
HAL Id: tel-00768237
https://theses.hal.science/tel-00768237

Submitted on 21 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modélisation des états dynamiques de vortex dans des
ondes de densité de charge

Tianyou Yi

To cite this version:
Tianyou Yi. Modélisation des états dynamiques de vortex dans des ondes de densité de charge.
Autre [cond-mat.other]. Université Paris Sud - Paris XI, 2012. Français. �NNT : 2012PA112200�.
�tel-00768237�

https://theses.hal.science/tel-00768237
https://hal.archives-ouvertes.fr
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Abstract

Formation of charge density waves (CDW) is a symmetry breaking phe-

nomenon found in electronic systems, which is particularly common in quasi-

one-dimensional conductors. It is widely observed from highly anisotropic

materials to isotropic ones like the superconducting pnictides. The CDW

is seen as a sinusoidal deformation of coupled electronic density and lattice

modulation; it can be also viewed as a crystal of singlet electronic pairs.

In the CDW state, the elementary units can be readjusted by absorbing

or rejecting pairs of electrons. Such a process should go via topologically

nontrivial configurations: solitons and dislocations - the CDW vortices. An

experimental access to these inhomogeneous CDW states came from stud-

ies of nano-fabricated mesa-junctions, from the STM and from the X-ray

micro-diffraction.

Following these requests, we have performed a program of modeling sta-

tionary states and of their transient dynamic for the CDW in restricted

geometries under applied voltage or at passing normal currents. The mod-

els takes into account multiple fields in mutual nonlinear interactions: the

two components of the CDW complex order parameter A exp(iϕ), and dis-

tributions of the electric field, the density and the current of normal carriers.

We used the Ginzburg-Landau type approach and also we have derived its

extension based on the property of the chiral invariance.

We observed the incremental creation of static dislocations within the

junctions. The transient dynamics is very rich showing creation, annihila-

tion and sweeping of multiple vortices. The dislocations cores concentrate

the voltage drops thus providing self-tuned microscopic junctions where the

tunneling creation of electron-hole pairs can take place.

The results obtained from this model agree with experiment observations.

The method can be extended to other types of charge organization known

under the general name of the Electronic Crystal. It takes forms of Wigner

crystals at hetero-junctions and in nano-wires, CDWs in chain compounds,

spin density waves in organic conductors, and stripes in doped oxides. The

studied reconstruction in junctions of the CDW may be relevant also to mod-

ern efforts of the field-effect transformations in strongly correlated materials

with a spontaneous symmetry breaking.
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Résumé

La formation des ondes de densité de charge (ODC) est un phénomène

de brisure de symétrie qui apparâıt dans systèmes électroniques, et partic-

ulièrement dans les conducteurs quasi-unidimensionnels. Elle est observée

aussi bien dans les matériaux très anisotropes que les isotropes comme par

exemple les supraconducteurs pnictures. L’ODC peut être vue comme une

déformation sinusöıdale de la densité électronique et de la modulation du

réseau, ou également comme un cristal de singulets électroniques. Dans un

état d’ODC, les cellules élémentaires peuvent être modifiées en absorbant ou

en rejetant des paires d’électrons. Un tel processus passe par des configura-

tions topologiquement non triviales: des solitons et des dislocations, ou plus

généralement des vortex d’ODC. Ces états inhomogènes peuvent être obtenus

expérimentalement dans des nano-produits appelés ”mésa-jonctions”, et ob-

servés à l’aide d’un microscope à effet tunnel ou d’une radiographie par micro-

diffraction.

Afin de simuler ces expériences, nous avons réalisé un programme modélisant

les états stationnaires d’ODC ainsi que leur dynamique transitoire à travers

des géométries restreintes auxquelles sont appliquées une tension ou un courant.

Le modèle prend en compte plusieurs champs en interaction non linéaire:

le paramètre d’ordre complexe d’ODC, la distribution de champ électrique,

ainsi que la densité et le courant des autres porteurs de charge. Nous avons

utilisé une approche de type Ginzburg-Landau ainsi qu’une extension basée

sur une propriété d’invariance chirale.

A l’aide de ce programme, nous avons observé la création progressive de

dislocations statiques dans les jonctions. La dynamique transitoire est alors

très riche avec notamment des créations, des annihilations et des balayages

de vortex multiples. Des chutes de tension apparaissent au centre des dislo-

cations, créant ainsi des jonctions tunnel microscopiques à travers lesquelles

transitent des paires électron-trou.

Les résultats qualitatifs obtenus sont en très bon accord avec les obser-

vations expérimentales. Ce model peut aussi être étendu à tout type de

cristaux électronique comme les cristaux de Wigner dans les hétéro-jonctions

et les nano-fils, les ODC dans les composés de châıne, les ondes de densité

de spin dans les conducteurs organiques, ou encore les structures de bandes
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dans les oxydes dopés. La reconstruction des ODC dans les jonctions tunnel

peut aussi trouver son importance dans l’étude des effets de champs sur les

matériaux fortement corrélés induisant des brisures spontanées de symétries.
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Chapter 1

Introduction

Studies of electronic crystals is a very active subject in condensed matter

physics [1, 2]. These physical systems distinguish themselves by sponta-

neous phase transitions, at low temperature, to states where the electrons

form a well-organized superstructures. These fascinating states give a way

to understand the quantum properties, which show up directly already at

macroscopic scale. The electronic crystals is a common organization in con-

ducting solids. They take forms of Wigner crystals at hetero-junctions and

nano-wires, charge density waves (CDWs) in chain compounds, spin density

waves (SDWs) in organic conductors, stripes in doped oxides and high-Tc

superconductors. Sister systems are the charged colloidal crystals and vortex

lattices in type II superconductors. A unique property of electronic crystals

is related to the possibility of the collective current conduction by sliding.

This property is ultimately related to appearance of inhomogeneous super-

structures under stresses.

CDW is a particular kind of electronic crystal: most accessible experi-

mentally and best treatable theoretically. It is a crystal of singlet electronic

pairs, which is typically formed in quasi one-dimensional conductors.

In the CDW ground state, the elementary units can be readjusted by

absorbing or rejecting pairs of electron. Such a process should go via topo-

logically nontrivial configurations: solitons and dislocations - the CDW vor-

tices. The CDW can be strained by applied voltage or by charge transfer at

junctions, or by an electric field which can also put the CDW into sliding.
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CHAPTER 1. INTRODUCTION

Such strains can give rise to local or long range modulational instabilities.

An experimental access to those states came from studies of nano-fabricated

mesa-junctions, from the scanning tunneling microscopy (STM) and from

the coherent X-ray micro-diffraction. These experiments raise fundamental

questions related to ground state in these systems.

The thesis is devoted to studying of CDWs in junctions and at a restrained

geometry and to elucidating the role of dislocations in the local reconstruc-

tion of the electronic ground state. The dynamics of these topological defects

should play an important role in the sliding process of the CDW. The the-

oretical models have been proposed or derived, and the numerical modeling

for various cases was performed. The essence of the work was a numeric

dynamical modeling of strongly nonlinear, nonstationary multi-component

system embracing the order parameter, the electric field and various normal

carriers.

Conceptually, and sometimes even in details, the theoretical results are

in a good agreement with experiments on the interlayer tunnelling in quasi

one-dimensional compounds with CDWs.

The thesis is organized as follows.

In chapter 2, we recall the base notion and general characteristics of

CDWs, which will be necessary in the following chapters. The chapter begins

with description of the Peierls instability, which explains the origin of the

CDW formation in the quasi-one-dimensional system. It introduces main

ideas related to the stationary states and to the dynamics of CDW system,

such as fluctuations in 1D, Fröhlich conduction, phason, the CDW charge

density, the CDW current, pinning mechanism and types of normal carriers.

In chapter 3, we discuss the existing theories and experimental observa-

tions of the dislocations in CDW. We briefly introduce the reasons for the

vortex creation in CDW, which we develop in the later chapters.

In chapter 4, we describe the tunneling experiment in CDW, which gives

motivations for our modeling. We also give necessary details on CDW dislo-

cations.

In chapter 5, we describe studies of the CDW ground state by the en-

ergy minimization method and the minimal Ginzburg-Landau model. CDW

vortices appear in both of these methods. The first one gives only the static

20



results, while the second one reveals the static and dynamic features of the

system. These results have given some hints for the experimental observa-

tions, and provide a firm base for the theory in chapter 6.

In chapter 6, we present the most detailed studies of the CDW in a

restricted geometry within the Ginzburg-Landau approach. The simplified

rectangle geometry is under study at first, followed by the exploration of

the restricted geometry in actual experiments. We discuss the results and

present a comparison between the vortex state of the CDW and that of the

type II superconductor. Calculations of some parameters are given at the

end.

In chapter 7, we derive an extended Ginzburg-Landau theory, which takes

into account the direct interaction between the ”intrinsic electrons” and the

CDW deformations. The resulting equations are non-analytical in the or-

der parameter, unlike in the previous the Ginzburg-Landau approach. That

makes the numerical calculations much more challenging, facing unavoidable

instabilities. The results are less detailed, but all show the nucleation of

vortices at surface boundaries. A new phenomenon is a suppression of the

CDW state provided by normal currents.

In chapter 8, we derive general equations to take into account the conver-

sion - exchange of electrons - between the collective and the normal reservoirs.

We obtained limited results for the 1D system, for the rectangular and the

actual geometries. One new effect is the canalization of the normal current

and its ability to destroy the CDW when hitting the obstacle.

Chapter 9 is devoted to conclusion and perspective.

Details on numeric implementations and on computing are given in the

Appendix A.
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Chapter 2

Charge density waves - general

concepts

In this chapter, we describe principal concepts and theories concerning the

charge density waves, which are relevant to the work presented in the the-

sis. Details can be found in several books, review articles and conference

proceedings (see e.g. [3, 4, 5, 6, 7, 8]). After a short historical summary,

we present the theories of the Peierls transition, followed by the Fröhlich

conductivity, then collective excitations for the CDW system, and finally the

principal mechanisms of pinning of the CDW.

2.1 Brief history

Complex studies of quasi-one-dimensional (quasi-1D) systems began and de-

veloped in 1970s inspired by the article by W.A. Little [9] in 1964. This

article proposed the theoretical arguments that certain quasi-1D conductors

could have a superconducting state extending up to the ambient temperature.

The starting collaboration between physicists and chemists results in a great

progress in the synthesis of several families of quasi-1D materials. While the

goal of reaching the high temperature superconductor was not achieved on

this way, the work has led to discovery of many phase transitions and the

first one was the transition to a CDW phase. This CDW phase shows a

great richness of physical properties. Particularly, the nonlinear behavior in
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the I-V curves have been observed with some similarities to the vortex phase

in type II superconductors. These nonlinear effects were first discovered in

1976 in NbSe3 by P. Monceau et al [10], and then interpreted as a collective

sliding state of the charge density waves by J. Bardeen [11, 12, 13] and in

[14].

The CDWs show up first of all as the metal-insulator transition at low

temperature. By X-rays scattering, this was found to be associated with

appearance of the lattice superstructure. But the most spectacular effect is

the collective sliding. The CDWs are intensively studied up to nowadays,

and experimental results and theories are still in progress.

2.2 Charge density wave materials

CDW materials generally contain weakly coupled atomic chains or molecular

stacks along which electrons are strongly delocalized. There exist organic

and inorganic CDW materials. 1D organic conductors usually are formed

by stacks of flat organic molecules with the highest conductivity along the

stacks (conducting ”chains”). These stacks may be separated by columns

of ions. The metallic state is due to the overlap of partly filled molecu-

lar orbitals. In inorganic compounds, the conduction chains are realized in

various ways. The earliest example is the platinum-chain compound KCP

(K2Pt(CN)4Br0.30 · 3H2O), see figure 2.1 (A). In NbSe3, the conduction chains

are formed by prisms of Nb atoms joint to Se atoms, see figure 2.1 (B).

Today, the CDW can be beautifully visualized by the STM technique as

shown in figures 2.2 and 2.3. There analysis recovered a purely sinusoidal

modulation of the charge density as in equation (2.1).

2.3 Peierls instability

It was in 1955 when Peierls predicted a phenomenon giving an origin of

what we call now the CDW. He was the first to describe the spontaneous

metal-insulator phase transition in 1D system.
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2.3. PEIERLS INSTABILITY

Figure 2.1: The crystal structure of KCP (A) and NbSe3 (B). [15]

Figure 2.2: Periodic white spots are

the CDW maxima. [16]

Figure 2.3: STM image of NbSe3,

viewed in 3D with perspective, ro-

tated by 90◦ with respect to figure

2.2. [17]
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Figure 2.4: Comparison between the metallic state (above) and the CDW

state (below) of an deformable conducting filament. Upper panel: the elec-

tronic band structure of the metallic chain is described by the 1D free electron

dispersion relation ε(k) = ~
2k2/2m. The total electronic density is uniform

and the atoms stay in their equilibrium positions, which are regularly spaced

along the chain. Lower panel: in the Peierls state, a gap is open at the Fermi

level. The electronic density and the lattice are modulated in space by the

period λ = π
kF

corresponding to the nesting vector 2kF represented by the

red arrow in the upper panel. [16]
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2.3. PEIERLS INSTABILITY

Figure 2.5: A gap of 2∆ is observed in the tunneling spectra of NbSe3 at

T < Tp. [18]

The idea of Peierls is the following: it is possible to decrease the total

energy of the one-dimensional system by opening a gap at Fermi level if

we can find a proper coupling with periodic distortions characterized by the

wave vector 2kF , i.e, with a new period π/kF . The new position of the nth

ion is then: un = na + u0 sin(n2kFa + ϕ), where u0 is the amplitude of the

distortion, and ϕ represents the phase of the modulation. This requires for

an additional elastic energy ∼ u20. The Peierls transition results also in a

charge density modulation

ρ(x) =
∑

k

Ψ∗
k(x)Ψk(x) = ρ0 + ρ1 cos(2kFx+ ϕ). (2.1)

The deformation opens a gap 2∆ in the electronic spectrum, see figure 2.4.

This gap can be observed in the tunneling experiments, as shown e.g. in figure

2.5. The gap 2∆ is proportional to u0. For a 1D band, the increase of the

elastic energy is less than the decrease of the electronic energy (proportional

to u20 ln(u0/a)). In this case any one-dimensional lattice is unstable to a

modulation with wave number 2kF : this is a metal-insulator transition,

usually called Peierls transition.

In general the new structure is incommensurable with the lattice (i.e. the

period of the lattice and that of CDW are not in a rational proportion),

because the CDW wave number is fixed by the number of electron below the

Fermi level. The phase shift in the expression 2.1 corresponds to the rigid

displacement of the CDW as whole.

In purely 1D system a true phase transition at a finite temperature is im-

possible, because of the thermal statistical fluctuations which destroy the or-
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CHAPTER 2. CHARGE DENSITY WAVES - GENERAL CONCEPTS

der at long distances. In reality, a quai-1D compound has a three-dimensional

inter-chain coupling, which comes from transverse overlap of the electronic

wave functions (inter-chain tunneling), or from Coulomb interaction between

CDW modulations of neighboring chains. Eventually these interactions sta-

bilize the long range order.

2.4 Charge density wave state

Although CDWs appear sometimes in the materials having band structures

of bi- or tri- dimension, their formation is essentially 1D phenomena. That

is why most of related discussions are based on one-dimensional models.

For 1D systems, electronic correlations effects can cause phase transi-

tions to various collective states at low temperature. Depending on electron-

electron and electron-phonon interactions, different ground states can appear,

like a singlet or triplet superconductivity, SDWs and CDWs. All these states

have been observed in quasi-1D conductors.

For compounds with CDW formation, it is usually sufficient to assume

that the normal metallic state can be described by concepts coming from the

Fermi liquid theory, such as in terms of the one electron quasi-particles. Still,

in presence of interactions between electrons (attractive or repulsive), the

Fermi liquid theory collapses and the quasi-particles are undefined even close

to Fermi level (see e.g a review [19]). That will give place to non fermionic

collective excitations, where spin and charge are separated, and they are

described theoretically by the concept of Tomonaga-Luttinger (TL) liquid. In

reality, for all of known quasi-1D inorganic materials, the experimental results

for the metallic state do not show in favor for the TL liquid behavior. That

seems to justify the description of these physical systems in terms of the Fermi

liquid and of quasi-particles. But for known 1D organic compounds, there

exist certain experimental indications in favor of the TL liquid kind behavior,

attributed to the presence of the strong repulsive electronic interactions [20].

For inorganic compounds like the blue bronze or NbSe3, in which we

are interested in here, the properties of their normal state can in general

be described by a fluctuating model [14] coming from an electron-phonon

weak coupling theory, in the framework of the familiar Fermi liquid concept.
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2.4. CHARGE DENSITY WAVE STATE

However, some features of NbSe3, and also the results of photo-emission and

of optical reflectivity on the blue bronze, suggested that the metallic state of

these compounds is better described by a theory of a strong electron-phonon

coupling (see [21]).

In the framework of the weak electron-phonon coupling theory, the prin-

cipal characteristics of the Peierls state can be described by the mean field

treatment of a 1D electron-phonon Hamiltonian H, named Fröhlich Hamil-

tonian. We introduce explicitly the modulation of the crystalline lattice by

the vector 2kF , and we neglect the electron-electron interactions:

H =
∑

k,σ

εkc
+
k,σck,σ +

∑

q

~ωqb
+
q bq +

∑

k,q,σ

g(k)c+k+q,σck,σ(b+−q + bq), (2.2)

Here c+k,σ(ck,σ) are the creation (annihilation) operators for the electrons in

the states of vector k and a spin σ and b+q (bq) are the creation (annihilation)

operators for the phonon with momentum q. εk and ωq are the dispersion

relations of electrons and phonon, and g(k) is the electron-phonon coupling

constant.

We define a complex order parameter,

∆eiϕ = g(2kF ) < b+−2kF
+ b2kF > (2.3)

where < ... > means the mean value of the operators in the ground state. The

order parameter takes into account explicitly the fact that in the CDW state,

a macroscopic number of phonons with wave numbers ±2kF are occupied.

This comes from neglecting the fluctuations in the mean field approximation

(however, these later ones are not macroscopically occupied). In fact, the

lattice displacement field can be written as:

u(x) =
∑

q

1
√

2ωq

(

b+−q + bq
)

e−iqx, (2.4)

we see that precisely in the ground state we have introduced a static modu-

lation of vector 2kF for the lattice:

< u(x) >=

√

2

ω2kF

∆

g(2kF )
cos(2kFx+ ϕ). (2.5)
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We can diagonalize the electronic part of the Fröhlich Hamiltonian (2.2),

taking the average over the ground state of the phonon states and using the

linearized dispersion relation, when εk is close to εF :

εk = vF (|k| − kF ). (2.6)

The thermodynamic properties of the CDW state are similar to that of

the superconductor state. In particular we have the BCS expression at T = 0

∆ ∼ De−
1

λ , (2.7)

where λ is the dimensionless electron-phonon constant, λ = g22kF /(ω2kF εF ).

The dependence of ∆(T ) has the characteristic BCS form, which goes to zero

at temperature Tp such that

∆(T = 0) = 1.76kBTp, (2.8)

as it is shown in Figure 2.6.

Figure 2.6: A plot of the CDW gap 2∆ as a function of the temperature in

the mean field approximation. [5]

Notice that for a superconductor, D is of the order of ωph ≪ εF , hence

the transition temperatures Tp are much higher in CDW than those in su-

perconductor. The carriers density in the CDW condensate is also related to

∆(T ), and near Tp we have [5]:

nc(T )

nc(T = 0)
=
π∆(T )

4kBTp
, (2.9)
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2.5. ONE-DIMENSIONAL FLUCTUATIONS

When T = 0, nc is equal to the number of electrons in the metallic state.

The electronic density is then spatially modulated, and we obtain the result

of 2.1.

CDWs are similar with superconductors in appearance of the gap in the

single particle spectra. However CDWs distinguish from the later by defini-

tion of the complex order parameter, which is formed by the pairs of electron-

hole located at the two different parts of the Fermi surface, involving then

the wave vector 2kF .

In 1D at T = 0, the normal state is unstable no matter how small is

the electron-phonon coupling constant λ. This is a consequence of the log-

arithmic divergence of the electronic response function to a perturbation by

an electronic potential with the wave vector q and with the temporal fre-

quency ω. This response function characterizes the polarization of electrons

(Lindhard function),

F (q, ω) =
∑

k

fk+q − fk

εk − εk+q + ~ω
(2.10)

F (q, 0) ∼ 1

πvF

2kF
q

ln

∣

∣

∣

∣

1 + q/2kF
1 − q/2kF

∣

∣

∣

∣

at 1D, (2.11)

where f is the Fermi-Dirac distribution function. The dependence of the

susceptibility (2.10) at different dimensions is shown in the figure 2.7. (There

will be a power law divergence in case of the TL regime.)

2.5 One-dimensional fluctuations

The mean field approach presented above neglects the important role of the

statistic and thermal fluctuations existing in 1D. However, for the quasi-1D

compounds it is expected that for small interchain interactions more pro-

nounced 1D properties are shown, such as the development of a CDW. On

an other hand, a CDW with long-range order requires 3D interactions. The

compromise between being 1D and correlated at the same time in 3D results

in CDW transitions occurring at temperature T3D well below the transition

temperature TMF calculated from the mean field theory. In the temperature

region between T3D and TMF , 1D CDW fluctuations are present. In this
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Figure 2.7: Susceptibility of free electron gas in one, two, and three dimen-

sions.

temperature interval a pseudo-gap in the density of states at the Fermi level

is observed experimentally. The origin of the pseudo-gap is traditionally at-

tributed to these 1D CDW fluctuations. Evidences also come from X-ray

diffraction [22], which shows planes of diffuse scattering oriented perpendic-

ular to the 1D chains at positions (0, 0,±kF ) off the main Bragg reflections.

The width of these planes usually increases with increasing temperature,

indicating a temperature-dependent finite correlation length of the fluctua-

tions along the chains. On approaching T3D from above, a crossover between

a 1D and 3D fluctuating regimes is usually found, which transforms into 3D

long-range order at T3D.

2.6 Dynamic of the collective mode

2.6.1 Fröhlich superconductivity

In the strong coupling regime, Peierls transition can be considered as a Bose

condensation of electron-hole pairs, like a Copper pair formation of elec-
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2.6. DYNAMIC OF THE COLLECTIVE MODE

trons in superconductors. But the conduction properties of CDW materials

are different from those of superconductors. Three years before the BCS

[23] theory, which gave the microscopic mechanism for the superconductivity

theory, H.Fröhlich [24] showed in 1954 that despite the gap opening at the

Fermi level, there exists a way to build the current carrying state in a 1D

system without any activation, and seemingly without energy dissipation.

This can be explained in the following way: if the CDW is incommensurate,

all its positions with respect to the lattice are energetically equivalent. In a

perfect crystal, an infinitesimal electric field would displace the CDW as a

whole. The CDW position in space is given directly by its phase, and the

time variation of the phase ϕ̇ = v puts the CDW in motion. At first sight, it

is equivalent to periodical variation of the displacements and the electronic

density of the CDW:

∆un(t) = u0 sin(Q(na− vt) +ϕ0),∆ρ(x, t) = ρ0 cos(Q(x− vt) +ϕ0), (2.12)

where Q = 2kF is the wave number of the CDW, and the velocity v of

the CDW is proportional to the displacement current of the CDW jCDW .

The understanding that the periodic modulation is not important for the

collective current follows from the fact that this current is observed and

derived also for the spin density wave, where there is no charge modulation

at all. But beyond this periodic current, there is still a continuous current

from the ground state. We shall see that in the next section. The Fröhlich

conductivity in CDW originates from the translational invariance, which is

broken by the commensurability with the lattice, or by the interactions with

the defects, or the impurities in the host lattice: the CDW can be pinned.

2.6.2 Collective mode of CDW: Amplitudon and

Phason

Starting from the Fröhlich Hamiltonian, P.A. Lee, T.M. Rice and P.W. An-

derson [25] have shown that the CDW state posesses two modes of collective

excitations called the amplitudon (a gapful mode) and the phason (acoustic

mode), which have the dispersion relations respectively:

Ω+ =

√

λω2
a +

1

3

m

m∗
v2F q

2, (2.13)
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CHAPTER 2. CHARGE DENSITY WAVES - GENERAL CONCEPTS

Ω− =

√

m

m∗
vF q = uq,

m

m∗
= 1 + 4

∆2

λω2
2kF

. (2.14)

Here m is the effective band mass of electrons, and m∗ is called the

”effective mass” of the CDW. Typically for a Fermi energy εF ∼ 1eV , a gap

2∆ ∼ 0.1eV , phonon frequency ω2kF ∼ 10−3eV , and the electron-phonon

coupling constant λ ∼ 0.5, we estimate Ω+(q = 0) ∼ 5.10−3eV which is

much smaller than ∆ and gives a very high m∗/m ∼ 103 as indeed observed

experimentally in optics. Because of the gap in the dispersion relation for the

amplitude mode, the low frequency collective dynamical phenomena involve

only the phase mode. Notice that the relation (2.14) for Ω−(q) shows in

another way that the Fröhlich collective current can exist in a perfect crystal.

However, for a real crystal with defects, it was shown [25] that the phason

mode Ω− possesses also a gap corresponding to a mean pinning energy of

the CDW. Hence it becomes an optic mode, which can be determined for

example by measuring the frequency dependence of the optical conductivity.

As shown in figure 2.8, this pinning energy is generally weak for the quasi-1D

components, typically being three orders of magnitude smaller than the gap

2∆.

Physically, the amplitudons correspond to the oscillations of the ampli-

tude ∆ of the CDW, then the phasons correspond to the continuous trans-

lation of the electronic density accompanied by a harmonic movement of the

atomic vibration (see Figure 2.9). This phason model which is coupled to the

applied electric field, can give birth to a collective transport of the charge,

which adds to the process of the non-condensed charges transport.

The phase-only approach [26, 27, 28] resides upon the 1D Lagrangian

L =

∫

~vF

(

1

u2

(

dϕ

dt

)2

−
(

dϕ

dx

)2
)

dx. (2.15)

where n is the carrier density along the chain direction.

This looks perfectly justified phenomenologically and it is supposed that

the elimination of the electronic degrees of freedom from the Hamiltonian

(2.2) [26] gives this form of Lagrangian. Actually, we shall see that there are

important complications and reservations.

The first term on the right-hand side represents the kinetic energy. The
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Figure 2.8: The frequency-dependent conductivity of NbSe3, o − TaS3,

(TaSe4)I and K0.3MoO3. The solid lines in the high frequency region in-

dicate the suppression of the single particle spectrum because of the CDW

formation. The strong peaks in the millimeter wave spectral range are due

to the response of the pinned collective mode. (after [5])
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Figure 2.9: Illustration of a phason and an amplitudon for q → 0 of a linear

atomic chain. a.) the line represents the uniform density of the electron gas

in the metallic state, the atoms are represented by the full circles. b.) the

phason mode is represented by the position of the electronic density and the

atoms in two successive moments (continuous line and full circles, dash line

and empty circles) c.) the amplitudon mode is illustrated in the same way

(after [7]).
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second term corresponds to the potential energy associated with the distor-

tion of the collective mode.

The plane-wave solution represents the periodic compression and expan-

sion of the CDW; these excitations are called phasons, they are seen in ex-

periments on inelastic neutron scattering.Their properties are given by the

equation (2.16)

(The vF estimation move to 2.16) For vF ∼ 3×107cm/sec and form∗/m ∼
103, u is approximately 106cm/sec.

This theory is not sufficient when when the Coulomb interactions should

be taken into account, unless they are effectively screened by normal carriers.

More details on the theory will be presented in the later chapters.

In summary, the electronic spectrum of the CDW can look similar to

semiconductors, but the electric properties of the CDW state are completely

different because of the collective phase mode.

2.7 Charge and current of charge density wave

As in a superconductor, the phase ϕ(x, t) plays an important role in the

dynamics of the collective mode. At zero temperature T = 0 we can write

nc =
e

π

dϕ

dx
. (2.16)

A rigid displacement of the CDW leads to the electric current, and the current

density per chain jcdw is given as

jcdw = − e

π

dϕ

dt
. (2.17)

The cross derivatives of nc and jcdw lead to the charge conservation equation

djcdw
dx

+
dnc

dt
= 0. (2.18)

At finite temperature, equations (2.17, 2.16) should be generalized to take

into account changes of the amplitude (normalized) A = ∆/∆0 of the order

parameter. The suggested forms read,

nc =
e

π
A2dϕ

dx
, (2.19)
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jcdw = − e

π
A2dϕ

dt
, (2.20)

Indeed, these expressions are correct for homogeneous states, when A is

constant. However, this generalization brings us a new problem of non-

conservation of charge. If A is not constant as this will be in our work,

equation (2.18) becomes

djCDW

dx
+
dnc

dt
=
e

π
2A

(

dA

dt

dϕ

dx
− dA

dx

dϕ

dt

)

6= 0. (2.21)

- the collective charge is not conserved! A resolution of this difficulty will be

proposed in the later chapters by going beyond the Ginzburg-Landau theory

by taking into account the electronic excitations explicitly together with the

order parameter.

2.8 Two types of normal carriers

In a CDW system there may be two types of normal carriers, and each of

them has its own properties. There are intrinsic carriers nin and extrinsic

ones nex. They play different roles with respect to the CDW, and they

experience different electronic potentials. Extrinsic carriers are coupled with

the CDW only via the Coulomb potential; the intrinsic carriers are coupled

with the CDW also by the CDW deformation. For the intrinsic carriers,

the electronic spectrum is formed by the CDW gap and their energies move

up and down, when the Fermi level breathes as δεF = ~vF/2 ∂ϕ/∂x. Their

density is affected by the changes of the Fermi level. While they need to be

activated across the gap, nin exist in all CDW materials, see figure (2.10).

Extrinsic carriers belong to other bands or to other well-decoupled CDWs.

Among known quasi-1D CDW compounds, this is the case of NbSe3 between

two CDW transitions. Many quasi-2D CDW compounds, e.g. TbTe2, and

TaS2 keep non-gaped parts of the Fermi surface because of the uncompleted

nesting of their Fermi surface. Hence, the extrinsic carriers are present.
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Figure 2.10: Electrons and holes are excited from the CDW by the thermal

energy kBT and become intrinsic carriers.

2.9 Pinning of the charge density wave

The interaction between impurities and the CDW has fundamental conse-

quence for both static and dynamic properties. The first important conse-

quence is the huge dielectric response ǫ, see figure (2.11 A). The pinning

limits the growth of the electric response ǫ(q) = r−2
0 /q2 at ǫ ∼ L2

pin/r
2
0 where

Lpin is the pinning length, so the observed huge value of ǫ & 106 indicates to

large Lpin. The second important consequence of pinning is an appearance

of a critical voltage Et corresponding to CDW depinning when the collective

current can slide [29, 30], see figure (2.11 B).
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A B

Figure 2.11: A: Measurement of the real part ǫ of the dielectric permittivity

as a function of T at different ω in Blue Bronzes. Large ǫ ∼ 106 is found [31].

B: Measurement of the nonlinear conductivity in TaS3 at low temperatures.

A sudden increase of the current after passing the threshold voltage ET is

observed. [32]
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At first argued by A. Larkin [33] and later in [34, 35, 36], the long-

range order is destroyed by randomly positioned impurities, and, in less than

four dimensions, the phase-phase correlation function decreases exponentially

with distance. However, more recently it became clear that the decay is

actually a power law [37, 38, 39], also see [40] for a most recent review .

The Hamiltonian for the phase coupled to impurities is [28]

H =
~vF
4πs

∫

(∇ϕ)2d~r +

∫

ρV (~r) cos
(

2~k · ~r + ϕ(~r)
)

d~r. (2.22)

The first term on the right-hand side represents the rescaled elastic energy

associated with the long-wave length phase deformation; the second repre-

sents the interaction of the CDW with the pinning potential. It is assumed

that the CDW amplitude is not perturbed by the interaction with the im-

purities. Consequently, the equation (2.22) is expected to be appropriate for

relatively weak potentials, which are substantially smaller than the CDW

gap 2∆. The interaction between the incommensurate CDW and defects in

the host crystal originates the pinning force.

We can distinguish two types of pinning, the collective pinning and the

local ones. The collective pinning forces come from elastic interference of

many impurities. They have large correlation volumes, huge relaxation times

and small magnitude. The collective pinning determines the threshold Ft

of the driving force to initial the CDW sliding and it is quite similar to

conventional rest friction. The local pinning concerns the local properties of

individual pinning center which relaxation rates are short. The local pinning

force may depend on the sliding velocity of the CDW. The local pinning gives

the frequency-dependence of the CDW response and the strongly nonlinear

I-V curve.

At low temperature, the CDW becomes more rigid and the effects of local

pinning dominate. The local pinning force can be calculated by building up

several models, such as, an elastic model, or a short-range model. Here we

summarize the main results from these calculations [40]. By considering the

stationary process, when the CDW moves with a constant phase velocity

v = ∂tϕ/2π = const, the local pinning force Fpin is shown to follow different

v-dependent laws according to the value of v, see figure 2.12. The important

parameters are the single-impurity force F1 and its maximal value Fmax
1 , the
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CHAPTER 2. CHARGE DENSITY WAVES - GENERAL CONCEPTS

activational relaxation rate τ , and the temperature T . At small velocities,

Figure 2.12: Schematic plot of the pinning force Fpin in function of CDW

phase velocity v showing several regimes of v-dependent laws. [40]

Fpin is linearly proportional to v:

Fpin = niF1τv v < v∗ ∼ (T/(F1τ) (2.23)

At moderately small velocities, Fpin increases logarithmically with v. At

high velocities, Fpin follows the law of Fpin − Fmax
1 ∼ −

(

ln 1
v

)2/3
. For even

higher velocity, Fpin varies according to Fpin − Fmax
1 ∼ −v−1. Interestingly

for our goals, the last regime corresponds to depinning by creation of pairs

of dislocation loops. (For the collective pinning, the role of dislocations was

discussed in [41] and [42].)

The most important information from the above Fpin − v diagram is

appearance of the linear Fpin − v law valid below a critical velocity v∗ ∼
(T/(F1τ).). The tangent of this linear segment will give the phase damping

parameter γϕ. This simple viscosity law will be used in our work as well as

in most existing studies.
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Chapter 3

Dislocations in charge density

waves.

In this chapter, we outline definitions and main concepts for dislocations in

applications to CDWs. We describe the types of dislocations and of their

motion. Finally we describe experiments indicating an important role of

deformations and dislocations in CDWs.

3.1 General concepts in dislocations.

3.1.1 Definitions

A dislocation is a kind of a topologically nontrivial line defect within a crys-

tal structure [43, 44, 45, 42]. Its existence manifests the crystal periodicity:

following any path around the dislocation line, a nonzero displacement ~B is

acquired which must coincide with one of the crystal’s periods. This dis-

placement is called a Burgers vector, and only primitive periods give stable

dislocations. Mathematically, the Burgers vector ~B is defined by integration

around a Burgers circuit C enclosing the dislocation line:

~Bi =

∮

C

∇j ~uid~rj, (3.1)

where ~u is the displacement vector and ∇~u is its local gradient.
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There are two main types of dislocations: the screw and the edge ones.

The Burgers vector is parallel to the dislocation line for the screw dislocation,

figure 3.1, and it is perpendicular for the edge dislocation, figure 3.2.

The CDW is a particular case of the crystal where displacements, hence

the Burgers vector, are allowed only along the chain axis ~x. So, in the CDW,
~B = B~x is defined as [45]

~B =
λ

2π
~x

∮

C

∇ϕd~r, (3.2)

Figure 3.1: Screw dislocation. L is

the dislocation line, and B the Burg-

ers vector.

Figure 3.2: Edge dislocation. L per-

pendicular to the plan is the disloca-

tion line, and B the Burgers vector.

Formation energies for these two types of dislocation are different. In

general, a screw dislocation involving only the shear strain has a lower en-

ergy [43]. In CDWs this difference can be even more pronounced because

of the structural anisotropy - the small share modulus (see section 3.1.1)

αy,z. But in absence of screening by normal carriers, the edge dislocation is

even more costly energetically: it activates the charge density ∼ ∂xϕ, hence

the Coulomb energy. Still, the emergence of dislocations appearance is ul-

timate in effects of reconstruction and conversion while the neutral screw

dislocations may appear only accidentally. Figure 3.3 gives the scheme of

dislocations in the CDW.

These illustrations, as well as most common treatments within the elastic

theory, rely on low energy gapless perturbations: acoustic ones convention-

ally, reduced to the phase mode in CDWs. Actually, the elastic approach fails
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3.1. GENERAL CONCEPTS IN DISLOCATIONS.

Figure 3.3: Dislocations in a CDW. The solid lines describe the maxima of

the charge density. The dashed lines represent chains of the host crystal.

From left to right: dislocations of opposite signs and their pairs of opposite

polarities. Embracing only one chain of atoms, the pairs becomes a vacancy

and an interstitial or ∓2π soliton. Bypassing each of these defects, the phase

changes by 2π thus leaving the lattice far from the defect unperturbed. [40]

approaching the dislocation core. In terms of the CDW, there is a divergence

of the elastic energy from the phase gradient ∇ϕ ∼ 1/r . By consequence,

the amplitude of the CDW complex order parameter vanishes at the core as

we shall see in our simulations.

3.1.2 Kinematics of dislocations

By definition, going around a dislocation line τ or crossing a dislocation

loop, the CDW complex order parameter phase ϕ(~r) gains a ±2π increment

at some, largely arbitrary chosen, surface ~P , see figures 3.4, and 3.5. It makes

the phase a discontinuous not uniquely defined function - otherwise it would

be a multiply defined function. More complicated situations happen when the

dislocations are in motion, which makes these discontinuities time dependent.

To clarify this situation, we must distinguish two types of dislocation motion:

glide and climb [42, 45]. In the course of glide, the dislocation loop does not

cross chains. The glide is allowed only in the direction of the Burgers vector of

these edge dislocations that is along the chain axis for CDWs, see figure 3.6.

In the course of the climb, the dislocation loop grows or shrinks changing the

number of embraced chains, see figure 3.7. The climb provides the transfer

of particles between the condensate and the normal liquid, and this will be
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an important motive for the discussion in chapter 8. Sliding of dislocations

gives the plastic flow, where many defects are involved in average.

Figure 3.4: Dislocation line τ with

circulations of the phase gradient ω.

[46]

Figure 3.5: The surface ~P of the

phase discontinuity based upon the

dislocation loop τ . [46]

Figure 3.6: Expansion of the disloca-

tion loop in the course of its climb.

Arrows show the climb directions.

The surface vector ~P is perpendicu-

lar to the plane. [46]

Figure 3.7: Propagation of the dislo-

cation loop in the course of its glide.

Vectors show the surface of the phase

discontinuities. [46]
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3.2. ELASTIC AND PLASTIC DEFORMATIONS OF CHARGE
DENSITY WAVES

3.2 Elastic and plastic deformations of charge

density waves

The early theory and the first concept for dislocations in CDWs was put

forward in 1980s by D.Feinberg and J.Friedel, see [42] and [45] for a review

with a number of new results. These authors put forward the idea of an

”electronic solid”, akin to the later term the ”electronic crystal”. They re-

alized that the CDW is a crystal, even if of electrons, and as such described

by strain and stress. They made a connection of the internal rigidities for

CDW deformation and motion with those in a normal solid. In that view,

an external electric field becomes equivalent to stresses exercised on a solid.

A particularly important, and inspiring for us, was to notice the possibil-

ity of topological defects related to the periodic symmetric breaking: the

dislocations.

D.Feinberg and J.Friedel described the nucleation of CDW defects as a

thermal activation process in presence of a local elastic stress T . By balancing

between the internal elastic energy of the CDW and the deformation loop

energy, they finally found a critical strain

ẽc =
λ

4πξ̃
=

(

λ

4πξx
,

λ

4πξ⊥

)

, (3.3)

where λ is the CDW wavelength and ξx and ξ⊥ are the coherence lengths

along and perpendicular to the chain axis. This critical strain can be used to

calculate a critical voltage, when the strains are due to an external electric

field. These studies underlined the combined effect of external electric field

and pinning points. Under low stresses the globally pinned condensate retains

phase continuity: the structure has no defects. Under strong stresses the

dislocation loops are nucleated involving local amplitude variation of the

CDW. Also the estimations have been given for effects of variations of the

CDW amplitude A, which were interpreted as a modification of the elastic

constant.

To justify such a picture, certain conditions must be satisfied. First a low

temperature, far enough below the Peierls transition is necessary to solidify

the CDW. Secondly, the long-range Coulomb interactions were neglected;
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they were supposed to be screened by the normal carriers. The first condition

is easily fulfilled, while the second one requires for a large concentration of

normal carriers, e.g. in CDWs with incomplete closing of the Fermi surface.

As we will see in the next section, the CDW with Coulomb interaction can

be incorporated to the traditional picture of dislocations.

3.3 Dislocations in the CDW with Coulomb

interaction

In 1990s, S.Brazovskii and S.Matveenko in a series of papers [47, 48, 49] stud-

ied the CDW dislocations by taking in full account the Coulomb interactions.

They worked with the following energy functional

H =

∫

1

s
d~r

(

~vF
4π

(

(

∂ϕ

∂x

)2

+ α

(

∂ϕ

∂r⊥

)2
)

+
Φ

π

∂ϕ

∂x
− ǫ∞

8πe2
(∇Φ)2 s

)

,

(3.4)

where the static electric potential Φ has to be determined self-consistently.

From this free energy, they calculated distributions of phase deformations

and the electric field, found the energy for the dislocation and the soliton

and interactions between those objects and to impurities. The Coulomb

potential had drastically increased the dislocation energy: from the weak

logarithmic law ∼ ln r to the linear confinement law ∼ r (In a later work

[50] that was called the ”Coulomb blockade”). The distributions changes

from typical dipole laws to exponential ∼ exp(−y2/d|x|) laws, extremely

concentrated along the chain direction.

The Coulomb interactions can be limited by screening from the normal

carriers. The effect of screening by residual electrons on the inner structure

of a dislocation becomes important when the screening length lscr is smaller

than the distance to the dislocation line Y , that’s lscr ≪ Y . As a result,

more conventional expressions for the phase and the electric field appear at
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large distances

ϕ =
s

4α∗

∂

∂x

1

(x2 + r2⊥/α
∗)

1/2
, (3.5)

Φ =
vF
2

α

α∗

∂

∂x
ϕ, (3.6)

where

α∗ = α
l2scr
r20

≪ α, r20 =
8e2

~vF ǫs
. (3.7)

Thus, the phase distribution is determined by the effective problem for a

dislocation without the Coulomb field, but with an enhanced anisotropy α∗

which is the effect of the ”Coulomb hardening”.

3.3.1 Static studies of the electric potential in CDW

In this section, we give calculations for a static electric potential in presence

of a single dislocation in the infinite media, well beyond the dislocation core

when the amplitude is saturated. The Hamiltonian in study reads,

H =
∆ξ

4πs

∫

dxdy
(

(∂xϕ)2 + β2 (∂yϕ+ πΘ(−x)δ(y))2 +
4

ξ

Φ

∆

∂ϕ

∂x

−4
r20
ξ2

(

∇Φ

∆

)2

− 1

l2

(

Φ

∆

)2
)

. (3.8)

The first term in H is the elastic energy of the CDW compression. The second

term is elastic energy of share deformation. Here the phase ϕ is a single

valued function but not differentiable everywhere and a branch along the

negative-x axis is introduced by the function Θ(−x)δ(y) (Θ is the Heaviside

step function.). The third term is the coupling between the CDW charge

e/π ∂xϕ and the electric potential Φ. (Here and later on, the electric charge

e is absorbed by Φ, which becomes the electric energy.) The forth and fifth

terms are the energy of the electric field and the screening by normal carriers.

The Fourier transform of equation (3.8) and variations with respect to Φ

and ϕ gives two equations:

δw

δϕ(−~k)
=
(

k2x + β2k2y
)

ϕ(~k) + π
iky
ikx

+
i4kx
∆ξ

Φ(~k) = 0, (3.9)
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δw

δΦ(−~k)
=

−4ikx
∆ξ

ϕ(~k) − 4r20
ξ2∆2

(

k2x + k2y
)

Φ(~k) − 1

l2∆2
Φ(~k) = 0. (3.10)

From equations (3.9 and 3.10), we have

Φ(~k) =
iπ∆kyξ

k2x + r20(k2x + k2y)(k2x + β2k2y) +
r2
0

l2
(k2x + β2k2y)

(3.11)

We study the large distances limit, apparently at least in comparison with

r0, hence kx,y are small. l is large with respect to r0, so the kl magnitude is

not defined yet. With this approximation, the potential Φ in equation (3.11)

becomes,

Φ(~k) =
iπvFky

k2x + r20β
2k4y +

β2r2
0

l2
k2y

(3.12)

The inverse Fourier transform will give the electric potential value in real

space,

Φ(~r) =
∆ξ

βr0

∫ ∞

−∞

dky
2π

ky sin(kyy)
√

k4y + k2y/l
2

exp
(

−|x|βr0
√

k4y + k2y/l
2
)

(3.13)

Figure 3.8 gives the 3D plot of the potential, and figure 3.9 is the cross-section

plot of the potential by passing transversely the vortex center, the line x = 0.

We can see a strong drop of the potential at the center of the vortex and

Figure 3.8: The calculated electric potential Φ.

the potential goes to zero far away form the center. In the limit of large
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Figure 3.9: The cross-section plot of the electric potential Φ by passing the

vortex center.

screening length l → ∞, with the help of equation (3.13) the y component

of electric field Ey = −∂yΦ can be evaluated as

Ey ∼
∆ξ

d

∫ ∞

−∞

dky
2π

cos(ky ∗ y) exp
(

−k2y|x|d
)

∼ ∆ξ
√

|x|d
exp

(

−y2/|x|d
)

,

(3.14)

where d = βr0.

If we consider the full expression (3.11) of the potential Φ, the numerical

2D Fourier transform can be preformed to obtain Φ in the real space,

Φ(~r) =

∫ ∞

−∞

∫ ∞

−∞

dkxdky
4π2

iπ∆kyξ sin(kyy) cos(kxx)

k2x + r20(k2x + k2y)(k2x + β2k2y) +
r2
0

l2
(k2x + β2k2y)

(3.15)

The cross-section plot of this function by passing through the vortex center

is given by figure 3.10. In the figure, the potential presents a sharp drop at

the vortex center, after a small increase (or decrease in the negative side) in

the positive side, it goes to zero at infinity. At small y, the contribution to

the integral comes from large ky, which is the Fourier transform of 1/ky, that

is the sign function in real space. But for y >> l, hence ky >> 1/l, another

approximation applies, giving vaguely the integral as ∼ ky/(k
2
y(r0/l)

2 + k2x).

This is the Fourier transform of the dipole, so in real space we get y/(y2 +

x2(r0/l)
2), which decays at large y. All together we find that the potential
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Figure 3.10: The cross-section plot of the electric potential Φ by passing

transversely through the vortex center.

Φ has a sharp jump across the vortex core on the scale of r0, from zero at

y = 0 to nearly the plateaux at |y| < l, and then it decays at distance larger

than l.

In this section, we have used the Fourier transform method to calculate

the distribution of the electric potential around a vortex core, which gives

a result comparable to those, which will be found in later sections for a

nonlinear problem. However limited by the linear regime, these studies allow

us to access only to the static state of the potential and also the calculation is

based on the reduced Hamiltonian, which can give only a basic understanding

of the problem. In the following sections, we shall develop a theory which

permit to study not only the stationary vortex state in CDW, but also its

dynamics in the full scope of the nonlinear problem.

3.4 Plastic flow evidenced from X-ray space-

resolved diffraction

In this section, we summarize the space-resolved X-ray studies for local defor-

mations measured in the sliding state of the CDW. They give clear evidences

for the current conservation accompanying phase slippage, presumably pro-

vided by transverse flow off dislocations - by definition it is called the plastic

regime of sliding, in contrast with the regular elastic one. A brief introduc-

tion of the microscopic model from [51], explaining this process will be given
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at the end of this chapter.

We shall exploit the systematic studies performed in Grenoble ([52, 51,

53]), recall also the important work done in Cornell, see the above references

for a review. Experiments were preformed on the NbSe3, in the regime of the

upper CDW1 that is between the two Peierls transitions at 145K and 59K.

The experimental setup is built on a two-contact configuration, meanwhile

the X-ray beam with a space resolution of 30µm was focused on the sample,

as shown in figure 3.11, from the references [53].

Figure 3.11: Sketch of the X-ray scattering geometry [53].

The shift q(x) of the sliding CDW satellite peak position in the reciprocal

space, Q = Q0+q(x) was measured as a function of the beam position x along

the sample. The longitudinal shift of the CDW wave vector is observed to

have a systematic position dependence, with strong variations near the two

electrodes.

3.4.1 Experimental results

Figure 3.12 A shows shifts (for two current polarities) q+ = Q(+I) − Q(0)

and q− = Q(−I) − Q(0) as a function of the beam position x along half of

the sample (0 < x < 2mm) for an applied current |I| = 7.5mA = 3.52IT
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(IT is the critical current) at T = 90K. For both polarities, the q shift

reaches its maximum at the contact boundary, which indicates important

CDW deformations in that region.

Figure (3.13 A) shows the shift q(x) measured on a different sample,

where there is a localized defect at the position xd ≈ −0.15mm. The sliding

CDW satellite shift changes sign abruptly at this position, with maxima on

either sides of the defect position. Comparison of two figures (3.12 A) and

(3.13 A) tells that the hidden defect plays the role of the pseudo-contact,

hence the imbalance of normal carriers is generated witnessing processes of

(re)conversion by means of phase slips.

Figure (3.13 B) shows the shift of q in comparison between a defect-free

sample and the same sample but after a damaged layer had been created on

purpose by a long exposure to the focused beam. We see strong elastic de-

formations spread over approximately 200µm on either side of the irradiated

position. The modeling with a good fitting shows that the current conver-

sion is minimal in this case: just the elastic deformations are build-in which

additional stress allows the CDW to slide through the layer of the enhanced

pinning force. We can conclude that CDW deformations, elastic and plastic,

are not uniquely the contact effects but also may take place in vicinity of

structural defects - natural or hand-made.
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A B

Figure 3.12: A:q shift (in units of b∗) for positive (q+)(negative q−) applied

direct current (I = 3.52IT ), for one-half of the sample 0 < x < 2mm. The

contact boundary is at x = 0 (vertical grey line). The horizontal grey line

is the line for q = 0. q− is fitted with an exponentially decaying spatial

profile, and q+ has similar characteristic near the contact boundary. NbSe3,

T = 90K. B: Calculated q(x) profile for the same experiment conditions.

[51]

3.4.2 Model

The model explaining the observed q shifts vaguely takes into account the

conversion between the normal and the condensed electrons. It assumes

the phase slips, which are provided by nucleation and growth of multiple

dislocation loop, but these elementary acts a beyond the scale of the course-

grained model which operates with variables averaged over long time and

rather long distances.

There are two types of normal carriers in the upper CDW state of NbSe3:

intrinsic carriers and extrinsic ones (see section 2.8). We define the stress U

in the CDW,

U =
( q

π
+ δni

) 1

N i
+ Φ, Ni =

2

π~vF
, (3.16)

where δni is the variation of the intrinsic carriers density, N i is the density

of states of at the Fermi level of the parent metal, and Φ is the applied

potential. U has three contributions: the elastic stress, the stress provided

by the excess concentration of intrinsic carriers, and the electric field.
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A B

Figure 3.13: A:Shift q(x) of the CDW satellite peak position as a function

of beam position x for positive (∗) and negative (◦) polarities. The vertical

lines show the boundaries of contacts; dashed lines are the best fit solution

to equation (3.19); NbSe3, T = 90K. B: Shift q(x) along the lhs part of the

sample for positive (◦) and negative (�) polarities. Full symbols (• and �)

show the shift after a local irradiation at the arrow position. The vertical

line shows the contact. Dashed and full lines give the best fit solution of the

equation (3.19).
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The CDW is deformed whenever the stress U - the energy of condensed

electrons, cannot reach balance with the electrochemical potential of the nor-

mal carriers µn (µn = eΦ + ∂xϕ/2). The quantity η ≡ µn − U characterizes

this mismatch. Hence the excess or lack of normal carriers (or condensed elec-

trons) will distort the CDW, which is measured directly by q. The exchange

between the normal carriers and the condensed electrons results finally in

the equilibrium between µn and U , a process taking place via nucleation and

growth of dislocations.

The conversion between different states of electrons modifies the carrier

conservation law as

∂(δnc)

∂t
+
∂jc
∂x

=
d(δnc)

dt
= −dn

dt
= R(η, jc), (3.17)

by introducing a conversion rate R(η) between normal and condensed car-

riers. There are two extreme scenarios for R(η, jc). The first refers to an

ideal host crystal, both in the bulk and at the surface, where only homoge-

neous nucleation is present as a spontaneous thermal [54] or even quantum

[55] supercritical fluctuation, so that R ∝ exp(−η0/|η|), is valid at |η| ≪ η0.

Another extreme refers to samples with a sufficiently large density of defects

acting as nucleation centers for supercritical dislocations [45, 42], the simplest

form for this case being R ∝ η, and this is what fits the experiment.

The above model, which includes the stress of the CDW U , the poten-

tials of the normal and condensed electrons, the sliding current −∂U/∂x ∼
j/σCDW , and enforces the local electro-neutrality, results in equation for the

stationary distribution of the CDW deformation

∂η

∂x
= F (jc) −

jtot − jc
σn

, (3.18)

where F (jc) = −∂U
∂x

is the pinning force experienced by the CDW. jtot is the

total current. jc is the collective current. σn is the normal conductivity.

Equation (3.18) can be specified to fit the experimental results, and we

have [53]
∂2η

∂x2
=

η

h20
+ Jc

∆σc
(σ0

c )2
(

δxd−ξ/2 − δxd+ξ/2

)

+
νinj
σ0
c

, (3.19)

with the boundary conditions Jtot = 0 at |x| = a. The first term in the

r.h.s. is the phase slip rate (h0 typically a few hundred µm.) The second
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term provides a partial conversion of the CDW current at the defect position.

This model was well verified by its application to calculate the q shift from

the experimental data. Figure (3.12 B) presents the curve of the q shift form

the model. The best fit solutions provided by the equation (3.19) are given

by dashed lines and full lines in figure 3.13.

We give an illustration of what happens during the experiment by means

of the figure 3.14. When the CDW is depined between the current contacts,

the CDW wave fronts are created near one electrodes and destroyed near the

other, leading to CDW compression at one end and stretching at the other.

The order parameter is driven to zero, and vortices develop as dislocations

climb between the crystal surfaces. Each sweep allows the CDW to progress

by one wave length, thus the current is transported by the block movement

of the CDW.

Figure 3.14: Schematic illustration of CDW dislocations at the electrodes.

Edge dislocation line proliferates across the sample.

3.4.3 Phase slip

Phase slip is a common phenomenon in condensed matter system, and it

happens when different phase-winding rates of the complex order parame-

ter are imposed in different regions of a sample. Gor’kov, Ong, and Maki

were among the first to introduce this concept in the CDW studies. They

[56, 57] have proposed a mechanism of phase slip processes to explain the

”narrow-band noise” observed in the electric transport experiments for CDW
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compounds. Their idea of [56] was that under the strong electric field a train

of vortices is created and proliferates perpendicular to the CDW current.

These moving vortices become the centers to conversion between condensed

electrons and normal carriers. The nucleation or annihilation of vortices near

the contacts induces abrupt changes registered as voltage oscillations. This

picture can be borrowed to explain the X-ray experiment. The ”narrow-

band noise” is the time-dependent observation of the phase slip processed,

while the X-ray diffraction give a spacial observation of the same effect by

average in time. Processes of defects’ proliferation will be visualized in our

simulations (reference chapter 6, 7).
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Chapter 4

Reconstruction by dislocations

of CDW junctions:

experiment and motivation.

4.1 Introduction: Charge injection to the CDW

Tunneling experiments give an access to properties of electrons in solids by

measuring the transition rates (the current I(V)) between adjacent parts of

the sample under the applied voltage V. Usually the tunneling occurs between

two different conductors across their hetero-junction or through a break of

the same material. The more recent method is the tunneling within the same

noninterrupted sample which is particularly effective in studies of strongly

anisotropic (quasi two-dimensional or quasi one-dimensional) materials.

Usually it is supposed, being reasonably justified, that the junction for-

mation and/or applying voltage do not modify electronic states which are

measured then as virgin ones. At most, as it happens in e.g. tunneling tran-

sistor, one has to take into account the field effect of the charge penetration

across the junction which accumulates some surface charge, accompanied by

a built-in potential difference, so that to equilibrate Fermi energies (chemi-

cal potentials) of electrons on both side of the junction. But the situation

may change drastically in correlated systems showing spontaneous symmetry

breaking. There, the electronic spectra are formed self-consistently via in-
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teractions of electrons, or among them and the underlying lattice of the host

crystal. Then the spectra and the very nature of states readjust to changes

of a local concentration of electrons and even to individual particles. Next

and equally important is the appearance of collective modes which substitute

normal electrons in the role of the charge transfer. The most known example

comes from superconductors which collective response to the applied electric

field originates the intrinsic Josephson effect. These oscillations were effi-

ciently studied just by the experimental setup addressed below. But what

will happen in electronic crystals, particularly in CDWs?

A natural temptation is always to treat them as semiconductors (some-

times semi-metals). But here we immediately realize the presence of the

collective mode, which is the overall translation of the electronic crystal,

leading to a sliding conductivity or to a corresponding gigantic dielectric re-

sponse as we have reviewed above. One of main features of electronic crystals

is that the number of unit cells is not fixed and can be readjusted to absorb

transferred electrons to the new extended ground state. Particularly intrigu-

ing expectation is that locally the addition of electrons to the condensates

of the crystalline order goes on via topologically nontrivial deformations:

discommensurations, dislocations, solitons. We shall recall that most, and

potentially all of these effects are present and show up in the intrinsic tun-

neling experiments.

In real CDWs, the crystalline order of singlet electronic pairs is weak, such

that the electronic density and the associated lattice deformation are nearly

sinusoidal ∼ ∆ cos(Qx+ ϕ). The arbitrary chosen phase ϕ characterizes the

ground state degeneracy while its distortions form the collective mode. This

mode is charged since the increment δϕ = ±2π adds/ subtracts one CDW

period, hence the charge is ±2e. Then the charge density (per unit length ) is

nc = eϕ′/π where ϕ′ = ∂xϕ is the phase gradient along the chain. We should

expect that the charge penetration profile nc(x, y) in the transverse direction

y, which needs to be built-in to adjust to the applied voltage, will result in

a pattern formation for the phase. which is a way to preview appearance of

topological defects.

Remind that for the superconductivity, with the order parameter

∼ ∆sc exp(iθ), the voltage difference enforce the phase θ to rotate in time
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∂tθ = 2eV , hence the spacio-temporal picture χ(t, z) of the intrinsic Joseph-

son effect would correspond to the static two dimensional pattern ρ(x, z) for

CDWs.

4.2 Experiments with overlap mesa-junctions.

During the last decade, the method of interlayer tunneling (see [58], [18] and

references therein) was developed for studies of condensed states of electrons

in layered materials like high temperature superconductors (cuprates) and

layered magnetic materials (manganites). This method is based on the fact

that in a layered crystalline lattice the neighboring elementary conducting

planes are well separated, at least with respect to electronic hybridization.

It provides a possibility to study electronic condensed states that occur at

metallic elementary layers at low temperature by means of the intrinsic in-

terlayer tunneling. Experimentally a transport across the layers is studied

at mesa-type structures with small lateral sizes of micron scale; they are of-

ten referred also as the stacked structures or overlap junctions. Their depth

includes typically only a few tens of elementary tunneling junctions.

Later this method was extended to the study of CDW state in CDW

materials [58, 18]. The junction used in the experiment was fabricated by

a focused ion beam technique, which permitted to keep all elements of the

device as parts of the same single crystal. 1 The experimental setup is shown

in figure 4.1. Here and below we use the following notations: x is the chain

direction along the junction, its total length is L = Lx; y is the transverse

direction across the junction of the width Ly, here the voltage 2V is applied;

z is the silent direction along the junction but perpendicular to chains, and

the dislocation lines are lined in this direction, with its length Lz.

The are two important observations:

• Apart from the expected peak at the CDW gap Vg(T ) = 2∆, a much

lower sharp threshold voltage Vt ≈ 0.2∆ for the tunneling onset.

• The ratio Vt(T )/∆(T ) ≈ 0.2 is temperature independent for all mea-

sured CDW states, see Figure 4.2. Hence, Vt is originally related to the

1Below we call this type of junctions ”the internal junction”.
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Figure 4.1: Scanning electron microscopy picture of the transverse device

(left) and its scheme (right). The stepwise arrowed line shows the currents

in the junction area. a∗, b,c are the crystallographic axes of NbSe3; (b,c) is

the conducting plane, b is the chain direction. [18]

CDW gap.

• The comparison of the lower threshold voltages Vt’s with the 3D order-

ing scale kBTCDW of the CDW states indicates a clear linear relation

between the two, namely Vt(0) ≈ 1.3kBTCDW . These relations imply

that the appearance of the threshold voltage may be accompanied with

the phase decoupling of CDWs in adjacent layers which energy might

determine the TCDW .

Figure 4.3 shows the fine structure near the treshold in NbSe3 at T =

130K. The steps in dI/dV and corresponding sharp peaks in d2I/dV 2 are

distinct. In figures 4.4, a similar structure is reproduced at both positive

and negative polarities for the two CDW states in NbSe3. Moreover, figures

4.4 shows that for the normalized V/∆ the peak positions coincide with a

remarkable accuracy for both CDW states at different temperatures. The

voltages corresponding to these regular peaks in d2I/dV 2 can be interpreted

as the threshold voltage to create successive dislocations in the junction which

gives an appealing motivation for the presented theoretical studies.
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Figure 4.2: Tunneling spectra for NbSe3 at 59K. Peak 1: absolute threshold

at low Vt = 0.2∆. Peak 2: amplitude soliton at expected Eas = 2/3∆. Peak

3: 2∆ inter-gap e− h pair. [18]

Figure 4.3: dI/dV and its derivative

d2I/dV 2 as a function of the voltage

V normalized to the CDW gap, at

T = 130K. [18]

Figure 4.4: Comparison of d2I/dV 2

for the two voltage polarities for

NbSe3 CDW2. [18]
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4.3 Floating picture of CDWs’ junction

Contrary to semiconductors, in the CDW the excess charge providing the

screening of the electric field does not need to come from normal carriers.

The screening charge can come directly from the condensate density δn if

it is allowed to change from one layer m to another m + 1: δn ⇒ δnm.

(The possibility of local variations along the chain is well known from space

resolved X-ray studies [51, 52].) But the difference of δnm between neigh-

boring layers m,m±1 means a difference of their periodicities corresponding

to wave numbers 2pFm. Hence for the onset of the collective screening the

interplane structural correlation must be broken while normally the phases

ϕ(x, r⊥) = ϕm(x) on different chains m are correlated. It requires for a criti-

cal threshold voltage difference δVcr which depends on the interlayer coupling

energy J (per unit length) . By now the degree of the structural anisotropy

could be guessed from observations of diffusion sheets or rods in X-ray or

neutron scattering. The tunneling experiments allow for the direct determi-

nation of Jz as we shall see below.

4.3.1 Fully decoupled regime

To get an idea of major scales, consider first the limit of vanishing interplane

coupling J which strictly is realized either above the 3D ordering temperature

at T > T3D, or practically at high voltage V ≫ Vcr. When neighboring

CDWs are well decoupled, they react to the electric potential in the same

way as the parent metal - the effect of the sliding mode. Then the screening

is instantaneous, practically within one spacing, and V ≈ const beyond

it. Let dx, dy, dz are the distances between the nearest neighbors along the

chain, between planes, and between the chains in the plane, correspondingly;

s = dydz is the area per one chain. The concentration n is defined per unit

length of one chain, hence the surface and the bulk densities will be n/dz

and n/(dydz).

The full distribution of potentials Vm across the layers is described by the

discrete Poisson equation

Vm+1 + Vm−1 − 2Vm = −4π
e2

ǫ⊥

δnm

dydz
d2z =

8

ǫ⊥

e2

~vF

dz
dy
Vm. (4.1)

66



4.3. FLOATING PICTURE OF CDWS’ JUNCTION

The penetration law is Vm ∼ e−αm with α given by

sinh(
α

2
) =

dz
2r0

= K =

√

2

ǫ⊥

e2

~vF

dz
dy

≫ 1, (4.2)

α ≈ 2 ln(2K), vm ∼ (2K)−2m. (4.3)

the inequality K > 1 is natural, with e2/(~vF ) ≈ 10 and dz ∼ dy, unless a

specially big interlayer permittivity ǫ⊥ ≫ 1. Finally it tells us that the layer

spacing dy is bigger than the screening length r0 of the parent metal. Even

for marginal K ≈ 2, the decrement Vm/Vm−1 is ≈ 1/20 which shows that the

voltage would drop across only one spacing.

4.3.2 Decoupling threshold: arrays of solitons or dis-

locations

Discommensurations in a two layers model

The minimal model treats the interlayer decoupling as a kind of the in-

commensurability effect. It takes into account only two layers 1,2 kept at

potentials ±V/2 as described by the following energy functional

∫

dx

(

~vF
4π

(

ϕ
′2
1 + ϕ

′2
2

)

+
eV

2π
(ϕ′

1 − ϕ′
2) − Jy cos(ϕ1 − ϕ2)

)

(4.4)

Its minimization allows for the lattice of discommensurations (the solitions

in phase difference δϕ = ϕ1 − ϕ2) which develops starting from the isolated

discommensuration. It is the 2π soliton in δϕ with the energy per chain

Edc ∼ (~vFJy)
1/2. The critical voltage is identified as the energy necessary

to create the first discommensuration: eVcr = Edc.

At higher V > Vcr the solitons form an array and finally they overlap

at very high V ≫ Vcr - the phase difference changes nearly linearly ϕ1 −
ϕ2 = 2eV x/(~vF ) which means the complete decoupling. This linear increase

in space returns us to the Josephson analogy which would show the linear

increase in time. The charge redistribution between planes forms the double

layer which provides the potential drop.

Consider in details the vicinity of critical voltage for formation of solitonic

lattices of interplane discommensurations. For the lattice of discommensu-
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rations each element is a straight row in the silent z direction. Discommen-

surations can be viewed as isolated entities when their width

ldc ∼ ~vF/Edc ∼ (~vF/Jy)
1/2

is small in compare to the mean distance X = 2π/δϕ′ = 2/δn, that is ldc ≪ X

hence (V −Vcr) ≪ Vcr. In this regime of screening by rare charged strips, the

field cannot be confined yet within one spacing: oppositely it will penetrate

over the scale of Y (see below) which is large near the critical voltage Vcr.

Also with charges being concentrated in stripes, local Coulomb interaction

becomes very important. Then we find an increase of the discommensura-

tion energy which will redefine the critical energy:Edc ∼ K(~vFJy)
1/2, with

the same K as in (4.3) coming from Coulomb interactions. All that com-

plicates the tunneling properties and requires for separate studies: e.g. the

solitons’ cores may be preferable for tunneling because of high local volt-

ages and/or appearance of split-off mid-gap states. The complete insight is

possible within the final picture which generalizes the sequence of discom-

mensurations to an array of dislocations.

4.3.3 CDW junction as an array of dislocations

In reality, there is a bulk of many planes with a voltage difference monitored

at its sides, while the decoupling will happen somewhere in-between. The

former lattice of discommensurations must be generalized to a sequence of

dislocation lines. The critical voltage is identified as the DL entry energy, in

some analogy to the Hc1 field in superconductors. If one’s sight moves closely

above the spacing of decoupled planes, the sequence of dislocation lines will

look almost like the solitonic lattice with one charged increment of the phase

after another. But when we go away and follow more distant planes, the

discommensurations become more and more diffused, that is spread over

larger distance, until they overlap to become ill noticed.

Coulomb interaction increases the energy cost to create the dislocation

line, but the same time empowers their efficiency in building the potential

increases. When the screening carriers vanish at low T, only a few of un-

screened dislocation lines over the junction length of 1µm will be sufficient.
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The decoupled spacing is grated, inhomogeneous, the effective thickness of

the voltage drop changes along the plane. Near the dislocation line’s core,

V drops over just the elementary spacing, but between the dislocation lines

it takes many planes M , see figure 4.5. Since the tunneling probability falls

Figure 4.5: Illustration of the voltage drop at the vortex core based upon

the analitic solution for a single dislocation. Inside the vortex core, a voltage

drop concentrates in one layer, while outside the vortex core the same voltage

drop goes smoothly over many layers.

exponentially with the number of planes M , then all tunneling will be con-

centrated near the dislocation line’s core. The voltage drop, and even much

more the tunneling, are concentrated near lines within this plane. Then this

is the grid of dislocation lines which determines the tunneling. Their grow-

ing number will affect the growth of I(V ) above the threshold. In ideal case,

there may be jumps observed when a new dislocation line is added to the

row. (It should be mentioned that hysteresis loop quantization in whiskers

of TaS3 at low T was interpreted as entering of new CDW periods. [59])

There may be more peculiarities related to mid-gap states produced by

the dislocation line’s cores. Indeed, the phase-only descriptions of dislocation

lines resembles the Josephson vortices in layered superconductors, which do

not need a normal core. The proliferation of the phase along the disloca-

tion line from an interplane spacing to the next one requires for capturing

pairs of electrons or holes. But capturing only one particle advances the DL

by half of the period, that is to the conduction plan where the normal core

69



CHAPTER 4. RECONSTRUCTION BY DISLOCATIONS OF CDW
JUNCTIONS:
EXPERIMENT AND MOTIVATION.

is necessary. This requirement meets perfectly the CDW property that its

state with one unpaired electron is the amplitude soliton where the CDW

amplitude passes through zero. The energy of the amplitude soliton, (theo-

retically EAS = 2
π
∆) must be paid for proliferating of an elementary segment

of the dislocation line which can be one of observed tunneling features [58]

(the second peak in figure 4.2). Next, the amplitude deformation creates the

mid-gap state, accommodating the unpaired electron, which can add a new

spectroscopic feature (EAS instead of 2EAS) to the tunneling characteristics

(STM experiment has observed this AS image [17]).

From the discrete to the continous models: discommensurations

versus dislocations

The above model of two planes was only a transparent illustration of de-

coupling under the applied voltage. Actually, the decoupled planes are

the boundaries for two semi-volumes y ≶ 0 with the voltage ±V
2

applied

at distant outer boundaries staying which sometimes can be considered as

y → ±∞. Perturbations from discommensurations at y = 0 will penetrate

deeply in the volume creating shear strains, proliferating charges, changing

the threshold voltage, etc. Fortunately we have a possibility to keep track

of most of that: it it the notion of dislocations and their arrays. Remind

that the dislocation line in the CDW is a topological defect such that going

around it we acquire or lose one period - for the CDW it is the phase dif-

ference δϕ = ±2π [45]. In our case, it is a dislocation line lying along the z

direction in the bridge plan (x, y) at a certain depth which we will usually

put at y = 0. Comparing some two paths along x, one above: y > 0 and

another below: y < 0 by passing the dislocation line, we should recover this

phase increment. More specifically, far from the boundaries the phase will be

antisymmetric that is ±π will be acquired independent on the distance from

the dislocation line in a similarity to the simple soliton of the two planes

model. Instead of the two planes interaction, we shall have the distributed

shear energy

−
∫

dxJy cos(ϕ1 − ϕ2) ⇒
~vF
4π

β2

∫

dxdy(∂yϕ)2, β2 ∼
Jyd

2
y

~vF
≪ 1, (4.5)

Here β is the dimensionless anisotropy parameter.
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With no screening from normal carriers, all variations in x direction of

chains, being charged, become particularly costly in the Coulomb energy.

These variations must be very slow in compare to variations in the interchain

direction y. Hence, the deformations and electric field are concentrated over

characteristic lengths Y and X thus forming a long (over the whole length Lz

in z direction) thin (Y ≪ X) stripe. Since, by definition of the dislocation

line, the phase changes by π, going along x axis at any level y, then the

charge of the stripe is Q = eY Ly/s; - its capacitance is the one of a plane

condenser: LzX/Y . Then the Coulomb energy is

Wcoul ∼
(eY Lz/s)

2

LzX/Y
∼ ~vF

r20

LzY
3

Xs
(4.6)

which must be augmented by the shear energy

Wshear = Lz
~vF
dydz

β2

4π

∫

dxdy(∂yϕ)2 ∼ ~vFβ
2LzX/Y s (4.7)

Notice that the usual compression energy

Lz~vF
4πdydz

∫

dxdy(∂xϕ)2 ∼ LzY ~vF
X

is negligibly small in comparison with the Coulomb one. From the minimiza-

tion of the total energy

Wtot = Wcoul +Wshear

over the scale X at a given scale Y .

We obtain

X =
Y 2

d
, Wtot = µ0M, µ0 = 2β~vF =

π

2
βωp ωp = vF/r0, d = βr0. (4.8)

Here M = Y Lz/s is the number of chains crossing the path of the DL while

it was submerging to the depth Y (M = 10 to 15 in our case.)

These simple estimations recover the scales µ0, d and the parabolic shape

X ∼ Y 2/d. More precisely the last property is expressed by the factor

exp(−y2/(2d|x|)) (similar expression is obtained in section 3.3.1) which gov-

erns distributions for gradients of the phase and the potential. The appearing

new length scale is very small d ∼ 1Å.
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Naturally we recover the dislocation line definition, namely, that the total

phase increments along x at any depth y and vice versa are

ϕ(+∞, y) − ϕ(−∞, y) = πsign(y) (4.9)

ϕ(x,+∞) − ϕ(x,−∞) = πsign(x). (4.10)

Next important feature is that the potential follows the phase (up to the

sign) as Φ = ±ϕβωp/2. It gives us asymptotic values ±µ0 of the potential Φ

at large distances:

Φ(x,±∞) = ∓µ0, Φ(±∞, y) = 0, Φ(0, y) = −µ0sign(y). (4.11)

We see that the single dislocation provides a finite increment 2µ0 of the

potential. This voltage is gained instantaneously, over the single spacing,

at the dislocation core, which actually can be quite large. But away from

the core the same increment requires for progressively larger width y ∼
√
dx

where Φ changes almost linearly. We can also fix the depth y to see that Φ

changes from 0 at x→ ±∞ to ±µ0 at x = 0 for any y ≶ 0; this bump at the

line x = 0 is distributed over x ∼ y2/d.

Notice that the enhanced anisotropy changes our view of the device ge-

ometry: what could be drawn as a thin junction with D/L ∼ 10−2, effectively

becomes quite thick, D ≫
√
dL. This condition is satisfied as 5 to 1, for the

typical geometry with D = 500Å and L = 104Å at d = 1Å.

The introduction of the very first dislocation line compensates for the fi-

nite voltage across the bridge which we can identify with the critical voltage

Vcr = 2µ0. In ideal case, adding any new dislocation increases the voltage by

the same amount which would originate a step-wise dependence I(V ). The

actual dependence will be smooth if we take into account the progressive

proliferation of the DL from the outer boundary. Indeed, while the prolif-

eration of a new DL is still shallow, Y ≪
√
dL, its potential reaches the

nominal value µ0 only within the interval x ≪ Y 2/d ≪ L beyond which, at

x ≫ Y 2/d, the potential falls off, but very slowly, as Φ ∼ µ0Y/
√
dx. The

mean value is accumulated mostly over this tail: < Φ >∼ µ0Y/
√
dL which

increases with Y until the saturation. We see that even a weakly submerged

dislocation line exhorts its influence over the whole length L, supposing all

distances are below the screening length.
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Give some more information, most important for tunneling, on the po-

tential distribution for the array of N dislocation lines. When we are not

particularly close to any of the dislocation lines, their potentials are well av-

eraged and give us almost the linear variation of the Coulomb potential Φ(y)

within the layer Y =
√
dL≪ D where the increment ∆Φ = 2µ0N is gained.

Φ stays constant beyond this layer. But coming closer to one of the disloca-

tion lines we recover an elementary jump ∆Φ0 = 2µ0 which is concentrated

in a very narrow region, within the single spacing ycore ∼ dy if we come as

close as |x| ∼ xcore ∼ d2y/d which is still a rather wide spot. Only near the

dislocation line core the potential changes between planes fast enough to pro-

vide an efficient tunneling. Just here the most efficient tunneling takes place

(away, the tunneling must proceed through the number y/dy ∼
√

x/xcore

of stacks). The nearest layers become completely decoupled, and open for

tunneling along the whole area, when the dislocation line spacing falls below

the core size, X ≪ xcore, that is at the decoupling voltage V >> µ0. This is

an analogy of the Hc2 field in superconductors.

In the following chapters we shall see to which extend our modeling con-

firms or complicates the outlined above anticipated picture.
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Chapter 5

Simplified model for CDW

vortex state reconstruction.

5.1 Model description

The motivation of studies presented below comes from the tunneling exper-

iments (see chapter 4). In this chapter we consider a simplified model to

study the CDW vortex states in the internal junction under applied static

electric fields. The model takes into account the complex order parameter

of the CDW and the electric potential. We consider the CDW on a weakly

correlated chain material, in a a simple rectangle 2D geometry with the co-

ordinate x in the chain direction and y in the perpendicular one. The CDW

is described by the complex order parameter Ψ = A exp(iϕ). The voltage

is applied across the CDW chain in y direction see figure 5.1. The applied

Figure 5.1: The geometry for the modeling. x, y are the axes along or across

the CDW chains.
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voltage gives rise to a profile of the electric potential Φ and the electric filed

E = −∇Φ. For simplicity it is the open circuit model, when no normal

currents are allowed. With minimal but essential ingredients in the theory,

we are able to show the important features predicted in the theory, such

as the appearance of the threshold voltages for the creation of vortices, the

tendency of vortex number increasing with the applied voltage.

There are two possible approaches to treat the model. The first one is

the method of the minimization of the total energy. This method allows to

obtain only the static configurations in the final stationary states without the

information of the intermediate steps. The second approach is based on the

solving the extremal equations rather than energy minimization. In addition

to the static final configurations, this approach reveals also dynamic features

of the vortex formation.

5.2 Method of minimization of the total en-

ergy

In this section, we will show how the vortex state in the CDW is achieved

by applying the minimization method on the Landau free energy functional

of the system 1.

The deformation of the complex order parameter originate the variation

of the CDW charge density in the bulk ρCDW = e
π
A2 ∂ϕ

∂x
. The surface charge

density is En/4π, where En is the normal component of the electric field at

the surface of the sample. The circuit is open - no normal current allowed.

Then the problem is static, so the energy minimization can be applied. The

stationary state of the system is determined by the minimum of the total

energy functional W

W =

∫

Ω

L(Ψ,Φ)dxdy +
1

4π

∫

S

EnΦds, (5.1)

where the integrations go over the bulk Ω or the surface S of the stack. The

CDW energy density L coming from a Landau expansion of the free energy

1These studies originate from the PhD work of Alvaro Rojo Bravo.
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functional in terms of the complex order parameter has the form:

L(Ψ,Φ) = −a1|Ψ|2+a2|Ψ|4+a3
(

(∂xΨ)2 + β (∂yΨ)2
)

+a4ρΦ−a5|∇Φ|2. (5.2)

The coefficient β < 1 indicates the strength of the interchain coupling, and

it characterizes the elastic anisotropy of the CDW. a1 and a2 are the phe-

nomenological coefficients, depending on the temperature T . a3 = ~vF/4πs,

where vF is the Fermi velocity of the electrons, and s is the area per chain.

a4 = 1/s. a5 = ǫ/4π, with ǫ being the dielectric constant of the host crystal.

In the following, we discuss the results obtained from the simulation.

5.2.1 Summary of results

At voltage V below the threshold, the CDW stays homogeneous in space;

the complex order parameter is constant; the electric potential is constant in

x direction and interpolates linearly between V/2 and −V/2 in y direction.

When V passes a critical value, a grid of dislocation is created, see figure 5.2.

With a further increase of V , the number of dislocations increases sequentially

and the dislocations enter the sample by pairs. The presence of dislocation

lines can be seen by plotting the phase of complex order parameter. The 2π

jumps of the phase are artifact of its definition as a single value function.

They are not the physical singularities. Figures 5.3 and 5.4 show that the

amplitude A of the complex order parameter is zero at the dislocation core

as it should be for a vortex, as we have already anticipated in chapter 3.

Under the applied electric field, the electric potential becomes inhomoge-

neous in both x and y directions, figures 5.5, 5.6. The voltage drop concen-

trates near the dislocation cores, which serve as tunneling junctions.

Figure 5.2: Phase of the complex order parameter at V slightly below the

threshold voltage. [60]
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Figure 5.3: Amplitude of complex or-

der parameter at V slightly below the

threshold voltage. [60]

Figure 5.4: Amplitude of the complex

order parameter at V well below the

threshold voltage. [60]

Figure 5.5: Distribution of the elec-

tric potential at V slightly below the

threshold voltage. [60]

Figure 5.6: Distribution of the elec-

tric potential at V well below the

threshold voltage. [60]
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This modeling confirms qualitatively and illustrates the conjectures de-

rived from tunneling experiments performed upon the overlap junctions [18].

But it does not allow the access to the dynamic processes. In the next chap-

ter, we will present variational method taking into account the multifield

interaction, and this method also allows the exploration of the dynamics of

the system.

5.3 Variational approach to the charge den-

sity wave vortex state

The problem studied here is similar to the one in section 5.2, but we adopt

a minimal Ginzburg-Landau approach to resolve it. .

The total Hamiltonian of the system Htot can be written in two parts, the

CDW part HCDW and the electric part Hel. HCDW is written as a Ginsburg-

Landau form with the BCS-improved potential energy, and it is given as

HCDW =
~vF
4πs

∫

dr3
(

(∂xA)2 + A2(∂xϕ)2 + β2(∂yA)2

+A2β2(∂yϕ)2 +
2π

ξ2
A2

(

log
A2

e

)

)

. (5.3)

In HCDW , the phase ϕ is considered simply as an elastic field with ∂xϕ asso-

ciated with the compression or dilatation energy and ∂yϕ the shear energy.

The variation of the amplitude A taken into the Hamiltonian is a crucial

point for the creation of vortices. The last term is the ground state energy

of CDW, and with it minimum at A = 1, it measures the energy payed for

the system to get out of its ground state. ξ is the coherence length, with the

relation ∆ξ = ~vF , and β is the anisotropic parameter. Hel deals with the

electric field and its reaction with the CDW, and it is given as

Hel =
1

s

∫

dr3
(

1

π
ΦA2∂xϕ− 4r20

ξ∆
(∇Φ)2

)

. (5.4)

In Hel, the first term describes the interaction of the condensed charge density

with the electric field Φ. The second term is the electric potential energy.

Here and after the electron charge e is absorbed into the electric field Φ. r0

is Debye screening length.
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We make variations of the total Hamiltonian Htot with respect to the

three independent field variables A, ϕ, and Φ, and obtain a three-equation

system,

− ∂2xA+ A (∂xϕ)2 − β2∂2yA+ β2A (∂yϕ)2 +
2π

ξ2
A logA2 +

4

ξ

Φ

∆
A∂xϕ = 0,(5.5)

−∂x
(

A2∂xϕ
)

− β2∂y
(

A2∂yϕ
)

− 2

∆ξ
∂x
(

A2Φ
)

= −γϕA2∂tϕ,(5.6)

1

π
A2∂xϕ+

8r20
∆ξ

∇2Φ = 0.(5.7)

γϕ is the damping coefficient for the phase, and it is related to the experi-

mental value as

γϕ =
∆ξ

4πsr20

1

σCDW

. (5.8)

The value of the parameters is listed below To accelerate the convergence

εF = 6meV ∆ = 25meV

ξ = 8nm r0 = 0.6nm

ε ∼ 10 σCDW = 1000Ω−1m−1 or1013s−1

Table 5.1: Parameters used in the simulation.

of the calculation, an exponential time scale is adopted. The real time t =

10τ/σCDW , where τ is the display time above the images.

5.3.1 Results of simulations

The threshold voltage found in the simulation is 0.2∆. At this voltage a pair

of vortices is created in the sample, see figure 5.7.

More pairs of vortices appear at the applied voltage takes the increasing

values, 0.4∆, 0.76∆, and 0.8∆, see figure 5.8.

The results for the electric potential Φ are showed below.

At the beginning of the evolution, the vortices serve to screen the electric

potential. In figure 5.9, the electric potential is screened out at the two

sides of the sample, where two pairs of vortex are well formed. The electric

potential decreases almost linearly in the middle of the sample, for no vortex

is created there.
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Figure 5.7: Formation of vortex pair. A pair of vortices is created with at

V = 0.2∆.

Figure 5.8: Formation of vortex pair at different voltages. The number of

vortex pairs increases with the potential V . V = 0.4∆, V = 0.76∆, V = 0.8∆

(from top to below).
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Figure 5.9: The distribution of the electric potential (phi) and the corre-

sponding CDW amplitude configuration (am) during the evolution. The real

time t ∼ 7.10−13s.

At the stable stage, the vortices work as the tunneling junctions, where

the voltage drop is concentrated. In figure 5.10, the voltage drop happen

mainly at the core of each vortex .

Figure 5.10: The distribution of the electric potential (phi) and the corre-

sponding CDW amplitude configuration (am) at the final stable state. The

real time t ∼ 2.10−8s.
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Triangular lattice versus rectangular one

A triangular lattice of vortices is created during the evolution as an inter-

mediate state (figure 5.11 top) at t = 2.10−12s. However, at the final stable

state at t = 3.10−7s a rectangular lattice is formed (figure 5.11 bottom) .

From this simulation, we may say that the formation of a rectangular lattice

is energetically favorable with respect to the formation of a triangular one.

Figure 5.11: Triangular lattice versus rectangular one

Total energy

A variation procedure upon the free energy is equivalent to finding the mini-

mum of the total free energy and we can see in figure 5.12 that the total free

energy of the system, expressed as the integration of the local energy density,

decreases with the time steps in the simulation. This decrease signifies that

the system is driven to its stable state at it lowest energy by the dissipative

force.
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Figure 5.12: Total free energy in time steps of calculation.
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Chapter 6

Charge density wave vortex

state reconstruction

6.1 Introduction

In this chapter, we present our main detailed results on the numerical mod-

eling. We study the reconstruction of the CDW state under the applied

transverse voltage or in the internal (mesa) junction as defined in Ch. 4

which also reviewed the experimental motivation. 1

We take into account multiple fields in mutual nonlinear interactions:

the phase ϕ and the amplitude A of the CDW order parameter, distributions

of the electric field, of the density and the current of various normal carri-

ers. The time-evolution equations were solved numerically for a restricted

geometry in two spatial dimensions. The numerical work was performed for

parameters close to experiments on NbSe3 [18]. The simulations were per-

formed by the finite element method implemented via the program COMSOL

Multiphysics.

The simulations give access to the dynamical behavior of the vortices

penetrating into the CDW and illustrate their final pattern formation. The

vortices are created in the junction when the voltage across, or the current

1Recall, we use the name ”internal junction” underlying that the whole device - leads

to the source and the drain, and the tunneling bridge are curved from one peace of a single

crystal, see the Figure 4.1 in chapter 4.
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through, exceed a threshold. The final number of vortices in the recon-

structed ground state increases stepwise - in agreement with experiments.

The vortex core concentrates the voltage drop across the junction which can

give rise to observed peaks of the inter-layer tunneling. Remarkably, the

number of vortices created in the transient process is much bigger than the

remnant one in the equilibrium.

6.2 Model

We use the time-dependent dissipative Ginzburg-Landau approach to de-

scribe the dynamics of the CDW system. The static state is determined by

a minimum of the total energy functional Htotal = HCDW (Ψ) +Hel(Φ,Ψ, n).

The CDW free energy HCDW can be written as (see equation 5.3)

HCDW =

∫

dr3
{

∆ξ

4πs

(

|∂xΨ|2 + β2 |∂yΨ|2
)

+
∆

2ξs
|Ψ|2 ln

( |Ψ|2
e

)}

. (6.1)

Here Ψ = A exp(iϕ) is the CDW complex order parameter, and its amplitude

A is normalized to 1 at equilibrium, i.e. A = ∆/∆eq(T ). The first two

terms give the energy of elastic deformations: compression and the shear;

the parameter of the structural anisotropy β2 ∼ 0.1 − 0.01 characterizes the

elastic anisotropy of the CDW. The third term is the CDW ground state

energy, with a minimum at |Ψ| = 1 see figure 6.1.

Figure 6.1: The ground state energy of the CDW as a function of A, with

the minimum at A = 1, which stabilizes the CDW ground state.
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The model also takes into account the Coulomb interactions, which be-

come very important since CDW deformations are charged and charges are

particularly concentrated near the vortices cores. Hel describes the effect of

the local electric field, and of free carriers:

Hel =

∫

dr3
(

1

sπ
ΦA2∂xϕ+ Φ

n(ζ) − n̄

dz
− ε

8π
|∇Φ|2 + F (n)

)

(6.2)

Here the potential Φ is assumed to incorporate the one-electron charge value

e > 0, dz is the inter-plane distance and ε ∼ 10 is the host dielectric constant.

n(ζ, T ) is the local normal carrier density per area in the single x, y plane,

n̄(T ) = n(0, T ) is the mean one, and n0 = n̄(0) is the value at T = 0. The

first and the second terms in (6.2) give the interaction of the collective and

the normal charges with the electric field, and the third term is the electric

field energy. The last term F (n) is the free energy density of the normal

carriers giving the definition of the local chemical potential ζ = ∂F/∂n. We

shall assume, for the specificity and in realities of the NbSe3, that normal

carriers come from a small electron pocket with a 2D elliptic dispersion in

the x, y plane; then

n(ζ) = n0
T

εF
ln(1 + exp(

εF + ζ

T
)), (6.3)

where εF is the pocket Fermi energy.

The system evolution is governed by dissipative equations:

− γA
∂A

∂t
=

δHtotal

δA
, (6.4a)

−γϕA2∂ϕ

∂t
=

δHtotal

δϕ
, (6.4b)

δHtotal

δΦ
= 0. (6.4c)

Here γA,ϕ are the damping coefficients. γϕ can be related to the experimen-

tally observed value of the collective conductivity σCDW :

γϕ =
∆ξ

4πsr20

1

σCDW

, (6.5)

and σCDW ∼ 1000Ω−1m−1 (or 1013s−1 as used in our equations) from ex-

perimental results. From equations (6.4a, 6.4b), also see the section 6.5, the
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relaxation time for the amplitude A is tA =
(

ξ
r0

)2
1

σCDW
∼ 2.10−11s - a time

scale, which is at the margin of the credibility of the dissipative Ginzburg-

Landau theory. The relaxation time for the phase is always longer than that

for the amplitude, such that tϕ =
(

Lx,Ly/β

r0

)2

tA ∼ 101tA to 106tA which gives

∼ 10−10 to ∼ 10−5s, depending on the length scale under consideration,

(Lx and Ly are the characteristic lengths for the processes, varying from the

vortex size to the sample size). For this reason, we can approximately put

γA ≈ 0, so that the energy is locally and instantaneously minimal with re-

spect to A. The arguments above can also justify our choice of the final time

tf = 108 × 1/σCDW = 10−5s as the stationary time for all the variables.

Equations (6.4) can be developed in the following form,

− γA
∂A

∂t
=

∆ξ

2πs

(

−∇̂2A+ A
(

∇̂ϕ
)2
)

+
∆

ξs
A ln

(

A2
)

+
2ΦA

sπ

∂ϕ

∂x
, (6.6a)

−γϕA2∂ϕ

∂t
=

∆ξ

2πs
∇̂ ·
(

A2∇̂ϕ
)

+
1

sπ

∂

∂x

(

A2Φ
)

, (6.6b)

and the Poisson equation for Φ,

ε

4π
∇2Φ = −A

2

πs

∂ϕ

∂x
− 1

dz
(n(ζ) − n̄) . (6.6c)

The equations (6.6) are completed by the diffusion equation for normal car-

riers:
∂n

∂t
+ ∇j =

∂n

∂t
−∇(σ̂∇(ζ + Φ)) = 0, (6.7)

Here ∇̂ = ∂x + β2∂y is the anisotropic partial differential operator, and

σ̂ = (σx, σy) is the anisotropic conductivity; it will be taken to be proportional

to the carriers’ concentration, that is given by mobilities in each direction.

The boundary conditions reflect the following properties:

1. The normal stress vanishes at all boundaries
(

∆ξ

2
A2∇̂ϕ− A2Φ~x

)

· ~ν = 0; ∇̂A · ~ν = 0. (6.8)

2. Normal electric field is zero at all boundaries providing the total electro-

neutrality and the confinement of the electric field within the sample:

∇Φ · ~ν = 0. (6.9)

88



6.3. RESULTS AND DISCUSSION

3. No normal current flow through the boundaries: −σ̂ n
n0
∇ (ζ + Φ) = 0,

except for the two source/drain boundaries left for the applied voltage

±V , where the electro-chemical potentials are fixed: µ = ζ + Φ = ±V .

In the above equations ~x is the unit vector along the chain axis, ~ν is the

outward unit normal vector on the domain.

We use experimentally determined parameters of the material and of its

CDW state. When they are not well known, the BCS-kind relations of the

Peierls-Fröhlich theory are employed. The following table lists the parameters

used in the simulations.

εF = 6meV ∆ = 25meV kBT = 5meV

ξ = 8nm r0 = 0.6nm dz = 1.5nm

lscr = 1.62nm n0 = 3.4 · 10−3nm−2 ε ∼ 10

σCDW = 1000Ω−1m−1 or1013s−1 σx = 100σCDW σy = 0.01σCDW

Table 6.1: Parameters used in the simulation.

In the following, the time unit will be in 1/σCDW = 10−13s and sizes will

be given in nm.

6.3 Results and discussion

6.3.1 Geometry description of the problem

The real geometry of the junction used in experiment [18] is given in figure

6.2, which is characterized by two overlapping slits across the sample (exper-

imentally they are the cuts made by the focused ion beam technique). The

left and the right boundaries are the terminals where the voltage is applied.

The junction was made with a CDW material possessing a highly anisotropic

conductivity, so that normally the current goes along the high conductivity

direction X. However, the two slits enforce the current to deviate to the

transverse direction Y of high resistivity originating the strong voltage drop

at the central rectangular region. The results will be presented here for two

different geometries. First results for the oversimplified rectangular geom-

etry, representing the active region of the real geometry are given, which
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provides a necessary intuition and also can be applied to other experiments

with a simple minded field effect geometry. In the next section we will give

the results for the real geometry.

Figure 6.2: The real geometry of the junction, and its active rectangular

central part, where stationary vortices will stay. The green arrows indicate

the trajectory of current flows.

6.3.2 Results for the rectangular geometry

We present here first the results for the rectangular geometry. This plays

an important role to tune the method and to understand the real geometry

model. A descriptive introduction of the rectangular case will be given, while

more detailed discussions are reserved for the real geometry.

Two regimes of the CDW vortex formation have been observed during

the simulation. The transient regime begins at 10−11 second to 10−8 second,

and the quasi-stationary regime from 10−8 to 10−7 second, when the system

relaxes into equilibrium and a true CDW stationary state is achieved.

Two types of dislocations have been revealed by the simulation: the dy-

namic vortex and the stationary one. The dynamic vortices appear in large

numbers at the upper and lower boundaries of the sample in the beginning,

see figure 6.3, and during the transient regime they create turbulence in the

CDW background. Most of them annihilate with partners of opposite signs

or they disappear at the boundaries.

The quasi-stationary vortices are those left after the transient dynamic

regime, they move slowly to find their equilibrium position. For the rect-

angular geometry model and for realistically chosen parameters, we have

obtained that the first stationary vortex appears at V = 0.308∆(7.7meV ).

The second stationary vortex appears at V = 0.328∆(8.2meV ), the third
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Figure 6.3: Amplitude snapshot at t = 3∗10−11s. Illustration for appearance

of dynamic vortices. They will give rise to turbulence in the transient regime

and then evolve into a small number of stationary vortices at final stage. The

variation of the color from red to blue corresponds to the range of amplitude

from 1 to 0.

one at V = 0.376∆, and the forth one at V = 0.568∆ see figure 6.4. The

number of the stationary vortices increases with increasing applied voltage.

Figure 6.4: Formation of stationary vortices in the rectangular geometry.

The number of vortices increases with the applied voltage: V = 0.308∆(i),

0.328∆(ii), 0.376∆(iii), 0.568∆(iv), respectively.

The CDW amplitude goes to zero at the vortex center as shown by the

blue color in figure 6.4. The figure 6.5 shows that the phase rotates by 2π

rotation around the point of the zero amplitude thus proving that this is the

vortex center.

Distribution of the electric potential Φ at presence of one vortex is shown

in figure 6.6. A sharp drop of the potential Φ is observed at the vortex core

in accordance with analytic and numeric results for a dislocation in linear

approximation for the infinite media see chapter 4. This should increase the
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Figure 6.5: Phase of the complex order parameter at the vortex center. The

2π circulation of the phase going around the vortex center. The color map

passes from π in red to −π in blue.

electrons’ tunneling probability near the core, which can explain the peaks

in experimental tunneling spectra. Even beyond the tunneling, the presence

Figure 6.6: Electric potential Φ for the one-vortex state.

of vortices affects the normal current. The corresponding I-V characteristics

of the junction are shown in figure 6.7.
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Figure 6.7: Current I and differential conductivity dI/dV versus the applied

voltage.

We can obtain different vortex configurations (figures 6.8, and 6.9) by

varying the value of the anisotropy parameter β from 0.1 to 0.01. The thresh-

olds found in these situations are of the same order ∼ 10meV , but the final

configurations are different, which signifies a different interaction between

the vortices.

Figure 6.8: Vortex pair is created with β = 0.01 at V = 10meV .

93



CHAPTER 6. CHARGE DENSITY WAVE VORTEX STATE
RECONSTRUCTION

Figure 6.9: Formation of triangular vortex lattice with β = 0.01 at V =

15meV .

6.3.3 Results for real geometry

Now we are armed to go to much more challenging studies in the real geome-

try. In the bulk of the CDW material we use the same set of equation. Within

the slits, only the electric field is present which obeys the Laplace equation.

The former no-stress and the new potential matching boundary conditions

need to be carefully defined all over the complicated sample boundary.

Figure 6.10 shows the distribution of Φ which would take place if there is

no CDW deformation, i.e. the material is a simple conductor with the given

conductivities of normal electrons.

Figure 6.10: Distribution of the electric potential if there is no CDW de-

formation. The chemical potential is nearly identically ζ = 0, hence there

is no charge variations in the bulk. The profile of Φ is created by charges

accumulated at the boundaries.

Two regimes of the CDW vortex formation have been observed in the

simulations. The initial regime with the characteristic time 10−11s, (which

is at the boundary of our dissipative approximation) is the transient, tur-

bulent one. During this time, the flashes of zero CDW amplitude appear

at the boundaries all over the samples and at the slits’ tips, evolving into

well-structured vortex cores as shown in figures 6.11. Following events of an-
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nihilation between two vortices of opposite signs and of destruction of vortices

near boundaries are observed. The number of vortices participating in the

transient process is much larger than that (one or two) left in the stationary

state. In the second, quasi-stationary regime, the remnant vortex or vortices

move more slowly to find the equilibrium positions. Finally at t ∼ 10−6 to

10−5s the system relaxes to stationary equilibrium. The evolution time is

two order longer in the real geometry model than in the rectangular geome-

try model, which can be caused by the size effect and the complexity of the

geometry. The whole evolution of the system can be seen in movies available

at the site [61].

Figure 6.11: Snake traces of suppressed amplitude show a transient state of

vortex formation in the junction. The variation of the color from red to blue

corresponds to the range of amplitude from 1 to 0.

For the real geometry, we have obtained that the first stationary vortex

appears at V = 0.27∆(6.7meV ), the second one enters at V = 0.32∆(8meV ),

see figure 6.12. In this figure, the CDW amplitude vanishes continuously at

the vortex cores (shown in the blue color), while it remains nearly unper-

turbed and close to its normalized value 1 (in red) for the major part of the

junction. The theoretical discussions about the vortex formation in junction

have been given in chapter 4.

If the overall sliding of the CDW was allowed, then the conversion between

the CDW condensate and the normal electrons could happen at these vortices

cores, where the CDW state is destroyed [45]. However, in our simulations,

we used the boundary conditions, which do not allow the overall sliding. This

is the experimental demand, [58, 18]: the longitudinal normal current was

kept below the threshold of depinning, also a lateral injection was used in

more sophisticated experiments.
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Figure 6.12: Final stationary vortices state. Formation of stationary vortices

in the real geometry. The number of vortices increases with the applied

voltage: V = 0.27∆ (i), 0.32∆ (ii), respectively.

The phase winds by 2π around the vortex core as it is seen in figure 6.13.

Additionally, there are 2π rotations of the phase around the edges of the slits

showing that there are also virtual vortex cores hidden in the vacuum of the

slits. The elastic deformation of the phase gives the phase gradient at the left

and right parts of the junction, and the lines where the phase passes from π

to −π are related to the traces of the phase slip processes (see figures 6.11),

which have been provided by the passages of vortices across the junction.

Figure 6.13: The phase of the complex order parameter in the final vortex

state. The phase rotates by 2π going around the vortex cores and also around

some virtual vortex centers hidden in the slits. In the color map, the phase

passes from π in red to −π in blue.

Distributions of the electric potential for the one-vortex stationary state

is given in figure 6.14a. The total electric charge over the vortex core is zero,

but the strong electric dipole moment is built-in, thus inducing the electric

field which gives a sharp drop of the potential Φ around the vortex core.

This should increase the tunneling probability of electron-hole pairs near the
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core which can explain the peaks observed in experimental tunneling spectra.

Figure 6.14 shows the distributions of the electric potential Φ (a), and even

stronger variation is observed for the chemical potential ζ (b), hence for the

normal concentration n(ζ). But for the electro-chemical potential µ, the

sum of Φ and ζ, the variations almost compensate each other, so µ, hence

the current, are insensitive to the presence of vortex which was not easy to

predict. The cross-section plots of µ, ζ, and Φ passing through the vortex

center is given in figure 6.15. It shows that both Φ and ζ have strong drops

across the core and that both are non-monotonous. Moreover, the potential

Φ has its sign inverted at the vortex center - that was not anticipated by

analytic theories and in the static regime. The effect appear only if normal

currents are allowed.

Figure 6.14: Distributions of the electric potential Φ (a) and of the chemical

potential ζ (b) for the stationary one-vortex state. The sharp variations are

confined around the vortex core. Notice the sign inversion of Φ across the

core.

Even beyond the effects of vortices, it is instructive to compare the general

pattern of the electric potential Φ in the reconstructed CDW state (figure

6.14 (a)) with the one prohibiting the CDW deformations (figure 6.10). For

the second case we found that the density of normal carriers is unperturbed,

ζ ≡ 0 in the bulk, except for a charge variations ∼ 10% concentrated along

the boundaries in an invisibly narrow stripe, apparently of the order of the

screening length lscr ≈ 1.62nm. The role of that boundary charge is to create

the potential pattern of the figure 6.10 which drives the normal current. This

97



CHAPTER 6. CHARGE DENSITY WAVE VORTEX STATE
RECONSTRUCTION

Figure 6.15: Cross-section plot of µ, ζ,Φ passing vertically through the vortex

core. Notice the non-monotonous behavior of ζ and even inversion of Φ

is a regime totally dominated by the electric field. In the actual case of the

allowed CDW deformations, the collective charge appears, which neutralizes,

locally and almost exactly, the normal charges, thus allowing for variations

of their concentration in the bulk. Figure 6.14 and figure 6.15 show that now

both Φ and ζ contribute to µ, and moreover ζ dominates over Φ thus reversing

a naive picture of a passive conductor. In this actual regime, the current is

dominated by the diffusion driven by the chemical potential gradient. We can

interpret creation of larger number of vortices and the phase slip processes

taking place beyond the inner junction as the passage among the two regimes

of normal currents dominated by either electric field or the diffusion.

The I-V characteristics of the junction in the range of V for appearance

of the first vortex are shown in figure 6.16. The nonlinear conductivity is

observed when the stationary vortex settles in the junction, and the peak in

the differential conductivity dI/dV corresponds qualitatively to that in the

experiment [18]. The current increase is rather small, and we are inclined

to think that a much strong contribution comes from the tunneling in the

vortex cores.

We have extended the range of studied V to values as high as ∆ to cover

the whole experimentally accessible interval. For the rectangular geometry

the number of vortices does not increase above 5. For the real geometry

with slits, the number of stationary vortices reaches 2, then at higher V new
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Figure 6.16: The current and the differential conductivity versus the applied

voltage.

stationary vortices appear, but beyond the central junction area. We can

guess that the experimental strong peak at 2V = 2∆ does correspond to the

tunneling creation of e-h pairs taking place within just a few vortex cores

forming self-tuned atomic-size junctions.

6.4 Comparison of vortex states and the screen-

ing in CDWs and superconductors

There is a close historical relation between CDWs and superconductors (SC)

in the development of the theories explaining their mechanisms and in the

search of these materials. Here we discuss analogies and differences between

vortices in the CDW and those in the SC.

For the SC, the vector potential ~A interacts with the complex order

parameter ΨSC = C exp(iθ), which phase deformations give the current
~j ∝ C2∇θ. For the CDW, the interaction is between the scalar potential

Φ and the complex order parameter ΨCDW = A exp(iϕ), which gives the

charge density ∼ A2∂xϕ. The energy functionals for these two cases can be
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written schematically as

WSC ∝ C2

λ2SC
(∇θ)2 − 2C2

λ2SC
∇θ ~A+

C2

λ2SC
~A2 + (∇∧ ~A)2, (6.10)

WCDW ∝ A2 (∇ϕ)2 + A2Φ∂xϕ− 1

λ2scr
Φ2 − (∇Φ)2. (6.11)

Here λSC is the penetration depth for the magnetic field ~B into the supercon-

ductor, and λscr - the screening length by normal carries, is the penetration

depth for the electric field ~E when the CDW were not allowed to be deformed.

We see that the electric potential Φ in the CDW plays a role similar to

the x-component Ax of the vector potential ~A in SCs. Hence the normal in-

plain electric field Ey = −∂yΦ finds its counterpart in the normal magnetic

filed Bz = −∂yAx. So when these fields are given externally (thin films of

the CDW in the condense or of the SC in the coil) then the two vortex states

appear similarly.

But the reverse effects of the condensate and normal particles upon the

fields are opposite. The diamagnetic term ∝ ~A2/λ2SC responsible for the

screening of the magnetic field is the properties of the SC condensate, while

the similar term ∝ Φ2/λ2scr in the ICDW has only an external origin, coming

from the normal carries. The ICDW condensate screens the electric field

only in the chain X direction while the transverse effect requires for the

interchain decoupling. Moreover, these two terms enter with different signs

to their energy functionals. Consequently, the normal electrons in the CDW

versus the condensed electrons in the SC have inverse effects upon the applied

field. In the SC, the applied magnetic field penetrates via the vortex cores

being screened otherwise. In the ICDW without normal carriers, the applied

transverse electric field is screened only within the vortex cores, otherwise

the long range order of the CDW condensate prevents the bulk screening.

The ordered CDW state cannot screen the electric field while the su-

perconductivity state cannot allow the magnetic field to pass through; the

appearance of vortices breaks these two condensates respectively and gives

back to the material their electronic and magnetic properties of metals, which

are due to the free electrons.
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6.5 Characteristic time scale for two processes

In this section, tϕ the characteristic time for ϕ to reach the stable state, is

estimated from characteristic time tA in the Ginsburg-Landau theory frame-

work. From equation (6.6a), we have

γ
1

tA

∂A

∂τ
∼ ∆b

ξ

A2

2
ln

(

A2

e

)

. (6.12)

We find that

tA =
γξ

b∆
. (6.13)

From equation (6.6b)

γ
1

tϕ

∂ϕ

∂τ
∼ ∆ξb

4πL2
chara

∂2ϕ

∂2x̃
. (6.14)

We find that

tϕ =
4πL2

charaγ

∆ξb
, (6.15)

Lchara is the characteristic length. Then we have

tA
tϕ

=
ξ2

4πL2
chara

. (6.16)

ξ = 8nm and  Lchara (characteristic length of phase variation) varies from

several nm in the vortex core from 600nm outside the vortex core, and

tA
tϕ

∼ 10−5. (6.17)

From equation (6.13), the characteristic time tA ∼
(

ξ
r0

)2
1

σCDW
∼ 10−11s,

and the characteristic time for ϕ, tϕ ∼ 10−5s.

6.6 Calculation of the screening length lscr

In this section we calculate the screening length for parameter used in our

computations.

By definition

1

l2
=

4πe2

ε

dn3

dζ
|ζ=0 =

4πe2

ε

dn2

dζ

1

dz
|ζ=0, (6.18)
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where ζ is the chemical potential, n3 is the 3D normal carrier density, n2 the

2D normal carrier density, and dz is the interplane distance. n2 is calculated

as the density of a 2D electron gas by summing the Fermi distribution. We

have

n2 =
2

s

∑

k

1

exp( εk−µ
T

) + 1
= 2

∫

d2k

(2π)2
1

exp( ǫk−µ
T

) + 1

=
m

π~2

∫ +∞

0

dε

exp( ε−µ
T

) + 1
∼ T

εF
log(1 + exp(

µ

T
)) (6.19)

In computation, we define n2 = n0
T
εF

ln
(

1 + e
εF+ζ

T

)

, where n0 is the 2D

normal carrier density with T → 0 and ζ = 0, and it can be obtained from

experimental data.

dn2

dζ
=
n0

εF

1

1 + e−
εF+ζ

T

−→ζ=0
n0

εF

1

1 + e−
εF
T

. (6.20)

1

l2
=

4πe2

ε

1

dz

n0

εF

1

1 + e−
εF
T

. (6.21)

Then we have
(

lscr
r0

)2

=
2

π

εF
~vFdyn0

(

1 + e−
εF
T

)

=
2

π

εF
∆ξdyn0

(

1 + e−
εF
T

)

. (6.22)

With the numerical values in table 6.1 and dy = 1, we find that lscr/r0 =

2.7, that’s lscr ≈ 1.62nm. Here we recover an important feature of a 2D

system that a small density of free carrier is able to induce a strong screening

effect independent of concentration, resulting in a small screening length.

A strong screening of the Coulomb interactions will bring our theory, in

a linear regime at least, more close to the classical elastic theory of [45].

6.7 Computational challenges

A proper choice of the initial condition is very important at the beginning

of the simulation. In the calculations, we started with a linear interpolation

of the voltage between the two boundaries, where the electric tensions are

applied. For the rectangular geometry, this choice corresponds to the electric

field distribution when there are no vortices formed in the sample.
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Another difficulty in the simulation is related to the creation of the mesh.

A typical size of the vortex is 50nm, so the size of the mesh must be much

smaller than this typical length. However, an increase of the density of the

mesh will consume more memory in the computer (we worked with 8Gbites),

and require a longer computation time when the program could crash. In

the complicated slit geometry, an extremely fine mesh will be inefficient in

the calculation, so we increase partially the mesh density to about 10nm at

the center part in the slit geometry, for the stationary vortices will stay only

at this region. The results obtain by this modification are satisfactory both

in resolution and efficiency.

At the beginning of the work, we adopted a Ginzburg-Landan stationary

approach in our studies, that is solving for the order parameter the extremal

equation δw
δϕ

= 0. However, in this approach, we encounter the stability

problem when the CDW vortex state appears. The results found by this

method gives the extremal, but not necessary the minimum energy. The sys-

tem gets confused among extremals corresponding to local minima, maxima,

and saddle points in the configurational space. After many efforts, we moved

to the dissipative Ginzburg-Landau approach to resolve the problem, with
δw
δϕ

= −γϕA2 ∂ϕ
∂t

. This method permits the dissipation of the total energy,

and the solution is expected to relax to the minimum point of the energy

configurations; that eliminates the primary instabilities in simulations.
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Chapter 7

Extended Ginsburg-Landau

theory for charge density waves

In this chapter we present the extended Ginsburg-Landau like theory for

CDW which allows to incorporate the intrinsic carriers with their direct im-

pacts upon the CDW. We first derive the equation of motion for the phase

ϕ from the Lagrangian, which is obtained from the chiral transformation.

Then we add the Poisson equation and adjust the diffusion equation for the

normal carriers. Finally after we derive the equation for the amplitude A

which now will be coupled with the one for the normal carriers. We shall

clarify how this extended theory corresponds to the Ginsburg Landau the-

ory in the linear regime. We shall present some results from the numerical

studies of this system which are much more challenging to obtain.

7.1 Introduction

In previous chapters we introduced and worked within the Ginzburg-Landau

like approach. This model is well established and works well for stationary

states. But it allows to take into account explicitly only extrinsic (’ex’)

carriers which do not interact with CDW directly, only via the common

electric potential. 1 The intrinsic carriers were supposed to be integrated

out and inter to the model only via equilibrium value of the order parameter

1The nomenclature of extrinsic and intrinsic carries has been introduced in Ch.2
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amplitude to which the relative amplitude A has been normalized. So, the

CDW, together with its intrinsic carriers, was described by a single field

Ψ = A exp(iϕ). This way limits us quantitatively from considering the gapful

charge density wave where the intrinsic carriers dominate while the extrinsic

ones can be even absent. But more importantly, we are facing the qualitative

problem of violating the conservation of the condensate charge - even in

absence of the conversion(see section 2.7). In other words, having collective

charge and current to be given by the phase derivatives with time-space

dependent prefactor A(t, x)2 violates the gauge invariance. At best, we could

say that the definitions a perfect for constant A, stack to definition of nc as

in the previous study, and admit that we do not know what is the collective

current, which we did not used before anyhow. But beyond the danger

of leaving this knowledge gap, we will not be able to address the current

conversion problem when the particles balance must be carefully monitored.

Now we shall build an extended scheme free from these problems and

limitations. The derivation can be done without going to the heavy micro-

scopics, thanks to exploiting the chiral invariance. Within this new model

the intrinsic carriers are taken explicitly into account, while with some limi-

tations:

• Intrinsic carriers are 1D

• Allowed for them: scattering by dominating CDW phonons - ampli-

tudons and phasons, see Ch. 2, as well as by collisions among electrons

trhemselves

• Forbidden: scattering in the frame of the host lattice (the Umklapp

processes) and by impurities.

.
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7.2 Lagrangian and phase equation

In order to obtain a detailed and theoretical description of the CDW system,

we give a general microscopic derivation of the Lagrangian for the phase of

the complex order parameter ϕ, following the concepts of [62, 63] traced back

to [26].

Gauge and chiral invariance permit us to obtain the effective scalar poten-

tial V and the total longitudinal force F experienced by electrons under the

CDW phase deformation and under an applied electric field Ex = −∂Φ/∂x.

Then, this potential is returned to the CDW thus affecting its properties.

First we show the transformation of the electron wave function and its

components ψ = (ψ+, ψ−) with respect to an arbitrary distortion of the phase

ϕ(x, t):

ψ = ψ+ exp(ikFx) + ψ− exp(−ikFx)

⇒ ψ̃ = ψ̃+ exp(ikFx+ i
ϕ

2
) + ψ̃− exp(−ikFx− i

ϕ

2
). (7.1)

This is a chiral transformation [26] related to opposite changes in space and

time of the phase of the wave function components (ψ+, ψ−). The Schrödinger

equation operator transforms as follows:

Hψ ⇒ H̃ψ̃, (7.2)

where

H =

(

−i~vF ∂
∂x

+ Φ ∆eiϕ

∆e−iϕ i~vF
∂
∂x

+ Φ

)

, (7.3)

and

H̃ =

(

−i~vF ∂
∂x

+ V ∆

∆ i~vF
∂
∂x

+ V

)

. (7.4)

From H̃ (7.4), it can be found that the chiral transformation gives the cor-

responding effective scale potential V and force experienced by the electrons

F

V =
~vF

2

∂ϕ

∂x
+ Φ, (7.5)

F = −∂V
∂x

= Ex −
~vF

2

∂2ϕ

∂x2
. (7.6)
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The transformation (7.1) provides a quasi-classical solution of the Schrödinger

equation at given external fields, if the phase ϕ is chosen from the equilibrium

condition F = 0. In this respect, a convenience of the linearized spectrum

creates an important physical paradox, which can be related to problems

of so-called chiral anomalies (see [64] for discussion and references related to

CDWs). Shortly, we see that only the phase of the wave function (7.1) is per-

turbed, while the amplitude can be considered to stay intact. This property

contradicts to the requirement that at ∆ = 0 the total density of electrons

deviates as δρ ∼ Φ while at ∆ 6= 0 we miss the Fröhlich effect δρ ∼ ∂ϕ/∂x.

It should be pointed out that for an arbitrary spectrum at ∆ = 0 the density

distortion emerges from the next order quasi-classical correction as a factor

ρE:

ε(p‖) : vk ⇒ ε(pF + k) − ε(pF ), ρE = |ΨE|2 ∼
∂p

∂ε
|ε=ε(p)+Φ. (7.7)

This factor is identically unity for the linearized spectrum approximation.

Generally it provides a correction δρE ∼ −Φ/εF for any given state but gives

a finite contribution to the integral density

δρ = −NFΦ, NF = 1/π ∂ε(pF )/∂pF .

This finite contribution comes as an integral effect of all states far below the

Fermi energy which makes it insensitive to the presence of the gap and/or

the temperature. This feature is an important facility for our subsequent

analysis.

The transformed Hamiltonian (7.4) corresponds to a 1D semiconductor

with perturbations from phase derivatives akin to external electromagnetic

field. Then the most traditional information can be used to describe the

particles in the local frame. In this respect it is of special importance for our

goals to distinguish between extrinsic and intrinsic carriers. The first ones

are subjected to the field E solely while the later experience the combined

force F . The electric responses of extrinsic ǫex and intrinsic ǫin carriers with

respect to E and F correspondingly are characterized completely by their

partial dielectric functions ǫa where a = ex, in.

Now we are able to write down the Lagrangian L = L(ϕ,Φ). It can be

done by combining arguments of the gauge and the chiral invariance which
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have been expressed by (7.4) (7.5), (7.6).

− L =

∫

d3r

(

− 1 + ǫex
8π

(∇Φ)2 − ǫin
8π
F 2 +

1

πs

(

~vF
4

(∂xϕ)2 + Φ∂xϕ

)

+
~vFA

2

4πs

(

β2(∂yϕ)2 − 1

u2
(∂tϕ)2

)

)

, A = A(T ) =
∆(T )

∆(0)
. (7.8)

The first term of the Lagrangian ∼ ǫh = 1 + ǫex is the host contribution

for the electric field energy, which consists of a host part ∼ 1 and of the

extrinsic electrons contribution ∼ ǫex.

The second term proportional to ǫi is the perturbative contribution from

intrinsic electrons response to (7.6). It is calculated by the similar rules as

the first term but the generalized force F from (7.6) is used instead of Ex.

There are no other perturbation contributions from the Hamiltonian (7.4) in

the lowest order.

The third term in 7.8 is a group of two sub-terms in brackets, which de-

scribes the missed contribution from the potentials (7.5). This energy comes

from the states deeply below the Fermi surface, it is missed in the pertur-

bation treatment with respect to F . Without perturbation with respect to

(7.4), this term does not depend on temperature and even more it is not

affected by the presence of the CDW 2. For this reason it must coincide with

the parent metal compressibility energy with respect to potentials of equa-

tion (7.5) where it is originated by (7.7). The physical meaning of this term

is clear: the variation over the local distortion 1/πs ∂ϕ/∂x gives the general-

ized force F of equation (7.6) and the equilibrium condition F = 0 provides

a correct metal response to external fields Φ.

Finally the fourth term is a group containing two sub-terms proportional

to A2 which appear due to an inter-chain CDW elasticity, and to the CDW

lattice inertia.

The interference of the third non-perturbative term with the second per-

turbative one in (7.8) provides a correct renormalization ∝ (∂ϕ/∂x)2 of the

CDW elastic energy at finite temperature so that it vanishes at ∆ = 0 and

in the normal state, as we shall see soon.

2A rigorous description of non-perturbation results for CDW in terms of so called

”anomalies” is given in [64], but the perturbation part ∼ ǫin was not treated properly.
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The Lagrangian (7.8) should be interpreted as a function of two indepen-

dent variables ϕ and Φ, and it is valid within the mean field approximation

at all temperatures T < TMF .

7.2.1 Equation of motion for the phase

The equation of motion for the phase should be derived by variation of the

Lagrangian (7.8), i.e.
δL
δϕ

= 0. (7.9)

We find the following equation:

(

1 − ǫinr
2
0∂

2
x

) ∂2ϕ

∂x2
+ β2∂y

(

A2∂yϕ
)

+
1

~vF
∂xΦ − γϕ

π~vF
A2∂tϕ = 0, (7.10)

where, in low frequency regime, the term ∼ (∂2ϕ/∂t2) gives place to the term

∼ ∂tϕ - the viscosity law, see section 2.9.

Following the common convention, we can define the coefficient (1 −
ǫinr

2
0q

2) before the term ∂2ϕ/∂x2 as ρc - the CDW condensate density, simi-

larly to the superfluid density in superfluids, also it is often referred to as a

phase rigidity. Then

ρn = 1 − ρc = ǫinr
2
0q

2. (7.11)

should be identified with the normal density ρn.

In the long wave, low frequency regime, ǫi is expected to be:

ǫin = Reǫin + i4π
σi
ω

∼ ǫ0in +min

(

1

l2inq
2
,−ω

2
in

ω2
, i

4πσin
ω

)

, (7.12)

where lin, ωin, and σin are the partial Debye screening length, the plasma

frequency and the conductivity of intrinsic carrier. l−2
in = 4πe2/s ∂nin/∂Z,

with nin being the onchain concentration of intrinsic electrons and Z is their

chemical potential. In the low frequency dissipative regime, equation (7.12)

is given as

ǫin = ǫ0in +
1

l2in
(

q2 − i ω
D

) , (7.13)

where D the diffusion coefficient is related to the conductivity as D =

4πl2inσin.
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At T > TMF , in a total metallic state ρn = 1, ρc = 0. At very low

temperature, the normal carriers freeze out, i.e. ρn = 0, ρc = 1. At vanishing

frequency, the equation (7.13) is further simplified as ǫin = 1/(l2inq
2), then

with equation (7.11) we have the relation of ρn with the partial screening

length

ρn =
r20
l2in
. (7.14)

7.3 Complete system of nonlinear equations

Now we shall use the outlined above principles to derive equations valid also

in the necessary nonlinear (with respect to all variables) regime. We call that

the extended Ginsburg-Landau theory.

We define the on-chain density of the energy ∼ (∂xϕ)2 and of the charge

e∂xϕ/π for the whole electronic system (i.e. preparing the locally deformed

state of the parent metal before imposing the charge density wave). The

intrinsic carriers, subjected to the field δEF = ∂xϕvF~/2, will effectively

erase these density bringing them to level ∼ ρc ∼ ∆2 ∼ A2 in accordance

with the Ginzburg-Landau approach, but in a well controlled and sometimes

different way.

We start with the following form of the local energy functional justified

in the section 7.2:

H =

∫

dr3
1

s

{

~vF
4π

(

(∂xA)2 + (∂xϕ)2 + β2(∂yA)2 + β2A2(∂yϕ)2
)

+
e

π
Φ∂xϕ

− ǫs

8π
(∇Φ)2 + eΦ(nex − nhst) + (eΦ +

~vF
2
∂xϕ)nin + F(∆, ne

in, n
h
in, nex)

}

,(7.15)

Here ∂iϕ, unlike ∂ϕ/∂i (i = x, y), are the local derivatives, which are insensi-

tive to 2π jumps in ϕ appearing in the presence of vortices. F(∆, ne
in, n

h
in, nex)

is the free energy density of a homogeneous state. ne
in and nh

in are the concen-

trations per chain of intrinsic electron and hole respectively. nin = ne
in − nh

in

is the imbalance of the normal intrinsic charge density.

The local balance of forces upon the phase reads

~∇ · ~T = Fhst ⇒
γϕ
π

∂ϕ

∂t
, (7.16)
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where γϕ/π ∂ϕ/∂t is the friction force Fhst from the host crystal, with

γϕ =
∆ξ

4πsr20

1

σCDW

. (7.17)

The local elastic force ~∇ · ~T is the gradient of the stress ~T = 1/π ∂W/∂∇ϕ,

which here is normalized to one electron, and W is energy density in equation

(7.15):

Tx =
~vF

2

∂ϕ

∂x
+ Φ +

niπ~vF
2

= U (7.18)

Ty = β2~vF
2

∂ϕ

∂y
(7.19)

Here as usual, the electron charge e is included to the electric potential

Φ. The equation (7.16) is expanded as:

1

2

(

∂2ϕ

∂x2
+ β2 ∂

∂y

(

A2∂ϕ

∂y

))

+
1

~vF

∂Φ

∂x
+
π

2

∂nin

∂x
=
γϕA

2

π~vF

∂ϕ

∂t
(7.20)

Next is the Poisson equation coming form δW/δΦ = 0,

2

π

r20
~vF

△Φ +
1

π

∂ϕ

∂x
+ (nin + nex) = 0 (7.21)

We shall concentrate only on intrinsic carriers nin, n = ne
in − nh

in; the extrin-

sic ones nex can be easily added a posteriori just as they were considered in

the earlier work (see chapter 6). Instead of n, we can use the local chemical

potential Z related to n by the equation of state, which also defines di-

mensionless normal and collective particle densities ρn and ρc (see equations

(7.11, 7.14)):

Z =
dF

dn
; (7.22)

ρn =
1

NF

dn

dZ
=

(

NF
d2F

dn2

)−1

= −NF
d2Ω

dZ2
; (7.23)

ρc = 1 − ρn. (7.24)

(We shall consider the material functions ρn,c, and later the conductivity σ

to depend on either n or Z without changing the notations.) By definition,

in the metallic phase ρn = 1 then ρc = 0, approaching from the CDW phase
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as ρc(∆, Z, T ) ∼ ∆2. At a given temperature we define the non-perturbed

(Z = 0) equilibrium values ∆eq(T ) and ρc(T ) = ρc(∆eq, Z = 0, T ); then we

can identify the amplitude A, normalized to 1 in equilibrium, as A2
ρ = ρc/ρc.

We shall better use another technically convenient A = ∆/∆0 which is not

normalized to 1 in equilibrium if T > 0.

The diffusion equation for the normal carriers is

∇σ̂∇(Z + Φ +
~vF

2

∂ϕ

∂x
) =

∂n

∂t
=

2

π~vF
ρn
∂Z

∂t
=

1

4π

ǫhst
r20
ρn
∂Z

∂t
, (7.25)

where σ̂ = (σx, σy) is the anisotropy conductivity. The conductivity σ will be

measured in sec−1 according to the definition of the dielectric susceptibility

Imǫ = 4πσ
ω

. We can check that in the linear regime (ρn = const, and σn =

const) the equation coincides with the one derived in chapter 6.

Equations (7.20, 7.21, 7.25) constitute the full system, beyond the eq. for

the amplitude A which will be discussed below.

7.4 Possible simplifications of the nonlinear

theory

Below we explore several particular limits of the above equation system. One

aim is to give comparison with the theory in chapter 6, hence emphasizing

the roles of ρc and ρn in relation to A. However, in computations, it is neither

necessary nor convenient to work with ρn and ρc, a more natural choice is to

use n(Z) explicitly.

7.4.1 Infinite conductivity

Consider the limit of infinite conductivity σ̂ → ∞ (for both components,

which is not quite physical for the transverse one). Then roughly, character-

istic length l and time t are such that l2/t≪ r20σ, hence ∂tn can be neglected

and the equation (7.25) becomes:

∇σ̂∇(Z + Φ +
~vF

2

∂ϕ

∂x
) ≈ 0. (7.26)
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This equation implies also that the electrochemical potential µ must be zero

to compensate the divergence of the conductivity, that’s

µ ≡ Z + Φ +
~vF

2

∂ϕ

∂x
= 0. (7.27)

This relation provides a good bridge to link the improved GL theory to the

previous one. Equation (7.21) with the help of equation (7.27) can be written

as
2

~vF
(r20∇2Ex − ρnEx) = ρc∂

2
xϕ. (7.28)

The right-hand side of this equation resembles indeed the definition of the

effective charge as nc = A2∂xϕ/π, thus identifying ρc and A2 but with an

important correction in our nonlinear regime, when ρn 6= cnst (it is a given

function of Z = −Φ − ~vF
2
∂xϕ). Instead, we have for the charge derivative:

∂xnc = A2∂2xϕ/π. Also there appears an earlier unaccounted term (which we

have placed to the left-hand side). It corresponds simply to the screening

of the electric field with a standard local screening length l2i = r20/ρn (see

equation 7.14). That is, we should assume the low T regime when this

screening is negligible in comparison with the one from extrinsic carriers.

The equation (7.20) becomes analogously,

− ρcEx + ~vF

(

1

2

(

ρc
∂2ϕ

∂x2
+ β2 ∂

∂y

(

A2∂ϕ

∂y

))

− γϕ
∂ϕ

∂t

)

= 0. (7.29)

It looks similar to the equation in GL theory in chapter 6, but with an

important corrections - no differentiation of the amplitude: ρc∂xΦ instead

of ∂x(A2Φ) and ρc∂
2
xϕ instead of ∂x(A2∂xϕ). These changes are of principle

importance because the problem becomes non-analytic in terms of the order

parameter.

Local electroneutrality

The quite physical limit of local electroneutrality means that there is no local

variation of the total charge; formally it is achieved by the limit r0 = 0, but

keeping r20σ ∼ D to be finite. In this case, the equation (7.21) becomes,

∂xϕ+ πn ≡ 0. (7.30)
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The equation (7.20) becomes,

∂Φ

∂x
+

~vF
2

(

β2 ∂

∂y

(

A2∂ϕ

∂y

)

− 2γϕ
∂ϕ

∂t

)

= 0. (7.31)

Notice that, surprisingly, there is no x rigidity for the phase anymore: the

terms containing ∂xϕ are canceled. The rigidity comes implicitly via Ex,

which couples with ∂xϕ in another equation.

The equation (7.25) becomes,

∇σ̂(∇Φ + ρc∇Z) =
e2

s
∂tn =

1

4π

1

r20
ρn∂tZ. (7.32)

We see that the driving field for the normal current is −∇Φ− ρc∇Z, so that

the diffusion is effectively reduced by a factor ρc.

7.4.2 Local electroneutrality

together with the infinite conductivity

In the double limits of the local electroneutrality and the infinite conductivity,

we obtain two simplified equations (7.30, 7.27),

∂xϕ+ πn = 0 , Z + Φ +
~vF

2
∂xϕ = 0,

hence − Φ = Z − π~vF
2

n , Ex = ρc∂xZ.

The equation (7.20) becomes

− ρc∂xZ + ~vF

(

1

2
β2∂y

(

A2∂yϕ
)

− γϕ∂tϕ

)

= 0. (7.33)

The driving force is −ρc∂xZ and, similar to equation (7.31), there is no x

rigidity for the phase. It comes indirectly from the complementary equation

∂xϕ+ πn = 0. We can also revert the n dependence to Z(n) to get

~vF

(

ρc
ρn
∂2xϕ+ β2∂y

(

A2∂yϕ
)

− 2γϕ∂tϕ

)

= 0. (7.34)

Interestingly, this equation does not contain the driving force at all. It will

come from the boundary conditions for Z, and from dependencies of ρ in the
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actual case of the nonlinear system. The coefficient ρc/ρn, divergent at ρn →
0, is known as the Coulomb hardening effect: with disappearing screening

by normal carriers, the charged phase deformations become infinitely costly

[65, 66].

7.5 1D example

The following simplest example in 1D will give more insight on how the

scheme outlined in the last section does work. Now the equation (7.26) can

be integrated to
∂

∂x

(

Z + Φ +
~vF

2

∂ϕ

∂x

)

= −e
2

σ
j, (7.35)

where j = j(t) can be the function of t only. The equation (7.20) then

becomes

ρc
∂Φ

∂x
+ ~vF

(

ρc
2

∂2

∂x2
− γ

∂

∂t

)

ϕ = ρn
e2

σ
j. (7.36)

The equation (7.21) becomes, after differentiation over x,

r20△
∂Φ

∂x
− ρn

∂Φ

∂x
= −~vF

2
ρc
∂2ϕ

∂x2
+ ρn

e2

σ
j. (7.37)

We recognize here the structure of equations from the GL approach with

ρc ∼ ∆2 standing for A2, and ρn → 1. But there are important differences

which we have already seen under approximations : ρc, unlike A2, stays at

the left from the operator ∂x, that is not being differentiated. Within the

basic GL scheme, the equation would look like

∂

∂x

(

ρc
∂Φ

∂x

)

+ ~vF

(

∂

∂x

(

ρc
2

∂

∂x

)

− γ
∂

∂t

)

ϕ = −e
2

σ
j, (7.38)

r20△
∂Φ

∂x
− 2

∂

∂x
(ρnΦ) = −~vF

2

∂

∂x

(

ρc
∂ϕ

∂x

)

+
e2

σ
j. (7.39)

Unlike that form, now the gradient of the amplitude do not affect anymore

the phase and the potential, and vice versa.

The total charge density is given as

∂xntot =
1

π
ρc
∂2ϕ

∂x2
− 2

π~vF
ρn
e2

σ
j (7.40)

=
1

π
ρc
∂2ϕ

∂x2
− 2

π~vF
ρn
∂µ

∂x
; µ = Z + Φ +

~vF
2

∂ϕ

∂x
(7.41)

116



7.6. BACK FROM THE EXTENDED TO THE SIMPLIFIED MODELS

which returns us to the additive definition ntot = nc + n = 1
π
∂ϕ
∂x

+ n. We see

the difference with respect to the GL approach which would imply nc ∼ ρc
∂ϕ
∂x

,

now ρc will appear implicitly only after compensations between 1/π ∂xϕ and

n. There are no explicit expressions for the current, and it has to be restored

from the conservation law or used generically as

Jtot = Jc + Jn = − 1

π

∂ϕ

∂t
+ Jn. (7.42)

The collective current and the density following the phase deformation are

given by the total number of electrons independent on the temperature and

the magnitude of the gap.

This nonanalytic dependence on the amplitude of the order parameter

requires for new more complicated numerical studies.

7.6 Back from the extended to the simplified

models

As we have already mentioned in the beginning of this chapter, the Ginsburg-

Landau model (see chapter 6) and presented in this section extended Ginsburg-

Landau like model should converge for a linear system, and here we shall

demonstrate it. The Ginsburg-Landau model takes into account only the

extrinsic carriers, while the extended model deals also with the intrinsic car-

riers. These two models looks a bit different in this view, however, we are

going to show that there are inherent relations between them. We shall de-

rive the Ginsburg-Landau model from the extended model by taking some

hypotheses.

To simplify notations, we consider the 1D case descried by the energy

functional 7.15, then the energy density is

w =
~vF
4π

(∂xϕ)2+
1

π
Φ∂xϕ+

(

Φ +
~vF

2
∂xϕ

)

nin−
ǫs

8π
(∇Φ)2+F (nin). (7.43)

We consider the linear approximation with respect to charge carriers. It

means that electrons respond linearly nin ∼ Z, and the free energy F (ni) is

proportional to the square of the intrinsic carriers density, F (ni) ∝ n2
i /~vF .
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This hypothesis is valid for the temperature close to the CDW transition

temperature TP . We have

w =
~vF
4π

(∂xϕ)2 +
1

π
Φ∂xϕ+

(

Φ +
~vF

2
∂xϕ

)

nin−
ǫs

8π
(∇Φ)2 +

n2
in

2~vF
. (7.44)

We minimize the energy density w with respect to nin:

δw

δnin

= 0 ⇒ nin = − 1

~vF

(

Φ +
~vF

2
∂xϕ

)

. (7.45)

Substituting ni into (7.44), we obtain

w =
~vF
4π

ρc(∂xϕ)2 +
1

π
Φρc∂xϕ+

1

~vF
Φ2 − 4r20

~vF
(∇Φ)2 . (7.46)

ρc ∼ A2 when it is small. We then recover the Ginsburg-Landau formalism

from this extended model in the limit of linear regime.

7.7 Amplitude and thermodynamic potential

The amplitude A ∼ ∆ enters as a variable parameter via ρn, ρc, β, so we have

already recovered, with corrections, the terms present in the GL equation as

A2∂tϕ, A2 (∂xϕ)2 , A2 (∂yϕ)2. We can add also the similar time derivative of

A, and the gradient terms corresponding to the energy
(

∂A
∂x

)2
,
(

∂A
∂y

)2

which

coefficients now are not bound to the ones for the phase derivative as it was

in the GL case.

Unlike the case of extrinsic carriers, now the equilibrium is shifted by per-

turbations of the intrinsic ones. So the free energy is not any more separable

into A and n additive parts like it was: ∼ A2 lnA + F (n). The property

of the free energy F (∆, n), or equivalently of the Gibbs energy Ω(∆, Z) =

F (∆, n) −Zn, is that its extremum ∆min, given by ∂Ω/∂∆ = 0, depends on

n or Z in such a way that at |Z| > Zeq ∼ ∆eq = ∆(0, T ),∆min = 0. So we

can generalize the GL scheme by writing

ξ0
2π

(

−∂
2A

∂x2
− β2∂

2A

∂y2
+ β2dA

2

dA

(

∂ϕ

∂y

)2
)

+
∂Ω

∂∆
=
γA
∆0

∂A

∂t
(7.47)
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The term ∼ A(∂ϕ
∂x

)2, complementary to the term ∼ A(∂ϕ
∂y

)2 in the above

equation does not appear explicitly but it should come vie ρc being gener-

ated by − ∂Ω
∂∆

together with other equations. Physically and technically, the

amplitude relaxes very fast, then we can neglect the time derivative in the

equation i.e. γA → 0, and the equation for A becomes instantaneous, like it

is for Φ.

7.7.1 Prescription to calculate Ω(∆, Z, T )

As an interpolation, we can be guided by a vague relation ∆2
0 ≈ ∆2

min +Z2 +

T 2 ≈ ∆2
eq + T 2, which can be implemented by writing the potential energy

as

Ω ∼ −∆2 ln

(

e∆2
0

∆2 + Z2 + T 2

)

. (7.48)

It follows that vanishing of ∆ in the vortex center is related to the critical

concentration; only the transverse phase gradient will contribute in analogy

to the critical current in superconductors. This expression does not work well

to describe the dependence on Z at a given ∆ that is to give n(Z). To precise

the vague formula (7.48), we start with holes at T = 0 : Z ≤ −∆, n = −nh,

to be anti-symmetrized in the end as n = ne − nh, where ne(Z) = nh(−Z).

We are going to obtain the following formula

Ω(Z,∆) =
1

π~vF

(

−|Z|
√
Z2 − ∆2 + ∆2 ln

(
√
Z2 − ∆2 + |Z|√

e∆0

))

(7.49)

which gives us the functions necessary in simulation:

n = −∂Ω

∂Z
=
sign(Z)

π~vF

√
Z2 − ∆2 (7.50)

∂Ω

∂∆
=

∆

π~vF
ln

(
√
Z2 − ∆2 + |Z|

∆0

)

(7.51)

That is valid at |Z| > ∆, otherwise, there are no normal particles and we are

left with the old expression

Ω(∆ ≤ |Z|) =
1

2π~vF
∆2 ln

(

∆2

e∆2
0

)

. (7.52)
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The equation (7.49) is obtained by integration
∫

ndZ but can be calculated

directly as the ground state energy in the Peierls model

Ω(∆, Z) − Ω(0, 0) =
∆2

g2
−

∑

−Ek<Z<−∆

Ek(∆) +
∑

−Ek<0

Ek(0), (7.53)

Ek(∆) =
√

(~vFk)2 + ∆2;
∑

Ek

= 2

∫

dk

2π
, (7.54)

where we have subtracted the most divergent energy of the parent metallic

state; g is the electron-phonon coupling constant. The integrals are still

logarithmically divergent at large k, so the cutoff at some EF looks to be

necessary, as usual in a BCS type theory. More intelligently, we can absorb

this divergence into the definition of ∆0 ∼ EF exp(−1
λ

(see section 2.4) by

writing g−2 in (7.53) through the condition that at Z = 0 the potential has

a minimum over ∆ at ∆ = ∆0:

2

g2
=
∑

k

1

Ek(∆0)
.

The resulting expression is convergent, if terms with the same k are kept

together, giving rise to (7.49):

Ω(∆, Z) − Ω(0, 0) =
∑

k

∆2/2

Ek(∆0)
−

∑

−Ek<Z<−∆

Ek(∆) +
∑

−Ek<0

Ek(0). (7.55)

We definitely need to consider finite temperature, otherwise the normal

carrier will appear only at high voltage V > ∆. We can vaguely introduce the

effect of both the threshold smearing and the suppression of ∆ if we generalize

(7.49) by substituting in two occasions
√
Z2 − ∆2 ⇒ ((Z2 − ∆2)2 + T 4)

1/4
.

But then we loose effects of the order of thermal activation probability ∼
exp((|Z| − ∆)/T ) which dominates except for a proximity of T to Tc or

of |Z| to ∆. Ideally, we need to make numeric work to calculate realistic

Ω(∆, Z, T ) as function of Z and ∆ at a given temperature T . Unfortunately,

our programs were not be able to work with numerically designed functions

of dependable variables, so we worked with analytic interpolations.

At finite T , we have to take into account both branches ±Ek whatever is

the sign of Z:

Ω(∆, Z, T ) − Ω(0, 0, T ) =
∆2

g2
− T

∑

k,∓

ln

(

1 + exp(Z∓Ek(∆)
T

)

1 + exp(∓Ek(0)
T

)

)

(7.56)
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The function ∂Ω/∂∆ is plotted with respect to ∆(T ) (figure 7.1), and its

non-zero minimum is suppressed at the transition point. The renormalization

procedure can be applied here as well.

Figure 7.1: Function ∂Ω/∂∆ in ∆(T ).

7.8 Results of modeling

Now we describe preliminary results obtained for the extended theory pre-

sented above. We shall give examples for the rectangular, and for the slits’

geometries. All potentials and the temperature are measured in the units of

∆0. Conductivities are measured in the units of the CDW conductivity.

7.8.1 Infinite conductivity, constant

electrochemical potential µ

First, we consider results obtained in the approximation of infinite conductiv-

ities of normal carriers (with respect to the CDW conductivity). Parameters

of the potential energy will be chosen such that the CDW amplitude vanishes

when the chemical potential of electrons exceeds ζ∗ = 0.25. Extrinsic carriers

were not taken into account. The figure below give the 3D plot of the ampli-

tude at T = 0.1 with the voltage V = 0.3 applied in the interchain direction.

Commonly, and in a short time, we observe a strong depression of A along

the boundaries, see figure 7.2. The origin is clear: with normal electric field

equals zero at the surface, the normal transverse current is driven by the y-
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gradient of ζ- purely diffusive regime. With the applied V > ζ∗ the carriers

concentration exceeds the critical one at least in a narrow layers where A is

suppressed. The interchain coupling still keeps it from vanishing until the

following instability gives rise to a vortex nucleation, usually it happens near

a corner as we see in the left panel, but a vortex or a pair of vortices can

appear as well, as we see in the right panel. For the last case we have taken

a strongly overestimated value of r0 = 20nm; that reduces the strength of

Coulomb interactions thus allowing for more variable patterns.

Figure 7.2: Amplitude of the order parameter and contour plot for the phase

(T = 0.1, V = 0.3) for strong (left) and weak (right) Coulomb interactions.

Our modeling confirms that the rigidity of the order parameter amplitude

A plays the crucial role. High rigidity does not allow anymore for a sharp

drop near the boundary only, the deformation becomes distributed and a

pronounced saddle appears in the middle; it splits in two when two pairs of

vortices start to be formed. Only one of them becomes fully developed (left

panel). We can further play with parameters to obtain the one dip crossing

the whole cross section see figure 7.3, finally it gives rise to the vortex at one

side of the dip.
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Figure 7.3: Amplitude of the order parameter and contour plot for the phase

(T=0.1, V=0.4) for different rigidities of the order parameter amplitude.

7.8.2 General non-linear system of equations, rectan-

gular geometry

When we abandon the approximation of the constant electrochemical poten-

tial (the limit of infinite conductivity) we face a strong shape effect. The

vortices nucleate, and finally one of them fully develops, in sample’s corners.

See the figure 7.4 below; it was obtained at moderately enhanced r0 = 6,

enhanced relative transverse rigidity β = 10, and reduced overall rigidity

k = 0.01.

While that may have a significance and actually take place, here we are

interested in more universal features. Since we could not go to very long

samples for computational reasons, we have just applied the conditions A = 1

at the short-side boundaries preserving there the nominal CDW amplitude.

At the left panel, computed for a weaker interchain coupling β = 1 and

smaller on-chain conductivity ( σx = 10, σy = 0.01), and V = 1.1 we see the

already known (from the approximate approach above) drop at the junctions,

followed by nucleation of two vortices at one junction. The right panel of the

figure 7.5 and the following figure show results computed for σx = 100, σy =

0.01 and V = 1. We see the deep valley across the sample with two vortices
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Figure 7.4: Amplitude of the order parameter (T = 0.1, V = 0.5).

forming at its edges i.e. at both junctions.

Figure 7.5: Order parameter amplitude (3D) and phase (2D) for the case

of fixed nominal CDW amplitude at the short boundaries for two values

of interchain coupling β and on-chain conductivity σx Left: β = 1, σx =

10, σy = 0.01. Right: β = 3.3, σx = 100, σy = 0.01.
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The figure below, computed for parameters σx = 10, σy = 0.01, and

V = 1.1 gives the 3D plot for ζ (left) and the contour plot for the phase

(right) corresponding to the regime of the right panel of the Figure 7.5.

Figure 7.6: Chemical potential (left) and the phase (right). The parameters

of modeling are the same as for figure 7.5.

Finally, below we compare the plots for the electric potential Φ and the

full electrochemical potential µ. The electric potential shows kinks at the

vortices, while µ, as always, is structureless

Figure 7.7: Full electrochemical potential µ (left) and electric potential Φ

(right). The parameters of modeling are the same as for figure 7.6
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7.8.3 General non-linear system of equations, slit ge-

ometry

As before, all potentials and temperature are measured in the units of ∆0.

Conductivities are measured in the units of the CDW conductivity. Unlike

the plots above and in chapter 6, here the length scale is in microns, rather

than in nano-meters.

First, we present results for parameters T = 0.1, r0 = 0.6mkm, β =

3.3, σx = 100, σy = 0.01, V = 0.4. The very high value of r0 has been

chosen to artificially reduce the Coulomb energy. The plot (figure 7.8)below

gives distributions of the order parameter amplitude A (left, colors change

from read for A = 1 to blue for A = 0) and for ζ. We see the correlated rises

of |ζ| and consequent drops of A which reason will be guessed and proved

later on. First, there is a natural enhancement of carriers’ concentration

near the left and the right terminals. Second and interesting, there is also

the enhancement at the slits in parts where the normal current arrives. Here

the rise of all potentials contributes to termination of the normal current

meeting the obstacle.

Figure 7.8: Amplitude (left) and electrochemical potential µ (right).

In the slit geometry the only variable which is determined in the whole

plane (slits included) is the electric potential Φ. All others fields are valid

only inside the sample. On the next figure 7.9 we present electrochemical

potential µ and electric potential Φ. Notice that µ is presented only inside

the sample, but Φ smoothly changes in the whole region of the sample and

inside slits.
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Figure 7.9: Electrochemical potential µ (left) and electric potential Φ (right).
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Chapter 8

Current conversion and

constraints in charge density

waves.

In this chapter we study the conversion between the normal current and the

condensate current in CDW, and find a system of equations to describe this

process. We also explore the 1D limit and stationary current limit of this

equations. We shall add very limited but already interesting results for these

very demanding computations.

8.1 Introduction

In the previous chapters, we have studied formation of vortices, which motion

might play a role in charge conversion between the CDW current and normal

one. We have considered the interactions between various types of carriers:

the condensate carriers nc, intrinsic carriers ni, extrinsic ones nex. However,

we have not allowed for their mutual conversion, namely, the carriers interact

but they are conserved separately. A very important process (see section 3.4)

is the charge conversion when the carriers are exchanged among different

reservoirs. This conversion is ultimately related to phase slips performed by

propagation of topological defects. So these effects must be considered in

ensemble. Below we shall outline equations, which may describe such effects.
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Still, the complexity is beyond the reach of our facilities for detailed numerical

modeling as in previous chapters for Ginsburg-Landay type models.

8.2 Method

In earlier chapters, we have seen the importance to work with the partial

derivatives of the complex order parameter Ψ = A exp(iϕ), for they make

parts of the Hamiltonian and the equations of motion. Notice that their

analytical properties are closely related to the topological configurations ap-

pearing in the CDW systems, such as dislocations, vortices, and phase slips.

We shall imply that all derivatives ∂iϕ of the phase ϕ are local, they

cannot be sensitive to artifacts of 2π jumps. So we should work with the

invariant and differentiable form

∂iϕ⇒ Im
∂iΨ

Ψ
=

1

2i

(

∂iΨ

Ψ
− ∂iΨ

∗

Ψ∗

)

= ωi ; i = x, y, z, t. (8.1)

A similar formula for the amplitude A is

2A∂iA = ∂(ΨΨ∗) = Ψ∗∂iΨ + Ψ∂iΨ
∗. (8.2)

The statics and dynamics of the CDW vortex system can be described by

Vorticity, a measure of the vortex strength and the motion. The vorticity in

space Ixy = 2πτ is the density of vortices with positions

~rv(t) τ = ±δ(~r − ~rv)

.

The vorticity in space-time

Ixt, Iyt) = 2π~I = ẑ × ~J = (Jy,−Jx) = ~v × ~τ

is the vector orthogonal to the current of vortices ~J , i.e. to their velocity ~v

(see the section 3.1.2).

Usually vortices in superconductors or in superfluid can move in any di-

rection with no difference. Contrarily, for edge dislocations there are two

different types of motion: the glide and the climb, recall the section 3.1.2.
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For an edge dislocation, the dislocation and the Burgers vector are perpen-

dicular, so there is only one plane in which the dislocation can glide. The

glide is the conservative motion - no inflow of adatoms or vacancies (electrons

and holes in the CDW) is necessary. Another type of dislocations’ motion,

fundamentally different from glide, is known as the climb when the disloca-

tion moves perpendicular to its glide plane. Unlike the glide, the climb is not

conservative, because when the dislocation is passing e.g. in CDW across a

chain, the phase increment along the chain changes by ±2π i.e. one period

is added/removed, hence two electrons have to be absorbed/emitted from/to

the reservoir of normal carriers. The constraint for the climb gives

1

π
(−∂xωt + ∂tωx) = dnc/dt = R = −dnn/dt (8.3)

At this stage, we shall not exploit any form of the conversion function

R (see the section 3.4.2) for that, but just take into account the balance of

carriers dnc/dt+ dnn/dt = 0.

At first, we shall consider only the intrinsic carriers (n is now the intrinsic

carrier density by omitting the subscript ”in”), while the extrinsic ones can

be added a posteriori.

The full system of equations reads (see chapter 7):

2r20
~vF

∆Φ + ωx + πn(z) = 0 , n = ne − nh, (8.4)

where ne is the density of electrons, and nh the density of holes.

∂xΦ +
π

2
~vF∂xn+

~vF
2

(

∂xωx + β2∂y(A
2ωy)

)

=γϕA
2ωt , γϕ =

e2

πsσcdw
(8.5)

− ∂Ω/∂A+ a∂2xA+ b∂2yA− cAω2
y = γA∂tA (8.6)

where a, b, c are the known constant parameters.

0 =
dnn

dt
+
dnc

dt
= − s

e2
∇σ̂∇(z+ Φ +

~vF
2
ωx) +∂tn+

1

π
(−∂xωt + ∂tωx) (8.7)

i.e.

−∇
(

πs

e2
σ̂∇(z + Φ +

~vF
2
ωx) + x̂ωt

)

+ ∂t(πn+ ωx) = 0 (8.8)
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The derivations of equation(8.4)- the Poisson equation, equation (8.5)- the

equation for the phase ϕ, and equation (8.6)- the equation for the ampli-

tude A, are the same as the equations (7.21, 7.20, 7.47) in chapter 7. The

constraint (8.3) is integrated into the charge diffusion equation to obtain its

form as equations (8.7, 8.8).

For a first step to study this system of differential equations, we shall

consider the simple 1D case, and also some special limits, such as vanishing

r0 and high σ, similar to chapter 7.

8.3 1D case

8.3.1 General equations in 1D

We shall use the following abbreviations

q = ωx, ω = ωt, E = Ex = −∂xΦ, γϕ =
e2

πsσcdw
, z = ζ.

The equation (8.6) for amplitude A becomes

− ∂Ω(A, z, T )/∂A+ a∂2xA = γA∂tA (8.9)

Now this equation for A does not contain the phase gradient - no direct

suppression of A - unlike in the 2D case. The effect upon A comes only

indirectly through the chemical potential z in the expression of Ω(A, z, T ).

The equation (8.5) for the phase, the Poisson equation (8.4), and the

diffusion equation (8.8) are reduced as

− E +
~vF

2
∂x(q + πn) = γϕA

2ω, (8.10)

q+πn =
s

4e2
∂xE, (8.11)

∂x

(

s

e2
σn

(

∂x(z +
~vF

2
q) − E

)

+ ω

)

= ∂t(n+
1

π
q). (8.12)

Using (8.11), we can exclude E from other equations, which is a unique

feature of the 1D model. We obtain the following equations

(r20∂
2
x − 1)(q + πn) =

1

4π

1

σcdw
∂x(A2ω), (8.13)
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∂x

(

s

e2
σnρc∂xz +

(

σn
σcdw

A2 + 1

)

1

π
ω

)

= ∂t(n+
1

π
q). (8.14)

The extrinsic carriers can be added to the system as replacing the intrinsic

carriers n in the Poisson equation by the sum of the two kinds of carriers

nex+nin. The densities of intrinsic nex(ζ) and extrinsic carriers nin(z) depend

on their own chemical potential ζ and z, which are related by the relation

ζ = z + ~vF∂xϕ/2

assuming their fast mutual equilibration.

8.3.2 Local electroneutrality in 1D

Consider the vanishing r0 - an approximation of the local electroneutrality

r0 = 0 in the Poisson equation while leaving it in the product r20σn- because

always σ ∼ r−2
0 which factor just accommodates the electric charge e to

transform the current of particles to the electric current. Then (8.11) gives

q+πn(z) = 0 (8.15)

Then the eq. (8.10) becomes

E =
−e2
πsσcdw

A2ω =
eA2Ic
sσcdw

(8.16)

where Ic is the condensate collective current per chain (it may depend on both

x and t because of phase slips). The charge conservation equation becomes

− ∂x

(

s

e2
σn

(

∂x(z − π

2
~vFn) − E

)

+
1

π
ω

)

= 0 (8.17)

This equation gives us the unexpected expression of the normal current: the

diffusion driving force is reduced by the factor ρc

σn (E − ρc∂xz) = In(t)

We have already seen these effects in section 7.4 We exclude E from the

above two equations or adapt the general equation (8.14):

s

e2
σnρc∂xz +

(

σn
σcdw

A2 + 1

)

1

π
ω = −I(t) (8.18)

133



CHAPTER 8. CURRENT CONVERSION AND CONSTRAINTS IN
CHARGE DENSITY WAVES.

Here I is the total current - our monitoring parameter, it may be t dependent

but cannot depend on x. Equations (8.15, 8.18) supplemented by definitions

of q and ω form the full system.

In the linear regime ρc = cnst , σn = cnst , we can exclude z via q to

obtain the total current in terms of the phase alone:

I(t) =
s

e2
σn

1

2
~vF∂

2
xϕ
ρc
ρn

−
(

σn
σcdw

A2 + 1

)

1

π
∂tϕ (8.19)

The first term describes the normal current driven by the gradient of the

Fermi level 1
2
~vF∂xϕ ; it is amplified by the factor ρc/ρn, similar to the

Coulomb hardening (see section 7.4). The second gives the drag ∼ A2σn/σcdw.

8.4 Preliminary results of modeling.

Here we present the preliminary results for the advanced scheme allowing

for the current conversion. The conversion function R(η) will be chosen

linearized in the potentials’ mismatch η: R = const ∗ (n2
e + n2

h)ξ0η. We shall

work with the following parameters: T = 1, r0 = 0.06mkm, β = 3.3, σx =

100, σy = 0.01. Notice the enhanced T in comparison with previous studies.

The choice of parameters was limited by necessity to perform calculations at

quite refined mesh of 4000 points (for 6 fields) shown below, figure 8.1 left.

Shown at the right panel, is the µ which is more structured now than usually.

Particularly it is not monotonous along the paths between the terminals: the

jump of µ across the bridge is 4 while only V = 0.8 was applied.

Figure 8.1: Slit geometry (left) and electrochemical potential µ (right).

Then we present the figures 8.2 showing an electric potential distribution
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in the sample and the whole space. Still, the pattern of the electric potential

are much richer as we see in the figure below.

Figure 8.2: The distribution of the electric potential Φ in the sample (left)

and in slits (right).

We observe three well separated types of spots with strongly enhanced

magnitude of Φ but alternating signs. The one at foots of slits may be a

geometric effect met already in the rectangular geometry. The one at the

tips of the slits is not surprising even if needs to be understood. So, what is

the origin of the ellipses at a middle of a slit, more or less at the level of the

tip of another slit? The answer comes from the next figure 8.3 showing the

color plot of the amplitude together with lines of the normal currents. We

see that, the current leaving the terminal (only the left hand side is shown

in full length) is not homogeneous over the cross section. Rather, it forms a

high density narrow jet passing straight above the first tip before it hits the

next slit. A strong potential has to be built here to terminate the current;

one of its counterpart is the chemical potential ζ which directly, together

with y-gradient of the phase, affect the amplitude A. We may say that the

current jet burns down the CDW where it hits the obstacle. We should

underline that the regime is not ballistic in our description (while it can be

in very short samples). It is only a consequence of the very high, anisotropy

of conductivities σx/σy = 104.

While the elongated spots of the amplitude suppression do not look sharp

in the vortex core, actually they are. That is seen in the figure 8.4 below

showing the color plot of the phase ϕ (normalized to π) together with the

current lines. While the phase changes are tightly bound the slits boundaries,

the phase increments are exactly 2π !

135



CHAPTER 8. CURRENT CONVERSION AND CONSTRAINTS IN
CHARGE DENSITY WAVES.

Figure 8.3: Amplitude of the order parameter A and the current lines.

Figure 8.4: Phase ϕ of the order parameter and the current lines.
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8.5 Conclusion

The derived equations can be the basic of a future work. We have presented

the preliminary results of modeling taking into account the current conversion

processes. But computation difficulties are multiplying, so a mainstream

computer and a didacted programming may be required.
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Chapter 9

Conclusion

Inhomogeneous and transient states of cooperative electronic systems with a

spontaneous symmetry breaking attract a persistent attention: from a well

known physics of vortices in superconductors to stripes in doped oxides, to

recent local probes in electronic crystals, and to latest studies of transfor-

mations under impacts of a high electric field or pulses of light. The most

common playground of modern studies are the Charge Density Waves (CDW)

which are best accessible experimentally and best treated theoretically.

In this thesis, we have performed a program of modeling inhomogeneous

stationary states, and their transient dynamic for the CDWs in restricted

geometries under applied voltage and at passing normal currents. The aim

was to see the reconstruction of the CDW state by proliferation of dislocation

lines - the CDW vortices.

The models takes into account multiple fields in mutual nonlinear inter-

actions: the two components of the CDW complex order parameter, and

distributions of the electric potential, of the densities and the currents of two

types of normal carriers.

The most detailed studies were based upon the dissipative Ginzburg-

Landau type equation for the order parameter; it was augmented by equa-

tions for nonlinear diffusion of normal carriers and for the electric potential.

The carriers were considered to be extrinsic with respect to the CDW: the

two charged systems are coupled only by the common electric potential. This

model describes, at low temperature, the class of CDWs preserving pieces of
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ungaped Fermi surfaces.

Our studies allowed to compare different numerical techniques - from the

earlier direct minimization for the static regime (no currents), to solution

of differential equations describing the stationary regime with currents, and

finally to the most informative dynamic simulations.

The obtained results elucidate experimental observations. We have con-

firmed the existence of the threshold voltages, above which the vortices are

created inside the junction. We found that the number of vortices increases

stepwise with the applied voltage. The simulations recover an important fea-

ture that the voltage drop concentrates at the vortex cores, which work as

the self-tuned tunneling micro-junctions, and this phenomenon explains the

experimentally observed peaks in the I-V plots.

The transient dynamics is very rich showing creation, annihilation and

sweeping of multiple vortices. We distinguished the initial fast turbulent

regime, followed by a transient regime when the remnant vortices are left

and they slowly move to find their equilibrium positions.

Beyond that approach, it was necessary to describe the fully gapped

CDWs by taking into account the intrinsic carriers which spectrum is af-

fected by the CDW and which couple directly with the CDW deformations.

Here, we have derived the extended model based on the property of the chiral

invariance and taking into account the chiral anomaly. A further extension

allowed to write equations taking into account the current conversion effect:

exchange or electrons among the reservoirs of condensed and excited parti-

cles. The resulting equations are more complicated than what was assumed

in the GL picture. They rely upon hidden cancellations and they are not

analytic in the order parameter. As a consequence, the numerical process

was very unstable and results are limited. Even if we were not able to reach

the regime of the vortex propagation, we could see their nucleation at junc-

tions or at obstacles. More sophisticated deducted programming and more

powerful hardwire is necessary to continue this work which is our planning

for the nearest future.

Our studies have shown their usefulness in the explaining of the experi-

mental data, and they can give insights for the future experimental designs.

The results obtained from our modeling agree with experiment observa-
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tions; they suggest more experimental verifications and designs. The meth-

ods can be extended to other types of charge organization known under the

general name of the Electronic Crystal. It takes forms of Wigner crystals at

hetero-junctions and in nano-wires, CDWs in chain compounds, spin den-

sity waves in organic conductors, and stripes in doped oxides. The studied

reconstruction in junctions of the CDW may be relevant also to modern ef-

forts of the field-effect transformations in strongly correlated materials with

a spontaneous symmetry breaking.

Most of the described results have been published briefly in [67, 68]. The

movies after the modeling are available at the web site [61].

Perspective

Up to now the process of vortex formation in CDW is not completely known.

There is still much progress to be made for a better understanding of charge

and current conversions between the condensate and the normal parts. Our

attempts to solve these problem are good starting points. Still more efforts

should be invested in these problems.

Our model can be extended to the studies of other geometrics and maybe

a 3D model can be developed with the advance of the computing techniques.

Concerning the studies of Electronic Crystals, there are many topics, and

every three years the ECRYS conference gives new discoveries in this field.
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Appendix A

COMSOL multiphysics

implementation

Here is the COMSOL Multiphysics program for the modeling. The complex

order parameter Ψ = A exp iϕ is split into its real part and image part

Ψ = u+ iv. The total free energy functional Htotal = HCDW +Hel (equations

6.1,6.2) is written in u and v as,

∫

d3r
∆0ξ0
4πs⊥

{

(

|∇u|2 + |∇v|2
)

+
4π

ξ20

(

u2 + v2

2
ln
u2 + v2

e

)

+
4

ξ0

Φ

∆0

(uv′ − vu′)

+
4πdc
ξ0

Φ

∆0

(n2(ζ) − n̄2) − 4

(

r0
ξ0

)2

|∇ Φ

∆0

|2
}

+ F (n)

(A.1)

Where

ξ0 =
~vF
∆0

(A.2)

1

r20
=

8e2

s⊥ǫ~vF
(A.3)

n2 = n0
kBT

εF
ln

(

1 + e
εF+ζ

kBT

)

(A.4)

εF = ε(nF ) (A.5)

Then from a variational calculation we obtain
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−△u+
2π

ξ20
u ln

(

u2 + v2
)

+
2

ξ0

(

(Φv)′

∆0

+ v′
Φ

∆0

)

= − γϕv
2

u2 + v2
∂u

∂t
+

γϕuv

u2 + v2
∂v

∂t
,

(A.6)

−△v +
2π

ξ20
v ln

(

u2 + v2
)

− 2

ξ0

(

(Φu)′

∆0

+ u′
Φ

∆0

)

=
γϕuv

u2 + v2
∂u

∂t
− γϕu

2

u2 + v2
∂v

∂t
,

(A.7)

− 2

(

r0
ξ0

)2

△ Φ

∆0

− 1

ξ0
(uv′ − vu′) =

πdc
ξ0

(n2(ζ) − n̄2) , (A.8)

n0

ef

1

exp(− ef+µ−Φ
T

) + 1
(
∂µ

∂t
− ∂Φ

∂t
) −∇

(

n(ζ)

n0

σ̂0∇ (µ)

)

= 0. (A.9)

The boundary conditions on all the sides of the sample are (von Neumann):

(

∇u− 2

ξ0
v

Φ

∆0

~x

)

~n = 0, (A.10)

(

∇v +
2

ξ0
u

Φ

∆0

~x

)

~n = 0, (A.11)

(

∇ Φ

∆0

)

~n = 0, (A.12)

n(ζ)

n0

σ̂0∇ (µ)~n = 0. (A.13)

Except the boundaries where the voltage applied and the Dirichlet bound-

ary condition is used:

(∇u)~n = 0, (A.14)

(∇v)~n = 0, (A.15)
(

∇ Φ

∆0

)

~n = 0, (A.16)

µ = ±V. (A.17)

Initial conditions are

u = 1, v = 0, µ = Φ, and Φ = V
2y

d
. (A.18)

d is the length of the rectangle.
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Publications

Works presented in my thesis are published:

• T. Yi, Y. Luo, A. Rojo Bravo and S. Brazovskii. Modelling of nonlin-

ear and non-stationay multi-vortex behavior of CDWs at nonscales in

restricted geometries of internal juncitons. Physica B 407: 1839-1844,

2012.

• T. Yi, Y. Luo, A. Rojo Bravo, N. Kirova, and S. Brazovskii. Recon-

struction of the charge density wave state under applied electric field.

J. Supercond. Nov. Magn., 25:1323-1327, 2012.

My work was presented at the conferences

• Collaborative meeting: Charge density waves: small scales and ultra-

short times (Vukovar, Croatia 2010)

Title: Modeling of nonlinear and nonstationary behavior of CDWs at

nano and meso scales of restricted geometries of mesa junctions.

• Hong Kong Forum of Physics 2010: Novel Quantum States and Meth-

ods (Hong Kong, China 2010)

Title: Modeling of the ground state reconstruction by vortexes in nano-

junctions of charge density waves.

• COMSOL Conference (Stuttgart, Germany 2011)
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Title : Modeling of Nonlinear and Non-Stationary Multi-Vortex Behav-

ior of Electronic Crystals in Restricted Geometries of Nano Junction.

• International research school and workshop on electronic crystals, ECRYS-

2011 (Cargèse, France 2011)

Title : Modeling of Nonlinear and Non-Stationary Multi-Vortex Behav-

ior of Electronic Crystals in Restricted Geometries of Nano Junction.

• International Conference on Electronic States and Phases Induced by

Electric or Optical Impacts, IMPACT-2012 (Orsay, France 2012)

Title: Modeling of electronic vortices – the dislocations - in charge

density waves under the electric field and near junctions
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