs(ûs) · ns + σs(ŷs) · ns + Jfσf(ûf , p̂) · F̂−Tf · nf = γv(zv − ûs), on Σ0 ,
(4.14b)

Energetic aspects for the observer. The dissipative character of the DVF filter
can be highlighted by a simple energy argument, as in Proposition 5. Thus, for the
coupled systems (4.1a), (4.14a), (4.1d), (4.1b) or (4.1a), (4.1c), (4.14b), (4.1b) the
identity (4.2) becomes

d

dt
Ê(t) ≤ −D̂(t)− γv

2
‖ûs‖2L2(ω) +

γv
2
‖zv‖2L2(ω) −

∫
Γin∪Γout

ρf

2
ûf · nf |ûf |2 dΓ,

with obvious notation

Ê(t) =
ρf

2
‖ûf‖2L2(Ωf(t))

+
ρs

2
‖ûs‖2L2(Ωs

0) +
1

2
‖ŷs‖2Esl +

C

2
π̂2,

D̂(t) =2µ‖ε(ûf)‖2L2(Ωf(t))
+ ηs‖ûs‖2Esl +

π̂2

Rd
+RpQ̂

2.

4.1.2.3 Observer based on solid displacement measurements

In practice, displacement-like measurements are more common [MCLT09] and,
taking into account the time sampling of the measurements in medical imaging, we
cannot afford to time-differentiate them to generate velocity measurements with-
out unduly amplifying the noise. Therefore, we directly apply an observer of the
form (4.10) which uses the H

1
2 (Σ̂) or H1(ω) discrepancy measure as proposed in

[MCLT09, CCdBM11] with the Schur Displacement Feedback (SDF) filter. Note
that in this filter of the form (4.11) the control operator γH′ does not appear as a
force applying on the mechanical system, but instead modifies the velocity to dis-
placement time-derivative identity. In fact the discrepancy measure (4.8a) or (4.8b)
has as corresponding tangent operator

∀ds ∈ Vds , PH1(ω){x, z}(t)(ds) =
〈
Extsω(zd − ŷs|ω),Extsω(ds|ω)

〉
Esl
, (4.15a)

∀ds ∈ Vds , P
H

1
2 (Σ0)

{x, z}(t)(ds) =
〈
ExtsΣ0

(zd − ŷs|ω),ExtsΣ0
(ds|ω)

〉
Esl
, (4.15b)

that, for instance for (4.15b), can be shown to be equivalent to

∀ds ∈ Vds , P
H

1
2 (Σ0)

{x, z}(t)(ds) =
〈
ExtsΣ0

(zd − ŷs|Σ0),ds

〉
Esl
, (4.16)

using the extension characterization

∀ds such that ds

∣∣
Σ0

= 0,
〈
ExtsΣ0

(zd − ŷs|Σ0),ds

〉
Esl

= 0.
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Similarly for (4.15a), we also have

∀ds ∈ Vds , PH1(ω){x, z}(t)(ds) =
〈
Extsω(zd − ŷs|ω),ds

〉
Esl
. (4.17)

The corresponding observer consists in modifying in System (4.1) the solid for-
mulation (4.1c) into

∂tŷs = ûs + γdExts∗(zd − ŷs|∗), in Ωs
0,

ρs∂tûs − ηs∇ · σs(ûs)−∇ · σs(ŷs) = 0, in Ωs
0,

ŷs = 0, on Γd
0 ,

ηsσs(ûs) · ns + σs(ŷs) · ns = 0, on Γn
0 ,

(4.18)

with Ext∗ corresponding to Extω or ExtΣ0 depending on the type of observations,
and γd the corresponding gain for the SDF. Note that such a correction can be
considered for the observer x̂ only because it is a virtual numerical system.

Energetic aspects for the observer. The dissipative character of the SDF filter
can be highlighted by an energy argument, as in Proposition 5. The key point here
lies in the treatment of the term 〈ŷs, ûs〉Esl from (4.18)2, which becomes non-standard
due to the perturbed displacement-velocity relation (4.18)1.

We proceed as in [MCLT09], by evaluating the 〈·, ·〉Esl -inner-product of (4.18)1
with ys. This yields the identity

〈ûs, ŷs〉Esl = 〈∂tŷs, ŷs〉Esl + γd
〈
Exts∗(ŷs − zd), ŷs

〉
Esl
.

Hence, from (4.16) and (4.17), we infer that

〈ûs, ŷs〉Esl = 〈∂tŷs, ŷs〉Esl + γd
〈
Exts∗(ŷs − zd),Exts∗(ŷs)

〉
Esl

≥ 1

2

d

dt
‖ŷs‖2Esl +

γd
2
‖Exts∗(ŷs)‖2Esl −

γd
2
‖Exts∗(zd)‖2Esl .

Therefore, for the coupled systems (4.1a), (4.1b), (4.18), (4.1d), the identity (4.2)
becomes

d

dt
Ê(t) ≤ −D̂(t)− γd

2
‖Exts∗(ŷs)‖2Esl +

γd
2
‖Exts∗(zd)‖2Esl −

∫
Γin∪Γout

ρf

2
ûf · nf |ûf |2 dΓ.

(4.19)

It should be noted that thanks to the stability properties of the extension opera-
tor Exts∗, the term in the right-hand side of (4.19) can be controlled by γd

2 ‖zd‖2H1(ω)

or by γd
2 ‖zd‖2H 1

2 (Σ0)
, depending on the choice of the tangent operator (4.15a) or

(4.15b). At last, it is worth mentioning that such energy estimates are often a valu-
able tool for the well-posedness analysis of this type of coupled problems (see, e.g.,
[Mad09] for a recent review).
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Remark 11 (Coupling relations at the interface)
The modification of the relationship between the velocity and the displacement in
the solid has to be carefully considered for the interaction with the fluid. First, it
is desirable to preserve the kinematic compatibility at the fluid-structure interface,
so we move Ωf(t) with an extension of the Lagrangian displacements of the solid,
and not from a displacement recomputed from the solid velocity. Secondly, to get a
correct energy balance, the following term has to be added to the fluid equation on
Σ:

ρf

2
(ûf − ŵ) · nf ûf

which is nonzero when the SDF is active, since ûf is obtained from ûs while ŵ is
obtained from the derivative of ŷs. When the standard relationship between ûs and
ŷs holds, this additional term vanishes. It can be therefore be viewed as “strongly
consistent”, in the sense that it vanishes as soon as the measurements match the
result of the model.

4.1.3 First numerical experiments

In order to have a first insight into the behavior and efficiency in FSI of the DVF
and SDF observers, we now present two fluid-structure numerical experiments. The
first one is purely illustrative, and the second one is representative of blood flows
in large arteries. In Section 4.2, the estimators will be analyzed in more detail to
better understand the different results obtained in this section.

All the physical quantities will be given in cgs units. In both experiments, we
consider a straight tube of length 10 with diameter 1.7 and thickness 0.2 (see Figure
4.5). The solid density is ρs = 1.2, the Young modulus is E = 3. 105, the Poisson
ratio is ν = 0.46, the viscoelastic coefficient is ηs = 10−3. Fluid viscosity and density
are respectively µ = 0.035, ρf = 1.

For the discretization, we apply a staggered solution to compute the fluid-
structure problem, allowing to keep structure and fluid solvers independent. For the
structure, we choose a Newmark scheme, whereas for the fluid we employ a semi-
implicit coupling algorithm based on a Chorin-Temam projection scheme [FGG06]
and detailed in Algorithm 5, Chapter 3. The viscous effects and the geometrical
and convective nonlinearities are treated explicitly, and the pressure step is coupled
implicitly to the solid. For the space discretization, we use conforming finite element
triangulations in the fluid and solid domains, with first-order piecewise polynomials
for all fluid and solid variables.

4.1.3.1 Example 1 – Stabilization at rest configuration

In the first experiment, the tube wall is clamped at the inlet and the outlet, a
zero velocity is enforced at the inlet of the fluid and a zero traction is enforced at
the outlet. At t = 0, a displacement is imposed to the solid – taken from Example
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2 at maximum deformation – hence

ys(0) 6= 0 , us(0) = 0 , yf

∣∣
Σ0

(0) = ys

∣∣
Σ0

(0) , w(0) = uf(0) = 0.

Since no external forces are applied, the system goes naturally back to equilibrium
(fluid and solid at rest) due to the physical dissipation. Figure 4.2 shows the de-
formed domain at t = 0 and the time response of the radial displacement at a point
of the wall.

The purpose of this test is to compare the efficiency of the DVF and the SDF
at accelerating this convergence to equilibrium. The measurements are therefore
assumed to be zero for the velocity and displacement at the fluid-structure interface.

Time [s]
0 0.2 0.4 0.6 0.8

0.1

0.05

0

-0.05

-0.1

0.15

Displacement [cm]

Figure 4.2: Initial deformed domain (left), displacements amplified 5 times, and
time response of the displacement of one node of the wall (right).

The results are summarized in Figure 4.3 and in Figure 4.4 for the error x̃ =

xref− x̂ in the energy norm. To have a better insight into the effect of the feedbacks,
we also plot separately the different components of the energy: elastic and kinematic
in the solid and kinematic in the fluid.

Interestingly, it appears that the SDF works much better than the DVF, contrary
to what is observed for pure solid experiments [MCLT09]. Indeed, even if the SDF
has been designed to have performances similar to the DVF for pure solid cases
(see [MCLT09] and Section 4.2.2), it does generally not outperform it. This fact is
directly related to the interaction of the solid with the fluid. In Section 4.2, we will
propose an explanation, and a way to significantly improve the performance of the
DVF for FSI problems.

4.1.3.2 Example 2 – Cylinder with pulsatile flow

In the second experiment, a time varying parabolic velocity profile is prescribed
at the inlet with a peak velocity of about 110, see Figure 4.5. At the outlet, the
pressure P is assumed to be given by the Windkessel model in (4.1b) with Rp = 400,
Rd = 6.2 · 103 and C = 2.72 · 10−4.
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Figure 4.3: Decay of the total error in the energy norm for Example 1 (all curves
are normalized with the initial energy).
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Figure 4.4: Decay of the error for solid and fluid in the energy norm for Example
1 (all curves are normalized with the initial energy). The colors correspond to the
legend of Figure 4.3.
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Figure 4.5: Geometry, inflow and velocity field of the straight vessel.

The reference simulation used to generate the synthetic measurements is set as
follows. At t = 0, the pressure is constant and equal to p(0) = 106664 ≈ 80 mmHg,
whereas all the other state variables are zero. During the whole simulation, the
stress received by the structure is corrected by the initial one. Doing so, the solid
only “feels” the difference with the initial phase. This is a simple way to account
for the prestress in linear elastodynamics. We refer to [GFW10, MXA+11], and
references therein, for a discussion about prestress computation in a more general
framework.

To test the filters, we proceed as in the reference simulation until t = 0.8 except
that a perturbation is introduced in the Windkessel pressure P at t = 0, i.e., P (0) ≈
70mmHg. Then a filter is applied for the second fluid-structure cycle (0.8 ≤ t ≤
1.6). Doing so, the filter acts on a system for which all state variables are perturbed
with respect to the reference simulation (see Figure 4.6).
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Figure 4.6: Construction of the error in the initial condition for Example 2. Value
of the pressure, displacement, and velocity halfway through the vessel.

The efficiency of the Luenberger filters are compared using the energy norm of the
error (including the Windkessel’s energy). The results are reported in Figure 4.7 and
Figure 4.8. As in the first experiment, the SDF outperforms the DVF. Note that for
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the DVF and the non-filtered case, the decay rate is governed by the Windkessel time
scale RdC ≈ 1.7. The negligible impact of the DVF on the Windkessel dynamics
will be further illustrated in Section 4.2. With the SDF filter, at the very beginning
the displacement correction increases the solid velocity error which propagates to
the fluid velocity (see the solid and fluid kinetic energies at t = 0.8 in Figure 4.8).
But after few milliseconds, this perturbation is quickly stabilized by the SDF filter.
From about t = 1.2 s, the global error is dominated by the fluid error which reaches a
plateau, whereas the error in the solid and the Windkessel keeps decreasing. Again,
we will propose an explanation of these observations in Section 4.2.
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Figure 4.7: Decay of the total error in the energy norm for Example 2 (all curves
are normalized with the initial energy).

Effect of noise. We now briefly comment on the effect of noise in the estimation
results. Consider for example the SDF, with a Gaussian noise added to synthetic
measurements. The amount of noise is chosen as a certain percentage of the max-
imum displacement of the reference simulation, denoted by χ in the figure legend.
The results corresponding to two levels of noise are plotted in Figure 4.9, together
with the quantity 〈

Exts∗(χ),Exts∗(χ)
〉 1

2
Esl

(4.20)

which represents the energy norm of the extension of the noise in the solid domain.
Note that Gaussian noise is generated independently for each degree of freedom,
which explains the dramatic amplification effect observed in the elastic energy norm.
Nevertheless, in both cases the SDF is still capable of effectively reducing the error
much below the noise level.
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Figure 4.8: Decay of the error for solid and fluid in the energy norm for Example
2 (all curves are normalized with the initial energy). The colors correspond to the
legend of Figure 4.7.
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Figure 4.9: Effect of noise on the total error decay in Example 2 for the SDF with
γd = 300. The dashed lines corresponds to formula (4.20).
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4.2 Analysis of the estimators

4.2.1 General considerations

As said above, the purpose of the estimator (4.11) is to converge in time to the
system (4.3), meaning that the error system denoted by

x̃ = xref − x̂

should stabilize to 0. For an FSI problem involving nonlinear formulations for the
fluid and for the structure, the error system is a non-autonomous nonlinear system
and the stabilization is therefore a largely open problem. As presented in [Cor07], a
sufficient condition can be proven by studying the linearization of the error around
0, namely a linearization of the observer around the real trajectory. In the FSI
case, this linearized formulation consists in assuming small displacements for the
structure and fluid domains and neglecting the advection in the fluid. The problem
of the stabilization to zero of FSI-systems has been addressed in various papers
including models where a generic heat model is coupled to an elastic model [ZZ07].
The stabilization of the error has also been studied for particular configurations with
very specific feedback terms in [Ray10].

Even for this linearized situation the complete analysis of the estimator remains
largely open, both qualitatively – in terms of exponential stability – and even more
quantitatively when trying to investigate the convergence time constant which pur-
ports to be much lower than the simulation time. For example the stabilization in the
very recent result [GVD09] is assessed with a full dissipation on the solid, whereas
here we only assume partial observations, hence partial stabilization. Therefore,
we undertake a numerical study of the characteristics of our estimator to assess its
performance. As is classically done – see e.g. [MCLT09] – we will compute the poles
of the linearized error system. At least, this strategy will allow to distinguish good
estimator candidates from dead end strategies.

We denote by capital letters the discretized state and operators of our FSI prob-
lem, and since we use standard Galerkin discretizations we still have access to the
underlying variational formulation at the discrete level. We can then compute the
poles of the eigenproblem

(A−KH) X̃ = λX̃, (4.21)

associated with the dynamics of the error X̃ = X− X̂. The operator K discretizing
γH ′ will be formalized in each case to adequately transcript the sense of the adjoint.
The eigenvalue will help us quantify the decay rate – with slowest decay for highest
real part. Hence, for reducing the error by a factor β in a time Tc, the feedback
term should be designed so that

max{<(λ)} ≤ lnβ

Tc
. (4.22)

In cardiovascular problems and assuming, for example, that we have already around
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10% of error in the initial condition, we could intend to reduce this error to around
1% (hence β = 0.1) in about Tc ≈ 0.1 s, considering a cardiac cycle of 1 s. This
gives a requirement on max{<(λ)} of ≈ −25.

4.2.2 Pure elastodynamics

We start our investigation by recalling some results on a pure elastodynamics
system. We consider a structure loaded with a given time-dependent pressures at
its interface. 

∂tys = us, in Ωs
0,

ρs∂tus − ηs∇ · σs(us)−∇ · σs(ys) = 0, in Ωs
0,

ys = 0, on Γd
0 ,

ηsσs(us) · ns + σs(ys) · ns = 0, on Γn
0 ,

ηsσs(us) · ns + σs(ys) · ns = −pns, on Σ0

(4.23)

with the same notation as in Equation (4.1c). We define the finite element dis-
cretization of (4.23) on the finite dimensional subspace Vs,h ⊂ Vs and obtain the
finite dimensional dynamical system in state space form[

Ks 0

0 Ms

] [
Ẏs

U̇s

]
=

[
0 Ks

−Ks −Cs

] [
Ys

Us

]
+

[
0

F

]
, (4.24)

where the mass matrix Ms, stiffness matrix Ks and F are defined by

∀us,vs ∈ Vs,h, V ᵀ
s MsUs =

∫
Ωs

0

ρsus · vs dΩ,

∀ys,vs ∈ Vd,h, V ᵀ
s KsYs =

∫
Ωs

0

σs(ys) : ε(vs) dΩ,

∀vs ∈ Vs,h, V ᵀ
s F = −

∫
Σ0

pvs · ns dΓ,

and Cs = ηsKs. We used Ks in the identity written in the first line of System (4.24)
in order to emphasize the norm associated with the displacement field.

4.2.2.1 Case of solid velocity measurements

For this model, assuming that some velocity measurements are available, we can
define a DVF state estimator

∂tŷs = ûs in Ωs
0,

ρs∂tûs − ηs∇ · σs(ûs)−∇ · σs(ŷs) = γv1∗(zv − ûs|∗), in Ωs
0,

ŷs = 0, on Γd
0 ,

ηsσs(ûs) · ns + σs(ŷs) · ns = 0, on Γn
0 ,

ηsσs(ûs) · ns + σs(ŷs) · ns = −pns, on Σ0

(4.25)
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discretized into[
Ks 0

0 Ms

] [ ˙̂
Ys
˙̂
Us

]
=

[
0 Ks

−Ks −Cs − γvHᵀ
vM∗Hv

][
Ŷs

Ûs

]
+

[
0

F + γHᵀ
vM∗Z

]
, (4.26)

where Hv is the discretization of the observation operator in Vvs,h and M∗ is the
matrix associated with the L2 norm on the measurement domain. For instance,
considering measurements on the interface, we can decompose the vector of degrees
of freedom Us on the degrees of freedom of Σ0 and the internal degrees of freedom.
Then we have

∀Us, HvUs = [1 0]

[
Us,Σ0

Us,I

]
= Us,Σ0

and get

∀us,vs ∈ Vs,h, V ᵀ
s H

ᵀ
vMΣ0HvUs = V ᵀ

s,Σ0
MΣ0Us,Σ0 =

∫
Σ0

us · vs dΓ.

Note that if the observations are undersampled, Hv can be seen as a projector ΠZ
on the subspace where the observation are defined and

∀us,vs ∈ Vs,h, V ᵀ
s H

ᵀ
vMΣ0HvUs =

∫
Σ0

ΠZ(us) ·ΠZ(vs) dΓ.

From (4.21), we deduce the associated eigenvalue problem:

Find (Φd,Φv, λ) such that
[

0 Ks

−Ks −Cs − γvHᵀ
vM∗Hv

] [
Φd

Φv

]
= λ

[
Ks 0

0 Ms

] [
Φd

Φv

]
.

(4.27)

Spectral sensitivity analysis. For the DVF, when eliminating Φv in (4.27),
the computation of the poles can be performed by solving the following quadratic
eigenvalue problem typical of the underlying second order PDE(

λ2Ms + λ(Cs + γvH
ᵀ
vM∗Hv) +Ks

)
Φd = 0 , (4.28)

The solution (λ,Φd) of (4.28) is a function of γv and we denote by (λ0,Φ0) the
solutions for γv = 0. Recalling that Cs = ηsKs, they verify

KsΦ0 = ω2
sMsΦ0, and λ2

0 + ηsω
2
sλ0 + ω2

s = 0,

and we can normalize the modes such that Φᵀ
0MsΦ0 = 1.

Therefore, if we differentiate (4.28) with respect to γv and evaluate the resulting
expression at γv = 0, we obtain(

2λ0
∂λ

∂γv

∣∣∣
γv=0

Ms + λ0H
ᵀ
vM∗Hv +

∂λ

∂γv
Cs

)
Φ0+

(
λ2

0Ms + λ0Cs +Ks

) ∂Φ

∂γv

∣∣∣
γv=0

= 0.

(4.29)



120

Finally, left-multiplying by Φᵀ
0 and using that, by definition (λ2

0Ms+λ0Cs+Ks)Φ0 =

0, we obtain (
2 + ηs

ω2
s

λ0

) ∂λ
∂γv

∣∣∣
γv=0

= −Φᵀ
0(Hᵀ

vM∗Hv)Φ0.

Then for an undamped initial structure the initial eigenvalues on the imaginary axis
λ2

0 = −ω2
s are moved to the half plane of negative real parts by

∂λ

∂γv

∣∣∣
γv=0

= −Φᵀ
0(Hᵀ

vM∗Hv)Φ0

2
= −1

2

‖HvΦ0‖2M∗
‖Φ0‖2Ms

.

Furthermore, when considering complete observations, we have Hv = 1 and we can
rescale M∗ = Ms such that

∂λ

∂γv

∣∣∣
γv=0

= −1

2
. (4.30)

4.2.2.2 Case of solid displacement measurements

Assuming now that we have at our disposal some displacement measurements,
we define the SDF state estimator

∂tŷs = ûs + γdExts∗(zd − ŷs|∗), in Ωs
0,

ρs∂tûs − ηs∇ · σs(ûs)−∇ · σs(ŷs) = 0, in Ωs
0,

ŷs = 0, on Γd,

ηsσs(ûs) · ns + σs(ŷs) · ns = 0, on Γn
0 ,

ηsσs(ûs) · ns + σs(ŷs) · ns = −pns, on Σ0

(4.31)

Following [MCLT09], we can compute the extension by a penalization method. We
define the operator

Lεs,∗ : Zd → arg min
X

{
1

2
εXᵀKsX +

1

2
‖Zd −HdX‖M∗

}2

.

with ε a small parameter with respect to the inverse of the Young modulus of the
structure, such that

∀Zd, Lεs,∗Zd = (εKs +Hᵀ
dM∗Hd)

−1Hᵀ
dM∗Zd

is a discretization of Exts∗(zd). Thus we have

∀ds ∈ Vs, h
〈
Exts∗(zd − ŷs),ds

〉
Esl

= Dᵀ
sKs(εKs +Hᵀ

dM∗Hd)
−1Hᵀ

dM∗(Zd −HdYs),

Therefore, the discretized system reads[
(εKs +Hᵀ

dM∗Hd) 0

0 Ms

] [ ˙̂
Ys
˙̂
Us

]
=

[−γdHᵀ
dM∗Hd (εKs +Hᵀ

dM∗Hd)

−Ks −Cs

][
Ŷs

Ûs

]
+

[
γdH

ᵀ
dM∗Z

F

]
,

(4.32)
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and the associated eigenvalue problem becomes

Find (Φd,Φv, λ) such that[−γdHᵀ
dM∗Hd (εKs +Hᵀ

dM∗Hd)

−Ks −Cs

] [
Φd

Φv

]
= λ

[
(εKs +Hᵀ

dM∗Hd) 0

0 Ms

] [
Φd

Φv

]
(4.33)

Spectral sensitivity analysis. For the SDF, the eigenvalue problem can also be
solved using a quadratic eigenvalue problem inferred from (4.33) which takes the
form (

λ2Ms + λ(Cs + γdMsL
ε
s,∗Hd) +Ks + γdCsL

ε
s,∗Hd

)
Φd = 0, (4.34)

and note that in presence of viscosity the SDF adds stiffness to the system. The
solutions of (4.34) for γd = 0, are still given by (λ0,Φ0) the solutions of the DVF
quadratic eigenvalue problem with γv = 0. In the case of ηs = 0 we verify that

∂λ

∂γd

∣∣∣
γd=0

= −
Φᵀ

0MsL
ε
s,∗HdΦ0

2

Then by recalling that KsΦ0 = ω2
sMsΦ0, we obtain

Φᵀ
0MsL

ε
s,∗HdΦ0 =

1

ω2
s

Φᵀ
0Ks(εKs +Hᵀ

dM∗Hd)
−1Hᵀ

dM∗HdΦ0

in which Ks(εKs + Hᵀ
dM∗Hd)

−1Hᵀ
dM∗Hd = KsL

ε
s,∗Hd is symmetric positive as es-

tablished in [MCLT09]. In fact, note that all Ds associated with ds ∈ Vs,h can be
trivially decomposed as

Ds = D]
s + Lεs,∗HdDs , D

]
s = Ds − Lεs,∗HdDs

so that it holds Hd(D
]
s) = 0. We have then the identity for all data vector Zd

(D]
s)

ᵀ(εKs +Hᵀ
dM∗Hd)L

ε
s,∗Zd = (D]

s)
ᵀHᵀ

dM∗Zd = 0

which is the counterpart of the continuous identity (4.15a). From this follows that
(D]

s)ᵀKsL
ε
s,∗Zd = 0, and hence for all Ds it holds

Dᵀ
sKsL

ε
s,∗HdDs = (Lεs,∗HdDs)

ᵀKsL
ε
s,∗HdDs

which allows to rewrite

∂λ

∂γd

∣∣∣
γd=0

= −
Φᵀ

0H
ᵀ
d (Lεs,∗)

ᵀKsL
ε
s,∗HdΦ0

2ω2
s

= −1

2

‖Lεs,∗(HdΦ0)‖2Ks
‖Φ0‖2Ks

. (4.35)

In the last expression we retrieve the norm of the lifting of the observed part of a vec-
tor as it appeared in the continuous energy balance (4.19). Hence, when considering
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complete observations, we have for the SDF in elastodynamics

∂λ

∂γd

∣∣∣
γd=0

= −1

2
, (4.36)

as we had for the DVF.

4.2.2.3 Spectral numerical experiments

We now verify numerically the analytical observations of the previous paragraph
by means of a spectral analysis. For the computations, we consider the geometry
and parameters of Section 4.1.3. In Figure 4.10, we report the corresponding 10
poles of smallest modulus for different values of the gains γd and γv.

As expected from the sensitivity analysis of the previous paragraph, both filters
have a similar behavior with respect to the gain when considering full observations.
Moreover, we observe that the SDF adds some slight stiffness due to the presence
of damping in the system, particularly for the highest frequency poles. For large
values of the gains, the trajectory of the poles agree with the results presented in
[MCLT08, MCLT09].
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Figure 4.10: Poles of the DVF (left) and the SDF (right) estimators in elastody-
namics with full observation and for different values of the gain. The grey arrows
sketch the trajectory of the poles when increasing feedback gain.

4.2.3 Added mass effect for elastodynamics coupled with potential
flow

We now investigate the impact of the fluid coupling on the filters performance,
by first considering an inviscid incompressible fluid. Hence, the forcing pressure p
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in Equation (4.23) is driven by the following elliptic problem
−∆p = 0, in Ωf

0,

∇p · nf = 0, on Γin,

p = 0, on Γout

(4.37)

with Ωf
0 = Ωf(0) and the interface coupling conditions reduce to{

∇p · nf = −ρf∂tus · nf , on Σ,

ηsσs(us) · ns + σs(ys) · ns − pnf = 0, on Σ0.
(4.38)

Although simplified, it is well known that the coupled problem derived from
(4.23)-(4.37)-(4.38) contains some of the main features involved in FSI in blood
flows, particularly, the so-called added-mass effect (see e.g. [CGN05]).

After discretization in space, we get the following system of ordinary differential
equations: [

Ks 0

0 Ms +MA

] [
Ẏs

U̇s

]
=

[
0 Ks

−Ks −Cs

] [
Ys

Us

]
, (4.39)

where MA denotes the discrete version of the added-mass operator, given by

MA = ρfGK
−1
p Gᵀ.

Here, Kp and stand for the finite element matrices of the Laplacian and G is asso-
ciated to the boundary term

∀P ∈ Vp,h, Us ∈ Vs,h, Uᵀ
s GP =

∫
Σ0

pus · nf dΓ. (4.40)

Then, we can straightforwardly repeat the analysis performed in Section 4.2.2.
Hence, the eigenproblems associated to the DVF and SDF estimators are obtained
from (4.27) and (4.33) by simply replacing Ms by Ms +MA in the right-hand side.

4.2.3.1 The added mass effect on stabilization efficiency

We now investigate the impact of the added-mass operator MA on the effective-
ness of the estimators, by analyzing the sensitivity of the eigenvalues of these systems
with respect to the filter gains γd and γv. According to the previous paragraph, we
can write the quadratic eigenvalue problems as(

λ2(Ms +MA) + λ(Cs + γvH
ᵀ
vM∗Hv) +Ks

)
Φd = 0 (4.41)

for the DVF, and(
λ2(Ms +MA) + λ

(
Cs + γd(Ms +MA)Lεs,∗Hd

)
+Ks + γdCsL

ε
s,∗Hd

)
Φd = 0 ,

(4.42)
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for the SDF. Assuming again Cs = 0 and introducing, this time, the eigenmodes
Φ0,a satisfying

KsΦ0,a = ω2
a(Ms +MA)Φ0,a, λ

2
0 = −ω2

a, Φᵀ
0,a(Ms +MA)Φ0,a = 1. (4.43)

the sensitivities become for the DVF

∂λ

∂γv

∣∣∣
γv=0

= −
Φᵀ

0,a(H
ᵀ
vM∗Hv)Φ0,a

2
= −1

2

‖HvΦ0,a‖2M∗
‖Φ0,a‖2Ms+MA

.

Then, for the SDF we comparatively obtain

∂λ

∂γd

∣∣∣
γd=0

= −
Φᵀ

0,a

(
(Ms +MA)Lεs,∗Hd

)
Φ0,a

2
=

Φᵀ
0,a

(
KsL

ε
s,∗Hd

)
Φ0,a

2ω2
a

= −
Φᵀ

0,aH
ᵀ
d (Lεs,∗)

ᵀKsL
ε
s,∗HdΦ0,a

2ω2
a

= −1

2

‖Lεs,∗(HdΦ0,a)‖2Ks
‖Φ0,a‖2Ks

for the SDF. Note that, by construction of the estimator, the DVF does not include
the added-mass matrix in the expression of the sensitivity, while the SDF does. This
is the reason why the SDF can outperform the DVF in FSI problems.

To emphasize this point, let us consider a case with complete observations. The
sensitivities of the DVF applied to the simplified FSI problem become

∂λ

∂γv

∣∣∣∣
γv=0

= −
Φᵀ

0,aMsΦ0,a

2
= −1

2

(
1−

‖Φ0,a‖2MA

‖Φ0,a‖2Ms+MA

)
, (4.44)

to be compared with (4.30) in the pure elastodynamics case. For the problems
of interest, for some modes Φᵀ

0,aMAΦ0,a is close to 1 (see Table 4.1). Thus, the
sensitivity is close to zero, which explains the poor behavior of the DVF in the FSI
test case presented in Example 1 (Section 4.1.3.1). On the contrary, for the SDF
applied to the simplified FSI problem, the sensitity remains:

∂λ

∂γd

∣∣∣∣
γd=0

= −1

2
, (4.45)

as in the pure elastodynamics case (4.36).

4.2.3.2 Spectral numerical experiments

The difference of performances can be also understood in Figure 4.11, where
the poles of the DVF and the SDF are displayed for different values of gains. As
shown in the sensitivity analysis, the SDF is capable to uniformly stabilize the poles.
By contrast, the performance of the DVF depends on the added-mass contribution
Φᵀ

0,aMAΦ0,a, whose values are shown in Table 4.1. In fact, the response in Example
1 (see Figure 4.3-right) is dominated by the first frequency (=(λ0) = 98), which
confirms the hypothesis of the impact of the added-mass in the performance of the
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DVF in this test case.
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Figure 4.11: Poles of the DVF (left) and the SDF (right) estimators for the elas-
todynamics/pressure system, with full observation and for different values of the
gain.

Φᵀ
0,aMAΦ0,a 0.99 0.61 0.61 0.59 0.58 0.93

frequency ωa 98 112 116 244 250 276

Table 4.1: Values of coefficient Φᵀ
0,aMAΦ0,a for the example of Figure 4.11.

4.2.3.3 The DVFam filter improvement for solid velocity measurements

To improve the performance of the DVF in FSI problems, we propose to modify
the scalar product used to define the adjoint H′ in (4.10). The DVF designed
for elastodynamics problem was based on the standard L2 scalar product. For FSI
problems, we advocate to include the added-mass operator defining a new filter, that
will be called DVFam. Whereas the matrix of the DVF was defined by Hᵀ

vM∗Hv,
the matrix of the DVFam filter is given by:

Hᵀ
v (M∗ +HvMAH

ᵀ
v )Hv. (4.46)

Repeating mutatis mutandis the sensitivity analysis, and assuming complete obser-
vations, we can check that

∂λ

∂γv

∣∣∣∣
γv=0

= −1

2
, (4.47)

with the DVFam. This is a clear improvement compared to (4.44). The spectral
analysis reported on Figure 4.12 confirms this behavior.

In practice, to avoid the direct calculation of the added-mass matrix, one can
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Figure 4.12: Performance of the DVFam filter. Observe the improvement with the
respect to the DVF in Figure 4.11, left.

extend the filtered structural system as follows:
Ks 0 0

0 Ms 0

0 0 0




˙̂
Y s

˙̂
Us

Λ̇



=


0 Ks 0

−Ks −Cs − γvHᵀ
vM∗Hv γvρfH

ᵀ
vHvG

0 −GᵀHᵀ
vHv −Kp



Ŷs

Ûs

Λ

+


0

γvH
ᵀ
vM∗Z + F

GᵀHᵀ
vZ

 , (4.48)

where F denotes the forces coming from the fluid. A less expensive solution would
be to use an approximation of the added-mass operator, but this option will not be
considered here.

To test this new filter in a nonlinear case with partial observations, we consider
again Example 1. The results are presented in Figure 4.13. We observe that the
performance of the DVFam filter is similar to the SDF, and much better than the
DVF. Note that, for this test case, the added-mass term in the definition of the
DVFam filter was not updated to account for the fluid domain deformation.

4.2.4 Elastodynamics-pressure coupling with lumped-parameter
model

In hemodynamics, the Windkessel model plays an important role to define the
outflow boundary conditions. To better understand its influence on the behavior
of the filters, we consider the coupled fluid-structure problem (4.23)-(4.37)-(4.38)
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Figure 4.13: Comparison between DVFam, DVF and SDF in Example 1.

in which p = P on Γout, where P is the Windkessel proximal pressure. We couple
then this system with the Windkessel distal pressure model π from equations (4.1b)
where the outlet flux Q can be obtained here from the structure displacement

Q = −
∫

Σ0

us · nf dΓ,

since there is no inflow on Γin (recall (4.37)2). After spatial discretization, there
exists an operator D such that

Q = −DᵀUs

and we verify that the boundary term G defined in (4.40) verifies D = −G(1 . . . 1)ᵀ.
In the principle of virtual work, the additional virtual power associated with the new
pressure condition p = P on Γout is then given by

∀vs ∈ Vs,
∫

Σ0

Pvs · nf dΓ =

∫
Σ0

(π +RpQ)vs · nf dΓ

=

∫
Σ0

πvs · nf dΓ +RpQ

∫
Σ0

vs · nf dΓ

which discretizes into

∀vs ∈ Vh,s,
∫

Σ0

Pvs · nf dΓ = V ᵀ
s

(
−RpD ·DTUs +Dπ

)
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leading to the spatial discretizationKs 0 0

0 Ms +MA 0

0 0 C

Ẏs

U̇s

π̇

 =

 0 Ks 0

−Ks −Cs −RpD ·Dᵀ D

0 −Dᵀ − 1
Rd

Ys

Us

π

 . (4.49)

Note that the system (4.49) is clearly dissipative and the energy dissipation associ-
ated with the Windkessel is directly π2

Rd
+RpQ

2 as in (4.2).

4.2.4.1 Spectral sensitivity analysis

The DVF case. The solid-pressure-windkessel modal system with he DVF reads
KsΦv = λKsΦd

−KsΦd − (γv(H
ᵀ
vM∗Hv) +RpDD

ᵀ)Φv +DΦπ = λ(Ms +MA)Φv

−DᵀΦv − 1
Rd

Φπ = λCΦπ

(4.50)

assuming ηs = 0 for the sake of clearness. Rewriting it only in terms of Φd, it leads
to the following cubic eigenvalue problem

{(1 + λT )Ks + (λ(Rd +Rp) +RpTλ
2)DDᵀ + (λ2 + λ3

T )(Ms +MA) . . .

+γv(λ+ λ2
T )(Hᵀ

vM∗Hv)}Φd = 0, (4.51)

with T def
= RdC. As done previously, we can compute the sensitivity of λ with respect

to γv by implicit derivation of Equation (4.51), then pre-multiplying by ΦH
0,w (note

that the modes may be now complex) and evaluating at γv = 0 obtaining

∂λ

∂γv

∣∣∣∣
γv=0

=
−(λ2

0T + λ0)‖Φ0,w‖2M∗
3λ2

0T + 2λ0 + TEk,0 + (Rd +Rp + 2λ0TRp)|DᵀΦ0,w|2
. (4.52)

Here, (λ0,Φ0,w) denotes the solution to the cubic eigenvalue problem (4.51) with
γv = 0, Ek,0 def

= ΦH
0,wKsΦ0,w and the normalization is chosen as ΦH

0,w(Ms +MA)Φ0,w

= 1. Note that in the absence of Windkessel’s model, namely Rp = Rd = C = 0,
we recover the sensitivity of the precedent section.

The SDF case. The eigenvalue problem for the case with SDF reads
KsΦv = λKsΦd + γdKsL

ε
s,∗HdΦd

−KsΦd −RpDDᵀΦv +DΦπ = λ(Ms +MA)Φv

−DᵀΦv − 1
Rd

Φπ = λCΦπ

(4.53)
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which rewritten only in terms of Φd leads to the following cubic eigenvalue problem

{(1 + λT )Ks + (λ(Rd +Rp) +RpTλ
2)DDᵀ + (λ2 + λ3

T )(Ms +MA) + . . .

γd((Rd +Rp + λTRp)DD
T + (λ+ λ2

T )(Ms +MA))Lεs,∗Hd}Φd = 0. (4.54)

Hence, the sensitivity of the poles with respect to filter gain results

∂λ

∂γd

∣∣∣∣
γd=0

= −
ΦH

0,w{(Rd + (1 + λ0T )Rp)DD
ᵀ + (λ2

0T + λ0)(Ms +MA)}Lεs,∗HdΦ0,w

3λ2
0T + 2λ0 + TEk + (Rd +Rp + 2λ0TRp)|DᵀΦ0,w|2

.

(4.55)
Note that using (4.54) for γd = 0 and the relation inferred in (4.35) we can rewrite
(4.55) as

∂λ

∂γd

∣∣∣∣
γd=0

=
(1/λ0 + T )‖Lεs,∗(HdΦ0,w)‖2Ks

3λ2
0T + 2λ0 + TEk + (Rd +Rp + 2λ0TRp)|DᵀΦ0,w|2

. (4.56)

4.2.4.2 Spectral numerical experiments

Figure 4.14 shows the spectrum locus for the discrete DVFam and SDF estima-
tors for values of Rp, Rd and C taken as in Example 2 and considering complete
observations. We observe that the DVFam has a negligible effect on first real pole
(called "Windkessel pole" in the figure), unlike the SDF which appears to be quite
effective, see Figure 4.15.

In order to further compare the impact of both DVFam and SDF on the Wind-
kessel pole, it is useful to write Formulas (4.52) and (4.56) for the case of complete
observations. Moreover, it is reasonable to assume that the solid mode Φ0,w asso-
ciated with the Windkessel pole has a similar shape as the first mode of the solid-
added mass system Φ0,a. Since both modes are normalized to the total mass matrix
Ms+MA, the numerators for the sensitivities become in this situation −(T+1/λ0)λ2

0

for the DVFam and (T +1/λ0)ω2
a for the SDF. This evidences first, the different sign

of both sensitivities, and second, the different amplitude since λ2
0 = O(0.52) and

ω2
a = O(1002).
Concerning the sign of the sensitivities for the real poles, generally the de-

nominators in (4.52) and (4.56) are positive for values of the physical parameters
used in hemodynamics. Finally, it can be verified that first real pole λ0 satisfies
λ0 ≈ −1/(Rd(C + C3D)), with C3D the additional capacitance introduced by the
three-dimensional solid. Thus, it usually holds that T + 1/λ0 ≈ −RdC3D < 0.

Remark 12 (Windkessel’s observer)
One way to further stabilize the pole resulting from the Windkessel coupling is to
make use of additional measurements on P or π. Hence, we can formulate the
observers

T ˙̂π + π̂ = RdQ̂+ γπ(zπ − π̂), (4.57)

and
T

˙̂
P + P̂ = (Rd +Rp)Q̂+ TRp

˙̂
Q+ γp(zP − P̂ ), (4.58)
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with zπ and zP the respective measurements.

4.2.5 Elastodynamics-Stokes coupling

In order to better understand the behavior of Luenberger filters in FSI, we
isolated so far two physical phenomena: the added-mass effect and the dissipation
coming from boundary conditions. In this section, we introduce a simplified model
which includes a new physical property, namely the fluid viscosity.

We consider a linear FSI problem consisting of the Stokes equations, set in a
fixed domain, with free outflow boundary conditions:

ρf∂tuf −∇ · σf(uf , p) = 0, in Ωf
0,

∇ · uf = 0, in Ωf
0,

uf = uin, on Γin,

σf(uf , p) · nf = 0 on Γout,

(4.59)

coupled to the solid equations (4.1c) by the usual transmission conditions.
Continuous piece-wise affine finite elements are used for the discretization of this

coupled system. This yields the following discrete dynamical system
Ms 0 0 0 0

0 Ms,I Ms,IΣ 0 0

0 Mᵀ
s,IΣ Ms,Σ +Mf,Σ Mᵀ

f,IΣ 0

0 0 Mf,IΣ Mf,I 0

0 0 0 0 0




Ẏs

U̇s,I

U̇Σ

U̇f,I

Ṗ



= −


0 −Ms 0 0 0

Ks,I Cs,I Cs,IΣ 0 0

Ks,Σ Cᵀ
s,IΣ Cs,Σ +Kf,Σ Kᵀ

f,IΣ Bᵀ
f,Σ

0 0 Kf,IΣ Kf,I Bᵀ
f,I

0 0 −Bf,Σ −Bf,I Kε
p




Ys

Us,I

UΣ

Uf,I

P

 . (4.60)

In this expression, the column arrays Us
def
= [Us,I, UΣ]ᵀ and Uf

def
= [UΣ, Uf,I]

ᵀ represent
the solid and fluid velocity degrees of freedom, respectively. The fluid pressure
degrees of freedom are denoted by P . The fluid (Kf , Mf and Bf) and solid (Ks, Cs

and Ms) matrices are defined by blocks, where the subscripts ,I and ,Σ indicate the
internal and interface entries. In particular, we have

∀uf ,vf ∈ Vf,h, V ᵀ
f KfUf =

∫
Ωf

0

2µε(uf) : ε(vf) dΩ,

∀uf ,vf ∈ Vf,h, V ᵀ
f MfUf =

∫
Ωf

0

ρfuf · vf dΩ,

∀vf ∈ Vf,h, p ∈ Vp,h V ᵀ
f B

ᵀ
f P = −

∫
Ωf

0

p∇ · vf dΩ,
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The term Kε
p corresponds to the pressure stabilization operator, which here is given

by

∀p, q ∈ Vp,h QᵀKε
pP = εp

∫
Ωf

0

h2

µ
∇p ·∇q dΩ,

with εp > 0 the stabilization parameter (see, e.g., [BP84]).
The construction of the observers is performed, as before for the simplified fluid

models, by adding the corresponding feedback terms for the DVF and SDF in the
structure equations block (i.e., rows 1-3 of (4.60)).

Spectral analysis. For the isolated Stokes problem (i.e., with homogeneous
Dirichlet data on Σ),[

Mf,I 0

0 0

] [
U̇f,I

Ṗ

]
= −

[
Kf,I Bᵀ

f,I

−Bf,I Kε
p

] [
Uf,I

P

]
,

all the poles are of course real negative. For the FSI system (4.60), some poles are
complex, as in all the previous examples, and some are real negative, because of the
dissipation in the fluid.

We studied the behavior of the first 100 poles with smallest modulus. Note that,
with the physical parameters considered in this paper, all these poles are real (the
complex poles in the FSI case have indeed a very large imaginary part). We observe
in Figure 4.16 (left) that these poles are almost the same for the isolated Stokes and
the FSI systems (4.60). To study the effect of the filters on the poles, we considered
for the first two FSI poles the perturbation λγ − λ0 for a gain γ = 200. These
results are reported in Figure 4.16 (right). We observe that the poles are practically
insensitive to γ. In other words, the poles coming from the viscosity in the fluid are
almost unaffected by the DVF and SDF filters.

This explains the behavior observed in Example 1 (Figures 4.3 and 4.4): the
error curves in the fluid have a similar decay rate with and without the filter in the
end of the cardiac cycle. The decay rate corresponds approximately to these pure
real poles that are almost not perturbed by the solid filters. A similar comment
can be done for Example 2 (Figures 4.7 and 4.8): at the end of the cardiac cycle,
the decay of the total error is controlled by the poles of the Stokes problem and
is almost unaffected by the filters. Hence, the effectiveness of the SDF in the two
examples is explained by the fact that the filter operates on a system with small
state error in the fluid itself – due to the choice of initial conditions – while the SDF
is directly effective on the other constituents in the system.

These observations show that it would be desirable to complement solid measure-
ments with blood flow measurements. In this respect, Ultrasound (US) is still the
mostly used imaging modality to inspect blood flows, but MRI acquisition sequences
developed over the last two decades offer better image quality. Phase Contrast (PC)
MRI can provide the flow speed in one direction over a few slices along the vessel.
By acquiring the data in multiple directions, this technique provides 3D blood flow
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data PC cine MRI generates “4D” blood flow data, i.e. 3D blood flow throughout
the cardiac cycle (see more details in Chapter 7). In some circumstances, pressure
can also be acquired directly by catheters. Including these data in an observer would
certainly improve the results obtained for FSI systems.
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Figure 4.16: Real poles of the FSI system compared to the Stokes poles (left),
and effect of the DVF and SDF (right) represented by the values of λγ − λ0, for
γd = γv = γ = 200.

4.3 Discussion

4.3.1 Choice of the feedback gain in FSI problems

In the previous section, we investigated Luenberger observers in FSI problems.
The aim was not only to understand the difference of performance, but also to find
a systematic method for choosing the “optimal” feedback gain, i.e. the coefficient γ
in (4.11) which corresponds to the fastest stabilization.

As already mentioned in Section 4.2.5, if we search for the eigenvalues of smallest
modulus in the case of a Stokes fluid, we will not find the non-real poles since the
modulus of the complex poles is much larger than the modulus of the real ones
(around 100 times larger with the physiological parameters of blood flows). Since
we are interested in the effect of the filters on the stability of the system, it would
be natural to search the eigenvalues with the largest real part. For this purpose,
we could apply for example the algorithm used in [FLT03] based on special Cayley
transforms. However, we observed that this method may fail when the imaginary
part is much larger than the real part. Moreover, it may be difficult to follow the
trajectories of the complex poles when increasing the gain.

In view of these difficulties, we suggest in practice to calibrate the feedback gain
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by considering the simplified FSI system with added mass-effect (4.39). For example,
for the SDF, a first guess can be obtained with (4.42), assuming full observations
and no viscosity in the solid. A simple computation gives λ2 +γdλ+ω2

a = 0. Hence,
the optimal value of γd (i.e. which makes =(λ) = 0) is given by γd = 2ω

(1)
a , where

ω
(1)
a is the first natural frequency of problem (4.43).

4.3.2 Some inefficient alternative approaches

In this section, we briefly comment on two other approaches that seem natural
but lead to very inefficient filters, which further justifies the analysis given in the
previous section. In other words, even if the complete proof of the stabilization
efficiency of the SDF for FSI is far beyond the scope of this article, the eigenvalue
sensitivities allow us to eliminate some inefficient alternative approaches.

SDF by coupling with Uf = Ẏs on Σ. We remind that the SDF modifies the
usual relationship between the velocity and the displacement in the solid. For the
FSI problem, we advocated to transmit the solid velocity to the fluid (Uf = Us). It
is natural to ask what whould happen if we were to instead enforce Uf = Ẏs. This
subtle difference has dramatic effects because the added-mass does not appear in
the dissipative term anymore. Indeed, the quadratic eigenvalue problem becomes(
λ2(Ms +MA) + λ(Cs + γdMsK

−1
ε Hᵀ

dM∗Hd) +Ks + γdCsK
−1
ε Hᵀ

dM∗Hd

)
Φd = 0 .

(4.61)
Then, we can check the lower performance of this SDF, that will be called SDFd,
in both spectral and nonlinear transient analysis shown in Figure 4.17 (Example 1,
and Equations (4.38) for the spectral analysis) and Figure 4.18 (Example 2, and
Equations (4.49) for the spectral analysis). Note that the SDFd is also inefficient to
stabilize the Windkessel pole.

Force displacement feedback (FDF). Instead of using the SDF which modifies
the relationship between the velocity and the displacement, it may be tempting to
directly apply a collocated displacement feedback in the momentum equation, i.e.,

(Ms +MA)
¨̂
Y s + Cs

˙̂
Y s +KsŶs = γdH

ᵀ
dM∗(Z −HdŶs).

This approach is related to the so-called image force methods, see e.g. [BSDA08].
The associated quadratic eigenvalue problem has the form(

λ2(Ms +MA) + λCs +Ks + γdH
ᵀ
dM∗Hd

)
Φd = 0 . (4.62)

This filter, which acts as an added-stiffness, is known to be efficient only for systems
with important natural dissipation. Figure 4.19, left, shows that the FDF behaves
poorly in the linear case (4.49). In Figure 4.19, right, this weak performance is
confirmed in the nonlinear transient case (Example 2), in spite of the additional
dissipation due to the fluid viscosity.
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Figure 4.17: Linear spectral (left) and nonlinear transient (right) analysis for Ex-
ample 1 with the SDFd.
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ample 2 with the SDFd. The energy components are shown split for sake of clarity.
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Figure 4.19: Effect of FDF on the FSI+Windkessel system: spectral analysis with
a potential fluid (left) and nonlinear transient analysis (right). The energy compo-
nents are shown split for sake of clarity.

4.4 Conclusions

We analyzed various sequential procedures to reduce the uncertainty in the ini-
tial condition of systems involving a viscous incompressible fluid and an elastic
structure, assuming that measurements are available only for the solid velocities or
displacements.

We recalled two strategies in elastodynamics, and we analyzed them for FSI, with
a special emphasis on hemodynamics. We found that the fluid can strongly impact
the filters performances, mainly due to the added-mass effect, but also to dissipative
boundary conditions. In the case of a displacement feedback where the kinematic
condition in the solid between displacement and velocity is perturbed, the choice of
the coupling variable is crucial to keep the performance observed in solid mechanics.
In the case of velocity measurements, we proposed to include the added-mass in the
scalar product used for the observation. This allowed to keep in FSI the good
performance observed in solid mechanics. When taking into account the coupling
with a Windkessel model, only the SDF filter using displacement measurements
proved effective, due to the quasi-static nature of the corresponding pole. Finally,
our analysis showed that a filter applied only in the solid has almost no impact on
the poles corresponding to the fluid viscosity. In order to circumvent this difficulty
we need to consider additional observations in the fluid.



Part III

Application to real physical
problems
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On ne voit bien qu’avec le coeur. l’essentiel est invisible pour les yeux.
Antoine de Saint-Exupéry, Le Petit Prince, 1943.





Chapter 5

In vitro validation of the parameter
estimation methodology

In this chapter we test the parameter estimation method on data coming from a silicon
aortic phantom. We first present the experimental setting, as well as the acquired data
and its processing and segmentation. Then, we describe the setup of fluid-structure model
from the acquired data and we estimate the constitutive parameters for linear and
non-linear solids. The results are confronted to non-destructive mechanical tests.

This work has been performed in collaboration with Marcel Rutten (phantom construction
at Technical University of Eindhoven), Nicholas Gaddum (experimental runs and data
acquisition at King’s College London), David Barber and Rod Hose (data processing and
segmentation at University of Sheffield), and Jean-Frédéric Gerbeau (INRIA).
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5.1 Experimental setting

The experimental system is described in Figure 5.1, and consists of a MR-
compatible emulator of the cardiovascular system. The fluid pump (left ventri-
cle) corresponds to a linear servo actuator (ETB-32, Parker Hannifin) and piston
assembly, located outside the 5 Gauss line1 coupled to the ventricle piston via a
2m rigid boom. The piston ejects water through a tri-leaflet polyurethane valve,
(Hemolab, Eindhoven, The Netherlands), and into a 450mm length and 18.5mm

diameter silicone tube, (TU Eindhoven, The Netherlands). Afterload is maintained
by a 3-element Windkessel at the distal end of the tube, after which the work-
ing fluid returns to the pump through a venous reservoir and an additional valve.
Closed-loop feedback control of the ventricular action was maintained via a multi-
function I/O board and a servo controller using LabVIEW software, (PCI-MIO16-E4

1It corresponds to the the perimeter around the scanner within which the magnetic field is
higher than 5 gauss or 5 · 10−4 T .
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and PC-servo-4A, National Instruments, Austin, TX, USA). The rig was run at 60
beats-per-minute.

Figure 5.1: MRI compatible mock ventricle and aorta pulsatile phantom, where;
1, reciprocating ventricle piston; 2, ventricle and working fluid; 3, arterial valve; 4,
suspension fluid; 5, outer cylindrical case; 6, venous compliance chamber; 7, silicone
aorta; 8, venous channel; 9, venous resistance screw; 10, arterial resistance screw
and arterial catheter access; 11, arterial compliance chamber; 12, venous valve.

5.2 Measured data

Pressure. Pressure measurements were taken at 13 locations between the venous
and arterial compliance chambers with a measurement spacing of 20mm. Raw
pressure measurements were taken using a pressure wire, (Certus, St. Jude Medical
Systems, Uppsala, Sweden), via an analogue to digital acquisition card, (USB 6211
National Instruments, Austin, TX, USA), at a temporal resolution of 1000Hz upon
a separate PC. The servo motor voltage trigger wave was recorded concurrently
with the pressure waveform so as to permit gating of the pressure data at each
of the 13 locations for constructing the cycle of 1 s. The raw signals were recorded
and processed using in-house MATLAB-code, (The MathWorks, Natick, MA, USA),
which are shown for the first and last slices later as the model’s boundary conditions.
Following pressure measurement, the flow phantom was lifted into the scanner for
geometry and velocity data acquisition.

Geometry. MR-acquisitions were performed on a 3T scanner, (Philips Achieva,
Philips Healthcare, Best, The Netherlands). A 32-element radio-frecquency (RF)
coil was used for signal reception. Initial surveys were used to plan the scan ori-
entation. Geometry imaging was captured in a balanced turbo field echo (B-TFE)
cine scan with a temporal resolution of 100 data points per cycle (10ms). Thirteen
slices were planned at the 20mm centres where pressure measurements were taken
with an excitation slice thickness of 8mm, and a pixel size of 1.8 × 2.5mm. The
leading edges of the venous and arterial compliance chambers were used for slice
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location. A flip angle of 60o was used with TE/TR = 2.25/4.50 s. Segmentation
was then carried out on these images using Shirt [BOFH07], whose results are shown
in Figure 5.2.

(a) 5mmHg (b) 47mmHg (c) 115mmHg

Figure 5.2: Magnitude image and segmentation result (in green) at the middle of
the tube at three acquisition instants with the gated (approximate) pressures.

Velocity. For velocity imaging, 2D phase contrast scan was performed. Velocity
encoding was performed in the feet-head direction, with a velocity sensitivity of
80 cm/s, a voxel size of 1.8 × 2.5 × 8.0mm3, 2 signal averages (NSA), TE/TR
= 2.43/4.17ms and a flip angle of 10o. Again, 13 slices were used at the same
locations as those used in the geometry acquisition. The scan was retrospectively
gated to acquire 100 phases within one averaged cardiac cycle over two and three
minutes (depending on heart rate).

Mechanical test. Once the acquisition of the MR data was concluded, a non-
destructive mechanical test was performed. The experiment consisted in placing
the silicon tube vertically, filling it completely with water, and then imposing an
additional controlled water volume Vi while measuring the pressure Pi at the bottom,
with i = 1, . . . , 27. The results are plot in Figure 5.3. The raw measurements were
filtered by fitting a polynomial of degree 4 to the data in order to get a monotone
compliance curve.

5.3 Forward FSI model setting

The FSI model was constructed from the data set as follows. Note that all units
are expressed in the CGS system unless indicated explicitly.

The geometry used for the mesh construction (and also initial condition) was
chosen as the segmented surfaces at the lowest pressure, namely the configuration
shown in Figure 5.2-a. The surface was then remeshed using 3-matic (Materialise,
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Figure 5.3: Left: pressure Pi and volume Vi, i = 1, . . . , 27, acquired from the
mechanical test. Right: derived compliance Ci = (Vi+1−Vi)/(Pi+1−Pi) versus the
pressure Pi, i = 1, . . . , 26. The raw data is plot with + and the filtered data with
continues lines.

Leuven, Belgium), and the volume was closed with additional surfaces at the outlet
and the inlet. Then, using Gmsh [GR09], the surface was extruded outwards the
cylinder in two tetrahedral layers with total thickness of e = 0.1. Finally both solid’s
and fluid’s volume meshes were constructed with 135840 and 255023 tetrahedra,
respectively. The meshes are shown in Figure 5.4.

(a) Segmented surface (b) Fluid mesh (c) Solid mesh

Figure 5.4: Meshes at the first time frame.

The boundary conditions for the fluid were directly taken from the pressure
measurements at inlet and outlet. For the solid, both inlet and outlet were fixed
only in the Z-direction, and left-free in the XY-plane. Moreover, in order to represent
the fact that the tube is also immersed in a fluid a small surface viscosity of cΓ = 104

was added, see Equation (1.6c).
For the initial condition, one cycle of pure Navier-Stokes Equations was run (i.e.,

with imposing zero velocity at the fluid-structure interface), and the final velocity
field was used as initial condition for the FSI simulation, whereas the structure is
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taken at rest. As in the previous chapters, the loads received by the solid are cor-
rected by the initial one. The FSI-model was solved through Algorithm 5, Chapter
3. The time step is taken as τ = 0.002 s.

A fluid viscosity of µ = 0.035 and a density of 1 were assumed. Two types of
solid models are analyzed. First, a linear model with density ρs = 1.2, Poisson’s
ratio ν = 0.45 and no viscosity (ηs = 0) is considered. Here, we aim to estimate the
incremental Young’s modulus E = 2θMPa. We will also consider a second solid
model consisting of an quasi-incompressible Mooney-Rivlin hyperelastic model with
parameters c1 = 1.5 · 106 · 2θ, c2 = 5 · 104, κ = 108, and we estimate θ. Figure 5.5
presents an example for a simulation with the nonlinear solid model.

Figure 5.5: Snapshot of the FSI simulation of the phantom with the nonlinear solid
model with c1 = 1.5 · 106.

5.4 Estimation results

Nonlinear observation operator. In Part II the measurements used for both
state and parameter estimation algorithms were assumed to be the Lagrangian dis-
placements at each node of the fluid-structure interface. Nevertheless, segmentation
procedures of the medical images usually produce a set of surfaces, which in our case
correspond to the fluid-structure interface at each acquisition time. Hence, classi-
cal data assimilation representation of the observation (see, e.g., (3.14) or (4.4))
does not hold anymore since it is usually not possible to determine the Lagrangian
position of a particular material point.

In such cases, we are only able to quantify an observation error by computing
the (signed) distance field between these surfaces and the deformed fluid-structure
interface of the model, see Figure 5.6. As proposed in [MCLT09], we call this error
measurement for each node i on the fluid-structure interface Di(Y

d
k , Sk), with Sk

the acquired surface and Y d
k the Lagrangian displacement field of the solid at the

acquisition time k. We can also assume that the observation error is available at
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any time t through interpolation, i.e.,

W d
i (Y d, t) = αk(t)Di(Y

d, Sk) + (1− αk(t))Di(Y
d, Sk+1) , i = 1, . . . ,m, (5.1)

with m the number of nodes on the discrete interface Σ(t). Note that other type of
time interpolations may also be used if stonger requirements on the data regularity
have to be imposed. However, linear interpolation of the measurements have been
found to be enough in the applications in this thesis, while in Chapter 6 a stronger
regularity is required when imposing the data directly in Dirichlet boundaries.

Sk+1

Mi

Σ(t) Sk

Di(Y
d, Sk+1) < 0

Di(Y
d, Sk) > 0

Figure 5.6: Distance from point Mi of the fluid-structure interface to two successive
extracted surfaces from the images (adapted from [MCLT09]).

Estimation of the solid constitutive parameter. Using exactly the same al-
gorithm as in Chapter 3, but with the innovation defined by

Γn = [W d
i (Y d, tn)]1≤i≤m , (5.2)

we perform the estimation for the linear and nonlinear solid models on their respec-
tive parameter θ using the segmented surfaces. For both cases, we consider two
initial guesses for θ̂0, 0 and −1, with a unitary initial parameter covariance and sev-
eral values of the feedback for the Kalman gain γ (see Equation 3.46). The results
are shown in Figure 5.7. Note that the final estimated value in both cases does not
depend on the initial guess nor on the filter gain.

In Figure 5.8-left we show a cut for the fluid-structure interface for the segmen-
tation and simulations with linear and nonlinear solid models with their respective
optimal parameters at the peak pressure instant. We can appreciate that the non-
linear solid model seems to give a better result when comparing with the segmented
surface. This observation can be quantified by computing the accumulated mea-
surement error

In def
=

n∑
k=1

τ‖Γk‖2L2(Σ(0)) , n = 1, . . . , NT . (5.3)



5.4. Estimation results 147

0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

Time [s]

θ

 

 

γ=1
γ=10
γ=10

(a) Linear solid

0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

Time [s]

θ

 

 

γ=1
γ=10
γ=10

(b) Nonlinear solid

Figure 5.7: Estimation results for the parameter θ of both linear and nonlinear
solid models. The thick lines represent the mean values, and the thin blue lines the
confidence interval for the case of γ = 1.

taking the final estimated value θ̂NT for solving the model dynamics and computing
Γk. Assuming that the gain γ was taken large enough, INT corresponds to the
quantity that we aim to minimize with the data assimilation algorithm.

In Figure 5.8-right we show the curves for In for both solid models before and
after the estimation. We can appreciate that in all cases, the data assimilation
algorithm is performs well by finding a parameter which reduces the discrepancy
between model and measurements. The higher capacity of the nonlinear structure
for representing this physical system is also confirmed in the figure: the discrepancy
with respect to the dynamic segmentation is smaller for the nonlinear than for the
linear solid model. We present some snapshots for the segmentation and nonlinear
solid model with optimized parameter in Figure 5.9.

Note that, in Figure 5.7, the estimated value using the linear solid model does not
stabilize to a constant value at the end of the cycle, contrary to what happens in the
nonlinear case. An explanation to this can be found in Figure 5.8-left, where we show
a cut of the fluid-structure interfaces and segmented surface at the peak pressure for
the optimal parameters. Notice that the linear solid deforms in a unphysical way
(taking as reference the segmented surface). The reason is that, since the original
geometry is not perfectly cylindrical, the fluid loads’ directions change with the
domain deformation (due to the ALE), but for the linear solid they are still applied
at the original position. Hence, the loads received by the linear solid are not aligned
with the displacement field, in contrast to the simulation with the nonlinear model,
see Figure 5.10.
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Figure 5.8: Comparison of the segmentation of the real data and the models with
initial and optimized parameters. Left: cut at the tube’s midpoint of the segmented
surface (green), models with linear (cyan) and nonlinear (red) solids with optimized
parameters at peak pressure (t = 0.37 s). Right: accumulated measurement errors
(Equation (5.3)) before and after the estimation.

(a) t = 0.15 s (b) t = 0.30 s (c) t = 0.45 s

(d) t = 0.60 s (e) t = 0.75 s (f) t = 0.90 s

Figure 5.9: Some snapshots for a cut at the tube’s midpoint for the segmented
(green) and optimized nonlinear model (red).
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(a) Linear solid (b) Nonlinear solid

Figure 5.10: Comparison of the fluid loads and displacement field for the FSI simu-
lations for linear and nonlinear solids at the tube’s midpoint at peak pressure. The
displacement field is represented in red and the fluid forces in blue. For the linear
solid both fields are plotted at the original position, while in the nonlinear solid the
fluid loads are represented at the deformed configuration.

5.5 Comparison with the experimental data

Our results show that the estimation procedure effectively selects the solid consti-
tutive parameters in order to reduce the measurement error. As it will be explained
later, we now setup a second FSI simulation which will allow to compare the esti-
mated Young’s modulus with the one derived from the mechanical test on the same
silicon tube (see Figure 5.3).

Analytic computation of the Young’s modulus. From pressure-volume data,
a Young’s modulus can be computed at every configuration represented, for instance,
by a radius r assuming an infinitely long pressure vessel. In this case, the stress
field is given by

σθ =
δp r

e
, σz =

δp r

2 e
, (5.4)

for the tangential σθ and longitudinal σz stresses. Note that the stress in the radial
direction σr varies from p to 0 when moving outwards through the vessel’s wall,
hence we can neglect it with respect to σθ and σz when h is small. The tangential
strain is

εθ =
δr

r
, (5.5)
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and can be related to the stresses through the classical equation of Hook’s law

εθ =
σθ − ν(σr + σz)

E
, (5.6)

obtaining the following expression for the Young’s modulus

E =
δp

δr

r2 (1− ν/2)

e
. (5.7)

Using relations V = πr2L and δV = 2πrLδr we finally obtain

E =
πL

C e

(
V

πL

)3/2

(2− ν) (5.8)

with L the original length of the cylinder and C = δV/δp the compliance.

Estimation results. In order to validate the estimation using the FSI model and
the data assimilation procedure, we have to start the simulation from a configuration
such that the linear solid assumption holds. For that purpose, we construct the FSI
model from the pressure and segmented geometry at t = 0.126 s, which corresponds
to pressures at the inlet and outlet of 44 and 50mmHg, respectively. As in the
previous section, the fluid was initialized from a Navier-Stokes simulation, the fluid
loads were corrected by the initial one and the solid started at rest. Note that we
show the results only until t = 0.6 s, since after that the solid is under compression
and buckles.

Figure 5.11 presents the estimation result and the comparison with the Young’s
modulus computed with Formula (5.8) using the same parameters as in the FSI
simulation, namely e = 0.1 and ν = 0.45. The length of the vessel is taken as
L = 40 since the whole tube was tested in the experiment. In Figure 5.11-left is
plotted the curve of Young’s modulus in terms of the measured pressure (in blue),
whereas the two vertical green lines correspond to both starting inlet’s and outlet’s
pressures. The intersection of them with the Young’s modulus curve gives a range
of 0.68 to 0.65MPa (horizontal black lines in both figures). Figure 5.11-right shows
the result for the estimation algorithm converging to 0.64MPa, which is in very
good agreement with the range obtained from the mechanical test. Moreover, in
the same figure we can observe that the estimation converges well, which confirms
that the linear solid model is more appropriate in that case since the fluid loads are
reasonably small.

5.6 Conclusions

In this chapter we performed an in vitro validation of the parameter estimation
algorithm presented in Chapter 3. We considered a real physical system consisting of
a silicon rubber tube emulating the aorta, connected with a mechanical model of the
main components of the cardiovascular system. We constructed a FSI computational
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Figure 5.11: Comparison between the FSI-based Young’s modulus estimation and
the value obtained from the mechanical test. Left: Young’s modulus vs. pressure
(blue) derived from the experimental data. In green are plotted the initial pressure
range, and in black the range derived for the Young’s modulus. Right: estimated
Young’s modulus from the data assimilation procedure for γ = 1.

model of the cylinder based on the data segmented from dynamic MR-images and
we used pressure measurements for the fluid boundary conditions. We estimated
the Young’s modulus for a linear solid and one of the Mooney-Rivlin constitutive
parameters for a nonlinear solid. In all cases, the estimated parameters reduced
the discrepancy between model and measurements. Moreover, we verified one of
the estimated parameters from data coming from an independent non-destructive
mechanical test.





Chapter 6

Towards the biophysical personalization
of an aortic FSI model

This chapter is devoted to the FSI simulation of an aorta with repaired coarctation using
the patient clinical data. We first detail the available measurements and its processing
and then proceed with the description of the setup of the FSI model. We then estimate
the stiffness distribution from space-time resampled synthetic surfaces. We conclude by
presenting preliminary estimation results from the original MR-segmented surfaces.

This work has been performed in collaboration with Israel Valverde (clinical data
acquisition, King’s College London), David Barber, Rod Hose and Cristina Staicu (data
processing/segmentation at University of Sheffield), and Jean-Frédéric Gerbeau (INRIA).
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6.1 Clinical data

The available clinical data corresponds to a 19 year old male subject with a mild
(repaired) coarctation of the descending aorta. Figure 6.1 summarizes the processed
data, which will be described in detail in the following paragraphs.

3D static geometry (3D-Gd). A static MR-image (see Figure 6.2) was acquired
at the end of the diastole using a gadolinium contrast agent in order to increase
the resolution of the aortic lumen. The voxel size is 1.36 × 1.36 × 1.8mm. The
lumen’s outer surface was then segmented with a registration based segment growing
algorithm [BSV+12].

2D static Black-Blood geometry (2D-BB). It corresponds to a two-
dimensional static scan with high resolution (0.625× 0.625mm of pixel size), which
allows to distinguish the lumen (black) to the tissues (white), see Figure 6.3. Hence,
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Figure 6.1: Measurements available for the study case 10 of the euHeart database.
Static segmentation (pink geometry); dynamic segmentation (green geometry); inva-
sive pressure measurements at three locations: ascending (red), descending (green)
and abdominal (blue) aorta; and In-Plane velocity measurements.

Figure 6.2: Different representations of the static geometry acquisition (3D-Gd) of
the subject’s aorta. Left: picture in perspective of the MR-image. Center: volume
rendering using Osirix [RSR04]. Right: raw segmented surface mesh.
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it can serve for instance for the identification of the thickness of the aortic wall.
Moreover, it also helps to distinguish the pulmonary trunk and the superior vena
cava that are in contact with the ascending aorta. As we will see later, this impacts
the aorta’s dynamics and these veins should be included in the FSI-model for a
proper estimation of the aortic wall properties, at least in a simplified manner.

Figure 6.3: Two slices acquired with the 2D-BB protocol.

3D dynamic geometry (4D-SSFP). 25 three-dimensional MR-images along
the cardiac cycle of 1.324 s were acquired with a spatial resolution (voxel size) of
1.29 × 1.29 × 2.4mm. Consequently, the 25 surfaces were segmented using an im-
age registration algorithm implemented in Shirt [BOFH07] with the template mesh
obtained from the 3D-Gd (Figure 6.2-right). All time frames are shown in Figure
6.4 for one representative slice together with the MR-image. Note that there are
important variations of the image resolution in the lumen due to the big variations
of the blood velocity, making an automatic segmentation of the these images an ex-
tremely difficult task. Particularly in the descending and abdominal aortas, where
the turbulent flow do not really allow to correctly distinguish the boundaries of the
aortic lumen. Hence, the registration algorithm tries to follow these changes in con-
trast, obtaining a segmentation with a low signal-to-noise ratio (SNR). We will see
later, that the nonlinear Kalman filter produces reasonable results with this type of
data.

In-plane dynamic velocity (IP-Vel). Four fixed-in-space slices of in-plane ve-
locity phase contrast MR-images (i.e., the velocity component perpendicular to the
plane) were acquired, as summarized in Figure 6.1 and detailed in Figure 6.5: (a) one
cutting the ascending aorta, (b) one cutting the three supra aortic branches (sepa-
rated into three for the sake of clearness), (c) one cutting the descending aorta, and
(d) one cutting the abdominal aorta.
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(a) t = 0 s (b) t = 0.055 s (c) t = 0.110 s (d) t = 0.165 s (e) t = 0.221 s

(f) t = 0.276 s (g) t = 0.331 s (h) t = 0.386 s (i) t = 0.441 s (j) t = 0.496 s

(k) t = 0.552 s (l) t = 0.607 s (m) t = 0.662 s (n) t = 0.717 s (o) t = 0.772 s

(p) t = 0.827 s (q) t = 0.883 s (r) t = 0.938 s (s) t = 0.993 s (t) t = 1.048 s

(u) t = 1.103 s (v) t = 1.158 s (w) t = 1.213 s (x) t = 1.269 s (y) t = 1.324 s

Figure 6.4: The 25 MR time frames and the segmented surfaces (in magenta) for
a representative slice of the 4D-SSFP sequence. Notice the changes of contrast of
the images due to the changes in blood velocity, see for example: from (c) to (d)
the ascending aorta, and from (c) to (j) the flow vortices at the descending and
abdominal aorta producing artificial oscillations in the segmented surfaces.
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(a) t = 0 s (b) t = 0.087 s (c) t = 0.145 s

(d) t = 0.190 s (e) t = 0.274 s (f) t = 0.401 s

Figure 6.5: Snapshots of the in-plane velocity measurements.
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Additionally, flow curves were computed after the MR-acquisition from the in-
plane velocity data by selecting a region-of-interest (ROI), see Figure 6.6. Even
though these curves provide a valuable information for setting up the simulation (see
below in this chapter), they should be interpreted carefully. First, they represent
a fixed plane in space for all times, whereas the fluid domain is moving due to
the arterial wall displacements. Second, the slices are not always perpendicular to
the flow, specially at the ascending aorta and at the supra-aortic branches, where
only one slice was used for the three arteries simultaneously. Third and finally, as
mentioned above the ROIs are fixed for all time frames so that the deformation
of the solid is not taken into account. This can lead to important errors in the
calculation of the flux, specially for the places where deformation is important like
in the ascending aorta.
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Figure 6.6: Computation of flow curves from the in-plane phase contrast images.
Left: ROI for the supra-aortic branches. Right: extracted flow curves.

Pressure measurements. A MRI-gated catheter study was performed in order
to assess more precisely the severity of the coarctation. Hence, invasive pressures
were measured at the ascending, descending, and abdominal aorta as shown in
Figure 6.7.

6.2 Forward FSI simulations

In this section we describe the FSI simulations, without any estimation proce-
dure. We present in detail how the computational models for both fluid and solid
were setup from the clinical data (for geometry and boundary conditions). We also
show some results of the simulations and we compare them with the measurements.

Note that all units are expressed in the CGS system unless indicated explicitly.
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Figure 6.7: Pressures measurements at three locations in the aorta (left) and their
respective locations (right).

6.2.1 Model setup

Geometry. The geometry used for building the model’s mesh was chosen at the
first segmented frame of the 4D SSFP sequence (Figure 6.8-left). The surface was
then remeshed and smoothed using 3-matic (Materialise, Leuven, Belgium), and the
volume was cut and closed with artificial plane surfaces at the inlet and four outlets
(Figure 6.8-center). Then, using Gmsh [GR09], the surface was extruded outwards
the cylinder in two layers of tetrahedra in order to obtain a uniform wall thickness
of e = 0.2 (Figure 6.8-right) estimated from the 2D-BB sequence. Finally, both
solid and fluid volume meshes were generated with 103406 and 138648 tetrahedra,
respectively. Note that the solid mesh was divided into 5 regions colored differently
in Figure 6.8-right in order to assign different mechanical properties to the arterial
wall.

Constitutive parameters. A fluid viscosity of µ = 0.035 and a density of 1 were
assumed. For the solid, a density of ρs = 1.2 was taken in the whole domain. The
solid volume was divided into 5 regions (see Figure 6.8-left) where a Mooney-Rivlin
constitutive with parameters cj1 = 3 · 105 · 2θj , cj2 = 104 and κj = 108 (see definition
in Equation (1.1)), for each region j = 1, . . . , 5. The parameters θ1, . . . , θ5 will be
chosen depending on the test-case. Moreover, a solid viscosity parameter of ηs = 105

is considered.

Solid boundary conditions. In the solid, the outlets of the supra-aortic branches
were left free (i.e., kΓ = cΓ = 0), whereas at the distal outlet a simplified tissue
support with parameters kΓ = 105 and cΓ = 104 was included (see definition in
Equation (1.6c)4). Moreover, in order to represent the fact that the tube is also
immersed in a viscous medium, a surface viscosity of cΓ = 104 was added on the



160

Figure 6.8: Meshes at the first time frame. Left: Segmented surface. Center: Fluid
mesh. Right: Solid mesh.

external surface of the aortic wall, as done for the phantom in Chapter 5.
On the images (see Figure 6.4) it can be clearly seen that close to the inlet the

ascending aorta is deforming considerably in part due to the motion of the heart.
Hence, inspired by [MXA+11], we extract a displacement field from the segmented
surfaces and impose it at the model’s inlet by performing the following steps:

1. For each node of the solid’s inlet at the first frame, the closest node of the first
segmented surface was identified.

2. For each of the identified nodes, a dynamic displacement was computed by
subtracting to the coordinates of the node for each segmented surface the
one of the first frame. This is possible since the dynamic segmentation was
performed by an image registration method, thus every surface has the same
number of nodes.

3. The extracted displacement field was interpolated with cubic splines to the
simulation time step to avoid jumps in the pressure in time, which could
occur when using linear interpolation.

4. This interpolated displacement field is then strongly imposed to each node of
the solid’s inlet.

The deformed solid inlet together with the segmented surfaces for some of the time
instants are presented in Figure 6.9. We are aware that the nature of the segmented
surfaces is Eulerian, meaning that in practice we are not able to track the material
points of the arterial wall from the segmented surfaces. A more proper approach
would be to identify (or to tagg) material points like for instance the coronaries as
done in [MXA+11]. Unfortunately, from this clinical data set we are not able to
recognize such points, but we believe that doing as explained above is more realistic
than just fixing the inlet. However, more sophisticated image registartion algorithms
could be applied, see for instance [Mod04] for an overview.
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(a) t = 0 s (b) t = 0.165 s (c) t = 0.221 s (d) t = 0.386 s (e) t = 0.717 s

Figure 6.9: Motion of the solid inlet (green) extracted from the dynamic segmenta-
tion (magenta) for some representative time frames.

Fluid boundary conditions. As usual, for the fluid mesh computation (ALE
step, see Chapter 3, Equation (3.40)) the displacements of the structure were im-
posed at the fluid-structure interface, while at the four outlets homogeneous Neu-
mann boundary conditions are applied. For the inlet, we have to proceed more
carefully: the superposition of the inlet motion and the deformation of the fluid-
structure interface at the ascending aorta make the fluid inlet subject of impor-
tant deformations towards the interior of the domain during systole if homogeneous
Neumann boundary conditions are used (see Figure 6.10-left). This can lead to
excessively stretched elements in the fluid mesh. To improve the robustness of the
computations, we impose Dirichlet boundary conditions obtained from a preliminar
two-dimensional harmonic lifting of the displacements at the inlet’s intersection with
the wall. A comparison between the homogeneous Neumann boundary condition for
the ALE and the two-dimensional lifting is shown in Figure 6.10. We remark that
this approach can be used for all parts of the boundary where the displacement
of the fluid is not a priori known by doing it "online" during the simulation as
a preprocessing for the ALE step. However, for this application the supra-aortic
branches and distal aorta move approximately rigidly so that the fluid’s outlets
remain reasonably plane during the simulation.

Figure 6.10: Comparison of the deformed fluid’s inlet from the FSI simulation with
homogenous Neumann conditions for the ALE step (green) and the Dirichlet con-
ditions from 2D-lifting from the contour displacements (red). The arterial wall is
represented in grey. Examples of zones where usually elements stretch are indicated
by the orange squares.

For the velocity at the inlet, a constant velocity profile in direction to the mean
normal vector of the moving inlet was computed at each time step to enforce the
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desired flow. The flow corresponds to an interpolation (again, with cubic splines) to
the simulation time step of the inflow until ≈ 0.6 s and after this a zero inflow was
enforced, see Figure 6.11.
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Figure 6.11: Original and processed input flows.

The boundary conditions for the fluid’s outlets were chosen as three-elements
Windkessel models with constants calibrated manually in order to have a similar flow
split for a pressure of around 75mmHg. The values of the constants are the same
as in Table 2.1. We point out that the "true" Windkessel model parameters have
to be calibrated/estimated considering properties of the upstream three-dimensional
domain, specially the elastic characterization of the aortic wall. Moreover, in order to
diminish the impact of the backflow instabilities due to the convection, the velocity
direction was enforced to be normal to the outlet surface, however other techniques
may be used (see [MBH+11] for an overview).

Initial condition. For the initial condition, a zero velocity field in the fluid with
a constant pressure πl(0) = 62650 ≈ 47mmHg, l = 1, . . . , 4 was considered (based
on the available pressure measurements). The solid was started at rest and the loads
from the fluid are corrected by the initial one. This can be viewed as a simple way
to account for prestress. For more general approaches we refer to [GFW10].

Numerical algorithm. The physical model described above was solved through
Algorithm 5, Chapter 3. The time step was taken as τ = 0.002 s. A forward
simulation takes about 15 hours on a standard, single processor workstation (3.2
Ghz). In general, 2 to 3 FSI iterations are performed at each time step (i.e., the
same number of linear pressure and nonlinear solid problems), with about 9 to 19
tangent problems (i.e., the same number of linear pressure problems and linear solid
problems) for a relative tolerance of 10−3 on the fluid-solid interface displacements
residual. This results in a cpu-time of 1’15” to 1’30” per time iteration.
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6.2.2 Simulation results and comparison with clinical data

We now present the results for the FSI simulation with parameters θ1 = 0, θ2 =

0.1155, θ3 = 0.2224, θ4 = 0.4150, θ5 = 0.3219, namely c1 = 3 · 105, c2 = 3.25 · 105,
c3 = 3.5 · 105, c4 = 4 · 105, c5 = 3.75 · 105. These values were chosen following
physiological considerations about the stiffness distribution along the aorta, namely
that the Pulse Wave Velocity (proportional to the square root of the arterial stiffness,
see Chapter 1, Section 1.1.3) can double from the ascending to the descending aorta
[LCVB+06].

Figure 6.12 shows the original and deformed fluid-structure interfaces, while
Figure 6.13 presents the velocity and pressure distributions for peak systole at the
deformed configuration. Then, Figure 6.14 shows the mean pressures and flows at
the inlet and outlets.

Figure 6.12: Three-dimensional views of the FSI simulation in terms of the position
of the fluid-structure interface. Initial (blue) and deformed (orange) geometries.

We perform a first, rather qualitative, comparison with the segmented surfaces
in Figure 6.15. It can be clearly seen that in the model the pulmonary trunk and also
the superior vena cava are missing. In practice, they locally restrict the deformation
of the ascending aorta, which also leads to a larger deformation in the opposite sites
to these vessels.

Concerning the fluxes at the inlet and outlets, the interpretation of the simulation
results must be done carefully. First, comparing the measured and computed fluxes,
presented together in Figure 6.16 for the sake of readability, it can be appreciated
that in general the fluxes agree except at the abdominal aorta. In fact, we assume
that the measured flow at the abdominal aorta is correct since: (a) the imaged plane
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Figure 6.13: Snapshot of the FSI simulation at peak systole with deformed domain.
Left: fluid velocity distribution. Right: fluid pressure distribution.
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Figure 6.14: Windkessel models’ output of the FSI simulation. Left: mean pressures
at the boundary surfaces. Right: fluxes. The gap between inflow (ascending aorta)
and total outflow is due to the storage of fluid in the aorta resulting from the
deformation of the arterial wall.
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(a) t = 0.159 s (b) t = 0.418 s (c) t = 0.538 s (d) t = 1 s

Figure 6.15: Some snapshots of the fluid-structure interface of the FSI model (blue)
and the segmented surfaces (magenta), superposed with the MR-image. Top: foot-
head view. Bottom: left-right view.

is perpendicular to the vessel and (b) due to the small solid deformations, fixing the
region-of-interest used for the flow computation should reasonably approximate the
flow. Hence, this important difference between model and measurements at the
abdominal aorta may come from an underestimation of the model’s inflow: the flow
data was extracted from a plane in a fixed location and therefore does not necessarily
represent the flow across the model’s moving inlet. This can obviously lead to an
underestimation of the distal outflow. As explained above, note also that the flow
at the inlet (continuos black curves) is perturbed due to imposed inlet motion in
the structure, whose velocity is enforced at the fluid inlet’s contour.

For the pressures, a comparison between measurements and model is shown in
Figure 6.17. At the abdominal aorta, the ratio between model’s and measured pres-
sure pulses is about the same as in the flow curves. Hence, for obtaining pressures
closer to the measurements, the right flow at the outlet should be obtained.

At the ascending aorta, the model overestimates the pressure. One factor can
be, as discussed above, the significant uncertainty in the inflow curve. Moreover,
some mesh convergence studies in the pure Navier-Stokes case (not shown here) put
in evidence that mesh refinement should reduce the pressure pulse at the ascending
aorta. In contrast, at the coarctation site, the model gives an pressure pulse much
closer to the measurements, at least in terms of the pressure pulse.
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Figure 6.16: Comparison of measured (left) and model’s (right) flows.
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Figure 6.17: Comparison between measured (left) and simulated (right) pressures
at three locations in the aorta.
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6.3 Estimation results with synthetic data

In this section we present some results for the estimation of the spatial dis-
tributed constitutive parameter cj1 = 3 · 105 · 2θj in terms of θj for j = 1, . . . , 5.
The measurements correspond to the fluid-structure interface’s surface with θ1 = 0,
θ2 = 0.1155, θ3 = 0.2224, θ4 = 0.4150, θ5 = 0.3219 (see Section 6.2.2), which
were then resampled to 25 time instants as in the clinical data (i.e. the 4D-SSFP
acquisition, see Figure 6.4). The initial guesses for the parameters were chosen as
θ̂1

0 = · · · = θ̂5
0 = 0 and the initial covariance equal to the identity. The gain for the

measures (see Chapter 3, Equation (3.46)) is taken as γ = 103 so that the estimated
parameters converges with respect to the gain, as exemplified in Chapter 3, Figure
(3.3), and also done in Chapter 5 for the aortic phantom.

The results are shown in Figure 6.18. We can see that we satisfactory converge
to the reference values for the 5 regions in spite of the important (and realistic)
time resampling. However, the confidence interval for the coarctation - and stiffer
- region (cyan) is larger than for the rest - more flexible - regions. This behavior is
can be also seen with not resampled measurements (results not shown here).
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Figure 6.18: Estimation of the constitutive parameters θj , j = 1, . . . , 5, using syn-
thetic surfaces resampled to the same times as the segmented surfaces. The results
are presented in terms of the mean values (thick lines), the confidence interval (thin
lines) and reference values (dashed lines). The colors correspond to the regions
distinguished in Figure 6.8-left.

We additionally perturb the measurements by remeshing the 25 synthetic sur-
faces allowing a geometrical error of around 0.5mm and a maximal triangle length
of 1.5mm, see Figure 6.19. The estimation results with these remeshed surfaces are
presented in Figure 6.20. Note that even though the modifications to the synthetic
surfaces appear not to be significative, the remeshing has a considerably impact
on the estimation’s performance in the regions with lower SNR (coarctation and
abdominal aorta). In particular, we observe that the estimated parameters at the
coarctation (cyan) and abdominal aorta (magenta) do not converge to the reference
values, see Figure 6.20-left. Unfortunately, the standard deviation indicator (thin
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curves in both Figures) does not help to discriminate the confidence of the estimated
parameters as shown in Chapter 3, Figure 3.4.

Figure 6.19: Example of an original (blue) and remeshed (red) synthetic fluid-
structure interfaces. Left: three-dimensional view. Right: zoom at the coarctation
level.
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Figure 6.20: Estimation results for the constitutive parameters θj , j = 1, . . . , 5,
using synthetic surfaces resampled and remeshed synthetic surfaces. Left: mean
values (thick lines), confidence intervals (thin lines) and reference values (dashed
lines). Right: Accumulated measurement error (space-time L2-norm, see Equations
(5.2)-(5.3)) for the model with initial guess θ1 = · · · = θ5 = 0 (blue) and the final
estimated values θ1 = 0.013, θ2 = 0.149, θ3 = 0.296, θ4 = 0.904, θ5 = 0.602 (green).
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6.4 Preliminary results with clinical data

In this section we present the very first results for the estimation of the stiffness
parameters in the aorta using the segmented dynamic surfaces. As shown in Figure
6.21, the segmented surfaces were remeshed in order to decrease the number of
triangles and hence the cost of the computation of the distances between the model’s
and segmented surfaces.

Figure 6.21: Segmented first frame. Left: original. Right: remeshed.

The estimation results are presented in Figure 6.22. In spite of the several
model imperfections mentioned in the previous sections, we can see that we are
able to obtain some meaningful results, with no additional effort with respect to the
testcases using synthetic measurements.

For the first two regions of the ascending aorta (blue and green curves) the
data assimilation algorithm recognizes that they should be stiffer, which somehow
confirms that the model does not include the surrounding vessels in this portion of
the artery. For the coarctation region, the estimation is not able to converge (cyan
curve), probably due to extremely low SNR resulting, as explained before, from the
poor image resolution due to the high blood velocity in this zone, see Figure 6.4.

We present some time frames of the MR-images, segmentation and models with
the initial and calibrated parameters in Figure 6.23. Note that the model with
calibrated parameters follows the segmented surfaces closer.

6.5 Conclusions

In this chapter we presented preliminary results of the estimation of the mechan-
ical properties of an aorta with repaired coarctation. We started summarizing the
clinical data available, and then we described how the FSI model is constructed from
this data. We noted that the model’s output is reasonably close to some of the mea-
sured data. However, we remarked that the current model has some limitations, for
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Figure 6.22: Estimation results for the constitutive parameters θj , j = 1, . . . , 5,
using the segmented surfaces. Left: mean estimated values. Right: Accumulated
measurement error (space-time L2-norm, see Equations (5.2)-(5.3)) for the model
with initial guess θ1 = · · · = θ5 = 0 (blue) and the final estimated values θ1 = 2.60,
θ2 = 0.83, θ3 = 0.05, θ4 = −0.02, θ5 = −0.81 (green).

(a) t = 0.21 s (b) t = 0.48 s (c) t = 0.53 s

(d) t = 0.58 s (e) t = 0.64 s (f) t = 0.69 s

Figure 6.23: Comparison for some time instants between image, segmented sur-
face (magenta), and FSI-model with initial (blue) and optimal (green) parameters.
The view corresponds to a foot-head cut of the ascending aorta at the level of the
pulmonary trunk.



6.5. Conclusions 171

example the absence of models for the some external organs. Moreover, there exists
important measurements uncertainties, for example the underestimated inflow and
the poor SNR for the segmented surfaces at the descending and abdominal aorta.
Then, we presented some results of the estimation of the constitutive parameters
distribution with perturbed synthetic data. Finally, we showed the first estima-
tion result with real data, namely with the segmented surfaces from the 4D-SSFP
sequence, obtaining meaningful results for the estimated parameter values.
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Damit das Mögliche entsteht,
muss immer wieder das Unmögliche versucht werden.

Hermann Hesse, 1960.





Chapter 7

Conclusions and perspectives

In this last chapter we give a general overview the work and the contributions of this
thesis and give some perspectives for future research.
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7.1 Work summary

7.1.1 Coupling of 3D-FSI and 0D models

In Chapter 2 we presented and analyzed some numerical schemes for solving the
three-dimensional (3D) FSI systems coupled with Windkessel’s (0D) models for the
outflow boundaries. The work was motivated by instabilities present in physiological
numerical simulations.

Focusing firstly on the Navier-Stokes Equations (i.e., without interaction with
a structure), we analyzed two possible coupling schemes between the 3D and the
0D models, when the 3D fluid is solved through a projection method. Hence, since
the velocity and pressure are solved explicitly, the natural way to compute the 0D
pressures consists in using the flows from the velocity of the previous viscous step.
We showed theoretically and numerically, that this choice may lead to numerical
instabilities when dealing with multiple-outlet geometries.

Hence, we proposed a semi-implicit formulation that solves the Windkessel’s
model and the 3D pressure field implicitly, fixing the instability sources of the explicit
approach. We also presented an implementation of this scheme which is minimally
intrusive, in the sense that we can keep the standard pattern of the finite element
system. For the realistic testcases shown here, the numerical resolution of this
formulation involves a negligible additional computational cost for the pressure-0D
projection step with respect to the explicit scheme.
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We also extended the formulation and the analysis of the fluid-structure inter-
action semi-implicit scheme reported in [FGG07] to the lumped modeling of the
downstream boundaries. Our analysis showed that in this case the explicit 3D-0D
coupling introduces an artificial uncontrolled power which might lead to numeri-
cal instabilities, even for single-outlet geometries. In contrast, for the 3D-0D semi-
implicit scheme stability is guaranteed under the same condition derived in [FGG07]
with a traction-free boundary condition on the outlet.

7.1.2 Data assimilation in FSI

In Chapter 3 we applied the reduced-order nonlinear Kalman filter for the esti-
mation of uncertain parameters in fluid-structure models. We gave a comprehensive
derivation of the algorithm, starting from linear least squares and reviewing the key
aspects of the unscented transforms for propagating the statistics (mean and covari-
ance) of vectors by nonlinear functions. We pointed out some algorithmic aspects
needed for the success of the estimation in the FSI framework, and we concluded
with several numerical examples in realistic configurations with noisy synthetic data.
The results are very promising in terms of precision of the estimation, computational
cost and complexity. It should be noted that these results are the first reported for
data assimilation in 3D-FSI.

In Chapter 4 we dealt with the estimation of the trajectory of a fluid-structure
system assuming only an uncertainty in the initial condition. For that purpose, we
proposed a formulation of a Luenberger observer for FSI problems. Observers consist
basically in adding a well chosen feedback term - proportional to the discrepancy
between measurements and model - to the original dynamical system. In particular,
we analyze and extended the feedbacks used for solid mechanics based on partially
measured velocities or displacements in FSI. We illustrated first their performance
in a general non-linear FSI setting. We then carried out more detailed analysis using
simplified, but representative FSI models, mainly based in linear spectral analysis.
This allowed us to understand the different behaviors and to propose improvements
of the filters when their performance was not satisfactory.

7.1.3 Application to real systems

The last part of this thesis was devoted to the application of the FSI-models and
the nonlinear Kalman filter using measured data coming from real physical systems.

Chapter 5 successfully validated, in a simple but real configuration, the estima-
tion of the solid stiffness from dynamic MR-images and pressure data by considering
a linear elastic and a nonlinear hyperelastic (Mooney-Rivlin) solid models. For a
large pressure range (δp ≈ 110mmHg), the optimized nonlinear solid gave a smaller
discrepancy with the real measures than the optimized linear one. Moreover, in the
linear case and for a lower pressure range (δp ≈ 55mmHg) the estimated Young’s
modulus satisfactory matched the value computed independently using data coming
from a non-destructive mechanical test.
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Chapter 6 was devoted to the the fluid-structure simulation of a patient-specific
aorta and the estimation of the stiffness distribution from clinical data. In this
context, we summarized the available clinical data consisting mainly of: static and
dynamic magnitude MR-images for the assessment of the aorta’s geometry, phase
MR-images for measuring the velocity field perpendicular to some image slices, and
catheter pressure measurements. Then, we described in detail how this data was
used for the set up of the forward FSI-model. Here, a technical difficulty was to deal
with the motion "imposed" by the heart at the ascending aorta. We compared the
simulation results (for wall displacements, flows and pressures) with the clinical data.
This put in evidence the strengths and weaknesses of the model and gave insights
for future developments, particularly for the proper inclusions of the external organs
as solid boundary conditions like the pulmonary trunk and the superior vena cava.

Then, we estimate one of the nonlinear constitutive parameters in five different
regions of the aorta from noisy synthetic data. Finally, we presented preliminary re-
sults for the estimation of the same parameters from the segmented surfaces coming
from the real medical images. The result showed that despite the model and data
imperfections, the estimation procedure was able to give meaningful results.

7.2 Perspectives

In this thesis we have only dealt with the assimilation of solid measurements
for FSI problems. However, for the design of Luenberger observers (Chapter 4), we
showed that the real poles of the FSI-spectrum are almost indistinguishable from
the pure fluid case, see Figure 4.16. Since the solid feedbacks do not affect this part
of the spectrum, we proposed to include a feedback based on fluid measurements to
improve the stabilization of the viscous poles of the fluid part.

7.2.1 Assimilation of measurements of the fluid velocity

As shown in Chapter 6 for the aorta’s simulation, modern acquisition techniques
also allow to measure valuable hemodynamical quantities, e.g., the in-plane velocity
data and the invasive pressures shown in Chapter 6. However, a time sequence of
the 3D velocity components in a spatial box, called 4D-Flow (see, e.g., [UBS+09]),
offers promising perspectives for data assimilation in hemodynamics. An example
of 4D-Flow data for the patient studied in Chapter 6 is shown in Figure 7.1.

In particular, this type of data could be used to estimate the pressure field
proximal to the heart, together with distal (and minimally invasive) pressure mea-
surements. As mentioned in the introduction, the pressure afterload of the heart is
one of the most relevant indicators of severity in cardiovascular diseases.

The task of estimating the pressure distribution can be seen as a state estimation
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problem, for which we could intend to design the following observer

ρf
∂ûf

∂t
+ ρf ûf ·∇ûf −∇ · σf(ûf , p̂) = γu1ω(zu − ûf |ω), in Ωf ,

∇ · ûf = 0, in Ωf ,

σf(ûf , p̂) · nf = γ̃u1ω̃(z̃u − ûf |ω̃), on ∂Ωf\Γout,

σf(ûf , p̂) · nf = −P̂ nf , on Γout.

(7.1)

where the term γu1ω(zu − ûf |ω) corresponds to the feedback based on the fluid
velocity measurements zu in the domain ω ⊆ Ωf . In the case of the 4D-flow, the
measurements can be assumed in all the domain Ωf . Thus, after spatial discretiza-
tion of Problem (7.1), the operator 1ω can be interpreted as an interpolator from
the measurement to the computational domain. Similarly, we impose weakly the
Dirichlet boundary conditions for ûf using the measurements z̃u in the domain
ω̃ ⊇ ∂Ωf\Γout, see Equation (7.1)3, coming from the same data set as zu or from
another imaging modality with higher resolution. The boundary conditions P̂ (t)

can come directly from pressure measurements, from 0D models and/or observers
for the Windkessel’s model, see Equation (4.58).

This feedback design simply corresponds to the analog of the DVF for fluid
velocity measurements, and a similar one has been already used in parabolic systems
for applications in oceanography, see for example [AB08]. It can be easily shown,
for instance by a linear spectral analysis, that such a feedback stabilizes the poles
of the error equation derived from the (linearized) state estimator (7.1). If velocity
measurements are available in all the domain, augmenting the gain γu will always
improve the stabilization to zero of the error in the initial condition. Hence, the only
constraint in the choice of γu would be to avoid to penalize the noise excessively,
namely forcing the estimator ûf being equal to the measurements zu.

However, in the case that only velocity measurements are available in few slices
(as the IP-velocity data presented in Chapter 6), it can be shown that the poles of the
error dynamics will converge (with respect to γu) to a problem with homogeneous
Dirichlet conditions on this slices. In fact, the values of these poles are typically
controlled by 1/r2, with r the shortest dimension of the vessel (usually the radius,
which explains the notation). Hence, if these slices are placed perpendicularly along
the vessel, the distance between these slices should be much smaller than r for an
effective stabilization of the error, which is somehow similar to acquiring 4D-flow
data. Note, however, that this does not mean than another, more efficient, observer
can be designed for these type of problems and data. In particular, some numerical
tests (not shown here) suggest that a feedback based on a reduced order Kalman
filter (built for example from a Proper-Orthogonal Decomposition (POD) basis, see
e.g. [KV03]) would be a valid alternative.

We remark that other approaches have been studied for assimilating flow data.
In particular, in [DPV11] a simplified variational approach was used, where the dis-
crepancy between model and measurements is minimized independently at each time
step. Moreover, in [HMM+10, Dwi10] it was proposed to apply Least Squares Finite
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Element methods for stationary flows consisting in writing the partial differential
equations as an (energy) minimization problem and then to penalize the discrepancy
between model and measurements. In [IH08, FHSY08], a feedback-based approach
was already applied to the assimilation of Ultrasound data in an aorta.

7.2.2 Assimilation of pressure measurements

As the fluid velocity data, the available pressure measurements (see for example
Chapter 6) have been only used for the sake of comparison and manual calibration
of the Windkessel’s model, but they have not been used in the data assimilation
framework. In fact, they could directly enter in the nonlinear Kalman filtering
procedure (see Chapter 3, Section 3.2.4) by including in the innovation a term
Zn+1
p − pn+1, with Zn+1

p the pressure measurement at time tn+1.
For the design of an observer based on the pressures, as mentioned above, it is

easy to construct an estimator in the case of pressure measurements at the outlets
as shown in Chapter 4, Equation (4.58). However, in the case where measurements
at the interior of the domain are available, which we denote by zp in the domain
Π ⊆ Ωf , a feedback term for the Navier-Stokes equations can be proposed as

ρf
∂ûf

∂t
+ ρf ûf ·∇ûf −∇ · σf(ûf , p̂) = 0, in Ωf ,

∇ · ûf − γp1Π(zp − p̂|Π) = 0, in Ωf ,

ûf = uin, on Γin,

ûf = uΣ, on Σ,

σf(ûf , p̂) · nf = −P̂ nf , on Γout.

(7.2)

which we naturally call Artificial Compressibility Feedback (ACF) with the gain
given by γp. Note that since anyway Dirichlet data is required this observer could
be combined with System (7.1) when velocity and pressure measurements are simul-
taneously available.

It is interesting to analyze the efficacy of such a filter in FSI systems. In the
case of considering (7.2) coupling with a linear elastic solid (i.e., uΣ = us|Σ0), and
assuming an irrotational fluid as in Chapter 4, we can write the following linear
system for the errorKs 0 0

0 Ms 0

0 −ρfG
ᵀ −γpHᵀ

pMΠHp

Φd

Φv

Φp

λ =

 0 Ks 0

−Ks 0 G

0 0 Kp

Φd

Φv

Φp

 , (7.3)

with MΠ the L2(Π) mass matrix, Hp the discrete observation operator for the pres-
sure, and the rest of the terms defined in Chapter 4. Rewritting it as a cubic
eigenvalue problem in Φd and computing the sensitivity of λ with respect to γp at
γp = 0 results

∂λ

∂γp

∣∣∣
γp=0

= − 1

2ω2
aρf
‖Φ0,p‖2L2(Π)



182

(a) t = 0 s (b) t = 0.062 s (c) t = 0.094 s

(d) t = 0.125 s (e) t = 0.156 s (f) t = 0.187 s

(g) t = 0.219 s (h) t = 0.250 s (i) t = 0.281 s

Figure 7.1: Snapshots of the 3D velocity field on several cutting planes of the 4D-flow
data in study case 10 of the euheart database. The MR-image data was courtesy of
Israel Valverde (King’s College of London).
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with Φ0,p the mode for the pressure with γp = 0. This analysis is confirmed nu-
merically in Figure 7.2, where it is shown that the efficiency of the ACF varies
depending on the pole, similarly to what happens with the DVF. Of course, these
preliminary results should be pursued considering incomplete observations and in-
cluding Windkessel’s models, as well as studying the impact on a (Navier-) Stokes
system.
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Figure 7.2: Poles of the ACF with respect to the gain γp for full pressure observations
and ηs = 10−3. The grey arrows sketch the trajectory of the poles when increasing
feedback gain.

7.2.3 Application to real systems

Current work is being carried out in order to deal with more complex in vitro
physical configurations, which offer interesting perspectives for clinical practice (e.g.,
the detection of artherosclerotic plaques and their implications in the surrounding
hemodynamic environment). Hence, in order to asses the capacity to detect variable
stiffness along the vessel from real measurements (see Chapters 3 and 6 for synthetic
measurements), data was acquired fixing an elastic strap in a portion of the same
silicon tube at the proximal end, see Figure 7.3. The aim is to test if the algorithm is
capable to localize the stiffer region (compared with the value for the silicon already
estimated).

Next steps would be to validate the algorithms for more realistic in vitro config-
urations, e.g., in geometries based on patient specific aortas. These tests could serve
for determining the needs for the data acquisition and modeling assumptions, as well
as the required numerical precision for reliable simulation results. In this context,
several and precise measurements of the wall motion and hemodynamical quantities
could be obtained, since there would not be any time or ethics constraints like in real
patients. Based on these in vitro tests, data acquisitions protocols may be tested in
order to carry out meaningful trials with patient’s. Moreover, using state-of-the art
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Figure 7.3: Experimental setup for the data acquisition with an artificial stiffening
(courtesy of Nicholas Gaddum, King’s College of London).

numerical methods for fluid, structure and coupled FSI problems and expecting an
increase of computational power, studies in large number of patients could be per-
formed. This would allow to investigate and propose new diagnosis and treatment
methodologies based on these sophisticated mathematical and computational tools.
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